Guile Library

version 0.1.5, updated 24 September 2007

Andy Wingo (wingo at pobox.com)
Richard Todd (richardt at vzavenue.net)

mailto:wingo at pobox.com
mailto:richardt at vzavenue.net

This manual is for Guile Library (version 0.1.5, updated 24 September 2007)
Copyright 2003,2004,2005,2006,2007 Andy Wingo, Richard Todd

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published y the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

Short Contents

O 0 J O O = W N

W W W W W W NN NDDNDDNDNDDNDDNDNDLDNRFE = = = = = = = = =
T W NN = O © 00 1 O UL i W NN = O © 00~ O U = W N+~ O

apicheck)o 1
configload) 2
CONBAIMET ASYNC-QUETIE) + . v v vt ettt et e e e e e e e 3
container nodal-tree) i 4
container delay-tree) i 5
debugging assert) 6
debugging time) 7
graph topological-sort) i 8

10 SEFINE) oottt 11
logging 1ogger)ot 12
logging port-log)o 17
logging rotatlng—log) 18

math mlnlma) 21
math primes) 22

math rationalize) L i 23

scheme documentation)......... i i, 28
scheme kwargs) 29
scheme session) i 31
search basic)o i 33

string completion) i 37
string soundex) 39
string transform) L L L 40
SETINE WIAD) « o v v e et et e e e e 42
sxml apply-templates) i i 44
sxml fold) . ..o o 45
sxml simple) 47
SXINL SSAX) © vt vttt 48
sxml ssax INPUE-PATSE) « oot tn ittt 51
sxml transform) L 52
sxml xpath)o 54
term ansi-color) 56

(
(
(
(
(
(
(
(
(
(i
(log
(
(
(
(
(
(
(OS PIOCESS) v vttt et e e e e e e e e 24
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

36 (texinfo) ... 57
37 (texinfo docbook) L L 60
38 (texinfo html) 62
39 (texinfo indexing) il 63
40 (texinfo nodal-tree)........ i il 64
41 (texinfo plain-text) i 65
42 (texinfo serialize) i 66
43 (texinfo reflection) i 67
44 (text parse-lalr). i 69
45 (unit-test) . ..o 72
A Copying This Manual L 74
Concept Index . ..o e 82

Function Indexo 83

11

Chapter 1: (apicheck) 1

1 (apicheck)

1.1 Overview

(apicheck) exports two routines. apicheck-generate produces a description of the
Scheme API exported by a set of modules as an S-expression. apicheck-validate
verifies that the API exported by a set of modules is compatible with an API description
generated by apicheck-generate.

It would be nice to have Makefile.am fragments here, but for now, see the Guile-Library
source distribution for information on how to integrate apicheck with your module’s unit
test suite.

1.2 Usage

apicheck-generate module-names [Function]
Generate a description of the API exported by the set of modules module-names.

apicheck-validate api module-names [Function]
Validate that the API exported by the set of modules module-names is compatible
with the recorded API description api. Raises an exception if the interface is incom-
patible.

Chapter 2: (config load)

2 (config load)

2.1 Overview

This module needs to be documented.

2.2 Usage

<configuration>
load-config!

load-config! (cfg <configuration>) (commands <list>)
(file-name <string>)

&config-error

config-error-arguments condition

[Class]
[Generic]

[Method|

[Class]

[Function]

Chapter 3: (container async-queue) 3

3 (container async-queue)

3.1 Overview

A asynchronous queue can be used to safely send messages from one thread to another.

3.2 Usage

make-async-queue [Function]
Create a new asynchronous queue.

async-enqueue! qelt [Function]
Enqueue elt into q.

async-dequeue! q [Function]
Dequeue a single element from q. If the queue is empty, the calling thread is blocked
until an element is enqueued by another thread.

Chapter 4: (container nodal-tree) 4

4 (container nodal-tree)

4.1 Overview

A nodal tree is a tree composed of nodes, each of which may have children. Nodes are
represented as alists. The only alist entry that is specified is children, which must hold
a list of child nodes. Other entries are intentionally left unspecified, so as to allow for
extensibility.

4.2 Usage

nodal-tree? x [Function]
Predicate to determine if x is a nodal tree. Not particularly efficient: intended for
debugging purposes.

make-node . attributes [Function]
node-ref node name [Function]
node-set! node name val [Function]
node-children node [Function]

Chapter 5: (container delay-tree) 5

5 (container delay-tree)

5.1 Overview

A delay tree is a superset of a nodal tree (see (container nodal-tree)). It extends nodal trees
to allow any entry of the node to be a promise created with the delay operator.

5.2 Usage

force-ref node field [Function]
Access a field in a node of a delay tree. If the value of the field is a promise, the
promise will be forced, and the value will be replaced with the forced value.

Chapter 6: (debugging assert) 6

6 (debugging assert)

6.1 Overview

Defines an assert macro, and the cout and cerr utility functions.

6.2 Usage

assert expr . others [Special Form]
Assert the truth of an expression (or of a sequence of expressions).
syntax: assert Pexpr 7expr ... [report: Pr-exp 7r-exp ...]
If (and 7expr ?expr ...) evaluates to anything but #f, the result is the value of

cout

cerr

that expression. Otherwise, an error is reported.

The error message will show the failed expressions, as well as the values of selected
variables (or expressions, in general). The user may explicitly specify the expressions
whose values are to be printed upon assertion failure — as 7r-exp that follow the
identifier report:.

Typically, 7r-exp is either a variable or a string constant. If the user specified no
’r-exp, the values of variables that are referenced in 7expr will be printed upon the
assertion failure.

. args [Function]
Similar to cout << arguments << args, where argument can be any Scheme object.
If it’s a procedure (e.g. newline), it’s called without args rather than printed.

. args [Function]
Similar to cerr << arguments << args, where argument can be any Scheme object.
If it’s a procedure (e.g. newline), it’s called without args rather than printed.

Chapter 7: (debugging time) 7

7 (debugging time)

7.1 Overview

Defines a macro to time execution of a body of expressions. Each element is timed individ-
ually.

7.2 Usage

time expr . others [Special Form]
syntax: (time exprl expr2...)
Times the execution of a list of expressions, in milliseconds. The resolution is limited
to guile’s internal-time-units-per-second. Disregards the expressions’ return

value(s) (FIXME).

Chapter 8: (graph topological-sort) 8

8 (graph topological-sort)

8.1 Overview

The algorithm is inspired by Cormen, Leiserson and Rivest (1990)
‘‘Introduction to Algorithms’’, chapter 23.

8.2 Usage

topological-sort dag [Function]
Returns a list of the objects in the directed acyclic graph, dag, topologically sorted.
Objects are compared using equal?. The graph has the form:

(1ist (objl . (dependents-of-objl))
(obj2 . (dependents-of-obj2)) ...)

...specifying, for example, that obj1 must come before all the objects in (dependents-
of-obj1) in the sort.

topological-sortq dag [Function]
Returns a list of the objects in the directed acyclic graph, dag, topologically sorted.
Objects are compared using eq?. The graph has the form:

(list (objl . (dependents-of-objl))
(obj2 . (dependents-of-obj2)) ...)
...specifying, for example, that obj1 must come before all the objects in (dependents-
of-obj1) in the sort.

topological-sortv dag [Function]
Returns a list of the objects in the directed acyclic graph, dag, topologically sorted.
Objects are compared using eqv?. The graph has the form:
(list (objl . (dependents-of-objl))
(obj2 . (dependents-of-obj2)) ...)

...specifying, for example, that obj1 must come before all the objects in (dependents-
of-obj1) in the sort.

Chapter 9: (htmlprag) 9

(htmlprag)

9.1 Overview

HtmlPrag provides permissive HTML parsing capability to Scheme programs, which is
useful for software agent extraction of information from Web pages, for programmatically
transforming HTML files, and for implementing interactive Web browsers. HtmlPrag emits
“SHTML,” which is an encoding of HTML in [SXML], so that conventional HTML may
be processed with XML tools such as [SXPath] and [SXML-Tools|. Like [SSAX-HTML],
HtmlPrag provides a permissive tokenizer, but also attempts to recover structure. HtmlPrag
also includes procedures for encoding SHTML in HTML syntax.

The HtmlPrag parsing behavior is permissive in that it accepts erroneous HT'ML, han-
dling several classes of HTML syntax errors gracefully, without yielding a parse error. This
is crucial for parsing arbitrary real-world Web pages, since many pages actually contain
syntax errors that would defeat a strict or validating parser. HtmlPrag’s handling of errors
is intended to generally emulate popular Web browsers’ interpretation of the structure of
erroneous HTML. We euphemistically term this kind of parse “pragmatic.”

HtmlPrag also has some support for [XHTML], although XML namespace qualifiers
[XML-Names] are currently accepted but stripped from the resulting SHTML. Note that
valid XHTML input is of course better handled by a validating XML parser like [SSAX].

To receive notification of new versions of HtmlPrag, and to be polled for input on changes
to HtmlPrag being considered, ask the author to add you to the moderated, announce-only
email list, htmlprag-announce.

Thanks to Oleg Kiselyov and Kirill Lisovsky for their help with SXML.

9.2 Usage
shtml-comment-symbol [Variable]
shtml-decl-symbol [Variable]
shtml-empty-symbol [Variable]
shtml-end-symbol [Variable]
shtml-entity-symbol [Variable]
shtml-named-char-id [Variable]
shtml-numeric-char-id [Variable]
shtml-pi-symbol [Variable]
shtml-start-symbol [Variable]
shtml-text-symbol [Variable]
shtml-top-symbol [Variable]
html->shtml input [Function]
html->sxml input [Function]
]

html->sxml-Onf input [Function

Chapter 9: (htmlprag)

html->sxml-1nf input
html->sxml-2nf input
make-html-tokenizer in normalized?
parse-html/tokenizer tokenizer normalized?
shtml->html shtml
shtml-entity-value entity
shtml-token-kind token
sxml->html shtml

test-htmlprag

tokenize-html in normalized?
write-shtml-as-html shtml out

write-sxml-html shtml out

10

Chapter 10: (io string) 11

10 (io string)

10.1 Overview

Procedures that do io with strings.

10.2 Usage

find-string-from-port? str <input-port> . max-no-char [Function]
Looks for str in <input-port>, optionally within the first max-no-char characters.

Chapter 11: (logging logger) 12

11 (logging logger)

11.1 Overview

This is a logging subsystem similar to the one in the python standard library. There are two
main concepts to understand when working with the logging modules. These are loggers
and log handlers.

Loggers

Loggers are the front end interfaces for program logging. They can be registered
by name so that no part of a program needs to be concerned with passing
around loggers. In addition, a default logger can be designated so that, for
most applications, the program does not need to be concerned with logger
instances at all beyond the initial setup.

Log messages all flow through a logger. Messages carry with them a level
(for example: "'WARNING, "ERROR, ’CRITICAL), and loggers can filter out
messages on a level basis at runtime. This way, the amount of logging can be
turned up during development and bug investigation, but turned back down on
stable releases.

Loggers depend on Log Handlers to actually get text to the log’s destination
(for example, a disk file). A single Logger can send messages through multiple
Log Handlers, effectively multicasting logs to multiple destinations.

Log Handlers

Log Handlers actually route text to a destination. One or more handlers must
be attached to a logger for any text to actually appear in a log.

Handlers apply a configurable transformation to the text so that it is formatted
properly for the destination (for instance: syslogs, or a text file). Like the
loggers, they can filter out messages based on log levels. By using filters on
both the Logger and the Handlers, precise controls can be put on which log
messages go where, even within a single logger.

11.2 Example use of logger

Here is an example program that sets up a logger with two handlers. One handler sends the
log messages to a text log that rotates its logs. The other handler sends logs to standard
error, and has its levels set so that INFO and WARN-level logs don’t get through.

(use-modules (logging logger)

(logging rotating-log)
(logging port-log)
(scheme documentation)
(oop goops))

(define (setup-logging)

(let ((1gr (make <logger>))

Chapter 11: (logging logger) 13

(rotating (make <rotating-log>
#:num-files 3
#:size-limit 1024
#:file-name "test-log-file"))
(err (make <port-log> #:port (current-error-port))))

;; don’t want to see warnings or info on the screen!!
(disable-log-level! err ’WARN)
(disable-log-level! err ’INFO)

;; add the handlers to our logger
(add-handler! lgr rotating)
(add-handler! lgr err)

;; make this the application’s default logger
(set-default-logger! lgr)
(open-log! 1lgr)))

(define (shutdown-logging)
(flush-log) ;5 since no args, it uses the default
(close-log!) ;; since no args, it uses the default
(set-default-logger! #f))

(setup-logging)

Due to log levels, this will get to file,
but not to stderr
(log-msg ’WARN "This is a warning.")

This will get to file AND stderr
(log-msg ’CRITICAL "ERROR message!!!")

(shutdown-logging)

11.3 Usage

<log-handler> [Class]
This is the base class for all of the log handlers, and encompasses the basic function-
ality that all handlers are expected to have. Keyword arguments recognized by the
<log-handler> at creation time are:

Chapter 11: (logging logger) 14

#:formatter
This optional parameter must be a function that takes three arguments:
the log level, the time (as from current-time), and the log string itself.
The function must return a string representing the formatted log.

Here is an example invokation of the default formatter, and what it’s
output looks like:

(default-log-formatter ’CRITICAL
(current-time)
"The servers are melting!")
==> "2003/12/29 14:53:02 (CRITICAL): The servers are melting!"|]

emit-log [Generic]
emit-log handler str. This method should be implemented for all the handlers.
This sends a string to their output media. All level checking and formatting has
already been done by accept-log.

accept-log [Generic]
accept-log handler 1vl time str. If Ivl is enabled for handler, then str will be
formatted and sent to the log via the emit-log method. Formatting is done via the
formatting function given at handler’s creation time, or by the default if none was
given.
This method should not normally need to be overridden by subclasses. This method

should not normally be called by users of the logging system. It is only exported so
that writers of log handlers can override this behavior.

accept-log (self <log-handler>) (level <top>) (time <top>) (str [Method]
<top>)

<logger> [Class|
This is the class that aggregates and manages log handlers. It also maintains the
global information about which levels of log messages are enabled, and which have
been suppressed. Keyword arguments accepted on creation are:

#:handlers
This optional parameter must be a list of objects derived from <log-
handler>. Handlers can always be added later via add-handler! calls.

add-handler! [Generic]
add-handler! lgr handler. Adds handler to Igr’s list of handlers. All subsequent
logs will be sent through the new handler, as well as any previously registered handlers.

add-handler! (1gr <logger>) (handler <log-handler>) [Method]
log-msg [Generic]
log-msg [1lgr] 1vl argl arg2 Send a log message made up of the display’ed

representation of the given arguments. The log is generated at level Ivl, which should
be a symbol. If the Ivl is disabled, the log message is not generated. Generated log
messages are sent through each of Igr’s handlers.

If the Igr parameter is omitted, then the default logger is used, if one is set.

Chapter 11: (logging logger) 15

As the args are display’ed, a large string is built up. Then, the string is split at
newlines and sent through the log handlers as independent log messages. The reason
for this behavior is to make output nicer for log handlers that prepend information
like pid and timestamps to log statements.

;3 logging to default logger, level of WARN
(log-msg ’WARN "Warning! " x " is bigger than " y "!!!I")

;3 looking up a logger and logging to it

(let ((1 (lookup-logger "main")))
(log-msg 1 ’CRITICAL "FAILURE TO COMMUNICATE!")
(log-msg 1 ’CRITICAL "ABORTING NOW"))

log-msg (1lgr <logger>) (1vl <top>) (objs <top>)... [Method|
log-msg (1vl <symbol>) (objs <top>)... [Method]
set-default-logger! Igr [Function]

Sets the given logger, Igr, as the default for logging methods where a logger is not
given. Igr can be an instance of <logger>, a string that has been registered via
register-logger!, or #f to remove the default logger.

With this mechanism, most applications will never need to worry about logger regis-
tration or lookup.
;; example 1
(set-default-logger! "main") ;; look up "main" logger and make it the default]]

;; example 2
(define lgr (make <logger>))
(add-handler! lgr
(make <port-handler>
#:port (current-error-port)))
(set-default-logger! 1lgr)
(log-msg ’CRITICAL "This is a message to the default logger!!!")
(log-msg lgr °CRITICAL "This is a message to a specific logger!!!")J}]

register-logger! str lgr [Function]
Makes Igr accessible from other parts of the program by a name given in str. str
should be a string, and Igr should be an instance of class <logger>.

(define main-log (make <logger>))
(define corba-log (make <logger>))
(register-logger! "main" main-log)
(register-logger! "corba" corba-log)

;; in a completely different part of the program....
(log-msg (lookup-logger "corba") ’WARNING "This is a corba warning.")|}

lookup-logger str [Function]
Looks up an instance of class <logger> by the name given in str. The string should

have already been registered via a call to register-logger!.

Chapter 11: (logging logger) 16

enable-log-level! Igr vl [Function]
Enables a specific logging level given by the symbol Ivl, such that messages at that
level will be sent to the log handlers. Igr can be of type <logger> or <log-handler>.

Note that any levels that are neither enabled or disabled are treated as enabled by the
logging system. This is so that misspelt level names do not cause a logging blackout.

disable-log-level! Igr vl [Function]
Disables a specific logging level, such that messages at that level will not be sent to
the log handlers. Igr can be of type <logger> or <log-handler>.

Note that any levels that are neither enabled or disabled are treated as enabled by the
logging system. This is so that misspelt level names do not cause a logging blackout.

flush-log [Generic]
flush-log handler. Tells the handler to output any log statements it may have
buffered up. Handlers for which a flush operation doesn’t make sense can choose not
to implement this method. The default implementation just returns #t.

flush-log (1gr <logger>) []
flush-log [Method|
flush-log (1h <log-handler>) []

[|

open-log!
open-log! handler. Tells the handler to open its log. Handlers for which an open
operation doesn’t make sense can choose not to implement this method. The default
implementation just returns #t.

open-log! [Method]
open-log! (1gr <logger>) [Method]
open-log! (1h <log-handler>) [Method|
close-log! [Generic]

open-log! handler. Tells the handler to close its log. Handlers for which a close
operation doesn’t make sense can choose not to implement this method. The default
implementation just returns #t.

close-log! [Method]
close-log! (1gr <logger>) [Method|
close-log! (1h <log-handler>) [Method]

Chapter 12: (logging port-log) 17

12 (logging port-log)

12.1 Overview

This module defines a log handler that writes to an arbitrary port of the user’s choice. Uses
of this handler could include:

Sending logs across a socket to a network log collector.

Sending logs to the screen

Sending logs to a file

Collecting logs in memory in a string port for later use

12.2 Usage

<port-log> [Class]
This is a log handler which writes logs to a user-provided port.

Keywords recognized by <port-log> on creation are:
#:port This is the port to which the log handler will write.

#:formatter
Allows the user to provide a function to use as the log formatter for this
handler. See [logging logger <log-handler>], page 13, for details.
Example of creating a <port-log>:

(make <port-log> #:port (current-error-port))

Chapter 13: (logging rotating-log) 18

13 (logging rotating-log)

13.1 Overview

This module defines a log handler for text logs that rotate when they get to be a user-defined
size. This is similar to the behavior of many UNIX standard log files. See Chapter 11
[logging logger|, page 12, for more information in general on log handlers.

13.2 Usage

<rotating-log> [Class]
This is a log handler which writes text logs that rotate when they reach a configurable
size limit.

Keywords recognized by <rotating-log> on creation are:

#:num-files
This is the number of log files you want the logger to use. Default is 4.

#:size-1limit
This is the size, in bytes, a log file must get before the logs get rotated.
Default is 1IMB (104876 bytes).

#:file—name
This is the base of the log file name. Default is “logfile”. Numbers will
be appended to the file name representing the log number. The newest
log file is always “NAME.1".

#:formatter
Allows the user to provide a function to use as the log formatter for this
handler. See [logging logger <log-handler>], page 13, for details.

Example of creating a <rotating-log>:

(make <rotating-log>
#:num-files 3
#:size-1limit 1024
#:file-name "test-log-file"))

Chapter 14: (match-bind) 19

14

(match-bind)

14.1 Overview

Utility functions and syntax constructs for dealing with regular expressions in a concise
manner. Will be submitted to Guile for inclusion.

14.2 Usage

match-bind regex str vars consequent . alternate [Special Form]

s///

Match a string against a regular expression, binding lexical variables to the various
parts of the match.

vars is a list of names to which to bind the parts of the match. The first variable of
the list will be bound to the entire match, so the number of variables needed will be
equal to the number of open parentheses (‘(’) in the pattern, plus one for the whole
match.

consequent is executed if the given expression str matches regex. If the string does
not match, alternate will be executed if present. If alternate is not present, the result
of match-bind is unspecified.

Here is a short example:

(define (star-indent line)

"Returns the number of spaces until the first
star (‘*’) in the input, or #f if the first
non-space character is not a star."
(match-bind "~ (*)*.*$" line (_ spaces)

(string-length spaces)
#1))

match-bind compiles the regular expression regex at macro expansion time. For this
reason, regex must be a string literal, not an arbitrary expression.

pat subst [Function]
Make a procedure that performs perl-like regular expression search-and-replace on an
input string.

The regular expression pattern pat is in the standard regular expression syntax ac-
cepted by make-regexp. The substitution string is very similar to perl’s s/// op-
erator. Backreferences are indicated with a dollar sign (‘$’), and characters can be
escaped with the backslash.

s/// returns a procedure of one argument, the input string to be matched. If the
string matches the pattern, it will be returned with the first matching segment re-
placed as per the substitution string. Otherwise the string will be returned unmodi-
fied.

Here are some examples:

((s/// "foo" "bar") "foo bar baz qux foo")
= "bar bar baz qux foo"

Chapter 14: (match-bind) 20

((s/// "zag" "bar") "foo bar baz qux foo")
= "foo bar baz qux foo"

((s///7 "(£(o+)) (zag)?" "$1 $2 $3")
"foo bar baz qux foo")
= "foo oo bar baz qux foo"

s///g pat subst [Function]
Make a procedure that performs perl-like global search-and-replace on an input string.

The pat and subst arguments are as in the non-global s///. See [s///], page 19, for
more information.

s///g differs from s/// in that it does a global search and replace, not stopping at
the first match.

Chapter 15: (math minima) 21

15 (math minima)

15.1 Overview

This module contains functions for computing the minimum values of mathematical expres-
sions on an interval.

15.2 Usage

golden-section-search fx0 xI prec [Function]
The Golden Section Search algorithm finds minima of functions which are expensive to
compute or for which derivatives are not available. Although optimum for the general
case, convergence is slow, requiring nearly 100 iterations for the example (x~3-2x-5).

If the derivative is available, Newton-Raphson is probably a better choice. If the
function is inexpensive to compute, consider approximating the derivative.

x0 and x1I are real numbers. The (single argument) procedure func is unimodal over
the open interval (x0, x1). That is, there is exactly one point in the interval for which
the derivative of func is zero.

It returns a pair (x . func(x)) where func(x) is the minimum. The prec parameter is
the stop criterion. If prec is a positive number, then the iteration continues until x is
within prec from the true value. If prec is a negative integer, then the procedure will
iterate -prec times or until convergence. If prec is a procedure of seven arguments, x0,
x1, a, b, fa, fb, and count, then the iterations will stop when the procedure returns
#t.

Analytically, the minimum of x~3-2x-5 is 0.816497.

(define func (lambda (x) (+ (* x (+ (* x x) -2)) -5)))
(golden-section-search func 0 1 (/ 10000))

==> (816.4883855245578e-3 . -6.0886621077391165)
(golden-section-search func 0 1 -5)

==> (819.6601125010515e-3 . -6.088637561916407)
(golden-section-search func 0 1

(lambda (a bcde f g) (=g 500)))
==> (816.4965933140557e-3 . -6.088662107903635)

Chapter 16: (math primes) 22

16 (math primes)

16.1 Overview

This module defines functions related to prime numbers, and prime factorization.

16.2 Usage

prime:trials [Variable]
This is the maximum number of iterations of Solovay-Strassen that will be done to
test a number for primality. The chance of error (a composite being labelled prime)
is (expt 2 (- prime:trials)).

prime? n [Function]
Returns #f if n is composite, and t if it is prime. There is a slight chance, (expt 2
(- prime:trials)), that a composite will return #t.

prime> start [Function]
Return the first prime number greater than start. It doesn’t matter if start is prime
or composite.

primes> start count [Function]
Returns a list of the first count prime numbers greater than start.

prime< start [Function]
Return the first prime number less than start. It doesn’t matter if start is prime or
composite. If no primes are less than start, #f will be returned.

primes< start count [Function]
Returns a list of the first count prime numbers less than start. If there are fewer than
count prime numbers less than start, then the returned list will have fewer than start
elements.

factor k [Function]
Returns a list of the prime factors of k. The order of the factors is unspecified. In
order to obtain a sorted list do (sort! (factor k) <).

Chapter 17: (math rationalize) 23

17 (math rationalize)

17.1 Overview

Functions for rationalizing numbers, and finding simple ratios.

17.2 Usage

rationalize xe [Function]
Returns an exact number that is within e of x. Computes the correct result for
exact arguments (provided the implementation supports exact rational numbers of
unlimited precision); and produces a reasonable answer for inexact arguments when
inexact arithmetic is implemented using floating-point.

find-ratio xe [Function]
Returns the list of the simplest numerator and denominator whose quotient differs
from x by no more than e.

(find-ratio 3/97 .0001) = (3 97)
(find-ratio 3/97 .001) = (1 32)

Chapter 18: (os process) 24

18 (os process)

18.1 Overview

This is a library for execution of other programs from Guile. It also allows communication
using pipes (or a pseudo terminal device, but that’s not currently implemented). This code
originates in the (goosh) modules, which itself was part of goonix in one of Guile’s past
lives.

The following will hold when starting programs:

1. If the name of the program does not contain a / then the directories listed in the current
PATH environment variable are searched to locate the program.

2. Unlike for the corresponding primitive exec procedures, e.g., execlp, the name of the
program can not be set independently of the path to execute: the zeroth and first
members of the argument vector are combined into one.

All symbols exported with the prefix os:process: are there in support of macros that
use them. They should be ignored by users of this module.

18.2 Usage
os:process:pipe-fork-child expr in-conns out-conns pipes [Special Form]
run+ expr . connections [Special Form]|

Evaluate an expression in a new foreground process and wait for its completion. If no
connection terms are specified, then all ports except current-input-port, current-
output-port and current-error-port will be closed in the new process. The file
descriptors underlying these ports will not be changed.

The value returned is the exit status from the new process as returned by the waitpid
procedure.
The keywords and connections arguments are optional: see run-concurrently+,
which is documented below. The #:foreground keyword is implied.

(run+ (begin (write (+ 2 2)) (newline) (quit 0)))

(run+ (tail-call-program "cat" "/etc/passwd"))

run-concurrently+ proc . connections [Special Form]|
Evaluate an expression in a new background process. If no connection terms are
specified, then all ports except current-input-port, current-output-port and
current-error-port will be closed in the new process. The file descriptors un-
derlying these ports will not be changed.

The value returned in the parent is the pid of the new process.

When the process terminates its exit status can be collected using the waitpid pro-
cedure.

Keywords can be specified before the connection list:

#:slave causes the new process to be put into a new session. If current-input-port
(after redirections) is a tty it will be assigned as the controlling terminal. This option
is used when controlling a process via a pty.

Chapter 18: (os process) 25

#:no-auto-close prevents the usual closing of ports which occurs by default.
#:foreground makes the new process the foreground job of the controlling terminal,
if the current process is using job control. (not currently implemented). The default
is to place it into the background

The optional connection list can take several forms:

(port) usually specifies that a given port not be closed. However if #:no-auto-close
is present it specifies instead a port which should be closed.

(port 0) specifies that a port be moved to a given file descriptor (e.g., 0) in the new
process. The order of the two components is not significant, but one must be a number
and the other must evaluate to a port. If the file descriptor is one of the standard set
(0, 1, 2) then the corresponding standard port (e.g., current-input-port) will be
set to the specified port.

Example:

(let ((p (open-input-file "/etc/passwd")))
(run-concurrently+ (tail-call-program "cat") (p 0)))
tail-call-pipeline . args [Special Form]
Replace the current process image with a pipeline of connected processes.
The expressions in the pipeline are run in new background processes. The foreground
process waits for them all to terminate. The exit status is derived from the status

of the process at the tail of the pipeline: its exit status if it terminates normally,
otherwise 128 plus the number of the signal that caused it to terminate.

The signal handlers will be reset and file descriptors set up as for tail-call-program.
Like tail-call-program it does not close open ports or flush buffers.

Example:
(tail-call-pipeline ("1s" "/etc") ("grep" "passwd"))
tail-call-pipeline+ . args [Special Form]
Replace the current process image with a pipeline of connected processes.

Each process is specified by an expression and each pair of processes has a connection
list with pairs of file descriptors. E.g., ((1 0) (2 0)) specifies that file descriptors 1
and 2 are to be connected to file descriptor 0. This may also be written as ((1 2 0)).

The expressions in the pipeline are run in new background processes. The foreground
process waits for them all to terminate. The exit status is derived from the status
of the process at the tail of the pipeline: its exit status if it terminates normally,
otherwise 128 plus the number of the signal that caused it to terminate.

The signal handlers will be reset and file descriptors set up as for tail-call-program.
Like tail-call-program it does not close open ports or flush buffers.

Example:
(tail-call-pipeline+ (tail-call-program "ls" "/etc") ((1 0))
(tail-call-program "grep" "passwd"))
os:process:new-comm-pipes old-pipes out-conns [Function]
os:process:pipe-make-commands fdes port portvar [Function]

os:process:pipe-make-redir-commands connections portvar [Function]

Chapter 18: (os process) 26

os:process:setup-redirected-port port fdes [Function]

run prog . args [Function]
Execute prog in a new foreground process and wait for its completion. The value
returned is the exit status of the new process as returned by the waitpid procedure.

Example:

(run "cat" "/etc/passwd")

run-concurrently . args [Function]
Start a program running in a new background process. The value returned is the pid
of the new process.

When the process terminates its exit status can be collected using the waitpid pro-

cedure.
Example:
(run-concurrently "cat" "/etc/passwd")
run-with-pipe mode prog . args [Function]

Start prog running in a new background process. The value returned is a pair: the
CAR is the pid of the new process and the CDR is either a port or a pair of ports (with
the CAR containing the input port and the CDR the output port). The port(s) can
be used to read from the standard output of the process and/or write to its standard
input, depending on the mode setting. The value of mode should be one of "r", "w"
or "r+".

When the process terminates its exit status can be collected using the waitpid pro-

cedure.
Example:
(use-modules (ice-9 rdelim)) ; needed by read-line
(define catport (cdr (run-with-pipe "r" "cat" "/etc/passwd")))
(read-line catport)
tail-call-program prog . args [Function]

Replace the current process image by executing prog with the supplied list of argu-
ments, args.

This procedure will reset the signal handlers and attempt to set up file descriptors as
follows:

1. File descriptor 0 is set from (current-input-port).

2. File descriptor 1 is set from (current-output-port).

3. File descriptor 2 is set from (current-error-port).
If a port can not be used (e.g., because it’s closed or it’s a string port) then the file
descriptor is opened on the file specified by *null-devicex* instead.

Note that this procedure does not close any ports or flush output buffers. Successfully
executing prog will prevent the normal flushing of buffers that occurs when Guile
terminates. Doing otherwise would be incorrect after forking a child process, since
the buffers would be flushed in both parent and child.

Examples:

Chapter 18: (os process)

(tail-call-program "cat" "/etc/passwd")

(with-input-from-file "/etc/passwd"
(lambda (O
(tail-call-program "cat")))

27

Chapter 19: (scheme documentation) 28

19 (scheme documentation)

19.1 Overview

Defines some macros to help in documenting macros, variables, generic functions, and
classes.

19.2 Usage

define-macro-with-docs name-and-args docs . body [Special Form]
Define a macro with documentation.

define-with-docs sym docs val [Special Form]
Define a variable with documentation.

define-generic-with-docs name documentation [Special Form]
Define a generic function with documentation.

define-class-with-docs name supers docs . slots [Special Form]
Define a class with documentation.

Chapter 20: (scheme kwargs) 29

20 (scheme kwargs)

20.1 Overview

Support for defining functions that take python-like keyword arguments. In one of his early
talks, Paul Graham wrote about a large system called "Rtml":

Most of the operators in Rtml were designed to take keyword parameters, and
what a help that turned out to be. If I wanted to add another dimension to the
behavior of one of the operators, I could just add a new keyword parameter,
and everyone’s existing templates would continue to work. A few of the Rtml
operators didn’t take keyword parameters, because I didn’t think I’d ever need
to change them, and almost every one I ended up kicking myself about later. If
I could go back and start over from scratch, one of the things I'd change would
be that I'd make every Rtml operator take keyword parameters.

See [lambda/kwargs|, page 29, for documentation and examples.

See Section “Optional Arguments” in Guile Reference Manual, for more information
on Guile’s standard support for optional and keyword arguments. Quote taken from
http://1ib.store.yahoo.net/lib/paulgraham/bbnexcerpts.txt.

20.2 Usage

define/kwargs what . body [Special Form]
Defines a function that takes kwargs. See [scheme kwargs lambda/kwargs]|, page 29,
for more information.

lambda/kwargs BINDINGS . BODY [Special Form]
Defines a function that takes keyword arguments.

bindings is a list of bindings, each of which may either be a symbol or a two-element
symbol-and-default-value list. Symbols without specified default values will default
to #£.

For example:

(define frobulate (lambda/kwargs (foo (bar 13) (baz 42))
(1ist foo bar baz)))

(frobulate) = (#f 13 42)

(frobulate #:baz 3) = (#f 13 3)

(frobulate #:foo 3) = (3 13 42)

(frobulate 3 4) = (3 4 42)

(frobulate 1 2 3) = (1 2 3)

(frobulate #:baz 2 #:bar 1) = #f 1 2)

(frobulate 10 20 #:foo 3) = (3 20 42)

This function differs from the standard lambda* provided by Guile in that invoking
the function will accept positional arguments. As an example, the lambda/kwargs
behaves more intuitively in the following case:
((lambda* (#:optional (bar 42) #:key (baz 73))
(1ist bar baz))

http://lib.store.yahoo.net/lib/paulgraham/bbnexcerpts.txt

Chapter 20: (scheme kwargs) 30

12) = (173

((lambda/kwargs ((bar 42) (baz 73))
(1list bar baz))

12) = (12

The fact that lambda* accepts the extra ‘2’ argument is probably just a bug. In any
case, lambda/kwargs does the right thing.

Chapter 21: (scheme session) 31

21 (scheme session)

21.1 Overview

The same thing as guile 1.6’s (ice-9 session), except with hooks that introduce extensi-
bility to the help macro. The added functions are add-value-help-handler! and remove-
value-help-handler!.

21.2 Usage

help [Special Form]
(help [NAME]) Prints useful information. Try ‘(help)’.

system-module [Special Form]|

add-name-help-handler! proc [Function]

Adds a handler for performing ‘help’ on a name.

‘proc’ will be called with the unevaluated name as its argument. That is to say, when
the user calls ‘(help FOO)’, the name is FOO, exactly as the user types it.

The return value of ‘proc’ is as specified in ‘add-value-help-handler!’.

add-value-help-handler! proc [Function]
Adds a handler for performing ‘help’ on a value.

‘proc’ will be called as (PROC NAME VALUE). ‘proc’ should return #t to indicate
that it has performed help, a string to override the default object documentation,
or #f to try the other handlers, potentially falling back on the normal behavior for
‘help’.

apropos rgx . options [Function]
Search for bindings: apropos regexp {options= ’full ’shadow ’value}

apropos-fold proc init rgx folder [Function]
Folds PROCEDURE over bindings matching third arg REGEXP.

Result is

(PROCEDURE MODULE1 NAME1 VALUE1
(PROCEDURE MODULE2 NAME2 VALUE2

&éﬁOCEDURE MODULEn NAMEn VALUEn INIT)))
where INIT is the second arg to ‘apropos-fold’.
Fourth arg FOLDER is one of
(apropos-fold-accessible MODULE) ;fold over bindings accessible in MODULEJ

apropos-fold-exported ;fold over all exported bindings
apropos—-fold-all ;fold over all bindings

Chapter 21: (scheme session) 32

apropos-fold-accessible module [Function]
apropos-fold-all fold-module init [Function]
apropos-fold-exported fold-module init [Function]
apropos-internal rgx [Function]
Return a list of accessible variable names.
arity obj [Function]
module-commentary name [Function]
remove-name-help-handler! proc [Function]
Removes a handler for performing ‘help’ on a name.
See the documentation for ‘add-name-help-handler’ for more information.
remove-value-help-handler! proc [Function]

Removes a handler for performing ‘help’ on a value.

See the documentation for ‘add-value-help-handler’ for more information.

source obj [Function]

Chapter 22: (search basic) 33

22 (search basic)

22.1 Overview

This module has the classic search functions in it.

22.2 Usage

depth-first-search init done? expander [Function]
Performs a depth-first search from initial state init. It will return the first state it
sees for which predicate done? returns #t. It will use function expander to get a list
of all states reacheable from a given state.

init can take any form the user wishes. This function treats it as opaque data to pass
to done? and expander.

done? takes one argument, of the same type as init, and returns either #t or #f.

expander takes one argument, of the same type as init, and returns a list of states
that can be reached from there.

breadth-first-search init done? expander [Function]
Performs a breadth-first search from initial state init. It will return the first state it
sees for which predicate done? returns #t. It will use function expander to get a list
of all states reacheable from a given state.

init can take any form the user wishes. This function treats it as opaque data to pass
to done? and expander.

done? takes one argument, of the same type as init, and returns either #t or #f.

expander takes one argument, of the same type as init, and returns a list of states
that can be reached from there.

binary-search-sorted-vector vec target [cmp = -] [default = #4| [Function]
Searches a sorted vector vec for item target. A binary search is employed which
should find an item in O(log n) time if it is present. If target is found, the index into
vec is returned.

As part of the search, the function cmp is applied to determine whether a vector item
is less than, greater than, or equal to the target. If target cannot be found in the
vector, then default is returned.

cmp defaults to -, which gives a correct comparison for vectors of numbers. default
will be #f if another value is not given.

(binary-search-sorted-vector #(10 20 30) 20) = 1

Chapter 23: (statprof) 34

23 (statprof)

23.1 Overview

(statprof) is intended to be a fairly simple statistical profiler for guile. It is in the early
stages yet, so consider its output still suspect, and please report any bugs to guile-devel
at gnu.org, or to me directly at rlb at defaultvalue.org.

A simple use of statprof would look like this:

(statprof-reset 0 50000 #t)
(statprof-start)
(do-something)
(statprof-stop)
(statprof-display)

This would reset statprof, clearing all accumulated statistics, then start profiling, run
some code, stop profiling, and finally display a gprof flat-style table of statistics which will
look something like this:

% cumulative self self total
time seconds seconds calls ms/call ms/call name

35.29 0.23 0.23 2002 0.11 0.11 -

23.53 0.15 0.15 2001 0.08 0.08 positive?
23.53 0.15 0.15 2000 0.08 0.08 +

11.76 0.23 0.08 2000 0.04 0.11 do-nothing
5.88 0.64 0.04 2001 0.02 0.32 1loop

0.00 0.15 0.00 1 0.00 150.59 do-something

All of the numerical data with the exception of the calls column is statistically approxi-
mate. In the following column descriptions, and in all of statprof, "time" refers to execution
time (both user and system), not wall clock time.

% time The percent of the time spent inside the procedure itself (not counting children).

cumulative seconds
The total number of seconds spent in the procedure, including children.

self seconds
The total number of seconds spent in the procedure itself (not counting chil-
dren).

calls The total number of times the procedure was called.

self ms/call
The average time taken by the procedure itself on each call, in ms.

total ms/call
The average time taken by each call to the procedure, including time spent in
child functions.

name The name of the procedure.

mailto:guile-devel at gnu.org
mailto:guile-devel at gnu.org
mailto:rlb at defaultvalue.org

Chapter 23: (statprof) 35

The profiler uses eq? and the procedure object itself to identify the procedures, so it
won’t confuse different procedures with the same name. They will show up as two different
rows in the output.

Right now the profiler is quite simplistic. I cannot provide call-graphs or other higher
level information. What you see in the table is pretty much all there is. Patches are welcome

)

23.2 Implementation notes

The profiler works by setting the unix profiling signal ITIMER_PROF to go off after the interval
you define in the call to statprof-reset. When the signal fires, a sampling routine is run
which looks at the current procedure that’s executing, and then crawls up the stack, and
for each procedure encountered, increments that procedure’s sample count. Note that if a
procedure is encountered multiple times on a given stack, it is only counted once. After the
sampling is complete, the profiler resets profiling timer to fire again after the appropriate
interval.

Meanwhile, the profiler keeps track, via get-internal-run-time, how much CPU time
(system and user — which is also what ITIMER_PROF tracks), has elapsed while code has
been executing within a statprof-start/stop block.

The profiler also tries to avoid counting or timing its own code as much as possible.

23.3 Usage

statprof-active? [Function]
Returns #t if statprof-start has been called more times than statprof-stop, #f
otherwise.

statprof-start [Function]

Start the profiler.

statprof-stop [Function]
Stop the profiler.

statprof-reset sample-seconds sample-microseconds count-calls? [Function]
Reset the statprof sampler interval to sample-seconds and sample-microseconds. If
count-calls? is true, arrange to instrument procedure calls as well as collecting sta-
tistical profiling data.

Enables traps and debugging as necessary.

statprof-accumulated-time [Function]
Returns the time accumulated during the last statprof run.

statprof-sample-count [Function]
Returns the number of samples taken during the last statprof run.

statprof-fold-call-data proc init [Function]
Fold proc over the call-data accumulated by statprof. Cannot be called while statprof
is active. proc should take two arguments, (call-data prior-result).

Note that a given proc-name may appear multiple times, but if it does, it represents
different functions with the same name.

Chapter 23: (statprof) 36

statprof-proc-call-data proc [Function]
Returns the call-data associated with proc, or #f if none is available.

statprof-call-data-name cd [Function]
statprof-call-data-calls cd [Function]
statprof-call-data-cum-samples cd [Function]
statprof-call-data-self-samples cd [Function]
statprof-call-data->stats call-data [Function]
Returns an object of type statprof-stats.
statprof-stats-proc-name stats [Function]
statprof-stats-%-time-in-proc stats [Function]
statprof-stats-cum-secs-in-proc stats [Function]
statprof-stats-self-secs-in-proc stats [Function]
statprof-stats-calls stats [Function]
statprof-stats-self-secs-per-call stats [Function]
statprof-stats-cum-secs-per-call stats [Function]
statprof-display . port [Function]

Displays a gprof-like summary of the statistics collected. Unless an optional port
argument is passed, uses the current output port.

statprof-display-anomolies [Function]
A sanity check that attempts to detect anomolies in statprof’s statistics.

with-statprof . args [Special Form]
Profiles the expressions in its body.

Keyword arguments:

#:1loop Execute the body loop number of times, or #f for no looping
default: #f

#:hz Sampling rate
default: 20

#:count-calls?
Whether to instrument each function call (expensive)

default: #f

Chapter 24: (string completion) 37

24 (string completion)

24.1 Overview

This module provides a facility that can be used to implement features such as TAB-
completion in programs. A class <string-completer> tracks all the potential complete
strings. Here is an example usage.

(use-modules (string completion)
(oop goops)
(srfi srfi-11)) ;; for the (let-values)

(define c (make <string-completer>))
(add-strings! c¢ "you your yourself yourselves")

(let-values (((completions expansion exact? unique?) (complete c "yours")))]]
(display completions) (newline)
(display expansion) (newline)
(display exact?) (newline)
(display unique?) (newline))

==> ("yourself" "yourselves")
"yoursel"
#f
#£

There are several more options for usage, which are detailed in the class and method
documentation.

24.2 Usage

<string-completer> [Class]
This is the class that knows what the possible expansions are, and can determine the
completions of given partial strings. The following are the recognized keywords on
the call to make:

#:strings
This gives the completer an initial set of strings. It is optional, and the
add-strings! method can add strings to the completer later, whether
these initial strings were given or not. The strings that follow this keyword
can take any form that the add-strings! method can take (see below).

#:case—sensitive?
This is a boolean that directs the completer to do its comparisons in
a case sensiteve way or not. The default value is #t, for case-sensitive

behavior.
case-sensitive-completion? [Generic]
case-sensitive-completion? completer. Returns #t if the completer is

case-sensitive, and #f otherwise.

Chapter 24: (string completion) 38

case-sensitive-completion? (o <string-completer>) [Method|

add-strings! [Generic]
add-strings! completer strings. Adds the given strings to the set of possible
comletions known to completer. strings can either be a list of strings, or a single
string of words separated by spaces. The order of the words given is not important.

add-strings! (sc <string-completer>) (strings <top>) [Method]

all-completions completer str [Function]
Returns a list of all possible completions for the given string str. The returned list
will be in alphabetical order.

Note that users wanting to customize the completion algorithm can subclass <string-
completer> and override this method.

complete [Generic]
complete completer str. Accepts a string, str, and returns four values via a values
call. These are:

completions
This is the same list that would be returned from a call to
all-completions.

expansion This is the longest string that would have returned identical results. In
other words, this is what most programs replace your string with when
you press TAB once. This value will be equal to str if there were no
known completionss.

("wonders" "wonderment" "wondering")
completed against "won" yields an expansion
of "wonder"

exact? This will be #t if the returned expansion is an exact match of one of the
possible completions.

unique? This will be #t if there is only one possible completion. Note that when
unique? is #t, then exact? will also be #t.

complete (sc <string-completer>) (str <top>) [Method]

Chapter 25: (string soundex) 39

25 (string soundex)

25.1 Overview
Soundex algorithm, taken from Knuth, Vol. 3 “Sorting and searching”, pp 391-2

25.2 Usage

soundex name [Function]
Performs the original soundex algorithm on the input name. Returns the encoded
string. The idea is for similar sounding sames to end up with the same encoding.

(soundex "Aiza")

=> n A2OO n
(soundex "Aisa")
=> "A200"

(soundex "Aesha")
=> n A2OO n

Chapter 26: (string transform) 40

26 (string transform)

26.1 Overview

Module ‘(string transform)’ provides functions for modifying strings beyond that which
is provided in the guile core and ‘(srfi srfi-13)’.

26.2 Usage

escape-special-chars str special-chars escape-char [Function]
Returns a copy of str with all given special characters preceded by the given escape-
char.

special-chars can either be a single character, or a string consisting of all the special
characters.

;; make a string regexp-safe...
(escape-special-chars "*+**x(Example String)*xx*"
"[1O/*x."
#\\)
=> "*k**\\ (Example String\\)**\\x*"

;; also can escape a singe char...
(escape-special-chars "richardt@vzavenue.net"
#\0

#\0)
=> "richardt@@vzavenue.net"

transform-string str match? replace [start = #1] [end = #1] [Function]
Uses match? against each character in str, and performs a replacement on each
character for which matches are found.

match? may either be a function, a character, a string, or #t. If match? is a function,
then it takes a single character as input, and should return ‘#t’ for matches. match?
is a character, it is compared to each string character using char=?. If match? is a
string, then any character in that string will be considered a match. #t will cause
every character to be a match.

If replace is a function, it is called with the matched character as an argument, and
the returned value is sent to the output string via ‘display’. If replace is anything
else, it is sent through the output string via ‘display’.

Note that te replacement for the matched characters does not need to be a single
character. That is what differentiates this function from ‘string-map’, and what
makes it useful for applications such as converting ‘#\&’ to ‘"&"’ in web page
text. Some other functions in this module are just wrappers around common uses of
‘transform-string’. Transformations not possible with this function should proba-
bly be done with regular expressions.

If start and end are given, they control which portion of the string undergoes trans-
formation. The entire input string is still output, though. So, if start is ‘6’, then the
first five characters of str will still appear in the returned string.

Chapter 26: (string transform) 41

; these two are equivalent...
(transform-string str #\space #\-) ; change all spaces to -’s
(transform-string str (lambda (c) (char=7 #\space c)) #\-)

expand-tabs str [tab-size = §] [Function]
Returns a copy of str with all tabs expanded to spaces. tab-size defaults to 8.
Assuming tab size of 8, this is equivalent to:

(transform-string str #\tab " ")

center-string str [width = 80] [chr = #\space| [rchr = #1] [Function]
Returns a copy of str centered in a field of width characters. Any needed padding
is done by character chr, which defaults to ‘#\space’. If rchr is provided, then the
padding to the right will use it instead. See the examples below. left and rchr on the
right. The default width is 80. The default Ichr and rchr is ‘#\space’. The string is
never truncated.

(center-string "Richard Todd" 24)
=> ! Richard Todd "

(center-string " Richard Todd " 24 #\=)
=> "===== Richard Todd ====="

(center-string " Richard Todd " 24 #\< #\>)
=> '"<<<<< Richard Todd >>>>>"

left-justify-string str [width = 80] [chr = #\space] [Function]
left-justify-string str [width chr]. Returns a copy of str padded with chr such
that it is left justified in a field of width characters. The default width is 80. Unlike
‘string-pad’ from srfi-13, the string is never truncated.

right-justify-string str [width = 80| [chr = #\space] [Function]
Returns a copy of str padded with chr such that it is right justified in a field of
width characters. The default width is 80. The default chr is ‘#\space’. Unlike
‘string-pad’ from srfi-13, the string is never truncated.

collapse-repeated-chars str [chr = #\space| [num = 1] [Function]
Returns a copy of str with all repeated instances of chr collapsed down to at most
num instances. The default value for chr is ‘#\space’, and the default value for num
is 1.
(collapse-repeated-chars "H e 1 1 o")
=>"Hello"
(collapse-repeated-chars "H--e--1--1--o" #\-)
=> "H-e-1-1-0"
(collapse-repeated-chars "H-e--1---1----0" #\- 2)
=> "H-e--1--1--0"

Chapter 27: (string wrap) 42

27 (string wrap)

27.1 Overview

Module ‘(string wrap)’ provides functions for formatting text strings such that they fill a
given width field. A class, <text-wrapper>, does the work, but two convenience methods
create instances of it for one-shot use, and in the process make for a more “schemey”
interface. If many strings will be formatted with the same parameters, it might be better
performance-wise to create and use a single <text-wrapper>.

27.2 Usage

<text-wrapper> [Class]
This class encapsulates the parameters needing to be fed to the text wrapping algo-
rithm. The following are the recognized keywords on the call to make:

#:1line-width
This is the target length used when deciding where to wrap lines. Default
is 80.

#:expand-tabs?
Boolean describing whether tabs in the input should be expanded. De-
fault is #t.

#:tab-width
If tabs are expanded, this will be the number of spaces to which they
expand. Default is 8.

#:collapse-whitespace?
Boolean describing whether the whitespace inside the existing text should
be removed or not. Default is #t.

If text is already well-formatted, and is just being wrapped to fit in a
different width, then setting this to ‘#f’. This way, many common text
conventions (such as two spaces between sentences) can be preserved if in
the original text. If the input text spacing cannot be trusted, then leave
this setting at the default, and all repeated whitespace will be collapsed
down to a single space.

#:initial-indent
Defines a string that will be put in front of the first line of wrapped text.
Default is the empty string, .

#:subsequent-indent
Defines a string that will be put in front of all lines of wrapped text,
except the first one. Default is the empty string, ”

#:break-long-words?
If a single word is too big to fit on a line, this setting tells the wrapper
what to do. Defaults to #t, which will break up long words. When set
to #f£, the line will be allowed, even though it is longer than the defined
#:1line-width.

Chapter 27: (string wrap) 43

Here’s an example of creating a <text-wrapper>:

(make <text-wrapper> #:line-width 48 #:break-long-words? #f)

fill-string [Generic]
fill-string str keywds Wraps the text given in string str according to the
parameters provided in keywds, or the default setting if they are not given. Returns
a single string with the wrapped text. Valid keyword arguments are discussed with
the <text-wrapper> class.

fill-string tw str. fills str using the instance of <text-wrapper> given as tw.

fill-string (tw <text-wrapper>) (str <top>) [Method|
fill-string (str <top>) (keywds <top>)... [Method]
string->wrapped-lines [Generic]

string->wrapped-lines str keywds Wraps the text given in string str accord-

ing to the parameters provided in keywds, or the default setting if they are not given.
Returns a list of strings representing the formatted lines. Valid keyword arguments
are discussed with the <text-wrapper> class.

string->wrapped-lines tw str. Wraps the text given in string str according to the
given <text-wrapper> tw. Returns a list of strings representing the formatted lines.
Valid keyword arguments are discussed with the <text-wrapper> class.

string->wrapped-lines (tw <text-wrapper>) (str <top>) [Method|
string->wrapped-lines (str <top>) (keywds <top>)... [Method|

Chapter 28: (sxml apply-templates) 44

28 (sxml apply-templates)

28.1 Overview

Pre-order traversal of a tree and creation of a new tree:
apply-templates:: tree x <templates> -> <new-tree>

where
<templates> ::= (<template> ...)
<template> = (<node-test> <node-test> ... <node-test> . <handler>)
<node-test> ::= an argument to node-typeof? above
<handler> = <tree> -> <new-tree>

This procedure does a normal, pre-order traversal of an SXML tree. It walks the tree,
checking at each node against the list of matching templates.

If the match is found (which must be unique, i.e., unambiguous), the corresponding
handler is invoked and given the current node as an argument. The result from the handler,
which must be a <tree>, takes place of the current node in the resulting tree. The name
of the function is not accidental: it resembles rather closely an apply-templates function

of XSLT.

28.2 Usage

apply-templates tree templates [Function]

Chapter 29: (sxml fold) 45

29 (sxml fold)

29.1 Overview

(sxml fold) defines a number of variants of the fold algorithm for use in transforming
SXML trees. Additionally it defines the layout operator, fold-layout, which might be
described as a context-passing variant of SSAX’s pre-post-order.

29.2 Usage

foldt fup fthere tree [Function]
The standard multithreaded tree fold.

fup is of type [a] -> a. fhere is of type object -> a.

fold proc seed list [Function]
The standard list fold.

proc is of type a -> b -> b. seed is of type b. list is of type [a].

foldts fdown fup fhere seed tree [Function]
The single-threaded tree fold originally defined in SSAX. See Chapter 31 [(sxml ssax)],
page 48, for more information.

foldts* fdown fup fhere seed tree [Function]
A variant of [foldts|, page 45 that allows pre-order tree rewrites. Originally defined
in Andy Wingo’s 2007 paper, Applications of fold to XML transformation.

fold-values proc list . seeds [Function]
A variant of [fold], page 45 that allows multi-valued seeds. Note that the order of the
arguments differs from that of fold.

foldts*-values fdown fup fhere tree . seeds [Function]
A variant of [foldts*], page 45 that allows multi-valued seeds. Originally defined in
Andy Wingo’s 2007 paper, Applications of fold to XML transformation.

fold-layout tree bindings params layout stylesheet [Function]
A traversal combinator in the spirit of SSAX’s [pre-post-order], page 53.

fold-layout was originally presented in Andy Wingo’s 2007 paper, Applications of
fold to XML transformation.

bindings := (<binding>...)

binding := (<tag> <bandler-pair>...)
| (*default* . <post-handler>)
| (*text* . <text-handler>)
tag := <symbol>
handler-pair := (pre-layout . <pre-layout-handler>)

| (post . <post-handler>)

| (bindings . <bindings>)

| (pre . <pre-handler>)

| (macro . <macro-handler>)

Chapter 29: (sxml fold) 46

pre-layout-handler
A function of three arguments:

kids the kids of the current node, before traversal
params the params of the current node
layout the layout coming into this node

pre-layout-handler is expected to use this information to return a layout
to pass to the kids. The default implementation returns the layout given
in the arguments.

post-handler
A function of five arguments:

tag the current tag being processed

params the params of the current node

layout the layout coming into the current node, before any kids were
processed

klayout the layout after processing all of the children
kids the already-processed child nodes

post-handler should return two values, the layout to pass to the next
node and the final tree.

text-handler
text-handler is a function of three arguments:

text the string
params the current params
layout the current layout

text-handler should return two values, the layout to pass to the next node
and the value to which the string should transform.

Chapter 30: (sxml simple) 47

30 (sxml simple)

30.1 Overview

A simple interface to XML parsing and serialization.

30.2 Usage

xml->sxml [port = (current-input-port)] [Function]
Use SSAX to parse an XML document into SXML. Takes one optional argument,
port, which defaults to the current input port.

sxml->xml tree [port = (current-output-port)] [Function]
Serialize the sxml tree tree as XML. The output will be written to the current output
port, unless the optional argument port is present.

sxml->string sxml [Function]
Detag an sxml tree sxml into a string. Does not perform any formatting.

universal-sxslt-rules [Variable]
A set of pre-post-order rules that transform any SXML tree into a form suitable
for XML serialization by (sxml transform)’s SRV:send-reply. Used internally by
sxml->xml.

Chapter 31: (sxml ssax) 48

31 (sxml ssax)

31.1 Overview

Functional XML parsing framework

SAX/DOM and SXML parsers with support for XML
Namespaces and validation

This is a package of low-to-high level lexing and parsing procedures that can be combined
to yield a SAX, a DOM, a validating parser, or a parser intended for a particular document
type. The procedures in the package can be used separately to tokenize or parse various
pieces of XML documents. The package supports XML Namespaces, internal and external
parsed entities, user-controlled handling of whitespace, and validation. This module there-
fore is intended to be a framework, a set of "Lego blocks" you can use to build a parser
following any discipline and performing validation to any degree. As an example of the
parser construction, this file includes a semi-validating SXML parser.

The present XML framework has a "sequential" feel of SAX yet a "functional style" of
DOM. Like a SAX parser, the framework scans the document only once and permits in-
cremental processing. An application that handles document elements in order can run as
efficiently as possible. Unlike a SAX parser, the framework does not require an application
register stateful callbacks and surrender control to the parser. Rather, it is the application
that can drive the framework — calling its functions to get the current lexical or syntax ele-
ment. These functions do not maintain or mutate any state save the input port. Therefore,
the framework permits parsing of XML in a pure functional style, with the input port being
a monad (or a linear, read-once parameter).

Besides the port, there is another monad — seed. Most of the middle- and high-level
parsers are single-threaded through the seed. The functions of this framework do not
process or affect the seed in any way: they simply pass it around as an instance of an
opaque datatype. User functions, on the other hand, can use the seed to maintain user’s
state, to accumulate parsing results, etc. A user can freely mix his own functions with those
of the framework. On the other hand, the user may wish to instantiate a high-level parser:
SSAX :make-elem-parser or SSAX:make-parser. In the latter case, the user must provide
functions of specific signatures, which are called at predictable moments during the parsing:
to handle character data, element data, or processing instructions (PI). The functions are
always given the seed, among other parameters, and must return the new seed.

From a functional point of view, XML parsing is a combined pre-post-order traversal of
a "tree" that is the XML document itself. This down-and-up traversal tells the user about
an element when its start tag is encountered. The user is notified about the element once
more, after all element’s children have been handled. The process of XML parsing therefore
is a fold over the raw XML document. Unlike a fold over trees defined in [1], the parser is
necessarily single-threaded — obviously as elements in a text XML document are laid down
sequentially. The parser therefore is a tree fold that has been transformed to accept an
accumulating parameter [1,2].

Formally, the denotational semantics of the parser can be expressed as

Chapter 31: (sxml ssax) 49

parser:: (Start-tag -> Seed -> Seed) —>
(Start-tag -> Seed -> Seed -> Seed) ->
(Char-Data -> Seed -> Seed) —>
XML-text-fragment -> Seed -> Seed
parser fdown fup fchar "<elem attrs> content </elem>" seed
= fup "<elem attrs>" seed
(parser fdown fup fchar "content" (fdown "<elem attrs>" seed))

parser fdown fup fchar "char-data content" seed
= parser fdown fup fchar "content" (fchar "char-data" seed)

parser fdown fup fchar "elem-content content" seed
= parser fdown fup fchar "content" (
parser fdown fup fchar "elem-content" seed)
Compare the last two equations with the left fold
fold-left kons elem:list seed = fold-left kons list (kons elem seed)
The real parser created by SSAX:make-parser is slightly more complicated, to account
for processing instructions, entity references, namespaces, processing of document type
declaration, etc.
The XML standard document referred to in this module ishttp://www.w3.org/TR/1998/REC-xm1-1998021(

The present file also defines a procedure that parses the text of an XML document or of
a separate element into SXML, an S-expression-based model of an XML Information Set.
SXML is also an Abstract Syntax Tree of an XML document. SXML is similar but not
identical to DOM; SXML is particularly suitable for Scheme-based XML/HTML authoring,
SXPath queries, and tree transformations. See SXML.html for more details. SXML is a
term implementation of evaluation of the XML document [3]. The other implementation is
context-passing.

The present frameworks fully supports the XML Namespaces Recommenda-
tion:http://www.w3.org/TR/REC-xml-names/ Other links:

1] Jeremy Gibbons, Geraint Jones, "The Under-appreciated Unfold," Proc.
ICFP’98, 1998, pp. 273-279.

2] Richard S. Bird, The promotion and accumulation strategies in transforma-
tional programming, ACM Trans. Progr. Lang. Systems, 6(4):487-504, Octo-
ber 1984.

(3] Ralf Hinze, "Deriving Backtracking Monad Transformers," Functional Pearl.

Proc ICFP’00, pp. 186-197.

31.2 Usage

xml-token? [Function]
-- Scheme Procedure: pair? x
Return ‘#t’ if X is a pair; otherwise return ‘#f’.

xml-token-kind [Special Form]
xml-token-head [Special Form]

make-empty-attlist [Function]

http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.w3.org/TR/REC-xml-names/

Chapter 31: (sxml ssax)

attlist-add syntmp-attlist-277 syntmp-name-value-278

attlist-null?

—— Scheme Procedure: null? x
Return ‘#t’ iff X is the empty list, else ‘#f’.

attlist-remove-top syntmp-attlist-280

attlist->alist syntmp-attlist-281

attlist-fold syntmp-kons-214 syntmp-knil-215 syntmp-lis1-216

Ssax:

Ssax:

Ssax

Ssax:

Ssax

Ssax

Ssax:

Ssax:

Ssax

SSsax:

Ssax:

Ssax:

Ssax:

Ssax

Ssax

uri-string->symbol syntmp-uri-str-312

skip-internal-dtd syntmp-port-246

:read-pi-body-as-string syntmp-port-243

reverse-collect-str-drop-ws syntmp-fragments-494

:read-markup-token syntmp-port-238
:read-cdata-body syntmp-port-248 syntmp-str-handler-249

syntmp-seed-250
read-char-ref syntmp-port-260
read-attributes syntmp-port-301 syntmp-entities-302

:complete-start-tag syntmp-tag-head-355 syntmp-port-356

syntmp-elems-357 syntmp-entities-358 syntmp-namespaces-359
read-external-id syntmp-port-370

read-char-data syntmp-port-387 syntmp-expect-eof 7-388
syntmp-str-handler-389 syntmp-seed-390

xml->sxml syntmp-port-500 syntmp-namespace-prefix-assig-501

make-elem-parser

:make-parser

:make-pi-parser

[Special Form
[Special Form

[Special Form

50

[Function]

[Function]

Function

Function

[]
[]
[]
[]
[Functlon]
[]
[]
[]
[]

[Function]
[Function]

[Function]

[Function]

[Function]

[Function

]
]
]
]

Chapter 32: (sxml ssax input-parse) 51

32 (sxml ssax input-parse)

32.1 Overview

A simple lexer.

The procedures in this module surprisingly often suffice to parse an input stream. They
either skip, or build and return tokens, according to inclusion or delimiting semantics. The
list of characters to expect, include, or to break at may vary from one invocation of a function
to another. This allows the functions to easily parse even context-sensitive languages.

EOF is generally frowned on, and thrown up upon if encountered. Exceptions are men-
tioned specifically. The list of expected characters (characters to skip until, or break-
characters) may include an EOF "character", which is to be coded as the symbol, xeof*.

The input stream to parse is specified as a port, which is usually the last (and optional)
argument. It defaults to the current input port if omitted.

If the parser encounters an error, it will throw an exception to the key parser-error.
The arguments will be of the form (port message specialising-msgx).

The first argument is a port, which typically points to the offending character or its
neighborhood. You can then use port-column and port-1line to query the current position.
message is the description of the error. Other arguments supply more details about the
problem.

32.2 Usage

peek-next-char [port = (current-input-port)| [Function]
assert-curr-char expected-chars comment [port = (current-input-port)] [Function]
skip-until arg [port = (current-input-port)] [Function]
skip-while skip-chars [port = (current-input-port)] [Function]
next-token prefix-skipped-chars break-chars [comment = ""| [port = [Function]

(current-input-port)|

next-token-of incl-list/pred [port = (current-input-port)] [Function]
read-text-line [port = (current-input-port)] [Function]

read-string n [port = (current-input-port)] [Function]

Chapter 33: (sxml transform) 52

33 (sxml transform)

33.1 Overview

SXML expression tree transformers

Pre-Post-order traversal of a tree and creation of a new tree

pre-post-order:: <tree> x <bindings> -> <new-tree>

where
<bindings> ::= (<binding> ...)
<binding> ::= (<trigger-symbol> *preorder* . <handler>) |

(<trigger-symbol> *macro* . <handler>) |
(<trigger-symbol> <new-bindings> . <handler>) |
(<trigger-symbol> . <handler>)

<trigger-symbol> ::= XMLname | *text* | *defaultx
<handler> :: <trigger-symbol> x [<tree>] -> <new-tree>

The pre-post-order function visits the nodes and nodelists pre-post-order (depth-first).
For each <Node> of the form (name <Node> ...), it looks up an association with the given
name among its <bindings>. If failed, pre-post-order tries to locate a *default* binding.
It’s an error if the latter attempt fails as well. Having found a binding, the pre-post-order
function first checks to see if the binding is of the form

(<trigger-symbol> *preorder* . <handler>)

If it is, the handler is ’applied’ to the current node. Otherwise, the pre-post-order
function first calls itself recursively for each child of the current node, with <new-bindings>
prepended to the <bindings> in effect. The result of these calls is passed to the <handler>
(along with the head of the current <Node>). To be more precise, the handler is _applied_-
to the head of the current node and its processed children. The result of the handler, which
should also be a <tree>, replaces the current <Node>. If the current <Node> is a text string
or other atom, a special binding with a symbol *text* is looked up.

A binding can also be of a form
(<trigger-symbol> *macro* . <handler>)

This is equivalent to *preorder* described above. However, the result is re-processed
again, with the current stylesheet.

33.2 Usage

SRV:send-reply . fragments [Function]
Output the fragments to the current output port.

The fragments are a list of strings, characters, numbers, thunks, #£f, #t — and other
fragments. The function traverses the tree depth-first, writes out strings and charac-
ters, executes thunks, and ignores #f and > (). The function returns #t if anything
was written at all; otherwise the result is #£ If #t occurs among the fragments, it is
not written out but causes the result of SRV:send-reply to be #t.

Chapter 33: (sxml transform)

foldts fdown fup fhere seed tree
post-order tree bindings
pre-post-order tree bindings

replace-range beg-pred end-pred forest

53

Function]

[
[Function
[
[Function

]
Function]
]

Chapter 34: (sxml xpath) 54

34 (sxml xpath)

34.1 Overview

SXPath: SXML Query Language

SXPath is a query language for SXML, an instance of XML Information set (Infoset) in
the form of s-expressions. See (sxml ssax) for the definition of SXML and more details.
SXPath is also a translation into Scheme of an XML Path Language, XPath. XPath and
SXPath describe means of selecting a set of Infoset’s items or their properties.

To facilitate queries, XPath maps the XML Infoset into an explicit tree, and introduces
important notions of a location path and a current, context node. A location path denotes
a selection of a set of nodes relative to a context node. Any XPath tree has a distinguished,
root node — which serves as the context node for absolute location paths. Location path
is recursively defined as a location step joined with a location path. A location step is a
simple query of the database relative to a context node. A step may include expressions
that further filter the selected set. Each node in the resulting set is used as a context node
for the adjoining location path. The result of the step is a union of the sets returned by the
latter location paths.

The SXML representation of the XML Infoset (see SSAX.scm) is rather suitable for
querying as it is. Bowing to the XPath specification, we will refer to SXML information
items as 'Nodes’:

<Node> ::= <Element> | <attributes-coll> | <attrib>
| "text string" | <PI>

This production can also be described as
<Node> ::= (name . <Nodeset>) | "text string"
An (ordered) set of nodes is just a list of the constituent nodes:
<Nodeset> ::= (<Node> ...)

Nodesets, and Nodes other than text strings are both lists. A <Nodeset> however is either
an empty list, or a list whose head is not a symbol. A symbol at the head of a node is either
an XML name (in which case it’s a tag of an XML element), or an administrative name
such as '@’. This uniform list representation makes processing rather simple and elegant,
while avoiding confusion. The multi-branch tree structure formed by the mutually-recursive
datatypes <Node> and <Nodeset> lends itself well to processing by functional languages.

A location path is in fact a composite query over an XPath tree or its branch. A singe
step is a combination of a projection, selection or a transitive closure. Multiple steps are
combined via join and union operations. This insight allows us to elegantly implement
XPath as a sequence of projection and filtering primitives — converters — joined by com-
binators. Each converter takes a node and returns a nodeset which is the result of the
corresponding query relative to that node. A converter can also be called on a set of nodes.
In that case it returns a union of the corresponding queries over each node in the set. The
union is easily implemented as a list append operation as all nodes in a SXML tree are
considered distinct, by XPath conventions. We also preserve the order of the members in
the union. Query combinators are high-order functions: they take converter(s) (which is a

http://www.w3.org/TR/xpath

Chapter 34: (sxml xpath) 55

Node|Nodeset -> Nodeset function) and compose or otherwise combine them. We will be
concerned with only relative location paths [XPath]: an absolute location path is a relative
path applied to the root node.

Similarly to XPath, SXPath defines full and abbreviated notations for location paths.
In both cases, the abbreviated notation can be mechanically expanded into the full form by
simple rewriting rules. In case of SXPath the corresponding rules are given as comments to a
sxpath function, below. The regression test suite at the end of this file shows a representative
sample of SXPaths in both notations, juxtaposed with the corresponding XPath expressions.
Most of the samples are borrowed literally from the XPath specification, while the others
are adjusted for our running example, treel.

34.2 Usage

nodeset? x [Function]
node-typeof? crit [Function]
node-eq? other [Function]
node-equal? other [Function]
node-pos n [Function]
filter pred? [Function]
take-until pred? [Function]
take-after pred? [Function]
map-union proc Ist [Function]
node-reverse node-or-nodeset [Function]
node-trace title [Function]
select-kids test-pred? [Function]
node-self pred? [Function]
node-join . selectors [Function]
node-reduce . converters [Function]
node-or . converters [Function]
node-closure test-pred? [Function]
node-parent rootnode [Function]
sxpath path [Function]

Chapter 35: (term ansi-color) 56

35 (term ansi-color)

35.1 Overview

The ‘(term ansi-color)’ module generates ANSI escape sequences for colors. Here is an
example of the module’s use:

method one: safer, since you know the colors
will get reset
(display (colorize-string "Hello!\n" ’RED ’BOLD ’O0N-BLUE))

method two: insert the colors by hand
(for-each display
(list (color ’RED ’BOLD ’ON-BLUE)
"Hello!"
(color ’RESET)))

35.2 Usage

color . Ist [Function]
Returns a string containing the ANSI escape sequence for producing the requested
set of attributes.

The allowed values for the attributes are listed below. Unknown attributes are ig-
nored.

Reset Attributes
‘CLEAR’ and ‘RESET’ are allowed and equivalent.

Non-Color Attributes
‘BOLD’ makes text bold, and ‘DARK’ reverses this. ‘UNDERLINE’ and
‘UNDERSCORE’ are equivalent. ‘BLINK’ makes the text blink. ‘REVERSE’
invokes reverse video. ‘CONCEALED’ hides output (as for getting
passwords, etc.).

Foregrond Color Attributes
‘BLACK’, ‘RED’, ‘GREEN’, ‘YELLOW’, ‘BLUE’, ‘MAGENTA’, ‘CYAN’, ‘WHITE’

Background Color Attributes
‘ON-BLACK’, ‘ON-RED’, ‘ON-GREEN’, ‘ON-YELLOW’, ‘ON-BLUE’, ‘ON-MAGENTA’,
‘ON-CYAN’, ‘ON-WHITE’

colorize-string str. color-list [Function]
Returns a copy of str colorized using ANSI escape sequences according to the at-
tributes specified in color-list. At the end of the returned string, the color attributes
will be reset such that subsequent output will not have any colors in effect.

The allowed values for the attributes are listed in the documentation for the color
function.

Chapter 36: (texinfo) 57

36 (texinfo)

36.1 Overview

Texinfo processing in scheme

This module parses texinfo into SXML. TeX will always be the processor of choice for print
output, of course. However, although makeinfo works well for info, its output in other
formats is not very customizable, and the program is not extensible as a whole. This module
alms to provide an extensible framework for texinfo processing that integrates texinfo into
the constellation of SXML processing tools.

Notes on the SXML vocabulary

Consider the following texinfo fragment:

@deffn Primitive set-car! pair value
This function...
Q@end deffn

Logically, the category (Primitive), name (set-car!), and arguments (pair value) are
“attributes” of the deffn, with the description as the content. However, texinfo allows
for @-commands within the arguments to an environment, like @deffn, which means that
texinfo “attributes” are PCDATA. XML attributes, on the other hand, are CDATA. For
this reason, “attributes” of texinfo @-commands are called “arguments”, and are grouped
under the special element, ‘%’.

Because ‘%’ is not a valid NCName, stexinfo is a superset of SXML. In the interests of
interoperability, this module provides a conversion function to replace the ‘%’ with ‘texinfo-
arguments’.

36.2 Usage

call-with-file-and-dir filename proc [Function]
Call the one-argument procedure proc with an input port that reads from filename.
During the dynamic extent of proc’s execution, the current directory will be (dirname
filename). This is useful for parsing documents that can include files by relative
path name.

texi-command-specs [Variable]
A list of (name content-model . args)

name The name of an @-command, as a symbol.

content-model
A symbol indicating the syntactic type of the @-command:

EMPTY-COMMAND
No content, and no @end is coming

EOL-ARGS Unparsed arguments until end of line
EOL-TEXT Parsed arguments until end of line

Chapter 36: (texinfo) 58

INLINE-ARGS
Unparsed arguments ending with #\}

INLINE-TEXT
Parsed arguments ending with #\}

ENVIRON The tag is an environment tag, expect @end foo.

TABLE-ENVIRON
Like ENVIRON, but with special parsing rules for its argu-
ments.

FRAGMENT For *fragment*, the command used for parsing fragments of
texinfo documents.

INLINE-TEXT commands will receive their arguments within their bodies,
whereas the —ARGS commands will receive them in their attribute list.

EOF-TEXT receives its arguments in its body.

ENVIRON commands have both: parsed arguments until the end of line,
received through their attribute list, and parsed text until the @end, re-
ceived in their bodies.

EOF-TEXT-ARGS receives its arguments in its attribute list, as in ENVIRON.

There are four @-commands that are treated specially. @include is a
low-level token that will not be seen by higher-level parsers, so it has
no content-model. @para is the paragraph command, which is only im-
plicit in the texinfo source. @item has special syntax, as noted above,
and @entry is how this parser treats @item commands within @table,
@ftable, and @vtable.

Also, indexing commands (@cindex, etc.) are treated specially. Their
arguments are parsed, but they are needed before entering the element
so that an anchor can be inserted into the text before the index entry.

args Named arguments to the command, in the same format as the formals for
a lambda. Only present for INLINE-ARGS, EOL-ARGS, ENVIRON, TABLE-

ENVIRON commands.
texi-command-depth command max-depth [Function]

Given the texinfo command command, return its nesting level, or #f if it nests too
deep for max-depth.

Examples:
(texi-command-depth ’chapter 4) =1
(texi-command-depth ’top 4) =0
(texi-command-depth ’subsection 4) = 3
(texi-command-depth ’appendixsubsec 4) = 3
(texi-command-depth ’subsection 2) = #f
texi-fragment->stexi string-or-port [Function]

Parse the texinfo commands in string-or-port, and return the resultant stexi tree.
The head of the tree will be the special command, *fragmentx*.

Chapter 36: (texinfo) 59

texi->stexi port [Function]
Read a full texinfo document from port and return the parsed stexi tree. The parsing
will start at the @settitle and end at @bye or EOF.

stexi->sxml tree [Function]
Transform the stexi tree tree into sxml. This involves replacing the % element that
keeps the texinfo arguments with an element for each argument.

FIXME: right now it just changes % to texinfo-arguments — that doesn’t hang with
the idea of making a dtd at some point

Chapter 37: (texinfo docbook) 60

37 (texinfo docbook)

37.1 Overview

This module exports procedures for transforming a limited subset of the SXML represen-
tation of docbook into stexi. It is not complete by any means. The intention is to gather
a number of routines and stylesheets so that external modules can parse specific subsets of
docbook, for example that set generated by certain tools.

37.2 Usage

*xsdocbook->stexi-rulesx [Variable]
A stylesheet for use with SSAX’s pre-post-order, which defines a number of generic
rules for transforming docbook into texinfo.

sdocbook-block-commands [Variable]
The set of sdocbook element tags that should not be nested inside each other. See
[sdocbook-flatten], page 60, for more information.

filter-empty-elements sdocbook [Function]
Filters out empty elements in an sdocbook nodeset. Mostly useful after running
sdocbook-flatten.

replace-titles sdocbook-fragment [Function]
Iterate over the sdocbook nodeset sdocbook-fragment, transforming contiguous
refsect and title elements into the appropriate texinfo sectioning command. Most
useful after having run sdocbook-flatten.

For example:

(replace-titles ’((refsectl) (title "Foo") (para "Bar.")))
= ’((chapter "Foo") (para "Bar."))

sdocbook-flatten sdochook [Function]
"Flatten" a fragment of sdocbook so that block elements do not nest inside each
other.

Docbook is a nested format, where e.g. a refsect2 normally appears inside a
refsectl. Logical divisions in the document are represented via the tree topology; a
refsect2 element contains all of the elements in its section.

On the contrary, texinfo is a flat format, in which sections are marked off by standalone
section headers like @chapter, and block elements do not nest inside each other.

This function takes a nested sdochbook fragment sdocbook and flattens all of the
sections, such that e.g.

(refsectl (refsect2 (para "Hello")))
becomes
((refsectl) (refsect2) (para "Hello"))

Oftentimes (always?) sectioning elements have <title> as their first element child;
users interested in processing the refsect* elements into proper sectioning elements

Chapter 37: (texinfo docbook) 61

like chapter might be interested in replace-titles and filter-empty-elements.
See [replace-titles], page 60, and [filter-empty-elements], page 60.

Returns a nodeset, as described in Chapter 34 [sxml xpath], page 54. That is to say,
this function returns an untagged list of stexi elements.

Chapter 38: (texinfo html) 62

38 (texinfo html)

38.1 Overview

This module implements transformation from stexi to HT'ML. Note that the output of
stexi->shtml is actually SXML with the HTML vocabulary. This means that the output
can be further processed, and that it must eventually be serialized by [sxml simple sxml-
>xml|, page 47. References (i.e., the @ref family of commands) are resolved by a ref-resolver.
See [texinfo html add-ref-resolver!], page 62, for more information.

38.2 Usage

add-ref-resolver! proc [Function]
Add proc to the head of the list of ref-resolvers. proc will be expected to take the
name of a node and the name of a manual and return the URL of the referent, or #f
to pass control to the next ref-resolver in the list.

The default ref-resolver will return the concatenation of the manual name, #, and the
node name.

stexi->shtml tree [Function]
Transform the stexi tree into shtml, resolving references via ref-resolvers. See the
module commentary for more details.

urlify str [Function]

Chapter 39: (texinfo indexing) 63

39 (texinfo indexing)

39.1 Overview

Given a piece of stexi, return an index of a specified variety.

Note that currently, stexi-extract-index doesn’t differentiate between different kinds
of index entries. That’s a bug ;)

39.2 Usage

stexi-extract-index tree manual-name kind [Function]
Given an stexi tree tree, index all of the entries of type kind. kind can be one of the
predefined texinfo indices (concept, variable, function, key, program, type) or
one of the special symbols auto or all. auto will scan the stext for a (printindex)
statement, and all will generate an index from all entries, regardless of type.

The returned index is a list of pairs, the CAR of which is the entry (a string) and the
CDR of which is a node name (a string).

Chapter 40: (texinfo nodal-tree) 64

40 (texinfo nodal-tree)

40.1 Overview

This module exports a procedure to chunk a stexi doument into pieces, delimited by sec-
tioning commands (@chapter, @appendixsec, etc.). Note that the sectioning commands
must be preceded by a @node, a condition that the output of (sxml texinfo) respects.

The output is a nodal tree (see (container nodal-tree)), with the following fields defined
for each node:

40.2 Usage

stexi->nodal-tree stexi max-depth [Function]
Break stexi into a nodal tree. Only break until sectioning identifiers of depth max-
depth. The following fields are defined for each node:

name The name of the section.
value The content of the section, as stexi. The containing element is texinfo.
parent A reference to the parent node.

children A list of subnodes, corresponding to the subsections of the current section.

Chapter 41: (texinfo plain-text) 65

41 (texinfo plain-text)

41.1 Overview

Transformation from stexi to plain-text. Strives to re-create the output from info; comes
pretty damn close.

41.2 Usage

stexi->plain-text tree [Function]
Transform tree into plain text. Returns a string.

Chapter 42: (texinfo serialize)

42 (texinfo serialize)

42.1 Overview

Serialization of stexi to plain texinfo.

42.2 Usage

stexi->texi tree

Serialize the stexi tree into plain texinfo.

66

[Function]

Chapter 43: (texinfo reflection) 67

43 (texinfo reflection)

43.1 Overview

Routines to generare stexi documentation for objects and modules.

Note that in this context, an object is just a value associated with a location. It has
nothing to do with GOOPS.

43.2 Usage

module-stexi-documentation [#:sym-name = #1] [#:docs-resolver = [Function]
(lambda (name def) def)]
Return documentation for the module named sym-name. The documentation will be
formatted as stexi (see Chapter 36 [texinfo|, page 57).

object-stexi-documentation [#:object = #1] [#:mame = [Function]
"[unknown|"] [#:force = #1]
package-stexi-standard-copying name version updated years [Function]

copyright-holder permissions
Create a standard texinfo copying section.

years is a list of years (as integers) in which the modules being documented were
released. All other arguments are strings.

package-stexi-standard-titlepage name version updated authors [Function]
Create a standard GNU title page.

authors is a list of (name . email) pairs. All other arguments are strings.

Here is an example of the usage of this procedure:
(package-stexi-standard-titlepage
"Foolib"
II3'2|I
"26 September 2006"
>(("Alyssa P Hacker" . "alyssa@example.com"))
> (2004 2005 2006)
"Free Software Foundation, Inc."
"Standard GPL permissions blurb goes here")

package-stexi-standard-menu name modules module-descriptions [Function]
extra-entries
Create a standard top node and menu, suitable for processing by makeinfo.

package-stexi-standard-prologue name filename category [Function]
description copying titlepage menu
Create a standard prologue, suitable for later serialization to texinfo and .info creation
with makeinfo.

Returns a list of stexinfo forms suitable for passing to package-stexi-
documentation as the prologue. See [texinfo reflection package-stexi-documentation],
page 68, [texinfo reflection package-stexi-standard-titlepage], page 67, [texinfo
reflection package-stexi-standard-copying], page 67, and [texinfo reflection
package-stexi-standard-menu], page 67.

Chapter 43: (texinfo reflection) 68

package-stexi-documentation [#:modules = #f] [#:mame = #1] [Function]
[#:filename = #1] [#:prologue = #{] [#:epilogue = #1]
[#:module-stexi-documentation-args = (quote ())]
Create stexi documentation for a package, where a package is a set of modules that
is released together.

modules is expected to be a list of module names, where a module name is a list
of symbols. The stexi that is returned will be titled name and a texinfo filename of
filename.

prologue and epilogue are lists of stexi forms that will be spliced into the output
document before and after the generated modules documentation, respectively. See
[texinfo reflection package-stexi-standard-prologue], page 67, to create a conventional
GNU texinfo prologue.

module-stexi-documentation-args is an optional argument that, if given, will be added
to the argument list when module-texi-documentation is called. For example, it
might be useful to define a #:docs-resolver argument.

Chapter 44: (text parse-lalr) 69

44 (text parse-lalr)

44.1 Overview

This file contains yet another LALR(1) parser generator written in Scheme. In contrast to
other such parser generators, this one implements a more efficient algorithm for computing
the lookahead sets. The algorithm is the same as used in Bison (GNU yacc) and is described
in the following paper:

"Efficient Computation of LALR(1) Look-Ahead Set", F. DeRemer and T. Pennello,
TOPLAS, vol. 4, no. 4, october 1982.

As a consequence, it is not written in a fully functional style. In fact, much of the code
is a direct translation from C to Scheme of the Bison sources.

44.2 Defining a parser

The module (text parse-lalr) declares a macro called lalr-parser:
(lalr-parser tokens rules ...)

This macro, when given appropriate arguments, generates an LALR(1) syntax analyzer.
The macro accepts at least two arguments. The first is a list of symbols which represent the
terminal symbols of the grammar. The remaining arguments are the grammar production
rules.

44.3 Running the parser

The parser generated by the lalr-parser macro is a function that takes two parameters.
The first parameter is a lexical analyzer while the second is an error procedure. The lexical
analyzer is zero-argument function (a thunk) invoked each time the parser needs to look-
ahead in the token stream. A token is usually a pair whose car is the symbol corresponding
to the token (the same symbol as used in the grammar definition). The cdr of the pair is
the semantic value associated with the token. For example, a string token would have the
car set to ’string while the cdr is set to the string value "hello". Once the end of file
is encountered, the lexical analyzer must always return the symbol ’*eoi* each time it is
invoked. The error procedure must be a function that accepts at least two parameters.

44.4 The grammar format

The grammar is specified by first giving the list of terminals and the list of non-terminal
definitions. Each non-terminal definition is a list where the first element is the non-terminal
and the other elements are the right-hand sides (lists of grammar symbols). In addition to
this, each rhs can be followed by a semantic action. For example, consider the following
(vacc) grammar for a very simple expression language:
e e+’ ¢t
| e -7 t
| t

t ot 0% f
st/ f

Chapter 44: (text parse-lalr) 70

| £

f : ID
The same grammar, written for the scheme parser generator, would look like this (with
semantic actions)

(define expr-parser
(lalr-parser
; Terminal symbols

(ID + - * /)

; Productions

(e (e + t) : (+ $1 $3)
(e - t) : (- $1 83)
(t) ;D)

(t (¢ * £) : (x $1 $3)
(t /7) ¢ (/ $1 $3)
(£) : $1)

(f (ID) D))

In semantic actions, the symbol $n refers to the synthesized attribute value of the nth
symbol in the production. The value associated with the non-terminal on the left is the result
of evaluating the semantic action (it defaults to #£). The above grammar implicitly handles
operator precedences. It is also possible to explicitly assign precedences and associativity
to terminal symbols and productions a la Yacc. Here is a modified (and augmented) version
of the grammar:

(define expr-parser
(lalr-parser
; Terminal symbols

(ID

(left: + -)

(left: * /)

(nonassoc: uminus))

(e (e + &) : (+ $1 33)
(e - @) : (- $1 $3)
(e * e) : (¢ $1 $3)
(e / e ¢ (/ $1 $3)
(- e (prec: uminus)) : (- $2)
(ID) : $1)))

The left: directive is used to specify a set of left-associative operators of the same
precedence level, the right: directive for right-associative operators, and nonassoc: for
operators that are not associative. Note the use of the (apparently) useless terminal uminus.
It is only defined in order to assign to the penultimate rule a precedence level higher than
that of * and /. The prec: directive can only appear as the last element of a rule. Finally,
note that precedence levels are incremented from left to right, i.e. the precedence level of +
and - is less than the precedence level of * and / since the formers appear first in the list
of terminal symbols (token definitions).

Chapter 44: (text parse-lalr) 71

44.5 A final note on conflict resolution

Conflicts in the grammar are handled in a conventional way. In the absence of precedence
directives, Shift/Reduce conflicts are resolved by shifting, and Reduce/Reduce conflicts are
resolved by choosing the rule listed first in the grammar definition. You can print the states
of the generated parser by evaluating (print-states). The format of the output is similar
to the one produced by bison when given the -v command-line option.

44.6 Usage

lalr-parser tokens . rules [Special Form]|
The grammar declaration special form. tokens is the list of token symbols, and rules
are the grammar rules. See the module documentation for more details.

print-states [Function]
Print the states of a generated parser.

Chapter 45: (unit-test)

45 (unit-test)

45.1 Overview

45.2 Usage

assert-equal expected got
assert-true got

assert—-numeric-= expected got precision
<test-result>

tests-run

tests-run (o <test-result>)
tests-failed

tests-failed (o <test-result>)
tests-log

tests-log (o <test-result>)
failure-messages

failure-messages (o <test-result>)

test-started

test-started (self <test-result>) (description <string>)

test-failed

test-failed (self <test-result>) (description <string>)

summary
summary (self <test-result>)

<test-case>

name

name (o <test-suite>)

name (o <test-case>)

set-up-test

set-up-test (self <test-case>)
tear-down-test

tear-down-test (self <test-case>)

run

run (self <test-suite>) (result <test-result>)

run (self <test-case>) (result <test-result>)

72

[Function]
[Function]

[Function]

[Class]
Generic
Generic
Generic
Generic

Generic

Generic

[Class

Generic

Generic

Generic

]
]
]
]
]
]
]
]
]
]
]
]
Generic|
]
]
]
]
]
]
]
]
]
]
]
]

[
[
[
[
[
[Generic
[
[
[
[

Chapter 45: (unit-test) 73

<test-suite> [Class|
tests [Generic]
tests (o <test-suite>) [Method]
add [Generic]
add (self <test-suite>) (suite <test-suite>) [Method|
add (self <test-suite>) (test <test-case>) [Method]
run-all-defined-test-cases [Function]
exit-with-summary result [Function]

]

assert-exception expression [Special Form

Appendix A: Copying This Manual 74

Appendix A Copying This Manual

This manual is covered under the GNU Free Documentation License. A copy of the FDL
is provided here.

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITTIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The

Appendix A: Copying This Manual 75

relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCil without
markup, Texinfo input format, LaTpX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:

Appendix A: Copying This Manual 76

any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing

Appendix A: Copying This Manual 7

distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A.

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

Appendix A: Copying This Manual 78

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted

Appendix A: Copying This Manual 79

10.

document, and follow this License in all other respects regarding verbatim copying of
that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 80

this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Appendix A: Copying This Manual 81

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index

Concept Index

A

ANSI color codesovvviiiiiiiaaannn. 56

C

color codes, ANSIT, 56

F

factors, prime i i 22
FDL, GNU Free Documentation License 74

G

golden section oo 21
Gooshmodule................................. 24

H

handlers, relationship with loggers............. 12

L

loglevels ... 12
loggers, relationship with handlers............. 12
logging ..o 12

logs, rotating oL 18

82
logs, through ports.......... 17
minimum, of a mathematical function.......... 21
numbers, prime.......... ... 22
numbers, prime factorsof...................... 22
pipeline, process......... ..., 24
ports, for loggingol 17
prime factors......... ... i 22
prime number Lo oo 22
process chain.............. 24
process, Operating System..................... 24
section, golden................. . 21
terminals, ANSI color codes for................ 56

Function Index

Function Index

A

ACCEPE=L0g . 14
add. . 73
add-handler!ol 14
add-name-help-handler!...................... 31
add-ref-resolver!................l 62
add-strings! ... 38
add-value-help-handler!..................... 31
all-completions...................ooiiinnna.. 38
apicheck-generate................... ...l 1
apicheck-validate............................. 1
apply-templates................oiiiiiiinn.. 44
APTOPOS « vt ettt 31
apropos—fold..................... .. 31
apropos-fold-accessible..................... 32
apropos-fold-all............................. 32
apropos-fold-exported....................... 32
apropos-internal............................. 32
ATItY oo 32
ASSETET .\ 6
assert-curr-char................... 51
assert-equala 72
assert-exception................ 73
assert-numeric-=............... 72
ASSert—tIUE ... 72
async-dequeue! ...l 3
async-enqueue! ... 3
attlist->alist.....ccoviiiiiiiiiiiiennn... 50
attlist-addl 50
attlist-fold..............l 50
attlist-null?......... 50
attlist-remove-topcoiiiiiiiiia, 50

B

binary-search-sorted-vector................ 33
breadth-first-search........................ 33

C

call-with-file-and-dir...................... 57
case-sensitive-completion?.............. 37, 38
center-string.........t 41
(o 6
close-log!....... ...l 16
collapse-repeated-chars..................... 41
COLOT L 56
colorize-string............ ...l 56
complete.o 38
config-error-arguments....................... 2
COULo 6

83
D
define-class-with-docs...................... 28
define-generic-with-docs 28
define-macro-with-docs...................... 28
define-with-docs.............. 28
define/RWargscoviiiiiineenninnnna... 29
depth-first-search 33
disable-log-level! 16
E
emit-10g 14
enable-log-level!............................ 16
escape-special-chars........................ 40
exit-with-summary............................ 73
expand—tabsui 41
F
factor ... 22
failure-messages................ ... 72
fill-stringcoviiiiiiiiiii 43
filter 55
filter-empty-elements....................... 60
find-ratio............. 23
find-string-from-port?...................... 11
flush-log........ i 16
fold ... 45
fold-layoutccoiiiiiiiii 45
fold-values ...t 45
foldt ... 45
foldts.. ..o 45, 53
foldts*o 45
foldts*-values..............oiiiiiiiiiinn... 45
force-ref 5
G
golden-section-search....................... 21
H
help ... 31
html->shtml............... 9
html->sxml........ ... i 9
html->sxml-Onf 9
html->sxml-Inf.......... ol 10
html->sxml-2nf................ 10
L
lalr-parser ... 71
lambda/RWargsoouiiiiiiiin... 29

left-justify-string......................... 41

Function Index

load-config!l 2
1o MSE ..o 14, 15
lookup-loggerooiiiiiiiiiiii 15

M

Make=aSYNC—qQUEUEovvurreeeeininnnnennnn.n 3
make-empty-attlist 49
make-html-tokenizer 10
MaKE=T0d@ . ..ottt ittt 4
Map-Union............coiiiiiiiiiiiiiiia 55
match-bind......... 19
module-commentary...........ouviiiiiiiiiia.n 32
module-stexi-documentation................. 67

DAME . oottt ettt 72
next-token............ i 51
next-token-of il 51
nodal-tree?. ...t 4
node-children.............. 4
NOde—CLOSUTE ...\ttt 55
NOAE=EQT . .\t 55
node-equal? ...l 55
Node=JOIn.......ooiininiiiiiiii i 55
NOAE=0T ..\ttt 55
node-parentLL 55
NOAE=POS . v vttt 55
node-reduce il 55
node-ref 4
NOAE-TEVEISE ..ottt ittt 55
node-self....... il 55
node-set! i il 4
node-trace................. .. 55
node-typeof? 59
nodeset? 55
(@)

object-stexi-documentation................. 67
open-log!l 16
os:process:new-comm-pipes 25
os:process:pipe-fork-child................. 24
os:process:pipe-make-commands.............. 25
os:process:pipe-make-redir-commands....... 25
os:process:setup-redirected-port 26

P

package-stexi-documentation................ 68
package-stexi-standard-copying............. 67
package-stexi-standard-menu................ 67
package-stexi-standard-prologue 67
package-stexi-standard-titlepage 67
parse-html/tokenizer........................ 10
peek-next-char..............l 51
post-order............l 53

84
pre-post-order.................. ... 53
pPrime<. 22
prime> ... 22
PTime? .. 22
Primes<. 22
Primes> 22
print-states il 71
R
rationalizel 23
read-stringl 51
read-text-line................ 51
register-logger!.......... ...l 15
remove-name-help-handler! 32
remove-value-help-handler! 32
replace-Trangeooiiiiiiiiiiiiia..n 53
replace-titles................. 60
right-justify-string........................ 41
o« 26, 72
TULF oottt ettt e e e e e e e e e 24
run-all-defined-test-cases................. 73
run-concurrently..........ol 26
run-concurrently+.......... ..., 24
run-with-pipe............l 26
S
S/ e 19
S/ITG oo 20
sdocbook-flatten............................. 60
select-kids 55
set-default-logger! 15
set-up-test 72
shtml->html 10
shtml-entity-value 10
shtml-token-kind............................. 10
skip-until...... 51
skip-while....... ..o 51
SOUNAEX . .ot viit et 39
SOUTCE oot ittt i ettt ittt 32
SRV:send-reply..................oilL. 52
ssax:complete-start-tag..................... 50
ssax:make-elem-parser....................... 50
ssax:make-parser............................. 50
ssax:make-pi-parseroo..n 50
ssax:read-attributes.................. 50
ssax:read-cdata-body.................. 50
ssax:read-char-data......................... 50
ssax:read-char-ref 50
ssax:read-external-id....................... 50
ssax:read-markup-token...................... 50
ssax:read-pi-body-as-string................ 50
ssax:reverse-collect-str-drop-ws 50
ssax:skip-internal-dtd...................... 50
ssax:uri-string->symbol..................... 50
ssax:xml->SXml 50

statprof-accumulated-time 35

Function Index

statprof-active?.......... oL 35
statprof-call-data->stats 36
statprof-call-data-calls 36
statprof-call-data-cum-samples............. 36
statprof-call-data-name..................... 36
statprof-call-data-self-samples 36
statprof-display............................. 36
statprof-display-anomolies................. 36
statprof-fold-call-data..................... 35
statprof-proc-call-data..................... 36
statprof-reset............o il 35
statprof-sample-count....................... 35
statprof-start...........l 35
statprof-stats-J-time-in-proc.............. 36
statprof-stats-calls........................ 36
statprof-stats-cum-secs-in-proc........... 36
statprof-stats-cum-secs-per-call.......... 36
statprof-stats-proc-name 36
statprof-stats-self-secs-in-proc.......... 36
statprof-stats-self-secs-per-call......... 36
statprof-stop...........l 35
stexi->nodal-tree................ 64
stexi->plain-text.............. 65
stexi->shtmlol 62
StexI=>SXML ...t e 59
SEEeXI=DTeXL vttt 66
stexi-extract-index................ 63
string->wrapped-lines....................... 43
SUMMATY .+« vt vvveee ettt 72
sxml->html.......... ... i 10
SXMI->SErAIngovvi i 47
sxml->xml.. ... 47
sxpath ... 55
system-module................................ 31

T

tail-call-pipeline.......................... 25

85
tail-call-pipeline+......................... 25
tail-call-program............................ 26
take-after.....................ooool L 55
take-until..... i 55
tear-down-test......... i 72
test-failedl 72
test-htmlprag.................ia 10
test-started il 72
TeStES . 73
tests—failed...............ol 72
tests-log............ 72
tests—Tun............ . 72
texi->stexi il 59
texi-command-depth 58
texi-fragment->stexi..............coa... 58
time. .o 7
tokenize-html............. 10
topological-sort.............................. 8
topological-sortq............... ...l 8
topological-sortv.............. 8
transform-string................... 40
U
Uurlify ..o 62
\%\%
with-statprofl 36
write-shtml-as-html......................... 10
write-sxml-html.............................. 10
X
XML=->SKML ..o o 47
xml-token-head............l 49
xml-token-kind.................. ... 49
xml-token?......... ool 49

