CppAD: A C++ Algorithmic Differentiation Package 20110419
|
00001 /* $Id$ */ 00002 # ifndef CPPAD_SINH_OP_INCLUDED 00003 # define CPPAD_SINH_OP_INCLUDED 00004 00005 /* -------------------------------------------------------------------------- 00006 CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-10 Bradley M. Bell 00007 00008 CppAD is distributed under multiple licenses. This distribution is under 00009 the terms of the 00010 Common Public License Version 1.0. 00011 00012 A copy of this license is included in the COPYING file of this distribution. 00013 Please visit http://www.coin-or.org/CppAD/ for information on other licenses. 00014 -------------------------------------------------------------------------- */ 00015 00016 00017 CPPAD_BEGIN_NAMESPACE 00018 /*! 00019 \file sinh_op.hpp 00020 Forward and reverse mode calculations for z = sinh(x). 00021 */ 00022 00023 00024 /*! 00025 Compute forward mode Taylor coefficient for result of op = SinhOp. 00026 00027 The C++ source code corresponding to this operation is 00028 \verbatim 00029 z = sinh(x) 00030 \endverbatim 00031 The auxillary result is 00032 \verbatim 00033 y = cosh(x) 00034 \endverbatim 00035 The value of y, and its derivatives, are computed along with the value 00036 and derivatives of z. 00037 00038 \copydetails forward_unary2_op 00039 */ 00040 template <class Base> 00041 inline void forward_sinh_op( 00042 size_t j , 00043 size_t i_z , 00044 size_t i_x , 00045 size_t nc_taylor , 00046 Base* taylor ) 00047 { 00048 // check assumptions 00049 CPPAD_ASSERT_UNKNOWN( NumArg(SinhOp) == 1 ); 00050 CPPAD_ASSERT_UNKNOWN( NumRes(SinhOp) == 2 ); 00051 CPPAD_ASSERT_UNKNOWN( i_x + 1 < i_z ); 00052 CPPAD_ASSERT_UNKNOWN( j < nc_taylor ); 00053 00054 // Taylor coefficients corresponding to argument and result 00055 Base* x = taylor + i_x * nc_taylor; 00056 Base* s = taylor + i_z * nc_taylor; 00057 Base* c = s - nc_taylor; 00058 00059 00060 // rest of this routine is identical for the following cases: 00061 // forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op. 00062 size_t k; 00063 if( j == 0 ) 00064 { s[j] = sinh( x[0] ); 00065 c[j] = cosh( x[0] ); 00066 } 00067 else 00068 { 00069 s[j] = Base(0); 00070 c[j] = Base(0); 00071 for(k = 1; k <= j; k++) 00072 { s[j] += Base(k) * x[k] * c[j-k]; 00073 c[j] += Base(k) * x[k] * s[j-k]; 00074 } 00075 s[j] /= Base(j); 00076 c[j] /= Base(j); 00077 } 00078 } 00079 00080 /*! 00081 Compute zero order forward mode Taylor coefficient for result of op = SinhOp. 00082 00083 The C++ source code corresponding to this operation is 00084 \verbatim 00085 z = sinh(x) 00086 \endverbatim 00087 The auxillary result is 00088 \verbatim 00089 y = cosh(x) 00090 \endverbatim 00091 The value of y is computed along with the value of z. 00092 00093 \copydetails forward_unary2_op_0 00094 */ 00095 template <class Base> 00096 inline void forward_sinh_op_0( 00097 size_t i_z , 00098 size_t i_x , 00099 size_t nc_taylor , 00100 Base* taylor ) 00101 { 00102 // check assumptions 00103 CPPAD_ASSERT_UNKNOWN( NumArg(SinhOp) == 1 ); 00104 CPPAD_ASSERT_UNKNOWN( NumRes(SinhOp) == 2 ); 00105 CPPAD_ASSERT_UNKNOWN( i_x + 1 < i_z ); 00106 CPPAD_ASSERT_UNKNOWN( 0 < nc_taylor ); 00107 00108 // Taylor coefficients corresponding to argument and result 00109 Base* x = taylor + i_x * nc_taylor; 00110 Base* s = taylor + i_z * nc_taylor; // called z in documentation 00111 Base* c = s - nc_taylor; // called y in documentation 00112 00113 s[0] = sinh( x[0] ); 00114 c[0] = cosh( x[0] ); 00115 } 00116 /*! 00117 Compute reverse mode partial derivatives for result of op = SinhOp. 00118 00119 The C++ source code corresponding to this operation is 00120 \verbatim 00121 z = sinh(x) 00122 \endverbatim 00123 The auxillary result is 00124 \verbatim 00125 y = cosh(x) 00126 \endverbatim 00127 The value of y is computed along with the value of z. 00128 00129 \copydetails reverse_unary2_op 00130 */ 00131 00132 template <class Base> 00133 inline void reverse_sinh_op( 00134 size_t d , 00135 size_t i_z , 00136 size_t i_x , 00137 size_t nc_taylor , 00138 const Base* taylor , 00139 size_t nc_partial , 00140 Base* partial ) 00141 { 00142 // check assumptions 00143 CPPAD_ASSERT_UNKNOWN( NumArg(SinhOp) == 1 ); 00144 CPPAD_ASSERT_UNKNOWN( NumRes(SinhOp) == 2 ); 00145 CPPAD_ASSERT_UNKNOWN( i_x + 1 < i_z ); 00146 CPPAD_ASSERT_UNKNOWN( d < nc_taylor ); 00147 CPPAD_ASSERT_UNKNOWN( d < nc_partial ); 00148 00149 // Taylor coefficients and partials corresponding to argument 00150 const Base* x = taylor + i_x * nc_taylor; 00151 Base* px = partial + i_x * nc_partial; 00152 00153 // Taylor coefficients and partials corresponding to first result 00154 const Base* s = taylor + i_z * nc_taylor; // called z in doc 00155 Base* ps = partial + i_z * nc_partial; 00156 00157 // Taylor coefficients and partials corresponding to auxillary result 00158 const Base* c = s - nc_taylor; // called y in documentation 00159 Base* pc = ps - nc_partial; 00160 00161 // rest of this routine is identical for the following cases: 00162 // reverse_sin_op, reverse_cos_op, reverse_sinh_op, reverse_cosh_op. 00163 size_t j = d; 00164 size_t k; 00165 while(j) 00166 { 00167 ps[j] /= Base(j); 00168 pc[j] /= Base(j); 00169 for(k = 1; k <= j; k++) 00170 { 00171 px[k] += ps[j] * Base(k) * c[j-k]; 00172 px[k] += pc[j] * Base(k) * s[j-k]; 00173 00174 ps[j-k] += pc[j] * Base(k) * x[k]; 00175 pc[j-k] += ps[j] * Base(k) * x[k]; 00176 00177 } 00178 --j; 00179 } 00180 px[0] += ps[0] * c[0]; 00181 px[0] += pc[0] * s[0]; 00182 } 00183 00184 CPPAD_END_NAMESPACE 00185 # endif