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Fruit of a long maturing process, freefem, in its last avatar, FreeFem++, is a high level integrated
development environment (IDE) for numerically solving partial differential equations (PDE). It is
the ideal tool for teaching the finite element method but it is also perfect for research to quickly
test new ideas or multi-physics and complex applications.

FreeFem++ has an advanced automatic mesh generator, capable of a posteriori mesh adaptation;
it has a general purpose elliptic solver interfaced with fast algorithms such as the multi-frontal
method UMFPACK, SuperLU . Hyperbolic and parabolic problems are solved by iterative algo-
rithms prescribed by the user with the high level language of FreeFem++. It has several triangular
finite elements, including discontinuous elements. Finally everything is there in FreeFem++ to pre-
pare research quality reports: color display online with zooming and other features and postscript
printouts.

This manual is meant for students at Master level, for researchers at any level, and for engineers
(including financial engineering) with some understanding of variational methods for partial dif-
ferential equations.

Vil



viil CONTENTS



Chapter 1

Introduction

A partial differential equation is a relation between a function of several variables and its (partial)
derivatives. Many problems in physics, engineering, mathematics and even banking are modeled
by one or several partial differential equations.

FreeFem++ is a software to solve these equations numerically. As its name implies, it is a free
software (see the copyrights for full detail) based on the Finite Element Method; it is not a package,
it is an integrated product with its own high level programming language. This software runs on
all UNIX OS (with g++ 3.3 or later, and X11R6) , on Window 2000, NT, XP, Vista and 7 and on
MacOS 10 (powerpc, intel)

Moreover FreeFem++ is highly adaptive. Many phenomena involve several coupled systems, for
example: fluid-structure interactions, Lorentz forces for aluminium casting and ocean-atmosphere
problems are three such systems. These require different finite element approximations and poly-
nomial degrees, possibly on different meshes. Some algorithms like Schwarz’ domain decompo-
sition method also require data interpolation on multiple meshes within one program. FreeFem++
can handle these difficulties, i.e. arbitrary finite element spaces on arbitrary unstructured and
adapted bi-dimensional meshes.

The characteristics of FreeFem++ are:

e Problem description (real or complex valued) by their variational formulations, with access
to the internal vectors and matrices if needed.

e Multi-variables, multi-equations, bi-dimensional and three-dimensional static or time de-
pendent, linear or nonlinear coupled systems; however the user is required to describe the
iterative procedures which reduce the problem to a set of linear problems.

e Easy geometric input by analytic description of boundaries by pieces; however this part is
not a CAD system; for instance when two boundaries intersect, the user must specify the
intersection points.

e Automatic mesh generator, based on the Delaunay-Voronoi algorithm; the inner point den-
sity is proportional to the density of points on the boundaries [7].

1
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e Metric-based anisotropic mesh adaptation. The metric can be computed automatically from
the Hessian of any FreeFem++ function [9].

e High level user friendly typed input language with an algebra of analytic and finite element
functions.

e Multiple finite element meshes within one application with automatic interpolation of data
on different meshes and possible storage of the interpolation matrices.

e A large variety of triangular finite elements : linear, quadratic Lagrangian elements and
more, discontinuous P1 and Raviart-Thomas elements, elements of a non-scalar type, the
mini-element,. .. (but no quadrangles).

e Tools to define discontinuous Galerkin finite element formulations P®, P1dc, P2dc and
keywords: jump, mean, intalledges.

e A large variety of linear direct and iterative solvers (LU, Cholesky, Crout, CG, GMRES,
UMFPACK) and eigenvalue and eigenvector solvers.

e Near optimal execution speed (compared with compiled C++ implementations programmed
directly).

e Online graphics, generation of , . txt, .eps, .gnu, mesh files for further manipulations of
input and output data.

e Many examples and tutorials: elliptic, parabolic and hyperbolic problems, Navier-Stokes
flows, elasticity, Fluid structure interactions, Schwarz’s domain decomposition method, eigen-

value problem, residual error indicator, ...

e A parallel version using mpi

1.1 Installation

1.1.1 For everyone:

First open the following web page
http://www. freefem.org/ff++/

And choose your platform: Linux, Windows, MacOS X, or go to the end of the page to get the full
list of downloads.

Remark 1 : Binaries are available for Microsoft Windows, Apple Mac OS X and some Linux
systems.

Install by double click on the appropriate file.


http://www.freefem.org/ff++/
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Windows binaries install First download the windows installation executable, then double click
it. to install FreeFem++. In most cases just answer yes (or typr return) to all questions. Otherwise
in the Additional Task windows, check the box ”Add application directory to your system path
your system path .” This is required otherwise the program ffglut.exe will not be found.

By now you should have two new icons on your desktop:

o FreeFem++ (VERSION).exe the FreeFem++ application.
e FreeFem++ (VERSION) Examples alink to the FreeFem++ folder of examples.

where (VERSION) is the version of the files (for example 3.3-0-P4).
By default, the installed files are in

C:\Programs Files\FreeFem++

In this directory, you have all the .d11 files and other applications: FreeFem++-nw. exe,ffglut.exe,
... the FreeFem++ application without graphic windows.

The syntax for the command-line tools are the same as those of FreeFem.exe.

MacOS X binaries install Download the MacOS X binary version file, extract all the files with
a double click on the icon of the file, go the the directory and put the FreeFem+. app application
in the /Applications directory. If you want a terminal access to FreeFem++ just copy the file
FreeFem++ in a directory of your $PATH shell environment variable.

If you want to automatically launch the FreeFem++. app, double click on a .edp file icon. Un-
der the finder pick a .edp in directory examples++-tutorial for example, select menu File
-> Get Info an change Open with: (choose FreeFem++.app) and click on button change
All....

Where to go from here An integrated environment called FreeFem++-cs, written by Antoine
Le Hyaric, is provided with FreeFem++ . Unless you wish to profile now your own development
environment, you may proceed to the next paragraph "How to use FreeFem++".

1.1.2 For the pros: Installation from sources

This section is for those who for some reason do not wish to use the binaries and hence need to
recompile FreeFem++ or install it from the source code:

The documentation archive : The documentation is also open source; to regenerate it you need
a TEX environment capable of compiling a CVS archive; under MS-Windows you will have to
use cygwin

http://www.cygwin.com

and under MacOS X we have used Apple’s Developer Tools ”Xcode” and KTgX from http:
//www.ctan.org/system/mac/texmac.


http://www.cygwin.com
http://www.ctan.org/system/mac/texmac
http://www.ctan.org/system/mac/texmac
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The C++ archive : FreeFem++ must be compiled from the source archive, as indicated in
http://www.freefem.org/ff++/index.htm
To extract files from the compressed archive freefem++- (VERSION) . tar.gz to a directory called
freefem++- (VERSION)

enter the following commands in a shell window :

tar zxvf freefem++-(VERSION).tar.gz
cd freefem++-(VERSION)

To compile and install FreeFem++ , just follow the INSTALL and README files. The following
programs are produced, depending on the system you are running :

1. FreeFem++, standard version, with a graphical interface based on GLUT/OpenGL (use ffglut
visualization tool) or not just add -nw parameter.

2. ffglut the visualization tools through a pipe of freefem++ (remark: if ffglut is not in the
system path, you will have no plot)

3. FreeFem++-nw, postscript plot output only (batch version, no graphics windows via ffglut

)

4. FreeFem++-mpi, parallel version, postscript output only
5. /Applications/FreeFem++.app, the Drag and Drop CoCoa MacOSX Application
6. bamg , the bamg mesh generator
7. cvmsh2 , a mesh file convertor
8. drawbdmesh , a mesh file viewer
9. ffmedit the freefem++ version of medit software (thanks to P. Frey)
The FreeFem++ parameter command:

Brochet-2:" hecht$ FreeFem++

Syntaxe:

FreeFem++ [ -v verbosity ] [ -fglut filepath ] [ -glut command ] [ -nw] [ -f] filename
-v verbosity : 0 -- 1000000 level of freefem output
-fglut filepath : the file name of save all plots (replot with ffglut command )
-glut command : change the command ffglut
-gff command : change the command ffglut with space quotting
-nowait : nowait at the end on window
-wait : wait at the end on window
-nw : no ffglut (=> no graphics windows)
-ne : no edp script output
-cd : Change directory to script dir

with default ffglut : ffglut


http://www.freefem.org/ff++/index.htm
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Remark 2 In most cases you can set the level of output (verbosity) to value nn by adding the
parameters -v nn on the command line.

As an installation test, under unix: go into the directory examples++-tutorial and run FreeFem++
on the example script LaplaceP1.edp with the command :

FreeFem++ LaplacePl.edp

If you are using nedit as your text editor, do one time nedit -import edp.nedit to have

coloring syntax for your .edp files.
The syntax of tools FreeFem++,FreeFem++-nw on the command-line are

e FreeFem++ [-?] [-vnn] [-fglut filel] [-glut file2] [-f] edpfilepath where the

e orFreeFem++-nw -? [-vnn] [-fglut filel] [-glut file2] [-f] edpfilepath where
the
-7 show the usage.
-fglut filename to store all the data for graphicin file filename, and toreplay do ffglut filename.
-glut ffglutprogam to change the visualisator program’s.
-nw no call to ffglut
-v nn set the level of verbosity to nn before execution of the script.

if no file path then you get a dialog box to choose the edp file on windows systeme.

The notation [] means “optional”.

Link with other text editors

notepad++ athttp://notepad-plus.sourceforge.net/uk/site.htm

e Open Notepad++ and Enter F5
e In the new window enter the command FreeFem++ "$(FULL_CURRENT_PATH)"

e Click on Save, and enter FreeFem++ in the box "Name”, now choose the short cut key
to launch directly FreeFem++ (for example alt+shift+R)

e To add Color Syntax Compatible with FreeFem++ In Notepad++,

— InMenu "Parameters"->"Configuration of the Color Syntax" proceed
as follows:

— In the list "Language" select C++
— Add ”edp” in the field "add ext"

— Select "INSTRUCTION WORD" in the list "Description" and in the field "supple
mentary key word", cut and past the following list:
PO P1 P2 P3 P4 P5 Pldc P2dc P3dc P4dc P5dc RTO RT1 RT2 RT3 RT4 RTS
macro plot intld int2d solve movemesh adaptmesh trunc checkmovemesh on func
buildmesh square Eigenvalue min max imag exec LinearCG NLCG Newton BFGS
LinearGMRES catch try intalledges jump average mean load savemesh convect
abs sin cos tan atan asin acos cotan sinh cosh tanh cotanh atanh asinh acosh pow
exp log log10 sqrt dx dy endl cout


http://notepad-plus.sourceforge.net/uk/site.htm
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— Select "TYPE WORD?” in the list "Description” and ... ” ”supplementary key
word”, cut and past the following list
mesh real fespace varf matrix problem string border complex ifstream ofstream

— Click on Save & Close. Now nodepad++ is configured.

Crimson Editor availble at http://www.crimsoneditor.com/ and adapted as follows:

e Gotothe Tools/Preferences/File association menu and add the .edp extension set

e In the same panel in Tools/User Tools, add a FreeFem++ item (1st line) with the path
to freefem++.exe on the second line and $(FilePath) and $(FileDir) on third
and fourth lines. Tick the 8.3 box.

e for color syntax, extract file from crimson-freefem.zip and put files in the corre-
sponding sub-folder of Crimson folder (C:\Program Files\Crimson Editor).

winedt for Windows : this is the best but it could be tricky to set up. Download it from
http://www.winedt.com

this is a multipurpose text editor with advanced features such as syntax coloring; a macro
is available on www . freefem.org to localize winedt to FreeFem++ without disturbing the
winedt functional mode for LateX, TeX, C, etc. However winedt is not free after the trial
period.

TeXnicCenter for Windows: this is the easiest and will be the best once we find a volunteer to
program the color syntax. Download it from

http://www.texniccenter.org/

It is also an editor for TeX/LaTeX. It has a ”‘tool”” menu which can be configured to launch
FreeFem++ programs as in:

e Select the Tools/Customize item which will bring up a dialog box.

e Select the Tools tab and create a new item: call it freefem.

e in the 3 lines below,

1. search for FreeFem++. exe
2. select Main file with further option then Full path and click also on the 8.3 box
3. select main file full directory path with 8.3

nedit on the Mac OS, Cygwin/Xfree and linux, to import the color syntax do

nedit -import edp.nedit

Smultron on the Mac, available at http://smultron. sourceforge.net. It comes ready with
color syntax for .edp file. To teach it to launch FreeFem++ files, do a "command B” (i.e.
the menu Tools/Handle Command/new command) and create a command which does

/usr/local/bin/FreeFem++-CoCoa %%p


http://www.crimsoneditor.com/
http://www.winedt.com
www.freefem.org
http://www.texniccenter.org/
http://smultron.sourceforge.net
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M Click mouse to continue | %' crimson Editor - [C:B'xpast’ 055ummer'Linuxfreefem-+ L47-31 (ol =l | x]
' File Edit Search Wiew Document Project Tools Macros ‘window Help 18]
I ] _ =y - [ de [
Did HE/ 80 @0 (R4 DEEwiE en
% zalveedp | & borderedp I & pioblemedp I & meshedp #® adaptedp |
W rborder ait=0,1.0) {x=t; v=0: label=1:}:// comment =
border b (t=0,0.5) {x=1; V=t T
border c(t=0,0.5) {x=1-t;
barder. ed
m:s::d H border d(t=0.5,1) {x=0.5; y=t:
mblémzd border e(t=0.5,1) {x=1-t; y=1;
Eomea A border £(t=0.0,1){x=0; y=1-t;label=6;};:
2R mesh Th = buildmesh (2(6) + bi4) + ci4) +d(d) + (4] + £{6)):
savemesh (Th, "th.msh")
fespace Vh(Th,F1);
Vhou,vs
real error=0.01;
problem Probeml (u,v,solver=0G, eps=1.0e-6) =
int2d | Th, gforder=2) { u*v*1.0e-10+ dxiu) *dx(v) + dy(u) *dy(s
+ int2d(Th,gforder=2) [ (%-¥)*v): e
(i=0;i< 4;i++)
Froheml;
cout << u[].min << " " << u[].max << H

plotiu, «

plot (Th,
u=u;

K — 1]

g mmdoqibi

=1):

Th=adaptmesh (Th, u,err=error) ;

wait=1);

Error = error/i;

| Lnl, Ch2 [ =

min —@
mesh: MNb of Triangles
Hb of edges on Mortars
Hb of edges on Boundary
Nbh Of Mod 44
Mb of DF

Solve :
—-8.128132 B.116518
mesh: HNbh of Tria
Hb of edges on Morta
Hb of edges on Boundary
Hb Of Hodes ?
Nbh of DF

— Sol =

—A.120968 B.117362

mesh: HNb of Triangles
Hb of edges on Mortars
Hb of edges on Boundary

Hb Of Modes = 1

Hh of DF = 681

Solue @
—8.12128% B.117744

min —@8

.116868
242, Mb of VUertices 144

max B.113293

)
44, neb = 44

-120132 max B.116518

2 547. Nb of Uertices
69. nebh 69

ey

.128988
1899, Hb of Uertices 681

max B.117362

Bi. neb = 181

-1212089 max B.117744

[ ASEI, LNES

- _oix]

Figure 1.1: Integrated environment for FreeFem++ development with Windows
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1.2 How to use FreeFem++

Under MacOS X with Graphic Interfaces To test an . edp file, just drag and drop the file icon
on the MacOS application icon FreeFem++.app. You can also launch this application and use the
menu: File — Open.

One of the best ways however on the Mac is to use a text editor like Smultron. app (see above).

" @ mi File Ecit Find Option Jump [ECTIN Window Help
8660 i Viea Run #R

*/Brochet/Usars/hecht/wark/freefam- +/examples - tutoriai¥l-adap.ed, Cument -edp) 2006/3/27 231116
——

FEERRRNREOEREE

26| matrix M=vli{uh, \/h)
37: rhe = a(@,Yh,tov=tav);
39} Teal[int] Aiifn), Ann(n) AhL{n),bin);

40{ Aii=h.diog; ¢ get the diogonal of the matrix
atl floout << " A= " << Al << endl;
a2} bh =8;
43 uhp=a,
44 Vh heB;
a5} ink kadapt=8,kkadapt=0;
46 for(int iter=n;iterclod;rsiter)
{

P suwe the problen plot{uh); // to ses the result

50 B e

S1: 4/ odd new lack condition on i o (Ah[\] =1}

52{ dhl= 1.; shl -= &h[]; /¢ Ahl

S5 b-An[] o umas[]; b %= tav; b -= ANl ¥ rhs;
sS4 Aiin = Ah[] * tgv; Alin 4= Ahl K ALY

55 A.diag = Aiing

561 set{h,solver=(}; // inportant o changs precondicorning
571 uh[] = AM-1K b3

530 Lh[] = AA * uh[];

591 Ih[] += rhs;

&0 " mnt(m,wmt_i),

£17 Aho=  Lh+ co%( uhax- uh}) < 8.3

631 4/ plot(ah, woit=1,com=" lock " value=1 J;
641 plot{uh,wait=1,cum="uh"};

65 real[int] din),Mdfn};

6 u, uh[]—uhp[

58 reul err = sarteid e
691 Md=MHuR[];

ECHI

711 real intuh = (ARL'MMd); /7 int uh;

72 cout << " Brr norm L2 ' <c 87 << " "

73 < ! int uh = " e intuh

74 ex ! RRadopt =" ee kkodapt cssrdl
75 res = intuh;

76! if{err< eps S& kkadapt ) breok.

77 bool odopt - err= eps || (\ter%s =4
Kl if{odapt )

79 i

a0 kadapt++

a1 The=i uduptmesh(Th uherr=tol};

a2 kkodopt = £l == tolning 4/ we reacht the bound

ks tul mux(tul/z toluin);

24 ol =" estol ox " o kadapt < <c kkadopt <sndl;

v
Line:64/126 [&] alr
e graphics display mus suwerﬁ'ﬂ &l T i
i There are other ways to have an inte
usually an editor installed: if it is wing
Tex Input: be programmed to handle the edit-ry

Figure 1.2: The 3 panels of the integrated environment built with the Smultron Editor with
FreeFem++ in action. The Tools menu has an item to launch FreeFem++ by a Ctrl+1 command.

In Terminal mode Choose the type of application from FreeFem++, FreeFem++-nw, FreeFem++-mpi,
.according to your needs. Add at least the path name; for example

FreeFem++ your-edp-file-path

1.3 Environment variables, and the init file

FreeFem++ reads a user’s init file named freefem++.pref toinitialize global variables: verbosity,
includepath, loadpath.

Remark 3 The variable verbosity changes the level of internal printing (0, nothing (unless
there are syntax errors), 1 few, 10 lots, etc. ...), the default value is 2.

The include files are searched from the includepath list and the load files are searched from
loadpath list.
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The syntax of the file is:

verbosity= 5

loadpath += "/Library/FreeFem++/1lib"

loadpath += "/Users/hecht/Library/FreeFem++/1ib"
includepath += "/Library/FreeFem++/edp"

includepath += "/Users/hecht/Library/FreeFem++/edp"
# comment

load += "funcTemplate"

load += "myfunction"

The possible paths for this file are

e under unix and MacOs

/etc/freefem++.pref
$(HOME) /. freefem++.pref
freefem++.pref

e under windows
freefem++.pref

We can also use shell environment variable to change verbosity and the search rule before the init
files.

export FF_VERBOSITY=50
export FF_INCLUDEPATH="dir;;dir2"
export FF_LOADPATH="dir;;dir3""

99,99 99,99

Remark: the separator between directories must be ”;” and not ”:” because :” is used under
Windows.
Remark, to show the list of init of freefem++, do

export FF_VERBOSITY=100; ./FreeFem++-nw
-- verbosity is set to 100
insert init-files /etc/freefem++.pref §

1.4 History

The project has evolved from MacFem, PCfem, written in Pascal. The first C version lead to
freefem 3.4; it offered mesh adaptativity on a single mesh only.

A thorough rewriting in C++ led to freefem+ (freefem+ 1.2.10 was its last release), which
included interpolation over multiple meshes (functions defined on one mesh can be used on any
other mesh); this software is no longer maintained but still in use because it handles a problem
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description using the strong form of the PDEs. Implementing the interpolation from one unstruc-
tured mesh to another was not easy because it had to be fast and non-diffusive; for each point, one
had to find the containing triangle. This is one of the basic problems of computational geometry
(see Preparata & Shamos[18]] for example). Doing it in a minimum number of operations was the
challenge. Our implementation is O(nlog n) and based on a quadtree. This version also grew out
of hand because of the evolution of the template syntax in C++.

We have been working for a few years now on FreeFem++ , entirely re-written again in C++ with
a thorough usage of template and generic programming for coupled systems of unknown size at
compile time. Like all versions of freefem it has a high level user friendly input language which
is not too far from the mathematical writing of the problems.

The freefem language allows for a quick specification of any partial differential system of equa-
tions. The language syntax of FreeFem++ is the result of a new design which makes use of the
STL [26], templates and bison for its implementation; more detail can be found in [12]. The
outcome is a versatile software in which any new finite element can be included in a few hours; but
a recompilation is then necessary. Therefore the library of finite elements available in FreeFem++
will grow with the version number and with the number of users who program more new ele-
ments. So far we have discontinuous P, elements,linear P, and quadratic P, Lagrangian elements,
discontinuous P; and Raviart-Thomas elements and a few others like bubble elements.



Chapter 2

Getting Started

To illustrate with an example, let us explain how FreeFem++ solves Poisson’s equation: for a
given function f(x,V), find a function u(x,y) satisfying

— Au(x,y) f(x,y) forall (x,y) € Q, (2.1)

u(x,y) = 0 forall (x,y) on 0Q,. (2.2)
Here AQ is the boundary of the bounded open set Q € R? and Au = % + 3273‘.
The following is a FreeFem++ program which computes u when f(x,y) = xy and Q is the unit
disk. The boundary C = 0Q is

C ={(x,y)| x =cos(t), y = sin(¢t), 0 < t < 2n}

Note that in FreeFem++ the domain Q is assumed to described by its boundary that is on the left
side of its boundary oriented by the parameter. As illustrated in Fig. [2.2] we can see the isovalue
of u by using plot (see line 13 below).

Figure 2.1: mesh Th by build(C(50)) Figure 2.2: isovalue by plot (u)

Example 2.1

// defining the boundary
1: border C(t=0,2%pi){x=cos(t); y=sin(t);}

11
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// the triangulated domain Th is on the left side of its boundary
2: mesh Th = buildmesh (C(50));
// the finite element space defined over Th is called here Vh

3; fespace Vh(Th,P1);

4: Vh u,v; // defines u and v as piecewise-P1 continuous functions
5: func f= x*y; // definition of a called f function
6: real cpu=clock(); // get the clock in second
7: solve Poisson(u,v,solver=LU) = // defines the PDE
8: int2d(Th) (dx(u)*dx(v) + dy(u)*dy(v)) // bilinear part
9: - int2d(Th) ( £f*v) // right hand side
10: + on(C,u=0) ; // Dirichlet boundary condition
11: plot(w;

12: cout << " CPU time = " << clock()-cpu << endl;

Note that the qualifier solver=LU is not required and by default a multi-frontal LU would have
been used. Note also that the lines containing clock are equally not required. Finally note how
close to the mathematics FreeFem++ input language is. Line 8 and 9 correspond to the mathe-
matical variational equation

8u@ ou Ov

—— + ——)dxdy = vdxd
T, 0x0x ayﬁy) Y fThf Y

for all v which are in the finite element space V), and zero on the boundary C.

Exercise : Change P1 into P2 and run the program.

2.0.1 FEM by FreeFem++ : how does it work?

This first example shows how FreeFem++ executes with no effort all the usual steps required by
the finite element method (FEM). Let us go through them one by one.

1st line: the boundary I' is described analytically by a parametric equation for x and for y. When
I = f:o I'; then each curve I';, must be specified and crossings of I'; are not allowed except at
end points .
The keyword “label” can be added to define a group of boundaries for later use (boundary con-
ditions for instance). Hence the circle could also have been described as two half circle with the
same label:

border Gammal(t=0,pi) {x=cos(t); y=sin(t); label=C}
border Gamma2(t=pi,2*pi){x=cos(t); y=sin(t); label=C}

Boundaries can be referred to either by name ( Gammal for example) or by label ( C here) or even
by its internal number here 1 for the first half circle and 2 for the second (more examples are in

Section [5.8).

2nd line: the triangulation 7, of Q is automatically generated by buildmesh(C(50)) using 50
points on C as in Fig. 2.1]

The domain is assumed to be on the left side of the boundary which is implicitly oriented by the
parametrization. So an elliptic hole can be added by
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border C(t=2%pi,0){x=0.1+0.3*cos(t); y=0.5*sin(t);}

If by mistake one had written

border C(t=0,2*pi){x=0.1+0.3*cos(t); y=0.5*sin(t);}

then the inside of the ellipse would be triangulated as well as the outside.

Automatic mesh generation is based on the Delaunay-Voronoi algorithm. Refinement of the mesh
are done by increasing the number of points on I', for example, buildmesh(C(100)), because
inner vertices are determined by the density of points on the boundary. Mesh adaptation can be
performed also against a given function £ by calling adaptmesh(Th, f).

Now the name 7, (Th in FreeFem++ ) refers to the family {7} .. ,, of triangles shown in figure
[2.1] Traditionally 4 refers to the mesh size, n, to the number of triangles in 77, and n, to the number
of vertices, but it is seldom that we will have to use them explicitly. If Q is not a polygonal domain,
a “skin” remains between the exact domain € and its approximation €2, = UZ’: Tr. However, we
notice that all corners of I', = 0€;, are on I".

3rd line: A finite element space is, usually, a space of polynomial functions on elements, triangles
here only, with certain matching properties at edges, vertices etc. Here fespace Vh(Th,P1)
defines V), to be the space of continuous functions which are affine in x, y on each triangle of 7).
As it is a linear vector space of finite dimension, basis can be found. The canonical basis is made
of functions, called the hat functions ¢, which are continuous piecewise affine and are equal to 1
on one vertex and O on all others. A typical hat function is shown on figure ﬂ Then

Vi(Th, P1) = {w(x, y)

M
w(x,y) = Z wirdr(x,y), wy are real numbers} (2.3)

k=1

where M is the dimension of V), i.e. the number of vertices. The w, are called the degree of
freedom of w and M the number of the degree of freedom.

It is said also that the nodes of this finite element method are the vertices.

Currently FreeFem++ implements the following elements in 2d, (see section [f] for the full de-
scription)

PO piecewise constant,

P1 continuous piecewise linear,

P2 continuous piecewise quadratic,

RTO Raviart-Thomas piecewise constant,

P1nc piecewise linear non-conforming,

P1dc piecewise linear discontinuous,

P2dc piecewise quadratic discontinuous,

P1b piecewise linear continuous plus bubble,

! The easiest way to define ¢ is by making use of the barycentric coordinates Ai(x,y), i = 1,2,3 of a point
q = (x,y) € T, defined by
D=1, Y ugd=gq

where ¢', i = 1,2,3 are the 3 vertices of 7. Then it is easy to see that the restriction of ¢ on T is precisely 4.
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g 3

Figure 2.3: mesh Th Figure 2.4: Graph of ¢, (left) and ¢

P2b piecewise quadratic continuous plus bubble.

Currently FreeFem++ implements the following elements in 3d, (see section [6] for the full de-
scription)

P03d piecewise constant,

P13d continuous piecewise linear,

P23d continuous piecewise quadratic,

RTO3d Raviart-Thomas piecewise constant,

Edge03d The Nedelec Edge element

P1b3d piecewise linear continuous plus bubble,

To get the full list, in a unix terminal, in directory examples++-tutorial do
FreeFem++ dumptable.edp
grep TypeOfFE lestables

Note that other elements can be added fairly easily.

Step3: Setting the problem
4th line: Vh u, v declares that # and v are approximated as above, namely

M-1

u(x,y) = wi(x,y) = ) i(x, ) (24)

k=0

Sth line: the right hand side f is defined analytically using the keyword func.
7th-9th lines: defines the bilinear form of equation (2.1)) and its Dirichlet boundary conditions

@2).

This variational formulation is derived by multiplying (2.1I) by v(x, y) and integrating the result

over :
- f vAu dxdy = fvfdxdy
Q Q

Then, by Green’s formula, the problem is converted into finding u such that
a(u,v) —€(f,v) =0 Vv satisfying v = 0 on 0. (2.5)
with a(u,v) = f Vu - Vvdxdy, (f,v)= ffv dxdy (2.6)
Q Q
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In FreeFem++ the Poisson problem can be declared only as in

Vh u,v; problem Poisson(u,v) =

and solved later as in

Poisson; // the problem is solved here

or declared and solved at the same time as in
Vh u,v; solve Poisson(u,v) =int(...

and (2.5) is written with dx(u) = du/dx, dy(u) = du/dy and
f Vu - Vvdxdy — int2d(Th) ( dx(u)*dx(v) + dy(u)*dy(v) )
Q

f fvdxdy — int2d(Th) ( f*v ) (Notice here, u is unused)
Q

In FreeFem++ bilinear terms and linear terms should not be under the same integral; indeed
to construct the linear systems FreeFem++ finds out which integral contributes to the bilinear form
by checking if both terms , the unknown (here u) and test functions (here v) are present.

Step4: Solution and visualization

6th line: The current time in seconds is stored into the real-valued variable cpu.

7th line The problem is solved.

11th line: The visualization is done as illustrated in Fig. [2.2] (see Section for zoom, postscript
and other commands).

12th line: The computing time (not counting graphics) is written on the console Notice the C++-
like syntax; the user needs not study C++ for using FreeFem++ , but it helps to guess what is
allowed in the language.

Access to matrices and vectors
Internally FreeFem++ will solve a linear system of the type

M-1
YA F=0. =0 M-t = [ o )

Jj= Q

which is found by using (2.4) and replacing v by ¢; in (2.5). And the Dirichlet conditions are
implemented by penalty, namely by setting A; = 10*° and F; = 10°° + 0 if i is a boundary degree of
freedom. Note, that the number 10% is called tgv (trés grande valeur) and it is generally possible
to change this value , see the index item solve!tgv=.

The matrix A = (A;)) 1s called stiffness matrix .
If the user wants to access A directly he can do so by using (see section [6.12] page for details)

varf a(u,v) = int2d(Th) ( dx(u)*dx(v) + dy(u)*dy(v))
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+ on(C,u=0) ;
matrix A=a(Vh,Vh); // stiffness matrix,

The vector F in (2.7)) can also be constructed manually

varf l(unused,v) = int2d(Th) (f*v)+on(C,u=0);
Vh F; F[] = 1(0,Vh); // F[] is the vector associated to the function F

The problem can then be solved by

ul]=A"-1*F[]; // u[] is the vector associated to the function u

Note 2.1 Here u and F are finite element function, and u[] and F[] give the array of value
u-1). So we have

M-1 M-1
u(r.y) =y ullligxy),  Feoy) = . Fllg(x.y)
i=0 i=0
where ¢;,i = 0...,, M — 1 are the basis functions of Vh like in equation , and M = Vh.ndof is
the number of degree of freedom (i.e. the dimension of the space Vh).

The linear system (2.7)) is solved by UMFPACK unless another option is mentioned specifically as in
Vh u,v; problem Poisson(u,v,solver=CG) = int2d(...

meaning that Poisson is declared only here and when it is called (by simply writing Poisson; )
then (2.7) will be solved by the Conjugate Gradient method.

2.0.2 Some Features of FreeFem++

The language of FreeFem++ is typed, polymorphic and reentrant with macro generation (see
[0.12). Every variable must be typed and declared in a statement each statement separated from
the next by a semicolon ”;”. The syntax is that of C++ by default augmented with something that
is more akin to TgX. For the specialist, one key guideline is that FreeFem++ rarely generates
an internal finite element array; this was adopted for speed and consequently FreeFem++ could
be hard to beat in terms of execution speed, except for the time lost in the interpretation of the
language (which can be reduced by a systematic usage of varf and matrices instead of problem.

2.1 The Development Cycle: Edit—-Run/Visualize-Revise

An integrated environment is provided with FreeFem++ by A. Le Hyaric; Many examples and
tutorials are also given along with this documentation and it is best to study them and learn by
example. Explanations for some of these examples are given in this documentation in the next
chapter. If you are a FEM beginner, you may also have to read a book on variational formulations.
The development cycle will have the following steps:

Modeling: From strong forms of PDE to weak forms, one must know the variational formulation
to use FreeFem++ ; one should also have an eye on the reusability of the variational formu-
lation so as to keep the same internal matrices; a typical example is the time dependent heat
equation with an implicit time scheme: the internal matrix can be factorized only once and
FreeFem++ can be taught to do so.
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Programming: Write the code in FreeFem++ language using a text editor such as the one pro-
vided in the integrated environment.

Run: Run the code (here written in file mycode.edp). note that this can also be done in terminal
mode by :
% FreeFem++ mycode.edp

Visualization: Use the keyword plot to display functions while FreeFem++ is running. Use the

plot-parameter wait=1 to stop the program at each plot. Use the plot-parameter ps="toto.eps'
to generate a postscript file to archive the results.

Debugging: A global variable “debug” (for example) can help as in wait=true t0 wait=false.

bool debug = true;
border a(t=0,2*pi){ x=cos(t); y=sin(t);label=1;}
border b(t=0,2*pi){ x=0.8+0.3%cos(t); y=0.3*sin(t);label=2;}

plot (a(50)+b(-30),wait=debug); // plot the borders to see the intersection
// (so change (0.8 in 0.3 in b) then needs a mouse click

mesh Th = buildmesh(a(50)+b(-30));

plot (Th,wait=debug); // plot Th then needs a mouse click

fespace Vh(Th,P2);
Vh f = sin(pi*x)*cos(pi*y);

plot (f,wait=debug); // plot the function f
Vh g = sin(pi*x + cos(pi*y));
plot(g,wait=debug); // plot the function g

Changing debug to false will make the plots flow continuously; watching the flow of graphs
on the screen (while drinking coffee) can then become a pleasant experience.

Error messages are displayed in the console window. They are not always very explicit
because of the template structure of the C++ code, (we did our best)! Nevertheless they are
displayed at the right place. For example, if you forget parenthesis as in

bool debug = true;
mesh Th = square(10,10;
plot(Th);

then you will get the following message from FreeFem++,

2 : mesh Th = square(10,10;
Error line number 2, in file bb.edp, before token ;
parse error
current line = 2
Compile error : parse error
line number :2, ;
error Compile error : parse error
line number :2, ;
code =1

If you use the same symbol twice as in
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real aaa =1;
real aaa;

then you will get the message

2 : real aaa; The identifier aaa exists
the existing type is <Pd>
the new type is <Pd>

If you find that the program isn’t doing what you want you may also use cout to display in
text format on the console window the value of variables, just as you would do in C++.

The following example works:

fespace Vh...; Vh u;...

cout<<u;...
matrix A=a(Vh,Vh);...
Cout<<A;

Another trick is to comment in and out by using the* //” as in C++. For example

real aaa =1;
// real aaa;



Chapter 3

Learning by Examples

This chapter is for those, like us, who don’t like to read manuals. A number of simple examples
cover a good deal of the capacity of FreeFem++ and are self-explanatory. For the modeling part
this chapter continues at Chapter 9 where some PDEes of physics, engineering and finance are
studied in greater depth.

3.1 Membranes

Summary Here we shall learn how to solve a Dirichlet and/or mixed Dirichlet Neumann prob-
lem for the Laplace operator with application to the equilibrium of a membrane under load. We
shall also check the accuracy of the method and interface with other graphics packages.

An elastic membrane € is attached to a planar rigid support I', and a force f(x)dx is exerted on
each surface element dx = dx;dx,. The vertical membrane displacement, ¢(x), is obtained by
solving Laplace’s equation:

—Ap = f in Q.

As the membrane is fixed to its planar support, one has:
¢lr = 0.

If the support wasn’t planar but at an elevation z(x;, x,) then the boundary conditions would be of
non-homogeneous Dirichlet type.

¢lr = z.

If a part I'; of the membrane border I is not fixed to the support but is left hanging, then due to the
membrane’s rigidity the angle with the normal vector 7 is zero; thus the boundary conditions are

Op

o —0
6n|r2

elr, =z,

where I'} = I' — I';; recall that g—f = Vg - n. Let us recall also that the Laplace operator A is defined
by:
i i
Ap = 79,79
ox;  0x;

19
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With such “mixed boundary conditions” the problem has a unique solution (see (1987), Dautray-
Lions (1988), Strang (1986) and Raviart-Thomas (1983)); the easiest proof is to notice that ¢ is
the state of least energy, i.e.

E(¢) = min E(v), with E(@v) = f(l|Vv|2 - fv)
o—z€V Q 2

and where V is the subspace of the Sobolev space H'(Q) of functions which have zero trace on I';.
Recall that (x € R?, d = 2 here)

HY(Q) = {u e L*(Q) : Vue (L*(Q)%}

Calculus of variation shows that the minimum must satisfy, what is known as the weak form of the
PDE or its variational formulation (also known here as the theorem of virtual work)

fch-Vw:ffw YweV
Q Q

Next an integration by parts (Green’s formula) will show that this is equivalent to the PDE when
second derivatives exist.

WARNING Unlike freefem+ which had both weak and strong forms, FreeFem++ implements
only weak formulations. It is not possible to go further in using this software if you don’t know
the weak form (i.e. variational formulation) of your problem: either you read a book, or ask help
form a colleague or drop the matter. Now if you want to solve a system of PDE like A(u,v) =
0, B(u,v) = 0 don’t close this manual, because in weak form it is

f(A(u, vwr + B(u, v)w,) =0 Ywy, ws...
Q

Example Let an ellipse have the length of the semimajor axis a = 2, and unitary the semiminor
axis Let the surface force be f = 1. Programming this case with FreeFem++ gives:

Example 3.1 (membrane.edp) //  file membrane.edp
real theta=4.%*pi/3.;

real a=2.,b=1.; // the length of the semimajor axis and semiminor axis
func z=x;

border Gammal(t=0,theta) { x=a* cos(t); y = b*sin(t); }

border Gamma2(t=theta,2*pi) { x = a * cos(t); y = b*sin(t); }

mesh Th=buildmesh(Gammal (100)+Gamma2(50));

fespace Vh(Th,P2); // P2 conforming triangular FEM

Vh phi,w, f=1;

solve Laplace(phi,w)=int2d(Th) (dx(phi)*dx(w) + dy(phi)*dy(w))

- int2d(Th) (f*w) + on(Gammal,phi=z);
plot (phi,wait=true, ps="membrane.eps"); //  Plot phi
plot(Th,wait=true, ps="membraneTh.eps"); // Plot Th

savemesh(Th, "Th.msh");



21

"phi.txt"

2%
AV

VA VAZAYAN

N

AV
;

N
%

A

(VA74Y)
A
EEVAVA
s
R

K
mwnuvmfé
Al
y)'A
D

N/

AVAVAVAVIAWAVAVZAVAVIIN

N\

N
N
N
A

NNINN
AN

\VAVZ\VAVAY|
NNN

NNNA/
IANNAZNSN

N¥EENN

N/

N
N

1.5
1
0.5
2

2
-15

0
-0.5
-1

i

the same

Awmv

|

vs vA—l
D

<A><V

) O
o Ay Yol
N

(AW i

\\

W

Wog o

Wyt
RIS

744}

AV%VAVAVALVAVA‘HHM

4 VAVAVAVZ \VZAYiVANY
AN
K
NESA

7/

&

V4

2y

AAVAIN
AV

OVAVAY
NAVavivi

o

N
SRR
74

>

SI

N
<]
YAV
NS

NSASN
=
ANA"AV

Vavavavy

3.1. MEMBRANES

3D drawn by

m

. Below

10n

)

Jovavar

f the membrane deformat

mes o

Mesh and level 1

1:

3
gnuplot from a file generated by FreeFem++ .

Figure



22 CHAPTER 3. LEARNING BY EXAMPLES

A triangulation is built by the keyword buildmesh. This keyword calls a triangulation subroutine
based on the Delaunay test, which first triangulates with only the boundary points, then adds
internal points by subdividing the edges. How fine the triangulation becomes is controlled by
the size of the closest boundary edges.

The PDE is then discretized using the triangular second order finite element method on the tri-
angulation; as was briefly indicated in the previous chapter, a linear system is derived from the
discrete formulation whose size is the number of vertices plus the number of mid-edges in the
triangulation. The system is solved by a multi-frontal Gauss LU factorization implemented in the
package UMFPACK. The keyword plot will display both T, and ¢ (remove Th if ¢ only is desired)
and the qualifier fill=true replaces the default option (colored level lines) by a full color display.
Results are on figure

plot (phi,wait=true,fill=true); //  Plot phi with full color display

Next we would like to check the results!
One simple way is to adjust the parameters so as to know the solutions. For instance on the unit
circle a=1, ¢, = sin(x* + y* — 1) solves the problem when

z=0, f=—4(cos(x* +y* — 1) — (x* + yH) sin(x* + y* — 1))

except that on I'; 9,0 = 2 instead of zero. So we will consider a non-homogeneous Neumann

condition and solve
f(Vgo-Vw:fwarf 2w YweV
Q Q I,

We will do that with two triangulations, compute the L? error:

€:f|(,0—goe|2
Q

and print the error in both cases as well as the log of their ratio an indication of the rate of conver-
gence.

Example 3.2 (membranerror.edp) // file membranerror.edp
verbosity =0; // to remove all default output
real theta=4.*pi/3.;

real a=1.,b=1.; // the length of the semimajor axis and semiminor axis
border Gammal(t=0,theta) { x=a * cos(t); y = b*sin(t); }

border Gamma2(t=theta,2*pi) { x = a * cos(t); y = b*sin(t); }

func f=-4*(cos(x"2+y"2-1) -(x"2+y"2)*sin(x"2+y"2-1));
func phiexact=sin(x"2+y"2-1);

reallint] L2error(2); // an array two values
for(int n=0;n<2;n++)
{
mesh Th=buildmesh(Gammal(20*(n+1))+Gamma2 (10*(n+1)));
fespace Vh(Th,P2);
Vh phi,w;

solve laplace(phi,w)=int2d(Th) (dx(phi)*dx(w) + dy(phi)*dy(w))
- int2d(Th) (f*w) - int1d(Th,Gamma2) (2*w)+ on(Gammal,phi=0);
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plot (Th,phi,wait=true,ps="membrane.eps"); //  Plot Th and phi

L2error[n]= sqrt(int2d(Th) ((phi-phiexact)"2));
}

for(int n=0;n<2;n++)
cout << " L2error "

<< n << = "<< L2error[n] <<endl;

cout <<" convergence rate = "<< log(L2error[0]/L2error[1])/log(2.) <<endl;

the output is

L2error 0 = 0.00462991

L2error 1 = 0.00117128

convergence rate = 1.9829

times: compile 0.02s, execution 6.94s

We find a rate of 1.93591, which is not close enough to the 3 predicted by the theory. The Geometry
is always a polygon so we lose one order due to the geometry approximation in O(h?)

Now if you are not satisfied with the .eps plot generated by FreeFem++ and you want to use
other graphic facilities, then you must store the solution in a file very much like in C++. It will be
useless if you don’t save the triangulation as well, consequently you must do

{
ofstream ff("phi.txt");
ff << phi[];

}
savemesh(Th, "Th.msh");

For the triangulation the name is important: it is the extension that determines the format.
Still that may not take you where you want. Here is an interface with gnuplot to produce the right

part of figure[3.2]

// to build a gnuplot data file

{ ofstream ff("graph.txt");

for (int i=0;i<Th.nt;i++)

{ for (int j=0; j <3; j++)

ff<<Th[i][j].x << " "<< Th[i][j].y<< " '"<<phi[][Vh(i,j)]<<endl;

ff<<Th[i][0].x << " "<< Th[i][0].y<< " ‘"<<phi[][Vh(i,®)]<<"\n\n\n"

}
}

We use the finite element numbering, where Wh(i, j) is the global index of j7" degrees of freedom
of triangle number i.
Then open gnuplot and do

set palette rgbformulae 30,31,32
splot "graph.txt" w 1 pal

This works with P2 and P1, but not with P1nc because the 3 first degrees of freedom of P2 or
P2 are on vertices and not with Plnc.
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3.2 Heat Exchanger

Summary Here we shall learn more about geometry input and triangulation files, as well as
read and write operations.

The problem Let {C;},,, be 2 thermal conductors within an enclosure Cy. The first one is held
at a constant temperature u; the other one has a given thermal conductivity «, 5 times larger than
the one of Cy. We assume that the border of enclosure Cj is held at temperature 20°C and that we
have waited long enough for thermal equilibrium.

In order to know u(x) at any point x of the domain €2, we must solve

V-«WVu)=0 in Q, uyr=g
where Q is the interior of Cy minus the conductors C; and I' is the boundary of Q, that is Cy U C,
Here g is any function of x equal to u; on C;. The second equation is a reduced form for:
u=u; on C,’, i:O,l.
The variational formulation for this problem is in the subspace H(l) (Q) ¢ H'(Q) of functions which
have zero traces on I'.
u—geH)(Q) : fVqu =0 Vve HyQ)
Q

Let us assume that Cj, is a circle of radius 5 centered at the origin, C; are rectangles, C; being at
the constant temperature u; = 60°C.

Example 3.3 (heatex.edp) // file heatex.edp
int C1=99, (C2=98; // could be anything such that #0 and C1 # C2
border CO(t=0,2*pi){x=5*cos(t); y=5*sin(t);}

border C11(t=0,1){ x=1+t; y=3; label=C1;}
border C12(t=0,1){ x=2; y=3-6*t; label=Cl;}
border C13(t=0,1){ x=2-t; y=-3; label=C1;}
border C14(t=0,1){ x=1; y=-3+6*t; label=Cl1;}
border C21(t=0,1){ x=-2+t; y=3; label=C2;}
border C22(t=0,1){ x=-1; y=3-6*t; label=C2;}
border C23(t=0,1){ x=-1-t; y=-3; label=C2;}

border C24(t=0,1){ x=-2; y=-3+6*t; label=C2;}

plot( Co(50) // to see the border of the domain
+ C11(5)+C12(20)+C13(5)+C14(20)
+ C21(-5)+C22(-20)+C23(-5)+C24(-20),
wait=true, ps="heatexb.eps™);

mesh Th=buildmesh( CO(50)

+ C11(5)+C12(20)+C13(5)+C14(20)

+ C21(-5)+C22(-20)+C23(-5)+C24(-20));
plot(Th,wait=1);

fespace Vh(Th,P1); Vh u,v;
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Vh kappa=1+2*(x<-1)*(x>-2)*(y<3)*(y>-3);

solve a(u,v)= int2d(Th) (kappa*(dx(u)*dx(v)+dy(u)*dy(v)))
+on(CO,u=20)+on(C1,u=60);

plot(u,wait=true, value=true, fill=true, ps="heatex.eps");

Note the following:

e (O is oriented counterclockwise by ¢, while C1 is oriented clockwise and C2 is oriented
counterclockwise. This is why C1 is viewed as a hole by buildmesh.

e C1 and C2 are built by joining pieces of straight lines. To group them in the same logical unit
to input the boundary conditions in a readable way we assigned a label on the boundaries.
As said earlier, borders have an internal number corresponding to their order in the program
(check it by adding a cout<<C22; above). This is essential to understand how a mesh can
be output to a file and re-read (see below).

e As usual the mesh density is controlled by the number of vertices assigned to each boundary.
It is not possible to change the (uniform) distribution of vertices but a piece of boundary can
always be cut in two or more parts, for instance C12 could be replaced by C121+C122:

// border C12(t=0,1) x=2; y=3-6*t; label=Cl;
border C121(t=0,0.7){ x=2; y=3-6*t; label=Cl;}
border C122(t=0.7,1){ x=2; y=3-6*t; label=Cl;}
. buildmesh(.../* C12(20) */ + C121(12)+C122(8)+...);
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Figure 3.2: The heat exchanger

Exercise Use the symmetry of the problem with respect to the axes; triangulate only one half
of the domain, and set Dirichlet conditions on the vertical axis, and Neumann conditions on the
horizontal axis.
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Writing and reading triangulation files Suppose that at the end of the previous program we
added the line

savemesh(Th, "condensor.msh") ;

and then later on we write a similar program but we wish to read the mesh from that file. Then this
is how the condenser should be computed:

mesh Sh=readmesh("condensor.msh");

fespace Wh(Sh,P1); Wh us,vs;

solve b(us,vs)= int2d(Sh) (dx(us)*dx(vs)+dy(us)*dy(vs))
+on(1,us=0)+on(99,us=1)+on(98,us=-1);

plot(us);

Note that the names of the boundaries are lost but either their internal number (in the case of C0)
or their label number (for C1 and C2) are kept.

3.3 Acoustics

Summary Here we go to grip with ill posed problems and eigenvalue problems
Pressure variations in air at rest are governed by the wave equation:
Fu
— —c"Au=0.
or
When the solution wave is monochromatic (and that depend on the boundary and initial condi-
tions), u is of the form u(x, f) = Re(v(x)e’*") where v is a solution of Helmholtz’s equation:

Kv+c?Av=0in Q,
ov

=g. 3.1
oar =8 (3.1)

where g is the source. Note the “+” sign in front of the Laplace operator and that k > 0 is real.
This sign may make the problem ill posed for some values of £, a phenomenon called “resonance”.
At resonance there are non-zero solutions even when g = 0. So the following program may or may
not work:

Example 3.4 (sound.edp) //  file sound.edp
real kc2=1;
func g=y*(1-y);

border al0(t=0,1)
border al(t=0,1)
border a2(t=0,1)
border a3(t=0,1)
border a4(t=0,1)
border a5(t=0,1)
border a6(t=0,1)

x= 5; y= 1+2*%t ;}
x=5-2%t; y= 3 ;}

x= 3-2%t; y=3-2%t ;}
x= 1-t; y= 1 ;}
x=0; y= 1-t ;}
x=t; y=0 ;}
x= 1+4*%t; y=t ;}

N I e N e

mesh Th=buildmesh( a0(20) + al(20) + a2(20)
+ a3(20) + a4(20) + a5(20) + a6(20));
fespace Vh(Th,P1);
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Vh u,v;

solve sound(u,v)=int2d(Th) (u*v * kc2 - dx(u)*dx(v) - dy(u)*dy(v))
- int1d(Th,a4) (g*Vv);
plot(u, wait=1, ps="sound.eps");

Results are on Figure [3.3] But when kc2 is an eigenvalue of the problem, then the solution is not
unique: if u, # 0 is an eigen state, then for any given solution u + u, is another a solution. To find
all the u, one can do the following

real sigma = 20; // value of the shift
// OP = A - sigma B ; // the shifted matrix

varf op(ul,u2)= int2d(Th)( dx(ul)*dx(u2) + dy(ul)*dy(u2) - sigma* ul*u2 );

varf b([ul]l, [u2]) = int2d(Th) ( ul*u2 ) ; //  no Boundary condition see note (9.1

matrix OP= op(Vh,Vh,solver=Crout, factorize=1);
matrix B= b(Vh,Vh,solver=CG,eps=1e-20);

int nev=2; // number of requested eigenvalues near sigma
reall[int] ev(nev); // to store the nev eigenvalue
Vh[int] eV(nev); // to store the nev eigenvector

int k=EigenValue(OP,B,sym=true,sigma=sigma,value=ev,vector=eV,
tol=1e-10,maxit=0,ncv=0);

cout<<ev(0)<<" 2 eigen values "<<ev(l)<<endl;

v=eV[0];

plot(v,wait=1,ps="eigen.eps");

Figure 3.3: Left:Amplitude of an acoustic signal coming from the left vertical wall. Right: first
eigen state (1 = (k/c)> = 19.4256) close to 20 of eigenvalue problem :—A¢ = Ag and g—‘fl =0onTl
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3.4 Thermal Conduction

Summary Here we shall learn how to deal with a time dependent parabolic problem. We shall
also show how to treat an axisymmetric problem and show also how to deal with a nonlinear
problem.

How air cools a plate We seek the temperature distribution in a plate (0, Lx) X (0, Ly) X (0, Lz)
of rectangular cross section Q = (0,6) X (0, 1); the plate is surrounded by air at temperature u,
and initially at temperature u = uo + u;. In the plane perpendicular to the plate at z = Lz/2, the
temperature varies little with the coordinate z; as a first approximation the problem is 2D.

We must solve the temperature equation in Q in a time interval (0,T).

ou—V-«Vu)=0in Q x (0, T),
u(x,y,0) = uy + xuy
0
K@—” +a(-u)=00onTx(0,T). (3.2)
n

Here the diffusion « will take two values, one below the middle horizontal line and ten times less
above, so as to simulate a thermostat. The term a(u — u,) accounts for the loss of temperature by
convection in air. Mathematically this boundary condition is of Fourier (or Robin, or mixed) type.

The variational formulation is in L2(0,T; H'(Q)); in loose terms and after applying an implicit
Euler finite difference approximation in time; we shall seek u"(x, y) satisfying for all w € H'(Q):

u' — un—l
f(—w + «Vu"Vw) + fa/(u" —ue)yw=0
Q ot r

func u® =10+90*x/6;
func k = 1.8%(y<0.5)+0.2;
real ue = 25, alpha=0.25, T=5, dt=0.1 ;

mesh Th=square(30,5,[6*x,y]);
fespace Vh(Th,P1);
Vh u=u0,v,uold;

problem thermic(u,v)= int2d(Th) (u*v/dt + k*(dx(u) * dx(v) + dy(uw) * dy(v)))
+ int1d(Th, 1, 3) (alpha*u*v)
- int1d(Th, 1, 3) (alpha*ue*v)
- int2d(Th) (uold*v/dt) + on(2,4,u=uf);
ofstream ff("thermic.dat");
for(real t=0;t<T;t+=dt){
uold=u; // uold ="' =" =u

thermic; // here solve the thermic problem
ff<<u(3,0.5)<<endl;
plot(u);

}

Notice that we must separate by hand the bilinear part from the linear one.
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Notice also that the way we store the temperature at point (3,0.5) for all times in file thermic.dat.
Should a one dimensional plot be required, the same procedure can be used. For instance to print

X - g—;(x, 0.9) one would do

for(int i=0;i<20;i++) cout<<dy(u)(6.0%*i/20.0,0.9)<<endl;

Results are shown on Figure (3.4
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Figure 3.4: Temperature at T=4.9. Right: decay of temperature versus time at x=3, y=0.5

3.4.1 Axisymmetry: 3D Rod with circular section

Let us now deal with a cylindrical rod instead of a flat plate. For simplicity we take x = 1. In
cylindrical coordinates, the Laplace operator becomes (r is the distance to the axis, z is the distance
along the axis, 6 polar angle in a fixed plane perpendicular to the axis):

1 1
Au = ;Br(r(?ru) + ﬁaégu +02,.

Symmetry implies that we loose the dependence with respect to 6; so the domain € is again a
rectangle ]0, R[]0, |[ . We take the convention of numbering of the edges as in square() (1 for
the bottom horizontal ...); the problem is now:

rou — 0,(ro,u) — 0,(ro,u) = 0in Q,

W:m:%+iw—m

ou
ulr, = up, U, =uy;, a(u—u,)+ %hun =0. (3.3)

Note that the PDE has been multiplied by r.
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After discretization in time with an implicit scheme, with time steps dt, in the FreeFem++ syntax
r becomes x and z becomes y and the problem is:

problem thermaxi(u,v)=int2d(Th) ((u*v/dt + dx(u)*dx(v) + dyw)*dy(v))*x)
+ int1d(Th, 3) (alpha*x*u*v) - int1d(Th,3) (alpha*x*ue*v)
- int2d(Th) (uold*v*x/dt) + on(2,4,u=ul);

Notice that the bilinear form degenerates at x = 0. Still one can prove existence and uniqueness
for u and because of this degeneracy no boundary conditions need to be imposed on I'y.

3.4.2 A Nonlinear Problem : Radiation

Heat loss through radiation is a loss proportional to the absolute temperature to the fourth power
(Stefan’s Law). This adds to the loss by convection and gives the following boundary condition:

KZ_M + au — u,) + c[(u +273)* = (u, +273)*] = 0
n

The problem is nonlinear, and must be solved iteratively. If m denotes the iteration index, a semi-
linearization of the radiation condition gives

aumﬂ
on

+ o™ —u) + ™! = u)W™ + u, + 546)(U™ +273)* + (u, + 273)*) = 0,

because we have the identity a* — b* = (a — b)(a + b)(a® + b?). The iterative process will work with
V=u-—u,.

fespace Vh(Th,P1); // finite element space
real rad=1e-8, uek=ue+273; // def of the physical constants
Vh vold,w,v=ul-ue,b;
problem thermradia(v,w)
= int2d(Th) (v*w/dt + k*(dx(v) * dx(w) + dy(v) * dy(w)))
+ int1d(Th,1,3) (b*v*w)
- int2d(Th) (vold*w/dt) + on(2,4,v=ul-ue);

for(real t=0;t<T;t+=dt){
vold=v;
for(int m=0;m<5;m++){
b= alpha + rad * (v + 2*uek) * ((v+uek)"2 + uek"2);
thermradia;
}

}
vold=v+ue; plot(vold);

3.5 Irrotational Fan Blade Flow and Thermal effects

Summary Here we will learn how to deal with a multi-physics system of PDEs on a Complex
geometry, with multiple meshes within one problem. We also learn how to manipulate the region
indicator and see how smooth is the projection operator from one mesh to another.
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Incompressible flow Without viscosity and vorticity incompressible flows have a velocity given
by:

.
U= ( o2 ) ,  where y is solution of Ay =0
T oxy

This equation expresses both incompressibility (V - u = 0) and absence of vortex (V X u = 0).
As the fluid slips along the walls, normal velocity is zero, which means that ¢ satisfies:

Y constant on the walls.

One can also prescribe the normal velocity at an artificial boundary, and this translates into non
constant Dirichlet data for .

Airfoil Let us consider a wing profile S in a uniform flow. Infinity will be represented by a large
circle C where the flow is assumed to be of uniform velocity; one way to model this problem is to
write

Ay =0 in Q, Uls =0, Yle = usy, (3.4)
where 0Q =CU S

The NACAO0012 Airfoil An equation for the upper surface of a NACAOO012 (this is a classical
wing profile in aerodynamics) is:

y =0.17735 Vx — 0.075597x — 0.212836x% + 0.17363x — 0.06254x".

Example 3.5 (potential.edp) //  file potential.edp

real S=99;
border C(t=0,2%pi) { x=5*cos(t); y=5%*sin(t);}
border Splus(t=0,1){ x = t; yv = 0.17735%sqrt(t)-0.075597*t
- 0.212836*(t"2)+0.17363*(t"3)-0.06254*(t"4); label=S;}
border Sminus(t=1,0){ x =t; y= -(0.17735%sqrt(t)-0.075597*t
-0.212836%(t"2)+0.17363*(t"3)-0.06254*(t"4)); label=S;}
mesh Th= buildmesh(C(50)+Splus(70)+Sminus(70));
fespace Vh(Th,P2); Vh psi,w;

solve potential(psi,w)=int2d(Th) (dx(psi)*dx(w)+dy(psi)*dy(w))+
on(C,psi = y) + on(S,psi=0);

plot(psi,wait=1);

A zoom of the streamlines are shown on Figure [3.5]
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\\\\\\\\

Figure 3.5: Zoom around the NACAOQO12 airfoil showing the streamlines (curve ¢ = constant). To
obtain such a plot use the interactive graphic command: “+” and p. Right: temperature distribution
at time T=25 (now the maximum is at 90 instead of 120). Note that an incidence angle has been
added here (see Chapter 9).

3.5.1 Heat Convection around the airfoil

Now let us assume that the airfoil is hot and that air is there to cool it. Much like in the previous
section the heat equation for the temperature u is

0
0v—=V-&Vv)+u-Vv=0, v(t =0) = v, G_ZICZO

But now the domain is outside AND inside S and k takes a different value in air and in steel.
Furthermore there is convection of heat by the flow, hence the term u - Vv above. Consider the
following, to be plugged at the end of the previous program:

border D(t=0,2){x=1+t;y=0;} // added to have a fine mesh at trail
mesh Sh = buildmesh(C(25)+Splus(-90)+Sminus(-90)+D(200));
fespace Wh(Sh,P1); Wh v,vv;
int steel=Sh(0.5,0).region, air=Sh(-1,0).region;
fespace WO(Sh,PO);
WO k=0.01*(region==air)+0.1*(region==steel);
WO ul=dy(psi)*(region==air), u2=-dx(psi)*(region==air);
Wh vold = 120*(region==steel);
real dt=0.05, nbT=50;
int 1i;
problem thermic(v,vv,init=i,solver=LU)= int2d(Sh) (v*vv/dt
+ k*(dx(v) * dx(vv) + dy(v) * dy(vv))
+ 10* (ul*dx(v)+u2*dy(v))*vv)- int2d(Sh) (vold*vv/dt);
for(i=0;i<nbT;i++){
v=vold; thermic;
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plot(v);
}

Notice here

e how steel and air are identified by the mesh parameter region which is defined when buildmesh
is called and takes an integer value corresponding to each connected component of Q;

e how the convection terms are added without upwinding. Upwinding is necessary when the
Pecley number |u|L/k is large (here is a typical length scale), The factor 10 in front of the
convection terms is a quick way of multiplying the velocity by 10 (else it is too slow to see
something).

e The solver is Gauss’ LU factorization and when init# 0O the LU decomposition is reused
so it is much faster after the first iteration.

3.6 Pure Convection : The Rotating Hill

Summary Here we will present two methods for upwinding for the simplest convection prob-
lem. We will learn about Characteristics-Galerkin and Discontinuous-Galerkin Finite Element
Methods.

Let Q be the unit disk centered at O; consider the rotation vector field
u=[ul,u2], uy =y, U, =—x.
Pure convection by u is
dc+uVe=0in Qx(0,7) ct=0)=c"in Q.
The exact solution c(x;,, f) at time ¢ en point x, is given by
c(x, 1) = P(x,0)
where x; is the particle path in the flow starting at point x at time 0. So x, are solutions of

d(t - x,)

Xt = l/l(x,), ) xt:() = X, Where xt = dl’

The ODE are reversible and we want the solution at point x at time ¢ ( not at point x;) the initial
point is x_;, and we have

c(x, 1) = (x_,,0)

The game consists in solving the equation until 7" = 2z, that is for a full revolution and to compare
the final solution with the initial one; they should be equal.
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Solution by a Characteristics-Galerkin Method In FreeFem++ there is an operator called
convect([ul,u2],dt,c) which compute co X with X is the convect field defined by X(x) = x4
and where x; is particule path in the steady state velocity field u = [ul, u2] starting at point x at
time 7 = 0, so x; is solution of the following ODE:

dr = u(xs), Xe= = X.

When u is piecewise constant; this is possible because x; is then a polygonal curve which can
be computed exactly and the solution exists always when u is divergence free; convect returns
c(xgr) =CoX.

Example 3.6 (convects.edp) // file convects.edp

border C(t=0, 2*pi) { x=cos(t); y=sin(t); };
mesh Th = buildmesh(C(100));

fespace Uh(Th,P1);

Uh cold, c = exp(-10*((x-0.3)"2 +(y-0.3)72));

real dt = 0.17,t=0;
Uh ul =y, u2 = -x;
for (int m=0; m<2*pi/dt ; m++) {

t += dt; cold=c;
c=convect([ul,u2],-dt,cold);
plot(c,cm=" t="+t + ", min=" + c[].min + ", max=" + c[].max);

Remark 4 3D plots can be done by adding the qualifyer "dim=3" to the plot instruction.

The method is very powerful but has two limitations: a/ it is not conservative, b/ it may diverge in
rare cases when |u| is too small due to quadrature error.

Solution by Discontinuous-Galerkin FEM Discontinuous Galerkin methods take advantage of
the discontinuities of ¢ at the edges to build upwinding. There are may formulations possible. We
shall implement here the so-called dual-P?C formulation (see Ern[11l]):

Cn+] — "

1
f(—+u-Vc)w+f(a|n-u|——n-u)[c]w=f |n - ulew Yw
o Ot E 2 Ef

where E is the set of inner edges and E is the set of boundary edges where u - n < 0 (in our case
there is no such edges). Finally [c] is the jump of ¢ across an edge with the convention that ¢*
refers to the value on the right of the oriented edge.

Example 3.7 (convects_end.edp) //  file convects.edp
fespace Vh(Th,Pldc);

Vh w, ccold, vl =y, v2 = -x, cc = exp(-10*((x-0.3)"2 +(y-0.3)72));
real u, al=0.5; dt = 0.05;
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macro n() (N.x*v1+N.y*v2) // Macro without parameter
problem Adual(cc,w) =
int2d(Th) ((cc/dt+(v1*dx(cc)+v2*dy(cc))) *w)
+ intalledges(Th) ((1-nTonEdge) *w* (al*abs(n)-n/2) * jump(cc))
// - intl1d(Th,C) ((n<0®) *abs(n) *cc*w) // unused because cc=0 on 0Q~
- int2d(Th) (ccold*w/dt);

for ( t=0; t< 2*pi ; t+=dt)

{

ccold=cc; Adual;

plot(cc,fill=1,cnm="t="+t + ", min=" + cc[].min + ", max=" + cc[].max);
};
real [int] viso=[-0.2,-0.1,0,0.1,60.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1];
plot(c,wait=1,fill=1,ps="convectCG.eps",viso=viso);
plot(c,wait=1,fill=1,ps="convectDG.eps",viso=viso);

Notice the new keywords, intalledges to integrate on all edges of all triangles

intalledges(Th) = Z f 3.5)

TeTh YT

(so all internal edges are see two times ), nTonEdge which is one if the triangle has a boundary
edge and zero otherwise, jump to implement [c]. Results of both methods are shown on Figure 3.6]
with identical levels for the level line; this is done with the plot-modifier viso.

Notice also the macro where the parameter u is not used (but the syntax needs one) and which ends
with a //; it simply replaces the name n by (N.x*v1+N.y*v2). As easily guessed N.x,N.y is the
normal to the edge.

eeeeeeeeeeeeeeee

Figure 3.6: The rotated hill after one revolution, left with Characteristics-Galerkin, on the right
with Discontinuous P; Galerkin FEM.

Now if you think that DG is too slow try this
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// the same DG very much faster
varf aadual(cc,w) = int2d(Th) ((cc/dt+(v1*dx(cc)+v2*dy(cc)))*w)
+ intalledges(Th) ((1-nTonEdge) *w* (al*abs(n)-n/2)*jump(cc)) ;

varf bbdual(ccold,w) = - int2d(Th) (ccold*w/dt);
matrix AA= aadual(Vh,Vh);
matrix BB = bbdual(Vh,Vh);
set (AA,init=t,solver=sparsesolver);
Vh rhs=0;
for ( t=0; t< 2%pi ; t+=dt)
{

ccold=cc;

rhs[] = BB* ccold[];

cc[] = AA"-1*rhs[];

plot(cc,fill=0,cmm="t="+t + ", min=" + cc[].min +

1

, max=" + cc[].max);

Notice the new keyword set to specify a solver in this framework; the modifier init is used to tel
the solver that the matrix has not changed (init=true), and the name parameter are the same that in
problem definition (see. [6.9) .

Finite Volume Methods can also be handled with FreeFem++ but it requires programming. For
instance the Py — P, Finite Volume Method of Dervieux et al associates to each P, function ¢! a P,
function ¢® with constant value around each vertex ¢’ equal to c¢!(g') on the cell o; made by all the
medians of all triangles having ¢ as vertex. Then upwinding is done by taking left or right values

at the median: :
f —(cln+1 - +f u-nc =0 Vi
(o} 5t (90'1'

load "mat_dervieux"; // external module in C++ must be loaded
border a(t=0, 2*pi){ x = cos(t); y = sin(t); 1}

mesh th = buildmesh(a(100));

fespace Vh(th,P1);

It can be programmed as

Vh vh,vold,ul =y, u2 = -x;
Vh v = exp(-10*((x-0.3)"2 +(y-0.3)"2)), vWall=0, rhs =0;

real dt = 0.025;
// qflpTlump means mass lumping is used
problem FVM(v,vh) = int2d(th,qft=qflpTlump) (v*vh/dt)
- int2d(th,qft=qfl1pTlump) (vold*vh/dt)
+ intld(th,a) (((ul*N.x+u2*N.y)<0)* (ul*N.x+u2*N.y) *viWall*vh)
+ rhs[] ;

matrix A;
MatUpWindO® (A, th,vold, [ul,u2]);

for ( int t=0; t< 2*pi ; t+=dt){
vold=v;
rhs[] = A * vold[] ; FVM;
plot(v,wait=0);

3
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the mass lumping parameter forces a quadrature formula with Gauss points at the vertices so as
to make the mass matrix diagonal; the linear system solved by a conjugate gradient method for
instance will then converge in one or two iterations.

The right hand side rhs is computed by an external C++ function MatUpWind®(...) which is
programmed as

// computes matrix a on a triangle for the Dervieux FVM

int fvmP1P0O (double q[3][2], // the 3 vertices of a triangle T
double u[2], // convection velocity on T

double c[3], // the P1 function on T

double a[3][3], // output matrix

double where[3] ) // where>0 means we’re on the boundary

{
for(int i=0;i<3;i++) for(int j=0;j<3;j++) al[il[j]1=0;

for(int i=0;i<3;i++){
int ip = (A+1)%3, ipp =(ip+1)%3;
double unl =-((q[ip][1]+q[i][1]1-2*q[ipp][1])*ul0]
-(alip] [0]1+q[i]1[0]-2*q[ipp] [01)*u[1])/6;
if(unl>0) { a[i][i] += unL; a[ip][i]-=unL;}
else{ a[i][ip] += unL; alip][ip]-=unL;}
if(where[i]&&where[ip]){ // this is a boundary edge
unL=C(q[ipl[11-q[i]1[11)*ul®] -(qlipl[®1-q[il[01)*ul11)/2;
if(unL>0) { a[i][i]+=unL; a[ip][ip]+=unL;}
}
}

return 1;

¥

It must be inserted into a larger .cpp file, shown in Appendix A, which is the load module linked
to FreeFem++ .

3.7 A Projection Algorithm for the Navier-Stokes equations

Summary Fluid flows require good algorithms and good triangultions. We show here an exam-
ple of a complex algorithm and or first example of mesh adaptation.

An incompressible viscous fluid satisfies:
ou+u-Vu+Vp—-vAu=0, V-u=0 inQx]0,T],

0
U =u’, ulr=ur.

A possible algorithm, proposed by Chorin, is

1
_[um+l —u"oX"+ Vp" —vAu" =0, ulr = ur,

ot
_Apm+1 - _V. MmOXm, anpm+1 — O,

where uoX(x) = u(x — u(x)ot) since 0,u + u - Vu is approximated by the method of characteristics,
as in the previous section.
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An improvement over Chorin’s algorithm, given by Rannacher, is to compute a correction, ¢, to
the pressure (the overline denotes the mean over Q)

-Aq=V-u-V-u

and define
I/lm+l:ﬁ+VQ(5l, pm+1:pm_q_m

m+1

where it is the (u™*!,v"*!) of Chorin’s algorithm.

The backward facing step The geometry is that of a channel with a backward facing step so that
the inflow section is smaller than the outflow section. This geometry produces a fluid recirculation
zone that must be captured correctly.

This can only be done if the triangulation is sufficiently fine, or well adapted to the flow.

Example 3.8 (NSprojection.edp) //  file NSprojection.edp
border al0(t=1,0){ x=0; y=t; label=1;}

border al(t=0,1){ x=2*t; y=0; label=2;}

border a2(t=0,1){ x=2; y=-t/2; label=2;}

border a3(t=0,1){ x=2+18*t"1.2; y=-0.5; label=2;}

border a4(t=0,1){ x=20; y=-0.5+1.5%t; label=3;}

border a5(t=1,0){ x=20%t; y=1; label=4;}

int n=1;

mesh Th= buildmesh(a®(3*n)+al(20*n)+a2(10*n)+a3(150*n)+a4(5*n)+a5(100%*n));

plot(Th);

fespace Vh(Th,P1);

real nu = 0.0025, dt = 0.2; // Reynolds=400

Vh w,u = 4%y*(1-y)*(y>0)*(x<2), v =0, p = 0, q=0;
real area= int2d(Th)(1l.);

for(int n=0;n<100;n++){
Vh uold = u, vold = v, pold=p;
Vh f=convect([u,v],-dt,uold), g=convect([u,v],-dt,vold);

solve pb4u(u,w,init=n,solver=LU)
=int2d(Th) (u*w/dt +nu*(dx(u) *dx(w)+dy (u) *dy (w)))
-int2d(Th) ((£/dt-dx(p))*w)
+ on(l,u = 4*y*(1-y)) + on(2,4,u = 0+ on(3,u=£);
plot(u);

solve pb4v(v,w,init=n,solver=LU)
= int2d(Th) (v*w/dt +nu*(dx(v)*dx(w)+dy(v)*dy(w)))
-int2d(Th) ((g/dt-dy(p))*w)
+on(1,2,3,4,v = 0);

real meandiv = int2d(Th) (dx(u)+dy(v))/area;

solve pb4p(q,w,init=n,solver=LU)= int2d(Th) (dx(q)*dx(w)+dy(q)*dy(w))
- int2d(Th) ((dx(wW+ dy(v)-meandiv)*w/dt)+ on(3,q=0);

real meanpq = int2d(Th) (pold - q)/area;
if(n==50){
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Th = adaptmesh(Th,u,v,q); plot(Th, wait=true);

pold-g-meanpq;
u + dx(q)*dt;
v + dy(q)*dt;
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Figure 3.7: Rannacher’s projection algorithm: result on an adapted mesh (top) showing the pres-
sure (middle) and the horizontal velocity u at Reynolds 400.

We show in figure the numerical results obtained for a Reynolds number of 400 where mesh
adaptation is done after 50 iterations on the first mesh.

3.8 The System of elasticity

Elasticity Solid objects deform under the action of applied forces: a point in the solid, originally
at (x,y,z) will come to (X, Y, Z) after some time; the vector u = (uy, us,u3) = (X —x,Y —y,Z —2)
is called the displacement. When the displacement is small and the solid is elastic, Hooke’s law
gives a relationship between the stress tensor o-(u) = (o;;(«)) and the strain tensor €(u) = €;(u)

O','j(l/l) = /15,~jV.u + 2/.16,'](14),
where the Kronecker symbol 6;; = 1 if i = j, 0 otherwise, with

€)= =(— + —),

l]( ) 2(6xj ax,‘
and where A, u are two constants that describe the mechanical properties of the solid, and are
themselves related to the better known constants E, Young’s modulus, and v, Poisson’s ratio:

E Ev

K= 30y AT T2
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Lamé’s system Let us consider a beam with axis Oz and with perpendicular section Q. The
components along x and y of the strain u(x) in a section {2 subject to forces f perpendicular to the
axis are governed by

—pAu - (u+ DHV(Va) = f in Q,

where A, u are the Lamé coeflicients introduced above.
Remark, we do not used this equation because the associated variationnal form does not give the
right boundary condition, we simply use

—div(oc) =f inQ

where the corresponding variationnal form is:

fcr(u):e(v)dx—fvfdx:O;
Q Q

where : denote the tensor scalar product, i.e. a : b = ), ; a;;b;;.
So the variationnal form can be written as :

f/lV.uV.v + 2ue(u) : €(v) dx — fvf dx =0;
Q

Q

Example Consider elastic plate with the undeformed rectangle shape [0, 20] x [-1, 1]. The body
force is the gravity force f and the boundary force g is zero on lower, upper and right sides. The
left vertical sides of the beam is fixed. The boundary conditions are

on = g=0 on I',T4,TI3,
0 on I,

Here u = (&, v) has two components.

The above two equations are strongly coupled by their mixed derivatives, and thus any iterative
solution on each of the components is risky. One should rather use FreeFem++ ’s system approach
and write:

Example 3.9 (lame.edp) //  file lame.edp
mesh Th=square(10,10, [20%x,2*y-1]);

fespace Vh(Th,P2);

Vh u,v,uu,vv;

real sqrt2=sqrt(2.);

macro epsilon(ul,u2) [dx(ul),dy(u2), (dy(ul)+dx(u2))/sqrt2] // EOM
// the sqrt2 is because we want: epsilon(ul,u2)’* epsilon(vl,v2) == €e(u): e(v)
macro div(u,v) ( dx(uw)+dy(v) ) // EOM

real E = 21e5, nu = 0.28, mu= E/(2*(1+nu));
real lambda = E*nu/((1+nuw)*(1-2*nu)), £ = -1; //

solve lame([u,v], [uu,vv])= int2d(Th) (
lambda*div(u,v)*div(uu,vv)
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+2.*mu*( epsilon(u,v)’*epsilon(uu,vv) ) )
- int2d(Th) (£f*vv)
+ on(4,u=0,v=0);

real coef=100;
plot([u,v],wait=1,ps="1lamevect.eps",coef=coef);

mesh thl = movemesh(Th, [x+u*coef, y+v*coef]);
plot(thl,wait=1,ps="1lamedeform.eps");

real dxmin = u[].min;

real dymin = v[].min;

cout << " - dep. max x = "<< dxmin<< " y=" << dymin << endl;
cout << " dep. (20,0) =" << u(20,0) << " " << v(20,0) << endl;

The numerical results are shown on figure [3.8|and the output is:

-- square mesh : nb vertices =121 , nb triangles = 200 , nb boundary edges 40
-- Solve : min -0.00174137 max 0.00174105
min -0.0263154 max 1.47016e-29
- dep. max x = -0.00174137 y=-0.0263154
dep. (20,0) = -1.8096e-07 -0.0263154
times: compile 0.010219s, execution 1.5827s

Figure 3.8: Solution of Lamé’s equations for elasticity for a 2D beam deflected by its own weight
and clamped by its left vertical side; result are shown with a amplification factor equal to 100.
Remark: the size of the arrow is automatically bound, but the color gives the real length

3.9 The System of Stokes for Fluids
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In the case of a flow invariant with respect to the third coordinate (two-dimensional flow), flows at
low Reynolds number (for instance micro-organisms) satisfy,

-Au+Vp=0
V-u=0

where u = (u;, u,) is the fluid velocity and p its pressure.

The driven cavity is a standard test. It is a box full of liquid with its lid moving horizontally at
speed one. The pressure and the velocity must be discretized in compatible fintie element spaces
for the LBB conditions to be satisfied:

v
sup (u,Vp)

DPEPy |p|

> Blul Vu € U,

//  file stokes.edp
int n=3;
mesh Th=square(10+*n, 10*n);
fespace Uh(Th,Plb); Uh u,v,uu,vv;
fespace Ph(Th,P1); Ph p,pp;

solve stokes([u,v,p], [uu,vv,ppl) =
int2d(Th) (dx(u) *dx (uw) +dy (u) *dy (uu) + dx(v)*dx(vv)+ dy(v)*dy(vv)
+ dx(p)*uu + dy(p)*vv + pp*(dx(u)+dy(v))
- le-10*p*pp)
+ on(1,2,4,u=0,v=0) + on(3,u=1,v=0);
plot([u,v],p,wait=1);

Remark, we add a stabilization term -10e-10*p*pp to fixe the constant part of the pressure.
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Figure 3.9: Solution of Stokes’ equations for the driven cavity problem, showing the velocity field
and the pressure level lines.

Results are shown on figure 3.9
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3.10 A Large Fluid Problem

A friend of one of us in Auroville-India was building a ramp to access an air conditioned room.
As I was visiting the construction site he told me that he expected to cool air escaping by the door
to the room to slide down the ramp and refrigerate the feet of the coming visitors. I told him ”no
way” and decided to check numerically. The results are on the front page of this book.

The fluid velocity and pressure are solution of the Navier-Stokes equations with varying density
function of the temperature.

The geometry is trapezoidal with prescribed inflow made of cool air at the bottom and warm air
above and so are the initial conditions; there is free outflow, slip velocity at the top (artificial)
boundary and no-slip at the bottom. However the Navier-Stokes cum temperature equations have
a RANS & — € model and a Boussinesq approximation for the buoyancy. This comes to

0,0 +uVo -V - (k;V0) =0
ou+uVu—V - (urVu) + Vp +e(@ —6p)es, V-u=0
k2
M1 = C,J?, Kt = KUt
Ok + uVk + € — V - (urVk) = %Wu + VuTP
e ¢ c To
0,6 + uVe + c2; - —V . (urVe) = Eleu +Vu' =0 (3.6)
Cu

We use a time discretization which preserves positivity and uses the method of characteristics
(X™(x) =~ x — u™(x)o1)

1
5(9'"” —@" o X") -V - (Ve =0

_(um+l —u"o Xm) -V. (/JrTnVum+l) + me+l + e(0m+l _ 90)e27 V. um+1 =0

ot
1 m m m m 6m m m Mm m m

E(k ko XM+ k ”k—m;V-(,uTVk 1y = 7T|Vu + Vu"?
5_I(Em+] _ Em oxm) + C2€m+1]i_m _ z_;V(ﬂ’;Vém+l) — %kmlvum + VumT|2

m+12

M= G g = k! (3.7)

T H entl’
In variational form and with appropriated boundary conditions the problem is:

real L=6;

border aa(t=0,1){x=t; y=0 ;}

border bb(t=0,14){x=1+t; y= - 0.1*t ;}

border cc(t=-1.4,L){x=15; y=t ;}

border dd(t=15,0){x=t ; y = L;}

border ee(t=L,0.5){ x=0; y=t ;}

border f£f(t=0.5,0){ x=0; y=t ;}

int n=8;

mesh Th=buildmesh(aa(n)+bb(9*n) + cc(4*n) + dd(10*n)+ee(6*n) + ff(n));
real sO=clock();

fespace Vh2(Th,Plb); // velocity space
fespace Vh(Th,P1); // pressure space
fespace VOh(Th,PO®); // for gradients
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Vh2 u2,v2,upl=0,up2=0;
Vh2 ul,vl;
Vh ulx=0,uly,u2x,uly, vv;

real reylnods=500;
// cout << " Enter the reynolds number :"
assert(reylnods>1 && reylnods < 100000);
upl=0;
up2=0;
func g=(x)*(1-x)*4; // inflow
Vh p=0,q, templ,temp=35, k=0.001,kl,ep=0.0001,epl;
VOh muT=1,prodk,prode, kappa=0.25e-4, stress;
real alpha=0, eee=9.81/303, clm = 1.3/0.09 ;
real nu=1, numu=nu/sqrt( 0.09), nuep=pow(nu,1.5)/4.1;
int i=0,iter=0;
real dt=0;
problem TEMPER(temp,q) = // temperature equation
int2d(Th) (
alpha*temp*q + kappa * ( dx(temp)*dx(q) + dy(temp)*dy(q) ))
// + intl1d(Th, aa,bb) (temp*q* 0.1)
+ int2d(Th) ( -alpha*convect([upl,up2],-dt,templ)*q )
+ on(ff, temp=25)
+ on(aa,bb, temp=35) ;

; cin >> reylnods;

problem kine(k,q)= // get the kinetic turbulent energy
int2d(Th) (
(epl/kl+alpha)*k*q + muT * ( dx(k)*dx(q) + dyk)*dy(q) ))
// + int1d(Th,aa,bb) (temp*q*0.1)
+ int2d(Th) ( prodk*qg-alpha*convect([upl,up2],-dt,kl)*q )
+ on(f£f,k=0.0001) + on(aa,bb,k=numu*stress) ;

problem viscturb(ep,q)= // get the rate of turbulent viscous energy
int2d(Th)
(1.92*epl/kl+alpha)*ep*q + clm*muT * ( dx(ep)*dx(q) + dy(ep)*dy(a) ))
// + int1d(Th,aa,bb) (temp*q*0.1)
+ int2d(Th) ( prode*q-alpha*convect([upl,up2],-dt,epl)*q )
+ on(ff,ep= 0.0001) + on(aa,bb,ep=nuep*pow(stress,1.5)) ;

solve NS ([ul,u2,p],[vl,v2,q]) = // Navier-Stokes k-epsilon and Boussinesq
int2d(Th)(
alpha*( ul*vl + u2*v2)
+ muT * (dx(ul)*dx(v1)+dy(ul)*dy(v1)+dx(u2)*dx(v2)+dy(u2) *dy(v2))
// ( 2%dx(ul)*dx(v1) + 2*dy(u2)*dy(v2)+(dy(ul)+dx(u2))*(dy(vl)+dx(v2)))
+ p*q*(0.000001)
- p*dx(vl) - p*dy(v2)
- dx(ul)*q - dy(u2)*q
)
+ int1d(Th,aa,bb,dd) (ul*vl* 0.1)
+ int2d(Th) (eee*(temp-35)*vl -alpha*convect([upl,up2],-dt,upl)*vl
-alpha*convect ([upl,up2],-dt,up2)*v2 )
+ on(£ff,ul=3,u2=0)
on(ee,ul=0,u2=0)
on(aa,dd,u2=0)
on(bb,u2= -upl*N.x/N.y)
on(cc,u2=0) ;

+ o+ o+ o+
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plot(coef=0.2,cmm=" [ul,u2] et p ",p,[ul,u2],ps="StokesP2P1.eps",value=1,wait=1);
{
reallint] xx(21),yy(21),pp(21);
for (int i=0;i<21;i++)
{
yy[i]=1/20.;
xx[1]=ul(0.5,1/20.);
ppl[il=p(i/20.,0.999);
}

cout <<

<< yy << endl;
// plot([xx,yy],wait=1,cmm="ul x=0.5 cup");
// plot([yy,ppl,wait=1,cmm="pressure y=0.999 cup");
}

dt = 0.05;

int nbiter = 3;

real coefdt = 0.257(1./nbiter);

real coefcut = 0.25"(1l./nbiter) , cut=0.01;
real tol=0.5,coeftol = 0.5 (1./nbiter);
nu=1./reylnods;

for (iter=1;iter<=nbiter;iter++)

{
cout << " dt = " << dt << " mmmmmmmm - " << endl;
alpha=1/dt;
for (i=0;i<=500;i++)
{
upl=ul;
up2=u2;

templ=max(temp,25);
templ=min(templ,35);

kl=k; epl=ep;
muT=0.09*%k*k/ep;
NS; plot([ul,u2],wait=1); // Solves Navier-Stokes

prode =0.126%k* (pow(2*dx(ul),2)+pow(2*dy(u2),2)+2*pow(dx (u2)+dy(ul),2))/2;
prodk= prode*k/ep*0.09/0.126;
kappa=muT/0.41;
stress=abs(dy(ul));
kine; plot(k,wait=1);
viscturb; plot(ep,wait=1);
TEMPER; // solves temperature equation
if (! % 5)){
plot(temp,value=1,fill=true,ps="temp_"+iter+"_"+i+".ps");
plot(coef=0.2,cmm=" [ul,u2] et p ",p,[ul,u2],ps="plotNS_"+iter+"_"+i+".ps");
}

cout << "CPU " << clock()-s0® << "s " << endl;

}

if (iter>= nbiter) break;
Th=adaptmesh(Th, [dx(ul),dy(ul),dx(ul),dy(u2)],splitpbedge=1,
abserror=0,cutoff=cut,err=tol, inquire=0,ratio=1.5,hmin=1./1000);
plot (Th,ps="ThNS.eps");
dt = dt*coefdt;
tol = tol *coeftol;
cut = cut *coefcut;
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cout << "CPU " <<elock()-s0 << "s << endl;

3.11 An Example with Complex Numbers

In a microwave oven heat comes from molecular excitation by an electromagnetic field. For a
plane monochromatic wave, amplitude is given by Helmholtz’s equation:

Bv+ Av =0.

We consider a rectangular oven where the wave is emitted by part of the upper wall. So the
boundary of the domain is made up of a part 'y where v = 0 and of another part I'; = [c, d] where
for instance v = sin(72=).

Within an object to be cooked, denoted by B, the heat source is proportional to v*. At equilibrium,
one has

A =VIz, Or=0

where I3 is 1 in the object and 0 elsewhere.

Figure 3.10: A microwave oven: real (left) and imaginary (middle) parts of wave and temperature
(right).

Results are shown on figure [3.10]
In the program below S = 1/(1 — 1/2) in the air and 2/(1 — I/2) in the object (i = V-1):

Example 3.10 (muwave.edp) //  file muwave.edp
real a=20, b=20, c=15, d=8, e=2, 1=12, f=2, g=2;

border a0(t=0,1) {x=a*t; y=0;label=1;}

border al(t=1,2) {x=a; y= b*(t-1);label=1;}

border a2(t=2,3) { x=a*(3-t);y=b;label=1;}

border a3(t=3,4){x=0;y=b-(b-c)*(t-3);label=1;}

border a4(t=4,5){x=0;y=c-(c-d)*(t-4);label=2;}

border a5(t=5,6){ x=0; y= d*(6-t);label=1;}

border bO(t=0,1) {x=a-f+e*(t-1);y=g; label=3;}
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border bl(t=1,4) {x=a-f; y=g+1*(t-1)/3; label=3;}
border b2(t=4,5) {x=a-f-e*(t-4); y=1l+g; label=3;}
border b3(t=5,8) {x=a-e-f; y= 1+g-1*(t-5)/3; label=3;}
int n=2;
mesh Th = buildmesh(a®(10*n)+al(10*n)+a2(10*n)+a3(10*n)
+a4 (10*n)+a5(10*n)+b®(5*n)+b1(10*n)+b2(5*n)+b3(10%n));
plot(Th,wait=1);
fespace Vh(Th,P1);
real meat = Th(a-f-e/2,9+1/2).region, air= Th(0.01,0.01).region;
Vh R=(region-air)/(meat-air);

Vh<complex> v,w;
solve muwave(v,w) = int2d(Th) (v*w*(1+R)
-(dx(v)*dx(w)+dy (v) *dy (w) ) *(1-0.51))
+ on(1,v=0) + on(2, v=sin(pi*(y-c)/(c-d)));
Vh vr=real(v), vi=imag(v);
plot(vr,wait=1,ps="rmuonde.ps", fill=true);
plot(vi,wait=1,ps="imuonde.ps", fill=true);
fespace Uh(Th,P1); Uh u,uu, ff=1e5*(vr"2 + vi“"2)*R;
solve temperature(u,uu)= int2d(Th) (dx(uw)* dx(uw)+ dy(u)* dy(uu))

- int2d(Th) (ff*uu) + on(1,2,u=0);
plot(u,wait=1,ps="tempmuonde.ps", fill=true);

3.12 Optimal Control

Thanks to the function BFGS it is possible to solve complex nonlinear optimization problem within
FreeFem++. For example consider the following inverse problem

min J = f(u —uy)? : = V(k(b,c,d)-Vu) =0, ulr = ur
E

b,c,deR

where the desired state u,, the boundary data ur and the observation set E C € are all given.
Furthermore let us assume that

k(x) =1+ blg(x) + clc(x) +dIp(x) YxeQ

where B, C, D are separated subsets of ).

To solve this problem by the quasi-Newton BFGS method we need the derivatives of J with respect
to b, ¢, d. We self explanatory notations, if 6b, dc, dd are variations of b, ¢, d we have

oJ =2 f(u —ug)ou, —V(k-Voéu)~V(©k-Vu) dulr =0
E
Obviously J; is equal to 6J when 6b = 1,6c = 0,6d = 0, and so on for J/ and J/,.

All this is implemented in the following program

// file optimcontrol.edp
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border aa(t=0, 2*pi) { X = 5%cos(t); y = 5*sin(t); };
border bb(t=0, 2*pi) { x = cos(t); y = sin(t); };

border cc(t=0, 2*pi) { X = -3+cos(t); y = sin(t); 1};
border dd(t=0, 2*pi) { x = cos(t); y = -3+sin(t); };

mesh th = buildmesh(aa(70)+bb(35)+cc(35)+dd(35));
fespace Vh(th,P1);
Vh Tb=((x"2+y~2)<1.0001),
Ic=(((x+3) "2+ y"2)<1.0001),
Id=((x"2+(y+3)"2)<1.0001),
Te=(((x-1)"2+ y"2)<=4),
ud,u,uh,du;
reallint] z(3);
problem A(u,uh) =int2d(th) ((1+z[0]*Ib+z[1]*Ic+z[2]*Id)*(dx(u)*dx(uh)
+dy (uw) *dy(uh))) + on(aa,u=x"3-y"3);
z[0]1=2; z[1]1=3; z[2]=4;
A; ud=u;
ofstream f("J.txt");
func real J(real[int] & Z)

{
for (int i=0;i<z.n;i++)z[i]=Z[i];
A; real s= int2d(th) (Ie*(u-ud)"2);
f<<s<<™ "; return s;

}

reallint] dz(3), didz(3);

problem B(du,uh)
=int2d(th) ((1+z[0]*Ib+z[1]*Ic+z[2]*Id)* (dx(du)*dx (uh)+dy (du) *dy(uh)))
+int2d(th) ((dz[0]*Ib+dz[1]*Ic+dz[2]*Id)* (dx (u)*dx(uh)+dy(u)*dy(uh)))
+on(aa,du=0);

func real[int] DJ(reall[int] &Z)
{
for(int i=0;i<z.n;i++)
{ for(int j=0;j<dz.n;j++) dz[j]=0;
dz[i]=1; B;
dldz[i]= 2*int2d(th) (Ie*(u-ud)*du);
}

return dldz;

3

reall[int] Z(3);

for(int j=0;j<z.n;j++) Z[jl=1;
BFGS(J,DJ,Z,eps=1.e-6,nbiter=15,nbiterline=20);
cout << "BFGS: J(z) = " << J(2Z) << endl;
for(int j=0;j<z.n;j++) cout<<z[jl<<endl;

plot (ud,value=1,ps="u.eps");

In this example the sets B, C, D, E are circles of boundaries bb, cc,dd, ee are the domain € is the
circle of boundary aa. The desired state u, is the solution of the PDE for b = 2,¢ = 3,d = 4. The
unknowns are packed into array z. Notice that it is necessary to recopy Z into z because one is a
local variable while the other one is global. The program found » = 2.00125,c¢ = 3.00109,d =
4.00551. Figure 3.11| shows u at convergence and the successive function evaluations of J. Note
that an adjoint state could have been used. Define p by

=V - (kVp) =2Ig(u—-uy), plr=0
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Figure 3.11: On the left the level lines of . On the right the successive evaluations of J by BFGS
(5 values above 500 have been removed for readability)

Consequently

oJ = —f(V - (kVp))ou
Q
= f(Kvp-V(sM) = —f(6KVp-Vu) (3.8)
Q Q

Then the derivatives are found by setting 6b = 1, 6c = éd = 0 and so on:
Jl',:—pr-Vu, Jé:—pr~Vu, J;,:—pr-Vu
B c D

Remark As BFGS stores an M X M matrix where M is the number of unknowns, it is dan-
gerously expensive to use this method when the unknown x is a Finite Element Function. One
should use another optimizer such as the NonLinear Conjugate Gradient NLCG (also a key word of
FreeFem++). See the file algo.edp in the examples folder.

3.13 A Flow with Shocks

Compressible Euler equations should be discretized with Finite Volumes or FEM with flux up-
winding scheme but these are not implemented in FreeFem++ . Nevertheless acceptable results
can be obtained with the method of characteristics provided that the mean values f = %( ff+f)
are used at shocks in the scheme, and finally mesh adaptation .

dp+uVp+pV-u=0
p(Ou + p—_uVu +Vp=0
p
op+uVp+(y-1DpV-u=0 (3.9)

One possibility is to couple u, p and then update p, i.e.

1

G Do TP X V=0
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%(um+l _ l/lm o )’Zm) + me+l — O

m+1 m m [)m

P =p" o XM 4 ———
(y=Dp"

(p"! = p" o X™) (3.10)

A numerical result is given on Figure[3.12]and the FreeFem++ script is

Figure 3.12: Pressure for a Euler flow around a disk at Mach 2 computed by

verbosity=1;

int anew=1;

real x0=0.5,y0=0, rr=0.2;

border ccc(t=0,2){x=2-t;y=1;};

border ddd(t=0,1){x=0;y=1-t;};

border aaal(t=0,x0-rr){x=t;y=0;};

border cercle(t=pi,0){ x=x0+rr*cos(t);y=y0+rr*sin(t);}
border aaa2(t=x0+rr,2){x=t;y=0;};

border bbb(t=0,1){x=2;y=t;};

int m=5; mesh Th;

if(anew) Th = buildmesh (ccc(5*m) +ddd(3*m) + aaal(2*m) + cercle(5*m)

+ aaa2(5*m) + bbb(2*m) );
else Th = readmesh("Th_circle.mesh"); plot(Th,wait=0);

real dt=0.01, u®=2, err0=0.00625, pena=2;
fespace Wh(Th,P1);

fespace Vh(Th,P1);

Wh u,v,ul,vl,uh,vh;

Vh r,rh,ri;
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macro dn(u) (N.x*dx(u)+N.y*dy(u) ) // def the normal derivative

ifCanew){ ul= ud; vi=0; rl = 1;}

else {
ifstream g("u.txt");g>>ull[];
ifstream gg('v.txt");gg>>v1[];
ifstream ggg("r.txt");ggg>>r1[];
plot(ul,ps="eta.eps", value=1,wait=1);
err®=err®/10; dt = dt/10;

}

problem eul(u,v,r,uh,vh,rh)
= int2d(Th) ( (u*uh+v*vh+r*rh)/dt
+ ((dx(r)*uh+ dy(r)*vh) - (dx(rh)*u + dy(rh)*v))
)
+ int2d(Th) (-(rh*convect([ul,vl],-dt,r1) + uh*convect([ul,vl],-dt,ul)
+ vh*convect([ul,vl],-dt,v1l))/dt)
+int1d(Th, 6) (rh*u) // +int1d(Th, 1) (rh*v)
+ on(2,r=0) + on(2,u=ud®) + on(2,v=0);

int j=80;

for(int k=0;k<3;k++)

{

if(k==20){ err®=err0/10; dt = dt/10; j=5;}

for(int i=0;i<j;i++){
eul; ul=u; vl=v; rl=abs(r);
cout<<"k="<<k<<" E="<<int2d(Th) (u"2+v"2+r)<<endl;
plot(r,wait=0,value=1);

}

Th = adaptmesh (Th,r, nbvx=40000,err=err0,
abserror=1,nbjacoby=2, omega=1.8,ratio=1.8, nbsmooth=3,
splitpbedge=1, maxsubdiv=5,rescaling=1) ;

plot(Th,wait=0);
U=u;Vv=v;r=r;

savemesh(Th,"Th_circle.mesh");
ofstream f("u.txt");f<<ul]l;
ofstream ff("v.txt");ff<<v[];
ofstream fff("r.txt");fff<<r[];
rl = sgqrt(u*u+v+*v);
plot(rl,ps="mach.eps", value=1);
rl=r;

}

3.14 Classification of the equations

Summary [t is usually not easy to determine the type of a system. Yet the approximations and
algorithms suited to the problem depend on its type:

e Finite Elements compatible (LBB conditions) for elliptic systems

e Finite difference on the parabolic variable and a time loop on each elliptic subsystem of
parabolic systems; better stability diagrams when the schemes are implicit in time.
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e Upwinding, Petrov-Galerkin, Characteristics-Galerkin, Discontinuous-Galerkin, Finite Vol-
umes for hyperbolic systems plus, possibly, a time loop.

When the system changes type, then expect difficulties (like shock discontinuities)!

Elliptic, parabolic and hyperbolic equations A partial differential equation (PDE) is a relation
between a function of several variables and its derivatives.
0"

,ax,;(x))zo Vxe Qc R

0 0 0*
Fle(x), 6—)‘;"1(x>, e a—i(xx 6—;;@), -

The range of x over which the equation is taken, here €, is called the domain of the PDE. The
highest derivation index, here m, is called the order. If F and ¢ are vector valued functions, then
the PDE is actually a system of PDEs.

Unless indicated otherwise, here by convention one PDE corresponds to one scalar valued F' and

@. If F is linear with respect to its arguments, then the PDE is said to be linear.
i
8x,-0xj

The general form of a second order, linear scalar PDE is and A : B means Zg =1 i ibij.

ap+a-Vo+B:V(Vo)=f in QcR,

where f(x),a(x) € R,a(x) € R?, B(x) € R are the PDE coefficients. If the coefficients are
independent of x, the PDE is said to have constant coefficients.
To a PDE we associate a quadratic form, by replacing ¢ by 1, dp/dx; by z; and 8*¢/dx;0x; by ziz;,
where z is a vector in R¢ :

a+a-z+7 Bz=f.

If it is the equation of an ellipse (ellipsoid if d > 2), the PDE is said to be elliptic; if it is the
equation of a parabola or a hyperbola, the PDE is said to be parabolic or hyperbolic. If A = 0, the
degree is no longer 2 but 1, and for reasons that will appear more clearly later, the PDE is still said
to be hyperbolic.

These concepts can be generalized to systems, by studying whether or not the polynomial system
P(z) associated with the PDE system has branches at infinity (ellipsoids have no branches at infin-
ity, paraboloids have one, and hyperboloids have several).

If the PDE is not linear, it is said to be non linear. Those are said to be locally elliptic, parabolic,
or hyperbolic according to the type of the linearized equation.

For example, for the non linear equation

P _dpd¢ _
o Oxox:

we have d = 2, x| = t, x, = x and its linearized form is:

u  oudp Opdu _

— T _ T2,

o2  Ox0x: OxO0x:

. . . e .~ D . o0 O
which for the unknown u is locally elliptic if a—ﬁ < 0 and locally hyperbolic if a—f > 0.
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Examples Laplace’s equation is elliptic:

oo & 9
sz—f+_f+--.+—f:f, VxeQc R
ox;  0x; ox;

The heat equation is parabolic in Q = Qx]0, T[C RI*! :

0
a_f —uhp=f VxeQc R Vrelo,Tl.
If u > 0, the wave equation is hyperbolic:

0% .
e —pAp=f in Q.

The convection diffusion equation is parabolic if u # 0 and hyperbolic otherwise:

0y
— +aVo —uAp = f.
ata‘P/J‘Pf

The biharmonic equation is elliptic:

AlAp)=f in Q.

Boundary conditions A relation between a function and its derivatives is not sufficient to define
the function. Additional information on the boundary I' = dQ of Q, or on part of I is necessary.
Such information is called a boundary condition. For example,

¢(x) given, Yx €T,
is called a Dirichlet boundary condition. The Neumann condition is
dp
on

where 7 is the normal at x € I" directed towards the exterior of Q (by definition g—‘fl’ = Vp - n).
Another classical condition, called a Robin (or Fourier) condition is written as:

(x) givenon I' (or n- BV, given on I for a general second order PDE)

o(x) + ,B(x)g—g:(x) givenon I

Finding a set of boundary conditions that defines a unique ¢ is a difficult art.

In general, an elliptic equation is well posed (i.e. ¢ is unique) with one Dirichlet, Neumann or
Robin conditions on the whole boundary.

Thus, Laplace’s equations is well posed with a Dirichlet or Neumann condition but also with

0 : .
¢ givenon Iy, 8_80 givenonl,, TZul,=I, I 1nNnI;=0.
n
Parabolic and hyperbolic equations rarely require boundary conditions on all of I'x]0, T'[. For
instance, the heat equation is well posed with
¢ given at t = 0 and Dirichlet or Neumann or mixed conditions on dQ.

Here ¢ is time so the first condition is called an initial condition. The whole set of conditions are
also called Cauchy conditions.
The wave equation is well posed with

0
¢ and a—f given at ¢ = 0 and Dirichlet or Neumann or mixed conditions on dQ2.
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CHAPTER 3. LEARNING BY EXAMPLES



Chapter 4

Syntax

4.1 Data Types

In essence FreeFem++ is a compiler: its language is typed, polymorphic, with exception and
reentrant. Every variable must be declared of a certain type, in a declarative statement; each state-
ment are separated from the next by a semicolon ¢;’. The language allows the manipulation of
basic types integers (int), reals (real), strings (string), arrays (example: real[int]), bidi-
mensional (2D) finite element meshes (mesh), 2D finite element spaces (fespace) , analytical
functions (func), arrays of finite element functions (func[basic_type]), linear and bilinear opera-
tors, sparse matrices, vectors , etc. For instance

int 1i,n=20; // i,n are integer.
reall[int] xx(),yy(n); // two array of size n
for (i=0;i<=20;i++) // which can be used in statements such as

{ xx[i]= cos(i*pi/18); yyl[il= sin(i*pi/10); }

The life of a variable is the current block {. . .}, except the fespace variable, and the variables local
to a block are destroyed at the end of the block as follows.

Example 4.1

real r= 0.01;

mesh Th=square(10,10); // unit square mesh
fespace Vh(Th,P1); // P1 lagrange finite element space

Vh u = x+ exp(y);
func f =z * x + r * log(y);
plot(u,wait=true);

{ // new block
real r = 2; // not the same r
fespace Vh(Th,P1); // error because Vh is a global name

} // end of block

// here r back to 0.01

The type declarations are compulsory in FreeFem++ ; in the end this feature is an asset because
it is easy to make bugs in a language with many implicit types. The variable name is just an

alphanumeric string, the underscore character “_” is not allowed, because it will be used as an
operator in the future.

55
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4.2 List of major types

bool is used for logical expression and flow-control. The result of a comparison is a boolean type
as in

bool fool=(1<2);

which makes fool to be true. Similar examples can be built with ==, <=,>=,<,>,! =
int declares an integer.
string declare the variable to store a text enclosed within double quotes, such as:

"This is a string in double quotes."

real declares the variable to store a number such as “12.345.

complex Complex numbers, such as 1 + 2i, FreeFem++ understand thati = V—1.

complex a = 1li, b = 2 + 3i;

cout << "a + b =" << a+ b << endl;
cout << "a - b =" << a+ b << endl;
cout << "a * b =" << a * b << endl;
cout << "a / b="<<a/ b < endl;

Here’s the output;

+

= (2,9

= (-2,-2)

= (-3,2)

= (0.230769,0.153846)

[SE VI U 1]
|
oo T T

~N %

ofstream to declare an output file .
ifstream to declare an input file .

real[int ] declares a variable that stores multiple real numbers with integer index.

reall[int] a(5);
al[0] = 1; a[l] = 2; a[2] = 3.3333333; a[3] = 4; a[4] = 5;
cout << "a = " << a << endl;

This produces the output;

2 3.33333 4 5

ol

real[string ] declares a variable that store multiple real numbers with string index.

string[string ] declares a variable that store multiple strings with string index.
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func defines a function without argument, if independent variables are x, y. For example

func f=cos(x)+sin(y) ;

Remark that the function’s type is given by the expression’s type. Raising functions to a
numerical power is done, for instance, by x"1, y"0.23.

mesh creates the triangulation, see Section

fespace defines a new type of finite element space, see Section Section [6]
problem declares the weak form of a partial differential problem without solving it.
solve declares a problem and solves it.

varf defines a full variational form.

matrix defines a sparse matrix.

4.3 Global Variables

The names x,y,z,label,region,P,N,nu_triangle... are reserved words used to link the
language to the finite element tools:

X is the x coordinate of the current point (real value)
y is the y coordinate of the current point (real value)
z 1s the z coordinate of the current point (real value) , but is reserved for future use.

label contains the label number of a boundary if the current point is on a boundary, 0 otherwise
(int value).

region returns the region number of the current point (x,y) (int value).

P gives the current point (R? value. ). By P.x, P.y, we can get the x, y components of P . Also
P.z is reserved and can be used in 3D.

N gives the outward unit normal vector at the current point if it is on a curve defined by border
(R? value). N.x and N.y are x and y components of the normal vector. N. z is reserved. .

lenEdge gives the length of the current edge
lenEdge = |¢' — ¢’| if the current edge is [¢', ¢’]
hTriangle gives the size of the current triangle

nuTriangle gives the index of the current triangle (int value).

nuEdge gives the index of the current edge in the triangle (int value).
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nTonEdge gives the number of adjacent triangle of the current edge (integer ).
area give the area of the current triangle (real value).
volume give the volume of the current tetrahedra (real value).

cout is the standard output device (default is console). On MS-Windows, the standard output is
only the console, at this time. ostream

cin is the standard input device (default is keyboard). (istreamvalue).
endl adds an end of line” to the input/output flow.

true means “true” in bool value.

false means “false” in bool value.

pi is the realvalue approximation value of x.

4.4 System Commands
Here is how to show all the types, and all the operator and functions of a FreeFem++ program:

dumptable(cout);

To execute a system command in the string (not implemented on Carbon MacOS)

exec("shell command");

This is useful to launch another executable from within FreeFem++ . On MS-Windows, the
full path of the executable. For example, if there is the command “Is.exe” in the subdirectory
“c:\cygwin\bin\”, then we must write

exec("c:\\cygwin\\bin\\1ls.exe");

Another useful system command is assert() to make sure something is true.

assert (version>=1.40);

4.5 Arithmetics

On integers , +, —, * are the usual arithmetic summation (plus), subtraction (minus) and mul-
tiplication (times), respectively,The operators / and % yield the quotient and the remainder from
the division of the first expression by the second. If the second number of / or % is zero the be-
havior is undefined. The maximum or minimum of two integers a, b are obtained by max(a,b)
or min(a,b). The power a’ of two integers a, b is calculated by writing a"b. The classical C++
“arithmetical if” expression a ? b : cis equal to the value of expression b if the value of
expression a is true otherwise is equal to value of expression c.
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Example 4.2 Computations with the integers

int a = 12, b = 5;

cout <<"plus, minus of "<<a<<" and "<<b<<" are "<<a+b<<", "<<a-b<<endl;

cout <<"multiplication, quotient of them are "<<a*b<<", "<<a/b<<endl;

cout <<"remainder from division of "<<a<<" by "<<b<<" is "<<a¥%b<<endl;

cout <<"the minus of "<<a<<" is "<< -a << endl;

cout <<a<<" plus -"<<b<<" need bracket:'<<a<<"+(-"<<b<<")="<<a+(-b)<<endl;

cout <<"max and min of "<<a<<" and "<<b<<" is "<<max(a,b)<<","<<min(a,b)<< endl;
cout <<b<<"th power of "<<a<<" is "<<a"b<< endl;

cout << "

"

min == (a<b?a:b) is << (a<b?a:b) << endl;

b=0;
cout <<a<<"/0"<<" is "<< a/b << endl;
cout <<a<<"%0"<<" is "<< a%b << endl;

produce the following result:

plus, minus of 12 and 5 are 17, 7
multiplication, quotient of them are 60, 2
remainder from division of 12 by 5 is 2
the minus of 12 is -12

12 plus -5 need bracket :12+(-5)=7

max and min of 12 and 5 is 12,5

5th power of 12 is 248832

min == (a <b ? a : b) is 5

12/0 : long long long

Fatal error : ExecError Div by 0 at exec line 9
Exec error : exit

By the relation integer C real, the operators “+, —, %, /, %” and “ max, min, "7 are extended
to real numbers or variables. However, % calculates the remainder of the integer parts of two real
numbers.

The following are examples similar to Example

real a=sqrt(2.), b = pi;

cout <<"plus, minus of "<<a<<" and "<<pi<<" are "<< a+b <<", "<< a-b << endl;
cout <<"multiplication, quotient of them are "<<a*b<<", "<<a/b<< endl;

cout <<"remainder from division of "<<a<<" by "<<b<<" is "<< a%b << endl;

cout <<"the minus of "<<a<<" is "<< -a << endl;

cout <<a<<" plus -"<<b<<" need bracket :"<<a<<"+(-"<<b<<")="<<a + (-b) << endl;

It gives the following output:

plus, minus of 1.41421 and 3.14159 are 4.55581, -1.72738
multiplication, quotient of them are 4.44288, 0.450158
remainder from division of 1.41421 by 3.14159 is 1

the minus of 1.41421 is -1.41421

1.41421 plus -3.14159 need bracket :1.41421+(-3.14159)=-1.72738

By the relation
bool C int C real C complex,
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the operators “+, —, *, /7 and “ " are also applicable on complex-typed variables, but “%, max,
min” cannot be used. Complex numbers such as 5+9i, i= V-1, are valid expressions. With real
variables a=2.45, b=5.33,complex numbers like @ + i b and a + i V2.0 must be declared by

complex zl1 = a+b*1i, z2=a+sqrt(2.0)*1i;

The imaginary and real parts of a complex number z can be obtained with imag and real. The
conjugate of a+bi (a, b are reals) is defined by a—bi, which can also be computed with the operator
”conj”, by conj(a+b*1i) in FreeFem++ .

Internally the complex number z = a + ib is considered as the pair (a, b) of real numbers a, b. We
can attach to it the point (a, b) in the Cartesian plane where the x-axis is for the real part and the y-
axis for the imaginary part. The same point (a, b) has a representation with polar coordinate (r, ¢),
So z his also z = r(cos ¢ + ising), r = Va? + b? and ¢ = tan™'(b/a); r is called the modulus and ¢
the argument of z. In the following example, we shall show them using FreeFem++ programming,
and de Moivre’s formula 7" = r"(cos n¢ + i sin n¢).

Example 4.3

real a=2.45, b=5.33;
complex zl=a+b*1i, z2 = a+sqrt(2.)*1i;
func string pc(complex z) // printout complex to (real)+i(imaginary)
{
string r = "("+real(z);
if (imag(z)>=0) r = r+"+";
return r+imag(z)+"i)";
}

// printout complex to |z|*(cos(arg(z))+i*sin(arg(z)))
func string toPolar(complex z)

{
return abs(z)+"*(cos("+arg(z)+")+i*sin("+arg(z)+"))";
}
cout <<"Standard output of the complex "<<pc(zl)<<" is the pair "
<<zl<<endl;
cout <<"Plus, minus of "<<pc(zl)<<" and "<<pc(z2)<<" are "<< pc(zl+z2)
<<", "<< pc(zl-z2) << endl;

"

cout <<"Multiplication, quotient of them are "<<pc(zl*z2)<<",
<<pc(zl/z2)<< endl;

cout <<"Real/imaginary part of "<<pc(zl)<<" is "<<real(zl)<<",
<<imag(zl)<<endl;

cout <<"Absolute of "<<pc(zl)<<" is "<<abs(zl)<<endl;

cout <<pc(z2)<<" = "<<toPolar(z2)<<endl;

cout <<" and polar('<<abs(z2)<<",'"<<arg(z2)<<") ="
<< pc(polar(abs(z2),arg(z2)))<<endl;

cout <<"de Moivre’s formula: "<<pc(z2)<<""3 = "<<toPolar(z2"3)<<endl;

cout <<"conjugate of "<<pc(z2)<<" is "<<pc(conj(z2))<<endl;

cout <<pc(zl)<<"""<<pc(z2)<<" is "<< pc(zl”z2) << endl;

Here’s the output from Example

Standard output of the complex (2.45+5.33i) is the pair (2.45,5.33)

Plus, minus of (2.45+5.33i) and (2.45+1.41421i) are (4.9+6.74421i), (0+3.91579i)
Multiplication, quotient of them are (-1.53526+16.5233i), (1.692+1.19883i)
Real/imaginary part of (2.45+5.33i) is 2.45, 5.33

Absolute of (2.45+5.33i) is 5.86612
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(2.45+1.41421i) = 2.82887*(cos(0.523509)+i*sin(0.523509))
and polar(2.82887,0.523509) = (2.45+1.414211i)
de Moivre’s formula: (2.45+1.41421i)°3
= 22.638%(cos(1.57053)+i*sin(1.57053))
conjugate of (2.45+1.41421i) is (2.45-1.41421i)
(2.45+5.331)7(2.45+1.414211) is (8.37072-12.70781i)

4.6 Functions of one Variable

Fundamental functions are builtinto FreeFem++ as well as The power function x* y = pow(x,y)=
x';, the exponent function exp(x) (= e*), the logarithmic function 1log(x)(= Inx) or
log10(x) (= log,, x); the trigonometric functions sin(x), cos(x), tan(X) assume an-
gles measured in radians; the inverse of sin x, cos x, tan x (called circular function or inverse
trigonometric function ) asin(x)(=arcsin x), acos(X)(=arccos x), atan(x)(=arctan x) are
also implemented; the atan2(x,y) function computes the principal value of the arc tangent
of y/x, using the signs of both arguments to determine the quadrant of the return value;

the hyperbolic functions,
sinhx = (e* —e™) /2, coshx = (e* +e7™) /2.

and tanh x = sinh x/ cosh x called by sinh(x), cosh(x), tanh(X), asinh(X), acosh(x)
and atanh(X).

sinh_lx:ln[x+ x2 + 1], Cosh_]len[x+ Vx2 — 1].

The real function which rounds a real to an integer £loor(x) rounds to largest integral
value not greater than X, ceil(x) round to smallest integral value not less than x; similarly
rint(x) returns the integral value nearest to x (according to the prevailing rounding mode)
in floating-point format)..

Elementary Functions denotes for us the class of functions presented above (polynomials,
exponential, logarithmic, trigonometric, circular) and the functions obtained from those by
the four arithmetic operations

F(x) + g(x), f(x) = g(x), f(X)g(x), f(x)/g(x)

and by composition f(g(x)), each applied a finite number of times. In FreeFem++ , all
elementary functions can thus be created. The derivative of an elementary function is also
an elementary function; however, the indefinite integral of an elementary function cannot
always be expressed in terms of elementary functions.

Example 4.4 The following is an example where an elementary function is used to build the
border of a domain. Cardioid

real b = 1.;
real a = b;
func real phix(real t)

{
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return (a+b)*cos(t)-b*cos(t*(a+b)/b);
}
func real phiy(real t)

{
return (a+b)*sin(t)-b*sin(t*(a+b)/b);
}
border C(t=0,2%pi) { x=phix(t); y=phiy(t); }
mesh Th = buildmesh(C(50));

Taking the principal value, we can define log z for z # 0 by
Inz=In|z| +iargz.

Using FreeFem++ , we calculated exp(1+41i), sin(pi+1i), cos(pi/2-1i) and log(1+21),
we then have

-1.77679 - 2.0572i, 1.88967107'¢ — 1.1752i,
9.44833107"7 + 1.1752i,  0.804719 + 1.10715i.

Random Functions can be define as FreeFem++ has a Mersenne Twister function (see page
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for full detail). It
is a very fast and accurate random number generator Of period 22!%°*7 — 1, and the functions
which calls it are:

e randint32() generates unsigned 32-bit integers.

e randint31() generates unsigned 31-bit integers.

e randreall() generates uniform real in [0, 1] (32-bit resolution).

e randreal2() generates uniform real in [0, 1) (32-bit resolution).

e randreal3 () generates uniform real in (0, 1) (32-bit resolution).

e randres53() generates uniform real in [0, 1) with 53-bit resolution.

e randinit(seed ) initializes the state vector by using one 32-bit integer ’seed”’, which
may be zero.

Library Functions form the mathematical library (version 2.17).

e the functions jO(x), jl(x), jn(n,x), y0(x), yl(x), yn(n,x) are the Bessel
functions of first and second kind.
The functions jO®(x) and j1(x) compute the Bessel function of the first kind of the
order 0 and the order 1, respectively; the function jn(n, x) computes the Bessel
function of the first kind of the integer order n.

The functions y0 (x) and y1(x) compute the linearly independent Bessel function of
the second kind of the order O and the order 1, respectively, for the positive integer
value x (expressed as a real); the function yn(n, x) computes the Bessel function of
the second kind for the integer order n for the positive integer value x (expressed as a
real).
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e the function tgamma(x) calculates the I" function of x. lgamma(x) calculates the
natural logorithm of the absolute value of the I" function of x.

e The erf(x) function calculates the error function, where erf(x) = %m) fox exp(—t*)dt.

The erfc(x) = function calculates the complementary error function of x, i.e. erfc(x) =
1 — erf(x).

4.7 Functions of two Variables

4.7.1 Formula

The general form of real functions of two independent variables a, b is usually written as ¢ =
f(a,b). In FreeFem++ , x, y and z are reserved word as explained in in Section @ So when
the two variables of the function are x and y, we may define the function without its argument,
for example

func f=cos(x)+sin(y) ;

Remark that the function type is given by the expression type. The power operator can be used in
functions such as x"1, y"0.23. In func, we can write an elementary function as follows

func f = sin(X)*cos(y);
func g = (x"2+3*y"2)*exp(l-x"2-y"2);
func h = max(-0.5,0.1*1log(£"2+g"2));

Complex valued function create functions with 2 variables x, y as follows,

mesh Th=square(20,20, [-pi+2*pi*x,-pi+2*pi*y]); // 1 -, >
fespace Vh(Th,P2);

func z=x+y*1i; // z=Xx+1iy
func f=imag(sqrt(z)); // f=34
func g=abs( sin(z/10)*exp(z"2/10) ); // g= |sinz/l()expz2/10|
Vh fh = f; plot(fh); // contour lines of f
Vh gh = g; plot(gh); // contour lines of g

We call also construct elementary functions of two variables from elementary functions f(x) or
g(y) by the four arithmetic operations plus composition applied a finite number of times.

4.7.2 FE-functions

Finite element functions are also constructed like elementary functions by an arithmetic formula
involving elementary functions. The difference is that they are evaluated at declaration time and
FreeFem++ stores the array of its values at the places associated with he degree of freedom of the
finite element type. By opposition elementary functions are evaluated only when needed. Hence
FE-functions are not defined only by their formula but also by the mesh and the finite element
which enter in their definitions. If the value of a FE-function is requested at a point which is not a
degree of freedom, an interpolation is used, leading to an interpolation error, while by contrast, an
elementary function can be evaluated at any point exactly.
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func £=x"2*(1+y) "3+y"2;

mesh Th = square(20,20,[-2+2*x,-2+2%y]); // square ]-2,2[>

fespace Vh(Th,P1);

Vh fh=f; // fh is the projection of f to Vh (real value)

func zf=(x"2*(1+y) "3+y"2) *exp(x+1i*y);

Vh<complex> zh = zf; // zh is the projection of zf
// to complex value Vh space

The construction of fh (=f},) is explained in Section @

Note 4.1 The command plot applies only for real or complex FE-functions (2d or 3d) and not to
elementary functions.

Complex valued functions create functions with 2 variables x, y as follows,

2

mesh Th=square(20,20, [-pi+2*pi*x,-pi+2*pi*y]); // | —m, x|
fespace Vh(Th,P2);

func z=x+y*1i; // Z=x+1iy
func f=imag(sqrt(z)); // f=3z
func g=abs( sin(z/10)*exp(z"2/10) ); // g= |sinz/lOexpz2/10|
Vh fh = f; plot(fh); // Fig. isovalue of f
Vh gh = g; plot(gh); // Fig. isovalue of g

Figure 4.1: J /7 has branch Figure 4.2: |sin(z/10) exp(z>/10)|

4.8 Arrays

An array stores multiple objects, and there are 2 kinds of arrays: The first is similar to vector, i.e.
arrays with with integer indices and the second type is arrays with string indices.

In the first case, the size of the array must be known at execution time, and implementation is done
with the KN<> class and all the vector operator of KN<> are implemented. For instance

real [int] tab(10), tabl1(10); // 2 array of 10 real
real [int] tab2; // bug array with no size
tab = 1.03; // set all the array to 1.03

tab[1]=2.15;
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cout << tab[l] << << tab[9] << " size of tab = "

<< tab.n << " min: " << tab.min << " max:" << tab.max
<< " sum : " << tab.sum << endl; //
tab.resize(12); // change the size of array tab
// to 12 with preserving first value
tab(10:11)=3.14; // set unset value

cout <<" resize tab:
real [string] tt;

<< tab << endl;

tt["+"]=1.5;

cout<<tt["a"]<<" "<<tt["+"]<<endl;

reall[int] a(5),b(5),c(5),d(5);

a=1;

b = 2;

c = 3;

a[2]=0;

d=(Ca?b:c); // for i =0, n-1 : d[i] = a[i] ? b[i] : c[i] ,
cout << "d=(Ca?b:c) is " << d << endl;

d=(Ca?1:c); // for i =0, n-1: d[i] = a[i] ? 1 : c[i] , (v2.23-1)
d=Ca?b:0); // for i =0, n-1: d[i] = a[i] ? b[i] : 0 , (v2.23-1)
d=Ca?1:0); // for i =0, n-1: d[i] = a[i] ? 0O : 1, (v2.23-1)
tab.sort ; // sort the array tab (version 2.18)
cout << " tab (after sort) " << tab << endl;

int[int] i1ii(0:d.n-1); // set array ii to 0,1, ..., d.n-1 (v3.2)
d=-1:-5; // set d to -1,-2, .. -5 (v3.2)
sort(d,ii); // sort array d and ii in parallel
cout << "d " << d << "\n ii = " << ii << endl;

produces the output

2.15 1.03 size of tab = 10 min: 1.03 max:2.15 sum : 11.42
resize tab: 12
1.03 2.15 1.03 1.03 1.03
1.03 1.03 1.03 1.03 1.03
3.14 3.14
® 1.5
d=Ca?b:c) is 5
3 3 2 3 3
tab (after sort) 12
1.03 1.603 1.63 1.03 1.03
1.03 1.03 1.03 1.03 2.15
3.14 3.14
d>5
-5 -4 -3 -2 -1

Arrays can be set like in matlab or scilab with the operator ::, the array generator of a:c is
equivalent to a: 1:c, and the array set by a:b:cis set to size ||(b —a)/c| + 1] and the value i is set
by a +i(b—a)/c.

There are int,real, complex arrays with, in the third case, two operators (.in, .re) to generate
the real and imaginary real array from the complex array (without copy) :

// version 3.2 mai 2009
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// like matlab. and scilab
{
int[int] tt(2:10); // 2,3,4,5,6,7,8,9,10
int[int] t1(2:3:10); // 2,5,8,
cout << " tt(2:10)= " << tt << endl;
cout << " t1(2:3:10)= " << tl1 << endl;
tt=1:2:5;
cout << " 1.:2:5 => " << tt << endl;
}
{
real[int] tt(2:10); // 2,3,4,5,6,7,8,9,10
real[int] t1(2.:3:10.); // 2,5,8,
cout << " tt(2:10)= " << tt << endl;
cout << " t1(2:3:10)= " << tl << endl;
tt=1.:0.5:3.999;
cout << " 1.:0.5:3.999 => " << tt << endl;
}
{
complex[int] tt(2.+0i:10.+01i); // 2,3,4,5,6,7,8,9,10
complex[int] t1(2.:3.:10.); // 2,5,8,
cout << " tt(2.+01:10.+40i)= " << tt << endl;
cout << " t1(2.:3.:10.)= " << tl1 << endl;
cout << " tt.re real part array " << tt.re << endl ;

// the real part array of the complex array
cout << " tt.im imag part array " << tt.im << endl ;
// the imag part array of the complex array

}
The output is :

tt(2:10)= 9
2 3 4 5 6
7 8 9 10
t1(2:3:10)= 3
2 5 8
1.:2:5 = 3
1 3 5
tt(2:10) = =
2 3 4 5 6
7 8 9 10
t1(2.:3:10.)= 3
2 5 8
1.:0.5:3.999 => 6
11.5 2 2.5 3
3.5

tt(2.+0i:10.+0i)= 9

(2,0) (3,0) (4,0) (5,0) (6,0
(7,0) (8,0 (9,0) (10,0)
t1(2.:3.:10.);=3

(2,0) (5,0) (8,0)

tt.re real part array 9
2 3 4 5 6
7 8 9 10



4.8. ARRAYS

tt.im imag part array 9
O 0 6 0 O
O 0 0 ©

2

the all integer array operators are :

{

int N=5;
reallint]
a =1;
a(0:4:2) =
a(3:4) = 4;
cout <<" a
b = a+ a;
cout <<" b
b += a;
cout <<" b
b += 2*a;
cout <<" b
b /= 2;
cout <<" b
b *= a;
cout << "b
b /= a;
cout << "b
c = a+b;
cout <<

a(),b(MN),c();

2;

= " << a << endl;

= at+ta : " << b << endl;
+=a : << b << endl;
+= 2%a : " << b << endl;
/=2 : " << b << endl;
*za; b =" << b << endl;
/=a; b =" << b << endl;

c =a+b : c=" << c << endl;

Cc = 2%a+4%b;

cout <<
c = a+4*b;
cout << "
c = -a+4*b;
cout << "
c = -a-4%b;
cout << "
c = -a-b;
cout << "
c=a .* b;
cout << "
c=a ./ b;
cout << "
c =2 *b;
cout << "
c = b*2 ;
cout << "

c =2%a+4b : c= " << c << endl;

c =a+d4b : c= << € << endl;

c =-a+4b : c= << € << endl;

c =-a-4b : c= " << ¢ << endl;

c =-a-b : c= << € << endl;

c =a.*b : c= " << c << endl;
c =a./b : c=" << c << endl;
c =2%b 1 c= " << ¢ << endl;
c =b*2 1 c= " << c << endl;

/% this operator do not exist

c= b/2;

cout << " ¢ =b/2 1 c= " << € << endl;

:':/

cout << " |lal|_1 =" << a.ll << endl;

Vs

Vs

Vs

67
same b =b .* a
same b =b ./ a

---- the methods --
//
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cout << " |lal|_2 =
cout << " |]al|_infty =
cout << " sum a_i =
cout << " max a_i =
cout << " min a_i =
cout << " a’*a =
cout << " a quantile 0.2 =
}

produce the output

b += a 5
3
b +=2%a : 5
10 5
b /=2 5
5 2.5
b*=a; b =5
10 2.5
b/=a; b =5
5 2.5
c =a+b : c=5
7 3.5

c =2*%a+4b : c= 5
24 12

c =a+4b : c= 5
22 11

c =-a+4b : c= 5
18 9

c =-a-4b : c= 5
-22 -11

c =—a-b : c=5

c=a.*b :c=5
10 2.5

<<
<<
<<
<<
<<
<<

10

10

24

22

18

-22

10

<<

12
linfty
.sum
.max
.min
(a’*a)

[V <V <V <V <

12

20

10

40

10

14

48

44

36

-44

-14

40

<< endl;
<< endl;
<< endl;
<< endl;
<< endl;
<< endl;

a.quantile(0.2) << endl;

12

20

10

40

10

14

48

44

36

-44

-14

40

CHAPTER 4. SYNTAX

//
s
//
//
//
s
//
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c=a./b :c=5

0.4 0.4 0.4 0.4 0.4

c =2%b 1 c=5

10 5 10 20 20
c =b*2 1 c=5

10 5 10 20 20
[lall_1 = 13
[lall_2 = 6.403124237
|la]|_infty = 4
sum a_i =13
max a_i =4
min a_i =1
a’:’:a - 41

a quantile 0.2 = 2

Note 4.2 Quantiles are points taken at regular intervals from the cumulative distribution function
of a random variable. Here the array values are random.

This statisticial function a.quantile(q) computes v from an array a of size n for a given number
q €10, 1[ such that

#li/alil] <v}~qg=*n

; it is equivalent to v = alq * n] when the array a is sorted.

Example of array with renumbering (version 2.3 or better) . The renumbering is always given
by an integer array, and if a value in the array is negative, the mapping is not imaged, so the value
is not set.

int[int] I=[2,3,4,-1,0]; // the integer mapping to set the renumbering
b=c=-3;

b= a(I); // for( i=0;i<b.n;i++) if(I[i] >=0) b[i]=a[I[i]];
c(D= a; // for( i=0;i<I.n;i++) 1if(I[i] >=0) C(I[i])=ali];
cout << " b=a(@) : "<<<b<<x<"™\n c(I) =a " << c << end]l;

The output is

b=a(@ :5

c(I) =asb
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4.8.1 Arrays with two integer indices versus matrices

Some example are given below to transform full matrices into sparse matrices.

int N=3,M=4;

real[int,int] A(N,M);
real[int] b(N),c(M);
b=[1,2,3];
c=[4,5,6,7];
complex[int,int] C(N,M);
complex[int]

b=[1,2,3];

int [int] I=[2,0,1];
int [int] J=[2,0,1,3];

A=1;
AC2,:) =
AC:,D =
A(®:N-1

4;

5;
,2) = 2;
AC1,0:2) =

3;
cout << " A = " << A << endl;
C = cb¥*cc’;

C += 3%*cb*cc’;

C -= 5i*cb*cc’;
cout << " C = " << C << endl;

matrix B;

B = A;
B=A(I,));
B=A(I"-1,1"-1);

A = 2.%b*c’;

cout << " A = " << A << endl;
B = b*c’;

B = b*c’;

B = (2%b*c’)(I,1);
B = (3.%b*c’)(I"-1,1"-1);

cout << "B = (3.*b*c’)(1"°-1,1"-1) =

the output is

b=a(@ :5
2 4 4

c(I) =as5
4 -3 2

cb=[1,2,3],cc=[101,201,301,40i];

// set the all matrix
// the full line 2
// the full column 1
// set the column 2

2

// set the line 1 from 0 to

// outer product

// this transforms an array into a sparse matrix

//
//

//
//

// B(i,j)= A(I(1),I(J))
/7 B(I(1),J(j))= A(1,]))

// outer product

outer product B(i,j) = b(i)*c(j)
outer product B(i,j) = b(i)*c(j)

outer product B(i,j) = b(I(i))*c(I(j))
outer product B(I(i),J(j)) = b(i)*c(j)

<< B << endl;
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A=34
1 5 2 1
3 3 3 1
4 5 2 4
C=314

(-50,-40) (-100,-80) (-150,-120) (-200,-160)
(-100,-80) (-200,-160) (-300,-240) (-400,-320)
(-150,-120) (-300,-240) (-450,-360) (-600,-480)

8§ 10 12 14
16 20 24 28
24 30 36 42

4.8.2 Matrix construction and setting

e To change the linear system solver associated to a matrix do

set (M, solver=sparsesolver);
The default solver is GMRES.

e from a variational form: (see section[6.12] page[I59| for details)

varf vDD(u,v) = int2d(Thm) (u*v*1le-10);
matrix DD=vDD(Lh,Lh);

e To set from a constant matrix

matrix A =

[ , 1, 0, 10],
, 0, 2, 0],
, 0, 0, 3],

0
0
0, 0,
4,0 , 0, 0]];

Lo B e B s B |

e To set from a block matrix

matrix M=[
[ Asd[0] ,0 ,0 ,0 ,Csd[0] 1,
[ O ,Asd[1] ,0 ,0 ,Csd[1] 1,
[ O ,0 ,Asd[2] ,0 ,Csd[2] 1,
[ O ,0 ,0 ,Asd[3] ,Csd[3] 1,
[ Csd[0]’,Csd[1]’,Csd[2]’,Csd[3]’,DD ]

// to now to pack the right hand side
reall[int] bb =[rhssd[0][], rhssd[1][],rhssd[2][],rhssd[3][],rhs1[] 1;
set (M,solver=sparsesolver);
xx = M"-1 * bb;
[usd[®0][],usd[1]1[],usd[2][],usd[3]1[],1h[]] = xx; // to dispatch
// the solution on each part.
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where Asd and Csd are arrays of matrices (from example mortar-DN-4. edp of examples++-tuturial

e To set or get all the indices and coefficients of the sparse matrix A, let I, J, C be respectively
two int[int] arrays and a real[int] array. The three arrays define the matrix as follows

A= Z Clk]IM 1,31 where My, = (6ia0 jp)ij
%

one has: M, a basic matrix with the only non zero term m,;, = 1.

One can write [I,J,C]=A ; to getall the term of the matrix A (the arrays are automatically
resized), and A=[I,J],C] ; tochange all the term matrices. Note that the size of the matrix
is with n= I.max and m=J].max. Remark that I,J] is forgotten to build a diagonal matrix,
and similarly for the n, m of the matrix.

e matrix renumbering

int[int] I(15),J(15); // two array for renumbering
//

// the aim is to transform a matrix into a sparse matrix

matrix B;

B =A; // copie matrix A

B=A(I,1); // B(i,j) = A(I(1),3(3))

B=A(I"-1,1"-1); // B(I(i),J(j))= A(i,5)

B.resize(10,20); // resize the sparse matrix and remove out of bound terms

where A i1s a given matrix.

4.8.3 Matrix Operations
The multiplicative operators *, /, and % group left to right.

e ’ is the (unary) right transposition for arrays, the matrix in real cases and Hermitian trans-
pose in complex cases.

e .* is the term to term multiply operator.

e ./ is the term to term divide operator.

there are some compound operators also:

e "-1is for solving the linear system (example: b = A"-1 x)

e ’ *ig the compound of transposition and matrix product, so it is the dot product (example
real DotProduct=a’*b), in complex case you get the Hermitian product, so mathemati-
cally we have a’*b=a'b .

e a*b’ is the outer product (example matrix B=a’*b)
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Example 4.5

mesh Th = square(2,1);
fespace Vh(Th,P1);
Vh £,9;
f = x*y;
g = sin(pi*x);
Vh<complex> ff,gg; // a complex valued finite element function
ff= x*(y+1i);
gg = exp(pi*x*1i);
varf mat(u,v) =
int2d(Th) (1*dx (u) *dx(v)+2*dx (u) *dy (v)+3*dy (u) *dx (v) +4*dy (u) *dy (v) )
+ on(1,2,3,4,u=1);
varf mati(u,v) =
int2d(Th) (1*dx (u) *dx(v)+2i*dx (u) *dy (v) +3*dy (u) *dx (v)+4*dy (w) *dy (v))
+ on(1,2,3,4,u=1);
matrix A = mat(Vh,Vh); matrix<complex> AA = mati(Vh,Vh); // a complex sparse matrix

Vh m0; mO[] = A*f[];

Vh m01; mO1[] = A’*f[];

Vh ml; mi[] = £[].%*g[];

Vh m2; m2[] = £[1./9[1;

cout << "f = " << f[] << endl;
cout << "g = " << ¢g[] << endl;
cout << "A = << A << endl;

cout << "m@® = " << mO[] << endl;

cout << "m@1 = " << mO1l[] << endl;

cout << "ml = "<< ml[] << endl;

cout << "m2 = "<< m2[] << endl;

cout << "dot Product = "<< f[]’*g[] << endl;

cout << "hermitien Product = "<< ff[]’*gg[] << endl;

cout << "outer Product = "<< (A=ff[]*gg[]’) << endl;
cout << "hermitien outer Product = "<< (AA=ff[]l*gg[]’) << endl;
real[int] diagofA(A.n);

diagofA = A.diag; // get the diagonal of the matrix
A.diag = diagofA ; // set the diagonal of the matrix
// version 2.17 or better ---
int[int] I(1),]J(1); reall[int] C(1);
[I,],Cl=A; // get of the sparse term of the matrix A (the array are resized)
cout << " I= " << I << endl;
cout << " J= " << J << endl;
cout << " C= " << C << endl;
A=[1,],C]; // set a new matrix
matrix D=[diagofA] ; // set a diagonal matrix D from the array diagofA.
cout << " D = " << D << endl;

The resizing of a sparse matrix A is also allowed:

A.resize(10,100);

Note that the new size can be greater or smaller than the previous size; all new term are set to
zero.
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On the triangulation of Figure this produces the following:

10 05 0. 30. -25 0.
0. 10 05 0. 05 =25
A~ | 0010 0 0. 05
105 o0 0 10 0 o0
-25 05 0. 05 10% 0.
0. =25 0. 0. 05 10%
T
v} = £[] =( 00051)
wh=gl] = (0 1 12x107 0 1 1.2x107)
A*£[] = (-125 225 05 0 5x10® 10%)
AT*E[] = ( 125 -225 0 025 5x10® 10% )T
T
£[1.%gf] = (0 0 0 0 05 12x107)
£[1./90] = (-NaN 0 0 -NaN 0.5 8.1x10" )T
£f[1°*g[1 = 05 (= {wh={v}{w)
The output of the 1, J, C array:
I= 18
0 0 0 1
1 1 2 3
3 4 4 4
5 5 5
J= 18
0 1 4 2
4 5 2 0
3 0 1 4
1 4 5
C= 18
le+30 0.5 -2.5 le+30 0.5
0.5 -2.5 le+30 0.5 0.5
le+30 -2.5 0.5 0.5 le+30
-2.5 0.5 le+30

= (viw

CHAPTER 4. SYNTAX

(=A{)
(=A"v))
VMWM)T

= i/wy - v/wu)"

The output of a diagonal sparse matrix D (Warning du to fortran interface the indices start on the
output at one, but in FreeFem++ in index as in C begin at zero);

D = # Sparce Matrix (Morse)

# first line: n m (is symmetic) nbcoef
# after for each nonzero coefficient:
661 6

i j a_ij where (i,j) \in {1

VT A WN =
VT A WN R

1.0000000000000000199e+30
1.0000000000000000199e+30
1.0000000000000000199e+30
1.0000000000000000199e+30
1.0000000000000000199e+30
1.0000000000000000199e+30
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Note 4.3 The operators ~-1 cannot be used to create a matrix; the following gives an error

matrix AAA = A™-1;

In examples++-loadflapack.edp a full matrix is inverted using the lapack library and this small
dynamic link interface (see for more detail section|Cpage [307).

load "lapack"
load "fflapack"
int n=5;
real[int,int] A(n,n),Al1(n,n),B(n,n);
for(int i=0;i<n;++1i)
for(int j=0;j<n;++j)
A(i,j)= (A==j) ? n+l : 1;
cout << A << endl;
Al=A"-1; // def in load "lapack"
cout << Al << endl;

B=0;
for(int i=0;i<n;++1i)
for(int j=0;j<n;++j)
for(int k=0;k<n;++k)
B(i,j) +=A(,k)*Al(k,]j);
cout << B << endl;
// Al+A"-1; attention ne marche pas

inv(Al); // def in load "fflapack"
cout << Al << endl;

and the output is:

55

== = O
e e a2 M
i N o) B e
A N e i
[ I

error: dgesv_ 0

55

0.18 -0.02 -0.02 -0.02 -0.02
-0.02 0.18 -0.02 -0.02 -0.02
-0.02 -0.02 0.18 -0.02 -0.02
-0.02 -0.02 -0.02 0.18 -0.02
-0.02 -0.02 -0.02 -0.02 0.18

55

1 -1.387778781e-17 -1.040834086e-17 3.469446952e-17 O
-1.040834086e-17 1 -1.040834086e-17 -2.081668171e-17 O
3.469446952e-18 -5.551115123e-17 1 -2.081668171e-17 -2.775557562e-17
1.387778781e-17 -4.510281038e-17 -4.857225733e-17 1 -2.775557562e-17
-1.387778781e-17 -9.714451465e-17 -5.551115123e-17 -4.163336342e-17 1

55
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to compile lapack.cpp or fflapack.cpp you must have the library lapack on you system and
try in directory examples++-1load

ff-c++ lapack.cpp -1llapack
ff-c++ fflapack.cpp -llapack

4.8.4 Other arrays

It is also possible to make an array of FE functions, with the same syntax, and we can treat them
as vector valued function if we need them.

Example 4.6 In the following example, Poisson’s equation is solved for 3 different given functions
f =1, sin(zrx) cos(my), |x — 1|ly — 1|, whose solutions are stored in an array of FE function.

mesh Th=square(20,20,[2%x,2*y]);

fespace Vh(Th,P1);

Vh u, v, f;

problem Poisson(u,v) =
int2d(Th) ( dx(u)*dx(v) + dyu)*dy(v))
+ int2d(Th) ( -f*v ) + on(1,2,3,4,u=0) ;

Vhlint] wu(3); // an array of FE function
f=1; // probleml
Poisson; uul[0®] = u;
f=sin(pi*x)*cos(pi*y); // problem2
Poisson; uul[l] = u;
f=abs(x-1)*abs(y-1); // problem3
Poisson; uul[2] = u;
for (int i=0; i<3; i++) // plots all solutions

plot(uul[i], wait=true);

For the second case, it is just a map of the STI[][26] s0 no operations on vector are allowed, except
the selection of an item .

The transpose or Hermitian conjugation operator is * as in Matlab or Scilab, so the way to compute
the dot product of two array a,bis real ab= a’*b.

int 1i;

real [int] tab(10), tabl1(10); // 2 array of 10 real
real [int] tab2; // Error: array with no size

tab = 1; // set all the array to 1

tab[1]=2;

non

cout << tab[l] << << tab[9] << " size of tab = "
<< tab.n << " " << tab.min << " " << tab.max << << endl;
tabl=tab; tab=tab+tabl; tab=2*tab+tabl*5; tabl=2*tab-tabl*5;
tab+=tab; cout << " dot product " << tab’*tab << endl; //  T'tabtab
cout << tab << endl; cout << tab[l] << " "

non

!'Standard template Library, now part of standard C++
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<< tab[9] << endl; real[string] map; // a dynamic array
for (i=0;i<10;i=i+1)
{
tab[i] = i*i;
cout << 1 <<

non

<< tab[i] << "\n";

1
map["1"]=2.0;
map[2]=3.0; // 2 is automatically cast to the string "2"
cout << " map[\"I1\"] = " << map["1"] << "; "<< endl;
cout << " map[2] = " << map[2] << "; "<< endl;

4.9 Loops

The for and while loops are implemented in FreeFem++ together with break and continue
keywords.
In for-loop, there are three parameters; the INITIALIZATION of a control variable, the CON-
DITION to continue, the CHANGE of the control variable. While CONDITION is true, for-loop
continue.

for (INITIALIZATION; CONDITION; CHANGE)
{ BLOCK of calculations }

An example below shows a sum from 1 to 10 with result is in sum,

int sum=0;
for (int i=1; i<=10; i++)
sum += i;

The while-loop

while (CONDITION) {
BLOCK of calculations or change of control variables

}

is executed repeatedly until CONDITION become false. The sum from 1 to 10 can also be com-
puted by while as follows,

int i=1, sum=0;
while (i<=10) {
sum += i; i++;

}

We can exit from a loop in midstream by break. The continue statement will pass the part from
continue to the end of the loop.

Example 4.7

for (int i=0;i<10;i=i+1)
cout << i << "\n";

real eps=1;

while (eps>le-5)
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{ eps = eps/2;
if( i++ <100) break;
cout << eps << endl;}

for (int j=0; j<20; j++) {
if (j<10) continue;
cout << "j = " << j << endl;

4.10 Input/Output

The syntax of input/output statements is similar to C++ syntax. It uses cout, cin, endl, <<,>>.
To write to (resp. read from) a file, declare a new variable ofstream ofile("filename"); or
ofstream ofile("filename",append); (resp. ifstream ifile("filename"); ) and use
ofile (resp. ifile) as cout (resp. cin).

The word append in ofstream ofile("filename",append) ; means openning a file in append
mode.

Note 4.4 The file is closed at the exit of the enclosing block,
Example 4.8

int i;
cout << " std-out" << endl;

cout << enter i= 7?7 ";
cin >> 1 ;

ofstream f("toto.txt");
f << i << "coucou’\n";

}; // close the file f because the variable f is delete
{
ifstream f("toto.txt");
f >> i
}
{

ofstream f("toto.txt",append);
// to append to the existing file "toto.txt"
f << i << "coucou’\n";
}; // close the file f because the variable f is delete

cout << 1 << endl;

Some functions are available to format the output.
e int nold=f.precision(n) Sets the number of digits printed to the right of the decimal
point. This applies to all subsequent floating point numbers written to that output stream.

However, this won’t make floating-point ”integers” print with a decimal point. It’s necessary
to use fixed for that effect.

e f.scientific Formats floating-point numbers in scientific notation ( d.dddEdd )
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e f.fixed Used fixed point notation ( d.ddd ) for floating-point numbers. Opposite of scien-

tific.

f.showbase Converts insertions to an external form that can be read according to the C++
lexical conventions for integral constants. By default, showbase is not set.

e f.noshowbase unset showbase flags

e f.showpos inserts a plus sign (+) into a decimal conversion of a positive integral value.

f.noshowpos unset showpos flags
o f.default reset all the previous flags (fmtflags) to the default expect precision.

Where f£is output stream descriptor, for example cout.
Remark, all these methods except the first return the stream f, so they can be chained as in

cout.scientific.showpos << 3 << endl;

4.10.1 Script arguments

There is a very useful predefined array in Freefem++ ARGV that contains all the arguments of the
script used in the command line. The following code prints out the first three of these arguments:

// version 3.8-1
for(int i=0;i<ARGV.n;++i)
{
cout << ARGV[i] << endl;

}

And to get argument unused in getARGV . idp include script file,

getARGV(n,defaultvalue) // get the nth parameter unused if exist (n =1, ...)
getARGV(after,defaultvalue) // get the arg after the string after if exist

The type of default value can be int, real, string,

4.11 preprocessor

The preprocessor handles directives for source file inclusion (include script-name.idp”), macro
definitions.

There are two types of macros, object-like and function-like. Object-like macros do not take
parameters; function-like macros do. The generic syntax for declaring an identifier as a macro of
each type is, respectively,

macro <identifier>() <replacement token list> // EOM a // comment to end the macro
macro <identifier>(<parameter list>) <replacement token list> //  EOM

An example of macro without parameter
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macro xxx() {real i=0;int j=0;cout << i << << j << endl;} //
XXX /* replace xxx by the <replacement token list> */

The freefem++ code associated:

: // macro without parameter
macro xxx {real i=0;int j=0;cout << i << " " << j << endl;}//

1
2
3
4 {real i=0;int j=0;cout << i << " " << j << endl;}

An example of macro parameter

macro toto(i) i //
// quoting parameter the {} are remove
toto({real i=0;int j=0;cout << i << " " << j << endl;})
// and only one level of {} are remove
toto({{real i=0;int j=0;cout << i << " " << j << endl;}})

The freefem++ code created :

6 macro toto(i ) i//

8 : // quoting parameter the \{\} are remove

9 : real i=0;int j=0;cout << 1 <<
10 : // and only one level of \{\} are remove

11 : {real i=0;int j=0;cout << i <<

<< j << endl;

" mn

<< j << endl;}

Use a macro as parameter of macro to transforme full matrix in formal array like in :

reallint,int] CC(7,7),EE(6,3),EEps(4,4);

macro VIL6(v,i) [ v(1,1i), v(2,i),v(4,1), v(5,i),v(6,i) 1] // EOM
macro VIL3(v,i) [ v(1,i), v(2,1) ] // EOM

// apply v on array element :
macro VV6(v,vv) [ v(vv,1), v(vv,2),

v(vv,4), v(vv,5), v(vv,6) ] // EOM
macro VV3(v,vv) [ v(vv,1), v(vv,2) ] // EOM

// so formal matrix to build problem. .
funec C5x5 VV6 (VIL6,CO);

func E5x2 VV6 (VIL3,EE);
func Eps = VV3(VIL3,EEps);

The freefem++ code created :

16 : reallint,int] CC(7,7),EE(6,3),EEps(4,4);

17 :

18 : macro VIL6(v,i ) [ v(1,1), v(2,i),v(4,1), v(5,i),v(6,i) 1 // EOM
19 : macro VIL3(v,i ) [ v(1,i1), v(2,1) 1 // EOM

20 : // apply v on array element :

21 : macro VV6(v,vv ) [ vivv,1), v(vv,2),

22 : v(vv,4), v(vv,5), v(vv,6) 1 // EOM

23 : macro VV3(v,vv ) [ v(ivv,1), v(vv,2) ] // EOM

24 : // so formal matrix to build problem..
25 :  func C5x5 =
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1: [ [ CC(1,1), C€C(2,1),CC(4,1), CC(5,1),CC(6,1) 1
[ CC(1,2), CC(2,2),CC(4,2), CC(5,2),CC(6,2) 1 ,
1: [ CC(1,4), CC(2,4),CC(4,4), CC(5,4),CC(6,4) 1 ,

[ CC(1,5), CC(2,5),CC(4,5), CC(5,5),CC(6,5 1 ,
[ CC(1,6), CC(2,6),CC(4,6), CC(5,6),CC(6,6) ] 1
26 : func E5x2 =

1: L [ EE(1,1), EEC2,1) ] , [ EE(1,2), EE(2,2) ] ,
1: [ EE(1,4), EE(2,4) ] , [ EE(1,5), EE(2,5) ] ,
[ EE(1,6), EE(2,6) ] 1
27 : func Eps = [ [ EEps(1,1), EEps(2,1) 1 ,
[ EEps(1,2), EEps(2,2) ] 1
28 :

finally the operator # to do concatenation of parameter: to build vectorial operation, like in

macro div(u) (dx(u#l)+ dy(u#2)) //  EOM
mesh Th=square(2,2); fespace Vh(Th,P1);

Vh vi1=x,v2=y;

cout << int2d(Th) (div(v)) << endl;

The freefem++ code created :

31 : macro div(u ) (dx(u#1)+ dy(u#2)) //EOM

32 : mesh Th=square(2,2); fespace Vh(Th,P1);

33 : Vh vl=x,v2=y;

34 : cout << int2d(Th)( (dx(v1)+ dy(v2)) ) << endl;

And to finish a amazing test to verified the quoting :

macro foo(i,j,k) i j k //  EOM
foo(,,) // empty line
foo( {int [}, {int] a(10},{);}

the result:

36 : macro foo(i,j,k ) i j k//EOM
37 // empty line
38 : int [ int] a(10 );

4.12 Exception handling

In the version 2. 3 of FreeFem++, exception handing was added as in C++. But today only the C++
exceptions are caught. Note that in C++ all the errors attached to ExecError, assert, exit,

. call exceptions too so it may be hard to find the cause of the error. The exceptions handle all
ExecError:
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Example 4.9 A simple example: catch a division by zero:

real a;
try {
a=1./0.;
}
catch (...) // in versions > 2.3 all exceptions can be caught
{
cout <<
a =0;

¥

Catch an ExecError << endl;

The output is

1/0 : ddd
current line = 3
Exec error : Div by 0
-- number :1

Try:: catch (...) exception
Catch an ExecError

Example 4.10 : a more realistic example with a none invertible matrix:

int nn=5 ;
mesh Th=square(nn,nn);
verbosity=5;

fespace Vh(Th,P1); // P1 FE space
Vh uh,vh; // unkown and test function.
func f=1; // right hand side function
func g=0; // boundary condition function
real cpu=clock();
problem laplace(uh,vh,solver=Cholesky,tolpivot=1e-6) = // definion
of the problem
int2d(Th) ( dx(uh)*dx(vh) + dy(uh)*dy(vh) ) // bilinear form
+ int2d(Th) ( -f*vh ) // linear form
try {
cout << " Try Cholesky \n";
laplace; // solve the problem
plot(uh); // to see the result
cout << "-- lap Cholesky " << nn << "x" << nn << " : " << -cpu+clock()
<< "' s, max =" << uh[].max << endl;
}
catch(...) { // catch all
cout << " Catch cholesky PB " << endl;
}

The output is
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-- square mesh : nb vertices =36 , nb triangles = 50 ...
Nb of edges on Mortars = 0
Nb of edges on Boundary = 20, neb = 20
Nb Mortars 0
number of real boundary edges 20
Number of Edges 85
Number of Boundary Edges 20 neb = 20
Number of Mortars Edges =0
Nb Of Mortars with Paper Def O Nb Of Mortars =0 ...
Nb Of Nodes = 36
Nb of DF = 36
Try Cholesky
-- Change of Mesh ® 0x312e9e8
Problem(): initmat 1 VF (discontinuous Galerkin) = 0
-- SizeOfSkyline =210
-- size of Matrix 196 Bytes skyline =1
-- discontinous Galerkin =0 size of Mat =196 Bytes
-- int in Optimized =1,
all
-- boundary int Optimized = 1, all
ERREUR choleskypivot (35)= -1.23124e-13 < le-06
current line = 28
Exec error : FATAL ERREUR dans ../femlib/MatriceCreuse_tpl.hpp
cholesky line:
-- number :545
catch an erreur in solve => set sol =0 !!!lll]
Try:: catch (...) exception
Catch cholesky PB
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Chapter 5

Mesh Generation

5.1 Commands for Mesh Generation

Let us begin with the two important keywords border and buildmesh
All examples in this section come from the files mesh.edp and tablefunction.edp.

5.1.1 Square
The command‘“square” triangulates the unit square. The following

mesh Th = square(4,5);

generates a 4 X 5 grid in the unit square [0, 1]>. The labels of the boundaries are shown in Fig.
To construct a n X m grid in the rectangle [xo, x;] X [yo, y1], proceeds as follows: write

label=3
/

label label

/|

label=1

Figure 5.1: Boundary labels of the mesh by square(10, 10)

real x0=1.2,x1=1.8;

real y0=0,yl=1;

int n=5,m=20;

mesh Th=square(n,m, [x0+(x1-x0)*x,y0+(y1l-y0)*y]);

85
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Note 5.1 Adding the named parameter flags=icase with icase:

0 will produce a mesh where all quads are split with diagonal x —y = cte

1 will produce Union Jack flag type of mesh.

2 will produce a mesh where all quads are split with diagonal x +y = cte (v 3.8)

3 same as case 0 except in two corners such that no triangle with 3 vertices on boundary (v 3.8)

4 same as case 2 except in two corners such that no triangle with 3 vertices on boundary (v 3.8)

mesh Th=square(n,m, [x0+(x1-x0)*x,y0+(yl-y0)*y],flags=icase);

Adding the named parameter 1abel=1abs will change the 4 default label numbers to labs[i-1],
for example int[int] labs=[11,12,13,14],

and adding the named parameter region=10 will change the region number to 10, for instance (v
3.8).

To see all these fags at work, try the file examples++/square-mesh. edp :

for (int i=0;i<5;++1i)
{
int[int] labs=[11,12,13,14];
mesh Th=square(3,3,flags=i,label=labs,region=10);
plot(Th,wait=1,cmm=" square flags = "+i );

}

5.1.2 Border

Boundaries are defined piecewise by parametrized curves. The pieces can only intersect at their
endpoints, but it is possible to join more than two endpoints. This can be used to structure the
mesh if an area thouches a border and create new regions by dividing larger ones:

int upper = 1;
int others = 2;
int inner = 3;

border CO1(t=0,1){x = 0; y = -1+t; label = upper;}
border C02(t=0,1){x = 1.5-1.5%t; y = -1; label = upper;}
border CO3(t=0,1){x = 1.5; y = -t; label = upper;}
border C04(t=0,1){x = 1+0.5%t; y =0; label = others;}
border CO5(t=0,1){x = 0.5+0.5*t; y = 0; label = others;}
border CO6(t=0,1){x = 0.5%t; y = 0; label = others;}
border C11(t=0,1){x = 0.5; y = -0.5%t; label = inner;}
border C12(t=0,1){x = 0.5+0.5*%t; y = -0.5; label = inner;}
border C13(t=0,1){x = 1; y = -0.5+0.5%t; label = inner;}

int n = 10;
plot (CO1(-n)+CO2(-n)+CO3(-n)+CO4(-n)+CO5(-n)+CO6(-n)+
Cll1(n)+C12(n)+C13(n), wait=true);

mesh Th = buildmesh(C01(-n)+CO2(-n)+CO3(-n)+CO4(-n)+CO5(-n)+CO6(-n)+
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Cll1(n)+C12(M)+C13(n));
plot(Th, wait=true); // figure

cout << "Part 1 has region number " << Th(0.75, -0.25).region << endl;
cout << "Part 2 has redion number " << Th(0.25, -0.25).region << endl;

Figure 5.2: Multiple border ends intersect Figure 5.3: Generated mesh

Triangulation keywords assume that the domain is defined as being on the left (resp right) of its
oriented parameterized boundary

T = {0 ))| x = @), y = @), a; <t < by)

To check the orientation plot # = (.(1), ¢,(1)), to < t < ;. If it is as in Fig. [5.4} then the domain
lies on the shaded area, otherwise it lies on the opposite side

Figure 5.4: Orientation of the boundary defined by (¢.(?), ¢,(1))

The general expression to define a triangulation with buildmesh is
mesh  Mesh_Name = buildmesh(rl(ml) + -+ Iy(mj) OptionalParameter);

where m; are positive or negative numbers to indicate how many vertices should be on I';, I' =
Ulel" 7, and the optional parameter (separed with comma) can be
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nbvx=<int value> , to set the maximal number of vertices in the mesh.

fixeborder=<bool value> , to say if the mesh generator can change the boundary mesh or not
(by default the boundary mesh can change; beware that with periodic boundary conditions
(see. |§|), it can be dangerous .

The orientation of boundaries can be changed by changing the sign of m;. The following example
shows how to change the orientation. The example generates the unit disk with a small circular
hole, and assign “1” to the unit disk (“2” to the circle inside). The boundary label must be non-zero,
but it can also be omitted.

1: border a(t=0,2*pi){ x=cos(t); y=sin(t);label=1;}

2: border b(t=0,2*pi){ x=0.3+0.3*cos(t); y=0.3*sin(t);label=2;}

3: plot(a(50)+b(+30)) ; // to see a plot of the border mesh
4: mesh Thwithouthole= buildmesh(a(50)+b(+30));

5: mesh Thwithhole = buildmesh(a(50)+b(-30));

6: plot(Thwithouthole,wait=1,ps="Thwithouthole.eps™); //  figure
7: plot(Thwithhole,wait=1,ps="Thwithhole.eps"); // figure

Note 5.2 Notice that the orientation is changed by “b(-30) ” in 5th line. In 7th line, ps="fileName"
is used to generate a postscript file with identification shown on the figure.

A A
VAVAV st
DRSASKTT L
SPORPARRSOASY O VDR
SRR ORI
ORI KRB
V%‘N?@%@}%ﬁ" \ ﬁé?wv &Q@;@éﬁg%ﬂ K %ﬁ%
IS
SRR e NN
KPS
VAT s
DR

Figure 5.5: mesh without hole Figure 5.6: mesh with hole

Note 5.3 Borders are evaluated only at the time plot or buildmesh is called so the global vari-
able are defined at this time andhere since r is changed between the two border calls the following
code will not work because the first border will be computed with r=0.3:

real r=1; border a(t=0,2*pi){ x=r*cos(t); y=r*sin(t);label=1;}
r=0.3 ; border b(t=0,2*%pi){ x=r*cos(t); y=r*sin(t);label=1;}
mesh Thwithhole = buildmesh(a(50)+b(-30)); // bug (a trap) because

// the two circle have the same radius = 0.3
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5.1.3 Data Structures and Read/Write Statements for a Mesh

Users who want to read a triangulation made elsewhere should see the structure of the file generated
below:

border C(t=0,2*pi) { x=cos(t); y=sin(t); }
mesh Th = buildmesh(C(10));
savemesh("mesh_sample.msh");

the mesh is shown on Fig.

The informations about Th are saved in the file “mesh_sample.msh”. whose structure is shown on
Table
There n, denotes the number of vertices, n, number of triangles and n; the number of edges on
boundary.

For each vertex ¢', i = 1,--- ,n,, denote by (¢', q;) the x-coordinate and y-coordinate.
Each triangle Ty, k = 1,--- , 10 has three vertices 4", ¢©, ¢* that are oriented counterclockwise.
The boundary consists of 10 lines L;, i = 1,--- , 10 whose end points are ¢!, ¢”.

In the left figure, we have the following.
n, =14, n, = 16, ny, = 10

q' = (-0.309016994375, 0.951056516295)

g™ = (-0.309016994375, —0.951056516295)

The vertices of T, are ¢°, ¢'2, ¢'°.

The vertices of T4 are ¢°, ¢'°, ¢°.

The edge of 1st side L, are ¢°, ¢°.

The edge of 10th side L, are ¢'°, ¢°.

Figure 5.7: mesh by buildmesh(C(10))

In FreeFem++ there are many mesh file formats available for communication with other tools
such as emc2, modulef.. (see Section , The extension of a file implies its format. More details
can be found on the file format .msh in the article by F. Hecht "bamg : a bidimentional anisotropic
mesh generator” (downloadable from the FreeFem web site. )

A mesh file can be read into FreeFem++ except that the names of the borders are lost and only
their reference numbers are kept. So these borders have to be referenced by the number which
corresponds to their order of appearance in the program, unless this number is overwritten by the
keyword “label”. Here are some examples:

border floor(t=0,1){ x=t; y=0; label=1;}; // the unit square
border right(t=0,1){ x=1; y=t; label=5;};
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Content of the file Explanation

14 16 10 n, n; n,
-0.309016994375 0.951056516295 1 | ¢! q, boundary label=1
0.309016994375 0.951056516295 1 | ¢> qﬁ boundary label=1

-0.309016994375 -0.951056516295 1 | ¢ q;“ boundary label=1

912100 1, 1, 13 region label=0
5960 2y 2, 25 region label=0
91060 16; 16, 165 region label=0
651 1; 1, boundary label=1
521 2y 2, boundary label=1
1061 10, 10, boundary label=1

Table 5.1: The structure of “mesh_sample.msh”

border ceiling(t=1,0){ x=t; y=1; label=5;};
border left(t=1,0){ x=0; y=t; label=5;};

int n=10;

mesh th= buildmesh(floor(n)+right(n)+ceiling(n)+left(n));

savemesh(th, "toto.am_fmt"); // "formatted Marrocco" format
savemesh(th, "toto.Th"); // "bamg"-type mesh
savemesh(th, "toto.msh"); // freefem format
savemesh(th, "toto.nopo"); // modulef format see [10]
mesh th2 = readmesh("toto.msh"); // read the mesh
Example 5.1 (Readmesh.edp) border floor(t=0,1){ x=t; y=0; label=1;}; // the unit
square

border right(t=0,1){ x=1; y=t; label=5;};
border ceiling(t=1,0){ x=t; y=1; label=5;};
border left(t=1,0){ x=0; y=t; label=5;};

int n=10;

mesh th= buildmesh(floor(n)+right(n)+ceiling(n)+left(n));

savemesh(th, "toto.am_fmt"); // format "formated Marrocco"
savemesh(th, "toto.Th"); // format database db mesh "bamg"
savemesh(th, "toto.msh"); // format freefem
savemesh(th, "toto.nopo"); // modulef format see [10]

mesh th2 = readmesh("toto.msh");

fespace fempl(th,P1);

fempl £ = sin(x)*cos(y),g;

{ // save solution
ofstream file("f.txt");

file << f[] << endl;

} // close the file (end block)
{ // read
ifstream file("f.txt");

file >> g[] ;
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}

fespace Vh2(th2,P1);

Vh2 u,v;

plot(9);

// find u such that

// u+Au=g in Q ,

// u=0 on I and%:gonl"z

solve pb(u,v) =
int2d(th) ( u*v - dx(u)*dx(v)-dy(uw)*dy(v) )
+ int2d(th) (-g*v)
+ int1d(th,5)( g*v)
+ on(1,u=0) ;
plot (th2,u);

5.1.4 Mesh Connectivity

/7

91

close reading file (end block)

/o Gi=gonly

on

The following example explains methods to obtain mesh information.

{ //
mesh Th=square(2,2);

int nbtriangles=Th.nt;
cout << " nb of Triangles =
for (int i=0;i<nbtriangles;i++)
for (int j=0; j <3; j++)
cout << 1 << " " << j << " Th[i][j] ="
<< Th[i][j] << "
<< ", label=" << Th[i][j].label << endl;

Th(i) return the vextex i of Th
Th[k] return the triangle k of Th

//
//

fespace fempl(Th,P1l);

get mesh information (version 1.37)

// get data of the mesh

<< nbtriangles << endl;

x = "<< Th[il[j].x << " , y= "<< Th[i][jl.y

fempl Thx=x,Thy=y; // hack of get vertex coordinates
// get vertices information :
int nbvertices=Th.nv;
cout << " nb of vertices = " << nbvertices << endl;
for (int i=0;i<nbvertices;i++)
cout << "Th(" <<i << ") " // << endl;
<< Th(i).x << " " << Th().y << " " << Th(i).label // v 2.19
<< " old method: " << Thx[][i] << " " << Thy[][i] << endl;

// method to find information of point (0.55,0.6)
int it00 = Th(0.55,0.6).nuTriangle; // then triangle number
int nr00 = Th(0.55,0.6).region; //

// info of a triangle
real area®® = Th[it00].area; // new in version 2.19
real nrr0®0® = Th[it00].region; // new in version 2.19

real nll00 = Th[it00].label;

//

Hack to get a triangle containing point x,y

/7

same as region in this case.
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// or region number (old method)

/)
fespace femp®(Th,PO);
fempO0 nuT; // a PO function to get triangle numbering
for (int i=0;i<Th.nt;i++)
nuT[1[i]=1;
femp® nuReg=region; // a PO function to get the region number
// inquire
int it0=nuT(0.55,0.6); //  number of triangle Th’s containing (0.55,0,6);
int nr0=nuReg(0.55,0.6); //  number of region of Th’s containing (0.55,0,6);
// dump
)
cout << " point (0.55,0,6) :triangle number " << it®0 << " " << it00®
<< ", region = " << nr@ << " == " << nr@® << ", area K " << area®® << endl;
// new method to get boundary information and mesh adjacent

int k=0,1=1,e=1;

Th.nbe ; // return the number of boundary element

Th.be(k); // return the boundary element k € {0,...,Th.nbe — 1}
Th.be(k) [1]; // return the vertices 1 €{0,1} of boundary elmt k

Th.be(k) .Element ; // return the triangle containing the boundary elmt k
Th.be(k) .whoinElement ; // return the edge number of triangle containing
//  the boundary elmt k

Th[k].adj(e) ; // return adjacent triangle to k by edge e, and change

// the value of e to the corresponding edge in the adjacent triangle
Th[k] == Thlk].adj(e) // non adjacent triangle return the same
Th[k] !'= Th[k].adj(e) // true adjacent triangle
cout << " print mesh connectivity " << endl;

int nbelement = Th.nt;
for (int k=0;k<nbelement;-++k)
cout << k << " 1 " << int(Th[k][0]) << " " << int(Th[k][1])
<< " " << int(Th[k]I[2])
<< ", label " << Th[k].label << endl;
//

for (int k=0;k<nbelement;++k)
for (int e=0,ee;e<3;++e)
// remark FH hack: set ee to e, and ee is change by method adj,
// in () to make difference with named parameters.
<< e << <=> " << int(Thl[k].adj((ee=e))) << " " << ee
adj: " << ( Th[k].adj((ee=e)) !'= Th[k]) << endl;
// note : 1if k == int(Th[k].adj(ee=e)) not adjacent element

cout << k <<
"

int nbboundaryelement = Th.nbe;

for (int k=0;k<nbboundaryelement;++k)
cout << k << " : " << Th.be(k)[0] << " " << Th.be(k)[1] << " , label "
<< Th.be(k).label << " tria " << int(Th.be(k).Element)
<< " " << Th.be(k) .whoinElement << endl;
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}

the output is:

-- square mesh : nb vertices =9 , nb triangles = 8 , nb boundary edges 8
Nb of Vertices 9 , Nb of Triangles 8
Nb of edge on user boundary 8 , Nb of edges on true boundary 8

number of real boundary edges 8
nb of Triangles = 8
® 0 Th[i][j] 0 x=0, y=0, label=4

0 1 Thl[i][jl] =1 x =0.5, y=0, label=1

0 2 Th[i][j] =4 x =0.5, y= 0.5, label=0
6 0 Th[i][j] =4 x =0.5, y= 0.5, label=0
6 1 Th[i][jl] =5 x=1, y= 0.5, label=2

6 2 Th[i][j] =8 x =1, y=1, label=3

7 ®0 Th[i][jl] =4 x =0.5, y= 0.5, label=0
7 1 Th[i][j] =8 x =1, y=1, label=3

7 2 Th[il[jl1 =7 x=0.5, y=1, label=3
Nb Of Nodes = 9

Nb of DF = 9

-- vector function’s bound 0 1
-- vector function’s bound 0 1
nb of vertices = 9

Th(®) : 0 0 4 old method: 0 0
Th(l) : 0.5 0 1 old method: 0.5 0
Th(7) : 0.5 1 3 old method: 0.5 1
Th(8) : 113 old method: 1 1

Nb Of Nodes = 8

Nb of DF = 8

print mesh connectivity

0 : 014, label ©

1: 043, label ©®

6 : 458, label ©

7 : 487 , label ©

00 <=> 31 adj: 1

0 1<= 12 adj: 1
®2<=> 02 adj: ®

6 2 <= 30 adj: 1

70 <=> 70 adj: 0
71<=> 40 adj: 1
72<=> 61 adj: 1

O : 01, label 1 tria 0 2
1 :12, label 1 tria 2 2
6 : ® 3, label 4 tria 11

7 : 36, label 4 tria
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5.1.5 The keyword ’triangulate”

FreeFem++ is able to build a triangulation from a set of points. This triangulation is a Delaunay
mesh of the convex hull of the set of points. It can be useful to build a mesh form a table function.
The coordinates of the points and the value of the table function are defined separately with rows
of the form: x y f£(x,y) in a file such as:

0.51387 0.175741 0.636237
0.308652 0.534534 0.746765
0.947628 0.171736 0.899823
0.702231 0.226431 0.800819
0.494773 0.12472 0.580623
0.0838988 0.389647 0.456045

Figure 5.8: Delaunay mesh of the convex hull Figure 5.9: Isovalue of table function
of point set in file xyf

The third column of each line is left untouched by the triangulate command. But you can use
this third value to define a table function with rows of the form: x y f(x,y).
The following example shows how to make a mesh from the file “xyf” with the format stated just
above. The command triangulate command use only use 1st and 2nd rows.

mesh Thxy=triangulate("xyf"); // build the Delaunay mesh of the convex hull

// points are defined by the first 2 columns of file xyf
plot (Thxy,ps="Thxyf.ps"); // (see figure [5.8)
fespace Vhxy(Thxy,P1); // create a P1 interpolation
Vhxy fxy; // the function

// reading the 3rd row to define the function
{ ifstream file("xyf");
real XX,yV;
for(int i=0;i<fxy.n;i++)
file >> xx >>yy >> fxy[][i]; // to read third row only.
// xx and yy are just skipped
}
plot (fxu,ps="xyf.eps"); // plot the function (see figure

One new way to build a mesh is to have two arrays one the x values and the other for the y values
(version 2.23-2):
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Vhxy xx=X,yy=y; // to set two arrays for the x’s and y’s
mesh Th=triangulate(xx[],yy[1);

5.2 Boundary FEM Spaces Built as Empty Meshes

To define a Finite Element space on a boundary, we came up with the idea of a mesh with no
internal points (call empty mesh). It can be useful to handle Lagrange multipliers in mixed and
mortar methods.

So the function emptymesh remove all the internal points of a mesh except points on internal
boundaries.

{ // new stuff 2004 emptymesh (version 1.40)
// -- useful to build Multiplicator space

// build a mesh without internal point

// with the same boundary

/o -

assert(version>=1.40);
border a(t=0,2%pi){ x=cos(t); y=sin(t);label=1;}
mesh Th=buildmesh(a(20));
Th=emptymesh(Th) ;
plot (Th,wait=1,ps="emptymesh-1.eps"); // see figure
}

It is also possible to build an empty mesh of a pseudo subregion with emptymesh(Th, ssd) using
the set of edges of the mesh Th; a edge e is in this set if with the two adjacent triangles e = 1 N 12
and ssd[T 1] # ssd[T2] where ssd refers to the pseudo region numbering of triangles, when they
are stored in an int[int] array of size the number of triangles.

{ // new stuff 2004 emptymesh (version 1.40)
// -- useful to build Multiplicator space
// build a mesh without internal point

// of peusdo sub domain

/o -

assert (version>=1.40);

mesh Th=square(10,10);

int[int] ssd(Th.nt);

for(int i=0;i<ssd.n;i++) // build the pseudo region numbering
{ int ig=i/2; // because 2 triangle per quad
int ix=1q%10; //
int iy=iq/10; //
ssd[i]= 1 + (Ax>=5) + ([Gy>=5)%2;
}
Th=emptymesh(Th,ssd); // build emtpy with
// all edge e=T1NT2 and ssd[T1] # ssd[T2]
plot(Th,wait=1,ps="emptymesh-2.eps"); //  see figure [5.11]

savemesh(Th, "emptymesh-2.msh");
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Figure 5.11: An empty mesh defined from a
Figure 5.10: The empty mesh with boundary  pseudo region numbering of triangle

5.3 Remeshing

5.3.1 Movemesh

Meshes can be translated, rotated and deformed by movemesh,; this is useful for elasticity to watch
the deformation due to the displacement ®(x, y) = (O;(x,y), ©»(x, y)) of shape. It is also useful to
handle free boundary problems or optimal shape problems.

If Q is triangulated as 7,(Q2), and @ is a displacement vector then ®(7},) is obtained by

mesh Th=movemesh(Th, [D1,D2]);

Sometimes the transformed mesh is invalid because some triangle have flip over (now has negative
area).To spot such problems one may check the minimum triangle area in the transformed mesh
with checkmovemesh before any real transformation.

Example 5.2 ®(x,y) = x + k = sin(y * m)/10), ®(x,y) = y + k = cos(yn)/10) for a big number
k> 1.

verbosity=4;

border a(t=0,1){x=t;y=0;label=1;};
border b(t=0,0.5){x=1;y=t;label=1;};
border c(t=0,0.5){x=1-t;y=0.5;1abel=1;};
border d(t=0.5,1){x=0.5;y=t;label=1;};
border e(t=0.5,1){x=1-t;y=1;1label=1;};
border f£(t=0,1){x=0;y=1-t;label=1;};
func uu= sin(y*pi)/10;

func vv= cos(x*pi)/10;

mesh Th = buildmesh ( a(6) + b(4) + c(4) +d(4) + e(4) + £(6));
plot(Th,wait=1,fill=1,ps="Lshape.eps"); // see figure [5.1
real coef=1;

real minTO= checkmovemesh(Th, [x,y]); // the min triangle area



5.3. REMESHING 97

while(l) // find a correct move mesh

{
real minT=checkmovemesh(Th, [x+coef*uu,y+coef*vv]); //  the min triangle area
if (minT > minT0®/5) break ; // if big enough
coef=/1.5;

}

Th=movemesh(Th, [x+coef*uu, y+coef*vv]);
plot(Th,wait=1,fill=1,ps="movemesh.eps"); // see figure |5.1

Figure 5.12: L-shape Figure 5.13: moved L-shape

Note 5.4 Consider a function u defined on a mesh Th. A statement like Th=movemesh(Th. . .)
does not change u and so the old mesh still exists. It will be destroyed when no function use it. A
statement like u = u redefines u on the new mesh Th with interpolation and therefore destroys the
old Th if u was the only function using it.

Example 5.3 (movemesh.edp) Now, we given an example of moving mesh with a lagrangian
function u defined on the moving mesh.

// simple movemesh example
mesh Th=square(10,10);
fespace Vh(Th,P1);
real t=0;
/-
// the problem is how to build data without interpolation
// so the data u is moving with the mesh as you can see in the plot
VR
Vh u=y;
for (int i=0;i<4;i++)
{
t=i*0.1;
Vh f= x*t;

real minarea=checkmovemesh(Th, [x,y+£f]);
if (minarea >0 ) // movemesh will be ok
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Th=movemesh(Th, [x,y+f]);

cout << " Min area << minarea << endl;

real[int] tmp(Cul[].n);

tmp=ul[]; // save the value
u=0; // to change the FEspace and mesh associated with u
ul]=tmp; // set the value of u without any mesh update
plot(Th,u,wait=1);

};

// In this program, since u is only defined on the last mesh, all the

// previous meshes are deleted from memory.

VZZRREEEE

5.4 Regular Triangulation: hTriangle
For a set §, we define the diameter of § by
diam(S) = sup{lx —y|; x, y € S}
The sequence {7 }n0 of Q is called regular if they satisfy the following:
1.

1}%1 max{diam(T)| T, € 75} =0

2. There is a number o > 0 independent of 4 such that

p(Ty)
P for all T, € 7
diam(Tp - 7 TR kST

where p(T;) are the diameter of the inscribed circle of 7.

We put h(7},) = max{diam(T})| T, € 7}, which is obtained by

mesh Th = ...... H
fespace Ph(Th,P®);
Ph h = hTriangle;

cout << "size of mesh = " << h[].max << endl;

5.5 Adaptmesh
The function
f(x,y) = 10.0x° + y* + tan"'[&/(sin(5.0y) — 2.0x)] e = 0.0001

sharply varies in value and the initial mesh given by one of the commands of Section [5.1] cannot
reflect its sharp variations.
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Example 5.4

real eps = 0.0001;

real h=1;

real hmin=0.05;

func f = 10.0%x"3+y"3+h*atan2(eps,sin(5.0%y)-2.0%x);

mesh Th=square(5,5,[-1+2*%x,-1+2*y]);
fespace Vh(Th,P1);
Vh fh=f;
plot(fh);
for (int i=0;i<2;i++)
{
Th=adaptmesh(Th, fh);
fh=f; // old mesh is deleted
plot(Th,fth,wait=1);
}

Initial First ) Second
mesh adaptation adaptation

Figure 5.14: 3D graphs for the initial mesh and 1st and 2nd mesh adaptation

FreeFem++ uses a variable metric/Delaunay automatic meshing algorithm. The command

mesh ATh = adaptmesh(Th, f);

create the new mesh ATh adapted to the Hessian

D*f = (0°f]8x°, 0° f|8xDy, 8 f9y*)
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of a function (formula or FE-function). Mesh adaptation is a very powerful tool when the solution
of a problem varies locally and sharply.

Here we solve the problem (2.1))-(2.2), when f = 1 and Q is a L-shape domain.

be

-bd
- bc

bf ]

ba

Figure 5.15: L-shape domain and its boundary Figure 5.16: Final solution after 4-times adap-
name tation

Example 5.5 (Adapt.edp) The solution has the singularity r*'*, r = |x — y| at the point y of the
intersection of two lines bc and bd (see Fig. [5.15)).

border ba(t=0,1.0){x=t; y=0; label=1;};
border bb(t=0,0.5){x=1; y=t; label=1;};
border bc(t=0,0.5){x=1-t; y=0.5;label=1;};
border bd(t=0.5,1){x=0.5; y=t; label=1;};
border be(t=0.5,1){x=1-t; y=1; 1label=1;};

border bf(t=0.0,1){x=0; y=1-t;label=1;};
mesh Th = buildmesh ( ba(6)+bb(4)+bc(4)+bd(4)+be(4)+bf(6) );

fespace Vh(Th,P1); // set FE space
Vh u,v; // set unknown and test function
func £ = 1;

real error=0.1; // level of error

problem Poisson(u,v,solver=CG,eps=1.0e-6) =
int2d(Th) ( dx(w*dx(v) + dy(u)*dy(v))
- int2d(Th) ( f*v )
+ on(1l,u=0) ;
for (int i=0;i< 4;i++)
{
Poisson;
Th=adaptmesh(Th,u,err=error) ;
error = error/2;
Y
plot(w;

To speed up the adaptation the default parameter err of adaptmesh is changed by hand; it speci-
fies the required precision, so as to make the new mesh finer or coarser.

The problem is coercive and symmetric, so the linear system can be solved with the conjugate gra-
dient method (parameter solver=CG with the stopping criteria on the residual, here eps=1.0e-6).
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By adaptmesh, the slope of the final solution is correctly computed near the point of intersection
of bc and bd as in Fig. [5.16]

This method is described in detail in [9]. It has a number of default parameters which can be
modified :

Si £1, £2 sont des functions et thold, Thnew des maillages.

Thnew = adaptmesh(Thold, f1 ... );
Thnew = adaptmesh(Thold, f1,f2 ... 1);
Thnew = adaptmesh(Thold, [fl,f2] ... );

2 2

The additional paramters of adaptmesh not written here, hence the ...

hmin= Minimum edge size. (val is a real. Its default is related to the size of the domain to be
meshed and the precision of the mesh generator).

hmax= Maximum edge size. (val is a real. It defaults to the diameter of the domain to be meshed)

err= P, interpolation error level (0.01 is the default).

errg= Relative geometrical error. By default this error is 0.01, and in any case it must be lower
than 1/ V2. Meshes created with this option may have some edges smaller than the ~hmin
due to geometrical constraints.

nbvx= Maximum number of vertices generated by the mesh generator (9000 is the default).
nbsmooth= number of iterations of the smoothing procedure (5 is the default).

nbjacoby= number of iterations in a smoothing procedure during the metric construction, 0
means no smoothing (6 is the default).

ratio= ratio for a prescribed smoothing on the metric. If the value is O or less than 1.1 no
smoothing is done on the metric (1.8 is the default).

If ratio > 1.1, the speed of mesh size variations is bounded by log(ratio). Note: As
ratio gets closer to 1, the number of generated vertices increases. This may be useful to
control the thickness of refined regions near shocks or boundary layers .

omega= relaxation parameter for the smoothing procedure (1.0 is the default).
iso= If true, forces the metric to be isotropic (false is the default).

abserror= If false, the metric is evaluated using the criterium of equi-repartion of relative error
(false is the default). In this case the metric is defined by

1 |H| )p
M= 5.1
(err coef? max(CutOff,|n)) G-

otherwise, the metric is evaluated using the criterium of equi-distribution of errors. In this
case the metric is defined by

1 |H| )p
err coef? sup(n) —inf(y))

M= ( (5.2)
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cutoff= lower limit for the relative error evaluation (1.0e-6 is the default).

verbosity= informational messages level (can be chosen between 0 and o). Also changes the
value of the global variable verbosity (obsolete).

inquire= To inquire graphically about the mesh (false is the default).

splitpbedge= If true, splits all internal edges in half with two boundary vertices (true is the
default).

maxsubdiv= Changes the metric such that the maximum subdivision of a background edge is
bound by val (always limited by 10, and 10 is also the default).

rescaling= if true, the function with respect to which the mesh is adapted is rescaled to be
between 0 and 1 (true is the default).

keepbackvertices= if true, tries to keep as many vertices from the original mesh as possible
(true is the default).

isMetric= if true, the metric is defined explicitly (false is the default). If the 3 functions m, my,, my,
are given, they directly define a symmetric matrix field whose Hessian is computed to define
a metric. If only one function is given, then it represents the isotropic mesh size at every
point.
For example, if the partial derivatives fxx (= 82f/0x?), £xy (= 8*f/0x0y), fyy (= 6> f/0y?)
are given, we can set

Th=adaptmesh(Th, fxx, fxy, fyy,IsMetric=1,nbvx=10000,hmin=hmin) ;

power= exponent power of the Hessian used to compute the metric (1 is the default).
thetamax= minimum corner angle in degrees (default is 0).
splitin2= boolean value. If true, splits all triangles of the final mesh into 4 sub-triangles.

metric= an array of 3 real arrays to set or get metric data information. The size of these three ar-
rays must be the number of vertices. Soif m11,m12,m22 are three P1 finite elements related
to the mesh to adapt, you can write: metric=[m11[],m12[],m22[]] (see file convect-
apt.edp for a full example)

nomeshgeneration= If true, no adapted mesh is generated (useful to compute only a metric).

periodic= Writing periodic=[[4,y],[2,y],[1,x],[3,x]]; builds an adapted periodic mesh.
The sample build a biperiodic mesh of a square. (see periodic finite element spaces [6] and
see sphere. edp for a full example)

Example 5.6 uniformmesh.edp
We can use the command adaptmesh to build uniform mesh with a contant mesh size.
So to buid a mesh with a constant mesh size equal to 31—0 do

mesh Th=square(2,2); // to have initial mesh
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plot(Th,wait=1,ps="square-0.eps");
Th= adaptmesh(Th,1./3As writing

0.,IsMetric=1,nbvx=10000); //
plot(Th,wait=1,ps="square-1.eps");

Th= adaptmesh(Th,1./30.,IsMetric=1,nbvx=10000); // more the one time du to
Th= adaptmesh(Th,1./30.,IsMetric=1,nbvx=10000) ; // adaptation bound maxsubdiv=

plot(Th,wait=1,ps="square-2.eps");
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Figure 5.17: Initial mesh Figure 5.18: first iteration Figure 5.19: last iteration

5.6 Trunc

Two operators have been introduce to remove triangles from a mesh or to divide them. Operator
trunc has two parameters

label= sets the label number of new boundary item (one by default)
split= sets the level n of triangle splitting. each triangle is splitted in n X n ( one by default).
To create the mesh Th3 where alls triangles of a mesh Th are splitted in 3x3 , just write:

mesh Th3 = trunc(Th,1,split=3);

The truncmesh.edp example construct all “trunc” mesh to the support of the basic function of

the space Vh (cf. abs(u)>0), split all the triangles in 55, and put a label number to 2 on new
boundary.

mesh Th=square(3,3);
fespace Vh(Th,P1);

Vh u;
int i,n=u.n;
u=0;
for (i=0;i<n;i++) // all degree of freedom
{
ul][i]=1; // the basic function i

plot(u,wait=1);
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mesh Shl=trunc(Th,abs(u)>1.e-10,split=5,label=2);

plot(Th,Shl,wait=1,ps="trunc"+i+".eps"); // plot the mesh of

// the function’s support
ull[i]=0; // reset
}

Figure 5.20: mesh of support the function P1 Figure 5.21: mesh of support the function P1
number 0, splitted in 5x5 number 6, splitted in 5x5

5.7 Splitmesh

Another way to split mesh triangles is to use splitmesh, for example:

{ // new stuff 2004 splitmesh (version 1.37)
assert(version>=1.37);
border a(t=0,2*%pi){ x=cos(t); y=sin(t);label=1;}
mesh Th=buildmesh(a(20));

plot(Th,wait=1,ps="nosplitmesh.eps™); // see figure [5.2
Th=splitmesh(Th, 1+5*(square(x-0.5)+y*y));
plot (Th,wait=1,ps="splitmesh.eps"); // see figure [5.2

5.8 Meshing Examples
Example 5.7 (Two rectangles touching by a side)

border a(t=0,1){x=t;y=0;};
border b(t=0,1){x=1;y=t;};
border c(t=1,0){x=t ;y=1;};
border d(t=1,8){x = 0; y=t;};
border cl(t=0,1){x=t ;y=1;};
border e(t=0,0.2){x=1;y=1+t;};
border f(t=1,0){x=t ;y=1.2;};
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Figure 5.22: initial mesh

triangles.

border g(t=0.2,0){x=0;y=1+t;};
int n=1;
mesh th = buildmesh(a(10*n)+b(10*n)+c(10*n)+d(10*n));

mesh TH = buildmesh ( c1(10*n) + e(5*n) + £(10*n) + g(5*n) );

plot (th,TH,ps="TouchSide.esp");

Example 5.8 (NACA0012 Airfoil)

border upper(t=0,1) { x = t;
y = 0.17735*sqrt(t)-0.075597*t
- 0.212836%(t"2)+0.17363*(t"3)-0.06254*(t"4); }
border lower(t=1,0) { x = t;
y= -(0.17735*sqrt(t)-0.075597*t
-0.212836%(t"2)+0.17363*(t"3)-0.06254*(t"4)); }
border c(t=0,2*pi) { x=0.8*cos(t)+0.5; y=0.8*sin(t); }
mesh Th = buildmesh(c(30)+upper(35)+lower(35));
plot (Th,ps="NACA0012.eps" ,bw=1);

Example 5.9 (Cardioid)

real b =1, a = b;

border C(t=0,2*pi) { x=(a+b)*cos(t)-b*cos((a+b)*t/b);
y=(Ca+b) *sin(t)-b*sin((a+b)*t/b); }

mesh Th = buildmesh(C(50));

plot (Th,ps="Cardioid.eps",bw=1);
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Figure 5.23: all left mesh triangle is split con-
formaly in int (1+5* (square (x-0.5)+y*y) 2

5.26
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Figure 5.24: Two rectangles touching by a side Figure 5.25: NACAO0012 Airfoil

Example 5.10 (Cassini Egg)

border C(t=0,2*pi) { x=(2*cos(2*t)+3)*cos(t);
y=(2*cos(2*t)+3)*sin(t); }
mesh Th = buildmesh(C(50));
plot (Th,ps="Cassini.eps",bw=1); // Fig.

Figure 5.26: Domain with Cardioid curve Figure 5.27: Domain with Cassini Egg curve
boundary boundary

Example 5.11 (By cubic Bezier curve)

// A cubic Bezier curve connecting two points with two control points
func real bzi(real p0,real pl,real ql,real g2,real t)
{
return p0*(1-t)"3+ql*3*(1-t) "2*t+q2*3*(1-t)*t " 24+pl*t"3;
}

real[int] p0®0=[0,1], p01=[0,-1], q00=[-2,0.1], q01=[-2,-0.5];
real[int] pl11=[1,-0.9], ql0=[0.1,-0.95], ql1=[0.5,-1];
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real[int] p21=[2,0.7], q20=[3,-0.4], q21=[4,0.5];

real[int] q30=[0.5,1.1], q31=[1.5,1.2];

border G1(t=0,1) { x=bzi(p®O[0],p01[0],q00[0],q01[0],t);
y=bzi(p0O®[1],p®1[1],q00[1],q01[1],t); }

border G2(t=0,1) { x=bzi(p®1[0],pl1[0],ql0[0],qll[0],t);
y=bzi(p01[1],p11[1],ql10[1],ql1[1],t); }

border G3(t=0,1) { x=bzi(p11[0],p21[0],g20[0]1,q21[0],t);
y=bzi(pl11[1],p21[1]1,q20[1],921[1],t); }

border G4(t=0,1) { x=bzi(p21[0],p00[0],q30[0],q31[0],t);
y=bzi(p21[1],p00[1],q30[1],q31[1],t); 1}

int m=5;
mesh Th = buildmesh(G1(2*m)+G2(m)+G3(3*m)+G4(m)) ;
plot (Th,ps="Bezier.eps",bw=1); // Fig

Example 5.12 (Section of Engine)

real a= 6., b= 1., c=0.5;

border L1(t=0,1) { x= -a; y= 1+b - 2*(1+b)*t; }

border L2(t=0,1) { x= -a+2*a*t; y= -1-b*(x/a)*(x/a)*(3-2*%abs(x)/a );}
border L3(t=0,1) { x= a; y=-1-b + (1+ b )*t; }

border L4(t=0,1) { x= a - a*t; y=0; }

border L5(t=0,pi) { x= -c*sin(t)/2; y=c/2-c*cos(t)/2; }

border L6(t=0,1) { x= a*t; y=c; }

border L7(t=0,1) { x= a; y=c + (1+ b-c )*t; }

border L8(t=0,1) { x= a-2%*a*t; y= l+b*(x/a)*(x/a)*(3-2*abs(x)/a); }

mesh Th = buildmesh(L1(8)+L2(26)+L3(8)+L4(20)+L5(8)+L6(30)+L7(8)+L8(30));
plot(Th,ps="Engine.eps",bw=1); // Fig.
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Figure 5.29: Section of Engine

Figure 5.28: Boundary drawed by Bezier curves

Example 5.13 (Domain with U-shape channel)

real d = 0.1; // width of U-shape
border L1(t=0,1-d) { x=-1; y=-d-t; }

border L2(t=0,1-d) { x=-1; y=1-t;

border B(t=0,2) { x=-1+t; y=-1; }
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border C1(t=0,1) { x=t-1; y=d; }
border C2(t=0,2*d) { x=0; y=d-t; }
border C3(t=0,1) { x=-t; y=-d;
border R(t=0,2) { x=1; y=-1+t; }
border T(t=0,2) { x=1-t; y=1; }
int n = 5;

mesh Th = buildmesh (L1(n/2)+L2(n/2)+B(n)+C1(n)+C2(3)+C3(n)+R(M)+T(n));

plot (Th,ps="U-shape.eps",bw=1);

Example 5.14 (Domain with V-shape cut)

real dAg = 0.01;

border C(t=dAg,2*pi-dAg) { x=cos(t); y=sin(t); };
real[int] pa(2), pb(2), pc(2);

pa[0] = cos(dAg); pal[l]l = sin(dAg);

pb[0] = cos(2*pi-dAg); pb[l] = sin(2*pi-dAg);
pcl0] = 0; pc[l] = 0;

/7 Fig

// angle of V-shape

border segl(t=0,1) { x=(1-t)*pb[0]+t*pc[0]; y=(1-t)*pb[1]+t*pc[1]; };
border seg2(t=0,1) { x=(1-t)*pc[0]+t*pal[0]; y=(1-t)*pc[l]+t*pal[l]; };

mesh Th = buildmesh(segl(20)+C(40)+seg2(20));
plot (Th,ps="V-shape.eps",bw=1);
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Figure 5.30: Domain with U-shape channel Figure 5.31: Domain with V-shape cut changed

changed by d by dAg

Example 5.15 (Smiling face)

real d=0.1;
int m=5;
real a=1.5, b=2, c=0.7, e=0.01;
border F(t=0,2*pi) { x=a*cos(t); y=b*sin(t); }
border E1(t=0,2%pi) { x=0.2%cos(t)-0.5; y=0.2*sin(t)+0.5; }
border E2(t=0,2%*pi) { x=0.2%cos(t)+0.5; y=0.2%sin(t)+0.5; }
func real st(real t) {
return sin(pi*t)-pi/2;

}

border Cl(t=-0.5,0.5) { x=(1-d)*c*cos(st(t)); y=(1-d)*c*sin(st(t)); }
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border C2(t=0,1){x=((1-d)+d*t)*c*cos(st(0.5));y=((1-d)+d*t)*c*sin(st(0.5));}
border C3(t=0.5,-0.5) { x=c*cos(st(t)); y=c*sin(st(t)); }
border C4(t=0,1) { x=(1-d*t)*c*cos(st(-0.5)); y=(1-d*t)*c*sin(st(-0.5));}

border CO(t=0,2%pi) { x=0.1%cos(t); y=0.1%*sin(t); }
mesh Th=buildmesh(F(10*m)+C1(2*m)+C2(3)+C3(2*m)+C4(3)
+CO(M)+E1(-2*m)+E2(-2*m)) ;
plot (Th,ps="SmileFace.eps",bw=1); // see Fig.

}

Example 5.16 (3point bending)

// Square for Three-Point Bend Specimens fixed on Fixl, Fix2
// It will be loaded on Load.
real a=1, b=5, c=0.1;
int n=5, m=b*n;
border Left(t=0,2%a) { x=-b; y=a-t; }
border Botl(t=0,b/2-c) { x=-b+t; y=-a; }
border Fix1(t=0,2%c) { x=-b/2-c+t; y=-a; }
border Bot2(t=0,b-2*c) { x=-b/2+c+t; y=-a; }
border Fix2(t=0,2%c) { x=b/2-c+t; y=-a; }
border Bot3(t=0,b/2-c) { x=b/2+c+t; y=-a; }
border Right(t=0,2*%a) { x=b; y=-a+t; }
border Topl(t=0,b-c) { x=b-t; y=a; }
border Load(t=0,2*c) { x=c-t; y=a; }
border Top2(t=0,b-c) { x=-c-t; y=a; }
mesh Th = buildmesh(Left(n)+Botl(m/4)+Fix1(5)+Bot2(m/2)+Fix2(5)+Bot3(m/4)
+Right(n)+Topl(m/2)+Load(10)+Top2(m/2));
plot(Th,ps="ThreePoint.eps",bu=1); // Fig.
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5.9 How to change the label of elements and border elements
of a mesh in FreeFem++ ?

Changing the label of elements and border elements will be done using the keyword change. The
parameters for this command line are for a two dimensional and dimensional case:

label = is a vector of integer that contains successive pair of the old label number to the new
label number .

region = is a vector of integer that contains successive pair of the old region number to new
region number.

These vectors are composed of n; successive pair of number O, N where n; is the number (label or
region) that we want to change. For example, we have

label
region

[019N1""5 Onlaan] (53)
[OI’NU“-, Onlaan] (5'4)

where O; is the " old number (label or region) to change in new number N;.
An example of using this function is given in ”glumesh2D.edp™:

Example 5.17 (glumesh2D.edp)

1:

2: mesh Thl=square(10,10);

3: mesh Th2=square(20,10, [x+1,y]);

4: verbosity=3;

5: int[int] r1=[2,0], r2=[4,0];

6: plot(Thl,wait=1);

7: Thl=change(Thl,label=rl); // Change the label of Edges of Thl with label 2 in 0.
8: plot(Thl,wait=1);

9: Th2=change(Th2,label=r2); //  Change the label of Edges of Th2 with label 4 in 0.
10: mesh Th=Thl+Th2; // “‘gluing together’’ of meshes Thl and Th2
11: cout << " nb lab = " << intl1d(Thl,1,3,4)(l./lenEdge)+int1d(Th2,1,2,3)(1l./lenEdge)

12: << " == " << int1d(Th,1,2,3,4)(1l./lenEdge) <<" == " << ((10+20)+10)*2 << endl;
13: plot(Th,wait=1);

14: fespace Vh(Th,P1);

15: macro Grad(u) [dx(u),dy(uw]; // definition of a macro
16: Vh u,v;

17: solve P(u,v)=int2d(Th) (Grad(u) ’*Grad(v))-int2d(Th) (v)+on(1,3,u=0);

18: plot(u,wait=1);

“gluing” different mesh In line 10 of previous file, the method to “gluing” different mesh of the
same dimension in FreeFem++ is using. This function is just called using the symbol addition ”+”
between meshes. The method implemented need that the point in adjacent mesh are the same.
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5.10 Mesh in three dimensions

5.10.1 Read/Write Statements for a Mesh in 3D

In three dimensions, the file mesh format supported for input and output files by FreeFem++ are
the extension .msh and .mesh. These formats are described in the chapter on Mesh Files in two
dimensions.

extension file .msh The structure of the files with extension .msh in 3D is given in Table In
this structure, n, denotes the number of vertices, #,.; the number of tetrahedra and »,,; the number

of triangles For each vertex ¢, i = 1,---,n,, we denote by (¢}.q).q.) the x-coordinate, the y-
coordinate and the z-coordinate. Each tetrahedra Ty, k = 1, - - , i, has four vertices ¢*', ¢, ¢*, g".
The boundary consists of an union of triangles. Each triangle be;, j = 1,--- , n,; has three vertices
qjl’ qu’ q]3
n, Nyer Nyri
q! q, q! Vertex label
q a; q Vertex label
qy gy’ q- Vertex label
1, 1, 13 14 region label
24 25 23 24 region label
(Mier)r (Mier)2 (Mger)s (Mrer)a region label
1; 1, 15 boundary label
24 25 23 boundary label
(mri)y  (n4:)2  (ny;)3  boundary label

Table 5.2: The structure of mesh file format “.msh’ in three dimensions.

extension file .mesh The data structure for a three dimensional mesh is composed of the data
structure presented in Section [12.1] and a data structure for tetrahedra. The tetrahedra of a three
dimensional mesh are refereed using the following field:

e Tetrahedra
(I) NbOfTetrahedrons
(eavertex/y j=14), (I) Ref¢' 4 i=1,NbOfTetrahedrons )

This field is express with the notation of Section[I2.1]

5.10.2 TeGen: A tetrahedral mesh generator

TetGen TetGen is a software developed by Dr. Hang Si of Weierstrass Institute for Applied Analysis and
Stochastics of Berlin in Germany [36l]. TetGen is a free for research and non-commercial uses. For any
commercial licence utilization, a commercial licence is available upon request to Hang Si.
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This software is a tetrahedral mesh generator of a three dimensional domain defined by its boundary. The
input domain take into account a polyhedral or a piecewise linear complex. This tetrahelization is a con-
strained Delaunay tetrahelization.

The method used in TetGen to control the quality of the mesh is a Delaunay refinement due to Shewchuk
[37]. The quality measure of this algorithm is the Radius-Edge Ratio (see Section 1.3.1 [36] for more de-
tails). A theoretical bounds of this ratio of the algorithm of Shewchuk is obtained for a given complex of
vertices, constrained segments and facets of surface mesh, with no input angle less than 90 degree. This
theoretical bounds is 2.0.

The launch of Tetgen is done with the keyword tetg. The parameters of this command line is:

label = is a vector of integer that contains the old labels number at index 2i and the new labels number at
index 2i + 1 of Triangles. This parameters is initialized as label for the keyword change (5.3)).

switch = A string expression. This string corresponds to the command line switch of Tetgen see Section
3.2 of [36].

nbofholes= Number of holes (default value size of holelist/3 (version 3.11)).

holelist = This array correspond to holelist of tetgenio data structure [36]. A real vector of size 3 X
nbofholes. In TetGen, each hole is associated with a point inside this domain. This vector is
x’ll, y’l’, z’f, x’21, yg, z’zl, --+, where xf.’, yl'.’, sz is the associated point with the i hole.

nbofregions = Number of regions (size of regionlist/5 (version 3.11)).

regionlist = This array corresponds to regionlist of tetgenio data structure [36]. The attribute and the
volume constraint of region are given in this real vector of size 5 x nbofregions. The i" region
is described by five elements: x—coordinate, y—coordinate and z—coordinate of a point inside this
domain (x;, y;, z;); the attribute (at;) and the maximum volume for tetrahedra (mvol;) for this region.
The regionlist vector is: xy,y1, 21, at;, mvoly, x2, 2,22, aty,mvoly, - - -

nboffacetcl= Number of facets constraints size of facetcl/2 (version 3.11)).

facetcl= This array corresponds to facetconstraintlist of tetgenio data structure [36]. The i facet con-
straint is defined by the facet marker Re fl.f “ and the maximum area for faces marea{ “. The facetcl
array is: Refifc, marea{c, Refifc, marea';c, .
lected.

--. This parameters has no effect if switch q is not se-

Principal switch parameters in TetGen:
p Tetrahedralization of boundary.

q Quality mesh generation. The bound of Radius-Edge Ratio will be given after the option q. By
default, this value is 2.0.

a Construct with the volumes constraints on tetrahedra. These volumes constraints are defined with the
bound of the previous switch g or in the parameter regionlist.

A Attributes reference to region given in the regionlist. The other regions have label 0. The option
AA gives a different label at each region. This switch work with the option "p’. If option 1’ is used,
this switch has no effect.

r Reconstructs and Refines a previously generated mesh. This character is only used with the command
line tetgreconstruction.
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Y This switch allow to preserve the mesh on the exterior boundary. This switch must be used to ensure
conformal mesh between two adjacents mesh.

YY This switch allow to preserve the mesh on the exterior and interior boundary.
C The consistency of the result’s mesh is testing by TetGen.

CC The consistency of the result’s mesh is testing by TetGen and also checks constrained delaunay mesh
(if ’p’ switch is selected) or the consistency of Conformal Delaunay (if ’q’ switch is selected).

V Give information of the work of TetGen. More information can be obtained in specified "VV’ or
'VVV’,

Q Quiet: No terminal output except errors

M The coplanar facets are not merging.

T Set a tolerance for coplanar test. The default value is 1e — 8.
d Itersections of facets are detected.

To obtain a tetrahedral mesh generator with tetgen, we need the surface mesh of three dimensional domain.
We give now the command line in FreeFem++ to construct these meshes.

keyword: “movemesh23” A simple method to construct a surface is to place a two dimensional domain
in a three dimensional space. This corresponding to move the domain by a displacement vector of this form
DO(x,y) = (©1(x,y), DP2(x,y), D3(x,y)). The result of moving a two dimensional mesh Th2 by this three
dimensional displacement is obtained using:

mesh3 Th3 = movemesh23(Th2, transfo=[®1,P2,D3]);

The parameters of this command line are:

transfo = [®1, ®2, D3] setthe displacement vector of transformation @(x, y) = [®1(x, y), D2(x, y), D3(x, y)].
label = set integer label of triangles

orientation= set integer orientation of mesh.

ptmerge = A real expression. When you transform a mesh, some points can be merged. This parameters
is the criteria to define two merging points. By default, we use

ptmerge = le -7 Vol(B),

where B is the smallest axis parallel boxes containing the discretized domain of Q and Vol(B) is the
volume of this box.

We can ‘do a ‘gluing” of surface meshes using the process given in Section[5.9] An example to obtain a
three dimensional mesh using the command line tetg and movemesh23 is given in the file tetgencube.edp.

Example 5.18 (tetgencube.edp)

// file tetgencube.edp
load "msh3"
load "tetgen"
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real x0,x1,y0,yl;
x0=1.; x1=2.; y0=0.; yl=2%*pi;
mesh Thsql = square(5,35, [x0+(x1-x0)*x,y0+(yl-y®)*y]);

funec ZZ1lmin = 0;
func ZZIlmax = 1.5;
func XX1 = x;
func YY1 = y;

mesh3 Th31lh = movemesh23(Thsql, transfo=[XX1,YY1,ZZ1lmax]);
mesh3 Th31b = movemesh23(Thsql, transfo=[XX1,YY1,ZZ1min]);

/SIS
x0=1.; x1=2.; y0=0.; yl=1.5;
mesh Thsq2 = square(5,8, [x0+(x1-x0) *x,y0+(y1l-y0)*y]);

func 772 = y;

func XX2 = x;

funec YY2min = 0.;
func YY2max = 2%pi;

mesh3 Th32h = movemesh23(Thsq2, transfo=[XX2,YY2max,ZZ2]);
mesh3 Th32b = movemesh23(Thsq2, transfo=[XX2,YY2min,ZZ2]);

[ SIS S
x0=0.; x1=2*pi; y0=0.; yl=1.5;
mesh Thsq3 = square(35,8, [x0+(x1-x0)*x,y0+(yl-y0)*y]);
func XX3min = 1.;
func XX3max = 2.;
func YY3 = x;
func 773 = y;

mesh3 Th33h
mesh3 Th33b

movemesh23(Thsq3, transfo=[XX3max,YY3,ZZ3]);
movemesh23(Thsq3, transfo=[XX3min, YY3,ZZ3]);

VAR VYV siiia
mesh3 Th33 = Th31h+Th31b+Th32h+Th32b+Th33h+Th33b; // "gluing" surface meshs to obtain
the surface of cube
savemesh(Th33,"Th33.mesh");

// build a mesh of a axis parallel box with TetGen
real[int] domain =[1.5,pi,0.75,145,0.0025];
mesh3 Thfinal = tetg(Th33,switch="paAAQY",regionlist=domain); // Tetrahelize the
interior of the cube with tetgen
savemesh(Thfinal, "Thfinal.mesh");

// build a mesh of a half cylindrical shell of interior radius 1. and exterior radius
2 and heigh 1.5

func mv2x = x*cos(y);

func mv2y = x*sin(y);

func mv2z = z;

mesh3 Thmv2 = movemesh3(Thfinal, transfo=[mv2x,mv2y,mv2z]);
savemesh(Thmv2,"halfcylindricalshell.mesh")

The command movemesh is describe in the following section.
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The keyword ‘‘tetgtransfo” This keyword correspond to a composition of command line tetg and
movemesh23:

tetgtransfo( Th2, transfo= [®1, ®2, ®3] ), .-+ ) = tetg( Th3surf, --- ),

where Th3surf = movemesh23( Th2,tranfo=[®1, ®2, ®3] ) and Th2 is the input two dimensional mesh of
tetgtransfo.
The parameters of this command line are on the one hand the parameters:
label, switch, regionlist nboffacetcl facetcl
of keyword tetg and on the other hand the parameter ptmerge of keyword movemesh23.

Remark: To use tetgtransfo, the result’s mesh of movemesh23 must be an closed surface and define
one region only. Therefore, the parameter regionlist is defined for one region.
An example of this keyword can be found in line of file “buildlayers.edp”

The keyword ’tetgconvexhull” FreeFem++ , using tetgen, is able to build a tetrahelization from a set
of points. This tetrahelization is a Delaunay mesh of the convex hull of the set of points.

The coordinates of the points can be initialized in two ways. The first is a file that contains the coordinate
of points X; = (x;,y;,z;). This files is organized as follows:

ny
X1 Y1 2

X2 Y2 22

Xn, Yn, Zn,

The second way is to give three arrays that correspond respectively to the x—coordinates, y—coordinates and
z—coordinates.

The parameters of this command line are

switch = A string expression. This string corresponds to the command line switch of TetGen see Section
3.2 of [34].

reftet = An integer expression. set the label of tetrahedra.
label = An integer expression. set the label of triangles.

In the string switch, we can’t used the option ’p’ and ’q’ of tetgen.

5.10.3 Reconstruct/Refine a three dimensional mesh with TetGen

Meshes in three dimension can be refined using TetGen with the command line tetgreconstruction.
The parameter of this keyword are

region= an integer array that allow to change the region number of tetrahedra. This array is defined as the
parameter reftet in the keyword change.

label= an integer array that allow to change the label of boundary triangles. This array is defined as the
parameter label in the keyword change.

sizevolume= a reel function. This function allows to constraint volume size of tetrahedra in the domain.
(see example [5.31]to build 3d adapt mesh )
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The parameter switch nbofregions, regionlist, nboffacetcl and facetcl of the command line
which call TetGen (tetg) is used for tetgrefine.
In the parameter switch=, the character 'r’ should be used without the character 'p’. For instance, see the
manual of TetGen [36]] for effect of 'r’ to other character.

The parameter regionlist allows to define a new volume constraint in the region. The label in the
regionlist will be the previous label of region. This parameter and nbofregions can’t be used with

parameter sizevolume.
Example:

Example 5.19 (refinesphere.edp)

load "msh3"
load "tetgen"
load "medit"

mesh Th=square(10,20, [x*pi-pi/2,2*y*pi]);

func fl =cos(x)*cos(y);
func f2 =cos(x)*sin(y);
func f3 sin(x);

func flx=sin(x)*cos(y);
func fly=-cos(x)*sin(y);
func f2x=-sin(x)*sin(y);
func f2y=cos(x)*cos(y);
func f3x=cos(x);

func f3y=0;

func ml11=f1x"2+£f2x"2+£3x"2;

func m21=flx*fly+£2x*f2y+£f3x*f3y;

func m22=fly " 2+f2y"2+£f3y"2;

func perio=[[4,y],[2,y],[1,x],[3,x]];

real hh=0.1;
real vv= 1/square(hh);
verbosity=2;

/7

// file refinesphere.edp

// 1, frac-pi2[x]0, 2x]
// a parametrization of a sphere

partiel derivative of the parametrization DF

// M = DF'DF

Th=adaptmesh(Th,m11*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,ml1*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);

plot(Th,wait=1);

verbosity=2;

real Rmin = 1.;

func flmin = Rmin*fl;
func f2min Rmin*£2;
func f3min = Rmin*£f3;

// construction of the surface of spheres

mesh3 Th3=movemesh23(Th,transfo=[flmin, f2min, f3min]);

real[int] domain = [0.,0.,0.,145,0.01];

mesh3 Th3sph=tetg(Th3, switch="paAAQYY" ,nbofregions=1,regionlist=domain);

int[int] newlabel = [145,18];
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real[int] domainrefine = [0.,0.,0.,145,0.0001];
mesh3 Th3sphrefine=tetgreconstruction(Th3sph,switch="raAQ",reftet=newlabel,
nbofregions=1,regionlist=domain,refinesizeofvolume=0.0001);

int[int] newlabel2 = [145,53];

func fsize = 0.01/(C 1 + 5*sqrt( (x-0.5)"2+(y-0.5)"2+(z-0.5)"2) )"3);

mesh3 Th3sphrefine2=tetgreconstruction(Th3sph,switch="raAQ",reftet=newlabel2,
sizeofvolume=fsize);

medit (‘ ‘sphere’’,Th3sph);
medit (‘ ‘isotroperefine’’ ,Th3sphrefine);
medit(‘ ‘anisotroperefine’’,Th3sphrefine2);

5.10.4 Moving mesh in three dimensions

Meshes in three dimensions can be translated rotated and deformed using the command line movemesh
as in the 2D case (see section movemesh in chapiter 5). If Q is tetrahedrized as T4(€2), and ®(x,y) =
(@1(x,y,2), ®1(x,y,2), D3(x,y,7)) is a displacement vector then ®(T},) is obtained by

mesh3 Th = movemesh( Th, transfo=[®1, ®2, ®3], ... );

The parameters of movemesh in three dimensions are
transfo = [®1,®2, ®3] setthe displacement vector of 3D transformation [D1(x, y, 2), D2(x, v, z), P3(x, v, 2)].
region = set integer label of tetrahedra. O by default.

label = set the label of faces of border. This parameters is initialized as label for the keyword change
G.3).

facemerge = An integer expression. When you transform a mesh, some faces can be merged. This pa-
rameters equals to one if merge’s faces is considered. Otherwise equals to zero. By default, this
parameter is equals to 1.

ptmerge = A real expression. When you transform a mesh, some points can be merged. This parameters
is the criteria to define two merging points. By default, we use

ptmerge = le —7 Vol(B),

where B is the smallest axis parallel boxes containing the discretion domain of Q and Vol(B) is the
volume of this box.

An example of this command can be found in the file ”Poisson3d.edp” located in the directory examples++-
3d.

5.10.5 Layer mesh

In this section, we present the command line to obtain a Layer mesh: buildlayermesh. This mesh is
obtained by extending a two dimensional mesh in the z-axis.

The domain €34 defined by the layer mesh is equal to Q35 = Qog X [zmin, zmax] where 4 is the domain
define by the two dimensional mesh, zmin and zmax are function of Q;; in R that defines respectively the
lower surface and upper surface of Q3.
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upper surface

Middle surface

ﬁ -
Lower surface

Figure 5.34: Example of Layer mesh in three dimension.

For a vertex of a two dimensional mesh Vl.Zd = (x;,y;), we introduce the number of associated vertices in
the z—axis M; + 1. We denote by M the maximum of M; over the vertices of the two dimensional mesh.
This value are called the number of layers (if Vi, M; = M then there are M layers in the mesh of Q3,). V?d
generated M + 1 vertices which are defined by

Vj=0,....M, V4 = (xi, yir 0i(zi ),

.....

zmax(V*?) — zmin(V>%)
zij=Jjoa+ Zmin(Vl-Zd), da = J m L.

The function 6;, defined on [zmin(Vl.Zd), zmax(ViZd)], is given by

9,‘() ifz = Zmin(V.Zd),
0i(z) = T '
0;; itz €l0;j-1,6;;l,

.....

Set a triangle K = (V24, V4,
surface (resp. on the lower surface) of layer mesh: (VfldM, Vl.32dM,

Also K is associated with M volume prismatic elements which are defined by

Vl.23d) of the two dimensional mesh. K is associated with a triangle on the upper

V%‘fM) (resp. (Vf;fo, vf;fo, ngfo)).

Vi=0,....M, Hj=Vi, vl v vil VYL VAL
Theses volume elements can have some merged point:
e ( merged point : prism
e 1 merged points : pyramid
e 2 merged points : tetrahedra
¢ 3 merged points : no elements

The elements with merged points are called degenerate elements. To obtain a mesh with tetrahedra, we de-
compose the pyramid into two tetrahedra and the prism into three tetrahedra. These tetrahedra are obtained
by cutting the quadrilateral face of pyramid and prism with the diagonal which have the vertex with the
maximum index (see [8]] for the reaspn of this choice).
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The triangles on the middle surface obtained with the decomposition of the volume prismatic elements are
the triangles generated by the edges on the border of the two dimensional mesh. The label of triangles on
the border elements and tetrahedra are defined with the label of these associated elements.

The arguments of buildlayermesh is a two dimensional mesh and the number of layers M.
The parameters of this command are:

zbound = [zmin,zmax] where zmin and zmax are functions expression. Theses functions define the lower
surface mesh and upper mesh of surface mesh.

coef = A function expression between [0,1]. This parameter is used to introduce degenerate element in
mesh. The number of associated points or vertex Vl.2d is the integer part of coef' (Vfd)M .

region = This vector is used to initialized the region of tetrahedra. This vector contain successive pair of
the 2d region number at index 2i and the corresponding 3d region number at index 2i + 1, like (5.3).
become the

labelmid = This vector is used to initialized the 3d labels number of the vertical face or mid face form
the 2d label number. This vector contains successive pair of the 2d label number at index 2i and the
corresponding 3d label number at index 2i + 1, like (5.3).

labelup = This vector is used to initialized the 3d label numbers of the upper/top face form the 2d region
number. This vector contains successive pair of the 2d region number at index 2i and the correspond-
ing 3d label number at index 2i + 1, like (5.3).

labeldown = Same as the previous case but for the lower/down face label .

Moreover, we also add post processing parameters that allow to moving the mesh. These parameters corre-
spond to parameters transfo, facemerge and ptmerge of the command line movemesh.

The vector region, labelmid, labelup and 1abeldown These vectors are composed of n; successive pairs
of number O;, N; where n; is the number (label or region) that we want to get.

An example of this command line is given in buildlayermesh. edp.

Example 5.20 (cube.idp)

load "medit"
load "msh3"
func mesh3 Cube(int[int] & NN,real[int,int] &BB ,int[int,int] & L)
{
// first build the 6 faces of the hex.
real x0=BB(0,0),x1=BB(0,1);
real y0=BB(1,0),y1=BB(1,1);
real z0=BB(2,0),z1=BB(2,1);

int nx=NN[O0],ny=NN[1],nz=NN[2];
mesh Thx = square(nx,ny, [x0+(x1-x0)*x,y0+(y1-y0)*y]);

int[int] rup=[0,L(2,1)], rdown=[0,L(2,0)],
rmid=[1,L(1,0), 2,L(®,1), 3, L(1,1), 4, L(0,0) 1;
mesh3 Th=buildlayers(Thx,nz, zbound=[z0,z1],
labelmid=rmid, labelup = rup,
labeldown = rdown);

return Th;
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The unit cube example:

include "Cube.idp"

int[int] NN=[10,10,10]; // the number of step in each direction
real [int,int] BB=[[0,1],[0,1],[0,1]]; // bounding box
int [int,int] L=[[1,2],[3,4]1,[5,6]1]; // the label of the 6 face left,right,

// front, back, down, right
mesh3 Th=Cube(NN,BB,L);
medit ("Th",Th); // see figure [5.3

The cone example (an axisymtric mesh on a triangle with degenerateness).

Example 5.21 (cone.edp)

load "msh3"
load "medit"
// cone using buildlayers with a triangle
real RR=1,HH=1;
border Taxe(t=0,HH) {x=t;y=0;label=0;};
border Hypo(t=1,0){x=HH*t;y=RR*t;label=1;};
border Vert(t=0,RR) {x=HH;y=t;label=2;};
int nn=10; real h= 1./nn;
mesh Th2=buildmesh( Taxe(HH*nn)+ Hypo(sqrt(HH*HH+RR*RR)*nn) + Vert(RR*nn) ) ;

plot(Th2,wait=1); // the 2d mesh
int MaxLayersT=(int(2*pi*RR/h)/4)*4; // number of layers
real zminT = 0, zmaxT = 2%pi; // height 2 x pi

func fx= y*cos(z); func fy= y*sin(z); func fz= x;
int[int] r1T=[0,0], r2T=[0,0,2,2], r4T=[0,2];
// trick function:
func deg= max(.01,y/max(x/HH,0.4) /RR); // the function defined the proportion
// of number layer close to axis with reference MaxLayersT
mesh3 Th3T=buildlayers(Th2,coef= deg, MaxLayersT,
zbound=[zminT, zmaxT] , transfo=[£fx, fy, fz],
facemerge=0, region=rlT, labelmid=r2T);
medit("cone",Th3T); // see figure

Example 5.22 (buildlayermesh.edp)

// file buildlayermesh.edp

load "msh3"
load "tetgen"

// Test 1
int C1=99, (C2=98; // could be anything
border CO1(t=0,pi){ x=t; y=0; label=1;}
border C02(t=0,2%pi){ x=pi; y=t; label=1;}
border C03(t=0,pi){ x=pi-t; y=2%pi; label=1;}

border C04(t=0,2%pi){ x=0; y=2*pi-t; label=1;}
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Figure 5.35: the mesh of a cube made with Figure 5.36: the mesh of a cone made with
cube.edp cone.edp

border C11(t=0,0.7){ x=0.5+t; y=2.5; label=C1;}
border C12(t=0,2){ x=1.2; y=2.5+t; 1label=C1;}
border C13(t=0,0.7){ x=1.2-t; y=4.5; label=C1;}
border C14(t=0,2){ x=0.5; y=4.5-t; label=Cl;}
border C21(t=0,0.7){ x= 2.3+t; y=2.5; 1label=C2;}
border C22(t=0,2){ x=3; y=2.5+t; 1label=C2;}
border C23(t=0,0.7){ x=3-t; y=4.5; 1label=C2;}
border C24(t=0,2){ x=2.3; y=4.5-t; label=C2;}

mesh Th=buildmesh( CO1(10)+CO2(10)+ CO3(10)+CO4(10)
+ C11(5)+C12(5)+C13(5)+C14(5)
+ C21(-5)+C22(-5)+C23(-5)+C24(-5));

mesh Ths=buildmesh( CO1(10)+CO2(10)+ CO3(10)+CO4(10)
+ C11(5)+C12(5)+C13(5)+C14(5) );

// construction of a box with one hole and two regions
func zmin=0.;
func zmax=1.;
int MaxLayer=10;

func XX = x*cos(y);
func YY = x*sin(y);
func 727 = z;

int[int] r1=[0,41], r2=[98,98, 99,99, 1,56];
int[int] r3=[4,12]; // The triangles of uppper surface mesh
// generated by the triangle in the 2D region of mesh Th of label 4 as label 12.
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int[int] r4=[4,45]; // The triangles of lower surface mesh
// generated by the triangle in the 2D region of mesh Th of label 4 as label 45.

mesh3 Th3=buildlayers( Th, MaxLayer, zbound=[zmin,zmax], region=rl,
labelmid=r2, labelup = r3, labeldown = r4 );
savemesh(Th3, "box2regionlhole.mesh");
// construction of a sphere with TetGen
func XX1 = cos(y)*sin(x);
func YY1 sin(y)*sin(x);
func ZZ1 = cos(x);
string test="paACQ";
cout << "test=" << test << endl;
mesh3 Th3sph=tetgtransfo(Ths,transfo=[XX1,YY1,ZZ1],switch=test,nbofregions=1,
regionlist=domain);
savemesh(Th3sph, "sphere2region.mesh");

5.11 Meshing examples

Example 5.23 (lac.edp) // file "lac.edp”

load ‘‘msh3’’

int nn=5;

border cc(t=0,2%pi){x=cos(t);y=sin(t);label=1;}

mesh Th2 = buildmesh(cc(100));

fespace Vh2(Th2,P2);

Vh2 ux,uy,p2;

int[int] rup=[0,2], rdlow=[0,1], rmid=[1,1,2,1,3,1,4,1];
func zmin = 2-sqrt(4- (X*x+y*y));

func zmax = 2-sqrt(3.);

mesh3 Th = buildlayers(Th2,nn,
coeff = max((zmax-zmin)/zmax, 1./nn),
zbound=[zmin, zmax],
labelmid=rmid;
labelup=rup;
labeldown=rlow);
savemesh(Th, ’’Th.meshb’’);
exec(‘ ‘medit Th; Th.meshb’’);

Example 5.24 (tetgenholeregion.edp) // file ‘‘tetgenholeregion.edp’’
load "msh3’’
load "tetgen"

mesh Th=square(10,20, [x*pi-pi/2,2*y*pi]); // ]%?,%?[XKLZn[
// a parametrization of a sphere
func fl =cos(x)*cos(y);
func f2 =cos(x)*sin(y);
func f3 = sin(x);
// partiel derivative of the parametrization DF
func flx=sin(x)*cos(y);
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func fly=-cos(x)*sin(y);
func f2x=-sin(x)*sin(y);
func f2y=cos(x)*cos(y);
func f3x=cos(x);
func f3y=0;
// M = DF'DF
func ml11=f1x"2+£2x"2+£3x"2;
func m21=f1x*fly+£2x*f2y+£3x*f3y;
func m22=fly " 2+f2y"2+£f3y"2;

func perio=[[4,y],[2,y],[1,x],[3,x]1];

real hh=0.1;

real vv= 1/square(hh);

verbosity=2;
Th=adaptmesh(Th,m11*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,ml1*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
plot(Th,wait=1);

verbosity=2;

// construction of the surface of spheres
real Rmin = 1.;
func flmin = Rmin*f1;
func f2min = Rmin*f2;
func f3min = Rmin*f3;

mesh3 Th3sph = movemesh23(Th, transfo=[flmin, f2min, f3min]);
real Rmax = 2.;

func flmax = Rmax*fl;

func f2max = Rmax*£f2;

func f3max = Rmax*£f3;

mesh3 Th3sph2 = movemesh23(Th, transfo=[flmax, f2max, f3max]);

cout << "addition" << endl;
mesh3 Th3 = Th3sph+Th3sph2;

reall[int] domain2 = [1.5,0.,0.,145,0.001,0.5,0.,0.,18,0.001];

cout << " " << endl;

cout << " tetgen call without hole " << endl;

cout << " " << endl;

mesh3 Th3fin = tetg(Th3, switch="paAAQYY",nbofregions=2,regionlist=domain2);
cout << " " << endl;

cout << "finish tetgen call without hole" << endl;

cout << " " << endl;

savemesh(Th3fin, "spherewithtworegion.mesh");

real[int] hole = [0.,0.,0.];
real[int] domain = [1.5,0.,0.,53,0.001];

cout << " " << endl;
cout << " tetgen call with hole " << endl;
cout << " " << endl;

mesh3 Th3finhole=tetg(Th3, switch="paAAQYY" ,nbofholes=1,holelist=hole,
nbofregions=1,regionlist=domain);
cout << " "

<< endl;
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cout << "finish tetgen call with hole << endl;
cout << " " << endl;
savemesh(Th3finhole, "spherewithahole.mesh");

5.11.1 Build a 3d mesh of a cube with a balloon

First the MeshSurface. idp file to build boundary mesh of a Hexaedra and of a Sphere.

func mesh3 SurfaceHex(int[int] & N,real[int,int] &B ,int[int,int] & L,int orientation)
{

real x0=B(0,0),x1=B(0,1);

real y0=B(1,0),y1=B(1,1);

real z0=B(2,0),z1=B(2,1);

int nx=N[0],ny=N[1],nz=N[2];

mesh Thx = square(ny,nz, [y®0+(y1l-y0)*x,z0+(z1-z0)*y]);
mesh Thy = square(nx,nz, [x0+(x1-x0)*x,z0+(z1-z0)*y]);
mesh Thz = square(nx,ny, [x0+(x1-x0)*x,y0+(y1l-y0)*y]);

int[int] refx=[0,L(0,0)],refX=[0,L(0,1)]; // Xmin, Ymax faces labels renumbering
int[int] refy=[0,L(1,0)],refY=[0,L(1,1)]; // Ymin, Ymax faces labesl renumbering
int[int] refz=[0,L(2,0)],refZ=[0,L(2,1)]; // Zmin, Zmax faces labels renumbering

mesh3 Thx0® = movemesh23(Thx,transfo=[x0,x,y],orientation=-orientation,label=refx);
mesh3 Thxl = movemesh23(Thx, transfo=[x1,x,y],orientation=+orientation,label=refX);
mesh3 Thy® = movemesh23(Thy, transfo=[x,y0,y],orientation=+orientation,label=refy);
mesh3 Thyl = movemesh23(Thy, transfo=[x,yl,y],orientation=-orientation,label=refY);
mesh3 Thz® = movemesh23(Thz,transfo=[x,y,z0],orientation=-orientation,label=refz);
mesh3 Thzl = movemesh23(Thz,transfo=[x,y,zl],orientation=+orientation,label=refZ);
mesh3 Th= Thx0+Thx1+Thy0+Thyl+Thz0+Thz1;

return Th;

func mesh3 Sphere(real R,real h,int L,int orientation)

{
mesh Th=square(10,20, [x*pi-pi/2,2*%y*pi]); // ]%”,frac—piZ[x]O,Zn[
// a parametrization of a sphere
func fl1 =cos(x)*cos(y);
func f2 =cos(x)*sin(y);
func f3 = sin(x);
// partiel derivative

func flx=sin(x)*cos(y);
func fly=-cos(x)*sin(y);
func f2x=-sin(x)*sin(y);
func f2y=cos(x)*cos(y);
func f3x=cos(x);
func f3y=0;
// the metric on the sphere M = DF'DF
func mll1=f1x"2+£2x"2+£3x"2;
func m21=f1x*fly+f2x*f2y+£3x*£3y;
func m22=f1ly " 2+f2y"2+£3y"2;
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func perio=[[4,y],[2,y],[1,x],[3,x]]; // to store the periodic condition

real hh=h/R; // hh mesh size on unite sphere
real vv= 1/square(hh);

Th=adaptmesh(Th,ml11*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,m11*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,ml1*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);
Th=adaptmesh(Th,ml11*vv,m21*vv,m22*vv,IsMetric=1,periodic=perio);

int[int] ref=[0,L];

mesh3 ThS= movemesh23(Th, transfo=[f1*R,f2*R, f3*R],orientation=orientation,refface=ref);
return ThS;

The test of the two functions and the call to tetgen mesh generator

load "tetgen"
include "MeshSurface.idp"
real hs = 0.1; // mesh size on sphere
int[int] N=[20,20,20];
real [int,int] B=[[-1,1]1,[-1,11,[-1,111;
int [int,int] L=[[1,2],[3,4],[5,61];
mesh3 ThH = SurfaceHex(N,B,L,1);
mesh3 ThS =Sphere(0.5,hs,7,1); // "gluing" surface meshs to tolat boundary meshes

mesh3 ThHS=ThH+ThS;
savemesh (ThHS, "Hex-Sphere.mesh") ;
exec("ffmedit Hex-Sphere.mesh;rm Hex-Sphere.mesh"); // see [5.3

real voltet=(hs"3)/6.;
cout << " voltet = " << voltet << endl;

real[int] domaine = [0,0,0,1,voltet,0,0,0.7,2,voltet];

mesh3 Th = tetg(ThHS, switch="pqaAAYYQ" ,nbofregions=2,regionlist=domaine);
medit ("Cube-With-Ball",Th); // see

5.12 The output solution formats .sol and .solb

With the keyword savesol, we can store a scalar functions, a scalar FE functions, a vector fields, a vector FE
fields, a symmetric tensor and a symmetric FE tensor.. Such format is used in medit.

extension file .sol The first two lines of the file are

e MeshVersionFormatted 0

e Dimension (I) dim
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Figure 5.37: The surface mesh of the Hex with Figure 5.38: The tet mesh of the cube with in-
internal Sphere ternal ball

The following fields begin with one of the following keyword: SolAtVertices, SolAtEdges, SolAtTriangles,
SolAtQuadrilaterals, SolAtTetrahedra, SolAtPentahedra, SolAtHexahedra.

In each field, we give then in the next line the number of elements in the solutions (SolAtVertices: number
of vertices, SolAtTriangles: number of triangles, ...). In other lines, we give the number of solutions , the
type of solution (1: scalar, 2: vector, 3: symmetric tensor). And finally, we give the values of the solutions
on the elements.

The file must be ended with the keyword End.

The real element of symmetric tensor

STY STY ST 2d 2d
ST =[ ST ST ST ] ST :( ST STy ) (5.5)

Y . 72d T2
ST S Tgy;’ ST Shi STy
stored in the extension .sol are respectively S T3¢, S Ty3f S Ty3yd ST S Tfyd , ST and ST, S Ty2f ,S Tyzyd

An example of field with the keyword SolAtTetrahedra:

e SolAtTetrahedra
(I) NbOfTetrahedrons

nbsol typesol! .. typesol®
(((UZ Vie{l,...,nbrealsolk}), Vke{l,...nbsol}) Vje{1,...,Nb0f1"etrahedrons})

where
e nbsol is an integer equal to the number of solutions
e typesol, type of the solution number k, is

— typesolX = 1 the solution k is scalar.
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— typesolX = 2 the solution k is vectorial.

— typesolX = 3 the solution k is a symmetric tensor or symmetric matrix.
e nbrealsol¥ number of real to discribe solution number k is

- nbrealsol® = 1 the solution k is scalar.
- nbrealsol® = dim the solution k is vectorial (dim is the dimension of the solution).

— nbrealsol® = dim = (dim + 1)/2 the solution k is a symmetric tensor or symmetric matrix.

. Uf.‘j is a real equal to the value of the component i of the solution k at tetrahedra j on the associated
mesh.

This field is written with the notation of Section [I2.1l The format .solb is the same as format .sol but in
binary (read/write is faster, storage is less).

A real scalar functions f1, a vector fields @ = [®1, ®2, @3] and a symmetric tensor S 73 at the vertices
of the three dimensional mesh Th3 is stored in the file "f1PhiTh3.so0l” using

savesol("f1PhiST3dTh3.so0l",Th3, f1, [®1, ®2, ®3], VV3, order=1);
where VV3 = [ST34,5T3¢ T3¢ ST T3, § T;Zd]. For a two dimensional mesh Th, A real scalar func-

xXX° yx yy X zy

tions f2, a vector fields ¥ = [¥1,¥2] and a symmetric tensor S 72 (5.5) at triangles is stored in the file
”f2PsiST2dTh3.s0lb” using

savesol("f2PsiST2dTh3.solb",Th, f2, [¥1, ¥Y2], VV2, order=0);

where VV2 = [ST2,S Tf,f S Tfyd] The arguments of savesol functions are the name of a file, a mesh and
solutions. These arguments must be given in this order.

The parmameters of this keyword are

order = 0 is the solution is given at the center of gravity of elements. 1 is the solution is given at the
vertices of elements.

In the file, solutions are stored in this order : scalar solutions, vector solutions and finally symmetric tensor
solutions.

5.13 medit

The keyword medit allows to dipslay a mesh alone or a mesh and one or several functions defined on the
mesh using the Pascal Frey’s freeware medit. Medit opens its own window and uses OpenGL extensively.
Naturally to use this command medit must be installed.

A vizualisation with medit of scalar solutions f1 and f2 continuous, piecewise linear and known at the
vertices of the mesh Th is obtained using

medit("soll sol2",Th, f1, f2, order=1);

The first plot named “soll” display f1. The second plot names “sol2” display f2.

The arguments of function medit are the name of the differents scenes (separated by a space) of medit, a
mesh and solutions. Each solution is associated with one scene. The scalar, vector and symmetric tensor
solutions are specified in the format described in the section dealing with the keyword savesol.

The parameters of this command line are

order = 0 is the solution is given at the center of gravity of elements. 1 is the solution is given at the
vertices of elements.
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meditff = set the name of execute command of medit. By default, this string is medit.
save = set the name of a file .sol or .solb to save solutions.

This command line allows also to represent two differents meshes and solutions on them in the same win-
dows. The nature of solutions must be the same. Hence, we can vizualize in the same window the different
domains in a domain decomposition method for instance. A vizualisation with medit of scalar solutions 41
and /2 at vertices of the mesh Th1 and Th2 respectively are obtained using

medit("sol2domain",Thl, k1, Th2, h2, order=1);

Example 5.25 (meditddm.edp) //  meditddm.edp
load "medit"

// Initial Problem:
//  Resolution of the following EDP:
//  =Aug=f on Q= {(x, )|l < sqre(x* +y*) > 2}
//  —=Aup = f1 on Qp = {(x,y)0.5 < sqrt(x> +y*) > 1.}
// u=1 onT + Null Neumman condition on I'y and on I
//  We find the solution u in solving two EDP defined on domain Q and
// This solution is visualize with medit

verbosity=3;
border Gamma(t=0,2*pi){x=cos(t); y=sin(t); label=1;};

border Gammal(t=0,2*pi){x=2*cos(t); y=2*sin(t); label=2;};
border Gamma2(t=0,2*pi) {x=0.5%cos(t); y=0.5*sin(t); label=3;};

// construction of mesh of domain Q
mesh Th=buildmesh(Gammal (40)+Gamma(-40));
fespace Vh(Th,P2);
func f=sqrt(x*x+y*y);
Vh us,v;
macro Grad2(us) [dx(us),dy(us)] // EOM

problem Lap2dOmega(us,v,init=false)=int2d(Th) (Grad2(v)’ *Grad2(us))
- int2d(Th) (f*v)+on(1,us=1) ;

// Definition of EDP defined on the domain Q
//  —Aug=fi on Q, u;=1onTy, %=0onT,
Lap2dOmega;

// construction of mesh of domain
mesh Thl=buildmesh(Gamma(40)+Gamma2 (-40));

fespace Vh1(Thl,P2);

func f1=10*sqrt(x*x+y*y);

Vhl ul,vl;

macro Grad21(ul) [dx(ul),dy(ul)] /7 EOM

problem Lap2dOmegal(ul,vl,init=false)=int2d(Thl) (Grad21(v1)’ *Grad21l(ul))
- int2d(Th1) (f1*v1)+on(1,ul=1) ;
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// Resolution of EDP defined on the domain Q
// ~Aui=fi on Q, u-1=1onT;, =0 onT,
Lap2dOmegal;

// vizualisation of solution of the initial problem
medit("solution",Th,us,Thl,ul,order=1,save="testsavemedit.solb");

Example 5.26 (StockesUzawa.edp) // signe of pressure is correct
assert(version>1.18);

real sO=clock();

mesh Th=square(10,10);

fespace Xh(Th,P2),Mh(Th,P1);

Xh ul,u2,vl,v2;

Mh p,q,ppp;

varf bx(ul,q) = int2d(Th) ( (dx(ul)*q));

varf by(ul,q) = int2d(Th) ( (dy(ul)*q));

varf a(ul,u2)= int2d(Th)( dx(ul)*dx(u2) + dy(ul)*dy(u2) )
+ on(l,2,4,ul=0) + on(3,ul=1l) ;

Xh bcl; bcl[] = a(0,Xh);
Xh b;

matrix A= a(Xh,Xh,solver=CG);
matrix Bx= bx(Xh,Mh);

matrix By= by(Xh,Mh);

Xh bcx=1,bcy=0;

func reall[int] divup(real[int] & pp)
{

int verb=verbosity;

verbosity=0;

b[] = Bx’*pp; b[] += bcl[] .*bcx[];
ull]l = A"-1*b[];
b[] = By’*pp; b[] += bcl[] .*bcy[];

u2[] = A"-1*b[];
ppp[] = Bx*ul[];
ppp[]l += By*u2[l;
verbosity=verb;
return ppp[]

};

p=0;9=0;ul=0;v1=0;

LinearCG(divup,p[],q[],eps=1.e-6,nbiter=50);

divup(p[1);

plot([ul,u2],p,wait=1,value=true,coef=0.1);
medit("velocity pressure",Th, [ul,u2],p,order=1);
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5.14 Mshmet

Mshmet is a software developped by P. Frey that allows to compute an anisotropic metric based on solutions
(i.e. Hessian-based). This sofware can return also an isotropic metric. Moreover, mshmet can construct
also a metric suitable for level sets interface capturing. The solution can be defined on 2D or 3D struc-
tured/unstructured meshes. For example, the solution can be an error estimate of a FE solutions.

Solutions for mshmet are given as an argument. The solution can be a func, a vector func, a symmetric
tensor, a FE func, a FE vector func and a FE symmetric tensor. The symmetric tensor argument is defined
as this type of data for datasol argument. This software accepts more than one solution.

For example, the metric M computed with mshmet for the solution « defined on the mesh T4 is obtained by
writing.

fespace Vh(Th,P1);
Vh u; // a scalar FE func
real[int] M = mshmet(Th,u);

The parameters of the keyword mshmet are :

e normalization = <b> do a normalisation of all solution in [0, 1].

aniso = <b> build aniso metric if 1 ( delault O: iso)

levelset = <b> build metric for level set method (default: false)

verbosity = <1>

nbregul = <1> number of regularization’s iteration of solutions given (default 0).
e hmin = <d>

e hmax = <d>

err = <d> level of error.

width = <d> the width

metric= a vector of double. This vector contains an initial metric given to mshmet. The structure of
the metric vector is described in the next paragraph.

loptions=]a vector of integer of size 7. This vector contains the integer parameters of mshmet(for
expert only).

— loptions(0): normalization (default 1).

loptions(1): isotropic parameters (default 0). 1 for isotropic metric results otherwise 0.

loptions(2): level set parameters (default 0). 1 for building level set metric otherwise 0.

loptions(3): debug parameters (default 0). 1 for turning on debug mode otherwise 0.

loptions(4): level of verbosity (default 10).

loptions(5): number of regularization’s iteration of solutions given (default 0).

loptions(6): previously metric parameter (default 0). 1 for using previous metric otherwise 0.
e doptions= a vector of double of size 4. This vector contains the real parameters of mshmet (for
expert only).
— doptions(0): hmin : min size parameters (default 0.01).
— doptions(1): hmax : max size parameters (default 1.0).

— doptions(2): eps : tolerance parameters ( default 0.01).
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— doptions(2): width : relative width for Level Set (0 < w < 1) ( default 0.05).

The result of the keyword mshmet is a real[int] which contains the metric computed by mshmet at the
different vertices V; of the mesh.
With nv is the number of vertices, the structure of this vector is

Miso = (m(VO)7 m(V]), R} m(an))l

mip mipp M3
for a isotropic metric m. For a symmetric tensor metric h = | mp; myy mp3 |, the parameters metric is
m3p msy ms33

Maniso = (H(VO), cees H(an))t
where H(V;) is the vector of size 6 defined by [m11,m21,m22,m31,m32,m33]
Example 5.27 (mshmet.edp)

load "mshmet"
load "medit"

load "msh3"

border a(t=0,1.0){x=t; y=0; 1label=1;};

border b(t=0,0.5){x=1; y=t; label=2;};

border c(t=0,0.5){x=1-t; y=0.5;label=3;};

border d(t=0.5,1){x=0.5; y=t; label=4;};

border e(t=0.5,1){x=1-t; y=1; label=5;};

border f(t=0.0,1){x=0; y=1-t;label=6;};

mesh Th = buildmesh (a(6) + b(4) + c(4) +d(4) + e(4) + f£(6));

savemesh(Th, "th.msh");
fespace Vh(Th,P1);
Vh u,v;
real error=0.01;
problem Probleml(u,v,solver=CG,eps=1.0e-6) =
int2d(Th,qgforder=2) ( u*v*1.0e-10+ dx(w) *dx(v) + dy(uw) *dy(v))
+int2d(Th,qgforder=2) ( (x-y)*v);

func zmin=0;

func zmax=1;

int MaxLayer=10;

mesh3 Th3 = buildlayers(Th,MaxLayer,zbound=[zmin, zmax]) ;

fespace Vh3(Th3,P2);

fespace Vh3P1(Th3,P1);

Vh3 u3,v3;

Vh3P1 usol;

problem Problem2(u3,v3,solver=sparsesolver) =
int3d(Th3) ( u3*v3*1.0e-10+ dx(u3)*dx(v3) + dy(u3)*dy(v3) + dz(u3)*dz(v3))
- int3d(Th3)( v3) +on(0,1,2,3,4,5,6,u3=0);

Problem2;

cout << u3[].min << << u3[].max << endl;

savemesh(Th3, "metrictest.bis.mesh™);

savesol("metrictest.sol",Th3,u3);

non

real[int] bb=mshmet(Th3,u3);

cout << bb << endl;

for(int ii=0; ii<Th3.nv; ii++)
usol[][ii]=bb[ii];

savesol("metrictest.bis.sol",Th3,usol);
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5.15 FreeYams

FreeYams is a surface mesh adaptation software which is developed by P. Frey. This software is a new
version of yams. The adapted surface mesh is constructed with a geometric metric tensor field. This field is
based on the intrinsic properties of the discrete surface. Also this software allows to construct a simplifica-
tion of a mesh. This decimation is based on the Hausdorff distance between the initial and the current trian-
gulation. Compared to the software yams, FreeYams can be used also to produce anisotropic triangulations
adapted to level set simulations. A technical report on FreeYams is not available yet but a documentation on
yams exists at http://www.ann.jussieu.fr/~frey/software.html [40].

To call FreeYams in Freefem++, we used the keyword freeyams. The arguments of this function are the
initial mesh and/or metric. The metric with freeyams are a function, a FE function, a symmetric tensor
function, a symmetric tensor FE function or a vector of double. If the metric is vector of double, this data
must be given in metric parameter. Otherwise, the metric is given in the argument.

For example, the adapted mesh of Thinit defined by the metric u defined as FE function is obtained in
writing.

fespace Vh(Thinit,P1);
Vh u;
mesh3 Th=freeyams(Thinit,u);

The symmetric tensor argument for freeyams keyword is defined as this type of data for datasol argument.

e aniso = <b> aniso or iso metric (default 0, iso)
e mem = <1>memory of for freeyams in Mb (delaulf -1, freeyams choose)
e hmin = <d>
e hmax = <d>
e gradation = <d>
e option = <1>
0 : mesh optimization (smoothing+swapping)
1 : decimation+enrichment adaptated to a metric map. (default)
-1 : decimation adaptated to a metric map.
2 : decimation+enrichment with a Hausdorff-like method
-2 : decimation with a Hausdorft-like method
4 : split triangles recursively.

9 : No-Shrinkage Vertex Smoothing

e ridgeangle = <d>

e absolute = <b>

e verbosity = <i>

e metric= vector expression. This parameters contains the metric at the different vertices on the initial
mesh. With nv is the number of vertices, this vector is

Miso = (m(Vo),m(Vy), ..., m(an))t

myy mp2 M3
for a scalar metric m. For a symmetric tensor metric h = | mp; myy mo3 |, the parameters metric
m3p msy ms33
is
t
Maniso = (H(VO), cees H(an))
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where H(V;) is the vector of size 6 defined by [m11,m21,m22,m31,m32,m33]

e loptions= a vector of integer of size 13. This vectors contains the integer options of FreeYams.
(just for the expert )

loptions(0): anisotropic parameter (default 0). If you give an anisotropic metric 1 otherwise 0.

loptions(1): Finite Element correction parameter (default 0). 1 for no Finite Element correction
otherwise 0.

loptions(2): Split multiple connected points parameter (default 1). 1 for splitting multiple con-
nected points otherwise 0.

loptions(3): maximum value of memory size in Mbytes (default -1: the size is given by
freeyams).

loptions(4): set the value of the connected component which we want to obtain. (Remark:
freeyams give an automatic value at each connected component).

loptions(5): level of verbosity

loptions(6): Create point on straight edge (no mapping) parameter (default 0). 1 for creating
point on straight edge otherwise 0.

loptions(7): validity check during smoothing parameter. This parameter is only used with No-
Shrinkage Vertex Smoothing optimization (optimization option parameter 9). 1 for No validity
checking during smoothing otherwise 0.

loptions(8): number of desired’s vertices (default -1).
loptions(9): number of iteration of optimizations (default 30).

loptions(10): ridge detection parameter (default 0) . 1 for detecting the ridge on the mesh
otherwise 0. The ridge definition is given in the parameter doptions(12).

loptions(11): vertex smoothing parameter (default 0). 1 for smoothing the vertices otherwise 0.
loptions(12): Optimization level parameter (default 0).

%  0: mesh optimization (smoothing+swapping)

% 1 : decimation+enrichment adaptated to a metric map.

%  -1: decimation adaptated to a metric map.

% 2 decimation+enrichment with a Hausdorff-like method
%  -2: decimation with a Hausdorff-like method

% 4 : split triangles recursively.

*  9: No-Shrinkage Vertex Smoothing

doptions= a vector of double of size 11. This vectors contains the real options of freeyams.

doptions(0): Set the geometric approximation (Tangent plane deviation) (default 0.01).
doptions(1): Set the lamda parameter (default -1. ).

doptions(2): Set the mu parmeter (default -1. ).

doptions(3): Set the gradation value (Mesh density control) (default 1.3).

doptions(4): Set the minimal size(hmin) (default -2.0: the size is automatically computed).
doptions(5): Set the maximal size(hmax) (default -2.0: the size is automatically computed).
doptions(6): Set the tolerance of the control of Chordal deviation (default -2.0).
doptions(7): Set the quality of degradation (default 0.599).



134 CHAPTER 5. MESH GENERATION

— doptions(8): Set the declic parameter (default 2.0).
— doptions(9): Set the angular walton limitation parameter (default 45 degree).

— doptions(10): Set the angular ridge detection (default 45 degree).

Example 5.28 (freeyams.edp)

load "msh3"

load "medit"

load "freeyams"

int nn=20;

mesh Th2=square(nn,nn);

fespace Vh2(Th2,P2);

Vh2 ux,uz,p2;

int[int] rup=[0,2], rdown=[0,1], rmid=[1,1,2,1,3,1,4,1];

real zmin=0,zmax=1;

mesh3 Th=buildlayers(Th2,nn, zbound=[zmin,zmax],
reffacemid=rmid, reffaceup = rup, reffacelow = rdown);

mesh3 Th3 = freeyams(Th);
medit ("maillagesurfacique"”,Th3,wait=1);

5.16 mmg3d

Mmg3d is a 3D remeshing software developed by C. Dobrzynski and P. Frey
(http://www.math.u-bordeaux1.fr/~dobj/logiciels/mmg3d.php). To obtain a version of this library send an
e-mail at :

cecile.dobrzynski @math.ubordeaux1.fr or pascal.frey @upmc.fr.

This software allows to remesh an initial mesh made of tetrahedra. This initial mesh is adapted to a geo-
metric metric tensor field or to a displacement vector (moving rigid body). The metric can be obtained with
mshmet (see section[5.14).

Remark 5 :

(a) If no metric is given, an isotropic metric is computed by analyzing the size of the edges in the initial
mesh.

(b) if a displacement is given, the vertices of the surface triangles are moved without verifying the geomet-
rical structure of the new surface mesh.

The parameters of mmg3d are :

e options= vector expression. This vector contains the option parameters of mmg3d. It is a vector of
6 values, with the following meaning:
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(0) optimization parameters : (default 1)
0 : mesh optimization.
1 : adaptation with metric (deletion and insertion vertices) and optimization.
-1: adaptation with metric (deletion and insertion vertices) without optimization.
4 : split tetrahedra (be careful modify the surface).
9 : moving mesh with optimization.
-9: moving mesh without optimization.

(1) debug mode : (default 0)
1 : turn on debug mode.
0 : otherwise.

(2) Specity the size of bucket per dimension ( default 64)

(3) swapping mode : (default 0)
1 : no edge or face flipping.
0 : otherwise.

(4) insert points mode : (default 0)
1 : no edge splitting or collapsing and no insert points.
0 : otherwise.

(5) verbosity level (default 3)

e memory= integer expression. Set the maximum memory size of new mesh in Mbytes. By default the
number of maximum vertices, tetrahedra and triangles are respectively 500 000, 3000 000, 100000
which represent approximately a memory of 100 Mo.

e metric= vector expression. This vector contains the metric given at mmg3d. It is a vector of size nv
or 6 nv respectively for an istropic and anisotropic metric where nv is the number of vertices in the
initial mesh. The structure of metric vector is described in the mshmet’s section(section [5.14).

e displacement= [®1, ®2, O3] setthe displacement vector of the initial mesh
O(x,y) = [@1(x,y), P2(x, y), P3(x, y)].

e displVect= sets the vector displacement in a vector expression. This vector contains the displace-
ment at each point of the initial mesh. It is a vector of size 3 nv.

An example using this function is given in "mmg3d.edp”:

Example 5.29 (mmg3d.edp)

// test mmg3d
load "msh3"
load "medit"
load "mmg3d"
include "../examples++-3d/cube.idp"

int n=6;

int[int] Nxyz=[12,12,12];

real [int,int] Bxyz=[[6.,1.],[0.,1.],[0.,1.]1];
int [int,int] Lxyz=[[1,1]1,[2,2],[2,2]1];

mesh3 Th=Cube(Nxyz,Bxyz,Lxyz);

reall[int] isometric(Th.nv);{
for( int i1i=0; ii<Th.nv; ii++)
isometric[ii]=0.17;
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mesh3 Th3=mmg3d( Th, memory=100, metric=isometric);

medit("init",Th);
medit ("isometric",Th3);

An example of a moving mesh is given in fallingspheres.edp”:

Example 5.30 (fallingspheres.edp) load "msh3" 1load "tetgen" load "medit" load "mmg3d"
include "MeshSurface.idp"

// build mesh of a box (311) wit 2 holes (300,310)

real hs = 0.8;

int[int] N=[4/hs,8/hs,11.5/hs];

real [int,int] B=[[-2,2],[-2,6],[-10,1.5]];

int [int,int] L=[[311,311],[311,311],[311,311]];

mesh3 ThH = SurfaceHex(N,B,L,1);

mesh3 ThSg =Sphere(1l,hs,300,-1);

mesh3 ThSd =Sphere(1l,hs,310,-1); ThSd=movemesh3(ThSd, transfo=[x,4+y,z]);

mesh3 ThHS=ThH+ThSg+ThSd; // gluing surface meshes
medit ("ThHS", ThHS); // see surface mesh

real voltet=(hs"3)/6.;
real[int] domaine = [0,0,-4,1,voltet];
real [int] holes=[0,0,0,0,4,0];
mesh3 Th = tetg(ThHS, switch="pqaAAYYQ" ,nbofregions=1,regionlist=domaine, nbofholes=2,holelist=holes;
medit ("Box-With-two-Ball",Th);
// End build mesh

int[int] opt=[9,0,64,0,0,3]; // options of mmg3d see freeem++ doc
real[int] vit=[0,0,-0.3];

0.;

func dep = vit[2];

func zero

fespace Vh(Th,P1);

macro Grad(u) [dx(u),dy(u),dz(u)] //
Vh uh,vh; // to compute the displacemnt field
problem Lap(uh,vh,solver=CG) = int3d(Th)(Grad(uh)’*Grad(vh)) // ’) for emacs

+ on(310,300,uh=dep) +on(311,uh=0.);

for(int it=0; it<29; it++){
cout<<" ITERATION "<<it<<endl;
Lap;
plot(Th,uh);
Th=mmg3d(Th,options=opt,displacement=[zero,zero,uh],memory=1000) ;
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5.17 A first 3d isotope mesh adaptation process

Example 5.31 (Laplace-Adapt-3d.edp)

load "msh3" load "tetgen" load "mshmet" load "medit"
// build initial mesh
int nn = 6;
int[int] 11111=[1,1,1,1],101=[0,1],111=[1,1]; //  label numbering to have all label to 1
mesh3 Th3=buildlayers(square(nn,nn,region=0,label=11111),
nn, zbound=[0,1], labelmid=111, labelup = 101, 1labeldown = 101);
Th3 = trunc(Th3, (x<0.5) | (y < 0.5) | (z < 0.5) ,label=1); // remove the 10.5, 1[3cube
// end of build initial mesh
fespace Vh(Th3,P1);
Vh u,v,usol,h;

macro Grad(u) [dx(u),dy(u),dz(uw)] // EOM

problem Poisson(u,v,solver=CG) = int3d(Th3)( Grad(u)’*Grad(v) )
-int3d(Th3)( 1*v ) + on(1,u=0);

real errm=le-2; // level of error
for(int ii=0; ii<5; ii++)
{
Poisson; // solve Poisson equation.
cout <<" u min, max = " << u[].min << " "<< u[].max << endl;

h=0. ; // for resizing h[] because the mesh change
h[]=mshmet(Th3,u,normalization=1,aniso=0,nbregul=1,hmin=1e-3,hmax=0.3,err=errm) ;
cout <<" h min, max = " << h[].min << << h[].max

non

<< << h[].n << << Th3.nv << endl;
plot(u,wait=1);
errm*= 0.8; // change the level of error
cout << " Th3" << Th3.nv < " " << Th3.nt << endl;
Th3=tetgreconstruction(Th3, switch="raAQ",sizeofvolume=h*h*h/6.); // rebuidl mesh

medit("U-adap-iso-"+ii,Th3,u,wait=1);}
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Chapter 6

Finite Elements

As stated in Section 2] FEM approximates all functions w as

w(x,y) = wodo(x,y) + wid1(x,y) + -+ + wy_1dm-1(x,y)

with finite element basis functions ¢(x, y) and numbers wy (k = 0,--- , M — 1). The functions ¢(x,y) are
constructed from the triangle T, and called shape functions. In FreeFem++ the finite element space

Vi = {wlwodo + widr + -+ wy_10py-1, w; € R}

is easily created by

fespace IDspace(IDmesh,<IDFE>) ;
or with ¢ pairs of periodic boundary condition in 2d

fespace IDspace(IDmesh,<IDFE>,
periodic=[[la_l,sa_1],[1b_1,sb_1],

[lak,sa_k],[1b_k,sb_€11);
and in 3d

fespace IDspace(IDmesh,<IDFE>,
periodic=[[la_l,sa_l,ta_1],[1b_1,sb_1,tbh_1],

[la_k,sak,tak],[1b_k,sb_,tb_£1]);

where
IDspace is the name of the space (e.g. Vh),

IDmesh is the name of the associated mesh and <IDFE> is a identifier of finite element type.

In 2D we have a pair of periodic boundary condition, if [la_i,sa_i], [1b_i,sb_i] is a pair of int, and the
2 labels la_iand 1b_irefer to 2 pieces of boundary to be in equivalence.

If [lai,sa.i],[1b_i,sb_i] is a pair of real, then sa_.i and sb_i give two common abscissa on the two
boundary curve, and two points are identified as one if the two abscissa are equal.

In 2D, we have a pair of periodic boundary condition,if [la_i,sa_i,ta-i], [1b_i,sb_i, tb_i] is a pair of
int, the 2 labels la_i and 1b_i define the 2 piece of boundary to be in equivalence.

If [lai,sa.i,tai],[1b.i,sb_i,tb_i] is a pair of real, then sa_i,ta_iand sb_i, th_i give two common
parameters on the two boundary surface, and two points are identified as one if the two parameters are equal.
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Remark 6 The 2D mesh of the two identified borders must be the same, so to be sure, use the parameter
fixeborder=true in buildmesh command (see like in example periodic2bis.edp (see[9.7).

As of today, the known types of finite element are:

P0,P03d piecewise constant discontinuous finite element (2d, 3d), the degrees of freedom are the barycenter
element value.

PO, ={ve L*(Q)|forall K € T}, thereisax € R: v = ax| (6.1)

P1,P13d piecewise linear continuous finite element (2d, 3d), the degrees of freedom are the vertices values.

Pl ={ve HQ|VK €T vxeP) (6.2)

Pldc piecewise linear discontinuous finite element
Pldcy ={ve LXQ)|YK €T} vi € Py (6.3)

Warning, due to interpolation problem, the degree of freedom is not the vertices but three vectices
move inside with 7'(X) = G + .99(X — G) where G is the barycenter, (version 2.24-4).

P1b,P1b3d piecewise linear continuous finite element plus bubble (2d, 3d)

The 2d case:
Plb, = {ve H(Q)| YK € T} vi € Py ®Span{af Afa5}} (6.4)

The 3d case:
Plb, ={ve H(Q)| VK € T} v € Py ®Span{af {25 5} (6.5)

where /1{( ,i = 0,..,d are the d + 1 barycentric coordinate functions of the element K (triangle or
tetrahedron).

P2,P23d piecewise P, continuous finite element (2d, 3d),
P2, ={ve H'Q)|VK €T} v € Po) (6.6)
where P, is the set of polynomials of R? of degrees < 2.
P2b piecewise P, continuous finite element plus bubble,

P2, ={ve H'(Q)| VK € T}, vk € Pr® Span{a§ A¥ 15 }} (6.7)

P2dc piecewise P, discontinuous finite element,
Pdcy ={ve LXQ)|VK €Ty vi € P, (6.8)

Warning, due to interpolation problem, the degree of freedom is not the six P2 nodes but six nodes
move inside with 7(X) = G + .99(X — G) where G is the barycenter, (version 2.24-4).



6.1. USE OF “FESPACE” IN 2D

RTO0,RT03d Raviart-Thomas finite element of degree 0.
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The 2d case: 1
RTO), = {v € Hdiv) | YK € Th  vix(x,y) =X +Bx|3 } (6.9)
K
The 3d case: ]
g
RTO,, = {V € Hdiv) | VK € T vig(x,y,2) = | ok +,8K|g } (6.10)
3
g

where by writing divw = Z?zl ow;/dx; with w = (w,-)?zl,
H(div) = {w e L2(Q)"|divw e Lz(Q)}

and where a/}(, a%(, a/;(, Bk are real numbers.

Edge03d Nedelec finite element or Edge Element of degree 0.

The 3d case:
o Bk,
RTO, =3{ve HCur) | VK € Ty Vig(x,y,2) = |ox + |8k X y (6.11)
ap By

()Wz /6}63 —aW3 /(9X2 . d
w3 [0x1—0w [0x3 With W = (Wi)izl’

where by writing curlw =
Ow1/0xr—0wn [0x1

Hcurl) = {w € L2(Q)? |curl w € L2(Q)?}

2

1 3 pl P2 3
and @, ay, @y By By By are real numbers.

Plnc piecewise linear element continuous at the middle of edge only.

6.1 Use of “fespace” in 2d

With the 2d finite element spaces
X, ={(veH'(0,1[)|IVK € T}, v € Py}
Xpn ={v e Xulv(|9) =v(| 1 )v(l0) = v(i)}

My, ={veH' (0, 1[I VK € T} v € Py}
Ry ={ve H'(10, 1D VK € Th vix(xy) = |5 +yx|F)

when 77, is a mesh 10 x 10 of the unit square ]0, 1[2, we only write in FreeFem++ :

mesh Th=square(10,10);

fespace Xh(Th,P1);

fespace Xph(Th,P1,
periodic=[[2,y],[4,y],[1,x],[3,x1]);

fespace Mh(Th,P2);

fespace Rh(Th,RTO0);

// scalar FE

//  bi-periodic FE
// scalar FE
// vectorial FE

where Xh, Mh, Rh expresses finite element spaces (called FE spaces ) X;,, My, Ry, respectively.

To use FE-functions uy, vy, € Xy, pn,qn € My, and Uy, V), € R), , we write :
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Xh uh,vh;

Xph uph,vph;

Mh ph,gh;

Rh [Uxh,Uyh], [Vxh,Vyh];

Xh[int] Uh(10); // array of 10 function in Xh
Rh[int] [Wxh,Wyh](10); // array of 10 functions in Rh.
Wxh[5](0.5,0.5) // the 6th function at point (0.5,0.5)
Wxh[5][] // the array of the degre of freedom of the 6 function.

The functions Uy, Vj, have two components so we have

Uxh Vxh
Uh = U;h and Vh = V;h

6.2 Use of fespace in 3d
With the 3d finite element spaces
X, ={(ve H'(10,1>)| VK € T}, v € Py}

Xpn = {ve Xl v(|0) =v(| ), v(16) = v(l 1)}
My ={ve H'(10,1[>)| VK € T}, vk € P2}
Ri={ve H'(10, 1Y VK € Th vix(x,y) = |5 +yx|3)

when 77, is a mesh 10 x 10 x 10 of the unit cubic ]0, 1[2, we write in FreeFem++ :

mesh3 Th=buildlayers(square(10,10),10, zbound=[0,1]);

// label: O up, 1 down; 2 front, 3 left, 4 back, 5: right

fespace Xh(Th,P1); // scalar FE
fespace Xph(Th,P1,
periodic=[[0®,x,y],[1,x,y],

[2,x,z],[4,x,z],

[3,y,z],[5,y,z11); //  three-periodic FE (see Note
fespace Mh(Th,P2); // scalar FE
fespace Rh(Th,RT03d); // vectorial FE
where Xh, Mh, Rh expresses finite element spaces (called FE spaces ) X;,, My, Ry, respectively.

To define and use FE-functions uy, vy, € Xj, and py, g, € My, and Uy, V), € Ry, , we write:
Xh uh,vh;
Xph uph,vph;
Mh ph,gh;
Rh [Uxh,Uyh,Uyzh], [Vxh,Vyh, Vyzh];
Xh[int] Uh(10); // array of 10 function in Xh
Rh[int] [Wxh,Wyh,Wzh](10); // array of 10 functions in Rh.
Wxh[5](0.5,0.5,0.5) // the 6th function at point (0.5,0.5,0.5)
Wxh[5][] // the array of the degre of freedom of

the 6 function.
The functions Uy, Vj, have three components so we have

Uxh Vxh
Up,=|Uy and Vj,=|Vyh
Uzh Vzh
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Note 6.1 ONe problem of the periodic boundary condition is the mesh mus be the same au equivalence
face, the BuildLayer mesh generatio split quadralateral faces with the diagonal passing through vertex
with maximal number, so to be sure to have the same mesh one both face periodic the 2d numbering in
corresponding edges must be compatible (for example the same variation). By Default, the numbering of
square vertex are correct.

To change the mesh numbering you can used the change function like:

{ // for cleanning memory. .
int[int] old2new(0:Th.nv-1); // array set on 0, 1, .., nv-1
fespace Vh2(Th,P1);

Vh2 sorder=x+y; // choose ordering increasing on 4 square borders with x or y
sort (sorder[],old2new); // build the inverse permutation
int[int] new2old=old2new”-1; // inverse the permutation
Th= change(Th, renumv=new20ld) ; change}

}

the full example is in examples++-3d/periodic-3d. edp

6.3 Lagrangian Finite Elements

6.3.1 PO0-element

For each triangle (d=2) or tetrahedron (d=3) T, the basis function ¢ in Vh(Th,P®) is given by
Pr(x) = 11if (x) € Tk, Pr(x) = 01if (x) ¢ T
If we write

Vh(Th,P0); Vh fh=f(x,y);
then for vertices qki, i=1,2,..d+1in Fig. a), fn 1s built as

gt
th = fi(x,y) = ) f(5—)é
; d+1

See Fig. [6.3]for the projection of f(x,y) = sin(nx) cos(ry) on Vh(Th,P0) when the mesh This a4 x 4-grid
of [-1,1]? as in Fig.

6.3.2 Pl-element

For each vertex ¢/, the basis function ¢; in Vh(Th,P1) is given by

di(x,y) = af + bi.‘x + cé‘y for (x,y) € Ty,
di(q) =1, ¢i(g’)=0ifi# j

The basis function ¢, (x, y) with the vertex ¢*' in Fig. a) at point p = (x,y) in triangle T} simply coincide
with the barycentric coordinates /lll‘ (area coordinates) :

area of triangle(p, ¢**, ¢©)

X,y) = Ak X,y) =
P (0.3) = 41(%.) area of triangle(g~1, g*2, g*3)

If we write
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Figure 6.1: P, and P, degrees of freedom on triangle T}

Vh(Th,P1); Vh fh=g(x.y);
then "
fh = fi(r,) = ) fg)gi(xy)
i=1

See Fig. [6.4]for the projection of f(x,y) = sin(7x) cos(my) into Vh(Th,P1).

100

Figure 6.2: Test mesh Th for projection Figure 6.3: projection to Vh(Th,P®)

6.3.3 P2-element

For each vertex or midpoint ¢'. the basis function ¢; in Vh(Th,P2) is given by
di(x,y) = af + bfx + cfy + dfx2 + efxy + fnyz for (x,y) € Ty,
$ia) =1, ¢ig))=0ifi# |
The basis function ¢y, (x, y) with the vertex ¢ in Fig. b) is defined by the barycentric coordinates:
i (6 3) = (6 QA () = 1)

and for the midpoint ¢~
i (x,y) = 421 (x, A (%, y)
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If we write

Vh(Th,P2); Vh fh=f(x.y);
then
M .
fth = fi(x,y) = Z f(@H¢i(x,y) (summation over all vetex or midpoint)
i=1
See Fig. [6.3]for the projection of f(x,y) = sin(7x) cos(ny) into Vh(Th,P2).

15

Figure 6.4: projection to Vh(Th,P1) Figure 6.5: projection to Vh(Th,P2)

6.4 P1 Nonconforming Element

Refer to [23] for details; briefly, we now consider non-continuous approximations so we shall lose the

property
wp € Vi, ¢ H(Q)

If we write

Vh(Th,P1nc); Vh fh=f(x.y);
then
ny
fth = fi(x,y) = Z f(mYH¢i(x,y) (summation over all midpoint)
i=1
Here the basis function ¢; associated with the midpoint m’ = (¢k + ¢*+1)/2 where g% is the i-th point in T},
and we assume that j+ 1 = 0if j = 3:
di(x,y) = af + bfx + cfy for (x,y) € Tk,
gim') =1, ¢i(m’) = 0if i # j
Strictly speaking d¢;/0x, 0¢;/dy contain Dirac distribution pdsr,. The numerical calculations will automat-
ically ignore them. In [23]], there is a proof of the estimation

n 172
Z IVw — VwyPdxdy| = Oh)
k=1 YT«

The basis functions ¢ have the following properties.
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1. For the bilinear form a defined in (2.6) satisfy
a(gi, ) >0,  a(@i¢) <0 ifi#j

ny

PNCEBEL

k=1

2. f20=>u,>0

3. If i # j, the basis function ¢; and ¢; are L?-orthogonal:
f¢i¢jdxdy=0 ifi#j
Q

which is false for P;-element.

See Fig. [6.6] for the projection of f(x,y) = sin(zx)cos(my) into Vh(Th,P1lnc). See Fig. [6.6] for the
projection of f(x,y) = sin(zrx) cos(ny) into Vh(Th,P1nc).

100

Figure 6.6: projection to Vh(Th,P1nc) Figure 6.7: projection to Vh(Th,P1b)

6.5 Other FE-space

For each triangle Ty € T, let A, (x,y), Ak, (x,y), Ak, (x,y) be the area cordinate of the triangle (see Fig. @,

and put
BiCx, y) = 27 A, (X, y) Ay (%, Y) Ay (X, y) (6.12)

called bubble function on Tj. The bubble function has the feature:
L. Bi(x,y) =0 if (x,y) € 0T.

qkl + qkz + qk3
I E——

2. Bi(g*) = 1 where g* is the barycenter

If we write

Vh(Th,P1b); Vh fh=f(x.y);
then . )
fh = fi(x,) = ) Fghix,y) + Y F(g™)Bi(xy)
i=1 k=1
See Fig. [6.7] for the projection of f(x,y) = sin(nx) cos(ry) into Vh(Th,P1b).
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6.6 Vector valued FE-function

Functions from R2 to RY with N = 1 is called scalar function and called vector valued when N > 1. When
N=2

fespace Vh(Th,[PO,P1]) ;

make the space
Vi ={w = (w1, w2)l wi € Via(Th, Po), wa € Vi(Th, P1)}

6.6.1 Raviart-Thomas element

In the Raviart-Thomas finite element RT 0y, the degree of freedom are the fluxes across edges e of the mesh,

where the flux of the function f : R2 — R2 is fe f.n,, n, is the unit normal of edge e.

This implies a orientation of all the edges of the mesh, for example we can use the global numbering of the

edge vertices and we just go from small to large numbers.

To compute the flux, we use a quadrature with one Gauss point, the middle point of the edge. Consider a

triangle T} with three vertices (a, b, ¢). Let denote the vertices numbers by i, ip, i., and define the three edge

vectors e!, 2, &3 by sgn(ip —i.)(b — ¢), sgn(i. —i,)(c — a), sgn(i, — ip)(@a—Db),

We get three basis functions,
Sgn(ih - ic)

k _ _ k _
P =T, g =

Sgn(ic - ia)
2|Ty|

sgn(ia - ib)

AT x-o0), (6.13)

(x=b), ¢=
where |T}| is the area of the triangle T%. If we write

Vh(Th,RTO0); Vh [f1h,£2h]=[f1(x.y), f2(x,y)];

then
nl 6 . .
fh= 003 = > > niletfmi,
k=1 I=1

where n; ;, is the j;-th component of the normal vector n;,,

b+c a+c¢ b+a}

{ml,mz,m3}={ T o

and i; = {1,1,2,2,3,3}, j; ={1,2,1,2, 1,2} with the order of /.

Figure 6.8: normal vectors of each edge



148

Example 6.1 mesh Th=square(2,2);
fespace Xh(Th,P1);

fespace Vh(Th,RTO0);

Xh uh,vh;

Vh [Uxh,Uyh];

[Uxh,Uyh] = [sin(x),cos(y)];

vh= x"2+y"2;

Th = square(5,5);

uh = x"2+y"2;
Uxh = x; //
vh = Uxh;

//
plot (uh,ps="onoldmesh.eps");
uh = uh; //

plot (uh,ps="onnewmesh.eps");
vh([x-1/2,y])= x"2 + y"2;

N

Figure 6.9: vh Iso on mesh 2 x 2

CHAPTER 6. FINITE ELEMENTS

// ok vectorial FE function

// vh

// change the mesh

// Xh is unchange

// compute on the new Xh
impossible to set only 1 component
// of a vector FE function.

// ok

// and now uh use the 5x5 mesh
but the fespace of vh is alway the 2x2 mesh
// figure

do a interpolation of vh (old) of 5x5 mesh
// to get the new vh on 10x10 mesh.

//  figure

// interpolate vh = ((x — 1/2)> +y?)

error:

Figure 6.10: vh Iso on mesh 5 x5

To get the value at a point x = 1,y = 2 of the FE function uh, or [Uxh,Uyh],one writes

real value;
value = uh(2,4);
value = Uxh(2,4);

x=1;y=2;

value = uh;
value = Uxh;
value = Uyh;

// get value= uh(2,4)
// get value= Uxh(2,4)
/) e or ------

// get value= uh(1,2)
// get value= Uxh(1,2)
// get value= Uyh(1,2).

To get the value of the array associated to the FE function uh, one writes
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real value = uh[][0] ; // get the value of degree of freedom 0
real maxdf = uh[].max; // maximum value of degree of freedom
int size = uh.n; // the number of degree of freedom
reall[int] array(uh.n)= uh[]; // copy the array of the function uh

Note 6.2 For a none scalar finite element function [Uxh,Uyh] the two array Uxh[] and Uyh[] are the
same array, because the degree of freedom can touch more than one component.

6.7 A Fast Finite Element Interpolator

In practice one may discretize the variational equations by the Finite Element method. Then there will be
one mesh for Q; and another one for Q,. The computation of integrals of products of functions defined on
different meshes is difficult. Quadrature formulae and interpolations from one mesh to another at quadrature
points are needed. We present below the interpolation operator which we have used and which is new, to the
best of our knowledge. Let ’T}? = U TY, ’Thl = UkT]: be two triangulations of a domain Q. Let

V(T}) = (CQ) : flzi € Po), i=0,1
be the spaces of continuous piecewise affine functions on each triangulation.

Let f € V(7}). The problem is to find g € V(77}) such that

g(q) = f(q) Vqvertex of T,

Although this is a seemingly simple problem, it is difficult to find an efficient algorithm in practice. We
propose an algorithm which is of complexity N'log N°, where N is the number of vertices of 7~ 4> and
which is very fast for most practical 2D applications.

Algorithm

The method has 5 steps. First a quadtree is built containing all the vertices of mesh 7, }? such that in each
terminal cell there are at least one, and at most 4, vertices of 7, ,? .

For each ¢', vertex of 7! do:

Step 1 Find the terminal cell of the quadtree containing ¢'.

Step 2 Find the the nearest vertex q(]). to ¢! in that cell.
Step 3 Choose one triangle T]? € T}? which has q? for vertex.
Step 4 Compute the barycentric coordinates {A4;}=1 23 of ql in T]?.

e — if all barycentric coordinates are positive, go to Step 5

e — clse if one barycentric coordinate A; is negative replace T]S by the adjacent triangle opposite
q? and go to Step 4.

e — else two barycentric coordinates are negative so take one of the two randomly and replace Tl?
by the adjacent triangle as above.



150 CHAPTER 6. FINITE ELEMENTS

Figure 6.11: To interpolate a function at ¢° the knowledge of the triangle which contains ¢° is
needed. The algorithm may start at ¢' € T} and stall on the boundary (thick line) because the line
q°q" is not inside Q. But if the holes are triangulated too (doted line) then the problem does not
arise.

Step 5 Calculate g(¢') on T]? by linear interpolation of f:
ggh =D, )

j=1,2,3

End
Two problems need to be solved:

o What if ' is not in 92 ? Then Step 5 will stop with a boundary triangle. So we add a step which
test the distance of ¢' with the two adjacent boundary edges and select the nearest, and so on till the
distance grows.

o What if Qg is not convex and the marching process of Step 4 locks on a boundary? By construction
Delaunay-Voronoi mesh generators always triangulate the convex hull of the vertices of the domain.
So we make sure that this information is not lost when 7'}?,7' hl are constructed and we keep the
triangles which are outside the domain in a special list. Hence in step 5 we can use that list to step
over holes if needed.

Note 6.3 Step 3 requires an array of pointers such that each vertex points to one triangle of the triangula-
tion.

Note 6.4 The operator = is the interpolation operator of FreeFem++ , The continuous finite functions are
extended by continuity to the outside of the domain. Try the following example

mesh Ths= square(10,10);

mesh Thg= square(30,30, [x*3-1,y*3-1]);

plot (Ths,Thg,ps="overlapTh.eps" ,wait=1);

fespace Ch(Ths,P2); fespace Dh(Ths,P2dc);

fespace Fh(Thg,P2dc);

Ch us= (x-0.5)*(y-0.5);

Dh vs= (x-0.5)*(y-0.5);

Fh ug=us,vg=vs;

plot(us,ug,wait=1,ps="us-ug.eps"); // see figure
plot(vs,vg,wait=1,ps="vs-vg.eps"); // see figure [6.1
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Figure 6.12: Extension of a continuous FE- Figure 6.13: Extention of discontinuous FE-
function function, see warning 6]

6.8 Keywords: Problem and Solve

For FreeFem++ a problem must be given in variational form, so we need a bilinear form a(u, v) , a linear
form €(f, v), and possibly a boundary condition form must be added.

problem P(u,v) =
aCu,v) - ¢(£,v)
+ (boundary condition);

Note 6.5 When you want to formulate the problem and to solve it in the same time, you can use the keywork
solve.

6.8.1 Weak form and Boundary Condition

To present the principles of Variational Formulations or also called weak forms fr the PDEs, let us take a
model problem : a Poisson equation with Dirichlet and Robin Boundary condition .
The problem is: Find u a real function defined on domain € of R? (d = 2,3) such that

0
-V.«kVu)=f, in Q, au+/<a—u=b on I, u=g on Iy (6.14)
n

where

o if d =2 then V.(kVu) = 0x(k0su) + dy(kdyu) with d,u = % and dyu = g_;

o if d =3 then V.(kVu) = 8.(kB.u) + Oy(kByu) + (ko) With Oy = §¢ , By = G4 and , dou = Gt
e the border I' = 0Q is splitin [y and I';; such that I, UT,, =0 and I'; N T, = 092,

e kis a given positive function, such that kg € R, 0 < kp < «.

e g a given non negative function,
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e b a given function.

Note 6.6 This is the well known Neumann boundary condition if a = 0, and if Ty is empty. In this case the
function appears in the problem just by its derivatives, so it is defined only up to a constant (if u is a solution
then u + c is also a solution).

Let v a regular test function null on I'; , by integration by parts we get

0
—fV.(KVu)vda):fKVv.Vudw:ffvdw—f\/K—udy, (6.15)
Q Q Q r Oon

: _ ou v (')u ov oudv | Oudv | Oudv
where if d = 2 the Vv.Vu = (7 5- + 3 ay) where if d = 3 the Vv.Vu = (7 5- + vay T o az) and where n

is the unitary outside normal of 9€).
Now we note that Kg—z =—au+gonl,andv=0onT,;and 0Q =T, U T, thus

= -1 »
f VKan f auy f %
['he problem becomes:

Findu € V, = {v € H'(Q)/v = g on 'y} such that

fKVv.Vudw+fauvdy=ffvdw+fbvdy, Yv eV (6.16)
Q T, Q r,

where Vo = {v e H'(Q)/v =0on Ty}
Except in the case of Neumann conditions everywhere, the problem (|6 is well posed when k > kg > 0.

Note 6.7 If we have only Neumann boundary condition, linear algebra tells us that the right hand side must
be orthogonal to the kernel of the operator for the solution to exist. One way of writing the compatibility

condition is:
f fdw + fbdy =0
Q r

and a way to fix the constant is to solve for u € H'(Q) such that:

fsuv dw + KVv.Vudwszvdw+f bv dy, VVEHl(Q) (6.17)
Q Q r,

where ¢ is a small parameter ( ~ 10710,

Remark that if the solution is of order é then the compatibility condition is unsatisfied, otherwise we get the
solution such that fQ u = 0, you can also add a Lagrange multiplier to solver the real mathemaical probleme
like in the examples++-tutorial/Laplace-lagrange-mult.edp example.

In FreeFem++, the bidimensional problem (6.16)) becomes

problem Pw(u,v) =
int2d(Th) ( kappa*( dx(u)*dx(u) + dy(w*dy(w)) ) // fQKVv.Vudw

+ int1d(Th,gn)( a * u*v ) // Jp auwdy
- int2d(Th) (£*v) /[y fvdw
- int1d(Th,gn)( b * v ) /7 J bvdy
+ on(gd) (u= @) ; //  u=g on Ty

where Th is a mesh of the the bidimensional domain Q, and gd and gn are respectively the boundary label
of boundary I'; and T,.
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And the the three dimensional problem becomes

macro Grad(u) [dx(u),dy(uw),dz(u) 1] // EOM : definition of the 3d Grad macro
problem Pw(u,v) =
int3d(Th) ( kappa*( Grad(uw)’*Grad(v) ) ) // fﬂ «Vv.Vudw

+ int2d(Th,gn)( a * u*v ) /) Jauwvdy
- int3d(Th) (f*v) /7 frdw
- int2d(Th,gn)( b * v ) // fr,. bvdy
+ on(gd) (u= @) ; // u=g on Iy

where Th is a mesh of the three dimensional domain Q, and gd and gn are respectively the boundary label
of boundary I'; and I,.

6.9 Parameters affecting solve and problem

The parameters are FE functions real or complex, the number n of parameters is even (n = 2 * k), the k first
function parameters are unknown, and the k last are test functions.

Note 6.8 If the functions are a part of vectoriel FE then you must give all the functions of the vectorial FE
in the same order (see laplaceMixte problem for example).

Note 6.9 Don’t mix complex and real parameters FE function.

Bug: 1 The mixing of fespace with different periodic boundary condition is not implemented. So all
the finite element spaces used for test or unknown functions in a problem, must have the same type of
periodic boundary condition or no periodic boundary condition. No clean message is given and the result
is impredictible, Sorry.

The parameters are:

solver= LU, CG, Crout,Cholesky,GMRES,sparsesolver, UMFPACK ...

The default solver is sparsesolver (it is equal to UMFPACK if not other sparce solver is defined) or
is set to LU if no direct sparse solver is available. The storage mode of the matrix of the underlying
linear system depends on the type of solver chosen; for LU the matrix is sky-line non symmetric,
for Crout the matrix is sky-line symmetric, for Cholesky the matrix is sky-line symmetric positive
definite, for CG the matrix is sparse symmetric positive, and for GMRES, sparsesolver or UMFPACK
the matrix is just sparse.

eps= a real expression. € sets the stopping test for the iterative methods like CG. Note that if £ is negative
then the stopping test is:

lAx = bl| < [¢]
if it is positive then the stopping test is
el
lAx - || < ————
lAxo — |

init= boolean expression, if it is false or O the matrix is reconstructed. Note that if the mesh changes the
matrix is reconstructed too.
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precon= name of a function (for example P) to set the preconditioner. The prototype for the function P
must be

func real[int] P(reall[int] & xx) ;

tgv= Huge value (10°°) used to implement Dirichlet boundary conditions.

tolpivot= set the tolerence of the pivot in UMFPACK (10‘1) and, LU, Crout, Cholesky factorisation
(10720),

tolpivotsym=set the tolerence of the pivot sym in UMFPACK

strategy= set the integer UMFPACK strategy (0 by default).

6.10 Problem definition

Below v is the unknown function and w is the test function.
After the =" sign, one may find sums of:

o identifier(s); this is the name given earlier to the variational form(s) (type varf ) for possible reuse.

Remark, that the name in the ”varf” of the unknow of test function is forgotten, we just used the order
in argument list to recall name as in a C++ function, see note[6.14]

o the terms of the bilinear form itself: if K is a given function,

int3d(Th) ( K*v*w) = Z vaw
T

TeTh

- int3d(Th, 1) ( K*v*w) = Z vaw
Teth,TcQ, YT

- int2d(Th) ( K*v*w) :Z Kvw
T€Th T

- int2d(Th,1) ( K¥v¥w) = Z vaw
TeTh,TcQ, T

- intl1d(Th,2,5) ( K*v*w) = f Kvw
feh Y (@TUNN(T,UT's)

- intalledges(Th) ( K*v¥*w) = Zf Kvw
Teth VT

intalledges(Th,1)( K¥*viw) = ) fKVW
TeTh,TcQ, VT

they contribute to the sparse matrix of type matrix which, whether declared explicitly or not
is contructed by FreeFem++ .

o the right handside of the PDE, volumic terms of the linear form: for given functions K, f:

- int3d(Th) ( K*w) = Zwa
T

TeTh
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int2d(Th) ( K¥w) = Z wa
T

TeTh

int1d(Th,2,5) ( K*w) = Zf .
TeTh ¥ (OTUNN(TUT's)

intalledges(Th) ( f*w) = Zf fw
aoT

TeTh

a vector of type real [int]

e The boundary condition terms :

— An ”on” scalar form (for Dirichlet): on(l, u =g )

The meaning is for all degree of freedom i of the boundary refered by 17, the diagonal term
of the matrix a; = tgv with the ferrible geant value tgv (=103 by default) and the right hand
side b[i] = "(IIxg)[i]” X tgv, where the ”(I1;g)g[i]” is the boundary node value given by the
interpolation of g.

— An ”on” vectorial form (for Dirichlet ) :  on(1,ul=gl,u2=g2) If you have vectorial finite
element like RTO, the 2 components are coupled, and so you have : b[i] = "(I1;(g1, g2))[i]"%x1gv,
where I1j, is the vectorial finite element interpolant.

— alinear form on I" (for Neumannin2d) -intl1d(Th))( f*w) or -intld(Th,3))( f*w)

— a bilinear form on I" or I'; (for Robin in 2d) int1d(Th))( K*v*w) or int1d(Th,2))(
K*v*w).

— alinear form onI" (for Neumannin3d) -int2d(Th))( f*w) or -int2d(Th,3))( f*w)

— a bilinear form on I" or I'; (for Robin in 3d) int2d(Th))( K*v*w) or int2d(Th,2))(
K*v*w).

Note 6.10

o [fneeded, the different kind of terms in the sum can appear more than once.

o the integral mesh and the mesh associated to test function or unknown function can be different in the
case of linear form.

e N.x, N.yand N. z are the normal’s components.

Important: it is not possible to write in the same integral the linear part and the bilinear part such as in
int1d(Th) ( K*v*w - f*w) .

6.11 Numerical Integration

Let D be a N-dimensional bounded domain. For an arbitrary polynomial f of degree r, if we can find

particular (quadrature) points §;, j = 1,---,J in D and (quadrature) constants w; such that
L
f f@ = ecf € (6.18)
D

t=1
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then we have an error estimate (see Crouzeix-Mignot (1984)), and then there exists a constant C > 0 such
that,

< C|D|*! (6.19)

L
[ rw0- Y werten
D =1

for any function r + 1 times continuously differentiable f in D, where 4 is the diameter of D and |D] its
measure (a point in the segment [¢'q’] is given as

(el x=(1-0g+1ql, y= (-0, +1q), 0 <t < 1}).

For a domain €, = ZZ’:I Tk, Tn = {T1}, we can calculate the integral over I';, = 0Q, by

int1d(Th) (£)

f(x)ds
Iy

int1d(Th,qfe=*) (£)
int1d(Th, gforder=*) (£)

where * stands for the name of the quadrature formula or the precision (order) of the Gauss formula.

Quadature formula on an edge
L| (qfe=) | qforder=| pointin[g'g/](=1) | wy | exact on P, k =
1 qfIpE 2 1/2 |qqu| 1
2| qf2pE 3 (1+ V1/3)/2 lg'q’1/2 3
3| dqf3pE 6 (1+ v3/5)/2 (5/18)lq'q’| 5
1/2 (8/18)lg'q’|
4| qfdpE 8 (14 V2B030, | 18450, 7
(12 B0 | e igigi
5| qfSpE 10| (e YEREI) 5 | 2B 9
1/2 ekl
1+ \/W)/Z 322T8130x%|qiqj|
2 | gflpElump 2 0 lq'q’1/2 1
+1 lg'q’1/2

where |¢'q/| is the length of segment ﬁ For a part I'; of I';, with the label “1”, we can calculate the integral
over I’} by

f(x,y)ds int1d(Th, 1) ()

I

int1d(Th, 1,qfe=qf2pE) (£)

The integrals over I'y, I'3 are given by

f(x,y)ds = int1d(Th,1,3) (£)
T Ul

For each triangle T} = [¢"¢2¢**] , the point P(x, y) in T} is expressed by the area coordinate as P(¢,n):

e e Iox oy 1 4 4 1 4y q
k k

Td=3|1 4 ¢ | Di=|1 q¢ g | Dr=|1 x y | Di=|1 ¢ ¢

1 ¢ & 1 g7 gy 1 4¢ gy I ox oy

1 1 !
£=5Di/ITWl m=5Do/ITil thenl—&—n=2-Ds/|Ty|
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For a two dimensional domain or a border of three dimensional domain Q; = ZZ’: 1 T T = {T;}, we can
calculate the integral over Q;, by

ff(x,y) = int2d(Th) (f)
Qy

= int2d(Th,qft=*)(£)
= 1int2d(Th,qgforder=*) (f)

where * stands for the name of quadrature formula or the order of the Gauss formula.

Quadature formula on a triangle
L qft= \ gforder= \ point in T \ Wy \ exact on Py, k =
1 qf1pT 2 (1.9) T, 1
3| qf2pT 3 (3.9) IT4l/3 2
(.0) ITel/3
(0. %) ITel/3
7| qfSpT 6 (3.9) 0.225|T] 5
(6 VIS 6- VIS (155- VI5)[T|
21 21 1200
(6 V5 9+2ﬁ) (155- VIS)ITY
21 > 1200
(9+2W 6- W) (155- VIS)IT
’ 1200
(6+ 6+ W) (155+ VIS)| T
21 1200
(6+F 9— 2«F) (155+ VIS)|Ty|
’ 1200
(9 215 6+\F) (155+ VIS)|Ty]
’ 1200
3 | qflpTlump (0,0) Txl/3 1
(1,0) ITxl/3
0, 1) T%l/3
9 | qf2pT4P1 (4.3) Tyl/12 1
(3.1) IT4l/12
0.4) IT4l/12
0.3 |Tyl/12
1.0 |Tkl/12
3.0) |Til/12
(1) IT4l/6
(51) IT4l/6
(3.1) IT4l/6
15 qf7pT 8 see [38] for detail 7
21 qfopT 10 see [138] for detail 9

For a three dimensional domain Q; = ZZ’ZI Tk, T, = {Tx}, we can calculate the integral over €, by

ff(x,y) = 1int3d(Th) (f)
Qy

int3d(Th,qfVv=") (£)
= int3d(Th,qforder=*) (f)

where * stands for the name of quadrature formula or the order of the Gauss formula.
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Quadature formula on a tetraedron

L \ qfV= qforder= \ point in T} € R’ \ we \ exact on Py, k =
L | qfvl 2 (5.4.4) T4 1
4 qfv2 3 G40.58...,0.13...,0.13..) |T%l/4 2
14 qfVvs 6 G40.72...,0.092...,0.092...) | 0.073...|Tk| 5

G4(0.067...,031...,031...) | 0.11...|T%|
G6(0.45...,0.045...,045...) | 0.042...|T«|
4 | qfV1lump G4(1,0,0) |Tk|/4 1

Where G4(a, b, b) such that a + 3b = 1 is the set of the four point in barycentric coordinate
{(a,b,b,D),(b,a,b,b),(b,b,a,b),(,b,b,a)}
and where G6(a, b, b) such that 2a + 2b = 1 is the set of the six points in barycentric coordinate

{(a,a,b,b),(a,b,a,b),(a,b,b,a),(b,b,a,a),(b,a,b,a),(b,a,a,b)).

Note 6.11 These tetraedral quadrature formulae come from http://www.cs.kuleuven.be/~nines/
research/ecf/mtables.html

Note 6.12 By default, we use the formula which is exact for polynomials of degree 5 on triangles or edges
(in bold in three tables).

6.12 Variational Form, Sparse Matrix, PDE Data Vector

In FreeFem++ it is possible to define variational forms, and use them to build matrices and vectors and
store them to speed-up the script (4 times faster here).

For example let us solve the Thermal Conduction problem of section 3.4}

The variational formulation is in L?(0, T; H' (Q)); we shall seek u” satisfying

u' — un—l
Yw € Vp; f ——w+«Vu'Vw) + fa/(u” —Uye)w =0
o Of r
where Vy = {w € H{(Q)/wr,, = 0}.
So the to code the method with the matrices A = (A;;), M = (M;;), and the vectors u", b",b’,b”, b, ( notation
if w is a vector then w; is a component of the vector).

1 b’ if iel
n_ A-1ln ’ _ n—1 » no_ i 24
u" = AT, b =bo+ My, b7 == ba, b { b elseif ¢ (6.20)
Where with é = tgv = 10%0:
1 if i € Toy,andj = i
Aij = f wiwi/dt + k(Vw ;. Vw;) + f awwi elseif i ¢ Ty, orj # i 6.21)
Q I3
1 if i € [p4,andj = i
Mij = f wiw;/dt elseif i ¢ I'pq,0rj # i 6.22)
Q
bo; = f QUlyeW; (6.23)
I3
by = u° the initial data (6.24)


http://www.cs.kuleuven.be/~nines/research/ecf/mtables.html
http://www.cs.kuleuven.be/~nines/research/ecf/mtables.html
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// file thermal-fast.edp in examples++-tutorial

func fu® =10+90*x/6;
func k = 1.8%(y<0.5)+0.2;
real ue = 25. , alpha=0.25, T=5, dt=0.1 ;

mesh Th=square(30,5,[6*x,y]);
fespace Vh(Th,P1);

Vh u®=ful®,u=ul;

Create three variational formulation, and build the matrices A,M.

varf vthermic (u,v)= int2d(Th) (u*v/dt + k*(dx(u) * dx(v) + dy(uw)
+ intl1ld(Th,1,3) (alpha*u*v) + on(2,4,u=1);

varf vthermicO(u,v) = int1d(Th, 1, 3) (alpha*ue*v);
varf vMass (u,v)= int2d(Th) ( u*v/dt) + on(2,4,u=1);
real tgv = le30;

matrix A= vthermic(Vh,Vh,tgv=tgv,solver=CG);
matrix M= vMass(Vh,Vh);

Now, to build the right hand size we need 4 vectors.

* dy(v)))

reall[int] b® = vthermic®(®,Vh); // constant part of the RHS
reall[int] bcn = vthermic(®,Vh); // tgv on Dirichlet boundary node ( !=0 )

// we have for the node i : i€l <  benli]l]#0
real[int] bcl=tgv*ul[]; // the Dirichlet boundary condition part

Note 6.13 The boundary condition is implemented by penalization and vector bcn contains the contribu-
tion of the boundary condition u-1, so to change the boundary condition, we have just to multiply the vector
bel] by the current value f of the new boundary condition term by term with the operator . *. Section[9.6.2]
Examples++-tutorial/StokesUzawa. edp gives a real example of using all this features.

And the new version of the algorithm is now:

ofstream ff("thermic.dat");
for(real t=0;t<T;t+=dt){
real[int] b = b0 ;

// for the RHS

b += M*ul[]; // add the the time dependent part
// lock boundary part:

b=bcn?bcl :Db; // do Yi: b[i] = ben[i] ? bcl[i] : b[i] ;

ul[] = A"-1%b;

ff << t <<" "<<u(3,0.5)<<endl;

plot(u);

}
for(int i=0;i<20;i++)

cout<<dy(u) (6.0%1/20.0,0.9)<<endl;
plot(u,fill=true,wait=1,ps="thermic.eps™);
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Note 6.14 The functions appearing in the variational form are formal and local to the varf definition, the
only important thing is the order in the parameter list, like in

varf vbl([ul,u2],q) int2d(Th) ( (dy(ul)+dy(u2)) *q) + int2d(Th) (1*q);
varf vb2([vl,v2],p) = int2d(Th) ( (dy(v1)+dy(v2)) *p) + int2d(Th) (1*p);

To build matrix A from the bilinear part the variational form a of type var£ simply write:

A =a(Vh,wh [, ...1);

// where

// Vh is "fespace" for the unknow fields with a correct number of component
// Wh is "fespace" for the test fields with a correct number of component

Possible named parametersin " [, ... 1 "are

solver= LU, CG, Crout, Cholesky, GMRES, sparsesolver, UMFPACK ...

The default solver is GMRES. The storage mode of the matrix of the underlying linear system depends
on the type of solver chosen; for LU the matrix is sky-line non symmetric, for Crout the matrix is sky-
line symmetric, for Cholesky the matrix is sky-line symmetric positive definite, for CG the matrix is
sparse symmetric positive, and for GMRES, sparsesolver or UMFPACK the matrix is just sparse.

factorize = if true then do the matrix factorization for LU, Cholesky or Crout, the default value is false.

eps= a real expression. € sets the stopping test for the iterative methods like CG. Note that if £ is negative
then the stopping test is:

Ax — DIl < el
if it is positive then the stopping test is
el
[Ax - b|| < —————
llAxo — bl

precon= name of a function (for example P) to set the precondioner. The prototype for the function P
must be

func real[int] P(real[int] & xx) ;

tgv= Huge value (10°°) used to implement Dirichlet boundary conditions.

tolpivot= set the tolerence of the pivot in UMFPACK (1071) and, LU, Crout, Cholesky factorisation
(10720),

tolpivotsym=set the tolerance of the pivot sym in UMFPACK

strategy= set the integer UMFPACK strategy (0 by default).

Note 6.15 The line of the matrix corresponding to the space Wh and the column of the matrix corresponding
to the space Vh.
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To build the dual vector b (of type real[int]) from the linear part of the variational form a do simply

real b(Vh.ndof);
b = a(0,Vh);

A first example to compute the area of each triangle K of mesh Tk, just do:

fespace Nh(Th,PO); // the space function contant / triangle
Nh areaK;

varf varea(unused,chiK) = int2d(Th) (chikK);

etaK[]= varea(0,Ph);

Effectively, the basic functions of space Nh, are the characteristic function of the element of Th, and the
numbering is the numeration of the element, so by construction:

etaK[i]:fhKi:f 1;
K;

Now, we can use this to compute error indicators like in examples AdaptResidualErrorIndicator.edp
in directory examples++-tutorial.
First to compute a continuous approximation to the function % “density mesh size” of the mesh 7T'h.

fespace Vh(Th,P1);
Vh h ;
real[int] count(Th.nv);
varf vmeshsizen(u,v)=intalledges(Th,qfnbpE=1) (v);
varf vedgecount (u,v)=intalledges(Th,qfnbpE=1) (v/lenEdge);

// computation of the mesh size
/) e
count=vedgecount (0,Vh) ; // number of edge / vertex
h[]=vmeshsizen(0,Vh); // sum length edge / vertex
h[]1=h[]./count; // mean lenght edge / vertex

To compute error indicator for Poisson equation :

ou
n = f IICF + dup)l? + f EBTE
K 0K n

where hg is size of the longest edge ( hTriangle), A, is the size of the current edge ( lenEdge), n the
normal.

fespace Nh(Th,P0®); // the space function contant / triangle
Nh etak;
varf vetaK(unused,chiK) =

intalledges(Th) (chiK*lenEdge*square (jump (N.x*dx(u)+N.y*dy(u))))

+int2d(Th) (chiK*square (hTriangle* (f+dxx(w)+dyy(w))) )J;

etak[]= vetaK(0,Ph);
We add automatic expression optimization by default, if this optimization creates problems, it can be re-
moved with the keyword optimize as in the following example :
varf a(ul,u2)= int2d(Th,optimize=false)( dx(ul)*dx(u2) + dy(ul)*dy(u2) )
+ on(1l,2,4,ul=0) + on(3,ul=1) ;

Remark, it is all possible to build interpolation matrix, like in the following example:
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mesh TH = square(3,4);
mesh th = square(2,3);
mesh Th = square(4,4);

fespace VH(TH,P1);
fespace Vh(th,P1);
fespace Wh(Th,P1);

matrix B= interpolate(VH,Vh); // build interpolation matrix Vh->VH
matrix BB= interpolate(Wh,Vh); // build interpolation matrix Vh->Wh

and after some operations on sparse matrices are available for example

int N=10;
real [int,int] A(N,N); // a full matrix
real [int] a(N),b(N);
A =0;
for (int i=0;i<N;i++)
{
A(i,i)=1+i;
if(i+l < N) A(i,i+1)=-1;
ali]=i;
}
b=A*b;

cout << "xxxx\n";

matrix sparseA=A;

cout << sparseA << endl;

sparseA = 2*sparseA+sparseA’;

sparseA = 4*sparseA+sparseA*5;

matrix sparseB=sparseA+sparseA+sparseA; ;
cout << "sparseB = " << sparseB(0,0) << endl;

6.13 Interpolation matrix

It is also possible to store the matrix of a linear interpolation operator from a finite element space V), to an-
other W, to interpolate(W;, Vy, ...) afunction. Note that the continuous finite functions are extended
by continuity outside of the domain.

The named parameters of function interpolate are:

inside= set true to create zero-extension.
t= set true to get the transposed matrix
op= set an integer written below

0 the default value and interpolate of the function
1 interpolate the 0,
2 interpolate the dy

3 interpolate the 0,
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U2Vc= set the which is the component of W;, come in V}, in interpolate process in a int array so the size of
the array is number of component of Wy, if the put —1 then component is set to 0, like in the following
example: (by default the component number is unchanged).

fespace V4h(Th4,[P1,P1,P1,P1]);

fespace V3h(Th, [P1,P1,P1]);

int[int] u2vc=I[1,3,-1]; // -1 => put zero on the component
matrix IV34= interpolate(V3h,V4h,inside=0,U2Vc=u2vc); // V3h <- V4h
V4h [al,a2,a3,a4]=[1,2,3,4];

V3h [bl,b2,b3]=[10,20,30];

bl[]=IV34*al[];

So here we have: bl == 2, b2 == 4, b3 ==

Example 6.2 (mat_interpol.edp)

mesh Th=square(4,4);
mesh Th4=square(2,2,[x*0.5,y*0.5]);
plot (Th,Th4,ps="ThTh4.eps",wait=1);

fespace Vh(Th,P1); fespace Vh4(Th4,Pl);
fespace Wh(Th,P0); fespace Wh4(Th4,P0);
matrix IV= interpolate(Vh,Vh4); // here the function is

// exended by continuity
cout << " IV Vh<-Vh4 " << IV << endl;

Vh v, vv; Vh4 v4=x*y;

v=v4; vv[]= IV*v4[]; // here v == vv =>
reall[int] diff= vv[] - v[];

cout << " || v - vv || =" << diff.linfty << endl;

assert( diff.linfty<= le-6);

matrix IVO= interpolate(Vh,Vh4,inside=1); // here the function is

// exended by zero
cout << " IV Vh<-Vh4 (inside=1) " << IVO® << endl;
matrix IVt0O= interpolate(Vh,Vh4,inside=1,t=1);
cout << " IV Vh<-Vh4"t (inside=1) " << IVtO® << endl;
matrix IV4t0= interpolate(Vh4,Vh);
cout << " IV Vh4<-Vh™t " << IV4t0® << endl;
matrix IW4= interpolate(Wh4,Wh);
cout << " IV Wh4<-Wh " << IW4 << endl;
matrix IW4V= interpolate(Wh4,Vh);
cout << " IV Wh4<-Vh " << IW4 << endl;

6.14 Finite elements connectivity

Here, we show how to get informations on a finite element space Wj(7, %), where “*” may be P1, P2, Plnc,
etc.

e Wh.nt gives the number of element of W),
e Th.ndof gives the number of degrees of freedom or unknown

e Wh.ndofK gives the number of degrees of freedom on one element
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e Wh(k,i) gives the number of ith degrees of freedom of element k.

See the following example:

Example 6.3 (FE.edp) mesh Th=square(5,5);
fespace Wh(Th,P2);
cout << " nb of degree of freedom
cout << " nb of degree of freedom / ELEMENT :
int k= 2, kdf= Wh.ndofK ;;
cout << " df of element " << k << ":" ;
for (int i=0;i<kdf;i++) cout << Wh(k,i) << "
cout << endl;

The output is:

Nb Of Nodes = 121

Nb of DF = 121

FESpace:Gibbs: old skyline = 5841 new skyline
nb of degree of freedom 1121

nb of degree of freedom / ELEMENT : 6

df of element 2:78 95 83 87 79 92

<< Wh.ndof << endl;
<< Wh.ndofK << endl;

= 1377

Vs

element 2
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Visualization

Results created by the finite element method can be a huge set of data, so it is very important to render
them easy to grasp. There are two ways of visualization in FreeFem++ : One, the default view, supports
the drawing of meshes, isovalues of real FE-functions and of vector fields, all by the command plot (see
Section[7.1]below). For publishing purpose, FreeFem++ can store these plots as postscript files.

Another method is to use external tools, for example, gnuplot (see Section [7.2)), medit (see Section
using the command system to launch them and/or to save the data in text files.

7.1 Plot

With the command plot, meshes, isovalues of scalar functions and vector fields can be displayed.

The parameters of the plot command can be , meshes, real FE functions , arrays of 2 real FE functions,
arrays of two arrays of double, to plot respectively a mesh, a function, a vector field, or a curve defined by
the two arrays of double.

Note 7.1 The length of an arrow is always bound to be in [5%o, S%) of the screen size, to see something
(else it will only look like porcupine).

The parameters are

wait= boolean expression to wait or not (by default no wait). If true we wait for a keyboard event or mouse
event, they respond to an event by the following characters

+ to zoom in around the mouse cursor,

to zoom out around the mouse cursor,

to restore de initial graphics state,

to decrease the vector arrows size,

to increase the vector arrows size,

to refresh the graphic window,

to toggle between color fills and isovalues,
to toggle into black and white,

to toggle to grey or color

to toggle the display of isovalue scale,

N < Q@ T HM R N N0

to show all active keyboard char,

165
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enter go to the next plot,
ESC close the graphics process.
otherwise do nothing.
ps= string expression for the name of the file to save the plot in postscript
coef= the vector arrow size between arrow unit and domain unit.
fill= do a color fill between isovalues.
cmm= string expression to write the graphic window into
value= to plot the value of isolines and the value of vector arrows.
aspectratio= boolean to be sure that the aspect ratio of plot is preserved or not.

bb= array of 2 array (like [[0.1,0.2],[0.5,0.6]]), to set the bounding box and specify a partial view
where the box defined by the two corner points [0.1,0.2] and [0.5,0.6].

nbiso= (int) sets the number of isovalues (20 by default)

nbarrow= (int) sets the number of colors of arrow values (20 by default)
viso= sets the array of isovalues (an array real[int] of increasing values)
varrow= sets the array of color arrows values (an array real[int])

bw= (bool) sets or not the plot in black and white color.

grey= (bool) sets or not the plot in grey color.

hsv= (array of float) to defined color of 3*n value in HSV color model declared for example by

real[int] colors = [hl,sl,vl,... , hn,vn,vn];

where hi, si, vi is the ith color to defined the color table.
boundary= (bool) to plot or not the boundary of the domain (true by default).
dim= (int) sets dim of the plot 2d or 3d (2 by default)

For example:

reall[int] xx(10),yy(10);
mesh Th=square(5,5);
fespace Vh(Th,P1);

Vh uh=x*x+y*y,vh=-y"2+x"2;

int i;
// compute a cut
for (i=0;i<10;i++)
{
x=i/10.; y=i/10.;
xx[i]=i;
yy[i]=uh; // value of uh at point (i/10. , i/10.)
}

plot (Th,uh, [uh,vh],value=true,ps="three.eps",wait=true); // figure |7.1
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// zoom on box defined by the two corner points [0.1,0.2] and [0.5,0.6]

plot (uh, [uh,vh],bb=[[0.1,0.2]1,[0.5,0.61],

wait=true,grey=1,fill=1,value=1,ps="threeg.eps"); // figure

plot ([xx,yy],ps="1likegnu.eps",wait=true); // figure
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Figure 7.1: mesh, isovalue, and vector Figure 7.2: enlargement in grey of isovalue, and

vector

Figure 7.3: Plots a cut of uh. Note that a refinement of the same can be obtained in combination
with gnuplot

To change the color table and to choose the value of iso line you can do :

//
//
/7
/7
/7
Vs
//

from: |http://en.wikipedia.org/wiki/HSV_color_space
The HSV (Hue, Saturation, Value) model,
defines a color space in terms of three constituent components:

HSV color space as a color wheel
Hue, the color type (such as red, blue, or yellow):
Ranges from 0-360 (but normalized to 0-100% in some applications Here)


http://en.wikipedia.org/wiki/HSV_color_space
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//  Saturation, the "vibrancy" of the color:
// The lower the saturation of a color, the
// and the more faded the color will appear.
// Value, the brightness of the color:
// Ranges from 0-100%
//
reallint] colorhsv=[

4./6., 1, 0.5,

4./6., 1, 1,

5./6., 1,1,

1, 1. , 1,

1, 0.5 , 1

1;

real[int] viso(31);

for (int i=0;i<viso.n;i++)
viso[i]=i*0.1;

CHAPTER 7. VISUALIZATION

Ranges from 0-100%
more "grayness" is present

// color hsv model
// dark blue

// blue

// magenta

// red

// light red

plot(uh,viso=viso(0®:viso.n-1),value=1,fill=1,wait=1,hsv=colorhsv);

Figure 7.4: hsv color cylinder

Value
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Figure 7.5: isovalue with an other color table
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7.2 link with gnuplot

Example shows how to generate a gnu-plot from a FreeFem++ file. Let us present here another tech-
nique which has the advantage of being online, i.e. one doesn’t need to quit FreeFem++ to generate a
gnu-plot. But this work only if gnuplotﬂ is installed , and only on unix computer.

Add to the previous example:

{ // file for gnuplot
ofstream gnu("plot.gp");
for (int i=0;i<=n;i++)
{
gnu << xx[i] <<

}

} // the file plot.gp is close because the variable gnu is delete

non

<< yy[i] << endl;

// to call gnuplot command and wait 5 second (thanks to unix command)
// and make postscript plot
exec("echo ’'plot \"plot.gp\" w 1 \
pause 5 \
set term postscript \
set output \"gnuplot.eps\" \
replot \
quit’ | gnuplot™);

“plotgp’ ——

Figure 7.6: Plots a cut of uh with gnuplot

7.3 link with medit

As said above, meditE]is a freeware display package by Pascal Frey using OpenGL. Then you may run the
following example.

Remark: Now medit software is include in FreeFem++ under ffmedit name.
Now with version 3.2 or better

load "medit"

mesh Th=square(10,10,[2*%x-1,2*y-1]);
fespace Vh(Th,P1);

Vh u=2-x*x-y*y;

medit("'mm",u);

'http://www.gnuplot.info/
thtp ://www-rocq.inria. fr/gamma/medit/medit.html


http://www.gnuplot.info/
http://www-rocq.inria.fr/gamma/medit/medit.html
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Figure 7.7: medit plot

Before:

mesh Th=square(10,10,[2*%x-1,2*y-1]);
fespace Vh(Th,P1);
Vh u=2-x*x-y*y;
savemesh(Th, "mm", [x,y,u*.5]); //  save mm.points and mm.faces file
// for medit
// build a mm.bb file
{
ofstream file("mm.bb");
file << "2 11 "<<u[]l.n << " 2 \n";
for (int j=0;j<ul]l.n ; j++)
file << u[][j] << endl;
}
// call medit command
exec("ffmedit mm");
// clean files on unix 0S
exec("rm mm.bb mm.faces mm.points");
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Algorithms

The complete example is in algo. edp file.

8.1 conjugate Gradient/GMRES

Suppose we want to solve the Euler problem (here x has nothing to do with the reserved variable for the first
coordinate in FreeFem++ ): find x € R” such that

0
VJ(x) = (a—;c]_(x)) =0 8.1

where J is a functional (to minimize for example) from R" to R.

If the function is convex we can use the conjugate gradient to solve the problem, and we just need the
function (named dJ for example) which compute VJ, so the parameters are the name of that function with
prototype

func reallint] dJ(real[int] & xX);

which compute VJ, and a vector x of type ( of course the number 20 can be changed)

real[int] x(20);

to initialize the process and get the result.

Given an initial value x©), a maximum number in,y of iterations, and an error tolerance 0 < € < 1: Put
x = x© and write

NLCG(VJ, x, precon= M, nbiter= iy, eps=¢€);

will give the solution of x of VJ(x) = 0. We can omit parameters precon, nbiter, eps. Here M is the
preconditioner whose default is the identity matrix. The stopping test is

IVI@)llp < elVIEO)lp
Writing the minus value in eps=, i.e.,
NLCG(VJ, x, precon= M, nbiter= iy, eps= —¢€);

we can use the stopping test
IVII; < €

The parameters of these three functions are:

nbiter= set the number of iteration (by default 100)
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precon= set the preconditioner function (P for example) by default it is the identity, remark the prototype
is func reall[int] P(reall[int] &Xx).

eps= set the value of the stop test & (= 10°° by default) if positive then relative test ||[VJ(x)||p < £||VJ(x0)l|p,
otherwise the absolute test is [[VJ(x)|[3 < |&l.

veps= set and return the value of the stop test, if positive then relative test ||[VJ(x)||p < &]|VJ(x0)||p, oth-
erwise the absolute test is [|[VJ(x)||> < |e|. The return value is minus the real stop test (remark: it is
useful in loop).

Example 8.1 (algo.edp) For a given function b, let us find the minimizer u of the functional

! f FAVUP) - f ub
2 Q Q

4 — L "’ = —
ax+ x —In(1 + x), f(x)_a+1+x’ 1 (x) (1+X)2

J(u)

fx)
under the boundary condition u = 0 on 0.

func real J(reall[int] & u)

{
Vh w;w[]=u; // copy array u in the finite element function w
real r=int2d(Th) (0.5*f( dx(w)*dx(w) + dy(w)*dy(w) ) - b*w) ;
cout << "J(u) =" << r << " " << u.min << " " << u.max << endl;
return r;
}
A
Vh u=0; // the current value of the solution
Ph alpha; // of store df(|Vul?)
int iter=0;
alpha=df( dx(uw)*dx(u) + dy(w*dy(u) ); // optimization
func reall[int] dJ(real[int] & u)
{
int verb=verbosity; verbosity=0;
Vh w;w[]=u; // copy array u in the finite element function w
alpha=df( dx(w)*dx(w) + dy(w)*dy(w) ); // optimization

varf au(uh,vh) = int2d(Th) ( alpha*( dx(w)*dx(vh) + dy(w)*dy(vh) ) - b*vh)
+ on(1,2,3,4,uh=0);
u= au(®,Vh);
verbosity=verb;
return u; // warning no return of local array

We want to construct also a preconditioner C with solving the problem: find uy € Vo, such that

Yv, € Von, fa/Vuh.Vvh =fbvh
Q Q

where a = f'(|Vul?). %/

varf alap(uh,vh)= int2d(Th)( alpha *( dx(uh)*dx(vh) + dy(uh)*dy(vh) ))
+ on(1,2,3,4,uh=0);
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varf amass(uh)= int2d(Th)( uh*vh) + on(1,2,3,4,uh=0);

matrix Amass = alap(Vh,Vh,solver=CG); //
matrix Alap= alap(Vh,Vh,solver=Cholesky, factorize=1); //
// the preconditionner function

func real[int] C(real[int] & u)

{

real[int] w = Amass*u;

u = Alap”-1%*w;

return u; // no return of local array variable
}

/* To solve the problem, we make 10 iteration of the conjugate gradient, recompute the preconditioner and
restart the conjugate gradient: */

verbosity=5;

int conv=0;

real eps=1le-6;
for(int i=0;i<20;i++)

{
conv=NLCG(dJ,u[],nbiter=10,precon=C,veps=eps); //
if (conv) break; // if converge break loop
alpha=df( dx(w)*dx(u) + dy(w*dy(u) ); // recompute alpha optimization

Alap = alap(Vh,Vh,solver=Cholesky, factorize=1);
" restart with new preconditionner " << conv

eps =" << eps << endl;

cout <<
<<

plot (u,wait=1,cmm="solution with NLCG");

For a given symmetric positive matrix A, consider the quadratic form
J(x) = %xTAx ~b'x

then J(x) is minimized by the solution x of Ax = b. In this case, we can use the function LinearCG
LinearCG(A, x, precon= M, nbiter= i, €ps= *€);

If A is not symmetric, we can use GMRES(Generalized Minimum Residual) algorithm by
LinearGMRES(A, x, precon= M, nbiter= in.,, eps= *¢€);

Also, we can use the non-linear version of GMRES algorithm (the functional J is just convex)
LinearGMRES(VJ, x, precon= M, nbiter= iy, eps= *¢€);

For detail of these algorithms, refer to [14][Chapter IV, 1.3].
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8.2 Optimization

Two algorithms of COOOL a package [27] are interfaced with the Newton Raphson method (call Newton)
and the BFGS method. Be careful of these algorithms, because their implementation use full matrices.

Example of utilization

real[int] b(10),u(10);
func real J(reall[int] & u)
{
real s=0;
for (int i=0;i<u.n;i++)
s +=GA+D*uli]*ul[i]*0.5 - b[i]*ul[i];
cout << "] ="<< s << " u =" << u[0] << " " << ull] << "...\n" ;
return s;

}

// the grad of J (this is a affine version (the RHS is in )
func real[int] DJ(reall[int] &u)

{
for (int i=0;i<u.n;i++)
ulil=(i+1)*ulil-b[il;
return u; //

};

return of global variable ok

b=1; u=2; // set right hand side and initial gest
BFGS(J,dJ,u,eps=1.e-6,nbiter=20,nbiterline=20);
cout << "BFGS: J(uw) = " << J(u) << endl;



Chapter 9

Mathematical Models

Summary This chapter goes deeper into a number of problems that FreeFem++ can solve. It is a com-
plement to chapter 3 which was only an introduction. Users are invited to contribute to make this data base
of problems grow.

9.1 Static Problems

9.1.1 Soap Film

Our starting point here will be the mathematical model to find the shape of soap film which is glued to the
ring on the xy—plane
C ={(x,y); x=cost,y=sint, 0 <t <2n}.

We assume the shape of the film is described by the graph (x, y, u(x, y)) of the vertical displacement u(x, y) (x*+
y? < 1) under a vertical pressure p in terms of force per unit area and an initial tension y in terms of force
per unit length.

Consider the “small plane” ABCD, A:(x,y,u(x,y)), B:(x,y,u(x + 6x,y)), C:(x,y,u(x + dx,y + 8y)) and
D:(x,y,u(x,y + dy)). Denote by n(x,y) = (ni(x,y),ny(x,y),n,(x,y)) the normal vector of the surface

z = u(x,y). We see that the vertical force due to the tension u acting along the edge AD is —un,(x, y)oy
and the the vertical force acting along the edge AD is

on
Uny(x + ox,y)0y =~ u (nx(x, y) + a—;éx) (x,y)0y.
Similarly, for the edges AB and DC we have

T u(x-+3x,y+8y)

u(x,y+06y)

(Ou/Ox)dx
u(x.y) T u(x+0x,y)

—pny(x,3)0x,  pt(ny(x,y) + Ony /9y) (x, y)ox.

175



176 CHAPTER 9. MATHEMATICAL MODELS

The force in the vertical direction on the surface ABCD due to the tension u is given by
u(Ony/0x)oxoy + T (Bny / ay) 0yox.

Assuming small displacements, we have

(Ou/ox)/ \/1 + (0u/0x)* + (0u/0y)?* ~ Ou/ox,

Vx

Vy

(Ou/dy)/ \/1 + (Ou/0x)* + (0u/0y)* ~ Ou/dy.

Letting 6x — dx, 0y — dy, we have the equilibrium of the vertical displacement of soap film on ABCD by

p
udxdyd*u)dx* + pdxdyd*u/dy* + pdxdy = 0.

Using the Laplace operator A = 3%/dx> + 3*/dy*, we can find the virtual displacement write the following
—Au=f inQ 9.1)

where f = p/u, Q = {(x,y); x> +y> < 1}. Poisson’s equation (2.1)) appears also in electrostatics taking
the form of f = p/e where p is the charge density, € the dielectric constant and u is named as electrostatic
potential. The soap film is glued to the ring JQ2 = C, then we have the boundary condition

u=0 onodQ 9.2)
If the force is gravity, for simplify, we assume that f = —1.

Example 9.1 (a_tutorial.edp)

1 : border a(t=0,2*pi){ x = cos(t); y = sin(t);label=1;};

2 :

3 : mesh disk = buildmesh(a(50));

4 : plot(disk);

5 : fespace fempl(disk,P1l);

6 : fempl u,v;

7 : func f = -1;

8 : problem laplace(u,v) =

9 : int2d(disk) ( dx(u)*dx(v) + dy)*dy(v) ) // bilinear form
10 : - int2d(disk) ( f*v ) // linear form
11 : + on(1,u=0) ; // boundary condition
12 : func ue = (x"2+y"2-1)/4; // ue: exact solution
13 : laplace;

14 : fempl err = u - ue;

15 :

16 : plot (u,ps="aTutorial.eps",value=true,wait=true);

17 : plot(err,value=true,wait=true);

18 :

19 : cout << "error L2=" << sqrt(int2d(disk)( err"2) )<< endl;

20 : cout << "error H10=" << sqgrt( int2d(disk) ((dx(u)-x/2)"2)

21 : + int2d(disk) ((dy(uw)-y/2)"2))<< endl;

22 :

23 : disk = adaptmesh(disk,u,err=0.01);

24 : plot(disk,wait=1);

25 :

26 : laplace;

27 :

28 : plot (u,value=true,wait=true);
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29 : err = u - ue; // become FE-function on adapted mesh
30 : plot(err,value=true,wait=true);

31 : cout << "error L2=" << sqrt(int2d(disk)( err"2) )<< endl;

32 : cout << "error H10=" << sqrt(int2d(disk) ((dx(u)-x/2)"2)

33 : + int2d(disk) ((dy(uw)-y/2)"2))<< endl;

Figure 9.2: a side view of u

Figure 9.1: isovalue of u

In 19th line, the L?-error estimation between the exact solution u,,

12
e, — uelloo = (f lup — uol? dxdy)
Q

and from 20th line to 21th line, the H'-error seminorm estimation

12
lup — ueli0 = (f \Vuy, — Vu|? dxdy)
Q

are done on the initial mesh. The results are ||u, — u.llo.o = 0.000384045, |u; — u.|1 o = 0.0375506.
After the adaptation, we hava [|lu;, — u.|loo = 0.000109043, |u;, — u.|1o = 0.0188411. So the numerical
solution is improved by adaptation of mesh.

9.1.2 Electrostatics

We assume that there is no current and a time independent charge distribution. Then the electric field E
satisfies

divE = p/e, curlE =0 (9.3)

where p is the charge density and € is called the permittivity of free space. From the second equation in
(.3), we can introduce the electrostatic potential such that E = —V¢. Then we have Poisson’s equation
—-A¢ = f, f = —p/e. We now obtain the equipotential line which is the level curve of ¢, when there are no
charges except conductors {Cj}... k. Let us assume K conductors C1y, - - - , Cx within an enclosure Cy. Each
one is held at an electrostatic potential ¢;. We assume that the enclosure CO is held at potential 0. In order
to know ¢(x) at any point x of the domain €, we must solve

-Ap=0 inQ, 9.4)
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where Q is the interior of Cy minus the conductors C;, and I is the boundary of €, that is Zf\; o Ci. Here g is
any function of x equal to ¢; on C; and to 0 on Cy. The boundary equation is a reduced form for:

p=¢;onC;, i =1..N,¢ =0onCy. (9.5)

Example 9.2  First we give the geometrical informations; Co = {(x,y); x> +y*> = 52}, C1 = {(x,y) :
(=27 + 5y =1}, Cy = {(x.y) 1 g5 (x +2)% + 55)% = 1}. Let Q be the disk enclosed by Co with the
elliptical holes enclosed by C\ and C,. Note that Cy is described counterclockwise, whereas the elliptical
holes are described clockwise, because the boundary must be oriented so that the computational domain is

to its left.

// a circle with center at (0 ,0) and radius 5
border CO(t=0,2%pi) { x =5 * cos(t); y =5 * sin(t); }
border C1(t=0,2%pi) { x = 2+0.3 * cos(t); y = 3*sin(t); }
border C2(t=0,2%pi) { x -2+0.3 * cos(t); y = 3*sin(t); }

mesh Th = buildmesh(CO(60)+C1(-50)+C2(-50));

plot (Th,ps="electroMesh"); // figure
fespace Vh(Th,P1); // P1 FE-space
Vh uh,vh; // unknown and test function.
problem Electro(uh,vh) = // definition of the problem
int2d(Th) ( dx(uh)*dx(vh) + dy(uh)*dy(vh) ) // bilinear
+ on(CO,uh=0) // boundary condition on C
+ on(Cl,uh=1) // +1 volt on C,
+ on(C2,uh=-1) ; // -1 volt on C,
Electro; // solve the problem, see figure for the solution
plot(uh,ps="electro.eps",wait=true); // figure

%
N
KK
~)

SRR
RN
vAYYAY

N/
\VAV/
AY|

\/

N
15"1

/\

o
I\

;VA a 4';’, %
QRGXNRE

A

Figure 9.3: Disk with two elliptical holes Figure 9.4: Equipotential lines, where C; is lo-
cated in right hand side
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9.1.3 Aerodynamics

Let us consider a wing profile S in a uniform flow. Infinity will be represented by a large circle I',. As
previously, we must solve

Ap=0 inQ, ¢ls=c, ¢lr, = Ucolx = Ucodx 9.6)

where Q is the area occupied by the fluid, u. is the air speed at infinity, c is a constant to be determined so
that 0, ¢ is continuous at the trailing edge P of S (so-called Kutta-Joukowski condition). Lift is proportional
to c. To find ¢ we use a superposition method. As all equations in (9.6) are linear, the solution ¢. is a linear
function of ¢

Yc = o + Y1, 9.7

where ¢ is a solution of (9.6) with ¢ = 0 and ¢; is a solution with ¢ = 1 and zero speed at infinity. With
these two fields computed, we shall determine ¢ by requiring the continuity of d¢/dn at the trailing edge.
An equation for the upper surface of a NACAOO012 (this is a classical wing profile in aerodynamics; the rear
of the wing is called the trailing edge) is:

y = 0.17735 Vx — 0.075597x — 0.212836x> + 0.17363x> — 0.06254x". (9.8)
Taking an incidence angle « such that tan @ = 0.1, we must solve
-Ap=0 in Q, olr, =y-0.1x, ¢Ir, =c, 9.9)
where I'; is the wing profile and I'; is an approximation of infinity. One finds ¢ by solving:

—Agy =0 in Q, wolr, =y —0.1x, ¢olr, =0, (9.10)

—A(,Dl =0 in Q., (plh"l = 0, (p1|r2 =1. (911)

The solution ¢ = ¢ + cp; allows us to find ¢ by writing that d,¢ has no jump at the trailing edge P = (1, 0).
We have dnp — ((P*) — ¢(P))/6 where P* is the point just above P in the direction normal to the profile at

a distance 8. Thus the jump of 9, is (@glp+ + c(@1lp+ — 1)) + (wolp- + c(@1]p- — 1)) divided by ¢ because the
normal changes sign between the lower and upper surfaces. Thus

@olp+ + @olp-

= - R 9.12)
(e1lpr + 1lp- —2)
which can be programmed as:

_ ©0(0.99,0.01) + ¢(0.99,-0.01) ©.13)

a (¢1(0.99,0.01) + ¢1(0.99,-0.01) — 2)° '
Example 9.3 // Computation of the potential flow around a NACA®O12 airfoil.
// The method of decomposition is used to apply the Joukowski condition
// The solution is seeked in the form psi® + beta psil and beta is
// adjusted so that the pressure is continuous at the trailing edge
border a(t=0,2%pi) { x=5*cos(t); y=5*sin(t); }; // approximates infinity

border upper(t=0,1) { x = t;
y = 0.17735*sqrt(t)-0.075597*t
- 0.212836%(t"2)+0.17363*(t"3)-0.06254*(t"4); }
border lower(t=1,0) { x = t;
y= -(0.17735*sqrt(t)-0.075597*t



180 CHAPTER 9. MATHEMATICAL MODELS

-0.212836%(t"2)+0.17363*(t"3)-0.06254*(t"4)); }
border c(t=0,2%pi) { x=0.8%cos(t)+0.5; y=0.8*sin(t); }

wait = true;

mesh Zoom = buildmesh(c(30)+upper(35)+lower(35));

mesh Th = buildmesh(a(30)+upper(35)+lower(35));

fespace Vh(Th,P2); // P1 FE space
Vh psi®,psil,vh; // unknown and test function.
fespace ZVh(Zoom,P2);

solve Joukowski®(psi®,vh) = // definition of the problem
int2d(Th) ( dx(psi®)*dx(vh) + dy(psi®)*dy(vh) ) // bilinear form
+ on(a,psi®=y-0.1%x) // boundary condition form
+ on(upper, lower,psi®=0);
plot (psi®);
solve Joukowskil(psil,vh) = // definition of the problem
int2d(Th) ( dx(psil)*dx(vh) + dy(psil)*dy(vh) ) // bilinear form
+ on(a,psil=0) // boundary condition form

+ on(upper, lower,psil=1);
plot(psil);

// continuity of pressure at trailing edge
real beta = psi0(0.99,0.01)+psi®(0.99,-0.01);
beta = -beta / (psil(0.99,0.01)+ psil(0.99,-0.01)-2);

Vh psi = beta*psil+psi0;
plot(psi);

ZVh Zpsi=psi;

plot (Zpsi,bw=true);

ZVh cp = -dx(psi) "2 - dy(psi)“2;
plot(cp);

ZVh Zcp=cp;

plot (Zcp,nbiso=40);

Figure 9.5: isovalue of cp = —(9,)* — (8,)* Figure 9.6: Zooming of cp
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9.1.4 Error estimation

There are famous estimation between the numerical result u;, and the exact solution u of the problem [2;1']
and[2.2} If triangulations {77} |0 is regular (see Section[5.4), then we have the estimates

IA

Cih 9.14)
lu—upllog < Coh? (9.15)

[Vu — Vuyloo

A

with constants Cy, C; independent of A, if u is in H*(Q). It is known that u € H3(Q) if Q is convex.
In this section we check (9.14)) and (9.15). We will pick up numericall error if we use the numerical deriva-
tive, so we will use the following for (9.14).

f [Vu — Vuhl2 dxdy f Vu - V(u - 2up) dxdy + f Vuy, - Vuy, dxdy
Q Q Q

ff(u—Zuh)dXdy+ffuhdxdy
Q Q

The constants C1, C, are depend on 7, and f, so we will find them by FreeFem++ . In general, we cannot
get the solution u as a elementary functions (see Section4.7)) even if spetical functions are added. Instead of
the exact solution, here we use the approximate solution ug in Vi, (73, P2), h ~ 0.

Example 9.4

1 : mesh ThO® = square(100,100);

2 : fespace VOh(ThO,P2);

3 : VOh ud,vl;

4 : func f = x*y; // sin(pi*x)*cos(pi*y);
5 :

6 : solve Poisson®(ul®,v0) =

7 int2d(ThO®) ( dx(u®)*dx(v0) + dy(u®)*dy(v0) ) // bilinear form
8 : - int2d(ThO®) ( £*v0 ) // linear form
9 : + on(1,2,3,4,ud0=0) ; // boundary condition
10 :

11 : plot(u®);

12 :

13 : reall[int] errL2(10), errH1(10);

14 :

15 : for (int i=1; i<=10; i++) {

16 : mesh Th = square(5+i*3,5+i*3);

17 : fespace Vh(Th,P1);

18 : fespace Ph(Th,P0);

19 : Ph h = hTriangle; // get the size of all triangles
20 : Vh u,v;

21 : solve Poisson(u,v) =

22 : int2d(Th) ( dx(u)*dx(v) + dy(w)*dy(v) ) // bilinear form
23 : - int2d(Th) ( f*v ) // linear form
24 : + on(1,2,3,4,u=0) ; // boundary condition
25 : VOh uu = u;

26 : errL2[i-1] = sqgrt( int2d(ThO) ((uu - u®)"2) )/h[].max"2;

27 : errH1[i-1] = sqrt( int2d(ThO) ( £*(u®-2*uu+uu) ) )/h[].max;

28 : }

29 : cout << "Cl = " << errL2.max <<"("<<errL2.min<<")"<< endl;

30 : cout << "C2 = " << errHl.max <<"("<<errHl.min<<")"<< endl;

We can guess that C; = 0.0179253(0.0173266) and C, = 0.0729566(0.0707543), where the numbers inside
the parentheses are minimum in calculation.
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9.1.5 Periodic Boundary Conditions
We now solve the Poisson equation
—Au = sin(x + /4.) * cos(y + n/4.)

on the square ]0, 27[2 under bi-periodic boundary condition u(0, y) = u(2x,y) for all y and u(x, 0) = u(x, 2r)
for all x. These boundary conditions are achieved from the definition of the periodic finite element space.

Example 9.5 (periodic.edp)

mesh Th=square(10,10, [2*x*pi,2*y*pi]);
// defined the fespacewith periodic condition

// label : 2 and 4 are left and right side with y the curve abscissa
// 1 and 2 are bottom and upper side with x the curve abscissa

fespace Vh(Th,P2,periodic=[[2,y],[4,y],[1,x],[3,x11);
Vh uh,vh; // unknown and test function.
func f=sin(x+pi/4.)*cos(y+pi/4.); // right hand side function
problem laplace(uh,vh) = // definion of the problem
int2d(Th) ( dx(uh)*dx(vh) + dy(uh)*dy(vh) ) // bilinear form
+ int2d(Th)( -f*vh ) // linear form
laplace; // solve the problem plot(uh); // to see the result

plot(uh,ps="period.eps",value=true);

Figure 9.7: The isovalue of solution u with periodic boundary condition

The periodic condition does not necessarily require parallel boundaries. Example [9.6| give such example.
Example 9.6 (periodic4.edp)

real r=0.25;

// a diamond with a hole
border a(t=0,1){x=-t+1; y=t;label=1;};
border b(t=0,1){ x=-t; y=1-t;label=2;};
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border c(t=0,1){ x=t-1; y=-t;label=3;};
border d(t=0,1){ x=t; y=-1+t;label=4;};
border e(t=0,2*pi){ x=r*cos(t); y=-r*sin(t);label=0;};
int n = 10;
mesh Th= buildmesh(a(m)+b()+c(m)+d(n)+e(n));
plot(Th,wait=1);
real r2=1.732;
func abs=sqrt(x"2+y~2);
// warning for periodic condition:
// side a and c
// on side a (label 1) xe[0,1] or x—ye[-1,1]
// on side c (label 3) xe[-1,0] or x—ye[-1,1]
// so the common abscissa can be respectively x and x+ |
// or you can can try curviline abscissa x—y and x—Yy
// 1 first way
// fespace Vh(Th,P2,periodic=[[2,1+x],[4,x],[1,x],[3,1+x]]);
// 2 second way
fespace Vh(Th,P2,periodic=[[2,x+y],[4,x+y],[1,x-y],[3,x-y1]);

Vh uh,vh;

func f=(y+x+1D)*(y+x-1)*(y-x+1)*(y-x-1);
real intf = int2d(Th) (£);
real mTh = int2d(Th) (1);
real k = intf/mTh;
problem laplace(uh,vh) =
int2d(Th) ( dx(uh)*dx(vh) + dy(uh)*dy(vh) ) + int2d(Th)( (k-f)*vh ) ;
laplace;
plot(uh,wait=1,ps="perio4.eps");

Figure 9.8: The isovalue of solution u for Au = ((y + x)> + 1)((y — x)> + 1) — k,in Q and d,u = 0
on hole,and with two periodic boundary condition on external border

An other example with no equal border, just to see if the code works.
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Example 9.7 (periodic4bis.edp)

// irregular boundary condition.
// to build border AB
macro LINEBORDER(A,B,lab) border A#B(t=0,1){real tl=1.-t;

X=A#x*t1+B#x*t; y=A#y*t14B#y*t;label=1ab;} //  EOM
// compute [[AB|| a=(ax,ay) et B =(bx,by)
macro dist(ax,ay,bx,by) sqrt(square((ax)-(bx))+ square((ay)-(by))) // EOM
macro Grad(u) [dx(u),dy(w] //  EOM
real Ax=0.9,Ay=1; real Bx=2,By=1;
real (Cx=2.5,Cy=2.5; real Dx=1,Dy=2;
real gx = (Ax+Bx+Cx+Dx)/4.; real gy = (Ay+By+Cy+Dy)/4.;

LINEBORDER(A,B, 1)
LINEBORDER(B,C,2)
LINEBORDER(C,D, 3)
LINEBORDER(D,A,4)

int n=10;

real 11=dist(Ax,Ay,Bx,By);
real 12=dist(Bx,By,Cx,Cy);
real 13=dist(Cx,Cy,Dx,Dy);
real 14=dist(Dx,Dy,Ax,Ay);

func sl=dist(Ax,Ay,x,y)/11; // absisse on AB = ||AX]||/]||AB]|]
func s2=dist(Bx,By,x,y)/12; // absisse on BC = ||BX||/||BC/||
func s3=dist(Cx,Cy,x,y)/13; // absisse on CD = [|CX]||/]|CD]|]
func s4=dist(Dx,Dy,x,y)/14; // absisse on DA = ||DX||/||DA]]
mesh Th=buildmesh(AB(n)+BC(n)+CD(n)+DA(n), fixeborder=1); //

verbosity=6; // to see the abscisse value pour the periodic condition.

fespace Vh(Th,P1l,periodic=[[1,s1],[3,s3],[2,s2],[4,s4]1]1);
verbosity=1;

Vh u,v;

real cc=0;

cc= int2d(Th) ((x-gx)*(y-gy)-cc)/Th.area;

cout << " compatibility =" << int2d(Th) ((x-gx)*(y-gy)-cc) <<endl;

solve Poission(u,v)=int2d(Th) (Grad(u) ’*Grad(v)+ le-10*u*v)
-int2d(Th) (10*v* ((x-gx)*(y-gy)-cc));
plot(u,wait=1,value=1);

Example 9.8 (Period-Poisson-cube-ballon.edp)

verbosity=1;
load "msh3"
load "tetgen"
load "medit"

bool buildTh=0;
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mesh3 Th;

try { // a way to build one time the mesh an read if the file exist.
Th=readmesh3("Th-hex-sph.mesh");

}

catch(...) { buildTh=1;}
if( buildTh ){

put the code example page // [5.11. 7124
without the first line

}

fespace Ph(Th,P0);

verbosity=50;

fespace Vh(Th,P1,periodic=[[3,x,z],[4,x,z],[1,y,z],[2,y,2],[5,x,y]1,[6,%x,y11); // back
and front

verbosity=1;

Ph reg=region;

cout << " centre = " << reg(0,0,0) << endl;

cout << " exterieur = " << reg(0,0,0.7) << endl;

macro Grad(u) [dx(u),dy(uw),dz(u)] // EOM
Vh uh,vh;

real x0=0.3,y0=0.4,z0=06;
func f= sin(x*2*pi+x0)*sin(y*2*pi+y0)*sin(z*2*pi+z0);
real gn = 1.;
real cf= 1;
problem P(uh,vh)=
int3d(Th, 1) ( Grad(uh)’*Grad(vh)*100)
+ int3d(Th,2) ( Grad(uh)’*Grad(vh)*2)
+ int3d(Th) (vh*f)
P;
plot(uh,wait=1, nbiso=6);
medit (" uh ",Th, uh);

9.1.6 Poisson Problems with mixed boundary condition

Here we consider the Poisson equation with mixed boundary conditons: For given functions f and g, find u
such that
-Au = f in Q
u = g onlp, Ou/on=0 only (9.16)
where I'p is a part of the boundary I'and I'y = I"\ I'p. The solution u has the singularity at the points

vi,y2} = I'pNTy. When Q = {((r,y); -1 <x<1,0<y <1}, Ty ={xy); -1 <x<0,y =0}
I'p = 0Q \ I'y, the singularity will appear at y; = (0,0), y2(—1,0), and u has the expression

u = Kjug + ug, ug € H*(neary;), i = 1,2

with a constants K;. Here ug = r}l./ 2 sin(#;/2) by the local polar coordinate (r;,6; at y; such that (r(,6;) =
(r,60). Instead of poler coordinate system (r, ), we use that r = sqrt( x2+y2 ) and 6 = atan2(y,x) in
FreeFem++ .
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Figure 9.10:
Figure 9.9: view of the surface isovalue of pe- view a the cut of the solution uh with fimedit
riodic solution uh

Example 9.9 Assume that f = -2 x30(x*> +y?) and g = u, = 10(x*> + y*)!/*sin ([tan—l(y/x)]/z) +30(x%y?),
where u,S is the exact solution.

1 : border N(t=0,1) { x=-1+t; y=0; label=1; };

2 : border D1(t=0,1){ x=t; y=0; label=2;};

3 : border D2(t=0,1){ x=1; y=t; label=2; };

4 : border D3(t=0,2){ x=1-t; y=1; label=2;};

5 : border D4(t=0,1) { x=-1; y=1-t; label=2; };

6 :

7 : mesh TOh = buildmesh(N(10)+D1(10)+D2(10)+D3(20)+D4(10));

8 : plot(TOh,wait=true);

9 : fespace VOh(TOh,P1);

10 : VOh u®, vO;

11 :

12 : func f=-2%30%(x"2+y"2); // given function
13 : // the singular term of the solution is K*us (K: constant)
14 : func us = sin(atan2(y,x)/2)*sqrt( sqrt(x"2+y~2) );

15 : real K=10.;

16 : func ue = K*us + 30%(x"2*y"2);

17 :

18 : solwve Poisson®(u®,v0) =

19 int2d(TOh) ( dx(u®)*dx(v0) + dy(u®)*dy(v0) ) // bilinear form
20 - int2d(TOh) ( £*v0 ) // linear form
21 + on(2,uf=ue) ; // boundary condition
22

23 : // adaptation by the singular term
24 : mesh Th = adaptmesh(T0h,us);

25 : for (int i=0;i< 5;i++)

26 : {

27 : mesh Th=adaptmesh(Th,us);

28 1}
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29 :

30 : fespace Vh(Th, P1l);

31 : Vh u, v;

32 : solve Poisson(u,v) =

33 : int2d(Th) ( dx(u)*dx(v) + dyw)*dy(v) ) // bilinear form
34 : - int2d(Th) ( f*v ) // linear form
35 : + on(2,u=ue) ; // boundary condition
36 :

37 : /* plot the solution */

38 : plot(Th,ps="adaptDNmix.ps");

39 : plot(u,wait=true);

40 :

41 : Vh uue = ue;

42 : real Hle = sqrt( int2d(Th)( dx(uue)” 2 + dy(uue)”"2 + uue’2 ) );

43 :

44 : /* calculate the H1 Sobolev norm */

45 : Vh err® = u® - ue;

46 : Vh err = u - ue;

47 : Vh Hlerr® = int2d(Th)( dx(err0®) " 2+dy(err®) "2+err®°2 );

48 : Vh Hlerr = int2d(Th) ( dx(err) "2+dy(err) "2+err"2 );

49 : cout <<"Relative error in first mesh "<< int2d(Th) (Hlerr®)/Hle<<endl;
50 : cout <<"Relative error in adaptive mesh "<< int2d(Th) (Hlerr)/Hle<<endl;

From 24th line to 28th, adaptation of meshes are done using the base of singular term.
Hle=||u.||1 o is calculated. In last 2 lines, the relative errors are calculated, that is,

) = ulls o/Hle = 0.120421
luf — uell o/Hle = 0.0150581

where ug is the numerical solution in TOh and u} is uin this program.

9.1.7 Poisson with mixte finite element

In 42th line,

Here we consider the Poisson equation with mixed boundary value problems: For given functions f , g4, g,

find p such that
-Ap =1 in Q
p = gq4 onlp, dp/on=g, only

where I'p is a part of the boundary I'and I'y =T\ E.
The mixte formulation is: find p and u such that
Vp+u = 0 in Q
Vu = f in Q
p = g4 onlp, oOun=g,n only

where g, is a vector such that g,.n = g,.
The variationnal formulation is,

Vv € Vy, prV.v +vv = f gav.n
W]

VgeP J,aV.u :qu

ou.n =g,.n only

(9.17)

(9.18)

(9.19)
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where the functionnal space are:
P = L*(Q), V = H(div) = {v € L*(Q)*,V.v € L (Q)}

and
Vo={veV; van=0 on I'y}L

To write, the FreeFem++ example, we have just to choose the finites elements spaces. here V space is
discretize with Raviart-Thomas finite element RT® and P is discretize by constant finite element P@.

Example 9.10 (LaplaceRT.edp)

mesh Th=square(10,10);
fespace Vh(Th,RTO®);
fespace Ph(Th,PO®);
func gd = 1.;

func gln = 1.;

func g2n = 1.;

Vh [ul,u2],[vl,v2];
Ph p,q;

problem laplaceMixte([ul,u2,p],[vl,v2,q],
solver=GMRES, eps=1.0e-10,
tgv=1e30,dimKrylov=150)
int2d(Th) ( p*gq*le-15 // this term is here to be sur
// that all sub matrix are inversible (LU requirement)
+ ul*vl + u2*v2 + p*(dx(v1)+dy(v2)) + (dx(ul)+dy(u2))*q )
+ int2d(Th) ( q)

- int1d(Th,1,2,3)( gd*(v1*N.x +v2*N.y)) // on I'p
+ on(4,ul=gln,u2=g2n); // on I'y
laplacelMixte;

plot([ul,u2],coef=0.1,wait=1,ps="1apRTuv.eps",value=true);
plot(p,fill=1,wait=1,ps="1aRTp.eps",value=true);

9.1.8 Metric Adaptation and residual error indicator

We do metric mesh adaption and compute the classical residual error indicator r7 on the element T for the
Poisson problem.

Example 9.11 (adaptindicatorP2.edp) First, we solve the same problem as in a previous example.

1 : border ba(t=0,1.0){x=t; y=0; 1label=1;}; // see Fig,[5. 19
2 : border bb(t=0,0.5){x=1; y=t; label=2;};

3 : border bc(t=0,0.5){x=1-t; y=0.5;label=3;};

4 : border bd(t=0.5,1){x=0.5; y=t; label=4;};

5 : border be(t=0.5,1){x=1-t; y=1; label=5;};

6 : border bf(t=0.0,1){x=0; y=1-t;label=6;};

7 : mesh Th = buildmesh (ba(6) + bb(4) + bc(4) +bd(4) + be(4) + bf(6));

8 : savemesh(Th,"th.msh");

9 : fespace Vh(Th,P2);
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10 : fespace Nh(Th,P0);

11 : Vh u,v;

12 : Nh rho;

13 : reallint] viso(21);

14 : for (int i=0;i<viso.n;i++)

15 : viso[i]=10." (+(i-16.)/2.);

16 : real error=0.01;

17 : func f=(x-y);

18 : problem Probeml(u,v,solver=CG,eps=1.0e-6) =

19 : int2d(Th,qforder=5) ( u*v*1.0e-10+ dx(u)*dx(v) + dy(uw)*dy(v))
20 : + int2d(Th,qforder=5)( -f*v);
21 : /***u*********

Now, the local error indicator nr is:

1
ou :
_ 152 2 hy2
= (B + Al + 3 helg P,

EESK

where hy is the longest’s edge of T, Er is the set of T edge not on I = 0Q), ny is the outside unit normal to
K, h, is the length of edge e, [g] is the jump of the function g across edge (left value minus right value).
Of course, we can use a variational form to compute n:‘}, with test function constant function in each triangle.

29 . *************/

30 :

31 : varf indicator2(uu,chik) =

32 : intalledges(Th) (chiK*lenEdge*square (jump (N.x*dx(u)+N.y*dy(u))))

33 : +int2d(Th) (chiK*square (hTriangle* (f+dxx(uW)+dyy(u))) );

34 : for (int i=0;i< 4;i++)

35 @ {

36 : Probeml;

37 : cout << u[].min << " " << u[].max << endl;

38 : plot(u,wait=1);

39 : cout << " indicator2 " << endl;

40 :

41 : rho[] = indicator2(®,Nh);

42 : rho=sqrt(rho);

43 : cout << "rho = min " << rho[].min << " max=" << rho[].max << endl;

44 : plot(rho,fill=1,wait=1,cmm="indicator density ",ps="rhoP2.eps",
value=1,viso=viso,nbiso=viso.n);

45 : plot(Th,wait=1,cmm="Mesh ",ps="ThrhoP2.eps");

46 : Th=adaptmesh(Th, [dx(u) ,dy(u)],err=error,anisomax=1);

47 : plot(Th,wait=1);

48 : u=u;

49 : rho=rho;

50 : error = error/2;

51 : } ;

If the method is correct, we expect to look the graphics by an almost constant function n on your computer

as in Fig. [9.11]
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Figure 9.11: Density of the error indicator with isotropic P, metric

9.1.9 Adaptation using residual error indicator

In the previous example we compute the error indicator, now we use it, to adapt the mesh.

The new mesh size is given by the following formulae:

hy(x)

Iy =
1) = k@)

where 77,(x) is the level of error at point x given by the local error indicator, #,, is the previous “mesh size”
field, and f, is a user function define by f, = min(3, max(1/3,n,/n,)) where i, = mean(n,)c, and ¢ is an

user coefficient generally close to one.

Example 9.12 (AdaptResidualErrorIndicator.edp)

First a macro MeshSizecomputation to get a Py mesh size as the average of edge length.

// macro the get the current mesh size
// parameter

// in: Th the mesh

// Vh P1 fespace on Th

// out :

// h: the Vh finite element finite set to the current mesh size

macro MeshSizecomputation(Th,Vh,h)

{ /* Th mesh Vh Pl finite element space

h  the Pl mesh size value */
real[int] count(Th.nv);

/* mesh size (lenEdge = integral(e) 1 ds)

varf vmeshsizen(u,v)=intalledges(Th,gfnbpE=1) (v);

/* number of edge / par vertex */

varf vedgecount (u,v)=intalledges(Th,qfnbpE=1) (v/lenEdge);

/%

computation of the mesh size
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count=vedgecount (0, Vh) ;

h[]=0.;
h[]=vmeshsizen(0,Vh);
cout << " count min = "<< count.min << " " << count.max << endl;
h[]=h[]./count;

cout << " -- bound meshsize = " <<h[].min << " " << h[].max << endl;
Y // end of macro MeshSizecomputation

A second macro to remesh according to the new mesh size.

// macro to remesh according the de residual indicator
// in:

// Th the mesh

// Ph PO fespace on Th

// Vh P1 fespace on Th

// vindicator the varf of to evaluate the indicator to 2
// coef on etameam ..

V2R

macro ReMeshIndicator(Th,Ph,Vh,vindicator,coef)

{

Vh h=0;

/*evalutate the mesh size */
MeshSizecomputation(Th,Vh,h);

Ph etak;

etak[]=vindicator(0®,Ph);
etak[J=sqrt(etak[]);

real etastar= coef*(etak[].sum/etak[].n);
cout << " etastar =

" n n

<< etastar << sum=" << etak[].sum <<

non

<< endl;

/* here etaK is discontinous
we use the P1 L2 projection with mass lumping . */

Vh fn,sigma;

varf veta(unused,v)=int2d(Th) (etak*v);
varf vun(unused,v)=int2d(Th) (1*v);
fn[] = veta(®,Vh);

sigma[]= vun(®,Vh);

fn[]= fn[]./ sigmal];

fn = max(min(fn/etastar,3.),0.3333) ;

/% new mesh size */

h=h/ fn ;

/% plot(h,wait=1); */

/* build the new mesh */
Th=adaptmesh(Th,IsMetric=1,h,splitpbedge=1,nbvx=10000);
}

We skip the mesh construction, see the previous example,

// FE space definition ---

fespace Vh(Th,P1); // for the mesh size and solution
fespace Ph(Th,P0); // for the error indicator
real hinit=0.2; // initial mesh size
Vh  h=hinit; // the FE function for the mesh size

// to build a mesh with a given mesh size : meshsize
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Th=adaptmesh(Th,h,IsMetric=1,splitpbedge=1,nbvx=10000) ;
plot(Th,wait=1,ps="RRI-Th-init.eps");
Vh u,v;

func f=(x-y);

problem Poisson(u,v) =
int2d(Th,qforder=5) ( u*v*1.0e-10+ dx(u)*dx(v) + dy(u)*dy(v))
- int2d(Th,gforder=5) ( f*v);

varf indicator2(unused,chikK) =
intalledges(Th) (chiK*lenEdge*square (jump (N.x*dx(u)+N.y*dy(u))))
+int2d (Th) (chiK*square (hTriangle* (f+dxx (u)+dyy(u))) );

for (int i=0;i< 10;i++)

{

u=u;

Poisson;

plot(Th,u,wait=1);

real cc=0.8;

if(i>5) cc=1;
ReMeshIndicator(Th,Ph,Vh,indicator2,cc);
plot(Th,wait=1);

}
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Figure 9.12: the error indicator with isotropic P; , the mesh and isovalue of the solution

9.2 Elasticity

Consider an elastic plate with undeformed shape QX] — &, A in R3, Q c R2. By the deformation of the
plate, we assume that a point P(xy, xp, x3) moves to P(£1,£2,&3). The vector u = (uy,up,u3) = (&1 —
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X1, &2 —xp, &3 — x3) is called the displacement vector. By the deformation, the line segment X, X + TAX moves
approximately to X + u(x), X + TAX + u(x + TAx) for small 7, where x = (x1, x2, X3), AX = (Axy, Axz, Ax3z).
We now calculate the ratio between two segments

n(t) = v AKX (Ju(x + TAX) — u(x) + TAX| — T|AX])

then we have (see e.g. [[16} p.32])

Juy, 0 Ou; Ou;
111'%7](7') = (1 + 2eijViVj)1/2 — 1, 2eij = Uk Ol + (ﬁ + _])
i

a 5_.36, 6_Xj C')Xj (‘)x,-
where v; = Ax;|Ax|"!. If the deformation is small, then we may consider that
(Oug [ 0x;)(Oug [ 0x;) ~ 0

and the following is called small strain tensor

1 (Ou; Ouj
s =35+ 75

The tensor e;; is called finite strain tensor.
Consider the small plane AIl(x) centered at x with the unit normal direction n = (ny, ny, n3), then the surface
on AIl(x) at x is

(o1j(X)nj, 02j(X)n;, 03(X)n;)

where o;;(x) is called stress tensor at X. Hooke’s law is the assumption of a linear relation between o;; and
g;j such as

0ij(X) = ¢iju(X)e;;(X)

with the symmetry ¢;jx; = Cjikt> Cijki = Cijik> Cijkl = Chiij-

If Hooke’s tensor c;ji(x) do not depend on the choice of coordinate system, the material is called isotropic
at X. If ¢ is constant, the material is called homogeneous. In homogeneous isotropic case, there is Lamé
constants A, u (see e.g. [[16} p.43]) satisfying

oij = /l(S,'jdiVLt + 2/18,']‘ (9.20)

where 0;; is Kronecker’s delta. We assume that the elastic plate is fixed on I'pXx] — h, h[, I'p C 0Q. If the
body force f = (f1, f2, f3) is given in QX] — A, k[ and surface force g is given in ['yX] — h, h[, 'y = 0Q\ E,
then the equation of equilibrium is given as follows:

—6jo-,~j = fl in QX] —h,h[, i= 1,2,3 (9.21)
oijn; = g on I'yX] —h,h[, u; = 0 on I'pX] —h,h[, i=1,2,3 (9.22)

We now explain the plain elasticity.

Plain strain: On the end of plate, the contact condition u3 = 0, g3 = is satisfied. In this case, we can
suppose that f3 = g3 = u3 = 0 and u(x1, x2, x3) = u(xy, x2) for all —h < x3 < h.

Plain stress: The cylinder is assumed to be very thin and subjected to no load on the ends x3 = +#h, that is,
0'3,'=0, X3=i]’l, i11,2,3

The assumption leads that o3; = 0 in QX] — A, A[ and u(xy, x2, x3) = u(xy, xo) for all —h < x3 < h.
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Generalized plain stress: The cylinder is subjected to no load at x3 = +h. Introducing the mean values
with respect to thickness,

_ 1 ("
ui(x1, xp) = _2hf u(xy, x2, x3)dx3
“h

and we derive 73 = 0. Similarly we define the mean values f,g of the body force and surface force
as well as the mean values &;; and o;; of the components of stress and strain, respectively.

In what follows we omit the overlines of u, ]_C, 8, &;j and g;;. Then we obtain similar equation of equilibrium
given in @[) replacing Qx] — h, h[ with Q and changing i = 1,2. In the case of plane stress, o; =
A*6;divu + 2ue;j, A* = 2Au) /(A + ).

The equations of elasticity are naturally written in variational form for the displacement vector u(x) € V as

f[Z/lGij(u)E,’j(V) + /leii(u)ejj(v)] = ff vV + fg -v,YveV
Q Q r
where V is the linear closed subspace of H HQ)2.

Example 9.13 (Beam.edp) Consider elastic plate with the undeformed rectangle shape 10, 10[x]0, 2[. The
body force is the gravity force f and the boundary force g is zero on lower and upper side. On the two
vertical sides of the beam are fixed.

// a weighting beam sitting on a
int bottombeam = 2;
border a(t=2,0) { x=0; y=t ;label=1;}; // left beam
border b(t=0,10) { x=t; y=0 ;label=bottombeam;}; // bottom of beam
border c(t=0,2) { x=10; y=t ;label=1;}; // rigth beam
border d(t=0,10) { x=10-t; y=2; label=3;}; // top beam
real E = 21.5;
real sigma = 0.29;
real mu = E/(2*(1+sigma));
real lambda = E*sigma/((l+sigma)*(1l-2*sigma));
real gravity = -0.05;
mesh th = buildmesh( b(20)+c(5)+d(20)+a(5));
fespace Vh(th, [P1,P1]);
Vh [uu,vv], [w,s];
cout << "lambda,mu,gravity ="<<lambda<< " " << mu << " " << gravity << endl;

// deformation of a beam under its own weight
real sqrt2=sqrt(2.); // see lame.edp example
macro epsilon(ul,u2) [dx(ul),dy(u2), (dy(ul)+dx(u2))/sqrt2] // EOM
macro div(u,v) ( dx(w+dy(v) ) // EOM

solve bb([uu,vv], [w,s])=
int2d(th)(
lambda*div(w,s)*div(uu,vv)
+2.*mu*( epsilon(w,s)’*epsilon(uu,vv) )
)
+ int2d(th) (-gravity*s)
+ on(1,uu=0,vv=0)

plot([uu,vv],wait=1);
plot([uu,vv],wait=1,bb=[[-0.5,2.5],[2.5,-0.511);
mesh thl = movemesh(th, [x+uu, y+vv]);
plot(thl,wait=1);
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Example 9.14 (beam-3d.edp) Consider elastic box with the undeformed parallelepiped shape 10, 5[x]0, 1[x]O0, 1[.
The body force is the gravity force f and the boundary force g is zero on all face except one the one vertical
left face where the beam is fixed.

include '"cube.idp"

int[int] Nxyz=[20,5,5];

real [int,int] Bxyz=[[0.,5.]1,[0.,1.],[0.,1.]1];
int [int,int] Lxyz=[[1,2],[2,2],[2,2]];

mesh3 Th=Cube(Nxyz,Bxyz,Lxyz);

real E = 21.5e4, sigma = 0.29;

real mu = E/(2*(1+sigma));

real lambda = E*sigma/((l+sigma)*(1-2*sigma));
real gravity = -0.05;

fespace Vh(Th, [P1,P1,P1]);
Vh [ul,u2,u3], [vl,v2,v3];
cout << "lambda,mu,gravity ="<<lambda<<

<< mu << << gravity << endl;

real sqrt2=sqrt(2.);

macro epsilon(ul,u2,u3) [dx(ul),dy(u2),dz(u3), (dz(u2)+dy(u3))/sqrt2,
(dz(ul)+dx(u3))/sqrt2, (dy(ul)+dx(u2))/sqrt2] // EOM

macro div(ul,u2,u3) ( dx(ul)+dy(u2)+dz(u3) ) // EOM

solve Lame([ul,u2,u3],[vl,v2,v3])=

int3d(Th)(
lambda*div(ul,u2,u3)*div(vl,v2,v3)
+2.*mu*( epsilon(ul,u2,u3)’*epsilon(vl,v2,v3) ) // )
)

- int3d(Th) (gravity*v3)
+ on(1,ul=0,u2=0,u3=0)
real dmax= ul[].max;
cout << " max displacement =
real coef= 0.1/dmax;
int[int] ref2=[1,0,2,0];
mesh3 Thm=movemesh3(Th, transfo=[x+ul*coef,y+u2*coef,z+u3*coef],label=ref2);
Thm=change (Thm, label=ref2);
plot (Th,Thm, wait=1,cmm="coef amplification = "+coef ); // see fig

<< dmax << endl;

9.2.1 Fracture Mechanics

Consider the plate with the crack whose undeformed shape is a curve £ with the two edges y;, y». We
assume the stress tensor o7;; is the state of plate stress regarding (x,y) € Qy = Q \ . Here € stands for
the undeformed shape of elastic plate without crack. If the part I'y of the boundary 0Q is fixed and a load
L = (f,g) € L*(Q)> x L>(T'y)? is given, then the displacement u is the minimizer of the potential energy
functional

EW; L,Qy) = f

Qs

{W(x,v)—f-v}—f g

I'n

over the functional space V(Qy),

V(Qs) = {v eH' (Qs): v=0 onTp=0Q\ ﬁ},
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coef arnplification = 3997 95

Figure 9.13: 3d Beam deformed and undeformed box

where w(x,v) = 07;(v)e;;(v)/2,
aij0) = Ciju(X)env),  &j(v) = (@vi/0x; +vj/x)[2,  (Ciju: Hooke's tensor).

If the elasticity is homogeneous isotropic, then the displacement u(x) is decomposed in an open neighbor-
hood Uy, of y; as in (see e.g. [17])

2
u(x) = Y Kityor,2S (00 + uir(x) forx € Qs N Up, k=1,2 (9.23)
=1

withuy g € H*(Qs N U)?, where Uy, k = 1,2 are open neighborhoods of y; such that 0L N U = y1, L, N
Uz =72, and

c 1 1 [2k — 1] cos(0/2) — cos(36;/2)
Sl = oon [ —[2k + 1] sin(6/2) + sin(36;/2) } : ©-24)
SCB) = 1 1 —[2k — 1] sin(6;/2) + 3 sin(36;/2)

) = @ Qm)12 | —[2« + 1] cos(6x/2) + cos(36k/2) |

where y is the shear modulus of elasticity, k = 3 — 4v (v is the Poisson’s ratio) for plane strain and x = %
for plane stress.

The coefficients K;(y;) and K>(y;), which are important parameters in fracture mechanics, are called stress
intensity factors of the opening mode (mode I) and the sliding mode (mode II), respectively.

For simplicity, we consider the following simple crack

Q={(xy): -1l<x<l1,-1<y<l1} Y={xy): -1<x<0,y=0}

with only one crack tip ¥ = (0,0). Unfortunately, FreeFem++ cannot treat crack, so we use the modifi-
cation of the domain with U-shape channel (see Fig. [5.30) with d = 0.0001. The undeformed crack X is
approximated by
i = {(x,y): -1<x<-10xd,-d <y <d}
Ux,y): —10xd <x<0,-d+0.1+*x<y<d-0.13x*x}
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and I'p = R in Fig. In this example, we use three technique:
o Fast Finite Element Interpolator from the mesh Th to Zoom for the scale-up of near 7.

e After obtaining the displacement vector # = (u, v), we shall watch the deformation of the crack near
v as follows,

mesh Plate = movemesh(Zoom, [x+u,y+v]);
plot(Plate);

e Adaptivity is an important technique here, because a large singularity occurs at y as shown in (9.23).

The first example creates mode 1 deformation by the opposed surface force on B and T in the vertical
direction of Z, and the displacement is fixed on R.

In a laboratory, fracture engineers use photoelasticity to make stress field visible, which shows the principal
stress difference

g1 =02 = \/(0'11—0'22)2+40'%2 (9.25)

where o) and o are the principal stresses. In opening mode, the photoelasticity make symmetric pattern
concentrated at 7.

Example 9.15 (Crack Opening, K>(y) = 0) {CrackOpen.edp}
real d = 0.0001;
int n = 5;
real cb=1, ca=1, tip=0.0;
border L1(t=0,ca-d) { x=-cb; y=-d-t; }
border L2(t=0,ca-d) { x=-cb; y=ca-t; }
border B(t=0,2) { x=cb*(t-1); y=-ca; }
border C1(t=0,1) { x=-ca*(1-t)+(tip-10*d)*t; y=d; }
border C21(t=0,1) { x=(tip-10*d)*(1-t)+tip*t; y=d*(1-t); }
border C22(t=0,1) { x=(Ctip-10*d)*t+tip*(1-t); y=-d*t; }
border C3(t=0,1) { x=(tip-10*d)*(1-t)-ca*t; y=-d; }
border C4(t=0,2*%d) { x=-ca; y=-d+t; }
border R(t=0,2) { x=cb; y=cb*(t-1); }
border T(t=0,2) { x=cb*(1-t); y=ca; }
mesh Th = buildmesh (L1(n/2)+L2(n/2)+B(n)
+C1(n)+C21(3)+C22(3)+C3(M)+R(M)+T(n));
cb=0.1; ca=0.1;
plot (Th,wait=1);
mesh Zoom = buildmesh (L1(n/2)+L2(n/2)+B()+Cl(n)
+C21(3)+C22(3)+C3(M)+R(M)+T(n));
plot (Zoom,wait=1);
real E = 21.5;
real sigma = 0.29;
real mu = E/(2*(1+sigma));
real lambda = E*sigma/((l+sigma)*(1-2*sigma));
fespace Vh(Th, [P2,P2]);
fespace zVh(Zoom,P2);
vh [u,v], [w,s];
solve Problem([u,v],[w,s]) =
int2d(Th)(
2*mu* (dx (W) *dx(w)+ ((dx(V)+dy () *(dx(s)+dy(w)))/4 )
+ lambda* (dx(u)+dy (v)) *(dx(w)+dy(s))/2
)
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-int1d(Th,T) (0.1*%*(4-x)*s)+int1d(Th,B) (0.1*(4-x)*s)

+on(R,u=0)+on(R,v=0); // fixed
zVh Sx, Sy, Sxy, N;
for (int i=1; i<=5; i++)
{
mesh Plate = movemesh(Zoom, [x+u,y+v]); // deformation near y
Sx = lambda*(dx(uW)+dy(v)) + 2*mu*dx(u);
Sy = lambda*(dx(W)+dy(v)) + 2*mu*dy(v);
Sxy = mu*(dy(u) + dx(v));
N = 0.1*1*sqrt ((Sx-Sy) "2+4*Sxy"2); //  principal stress difference
if (i==1) {
plot(Plate,ps="1stCOD.eps",bw=1); // Fig.
plot (N,ps="1stPhoto.eps",bw=1); // Fig. [9.14
} else if (i==5) {
plot(Plate,ps="LastCOD.eps",bw=1); // Fig.
plot (N,ps="LastPhoto.eps",bw=1); // Fig.
break;
}
Th=adaptmesh(Th, [u,v]);
Problem;
}

Figure 9.14: Crack open displacement (COD) Figure 9.15: COD and Principal stress differ-

and Principal stress difference in the first mesh  ence in the last adaptive mesh

It is difficult to create mode II deformation by the opposed shear force on B and T that is observed in a
laboratory. So we use the body shear force along Z, that is, the x-component f; of the body force f is given

by
fi(x,y) = H(y — 0.001) * H(0.1 — y) — H(—y — 0.001) * H(y + 0.1)

where H(#) = 1ift > 0; =01if r < 0.

Example 9.16 (Crack Sliding, K;(y) = 0) (use the same mesh Th)

cb=0.01; ca=0.01;

mesh Zoom = buildmesh (L1(n/2)+L2(n/2)+B(n)+Cl(n)
+C21(3)+C22(3)+C3(N)+R(M)+T(n));

(use same FE-space Vh and elastic modulus)

fespace Vh1(Th,Pl);

Vhl fx = ((y>0.001)*(y<0.1))-((y<-0.001)*(y>-0.1)) ;
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solve Problem([u,v],[w,s]) =
int2d(Th)(
2*mu* (dx(u) *dx(w)+ ((dx(v)+dy(u))*(dx(s)+dy(w)))/4 )
+ lambda* (dx(uw)+dy (v))*(dx(w)+dy(s))/2
)
-int2d(Th) (£x*w)
+on(R,u=0)+on(R,v=0); // fixed

for (int i=1; i<=3; i++)

{

mesh Plate = movemesh(Zoom, [x+u,y+v]); // deformation near vy

Sx = lambda*(dx(u)+dy(v)) + 2*mu*dx(u);

Sy = lambda*(dx(wW)+dy(v)) + 2*mu*dy(v);

Sxy = mu*(dy(u) + dx(v));

N = 0.1*%1*sqrt ((Sx-Sy) "2+4*Sxy"2) ; // principal stress difference

if (i==1) {
plot(Plate,ps="1stCOD2.eps",bw=1); // Fig.
plot (N,ps="1stPhoto2.eps" ,bw=1); // Fig.

} else if (i==3) {
plot(Plate,ps="LastCOD2.eps",bw=1); // Fig.
plot (N,ps="LastPhoto2.eps",bw=1); // Fig.
break;

}

Th=adaptmesh(Th, [u,v]);

Problem;

]

—) —€3%)

4/\

Figure 9.16: (COD) and Principal stress differ- Figure 9.17: COD and Principal stress differ-
ence in the first mesh ence in the last adaptive mesh

9.3 Nonlinear Static Problems

Here we propose to solve the following non-linear academic problem of minimization of a functional

1
J(u) = f Ef(IVulz)—u*b
Q
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where u is function of Hé (Q) and f defined by

4 — L "’ = —
f@):a*x+x—hm1+m,.f@)—a+1+x, Y (1 + 22

9.3.1 Newton-Raphson algorithm
Now, we solve the Euler problem VJ(u) = 0 with Newton-Raphson algorithm, that is,
W™ = — (VI = VI

First we introduce the two variational form vdJ and vh] to compute respectively V.J and V2J

// method of Newton-Raphson to solve dJ(u)=0;
//

od

Ui

n+1 — I/t” _(

)*1 * d](ul‘l)

/) e
Ph dalpha ; //  to store 2f”(|Vul*) optimisation

// the variational form of evaluate dJ = VJ

/) e

// dl = £70O%*( dx(u)*dx(vh) + dy(u)*dy(vh)

varf vdJ(uh,vh) = int2d(Th)( alpha*( dx(u)*dx(vh) + dy(u)*dy(vh) ) - b*vh)
+ on(1,2,3,4, uh=0);

// the variational form of evaluate ddJ = V3J

// hJ(uh,vh) = £’ *( dx(uh)*dx(vh) + dy(uh)*dy(vh)

// + 2*f7° () ( dx(u)*dx(uh) + dy(uw)*dy(uh) ) * (dx(u)*dx(vh) + dy(u)*dy(vh))
varf vh](uh,vh) = int2d(Th) ( alpha*( dx(uh)*dx(vh) + dy(uh)*dy(vh) )

+ dalpha*( dx(uw)*dx(vh) + dy(uw)*dy(vh) )*( dx(w*dx(uh) + dy(w)*dy(uh) ) )
+ on(1,2,3,4, uh=0);

// the Newton algorithm

Vh v,w;

u=e0;

for (int i=0;i<100;i++)
{
alpha = df( dxu)*dx(u) + dyu)*dy(uw) ) ; // optimization
dalpha = 2*ddf( dx(u)*dx(u) + dy(w*dy(u) ) ; // optimization
v[]= vdl(®,Vh); // v =VJ(u)
real res= v[]’*v[]; // the dot product
cout << i << " residu”2 = " << res << endl;
if( res< le-12) break;
matrix H= vh](Vh,Vh, factorize=1,solver=LU); //
wl]=H"-1%*v[];
ull -= w[l;
}

plot (u,wait=1,cmm="solution with Newton-Raphson");

n

Remark: This example is in Newton. edp file of examples++-tutorial directory.
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9.4 Eigenvalue Problems

This section depends on your installation of FreeFem++; you need to have compiled (see README arpack),
ARPACK. This tools is available in FreeFem++ if the word “eigenvalue” appear in line “Load:”, like:

-- FreeFem++ v1.28 (date Thu Dec 26 10:56:34 CET 2002)
file : LapEigenValue.edp
Load: 1lg_fem 1g_mesh eigenvalue

This tools is based on the arpack++|ﬂthe object-oriented version of ARPACK eigenvalue package [[1]].
The function EigenValue computes the generalized eigenvalue of Au = ABu where sigma =¢ is the shift of
the method. The matrix OP is defined with A — o B. The return value is the number of converged eigenvalue
(can be greater than the number of eigen value nev=)

int k=EigenValue(OP,B,nev= , sigma= );

where the matrix OP = A — 0B with a solver and boundary condition, and the matrix B.

Note 9.1 Boundary condition and Eigenvalue Problems

The locking (Dirichlet ) boundary condition is make with exact penalization so we put 1e30=tgv on the
diagonal term of the locked degree of freedom (see equation (6.20)). So take Dirichlet boundary condition
just on A and not on B. because we solve w = OP™1 % B * .

If you put locking (Dirichlet ) boundary condition on B matrix (with key work on) you get small spurious
modes (10739, due to boundary condition, but if you forget the locking boundary condition on B matrix (no
key work ”on”) you get huge spurious (10°°) modes associated to these boundary conditons. We compute
only small mode, so we get the good one in this case.

sym= the problem is symmetric (all the eigen value are real)
nev= the number desired eigenvalues (nev) close to the shift.
value= the array to store the real part of the eigenvalues
ivalue= the array to store the imag. part of the eigenvalues
vector= the FE function array to store the eigenvectors

rawvector= an array of type real[int,int] to store eigenvectors by column. (up to version 2-17).

For real non symmetric problems, complex eigenvectors are given as two consecutive vectors, so if
eigenvalue k and k + 1 are complex conjugate eigenvalues, the kth vector will contain the real part
and the k + 1th vector the imaginary part of the corresponding complex conjugate eigenvectors.

tol=the relative accuracy to which eigenvalues are to be determined;
sigma= the shift value;
maxit= the maximum number of iterations allowed;

ncv= the number of Arnoldi vectors generated at each iteration of ARPACK.

1http ://www.caam.rice.edu/software/ARPACK/
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Example 9.17 (lapEignenValue.edp) In the first example, we compute the eigenvalues and the eigenvec-
tors of the Dirichlet problem on square Q =10, [>.
The problem is to find: A, and Vu, in RXH(l) Q)

fVuAVv = /lf uv Vve H(l)(Q)
Q Q

The exact eigenvalues are A, = (n® + m?),(n,m) € N,? with the associated eigenvectors are Upy, =
sin(nx) * sin(my).

We use the generalized inverse shift mode of the arpack++ library, to find 20 eigenvalues and eigenvectors
close to the shift value o = 20.

// Computation of the eigen value and eigen vector of the

// Dirichlet problem on square ]0,x[>

/) e

// we use the inverse shift mode

// the shift is given with the real sigma

/) e

// find A and u, € Hy(Q) such that:

// f Vu,Vv = A f uav, Vv € Hy(Q)
Q Q

verbosity=10;

mesh Th=square(20,20, [pi*x,pi*y]);
fespace Vh(Th,P2);

Vh ul,u2;

real sigma = 20; // value of the shift

// OP = A - sigma B ; // the shifted matrix
varf op(ul,u2)= int2d(Th)( dx(ul)*dx(u2) + dy(ul)*dy(u2) - sigma* ul*u2 )

+ on(1,2,3,4,ul=0) ; // Boundary condition
varf b([ull, [u2]) = int2d(Th)( ul*u2 ); //  no Boundary condition see note
matrix OP= op(Vh,Vh,solver=Crout, factorize=1); // crout solver because the matrix in

not positive
matrix B= b(Vh,Vh,solver=CG, eps=1e-20);

// important remark:

// the boundary condition is make with exact penalization:

// we put le30=tgv on the diagonal term of the lock degree of freedom.
// So take Dirichlet boundary condition just on a variational form

// and not on b variational form.

// because we solve w=OP 1+*Bxv

int nev=20; // number of computed eigen value close to sigma

real[int] ev(nev); // to store the nev eigenvalue
Vh[int] eV(nev); // to store the nev eigenvector

int k=EigenValue(OP,B,sym=true,sigma=sigma,value=ev,vector=eV,
tol=1e-10,maxit=0,ncv=0);

// tol= the tolerance
// maxit= the maximum iteration see arpack doc.
// ncv see arpack doc. |http://www.caam.rice.edu/software/ARPACK/
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// the return value is number of converged eigen value.

for (int i=0;i<k;i++)

{
ul=eV[i];
real gg = int2d(Th) (dx(ul)*dx(ul) + dy(ul)*dy(ul));
real mm= int2d(Th) (ul*ul) ;

cout << -———- << i< << ev[i]xx< err=
<<int2d(Th) (dx(ul)*dx(ul) + dy(ul)*dy(ul) - (ev[i])*ul*ul) << " --- "<<endl;
plot(eV[i],cmm="Eigen Vector "+i+" valeur =" + ev[i] ,wait=1,value=1);
}

The output of this example is:

1l
(=]

Nb of edges on Mortars
Nb of edges on Boundary = 80, neb = 80

Nb Of Nodes = 1681

Nb of DF = 1681

Real symmetric eigenvalue problem: A*x - B*x*lambda

Thanks to ARPACK++ class ARrcSymGenEig
Real symmetric eigenvalue problem: A*x - B*x*lambda
Shift and invert mode sigma=20

Dimension of the system : 1681
Number of ’requested’ eigenvalues : 20
Number of ’converged’ eigenvalues : 20
Number of Arnoldi vectors generated: 41
Number of iterations taken : 2
Eigenvalues:

lambda[1]: 5.0002
lambda[2]: 8.00074
lambda[3]: 10.0011
lambda[4]: 10.0011
lambda[5]: 13.002
lambda[6]: 13.0039
lambda[7]: 17.0046
lambda[8]: 17.0048
lambda[9]: 18.0083
lambda[10]: 20.0096
lambda[11]: 20.0096
lambda[12]: 25.014
lambda[13]: 25.0283
lambda[14]: 26.0159
lambda[15]: 26.0159
lambda[16]: 29.0258
lambda[17]: 29.0273
lambda[18]: 32.0449
lambda[19]: 34.049
lambda[20]: 34.0492

---- 0 5.0002 err= -0.000225891 ---
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1 8.00074 err= -0.000787446 ---
2 10.0011 err= -0.00134596 ---
3 10.0011 err= -0.00134619 ---
4 13.002 err= -0.00227747 ---
---- 5 13.0039 err= -0.004179 ---
6
7
8
9

17.0046 err= -0.00623649 ---
17.0048 err= -0.00639952 ---
18.0083 err= -0.00862954 ---
-——- 20.0096 err= -0.0110483 ---

---- 10 20.0096 err= -0.0110696 ---
---- 11 25.014 err= -0.0154412 ---

---- 12 25.0283 err= -0.0291014 ---
---- 13 26.0159 err= -0.0218532 ---
---- 14 26.0159 err= -0.0218544 ---
---- 15 29.0258 err= -0.0311961 ---
---- 16 29.0273 err= -0.0326472 ---
---- 17 32.0449 err= -0.0457328 ---
---- 18 34.049 err= -0.0530978 ---

---- 19 34.0492 err= -0.0536275 ---

Eigen Vector 11 valeur =25.014 Eigen Vector 12 valeur =25.0283

Figure 9.18: Isovalue of 11th eigenvector us3 — Figure 9.19: Isovalue of 12th eigenvector u4 3 +
Uz 4 Uz 4

9.5 Evolution Problems

FreeFem++ also solves evolution problems such as the heat equation:

5 ~HAw=f inQx10.7], (9.26)

u(x,0) = up(x) in Q; (Ou/on) (x,t) =0 on 0Qx]0, T|.
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with a positive viscosity coefficient 4 and homogeneous Neumann boundary conditions. We solve (9.26) by
FEM in space and finite differences in time. We use the definition of the partial derivative of the solution in
the time derivative,
”(X,)’a t) - ”(X,y, r— T)

T

ou

— =1

(%0 =1
which indicates that " (x, y) = u(x,y, mt) will satisfy approximatively

6” Mm(x’J’) - “m_l(X,)’)
—(x,y,mt) =
ot T

The time discretization of heat equation is as follows:

—uA™ = i Q (9.27)
u’(x) = up(x) in Q: " jon(x) =0 ondQ, forallm=0,---,[T/7],

which is so-called backward Euler method for (9.27). To obtain the variational formulation, multiply with
the test function v both sides of the equation:

f{um”v—TAum”v}:f{um+‘rf’"+l}v.
Q Q

By the divergence theorem, we have

f{um+lv+TVum+] -Vv}—f T(au’"”/ﬁn)v:f{umv+rfm+]v}.
Q ple’ Q

By the boundary condition du™*!/dn = 0, it follows that

f{um+1v + Tvum+l X VV} _ f{umv + Tfm+1v} =0. (928)
Q Q

Using the identity just above, we can calculate the finite element approximation u;' of 4™ in a step-by-step
manner with respect to 7.

Example 9.18 We now solve the following example with the exact solution u(x,y,t) = tx*.

d
a—”t’ — uhAu = x* — u12ex? in ©x10, 3[, Q =10, 1>

u(x,y,0) =0 onQ, Ulgn =1 * X

// heat equation du = —uAu = X —,ulZZ)(2
mesh Th=square(16,16);
fespace Vh(Th,P1);

Vh u,v,uu, f,g;

real dt = 0.1, mu = 0.01;

problem dHeat(u,v) =
int2d(Th) ( u*v + dt*mu*(dx(u)*dx(v) + dy(u)*dy(v)))
+ int2d(Th) (- uu*v - dt*f*v )
+ on(1,2,3,4,u=9);

real t = 0; // start from t=0
uu = 0; // ulx,y,0=0
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for (int m=0;m<=3/dt;m++)

{

t=t+dt;

f = x"4-mu*t*12%x"2;

g = t*x"4;

dHeat;

plot(u,wait=true);

uu = u;

cout <<"t="<<t<<"L"2-Error="<<sqrt( int2d(Th) ((u-t*x"4)"2) ) << endl;
}

1/2
2
In the last statement, the L*-error ( fg |u — tx4|

0.000213269. The errors increase with m and 0.00628589 at t = 3.
The iteration of the backward Euler is made by for loop (see SectionH.9).

is calculated at t = mt,T = 0.1. Att = 0.1, the error is

Note 9.2 The stiffness matrix in the loop is used over and over again. FreeFem++ support reuses of stiff-
ness matrix.

9.5.1 Mathematical Theory on Time Difference Approximations.

In this section, we show the advantage of implicit schemes. Let V, H be separable Hilbert space and V is
dense in H. Let a be a continuous bilinear form over V x V with coercivity and symmetry. Then va(v, v)
become equivalent to the norm [|v|| of V.

Problem Ev(f,Q): For a given f € L*>(0,T; V"), u’ € H

%(u(t), V) + a(u(t),v) (f(),v) YveV,, aetel0,T] (9.29)

w0 = u

where V’ is the dual space of V. Then, there is an unique solution u € L*(0,T; H) N L*(0,T; V).
Let us denote the time step by 7 > 0, Ny = [T /7]. For the discretization, we put " = u(nt) and consider the
time difference for each 6 € [0, 1]

1
- (™! =l i) + a (™, ) = ("0, i) (9.30)
i:l,...’m’ n:O’...,NT
MZ+9 — Guz+1 + (1 _ G)MZ, fn+0 — 0fﬂ+1 + (1 _ Q)fn

Formula (9.30) is the forward Euler scheme if 8 = 0, Crank-Nicolson scheme if 6 = 1/2, the backward Euler
scheme if 0 = 1.
Unknown vectors " = (u}l, cee, uﬁy Y in

up(x) = uip1(x) + - + upd(x),  uf, - upy €R
are obtained from solving the matrix

(M + 9t AW = (M — (1 - O)zAl" + T {0 + (1 - 0)f") 9.31)
M = (mj), mi;=(dj, ¢, A =(a;ij), aij=alp;,¢;)

Refer [22, pp.70-75] for solvability of (9.31). The stability of is in [22} Theorem 2.13]:
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Let {T#}ni0 be regular triangulations (see Section @ Then there is a number ¢y > 0
independent of & such that,

Hugp o szzinsag, b oero12)

- (9.32)
pl? + 7 B I, 0 €l1/2,1]

lul|* <

if the following are satisfied:

1. When 6 € [0, 1/2), then we can take a time step 7 in such a way that

2(1-9) 2

e 33
“a - 20)c] 033

for arbitrary ¢ € (0, 1).
2. When 1/2 < 6 < 1, we can take 7 arbitrary.

Example 9.19

mesh Th=square(12,12);
fespace Vh(Th,P1);
fespace Ph(Th,P0);

Ph h = hTriangle; // mesh sizes for each triangle
real tau = 0.1, theta=0.;
func real f(real t) {
return x"2*(x-1)"2 + t¥*(-2 + 12*%x - 11*x"2 - 2*x"3 + x"4);
}
ofstream out("err02.csv'"); // file to store calculations
out << "mesh size = "<<h[].max<<", time step = "<<tau<<endl;
for (int n=0;n<5/tau;n++) \\
out<<n*tau<<",";
out << endl;
Vh u,v,0ldU;
Vh f1, f0;
problem aTau(u,v) =
int2d(Th) ( u*v + theta*tau*(dx(u)*dx(v) + dy(uw)*dy(v) + u*v))
- int2d(Th) (oldU*v - (1-theta)*tau*(dx(oldU)*dx(v)+dy(oldU)*dy(v)+oldU*v))
- int2d(Th) (tau*( theta*fl+(1l-theta)*f® )*v );

while (theta <= 1.0) {
real t = 0, T=3; // from t=0 to T
oldU = 0; // u(x,y,0)=0
out <<theta<<",";
for (int n=0;n<T/tau;n++) {
t = t+tau;
f0 = f(n*taw); f1 = f((n+1)*tau);
aTau;
0ldU = u;
plot(w;
Vh uex = t*x"2*(1-x)"2; // exact sol.= tx*(1 — x)?
Vh err = u - uex; // err =FE-sol - exact
out<< abs(err[].max)/abs(uex[].max) <<","; // llerrllze)/|texllzo@)
}

out << endl;



208 CHAPTER 9. MATHEMATICAL MODELS
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Figure 9.20: maxcq |[u}(0) — ue,(n7)|/ Max,eq [Ue(n7) atn = 0,1,---,29

theta = theta + 0.1;
}

We can see in Fig. that u,(0) become unstable at 0 = 0.4, and figures are omitted in the case 6 < 0.4.

9.5.2 Convection

The hyperbolic equation
o+ a-Vu = f; for a vector-valued function «, (9.34)

appears frequently in scientific problems, for example in the Navier-Stokes equations, in the Convection-
Diffusion equation, etc.

In the case of 1-dimensional space, we can easily find the general solution (x,?) — u(x,t) = uO(x — at) of
the following equation, if @ is constant,

o+ adyu = 0, u(x,0) = u’(x), (9.35)

because d,u + adu = —ail® + ail® = 0, where i® = du®(x)/dx. Even if @ is not constant, the construction
worsk on similar principles. One begins with the ordinary differential equation (with the convention that «
is prolonged by zero apart from (0, L) X (0, T)):

X(1) = +a(X(1),7), 7€(0,) X(#)=x

In this equation 7 is the variable and x, ¢ are parameters, and we denote the solution by X, (7). Then it is
noticed that (x, #) — v(X(7),7) in T = ¢ satisfies the equation

v+ adyw =90 Xv+ad, Xv=0

and by the definition §,X = X = +a and 0, X = d,x in T = t, because if 7 =  we have X(r) = x. The general
solution of (9.35)) is thus the value of the boundary condition in X, ,(0), that is to say u(x, ) = uO(Xx,,(O))
where X, ;(0) is on the x axis, u(x, ) = uO(Xx,,(O)) if X, +(0) is on the axis of ¢.

In higher dimension Q C RY, d =23, the equation for the convection is written

Ou+a-Vu=0inQx(0,T)
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where a(x,t) € R?. FreeFem++ implements the Characteristic-Galerkin method for convection operators.
Recall that the equation (9.34) can be discretized as

gb; =f ie — (X(t) t) = f(X(t),t) where —(t) = a(X(),1)

where D is the total derivative operator. So a good scheme is one step of backward convection by the method
of Characteristics-Galerkin

1
— (") (X)) = () (9.36)

where X" (x) is an approximation of the solution at ¢ = m7 of the ordinary differential equation
7). ¢
E(t) =a"(X(1), X((m + D)7) = x.

where " (x) = (a1 (x, m7), az(x, mt)). Because, by Taylor’s expansion, we have

u" (X (mt))

u"(X((m + 1)1)) - Z —(X((m + I)T))—((m + D7) + o(7)
= u""(x)—ta™(x) - Vum(x) + o(7) (9.37)

where X;(t) are the i-th component of X(#), u™(x) = u(x, mt) and we used the chain rule and x = X((m+1)7).

From (9.37), it follows that
" X"(x) = u"(x) — @™ (x) - Vi (x) + o(7). (9.38)
Also we apply Taylor’s expansion for t — u"(x — a™(x)t), 0 < t < 7, then
u"(x —at) = u"(x) — @™ (x) - Vi (x) + o(7).

Putting
convect (@, -7, u") ~ u" (x — a"'1),

we can get the approximation
W" (X" (x)) ~ convect ([a],ay'], ~7,u") by X" ~ x > x - 7[a(x), &5 (x)]).

A classical convection problem is that of the “rotating bell” (quoted from [14][p.16]). Let Q be the unit
disk centered at 0, with its center rotating with speed @ =y, @» = —x We consider the problem (9.34) with
f = 0 and the initial condition u(x, 0) = u°(x), that is, from lD

U™ (x) = W™(X™(x)) ~ convect(a, -, u™).

The exact solution is u(x, r) = u(X(#)) where X equals x rotated around the origin by an angle 8 = —¢ (rotate
in clockwise). So, if u* in a 3D perspective looks like a bell, then u will have exactly the same shape, but
rotated by the same amount. The program consists in solving the equation until 7 = 2, that is for a full
revolution and to compare the final solution with the initial one; they should be equal.

Example 9.20 (convect.edp) border C(t=0, 2*pi) { x=cos(t); y=sin(t); }; // the unit
circle
mesh Th = buildmesh(C(70)); // triangulates the disk

fespace Vh(Th,P1);
Vh u® = exp(-10*((x-0.3)"2 +(y-0.3)"2)); // give u°
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real dt = 0.17,t=0; // time step
Vh al = -y, a2 = x; // rotation velocity
Vh u; // u"t!
for (int m=0; m<2*pi/dt ; m++) {

t += dt;

u=convect([al,a2],-dt,ul); // W™ = (X" (x))

ul=u; // m++

plot(u,cm=" t="+t + ", min=" + u[].min + ", max=" + u[].max,wait=0);

};

Note 9.3 The scheme convect is unconditionally stable, then the bell become lower and lower (the maxi-
mum of u®’ is 0.406 as shown in Fig. .

convection: t=0, min=1.55289e-09, max=0.983612 convection: t=6.29, min=1.55289e-09, max=0.40659m=37
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Figure 9.21: u® = ¢710((=03+(=03% Figure 9.22: The bell at 1 = 6.29

9.5.3 2D Black-Scholes equation for an European Put option

In mathematical finance, an option on two assets is modeled by a Black-Scholes equations in two space
variables, (see for example Wilmott et al[39] or Achdou et al [3]).

(01%)* 8*u (0'2y)2 0u

o + > @ + > a—yz (939)
*u ou ou
+pxy——+rS1—+rSo—-rP=0
pxyﬁx()y " Y ox " 2(9y "
which is to be integrated in (0, T) x R* X R* subject to, in the case of a put
u(x,y,T) = (K - max (x,y)". (9.40)

Boundary conditions for this problem may not be so easy to device. As in the one dimensional case the PDE
contains boundary conditions on the axis x; = 0 and on the axis x, = 0, namely two one dimensional Black-
Scholes equations driven respectively by the data u (0, +oc0, T) and u (+c0, 0, T'). These will be automatically
accounted for because they are embedded in the PDE. So if we do nothing in the variational form (i.e. if
we take a Neumann boundary condition at these two axis in the strong form) there will be no disturbance to
these. At infinity in one of the variable, as in 1D, it makes sense to impose u# = 0. We take

01=03, 02=03, p=03, r=005 K=40, T=0.5 (9.41)
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An implicit Euler scheme is used and a mesh adaptation is done every 10 time steps. To have an uncondition-
ally stable scheme, the first order terms are treated by the Characteristic Galerkin method, which, roughly,
approximates

1
% + al% + azg—;t ~ - (u"“ (x)—u" (x— aT)) (9.42)

Example 9.21 [BlackSchol.edp]

// file BlackScholes2D.edp
int m=30,L=80,LL=80, j=100;
real sigx=0.3, sigy=0.3, rho=0.3, r=0.05, K=40, dt=0.01;
mesh th=square(m,m, [L*x,LL*y]);
fespace Vh(th,P1);

Vh u=max(K-max(x,y),0.);
Vh xveloc, yveloc, v,uold;

for (int n=0; n*dt <= 1.0; n++)
{
if(j>20) { th = adaptmesh(th,u,verbosity=1,abserror=1,nbjacoby=2,
err=0.001, nbvx=5000, omega=1.8, ratio=1.8, nbsmooth=3,
splitpbedge=1, maxsubdiv=5,rescaling=1) ;

j=0;
xveloc = -x*r+x*sigx”2+x*rho*sigx*sigy/2;
yveloc = -y*r+y*sigy”2+y*rho*sigx*sigy/2;
u=u;
};

uold=u;

solve eql(u,v,init=j,solver=LU) = int2d(th) ( u*v*(r+1/dt)
+ dx(u)*dx(v)*(x*sigx) "2/2 + dy(uw)*dy(v)*(y*sigy) "2/2
+ (dy(w)*dx(v) + dx(u)*dy(v))*rho*sigx*sigy*x*y/2)
- int2d(th) ( v*convect([xveloc,yveloc],dt,w)/dt) + on(2,3,u=0);
J=3+1;
};
plot(u,wait=1,value=1);

Results are shown on Fig. [9.21).

9.6 Navier-Stokes Equation

9.6.1 Stokes and Navier-Stokes

The Stokes equations are: for a given f € L*(Q)?,

-Au+Vp =f .
V.-u -0 } in Q (9.43)

where u = (uy, up) is the velocity vector and p the pressure. For simplicity, let us choose Dirichlet boundary
conditions on the velocity, u = ur onT.
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Figure 9.24: The level line of the European bas-
Figure 9.23: The adapted triangulation quet put option

In Temam [Theorem 2.2], there ia a weak form of (9.43): Find v = (v1, ;) € V(Q)
V(Q) = {w € Hy(Q)?| divw = 0}

which satisfy

2
ZfVui-Vv,-sz~w forallve V
i=1 V& 0

Here it is used the existence p € H'(Q) such that u = Vp, if

fu-v=0 forallveV
Q

Another weak form is derived as follows: We put

V = Hy(Q)% W={qeL2(Q)‘qu:0}

By multiplying the first equation in (9.43) with v € V and the second with ¢ € W, subsequent integration
over , and an application of Green’s formula, we have
Lo
Q
0

fVu-Vv—fdivvp
Q Q
f divu g
Q
This yields the weak form of (9.43): Find (u, p) € V X W such that
v 9:44)

0 (9.45)

a(u,v) + b(v, p)
b(u, q)
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for all (v,q) € V x W, where

a(u,v)

2
Vu - Vv = f Vl/tl' . VVZ' (946)
b(u,q) = —Ldivuq 9.47)

Now, we consider finite element spaces V;, C V and W, ¢ W, and we assume the following basis functions

Vi=VixX Vi, Vi={valve =vid1 +--- +vm,dm, ),
Wi =Aanl gn = q101 + -+ + gy oMy}

The discrete weak form is: Find (uy, py) € V), X Wy, such that

ap,vp) + by, p) = (f,vn), YvpeV,

9.48
b(un, qn) =0, Yagn € Wy (0.48)
Note 9.4 Assume that:
1. There is a constant a, > 0 such that
a(vp,vp) 2 Cvllvhllig forallvy, € Z,
where
Zyp = vy € Vil bwi,qn) =0 forall g, € Wy}
2. There is a constant B, > 0 such that
bwn, qn)
TR s Bullgnloa for all gy € Wi
vV, [Pallio
Then we have an unique solution (uy, pp,) of satisfying
le —upllio + llp — palloo < C( inf |lu—wylli,o+ inf [[p— thlo,g)
vhe h thWh
with a constant C > 0 (see e.g. [20, Theorem 10.4]).
Let us denote that
A = (A, Aij:fv¢j'v¢i Lj=1,---, My (9.49)
Q

B = (Bxij,Byij), Bxij:_fa¢j/ax‘ﬂi Byij=—f5¢j/3y<ﬂi
o 0
=1, ,My;j=1,---, My

then (9.48) is written by

A B\ U \_(Fu
[0 JCon )=(%) 05
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where

A0 Bx" {m}} {{f fum}
A = B>k = U = ’ F =
( 0 A ) { By" } " { {u2.0) T ﬁg foi)
Penalty method: This method consists of replacing (9.48) by a more regular problem: Find (v}, p;) €

V), x Wy, satisfying
a(uj,vp) + b, p) = (f.vn), Yvn€Vy

9.51
b, qn) - eplogn) =0, Vg€ W ©>1)
where W), ¢ L*(Q). Formally, we have
divu; = ep;
and the corresponding algebraic problem
A B U, \ [ Fan
B —el sy ) \ 0
Note 9.5 We can eliminate p;, = (1/€)BUj, to obtain
(A+(1/e)B*B)U; = F;, (9.52)

Since the matrix A + (1/€)B*B is symmetric, positive-definite, and sparse, (|9.52) can be solved by known
technique. There is a constant C > 0 independent of € such that

e, — upllio + llpn = pillog < Ce

(see e.g. [20, 17.2])

Example 9.22 (Cavity.edp) The driven cavity flow problem is solved first at zero Reynolds number (Stokes
flow) and then at Reynolds 100. The velocity pressure formulation is used first and then the calculation is
repeated with the stream function vorticity formulation.

We solve the driven cavity problem by the penalty method where ur - n = 0 and ur - s = 1 on the top
boundary and zero elsewhere ( n is the unit normal to I, and s the unit tangent to T').

The mesh is constructed by

mesh Th=square(§,8);

We use a classical Taylor-Hood element technic to solve the problem:

The velocity is approximated with the P, FE ( Xj, space), and the the pressure is approximated with the P
FE ( M}, space),

where
Xy ={ve H'(0, 1) |VK € T} v € P2}

and
My ={ve H'(10,1})| YK € T} v € P1}

The FE spaces and functions are constructed by

fespace Xh(Th,P2); // definition of the velocity component space
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fespace Mh(Th,P1); // definition of the pressure space
Xh u2,v2;

Xh ul,vl;

Mh p,q;

The Stokes operator is implemented as a system-solve for the velocity (ul,u2) and the pressure p. The test
function for the velocity is (v1,v2) and q for the pressure, so the variational form (9.48) in freefem language
is:

solve Stokes (ul,u2,p,vl,v2,q,solver=Crout) =
int2d(Th) ( ( dx(ul)*dx(vl) + dy(ul)*dy(vl)
+ dx(u2)*dx(v2) + dyu2)*dy(v2) )
- p*g*(0.000001)
- p*dx(vl) - p*dy(v2)
- dx(ul)*q - dy(u2)*q
)
+ on(3,ul=1,u2=0)
+ on(1,2,4,ul=0,u2=0); // see Section for labels 1,2,3,4

Each unknown has its own boundary conditions.

If the streamlines are required, they can be computed by finding  such that roty = u or better,

-AYy =V Xxu

Xh psi,phi;

solve streamlines(psi,phi) =
int2d(Th) ( dx(psi)*dx(phi) + dy(psi)*dy(phi))
+ int2d(Th) ( -phi*(dy(ul)-dx(u2)))
+ on(l1,2,3,4,psi=0);

Now the Navier-Stokes equations are solved

ou
E+u-Vu—vAu+Vp:0, V-u=0
with the same boundary conditions and with initial conditions u = 0.
This is implemented by using the convection operator convect for the term % +u-Vu, giving a discretization
in time X | | '
n+ n n n+ n+ —
2@ —u" o X") —vAu""" + Vp =0,

e o 9.53)

The term u" o X"(x) ~ u"(x — u(x)1) will be computed by the operator “convect” , so we obtain

int i=0;

real nu=1./100.;
real dt=0.1;
real alpha=1/dt;

Xh upl,up2;

problem NS (ul,u2,p,vl,v2,q,solver=Crout,init=i) =
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int2d(Th) (
alpha*( ul*vl + u2*v2)
+ nu * ( dx(ul)*dx(vl) + dyCul)*dy(vl)
+ dx(u2)*dx(v2) + dyu2)*dy(v2) )
p*q* (0.000001)
p*dx(vl) - p*dy(v2)
dx(ul)*q - dy(u2)*q

)
+ int2d(Th) ( -alpha*
convect([upl,up2],-dt,upl)*vl -alpha*convect([upl,up2],-dt,up2)*v2 )
+ on(3,ul=1,u2=0)
+ on(1,2,4,ul=0,u2=0)

for (i=0;i<=10;i++)
{
upl=ul;
up2=u2;
NS;
if (!'(1 % 108)) // plot every 10 iteration
plot(coef=0.2,cmm=" [ul,u2] and p ",p,[ul,u2]);
1

Notice that the stiffness matrices are reused (keyword init=1i)

9.6.2 Uzawa Algorithm and Conjugate Gradients

We solve Stokes problem without penalty. The classical iterative method of Uzawa is described by the
algorithm (see e.g.[20, 17.3], [29, 13] or [30, 13] ):

Initialize: Let p2 be an arbitrary chosen element of L>(Q).

Calculate u;: Once pj is known, v} is the solution of
uj, = A7\ (f, — B'p})

Advance pj: Let pi*! be defined by

n+1

Py = py +p.Buj,

There is a constant @ > 0 such that @ < p, < 2 for each n, then u’;l converges to the solution uy, and then
By, — 0 as n — co from the Advance pj,. This method in general converges quite slowly.

First we define mesh, and the Taylor-Hood approximation. So X, is the velocity space, and M), is the
pressure space.

Example 9.23 (StokesUzawa.edp)

mesh Th=square(10,10);

fespace Xh(Th,P2),Mh(Th,P1);

Xh ul,u2,vl,v2;

Mh p,q,ppp; // ppp is a working pressure

varf bx(ul,q) = int2d(Th)( -(dx(ul)*q));
varf by(ul,q) int2d(Th) ( -(dy(ul)*q));
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varf a(ul,u2)= int2d(Th)( dx(ul)*dx(u2) + dy(ul)*dy(u2) )
+ on(3,ul=1) + on(1,2,4,ul=0) ;
// remark: put the on(3,ul=1) before on(1,2,4,ul=0)
// because we want zero on intersection %

matrix A= a(Xh,Xh,solver=CG);
matrix Bx= bx(Xh,Mh); // B =(Bx By)
matrix By= by(Xh,Mh);

Xh bcl; bcl[] = a(0,Xh); // boundary condition contribution on ul
Xh bc2; bc2 =0 ; // no boundary condition contribution on u2
Xh b;

Py = BA™'(-B* p)) = —divuy is realized as the function divup.

func reall[int] divup(real[int] & pp)

{
// compute ul(pp)
b[] = Bx’*pp; b[]l *=-1; b[] += bcl[] ; ull[]l = A"-1*b[1;
// compute u2(pp)
b[l = By’*pp; b[]l *=-1; b[] += bc2[] ; uz2[] = A"-1*b[1;
/7w =ATBx"p" By'ph'
ppp[]l = Bx*ul[]; // ppp = Bxuy
ppp[] += By*u2[]; // +Byu,
return pppl[] ;
s

Call now the conjugate gradient algorithm:

p=0;q=0; o =0
LinearCG(divup,p[],eps=1.e-6,nbiter=50); // pZ*' = p;; + Bu}j
// if n>50 or |p}fr1 - Pl < 10®, then the loop end.

divup(p[1); // compute the final solution

plot([ul,u2],p,wait=1,value=true,coef=0.1);

9.6.3 NSUzawaCahouetChabart.edp

In this example we solve the Navier-Stokes equation, in the driven-cavity, with the Uzawa algorithm pre-
conditioned by the Cahouet-Chabart method (see [31]] for all the details).

The idea of the preconditioner is that in a periodic domain, all differential operators commute and the Uzawa
algorithm comes to solving the linear operator V.((ald + vA)~'V, where Id is the identity operator. So the
preconditioer suggested is aA™! + vId.

To implement this, we reuse the previous example, by including a file. Then we define the time step At,
viscosity, and new variational form and matrix.

Example 9.24 (NSUzawaCahouetChabart.edp)

include "StokesUzawa.edp" // include the Stokes part
real dt=0.05, alpha=1/dt; // At
cout << " alpha = " << alpha;
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real xnu=1./400; // viscosity v = Reynolds number™!

// the new variational form with mass term
varf at(ul,u2)= int2d(Th) ( xnu*dx(ul) *dx(u2)
+ xnu*dy(ul) *dy(u2) + ul*u2*alpha )
+ on(l1,2,4,ul=0) + on(3,ul=1) ;

A = at(Xh,Xh,solver=CG); // change the matrix

// set the 2 convect variational form
varf vfconvl(uu,vv) = int2d(Th,qforder=5) (convect([ul,u2],-dt,ul)*vv*alpha);
varf vfconv2(v2,vl) = int2d(Th,qforder=5) (convect([ul,u2],-dt,u2)*vl*alpha);

int idt; // index of time set
real temps=0; // current time

Mh pprec,prhs;
varf viMass(p,q) = int2d(Th) (p*q);
matrix MassMh=vfMass(Mh,Mh, solver=CG);

varf vilLap(p,q) = int2d(Th) (dx(pprec)*dx(q)+dy(pprec)*dy(q) + pprec*q*le-10);
matrix LapMh= vfLap(Mh,Mh,solver=Cholesky);

The function to define the preconditioner

func real[int] CahouetChabart(real[int] & xx)
{ // XX = f(divu)w,-
// aLapA4h’l+-vA4assA4h’
pprec[]= LapMh™-1%* xx;
prhs[] = MassMh™-1%xx;
pprec[] = alpha*pprec[]+xnu* prhs[];
return pprec[];

1

The loop in time. Warning with the stop test of the conjugate gradient, because we start from the previous
solution and the end the previous solution is close to the final solution, don’t take a relative stop test to the
first residual, take an absolute stop test ( negative here)

for (idt = 1; idt < 50; idt++)

{
temps += dt;
cout << " —-—————-- temps " << temps << " \n ";
b1[] = vfconvl1(0,Xh);
b2[] = vfconv2(0,Xh);
cout << " min bl b2 " << bl[].min << " " << b2[].min << endl;
cout << " max bl b2 " << bl[].max << " " << b2[].max << endl;
// call Conjugate Gradient with preconditioner ’
// warning eps < 0 => absolue stop test
LinearCG(divup,p[],eps=-1.e-6,nbiter=50,precon=CahouetChabart);
divup(p[1); // computed the velocity

plot([ul,u2],p,wait=!(idt%10),value= 1,coef=0.1);
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,,,,,

///////

Figure 9.25: Solution of the cavity driven problem at Reynolds number 400 with the Cahouet-
Chabart algorithm.

9.7 Variational inequality

We present, a classical example of variational inequality.
Let us denote C = {u € H&(Q), u<gl
The problem is :

1
u=argminJ(u)=—fVu.Vu—ffu
ueC 2 Q Q

where f and g are given function.

The solution is a projection on the convex C of f* for the scalar product ((v,w)) = fg Vv.Vw of H&(Q)
where f* is solution of ((f*,v)) = fQ fv,¥v € Hé(Q). The projection on a convex satisfy clearly Vv €
C, ((u—-v,u—-f)) <0, and after expanding, we get the classical inequality

Vv eC, fV(u—v)Vusf(u—v)f.
Q Q

We can also rewrite the problem as a saddle point problem
Find A, u such that:

1
max  min L(u,/l):—fVu.Vu—ffu+f/l(u—g)+
A€L2(Q).120 ueH) (Q) 2 Ja Q Q

where (1 — g)* = max(0,u — g)
This saddle point problem is equivalent to find u, A such that:

f Vu.Vv + v dw = f fu, Vv € Hj(Q)
Q Q

(9.54)
fﬂ(u -2 =0, Vu e L2(Q),u>0,1>0,
Q

A algorithm to solve the previous problem is:
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1. k=0, and choose, 1o belong H~'(Q)
2. looponk =0,.....

(@) set Iy ={xe Q/Ax +c* (ug+1 — g) <0}

(b) Vg1 =1{v € Hy(Q)/v=gon I},

(©) Vo1 ={v € Hy(Q)/v=0on I},

(d) Find ug+1 € Vg1 and iy € H™1(Q) such that

fVMk+1-VVk+1 dw = fka+1, YVie1 € Vot
Q Q

< Apy1, v >= Vug1.Vv — fvdw
Q

where <, > is the duality bracket between HO1 (Q)and H'(Q), and cis a penalty constant (large
enough).

You can find all the mathematic about this algorithm in [33]].
Now how to do that in FreeFem++
The full example is:

Example 9.25 (VL.edp)

mesh Th=square(20,20);
real eps=le-5;

fespace Vh(Th,P1); // P1 FE space
int n = Vh.ndof; // number of Degree of freedom
Vh uh,uhp; // solution and previous one
Vh Ik; // to def the set where the containt is reached.
real[int] rhs(n); // to store the right and side of the equation
real c=1000; // the penalty parameter of the algoritm
func f=1; // right hand side function
func fd=0; // Dirichlet boundary condition function
Vh g=0.05; // the discret function g
reall[int] Aii(n),Aiin(n); // to store the diagonal of the matrix 2 version
real tgv = le30; // a huge value for exact penalization

// of boundary condition
// the variatonal form of the problem:

varf a(uh,vh) = // definition of the problem
int2d(Th) ( dx(uh)*dx(vh) + dy(uh)*dy(vh) ) // bilinear form
- int2d(Th) ( f*vh ) // linear form
+ on(1,2,3,4,uh=1fd) ; // boundary condition form
// two version of the matrix of the problem
matrix A=a(Vh,Vh,tgv=tgv,solver=CG); // one changing
matrix AA=a(Vh,Vh,solver:GC); // one for computing residual
// the mass Matrix construction:

varf vM(uh,vh) = int2d(Th) (uh*vh);
matrix M=vM(Vh,Vh); // to do a fast computing of L* norm : sqrt( u’*(w=M*u))
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Aii=A.diag; // get the diagonal of the matrix (appear in version 1.46-1)

rhs = a(0,Vh,tgv=tgv);

Ik =0;
uhp=-tgv; // previous value is
Vh lambda=0;
for(int iter=0;iter<100;++iter)
{
reall[int] b(n) ; b=rhs; // get a copy of the Right hand side
reall[int] Ak(n); // the complementary of Ik ( !Ik = (Ik-1))
// Today the operator Ik- 1. 1is not implement so we do:
Ak= 1.; Ak -= Ik[]; // build Ak = ! Ik
// adding new locking condition on b and on the diagonal if (Ik ==1 )
b = Ik[] .* g[]; b *= tgv; b -= Ak .* rhs;
Aiin = Ik[] * tgv; Aiin += Ak .* Aii; // set Aii= tgv i€ lk
A.diag = Aiin; // set the matrix diagonal (appear in version 1.46-1)
set (A,solver=CG); // important to change preconditioning for solving
uh[] = A"-1* b; // solve the problem with more locking condition
lambda[] = AA * uh[]; // compute the residual ( fast with matrix)
lambda[] += rhs; //  remark rhs = - [ fv
Ik = ( lambda + c*( g- uh)) < 0.; // the new of locking value

plot(Ik, wait=1,cmm=" lock set ",value=1,ps="VI-lock.eps",fill=1 );
plot (uh,wait=1,cmm="uh",ps="VI-uh.eps");
// trick to compute L*> norm of the variation (fast method)
real[int] diff(n),Mdiff(n);
diff= uh[]-uhp[];
Mdiff = M*diff;
real err = sqrt(Mdiff’*diff);

cout << " || u_{k=1} - u_{k} ||_2 " << err << endl;
if(err< eps) break; // stop test
uhp[]=uh[] ; // set the previous solution
}
savemesh(Th, "mm", [x,y,uh*10]); // for medit plotting

Remark, as you can see on this example, some vector , or matrix operator are not implemented so a way is
to skip the expression and we use operator +=, -= to merge the result.

9.8 Domain decomposition

We present, three classic examples, of domain decomposition technique: first, Schwarz algorithm with
overlapping, second Schwarz algorithm without overlapping (also call Shur complement), and last we show
to use the conjugate gradient to solve the boundary problem of the Shur complement.

9.8.1 Schwarz Overlap Scheme

To solve
—Au=f, nQ=QUQ ur=0

the Schwarz algorithm runs like this

n+1
—Au

n+1
—Au,

finQ 'y, =i

. 1
f m Qz I/tg+ |r2 = M'll
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where I'; is the boundary of €; and on the condition that Q; N Q; # ( and that u; are zero at iteration 1.

Here we take Q) to be a quadrangle, Q; a disk and we apply the algorithm starting from zero.

Figure 9.26

Example 9.26 (Schwarz-overlap.edp)

int inside = 2;
int outside = 1;
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The 2 overlapping mesh TH and th

border a(t=1,2){x=t;y=0;label=outside;};

border b(t=0,1){x=2;y=t;label=outside;};

border c(t=2,0){x=t ;y=1;label=outside;};

border d(t=1,0){x = 1-t; y = t;label=inside;};

border e(t=0, pi/2){ x= cos(t); y = sin(t);label=inside;};

border el(t=pi/2, 2*pi){ x= cos(t); y = sin(t);label=outside;};

int n=4;

mesh th = buildmesh( a(5*n) + b(5*n) + c(10*n) + d(5*n));

mesh TH
plot(th,TH,wait=1);

The space and problem definition is :

fespace vh(th,P1);
fespace VH(TH,P1);
vh u=0,v; VH U,V;
int i=0;

buildmesh( e(5*n) + el(25

n) J;

problem PB(U,V,init=i,solver=Cholesky) =

int2d(TH) ( dx(U)*dx(V)+dy (U) *dy (V) )
+ int2d(TH)( -V) + on(inside,U = u) +

on(outside,U= 0 )

problem pb(u,v,init=i,solver=Cholesky) =

int2d(th) ( dx(uw) *dx(v)+dy (W) *dy(v) )
+ int2d(th)( -v) + on(inside ,u = U) +

The calculation loop:

for ( i=0 ;i< 10; i++)

{

on(outside,u = 0 )

inside boundary
outside boundary

to see the 2 meshes
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PB;

pb;

plot (U,u,wait=true);
3

Figure 9.27: Isovalues of the solution at iteration O and iteration 9

9.8.2 Schwarz non Overlap Scheme

To solve
“Au=finQ=Q,UQ, ulr=0,

the Schwarz algorithm for domain decomposition without overlapping runs like this
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Figure 9.28: The two none overlapping mesh TH and th

Let introduce I'; is common the boundary of Q; and Q, and I“é =0Q;\T;.
The problem find A such that (41|, = uz|r,) where u; is solution of the following Laplace problem:

—Aui = f in Q,‘ u,‘h“l. =A u,'|1-; =0
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To solve this problem we just make a loop with upgradingd with

(u1 — up)
A= et
2

where the sign + or — of + is choose to have convergence.

Example 9.27 (Schwarz-no-overlap.edp)

// schwarzl without overlapping
int inside = 2;
int outside = 1;
border a(t=1,2){x=t;y=0;label=outside;};
border b(t=0,1){x=2;y=t;label=outside;};
border c(t=2,0){x=t ;y=1;label=outside;};
border d(t=1,0){x = 1-t; y = t;label=inside;};
border e(t=0, 1){ x= 1-t; y = t;label=inside;};
border el(t=pi/2, 2*pi){ x= cos(t); y = sin(t);label=outside;};
int n=4;
mesh th = buildmesh( a(5*n) + b(5*n) + c(10*n) + d(5*n));
mesh TH = buildmesh ( e(5*n) + el(25*n) );
plot(th,TH,wait=1,ps="schwarz-no-u.eps");
fespace vh(th,P1);
fespace VH(TH,P1);
vh u=0,v; VH U,V;
vh lambda=0;
int i=0;

problem PB(U,V,init=i,solver=Cholesky) =
int2d(TH) ( dx(U) *dx(V)+dy (U) *dy (V) )
+ int2d(TH) ( -V)
+ int1ld(TH,inside) (1ambda*V) + on(outside,U= 0 ) ;
problem pb(u,v,init=i,solver=Cholesky) =
int2d(th) ( dx(w) *dx(v)+dy (W) *dy(v) )
+ int2d(th)( -v)
+ intl1ld(th,inside) (-lambda*v) + on(outside,u = 0 ) ;

for ( i=0 ;i< 10; i++)

{
PB;
pb;
lambda = lambda - (u-U)/2;
plot (U,u,wait=true);
3

plot (U,u,ps="schwarz-no-u.eps");
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Figure 9.29: Isovalues of the solution at iteration 0 and iteration 9 without overlapping

9.8.3 Schwarz-gc.edp

To solve
“Au=finQ=QUQ ulr=0,

the Schwarz algorithm for domain decomposition without overlapping runs like this
Let introduce I'; is common the boundary of Q; and €, and Fé =0Q; \T;.
The problem find A such that (u1|r, = uz|r,) where u; is solution of the following Laplace problem:

—Aui = f in Qi l/tl'h",. =1 u,'|1-é =0

The version of this example for Shur componant. The border problem is solve with conjugate gradient.
First, we construct the two domain

Example 9.28 (Schwarz-gc.edp)

// Schwarz without overlapping (Shur complenement Neumann -> Dirichet)
real cpu=clock();
int inside = 2;
int outside = 1;

border Gammal(t=1,2){x=t;y=0;label=outside;};
border Gamma2(t=0,1){x=2;y=t;label=outside;};
border Gamma3(t=2,0){x=t ;y=1;label=outside;};

border GammaInside(t=1,0){x = 1-t; y = t;label=inside;};

border GammaArc(t=pi/2, 2*pi){ x= cos(t); y = sin(t);label=outside;};
int n=4;
// build the mesh of Q; and Q,
mesh Thl = buildmesh( Gammal(5*n) + Gamma2(5*n) + GammaInside(5*n) + Gamma3(5*n));
mesh Th2 = buildmesh ( GammaInside(-5*n) + GammaArc(25*n) );
plot(Thl,Th2);

// defined the 2 FE space
fespace Vh1(Thl,P1), Vh2(Th2,P1);
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Note 9.6 It is impossible to define a function just on a part of boundary, so the lambda function must be
defined on the all domain Q. such as

vhl lambda=0; // take 1€V

The two Poisson problem:

Vhl ul,vl; Vh2 u2,v2;
int i=0; // for factorization optimization
problem Pb2(u2,v2,init=i,solver=Cholesky) =
int2d(Th2) ( dx(u2)*dx(v2)+dy(u2)*dy(v2) )
+ int2d(Th2) ( -v2)
+ int1d(Th2,inside) (-lambda*v2) + on(outside,u2= 0 ) ;
problem Pbl(ul,vl,init=i,solver=Cholesky) =
int2d(Th1) ( dx(ul)*dx(v1)+dy(ul)*dy(vl) )
+ int2d(Thl) ( -v1)
+ int1d(Thl,inside) (+1lambda*vl) + on(outside,ul = 0 ) ;

or, we define a border matrix , because the lambda function is none zero inside the domain Q:

varf b(u2,v2,solver=CG) =intld(Thl,inside) (u2*v2);
matrix B= b(Vhl,Vhl,solver=CG);

The boundary problem function,
1— f(ul — u2)vi
I;

func reall[int] BoundaryProblem(real[int] &1)

{
lambda[]=1; // make FE function form 1
Pbl; Pb2;
i++; // no refactorization i !=0
vl=-(ul-u2);
lambda[]=B*v1[];
return lambda[] ;

3

Note 9.7 The difference between the two notations v1and v1[] is: vl is the finite element function and
v1[] is the vector in the canonical basis of the finite element function v1.

Vhl p=0,g=0;
// solve the problem with Conjugate Gradient
LinearCG(BoundaryProblem,p[],eps=1.e-6,nbiter=100);

// compute the final solution, because CG works with increment
BoundaryProblem(p[]); // solve again to have right ul,u2
cout << " -- CPU time schwarz-gc:" << clock()-cpu << endl;

plot(ul,u2); // plot
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9.9 Fluid/Structures Coupled Problem

This problem involves the Lamé system of elasticity and the Stokes system for viscous fluids with velocity
u and pressure p:

—Au+Vp=0,V-u=0, in Q,u=ur on I' =9Q

where ur is the velocity of the boundaries. The force that the fluid applies to the boundaries is the normal
stress
h= u+Vun- pn

Elastic solids subject to forces deform: a point in the solid, at (x,y) goes to (X,Y) after. When the displace-
ment vector v = (vi,vp) = (X — x, Y — y) is small, Hooke’s law relates the stress tensor ¢ inside the solid to

the deformation tensor e:

1 dv; Ov;

_(_ + —

2 0x j axi

where ¢ is the Kronecker symbol and where A, u are two constants describing the material mechanical
properties in terms of the modulus of elasticity, and Young’s modulus.

The equations of elasticity are naturally written in variational form for the displacement vector v(x) € V as

Tij = A6;jV.v + 2u€ij, € =

f[2,ue,~j(v)e,-j(w) + /lE,'i(V)Ejj(W)] = f g-w+ fh -w,YweV
Q Q r
The data are the gravity force g and the boundary stress k.

Example 9.29 (fluidStruct.edp) In our example the Lamé system and the Stokes system are coupled by a
common boundary on which the fluid stress creates a displacement of the boundary and hence changes the
shape of the domain where the Stokes problem is integrated. The geometry is that of a vertical driven cavity
with an elastic lid. The lid is a beam with weight so it will be deformed by its own weight and by the normal
stress due to the fluid reaction. The cavity is the 10 X 10 square and the lid is a rectangle of height [ = 2.

A beam sits on a box full of fluid rotating because the left vertical side has velocity one. The beam is bent
by its own weight, but the pressure of the fluid modifies the bending.
The bending displacement of the beam is given by (uu,vv) whose solution is given as follows.

// Fluid-structure interaction for a weighting beam sitting on a
// square cavity filled with a fluid.

int bottombeam = 2; // label of bottombeam
border a(t=2,0) { x=0; y=t ;label=1;}; // left beam
border b(t=0,10) { x=t; y=0 ;label=bottombeam;}; // bottom of beam
border c(t=0,2) { x=10; y=t ;label=1;}; // rigth beam
border d(t=0,10) { x=10-t; y=2; label=3;}; // top beam

real E = 21.5;

real sigma = 0.29;

real mu = E/(2*(1+sigma));
real lambda = E*sigma/((l+sigma)*(1-2*sigma));
real gravity = -0.05;

mesh th = buildmesh( b(20)+c(5)+d(20)+a(5));
fespace Vh(th,P1);

Vh uu,w,vv,s,fluidforce=0;

cout << "lambda,mu,gravity ="<<lambda<<

non non

<< mu << << gravity << endl;
// deformation of a beam under its own weight
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solve bb([uu,vv],[w,s]) =
int2d(th)(
lambda*div(w,s)*div(uu,vv)
+2.*mu*( epsilon(w,s)’*epsilon(uu,vv) )
)
+ int2d(th) (-gravity*s)
+ on(1,uu=0,vv=0)
+ fluidforce[];

plot([uu,vv],wait=1);
mesh thl = movemesh(th, [x+uu, y+vv]);
plot(thl,wait=1);

Then Stokes equation for fluids ast low speed are solved in the box below the beam, but the beam has
deformed the box (see border h):

//  Stokes on square b,e,f,g driven cavite on left side g

border e(t=0,10) { x=t; y=-10; label= 1; }; // bottom
border f(t=0,10) { x=10; y=-10+t ; label= 1; }; // right
border g(t=0,10) { x=0; y=-t ;label= 2;}; // left
border h(t=0,10) { x=t; y=vv(t,0)*( t>=0.001 )*(t <= 9.999);

label=3;}; // top of cavity deformed

mesh sh = buildmesh(h(-20)+£(10)+e(10)+g(10));
plot(sh,wait=1);

We use the Uzawa conjugate gradient to solve the Stokes problem like in example Section[9.6.2]

fespace Xh(sh,P2),Mh(sh,P1);
Xh ul,u2,vl,v2;
Mh p,q,ppp;

varf bx(ul,q) = int2d(sh)( -(dx(ul)*q));

varf by(ul,q) int2d(sh)( -(dy(ul)*q));

varf Lap(ul,u2)= int2d(sh)( dx(ul)*dx(u2) + dy(ul)*dy(u2) )
+ on(2,ul=1) + on(1,3,ul=0) ;

Xh bcl; bcl[] = Lap(0,Xh);
Xh brhs;

matrix A= Lap(Xh,Xh,solver=CG);
matrix Bx= bx(Xh,Mh);

matrix By= by(Xh,Mh);

Xh bcx=0,bcy=1;

func reall[int] divup(real[int] & pp)
{
int verb=verbosity;
verbosity=0;
brhs[] = Bx’*pp; brhs[] += bcl[] .*bcx[];
ul[] = A"-1*brhs[];
brhs[] = By’*pp; brhs[] += bcl[] .*bcy[];
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u2[] = A"-1*brhs[];
ppp[]l = Bx*ul[l;
pppl[] += By*u2[l;
verbosity=verb;
return ppp[] ;

};

do a loop on the two problem

for(step=0;step<2;++step)
{
p=0;0=0;ul=0;v1=0;

LinearCG(divup,p[],eps=1.e-3,nbiter=50);
divup(p[1);

Now the beam will feel the stress constraint from the fluid:

Vh sigmall,sigma22,sigmal2;
Vh uul=uu,vvl=vv;

sigmall([x+uu,y+vv]) = (2*dx(ul)-p);
sigma22([x+uu,y+vv]) = (2*dy(u2)-p);
sigmal2 ([x+uu,y+vv]) = (dx(ul)+dy(u2));

which comes as a boundary condition to the PDE of the beam:

solve bbst([uu,vv], [w,s],init=i) =
int2d(th)(
lambda*div(w, s)*div(uu,vv)
+2.*mu*( epsilon(w,s)’*epsilon(uu,vv) )
)
+ int2d(th) (-gravity¥*s)
+ int1ld(th,bottombeam) ( -coef*( sigmall*N.x*w + sigma22*N.y*s
+ sigmal2*(N.y*w+N.x*s) ) )
+ on(1l,uu=0,vv=0);
plot([uu,vv],wait=1);
real err = sqrt(int2d(th)( (uu-uul)”2 + (vv-vvl1)“"2 ));

" n

cout << " Erreur L2 = << err << "M-—-————-—- \n";
Notice that the matrix generated by bbst is reused (see init=1i). Finally we deform the beam
thl = movemesh(th, [x+0.2*%uu, y+0.2*vv]);

plot(thl,wait=1);
} // end of loop

9.10 Transmission Problem

Consider an elastic plate whose displacement change vertically, which is made up of three plates of different
materials, welded on each other. Let ;, i = 1,2, 3 be the domain occupied by i-th material with tension y;
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Figure 9.30: Fluid velocity and pressure (left) and displacement vector (center) of the structure
and displaced geometry (right) in the fluid-structure interaction of a soft side and a driven cavity

(see Section . The computational domain € is the interior of Q; U Q, U Q3. The vertical displacement
u(x,y) is obtained from

- ﬂiAu = f in Q.i (955)

Hilpulr, = —,ujanulrj on;NQ; ifl<i<j<3 (9.56)

where d,ulr, denotes the value of the normal derivative d,u on the boundary I'; of the domain €;.
By introducing the characteristic function y; of €;, that is,

xix) =1 ifxeQ; xix)=0 ifx¢Q; (9.57)

we can easily rewrite and (9.56) to the weak form. Here we assume thatu = 0 on " = 9Q.
problem Transmission: For a given function f, find u# such that

a(u,v) = £L(f,v) forallveH(l)(Q) (9.58)
a(u,v):f,uVu-Vv, t’(f,v)szv
Q Q

where = uxy1 + wox2 + u3x3. Here we notice that u become the discontinuous function.

With dissipation, and at the thermal equilibrium, the temperature equation is:

This example explains the definition and manipulation of region, i.e. subdomains of the whole domain.
Consider this L-shaped domain with 3 diagonals as internal boundaries, defining 4 subdomains:

// example using region keyword
// construct a mesh with 4 regions (sub-domains)
border a(t=0,1){x=t;y=0;1};
border b(t=0,0.5){x=1;y=t;};
border c(t=0,0.5){x=1-t;
border d(t=0.5,1){x=0.5;
border e(t=0.5,1){x=1-t;
border f(t=0,1){x=0;y=1-
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// internal boundary

border i1(t=0,0.5){x=t;y=1-t;};
border i2(t=0,0.5){x=t;y=t;};
border i3(t=0,0.5){x=1-t;y=t;};

mesh th = buildmesh (a(6) + b(4) + c(4) +d(4) + e(4) +
£(6)+11(6)+i2(6)+13(6));

fespace Ph(th,P0); // constant discontinuous functions / element
fespace Vh(th,P1); // P, continuous functions / element
Ph reg=region; // defined the P, function associated to region number

plot(reg,fill=1,wait=1,value=1);

W6.31579

Figure 9.31: the function reg Figure 9.32: the function nu

region is a keyword of FreeFem++ which is in fact a variable depending of the current position (is not a
function today, use Ph reg=region; to set a function). This variable value returned is the number of the
subdomain of the current position. This number is defined by “buildmesh” which scans while building the
mesh all its connected component. So to get the number of a region containing a particular point one does:

int nupper=reg(0.4,0.9); // get the region number of point (0.4,0.9)
int nlower=reg(0.9,0.1); // get the region number of point (0.4,0.1)
cout << " nlower " << nlower << ", nupper = " << nupper<< endl;

// defined the characteristics functions of upper and lower region

Ph nu=1+5*(region==nlower) + 10*(region==nupper);
plot(nu, fill=1,wait=1);

This is particularly useful to define discontinuous functions such as might occur when one part of the domain
is copper and the other one is iron, for example.

We this in mind we proceed to solve a Laplace equation with discontinuous coefficients (v is 1, 6 and 11
below).
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Ph nu=1+5*(region==nlower) + 10*(region==nupper);

plot(nu, fill=1,wait=1);

problem lap(u,v) = int2d(th) ( nu*( dx(u)*dx(v)*dyu)*dy(v) ))
+ int2d(-1*v) + on(a,b,c,d,e,f,u=0);

plot(w;

W0.0189054
M0.020706

W0.0225065
M0.024307

W0.0261075
Wo.027908

M0.0297086
M0.0315091
M0.0333096
W0.0351101

Figure 9.33: the isovalue of the solution u



9.11. FREE BOUNDARY PROBLEM
9.11 Free Boundary Problem
The domain Q is defined with:

real L=10;
real h=2.1;
real h1=0.35;
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//  longueur du domaine
// hauteur du bord gauche
// hauteur du bord droite

// maillage d’un tapeze

border a(t=0,L){x=t;y=0;}; // bottom: T,
border b(t=0,hl1){x=L;y=t;}; // right: T,
border f(t=L,0){x=t;y=t*(hl-h)/L+h;}; // free surface: Ty
border d(t=h,0){x=0;y=t;}; // left: Iy
int n=4;
mesh Th=buildmesh (a(10*n)+b(6*n)+f(8*n)+d(3*n));
plot (Th,ps="dTh.eps");

é@‘»‘ %

KNI IN K %

SRR ISR KA
S N 2N o Vet Vg

7N

e NNV AN AN NSNS NAVARNAN NNV L, &

Figure 9.34: The mesh of the domain (2

The free boundary problem is:
Find u and Q such that:

-Au=0 in Q
u=y only
ou
n =0 onl;UT,
n
ou q dye r
o - gxand u=y only
We use a fixed point method; Q° = Q
in two step, fist we solve the classical following problem:
-Au =0 inQ”

u =y only

0
= =0 on[juT
u =y onl“;

The variational formulation is:
find u on V = H'(Q"), such than u = y on I’} and r

f VuVu' =0, VYu' €V withu’' =0onT} U F;i

and secondly to construct a domain deformation ¥ (x,y) = [x,y — v(x, y)]
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where v is solution of the following problem:

-Av =0 in Q"
v =0 onI”
0
a_v = on FZ U FZ
n
ov du ¢ on ™
—_— = — — —n
on on K * !
The variational formulation is:
find von V, such thanv =0 onI”
/7 6“ q ’ ’ . ’ n
VWV = (——=ny, YW eVwithy =0onTI"
n (')n K a
" s

Finally the new domain Q! = 7(Q")

Example 9.30 (freeboundary.edp) The FreeFem++ :implementation is:

real g=0.02; //  flux entrant
real K=0.5; //  permeabilité
fespace Vh(Th,P1);
int j=0;
Vh u,v,uu,vv;
problem Pu(u,uu,solver=CG) = int2d(Th) ( dx(u)*dx(uu)+dy(u) *dy (uu))
+ on(b, f,u=y) ;
problem Pv(v,vv,solver=CG) = int2d(Th) ( dx(v)*dx(vv)+dy(v)*dy(vv))
+ on (a, v=0) + intl1ld(Th,f) (vv*((q/K)*N.y- (dx(W)*N.x+dy(u)*N.y)));
real errv=l;
real erradap=0.001;
verbosity=1;
while(errv>le-6)
{
I+
Pu;
Pv;
plot(Th,u,v ,wait=0);
errv=int1d(Th, ) (v¥v);
real coef=1;
//
real mintcc = checkmovemesh(Th, [x,y])/5.
real mint = checkmovemesh(Th, [x,y-v¥*coef]);
if (mint<mintcc || j%10==0) { // mesh to bad => remeshing

Th=adaptmesh(Th,u,err=erradap ) ;
mintcc = checkmovemesh(Th, [x,y])/5.;
}

while (1)
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{

real mint = checkmovemesh(Th, [x,y-v¥coef]);

if (mint>mintcc) break;

cout << " min |T] " << mint << endl;

coef /= 1.5;
}
Th=movemesh (Th, [x,y-coef*v]); // calcul de la deformation
cout << "\n\n"<<j <<"------mmmo-- errv = " << errv << "\n\n";

}
plot (Th,ps="d_Thf.eps");
plot(u,wait=1,ps="d_u.eps");

/
/'/ /
[ /
/
| |
| |
x 1

Figure 9.35: The final solution on the new domain Q7
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Figure 9.36: The adapted mesh of the domain Q"

9.12 Non linear Elasticity (nolinear-elas.edp)

The nonlinear elasticity problem is: find the displacement (u;, ) minimizing J

minJ(ul,uz):ff(F2)—f P,u
Q r

P

where F2(uy, uy) = A(E[uy, uz], E[ug, up]) and A(X, Y) is bilinear sym. positive form with respect two matrix
X, Y. where f is a given C? function, and E[u;,us2] = (E; 1)i=12, j=1,2 18 the Green-Saint Venant deformation
tensor defined with:
E,‘j = 0.5(3,‘1/[]‘ + (?jui) + Z aiukxajuk
k
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Denote u = (ug, u3), v.=(vi,v2), W = (W, wa).
So, the differential of J is

D)) = f DF2(u)(v) f'(F2())) - f Pavs

r,

where DF2(u)(v) = 2 A( DE[u](v) , E[u] ) and DE is the first differential of E.
The second order differential is

DX J()((v),(w)) = f DF2(u)(v) DF2(u)(w) " (F2(w)))
+ f D*F2(u)(v,w) f'(F2(u)))

where
D*F2(u)(v,w) = 2 A( D*E[ul(v,w) , E[u])+2 A( DE[u](v) , DE[u](w) ).
and D2E is the second differential of E.

So all notations can be define with macros:

macro EL(u,v) [dx(w),(dx(¥)+dy(w)),dy(v)] // is [e1,2€e, 2]

macro ENL(u,v) [

(dxu)*dx(u)+dx(v) *dx(v))*0.5,

(dx () *dy (W) +dx (v) *dy (v)) ,

(dy (W) *dy (W) +dy (v) *dy (v))*0.5 ] // EOM ENL

macro dENL(u,v,uu,vv) [(dx(u)*dx(uu)+dx(v)*dx(vv)),
(dx (W) *dy (uu) +dx (v) *dy (vv) +dx (uu) *dy (u) +dx (vv) *dy (v)) ,

(dy (W) *dy (uw) +dy (V) *dy (vv)) 1] //
macro E(u,v) (EL(u,v)+ENL(u,v)) // is [Eq1,2E12, Exn]
macro dE(u,v,uu,vv) (EL(Cuu,vv)+dENL(u,v,uu,vv)) //
macro ddE(u,v,uu,vv,uuu,vvv) dENL(uuu,vvv,uu,vv) //
macro F2(u,v) (ECu,v)’*A*ECu,v)) //
macro dF2(u,v,uu,vv) (E(u,v)’*A*dE(u,v,uu,vv)*2. ) //

macro ddF2(u,v,uu,vv,uuu,vvv) (
(dECu,v,uu,vv)’*A*dE(u,v,uuu,vvv))*2.
+ (ECu,v)’*A*ddE(u,v,uu,vv,uuu,vvv))*2. ) // EOM
The Newton Method is
choose n = 0,and ug, vp the initial displacement

e loop:
° find (du, dv) : solution of

D*J(un, va)(w, 5), (du, dv)) = DI (up, vy)(w, 5),  Vw, s
° un=un—du, vn=vn-—dv

. until (du, dv) small is enough
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Figure 9.37: The deformed domain

The way to implement this algorithm in FreeFem++ is use a macro tool to implement A and F2, f, f’,f".
A macro is like in ccp preprocessor of C++ , but this begin by macro and the end of the macro definition is
before the comment //. In this case the macro is very useful because the type of parameter can be change.
And it is easy to make automatic differentiation.

macro f(u) (w
macro df(u) (1)
macro ddf(u) (0)

real mu = 0.012e5;
real lambda =

//
7/
//
Vs
//
//
//
/7’
Vs
//
/7
//

real
real

real
real
real
real

real
real
real

0.4e5;

o =2uE + Atr(E)ld
A(u,v) = o) : E(v)

(ab)
(bc)
tr*Id :
(101)
(000 )
(101)
all= 2*mu +
a22= mu ;
a33= 2*mu +
al2= 0 ;
al3= lambda ;
a23= 0 ;
a2l= al2 ;
a3l= al3 ;
a32= a23 ;

lambda

lambda ;

// non linear elasticity model

// for hyper elasticity problem

/) mmmmmmmmmemeeeeee o
// end of macro

// end of macro

// end of macro

-- du caouchouc --- (see the notes of Herve Le Dret.)
/) e

// kglem?
// kg/cm?

(a,b,c) -> (a+c,0,a+c)
so the associed matrix is:

[/ e v

// because [0,2 «¢12,0]'A[0,2 = 512,0] =
// =2sxmux 12+ 512+ 121 % s21) = 4« mu « t12 % s12

// symetric part
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//

fune A = [ [ all,al2,al3],[ a21,a22,a23],[ a31,a32,a33] 1;

real Pa=le2;

Y

int n=30,m=10;
mesh Th= square(n,m, [x,.3%y]);
int bottom=1, right=2,upper=3,left=4;

plot(Th);

fespace Wh(Th,Pldc);
fespace Vh(Th, [P1,P1]);
fespace Sh(Th,P1);

Wh e2,fe2,dfe2,ddfe2;
Wh ett,ezz,err,erz;

Vh [uu,vv], [w,s],[un,vn];
[un,vn]=[0,0];
[uu,vv]=[0,0];

/7

label:

CHAPTER 9. MATHEMATICAL MODELS

the matrix A.

// a pressure of 100 Pa

1 bottom, 2 right, 3 up, 4 left;

//
//

//

varf vmass([uu,vv], [w,s],solver=CG) = int2d(Th)( uu*w + vv¥*s );

matrix M=vmass(Vh,Vh);
problem NonLin([uu,vv], [w,s],solver=LU)=
int2d(Th,qforder=1) (

v

dF2 (un,vn,uu,vv)*dF2(un,vn,w,s)*ddfe2

+ ddF2(un,vn,w,s,uu,vv)*dfe2

)
- int1d(Th, 3) (Pa*s)
- int2d(Th,gforder=1) (
dF2(un,vn,w,s)*dfe2 )
+ on(right,left,uu=0,vv=0);

Sh ul,vl;
for (int i=0;i<10;i++)

{

cout << "Loop " << i << endl;

e2 = F2(un,vn);

dfe2 = df(e2) ;

ddfe2 = ddf(e2);

cout << " e2 max <<e2[].max <<
cout << " de2 max "<< dfe2[].max <<
cout << "dde2 max "<< ddfe2[].max <<

NonLin;

n

wl]l] = M*uul];

Vs

//

/7

, min" << e2[].min << endl;
, min" << dfe2[].min << endl;
, min" << ddfe2[].min << endl;

optimisation
optimisation

intialisation

(D*J(un)) part

(DJ(un)) part

Newton’s method

compute [uu,vv] = (D*J(un))"(DJ(un))
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real res = sqrt(w[]’ * uul[l]); // norme Lo f[uu, vv]
ul = uu;

vl = vv;

cout << " L"2 residual = " << res << endl;

cout << " ul min =" <<ul[].min << ", ul max= " << ul[].max << endl;

cout << " vl min =" <<vl1[].min << ", v2 max= " << v1[].max << endl;
plot([uu,vv],wait=1,cmm=" uu, vv " );

un[] -= uul];

plot([un,vn],wait=1,cmm=" displacement " );
if (res<le-5) break;

}

plot([un,vn],wait=1);
mesh thl = movemesh(Th, [x+un, y+vn]);
plot(thl,wait=1); // see figure (9.3

9.13 Compressible Neo-Hookean Materials: Computational So-
lutions

Author : Alex Sadovsky mailsashas@gmail.com

9.13.1 Notation

In what follows, the symbols u,F,B, C, o denote, respectively, the displacement field, the deformation
gradient, the left Cauchy-Green strain tensor B = FF?, the right Cauchy-Green strain tensor C = F’F, and
the Cauchy stress tensor. We also introduce the symbols /; := tr C and J := detF. Use will be made of the
identity

oJ

3 " JC! (9.59)

The symbol I denotes the identity tensor. The symbol Qg denotes the reference configuration of the body to
be deformed. The unit volume in the reference (resp., deformed) configuration is denoted dV (resp., dVp);
these two are related by

dv = JdVy,

which allows an integral over Q involving the Cauchy stress T to be rewritten as an integral of the Kirchhoff
stress k = JT over €.

Recommended References

For an exposition of nonlinear elasticity and of the underlying linear- and tensor algebra, see [34]]. For
an advanced mathematical analysis of the Finite Element Method, see [35)]. An explanation of the Finite
Element formulation of a nonlinear elastostatic boundary value problem, see http://www.engin.brown.
edu/courses/en222/Notes/FEMfinitestrain/FEMfinitestrain.htm.

9.13.2 A Neo-Hookean Compressible Material

Constitutive Theory and Tangent Stress Measures The strain energy density function is given by

W = %(11 —trI-21InJ) (9.60)


http://www.engin.brown.edu/courses/en222/Notes/FEMfinitestrain/FEMfinitestrain.htm
http://www.engin.brown.edu/courses/en222/Notes/FEMfinitestrain/FEMfinitestrain.htm
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(see [32]], formula (12)).
The corresponding 2nd Piola-Kirchoff stress tensor is given by

N
S 1= o (Fn) = u@-C™) 9.61)

The Kirchhoff stress, then, is
k =FSF" = u(B - 1) (9.62)

The tangent Kirchhoff stress tensor at F,, acting on 6F,,| is, consequently,

0k
5 E0F st =t [F(@Fi)! + 5F 1 (F,)' | 9.63)

The Weak Form of the BVP in the Absence of Body (External) Forces The Q we are consider-
ing is an elliptical annulus, whose boundary consists of two concentric ellipses (each allowed to be a circle
as a special case), with the major axes parallel. Let P denote the dead stress load (traction) on a portion 9€,
(= the inner ellipse) of the boundary dQg. On the rest of the boundary, we prescribe zero displacement.
The weak formulation of the boundary value problem is

Jo, ¥IF1 = {(V @ w)(F)'} }
oQy P-No
For brevity, in the rest of this section we assume P = 0. The provided FreeFem++ code, however, does not
rely on this assumption and allows for a general value and direction of P.
Given a Newton approximation u,, of the displacement field u satisfying the BVP, we seek the correction
ou,.1 to obtain a better approximation

Upil = Uy + OUpyy

by solving the weak formulation

0

Jooy KIEn + SFi1] = {(V@W)(E, +6F,)™| = [ P-No
Joy {<TF] + 5F[Fn]6Fn+1} : {(Vew)(F, + 6F,1) 7!
Jou {KIBa] + SE(F16F i1 = {(V @ w)(F,! + F,26F 1)

for all test functions w, (9.64)

Jo KIFA] = {(V @ W)}
Jo KIEa] = {(V @ w)(F,26F,.1)
Jo | FEEIOF 11|+ {(V @ w)F,")

where we have taken

+

0F 41 = V®ou,,

Note: Contrary to standard notational use, the symbol § here bears no variational context. By § we mean
simply an increment in the sense of Newton’s Method. The role of a variational virtual displacement here is
played by w.

9.13.3 An Approach to Implementation in FreeFem++

The associated file is examples++-tutorial/nl-elast-neo-Hookean. edp.
Introducing the code-like notation, where a string in <>’s is to be read as one symbol, the individual com-
ponents of the tensor

0
< Tank >:= a; [F,16F . 1 (9.65)
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will be implemented as the macros < TanK11 >, < TanK12 >,. ...
The individual components of the tensor quantities

D = F,(0Fu))" + 0F,1 (F)",

D, := F,76F,,,,
D; := (VO W)F,%6F,, 1,

and
D, := (Vew)F,!,
will be implemented as the macros
<dlAuxll >, < dl1Aux12 >, ... ,<dlAux22 >,
< d2Aux1l >, < d2Aux12 >, ... ,<d2Aux22 >
<d3Auxll >, < d3Aux12 >, ... ,<d3Aux22> |’
< d4Auxll >, < d4Aux12 >, ... ,<d4Aux22 >

respectively.
In the above notation, the tangent Kirchhoff stress term becomes

ok
6_F(F") OF,41 =uDy

while the weak BVP formulation acquires the form

0

Joo, KIEx] = Dy
fgo k[F,] : D3 for all test functions w
Jop {56 FAl6F 1| = Dy

+

(9.66)

(9.67)

(9.68)
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Chapter 10

MPI Parallel version

A first attempt of parallelization of FreeFem++ is made here with mpi. An extended interface with MPI has
been added to FreeFem++ version 3.5, (see the MPI documentation for the functionality of the language at

http://www.mpi-forum.org/docs/mpi2l-report.pdf).

10.1 MPI keywords

The following keywords and concepts are used:
mpiCom to defined a communication world
mpiGroup to defined a group of processors in the communication world

mpiRequest to defined a equest to wait for the end of the communication

10.2 MPI constants

mpisize The total number of processes,

mpirank the id-number of my current process in {0, ..., mpisize — 1},
mpiUndefined The MPI_Undefined constant,

mpiAnySource The MPI_ANY_SOURCE constant,

mpiCommWorld The MPI_COMM_WORLD constant ,

and all the keywords of MPI_Op for the reduce operator:

mpiMAX, mpiMIN, mpiSUM, mpiPROD, mpilAND, mpilOR, mpilXOR, mpiBAND, mpiBXOR.

10.3 MPI Constructor

int[int] procl=[1,2,3],proc2=[0,4];

mpiGroup grp(procs); // set MPI_Group to proc 1,2,3 in MPI_COMM_WORLD
mpiGroup grpl(comm,procl); // set MPI Group to proc 1,2,3 in comm

243
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mpiGroup grp2(grp,proc2); // set MPI_Group to grp union procl
mpiComm comm=mpiCommWorld; // set a MPI_Comm to MPI_COMM_WORLD
mpiComm ncomm(mpiCommiWorld,grp); // set the MPI_Comm form grp
// MPI_COMM_WORLD

mpiComm ncomm(comm,color,key); // MPI_Comm_split(MPI_Comm comm,
// int color, int key, MPI_Comm *ncomm)

mpiComm nicomm(processor(local_comm,local_leader),
processor (peer_comm,peer_leader),tag);
// build MPI_INTERCOMM_CREATE(local_comm, local_leader, peer_comm,

// remote_leader, tag, &nicomm)
mpiComm ncomm(intercomm,hight) ; // build using
// MPI_Intercomm_merge( intercomm, high, &ncomm)
mpiRequest rq; // defined an MPI_Request
mpiRequest[int] arq(l0); // defined an array of 10 MPI_Request
10.4 MPI functions
mpiSize(comm) ; // return the size of comm (int)
mpiRank(comm) ; // return the rank in comm (int)
processor(i) // return processor i with no Resquest in MPI_COMM_WORLD
processor (mpiAnySource) // return processor any Source
// with no Resquest in MPI_COMM_WORLD
processor (i, comm) // return processor i with no Resquest in comm
processor(comm,i) // return processor i with no Resquest in comm
processor(i,rq,comm) // return processor i with Resquest rq in comm
processor(i,rq) // return processor i with Resquest rq in
// MPI_COMM_WORLD
processorblock(i) // return processor i in MPI_COMM_WORLD
// in block mode for synchronously communication
processorblock (mpiAnySource) // return processor any source
// in MPI_COMM_WORLD in block mode for synchronously communication
processorblock(i, comm) // return processor i in in comm in block mode
mpiBarrier(comm) ; // do a MPI_Barrier on communicator comm,
mpiWait(rq); // wait on of Request,
mpiWaitAll(arq); // wait add of Request array,
mpiWtime() ; // return MPIWtime in second (real),
mpiWtick() ; // return MPIWTick in second (real),

where a processor is just a integer rank, pointer to a MPI_comm and pointer to a MPI_Request, and
processorblock with a special MPI_Request.

10.5 MPI communicator operator

int status; // to get the MPI status of send / recv
processor(1l0) << a << b; // send a,b asynchronously to the process 1,
processor(10) >> a >> b; // receive a,b synchronously from the process 10,
broadcast (processor (10, comm) ,a); // broadcast from processor

// of com to other comm processor
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status=Send( processor(10,comm) , a); // send synchronously
// to the process 10 the data a

status=Recv( processor(10,comm) , a); // receive synchronously
// from the process 10 the data a;

status=Isend( processor(10,comm) , a); // send asynchronously to
// the process 10 , the data a without request

status=Isend( processor(10,rq,comm) , a) ; // send asynchronously to to
// the process 10, the data a with request

status=Irecv( processor(10,rq) , a) ; // receive synchronously from
// the process 10, the data a;

status=Irecv( processor(10) , a) ; // Error
// Error asynchronously without request .

broadcast (processor(comm,a)); // Broadcast to all process of comm

where the data type of a can be of type of int,real, complex, int[int], double[int], complex[int],
int[int,int], double[int,int], complex[int,int], mesh, mesh3, mesh[int], mesh3[int], matrix,
matrix<complex>

processor(10,rq) << a ; // send asynchronously to the process 10
// the data a with request
processor(10,rq) >> a ; // receive asynchronously from the process 10

// the data a with request

If a,b are arrays or full matrices of int, real, or complex, we can use the following MPI functions:

mpiAlltoall(a,b[,comm]) ;
mpiAllgather(a,b[,comm]) ;
mpiGather(a,b,processor(..) ) ;
mpiScatter(a,b,processor(..)) ;
mpiReduce(a,b,processor(..),mpiMAX) ;
mpiAllReduce(a,b,comm, mpiMAX) ;
mpiReduceScatter(a,b,comm, mpiMAX) ;

See the examples++-mpi/essai. edp to test of all this functionality and Thank, to Guy-Antoine Atenekeng
Kahou, for his help to code this interface.

10.6 Schwarz example in parallel

This example is a rewritting of example schwarz-overlap in section[9.8.1]

[examples++-mpi] Hecht%lamboot
LAM 6.5.9/MPI 2 C++/ROMIO - Indiana University
[examples++-mpi] hecht% mpirun -np 2 FreeFem++-mpi schwarz-c.edp

// a new coding version c, methode de schwarz in parallele
// with 2 proc.

/) e

// F.Hecht december 2003

/) e

// to test the broadcast instruction

// and array of mesh
// add add the stop test
/) e
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if ( mpisize !'= 2 ) {
cout << " sorry number of processeur !=2
exit(1);}
verbosity=3;
real pi=4*atan(l);
int inside = 2;
int outside = 1;
border a(t=1,2){x=t;y=0;label=outside;};
border b(t=0,1){x=2;y=t;label=outside;};
border c(t=2,0){x=t ;y=1;label=outside;};
border d(t=1,0){x = 1-t; y = t;label=inside;};
border e(t=0, pi/2){ x= cos(t); y = sin(t);label=inside;};
border el(t=pi/2, 2*pi){ x= cos(t); y = sin(t);label=outside;};
int n=4;
mesh[int] Th(mpisize);
if (mpirank == 0)
Th[®] = buildmesh( a(5*n) + b(5*n) + c(10*n) + d(5*n));
else
Th[1] = buildmesh ( e(5*n) + el(25*n) );

<< endl;

broadcast (processor(0),Th[0]);
broadcast (processor(1),Th[1]);

fespace Vh(Th[mpirank],P1);
fespace Vhother(Th[1l-mpirank],P1);

Vh u=0,v;
Vhother U=0;
int i=0;

problem pb(u,v,init=i,solver=Cholesky) =
int2d(Th[mpirank]) ( dx(u)*dx(v)+dy(uw)*dy(v) )
- int2d(Th[mpirank]) ( v)
+ on(inside,u = U) + on(outside,u=U ) ;

for ( i=0 ;i< 20; i++)

{
cout << mpirank << " looP " << i << endl;
pb;
// send u to the other proc, receive in U
processor(l-mpirank) << ul]; processor(l-mpirank) >> U[];
real err0,errl;
err® = intld(Th[mpirank],inside) (square(U-u)) ;
// send err® to the other proc, receive in errl
processor(l-mpirank)<<err®; processor(l-mpirank)>>errl;
real err= sqrt(err®+errl);
cout <<" err = " << err << " err® = " << err®
<< ", errl = " << errl << endl;
if(err<le-3) break;
};

if (mpirank==0)
plot(u,U,ps="uU.eps");



10.6. SCHWARZ EXAMPLE IN PARALLEL 247

10.6.1 True parallel Schwarz example

This is a explanation of the two script examples++-mpi/MPIGMRES[2]D.edp, a Schwarz parallel with a
complexity almost independent of the number of process (with a coarse grid preconditioner).
Thank to F. Nataf.

To solve the following Poisson problem on domain Q with boundary I in L2(Q) :

—Au=f,inQ,andu=gonT,
where f and g are two given functions of L*(Q) and of H > { ),

Let introduce (71;);=1,..n, a regular partition of the unity of €2, g-e-d:

NP
meC(Q): m>0and ) m=1.

i=1

Denote Q; the sub domain which is the support of 7; function and also denote I'; the boundary of ;.
The parallel Schwarz method is Let £ = 0 the iterator and a initial guest u" respecting the boundary condition

(ie. ”|Or =g).

Vi=1.,N,: —Aul=f,inQ, andu!=u'onl;\T, u=gonl;NT (10.1)
ul*l = SV (10.2)

i=1 7%
After discretization with the Lagrange finite element method, with a compatible mesh 77; of Q;, i. e., the
exist a global mesh 77, such that 77; is include in 77,. Let us denote:
e Vj,; the finite element space corresponding to domain €Q;,

k

i

o Np; is the set of the degree of freedom o~

. N}{ " is the set of the degree of freedom of V},; on the boundary I'; of Q;,

i
° O'f(vh) is the value the degree of freedom k,
o Voui =1{vn € Vi : Yk e NI, o¥(vy) = 0},

o the conditional expression a ? b : ¢ is defined like in C of C++ language by

if a 1s true then return b
a?b:c= .
else return ¢

Remark we never use finite element space associated to the full domain Q because it to expensive.

We have to defined to operator to build the previous algorithm:
We denote uf;li the restriction of ufl on Vj;, so the discrete problem on €; of problem lb is find uf”. € Vi
such that:

Vvpi € Voi : f Vv Vil = f fonin VkEN, = ofuh) = (kel) ? gf = of(up) (10.3)
Q; Q;

where gi.‘ is the value of g associated to the degree of freedom k € N, }l;." .
In FreeFem++, it can be written has with U is the vector corresponding to uflli and the vector U1 is the vector

corresponding to uf”. is the solution of:
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real[int] Ul1(Ui.n);
real[int] b= onG .* U;
b =onG?Db : Bi;

Ul = Ai"-1%Db;

where onG[i] = (i € I'; \ I)?1 : 0, and Bi the right of side of the problem, are defined by

fespace Whi(Thi,P2); // def of the Finite element space.
varf vPb(U,V)= int3d(Thi) (grad(U)’*grad(V)) + int3d(Thi) (F*V) +on(1l,U=g) + on(10,U=G);
varf vPbon(U,V)=on(10,U=1)+on(1,U=0);

matrix Ai = vPb(Whi,Whi,solver=sparsesolver);

reall[int] onG = vPbon(0,Whi);

real[int] Bi=vPb(0,Whi);

where the freefem++ label of I" is 1 and the label of I'; \ " is 10.

To build the transfer/update part corresponding to (I0.2) equation on process i, let us call njpart the number
the neighborhood of domain of Q; (i.e: 7; is none 0 of €;), we store in an array jpart of size njpart all
this neighborhood. Let us introduce two array of matrix, Smj[j] to defined the vector to send from i to j a
neighborhood process, and the matrix rM j[ j] to after to reduce owith neighborhood j domain.

So the tranfert and update part compute v; = mu; + 2. ey, m;u; and can be write the freefem++ function
Update:

func bool Update(real[int] &ui, real[int] &vi)
{ int n= jpart.n;
for(int j=0;j<njpart;++j) Usend[j]l[]=sMj[j]l*ui;
mpiRequest[int] rq(n*2);
for (int j=0;j<n;++j) Irecv(processor(jpart[j],comm,rql[j 1), Ri[jI[1);
for (int j=0;j<n;++j) Isend(processor(jpart[j],comm,rq[j+n]), Si[jI[1);
for (int j=0;j<n*2;++j) int k= mpiWaitAny(rq);
// apply the unity local partition .
vi = Pii*ui; // set to mu;
for(int j=0;j<njpart;++j) vi += rMj[jl1*Vrecv[j1[]; // add mju;
return true; }

where the buffer are defined by:

InitU(njpart,Whij,Thij,aThij,Usend) // defined the send buffer
InitU(njpart,Whij,Thij,aThij,Vrecv) // defined the revc buffer

with the following macro definition:

macro InitU(n,Vh,Th,aTh,U) Vh[int] U(); for(int j=0;j<n;++j) {Th=aTh[j]; U[j]=0;} //

First gmres algorithm: you can easily accelerate the fixe point algorithm by using a parallel GMRES algo-
rithm after the introduction the following affine A; operator sub domain ;.

func reall[int] DJO(reall[int]& U) {
real[int] V(U.n) , b= onG .* U;
b =onG ? b : Bi ;
V = Ai"-1%Db;
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Update(V,0);
vV -= U; return V; }

Where the parallel MPIGMRES or MPICG algorithm is just a simple way to solve in parallel the following
Aix; = b;,i = 1,..,N, by just changing the dot product by reduce the local dot product of all process with
the following MPI code:

template<class R> R ReduceSuml(R s,MPI_Comm * comm)

{ R r=0;
MPI_Allreduce( &s, &r, 1 ,MPI_TYPE<R>::TYPE(Q), MPI_SUM, *comm );
return r; }

This is done in MPIGC dynamics library tool.

Second gmres algorithm: Use scharwz algorithm as a preconditioner of basic GMRES method to solving
the parallel problem.

func reall[int] DJ(real[int]& U) // the original problem
{
++kiter;
reall[int] V(U.n);
V = Ai*U;
V=onGi?®0.: V; // remove boundary term ...
return V;
}
func real[int] PDJ(real[int]& U) // the preconditioner
{
reall[int] V(U.n);
real[int] b= onG ? 0. : U;
V= Ai"-1%b;
Update(V,0);
return U;
}

Third gmres algorithm: Add a coarse solver to the previous algorithm
First build a coarse grid on processor 0, and the

matrix AC,Rci,Pci; //
if (mpiRank (comm)==0)

AC = vPbC(VhC,VhC, solver=sparsesolver); // the corase problem
Pci= interpolate(Whi,VhQ); // the projection on coarse grid.
Rci = Pci’*Pii; // the Restiction on Process i grid with the partition n;

func bool CoarseSolve(real[int]& V,real[int]& U,mpiComm& comm)
{
// solvibg the coarse probleme
real[int] Uc(Rci.n),Bc(Uc.n);
Uc= Rci*U;
mpiReduce (Uc,Bc,processor (0, comm) ,mpiSUM) ;
if (mpiRank (comm)==0)
Uc = AC"-1*Bc;
broadcast (processor (0, comm) ,Uc) ;
V = Pci*Uc;
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}

The New precondtionner

func real[int] PDIC(real[int]& U) //
{ // Precon Cl= Precon //, C2 precon Coarse
// Idea : F. Nataf.
// 0 ~ (I CIA)(I-C2A) => I ~ - C1AC2A +CIlA +C2A
// New Prec P= C1+C2 - ClAC2 = CI1(I- A C2) +C2
// ( CI(I- A C2) +C2 ) Uo
// V = - C2%Uo
// e
reall[int] V(U.n);
CoarseSolve(V,U,comm);

v=-v //  -C2*Uo
U += Ai*V; // U= (I-A C2) Uo
real[int] b= onG ? 0. : U;

U= Ai"-1%b; // (CI(I-AC2) Uo
V=0U-V; //
Update(V,0);

return U;

The code to the 4 algorithms:

real epss=le-6;
int rgmres=0;
if(gmres==1)
{
rgmres=MPIAffineGMRES(DJ0O,u[],veps=epss,nbiter=300, comm=commn,
dimKrylov=100,verbosity=ipart ? 0: 50);
real[int] b= onG .* u[];
b =onG?Db : Bi;
v[] = Ai"-1%Db;
Update(v[],ull);
}
else if(gmres==2)
rgmres= MPILinearGMRES(DJ],precon=PD],u[],Bi,veps=epss,nbiter=300, comm=comm
,dimKrylov=100,verbosity=ipart ? 0: 50);
else if(gmres==3)
rgmres= MPILinearGMRES(DJ],precon=PD]JC,u[],Bi,veps=epss,nbiter=300, comm=comm,
dimKrylov=100,verbosity=ipart ? 0: 50);

else // algo Shwarz for demo ...

for(int iter=0;iter <10; ++iter)

We have all ingredient to solve in parallel if we have et the partitions of the unity. To build this partition
we do: the initial step on process 1 tp build a coarse mesh, 7;,* of the full domain, and build the partition 7
function constant equal to i on each sub domain O;, i = 1, .., N, of the grid with the Metis graph partitioner

[?] and on each process iin 1.., N, do
1. Broadcast from process 1, the mesh 77,* (call Thii in freefem++ script), and 7 function,

2. remark that the characteristic function Iy, of domain O, is defined by (7 = i)?1 : 0,
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3. let us call H%, (resp. H%/) the L? on P, the space of the constant finite element function per element
on 73" (resp. V, the space of the affine continuous finite element per element on T1"). and build in
parallel the 7r; and Q;, such that O; c Q; where O; = supp((H%/H%)’" Ip,), and m is a the overlaps size
on the coarse mesh (generally one),

(this is done in function AddLayers(Thii,suppii[],nlayer,phii[]); We choose a function
= (H%H%)m I, so the partition of the unity is simply defined by

%
7

Np _«
Zj:lﬂj

T =

(10.4)

The set J; of neighborhood of the domain €;, and the local version on V}; can be defined the array
jpart and njpart with:

Vhi pii=n7 ; Vhil[int] pij(npij); // local partition of 1 = pii + }; pij[j]
int[int] jpart(npart); int njpart=0;
Vhi sumphi = #7 ;

for (int i:@;il<npart;++i)
if(i != ipart ) {
if(int3d(Thi) ( n;)>®) {
pijlnjpart] =7r;. ;
sumphi[] += pij[njpart][];
jpart[njpart++]=i;}}}
pii[l=pii[] ./ sumphi[];
for (int j=0;j<njpart;++j) pij[jl[] = pij[j1[] ./ sumphi[];
jpart.resize(njpart);

4. We call 7; h;'kj the sub mesh part of 77; where 7; are none zero. and tank to the function trunc to build
this array,

for(int jp=0;jp<njpart;++jp)
aThij[jp] = trunc(Thi,pij[jpl>1le-10,label=10);

5. Atthis step we have all on the coarse mesh , so we can build the fine final mesh by splitting all meshes
: Thi, Thij[j],Thij[j] with freefem++ trunc mesh function which do restriction and slipping.

6. The construction of the send/recv matrices sMj and rMj : can done with this code:

mesh3 Thij=Thi; // variable meshes
fespace Whij(Thij,Pk); // variable fespace ..
matrix Pii; Whi wpii=pii; Pii = wpii[]; // Diagonal matrix corresponding Xm;
matrix[int] sMj(njpart), rMj(njpart); // M send/rend case..

for(int jp=0;jp<njpart;++jp)
{ int j=jpart[jpl;

Thij = aThij[jpl; //  change mesh to change Whij,Whij
matrix I = interpolate(Whij,Whi); // Whij <- Whi
sMj[jpl = I*Pii; // Whi -> s Whij

rMj[jp] = interpolate(Whij,Whi,t=1); 1} //  Whij -> Whi
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To buil a not to bad application, I have add code tout change variable from parametre value with the follow-
ing code

include "getARGV.idp"
verbosity=getARGV("-vv",0);

int vdebug=getARGV("-d",1);

int ksplit=getARGV("-k",10);

int nloc = getARGV("-n",25);

string sff=getARGV("-p,","");

int gmres=getARGV("-gmres",3);

bool dplot=getARGV("-dp",®);

int nC = getARGV("-N" ,max(nloc/10,4));

And small include to make graphic in parallel of distribute solution of vector # on mesh T, with the following
interface:

include "MPIplot.idp"
func bool plotMPIall(mesh &Th,real[int] & u,string cm)
{ PLOTMPIALL (mesh,Pk, Th, u,{ cmm=cm,nbiso=20,fill=1,dim=3,value=1}); return 1;}

remark the {cmm=cm, ... =1} in the macro argument is a way to quote macro argument so the argument
is cm=cm, ... =1.
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Parallel sparse solvers

Parallel sparse solvers use several processors to solve linear systems of equation. Like sequential, parallel
linear solvers can be direct or iterative. In FreeFem++ both are available.

11.1 Using parallel sparse solvers in FreeFem++

We recall that the solver parameters are defined in the following commands: solve, problem, set (setting
parameter of a matrix) and in the construction of the matrix corresponding to a bilinear form. In these
commands, the parameter solver must be set to sparsesolver for parallel sparse solver. We have added
specify parameters to these command lines for parallel sparse solvers. These are

lparams: vector of integer parameters (1 is for the c++ type long)
e dparams: vector of real parameters

® Sparams: string parameters

datafilename: name of the file which contains solver parameters

The following four parameters are only for direct solvers and are vectors. These parameters allow the user
to preprocess the matrix (see the section on sparse direct solver above for more information).

e permr: row permutation (integer vector)
e permc: column permutation or inverse row permutation (integer vector)
e scaler: row scaling (real vector)

e scalec: column scaling (real vector)

There are two possibilities to control solver parameters. The first method defines parameters with 1params,
dparams and sparams in .edp file. The second one reads the solver parameters from a data file. The name
of this file is specified by datafilename. If 1params, dparams, sparams or datafilename is not pro-
vided by the user, the solver’s default value is used.

To use parallel solver in FreeFem++ , we need to load the dynamic library corresponding to this solver. For
example to use MUMPS solver as parallel solver in FreeFem, write in the .edp file load "MUMPS FreeFem”.
If the libraries are not loaded, the default sparse solver will be loaded (default sparse solver is UMFPACK).
The table[T1.1] gives this new value for the different libraries.

We also add functions (see Table[I1.2)) with no parameter to change the default sparse solver in the .edp file.
To use these functions, we need to load the library corresponding to the solver. An example of using different
parallel sparse solvers for the same problem is given in testdirectsolvers.edp (directory example+ + —mpi).
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default sparse solver

Libraries real complex
MUMPS _FreeFem mumps mumps
real_SuperLU_DIST FreeFem SuperLU_DIST | previous solver
complex_SuperLU_DIST FreeFem | previous solver | SuperLU_DIST
real_pastix_FreeFem pastix previous solver
complex_pastix_FreeFem previous solver pastix
hips_FreeFem hips previous solver
hypre FreeFem hypre previous solver
parms_FreeFem parms previous solver

Table 11.1: Default sparse solver for real and complex arithmetics when we load a parallel sparse

solver library

default sparse solver

function real complex
defaulttoMUMPS() mumps mumps
realdefaulttoSuperLUdist() SuperLU_DIST | previous solver
complexdefaulttoSuperLUdist() | previous solver | SuperLU_DIST
realdefaultopastix() pastix previous solver
complexdefaulttopastix() previous solver pastix
defaulttohips() hips previous solver
defaulttohypre() hypre previous solver
defaulttoparms() parms previous solver

Table 11.2: Functions that allow to change the default sparse solver for real and complex arith-
metics and the result of these functions

Example 11.1 (testdirectsolvers.edp)

load "../src/solver/MUMPS_FreeFem"

// default solver :

load "../src/solver/real_SuperLU_DIST_FreeFem"

default solver :

//

// default solver :
load "../src/solver/real_pastix_FreeFem"
//
{
matrix A =

[[ 1, 2, 2, 1, 17,

[ 2, 12, 0, 10 , 10],

[ 2, 0, 1, 0, 2],

[ 1, 10, 0, 22, 0.],

[ 1, 10, 2, 0., 22]1]1;

real[int] xx = [ 1,32,45,7,2], x(5), b(5), di(5);

b=A*xx;
cout << "b="
cout << "xx=

<< b << endl;
<< XX << endl;

real-> MUMPS, complex -> MUMPS
real-> SuperLUDIST, complex -> MUMPS

real-> pastix, complex -> MUMPS

solving with pastix
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set (A,solver=sparsesolver,datafilename="ffpastix_iparm_dparm.txt");

cout << "solving solution" << endl;

X = A"-1%Db;

cout << "b=" << b << endl;

cout << "x=" << endl; cout << X << endl;

di = xx-x;

if(mpirank==0) {

cout << "x-xx="<< endl; cout << "Linf "<< di.linfty << " L2 " << di.1l2 << endl;

}

// solving with SuperLUDIST
realdefaulttoSuperLUdist();
// default solver : real-> SuperLUDIST, complex -> MUMPS

{
matrix A =
[[ 1, 2, 2, 1, 1],
[ 2, 12, 0, 10 , 10],
[ 2, 0, 1, 0, 2],
[ 1, 10, 0, 22, 0.],
[ 1, 10, 2, 0., 22]];
reall[int] xx = [ 1,32,45,7,2], x(5), b(5), di(5);
b=A*xx;
cout << "b=" << b << endl;
cout << "xx=" << xx << endl;
set (A,solver=sparsesolver,datafilename="ffsuperlu_dist_fileparam.txt");
cout << "solving solution" << endl;
X = A"-1%b;
cout << "b=" << b << endl;
cout << "x=" << endl; cout << x << endl;
di = xx-x;
if(mpirank==0) {
cout << "x-xx="<< endl; cout << "Linf "<< di.linfty << " L2 " << di.1l2 << endl;
}
}
// solving with MUMPS
defaulttoMUMPS();
// default solver : real-> MUMPS, complex -> MUMPS
{
matrix A =
(L1, 2, 2, 1, 117,
[ 2, 12, o, 10 , 10],
[ 2, 0, 1, 0, 2],
[ 1, 10, 0, 22, 0.],
[ 1, 10, 2, 0., 22]];

real[int] xx = [ 1,32,45,7,2], x(5), b(5), di(5);
b=A*xx;

cout << "b=" << b << endl;

cout << "xx=" << XX << endl;

set (A,solver=sparsesolver,datafilename="ffmumps_£fileparam.txt");
cout << "solving solution" << endl;
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X = A"-1%b;

cout << "b=" << b << endl;

cout << "x=" << endl; cout << x << endl;

di = xx-x;

if(mpirank==0){

cout << "x-xx="<< endl; cout << "Linf "<< di.linfty << " L2 " << di.1l2 << endl;

}

11.2 Sparse direct solver

In this section, we present the sparse direct solvers interfaced with FreeFem++ .

11.2.1 MUMPS solver

MU ltifrontal Massively Parallel Solver (MUMPS) is a free library [?, ?, ?]. This package solves linear
system of the form A x = b where A is a square sparse matrix with a direct method. The square matrix
considered in MUMPS can be either unsymmetric, symmetric positive definite or general symmetric. The
method implemented in MUMPS is a direct method based on a multifrontal approach [?]. It constructs a
direct factorization A = LU, A = L' D L depending of the symmetry of the matrix A. MUMPS uses the
following libraries : BLAS[?, ?], BLACS and ScaLAPACK]?].

Remark 7 MUMPS does not solve linear system with a rectangular matrix.

Installation of MUMPS To used MUMPS in FreeFem++ , you have to install the MUMPS package
into your computer. MUMPS is written in Fortran 90. The parallel version is constructed using MPI [?] for
message passing and BLAS [?, ?], BLACS and ScaLAPACK][?]. Therefore, a fortran compiler is needed,
and MPI, BLAS, BLACS and ScaLAPACK . An installation procedure to obtain this package is given in the
file README_COMPILE in the directory src/solver of FreeFem++ .

Creating Library of MUMPS interface for FreeFem++ : The MUMPS interface for FreeFem++
is given in file MUMPS _freefem.cpp (directory src/solver/ ). This interface works with the release 3.8.3 and
3.8.4 of MUMPS. To used MUMPS in FreeFem++ , we need the library corresponding to this interface.
A description to obtain this library is given in the file README_COMPILE in the directory src/solver
of FreeFem++ . We recall here the procedure. Go to the directory src/solver in FreeFem++ package.
Edit the file makefile-sparsesolver.inc to yours system: comment Section 1, comment line corresponding to
libraries BLAS, BLACS, ScalLAPACK, Metis, scotch in Section 2 and comment in Section 3 the paragraph
corresponding to MUMPS solver. And then type make mumps in a terminal window.

Now we give a short description of MUMPS parameters before describing the method to call MUMPS in
FreeFem++ .
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MUMPS parameters: There are four input parameters in MUMPS (see [?]). Two integers SYM and
PAR, a vector of integer of size 40 INCTL and a vector of real of size 15 CNTL. The first parameter gives the
type of the matrix: 0 for unsymmetric matrix, 1 for symmetric positive matrix and 2 for general symmetric.
The second parameter defined if the host processor work during the factorization and solves steps : PAR=1
host processor working and PAR=0 host processor not working. The parameter INCTL and CNTL is the
control parameter of MUMPS. The vectors ICNTL and CNTL in MUMPS becomes with index 1 like vector
in fortran. A short description of all parameters of ICNTL and CNTL is given in ffmumps_fileparam.txt.
For more details see the users’ guide [?].

We describe now some elements of the main parameters of ICNTL for MUMPS.

Input matrix parameter The input matrix is controlled by parameters ICNTL(5) and ICNTL(18). The
matrix format (resp. matrix pattern and matrix entries) are controlled by INCTL(5) (resp. INCTL(18)). The
different values of ICNTL(5) are O for assembled format and 1 for element format. In the current release
of Freefem++, we consider that FE matrix or matrix is storage in assembled format. Therefore, INCTL(S)
is treated as O value. The main option for ICNTL(18): INCLTL(18)=0 centrally on the host processor, IC-
NTL(18)=3 distributed the input matrix pattern and the entries (recommended option for distributed matrix
by developer of MUMPS). For other values of ICNTL(18) see the user’s guide of MUMPS. These values
can be used also in Freefem++.

The default option implemented in FreeFem++ are ICNTL(5)=0 and ICNTL(18)=0.

Preprocessing parameter The preprocessed matrix A, that will be effectively factored is defined by
A,=PD,AQ;DP

where P is the permutation matrix, Q. is the column permutation, D, and D, are diagonal matrix for respec-
tively row and column scaling. The ordering strategy to obtain P is controlled by parameter ICNTL(7). The
permutation of zero free diagonal Q. is controlled by parameter ICNTL(6). The row and column scaling is
controlled by parameter ICNTL(18). These option are connected and also strongly related with ICNTL(12)
(see documentation of mumps for more details [?]). The parameters permr, scaler, and scalec in FreeFem++
allow to give permutation matrix(P), row scaling (D,) and column scaling (D.) of the user respectively.

Calling MUMPS in FreeFem++ To call MUMPS in FreeFem++ , we need to load the dynamic
library MUMPS _freefem.dylib (MacOSX), MUMPS _freefem.so (Unix) or MUMPS _freefem.dll (Windows).
This is done in typing load "MUMPS _freefem” in the .edp file. We give now the two methods to give the
option of MUMPS solver in FreeFem++ .

Solver parameters is defined in .edp file: In this method, we need to give the parameters 1params and
dparams. These parameters are defined for MUMPS by

Iparams[0] = SYM,
Iparams[1] = PAR,
Vi=1,...,40, Iparams[i+1] = ICNTL().

Vi=1,...,15, dparams[i — 1] = CNTL().
Reading solver parameters on a file: The structure of data file for MUMPS in FreeFem++ is : first

line parameter SYM and second line parameter PAR and in the following line the different value of vectors
ICNTL and CNTL. An example of this parameter file is given in ffmumpsfileparam. txt.
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-1 /* CNTL(4) :: determine the threshold for partial pivoting */
0.0 /* CNTL(5) :: fixation for null pivots */
0 /* CNTL(6) :: not used in this release of MUMPS */

/* CNTL(7) :: not used in this release of MUMPS */
/* CNTL(8) :: not used in this release of MUMPS */
/* CNTL(9) :: not used in this release of MUMPS */
/% CNTL(10) :: not used in this release of MUMPS */
/* CNTL(11) :: not used in this release of MUMPS */
/* CNTL(12) :: not used in this release of MUMPS */
/* CNTL(13) :: not used in this release of MUMPS */
/* CNTL(14) :: not used in this release of MUMPS */
/% CNTL(15) :: not used in this release of MUMPS */

@ @2

If no solver parameter is given, we used default option of MUMPS solver.

example A simple example of calling MUMPS in FreeFem++ with this two methods is given in the file
testsolver MUMPS.edp in the directory examples+-+-mpi.

11.2.2 SuperLU distributed solver

The package SuperLU_DIST [?, ?] solves linear systems using LU factorization. It is a free scientific library
under BSD license. The web site of this project is http://crd.Ibl.gov/~xiaoye/SuperL.U. This library provides
functions to handle square or rectangular matrix in real and complex arithmetics. The method implemented
in SuperLU_DIST is a supernodal method [?]. New release of this package includes a parallel symbolic
factorization [?]. This scientific library is written in C and MPI for communications.

Installation of SuperLU _DIST: To use SuperLU DIST in FreeFem++ , you have to install SuperLU_DIST
package. We need MPI and ParMetis library to do this compilation. An installation procedure to obtain this
package is given in the file README_COMPILE in the directory src/solver/ of the freefem++ package.

Creating Library of SuperLU _DIST interface for FreeFem++ : The FreeFem++ interface to
SuperLU_DIST for real (resp. complex) arithmetics is given in file

real_SuperLU_DIST _FreeFem.cpp (resp. complex_SuperLU_DIST FreeFem.cpp). These files are in the
directory src/solver/. These interfaces are compatible with the release 3.2.1 of SuperLU_DIST. To use
SuperLU_DIST in FreeFem++ , we need libraries corresponding to these interfaces. A description to obtain
these libraries is given in the file README_COMPILE in the directory src/solver of FreeFem++ . We
recall here the procedure. Go to the directory src/solver in FreeFem++ package. Edit the file makefile-
sparsesolver.inc in your system : comment Section 1, comment line corresponding to libraries BLAS, Metis,
ParMetis in Section 2 and comment in Section 3 the paragraph corresponding to SuperLU_DIST solver. And
just type make rsludist (resp. make csludist) in the terminal to obtain the dynamic library of interface for
real (resp. complex) arithmetics.

Now we give a short description of SuperLU_DIST parameters before describing the method to call Su-
perLU_DIST in FreeFem++ .

SuperLU_DIST parameters: We describe now some parameters of SuperLU_DIST. The SuperLU_DIST
library use a 2D-logical process group. This process grid is specifies by nprow (process row) and npcol

(process column) such that N, = nprow npcol where N, is the number of all process allocated for Su-
perLU_DIST.
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The input matrix parameters is controlled by “matrix= "' in sparams for internal parameter or in the third
line of parameters file. The different value are

matrix = assembled global matrix are available on all process
matrix = distributedglobal the global matrix is distributed among all the process
matrix = distributed the input matrix is distributed (not yet implemented)

The option arguments of SuperLU_DIST are described in the section Users-callable routine of [?]. The
parameter Fact and TRANS are specified in FreeFem++ interfaces to SuperLU_DIST during the different
steps. For this reason, the value given by the user for this option is not considered.

The factorization LU is calculated in SuperLU_DIST on the matrix A .

A,=P.P,D,AD,P.

where P. and P, is the row and column permutation matrix respectively, D, and D, are diagonal matrix
for respectively row and column scaling. The option argument RowPerm (resp. ColPerm) control the row
(resp. column) permutation matrix. D, and D, is controlled by the parameter DiagScale. The parameter
permr, permc, scaler, and scalec in FreeFem++ is provided to give row permutation, column permutation,
row scaling and column scaling of the user respectively. The other parameters for LU factorization are
ParSymFact and ReplaceTinyPivot. The parallel symbolic factorization works only on a power of two
processes and need the ParMetis ordering [?]. The default option argument of SuperLU_DIST are given in
the file ffsuperlu_dist_fileparam.txt.

Calling SuperLU_DIST in FreeFem++ To call SuperLU_DIST in FreeFem++ , we need to load the
library dynamic correspond to interface. This done by the following line load ’real_superlu DIST FreeFem”
(resp. load ”complex_superlu_DIST FreeFem”) for real (resp. complex) arithmetics in the file .edp.

Solver parameters is defined in .edp file: To call SuperLU_DIST with internal parameter, we used
the parameters sparams. The value of parameters of SuperLU_DIST in sparams is defined by
sparams ="nprow=1, npcol=1, matrix= distributedgloba, Fact= DOFACT, Equil=NO,
ParSymbFact=NO, ColPerm= MMD_AT_PLUS_A, RowPerm= LargeDiag,
DiagPivotThresh=1.0, IterRefine=DOUBLE, Trans=NOTRANS,
ReplaceTinyPivot=NO, Solvelnitialized=NO, PrintStat=NO, DiagScale=NOEQUIL
correspond to the parameter in the file ffsuperlu_dist_fileparam.txt. If one parameter is not specify by the
user, we take the default value of SuperLU_DIST.

This value

Reading solver parameters on a file: The structure of data file for SuperLU_DIST in FreeFem++ is
given in the file ffsuperlu_dist_fileparam.txt (default value of the FreeFem++ interface).

1 /* nprow : integer value */

1 /* npcol : integer value */

distributedglobal /* matrix input : assembled, distributedglobal, distributed */
DOFACT /* Fact : DOFACT, SamePattern, SamePattern_SameRowPerm, FACTORED */
NO /% Equil : NO, YES */

NO /% ParSymbFact : NO, YES */

MMD_AT_PLUS_A /* ColPerm : NATURAL, MMD_AT_PLUS_A, MMD_ATA, METIS_AT_PLUS_A, PARMETIS, MY_PERMC
:':/

LargeDiag /* RowPerm : NOROWPERM, LargeDiag, MY_PERMR */
1.0 /* DiagPivotThresh : real value */
DOUBLE /* IterRefine : NOREFINE, SINGLE, DOUBLE, EXTRA */

NOTRANS /* Trans : NOTRANS, TRANS, CONJ*/
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NO /* ReplaceTinyPivot : NO, YES*/
NO /* SolveInitialized : NO, YES*/
NO /* RefineInitialized : NO, YES*/
NO /* PrintStat : NO, YES*/

NOEQUIL /* DiagScale : NOEQUIL, ROW, COL, BOTH*/

If no solver parameter is given, we used default option of SuperLU_DIST solver.

Example 11.2 A simple example of calling SuperLU_DIST in FreeFem++ with this two methods is given
in the file testsolver_superLU_DIST.edp in the directory examples++-mpi.

11.2.3 Pastix solver

Pastix (Parallel Sparse matrix package) is a free scientific library under CECILL-C license. This package
solves sparse linear system with a direct and block ILU(Kk) iterative methods. This solver can be applied to
a real or complex matrix with a symmetric pattern [?].

Installation of Pastix: To used Pastix in FreeFem++ , you have to install pastix package in first. To
compile this package, we need a fortran 90 compiler, scotch [?] or Metis [?] ordering library and MPI. An
installation procedure to obtain this package is given in the file .src/solver/ README_COMPILE in the
section pastix of the FreeFem++ package.

Creating Library of pastix interface for FreeFem++ : The FreeFem++ interface to pastix is given
in file real_pastix_FreeFem.cpp (resp. complex_pastix_FreeFem.cpp) for real (resp.complex) arithmetics.
This interface is compatible with the release 2200 of pastix and is designed for a global matrix. We have
also implemented interface for distributed matrices. To use pastix in FreeFem++ , we need the library
corresponding to this interface. A description to obtain this library is given in the file README_COMPILE
in the directory src/solver of FreeFem++ . We recall here the procedure. Go to the directory src/solver in
FreeFem++ package. Edit the file makefile-sparsesolver.inc to yours system : comment Section 1, comment
line corresponding to libraries BLAS, METIS and SCOTCH in Section 2 and comment in Section 3 the
paragraph corresponding to pastix solver. And just type make rpastix (resp. make cpastix) in the terminal
to obtain the dynamic library of interface for real (resp. complex) arithmetics.

Now we give a short description of pastix parameters before describing the method to call pastix in FreeFem++

Pastix parameters: The input matrix parameter of FreeFem++ depend on pastix interface. matrix=assembled
for non distributed matrix. It is the same parameter for SuperLU_DIST. There are four parameters in Pastix

: iparm, dparm, perm and invp. These parameters are respectively the integer parameters (vector of size 64),

real parameters (vector of size 64), permutation matrix and inverse permutation matrix respectively. iparm

and dparm vectors are described in [?]. The parameters permr and permc in FreeFem++ are provided to

give permutation matrix and inverse permutation matrix of the user respectively.

Solver parameters defined in .edp file: To call Pastix in FreeFem++ in this case, we need to specify
the parameters Iparams and dparams. These parameters are defined by

Vi=0,...,63, lparams[i] = iparm[i].

Vi=0,...,63, dparams|i] = dparm[i].
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square matrix rectangular matrix
direct solver Sym sym pattern unsym | Ssym Sym pattern unsym
SuperLU_DIST | yes yes yes yes yes yes
MUMPS yes yes yes no no no
pastix yes yes no no no no

Table 11.3: Type of matrix used by the different direct sparse solver

Reading solver parameters on a file: The structure of data file for pastix parameters in FreeFem++
is : first line structure parameters of the matrix and in the following line the value of vectors iparm and
dparm in this order.

assembled /* matrix input ::
iparm[0]
iparm[1]

assembled, distributed global and distributed */

iparm[63]
dparm[0]
dparm[1]

dparm[63]
An example of this file parameter is given in ffpastix_iparm_dparm.txt with a description of these parame-
ters. This file is obtained with the example file iparm.txt and dparm.txt including in the pastix package.

If no solver parameter is given, we use the default option of pastix solver.

Example: A simple example of calling pastix in FreeFem++ with this two methods is given in the file
testsolver_pastix.edp in the directory examples++-mpi.

In Table[I1.3] we recall the different matrix considering in the different direct solvers.

11.3 Parallel sparse iterative solver

Concerning iterative solvers, we have chosen pARMS [?] , HIPS [?] and Hypre [?]. Each software im-
plements a different type of parallel preconditioner. So, pARMS implements algebraic domain decom-
position preconditioner type such as additive Schwartz [?] and interface method [?]; while HIPS imple-
ment hierarchical incomplete factorization [?] and finally HYPRE implements multilevel preconditioner are
AMG(Algebraic MultiGrid) [?] and parallel approximated inverse [?].

To use one of these programs in FreeFem++, you have to install it independently of FreeFem++. It is
also necessary to install the MPI communication library which is essential for communication between the
processors and, in some cases, software partitioning graphs like METIS [?] or Scotch [?].

All this preconditioners are used with Krylov subspace methods accelerators. Krylov subspace methods
are iterative methods which consist in finding a solution x of linear system Ax = b inside the affine space
xo + K, by imposing that b — Ax1L,, where K,, is Krylov subspace of dimension m defined by K,,, =
{ro, Arg, A%rg, ..., A" 'ry} and £, is another subspace of dimension m which depends on type of Krylov
subspace. For example in GMRES, £,, = AK,,,.
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We realized an interface which is easy to use, so that the call of these different softwares in FreeFem++
is done in the same way. You just have to load the solver and then specify the parameters to apply to the
specific solvers. In the rest of this chapter, when we talk about Krylov subspace methods we mean one
among GMRES, CG and BICGSTAB.

11.3.1 pARMS solver

PARMS ( parallel Algebraic Multilevel Solver) is a software developed by Youssef Saad and al at Univer-
sity of Minnesota [?]. This software is specialized in the resolution of large sparse non symmetric linear
systems of equation. Solvers developed in pARMS is the Krylov subspace type. It consists of variants
of GMRES like FGMRES (Flexible GMRES) , DGMRES(Deflated GMRES) [?] and BICGSTAB. pARMS
also implements parallel preconditioner like RAS (Restricted Additive Schwarz)[?] and Schur Complement
type preconditioner [?].

All these parallel preconditioners are based on the principle of domain decomposition. Thus, the matrix A
is partitioned into sub matrices A;(i = 1, ..., p) where p represents the number of partitions one needs. The
union of A; forms the original matrix. The solution of the overall system is obtained by solving the local
systems on A; (see [?]). Therefore, a distinction is made between iterations on A and the local iterations on
A;. To solve the local problem on A; there are several preconditioners as ilut (Incomplete LU with threshold),
iluk(Incomplete LU with level of fill in) and ARMS( Algebraic Recursive Multilevel Solver). But to use
pAMRS in FreeFem++ you have first to install pAMRS.

Installation of pARMS To install pARMS, you must first download the pARMS package at [?]. Once
the download is complete, you must unpack package pARMS and follow the installation procedure described
in file README to create the library libparms.a.

Using pARMS as interface to FreeFem++ Before calling pARMS solver inside FreeFem++, you
must compile file parms_FreeFem.cpp to create a dynamic library parms_FreeFem.so. To do this, move to
the directory src/solver of FreeFem++, edit the file make fileparms.inc to specify the following variables:

PARMS _DIR : Directory of pARMS

PARMS INCLUDE : Directory for header of pARMS

METIS METIS directory

METIS _LIB: METIS librairy

MPI : MPI directory

MPI_INCLUDE : MPI headers

FREEFEM : FreeFem++ directory
FREEFEM_INCLUDE : FreeFem++ header for sparse linear solver
LIBBLAS Blas library

After that, in the command line type make parms to create parms_FreeFem.so.
As usual in FreeFem++, we will show by examples how to call pARMS in FreeFem++. There are three
ways of doing this:

Example 1: Default parameters This example comes from user guide of FreeFem++ [?] at page 12.

Example 11.3

1: load parms_freefem // Tell FreeFem that you will use pARMS
2: border C(t=0,2*pi){x=cos(t); y=sin(t);label=1;}
3: mesh Th = buildmesh (C(50));
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4: fespace Vh(Th,P2);

5: Vh u,v;

6: func f= x*y;

7: problem Poisson(u,v,solver=sparsesolver) = // bilinear part will use
8: int2d(Th) (dx(w) *dx(v) + dy(u)*dy(v)) // a sparse solver, in this case pARMS
9: - int2d(Th) ( f*v) // right hand side
10: + on(1l,u=0) ; // Dirichlet boundary condition
11:

12: real cpu=clock();

13: Poisson; // SOLVE THE PDE
14: plot(w);

15: cout << " CPU time = " << clock()-cpu << endl;

In line 1 of example(11.3|we load in memory the pARMS dynamic library with interface FreeFem++. After
this, in line 7 we specify that the bilinear form will be solved by the last sparse linear solver load in memory
which, in this case, is pARMS.

The parameter used in pARMS in this case is the default one since the user does not have to provide any
parameter.

Here are some default parameters:

solver=FGMRES, Krylov dimension=30, Maximum of Krylov=1000, Tolerance for convergence=1¢ —
08.(see book of Saad [?] to understand all this parameters.)

preconditionner=Restricted Additif Schwarz [?], Inner Krylov dimension=5, Maximum of inner Krylov
dimension=5, Inner preconditionner=ILUK.

To specify the parameters to apply to the solver, the user can either give an integer vector for integer pa-
rameters and real vectors for real parameters or provide a file which contains those parameters.

Example 2: User specifies parameters inside two vectors Lets us consider Navier Stokes example
[IT.4]. In this example we solve linear systems coming from discretization of Navier Stokes equation with
PARMS. Parameters of solver is specified by user.

Example 11.4 (Stokes.edp) include "manual.edp"
include "includes.edp";

include "mesh_with_cylinder.edp";

include "bc_poiseuille_in_square.edp";
include "fe_functions.edp";

0: load parms_FreeFem

1: int[int] iparm(16); real[int] dparm(6);

2: int ,ii;

3: for(ii=0;ii<16;ii++){iparm[ii]=-1;} for(ii=0;ii<6;ii++) dparm[ii]=-1.0;

4: fespace Vh(Th,[P2,P2,P1]);

5: iparm[0]=0;

6: varf Stokes ([u,v,p],[ush,vsh,psh],{solver=sparsesolver}) =

int2d(Th) ( nu*( dx(u)*dx(ush) + dy(u)*dy(ush) + dx(v)*dx(vsh) + dy(v)*dy(vsh) )
- p*psh*(1l.e-6) // p epsilon
- p*(dx(ush)+dy(vsh)) //  + dx(p)*ush + dy(p)*vsh
- (dx(W)+dy(v))*psh // psh div(u)

)

+ on(cylinder,infwall,supwall,u=0.,v=0.)+on(inlet,u=uc,v=0); // Bdy conditions

7: matrix AA=Stokes(VVh,VVh);

8: set (AA,solver=sparsesolver,lparams=iparm,dparams=dparm) ; //  Set pARMS as linear

solver
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9: real[int] bb= Stokes(®,VVh); real[int] sol(AA.n);
10: sol= AA"-1 * bb;

We need two vectors to specify the parameters of the linear solver. In line 1 of example [11.4] we have
declared these vectors(int[int] iparm(16); real[int] dparm(6);) . In line 3 we have initialized these vectors
by negative values. We do this because all parameters values in pARMS are positive and if you do not
change the negative values of one entry of this vector, the default value will be set. In tables (table and
, we have the meaning of differents entries of these vectors.

Entries of iparm | Significations of each entries
Krylov subspace methods.

iparm{0] Differents values for this parameters are specify on table ’m‘
iparm([1] Preconditionner.

Differents preconditionners for this parameters are specify on table m
iparm[2 Krylov subspace dimension in outer iteration: default value 30

[2]

[3] Maximum of iterations in outer iteration: default value 1000
iparm[4] Number of level in arms when used.
i [5]

[6]

Krylov subspace dimension in inner iteration: default value 3

iparm[6 Maximum of iterations in inner iteration: default value 3
Symmetric(=1 for symmetric) or unsymmetric matrix:
iparm[7] . .
default value O(unsymmetric matrix)
iparm[8§] Overlap size between different subdomain: default value O(no overlap)
iparm[9] Scale the input matrix or not: Default value 1 (Matrix should be scale)
iparm[10] Block size in arms when used: default value 20
iparm[11] 1fil0 (ilut, iluk, and arms) : default value 20
iparm[12] Ifil for Schur complement const : default value 20
iparm[13] Ifil for Schur complement const : default value 20
iparm[14] Multicoloring or not in ILU when used : default value 1
iparm[15] Inner iteration : default value O

Print message when solving:default O(no message print).

iparm[16] 0: no message 1s print,

1: Convergence informations like number of iteration and residual ,
2: Timing for a different step like preconditioner

3 : Print all informations.

Table 11.4: Meaning of Iparams corresponding variables for example

We run example [I1.4]on cluster paradent of Grid5000 and report results in table[T1.8]

In this example, we fix the matrix size (in term of finite element, we fix the mesh) and increase the number of
processors used to solve the linear system. We saw that, when the number of processors increases, the time
for solving the linear equation decreases, even if the number of iteration increases. This proves that, using
PARMS as solver of linear systems coming from discretization of partial differential equation in FreeFem++
can decrease drastically the total time of simulation.

11.3.2 Interfacing with HIPS

HIPS ( Hierarchical Iterative Parallel Solver) is a scientific library that provides an efficient parallel iterative
solver for very large sparse linear systems. HIPS is available as free software under the CeCILL-C licence.
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Entries of dparm | Significations of each entries

dparm[0] precision for outer iteration : default value 1e-08

dparm[1] precision for inner iteration: default value le-2

dparm|[2] tolerance used for diagonal domain: : default value 0.1

dparm|[3] drop tolerance droptolO (ilut, iluk, and arms) : default value le-2
dparm[4] droptol for Schur complement const: default value le-2
dparm(5] droptol for Schur complement const: default value le-2

Table 11.5: Significations of dparams corresponding variables for example [I1.4]

Values of iparm[0] | Krylov subspace methods

0 FGMRES (Flexible GMRES)
1 DGMRES (Deflated GMRES)
2 BICGSTAB

Table 11.6: Krylov Solvers in pARMS

The interface that we realized is compatible with release 1.2 beta.rc4 of HIPS.

HIPS implements two solver classes which are the iteratives class ( GMRES, PCG) and the Direct class.
Concerning preconditionners, HIPS implements a type of multilevel ILU. For further informations on those
preconditionners see [?, ?].

Installation of HIPS To install HIPS, first download the HIPS package at [?], unpack it and go to the
HIPS source directory. The installation of HIPS is machine dependence. For example, to install HIPS on
a linux cluster copy the file Make file_Inc_Examples/make file.inc.gnu on the root directory of HIPS with
the name makefile.inc. After this, edit makefile.inc to set values of different variables and type make all.

Using HIPS as the interface to FreeFem++ Before calling the HIPS solver inside FreeFem++, you
must compile file hips_FreeFem.cpp to create dynamic library hips_FreeFem.so. To do this, move to the
directory src/solver of FreeFem++ and edit the file make file.inc to specify the following variables:

HIPS DIR: Directory of HIPS

HIPS INCLUDE: -I$(HIPS _DIR)/SRC/INCLUDE : Directory for HIPS headers
LIB_DIR : -L$(HIPS _DIR)/LIB : Librairies directory
LIBHIPSSEQUENTIAL : $(HIPS _DIR)/LIB/libhipssequential.a: HIPS utilities library
LIBHIPS $(HIPS _DIR)/LIB/libhips.a: HIPS library

FREEFEM : FreeFem++ directory

FREEFEM_INCLUDE : FreeFem headers for sparse linear solver

METIS : METIS directory

METIS _LIB: METIS library

MPI : MPI directory

MPI_INCLUDE : MPI headers

After specifies all the variables, in the command line in the directory src/solver type make hips to create
hips_FreeFem.so.

Like with pARMS, the calling of HIPS in FreeFem++ can be done in three different manners. We will
present only one example where the user specifies the parameters through keywords 1params and dparams.
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Values of iparm[1]

Preconditionners

0

Preconditioners type is
additive Schwartz preconditioner with ilu0 as local preconditioner,

preconditioner type is

! additive Schwartz preconditioner with iluk as local preconditioner,
5 preconditioner type is

additive Schwartz preconditioner with ilut as local preconditioner,
3 preconditioner type is

additive Schwartz preconditioner with arms as local preconditioner,
4 preconditioner type is

Left Schur complement preconditioner with ilu0 as local preconditioner,
5 preconditioner type is

Left Schur complement preconditioner with ilut as local preconditioner,
6 preconditioner type is

Left Schur complement preconditioner with iluk as local preconditioner,
7 preconditioner type is

Left Schur complement preconditioner with arms as local preconditioner,
2 preconditioner type is

Right Schur complement preconditioner with ilu0 as local preconditioner,
9 preconditioner type is

Right Schur complement preconditioner with ilut as local preconditioner,
10 preconditioner type is

Right Schur complement preconditioner with iluk as local preconditioner,
1 preconditioner type is

Right Schur complement preconditioner with arms as local preconditioner,
12 preconditioner type is

sch_gilu0 , Schur complement preconditioner with global ilu0
13 preconditioner type is

SchurSymmetric GS preconditioner

Table 11.7: Preconditionners in pARMS

n= 471281 || nnz=13 x 10° || Te=571,29
np add(iluk) schur(iluk)

nit time nit time
4 230 | 637.57 | 21 557.8
8 240 | 364.12 | 22 302.25
16 | 247 | 21207 | 24 167.5
32| 261 111.16 | 25 81.5

Table 11.8: Convergence and time for solving linear system from example
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n matrix size

nnz | number of non null entries inside matrix
nit | number of iteration for convergence

time | Time for convergence

Te Time for constructing finite element matrix
np | number of processor

Table 11.9: Legend of table[T1.§|

Laplacian 3D solve with HIPS Let us consider the 3D Laplacian example inside FreeFem++ package
where after discretization we want to solve the linear equation with Hips. Example [I1.5]is Laplacian3D
using Hips as linear solver. We first load Hips solver at line 2. From line 4 to 15 we specify the parameters
for the Hips solver and in line 46 of example[TT.5| we set these parameters in the linear solver.

In Table [I1.10|results of running example [IT.5]on Cluster Paradent of Grid5000 are reported. We can see in
this running example the efficiency of parallelism.

Example 11.5 (Laplacian3D.edp) 1: load "msh3"

2: load "hips_FreeFem" // load library
3: int nn=10,iii;

4: int[int] iparm(14);

5: real[int] dparm(6);

6: for(iii=0;iii<14;iii++)iparm[iii]=-1;

7: for(iii=0;iii<6;iii++) dparm[iii]=-1;

8: iparm[0]=0; // use iterative solver
9: iparm[1]=1; //  PCG as Krylov method
10:iparm[4]=0; // Matrix are symmetric
11:iparm[5]=1; // Pattern are also symmetric
12: iparm[9]=1; //  Scale matrix
13:dparm[0]=1e-13; // Tolerance to convergence
14: dparm[1]=5e-4; // Threshold in ILUT
15: dparm[2]=5e-4; // Threshold for Schur preconditionner
16: mesh Th2=square(nn,nn);

17: fespace Vh2(Th2,P2);

18: Vh2 ux,uz,p2;

19: int[int] rup=[0,2], rdown=[0,1], rmid=[1,1,2,1,3,1,4,1];

20:real zmin=0,zmax=1;

21: mesh3 Th=buildlayers(Th2,nn,
zbound=[zmin, zmax],
reffacemid=rmid,
reffaceup = rup,
reffacelow = rdown);

22: savemesh(Th, "copie.mesh");

23: mesh3 Th3("copie.mesh");

24: fespace Vh(Th,P2);

25: func ue =  2¥%x*x + 3*y*y + 4%z%z + 5*x*y+6%x*z+1;

26: func uex= 4*%x+ 5*y+6%z;

27: func uey= 6*y + 5%Xx;

28: func uez= 8%z +6%Xx;

29: func f= -18.

30: Vh uhe = ue; //

n n n n

31: cout << uhe min: << uhe[].min << max:" << uhe[].max << endl;

32: Vh u,v;
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n=4x10°| nnz =118 x 10° | Te=221.34
np nit time
8 190 120.34
16 189 61.08
32 186 31.70
64 183 23.44

Table 11.10: Iterations and Timing of solving linear system from example [I1.5]

33: macro Grad3(u) [dx(u),dy(uw),dz(u)] // EOM
34: varf va(u,v)= int3d(Th) (Grad3(v)’ *Grad3(u)) // ’) for emacs
+ int2d(Th,2) (u*v)
- int3d(Th) (f*v)
- int2d(Th,2) ( ue*v + (uex*N.x +uey*N.y +uez*N.z)*v )
+ on(1l,u=ue);
35: real cpu=clock();
36: matrix Aa;
37: Aa=va(Vh,Vh);
38: varf 1(unused,v)=int3d(Th) (f*v);
39: Vh F; F[]=va(0,Vh);
40: if(mpirank==0){
cout << "Taille
cout << "Non zeros

<< Aa.n << endl;
" << Aa.nbcoef << endl;

}

41: if (mpirank==0)

42: cout << "CPU TIME FOR FORMING MATRIX = " << clock()-cpu << endl;

43: set (Aa,solver=sparsesolver,dparams=dparm, lparams=iparm); // Set hips as linear
solver

44: ull=Aa"-1*F[];

Legend of table are give in table

11.3.3 Interfacing with HYPRE

HYPRE ( High Level Preconditioner) is a suite of parallel preconditioner developed at Lawrence Livermore
National Lab [?] .

There are two main classes of preconditioners developed in HYPRE: AMG (Algebraic MultiGrid) and
Parasails (Parallel Sparse Approximate Inverse).

Now, suppose we want to solve Ax = b. At the heart of AMG there is a series of progressively coarser(smaller)
representations of the matrix A. Given an approximation X to the solution x, consider solving the residual
equation Ae = r to find the error e, where r = b — AX. A fundamental principle of AMG is that it is an
algebraically smooth error. To reduce the algebraically smooth errors further, they need to be represented by
a smaller defect equation (coarse grid residual equation) A.e. = r., which is cheaper to solve. After solving
this coarse equation, the solution is then interpolated in fine grid represented here by matrix A. The quality
of AMG depends on the choice of coarsening and interpolating operators.

The sparse approximate inverse approximates the inverse of a matrix A by a sparse matrix M. A technical
idea to construct matrix M is to minimize the Frobenuis norm of the residual matrix / — MA. For more
details on this preconditioner technics see [?].

HYPRE implement three Krylov subspace solvers: GMRES, PCG and BiCGStab.
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Entries of iparm | Significations of each entries
Strategy use for solving

iparm{0] ( Iterative=0 or Hybrid=1 or Direct=2 ). Defaults values are : Iterative
iparm[1] Krylov methods..
If iparm[0]=0, give type of Krylov methods: 0 for GMRES, 1 for PCG
iparm[2] Maximum of iterations in outer iteration: default value 1000
iparm[3] Krylov subspace dimension in outer iteration: default value 40
iparm[4] Symmetric(=0 for symmetric) and 1 for unsymmetric matrix:
default value 1(unsymmetric matrix)
iparm[5] Pattern of matrix are symmetric or not: default value 0
iparm([6] Partition type of input matrix: dafault value O
iparm(7] Number of level that use the HIPS locally consistent fill-in:
Default value 2
. Numbering in indices array will start at O or 1:
iparm(8]

Default value 0
iparm[9] Scale matrix. Default value 1
Reordering use inside subdomains for reducing fill-in:

iparm[ 10} Only use for iterative. Default value 1

iparm(11] Number of unknowns per node in the matrix non-zero pattern graph:
Default value 1

iparm[12] This value is used to set the number of time the
normalization is applied to the matrix: Default 2.

iparm[13] Level of informations printed during solving: Default 5.

iparm[14] HIPS _DOMSIZE Subdomain size

Table 11.11: Significations of lparams corresponding to HIPS interface

dparm[0] | HIPS _PREC: Relative residual norm: Default=1e-9

dparm[1] | HIPS _DROPT OLO: Numerical threshold in ILUT for interior domain
(important : set 0.0 in HYBRID: Default=0.005)

HIPS _DROPTOL1 : Numerical threshold in ILUT for

Schur preconditioner: Default=0.005

dparm[3] | HIPS _DROPT OLE : Numerical threshold for coupling between the
interior level and Schur: Default 0.005

dparm[4] | HIPS _AMALG : Numerical threshold for coupling between the
interior level and Schur: Default=0.005

dparm[5] | HIPS _DROPS CHUR : Numerical threshold for coupling between the
interior level and Schur: Default=0.005

dparm(2]

Table 11.12: Significations of dparams corresponding to HIPS interface
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Installation of HYPRE To install HYPRE, first download the HYPRE package at [?], unpack it and go
to the HYPRE/src source directory and do ./configure to configure Hypre. After this just type make all to
create libHYPRE.a.

Using HYPRE as interface to FreeFem++ Before calling HYPRE solver inside FreeFem++ , you
must compile the file hypre_FreeFem.cpp to create dynamic library hypre_FreeFem.so. To do this, move

to the directory src/solver of FreeFem++ , edit the file make file.inc to specify the following variables:
HYPRE DIR : Directory of HYPRE

HYPRE_INCLUDE = -I$(HY PRE _DIR)src/hypre/include/ :
Directory for header of HYPRE
HYPRE_LIB = -LS(HIPS _DIR)/src/lib/ -IHYPRE : Hypre Library
FREEFEM : FreeFem++ directory
FREEFEM_INCLUDE : FreeFem header for sparse linear solver
METIS : METIS directory
METIS _LIB: METIS library
MPI : MPI directory
MPI_INCLUDE MPI headers

Like with pARMS, the calling of HIPS in FreeFem++ can be done in three manners. We will present only
one example where the user specifies its parameters through keywords 1params and dparams.

Laplacian 3D solve with HYPRE Let us consider again the 3D Laplacian example inside FreeFem++
package where after discretization we want to solve the linear equation with Hypre. Example [I1.6]is the
Laplacian3D using Hypre as linear solver. Example is the same as|11.5] so we just show here the lines
where we set some Hypre parameters.

We first load the Hypre solver at line 2. From line 4 to 15 we specifies the parameters to set to Hypre solver
and in line 43 we set parameters to Hypre solver.

It should be noted that the meaning of the entries of these vectors is different from those of Hips . In the case
of HYPRE, the meaning of differents entries of vectors iparm and dparm are given in tables to

In Table ?? the results of running example on Cluster Paradent of Grid5000 are reported. We can see
in this running example the efficiency of parallelism, in particular when AMG are use as preconditioner.

Example 11.6 (Laplacian3D.edp) 1: load "msh3"

2: load "hipre_FreeFem" // load librairie
3: int nn=10,iii;

4: int[int] iparm(20);

5: real[int] dparm(6);

6: for(iii=0;iii<20;iii++)iparm[iii]=-1;

7: for(iii=0;iii<6;iii++) dparm[iii]=-1;

8: iparm[0]=2; //  PCG as krylov method
9: iparm[1]=0; //  AMG as preconditionner 2: 1if ParaSails
10:iparm[7]=7; //  Interpolation
11:iparm[9]=6; //  AMG Coarsen type
12: iparm[10]=1; //  Measure type
13: iparm[16]=2; // Additive schwarz as smoother
13:dparm[0]=1e-13; //  Tolerance to convergence
14: dparm[1]=5e-4; // Threshold

15: dparm[2]=5e-4; // truncation factor
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43: set (Aa, solver=sparsesolver,dparams=dparm, lparams=iparm);

iparms[0] SOlV.eI' identification:

0: BiCGStab, 1: GMRES, 2: PCG. By default=1
iparms[1] Preconditioner identification: .

0: BOOMER AMG, 1: PILUT, 2: Parasails, 3: Schwartz Default=0
iparms[2] | Maximum of iteration: Default=1000
iparms[3] | Krylov subspace dim: Default= 40
iparms[4] | Solver print info level: Default=2
iparms[5] | Solver log : Default=1
iparms[6] | Solver stopping criteria only for BICGStab : Default=1
dparms[0] | Tolerance for convergence : Default = 1.0e — 11

Table 11.13: Definitions of common entries of iparms and dparms vectors for every precondi-
tioner in HYPRE

11.3.4 Conclusion

With the different runs presented here, we wanted to illustrate the gain in time when we increase the number
of processors used for the simulations. We saw that in every case the time for the construction of the finite
element matrix is constant. This is normal because until now this phase is sequential in FreeFem++ . In
contrast, phases for solving the linear system are parallel. We saw on several examples presented here that
when we increase the number of processors, in general we decrease the time used for solving the linear
systems. But this not true in every case. In several case, when we increase the number of processors the
time to convergence also increases. There are two main reasons for this. First, the increase of processors
can lead to the increase of volume of exchanged data across processors consequently increasing the time for
solving the linear systems.

Furthermore, in decomposition domain type preconditioners, the number of processors generally corre-
sponds to the number of sub domains. In subdomain methods, generally when we increase the number of
subdomains we decrease convergence quality of the preconditioner. This can increase the time used for
solving linear equations.

To end this, we should note that good use of the preconditioners interfaced in FreeFem++ is empiric, be-
cause it is difficult to know what is a good preconditioner for some type of problems. Although, the effi-
ciency of preconditioners sometimes depends on how its parameters are set. For this reason we advise the
user to pay attention to the meaning of the parameters in the user guide of the iterative solvers interfaced in
FreeFem++ .

11.4 Domain decomposition

In the previous section, we saw that the phases to construct a matrix are sequential. One strategy to con-
struct the matrix in parallel is to divide geometrically the domain into subdomains. In every subdomain we
construct a local submatrix and after that we assemble every submatrix to form the global matrix.

We can use this technique to solve pde directly in domain €. In this case, in every subdomains you have to
define artificial boundary conditions to form consistent equations in every subdomains. After this, you solve
equation in every subdomains and define a strategy to obtain the global solution.

In terms of parallel programming for FreeFem++ , with MPI, this means that the user must be able to divide
processors avaible for computation into subgroups of processors and also must be able to realize different
type of communications in FreeFem++ script. Here is a wrapper of some MPI functions.
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iparms[7] | AMG interpolation type: Default=6
. Specifies the use of GSMG - geometrically
iparms[8] . . .
smooth coarsening and interpolation: Default=1
iparms[9] | AMG coarsen type: Default=6
iparms[10] Defines whether local or global measures
are used: Default=1
iparms[11] | AMG cycle type: Default=1
iparms[12] | AMG Smoother type: Default=1
iparms[13] | AMG number of levels for smoothers: Default=3
iparms[14] | AMG number of sweeps for smoothers: Default=2
iparms[15] | Maximum number of multigrid levels: Default=25
Defines which variant of the Schwartz method is used:
0: hybrid multiplicative Schwartz method (no overlap across processor boundaries)
iparms[16] 1: hybrid additive Schwartz method (no overlap across processor boundaries)
2: additive Schwartz method
3: hybrid multiplicative Schwartz method (with overlap across processor boundaries)
Default=1
iparms[17] | Size of the system of PDEs: Default=1
iparms[18] | Overlap for the Schwarz method: Default=1
Type of domain used for the Schwarz method
iparms[19] 0: each point is a domain
1: each node is a domain (only of interest in “systems” AMG)
2: each domain is generated by agglomeration (default)
dparms[1] | AMG strength threshold: Default=0.25
dparms[2] | Truncation factor for the interpolation: Default=1e-2
dparms[3] Sets a parameter to modify the definition
of strength for diagonal dominant portions of the matrix: Default=0.9
Defines a smoothing parameter for the additive Schwartz method
dparms[3]

Default=1.

Table 11.14: Definitions of other entries of iparms and dparms if preconditioner is BOOMER

AMG

iparms[7] | Row size in Parallel ILUT: Default=1000
iparms[8] | Set maximum number of iterations: Default=30
dparms[1] | Drop tolerance in Parallel ILUT: Default=1e-5

Table 11.15: Definitions of other entries of iparms and dparms if preconditioner is PILUT
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iparms[7]

Number of levels in Parallel Sparse Approximate inverse: Default=1

iparms[8]

Symmetric parameter for the ParaSails preconditioner:

0: nonsymmetric and/or indefinite problem, and nonsymmetric preconditioner
1: SPD problem, and SPD (factored) preconditioner

2: nonsymmetric, definite problem, and SPD (factored) preconditioner
Default=0

dparms[1]

Filters parameters:The filter parameter is used to
drop small nonzeros in the preconditioner, to reduce
the cost of applying the preconditioner: Default=0.1

dparms|[2]

Threshold parameter: Default=0.1

Table 11.16: Definitions of other entries of iparms and dparms if preconditioner is ParaSails

Defines which variant of the Schwartz method is used:
0: hybrid multiplicative Schwartz method (no overlap across processor boundaries)
1: hybrid additive Schwartz method (no overlap across processor boundaries)

tparms[7] 2: additive Schwartz method
3: hybrid multiplicative Schwartz method (with overlap across processor boundaries)
Default=1

iparms|[8] | Overlap for the Schwartz method: Default=1
Type of domain used for the Schwartz method

. 0: each point is a domain

iparms[9]

1: each node is a domain (only of interest in “systems” AMG)
2: each domain is generated by agglomeration (default)

Table 11.17: Definitions of other entries of iparms and dparms if preconditionner is Schwartz

Table 11.18: Convergence and time for solving linear system from example

n=4 x 10° \ nnz=13 x 10° H Te=571,29
np AMG
nit time
8 6 1491.83
16 5 708.49
32 4 296.22
64 4 145.64
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11.4.1 Communicators and groups

Groups
mpiGroup grpe(mpiGroup gp,KN_ < long >): Create MPI_Group from existing group gp by given vector

Communicators

Communicators is an abstract MPI object which allows MPI user to communicate across group of proces-
sors. Communicators can be Intracommunicators(involves a single group) or Intercommunicators (involves
two groups). When we not specify type of communicator it will be Intracommunicators

mpiComm cc(mpiComm comm, mpiGroup gp): Creates a new communicator. comm communica-
tor(handle), gp group which is a subset of the group of comm (handle). Return new communicator

mpiComm cc(mpiGroup gp): Same as previous constructor but default comm here is MPI. COMM_WORLD.
mpiComm cc(mpiComm comm, int color, int key): Creates new communicators based on colors and key.
This constructor is based on MPI_Comm _split routine of MPI.

mpiComm cc(MPIrank p,int key): Same constructor than the last one. Here colors and comm is defined
in MPIrank. This constructor is based on MPI_Comm_split routine of MPI.

Example 11.7 (commsplit.edp) 1: int color=mpiRank(comm)%2;
2: mpiComm ccc(processor(color,comm),®);

3: mpiComm gpp(comm,) ;

4: mpiComm cp(cc,color,®);

mpiComm cc(mpiComm comm, int high): Creates an intracommunicator from an intercommunicator.
comm intercommunicator, high Used to order the groups within comm (logical) when creating the new
communicator. This constructor is based on MPI_Intercomm_merge routine of MPL.

mpiComm cc(MPIrank pl, MPIrank p2, int tag): This constructor creates an intercommuncator from
two intracommunicators. p/ defined local (intra)communicator and rank in local_comm of leader (often 0)
while p2 defined remote communicator and rank in peer_.comm of remote leader (often 0). tag Message tag
to use in constructing intercommunicator. This constructor is based on MPI_Intercomm_create.

Example 11.8 (merge.edp) 1: mpiComm comm,cc;

2: int color=mpiRank(comm)%2;

3: int rk=mpiRank(comm) ;

4: int size=mpiSize(comm) ;

4: cout << "Color values " << color << endl;

5: mpiComm ccc(processor((rk<size/2),comm),rk);
6: mpiComm cp(cc,color,0);

7: int rleader;

8: if (rk == 0) { rleader = size/2; }

9: else if (rk == size/2) { rleader = 0;}

10: else { rleader = 3; }

11: mpiComm qqgp(processor(®,ccc),processor(rleader,comm),12345);
12:int aaa=mpiSize(ccc);

13:cout << "number of processor" << aaa << endl;
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11.4.2 Process

In FreeFem++ we wrap MPI process by function call processor which create internal FreeFem++ object
call MPIrank. This mean that do not use MPIrank in FreeFem++ script.

processor(int rk): Keep process rank inside object MPIrank. Rank is inside MPI_.COMM _WORLD.
processor(int rk, mpiComm cc) and processor(mpiComm cc,int rk) process rank inside communicator
cc.

processor(int rk, mpiComm cc) and processor(mpiComm cc,int rk) process rank inside communicator
cc.

processorblock(int rk) : This function is exactlly the same than processor(int rk) but is use in case of
blocking communication.

processorblock(int rk, mpiComm cc) : This function is exactlly the same than processor(int rk,mpiComm
cc) but use a synchronization point.

11.4.3 Points to Points communicators

In FreeFem++ you can call MPI points to points communications functions.

Send(processor(int rk,mpiComm cc),Data D) : Blocking send of Data D to processor of rank rk inside
communicator cc. Note that Data D can be: int, real,complex , int[int], real[int],complex[int], Mesh, Mesh3,
Matrix.

Recv(processor(int rk,mpiComm cc),Data D): Receive Data D from process of rank rk in communicator
cc. Note that Data D can be: int, real,complex , int[int], real[int],complex[int], Mesh, Mesh3, Matrix and
should be the same type than corresponding send.

Isend(processor(int rk,mpiComm cc),Data D) : Non blocking send of Data D to processor of rank rk
inside communicator cc. Note that Data D can be: int, real,complex , int[int], real[int],complex[int], Mesh,
Mesh3, Matrix.

Recv(processor(int rk,mpiComm cc),Data D): Receive corresponding to send.

11.4.4 Global operations

In FreeFem++ you can call MPI global communication functions.

broadcast(processor(int rk,mpiComm cc),Data D): Process rk Broadcast Data D to all process inside
communicator cc. Note that Data D can be: int, real,complex , int[int], real[int],complex[int], Mesh,
Mesh3, Matrix.

broadcast(processor(int rk),Data D): Process rk Broadcast Data D to all process inside
MPI_COMM_WORLD. Note that Data D can be: int, real,complex , int[int], real[int],complex[int], Mesh,
Mesh3, Matrix.

mpiAlltoall(Data a,Data b): Sends data a from all to all processes. Receive buffer is Data b. This is done
inside communicator MPI_COMM_WORLD.

mpiAlltoall(Data a,Data b, mpiComm cc): Sends data a from all to all processes. Receive buffer is Data
b. This is done inside communicator cc.

mpiGather(Data a,Data b,processor(mpiComm,int rk) : Gathers together values Data a from a group of
processes. Process of rank rk get data on communicator rk. This function is like MPI_Gather
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mpiAllgather(Data a,Data b) : Gathers Data a from all processes and distribute it to all in Data b. This is
done inside communicator MPI_COMM _WORLD. This function is like MPI_Allgather

mpiAllgather(Data a,Data b, mpiComm cc) : Gathers Data a from all processes and distribute it to all in
Data b. This is done inside communicator cc. This function is like MPI_Allgather

mpiScatter(Data a,Data b,processor(int rk, mpiComm cc)) : Sends Data a from one process whith rank
rk to all other processes in group represented by communicator mpiComm cc.

mpiReduce(Data a,Data b,processor(int rk, mpiComm cc),MPI_Op op), Reduces values Data a on all
processes to a single value Data b on process of rank rk and communicator cc. Operation use in reduce
is: MPI_Op op which can be: mpiMAX, mpiMIN, mpiSUM, mpiPROD, mpiLAND, mpiLOR, mpiLXOR,
mpiBAND, mpiBXOR, mpiMAXLOC, mpiMINLOC.

Note that, for all global operations, only int[int] and real[int] are data type take in account in FreeFem++ .
The following example present in details of Schwartz domain decomposition algorithm for solving Lapla-
cian2d problem. In this example we use two level of parallelism to solve simple Laplacian2d in square
domain. We have few number of subdomain and in every subdomain we use parallel sparse solver to solve
local problem.

Example 11.9 (schwarz.edp) 1:1load "hypre_FreeFem"; //  Load Hypre solver
2:func bool AddLayers(mesh & Th,real[int] &ssd,int n,real[int] &unssd)
{
// build a continuous function uussd (P1) :
// ssd in the caracteristics function on the input sub domain.
// such that :
// unssd = 1 when ssd =1;
// add n layer of element (size of the overlap)
// and unssd = 0 ouside of this layer ...
/) e
fespace Vh(Th,P1);
fespace Ph(Th,PO®);
Ph s;
assert(ssd.n==Ph.ndof);
assert(unssd.n==Vh.ndof);
unssd=0;
s[]= ssd;
// plot(s,wait=1,fill=1);
Vh u;
varf vM(u,v)=int2d(Th,qforder=1) (u*v/area);
matrix M=vM(Ph,Vh);

for(int i=0;i<n;++1)
{
ull= M*s[];
// plot(u,wait=1);
u=uw.l;
// plot(u,wait=1);
unssd+= ul[];
s[1= ¥’ *ull; VI
s =s >0.1;
3
unssd /= (n);
u[J]=unssd;
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ssd=s[];
return true;

}
3: mpiComm myComm; // Create communicator with value MPI_COMM_WORLD
4: int membershipKey,rank,size; // Variables for manage communicators
5: rank=mpiRank(myComm); size=mpiSize(myComm) ; //  Rank of process and size of
communicator
6: bool withmetis=1, RAS=0; // Use or not metis for partitioning Mesh
7: int sizeoverlaps=5; // size off overlap
8: int withplot=1;
9: mesh Th=square(100,100);
10: int[int] chlab=[1,1 ,2,1 ,3,1 ,4,1 1];
11: Th=change(Th,refe=chlab);
12: int nn=2,mm=2, npart= nn*mm;
13: membershipKey = mpiRank (myComm)%npart; // Coloring for partitioning process group
14: mpiComm cc(processor (membershipKey,myComm),rank) ; //  Create MPI communicator
according previous coloring
15: fespace Ph(Th,P®),fespace Vh(Th,P1);
16: Ph part;
17: Vh sun=0,unssd=0;
18: real[int] vsum=sun[],reducesum=sun[]; // Data use for control partitioning.
19: Ph xx=x,yy=y,nupp;
20: part = int(xx*nn)*mm + int(yy*mm);
21: if(withmetis)

{

load "metis";

int[int] nupart(Th.nt);

metisdual (nupart,Th,npart);

for(int i=0;i<nupart.n;++i)

part[][i]=nupart[i];

}
22: if(withplot>1)
21: plot(part,fill=1,cmm="dual",wait=1);
22: mesh[int] aTh(npart);
23: mesh Thi=Th;
24: fespace Vhi(Thi,P1);
25: Vhi[int] au(npart),pun(npart);
26: matrix[int] Rih(npart), Dih(npart), aA(npart);
27: Vhi[int] auntgv(npart), rhsi(npart);
28: i=membershipKey;

Ph suppi= abs(part-i)<0.1;
AddLayers(Th, suppi[],sizeoverlaps,unssd[]);
Thi=aTh[i]=trunc(Th, suppi>0,label=10,split=1);
Rih[i]=interpolate(Vhi,Vh,inside=1); // Vh -> Vhi
if(RAS)
{
suppi= abs(part-i)<0.1;
varf vSuppi(u,v)=int2d(Th,qforder=1) (suppi*v/area);
unssd[]= vSuppi(0®,Vh);
unssd = unssd>0.;
if(withplot>19)
plot(unssd,wait=1);
}
pun[i][J=Rih[i]*unssd[]; // this is global operation
sun[] += Rih[i]’*pun[i][]; // also global operation like broadcast’;
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vsum=sun[];

if(withplot>9)
plot(part,aTh[i],fill=1,wait=1);
// Add mpireduce for sum all sun and pun local contribution.
29: mpiReduce(vsum, reducesum,processor (0,myComm) ,mpiSUM) ; //  MPI global operation
MPi_Reduce on global communicator
30: broadcast(processor(0,myComm) ,reducesum) ; //  Broadcast sum on process 0 to all
process

31: sun[]=reducesum;

32: plot(sun,wait=1);

33: i=membershipKey

34: Thi=aTh[i];

35: pun[i]= pun[i]/sun;

36: if(withplot>8) plot(pun[i],wait=1);

37: macro Grad(u) [dx(uw),dy(uw)] //  EOM
38: sun=0;
39: i=membershipKey
Thi=aTh[i];
varf va(u,v) =
int2d(Thi) (Grad(u) ’*Grad(v)) // )
+on(1l,u=1) + int2d(Th) (v)
+on(10,u=0) ;
40: aA[i]=va(Vhi,Vhi);
41: set(aA[i],solver=sparsesolver,mpicomm=cc); //  Set parameters for Solver Hypre.

mpicomm=cc means you not solve on global process but in group on of process define by cc
42: rhsi[i][]= va(®,Vhi);

43: Dih[i]=pun[i][];

44: real[int] un(Vhi.ndof);

45: un=1.;

46: real[int] ui=Dih[i]*un;

47: sun[] += Rih[i] *ui; /7
48: varf vaun(u,v) = on(10,u=1);

49: auntgv[i][]=vaun(®,Vhi); // store arry of tgv on Gamma intern.
56: reducesum=0; vsum=sun;

57: mpiReduce(vsum, reducesum,processor(0®,myComm) ,mpiSUM) ; //  MPI global operation
MPi_Reduce on global communicator

58: broadcast(processor(0,myComm) ,reducesum) ; //  Broadcast sum on process 0 to all

other process
59: sun[]=reducesum;
60: if(withplot>5)
61: plot(sun,fill=1,wait=1);
62: cout << sun[].max << " " << sun[].min<< endl;
63: assert( 1.-1e-9 <= sun[].min && 1.+1le-9 >= sun[].max);
64: int nitermax=1000;
{
Vh un=0;
for(int iter=0;iter<nitermax;++iter)
{
real err=0,rerr=0;
Vh unl=0;
i=membershipKey;
Thi=aTh[i];
real[int] wui=Rih[i]*un[]; // 7
real[int] bi = ui .* auntgv[i][];
bi = auntgv[i][] ? bi : rhsi[i][];
ui=auli][];
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ui= aA[i] "-1 * bi; //  Solve local linear system on group of process
represented by color membershipKey
bi = ui-aul[i][];

err += bi’*bi; /7
aulil[]= ui;
bi = Dih[i]*ui; //  Prolongation of current solution to obtain right hand
unl[] += Rih[i]’ *bi; // ’;
}
65: reducesum=0; vsum=unl[];
66: mpiReduce(vsum, reducesum,processor (0,myComm) ,mpiSUM) ; //  MPI global operation
MPi_Reduce on global communicator
67: broadcast(processor(0®,myComm) ,reducesum) ; //  Broadcast sum on process 0 to all

other process

68: unl[]=reducesum;

69: real residrela=0;

70: mpiReduce(err,residrela ,processor(®,myComm),mpiSUM);
71: broadcast(processor(0®,myComm) ,residrela);

72: err=residrela; err= sqrt(err);

73: if(rank==0) cout << iter << " Err = " << err << endl;
74: if(err<le-5) break;

75: un[]=unl[];

76: if(withplot>2)

77: plot(au,dim=3,wait=0,cim=" iter "+iter,fill=1 );
78: }

79: plot(un,wait=1,dim=3);
80: }



Chapter 12
Mesh Files

12.1 File mesh data structure

The mesh data structure, output of a mesh generation algorithm, refers to the geometric data structure and
in some case to another mesh data structure.
In this case, the fields are

e MeshVersionFormatted 0

e Dimension (I) dim

e Vertices (I) NbOfVertices
(® x/y j=1.dim), (I) Refd!y i=1,NbOfVertices )
e Edges (I) NbOfEdges
(@@Vertex} ,@@Vertexi2 , (I) Refg?y i=1 ,NbOfEdges)

e Triangles (I) NbOfTriangles
((eaevertex/, j=1,3), (1) Ref¢' 4 i=1,NbOfTriangles )

e Quadrilaterals (I) NbOfQuadrilaterals
((eavertex!/, j=1,4), (1) Ref¢ 4 i=1,NbOfQuadrilaterals )

e Geometry
(C*) FileNameOfGeometricSupport

— VertexOnGeometricVertex
(I) NbOfVertexOnGeometric Vertex
(eavertex;, @@Vertex”, i=1NbOfVertexOnGeometricVertex )

— EdgeOnGeometricEdge
(I) NbOfEdgeOnGeometricEdge

(@eEdge; , @@Edg e’y i=1,NbOfEdgeOnGeometricEdge )

e CrackedEdges (I) NbOfCrackedEdges
(@eEdge! ,@@Edge?, i=1,NbOfCrackedEdges )

When the current mesh refers to a previous mesh, we have in addition
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e MeshSupportOfVertices
(C*) FileNameOfMeshSupport

— VertexOnSupportVertex
(I) NbOfVertexOnSupportVertex

(eavertex;, @@vertex;”” 4 i=1NbOfVertexOnSupportVertex )

— VertexOnSupportEdge
(I) NbOfVertexOnSupportEdge

(@@Vertexi,@@Edgef"p PR u" i:1,NbOfVertexOnSupportEdge)

— VertexOnSupportTriangle
(I) NbOfVertexOnSupportTriangle

(@@Vertex,-,@@Triaf"pp, (R) uf"pp, (R) vf”pp ’
i=1,NbOfVertexOnSupportTriangle )

— VertexOnSupportQuadrilaterals
(I) NbOfVertexOnSupportQuadrilaterals

(@@Vertexi,@@Quadf”pp, R ", (R) w7
i=1, NbOfVertexOnSupportQuadrilaterals )

12.2 bb File type for Store Solutions

The file is formatted such that:

2 nbsol nbv 2

(Ui Vie{l,...nbsol}), Vje(l,..nbv})
where

e nbsol is a integer equal to the number of solutions.
e nbv is a integer equal to the number of vertex .

e U;; is areal equal the value of the i solution at vertex j on the associated mesh background if
read file, generated if write file.

12.3 BB File Type for Store Solutions

The file is formatted such that:

2 n typesol! .. typesol®™ nbv 2
(((vt, Vie{l,..typesol"}), Vke{l,.n}) Vje{l,..nbv})
where

e nis a integer equal to the number of solutions
e typesolk, type of the solution number k, is

— typesol® = 1 the solution k is scalar (1 value per vertex)
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— typesol® = 2 the solution k is vectorial (2 values per unknown)
— typesol® = 3 the solution k is a 2x2 symmetric matrix (3 values per vertex)

— typesol® = 4 the solution k is a 2x2 matrix (4 values per vertex)

e nbv is a integer equal to the number of vertices

° Uf.‘j is areal equal to the value of the component i of the solution k at vertex j on the associated
mesh background if read file, generated if write file.

12.4 Metric File

A metric file can be of two types, isotropic or anisotropic.
the isotropic file is such that

nbv 1

h; Vie{l,...,nbv}

where

e nbv is a integer equal to the number of vertices.

e h; is the wanted mesh size near the vertex i on background mesh, the metric is M; = hlled,
where /d is the identity matrix.

The metric anisotrope

nbv 3

all;,a21;,a22; Vie{l,..,nbv)
where

e nbv is a integer equal to the number of vertices,

e all;, al2;, a22; is metric M; = (Zﬁ Zé%) which define the wanted mesh size in a vicinity

of the vertex i such that £ in direction u € R? is equal to |u|/ Vu - M;u , where - is the dot
product in R?, and | - | is the classical norm.

12.5 List of AM_FMT, AMDBA Meshes

The mesh is only composed of triangles and can be defined with the help of the following two
integers and four arrays:

nbt is the number of triangles.
nbv is the number of vertices.

nu(l:3,1:nbt) is an integer array giving the three vertex numbers

counterclockwise for each triangle.
c(1l:2,nbv) is a real array giving the two coordinates of each vertex.
refs(nbv) is an integer array giving the reference numbers of the vertices.

reft(nbv) is an integer array giving the reference numbers of the triangles.
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AM_FMT Files In fortran the am_fmt files are read as follows:

open(l,file="xxx.am_fmt’, form="formatted’,status="o0ld’)
read (1,*) nbv,nbt
read (1,*) ((qu(i,j),i=1,3),j=1,nbt)
read (1,*) ((c(i,j),i=1,2),j=1,nbv)
read (1,*) ( reft(i),i=1,nbt)
read (1,*) ( refs(i),i=1,nbv)
close(l)

AM Files In fortran the am files are read as follows:

open(l,file="xxx.am’,form="unformatted’,status="o0ld’)
read (1,*) nbv,nbt
read (1) ((u(i,j),i=1,3),j=1,nbt),

& ((c(i,j),i=1,2),j=1,nbv),

& ( reft(i),i=1,nbt),

& ( refs(i),i=1,nbv)

close(l)

AMDBA Files In fortran the amdba files are read as follows:

open(l,file="xxx.amdba’, form="formatted’,status="old’)
read (1,*) nbv,nbt
read (1,%) (k,(c(i,k),i=1,2),refs(k),j=1,nbv)
read (1,%) (k,(nu(i,k),i=1,3),reft(k),j=1,nbt)
close(1)

msh Files First, we add the notions of boundary edges

nbbe is the number of boundary edge.
nube(1l:2,1:nbbe) is an integer array giving the two vertex numbers
refbe(l:nbbe) is an integer array giving the two vertex numbers

In fortran the msh files are read as follows:

open(l,file="xxx.msh’, form="formatted’,status="o0ld’)
read (1,*) nbv,nbt,nbbe
read (1,*) ((c(i,k),i=1,2),refs(k),j=1,nbv)
read (1,*%) ((qu(i,k),i=1,3),reft(k),j=1,nbt)
read (1,*) ((ne(i,k),i=1,2), refbe(k),j=1,nbbe)
close(l)
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ftq Files In fortran the ftq files are read as follows:

open(l,file="xxx.ftq’,form="formatted’,status="0ld’)
read (1,*) nbv,nbe,nbt,nbq

read (1,%) k(j),(mu(di,j),i=1,k(j)),reft(j),j=1,nbe)
read (1,*%) ((c(i,k),i=1,2),refs(k),j=1,nbv)

close(1l)

where if k(j) = 3 then the element j is a triangle and if k = 4 the the element j is a quadrilateral.
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Chapter 13

Addition of a new finite element

13.1 Some notations

For a function f taking value in RN, N = 1,2,---, we define the finite element approximation IT,f of f.
Let us denote the number of the degrees of freedom of the finite element by NbDoF. Then the i-th base w{(
(i=0,---,NbDoF — 1) of the finite element space has the j-th component w{j for j=0,--- ,N—1.

The operator I1;, is called the interpolator of the finite element. We have the identity le = thl.K .
Formally, the interpolator I is constructed by the following formula:

kPi-1

Mf = > axfi(Ppwf (13.1)
k=0

where P, is a set of npPi points,
In the formula (I3.1)), the list px, jk, ix depend just on the type of finite element (not on the element), but
the coefficient @ can be depending on the element.

Example 1: with the classical scalar Lagrange finite element, we have kPi = npPi = NbOfNode and
e P, is the point of the nodal points
o the a; = 1, because we take the value of the function at the point Py
e pi =k, jr = k because we have one node per function.
o jr. =0because N =1
Example 2: The Raviart-Thomas finite element:
RTO; = {ve H@Aiv)/VK € Ty, vik(x,y) = |5k + vk |3} (13.2)

The degrees of freedom are the flux through an edge e of the mesh, where the flux of the function f : R> —
R? is fe f.n., n. is the unit normal of edge e (this implies a orientation of all the edges of the mesh, for
example we can use the global numbering of the edge vertices and we just go to small to large number).

To compute this flux, we use a quadrature formula with one point, the middle point of the edge. Consider a
triangle T with three vertices (a, b, ¢). Let denote the vertices numbers by i, ip, i, and define the three edge
vectors e”, e!, e by sgn(iy — i.)(b — ¢), sgn(ic — iz)(c — a), sgn(i, — ip)(@—b),

The three basis functions are:

K sgn(ip — ic) K sgn(ic — iq) K sgn(iq — ip)
— - a), =2 < P ix-bh), =2 "(x-0), 13.3
0 2I7| (¥ -a), o 2|7 (x=b), @ 2I7| (x=¢) (13.3)

where |T| is the area of the triangle 7.
So we have N = 2, kPi = 6;npPi = 3; and:
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— 0 — a0
® oy = —62,(1’1 = el,

orthogonal to the edge e = (7', €)') with a length equal to the side of the edge or equal to fe a1

ay = —ej,a3 = e, a4 = —e5,a5 = e (effectively, the vector (—€,e7) is

ik =1{0,0,1,1,2,2},

pr=10,0,1,1,2,2}, jr =1{0,1,0,1,0,1,0, 1}.

13.2 Which class to add?

Add file FE_ADD. cpp in directory src/femlib for example first to initialize :

#include "error.hpp"
#include "rgraph.hpp"
using namespace std;
#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp"
#include "AddNewFE.h"

namespace Fem2D {

Then add a class which derive for public TypeOfFE like:

class TypeOfFE_RTortho : public TypeOfFE { public:
static int Datall; // some numbers
TypeOfFE_RTortho():
TypeOfFE( 0+3+0, // nb degree of freedom on element
2, // dimension N of vectorial FE (1 if scalar FE)
Data, // the array data

1, // nb of subdivision for plotting
1, // nb of sub finite element (generaly 1)
6, // number kPi of coef to build the interpolator
3, // number npPi of integration point to build interpolator
0 // an array to store the coef a; to build interpolator
// here this array is no constant so we have
// to rebuilt for each element.

{
const R2 Pt[] = { R2(0.5,0.5), R2(0.0,0.5), R2(0.5,0.0) };
// the set of Point in K
for (int p=0,kk=0;p<3;p++) {
P_Pi_h[p]=Pt[p];
for (int j=0;j<2;j++)
pij_alpha[kk++]= IPJ(p,p,j); }} // definition of iy, py, jr in

void FB(const bool * watdd, const Mesh & Th,const Triangle & K,
const R2 &PHat, RNMK_ & val) const;

void Pi_h_alpha(const baseFElement & K,KN_<double> & v) const ;

}

where the array data is form with the concatenation of five array of size NbDoF and one array of size N.
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This array is:

int TypeOfFE_RTortho::Data[]={

// for each df 0,1,3 :

// the support of the node of the df

// the number of the df on the node

// the node of the df

// the df come from which FE (generally 0)

// which are de df on sub FE

; // for each component j=0,N-1 it give the sub FE associated

where the support is a number 0, 1,2 for vertex support, 3,4, 5 for edge support, and finaly 6 for element
support.

The function to defined the function le , this function return the value of all the basics function or this deriva-
tives in array val, computed at point PHat on the reference triangle corresponding to point R2 P=K(Phat) ;
on the current triangle K.

The index i, j, k of the array val(i, j, k) corresponding to:
i is basic function number on finite element i € [0, NoF|
j is the value of component j € [0, N[

k is the type of computed value f(P),dx(f)(P),dy(f)(P),... 1 € [0,last operatortype[. Remark for
optimization, this value is computed only if whatd[k] is true, and the numbering is defined with

enum operatortype { op_id=0,
op_dx=1,o0p_dy=2,
op_dxx=3,op_dyy=4,
op_dyx=5,op_dxy=5,
op_dz=6,
op_dzz=7,
op_dzx=8,o0p_dxz=8,
op_dzy=9,o0p_dyz=9
b

const int last_operatortype=10;
The shape function :

void TypeOfFE_RTortho::FB(const bool *whatd,const Mesh & Th,const Triangle & K,
const R2 & PHat,RNMK_ & val) const

R2 P(K(PHat));

R2 A(K[0]), B(K[1]),C(K[2]);

R 10=1-P.x-P.y,11=P.x,12=P.y;
assert(val.NQ) >=3);
assert(val.M()==2 );

val=0;

R a=1./(2*K.area);

R a®= K.EdgeOrientation(®) * a ;
R al= K.EdgeOrientation(l) * a ;
R a2= K.EdgeOrientation(2) * a ;

/) e
if (whatd[op_id]) // value of the function
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{
assert(val.K(Q>op_id);
RN_ fO(val(’.’,0,0)); // value first component
RN_ fil(val(’.’,1,0)); // value second component

f1[0] = (P.x-A.x)*al;
fO[0] = -(P.y-A.y)*a0;

fi[1] = (P.x-B.x)*al;
fO[1] -(P.y-B.y)*al;

f1[2] = (P.x-C.x)*a2;

f0[2] = -(P.y-C.y)*a2;
}

/) e
if (whatd[op_dx]) // value of the dx of function
{

assert(val.K()>op_dx);
val(®,1,op_dx) = a0;

val(l,1l,op_dx) = al;
val(2,1,op_dx) = a2;
}
if (whatd[op_dy])

{

assert(val.K()>op_dy);

val(®,0,o0p_dy) = -a0;
val(l,0,o0p_dy) = -al;
val(2,0,0p_dy) = -a2;

}

for (int i= op_dy; i< last_operatortype ; i++)
if (whatd[op_dx])
assert (op_dy);

}

The function to defined the coefficient ay:

void TypeOfFE_RT::Pi_h_alpha(const baseFElement & K,KN_<double> & v) const

{
const Triangle & T(K.T);

for (int i=0,k=0;i<3;i++)
{
R2 E(T.Edge(i));
R signe = T.EdgeOrientation(i) ;
v[k++]= signe*E.y;
v[k++]=-signe*E.x;

}

Now , we just need to add a new key work in FreeFem++, Two way, with static or dynamic link so at the
end of the file, we add :

With dynamic link is very simple (see section |C|of appendix), just add before the end of FEM2d namespace
add:



13.2. WHICH CLASS TO ADD? 291

static TypeOfFE_RTortho The_TypeOfFE_RTortho; //
static AddNewFE("RTOOrtho", The_TypeOfFE_RTortho);
} // FEM2d namespace

Try with ”./load.link” command in examples++-load/ and see BernardiRaugel.cpp or Morley.cpp
new finite element examples.

Otherwise with static link (for expert only), add

// let the 2 globals variables

static TypeOfFE_RTortho The_TypeOfFE_RTortho; //
// - the name in freefem ----

static ListOfTFE typefemRTOrtho("RTOO0Ortho", & The_TypeOfFE_RTortho); //

// link with FreeFem++ do not work with static library .a

// FH so add a extern name to call in init_static_FE

// (see end of FESpace.cpp)
void init_FE_ADD(Q) { };

// --- end --
} // FEM2d namespace

To inforce in loading of this new finite element, we have to add the two new lines close to the end of files
src/femlib/FESpace. cpp like:

// correct Problem of static library link with new make file
void init_static_FEQ)
{ // list of other FE file.o
extern void init_FE_P2h(Q) ;
init_FE_P2h(Q) ;
extern void init_FE_ADD(Q) ; // new line 1
init_FE_ADD(Q); // new line 2

and now you have to change the makefile.
First, create a file FE_ADD. cpp contening all this code, like in file src/femlib/Element P2h. cpp, after
modifier the Makefile.am by adding the name of your file to the variable EXTRA DIST like:

# Makefile using Automake + Autoconf

# This is not compiled as a separate library because its
# interconnections with other libraries have not been solved.

EXTRA_DIST=BamgFreeFem.cpp BamgFreeFem.hpp CGNL.hpp CheckPtr.cpp
ConjuguedGradrientNL.cpp DOperator.hpp Drawing.cpp Element_P2h.cpp
Element_P3.cpp Element_RT.cpp fem3.hpp fem.cpp fem.hpp FESpace.cpp
FESpace.hpp FESpace-v0.cpp FQuadTree.cpp FQuadTIree.hpp gibbs.cpp
glutdraw.cpp gmres.hpp MatriceCreuse.hpp MatriceCreuse_tpl.hpp
MeshPoint.hpp mortar.cpp mshptg.cpp QuadratureFormular.cpp
QuadratureFormular.hpp RefCounter.hpp RNM.hpp RNM_opc.hpp RNM_op.hpp
RNM_tpl.hpp FE_ADD.cpp

A
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and do in the freefem++ root directory

autoreconf
./reconfigure
make

For codewarrior compilation add the file in the project an remove the flag in panal PPC linker FreeFEm++
Setting Dead-strip Static Initializition Code Flag.



Appendix A

Table of Notations

Here mathematical expressions and corresponding FreeFem++ commands are explained.

A.1 Generalities

0;; Kronecker delta (0 if i # j, 1 if i = j for integers i, j)

V for all

3 there exist

i.e. thatis

PDE partial differential equation (with boundary conditions)

0 the empty set

N the set of integers (a € N & int a); “int” means long integer inside FreeFem++
R the set of real numbers (a € R & real a) ;double inside FreeFem++

C the set of complex numbers (a € C & complex a); complex;double;

R d-dimensional Euclidean space

A.2 Sets, Mappings, Matrices, Vectors

Let E, F, G be three sets and A subset of E.

{x € E| P} the subset of E consisting of the elements possessing the property P
E U F the set of elements belonging to E or F

E N F the set of elements belonging to E and F

E\A theset{x € E| x ¢ A}

E+F EUFwithENF =0
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E X F the cartesian product of E and F

E" the n-th power of E (E* = EXE, E" = E x E"")

f: E — F the mapping form E into F,i.e., E> x— f(x) e F

Ig or [ the identity mapping in Ei.e., [(x) =x VxeFE

fogforf: F>Gandg: E— F,E>xm (fog)x)= f(g(x)) € G (see Section ??)

fla the restriction of f : E — F to the subset A of E

{ax} column vector with components a;

(ax) row vector with components ay

(ar)T denotes the transpose of a matrix (ay), and is {ay}

{a;;j} matrix with components a;;, and (a; j)T = (a;;)

A.3 Numbers

For two real numbers a, b
[a, b] is the interval {x € R| a < x < b}
la, b] is the interval {x € R| a < x < b}
[a, b[ is the interval {x € R| a < x < b}

la, b[ is the interval {x € R| a < x < b}

A.4 Differential Calculus

0f /0x the partial derivative of f : R? — R with respect to x (dx(£))
Vf the gradientof f : Q — R,i.e., Vf = (0f/0x, 0f/dy)

divf or V.f the divergence of f : Q — RY, i.e., divf = df,/0x + 0f>/dy

Af the Laplacian of f: Q — R, ie., Af = 0°f/0x> + 6*f/dy*
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A.5 Meshes

Q usually denotes a domain on which PDE is defined
' denotes the boundary of Q.i.e., ' = 9Q (keyword border, see Section

T the triangulation of Q, i.e., the set of triangles T, where / stands for mesh size (keyword mesh,
buildmesh, see Section[3))

n, the number of triangles in 7, (get by Th.nt, see “mesh.edp”)

Q;, denotes the approximated domain €, = U} T} of Q. If Q is polygonal domain, then it will be
Q= Qh

I'; the boundary of €,
n, the number of vertices in 7, (get by Th.nv)
[4'¢’ ]the segment connecting ¢' and ¢’

", 4", g% the vertices of a triangle T, with anti-clock direction (get the coordinate of g*/ by
(Th[k-11[j-11.x, Th[k-11[j-1]1.y))

Io theset{i e N| ¢ ¢ ')}

A.6 Finite Element Spaces
L*(Q) the set {w(x, y)‘ f Iw(x, y)lPdxdy < oo}
Q

12
norm: [wlloa = ( f i, y)|2dxdy)
Q

scalar product: (v, w) = f vw
Q

HY(Q) the set {w € LZ(Q)‘ f (1ow/0x> + |ow/dyI") dxdy < oo}
Q
2 2 \/2
norm: [[wll.a = (Il o + IVull} o)

0y

0xv1 Qy®

H™(Q) the set {w € LZ(Q)' f e L*(Q) VYa=(a;, @) eN? |a|=a; + az}
Q

scalar product: (v,w); o = Z f D*vD*w
Q

|a|l<m
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HY(Q) the set{we H'(Q)|u=0 onT)}
LX(Q)? denotes LX(Q) x L2(Q), and also H'(Q)? = H'(Q) x H'(Q)

V), denotes the finite element space created by ““ fespace Vh(Th,*)” in FreeFem++ (see Section
@ fOI‘ cs*”)

I, f the projection of the function f into V), (* func f=x"2*y"3; Vh v = £f;” means v =1J,
1)

{v} for FE-function v in V}, means the column vector (vi,--- ,vy)’ if v = v + - - - + vysbps, which
is shown by “ fespace Vh(Th,P2); Vh v; cout << v[] << endl;”
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Grammar

B.1 The bison grammar

start: input ENDOFFILE;
input: instructions ;

instructions: instruction
| instructions instruction ;

list_of_id_args:

| id
id ’=’ no_comma_expr
FESPACE id

|

|

| type_of_dcl id

| type_of_dcl ’&’ id

| [’ list_of_id_args ']’
| list_of_id_args ’,’ id
|

|

|

|

|

list_of_id_args ’,’ ’[’ list_of_id_args ']’
list_of_id_args ’,’ id ’=’ no_comma_expr
list_of_id_args ’,’ FESPACE id
list_of_id_args ’,’ type_of_dcl id
list_of_id_args ’,’ type_of_dcl ’&’ id ;

list_of_idl: 1id
| list_of_idl ’,’ id

id: ID | FESPACE ;

list_of_dcls: ID
| ID ’'=’ no_comma_expr
| ID ’(’ parameters_list ’)’
| list_of_dcls ’,’ list_of_dcls ;

parameters_list:
no_set_expr
| FESPACE 1ID
| ID =’ no_set_expr
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| parameters_list ’,’ no_set_expr
| parameters_list ',’ id ’=’ no_set_expr ;

type_of_dcl: TYPE
| TYPE [’ TYPE ']’ ;

ID_space:
ID
ID '[’ no_set_expr ']’
ID ’'=’ no_set_expr

[’ list_of_idl ']’
[’ list_of_idl ']’ ’[’ no_set_expr ']’
[’ list_of_idl ']’ ’'=’ no_set_expr ;

ID_array_space:
ID '’ no_set_expr ')’
| [’ list_of_idl ']’ ’(’ no_set_expr ')’ ;

fespace: FESPACE ;

spacelDa : ID_array_space

| spaceIDa ’,’ ID_array_space ;
spaceIDb : ID_space

| spaceIDb ’,’ ID_space ;
spacelDs : fespace spacelDb

| fespace [’ TYPE ']’ spacelDa ;
fespace_def: ID ’(’ parameters_list ')’ ;

fespace_def_list: fespace_def
| fespace_def_list

,’ fespace_def ;

declaration: type_of_dcl list_of_dcls ’;’

’fespace’ fespace_def_list ;

I
| spacelDs ’;’
| FUNCTION ID ’'=’ Expr ’;’
| FUNCTION type_of_dcl ID ’(’ list_of_id_args ’)’ ’'{’ instructions’}’
| FUNCTION ID ’(’ list_of_id_args ’)’ = no_comma_expr ;’ H
begin: '{’ ;
end: i RO
for_loop: for’ ;

while_loop: ’while’ ;
instruction: T
| ’include’ STRING
| ’load’ STRING
| Expr ’;’
| declaration
| for_loop ’'(C’ Expr ’;’ Expr ’;’ Expr ’)’ instruction
| while_loop ’(’ Expr ’)’ instruction
| ’if’ ’(C Expr ')’ instruction
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bornes: ’(’ ID ’'=’ Expr

border_expr:

!ifl !(! Expr !)1

begin instructions end

|

|

| ’border’ 1ID
|  ’border’ ID
|  ’break’ ’;’
| ’continue’

|

‘return’ Expr

’
3

border_expr
,[1 array !]’ ,;l

Expr ')’ ;

bornes instruction ;

Expr: no_comma_expr
| Expr ’,’ Expr ;
unop: T
| o+
|
| 7++
I -
no_comma_expr:
no_set_expr
| no_set_expr =’ no_comma_expr
| no_set_expr ’'+=’ no_comma_expr
| no_set_expr ’'-=’ no_comma_expr
| no_set_expr ’'*=’ no_comma_expr
| no_set_expr ’/=’ no_comma_expr ;

no_set_expr:
no_ternary_expr

| no_ternary_expr '?’ no_set_expr

no_ternary_expr:

unary_expr

no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr
no_ternary_expr

v L

[ RV% )

no_ternary_expr
no_ternary_expr
’./’ no_ternary_expr
>/’ no_ternary_expr
%’ no_ternary_expr
no_ternary_expr
-’ ho_ternary_expr
’<<’ no_ternary_expr
’>>’ no_ternary_expr
’&’ no_ternary_expr
’&&’ no_ternary_expr
’|’ no_ternary_expr
||’ no_ternary_expr
’<’ no_ternary_expr
’<=’ no_ternary_expr
’>’ no_ternary_expr
’>=' no_ternary_expr

no_set_expr

instruction ELSE instruction
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’ ’

| no_ternary_expr ’'==’ no_ternary_expr

| no_ternary_expr ’'!=’ no_ternary_expr ;

sub_script_expr:
no_set_expr

| no_set_expr no_set_expr

| no_set_expr ’:’ no_set_expr ’:’ no_set_expr ;

parameters:
| no_set_expr
| FESPACE
| id =’ no_set_expr
[ sub_script_expr
| parameters ’,’ FESPACE
| parameters ’,’ no_set_expr
| parameters ’,’ id ’=’ no_set_expr ;
array: no_comma_expr
| array ’,’ no_comma_expr ;
unary_expr:
pow_expr

| unop pow_expr %prec UNARY ;

pow_expr: primary

| primary unary_expr
3 ’

| primary ’_’ unary_expr
| primary a ; // transpose

primary:
ID
LNUM
DNUM
CNUM
STRING
primary ’(’ parameters ’)’
primary ’[’ Expr ']’

primary ’.’ ID
primary ’++’
primary ’--’

TYPE '’ Expr ')’ ;
(’ Expr ')’

I
I
I
I
I
I
I primary '[’ ']’
I
I
I
I
I
I

;[; array ;]1 :
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B.2 The Types of the languages, and cast

B.3 All the operators

- CG, type :<TypeSolveMat>
- Cholesky, type :<TypeSolveMat>
- Crout, type :<TypeSolveMat>
- GMRES, type :<TypeSolveMat>
- LU, type :<TypeSolveMat>
- LinearCG, type :<Polymorphic> operator()
( <long> : <Polymorphic>, <KN<double> *>, <KN<double> *> )

- N, type :<Fem2D::R3>

- NoUseOfWait, type :<bool *>

- P, type :<Fem2D::R3>

- PO, type :<Fem2D::TypeOfFE>

- P1, type :<Fem2D::TypeOfFE>

- Plnc, type :<Fem2D::TypeOfFE>

- P2, type :<Fem2D::TypeOfFE>

- RT®, type :<Fem2D::TypeOfFE>

- RTmodif, type :<Fem2D::TypeOfFE>

- abs, type :<Polymorphic> operator()
( <double> : <double> )

- acos, type :<Polymorphic> operator()
( <double> : <double> )

- acosh, type :<Polymorphic> operator()
( <double> : <double> )

- adaptmesh, type :<Polymorphic> operator()
( <Fem2D: :Mesh> : <Fem2D: :Mesh>... )

- append, type :<std::ios_base::openmode>
- asin, type :<Polymorphic> operator()
¢ <double> : <double> )

- asinh, type :<Polymorphic> operator()
¢ <double> : <double> )

- atan, type :<Polymorphic> operator()
( <double> : <double> )
( <double> : <double>, <double> )

- atan2, type :<Polymorphic> operator()
( <double> : <double>, <double> )

- atanh, type :<Polymorphic> operator()
( <double> : <double> )
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- buildmesh, type :<Polymorphic> operator()
¢ <Fem2D: :Mesh> : <E_BorderN> )

- buildmeshborder, type :<Polymorphic> operator()
( <Fem2D: :Mesh> : <E_BorderN> )

- ¢in, type :<istream>
- clock, type :<Polymorphic>
( <double> : )

- conj, type :<Polymorphic> operator()
( <complex> : <complex> )

- convect, type :<Polymorphic> operator()
( <double> : <E_Array>, <double>, <double> )

- cos, type :<Polymorphic> operator()
( <double> : <double> )
( <complex> : <complex> )

- cosh, type :<Polymorphic> operator()
( <double> : <double> )
( <complex> : <complex> )

- cout, type :<ostream>
- dumptable, type :<Polymorphic> operator()

( <ostream> : <ostream> )

- dx, type :<Polymorphic> operator()

( <LinearComb<MDroit, C_FO>> : <LinearComb<MDroit, C_FO®>> )
( <double> : <std::pair<FEbase<double> *, int>> )
( <LinearComb<MGauche, C_FO>> : <LinearComb<MGauche, C_FO0>> )

- dy, type :<Polymorphic> operator()

( <LinearComb<MDroit, C_FO>> : <LinearComb<MDroit, C_FO®>> )
( <double> : <std::pair<FEbase<double> *, int>> )
( <LinearComb<MGauche, C_FO>> : <LinearComb<MGauche, C_FO0>> )

- endl, type :<char>
- exec, type :<Polymorphic> operator()
( <long> : <string> )

- exit, type :<Polymorphic> operator()
( <long> : <long> )

- exp, type :<Polymorphic> operator()
( <double> : <double> )
( <complex> : <complex> )
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- false, type :<bool>
- imag, type :<Polymorphic> operator()
( <double> : <complex> )

- intld, type :<Polymorphic> operator()

( <CDomainOfIntegration> : <Fem2D: :Mesh>. ..

- int2d, type :<Polymorphic> operator()

¢ <CDomainOfIntegration> : <Fem2D: :Mesh>. ..

- intalledges, type :<Polymorphic>
operator( :

¢ <CDomainOfIntegration> : <Fem2D: :Mesh>. ..

- jump, type :<Polymorphic>

operator( :

( <LinearComb<MDroit, C_FO>> : <LinearComb<MDroit, C_F®>> )

( <double> : <double> )

¢ <complex > : <complex > )

( <LinearComb<MGauche, C_FO0>> : <LinearComb<MGauche, C_FO0>> )

- label, type :<long *>

- log, type :<Polymorphic> operator()
( <double> : <double> )
( <complex> : <complex> )

- logl®, type :<Polymorphic> operator()
¢ <double> : <double> )

- max, type :<Polymorphic> operator()
( <double> : <double>, <double> )

¢ <long> : <long>, <long> )

- mean, type :<Polymorphic>

operator( :
¢ <double> : <double> )
¢ <complex> : <complex> )

- min, type :<Polymorphic> operator()
( <double> : <double>, <double> )
¢ <long> : <long>, <long> )

- movemesh, type :<Polymorphic> operator()

( <Fem2D: :Mesh> : <Fem2D: :Mesh>, <E_Array>...

- norm, type :<Polymorphic>
operator( :
( <double> : <std::complex<double>> )

- nuTriangle, type :<long>
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- nuEdge, type :<long>
- on, type :<Polymorphic> operator()
( <BC_set<double>> : <long>... )

- otherside, type :<Polymorphic>

operator( :
( <LinearComb<MDroit, C_FO>> : <LinearComb<MDroit, C_FO0>> )
( <LinearComb<MGauche, C_FO>> : <LinearComb<MGauche, C_FO0>> )

- pi, type :<double>
- plot, type :<Polymorphic> operator()
( <long> : ... )

- pow, type :<Polymorphic> operator()
¢ <double> : <double>, <double> )
( <complex> : <complex>, <complex> )

- qflpE, type :<Fem2D::QuadratureFormularld>

- qflpT, type :<Fem2D::QuadratureFormular>

- qflpTlump, type :<Fem2D::QuadratureFormular>
- qf2pE, type :<Fem2D::QuadratureFormularld>

- qf2pT, type :<Fem2D::QuadratureFormular>

- qf2pT4P1, type :<Fem2D::QuadratureFormular>
- qf3pE, type :<Fem2D::QuadratureFormularld>

- qf5pT, type :<Fem2D::QuadratureFormular>

- readmesh, type :<Polymorphic> operator()
( <Fem2D: :Mesh> : <string> )

- real, type :<Polymorphic> operator()
( <double> : <complex> )

- region, type :<long *>
- savemesh, type :<Polymorphic> operator()
( <Fem2D: :Mesh> : <Fem2D: :Mesh>, <string>... )

- sin, type :<Polymorphic> operator()
( <double> : <double> )
¢ <complex> : <complex> )

- sinh, type :<Polymorphic> operator()
( <double> : <double> )
( <complex> : <complex> )

- sqrt, type :<Polymorphic> operator()
( <double> : <double> )
( <complex> : <complex> )

- square, type :<Polymorphic> operator()
( <Fem2D: :Mesh> : <long>, <long> )
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( <Fem2D: :Mesh> : <long>, <long>, <E_Array> )

- tan, type :<Polymorphic> operator()
( <double> : <double> )

- true, type :<bool>
- trunc, type :<Polymorphic> operator()
( <Fem2D: :Mesh> : <Fem2D: :Mesh>, <bool> )

- verbosity, type :<long *>
- wait, type :<bool *>

- X, type :<double *>

-y, type :<double *>

- z, type :<double *>
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Appendix C

Dynamical link

Now, it’s possible to add built-in functionnalites in FreeFem++ under the three environnents Linux,
Windows and MacOS X 10.3 or newer. It is agood idea to, first try the example load.edp in
directory example++-load.

You will need to install a c++ compiler (generally g++/gcc compiler) to compile your function.

Windows Install the cygwin environnent or the mingw
MacOs Install the developer tools xcode on the apple DVD

Linux/Unix Install the correct compiler (gcc for instance)

Now, assume that you are in a shell window (a cygwin window under Windows) in the directory
example++-load. Remark that in the sub directory include they are all the FreeFem++ include
file to make the link with FreeFem++.

Note C.1 If you try to load dynamically a file with command load "xxx"

e Under unix (Linux or MacOs), the file xxx.so twill be loaded so it must be either in the
search directory of routine dlopen (see the environment variable $LD_LIBRARY_PATH or in
the current directory, and the suffix ".so" or the prefix ". /" is automatically added.

e Under Windows, The file xxx.d11 will be loaded so it must be in the loadLibary search
directory which includes the directory of the application,

The compilation of your module: the script £f-c++ compiles and makes the link with FreeFem++,
but be careful, the script has no way to known if you try to compile for a pure Windows environ-

ment or for a cygwin environment so to build the load module under cygwin you must add the

-Ccygwin parameter.

C.1 A first example myfunction.cpp

The following defines a new function call my function with no parameter, but using the x, y current
value.

#include <iostream>
#include <cfloat>
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using namespace std;
#include "error.hpp"
#include "AFunction.hpp"
#include "rgraph.hpp"
#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp"
#include "MeshPoint.hpp"

using namespace Fem2D;
double myfunction(Stack stack)

{
// to get FreeFem++ data
MeshPoint &mp= *MeshPointStack(stack); // the struct to get x,y, normal , value
double x= mp.P.x; // get the current x value
double y= mp.P.y; // get the current y value
// cout << "x = " << x << " y=" << y << endl;

return sin(x)*cos(y);
}

Now the Problem is to build the link with FreeFem++, to do that we need two classes, one to call
the function myfunction

All FreeFem++ evaluable expression must be a struct/class C++ which derive from E_FO. By
default this expression does not depend of the mesh position, but if they derive from E_FOmps the
expression depends of the mesh position, and for more details see [12].

// A class build the link with FreeFem++
// generaly this class are already in AFunction.hpp
// but unfortunatly, I have no simple function with no parameter
// in FreeFem++ depending of the mesh,
template<class R>
class OneOperator0@s : public OneOperator {

// the class to defined a evaluated a new function
// It must devive from EF® if it is mesh independent
// or from E_FOmps if it is mesh dependent
class E_FO_F :public E_FOmps { public:
typedef R (*func)(Stack stack) ;
func f; // the pointeur to the fnction myfunction
E_FO_F(func £f£) : f(£ff) {}
// the operator evaluation in FreeFem++
AnyType operator()(Stack stack) const {return SetAny<R>( f(stack)) ;}

};

typedef R (*func)(Stack )
func f£;
public:
// the function which build the FreeFem++ byte code
E_FO® * code(const basicAC_F® & ) const { return new E_FO_F(f);}
// the constructor to say ff is a function without parameter
// and returning a R
OneOperator®s(func ff): OneOperator(map_type[typeid(R).name()]),f(£f£){}
};

To finish we must add this new function in FreeFem++ table , to do that include :
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class Init { public: Init(Q); };
Init init;

Init::Init({
Global.Add("myfunction"," (",new OneOperator®s<double>(myfunction));

}

It will be called automatically at load module time.
To compile and link, use the ££f-c++ script :

% ff-c++ myfunction.cpp

g++ -c -g -Iinclude myfunction.cpp
g++ -bundle -undefined dynamic_lookup -g myfunction.o -o ./myfunction.dylib

To, try the simple example under Linux or MacOS, do

% FreeFem++-nw load.edp

-- FreeFem++ v 1.4800028 (date Tue Oct 4 11:56:46 CEST 2005)
file : load.edp

Load: lg_fem lg_mesh eigenvalue UMFPACK

1 : // Example of dynamic function load
2 /) e
3 // Id : freefem + +doc.tex,v1.1102010/06/0411 : 27 : 24hechtExp
4 :

5 : load "myfunction"

load: myfunction
load: dlopen(./myfunction) = 0xb0®lcc®

6 mesh Th=square(5,5);

7 fespace Vh(Th,P1);

8 : Vh uh=myfunction(); // warning do not forget ()
9 "o

: cout << uh[].min << << uh[].max << endl;
10 : sizestack + 1024 =1240 ( 216 )

-- square mesh : nb vertices =36 , nb triangles = 50 , nb boundary edges 20
Nb of edges on Mortars = 0

Nb of edges on Boundary = 20, neb = 20

Nb Of Nodes = 36

Nb of DF = 36

0 0.841471

times: compile 0.05s, execution -3.46945e-18s

CodeAlloc : nb ptr 1394, size :71524
Bien: On a fini Normalement

Under Windows, launch FreeFem++ with the mouse (or ctrl O) on the example.
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C.2 Example: Discrete Fast Fourier Transform

This will add FFT to FreeFem++, taken from http://www. fftw.org/. To download and install
under download/include just go in download/fftw and trymake.

The 1D dfft (fast discret fourier transform) for a simple array f of size n is defined by the following

formula
n—1

AE£E(fie) = ) fie™™"
j=0

The 2D DFFT for an array of size N = n X m is

m—1 n—1

dfft(f,m, &)rm = Z Z fi+nj6827ri(kj/n+lj'/m)

7'=0 =0

Remark: the value n is given by size(f)/m, and the numbering is row-major order.
So the classical discrete DFFT is f = dfft(f, —1)/ vn and the reverse dFFT f = dfft(f, 1)/ vn

Remark: the 2D Laplace operator is

3

n—

1
f(xy)=1/VN Fronje i)
0

=0 j=

~.

and we have
Jiwnt = f(k/n,1/m)
So . _
Afu = =@ (0 + D)) fu
where k = kifk <n/2elsek=k—nand[=1ifl <m/2else[=1-m.
And to have a real function we need all modes to be symmetric around zero, so n and m must be
odd.

Compile to build a new library

% ff-c++ dfft.cpp ../download/install/lib/libfftw3.a -I../download/install/include

export MACOSX_DEPLOYMENT_TARGET=10.3

g++ -c -Iinclude -I../download/install/include dfft.cpp

g++ -bundle -undefined dynamic_lookup dfft.o -o ./dfft.dylib ../download/install/lib/libfftw3.a

To test ,

-- FreeFem++ v 1.4800028 (date Mon Oct 10 16:53:28 EEST 2005)
file : dfft.edp
Load: 1lg_fem cadna lg_mesh eigenvalue UMFPACK

1: // Example of dynamic function load
2 /) mmm e
3 // Id : freefem + +doc.tex,v1.1102010/06/0411 : 27 : 24hechtExp
4 . // Discret Fast Fourier Transform
5 /) e
6 load "dfft" lood: init dfft

load: dlopen(dfft.dylib) = 0x2b0c700
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7 :
8 : int nx=32,ny=16,N=nx*ny;
9 : // warning the Fourier space is not exactly the unite square due to periodic
conditions
10 : mesh Th=square(nx-1,ny-1,[(nx-1)*x/nx, (ny-1)*y/ny]);
11 : // warring the numbering is of the vertices (x,y) is
12 : // given by i= x/nx+ nx*y/ny
13 :
14 : fespace Vh(Th,P1);
15 :
16 : func fl = cos(2*x*2*pi)*cos(3*y*2%pi);
17 : Vh<complex> u=£f1l,v;
18 : Vh w=£1;
19 :
20 :
21 : Vh ur,ui;
22 : // in dfft the matrix n,m is in row-major order ann array n,m is
23 : // store j + m* 1 ( the transpose of the square numbering )
24 : v[]=dfft(u[],ny,-1);
25 : u[]=dfft(v[],ny,+1);
26 : u[] /= complex(N);
27 1 v = fl-u;
28 : cout << " diff = "<< v[].max << " " << v[].min << endl;
29 : assert( norm(v[].max) < le-10 & norm(v[].min) < le-10) ;
30 : /) —--———- a more hard example ----
31 . // Lapacien en FFT
32 J/ —Au = f with biperiodic condition
33 : func f = cos(3*2*pi*x)*cos(2*2*pi*y); //
34 : func ue = +(1./(square(2*pi)*13.))*cos(3*2*pi*x)*cos(2*2*pi*y); //
35 : Vh<complex> ff = f;
36 : Vh<complex> fhat;
37 : fhat[] = dfft(££f[],ny,-1);
38 :
39 : Vh<complex> wij;
40 : // warning in fact we take mode between -nx/2, nx/2 and -ny/2,ny/2
41 : // thank to the operator ?:
42 : wij = square(2.*pi)*(square(( x<0.5?x*nx:(x-1)*nx))
+ square((y<0.5?y*ny: (y-1)*ny)));
43 : wij[][0] = le-5; // to remove div / 0
44 : fhat[] = fhat[]./ wij[]; //
45 : u[]=dfft(fhat[],ny,1);
46 : ul[] /= complex(N);
47 : ur = real(u); // the solution
48 : w = real(ue); // the exact solution
49 : plot(w,ur,value=1 ,cmm=" ue " wait=1);
50 : w[] -= ur[]; // array sub
51 : real err= abs(w[].max)+abs(w[].min) ;
52 : cout << " err = " << err << endl;
53 : assert( err < le-6);
54 : sizestack + 1024 =3544 ( 2520 )
—————————— CheckPtr:-----init execution ------ NbUndelPtr 2815 Alloc: 111320 NbPtr 6368
-- square mesh : nb vertices =512 , nb triangles = 930 , nb boundary edges 92
Nb of edges on Mortars = 0

Nb of edges on Boundary = 92, neb = 92
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Nb Of Nodes = 512
Nb of DF = 512
0x2d383d8 -1 16 512 n: 16 m:32
dfft 0x402bcO8 = 0x4028208 n = 16 32 sign = -1
————————— 0x2d3ae®8 1 16 512 n: 16 m:32
dfft 0x4028208 = 0x402bc®8 n = 16 32 sign = 1
————————— diff = (8.88178e-16,3.5651e-16) (-6.66134e-16,-3.38216e-16)
0x2d3cfb8 -1 16 512 n: 16 m:32
dfft 0x402de®8 = 0x402bc®8 n = 16 32 sign = -1
————————— 0x2d37f£f8 1 16 512 n: 16 m:32
dfft 0x4028208 = 0x402de®8 n = 16 32 sign
————————— err = 3.6104e-12
times: compile 0.13s, execution 2.05s
—————————— CheckPtr:-----end execution -- ------ NbUndelPtr 2815 Alloc: 111320 NbPtr 26950
CodeAlloc : nb ptr 1693, size :76084
Bien: On a fini Normalement
CheckPtr:Nb of undelete pointer is 2748 last 114
CheckPtr:Max Memory used 228.531 kbytes Memory undelete 105020

I}
=

C.3 Load Module for Dervieux’ PO-P1 Finite Volume Method

the associed edp file is examples++-load/convect _dervieux.edp

// Implementation of P1-PO® FVM-FEM
O e L E e
// Id : freefem + +doc.tex,v1.1102010/06/0411 : 27 : 24hechtExp
// compile and link with ff-c++ mat_dervieux.cpp (i.e. the file name without .cpp)
#include <iostream>
#include <cfloat>
#include <cmath>
using namespace std;
#include "error.hpp"
#include "AFunction.hpp"
#include "rgraph.hpp"
#include "RNM.hpp"
// remove problem of include
#undef HAVE_LIBUMFPACK
#undef HAVE_CADNA
#include "MatriceCreuse_tpl.hpp"
#include "MeshPoint.hpp"
#include "lgfem.hpp"
#include "lgsolver.hpp"
#include "problem.hpp"

class MatrixUpWind® : public E_FOmps { public:

typedef Matrice_Creuse<R> * Result;

Expression emat,expTh,expc,expul,expu?;

MatrixUpWind®(const basicAC_FO & args)

{
args.SetNameParam() ;
emat =args([0]; // the matrix expression
expTh= to<pmesh>(args[1]); // a the expression to get the mesh
expc = CastTo<double>(args[2]); // the expression to get c (must be a double)
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// a array expression [ a, b]
const E_Array * a= dynamic_cast<const E_Array*>((Expression) args[3]);
if (a->size() != 2) CompileError("syntax: MatrixUpWind®(Th,rhi, [ul,u2])");
int err =0;

expul= CastTo<double>((*a)[0]); // fist exp of the array (must be a double)
expu2= CastTo<double>((*a)[1]); // second exp of the array (must be a double)
}
"MatrixUpWind® () {
}

static ArrayOfaType typeargs()

{ return ArrayOfaType(atype<Matrice_Creuse<R>*>(),
atype<pmesh>(),atype<double>(),atype<E_Array>());}

static E_FO * f(const basicAC_FO & args){ return new MatrixUpWind®(args);}

AnyType operator()(Stack s) const ;
3

int fvmP1P0(double q[3][2], double u[2],double c[3], double a[3][3], double where[3]
)

{ // computes matrix a on a triangle for the Dervieux
FVM

for(int i=0;i<3;i++) for(int j=0;j<3;j++) al[il[jI1=0;

for(int i=0;i<3;i++){
int ip = (A+1)%3, ipp =(ip+1)%3;
double unl =-((q[ip][11+q[i]1[1]-2*q[ipp][1]1)*u[0]
-(qlipl[01+q[i1[0]1-2*q[ipp]l [®1)*ul1]1)/6;
if(unlL>0) { a[i][i] += unL; a[ip][i]-=unL;}
else{ a[i][ip] += unL; al[ip][ip]-=unL;}
if(where[i]&&where[ip]){ // this is a boundary edge
unL=C(q[ip] [11-q[i1[11)*ul0] -(qlip]l[0]-q[il[01)*ul11)/2;
if(unl>0) { a[i][i]+=unL; a[ip][ip]+=unL;}
}
}
return 1;

}

// the evaluation routine
AnyType MatrixUpWind0::operator() (Stack stack) const
{
Matrice_Creuse<R> sparse_mat =GetAny<Matrice_Creuse<R>* >((*emat) (stack));
MatriceMorse<R> * amorse =0;
MeshPoint *mp(MeshPointStack(stack)) , mps=*mp;
Mesh * pTh = GetAny<pmesh>((*expTh) (stack));
ffassert(pTh);
Mesh & Th (*pTh);
{
map< pair<int,int>, R> Aij;
KN<double> cc(Th.nv);
double infini=DBL_MAX;
cc=infini;
for (int it=0;it<Th.nt;it++)
for (int iv=0;iv<3;iv++)

*
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{
int i=Th({it,iv);
if ( cc[i]==infini) { // if nuset the set
mp->setP(&Th,it,iv);
cc[i]=GetAny<double>((*expc) (stack));
}
}

for (int k=0;k<Th.nt;k++)
{
const Triangle & K(Th[k]);
const Vertex & A(K[®]), &B(KI[1]),&C(K[2]);
R2 Pt(1./3.,1./3.);
R u[2];
MeshPointStack(stack)->set(Th,K(Pt),Pt,K,K.1lab);
ul[0] = GetAny< R>( (*expul) (stack) ) ;
ul[l] = GetAny< R>( (*expu2)(stack) ) ;

int ii[3] ={ Th(A), Th(B),Th(O};
double q[3]1[2]={ { A.x,A.y} ,{B.x,B.y},{C.x,C.y} } ; // coordinates of 3
vertices (input)
double c[3]={cc[ii[®]],cc[ii[1]],cc[ii[2]]};
double a[3][3], where[3]={A.lab,B.lab,C.lab};
if (fvmP1P0(q,u,c,a,where) )
{
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
if (fabs(a[il[j]) >= 1le-30)
{ Aij[make_pair(ii[il,ii[j1)I+=alil[j];
}
}
}
amorse= new MatriceMorse<R>(Th.nv,Th.nv,Aij,false);
}
sparse_mat->pUh=0;
sparse_mat->pVh=0;
sparse_mat->A.master (amorse) ;
sparse_mat->typemat=(amorse->n == amorse->m) ? TypeSolveMat(TypeSolveMat::GMRES) : TypeSolveMat(Ty
// none square matrice (morse)
*MpP=ps ;

if(verbosity>3) { cout << " End Build MatrixUpWind : << endl;}
return sparse_mat;

}

class Init { public:
InitQ);
};
Init init;
Init::InitQ)
{
cout << " lood: init Mat Chacon << endl;
Global.Add("MatUpWind®"," (", new OneOperatorCode<MatrixUpWind® >( ));
}
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C.4 More on Adding a new finite element

First read the section[I3]of the appendix, we add two new finite elements examples in the directory
examples++-1load.

The Bernardi-Raugel Element The Bernardi-Raugel finite element is meant to solve the Navier
Stokes equations in u, p formulation; the velocity space P2 is minimal to prove the inf-sup condi-
tion with piecewise constant pressure by triangle.

The finite element space V), is

Vi, ={ue H(Q)* VKeT,uxePy¥)

where
br _ K KK K
Py = span{d; exliz1234=12 U4, 4 niintiz123

with notation 4 = 1,5 = 2 and where AIK are the barycentric coordinates of the triangle K, (ex)r=12
the canonical basis of R? and ny the outer normal of triangle K opposite to vertex k.

// The P2BR finite element : the Bernadi Raugel Finite Element
// F. Hecht, decembre 2005
Y
// See Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes
problem. Math. Comp. 44, 71-79 (1985).
// It is a 2d coupled FE
// the Polynomial space is P1> + 3 normals bubbles edges function (P»)
// the degree of freedom is 6 values at of the 2 componants at the 3 vertices
// and the 3 flux on the 3 edges
// So 9 degrees of freedom and N= 2.

/) e related files:

// to check and validate : testFE.edp

// to get a real example : NSP2BRP0.edp

)

#include "error.hpp"
#include "AFunction.hpp"
#include "rgraph.hpp"
using namespace std;
#include "RNM.hpp"
#include "fem.hpp"
#include "FESpace.hpp"
#include "AddNewFE.h"

namespace Fem2D {

class TypeOfFE_P2BRLagrange : public TypeOfFE { public:
static int Data[];

TypeOfFE_P2BRLagrange(): TypeOfFE(6+3+0,
2,
Data,
4,
1,
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6+3*(2+2), // nb coef to build interpolation
9, // np point to build interpolation
®

{

.. // to long see the source
}

void FB(const bool * whatd, const Mesh & Th,const Triangle & K,const R2 &P, RNMK_ & val)
const;
void TypeOfFE_P2BRLagrange::Pi_h_alpha(const baseFElement & K,KN_<double> & v) const;
1
// on what nu df on node node of df
int TypeOfFE_P2BRLagrange::Data[]={
0,0, 1,1, 2,2, 3,4,5,

3

0
5
0,
) 8,

0,1, 0,1, 0,1
0,0, 1,1, 2,2
0,0, 0,0, 0,0,
0,1, 2,3, 4,5
0,0

3

void TypeOfFE_P2BRLagrange: :Pi_h_alpha(const baseFElement & K,KN_<double> & v) const

{
const Triangle & T(K.T);

int k=0;
// coef pour les 3 sommets fois le 2 composantes
for (int i=0;i<6;i++)
v[k++]=1;
// integration sur les aretes

for (int i=0;i<3;i++)

R2 N(T.Edge(i).perp());
N *= T.EdgeOrientation(i)*0.5 ;

v[k++]= N.x;
v[k++]= N.y;
v[k++]= N.x;
v[k++]= N.y;

3

void TypeOfFE_P2BRLagrange: :FB(const bool * whatd,const Mesh & ,const Triangle & K,const
R2 & P,RNMK_ & val) const

{
e // to long see the source
}
// ---- cooking to add the finite elemet to freefem table --------
// a static variable to def the finite element

static TypeOfFE_P2BRLagrange P2LagrangeP2BR;
// now adding FE in FreeFEm++ table
static AddNewFE P2BR("P2BR",&P2LagrangeP2BR);
// --- end cooking

} // end FEM2d namespace
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A way to check the finite element

load "BernadiRaugel"

// a macro the compute numerical derivative
macro DD(f,hx,hy) ( (f£(xl+hx,yl+hy)-f(x1-hx,y1l-hy))/(2*(hx+hy))) //
mesh Th=square(l,1,[10*(x+y/3),10*(y-x/3)1);

real x1=0.7,y1=0.9, h=le-7;
int itl1=Th(xl,yl).nuTriangle;

fespace Vh(Th,P2BR);

Vh [al,a2],[bl,b2],[cl,c2];

for (int i=0;i<Vh.ndofK;++i)
cout << i << " " << Vh(0,1) << endl;
for (int i=0;i<Vh.ndofK;++i)
{
al[]=0;
int j=Vh(itl,i);
al[1[jI=1; // a bascis functions
plot([al,a2], wait=1);

[b1,b2]=[al,a2]; // do the interpolation

cl[] = al[] - bl[l;

cout << " ——-—--——- "< di <" " << cl[lmax << " " << cl[].min << endl;
cout << " a = " << al[] <<endl;
cout << " b = " << b1[] <<endl;
assert(cl[].max < le-9 && cl[].min > -1le-9); // check if the interpolation is
correct
// check the derivative and numerical derivative
cout << " dx(al)(xl,yl) = " << dx(al)(xl,yl) << " == " << DD(al,h,0) << endl;

assert( abs(dx(al) (x1,y1)-DD(al,h,0) ) < le-5);
assert( abs(dx(a2) (x1,y1)-DD(a2,h,0) ) < le-5);
assert( abs(dy(al)(x1,y1)-DD(al,0,h) ) < 1le-5);
assert( abs(dy(a2)(x1,y1)-DD(a2,0,h) ) < le-5);

A real example using this finite element, just a small modification of the NSP2P1. edp examples,
just the begenning is change to

load "BernadiRaugel"

real sO=clock();

mesh Th=square(10,10);
fespace Vh2(Th,P2BR);
fespace Vh(Th,PO®);
Vh2 [ul,u2], [upl,up2];
Vh2 [v1,v2];
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And the plot instruction is also changed because the pressure is constant, and we cannot plot
isovalues of peacewise constant functions.

The Morley Element See the example bilapMorley.edp.

C.5 Add a new sparse solver

Warning the sparse solver interface as been completely rewritten in version 3.2 , so the section is
obsolete, the example in are correct/

Only a fast sketch of the code is given here; for details see the .cpp code from SuperLU. cpp or
NewSolve.cpp.

First the include files:

#include <iostream>
using namespace std;

#include "rgraph.hpp"
#include "error.hpp"
#include "AFunction.hpp"

//  #include "lex.hpp"
#include "MatriceCreuse_tpl.hpp"
#include "slu_ddefs.h"
#include "slu_zdefs.h"

A small template driver to unified the double and Complex version.

template <class R> struct SuperLUDriver

{

};

template <> struct SuperLUDriver<double>

{
double version
}s
template <> struct SuperLUDriver<Complex>
{
Complex version
s

To get Matrix value, we have just to remark that the Morse Matrice the storage, is the SLU_NR
format is the compressed row storage, this is the transpose of the compressed column storage.
So if AA is a MatriceMorse you have with SuperLU notation.

n=AA.n;
m=AA.m;
nnz=AA.nbcoef;
a=AA.a;
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asub=AA.cl;
xa=AA.lg;
options.Trans = TRANS;

Dtype_t R_SLU = SuperLUDriver<R>::R_SLU_TQ);
Create_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, R_SLU, SLU_GE);

To get vector infomation, to solver the linear solver x = A~!'h

void Solver(const MatriceMorse<R> &AA,KN_<R> &x,const KN_<R> &b) const

{

Create_Dense_Matrix(&B, m, 1, b, m, SLU_DN, R_SLU, SLU_GE);
Create_Dense_Matrix(&X, m, 1, x, m, SLU_DN, R_SLU, SLU_GE);

3

The two BuildSolverSuperLU function, to change the default sparse solver variable
DefSparseSolver<double>: :solver

*

MatriceMorse<double>: :VirtualSolver
BuildSolverSuperLU(DCL_ARG_SPARSE_SOLVER(double,A))

{

if(verbosity>9)

cout << " BuildSolverSuperLU<double>" << endl;

return new SolveSuperLU<double>(*A,ds.strategy,ds.tgv,ds.epsilon,ds.tol_pivot,ds.tol_pivot_sym,
}

MatriceMorse<Complex>::VirtualSolver *
BuildSolverSuperLU(DCL_ARG_SPARSE_SOLVER(Complex,A))

{
if(verbosity>9)
cout << " BuildSolverSuperLU<Complex>" << endl;
return new SolveSuperLU<Complex>(*A,ds.strategy,ds.tgv,ds.epsilon,ds.tol_pivot,ds.tol_pivot_sym,d
}

The link to FreeFem++

class Init { public:
InitQ;
3

To set the 2 default sparse solver double and complex:

DefSparseSolver<double>: :SparseMatSolver SparseMatSolver_R ; ;
DefSparseSolver<Complex>: :SparseMatSolver SparseMatSolver_C;

To save the default solver type

TypeSolveMat: :TSolveMat TypeSolveMatdefaultvalue=TypeSolveMat::defaultvalue;

To reset to the default solver, call this function:
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bool SetDefault()
{
if(verbosity>1)
cout << " SetDefault sparse to default" << endl;
DefSparseSolver<double>::solver =SparseMatSolver_R;
DefSparseSolver<Complex>: :solver =SparseMatSolver_C;
TypeSolveMat: :defaultvalue =TypeSolveMat::SparseSolver;

}

To set the default solver to superL.U, call this function:

bool SetSuperLU(Q)

{
if(verbosity>1)
cout << " SetDefault sparse solver to SuperLU" << endl;
DefSparseSolver<double>::solver =BuildSolverSuperlLU;
DefSparseSolver<Complex>::solver =BuildSolverSuperLU;
TypeSolveMat: :defaultvalue =TypeSolveMatdefaultvalue;
3

To add new function/name defaultsolver,defaulttoSuperLUin freefem++, and set the de-

fault solver to the new solver., just do:

Init init;
Init::InitQ)
{

SparseMatSolver_R= DefSparseSolver<double>::solver;
SparseMatSolver_C= DefSparseSolver<Complex>::solver;

if(verbosity>1)

cout << "\n Add: SuperLU, defaultsolver defaultsolverSuperLU" << endl;

TypeSolveMat: :defaultvalue=TypeSolveMat: : SparseSolver;
DefSparseSolver<double>: :solver =BuildSolverSuperLU;
DefSparseSolver<Complex>: :solver =BuildSolverSuperLU;

// test if the name '"defaultsolver" exist in freefem++

if(! Global.Find("defaultsolver") .NotNull() )

Global.Add("defaultsolver"," (",new OneOperator®<bool>(SetDefault));
Global.Add("defaulttoSuperLU"," (",new OneOperator®<bool>(SetSuperLl));

}

To compile superlu.cpp, just do:

1. download the SuperLu 3.0 package and do

curl http://crd.lbl.gov/ " xiaoye/SuperLU/superlu_3.0.tar.gz

tar xvfz superlu_3.0.tar.gz
go SuperLU_3.0 directory
$EDITOR make.inc

make

-0 superlu_3.0.tc

2. In directoy include do to have a correct version of SuperLu header due to mistake in case of

inclusion of double and Complex version in the same file.
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tar xvfz ../SuperLU_3.0-include-ff.tar.gz

I will give a correct one to compile with freefm++.

To compile the freefem++ load file of SuperLu with freefem do: some find like :
ff-c++ SuperLU.cpp -L$HOME/work/LinearSolver/SuperLU_3.0/ -lsuperlu_3.0

And to test the simple example:

A example:

load "SuperLU"

verbosity=2;

for(int i=0;i<3;++1)

{

// if i == 0 then SuperLu solver
// i == 1 then GMRES solver

// i == 2 then Default solver

{
matrix A =
[[ 0, 1, O, 10],
[o, 0, 2, 0],
[0, 0, 0, 3],
[ 4,06 , 0, 011;
reallint] xx = [ 4,1,2,3], x(4), b(4);
b = A*xx;
cout << b << " " << xxX << endl;
set (A,solver=sparsesolver);
X = A"-1%Db;
cout << X << endl;
}
{

matrix<complex> A =
[[ 0, 1i, 0, 10],
[6o, O, 2i, 0],
[ 0, 0, O, 3i],
[ 4i,0 , 0, 0]];
complex[int] xx = [ 4i,1i,2i,3i], x(4), b(4);
b = A¥*xx;
cout << b << << XX << endl;
set (A,solver=sparsesolver);
X = A"-1%b;
cout << X << endl;
}
if(i==0)defaulttoGMRES(Q);
if(i==1)defaultsolver();
}

To Test do for exemple:

FreeFem++ SuperLu.edp
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FreeFem++ LGPL License

This is The FreeFem++ software. Programs in it were maintained by
e Frédéric hecht <Frederic.Hecht@upmc.fr>
e Jacques Morice <morice@ann.jussieu.fr>

All its programs except files the comming from COOOL sofware (files in directory src/Algo)
and the file mt19937ar.cpp which may be redistributed under the terms of the GNU LESSER
GENERAL PUBLIC LICENSE Version 2.1, February 1999

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed under
the terms of this Lesser General Public License (also called “this License”). Each licensee is
addressed as you”.

A ’library” means a collection of software functions and/or data prepared so as to be conveniently
linked with application programs (which use some of those functions and data) to form executables.
The “Library”, below, refers to any such software library or work which has been distributed under
these terms. A ”work based on the Library” means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with
modifications and/or translated straightforwardly into another language. (Hereinafter, translation
is included without limitation in the term “modification”.)

”Source code” for a work means the preferred form of the work for making modifications to it.
For a library, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of
the library.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running a program using the Library is not restricted, and output
from such a program is covered only if its contents constitute a work based on the Library (inde-
pendent of the use of the Library in a tool for writing it). Whether that is true depends on what the
Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and distribute a copy of this License along
with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.
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2. You may modify your copy or copies of the Library or any portion of it, thus forming a work
based on the Library, and copy and distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files
and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the
terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-
defined independent of the application. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional: if the application does not supply
it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Library, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is
a work based on the Library, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with
a work based on the Library) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public License, version 2, instead of to
this License. (If a newer version than version 2 of the ordinary GNU General Public License has
appeared, then you can specify that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of the Library into a program that is
not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you accom-
pany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.
If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement
to distribute the source code, even though third parties are not compelled to copy the source along
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with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with
the Library by being compiled or linked with it, is called a “work that uses the Library”. Such a
work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of
this License.

However, linking a ”work that uses the Library” with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a “work that
uses the library”. The executable is therefore covered by this License. Section 6 states terms for
distribution of such executables.

When a ”work that uses the Library” uses material from a header file that is part of the Library, the
object code for the work may be a derivative work of the Library even though the source code is
not. Whether this is true is especially significant if the work can be linked without the Library, or
if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and
small macros and small inline functions (ten lines or less in length), then the use of the object file
is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this
object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the
work under the terms of Section 6. Any executables containing that work also fall under Section
6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses the
Library” with the Library to produce a work containing portions of the Library, and distribute that
work under terms of your choice, provided that the terms permit modification of the work for the
customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that
the Library and its use are covered by this License. You must supply a copy of this License. If the
work during execution displays copyright notices, you must include the copyright notice for the
Library among them, as well as a reference directing the user to the copy of this License. Also,
you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changes were used in the work (which must be distributed under Sec-
tions 1 and 2 above); and, if the work is an executable linked with the Library, with the complete
machine-readable “work that uses the Library”, as object code and/or source code, so that the user
can modify the Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions files in the Library
will not necessarily be able to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is
one that (1) uses at run time a copy of the library already present on the user’s computer system,
rather than copying library functions into the executable, and (2) will operate properly with a
modified version of the library, if the user installs one, as long as the modified version is interface-
compatible with the version that the work was made with.

¢) Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.
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e) Verify that the user has already received a copy of these materials or that you have already sent
this user a copy.

For an executable, the required form of the ”work that uses the Library”” must include any data and
utility programs needed for reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries
that do not normally accompany the operating system. Such a contradiction means you cannot use
both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such a
combined library, provided that the separate distribution of the work based on the Library and of
the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncom-
bined with any other library facilities. This must be distributed under the terms of the Sections
above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Library (or any work based on the Library), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Library or works based
on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or modify
the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order, agree-
ment or otherwise) that contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy simultaneously your obliga-
tions under this License and any other pertinent obligations, then as a consequence you may not
distribute the Library at all. For example, if a patent license would not permit royalty-free redis-
tribution of the Library by all those who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply, and the section as a whole is intended to apply in
other circumstances.
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It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Library under this Li-
cense may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number
of this License which applies to it and “any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Library does not specify a license version number, you may choose any version
ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY ”AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS
WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
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END OF TERMS AND CONDITIONS



Appendix D

Keywords

Main Keywords

adaptmesh
Cmatrix
R3

bool
border
break
buildmesh
catch
cin
complex
continue
cout
element
else

end
fespace
for

func

if
ifstream
include
int
intalledge
load
macro
matrix
mesh
movemesh
ofstream
plot
problem
real
return
savemesh
solve
string
try
throw
vertex
varf

while

Second category of Keywords

intld
int2d
on
square

Third category of Keywords

dx

dy
convect
jump
mean

Fourth category of Keywords

wait

ps

solver

CG

LU
UMFPACK
factorize
init

endl

Other Reserved Words

X, vy, z, pi, i,

sin, cos, tan, atan, asin, acos,
cotan,sinh,cosh,tanh,cotanh,
exp, log, logl®, sqrt

abs, max, min,
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Book Description

Fruit of a long maturing process freefem, in its last avatar, FreeFem++, is a high level
infegrated development environment (IDE) for partial differential equations (PDE).
It is the ideal tool for feaching the finite element method but it is also perfect for
research to quickly test new ideas or multi-physics and complex applications.

FreeFem++ has an advanced automatic mesh generator, capable of a posteri-
ori mesh adaptation; it has a general purpose elliptic solver interfaced with fast
algorithms such as the multi-frontal method UMFPACK. Hyperbolic and parabolic
problems are solved by iterative algorithms prescribed by the user with the high
level language of FreeFem++. It has several triangular finite elements, including
discontinuous elements. Finally everything is there in FreeFem++ tO prepare re-
search quality reports: color display online with zooming and other features and
postscript printouts.

This book is ideal for students at Master level, for researchers at any level and for
engineers also in financial mathematics.
Editorial Reviews

“...Impossible to put the book down, suspense right up fto the last page. .. ”
A. Tann, Siam Chronicle.

“...The chapter on discontinuous fems is so hilarious ... ."
B. GALERKINE, POCCHHCKOH aKaleMUH HayK .
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