blas.h File Reference

BeBOP wrappers around the dense BLAS routines. More...

#include <oski/vecview.h>

Go to the source code of this file.

Defines

#define INC_OSKI_BLAS_H
 oski/blas.h included.
#define ARE_VECVIEW_DIMS_EQUAL(x, y)   (((x)->num_rows == (y)->num_rows) && ((x)->num_cols == (y)->num_cols))
 Returns 1 <==> the given vector views have equal logical dimensions.
Name mangling.
#define oski_ZeroVecView   MANGLE_(oski_ZeroVecView)
#define oski_ConjVecView   MANGLE_(oski_ConjVecView)
#define oski_ScaleVecView   MANGLE_(oski_ScaleVecView)
#define oski_AXPYVecView   MANGLE_(oski_AXPYVecView)
#define oski_RectScaledIdentityMult   MANGLE_(oski_RectScaledIdentityMult)

Functions

int oski_ZeroVecView (oski_vecview_t x)
 Set all elements of a vector view $x$ to zero.
int oski_ScaleVecView (oski_vecview_t x, oski_value_t alpha)
 Computes $x \leftarrow \alpha\cdot x$.
int oski_ConjVecView (oski_vecview_t x)
 Computes the complex conjugate of a vector view, i.e., $x \leftarrow \bar{x}$.
int oski_AXPYVecView (const oski_vecview_t x, oski_value_t alpha, oski_vecview_t y)
 Computes $y \leftarrow y + \alpha\cdot x$.
int oski_RectScaledIdentityMult (oski_value_t alpha, const oski_vecview_t x, oski_vecview_t y)
 Computes $y \leftarrow y + \alpha I_{m\times n}\cdot x$, where $I_{m\times n}$ is an $m\times n$ matrix such that $I(k,k) = 1$ for all $1 \leq k \leq \min(m,n)$.
int oski_DenseMatMult (const oski_vecview_t A, oski_matop_t opA, oski_value_t alpha, const oski_vecview_t x, oski_value_t beta, const oski_vecview_t y)
 Computes $y \leftarrow \beta\cdot y + \alpha\cdot \mathrm{op}(A)\cdot x$, where $A, x, y$ are all dense matrices (multivector views).


Detailed Description

BeBOP wrappers around the dense BLAS routines.


Define Documentation

#define INC_OSKI_BLAS_H

oski/blas.h included.


Function Documentation

int oski_RectScaledIdentityMult ( oski_value_t  alpha,
const oski_vecview_t  x,
oski_vecview_t  y 
)

Computes $y \leftarrow y + \alpha I_{m\times n}\cdot x$, where $I_{m\times n}$ is an $m\times n$ matrix such that $I(k,k) = 1$ for all $1 \leq k \leq \min(m,n)$.

Precondition:
x and y must be valid views.

References oski_vecstruct_t::colinc, oski_vecstruct_t::num_cols, oski_vecstruct_t::num_rows, oski_vecstruct_t::orient, oski_vecstruct_t::rowinc, oski_vecstruct_t::stride, and oski_vecstruct_t::val.

int oski_ScaleVecView ( oski_vecview_t  x,
oski_value_t  alpha 
)

int oski_ZeroVecView ( oski_vecview_t  x  ) 

Set all elements of a vector view $x$ to zero.

Parameters:
[in] x Valid vector view.
Returns:
0 on success, or an error code on err.

References ERR_BAD_VECVIEW, INVALID_VEC, LAYOUT_COLMAJ, LAYOUT_ROWMAJ, oski_vecstruct_t::num_cols, oski_vecstruct_t::num_rows, oski_vecstruct_t::orient, OSKI_ERR_BAD_VEC, oski_vecstruct_t::stride, oski_vecstruct_t::val, ZeroDenseMatColmaj(), and ZeroDenseMatRowmaj().


Generated on Fri Apr 8 22:35:19 2011 for BeBOP Optimized Sparse Kernel Interface Library by  doxygen 1.5.9