libexplain

Reference Manual

Peter Miller
pmiller@opensource.grau

This document describes libexplain version 1.4
and was prepared 27 March 2019.

This document describing the libexplain libraagd the libexplain library itself, are
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

This program is free soffwe; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Freea®®ffundation; eitherey-
sion 3 of the License, or (at your optionydater version.

This program is distrilted in the hope that it will be useful, but WITHOUT ANYAWRANTY,
without even the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should hae receved a mpy of the GNU Lesser General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

Read Me(lib&plain) ReadVie(libexplain)

NAME
libexplain — Explain errno values returned by libc functions

DESCRIPTION
Thelibexplainpackage provides a library which may be used to explain Unix and Linux system call errors.
This will make your applicatiors eror messages much more informatio your users.

The library is not quite a drop-in replacementdwerror(3), but it comes close. Each system call has a
dedicated libexplain function, for example

fd = open(path, flags, mode);

if (fd < 0)

fprintf(stderr, "%s\n", explain_open(path, flags, mode));
exit(EXIT_FAILURE);

If, for example, you were to try to open-such-dir/some-file , You would see a message like
open(pathname = "no-such-dir/'some-file", flags = O_RDONLY) failed,
No such file or directory (2, ENOENT) because there is no "no-
such-dir" directory in the current directory

The good ne is that for each of these functions there is a wrapper function, in this case
explain_open_or_dig), that includes the alde mde fragment. Adding good error reporting is as simple

as using a different, but similarly named, function. The library also provides thread safe variants of each
explanation function.

Coverage includes 221 system calls and 547 ioctl requests.

Tutorial Documentation
There is a papewailable in PDF format (http://libexplain.sourceforge.net/lca2010/Ica2010.pdf) that
describes the library and Wwdo use LibExplain. The paper can also be accessegp#sin_Ica201@1),
which also appears in the reference manual (see below).

HOME PAGE
The latest version dibexplainis available on the Web from:

URL: http://libexplain.sourceforge.net/

File: index.html #the libexplain page

File: libexplain.1.4.README #Description, from the tar file
File: libexplain.1.4.lsm #Description, LSM format
File: libexplain.1.4.taigz #the complete source

File: libexplain.l1.4.pdf #Reference Manual

BUILDING LIBEXPLAIN
Full instructions for buildindibexplainmay be found in thBUILDING file included in this distribution.
COPYRIGHT

libexplainversion 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

Library License
The shared libraryand its include files, & GNU LGPL licensed.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License, or
(at your option) aylater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANqithout
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should hae recevved a @py of the GNU Lesser General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Reference Manual libgolain 1

Read Me(lib&plain) ReadVie(libexplain)

Non-Library License
Everything else (all source files that do not constitute the shared library and its include Bl€3y@rGPL

licensed.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) ary later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANqithout

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should hae recevved a @py of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual libgalain 2

Read Me(lib&plain) ReadVie(libexplain)

RELEASE NOTES
This section details the various features and bug fixes of the various releasescruciating and
complete detail, and also credits for those of you wive ganerously sent me suggestions and bug reports,
see theetc/CHANGES .files.

Coverage includes 221 system calls and 547 ioctl requests.

Version 1.4 (2014-Mar-03)
* Numerous false mgtive test results, ha been fixed on FreeBSD.

» When building on FreeBSD some interesting flags need to be specified
CC=gvc46 \ CPPFLAGS=-Il/usr/locall/include \ LDFLAGS=-L/usr/local/lib \

Also care must be taken if an earlier version of libexplain is installed, and can be found on
$LD_LIBRARY_PATH, this may cause false getives.

» This change set adds mor efixes for FreeBSD compilation.
» Some problems diswered using the clang compilerveabeen fixed. Thisis a work in progress.
» My thanks to Vinxe <vinxxe@gmail.com> for reporting a problem compiling from source.

» Explanations are moavailable for errors reported by thehownaf2), linkat(2), moun{2), nanoslee(8),
settimeofdaf?), sleef§3), unamg?2), usleefd3), system calls.

» Added a work-around for gethostnameDarwin/OSX.
» This change set borrows some of the glib nanosleep fixes.

Version 1.3 (2013-Nov-19)

» Explanations are moavailable or errors reported by tlael_from_text3), acl_get f@3), acl_get _fil¢3),
acl_set f@3), acl_set fil€3), acl_to_tex{3), asprint{3), avasprint{3), endgren{3), fchowna(2),
fseekld), fstata(2), ftello(3), futimensa2), futimeng3), getgrent3), getgrouplis(3), gethostid 3),
getprioriy(2), iconv_closé€3), icon3), iconv_ope(Bd), lutimeg2), openaf2), pipe22), setgrent3),
setpriority(2) andstrcoll(3) system calls.

» Themalloq3), et g diagnostics are me more avare ofgetrlimi(2) andgetrusage(2), in order to gie
more informatie messages.

* YunQiang Su <wzssyqa@gmail.com> build problem where a symbol is #defineds laotpty,
throwing a warning about uninitialized members.
Debian: Closes: #723409

 Chris Leick <c.leick@vollbio.de> contributed a German message translation.

» Eric Smith <brouhaha@fedoraproject.org> dised that test 555 couldwg@ a Blse ngaive if process
666 exists when the test is run.

Version 1.2 (2013-Mar-14)

Reference Manual libgalain 3

Read Me(lib&plain) ReadVie(libexplain)

» Explanations are moavailable for errors reported by the gethostbyname and getrusage system calls.

» Emanuel Haupt <ehaupt@FreeBSD.org> drsced that libexplain coped poorly with different versions
of bison emitting code chunks in different orders. =======

» getrusage system call. Explanations ane aeilable for errors reported by thlgethostbynar(B)
andyerusage(2) system calls.

» Emanuel Haupt <ehaupt@FreeBSD.org> drsced that libexplain coped poorly with different versions
of bison emitting code chunks in different orders.

» This change set copes with the absence of a v4l2_buffer mentiien recently happened in Ubuntu
Raring. My thanks to the LaunchPadfR#ild farm for finding this problem.

Version 1.1 (2012-Nov-20)
» Explanations are moavailable for errors reported by tleec\y3), geresgid2), getresuid2), Ichmod?2),
setgid?2) setiegd(2), setresgi@?), setresui?), setreuid2), setuid2) andutimeng2) system calls.

» Emanuel Haupt <ehaupt@critical.ch> digered that the error handling fshma(2) on BSD needed
more portability work.

e There are newxplain_filename_from_stream andexplain_filename_from_fildes
functions to the public API. This\ggs library clients access to libexplagridea of the filename.

» Michael Cree <mcree@orcon.net.nz> disged that there was a problem building libexplain on alpha
architecture.
Debian: Closes: #661440

Version 1.0 (2012-May-19)
* Sevaal testing false rggtive has been fix, concerning EACCES wheaited by root.

Version 0.52 (2012-Mar-04)
« A false ngative in test 76, where Linux security modules changa¢hamég2) semantics.

* A problem on sparc64 has beerefix Libexplain can nw cope with a missing O_LARGEFILE
declaration, and yet file flags returned by the kerne¢Hze flag set.

« A build problem on Debian alpha has been fixed, the name of an include file was incorrect.

Version 0.51 (2012-Jan-26)
» Theptracq?2) support has been imwenl with more conditionals determined by the ./configure script
when building.
Debian: Closes: #645745

Version 0.50 (2012-Jan-16)

Reference Manual libgolain 4

Read Me(lib&plain) ReadVie(libexplain)

* SpepS <spepsforge@users.sf.net> and Eric Smith <eric@brouhaha.converdidtbat
_PC_MIN_HOLE_SIZE isrt'supported for all Linux. Some more #ifdef was added.

» Sevaal false ngatives from tests hae keen fixed.
Debian: Closes: 654199

* The tarball nav includes a libexplain.spec file for building an RPM package ugimipuild(1).

* This change set makes thes@eadlink) string search less particuko hat it works in more cases. In
this instance, on Fedora 14.

 Explanations are nowevailable for errors reported by thealpath(3) system call.

Version 0.49 (2011-Nov-10)
» Explanations are moavailable for errors reported by tlshimct(2) system call.

» Some build problems (diseered by the LaunchPad RPBuid farm) hae keen fixed.

Version 0.48 (2011-Nov-08)
» Explanations are moavailable for errors reported by tslmaf2) system call.

» Several build problems on Solaris Y& keen fixed.

» Dagobert Michelsen <dam@opencsw.org> found the test 625 was throwing a f@seerie his test
environment. It can mo cope with stdin being closed.

» Dagobert Michelsen <dam@opencsw.org> disced that, on Solaris, test falsegaives were caused
by the need for a space before the width ifng “w 800 " command.

» Eric Smith <eric@brouhaha.com> disered thatisof(1) could report errors axecutable names, when
it couldn't read the symlink. These non-results are fitiered out.

» Eric Smith <eric@brouhaha.com> disered three false mgtives from tests of théill (2) system call.
» Better explanations are wavailable when a user attempts txeeute a directory.

Version 0.47 (2011-Sep-27)
» Explanations are moavailable for errors reported by tlsetsiq2) system call.

e The Ubuntu PR build farm found seeral Hardy build problems. Theseusaleen fixed.

» Code has been added to detect those cases where a file descriptor may be open for reading and writing,
but the 1/0 stream it is accessed by is only open for one of them.

» Code has been added to cope with falggthees whenlsof(1) is not as helpful as could be desired.

» Michael Bienia <geser@ubuntu.com> digeed a build problem with the SIOCSHWTSTAMP ioctl
request, and sent a patch.

Version 0.46 (2011-Aug-24)

Reference Manual libgalain 5

Read Me(lib&plain) ReadVie(libexplain)

« LibExplain has been ported to Solaris 8, 9 and 10. My thanks to Dagobert Michelsen and
http://opencsw.org/ for assistance with this port.

 Sevaal more Linuxioctl(2) requests are supported.
* A sedfault has been fixed in the output tee filter when handling exit.

Version 0.45 (2011-Jul-17)
» Dagobert Michelsen <dam@opencsw.org> discsed seeral build problems on OpenSolaris; these
have keen fixed.

» Explanations are moavailable for errors reported by the Linipctl(2) V4L1 system calls.

Version 0.44 (2011-Jul-03)
» Several build problem to do with older Linux kernelsviedeen fixed.

Version 0.42 (2011-Jul-02)
» Explanations are moavailable for errors reported by the V4L2 ioctl requests.

» The Debian package no longer installs the libtool *.1a file.
Debian: Closes: 621621

» The call arguments printed for ioctl(2)wmanclude the type of the third argument.
» The error messageswanclude more information about block and character special devices, when
printing file types.

Version 0.42 (2011-May-26)
» This change set adds an “ldconfig” hint to the BUILDING instructions. My thanks teBhaBride
<blake@arahant.com> for this suggestion.

» Emanuel Haupt <ehaupt@critical.ch> reportedes# problems building libexplain on FreeBSD. These
have keen fixed.

Version 0.41 (2011-Mar-15)
» There were some C+4elwords in the unclude files, which caused problems for C++ users. They
have keen replaced.

» Explanations are noavailaible for errors reported by thgetpgid(2), getpgrp(2), ptracq2), setgpid2)
andsetpgrig2) system calls.

Version 0.40 (2010-Oct-05)
» The code nw builds and tests successfully on FreeBSD.

» Explanations are moavailable for errors reported by tleallog(3) andpoll(2) system calls.
Version 0.39 (2010-Sep-12)

Reference Manual libgalain 6

Read Me(lib&plain) ReadVie(libexplain)

» A build problem has been fixed on Ubuntu Harayumber of symbols are absent from older versions of
<linux/cdrom.h>, conditional code has been added for them.

» A bug has been fixed in one of the documentation files, it was missing the conditional aroxXl the
macro, causingomlint(1) andlintian(1) to complain.

Version 0.38 (2010-Sep-08)
» Some build problems on Fedora 1¥é&é&een fixed.

Version 0.37 (2010-Aug-27)
» The library source files are supposed to be LGPL, kiemaer 1000 of them were GPL (about 20%).
This has been fixed.

» A couple of problems building on Fedora 13&#&een fixed.

Version 0.36 (2010-Aug-25)
» Several false ngative reported by tests on the Linux “alpha” and “ia64” architecturge been fixed.

Version 0.35 (2010-Aug-15)
» A number of fale regdives from tests hae been fixed, primarily due to random differences between
Linux architectures.

» The BUILDING document goes into more detail about things that can cause fgeasenrhen testing.

» The man pages ke keen fixed so that tlyeno longer contain unescaped hyphen characters, as warned
about by thdintian(1) program.

Version 0.34 (2010-Aug-07)
» Another test 33 false getive has been fixed.

» There is a n® “hanging-indent” option, that can be set fromEXPLAIN_OPTIONenvironment
variable. Itdefaults to zero for backwards compatibiliypplications may set it using the
explain_option_hanging_indent_$8) function.

Version 0.33 (2010-Jul-04)
» A number of testing false getives (found by the Debian build farm) & been fixed.

» There are newXplain_output_erro¢3) andexplain_output_error_and_d{8) functions for printing
formatted error messages.

» Some systems kiammag2) report(void*)(-1) instead of NULL for errors. This is now
understood.

Version 0.32 (2010-Jun-22)
» Explanations are moavailable for errors reported by themag2), munmag2) andutimeg2) system
calls.

» A number of false ngatives for tests on some less common architectures been fixed.

» Some build problems relating ictl(2) support hee keen fixed.

» Abug has been fixed in tHibexplain/output.h file, it was missing the C++ insulation.
Version 0.31 (2010-May-01)

Reference Manual libgalain 7

Read Me(lib&plain) ReadVie(libexplain)

» A number of build problems ke keen fixed.

Version 0.30 (2010-Apr-28)
» Several test false rgetives havebeen fixed, on various Debian architectures.

Version 0.29 (2010-Apr-25)
» A number of build problems, diseered by the Debian build farm, e been fixed. Whowould of
thought that there could be some much inconsigtbatween Linux architectures?

Version 0.28 (2010-Apr-19)
» Several architecture-specific build problems, found by the Debian build farve, teeen fixed.

Version 0.27 (2010-Apr-17)
» Several architecture-specific build problems, found by the Debian build farve, teeen fixed.

Version 0.26 (2010-Apr-06)
» A build problem has been fixed on systems whexdist is not compatible witltonst void *

» This change set remes the unused-result warning foremplain_Iseek_or_dig), because it is very
common to ignore the result.

» Explanations are moavailable for errors reported by t®dkepair(2) system call.

Version 0.25 (2010-Mar-22)
 Portability of the code has been imyed.

» Theexplain(3) man page e mentions AC_SYS_LARGEFILE in the building requirements.
» Coverage nwv includes thdprintf(3), printf(3), snprint{(3), sprintf(3), vfprintf(3), vprintf(3), vsnprint{3)
andvsprint{3) system calls.

Version 0.24 (2010-Mar-03)
« Itis now possible to redirected libexplain outplor example, it is nw possible to redirect all output to
syslod3).

» Coverage nw includes thdstatvf¢2) andstatvf¢2) system call.
» A number of problems found while building and testing on Solaxie been fixed.

Version 0.23 (2010-Feb-21)
« It turns out that on alpha architecture, you tdisambiguate the FIBMAP vs BMP_IOCTL case in the
pre-processorThe code nev uses a disambiguate function. This problem was #iged by the Debian
build farm.

Version 0.22 (2010-Feb-12)
» This change set fixes a falsegave found by the Debian automated build system.

Version 0.21 (2010-Feb-09)

Reference Manual libgalain 8

Read Me(lib&plain) ReadVie(libexplain)

Explanations are moavailable for errors reported by thipurge(3), gew(3) andputw(3) system calls.
Some build problems ke keen fixed.

Version 0.20 (2010-Jan-20)

Several lintian warnings relating to the man pagegehiaen fixed.

The LIBEXPLAIN_OPTIONS environment variablewanderstands a mesymbolic-mode-bits=true
option. Itdefaults to false, for shorter error explanations.

There is a nevexplain_lca201@1) man page. This is a gentle introduction to libexplain, and the paper
accompanying my LCA 2010 talk.

When process ID (pid) values are printedyta® nav accompanied by the name of the process
executable, whenailable.

Numerous build bugs and niggles/bdeen fixed.

Explanations are moavailable for errors reported by theeclp(3), fdopendi(3), feo3), fgetpog3),
fputq3), fseekl), fsetpog3), fsynd2), ftell(3), mkdtem3), mknod2), mkostem(B), mkstem(B),
mktemi3), puteny3), putq3), raise(3), setbufl), setbuffe(3), seten(3), setlinebuf3), setvbuf3),
stimg?2), tempnarn(3), tmpfilg(3), tmpnang3), unget¢3), unseten(B) andvfork(2) system calls.

The ioctl requests from linux/sockios.h, linux/ext2_fs.h, linux/if_eql.h, Rf#X/Ip.h, and linux/vt.h are
now understood. Seral of the ioctl explanations ha keen improed.

Version 0.19 (2009-Sep-07)

The ioctl requests from linux/hdreg.h arennanderstood.
Some build problems on Debian Lgrimavebeen fixed.

Version 0.18 (2009-Sep-05)

More ioctl requests are understood.

Explanations are moavailable for errors reported by thesendbreaf), tcsetatt(3), tcgetatt(3),
tcflusi(3), tedrain(3), system calls.

Version 0.17 (2009-Sep-03)

Explanations are moavailable for errors reported by thelldir(3) system call.
A number of Linux build problems ka keen fixed.

Explanations for a number of corner-cases obiher(2) system call hae been impreed, where flags
values interact with file types and mount options.

A number of BSD build problems & been fixed.
Moreioctl(2) commands are understood.
A bug has been fixed in the way absolute symbolic links are processed by the path_resolution code.

Version 0.16 (2009-Aug-03)

Reference Manual libgolain 9

Read Me(lib&plain) ReadVie(libexplain)

The EROFS and ENOMEDIUM explanationsangreatly impraved.
» A number of build problems and falsegatives havebeen fixed on x86_64 architecture.

The Linux floppy disk and CD-ROM ioctl requests aremsupported.

» Explanations are moavailable for the errors reported by thetdomainnamg), readw2),
setdomainnam(@), usta(2) andwrite(2) system calls.

Version 0.15 (2009-Jul-26)
» A number of build errors and warnings on amd6dehaeen fixed. Theproblems were only detectable
on 64-bit systems.

Version 0.14 (2009-Jul-19)
» Coverage nwv includes another 29 system cadlscept42), acci{2), adjtimg3), adjtimex2), chroot(2),
dirfd(3), eventfd2), fflush(3), filend(3), flock(2), fstatf£2), ftimg(3), getgroupg2), gethostnamé2),
kill (2), nice(2), pread2), pwrite(2), sethostnam@), signalfd2), strdug(3), strtod(3), strtof(3), strtol(3),
strtold(3), strtoll(3), strtoul(3), strtoull(3), andtimerfd_creaté?). Atotal of 110 system calls are now
supported

» The ./configure script no longer demansisf{1). TheLinux libexplain code doeshheedIsof(1). On
systems not supported Bof(1), the error messages ateniite as useful, but libexplain still works.

e There is nw an explain_*_on_error function for each system call, each reports errors but still
returns the original return value to the caller.

Version 0.13 (2009-May-17)
» The web site nw links to a number of services provided by SourceForge.

» Several problems hee keen fixed with compiling libexplain on 64-bit systems.

Version 0.12 (2009-May-04)
» A build problem has been fixed on hosts that didakd to do anything special for large file support.

Version 0.11 (2009-Mar-29)
» The current directory is replaced in messages with an absolute path in cases wherestideaiséithe
current directory may differ from that of the current process.

Version 0.10 (2009-Mar-24)
» The name prefix on all of the library functions has been changed from “libexplain_" to just “explain_".
This wasthe most requested chang¥ou will need to change your code and recompile. Apologies for

the incowenience.

Version 0.9 (2009-Feb-27)

Reference Manual libgalain 10

Read Me(lib&plain) ReadVie(libexplain)

» Two false ngatives in the tests ha keen fixed.
» The ./configure script mo explicitly looks for bisor(1), and complains if it cannot be found.
» Thesodket(7) address family is nodecoded.

Version 0.8 (2009-Feb-14)
» A problem with the Debian packaging has been fixed.

e The decoding of IPv4 sockaddr structs has been wegro

Version 0.7 (2009-Feb-10)
» Coverage has been extended to inclgdesodkopt(2), getpeernam€), gesocknamg2) and
setsokopt(2).
 Build problems on Debian Sid V& been fixed.
» More magnetic tape ioctl controls, from operating systems other than Liruexbden added.

Version 0.6 (2009-Jan-16)
» Coverage has been extended to inclesecvid3), ioctl(2), malloq3), pclos€3), pipe(2), poper{3) and
realloc(3) system calls.

» The cwerage forioctl(2) includes linux console controls, magnetic tape controls, socket controls, and
terminal controls.

» Afalse ngaive from test 31 has been fixed.

Version 0.5 (2009-Jan-03)
» A build problem on Debian sid has been fixed.

e There is a newxplain_system_succd83 function, that performs all that
explain_system_success_or_(@igperforms, except that it does not eadt(2).

e There is more i18n support.
» A bug with thepkg-configl) support has been fixed.

Version 0.4 (2008-Dec-24)
» Coverage nwv includesaccep(2), bind(2), connecf2), dup2), fchowr(2), fdoper{3), fpathcon(2),
fput2), futimeg2), getaddrinfo(2), getcwd(2), getrlimit (2), listen(2), pathcon(2), putq2), putchar2),
selec(2).

* Internationalization has been imped.
» The thread safety of the code has been irgato

e The code is no able to be compiled on OpenBSD. The test suite stibgimary false ngaives, due to
differences irstrerror(3) results.

Version 0.3 (2008-Nov-23)

Reference Manual libgolain 11

Read Me(lib&plain) ReadVie(libexplain)

» Cover has been extended to includesedi(3), execvg?2), ferror(3), fgetq3), fgetg3), fork(2), fread3),
getc(3), gettimeofday?), Ichown(2), soke(2), systen@), utimg2), wait3(2), wait4(2), wait(2),
waitpid(2),

» More internationalization support has been added.
» Abug has been fixed in the C++ insulation.

Version 0.2 (2008-Nov-11)
e Coverage nwv includeschmod2), chown(2), dup(2), fchdir(2), fchmod?2), fsta2), ftruncatg?2),
fwrite(3), mkdir(2), readdir(3), readlink(2), remov€3), rmdir(2) andtruncate?).

» Thelsof(1) command is used to obtain supplementary file information on those systems with limited
/proc implementations.

» The explanations mounderstand Linux capabilities.

Version 0.1 (2008-Oct-26)
First public release.

Reference Manual libgalain 12

Build(libexplain) Build(libexplain)

NAME
How to build libexplain

SPACE REQUIREMENTS
You will need about 6MB to unpack and build tfii@explainpackage. ®ur milage may vary.

BEFORE YOU START

There are a f& pieces of software you may want to fetch and install before you proceed with your
installation of libexplain

libcap Linux needs libcap, for access to capabilities.
ftp://ftp.kernel.org/publ/linux/libs/security/linux—privs/kernel-2.2/

Isof
For systems with inadequate or non-existent /proc facilities, and that includes *BSD and MacOS
X, thelsof(1) program is needed to obtain supplementary information about open file descriptors.
However, if Isof(1) is not supported on your operating system, libexplain will still work, but some
useful information (such as translating file descriptors into the name of the open file) will be
absent from error explanations.

ftp://Isof.itap.purdue.edu/pub/tools/unix/Isof/
http://people.freebsd.org/"abe/

You must havelsof(1) installed on *BSD and Solaris, otherwise the test suite will generate
staggering numbers of falsegatives. Itwill produce less informate eror messages, too.

Supported systems include: Free BSD, HP/UX, Linux, Mac OS X, NetBSD, Open BSD, Solaris,
and seeral others.

GNU libtool
The libtool program is used to build shared libraries. It understands the necaesahand
wonderful compiler and linker tricks on maweird and wonderful systems.
http://www.gnu.org/software/libtool/

bison The bison program is a general-purpose parser generator tretscargrammar description for
an LALR(1) context-free grammar into a C program to parse that grammar.
http://www.gnu.org/software/bison/

GNU Groff
The documentation for tHidbexplainpackage was prepared using the GNU Qvatkage
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Gfdfas been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if yeirod done
so already This is not essential. libexplain wasvdimped using the GNU C compileand the
GNU C libraries.

The GNU FTP archies may be found aftp.gnu.org , and are mirrored around the world.

SITE CONFIGURATION
Thelibexplain package is configured using tbenfigureprogram included in this distribution.

The configureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates thiakefileandlibexplain/config.Hiles. Italso creates a shell script
config.statughat you can run in the future to recreate the current configuration.

Normally, you justcdto the directory containiniijpexplain's source code and then type
$./configure ——prefix=/usr
...lots of output...
$
If you're usingcshon an old version of System Ybu might need to type
% sh configure ——prefix=/usr
...lots of output...

Reference Manual libgalain 13

Build(libexplain) Build(libexplain)

%
instead, to pneent cshfrom trying to executeconfigureitself.

Runningconfiguretakes a minute or tww Whileit is running, it prints some messages that tell what it is
doing. Ifyou dont want to see the messages, configureusing the quiet option; for example,

$./configure ——prefix=/usr ——quiet

$

To compile thelibexplain package in a different directory from the one containing the source code, you
must use a version afiakethat supports the \A' H variable,such a&NU makecdto the directory where
you want the object files anctecutables to go and run tieenfigurescript. Theconfigurescript

automatically checks for the source code in the directoryctvdigureis in and in .IR .. (the parent
directory). Iffor some reasooonfigureis not in the source code directory that you are configuring, then it
will report that it cart find the source code. In that case, configurewith the option—-srcdir= DIR,
whereDIR is the directory that contains the source code.

By default,configurewill arrange for themale installcommand to install thibexplain packages files in
lusr/local/bin /usr/local/lib, /usr/local/include and /usr/local/man There are options which alloyou to
control the placement of these files.

——prefix= PATH
This specifies the path prefix to be used in the installation. Defaulisttocalunless otherwise
specified.

——exec—prefix= PATH
You can specify separate installation prefixes for architecture-specificifées Dehults to
${prefix} unless otherwise specified.

—-bindir= PATH
This directory containsxecutable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to${exec_prefix}/birunless otherwise specified.

—-—mandir= PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-obgfaults to3{prefix}/manunless otherwise
specified.

configureignores most other arguments that yotegt; use the-—help option for a complete list.

On systems that require unusual options for compilation or linking thbéx@lainpackage'sonfigure
script does not ke about, you can gie configureinitial values for variables by setting them in the
ervironment. InBourne-compatible shells, you can do that on the command Imtigk

$ CC="gcc —ansi’ LIBS=-Iposix ./configure

...lots of output...

$
Here are thenakevariables that you might want toverride with environment variables when running
configure

Variable: CC
C compiler program. The default gecc

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults tolémmgymmon
to useCPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to installds. Thedefault isinstall(1) if you have it, cp(1) otherwise.

Variable: LIBS
Libraries to link with, in the form-| foo—I bar. Theconfigurescript will append to this, rather
than replace it. Itis common to uslBS=-L/usr/local/lib to access other installed

Reference Manual libgolain 14

Build(libexplain) Build(libexplain)

packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so theriHee
included in the next release.

BUILDING LIBEXPLAIN
All you should need to do is use the
$ make
...lots of output...
$
command and ®&it. Thiscan tale a bng time, as there are aMéhousand files to be compiled.

You can remee the program binaries and object files from the source directory by using the
$ make clean
...lots of output...

$
command. @ remove dl of the abae files, and also renve the Makefileandlibexplain/config.hand
config.statudiles, use the

$ make distclean

...lots of output...

$
command.

The file etc/configueacis used to createonfigureby a GNU program calleadutoconf You only need to
know this if you want to regenerat®nfigureusing a newer version afutoconf

TESTING LIBEXPLAIN
Thelibexplainpackage comes with a test suifi@ run this test suite, use the command
$ make sure
...lots of output...
Passed All Tests
$

The tests tad&a faction of a second each, with most very fast, and a couple verybatat varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

Sources of False Negates
There are a number of factors that can cause tests to fail unnecessarily.

Root You will get false ngatives if you run the tests as root.

Architecture
Some errors ma aound depending on architecture (spa&s&86 vss390,etd. Someeven
maove aound due to different memory layout for 32-mst64-bit, for the same processor family.
For example, when testing BJLT explanations.

strerror Different systems ba dfferent strerror(3) implementations (the numbers vahe texts varythe
existence variegtd. Thiscan &en be nhcompatible across Linux architectures when ABI
compatibility was the goag.g.sparcvsi386.

ioctl There are (at least) three inconsistent implementations of ioctl request macros, all incompatible,
depending on Unix vendoiThey also vary on Linux, depending on architecture, for ABI
compatibility reasons.

Environment
Some tests are @li€ult because the build-and-test environment can vary widgelymnetimes its a
chroot, sometimes #’'a W, sometimes it fakeroot, sometimes it really is running as root. All

Reference Manual libgolain 15

Build(libexplain) Build(libexplain)

these affect the ability of the library to probe the system looking for the proximal cause of the
error,e.q.ENOSPC or ERFS. Thisoften results in 2 or 4 or 8 explanations of an error,
depending on what the library findsg.existence of useful information in the mount table, or
not.

Mount Table
If you run the tests in a chroot jail build environment, maybe with bind mounts for the file
systems, it is necessary to realdre/etc/mtab(or equvalent) has sensable contents, otherwise
some of the path resolution tests will return falsgetiees.

/proc If your system has a completely inadeqiatec implementation (including, but not limited to:
*BSD, Mac OS X, and Solaris) or dproc at all,and you hare rot installed thdsof(1) tool,
then large numbers of tests will return falsgaiges.

As these problem ke accured, may of the tests hae been enhanced to cope, but not all falsgetiee
situations hee yet been disogered.

INSTALLING LIBEXPLAIN
As explained in th&ITE CONFIGURATIONection, abee, thelibexplainpackage is installed under the
lusr/localtree by dedult. Usethe——prefix=" PATH option toconfigureif you want some other path.
More specific installation locations are assignable, use-thelp option toconfigurefor details.

All that is required to install thidboexplainpackage is to use the

make install

...lots of output...

#
command. Contrabf the directories used may be found in the firgt fimes of theMakefilefile and the
other files written by theonfigurescript; it is best to reconfigure using tbenfigurescript, rather than
attempting to do this by hand.

Note: if you are doing a manual install (as opposed to a package build) you will also need to run the

ldconfig

#
command. Thisipdates where the system thinks all the shared libraries are. And since we just installed
one, this is a good idea.

GETTING HELP
If you need assistance with tligexplain package, please do not hesitate to contact the author at
Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version numbar lgy the
$ explain —version
explain version 1.4.D001
...warranty disclaimer...
$
command. Pleas#o not send this example; run the program for the exact version number.

Reference Manual libgalain 16

Build(libexplain) Build(libexplain)

COPYRIGHT
libexplainversion 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

Thelibexplainpackage is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY,;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU Lesser General Public License for more details.

It should be in th&ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual libgolain 17

New-System-Call(libeplain) Nev-System-Call(libexplain)

NAME
new system call — Hav to add a nev system call to libexplain

DESCRIPTION
Adding a n&v system call to libexplain is both simple and tedious.

In this example, the system call is caleedmple and takes tw arguments pathnameandflags
example(const char *pathname, int flags);

The libexplain library presents a C interface to the,@erexplains the C system calls. It tries void

dynamic memoryand has seeral helper functions and structures to mdikis simpler.

Naming Corventions
In general, one function peale. Thisgives the static linker more opportunity to leatings out, thus
producing smallerxecutables. Exceptiort® male use ofstatic common functions are acceptable. No
savings for shared libraries, of course.

Functions that write their output inteegplain_string_buffer_tiia theexplain_string_buffer_*
functions, all hae a flename oflibexplain/buffer/ something

Functions that write their output tov@essge, messge sizepair have amessage path component in their
file name.

Functions that accept amrnovalue as an argument¥yean errno path component in their file name,

callederrnum . If a function has both a buffer and an errno, the buffer comes first, both in the argument
list, and the files rame. Ifa function has both a message+size and an errno, the message comes first, both

in the argument list, and the fige'ame.

MODIFIED FILES
Note that theeodegen command does most of the work for ydeess it the function prototype (in single
guotes) and it will do most of the work.

$ bin/codegen’ exanpl e(const char *pathnane, int flags);’
creating catalogue/ exampl e
$

then you mast edit theatalogue/ exanpl e file to male ay adjustment necessaryrhis file is then
used to do the boring stuff:
$ bin/codegen exanpl e

creating explain/syscall/ exanpl e.c

creating explain/syscall/ exanpl e.h

creating libexplain/buffer/errno/ exanpl e.c
creating libexplain/buffer/errno/ exanpl e.h
creating libexplain/ exanpl e.c

creating libexplain/ exanpl e.h

creating libexplain/ exanpl e_or_die.c

creating man/man3/explain_ exanpl e.3

creating man/man3/explain_ exanpl e_or_die.3
creating test_ exanpl e/main.c

modify explain/syscall.c
modify libexplain/libexplain.h
modify man/manl/explain.1l
modify man/man3/explain.3
$

All of these files hae been added to the Aegis change set. Edit the last 4 to place the appended line in their

correct positions within the files, respecting the symbol sort ordering of each file.

libexplain/libexplain.h
Thelibexplain/libexplain.h include file defines the user API. It, andydiles it includes, are
installed inta$(prefix)/include by male install.

This file needs another include line. This means that the entire ARdilizlde to the user as a single

18

New-System-Call(libeplain) Nev-System-Call(libexplain)

include directve.
#include <libexplain/ exampleh>
This file is also used to decide which files are installed byrtale installcommand.

Take are that none of those files, directly or indirectind up includingibexplain/config.h
which is generated by tlenfigurescript, and haso namespace protection.

This means you car#tinclude <stddef.h> , or use ary of the types it defines, because on older
systemgonfigureworks quite hard to cope with its absence. Dittmistd.h> and<sys/types.h>

explain/main.c
Include the include file for the mefunction, and add the function to the table.

man/manl/explain.l
Add a description of the mesystem call.

man/man3/libexplain.3
Add your nev man pages, man/man3/explagmample3 and man/man3/explaiexample or_die.3, to the
list. Keep the list sorted.

NEW FILES
Note that theeodegen command does most of the work for ydeess it the function prototype (in single
guotes) and it will do most of the work.

libexplain/buffer/errno/ examplec

The central file for adding a weexample islibexplain/buffer/errno/ examplec Which defines
a function

void explain_buffer_errno_ exampldexplain_string_buffer_t *buffer,

int errnum, const char *pathnament flags;

Theerrnum argument holds therrnovalue. Notethat callingerrno usually has problems because many
systems hee errno as a macro, which makes the compiler barf, and because there are times you want
access to the globafrno, and having it shadowed by the argument is a nuisance.

This function writes its output into the buffer via #elain_string_buffer_printf , etg
functions. Firsthe argument list is reprinted.

Theexplain_string_buffer_puts_quoted function should be used to print pathnames, because

it uses full C quoting and escape sequences.

If an argument is a file descriptdtrshould be calledildes short for “file descriptor”. On systems capable
of it, the file descriptor can be mapped to a pathname using the

explain_buffer_fildes_to_pathname function. Thismakes explanations for system calls like
read andwrite much more informaitie.

Next comes a switch on the errnum value, and additional explanatimens@i each errno value

documented (or sometimes undocumented) for that system call. Copy-and-paste of the man page is often

useful as a basis for the text of the explanation, but be sure it is open source documentation, and not
Copyright proprietary text.

Don't forget to check the existidifpexplain/buffer/e*.h files for pre-canned explanations for
common errors. Some pre-canned explanations include

EACCES aplain_buffer_eacces

EADDRINUSE eplain_buffer_eaddrinuse

EAFNOSUPPOR explain_buffer_eafnosupport

EBADF explain_buffer_ebadf

EFAULT explain_buffer_efault

EFBIG eplain_buffer_efbig

EINTR explain_buffer_eintr

EINVAL explain_buffer_eimal_vague etc

19

New-System-Call(libeplain) Nev-System-Call(libexplain)

EIO explain_buffer_eio
ELOOP aplain_buffer_eloop
EMFILE explain_buffer_emfile
EMLINK explain_buffer_emlink
ENAMETOOLONG &plain_buffer_enametoolong
ENFILE explain_buffer_enfile
ENOBUFS eplain_buffer_enobufs
ENOENT eplain_buffer_enoent
ENOMEM explain_buffer_enomem
ENOTCONN eplain_buffer_enotconn
ENOTDIR explain_buffer_enotdir
ENOTSOCK eplain_buffer_enotsock
EROFS eplain_buffer_erofs
ETXTBSY explain_buffer_etxtbsy
EXDEV explain_buffer_exdev

libexplain/buffer/errno/example.h
This file holds the function prototype for the abdunction definition.

libexplain/example.h

The file contains the user visible API for tbemplesystem call. There arév€ function prototypes

declared in this file:
void explain_ example or_die(const char *pathnament flags;
void explain_ exampld const char *pathnament flags;
void explain_errno__ examplgint errnum, const char *pathnament flags;
void explain_message__ exampldgconst char *message, int message_size,
const char *pathnament flags;
void explain_message_errno_ examplgconst char *message, int
message_size, int errnum, const char *pathnament flags;

The function prototypes for these appear inlithexplain/ exampleh include file.

Each function prototype shall be accompanied by thorough Doxygen style comments. These are extracted
and placed on the web site.

The buffer functions ameever part of the user visible API.

libexplain/example or_die.c
One function per filegexplain_ example or_die in this case. It simply callexampleand then, if fails,
explain_ exampleto print wty, and then exit(EXIT_FAILURE).

libexplain/example.c
One function per fileexplain_ examplein this case. It simply callsxplain_errmno_ exampleto pass
in the globakrrnovalue.

libexplain/errno/example.c
One function per fileexplain_errno_ examplein this case. It calls
explain_message_errno_ example using the<libexplain/global_message_buffer.h>
to hold the string.

libexplain/message/example.c
One function per fileexplain_message_ examplein this case. It simply calls
explain_message_errno_ exampleto pass in the globa&rrno value.

libexplain/message/errno/example.c
One function per fileexplain_message_errno_ examplein this case. It declares and initializes a
explain_string_buffer_t instance, which ensures that the message buffer will not be exceeded,
and passes that buffer to tveplain_buffer_errno_ examplefunction.

20

New-System-Call(libeplain) Nev-System-Call(libexplain)

man/man3/explain_example.3
This file also documents the error explanations functions, ergefdain_ example or_dir . Use the
same text as you did libexplain/ exampleh

man/man3/explain_example_or_die.3
This file also documents the helper function. Use the same text as youidekpiain/ exampleh

explain/example.c
Glue to turn the command line into arguments to a calkpbdain_ example

explain/example.h
Function prototype for the abe

test_example/main.c
This program should cadixplain_ explain_or_die

NEW IOCTL REQUESTS
Each differentoctl(2) request is, in effect, yet another system call. Except thatliheave gopallingly
bad type safetyl have ®en fugly C++ classes with lesgedoading tharioctl(2).

libexplain/iocontrol/request_by number.c
This file has one include line for eaitittl(2) request. There istable array that contains a
pointer to the explain_iocontrol_t variable declared in the include file (st meeep both sets of
lines sorted alphabeticallif makes it easier to detect duplicates.

libexplain/iocontrolhameh
Wherenameis the name of thioctl(2) request in lower case. This declares an global const
variable describing he to handle it.

libexplain/iocontrolhamec
This defines the alve dobal variable, and definesasgtatic glue functions necessary to print a
representation of itYou will probably hae © read the kernel source to disepthe errors the
ioctl can return, and what causes them, in order to write the explanation functjoargtiaémost
never described in the man pages.

TESTS
Write at least one separate test for each case in the errnum switch.

Debian Notes

You can check that the Debian dtbfiilds by using
apt-get install pbuilder
pbuiler create
pbuilder login

now copy the files fromweb-site/debianihto the chroot
cd libexplain—*
dpkg-checkbuilddeps
apt—get installvhat dpkg-checkbuilddeps said
apt—get install devscripts
debuild

This should report success.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

21

explain(1) GeneraCommands Manual explain(1)

NAME
explain — explain system call error messages

SYNOPSIS
explain [option...]function[argument..]

explain ——version

DESCRIPTION
The explain command is used to decode an error return read fretnaeeil) listing, or silimar Because
this is being deciphered in a different process than the orginal, the results will be less accurate than if the
program itself were to udidexplain(3).

Functions
The functions understood include:

accepfiildes addr addrlen
Theaccep(2) system call.

accept4ildes|[sock addr sock_addr_si}élags]
Theaccept42) system call.

accespathname
Theaccesg) system call.

acctpathname
Theacc{(2) system call.

acl_from_textext
Theacl_from_text3) system call.

acl_get fdfildes
Theacl_get_fd@3) system call.

acl_get filepathname type
Theacl_get _fil€3) system call.

acl_set_fdildes acl
Theacl_set_f@3) system call.

acl_set_filepathname type acl
Theacl_set_fil€3) system call.

acl_to_textacl len_p
Theacl_to_tex{3) system call.

adjtimedelta olddelta
Theadijtimg2) system call.

adjtimexdata
Theadijtimex2) system call.

asprintf Theasprint{3) system call.

bindfildes addr sockaddr_size
Thebind(2) system call.

callocnmemb size
Thecallo(3) system call.

chdirpathname
Thechdir(2) system call.

22

explain(1) GeneraCommands Manual explain(1)

chmodpathname permission-mode
Thechmod?2) system call.

chownpathname owner group
The chown(2) system call.

chrootpathname
Thechroot(2) system call.

closefildes
Theclosg?2) system call.

closedirdir
Theclosedi(3) system call.

connecfiildes serv_addr serv_addr_size
Theconnecf2) system call.

creatpathnamd permission-mode
Thecreaf(2) system call.

dirfd dir Thedirfd(3) system call.

dupfildes
Thedup(2) system call.

dup2oldfd newfd
ThedupZ?2) system call.

endgrent Thendgren{3) system call.

eventfd initval flags
Theewentfd2) system call.

execlp pathname arg.
Theexeclp(3) system call.

execv pathname argv
Theexecy(3) system call.

execve pathname arg.
Theexecvg?2) system call.

execvp pathname arg.
Theexecv3) system call.

fchdir pathname
Thefchdir(2) system call.

fchmodfildes mode
Thefchmod?2) system call.

fchownfildes owner group
Thefchown(2) system call.

fchownatdirfd pathname owner group flags
Thefchownaf2) system call.

fclosefp Thefclosd3) system call.

fentl fildes commanflarg |
Thefcntl(2) system call.

fdopenfd mode
Thefdoper{3) system call.

23

explain(1) GeneraCommands Manual explain(1)

fdopendirfildes
Thefdopendi(3) system call.

feoffp Thefeof3) system call.
ferrorfp Theferror(3) system call.
fflushfp Thefflush(3) system call.
fgetcfp Thefgetd3) system call.

fgetposfp pos
Thefgetpog3) system call.

fgetsdata data_size fp
Thefgetg3) system call.

filenofp Thefilend3) system call.

flock fildes command
Theflock(2) system call.

fork Thefork(2) system call.

fpathconffildes name
Thefpathcon(3) system call.

fpurgefp
Thefpurge(3) system call.

freadptr size nmemb fp
Thefread3) system call.

fopenpathname mode
Thefopen(2) system call. Thpathnamergument may need to be quoted to insulate white space
and punctuation from the shell. Theodeargument (a textual eqaent of theopensystem
call's flagsargument). Seéoper(3) for more information.

fputcc[fp]
Thefput(3) system call.

fputss fp
Thefputq3) system call.

freopenpathname flags fp
Thefreoper{3) system call.

fseekfp offset whence
Thefseek3) system call.

fseekofp offset whence
Thefseek@3) system call.

fsetpostp pos
Thefsetpo$3) system call.

fstatpathname
Thefstaf(2) system call.

fstatatfildes pathname data flags
Thefstata(2) system call.

fstatfsfildes data
Thefstatf¢2) system call.

fstatvfsfildes data
Thefstatvf¢2) system call.

24

explain(1) GeneraCommands Manual explain(1)

fsyncfildes
Thefsyng2) system call.

ftell fp Theftell(3) system call.
ftello fp Theftello(3) system call.
ftimetp Theftimg3) system call.

ftruncatefildes length
Theftruncatg?2) system call.

futimensfildes data
Thefutimeng3) system call.

futimesfildes tv[0] data[1]
Thefutimeg3) system call.

futimesatffildes pathname data
Thefutimesaf2) system call.

getcfp Thegec(3) system call.
getchar Theechan(3) system call.

getcwdbuf size
Thegeacwd2) system call.

getdomainnamdata data_size
Thegedomainnamg) system call.

getgrent Theegrent3) system call.

getgrouplistuser group groups ngroups
The gegrouplisi(3) system call.

getgroupgiata_size data
Thegegroupg?2) system call.

gethostbynamaame
The gehostbynamg) system call.

gethostid
The gethostid3) system call.

gethostname dlata data_sizé
Thegehostnamg) system call.

getpeernaméldes sock _addr sock_addr_size
Thegepeernamg) system call.

getpgidpid
Thegepgid(2) system call.

getpgrppid
Thegepgrp(2) system call.

getprioritywhich who
Thegepriority(2) system call.

getresgidgid egid sgid
Thegeresgid2) system call.

getresuiduid euid suid
Thegeresuid2) system call.

getrlimit resource rlim
Thegerlimit(2) system call.

25

explain(1) GeneraCommands Manual explain(1)

getrusagevho usge
Thegerusage(2) system call.

getsocknaméldes| sock_addf sock_addr_siz§
The gesocknamg) system call.

getsockopfildes level name data data_size
The gesodkopt(2) system call.

gettimeofday fv|[tz]]
The getimeofday2) system call.

getwfp Thegew(3) system call.

iconv cd inbuf inbytesleft outbuf outbytesleft
Theicony3) system call.

iconv_closecd
Theiconv_clos€3) system call.

iconv_opertocode fromcode
Theiconv_ope(B) system call.

ioctl fildes request data
Theioctl(2) system call.

kill pid sig
Thekill (2) system call.

Ichmodpathname mode
Thelchmod?2) system call.

Ichownpathname owner group
Thelchown(2) system call.

Ichownatfildes pathname uid gid
Thelchownaf2) system call.

link oldpath newpath
Thelink(2) system call.

linkat old_fildes old_path new_fildes new_path flags
Thelinkat(2) system call.

listenfildes backlog
Thelisten(2) system call.

Iseekfildes offset whence
ThelseeK2) system call.

Istatpathname
Thelstat(2) system call.

lutimespathname data
Thelutimeg3) system call.

mallocsize
Themalloq3) system call.

mkdir pathnamd mode]
Themkdin2) system call.

mkdtemppathname
Themkdtemf3) system call.

mknodpathname mode dev
Themknod?2) system call.

26

explain(1) GeneraCommands Manual explain(1)

mkostempemplat flags
Themkostem(8) system call.

mkstemptemplat
Themkstemf8) system call.

mktemppathname
Themktem3) system call.

mmapdata data_size prot flags fildes offset
Themmayg2) system call.

mountsource taget file_systems_type fis data
Themount2) system call.

munmapdata data_size
Themunmag2) system call.

nanosleepeq rem
Thenanosleef?) system call.

niceinc Thenicg2) system call.

openpathname flagé mode]
Theopen(2) system call. Thpathnameargument may need to be quoted to insulate white space
and punctuation from the shell. Thagsargument may be numeric or symbolic. Thede
argument may be numeric or symbolic.

openaffildes pathname flags mode
Theopena(2) system call. Théagsargument may be numeric or symbolic. Thede
argument may be numeric or symbolic.

opendirpathname
Theopendi(3) system call.

pathconfpathname name
Thepathcon(3) system call.

pclosefp
Thepclos€3) system call.

pipepipefd
Thepipg(2) system call.

pipe2fildes flags
ThepipeQq2) system call.

poll fds nfds timeout
Thepoll(2) system call.

popencommand flags
Thepoper{3) system call.

preadfildes data data_size offset
Thepread?2) system call.

ptracerequest pid addr data
Theptracg2) system call.

putcc fp Theputd3) system call.

putcharc
Theputchal3) system call.

putenvstring
Theputeny3) system call.

27

explain(1) GeneraCommands Manual

putss Theputg3) system call.

putw value fp
The putw(3) system call.

pwrite fildes data data_size offset
The pwrite(2) system call.

raisesig Theraisg(3) system call.

readfildes data data-size
Theread(2) system call.

reallocptr size
Therealloc(3) system call.

realpathpathname resolved_pathname
Therealpath(3) system call.

renameoldpath newpath
Therenamég?2) system call.

readvfildes iov...
Theready2) system call.

selecinfds readfds writefds exceptfds timeout
Theselec(2) system call.

setbuffp data
Thesetbu(3) system call.

setbufferfp data size
The setbuffe(3) system call.

setdomainnamdata data_size
The setdomainnan{@) system call.

setenwname value overwrite
Theseten(3) system call.

setgidgid
Thesetgid2) system call.

setgrent Theetgren3) system call.

setgroupslata_size data
Thesetgroupg2) system call.

sethosthnamaame] name_siz¢
Thesethostnam@) system call.

setlinebuffp
Thesetlinebuf3) system call.

setpgid [pid [pgid]]
Thesetpgid2) system call.

setpgrppid pgid

Thesetpgrig2) system call.
setprioritywhich who prio

Thesetpriority(2) system call.
setregidrgid egid

Thesetegd(2) system call.

explain(1)

28

explain(1) GeneraCommands Manual explain(1)

setreuidruid euid
Thesetreuid2) system call.

setresgidgid egid sgid
Thesetresgi@2) system call.

setresuiduid euid suid
Thesetresuid?) system call.

setreuidruid euid
Thesetreuid2) system call.

setsid Thesetsid2) system call.

setsockopfildes level name data data_size
The setsokopt(2) system call.

settimeofdaytv tz
The settimeofdaf®) system call.

setuiduid
Thesetuid?2) system call.

setvbuffp data mode size
Thesetvbuf3) system call.

shmatshmid shmaddr shmflg
Theshma(2) system call.

shmctlshmid command data
Theshmct(2) system call.

signalfdfildes mask flags
Thesignalfd2) system call.

sleepseconds
Thesleef3) system call.

socketdomain type protocol
Thesoke(2) system call.

socketpaidomain type protocol sv
The sokepair(2) system call.

statpathname
Thestat(2) system call.

statfspathname data
The sstatf§2) system call.

statvfspathname data
The statvf¢2) system call.

stimet Thestimg?2) system call.

strcollsl s2
Thestrcoll(3) system call.

strdupdata
Thestrduf(3) system call.

strerror The error gen will be printed out with all known detail.

strndupdata data_size
Thestrndug3) system call.

29

explain(1) GeneraCommands Manual

strtodnptr endptr
Thestrtod3) system call.

strtof nptr endptr
Thestrtof(3) system call.

strtol nptr endptr base
Thestrtol(3) system call.

strtold nptr endptr
Thestrtold(3) system call.

strtoll nptr endptr base
Thestrtoll(3) system call.

strtoulnptr endptr base
Thestrtoul(3) system call.

strtoull nptr endptr base
Thestrtoull(3) system call.

symlink oldpath newpath
Thesymlink2) system call.

systemcommand
ThesystenB) system call.

tcdrainfildes
Thetcdrain(3) system call.

tcflow fildes action
Thetcflom(3) system call.

tcflushfildes selector
Thetcflush(3) system call.

tcgetattrfildes data
Thetcgetatt(3) system call.

tcsendbreakildes duration
ThetcsendbreaB) system call.

tcsetattrfildes options data
Thetcsetatt(3) system call.

telldir dir
Thetelldir(3) system call.

tempnandir prefix
Thetempnan(B) system call.

timet Thetimg2) system call.

timerfd_createclockid flags
Thetimerfd_creat€2) system call.

tmpfile Thetmpfilg3) system call.

tmpnampathname
Thetmpnan(3) system call.

truncatepathname size
Thetruncatg?2) system call.

usleepusec
Theusleefd3) system call.

explain(1)

30

explain(1) GeneraCommands Manual explain(1)

unamedata
Theunamg2) system call.

ungetcc fp
Theunget¢3) system call.

unlink pathname
Theunlink(2) system call.

unsetemname
Theunseten{B) system call.

ustatdev ubuf
Theusta(2) system call.

utime pathnamg times]
Theutimg?2) system call.

utimenspathnamd data]
Theutimeng2) system call.

utimensat fildes] pathnamd data| flags]]
Theutimensaf2) system call.

utimespathname data
Theutimeg2) system call.

vasprintfdata format ap
Thevasprint{3) system call.

vfork Thevfork(2) system call.

wait status
Thewait(2) system call.

wait3 status options rugge
Thewait3(2) system call.

wait4 pid status options rugge
Thewait4(2) system call.

waitpid pid status options
Thewaitpid(2) system call.

write fildes data data-size
Thewrite(2) system call.

writev fildes data data-size
Thewrite(2) system call.

Do not include the perentheses used toariads call.

OPTIONS
The explain command understands the following options:

-E The exit staus, success or fail, will be printed immediately beforectescommand
terminates.
—enumber

The value ofrrnoas a numbere(g.2), or as a symbok(g.ENOENT), or as the text of its
meaning €.g.No such file or directory You will need quotes to insulate spaces and punctuation
from the shell.

-V Print the version of thexplain executing.

EXIT STATUS
The explain command exits with status 1 op emor. The explain command only exits with status O if
there are no errors.

31

explain(1) GeneraCommands Manual explain(1)

COPYRIGHT
explain version 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

32

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

NAME
explain_Ica2010 — No medium found: whersiime to stop trying to reastrerror(3)’s mind.

MOTIV ATION
The idea for libexplain occurred to me back in the early 1980s. Wheagystem call returns an error,
the kernel knows exactly what went wrong... and compresses this into less that &tite.of)ser space
has access to the same data as the kernel, it should be possible for user space to figure out exactly what
happened to pxoke the error return, and use this to write good error messages.

Could it be that simple?

Error messages as finesse
Good error messages are often those “one percent” tasks that get dropped when schedule pressure squeezes
your project. Howeer, a good error message can mneakhuge, disproportionate imprement to the user
experience, when the user wanders into gcan&known territory not usually encountered. This is no easy
task.

As a larval programmethe author didr’see the problem with (completely accurate) error messages like
this one:

floating exception (core dumped)

until the alternatie ron-programmer interpretation was pointed out. But that iea’only thing wrong
with Unix error messages. Mooften do you see error messages like:

$./stupid
can't open file
$

There are tw options for a deeloper at this point:
1. you can run a debuggseuch agydh(1), or
2. you can usstracdl) ortrusg1) to look inside.

 Remember that your users may natrehaveaccess to these tools, let alone the ability to use them.
(It's aery long time sinc&nix beginnemeant “has only writtennedevice drver”.)
In this example, hower, usingstracel) reveals

$ strace —e trace=open ./stupid
open("someffile", O_RDONLY) = -1 ENOENT (No such file or directory)
can't open file

$
This is considerably more information than the error messagalpso pically, the stupid source code
looks like this
int fd = open(" some/thing, O_RDONLY);
if (fd < 0)
{
fprintf(stderr, "can't open file\n");
exit(1);
}

The user isrt’'told whichfile, and also fails to tell the usehicherror Was the file gen there? Vds there
a permissions problem? It does tell you it was trying to open a file, but that was probably by accident.

Grab your clue stick and go beat the larval programmer wiffeit.him aboutperror(3). Thenext time
you use the program you see a different error message:

$./stupid
open: No such file or directory
$

Progress, but not what wepgected. Hav can the user fix the problem if the error message dbdhhim

33

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

what the problem as? Lookingat the source, we see

int fd = open(" some/thing, O_RDONLY);
if (fd < 0)
{
perror(“open");
exit(1);
}
Time for another run with the clue stick. This time, the error message takes one step forward and one step
back:

$./stupid

some/thing No s uch file or directory
$

Now we know the file it was trying to open, but are no longer informed that itopas(2) that filed. In
this case it is probably not significant, but it can be significant for other system calls. It corilsbba
creal(2) instead, an operation implying that different permissions are necessary.

const char *filename =" some/thing;
int fd = open(filename, O_RDONLY);

if (fd < 0)

{

perror(filename);
exit(1);
}
The abee example code is unfortunately typical of non-larval programmers as Wigtle to tell our
padavan learner about thgtrerror(3) system call.

$./stupid
open some/thing No s uch file or directory
$
This maximizes the information that can be presented to the Tisercode looks li& this:
const char *filename =" some/thing;
int fd = open(filename, O_ RDONLY);
if (fd < 0)
{

fprintf(stderr, "open %s: %s\n", filename, strerror(errno));
exit(1);
}

Now we havethe system call, the filename, and the error string. This contains all the information that
stracg1) printed. Thas as god as it gets.

Orisit?
Limitations of perror and strerror

The problem the authorwaback in the 1980s, was that the error message is incomplete. Does “no such
file or directory” refer to thesomé directory, or to the ‘thing’ file in the “‘somé& directory?

A quick look at the man page fetrerror(3) is telling:
strerror — return string describing error number
Note well: it is describing the erroumber not the error.

On the other hand, the kerr@lowswhat the error &s. Theravas a pecific point in the kernel code,
caused by a specific condition, where the kernel code branched and said “no”. Could a user-space program
figure out the specific condition and write a better error message?

However, the problem goes deepéaivhat if the problem occurs during thead(2) system call, rather than
theoper(2) call? It is simple for the error message associatedopith(2) to include the file name, it's

34

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

right there. But to be able to include a file name in the error associated wigad® system call, you
have o pass the file name all the way down the call stack, as well as the file descriptor.

And here is the bit that grates: the kernel already knows what file name the file descriptor is associated
with. Why should a programmer kia ©o pass redundant data all the way down the call stack just to
improve an error message that maywee be issued? Imeality, mary programmers dohbother and the
resulting error messages are the worse for it.

But that was the 1980s, on a PDP11, with limited resources and no shared libraries. Back theon,afo fla
Unix included/proc even in rudimentary form, and thisof(1) program waswer a decade way. So the
idea was shelved as impractical.

Level | nfinity Support
Imagine that you arevel infinity support. Your job description says that youveeewer have to talk to
users. Wi, then, is there still a constant stream of people wanting you, the local Unix guru, to decipher yet
another error message?

Strangely 25 years laterdespite a simple permissions system, implemented with complete congistenc
most Unix users still hee o idea hav to decode “No such file or directory”, or piof the other cryptic
error messages theee eery day Or, a least, cryptic to them.

Wouldn't it be nice if first level tech support didh’need error messages decipher&tiBuldn't it be rice to
have earor messages that users could understand without calling tech support?

These dayfproc on Linux is more than able to provide the information necessary to decode the vast
majority of error messages, and point the user to the proximate cause of their problem. On systems with a
limited /proc implementation, thésof(1) command can fill in manof the gaps.

In 2008, the stream of translation requests happened to the author way too often. It was time to re-examine
that 25 year old idea, and libexplain is the result.

USING THE LIBRARY
The interface to the library tries to be consistent, where possibles dagt'with an example using
strerror(3):

if (rename(old_path, new_path) < 0)

fprintf(stderr, "rename %s %s: %s\n", old_path, new_path,
strerror(errno));
exit(1);
}

The idea behind libexplain is to providstaerror(3) equiaent foreachsystem call, tailored specifically
to that system call, so that it can provide a more detailed error message, containing much of the information
you see under the “ERRORS” heading of section 2 amdrgpages, supplemented with information about
actual conditions, actual argument values, and system limits.

The Simple Case
Thestrerror(3) replacement:
if (rename(old_path, new_path) < 0)

{

fprintf(stderr, "%s\n", explain_rename(old_path, new_path));
exit(1);
}

The Errmo Case
It is also possible to pass an expl@itno(3) value, if you must first do some processing that would disturb
errno, such as error rec@ry:

if (rename(old_path, new_path < 0))

{

int old_errno = errno;

35

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

code that disturbs errno
fprintf(stderr, "%s\n", explain_errno_rename(old_errno,
old_path, new_path));
exit(1);
}
The Multi-thread Cases

Some applications are multi-threaded, and thus are unable to share libsxpiainal buffer You can
supply your own buffer using

if (unlink(pathname))

{
char message[3000];
explain_message_unlink(message, sizeof(message), pathname);
error_dialog(message);
return -1,
}

And for completeness, bo#irno(3) and thread-safe:

ssize_t nbytes = read(fd, data, sizeof(data));
if (nbytes < 0)

{
char message[3000];

int old_errno = errno;
error recovery..
explain_message_errno_read(message, sizeof(message),
old_errno, fd, data, sizeof(data));
error_dialog(message);
return -1,

}
These are replacements &trerror_r(3), on systems that ha it.

Interface Sugar
A set of functions added as agmience functions, to woo programmers to use the libexplain likdtary
out to be the autha’nost commonly used libexplain functions in command line programs:

int fd = explain_creat_or_die(filename, 0666);

This function attempts to create awi@e. If it can't, it prints an error message and exits with
EXIT_FAILURE. If there is no errgiit returns the n& file descriptor.

A related function:
int fd = explain_creat_on_error(filename, 0666);

will print the error message on failure, but also returns the original error resudtrran(B) is unmolested,
as well.

All the other system calls
In general, gery system call has its own include file

#include <libexplain/ nameh>
that defines function prototypes for six functions:
e explain_ name
 explain_errno_ name
e explain_message name
e explain_message_errno_ name

36

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

e explain_ nameor_die and
e explain_ nameon_error

Every function prototype has Doxygen documentation, and this documerngatiotstripped when the
include files are installed.

Thewait(2) system call (and friends) V&ome extra variants that also interpret failure to be an exit status
that isnt EXIT_SUCCESS. Thisipplies tasysteni3) andpclos€3) as well.

Coverage includes 221 system calls and 547 ioctl requests. There arenmansystem calls yet to
implement. Systemalls that neer return, such aext(2), are not present in the libragnd will never be.
Theexecfamily of system callare supported, because theeturn when there is an error.

Cat
This is what a hypothetical “cat” program could look like, with full error reporting, using libexplain.

#include <libexplain/libexplain.h>
#include <stdlib.h>
#include <unistd.h>

There is one include for libexplain, plus the usual suspects. (If you wish to reduce the preprocessor load,
you can use the specifidibexplain/ nameh> includes.)

static void
process(FILE *fp)
{
for (;;)
{
char buffer[4096];
size_t n = explain_fread_or_die(buffer, 1, sizeof(buffer), fp);
if (In)
break;
explain_fwrite_or_die(buffer, 1, n, stdout);
}
}

Theprocesgunction copies a file stream to the standard output. Should an error occur for either reading or
writing, it is reported (and the pathname will be included in the error) and the command exits with
EXIT_FAILURE. We don’t even worry about tracking the pathnames, or passing them down the call stack.
int
main(int argc, char **argv)

for (;;)
{
int ¢ = getopt(argc, argv, "o0:");
if (c == EOF)
break;
switch (c)
{
case 0’
explain_freopen_or_die(optarg, "w", stdout);
break;

The fun part of this code is that libexplain can report eimmsding the pathnameven if youdon't
explicitly re-open stdout as is done hek#e con't even worry about tracking the file name.

default:
fprintf(stderr, "Usage: %ss [—o0 <filename>] <filename>...\n",
argv[0]);
return EXIT_FAILURE;

37

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

}

}

if (optind == argc)
process(stdin);

else
while (optind < argc)
{
FILE *fp = explain_fopen_or_die(argv[optind]++, "r");
process(fp);
explain_fclose_or_die(fp);
}
}

The standard output will be closed implicjthyt too late for an error report to be issued, so we do that
here, just in case the buffered I/O haswitten anything yet, and there is an ENOSPC error or something.
explain_fflush_or_die(stdout);
return EXIT_SUCCESS;
}

That's dl. Full error reporting, clear code.

Rusty’s Sale of Interface Goodness
For those of you not familiar with it, Rusty RusseiHow Do | Make This Hard to Misuse?” page is a
must-read for AP| designers.
http://ozlabs.org/ rusty/index.cgi/tech/2008-03-30.html

10. It's impossible to get wrong.

Goals need to be set high, ambitiously high, lest you accomplish them and think you are finished when you
are not.

The libexplain library detects bogus pointers andyratiner bogus system call parameters, and generally
tries to @oid segfaults ineen the most trying circumstances.

The libexplain library is designed to be thread safe. More real-world use will likedgl ©@aces this can
be improed.

The biggest problem is with the actual function names thesseBecaus€ does not hae rame-spaces,
the libexplain library aliays uses aexplain_ name prak. Thisis the traditional way of creating a
pseudo-name-space in order id symbol conflicts. Howeer, it results in some unnatural-sounding
names.

9. The compiler or linker wohlet you get it wrong.

A common mistak is to tseexplain_open whereexplain_open_or_die was intended.
Fortunately the compiler will often issue a type error at this po@ngcant assignconst char *
rvalue to arnint Ivalue).

8. The compiler will warn if you get it wrong.

If explain_rename is used wherexplain_rename_or_die was intended, this can cause other
problems. GCQas a usefulvarn_unused_result function attribute, and the libexplain library
attaches it to all thexplain_ namefunction calls to produce a warning when you mtiis mistake.
Combine this witlgcc —Werrorto promote this to kel 9 goodness.

7. The obvious use is (probably) the correct one.

The function names kia been chosen to cuay their meaning, but this is notvedys successful. While
explain_ nameor_die andexplain_ nameon_error are fairly descriptie, the less-used thread
safe variants are harder to decode. The function prototypes help the comtdstonderstanding, and
the Doxygen comments in the header files help the userde understanding.

38

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

6. The name tells you how to use it.

It is particularly important to reagkplain_ name or_die as “explain fameor die)”. Using a
consistenexplain_ name-space prefix has some unfortunate side-effects in the obviousness department,
as well.

The order of words in the names also indicate the order ofghenants. Thargument lists alays end
with the same arguments as passed to the systeraltaflthem If _errno_ appears in the name, its
argument abays precedes the system catjaments. If message appears in the name, its two
arguments alays come first.

5. Do it right or it will break at runtime.

The libexplain library detects bogus pointers andyratiner bogus system call parameters, and generally
tries to @oid segfaults ineen the most trying circumstances. It shoulderdoreak at runtime, but more
real-world use will no doubt impve tis.

Some error messages are aimed e¢ldpers and maintainers rather than end users, as this can assist with
bug resolution. Noso much “break at runtime” as “be infornvatia runtime” (after the system call barfs).

4. Follow common convention and you'll get it right.

Because C does notyearame-spaces, the libexplain libraryvals uses aexplain_ name preak. This
is the traditional way of creating a pseudo-name-space in ordesitbsgmbol conflicts.

The trailing arguments of all the libexplain call are identical to the system galirthdescribing. This is
intended to provide a consistent gemtion in common with the system calls themselves.

3. Read the documentation and you'll get it right.

The libexplain library aims to lva complete Doxygen documentation for each avahyepublic API call
(and internally as well).

MESSAGE CONTENT
Working on libexplain is a bit lig looking at the underside of your car when it is up on the hoist at the
mechanics. Theres ome ugly stufunder there, plus mud and crud, and users rarely s@egibod error
message needs to be infornaatieven for a user who has been fortunate enough notwe tdook at the
under-side very often, and also informratfor the mechanic listening to the usaescription @er the
phone. Thiss no easy task.

Revisiting our first example, the code wouldelikis if it uses libexplain:
int fd = explain_open_or_die("some/thing", O_RDONLY, 0);
will fail with an error message kkthis

open(pathname = "somef/file", flags = O_RDONLY) failed, No such
file or directory (2, ENOENT) because there is no "some" directory
in the current directory

This breaks down into three pieces

system-callfailed, system-errorbecause
explanation

Before Because
It is possible to see the part of the message before “becausestiggechnical to non-technical users,
mostly as a result of accurately printing the system call itself at the beginning of the error message. And it
looks likestrace1) output, for bonus geek points.

open(pathname = "somef/file", flags = O_RDONLY) failed, No such
file or directory (2, ENOENT)

This part of the error message is essential to thelajeer when he is writing the code, and equally
important to the maintainer who has to read bug reports and fix bugs in the code. It says exactly what
failed.

39

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

If this text is not presented to the user then the user cannot copy-and-paste it into a bug report, and if it isn’t
in the bug report the maintainer celknow what actually went wrong.

Frequently tech sthivill use stracg1) ortrusg1) to get this exact information, but thigeaue is not open
when reading bug reports. The bug repostgrstem is far farwaay, and, by nev, in a far different state.
Thus, this information needs to be in the bug report, which means it must be in the error message.

The system call representation alseegicontext to the rest of the message. If need arises, the offending
system call argument may be referred to by name in the explanation after “because”. In addition, all strings
are fully quoted and escaped C strings, so embedded newlines and non-printing characters will not cause
the usess terminal to go haywire.

Thesystem-errois what comes out atrerror(2), plus the error symbol. Impatient and expert sysadmins
could stop reading at this point, but the authetperience to date is that reading further gareling. (If

it isn’t rewading, it's probably an area of libexplain that can be inyatb Codecontributions are

welcome, of course.)

After Because
This is the portion of the error message aimed at non-technical users. It looks beyond the simple system
call arguments, and looks for something more specific.

there is no "some" directory in the current directory

This portion attempts to explain the proximal cause of the error in plain language, and it is here that
internationalization is essential.

In general, the policis to include as much information as possible, so that the user tinesd’to go
looking for it (and doeshleave it out of the bug report).

Internationalization
Most of the error messages in the libexplain libranehaeen internationalized. There are no localizations
as yet, so if you want the explanations in yourvesiinguage, please contribute.

The “most of” qualifier above, relates to the fact that the proof-of-concept implementation did not include
internationalization support. The code base is being revised praghgsssually as a result of refactoring
messages so that each error message string appears in the code exactly once.

Provision has been made for languages that need to assemble the portions of
system-callfailed, system-errorbecause explanation
in different orders for correct grammar in localized error messages.

Postmortem
There are times when a program has yet to use libexplain, and ybusmstracg1) either There is an
explain(1) command included with libexplain that can be used to decipher error messages, if the state of the
underlying system hasréhanged too much.

$ explain rename foo /tmp/bar/baz —e ENOENT

rename(oldpath = "foo", newpath = "/tmp/bar/baz") failed, No such
file or directory (2, ENOENT) because there is no "bar" directory
in the newpath "/tmp" directory

$

Note hav the path ambiguity is resolved by using the system call argument name. Of course/geybu ha
know the error and the system call fplain(1) to be useful. As an aside, this is one of the ways used by
the libexplain automatic test suite to verify that libexplain is working.

Philosophy
“Tell me everything, including stufl didn’t know to look for”

The library is implemented in such a way that when statically linked, only the code you actually use will be
linked. Thisis achieed by having one function per source file, whesefeasible.

When it is possible to supply more information, libexplain will do so. The less the user has to track down
for themselves, the bettefhis means that UIDs are accompanied by the user name, GIDs are

40

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

accompanied by the group name, PIDs are accompanied by the process name, file descriptors and streams
are accompanied by the pathnawte,

When resolving paths, if a path component does not exist, libexplain will look for similar names, in order to
suggest alternates for typographical errors.

The libexplain library tries to use as little heap as possible, and usually none. Thigoisl fgeaturbing
the process state, as far as possible, although sometimes #d&labke.

The libexplain library attempts to be thread safe,\wjding global variables, keeping state on the stack as
much as possible. There is a single common message, baffehe functions that use it are documented
as not being thread safe.

The libexplain library does not disturb a procesgjnal handlers. This makes determining whether a
pointer would segfault a challenge, but not impossible.

When information is\ailable via a system call as well aggable through dproc entry, the system call
is preferred. This is tovaid disturbing the process4ate. Thereare also times when no file descriptors
are ¥ailable.

The libexplain library is compiled with large file support. There is no large/small schizophrenia. Where
this affects the argument types in the API, and error will be issued if the necessary large file defines are
absent.

FIXME: Work is needed to makaure that file system quotas are handled in the code. This applies to some
getrlimit(2) boundaries, as well.

There are cases when relati paths are uninformaté. For example: system daemons, servers and
background processes. In these cases, absolute paths are used in the error explanations.

PATH RESOLUTION
Short version: sepath_resolutio(i7).

Long version: Most users ¥ reve heard ofpath_resolutio(i7), and may advanced users tia reve read
it. Hereis an annotated version:

Step 1: Start of the resolution process
If the pathname starts with the slash (/") charadher starting lookup directory is the root directory of the
calling process.

If the pathname does not start with the slash(“/”) charatbieistarting lookup directory of the resolution
process is the current working directory of the process.

Step 2: Walk along the path
Set the current lookup directory to the starting lookup directdow, for each non-final component of the
pathname, where a component is a substring delimited by slash (/") characters, this component is looked
up in the current lookup directory.

If the process does notyeasearch permission on the current lookup directaryfACCES error is
returned ("Permission denied").

open(pathname = "/home/archives/.ssh/private_key", flags =
O_RDONLY) failed, Permission denied (13, EACCES) because the
process does not have search permission to the pathname
"lhomef/archives/.ssh" directory, the process effective GID 1000
"pmiller" does not match the directory owner 1001 "archives" so
the owner permission mode "rwx" is ignored, the others permission
mode is "=—-", and the process is not privileged (does not have
the DAC_READ_SEARCH capability)

If the component is not found, an ENOENT error is returned ("No such file or directory").

unlink(pathname = "/home/microsoft/rubbish") failed, No such file
or directory (2, ENOENT) because there is no "microsoft" directory
in the pathname "/home" directory

41

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

There is also some support for users when this-type pathnames, making suggestions when ENOENT is
returned:

open(pathname = "/user/include/fcntl.h", flags = O_RDONLY) failed,
No such file or directory (2, ENOENT) because there is no "user"
directory in the pathname "/* directory, did you mean the "usr"
directory instead?

If the component ifound, but is neither a directory nor a symbolic link, an ENOTDIR error is returned
("Not a directory").

open(pathname = "/home/pmiller/.netrc/Ica”, flags = O_RDONLY)
failed, Not a directory (20, ENOTDIR) because the ".netrc" regular
file in the pathname "/home/pmiller" directory is being used as a
directory when it is not

If the component is found and is a directarg %t the current lookup directory to that directayd go to
the next component.

If the component is found and is a symbolic link (symlink), we first resbig symbolic link (with the
current lookup directory as starting lookup directory). Upon etiat error is returned. If the result is not
a drectory, an ENOTDIR error is returned.

unlink(pathname = "/tmp/dangling/rubbish") failed, No such file or
directory (2, ENOENT) because the "dangling" symbolic link in the
pathname "tmp" directory refers to "nowhere" that does not exist

If the resolution of the symlink is successful and returns a direeterset the current lookup directory to
that directoryand go to the next component. Note that the resolution process hake@recursion. In
order to protect the kernel against stae&fhow, and also to protect against denial of service, there are
limits on the maximum recursion depth, and on the maximum number of symbolic linkgefiblIdn
ELOOP error is returned when the maximum is exceeded ("Toy heags of symbolic links").

open(pathname = "/tmp/dangling", flags = O_RDONLY) failed, Too
many levels of symbolic links (40, ELOOP) because a symbolic link
loop was encountered in pathname, starting at "/tmp/dangling"

Itis also possible to get an ELOOP or EMLINK error if there are togyraanlinks, but no loop was
detected.

open(pathname = "/tmp/rabbit-hole", flags = O_RDONLY) failed, Too
many levels of symbolic links (40, ELOOP) because too many
symbolic links were encountered in pathname (8)

Notice hav the actual limit is also printed.

Step 3: Find the final entry
The lookup of the final component of the pathname goes jeshiik of all other components, as described
in the previous step, with wdifferences:

() The final component need not be a directory (at least as far as the path resolution process is concerned.
It may hae © be a drectory, or a ron-directory because of the requirements of the specific system
call).

(ii) Itis not necessarily an error if the final component is not found; maybe we are just creating it. The
details on the treatment of the final entry are described in the manual pages of the specific system
calls.

(iii) Itis also possible to hee a woblem with the last component if it is a symbolic link and it should not
be folloved. For example, using theper(2) O_NOFOLLQW flag:

open(pathname = "a-symlink”, flags = O_RDONLY | O_NOFOLLOW) failed,
Too many levels of symbolic links (ELOOP) because O_NOFOLLOW was
specified but pathname refers to a symbolic link

42

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

(iv) Itis common for users to makristakes when typing pathnames. The libexplain library attempts to
make auggestions when ENOENT is returned, for example:

open(pathname = "/usr/include/filecontrl.h", flags = O_RDONLY)
failed, No such file or directory (2, ENOENT) because there is no
"filecontrl.h" regular file in the pathname "/usr/include"

directory, did you mean the "fcntl.h" regular file instead?

(v) Itis also possible that the final component is required to be something other than a regular file:

readlink(pathname = "just-a-file", data = Ox7F930A50, data_size =
4097) failed, Invalid argument (22, EINVAL) because pathname is a
regular file, not a symbolic link

(vi) FIXME: handling of the "t" bit.
Limits
There are a number of limits withg&ds to pathnames and filenames.
Pahname length limit
There is a maximum length for pathnames. If the pathname (or some intermediate pathname

obtained while resolving symbolic links) is too long, an ENAMETOOLONG error is returned
("File name too long"). Notice kothe system limit is included in the error message.

open(pathname =" very...lond, flags = O_RDONLY) failed, File name
too long (36, ENAMETOOLONG) because pathname exceeds the system
maximum path length (4096)

Filename length limit
Some Unix variants lva a Imit on the number of bytes in each path component. Some of them
deal with this silentlyand some gie ENAMETOOLONG,; the libexplain library usgmthcon(3)
_PC_NO_TRUNC to tell which. If this error happens, the libexplain library will state the limit in
the error message, the limit is obtained frpathconf3) PC_MME_MAX. Notice how the
system limit is included in the error message.

open(pathname =" system7/only—had-14-charactetsflags = O_RDONLY)
failed, File name too long (36, ENAMETOOLONG) because
"only—had-14-characters" component is longer than the system

limit (14)

Empty pathname
In the original Unix, the empty pathname referred to the current diredtlonyadays POSIX
decrees that an empty pathname must not be resolved successfully.

open(pathname =", flags = O_RDONLY) failed, No such file or
directory (2, ENOENT) because POSIX decrees that an empty
pathname must not be resolved successfully

Permissions
The permission bits of a file consist of three groups of three bits. The first group of three is used when the
effective wser ID of the calling process equals the owner ID ofitbe Thesecond group of three is used
when the group ID of the file either equals the effectioup ID of the calling process, or is one of the
supplementary group IDs of the calling process. When neither holds, the third group is used.

open(pathname = "/etc/passwd”, flags = O_WRONLY) failed,
Permission denied (13, EACCES) because the process does not have
write permission to the "passwd" regular file in the pathname

"letc" directory, the process effective UID 1000 "pmiller" does

not match the regular file owner 0 "root" so the owner permission
mode "rw-" is ignored, the others permission mode is "r—-", and

the process is not privileged (does not have the DAC_OVERRIDE

43

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

capability)

Some considerable space igagi to this explanation, as most users do notkitat this is has the
permissions systemasks. Inparticular: the owneigroup and other permissions are exalasthey are not
“OR"ed together.

STRANGE AND INTERESTING SYSTEM CALLS
The process of writing a specific error handler for each system call ofatsrnteresting quirks and
boundary conditions, or obscueeno(3) values.

ENOMEDIUM, No medium found
The act of copying a CD was the source of the title for this paper.

$ dd if=/dev/cdrom of=fubar.iso
dd: opening “/dev/cdrom”: No medium found
$

The author wondered whhis computer was telling him there is no such thing as a psychic medium. Quite
apart from the fact that huge numbers ofwealinglish speakers are notem avare that “media” is a

plural, let alone that “medium” is its singuléne string returned bstrerror(3) for ENOMEDIUM is so

terse as to be almost completely free of content.

Whenoper(2) returns ENOMEDIUM it would be nice if the libexplain library could expand a little on this,
based on the type of de itis. For example:

... because there is no disk in the flggpive

... because there is no disc in the CD-ROMalri

... because there is no tape in the tapesdri

... because there is no memory stick in the card reader

And so it came to pass...

open(pathname = "/dev/cdrom”, flags = O_RDONLY) failed, No medium
found (123, ENOMEDIUM) because there does not appear to be a disc
in the CD-ROM drive

The trick, that the author was previously waee of, was to open the device using the O_NONBLOCK

flag, which will allov you to open a dve with no medium in it.You then issue device specifiact!(2)

requests until you figure out what the heck it is. (Not sure if this is POSIX, but it also seems to work that
way in BSD and Solaris, according to thvedin(1) sources.)

Note also the differing uses of “disk” and “disc” in cotiteTheCD standard originated in France, but
evaything else has a “k”.

EFAULT, Bad address
Any system call that takes a pointer argument can retuAUEF. The libexplain library can figure out
which argument is at fault, and it does it without disturbing the process (or thread) signal handling.

When aailable, themincorg2) system call is used, to ask if the memory regiomlislv It can return three
results: mapped but not in physical memangpped and in physical memoend not mapped. When
testing the validity of a pointethe first two are “yes” and the last one is “no”.

Checking C strings are morefilifult, because instead of a pointer and a size, we owyd@inter To
determine the size we wouldvgab find the NUL, and that could segfault, catch-22.

To work around this, the libexplain library uses Istat(2) sysem call (with a known good second
argument) to test C strings for validiti failure return && errno == ERULT is a ‘no”, and anythng else
is a “yes”. This, of course limits strings t&FH_MAX characters, but that usually is@ problem for the
libexplain library because that is almostaays the longest strings it cares about.

EMFILE, Too many open files
This error occurs when a process already has the maximum number of file descriptors open. If the actual
limit is to be printed, and the libexplain library tries to, you tapén a file in/fproc to read what it is.

open_max = sysconf(_SC_OPEN_MAX);

44

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

This one wart'so dfficult, there is @aysconf3) way of obtaining the limit.

ENFILE, Too many open files in system

This error occurs when the system limit on the total number of open files has been reached. In this case
there is no handgysconf3) way of obtain the limit.

Digging deeperone may disceer that on Linux there is goroc entry we could read to obtain this value.
Catch-22: we are out of file descriptors, so we toapen a file to read the limit.

On Linux there is a system call to obtain it, but it has no [e]glibc wrapper function, sowso Bit
very carefully:

long
explain_maxfile(void)
{
#ifdef _ linux__
struct __sysctl_args args;
int32_t maxfile;
size_t maxfile_size = sizeof(maxfile);
int name[] = { CTL_FS, FS_MAXFILE };
memset(&args, 0, sizeof(struct __sysctl_args));
args.name = name;
args.nlen = 2;
args.oldval = &maxfile;
args.oldlenp = &maxfile_size;
if (syscall(SYS__ sysctl, &args) >= 0)
return maxfile;
#endif
return -1,
}

This permits the limit to be included in the error message, wratalzle.

EINVAL “In valid argument” vsENOSY'S “Function not implemented”
Unsupported actions (suchssnlink2) on a AT file system) are not reported consistently from one
system call to the mé It is possible to hae dther EINVAL or ENOSYS returned.

As a result, attention must be paid to these error cases to get them right, particularly as the EINVAL could
also be referring to problems with one or more system call arguments.
Note thaterrno(3) is not always set

There are times when it is necessary to read the [e]glibc sources to detenmamsl lehen errors are

returned for some system calls.

feof(3), filena(3)
It is often assumed that these functions cannot return an &higris only true if thestreamargument
is valid, howeer they are capable of detecting arvatid pointer.

fpathcon(3), pathcon(3)
The return value dpathcon€2) andpathcon{2) could legitimately be -1, so it is necessary to see if
errno(3) has been explicitly set.

ioctl(2)
The return value abctl(2) could legitimately be —1, so it is necessary to segatifo(3) has been
explicitly set.

readdir(3)
The return value afeaddir(3) is NULL for both errors and end-afd. Itis necessary to see if
errno(3) has been explicitly set.

45

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

setbu(3), setbuffe(3d), setlinebuf3), setvbu3)
All but the last of these functions returoid. Andsetvbuf3) is only documented as returning “non-
zero” on errar It is necessary to seeéfrno(3) has been explicitly set.

strtod(3), strtol(3), strtold(3), strtoll(3), strtoul(3), strtoull(3)
These functions return 0 on errbut that is also a legitimate returalue. Itis necessary to see if
errno(3) has been explicitly set.

unget¢3)
While only a single character of backup is mandated by the ANSI C standard, it turns out that [e]glibc
permits more.. but that means it can fail with ENOMEM. It can also fail with EBADFpifis bogus.
Most diffi cult of all, if you pass EOF an error return occurs, but errno is not set.

The libexplain library detects all of these errors correetign in cases where the error values are poorly
documented, if at all.

ENOSPC, No space left on device
When this error refers to a file on a file system, the libexplain library prints the mount point of the file
system with the problem. This can neake source of the error much clearer.

write(fildes = 1 "example", data = 0xbfff2340, data_size = 5)
failed, No space left on device (28, ENOSPC) because the file
system containing fildes (“/home") has no more space for data

As more special device support is added, error messages are expected to include the device name and actual
size of the device.

EROFS, Read-only file system
When this error refers to a file on a file system, the libexplain library prints the mount point of the file
system with the problem. This can neake source of the error much clearer.

As more special device support is added, error messages are expected to include the device name and type.

open(pathname = "/dev/fd0", O_RDWR, 0666) failed, Read-only file
system (30, EROFS) because the floppy disk has the write protect
tab set

...because a CD-ROM is not writable
...because the memory card has the write protect tab set
...because the %2 inch magnetic tape does net darite ring

rename
Therenaméd?2) system call is used to change the location or name of a file, moving it between directories if
required. Ifthe destination pathname already exists it will be atomically replaced, so that there is no point
at which another process attempting to access it will find it missing.

There are limitations, hower: you can only rename a directory on top of another directory if the
destination directory is not empty.

rename(oldpath = "foo", newpath = "bar") failed, Directory not
empty (39, ENOTEMPTY) because newpath is not an empty directory;

that is, it contains entries other than "." and "..
You can't rename a directory on top of a non-directeither.

rename(oldpath = "foo", newpath = "bar") failed, Not a directory
(20, ENOTDIR) because oldpath is a directory, but newpath is a
regular file, not a directory

Nor is the reerse allowed

rename(oldpath = "foo", newpath = "bar") failed, Is a directory
(21, EISDIR) because newpath is a directory, but oldpath is a
regular file, not a directory

46

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

This, of course, makes the libexplain librarjgb more complicated, because thndink(2) orrmdir(2)
system call is called implicitly bgenamé&2), and so all of thanlink(2) orrmdir(2) errors must be detected
and handled, as well.

dup2
ThedupZ?2) system call is used to create a second file descriptor that references the same object as the first
file descriptar Typically this is used to implement shell input and output redirection.

The fun thing is that, just asnam&2) can atomically rename a file on top of an existing file and vemo
the old file,dup2) can do this onto an already-open file descriptor.

Once again, this makes the libexplain librafgb more complicated, because thes€?2) system call is
called implicitly bydup2?2), and so all oflos€2)’'s arors must be detected and handled, as well.

ADVENTURES IN IOCTL SUPPORT
Theioctl(2) system call provides device i authors with a way to communicate with user-space that
doesnt fit within the existing kernel API. Seectl_list(2).

Decoding Request Numbers
From a cursory look at tHectl(2) interface, there would appear to be a large but finite number of possible
ioctl(2) requests. Each differeiuictl(2) request is effeately another system call, but withoutyatype-
safety at all — the compiler cartielp a programmer get these right. This was probably thevatioti
behindtcflush(3) and friends.

The initial impression is that you could decaddetl(2) requests using a huge switch statement. This turns
out to be infeasible because one very rapidly digsathat it is impossible to include all of the necessary
system headers defining the varioostl(2) requests, because yHwvea hard time playing nicely with

each other.

A deeper look reeals that there is a range of ‘peie” request numbers, and devicevdriauthors are
encouraged to use them. This means that there is a far larger possible set of requests, with ambiguous
request numbers, than are immediately apparent. Also, there are some historical ambiguities as well.

We dready knev that the switch was impractical, butmave know that to select the appropriate request
name and explanation we must consider not only the request number but also the file descriptor.

The implementation dbctl(2) support within the libexplain library is tovea tible of pointers tooctl(2)
request descriptors. Each of these descriptors includes an optional pointer to a disambiguation function.

Each request is actually implemented in a separate source file, so that the necessary include files are
relieved of the obligation to play nicely with others.

Representation
The philosopi behind the libexplain library is to provide as much information as possible, including an
accurate representation of the system call. In the cdsettf®) this means printing the correct request
number (by hame) and also a correct (or at least useful) representation of the third argument.

Theioctl(2) prototype looks lik this:
int ioctl(int fildes, int request, ...);

which should hee your type-safety alarms goingfofinternalto [e]glibc, this is turned into a variety of
forms:

int __ioctl(int fildes, int request, long arg);
int __ioctl(int fildes, int request, void *arg);

and the Linux kernel syscall interface expects

asmlinkage long sys_ioctl(unsigned int fildes, unsigned int
request, unsigned long arg);

The extreme variability of the third argument is a challenge, when the libexplain library tries to print a
representation of that thirdgamment. Havever, once the request number has been disambiguated, each
entry in the the libexplain librarg'ioctl table has a custoprint_data function (OO done manually).

47

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

Explanations
There are fewer problems determining the explanation to be used. Once the request number has been
disambiguated, each entry in the libexplain libraigttl table has a custoprint_explanation
function (again, OO done manually).

Unlike sction 2 and section 3 system calls, niostl(2) requests he ro errors documented. This means,
to give gpod error descriptions, it is necessary to read kernel sources teedisco

» whaterrno(3) values may be returned, and
« the cause of each error.

Because of the OO nature of function call dispatching withing the kernel, you need atl spanices
implementing thaioctl(2) request, not just the generic implementation. It is to be expected that different
kernels will have dfferent error numbers and subtly different error causes.

EINVAL vsENOTTY
The situation iswen worse forioctl(2) requests than for system calls, with EINVAL and ENOTTY both
being used to indicate that attl(2) request is inappropriate in that context, and occasionally ENOSYS,
ENOTSUP and EOPNOTSUPP (meant to be used for sockets) as well. There are comments in the Linux
kernel sources that seem to indicate a progrest@anup is in progresg-or extra chaos, BSD adds
ENOIOCTL to the confusion.

As a result, attention must be paid to these error cases to get them right, particularly as the EINVAL could
also be referring to problems with one or more system call arguments.
intptr_t
The C99 standard defines an integer type that is guaranteed to be able ty Ipoidten without
representation loss.

The abee function syscall prototype would be better written

long sys_ioctl(unsigned int fildes, unsigned int request, intptr_t

arg);
The problem is the cognie dssonance induced by device-specific or file-system-speoit2)
implementations, such as:

long vfs_ioctl(struct file *filp, unsigned int cmd, unsigned long

arg);
The majority ofioctl(2) requests actually i@ an int *arg third agument. Buhaving it declaredbng
leads to code treating thislasg *arg . This is harmless on 32-bitsizeof(long) ==
sizeof(int)) but nasty on 64-bitss{zeof(long) != sizeof(int)). Dependingn the
endian-ness, you do or dbget the value you expect, but yalwaysget a memory scribble or stack
scribble as well.

Writing all of these as

int ioctl(int fildes, int request, ...);

int __ioctl(int fildes, int request, intptr_t arg);

long sys_ioctl(unsigned int fildes, unsigned int request, intptr_t

arg);

long vfs_ioctl(struct file *filp, unsigned int cmd, intptr_t arg);
emphasizes that the integer is only an integer to represent a quantity that is alyssaalunrelated
pointer type.

CONCLUSION
Use libexplain, your users will lkit.

COPYRIGHT
libexplain version 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

48

explain_Ica2010(1) Gener@lommands Manual explain_lca2010(1)

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

49

FreeSoftware Bundation GPL(1)

GPL - GNU General Public License

DESCRIPTION

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitteq tandop
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed svagkyour freedom to share

and change theavks. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program -- te@mek it remains free software for all its useyse,

the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to ary other work released this way by its authoveu can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to maksure that you hae the freedom to distribute copies of free software (and charge for them

if you wish), that you receé ource code or can get it if you want it, that you can change the software or
use pieces of it in mefree programs, and that you kmgou can do these things.

To protect your rights, we need to peat others from denying you these rights or asking you to surrender
the rights. Therefore, you Y@ eertain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you kexki You must mak sure that thg, too, recere a can get the
source code. And you must shithem these terms so thknow their rights.

Developers that use the GNU GPL protect your rights with #gps: (1) assert copyright on the software,
and (2) offer you this License giving yowgiepermission to cop distribute and/or modify it.

For the deelopers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed toydaesers access to install or run modified versions of the software inside

them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the saite. Thesystematic pattern of such abuse occurs in the area of products

for individuals to use, which is precisely where it is most unacceptable. Thereforejende$igned this

version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States shouldwqiasdiots to

restrict deelopment and use of software on general-purpose computers, but in those that do, we wish to
avad the special danger that patents applied to a free program coutdtrafi&ctively proprietary To

prevent this, the GPL assures that patents cannot be used to render the program non-free.

GPL 50

GPL(1)

GNU

FreeSoftware Bundation GPL(1)

The precise terms and conditions for copying, distribution and modificatiomfollo
TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-kklaws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to grcopyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals organizations.

To “modify” a work means to cgpfrom or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exacycdime resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, woulelyoalkdirectly or
secondarily liable for infringement under applicable copyright écept eecuting it on a computer or
modifying a prvate copy. Propagation includes copying, distribution (with or without modification),

making &ailable to the public, and in some countries other activities as well.

To “corvey’ a work means ankind of propagation that enables other parties toenvakeceve wpies.
Mere interaction with a user through a computer network, with no transfer ofasom corveying.

An interactve wser interface displays “Appropriate ga Notices” to the extent that it includes a eement

and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, andvhto view a mpy of this License. If the interface presents a list

of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means gnnon-source form of a work.

A “Standard Interface” means an interface that either isfamabttandard defined by a recognized
standards bodyr, in the case of interfaces specified for a particular programming language, one that is
widely used among delopers working in that language.

The “System Libraries” of anxecutable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementatiorvalable to the public in source code forr.“ Major
Component”, in this context, means a major essential component (kernelwsiygtem, and so on) of the
specific operating system (if any) on which tlxecaitable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for anxacutable work) run the object code and to modify the work, including scripts to

control those actities. Hawvever, it does not include the work'System Libraries, or general-purpose tools

or generally wailable free programs which are used unmodified in performing those activities but which are
not part of the wrk. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GPL 51

GPL(1) FreeSoftware Bundation GPL(1)

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License expliditimafyour unlimited
permission to run the unmodified Program. The output from runningesszbwork is ceered by this
License only if the output, gén its content, constitutes avawed work. ThisLicense acknowledges your
rights of fair use or other equalent, as provided by copyrightia

You may make, run and propagateveed works that you do not cesy, without conditions so long as

your license otherwise remains in forcéou may corvey cvered works to others for the sole purpose of
having them mak modifications exclusiely for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License inveging all material for which you do not
control copyright. Thosehus making or running the wered works for you must do so exchy on your
behalf, under your direction and control, on terms that prohibit them from makirapies of your
copyrighted material outside their relationship with you.

Corveying under ap other circumstances is permitted solely under the conditions stated belo
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Igal Rights From Anti-Circumvention bha

No covered work shall be deemed part of an effectechnological measure underyaapplicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you cowvey a overed work, you waie any egd power to forbid circumvention of technological
measures to the extent such circumvention is effecteddogiging rights under this License with respect to
the cavered work, and you disclaim gintention to limit operation or modification of the work as a means
of enforcing, against the woskisers, your or third parties’de rights to forbid circumvention of
technological measures.

4. Corveying Verbatim Copies.

You may corvey vebatim copies of the Progras®®urce code as you regeit, in ary medium, provided
that you conspicuously and appropriately publish on eachawgppropriate copyright notice; keep intact
all notices stating that this License ang aon-permissie terms added in accord with section 7 apply to
the code; keep intact all notices of the absenceyofvanranty; and gie dl recipients a coyp of this

License along with the Program.

You may charge anprice or no price for each cgphat you comey, and you may offer support or warranty
protection for a fee.

5. Corveying Modified Source Versions.

You may corvey a wrk based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and givinyantedate.

b) The work must carry prominent notices stating that it is released under this Licensg eontlitions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore applgong with ary applicable section 7 additional terms, to
the whole of the work, and all its partsgaelless of hw they are packaged. This Licensevgs no
permission to license the work inyaother way but it does not imalidate such permission if you y&a
separately recegd it.

d) Ifthe work has interaste wser interfaces, each must display Appropriatga R otices; howeer, if
the Program has interaai interfaces that do not display AppropriategdeNotices, your work need
not male them do so.

GNU GPL 52

GPL(1)

GNU

FreeSoftware Bundation GPL(1)

A compilation of a ceered work with other separate and independent works, which are not by their nature
extensions of the a@red work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “gdgi'df the compilation and its

resulting copyright are not used to limit the accessga teghts of the compilatios’ users beyond what

the individual works permit. Inclusion of ava@ed work in an agggste does not cause this License to

apply to the other parts of the aggpke.

6. Corveying Non-Source Forms.

You may corvey a @vered work in object code form under the terms of sections 4 and 5, provided that you
also comney the machine-readable Corresponding Source under the terms of this License, in one of these

ways:

a)

b)

d)

e)

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offealid for at least three years and valid for as long as you

offer spare parts or customer support for that product modelda@gione who possesses the object
code either (1) a cgpof the Corresponding Source for all the software in the product thatésedo

by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing thisgog of source, or (2) access to

copy the Corresponding Source from a network server at no charge.

Corvey individual copies of the object code with a ga the written offer to provide the
Corresponding Source. This alternatis dlowed only occasionally and noncommerciadgd only
if you receved the object code with such an offer accord with subsection 6b.

Corvey te object code by offering access from a designated place (gratis or for a charge), and offer
equiaent access to the Corresponding Source in the same way through the same place at no further
chage. You need not require recipients to gape Corresponding Source along with the object code.

If the place to copthe object code is a network sentbe Corresponding Source may be on a

different server (operated by you or a third party) that supportsasnti copying facilities, provided

you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
awailable for as long as needed to satisfy these requirements.

Corvey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Libraryneed not be included in ceeying the object code work.

A “User Product” is either (1) a “consumer product”, which meapsaangible personal property which is
normally used for personal, familygr household purposes, or (2) anything designed or sold for

incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved iraf/ar of coverage. er a particular product reced by a mrticular user‘normally

used” refers to a typical or common use of that class of prodgetdless of the status of the particular

user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer producteedless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product meany amethods, procedures, authorizatiayk or other
information required to install ancecute modified versions of awered work in that User Product from a
modified version of its Corresponding Source. The information mustsub ensure that the continued
functioning of the modified object code is in no case@ried or interfered with solely because
modification has been made.

If you cornvey an object code work under this section in, or with, or specifically for use in, a User Product,

GPL 53

GPL(1) FreeSoftware Bundation GPL(1)

and the coweying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed tegardtess of hw the transaction is
characterized), the Corresponding Sourcereged under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you pdhad party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warrantgr ypdates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source ooyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementatiaitable to the public in source code
form), and must require no special passwordeyrfar unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though thevere included in this License, to the extent thay tire valid under applicableva

If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remainsegaed by this License withoutgerd to the additional
permissions.

When you cowvey a opy of a mvered work, you may at your option remeany aditional permissions

from that cop, or from ary part of it. (Additional permissions may be written to require their own vemo
in certain cases when you modify therk.) You may place additional permissions on material, added by
you to a ceered work, for which you ha& a can give gpropriate copyright permission.

Notwithstanding ay other provision of this License, for material you add to\esed work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonalgd leotices or author attributions in that material or in
the Appropriate Lgd Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademank far use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone wieysdre
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissie alditional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you reediit, or ary part of it, contains a notice stating that it ivgmed

by this License along with a term that is a further restriction, you mayeetmat term. If a license
document contains a further restriction but permits relicensing eegag under this License, you may
add to a ceered work material geerned by the terms of that license document, provided that the further
restriction does not sume such relicensing or caeying.

If you add terms to a @ered work in accord with this section, you must place, in theasiesource files,
a datement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

GNU GPL 54

GPL(1) FreeSoftware Bundation GPL(1)

Additional terms, permisge a non-permissie, may be stated in the form of a separately written license,
or stated as exceptions; the edeequirements apply either way.

8. Termination.

You may not propagate or modify avaed work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including anpatent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionallynless and until the copyright holder explicitly and finally terminates your
license, and (b) permanentif/the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first timeymtebeized notice of

violation of this License (for grwork) from that copyright holdeand you cure the violation prior to 30

days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties/e/reréed
copies or rights from you under this License. If your righteeH&en terminated and not permanently
reinstated, you do not qualify to reeeirew licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to veagirun a cop of the Program. Ancillary
propagation of a a@red work occurring solely as a consequence of using peer-to-peer transmission to
receive a opy likewise does not require acceptance. Hawmenothing other than this License grants you
permission to propagate or modifyyatovered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating e work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you corey a overed work, the recipient automatically regs a icense from the original
licensors, to run, modify and propagate that work, subject to this Lic&bseare not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of gagzation, or substantially all assets of
one, or subdividing an ganization, or merging genizations. Ifpropagation of a aered work results

from an entity transaction, each party to that transaction whoes@opy of the work also recees

whatever licenses to the work the padyredecessor in interest had or couldeginder the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose anfurther restrictions on thexercise of the rights granted offismed under this

License. Br example, you may not impose a license fee, rqyaltgther charge forxercise of rights

granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that anpatent claim is infringed by making, using, selling, offering for sale, or importing

GNU GPL 55

GPL(1) FreeSoftware Bundation GPL(1)

the Program or gnportion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contslatmtributor version”.

A contributors “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some, pemnmigied by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contribetsion. Br purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exchasivorldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” ysespress agreement or commitment, hegre
denominated, not to enforce a patent (such as an express permission to practice a pa&saindnco to
sue for patent infringement)o “grant” such a patent license to a party means teraath an agreement
or commitment not to enforce a patent against the party.

If you convey a overed work, knowingly relying on a patent license, and the Corresponding Source of the
work is not aailable for anyone to cop free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be s@itable, or (2) arrange to depé yourself of the benefit of the patent

license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” meansweoehal

knowledge that, but for the patent license, youreging the coered work in a countryor your recipient’s

use of the ceered work in a countrywould infringe one or more identifiable patents in that country that

you hae reason to belie ae valid.

If, pursuant to or in connection with a single transaction or arrangement, yay,corpropagate by
procuring comeyance of, a ceered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify oveya gecific copy of the caovered work,

then the patent license you grant is automatically extended to all recipients ofeifes aeork and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of terage, prohibits the
execise of, or is conditioned on the noxercise of one or more of the rights that are specifically granted
under this LicenseYou may not comey a ®vered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which yoa pagknent to the third party

based on the extent of your activity of eeying the work, and under which the third party grants, yoahn
the parties who would reeei the cavered work from you, a discriminatory patent license (a) in connection
with copies of the agered work comeyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain eeecowork, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limitiggraplied license or other defenses to

GNU GPL 56

GPL(1) FreeSoftware Bundation GPL(1)

infringement that may otherwise besgable to you under applicable patentla
12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court grageement or otherwise) that contradict the
conditions of this License, thi@lo not excuse you from the conditions of this License. If you cannot

convey a overed work so as to satisfy simultaneously your obligations under this Licenseyaottiem

pertinent obligations, then as a consequence you may naciat dl. For example, if you agree to

terms that obligate you to collect a royalty for furtheneymg from those to whom you ceey the

Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding ay other provision of this License, youvreapermission to link or combine grcovered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to cuay te resulting wrk. Theterms of this License will continue to apply to the
part which is the ogered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised andworv@isions of the GNU General Public
License from time to time. Suchweversions will be similar in spirit to the present version, but may differ
in detail to address meproblems or concerns.

Each version is gén a dstinguishing version nhumbetf the Program specifies that a certain numbered
version of the GNU General Public License “oyaater version” applies to it, you ¥&te option of
following the terms and conditions either of that numbered version oy d&tan version published by the
Free Software dundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may chooseaversion &er published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that prosypublic statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions mayvgiyou additional or different permissions. Hoxee no additional obligations
are imposed on grauthor or copyright holder as a result of your choosing toviolidater version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM,0 THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE SATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES RBVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NDLIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS T THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM P®VE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSAR SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE D YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NO@ LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INMCCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM @ OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

GNU GPL 57

GPL(1) FreeSoftware Bundation GPL(1)

SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided abaannot be gien local legd effect
according to their terms, reviewing courts shall apply localtheat most closely approximates an absolute
waiver of al civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a cgmf the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your MePrograms

If you develop a nev program, and you want it to be of the greatest possible use to the public, the best way
to achiee tis is to mak it free software whichveryone can redistribute and change under these terms.

To do 90, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectiely state the exclusion of warranty; and each file showe ladeast the “copyright”
line and a pointer to where the full notice is found.

one line to give the pgram’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) anlater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on e to contact you by electronic and paper mail.

If the program does terminal interaction, radkoutput a short notice lithis when it starts in an
interactve nmode:

<program> Copright (C) <year> <name of author>
This program comes with ABSOLUTEINO WARRANTY; for details type “sh@ w”. Thisis free
software, and you are welcome to redistribute it under certain conditions; typec’sfar details.

The hypothetical commands “skav” and “shav ¢” should shav the appropriate parts of the General
Public License. Of course, your programdmmands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school;, ifoesign a “copyright
disclaimer” for the program, if necessaior more information on this, andwdo goply and follav the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine libragou may consider it more useful to permit linking proprietary
applications with the librarylf this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-Igpl.htmlI>.

GNU GPL 58

libexplain(3) LibraryFunctions Manual libexplain(3)

NAME
libexplain — Explain errno values returned by libc functions

SYNOPSIS
cc ... —lexplain;

#include <libexplain/libexplain.h>

DESCRIPTION
The libexplain library exists to g explanations of error reported by system calls. The error message
returned bystrerror(3) tend to be quite cryptic. By providing a specific error report for each system call, a
more detailed error message is possible, usually identifying and describing the specific cause from amongst
the numerous meanings eaahno value maps to.

Race Condition
The explanation of the cause of an error is dependent on the environment of the error to remain unchanged,
so that when libexplain gets around to looking for the cause, the cause is still there. On a running system,
and particularly a multi-user system, this is notagk possible.

If an incorrect explanation is provided, it is possible that the cause is no longer present.

Compiling
Assuming the library header files has been installed/irsidinclude , and the library files hae been
installed into/usr/lib , compiling against libexplain requires no speeibloptions.

When linking your pograms, addexplain to the list of libraries at the end of your link line.
cc ... —lexplain

When you configure your package with GNU Autoconf, you need the large file support macro
AC_SYS_LARGEFILE

If you arent using GNU Autoconf, you will hee to work out the needed large file support requirements
yourdelf.

There is gkg-configl) package for you to use, too:
CFLAGS="$CFLAGS ‘pkg—config libexplain ——cflags™ LIBS="$LIBS ‘pkg—config libexplain
——libs"

This can mak figuring out the command line requirements much easier.

Environment Variable
The EXPLAIN_OPTIONSenvironment variable may be used to control some of the content in the

“

messages. Optiomse separated by comma (*,") characters.
There are three ways to set an option:

1. The form ‘hame=valu€’ may be used explicitlyThe values “true” and “false” are used for boolean
options.

2. An option name alone is interpreted to meaartie=true”.

3. The form “nonamé is interpreted to meamame=false”.

The following options arevailable:

debug Additional debugging messages for libexplaireldpers. Notgenerally useful to clients of the
library.
Default: false.

extra-device-info
Additional information for block and character special devices is printed when naming a file and
its type.
Default: true

59

libexplain(3) LibraryFunctions Manual libexplain(3)

numeric-errno

This option includes the numergerno value in the message,g.“(2, ENOENT)” rather than
“(ENOENT)". Disablingthis option is generally of use in automated testing, teeptdJNIX

dialect differences from producing falsegagives.
Default: true

dialect-specific

This controls the presence of explanatory text specific to a particular UNIX dialect. It also
suppresses printing system specific maximums. Disabling this option is generally of use in

automated testing, to prent UNIX dialect differences from producing falsegagives.
Default: true.

hanging-indent

This controls the hanging indent depth used for error message wrapping. By default no hanging
indent is used, but this can sometimes obfuscate the end of one error message and the beginning
of another A hanging indent results in continuation lines starting with white spoace, similar to

RFC822 headersA value of 0 means no hanging indent (all lines flush with lefgmar A

common value to use is 4: it doestonsume to much of each line, and it is a clear indent. The

program may choose to@tride the environment variable using the

explain_option_hanging_indent_¢8) function. The hanging indent is limited to 10% of the

terminal width.
Default: 0

internal-strerror

This option controls the source of system eror messatge té false, it usestrerorP(3) for the

text. Iftrue, it uses internal string for thexé Thisis mostly of use for automated testita

avoid false negatives induced by inconsistencies across Unix implementations.
Default: false.

program-name

This option controls the inclusion of the program name at the start of error messages, by the
explain_*_or_die and explain_*_on_error functions. This helps users understand which
command is throwing the erroDisabling this option may be of some interest to script writers.
Program deelopers can use theplain_program_name_sé€3) function to set the name of the
command, if the wish to wverride the name that libexplain would otherwise obtain from the
operating system. Programwiopers can use theplain_program_name_assemigB) function

to trump this option.
Default: true.

symbolic-mode-bits

This option controls he permission mode bits are represented in error messages. Setting this
option to true will cause symbolic names to be prineed.& IRUSR | S IWUSR | S_IRGRP |

S _IROTH). Settingthis option to false will cause octal values to be pringeg.0644).
Default: false.

Supported System Calls
Each supported system call has its anampage.

explain_accepf3)
Explainaccep(2) errors
explain_accept_or_dig)
accept a connection on a socket and report errors
explain_accept{3)
Explainaccept42) errors
explain_accept4_or_di@)
accept a connection on a socket and report errors

60

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_accesg)
Explainaccesg) errors

explain_access_or_d{8)
check permissions for a file and report errors

explain_acc{3)
Explainacc{(2) errors

explain_acct_or_di€3)
process accounting control and report errors

explain_acl_from_texB)
Explainacl_from_text3) errors

explain_acl_from_text_or_d{8)
create an ACL from text and report errors

explain_acl_get f@3)
Explainacl_get_fd@3) errors

explain_acl_get fd_or_di@)
Executeacl_get_f@3) and report errors

explain_acl_get_fil¢3)
Explainacl_get _fil¢3) errors

explain_acl_get _file_or_di@)
Executeacl_get_fil€3) and report errors

explain_acl_set f(B)
Explainacl_set_f@3) errors

explain_acl_set fd_or_di®)
set an ACL by file descriptor and report errors

explain_acl_set_fil€3)
Explainacl_set_fil€3) errors

explain_acl_set file_or_di@)
set an ACL by filename and report errors

explain_acl_to_texB)
Explainacl_to_tex{3) errors

explain_acl_to_text or_di@)
convert an ACL to text and report errors

explain_adjtimg3)
Explainadijtimg2) errors

explain_adjtime_or_di€3)
smoothly tune kernel clock and report errors

explain_adjtimex3)
Explainadijtimex?2) errors

explain_adijtimex_or_di€3)
tune kernel clock and report errors

explain_asprint{3)
Explainasprint{3) errors

explain_asprintf_or_di€3)
print to allocated string and report errors

61

libexplain(3) LibraryFunctions Manual

explain_bind3)
Explainbind(2) errors

explain_bind_or_di€3)

bind a name to a socket and report errors
explain_calloq3)

Explaincalloc(3) errors
explain_calloc_or_di€3)

Allocate and clear memory and report errors
explain_chdir(3)

Explainchdir(2) errors
explain_chdir_or_di€3)

change working directory and report errors
explain_chmod3)

Explainchmod?2) errors
explain_chmod_or_dig)

change permissions of a file and report errors
explain_chowi(3)

Explainchownerrors
explain_chown_or_di€3)

change ownership of a file and report errors
explain_chroof3)

Explainchroot(2) errors
explain_chroot_or_di€3)

change root directory and report errors
explain_clos€3)

Explainclos€2) errors
explain_close_or_di€3)

close a file descriptor and report errors
explain_closedi(3)

Explainclosedi(3) errors
explain_closedir_or_di€3)

close a directory and report errors
explain_conned)

Explainconnecf2) errors
explain_connect_or_di@)

initiate a connection on a socket and report errors
explain_crea(3)

Explaincrea{(2) errors
explain_creat_or_di€3)

create and open a file and report errors
explain_dirfd(3)

Explaindirfd(3) errors
explain_dirfd_or_di€3)

get directory stream file descriptor and report errors

libexplain(3)

62

libexplain(3) LibraryFunctions Manual

explain_dup(3)
Explaindup(2) errors

explain_dup_or_di€3)
duplicate a file descriptor and report errors

explain_dupZ3)
Explaindup2?2) errors

explain_dup2_or_di€3)
duplicate a file descriptor and report errors

explain_endgren3)
Explainendgren(3) errors

explain_endgrent_or_di@)
finish group file accesses and report errors

explain_eventf¢)
Explainewentfd2) errors

explain_eventfd_or_di@)

create a file descriptor fowent notification and report errors

explain_execl3)

Explainexeclp(3) errors
explain_execlp_or_di@)

execute a file and report errors
explain_exec(3)

Explainexec\(3) errors
explain_execv_or_di@)

execute a file and report errors
explain_execvEs)

Explainexecvg?) errors
explain_execve_or_d(8)

execute program and report errors
explain_execv(B)

Explainexecv3) errors
explain_execvp_or_d(8)

execute program and report errors
explain_exi(3)

print an explanation of exit status before exiting
explain_fchdir(3)

Explainfchdir(2) errors
explain_fchmog3)

Explainfchmod?2) errors
explain_fchmod_or_di@)

change permissions of an open file and report errors
explain_fchowi(3)

Explainfchown(2) errors
explain_fchown_or_di€3)

change ownership of a file and report errors

libexplain(3)

63

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_fchowna3)
Explainfchowna(2) errors

explain_fchownat_or_dig)
change ownership of a file relei o a drectory and report errors

explain_fclosé3)
Explainfclos€2) errors

explain_fclose_or_di€3)
close a stream and report errors

explain_fcnt(3)
Explainfcntl(2) errors

explain_fentl_or_dig€3)
Manipulate a file descriptor and report errors

explain_fdopeii3)
Explainfdoper{3) errors

explain_fdopen_or_dig)
stream open function and report errors

explain_fdopendi¢3)
Explainfdopendi(3) errors

explain_fdopendir_or_di€3)
open a directory and report errors

explain_feof3)
Explainfeo{3) errors

explain_feof or_di€3)
check and reset stream status and report errors

explain_ferron(3)
Explainferror(3) errors

explain_ferror_or_dig3)
check stream status and report errors

explain_fflusi(3)
Explainfflush(3) errors

explain_fflush_or_dié3)
flush a stream and report errors

explain_fget¢3)
Explainfgetd3) errors

explain_fgetc_or_di€3)
input of characters and report errors

explain_fgetpo&3)
Explainfgetpo$3) errors

explain_fgetpos_or_di@)
reposition a stream and report errors

explain_fget¢3)
Explainfgetg3) errors

explain_fgets_or_di€3)
input of strings and report errors

64

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_filenq3)
Explainfilenq(3) errors

explain_fileno_or_di€3)
check and reset stream status and report errors

explain_flock3)
Explainflock(2) errors

explain_flock or_di€3)
apply or remue an advisory lock on an open file and report errors

explain_fopelt3)
Explainfoper(3) errors

explain_fopen_or_dig2)
open files and report errors

explain_fork(3)
Explainfork(2) errors

explain_fork_or_di€3)
create a child process and report errors

explain_fpathcon(3)
Explainfpathcon(3) errors

explain_fpathconf_or_di@)
get configuration values for files and report errors

explain_fprintf(3)
Explainfprintf(3) errors

explain_fprintf_or_di€3)
formatted output carersion and report errors

explain_fpuige(3)
Explainfpurgeg(3) errors

explain_fpuige or_dig3)
purge a stream and report errors

explain_fputg3)
Explainfputq3) errors

explain_fputc_or_di€3)
output of characters and report errors

explain_fputg3)
Explainfputq3) errors

explain_fputs_or_di€3)
write a string to a stream and report errors

explain_fread3)
Explainfread3) errors

explain_fread or_di€3)
binary stream input and report errors

explain_freopelii3)
Explainfreoper{3) errors

explain_freopen_or_dig)
open files and report errors

65

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_fseel3)
Explainfseek3) errors

explain_fseek or_di@)
reposition a stream and report errors

explain_fseek(B)
Explainfseek@3) errors

explain_fseeko _or_d(8)
seek to or report file position and report errors

explain_fsetpog3)
Explainfsetpo§3) errors

explain_fsetpos_or_d(8)
reposition a stream and report errors

explain_fsta(3)
Explainfsta{3) errors

explain_fstat_or_di€3)
get file status and report errors

explain_fstata(3)
Explainfstata(2) errors

explain_fstatat_or_di€3)
get file status relate t a drectory file descriptor and report errors

explain_fstatf¢3)
Explainfstatf2) errors

explain_fstatfs_or_di€3)
get file system statistics and report errors

explain_fstatvf§3)
Explainfstatvf$2) errors

explain_fstatvfs_or_di)
get file system statistics and report errors

explain_fsyn¢3)
Explainfsyn¢2) errors

explain_fsync_or_di€)
synchronize a files in-core state with storage device and report errors

explain_ftell(3)
Explainftell(3) errors

explain_ftell_or_di€3)
get stream position and report errors

explain_ftella(3)
Explainftello(3) errors

explain_ftello_or_dig€3)
get stream position and report errors

explain_ftimg3)
Explainftime(3) errors

explain_ftime_or_di€3)
return date and time and report errors

66

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_ftruncaté3)
Explainftruncatg?) errors

explain_ftruncate_or_di€3)
truncate a file to a specified length and report errors

explain_futimeng3)
Explainfutimeng3) errors

explain_futimens_or_di@)
change file timestamps with nanosecond precision and report errors

explain_futime$3)
Explainfutimeg¢3) errors

explain_futimes_or_dig)
Executefutime¢3) and report errors

explain_futimesa)
Explainfutimesaf2) errors

explain_futimesat_or_di@)
change timestamps of a file relatito a drectory andeport errors

explain_fwrite(3)
Explainfwrite(3) errors

explain_fwrite_or_dig€3)
binary stream output and report errors

explain_futimesa3)
Explainfutimesa2) errors

explain_futimesat_or_di@)
change timestamps of a file relatito a drectory andeport errors

explain_getaddrinf¢3)
Explaingeaddrinfa(3) errors

explain_getaddrinfo_or_dig)
network address and and report errors

explain_get¢3)
Explaingetc(3) errors

explain_getc_or_di€3)
input of characters and report errors

explain_getcha(3)
Explaingetichar(3) errors

explain_getchar_or_di€8)
input of characters and report errors

explain_getcwd3)
Explaingeicwd2) errors

explain_getdomainnan{a)
Explainggdomainnamg) errors

explain_getdomainname_or_d®
get domain name and report errors

explain_getgrent3)
Explaingetgrent3) errors

67

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_getgrent_or_dig)
get group file entry and report errors

explain_getgrouplig3)
Explaingetgrouplis{(3) errors

explain_getgrouplist_or_dig)
get list of groups to which a user belongs and report errors

explain_getgroupé3)
Explaingetgroupg?2) errors

explain_getgroups_or_di8)
get list of supplementary group IDs and report errors

explain_getcwd_or_dig)
Get current working directory and report errors

explain_gethostbynan(a)
Explaingehostbynam) errors

explain_gethostbyname_or_d8)
get host address\gin host name and report errors

explain_gethosti(B)
Explaingethostid3) errors

explain_gethostid_or_di@)
get the unique identifier of the current host and report errors

explain_gethostnam(@)
Explaingeghostnamg) errors

explain_gethostname_or_di#&)
get hostname and report errors

explain_getpeernan(8)
Explaingepeernamg) errors

explain_getpeername_or_di#®)
Executgetpeernam€) and report errors

explain_getpgid3)
Explaingepgid(2) errors

explain_getpgid_or_di€3)
get process group and report errors

explain_getpgri3)
Explaingepgrp(2) errors

explain_getpgrp_or_di€3)
get process group and report errors

explain_getpriority(3)
Explaingepriority(2) errors

explain_getpriority_or_di€3)
get program scheduling priority and report errors

explain_getresgi@3)
Explaingeresgid2) errors

explain_getresgid_or_di@)
get real, effectie and saed group IDs and report errors

68

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_getresui3)
Explaingeresuid2) errors

explain_getresuid_or_di@)
get real, effectie and saed user IDs and report errors

explain_getrlimi(3)
Explaingerlimit(2) errors

explain_getrlimit_or_di€3)
get resource limits and report errors

explain_getrusge(3)
Explaingerusage(2) errors

explain_getrusge or_dig3)
get resource usage and report errors

explain_getsocknant8)
Explaingesocknamg) errors

explain_getsockname_or_d®)
Executegeisocknamg) and report errors

explain_getsokopt(3)
Explaingesodkopt(2) errors

explain_getsokopt _or_dig3)
Executegetsodkopt(2) and report errors

explain_gettimeofdaid)
Explaingetimeofday?) errors

explain_gettimeofday_or_d(8)
get time and report errors

explain_getw3)
Explaingew(3) errors

explain_getw_or_di€3)
input a word (int) and report errors

explain_icon\(3)
Explainicony3) errors

explain_iconv_or_di€3)
perform character set commsion and report errors

explain_iconv_closg)
Explainiconv_clos€3) errors

explain_iconv_close_or_d(8)
deallocate descriptor for character setveosion and report errors

explain_iconv_ope(8)
Explainiconv_ope(B) errors

explain_iconv_open_or_d{8)
allocate descriptor for character sety@aion and report errors

explain_ioctk(3)
Explainioctl(2) errors

explain_ioctl_or_di€3)
Executeioctl(2) and report errors

69

libexplain(3)

LibraryFunctions Manual

explain_kill(3)

Explainkill (2) errors

explain_kill_or_dig3)

send signal to a process and report errors

explain_lchmod3)

Explainlchmod?2) errors

explain_lchmod_or_di€3)

change permissions of a file and report errors

explain_Ichowr{3)

Explainlchown(2) errors

explain_lchown_or_di€3)

change ownership of a file and report errors

explain_lchownaf3)

Explainlchownaf2) errors

explain_Ichownat_or_di€3)

Executdchownaf2) and report errors

explain_link(3)

Explainlink(2) errors

explain_link_or_dig3)

make a rew rame for a file and report errors

explain_linka{(3)

Explainlinkat(2) errors

explain_linkat_or_di€3)

create a file link relafie o directory file descriptors and report errors

explain_lister(3)

Explainlisten(2) errors

explain_listen_or_di€3)

listen for connections on a socket and report errors

explain_lseek3)

Explainlseek2) errors

explain_lseek_or_di@)

reposition file offset and report errors

explain_Ista(3)

Explainlstat(2) errors

explain_Istat_or_di¢3)

get file status and report errors

explain_lutime¢3)

Explainlutimeg3) errors

explain_lutimes_or_di3)

modify file timestamps and report errors

explain_mallog3)

Explainmalloq(3) errors

explain_malloc_or_di€3)

Executemalloq3) and report errors

libexplain(3)

70

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_mkdif3)
Explainmkdin(2) errors

explain_mkdir_or_di€3)
create directory and report errors

explain_mkdtem(8)
Explainmkdtemf3) errors

explain_mkdtemp_or_d{8)
create a unique temporary directory and report errors

explain_mknod@3)
Explainmknod?2) errors

explain_mknod_or_dig)
create a special or ordinary file and report errors

explain_mkostem(3)
Explainmkostem(8) errors

explain_mkostemp_or_di8)
create a unique temporary file and report errors

explain_mkstem(3)
Explainmkstemf8) errors

explain_mkstemp_or_d{8)
create a unique temporary file and report errors

explain_mktem(8)
Explainmktem$3) errors

explain_mktemp_or_d{8)
make a wique temporary filename and report errors

explain_mmay3)
Explainmmag2) errors

explain_mmap_or_dig)
map file or device into memory and report errors

explain_moung3)
Explainmount2) errors

explain_mount_or_di€3)
mount file system and report errors

explain_munma(s)
Explainmunmag2) errors

explain_munmap_or_d{8)
unmap a file or device from memory and report errors

explain_nanosleef8)
Explainnanosleef?) errors

explain_nanosleep_or_d{8)
high-resolution sleep and report errors

explain_nicg3)
Explainnice(2) errors

explain_nice_or_di€3)
change process priority and report errors

71

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_opelf3)
Explainopen(2) errors

explain_open_or_dig3)
open files and report errors

explain_openat3)
Explainopenaf2) errors

explain_openat_or_dig)
open a file relatie © a drectory file descriptor and report errors

explain_opendi(3)
Explainopendi(3) errors

explain_opendir_or_di€3)
open a directory and report errors

explain_pathcon(3)
Explainpathcon(3) errors

explain_pathconf_or_di)
get configuration values for files and report errors

explain_pclos€3)
Explainpclos€3) errors

explain_pclose_or_di@)
Executepclosg3) and report errors

explain_pip€3)
Explainpipe(2) errors

explain_pipe_or_di€3)
Executepipeg(2) and report errors

explain_pipeZ3)
Explainpiped2) errors

explain_pipe2_or_di€3)
create pipe and report errors

explain_poll(3)
Explainpoll(2) errors

explain_poll_or_di€3)
wait for some gent on a file descriptor and report errors

explain_popeit3)
Explainpoper{3) errors

explain_popen_or_dig)
Executepoper{3) and report errors

explain_pread3)
Explainpread?) errors

explain_pread_or_di€3)
read from a file descriptor at avgn offset and report errors

explain_printf(3)
Explainprintf(3) errors

explain_printf_or_di€3)
formatted output carersion and report errors

72

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_ptracg3)
Explainptracg2) errors

explain_ptrace_or_di€3)
process trace and report errors

explain_putd3)
Explainputq3) errors

explain_putc_or_di€3)
output of characters and report errors

explain_putcha(3)
Explainputchal3) errors

explain_putchar_or_di€3)
output of characters and report errors

explain_puteny{3)
Explainputeny3) errors

explain_putenv_or_dig)
change or add an environment variable and report errors

explain_putg3)
Explainputg3) errors

explain_puts_or_di€3)
write a string and a trailing newline to stdout and report errors

explain_putw(3)
Explainputw(3) errors

explain_putw_or_di€3)
output a word (int) and report errors

explain_pwritg3)
Explainpwrite(2) errors

explain_pwrite_or_di€3)
write to a file descriptor at avgn off set and report errors

explain_raisg3)
Explainraisg(3) errors

explain_raise_or_di€3)
send a signal to the caller and report errors

explain_read3)
Explainread(2) errors

explain_read_or_di€3)
read from a file descriptor and report errors

explain_readdil3)
Explainreaddir(3) errors

explain_readdir_or_di€3)
read a directory and report errors

explain_readlink3)
Explainreadlink(2) errors

explain_readlink_or_di€3)
read value of a symbolic link and report errors

73

libexplain(3)

LibraryFunctions Manual

explain_ready3)

Explainread\2) errors

explain_readv_or_di€3)

read data into multiple buffers and report errors

explain_realloq3)

Explainrealloc(3) errors

explain_realloc_or_di€3)

Executerealloc(3) and report errors

explain_realpath{3)

Explainrealpath(3) errors

explain_realpath_or_di€3)

return the canonicalized absolute pathname and report errors

explain_renamé3)

Explainrenamé?2) errors

explain_rename_or_di@)

change the name or location of a file and report errors

explain_rmdir(3)

Explainrmdir(2) errors

explain_rmdir_or_di¢3)

delete a directory and report errors

explain_seledf3)

Explainselec(2) errors

explain_select_or_di®)

executeselec(2) and report errors

explain_setbu3)

Explainsetbu(3) errors

explain_setbuffef3)

Explainsetbuffe(3) errors

explain_setbuffer_or_di@)

stream buffering operations and report errors

explain_setbuf_or_dig)

set stream buffer and report errors

explain_setdomainnan(@)

Explainsetdomainnan@) errors

explain_setdomainname_or_d8)

set domain name and report errors

explain_seten(B)

Explainseten{3) errors

explain_setenv_or_d(8)

change or add an environment variable and report errors

explain_setgiq3)

Explainsetgid?2) errors

explain_setgid_or_di3)

set group identity and report errors

libexplain(3)

74

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_setgren)
Explainsetgren{3) errors

explain_setgrent_or_di@)
rewind to the start of the group database and report errors

explain_setgroup&3)
Explainsetgroup&2) errors

explain_setgroups_or_d(8)
get list of supplementary group IDs and report errors

explain_sethostnan{8)
Explainsethostnam@) errors

explain_sethostname_or_d®)
set hostname and report errors

explain_setlinebuf3)
Explainsetlinebuf3) errors

explain_setlinebuf_or_di@)
stream buffering operations and report errors

explain_setpgid3)
Explainsetpgid2) errors

explain_setpgid_or_dig)
set process group and report errors

explain_setpgr3)
Explainsetpgrig2) errors

explain_setpgrp_or_dig)
set process group and report errors

explain_setpriority3)
Explainsetpriority(2) errors

explain_setpriority_or_di€3)
set program scheduling priority and report errors

explain_setegd(3)
Explainsetegd(2) errors

explain_setegd_or_dig3)
set real and/or effeot goup ID and report errors

explain_setreuid3)
Explainsetreuid2) errors

explain_setreuid_or_dig)
set the real and effeed wser ID and report errors

explain_setresgi(B)
Explainsetresgi?2) errors

explain_setresgid_or_di8)
set real, effectie and saed group ID and report errors

explain_setresui(B)
Explainsetresuig?) errors

explain_setresuid_or_di8)
set real, effectie and saed user ID and report errors

75

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_setreuid3)
Explainsetreuid2) errors

explain_setreuid_or_dig)
set real and/or effeot wser ID and report errors

explain_setsig3)
Explainsetsiq2) errors

explain_setsid_or_di)
creates a session and sets the process group ID and report errors

explain_setsokopt(3)
Explainsetsokopt(2) errors

explain_setsokopt_or_dig3)
executesetsokopt(2) and report errors

explain_settimeofdag)
Explainsettimeofdaf®) errors

explain_settimeofday or_di8)
sets system time and report errors

explain_setuiq3)
Explainsetuid?) errors

explain_setuid_or_di€3)
set user identity and report errors

explain_setvbuf3)
Explainsetvbuf3) errors

explain_setvbuf_or_di@)
stream buffering operations and report errors

explain_shmaf3)
Explainshma(2) errors

explain_shmat_or_dig)
shared memory attach and report errors

explain_shmc{(3)
Explainshmct(2) errors

explain_shmctl_or_di€3)
shared memory control and report errors

explain_signalfd3)
Explainsignalfd?2) errors

explain_signalfd_or_di€3)
create a file descriptor for accepting signals and report errors

explain_sleef3)
Explainsleef3) errors

explain_sleep_or_di@)
Sleep for the specified number of seconds and report errors

explain_sodket(3)
Explainsoket(2) errors

explain_so&et_or_dig3)
create an endpoint for communication and report errors

76

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_soketpair(3)
Explainsoketpair(2) errors

explain_so&etpair_or_dig3)
create a pair of connected sockets and report errors

explain_sprint{3)
Explainsprintf(3) errors

explain_sprintf_or_di€3)
formatted output carersion and report errors

explain_stat3)
Explainstat2) errors

explain_statf$3)
Explainstatf§2) errors

explain_statfs_or_di€3)
get file system statistics and report errors

explain_statvf§3)
Explainstatvf¢2) errors

explain_statvfs_or_di@)
get file system statistics and report errors

explain_stimg3)
Explainstimg?2) errors

explain_stime_or_di€3)
set system time and report errors

explain_strcol(3)
Explainstrcoll(3) errors

explain_strcoll_or_di€3)
compare tw grings using the current locale and report errors

explain_strdug3)
Explainstrdup(3) errors

explain_strdup_or_di€3)
duplicate a string and report errors

explain_strnduig3)
Explainstrndug3) errors

explain_strndup_or_di€3)
duplicate a string and report errors

explain_strtod3)
Explainstrtod3) errors

explain_strtod_or_di€3)
convert string to floating-point number and report errors

explain_strto{3)
Explainstrtof(3) errors

explain_strtof _or_di€3)
convert string to floating-point number and report errors

explain_strto(3)
Explainstrtol(3) errors

77

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_strtol_or_di€3)
convert a string to a long integer and report errors

explain_strtold3)
Explainstrtold(3) errors

explain_strtold_or_di€3)
convert string to floating-point number and report errors

explain_strtoll(3)
Explainstrtoll(3) errors

explain_strtoll_or_dig€3)
convert a string to a long long integer and report errors

explain_strtou(3)
Explainstrtoul(3) errors

explain_strtoul_or_di€3)
convert a string to a long long integer and report errors

explain_strtoul(3)
Explainstrtoull(3) errors

explain_strtoull_or_di€3)
convert a string to an unsigned long long integer and report errors

explain_symlink3)
ExplainsymlinK2) errors

explain_symlink_or_di€3)
make a rew rame for a file and report errors

explain_syster(8)
Explainsysten) errors

explain_system_or_d(8)
execute a shell command and report errors

explain_tcdrain(3)
Explaintcdrain(3) errors

explain_tcdrain_or_di€3)
Executetcdrain(3) and report errors

explain_tcflow(3)
Explaintcflom(3) errors

explain_tcflow_or_di€3)
Executetcflom(3) and report errors

explain_tcflusi{3)
Explaintcflusi(3) errors

explain_tcflush_or_di€3)
discard terminal data and report errors

explain_tcgetatt(3)
Explaintcgetatt(3) errors

explain_tcgetattr_or_di€3)
get terminal parameters and report errors

explain_tcsendbreg8)
Explaintcsendbread) errors

78

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_tcsendbreak or_d(@)
send terminal line break and report errors

explain_tcsetatt(3)
Explaintcsetatt(3) errors

explain_tcsetattr_or_di€3)
set terminal attributes and report errors

explain_telldir(3)
Explaintelldir(3) errors

explain_telldir_or_dig3)
return current location in directory stream and report errors

explain_tempnarnB)
Explaintempnan(B) errors

explain_tempnam_or_d(8)
create a name for a temporary file and report errors

explain_timg3)
Explaintime(2) errors

explain_time_or_di€3)
get time in seconds and report errors

explain_timerfd_creat€s)
Explaintimerfd_creat€2) errors

explain_timerfd_create_or_d(8)
timers that notify via file descriptors and report errors

explain_tmpfilg3)
Explaintmpfile(3) errors

explain_tmpfile_or_di€3)
create a temporary file and report errors

explain_tmpnan(3)
Explaintmpnang3) errors

explain_tmpnam_or_di@)
create a name for a temporary file and report errors

explain_truncat€3)
Explaintruncatg?) errors

explain_truncate_or_di€3)
truncate a file to a specified length and report errors

explain_usleefl)
Explainusleef3) errors

explain_usleep_or_di@)
suspendecution for microsecond intervals and report errors

explain_unamé3)
Explainunamg2) errors

explain_uname_or_di@)
get name and information about current kernel and report errors

explain_unget¢3)
Explainunget¢3) errors

79

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_ungetc_or_di@)
push a character back to a stream and report errors

explain_unlink3)
Explainunlink(2) errors

explain_unlink_or_di€3)
delete a file and report errors

explain_unseter()
Explainunseten{B) errors

explain_unsetenv_or_d(a)
remove a1 environment variable and report errors

explain_ustaf3)
Explainusta(2) errors

explain_ustat_or_di€3)
get file system statistics and report errors

explain_utimg3)
Explainutimg2) errors

explain_utime_or_di€3)
change file last access and modification times and report errors

explain_utimeng3)
Explainutimeng2) errors

explain_utimens_or_di@)
change file last access and modification times and report errors

explain_utimensdB)
Explainutimensaf2) errors

explain_utimensat_or_d(@)
change file timestamps with nanosecond precision and report errors

explain_utime$3)
Explainutimeg2) errors

explain_utimes_or_dig)
change file last access and modification times and report errors

explain_vasprint{3)
Explainvasprint{3) errors

explain_vasprintf_or_di€3)
print to allocated string and report errors

explain_vfork3)
Explainvfork(2) errors

explain_vfork_or_di€3)
create a child process and block parent and report errors

explain_vfprint{3)
Explainvfprintf(3) errors

explain_vfprintf_or_di€3)
formatted output carersion and report errors

explain_vprint{3)
Explainvprintf(3) errors

80

libexplain(3) LibraryFunctions Manual libexplain(3)

explain_vprintf_or_di€3)
formatted output carersion and report errors

explain_vsnprint{3)
Explainvsnprint{3) errors

explain_vsnprintf_or_di€3)
formatted output carersion and report errors

explain_snprint{3)
Explainsnprint{3) errors

explain_snprintf_or_di€3)
formatted output carersion and report errors

explain_vsprint{3)
Explainvsprint{3) errors

explain_vsprintf_or_di€3)
formatted output carersion and report errors

explain_waif(3)
Explainwait(2) errors

explain_wait_or_di€3)
wait for process to change state and report errors

explain_wait33)
Explainwait3(2) errors

explain_wait3_or_di€3)
wait for process to change state and report errors

explain_wait43)
Explainwait4(2) errors

explain_wait4_or_di€3)
wait for process to change state and report errors

explain_waitpid’3)
Explainwaitpid(2) errors

explain_waitpid_or_di€3)
wait for process to change state and report errors

explain_writg(3)
Explainwrite(2) errors

explain_write_or_dig€3)
write to a file descriptor and report errors

explain_writeW3)
Explainwritev(2) errors

explain_writev_or_di€3)
write data from multiple buffers and report errors

There are plans for additionahaage. Thidist is expected to expand in later releases of this library.

SEE ALSO
errno(3) number of last error

perror(3)
print a system error message

strerror(3)
return string describing error number

81

libexplain(3) LibraryFunctions Manual libexplain(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

82

explain_accept(3) Librarfrunctions Manual explain_accept(3)

NAME
explain_accept — explain accept(2) errors

SYNOPSIS
#include <libexplain/accept.h>

const char *explain_accept(int fildes, struct sockaddr *sock, aoicklen_t *sock _addr_size);

const char *explain_errno_accept(int errnum, int fildes, struct sockaddr *socksazeiden_t

*sock _addr_size);

void explain_message_accept(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock addrlen);

void explain_message_errno_accept(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock _addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedalogdp€?) system call.

explain_accept
const char *explain_accept(int fildes, struct sockaddr *sock, aoicklen_t *sock _addr_size);
Theexplain_acceptfunction is used to obtain an explanation of an error returned lactep(2) system
call. Theleast the message will contain is the valustdrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock _addr, sock_addr_size) < 0)

{
fprintf(stderr, "%s\n", explain_accept(fildes, sock_addr,
sock _addr_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_accept_or_dig) function.
fildes The original fildes, exactly as passed todbeep(2) system call.

sock _addr
The original sock_addexactly as passed to tlaecep(2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tadbep(2) system call.

Returns: The message explaining the erfidris message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will keraritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, gratheaan
functions in this library.

explain_errno_accept
const char *explain_errno_accept(int errnum, int fildes, struct sockaddr *socksaaiden_t
*sock addr_size);
Theexplain_errno_acceptfunction is used to obtain an explanation of an error returned actep(2)

system call. The least the message will contain is the valstesofor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock _addr, sock_addr_size) < 0)

{

int err = errno;

83

explain_accept(3) Librarfrunctions Manual explain_accept(3)

fprintf(stderr, "%s\n", explain_errno_accept(err, fildes, sock_addr,
sock _addr_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_accept_or_dig) function.

errnum The error value to be decoded, usually obtained frorerime global variable just before this
function is called. This is necessary if you need toaralicode between the system call to be
explained and this function, because m#hc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbeep(2) system call.

sock _addr
The original sock_addexactly as passed to tlaecep(2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tadbep(2) system call.

Returns: The message explaining the erfidris message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will keraritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, grathean
functions in this library.

explain_message_accept
void explain_message_accept(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock addr_size);

Theexplain_message_accefainction may be used to obtain an explanation of an error returned by the
accep(2) system call. The least the message will contain is the vahteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock addr, sock_addr_size) < 0)

{
char message[3000];
explain_message_accept(message, sizeof(message), fildes, sock addr,
sock addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_accept_or_dig) function.

messge The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todbeep(2) system call.

sock addr
The original sock_addexactly as passed to tlaecep(2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tadbep(2) system call.

explain_message_errno_accept
void explain_message_errno_accept(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock addr_size);

84

explain_accept(3) Librarfrunctions Manual explain_accept(3)

Theexplain_message_errno_accejfiinction may be used to obtain an explanation of an error returned by
theaccep(2) system call. The least the message will contain is the vabkteeofor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock addr, sock_addr_size) < 0)

int err = errno;

char message[3000];

explain_message_errno_accept(message, sizeof(message), err, fildes,
sock _addr, sock addr_size);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_accept_or_di) function.

messge The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frorerime global variable just before this

function is called. This is necessary if you need toaralicode between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbeep(2) system call.

sock _addr
The original sock_addexactly as passed to tlaecep(2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tadbep(2) system call.

SEE ALSO
accep(2)
accept a connection on a socket
explain_accept_or_dig)
accept a connection on a socket and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

85

explain_accept4(3) Librarffunctions Manual explain_accept4(3)

NAME
explain_accept4 — explain accept4(2) errors

SYNOPSIS
#include <libexplain/accept4.h>

const char *explain_accept4(int fildes, struct sockaddr *sock, sotklen_t *sock_addr_size, int flags);

const char *explain_errno_accept4(int errnum, int fildes, struct sockaddr *socksauddien_t
*sock_addr_size, int flags);

void explain_message_accept4(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock addr_size, int flags);

void explain_message_errno_accept4(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock _addr_size, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedalogebef2) system call.

explain_accept4
const char *explain_accept4(int fildes, struct sockaddr *sock, sotklen_t *sock_addr_size, int flags);
The explain_accept4function is used to obtain arxmanation of an error returned by thecept42)

system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toadbeept42) system call.

sock _addr
The original sock_addexactly as passed to tlaecept42) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tadtept42) system call.

flags The original flags, exactly as passed todheept42) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)

{
fprintf(stderr, "%s\n", explain_accept4(fildes, sock addr,
sock _addr_size, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_accept4_or_di@) function.

explain_errno_accept4
const char *explain_errno_accept4(int errnum, int fildes, struct sockaddr *socksauddien_t
*sock_addr_size, int flags);

The explain_errno_accept4 function is used to obtain an explanation of an error returned by the
accept42) system call. The least the message will contain is the valstresfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be

86

explain_accept4(3) Librarffunctions Manual explain_accept4(3)

explained and this function, because méhc functions will alter the value @frrno.
fildes The original fildes, exactly as passed todbeept42) system call.

sock _addr
The original sock_addexactly as passed to tlaecept42) system call.

sock addr_size
The original sock_addr_size, exactly as passed tadtept42) system call.

flags The original flags, exactly as passed todheept42) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_accept4(err, fildes,
sock _addr, sock _addr_size, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_accept4_or_di@) function.

explain_message_accept4
void explain_message_accept4(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock addr_size, int flags);

The explain_message_acceptfunction is used to obtain arxmanation of an error returned by the
accept42) system call. The least the message will contain is the valstresfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todbeept42) system call.

sock _addr
The original sock_addexactly as passed to tlaecept42) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tadtept42) system call.

flags The original flags, exactly as passed todheept42) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)
{
char message[3000];

explain_message_accept4(message, sizeof(message), fildes,

sock _addr, sock_addr_size, flags);

fprintf(stderr, "%s\n", message);

87

explain_accept4(3) Librarffunctions Manual explain_accept4(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_accept4_or_di@) function.

explain_message_errno_accept4
void explain_message_errno_accept4(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock _addr_size, int flags);

Theexplain_message_errno_accepfdinction is used to obtain apanation of an error returned by the
accept42) system call. The least the message will contain is the valstresfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from eh@o global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbeept42) system call.

sock addr
The original sock_addexactly as passed to tlaecept42) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tadtept42) system call.

flags The original flags, exactly as passed todheept42) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)

{
int err = errno;
char message[3000];
explain_message_errno_accept4(message, sizeof(message), err,
fildes, sock _addr, sock addr_size, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_accept4_or_di@) function.
SEE ALSO
accept42)
accept a connection on a socket
explain_accept4_or_di@)
accept a connection on a socket and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

88

explain_accept4_or_die(3) LibraRunctions Manual explain_accept4_or_die(3)

NAME
explain_accept4_or_die — accept a connection on a socket and report errors

SYNOPSIS
#include <libexplain/accept4.h>

int explain_accept4_or_die(int fildes, struct sockaddr *sock , addklen_t *sock addr_size, int flags);
int explain_accept4_on_error(int fildes, struct sockaddr *sock, amitklen_t *sock_addr_size, int flags);

DESCRIPTION
The explain_accept4_or_didunction is used to call thaeccept42) system call. On failure axganation
will be printed tostderr, obtained from thexplain_acceptd3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_accept4_on_error function is used to call theccept42) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_accept43) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed toabeept42) system call.

sock _addr
The sock_addexactly as to be passed to thecept42) system call.

sock addr_size
The sock _addr_size, exactly as to be passed tactept42) system call.

flags The flags, exactly as to be passed toatwept42) system call.

RETURN VALUE
The explain_accept4_or_diefunction only returns on success, seeept42) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_accept4_on_errorfunction alvays returns the value return by the wrappedept42) system
call.

EXAMPLE
Theexplain_accept4_or_didgunction is intended to be used in a fashion similar to the following example:
int result = explain_accept4_or_die(fildes, sock_addr, sock_addr_size, flags);

SEE ALSO
accept42)
accept a connection on a socket
explain_accept{3)
explainaccept42) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

89

explain_accept_or_die(3) Librafyunctions Manual explain_accept_or_die(3)

NAME
explain_accept_or_die — accept a connection on a socket and report errors

SYNOPSIS
#include <libexplain/accept.h>

int explain_accept_or_die(int fildes, struct sockaddr *sock ,addklen_t *sock addr_size);
DESCRIPTION
The explain_accept_or_diefunction is used to call thaccep(2) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_accep3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int fd = explain_accept_or_die(fildes, sock_addr, sock_addr_size);
fildes The fildes, exactly as to be passed toabeep(2) system call.

sock addr
The sock addexactly as to be passed to thecep(2) system call.

sock _addr_size
The sock _addr_size, exactly as to be passed tactep(2) system call.

Returns: This function only returns on success, aeeep(2) for more information. On failure, prints an
explanation and exits.

SEE ALSO
accep(2)
accept a connection on a socket

explain_accepf3)
explainaccep(?) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

90

explain_access(3) Libraryunctions Manual explain_access(3)

NAME
explain_access — explain access(2) errors

SYNOPSIS
#include <libexplain/access.h>
const char *explain_access(const char *pathname, int mode);
const char *explain_errno_access(int errnum, const char *pathname, int mode);
void explain_message_access(char *message, int message_size, const char *pathname, int mode);
void explain_message_errno_access(char *message, int message_size, int errnum, const char *pathname,
int mode);

DESCRIPTION
These functions may be used to obtain explanatiorecfesé) errors.

explain_access
const char *explain_access(const char *pathname, int mode);

The explain_access function is used to obtain an explanation of an error returneddgetgd) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int fd = access(pathname, mode);
if (fd < 0)
{
fprintf(stderr, "%s0, explain_access(pathname, mode));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed tatices§) system call.

mode The original mode, exactly as passed toabees§) system call. TP 8n Returns: The message
explaining the errar This message uffer is shared by all libexplain functions which do not
supply a hffer in their argument list. This will beverwritten by the next call to grlibexplain
function which shares this bufféncluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_access
const char *explain_errno_access(int errnum, const char *pathname, int mode);

The explain_errno_access function is used to obtairxplareation of an error returned by thecesg?)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

int fd = access(pathname, mode);
if (fd < 0)
{ .

int err = errno;

fprintf(stderr, "%s0, explain_errno_access(err, pathname,

mode));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be

91

explain_access(3) Libraryunctions Manual explain_access(3)

explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatices§) system call.

mode The original mode, exactly as passed toateest?) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_access
void explain_message_access(char *message, int message_size, const char *pathname, int mode);

The explain_message_access function is used to obtakpkamation of an error returned by thecesg2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int fd = access(pathname, mode);
if (fd < 0)
{
char message[3000];
explain_message_access(message, sizeof(message), pathname,
mode);
fprintf(stderr, "%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tatices§) system call.

mode The original mode, exactly as passed toateest?) system call.

explain_message_errno_access
void explain_message_errno_access(char *message, int message_size, int errnum, const char *pathname,
int mode);

The explain_message_errno_access function is used to obtain an explanation of an error returned by the
accesf) system call. The least the message will contain is the valséreafor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following exameple:
int fd = access(pathname, mode);
if (fd < 0)
{ .
int err = errno;
char message[3000];
explain_message_errno_access(message, sizeof(message), err,
pathname, mode);
fprintf(stderr, "%s0, message);
exit(EXIT_FAILURE);

92

explain_access(3) Libraryunctions Manual explain_access(3)

}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetireo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatices§) system call.
mode The original mode, exactly as passed toateesf?) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

93

explain_access_or_die(3) LibraRunctions Manual explain_access_or_die(3)

NAME
explain_access_or_die — check permissions for a file and report errors

SYNOPSIS
#include <libexplain/libexplain.h>
void explain_access_or_die(const char *pathname, int mode);
DESCRIPTION
The explain_access_or_die function is used to callattees&) system call and check the resufdn

failure it prints an explanation of the errobtained fromexplain_acces@), and then terminates by calling
exit(EXIT_FAILURE)

explain_access_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed tatbes§) system call.

mode The mode, exactly as to be passed tatwsE?) system call.
Returns: Only eer return on success. On failure process will exit.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

94

explain_acct(3) Libraryrunctions Manual explain_acct(3)

NAME
explain_acct — explain acct(2) errors

SYNOPSIS
#include <libexplain/acct.h>

const char *explain_acct(const char *pathname);

const char *explain_errno_acct(int errnum, const char *pathname);

void explain_message_acct(char *message, int message_size, const char *pathname);

void explain_message_errno_acct(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedaogi{Bpsystem call.

explain_acct
const char *explain_acct(const char *pathname);

The explain_acctfunction is used to obtain axpanation of an error returned by taeci(2) system call.
The least the message will contain is theug ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed tatio§2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)

fprintf(stderr, "%s\n", explain_acct(pathname));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_acct_or_di€3) function.

explain_errno_acct
const char *explain_errno_acct(int errnum, const char *pathname);

The explain_errno_acct function is used to obtain an explanation of an error returned bwctie?)
system call. The least the message will contain is daheeofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatio§2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

95

explain_acct(3) Libraryrunctions Manual explain_acct(3)

if (acct(pathname) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_acct(err, pathname));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_acct_or_di€3) function.

explain_message_acct
void explain_message_acct(char *message, int message_size, const char *pathname);
The explain_message_acdunction is used to obtain axmanation of an error returned by theci(2)

system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tatio§2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)

{
char message[3000];
explain_message_acct(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_acct_or_di€3) function.

explain_message_errno_acct
void explain_message_errno_acct(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_acdunction is used to obtain an explanation of an error returned by the
acc{2) system call. The least the message will contain is the vakteeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatio§2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)

int err = errno;
char message[3000];
explain_message_errno_acct(message, sizeof(message), err,

96

explain_acct(3) Libraryrunctions Manual explain_acct(3)

pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_acct_or_di€3) function.

SEE ALSO
acc{2) switch process accounting on or off
explain_acct_or_di€3)
switch process accounting on of arfid report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

97

explain_acct_or_die(3) Librarlfunctions Manual explain_acct_or_die(3)

NAME
explain_acct_or_die — switch process accounting onfaraf report errors

SYNOPSIS
#include <libexplain/acct.h>

void explain_acct_or_die(const char *pathname);
int explain_acct_on_error(const char *pathname))

DESCRIPTION
Theexplain_acct_or_diefunction is used to call thecc{2) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_acc{3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_acct_on_errorfunction is used to call thecci(2) system call. Ondilure an explanation will
be printed tcstderr, obtained from thexplain_acc{3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed tad¢b€?) system call.

RETURN VALUE
The explain_acct_or_diefunction only returns on success, s&{2) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_acct_on_errorfunction alvays returns the value return by the wrappedi2) system call.

EXAMPLE
Theexplain_acct_or_diefunction is intended to be used in a fashion similar to the following example:
explain_acct_or_die(pathname);

SEE ALSO
acc{2) switch process accounting on or off
explain_acc{3)
explainaccy?2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

98

explain_acl_from_tet(3) Library Functions Manual explain_acl_from_text(3)

NAME
explain_acl_from_text — explaiacl_from_text3) errors

SYNOPSIS
#include <libexplain/acl_from_text.h>

const char *explain_acl_from_text(const char *text);

const char *explain_errno_acl_from_text(int errnum, const char *text);

void explain_message_acl_from_text(char *message, int message_size, const char *text);

void explain_message_errno_acl_from_text(char *message, int message_size, int errnum, const char *text);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedaoy fiem_tex3) system call.

explain_acl_from_text
const char *explain_acl_from_text(const char *text);

The explain_acl_from_text function is used to obtain anxmanation of an error returned by the
acl_from_text3) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
text The original text, exactly as passed todlk from_text3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_from_text(text);
if (result < 0)

fprintf(stderr, "%s\n", explain_acl_from_text(text));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_acl_from_text or_d{&) function.

explain_errno_acl_from_text
const char *explain_errno_acl_from_text(int errnum, const char *text);

The explain_errno_acl_from_text function is used to obtain axmanation of an error returned by the
acl_from_text3) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

text The original text, exactly as passed todlk from_text3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_from_text(text);

99

explain_acl_from_tet(3) Library Functions Manual explain_acl_from_text(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_from_text(err,
text));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_acl_from_text or_d{&) function.

explain_message_acl_from_text
void explain_message_acl_from_text(char *message, int message_size, const char *text);

Theexplain_message_acl_from_texXtunction is used to obtain an explanation of an error returned by the
acl_from_text3) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

text The original text, exactly as passed todlk from_text3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_from_text(text);
if (result < 0)

{
char message[3000];
explain_message_acl_from_text(message, sizeof(message), text);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_from_text _or_d{&) function.

explain_message_errno_acl_from_text
void explain_message_errno_acl_from_text(char *message, int message_size, int errnum, const char *text);

Theexplain_message_errno_acl_from_teXtnction is used to obtain an explanation of an error returned
by the acl from_tex3) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

text The original text, exactly as passed todlk from_text3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_from_text(text);
if (result < 0)
{ .
int err = errno;
char message[3000];

100

explain_acl_from_tet(3) Library Functions Manual explain_acl_from_text(3)

explain_message_errno_acl_from_text(message, sizeof(message),
err, text);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as thgplain_acl_from_text or_d{&) function.

SEE ALSO
acl_from_text3)
create an ACL from text

explain_acl_from_text_or_d{8)
create an ACL from text and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

101

explain_acl_from_tet or_die(3) LibraryFunctions Manual explain_acl_from_text _or_die(3)

NAME
explain_acl_from_text _or_die — create an ACL from text and report errors

SYNOPSIS
#include <libexplain/acl_from_text.h>

acl_t explain_acl_from_text_or_die(const char *text);
acl_t explain_acl_from_text_on_error(const char *text);

DESCRIPTION
Theexplain_acl_from_text_or_diefunction is used to call thacl_from_text3) system call. On failure an
explanation will be printed tetderr, obtained from theexplain_acl_from_teX8) function, and then the
process terminates by calliegit(EXIT_FAILURE)

Theexplain_acl_from_text_on_errorfunction is used to call thaecl_from_text3) system call. Onaflure
an explanation will be printed tetderr, obtained from theexplain_acl_from_tex8) function, but still
returns to the caller.

text The text, exactly as to be passed toatlefrom_text3) system call.

RETURN VALUE
The explain_acl_from_text or_die function only returns on success, sae from_text3) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_acl_from_text on_error function alays returns the value return by the wrapped
acl_from_text3) system call.

EXAMPLE
The explain_acl_from_text _or_diefunction is intended to be used inasfHion similar to the folleing
example:
acl_tresult = explain_acl_from_text _or_die(text);
SEE ALSO

acl_from_text3)
create an ACL from text

explain_acl_from_texB)
explainacl_from_text3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

102

explain_acl_get_fd(3) Librarfrunctions Manual explain_acl_get fd(3)

NAME
explain_acl_get_fd — explaiacl_get_fd@3) errors

SYNOPSIS
#include <libexplain/acl_get_fd.h>

const char *explain_acl_get_fd(int fildes);

const char *explain_errno_acl_get_fd(int errnum, int fildes);

void explain_message_acl_get fd(char *message, int message_size, int fildes);

void explain_message_errno_acl_get_fd(char *message, int message_size, int errnum, int fildes);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedsioy tiet f@3) system call.

explain_acl_get fd
const char *explain_acl_get_fd(int fildes);
Theexplain_acl_get_fdfunction is used to obtain an explanation of an error returned kacthget fd3)

system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed todbk get f¢3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_get_fd(fildes);
if (result < 0)

fprintf(stderr, "%s\n", explain_acl_get_fd(fildes));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_get fd_or_di@) function.

explain_errno_acl_get fd
const char *explain_errno_acl_get_fd(int errnum, int fildes);

The explain_errno_acl_get_fdfunction is used to obtain arxmanation of an error returned by the
acl_get f@3) system call. The least the message will contain is ahgevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbk get f¢3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_get_fd(fildes);

103

explain_acl_get_fd(3) Librarfrunctions Manual explain_acl_get fd(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_get_fd(err,
fildes));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_get fd_or_di@) function.
explain_message_acl_get fd

void explain_message_acl_get fd(char *message, int message_size, int fildes);

The explain_message_acl_get_ftlnction is used to obtain an explanation of an error returned by the

acl_get f@3) system call. The least the message will contain is ahgevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todbk get f¢3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_get_fd(fildes);
if (result < 0)

{
char message[3000];
explain_message_acl_get fd(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_get fd_or_di@) function.

explain_message_errno_acl_get fd
void explain_message_errno_acl_get_fd(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_acl_get_fiinction is used to obtain axmanation of an error returned by
theacl_get fd3) system call. The least the message will contain isah&\ofstrerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbk get f¢3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_get_fd(fildes);
if (result < 0)
{
int err = errno;
char message[3000];

104

explain_acl_get_fd(3) Librarfrunctions Manual explain_acl_get fd(3)

explain_message_errno_acl_get_fd(message, sizeof(message),
err, fildes);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_acl_get fd_or_di@) function.
SEE ALSO
acl_get fd3)
Executeacl_get_fd3)
explain_acl_get fd_or_di@)
Executeacl_get_f@3) and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

105

explain_acl_get fd_or_die(3) Librafunctions Manual explain_acl_get fd_or_die(3)

NAME
explain_acl_get fd_or_die — Execuel_get f@3) and report errors

SYNOPSIS
#include <libexplain/acl_get_fd.h>
acl_t explain_acl_get fd_or_die(int fildes);
acl_t explain_acl_get fd_on_error(int fildes);

DESCRIPTION
The explain_acl_get fd_or_diefunction is used to call thacl get f@3) system call. Ondilure an
explanation will be printed testderr, obtained from theexplain_acl _get f@) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_acl_get fd_on_errorfunction is used to call thacl_get f@3) system call. Ondilure an
explanation will be printed tastderr, obtained from thexplain_acl_get_f@3) function, but still returns to
the caller.

fildes The fildes, exactly as to be passed toatleget fgd3) system call.

RETURN VALUE
The explain_acl_get fd_or_diefunction only returns on success, s@ get f@3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_acl_get fd_on_errorfunction alvays returns the value return by the wrappetl get fd@3)
system call.

EXAMPLE
The explain_acl_get fd_or_diefunction is intended to be used in a fashion similar to the violip
example:
explain_acl_get fd_or_die(fildes);

SEE ALSO
acl_get fd3)
Executeacl_get_fd3)
explain_acl_get f@3)
explainacl_get_fd3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

106

explain_acl_get ife(3) Library Functions Manual explain_acl_get _file(3)

NAME
explain_acl_get_file — explaiacl_get _fil¢3) errors

SYNOPSIS
#include <libexplain/acl_get_file.h>

const char *explain_acl_get_file(const char *pathname, acl_type_t type);

const char *explain_errno_acl_get _file(int errnum, const char *pathname, acl_type_t type);

void explain_message_acl_get file(char *message, int message_size, const char *pathname, acl_type t
type);

void explain_message_errno_acl_get_file(char *message, int message_size, int errnum, const char
*pathname, acl_type_t type);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedbioy tiet_fil€3) system call.
explain_acl_get file
const char *explain_acl_get_file(const char *pathname, acl_type_t type);
The explain_acl_get file function is used to obtain an explanation of an error returned by the

acl_get fil€3) system call. The least the message will contain is the valsteofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed tatheget fil¢3) system call.

type The original type, exactly as passed toahk get_fil¢3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_get_file(pathname, type);
if (result < 0)
{
fprintf(stderr, "%s\n", explain_acl_get_file(pathname, type));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_acl_get file_or_dig) function.

explain_errno_acl_get _file
const char *explain_errno_acl_get _file(int errnum, const char *pathname, acl_type_t type);
The explain_errno_acl_get_filefunction is used to obtain an explanation of an error returned by the

acl_get fil€3) system call. The least the message will contain is the valsteofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatheget fil€3) system call.

type The original type, exactly as passed toahk get_fil¢3) system call.

107

explain_acl_get ife(3) Library Functions Manual explain_acl_get _file(3)

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_get_file(pathname, type);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_get file(err,
pathname, type));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_get file_or_dig) function.

explain_message_acl_get file
void explain_message_acl_get file(char *message, int message_size, const char *pathname, acl_type t

type);
The explain_message_acl_get_fileunction is used to obtain an explanation of an error returned by the
acl_get fil€3) system call. The least the message will contain is the valsteofor(errno) , but

usually it will do much betteand indicate the underlying cause in more detalil.
Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tatheget fil¢3) system call.

type The original type, exactly as passed toahk get_fil¢3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_get_file(pathname, type);
if (result < 0)

{
char message[3000];
explain_message_acl_get file(message, sizeof(message),
pathname, type);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_get file_or_dig) function.

explain_message_errno_acl_get _file
void explain_message_errno_acl_get_file(char *message, int message_size, int errnum, const char
*pathname, acl_type_t type);

Theexplain_message_errno_acl_get fileinction is used to obtain an explanation of an error returned by
theacl_get_fil€3) system call. The least the message will contain is the vabieeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

108

explain_acl_get ife(3) Library Functions Manual explain_acl_get _file(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @lue to be decoded, usually obtained from eh@o global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatheget fil¢3) system call.

type The original type, exactly as passed toahk get_fil¢3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_tresult = acl_get_file(pathname, type);
if (result < 0)

{
int err = errno;
char message[3000];
explain_message_errno_acl_get_file(message, sizeof(message),
err, pathname, type);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_acl_get file_or_dig) function.
SEE ALSO
acl_get filg€3)

Executeacl_get _filg€3)
explain_acl_get _file_or_di@)
Executeacl_get_fil€3) and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

109

explain_acl_get ife_or_die(3) LibraryFunctions Manual explain_acl_get file_or_die(3)

NAME
explain_acl_get file_or_die — Execuael_get fil€3) and report errors

SYNOPSIS
#include <libexplain/acl_get_file.h>
acl_t explain_acl_get file_or_die(const char *pathname, acl_type_t type);
acl_t explain_acl_get file_on_error(const char *pathname, acl_type_t type);

DESCRIPTION
The explain_acl_get file_or_diefunction is used to call thacl_get fil€3) system call. On failure an
explanation will be printed tastderr, obtained from theexplain_acl_get fil¢3) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_acl_get file_on_errorfunction is used to call thacl_get fil¢3) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_acl_get_fil€3) function, but still returns to
the caller.

pathname
The pathname, exactly as to be passed tachget_fil€3) system call.

type The type, exactly as to be passed toatieget fil€3) system call.

RETURN VALUE
The explain_acl_get file_or_die function only returns on success, seel get fil€3) for more
information. On failure, prints an explanation and exits, it does not return.

Theexplain_acl_get file_on_errorfunction alvays returns the value return by the wrappel get_fil¢3)
system call.

EXAMPLE
The explain_acl_get file_or_diefunction is intended to be used in asliion similar to the folleing
example:
acl_tresult = explain_acl_get_file_or_die(pathname, type);
SEE ALSO
acl_get filg€3)
Executeacl_get _filg€3)
explain_acl_get_fil¢3)
explainacl_get_fil€3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

110

explain_acl_set fd(3) Librarifunctions Manual explain_acl_set_fd(3)

NAME
explain_acl_set fd — explaiacl_set_f@3) errors

SYNOPSIS
#include <libexplain/acl_set fd.h>

const char *explain_acl_set_fd(int fildes, acl_t acl);

const char *explain_errno_acl_set_fd(int errnum, int fildes, acl_t acl);

void explain_message_acl_set fd(char *message, int message_size, int fildes, acl_t acl);

void explain_message_errno_acl_set_fd(char *message, int message_size, int errnum, int fildes, acl_t acl);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedalioy get f@3) system call.

explain_acl_set fd
const char *explain_acl_set_fd(int fildes, acl_t acl);
The explain_acl_set_fdfunction is used to obtain axmanation of an error returned by tael_set f@3)

system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed todbk set_f¢3) system call.
acl The original acl, exactly as passed todbk set_f@3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_fd(fildes, acl) < 0)
{
fprintf(stderr, "%s\n", explain_acl_set_fd(fildes, acl));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_set_fd_or_d{8) function.

explain_errno_acl_set fd
const char *explain_errno_acl_set_fd(int errnum, int fildes, acl_t acl);

The explain_errno_acl_set fdfunction is used to obtain an explanation of an error returned by the
acl_set f@3) system call. The least the message will contain is &hgevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbk set_f¢3) system call.
acl The original acl, exactly as passed todbk set_f@3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

111

explain_acl_set fd(3) Librarifunctions Manual explain_acl_set_fd(3)

if (acl_set_fd(fildes, acl) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_set_fd(err, fildes,
acl));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_set fd_or_d{8) function.

explain_message_acl_set fd
void explain_message_acl_set fd(char *message, int message_size, int fildes, acl_t acl);

The explain_message_acl_set_fflinction is used to obtain arxmanation of an error returned by the
acl_set f@3) system call. The least the message will contain is &hgevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todbk set_f¢3) system call.
acl The original acl, exactly as passed todbk set_f@3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_fd(fildes, acl) < 0)

{
char message[3000];
explain_message_acl_set_fd(message, sizeof(message), fildes,
acl);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_set fd_or_d{8) function.

explain_message_errno_acl_set fd
void explain_message_errno_acl_set_fd(char *message, int message_size, int errnum, int fildes, acl_t acl);
The explain_message_errno_acl_set_fidinction is used to obtain an explanation of an error returned by

theacl_set f@3) system call. The least the message will contain is the vaktesofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from eh@o global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todbk set_f¢3) system call.
acl The original acl, exactly as passed todbk set_f@3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_fd(fildes, acl) < 0)
{

112

explain_acl_set fd(3) Librarifunctions Manual explain_acl_set_fd(3)

int err = errno;

char message[3000];
explain_message_errno_acl_set _fd(message, sizeof(message),
err, fildes, acl);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_acl_set fd_or_d{8) function.

SEE ALSO
acl_set_f@3)
set an ACL by file descriptor
explain_acl_set fd_or_di®)
set an ACL by file descriptor and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

113

explain_acl_set fd_or_die(3) LibraRunctions Manual explain_acl_set fd_or_die(3)

NAME
explain_acl_set fd_or_die — set an ACL by file descriptor and report errors

SYNOPSIS
#include <libexplain/acl_set fd.h>

void explain_acl_set fd_or_die(int fildes, acl_t acl);

int explain_acl_set _fd_on_error(int fildes, acl_t acl);

DESCRIPTION
The explain_acl_set _fd_or_diefunction is used to call thacl set f@3) system call. Ondilure an
explanation will be printed tstderr, obtained from thexplain_acl_set f(B) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_acl_set fd_on_errorfunction is used to call thacl_set f@3) system call. Onailure an
explanation will be printed tetderr, obtained from theexplain_acl_set f¢B) function, but still returns to
the caller.

fildes The fildes, exactly as to be passed toatleset f@3) system call.
acl The acl, exactly as to be passed toable set_f¢@3) system call.

RETURN VALUE
The explain_acl_set_fd_or_diefunction only returns on success, st set f@3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_acl_set_fd_on_errorfunction alvays returns the value return by the wrappet set f@3)
system call.

EXAMPLE
The explain_acl_set_fd_or_diefunction is intended to be used in a fashion similar to the violip
example:
explain_acl_set fd_or_die(fildes, acl);

SEE ALSO
acl_set f@3)
set an ACL by file descriptor
explain_acl_set f(B)
explainacl_set_f@3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

114

explain_acl_set ife(3) Library Functions Manual explain_acl_set_file(3)

NAME
explain_acl_set_file — explaiacl_set_fil€3) errors

SYNOPSIS
#include <libexplain/acl_set_file.h>

const char *explain_acl_set _file(const char *pathname, acl_type_t type, acl_t acl);

const char *explain_errno_acl_set_file(int errnum, const char *pathname, acl_type_t type, acl_t acl);
void explain_message_acl_set file(char *message, int message_size, const char *pathname, acl_type t
type, acl_t acl);

void explain_message_errno_acl_set_file(char *message, int message_size, int errnum, const char
*pathname, acl_type_t type, acl_t acl);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedbioy Bet fil€3) system call.
explain_acl_set file
const char *explain_acl_set _file(const char *pathname, acl_type_t type, acl_t acl);
The explain_acl_set_file function is used to obtain anxmanation of an error returned by the

acl_set fil¢3) system call. The least the message will contain is dhe\of strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed tatheset_fil€3) system call.

type The original type, exactly as passed toahk set_fil¢3) system call.
acl The original acl, exactly as passed todhk set_fil€3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_file(pathname, type, acl) < 0)

fprintf(stderr, "%s\n", explain_acl_set_file(pathname, type,
acl));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_acl_set file_or_di@®) function.
explain_errno_acl_set file
const char *explain_errno_acl_set_file(int errnum, const char *pathname, acl_type_t type, acl_t acl);

The explain_errno_acl_set_filefunction is used to obtain arxmanation of an error returned by the
acl_set fil¢3) system call. The least the message will contain is dhe\of strerror(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatheset_fil€3) system call.

115

explain_acl_set ife(3) Library Functions Manual explain_acl_set_file(3)

type The original type, exactly as passed toahk set_fil¢3) system call.
acl The original acl, exactly as passed todbk set_fil€3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_file(pathname, type, acl) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_set _file(err,
pathname, type, acl));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_set file_or_di@®) function.

explain_message_acl_set _file
void explain_message_acl_set file(char *message, int message_size, const char *pathname, acl_type t
type, acl_t acl);

The explain_message_acl_set filinction is used to obtain an explanation of an error returned by the
acl_set fil¢3) system call. The least the message will contain is the vals&eofor(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tatheset_fil¢3) system call.

type The original type, exactly as passed toahk set_fil¢3) system call.
acl The original acl, exactly as passed todhkk set_fil€3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_file(pathname, type, acl) < 0)

{
char message[3000];
explain_message_acl_set_file(message, sizeof(message),
pathname, type, acl);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_acl_set file_or_di@®) function.

explain_message_errno_acl_set file
void explain_message_errno_acl_set _file(char *message, int message_size, int errnum, const char
*pathname, acl_type_t type, acl_t acl);

Theexplain_message_errno_acl_set_fifeinction is used to obtain apanation of an error returned by
theacl_set_fil¢3) system call. The least the message will contain is the vakieeafor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

116

explain_acl_set ife(3) Library Functions Manual explain_acl_set_file(3)

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tatheset_fil€3) system call.

type The original type, exactly as passed toahk set_fil¢3) system call.
acl The original acl, exactly as passed todhk set_fil€3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_file(pathname, type, acl) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_acl_set _file(message, sizeof(message),
err, pathname, type, acl);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_acl_set file_or_di@®) function.
SEE ALSO
acl_set _fil¢3)

set an ACL by filename
explain_acl_set file_or_di@)
set an ACL by filename and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

117

explain_acl_setilie_or_die(3) LibraryFunctions Manual explain_acl_set file_or_die(3)

NAME
explain_acl_set file_or_die — set an ACL by filename and report errors

SYNOPSIS
#include <libexplain/acl_set_file.h>
void explain_acl_set file_or_die(const char *pathname, acl_type_t type, acl_t acl);
int explain_acl_set file_on_error(const char *pathname, acl_type_t type, acl_t acl);
DESCRIPTION
The explain_acl_set file_or_diefunction is used to call thacl _set fil€3) system call. On failure an

explanation will be printed tcstderr, obtained from theexplain_acl_set fil€3) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_acl_set_file_on_errorfunction is used to call thacl_set_fil¢3) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_acl_set fil€3) function, but still returns to
the caller.

pathname
The pathname, exactly as to be passed ta¢heset_fil¢3) system call.

type The type, exactly as to be passed toatieset_fil€3) system call.
acl The acl, exactly as to be passed toable set_fil€3) system call.

RETURN VALUE
Theexplain_acl_set_file_or_didunction only returns on success, seé set_fil€3) for more information.
On failure, prints an explanation and exits, it does not return.

Theexplain_acl_set file_on_errorfunction alvays returns the value return by the wrappet set_fil¢3)
system call.

EXAMPLE
The explain_acl_set file_or_diefunction is intended to be used in a fashion similar to theviolip
example:
explain_acl_set file_or_die(pathname, type, acl);
SEE ALSO
acl_set fil¢3)
set an ACL by filename
explain_acl_set_fil€3)
explainacl_set_fil€3) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

118

explain_acl_to_tet(3) Library Functions Manual explain_acl_to_text(3)

NAME
explain_acl_to_text — explaiacl_to_tex¢3) errors

SYNOPSIS
#include <libexplain/acl_to_text.h>

const char *explain_acl_to_text(acl_t acl, ssize_t *len_p);

const char *explain_errno_acl_to_text(int errnum, acl_t acl, ssize_t *len_p);

void explain_message_acl_to_text(char *message, int message_size, acl_t acl, ssize_t *len_p);

void explain_message_errno_acl_to_text(char *message, int message_size, int errnum, acl_t acl, ssize_t
*len_p);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedaloy thetex¢3) system call.

explain_acl_to_text
const char *explain_acl_to_text(acl_t acl, ssize_t *len_p);

Theexplain_acl_to_textfunction is used to obtain an explanation of an error returned acth® _tex{3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
acl The original acl, exactly as passed todbk to_tex{3) system call.
len_p The original len_p, exactly as passed toabke to_tex{3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = acl_to_text(acl, len_p);
if (Iresult)

fprintf(stderr, "%s\n", explain_acl_to_text(acl, len_p));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_acl_to_text or_di@®) function.

explain_errno_acl_to_text
const char *explain_errno_acl_to_text(int errnum, acl_t acl, ssize_t *len_p);

The explain_errno_acl_to_textfunction is used to obtain arxmanation of an error returned by the
acl_to_text3) system call. The least the message will contain is the vals&esfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained froretir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

acl The original acl, exactly as passed todbk to_tex{3) system call.
len_p The original len_p, exactly as passed toabketo_tex¢3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther

119

explain_acl_to_tet(3) Library Functions Manual explain_acl_to_text(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = acl_to_text(acl, len_p);
if (Iresult)
{ .
int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_to_text(err, acl,

len_p));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_acl_to_text or_di@®) function.

explain_message_acl_to_text
void explain_message_acl_to_text(char *message, int message_size, acl_t acl, ssize_t *len_p);

The explain_message_acl_to_textinction is used to obtain axmanation of an error returned by the
acl_to_text3) system call. The least the message will contain is the vals&esfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

acl The original acl, exactly as passed todbk to_tex{3) system call.
len_p The original len_p, exactly as passed toabke to_tex{3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = acl_to_text(acl, len_p);
if (fresult)
{
char message[3000];
explain_message_acl_to_text(message, sizeof(message), acl,
len_p);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_acl_to_text or_di@®) function.

explain_message_errno_acl_to_text

void explain_message_errno_acl_to_text(char *message, int message_size, int errnum, acl_t acl, ssize_t
*len_p);

Theexplain_message_errno_acl_to_textinction is used to obtain axpanation of an error returned by
theacl_to_tex{3) system call. The least the message will contain isghe\ofstrerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

120

explain_acl_to_tet(3) Library Functions Manual explain_acl_to_text(3)

acl The original acl, exactly as passed todbk to_tex{3) system call.
len_p The original len_p, exactly as passed toabke to_tex¢3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = acl_to_text(acl, len_p);
if (Iresult)
{ .
int err = errno;
char message[3000];
explain_message_errno_acl_to_text(message, sizeof(message),
err, acl, len_p);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_acl_to_text or_di@®) function.
SEE ALSO
acl_to_text3)
corvert an ACL to text
explain_acl_to_text or_di@)
convert an ACL to text and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

121

explain_acl_to_tet _or_die(3) LibraryFunctions Manual explain_acl_to_text_or_die(3)

NAME
explain_acl_to_text_or_die — ceert an ACL to text and report errors

SYNOPSIS
#include <libexplain/acl_to_text.h>
char *explain_acl_to_text_or_die(acl_t acl, ssize_t *len_p);
char *explain_acl_to_text_on_error(acl_t acl, ssize_t *len_p);
DESCRIPTION
The explain_acl_to_text _or_diefunction is used to call thacl to tex{3) system call. Onaflure an

explanation will be printed tastderr, obtained from theexplain_acl _to_tex@) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_acl_to_text on_errorfunction is used to call thacl _to_text3) system call. Onailure an
explanation will be printed tgtderr, obtained from theexplain_acl_to_tex) function, but still returns to
the caller.

acl The acl, exactly as to be passed toableto_text3) system call.
len_p The len_p, exactly as to be passed taatieto tex¢3) system call.

RETURN VALUE
Theexplain_acl_to_text_or_diefunction only returns on success, seé to_text3) for more information.
On failure, prints an explanation and exits, it does not return.

Theexplain_acl_to_text on_errorfunction alvays returns the value return by the wrappetl to_tex{3)
system call.

EXAMPLE
The explain_acl_to_text_or_diefunction is intended to be used in a fashion similar to theviolip
example:
char *result = explain_acl_to_text or_die(acl, len_p);
SEE ALSO
acl_to_text3)
corvert an ACL to text
explain_acl_to_texB)
explainacl_to_tex{3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

122

explain_adijtime(3) Libraryrunctions Manual explain_adijtime(3)

NAME
explain_adijtime — explain adjtime(2) errors

SYNOPSIS
#include <libexplain/adijtime.h>

const char *explain_adjtime(const struct time delta, struct timeal * olddelta);

const char *explain_errno_adjtime(int errnum, const structihralelta, struct timeal * olddelta);

void explain_message_adjtime(char *message, int message_size, const stvatt tdelea, struct timee
*olddelta);

void explain_message_errno_adjtime(char *message, int message_size, int errnum, const s@iuct time
*delta, struct timeal * olddelta);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedaolitithe2) system call.

explain_adjtime
const char *explain_adjtime(const struct time delta, struct timeal * olddelta);

The explain_adjtime function is used to obtain arxmanation of an error returned by théjtimeg2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
delta The original delta, exactly as passed toatigimg?2) system call.
olddelta The original olddelta, exactly as passed toatigimg2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)

fprintf(stderr, "%s\n", explain_adjtime(delta, olddelta));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thglain_adjtime_or_di€3) function.

explain_errno_adjtime
const char *explain_errno_adjtime(int errnum, const structihrialelta, struct timeal * olddelta);

The explain_errno_adjtime function is used to obtain an explanation of an error returned by the
adjtimg2) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

delta The original delta, exactly as passed toatigimg?2) system call.
olddelta The original olddelta, exactly as passed toatigimg2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther

123

explain_adijtime(3) Libraryrunctions Manual explain_adijtime(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_adjtime(err, delta,
olddelta));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_adjtime_or_di€3) function.

explain_message_adjtime
void explain_message_adjtime(char *message, int message_size, const stvatt tdelea, struct timee

*olddelta);
The explain_message_adjtimefunction is used to obtain an explanation of an error returned by the
adjtimg2) system call. The least the message will contain is the vahteeafor(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.
Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

delta The original delta, exactly as passed toatigimg?2) system call.
olddelta The original olddelta, exactly as passed toatigimg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)

{
char message[3000];
explain_message_adjtime(message, sizeof(message), delta,
olddelta);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_adjtime_or_di€3) function.

explain_message_errno_adjtime
void explain_message_errno_adjtime(char *message, int message_size, int errnum, const s@uct time
*delta, struct timeal * olddelta);

Theexplain_message_errno_adjtiméunction is used to obtain axmanation of an error returned by the
adjtimg2) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

delta The original delta, exactly as passed toatigimg?2) system call.

124

explain_adijtime(3) Libraryrunctions Manual explain_adijtime(3)

olddelta The original olddelta, exactly as passed toatigimg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_adjtime(message, sizeof(message), err,
delta, olddelta);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre-packaged as thglain_adjtime_or_di€3) function.
SEE ALSO
adjtimg2)

smoothly tune kernel clock
explain_adjtime_or_di€3)
smoothly tune kernel clock and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

125

explain_adijtime_or_die(3) Librarlfunctions Manual explain_adijtime_or_die(3)

NAME
explain_adijtime_or_die — smoothly tune kernel clock and report errors

SYNOPSIS
#include <libexplain/adijtime.h>

void explain_adijtime_or_die(const struct tivak* delta, struct timeal * olddelta);
int explain_adjtime_on_error(const struct tirde* delta, struct timeal * olddelta);
DESCRIPTION
The explain_adjtime_or_die function is used to call thadjtimg2) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_adjtimg3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_adjtime_on_error function is used to call thedjtimg2) system call. On failure an
explanation will be printed tstderr, obtained from theexplain_adjtim&3) function, but still returns to the
caller.

delta The delta, exactly as to be passed taatljimeg2) system call.
olddelta The olddelta, exactly as to be passed tatjgmg2) system call.

RETURN VALUE

The explain_adijtime_or_die function only returns on success, saftimg2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_adijtime_on_error function alvays returns the value return by the wrappditimg2) system
call.

EXAMPLE
Theexplain_adjtime_or_diefunction is intended to be used in a fashion similar to the following example:
explain_adjtime_or_die(delta, olddelta);
SEE ALSO
adjtimg2)
smoothly tune kernel clock
explain_adjtimg3)
explainadjtimg2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

126

explain_adijtime(3) Library Functions Manual explain_adijtimex(3)

NAME
explain_adijtime — explain adjtimex(2) errors

SYNOPSIS
#include <libexplain/adjtimex.h>

const char *explain_adjtimex(struct tim&data);

const char *explain_errno_adijtimex(int errnum, struct xirngata);

void explain_message_adjtimex(char *message, int message_size, strué¢iatz);

void explain_message_errno_adjtimex(char *message, int message_size, int errnum, skrtidatize
DESCRIPTION

These functions may be used to obtain explanations for errors returnedaloltithex2) system call.

explain_adjtimex
const char *explain_adjtimex(struct tim&data);
The explain_adjtimex function is used to obtain arxmanation of an error returned by thdjtimex2)

system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
data The original data, exactly as passed toatigimex2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)

fprintf(stderr, "%s\n", explain_adjtimex(data));
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre-packaged as thgplain_adjtimex_or_di€) function.
explain_errno_adjtimex
const char *explain_errno_adijtimex(int errnum, struct xirngata);

The explain_errno_adjtimex function is used to obtain an explanation of an error returned by the
adjtimeX2) system call. The least the message will contain is the valuetadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed toatigimex2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);

127

explain_adijtime(3) Library Functions Manual explain_adijtimex(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_adjtimex(err, data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_adjtimex_or_di€) function.
explain_message_adjtimex

void explain_message_adjtimex(char *message, int message_size, strué¢iatz);

The explain_message_adjtimexunction is used to obtain arxganation of an error returned by the

adjtimeX2) system call. The least the message will contain is #heevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed toatigimex2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)

{
char message[3000];
explain_message_adjtimex(message, sizeof(message), data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_adjtimex_or_di€) function.

explain_message_errno_adjtimex
void explain_message_errno_adjtimex(char *message, int message_size, int errnum, skrtidatize

The explain_message_errno_adjtimexunction is used to obtain axmanation of an error returned by
the adjtimeX2) system call. The least the message will contain is the valsigeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed toatigimex2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_adjtimex(message, sizeof(message), err,

128

explain_adijtime(3) Library Functions Manual explain_adijtimex(3)

data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_adjtimex_or_di€) function.
SEE ALSO
adjtimex2)
tune kernel clock
explain_adjtimex_or_di€3)
tune kernel clock and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

129

explain_adjtime_or_die(3) LibraryFunctions Manual explain_adijtimex_or_die(3)

NAME
explain_adijtimex_or_die - tune kernel clock and report errors

SYNOPSIS
#include <libexplain/adjtimex.h>
int explain_adjtimex_or_die(struct timé&data);
int explain_adijtimex_on_error(struct timnédata);
DESCRIPTION
The explain_adjtimex_or_die function is used to call thedjtimex2) system call. Ondilure an

explanation will be printed tstderr, obtained from thexplain_adijtimex3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_adjtimex_on_error function is used to call thadjtimeX2) system call. Onailure an
explanation will be printed tstderr, obtained from thexplain_adijtimex3) function, but still returns to the
caller.

data The data, exactly as to be passed tatjgmex2) system call.

RETURN VALUE
The explain_adjtimex_or_die function only returns on success, s@ftimex2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_adijtimex_on_error function alvays returns the value return by the wrappeatjtimex2)
system call.

EXAMPLE
The explain_adjtimex_or_die function is intended to be used in asliion similar to the follging
example:
int result = explain_adjtimex_or_die(data);
SEE ALSO
adjtimex2)
tune kernel clock
explain_adijtimex3)
explain adjtimex2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

130

explain_asprintf(3) Libraryrunctions Manual explain_asprintf(3)

NAME
explain_asprintf — explaiasprint{3) errors

SYNOPSIS
#include <libexplain/asprintf.h>

const char *explain_asprintf(, ...);

const char *explain_errno_asprintf(int errnum, , ...);

void explain_message_asprintf(char *message, int message_size, , ...);

void explain_message_errno_asprintf(char *message, int message_size, int errnum, , ...);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedalspting{3) system call.

explain_asprintf
const char *explain_asprintf(, ...);

The explain_asprintf function is used to obtain arxmanation of an error returned by thsprint{3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = asprintf();
if (result < 0 || errno = 0)
{
fprintf(stderr, "%s\n", explain_asprintf());
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_asprintf_or_dié3) function.

explain_errno_asprintf
const char *explain_errno_asprintf(int errnum, , ...);

The explain_errno_asprintf function is used to obtain an explanation of an error returned by the
asprint{3) system call. The least the message will contain is the valuestadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained frometire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = asprintf();
if (result < 0 || errno = 0)

131

explain_asprintf(3) Libraryrunctions Manual explain_asprintf(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_asprintf(err,));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_asprintf_or_dié3) function.

explain_message_asprintf
void explain_message_asprintf(char *message, int message_size, , ...);

The explain_message_asprintfunction is used to obtain arxmanation of an error returned by the
asprint{3) system call. The least the message will contain is the valstresfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
int result = asprintf();
if (result < 0 || errno = 0)

char message[3000];
explain_message_asprintf(message, sizeof(message),);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_asprintf_or_dié3) function.

explain_message_errno_asprintf
void explain_message_errno_asprintf(char *message, int message_size, int errnum, , ...);

Theexplain_message_errno_asprintfunction is used to obtain anpanation of an error returned by the
asprint{3) system call. The least the message will contain is the valuestadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = asprintf();
if (result < 0 || errno !'=0)

int err = errno;

char message[3000];
explain_message_errno_asprintf(message, sizeof(message), err,
).

fprintf(stderr, "%s\n", message);

132

explain_asprintf(3) Libraryrunctions Manual explain_asprintf(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_asprintf_or_dié3) function.
SEE ALSO
asprinti(3)
print to allocated string
explain_asprintf_or_di€3)
print to allocated string and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

133

explain_asprintf_or_die(3) Librarlfunctions Manual explain_asprintf_or_die(3)

NAME
explain_asprintf_or_die — print to allocated string and report errors

SYNOPSIS
#include <libexplain/asprintf.h>
int explain_asprintf_or_die(, ...);
int explain_asprintf_on_errory(, ...);
DESCRIPTION
Theexplain_asprintf_or_die function is used to call thasprint{3) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_asprint{3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_asprintf_on_error function is used to call thasprint{3) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_asprint{3) function, but still returns to the
caller.

RETURN VALUE
The explain_asprintf_or_die function only returns on success, saprint{3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_asprintf_on_error function alvays returns the alue return by the wrappedsprint{(3)
system call.

EXAMPLE

Theexplain_asprintf_or_die function is intended to be used in a fashion similar to the following example:
int result = explain_asprintf_or_die();
SEE ALSO
asprinti3)
print to allocated string
explain_asprint{3)
explainasprint{3) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

134

explain_bind(3) LibraryFunctions Manual explain_bind(3)

NAME
explain_bind — explain bind(2) errors

SYNOPSIS
#include <libexplain/bind.h>

const char *explain_bind(int fildes, const struct sockaddr *sock, addrock addr_size);

const char *explain_errno_bind(int errnum, int fildes, const struct sockaddr *sock addr

sock addr_size);

void explain_message_bind(char *message, int message_size, int fildes, const struct sockaddr *sock_addr
int sock_addr_size);

void explain_message_errno_bind(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *sock_addint sock_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedodyd{Be system call.

explain_bind
const char *explain_bind(int fildes, const struct sockaddr *sock, addrock addr_size);

Theexplain_bind function is used to obtain anpanation of an error returned by thimd(2) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock _addr, sock_addr_size) < 0)

{
fprintf(stderr, "%s\n",
explain_bind(fildes, sock_addr, sock_addr_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as tbgplain_bind_or_di€3) function.
fildes The original fildes, exactly as passed tohrel(2) system call.

sock _addr
The original sock_addexactly as passed to tind(2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tbitlik?) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_bind
const char *explain_errno_bind(int errnum, int fildes, const struct sockaddr *sock addr
sock addr_size);

The explain_errno_bind function is used to obtain arxmganation of an error returned by théd(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock _addr, sock_addr_size) < 0)
{

int err = errno;

135

explain_bind(3) LibraryFunctions Manual explain_bind(3)

fprintf(stderr, "%s\n", explain_errno_bind(err,
fildes, sock_addr, sock _addr_size));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_bind_or_di€3) function.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tohrel(2) system call.

sock _addr
The original sock_addexactly as passed to tind(2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tbititk?) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_bind
void explain_message_bind(char *message, int message_size, int fildes, const struct sockaddr *sock_addr
int sock_addr_size);

The explain_message_bindunction may be used to obtain an explanation of an error returned by the
bind(2) system call. The least the message will contain isahe\ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock _addr, sock_addr_size) < 0)

{
char message[3000];
explain_message_bind(message, sizeof(message),
fildes, sock_addr, sock _addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as tbgplain_bind_or_di€3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tohrel(2) system call.

sock _addr
The original sock_addexactly as passed to tind(2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tbitltk?) system call.
explain_message_errno_bind
void explain_message_errno_bind(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *sock_addint sock _addr_size);

136

explain_bind(3) LibraryFunctions Manual explain_bind(3)

The explain_message_errno_bindunction may be used to obtain an explanation of an error returned by
the bind(2) system call. The least the message will contain is #éige vof strerror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock _addr, sock_addr_size) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_bind(message, sizeof(message), err,
fildes, sock_addr, sock _addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as tbgplain_bind_or_di€3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tohrel(2) system call.

sock _addr
The original sock_addexactly as passed to tind(2) system call.

sock addr_size
The original sock_addr_size, exactly as passed tbitlik?) system call.

SEE ALSO
bind(2) bind a name to a socket
explain_bind_or_di€3)
bind a name to a socket and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

137

explain_bind_or_die(3) Librarfrunctions Manual explain_bind_or_die(3)

NAME
explain_bind_or_die - bind a name to a socket and report errors

SYNOPSIS
#include <libexplain/bind.h>

void explain_bind_or_die(int fildes, const struct sockaddr *sock , adidsock addr_size);

DESCRIPTION
Theexplain_bind_or_diefunction is used to call th&ind(2) system call. On failure arxglanation will be
printed to stderr, obtained from explain_bind3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_bind_or_die(fildes, sock_addr, sock_addr_size);

fildes The fildes, exactly as to be passed toltimgl(2) system call.

sock addr
The sock addexactly as to be passed to thied(2) system call.

sock _addr_size
The sock _addr_size, exactly as to be passed tairidg2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
bind(2) bind a name to a socket

explain_bind3)
explainbind(2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

138

explain_calloc(3) LibraryFunctions Manual explain_calloc(3)

NAME
explain_calloc — explairalloc(3) errors

SYNOPSIS
#include <libexplain/calloc.h>

const char *explain_calloc(size_t nmemb, size_t size);
const char *explain_errno_calloc(int errnum, size_t nmemb, size_t size);
void explain_message_calloc(char *message, int message_size, size_t nmemb, size_t size);
void explain_message_errno_calloc(char *message, int message_size, int errnum, size_t nmemb, size_t
size);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedchjldb@) system call.

explain_calloc
const char *explain_calloc(size_t nmemb, size_t size);

The explain_callocfunction is used to obtain an explanation of an error returned bsatloe(3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
nmemb The original nmemb, exactly as passed toctidioc(3) system call.
size The original size, exactly as passed todhkoc(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void *result = calloc(nmemb, size);
if (Iresult && errno !'=0)
{
fprintf(stderr, "%s\n", explain_calloc(nmemb, size));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_calloc_or_di€3) function.

explain_errno_calloc
const char *explain_errno_calloc(int errnum, size_t nmemb, size_t size);

The explain_errno_callocfunction is used to obtain axmanation of an error returned by thallo(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

nmemb The original nmemb, exactly as passed toctidioc(3) system call.
size The original size, exactly as passed todhkoc(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

139

explain_calloc(3) LibraryFunctions Manual explain_calloc(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void *result = calloc(nmemb, size);
if (Iresult && errno !=0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_calloc(err, nmemb,
size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_calloc_or_di€3) function.

explain_message_calloc
void explain_message_calloc(char *message, int message_size, size_t nmemb, size_t size);

Theexplain_message_callofunction is used to obtain apanation of an error returned by tballo(3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

nmemb The original nmemb, exactly as passed toctidioc(3) system call.
size The original size, exactly as passed todhkoc(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
void *result = calloc(nmemb, size);
if (Iresult && errno !'=0)

{
char message[3000];
explain_message_calloc(message, sizeof(message), nmemb, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_calloc_or_di€3) function.

explain_message_errno_calloc
void explain_message_errno_calloc(char *message, int message_size, int errnum, size_t nmemb, size_t
size);
The explain_message_errno_callofunction is used to obtain axganation of an error returned by the

calloc(3) system call. The least the message will contain isahe ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be

140

explain_calloc(3) LibraryFunctions Manual explain_calloc(3)

explained and this function, because méhc functions will alter the value @frrno.
nmemb The original nmemb, exactly as passed toctidioc(3) system call.
size The original size, exactly as passed todhkoc(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
void *result = calloc(nmemb, size);
if (fresult && errno = 0)
{
int err = errno;
char message[3000];
explain_message_errno_calloc(message, sizeof(message), err,
nmemb, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_calloc_or_di€3) function.

SEE ALSO
calloc(3)
Allocate and clear memory
explain_calloc_or_di€3)
Allocate and clear memory and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

141

explain_calloc_or_die(3) Librarifunctions Manual explain_calloc_or_die(3)

NAME
explain_calloc_or_die - Allocate and clear memory and report errors

SYNOPSIS
#include <libexplain/calloc.h>
void *explain_calloc_or_die(size_t nmemb, size t size);
void *explain_calloc_on_error(size_t nmemb, size_t size);
DESCRIPTION
Theexplain_calloc_or_diefunction is used to call thealloc(3) system call. On failure an explanation will

be printed tostderr, obtained from theexplain_calloq3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_calloc_on_errorfunction is used to call thealloc(3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_callod3) function, but still returns to the caller.

nmemb The nmemb, exactly as to be passed ta#liec3) system call.
size The size, exactly as to be passed tacdiw(3) system call.

RETURN VALUE
The explain_calloc_or_die function only returns on success, ssloc(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_calloc_on_errorfunction alvays returns the value return by the wrappadloc(3) system
call.

EXAMPLE
Theexplain_calloc_or_diefunction is intended to be used in a fashion similar to the following example:
void *result = explain_calloc_or_die(nmemb, size);

SEE ALSO
calloc(3)
Allocate and clear memory
explain_calloq3)
explain calloc(3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

142

explain_chdir(3) LibraryFunctions Manual explain_chdir(3)

NAME
explain_chdir — explain chdir(2) errors

SYNOPSIS
#include <libexplain/chdir.h>
const char *explain_chdir(const char *pathname);
void explain_message_chdir(char *message, int message_size, const char *pathname);
const char *explain_errno_chdir(int errnum, const char *pathname);
void explain_message_errno_chdir(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These function may be used to obtain explanatiocbdif(2) errors.

explain_chdir
const char *explain_chdir(const char *pathname);
The explain_chdir function is used to obtain an explanation of an error returneddbliti2) system call.

The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)

{
fprintf(stderr, '%s0, explain_chdir(pathname));
exit(EXIT_FAILURE);
}
pathname

The original pathname, exactly as passed tchbi(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_chdir
const char *explain_errno_chdir(int errnum, const char *pathname);
The explain_errno_chdir function is used to obtain an explanation of an error returned dbgit{2)

system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)

{
int err = errno;
fprintf(stderr, '%s0, explain_errno_chdir(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tchbi(2) system call.

143

explain_chdir(3) LibraryFunctions Manual explain_chdir(3)

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_chdir
void explain_message_chdir(char *message, int message_size, const char *pathname);

The explain_message_chdir function is used to obtain an explanation of an error returnedhtiy (&)e
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)
{

char message[3000];
explain_message_chdir(message, sizeof(message), pathname);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tchbi&(2) system call.

explain_message_errno_chdir
void explain_message_errno_chdir(char *message, int message_size, int errnum, const char * pathname);

The explain_message_errno_chdir function is used to obtaixxganation of an error returned by the
chdir(2) system call. The least the message will contain is the vaktesofor(errnum) , but usually
it will do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_chdir(message, sizeof(message), err,
pathname);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

144

explain_chdir(3) LibraryFunctions Manual explain_chdir(3)

pathname
The original pathname, exactly as passed tchbi(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

145

explain_chdir_or_die(3) Librarfrunctions Manual explain_chdir_or_die(3)

NAME
explain_chdir_or_die — change working directory and report errors

SYNOPSIS
#include <libexplain/chdir.h>

void explain_chdir_or_die(const char * pathname);
DESCRIPTION
Theexplain_chdir_or_die function is used to call thehdir(2) system call. On failure an explanation will

be printed tostderr, obtained from explain_chdi3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_chdir_or_die(pathname);

pathname
The pathname, exactly as to be passed totittie(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

146

explain_chmod(3) Libraryrunctions Manual explain_chmod(3)

NAME
explain_chmod - explain chmod(2) errors

SYNOPSIS
#include <libexplain/chmod.h>
const char *explain_chmod(const char *pathname, int mode);
const char *explain_errno_chmod(int errnum, const char *pathname, int mode);
void explain_message_chmod(char *message, int message_size, const char *pathname, int mode);
void explain_message_errno_chmod(char *message, int message_size, int errnum, const char *pathname,
int mode);

DESCRIPTION
These functions may be used to otain explanationshfood2) errors.

explain_chmod
const char *explain_chmod(const char *pathname, int mode);

The explain_chmod function is used to obtain gplanation of an error returned by tblamod?2) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname, mode) < 0)

fprintf(stderr, '%s0, explain_chmod(pathname, mode));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed techhed?2) system call.

mode The original mode, exactly as passed todtmaod2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_chmod
const char *explain_errno_chmod(int errnum, const char *pathname, int mode);

The explain_errno_chmod function is used to obtainxghaaation of an error returned by thlemod?2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname) < 0)

{
int err = errno;
fprintf(stderr, '%s0, explain_errno_chmod(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

147

explain_chmod(3) Libraryrunctions Manual explain_chmod(3)

pathname
The original pathname, exactly as passed techhed?2) system call.

mode The original mode, exactly as passed todtmaod2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message _chmod
void explain_message_chmod(char *message, int message_size, const char *pathname, int mode);

The explain_message_chmod function is used to obtairpanation of an error returned by ttlanod2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname, mode) < 0)

{
char message[3000];
explain_message_chmod(message, sizeof(message), pathname, mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed techhed?2) system call.

mode The original mode, exactly as passed todtmaod2) system call.

explain_message_errno_chmod

void explain_message_errno_chmod(char * message, int message_size, int errnum, const char *pathname,
int mode);

The eplain_message_errno_chmod function is used to obtain an explanation of an error returned by the
chmod?2) system call. The least the message will contain is the valséresfor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname) < 0)

int err = errno;
char message[3000];
explain_message_errno_chmod(message, sizeof(message), err,
pathname);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

148

explain_chmod(3) Libraryrunctions Manual explain_chmod(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed techhed?2) system call.
mode The original mode, exactly as passed todtmaod2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

149

explain_chmod_or_die(3) Libraryunctions Manual explain_chmod_or_die(3)

NAME
explain_chmod_or_die — change permissions of a file and report errors

SYNOPSIS
#include <libexplain/chmod.h>
void explain_chmod_or_die(const char *pathname, int mode);
DESCRIPTION
The explain_chmod_or_die function is used to calldhmod?2) system call. On failure arxglanation

wiil be printed to stderrobtained fromexplain_chmo@3), and the the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_chmod_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed tohtmed2) system call.

mode The mode, exactly as to be passed tactimod2) system call.

Returns: This function only returns on successOn failure, prints an explanation and
exit(EXIT_FAILURE)s.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

150

explain_chavn(3) LibraryFunctions Manual explain_chown(3)

NAME
explain_chown — explain chown(2) errors

SYNOPSIS
#include <libexplain/chown.h>

const char *explain_chown(const char *pathname, int owniegroup);

const char *explain_errno_chown(int errnum, const char *pathname, int,ontngroup);

void explain_message_chm(char *message, int message_size, const char *pathnameywnet, ont
group);

void explain_message_errno_ck(char *message, int message_size, int errnum, const char *pathname,
int owner int group);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchgwing?) system call.

explain_chown
const char *explain_chown(const char *pathname, int owniegroup);

The explain_chownfunction is used to obtain axmanation of an error returned by tblaown(2) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)

fprintf(stderr, "%s\n", explain_chown(pathname, owner, group));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed tehba/n(2) system call.

owner The original ownerexactly as passed to tlthown(2) system call.
group The original group, exactly as passed todhmvn(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_chown
const char *explain_errno_chown(int errnum, const char *pathname, int,ontngroup);

The explain_errno_chownfunction is used to obtain an explanation of an error returned bghtiven(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_chown(err, pathname, owner,
group));
exit(EXIT_FAILURE);
}

151

explain_chavn(3) LibraryFunctions Manual explain_chown(3)

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tchbe/n(2) system call.

owner The original ownerexactly as passed to tlthown(2) system call.
group The original group, exactly as passed todhmvn(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_chown
void explain_message_chm(char *message, int message_size, const char *pathnameywnet, ont

group);
The explain_message _chowfunction may be used to obtain an explanation of an error returned by the
chown(2) system call.The least the message will contain is the valugtrefror(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.
Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)

char message[3000];

explain_message_chown(message, sizeof(message), pathname, owner, group);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tehbe/n(2) system call.

owner The original ownerexactly as passed to tlthown(2) system call.
group The original group, exactly as passed todhmvn(2) system call.

explain_message_errno_chown
void explain_message_errno_cko(char *message, int message_size, int errnum, const char *pathname,
int owner int group);

Theexplain_message_errno_chowfunction may be used to obtain an explanation of an error returned by
the chown(2) system call. The least the message will contain is the vals&eofor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)

int err = errno;

char message[3000];

explain_message_errno_chown(message, sizeof(message), err,
pathname, owner, group);

152

explain_chavn(3) LibraryFunctions Manual explain_chown(3)

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetireo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tehbe/n(2) system call.

owner The original ownerexactly as passed to tlshown(2) system call.
group The original group, exactly as passed todhmvn(2) system call.

SEE ALSO
chown(2)
change ownership of a file
explain_chown_or_di€3)
change ownership of a file and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

153

explain_chaevn_or_die(3) LibraryFunctions Manual explain_chown_or_die(3)

NAME
explain_chown_or_die — change ownership of a file and report errors

SYNOPSIS
#include <libexplain/chown.h>
void explain_chown_or_die(const char *pathname, int oninegroup);

DESCRIPTION
The explain_chown_or_diefunction is used to call thehown(2) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_chowi(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_chown_or_die(pathname, owner, group);

pathname
The pathname, exactly as to be passed tohinen(2) system call.

owner The ownerexactly as to be passed to tti®wn(2) system call.
group The group, exactly as to be passed toctimevn(2) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
chown(2)
change ownership of a file
explain_chowi(3)
explain chown(2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

154

explain_chroot(3) Libraryrunctions Manual explain_chroot(3)

NAME
explain_chroot — explain chroot(2) errors

SYNOPSIS
#include <libexplain/chroot.h>

const char *explain_chroot(const char *pathname);

const char *explain_errno_chroot(int errnum, const char *pathname);

void explain_message_chroot(char *message, int message_size, const char *pathname);

void explain_message_errno_chroot(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchsotit€?) system call.

explain_chroot
const char *explain_chroot(const char *pathname);

The explain_chroot function is used to obtain axmanation of an error returned by tbleroot(2) system
call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed tchtmot(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)

fprintf(stderr, "%s\n", explain_chroot(pathname));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_chroot_or_di€3) function.

explain_errno_chroot
const char *explain_errno_chroot(int errnum, const char *pathname);

The explain_errno_chroot function is used to obtain an explanation of an error returned bshtbet(2)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ah@o global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tchtmot(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

155

explain_chroot(3) Libraryrunctions Manual explain_chroot(3)

if (chroot(pathname) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_chroot(err, pathname));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_chroot_or_di€3) function.

explain_message_chroot
void explain_message_chroot(char *message, int message_size, const char *pathname);

The explain_message_chroofunction is used to obtain an explanation of an error returned by the
chroot(2) system call. The least the message will contain is the vaktesofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tchtmot(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)

{
char message[3000];
explain_message_chroot(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_chroot_or_di€3) function.

explain_message_errno_chroot
void explain_message_errno_chroot(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_chrodfunction is used to obtain axpanation of an error returned by the
chroot(2) system call. The least the message will contain isahe \ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetireo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tchtmot(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)

int err = errno;

char message[3000];
explain_message_errno_chroot(message, sizeof(message), err,

156

explain_chroot(3) Libraryrunctions Manual explain_chroot(3)

pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_chroot_or_di€3) function.

SEE ALSO
chroot(2)
change root directory
explain_chroot_or_di€3)
change root directory and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

157

explain_chroot_or_die(3) Librarlfunctions Manual explain_chroot_or_die(3)

NAME
explain_chroot_or_die — change root directory and report errors

SYNOPSIS
#include <libexplain/chroot.h>

void explain_chroot_or_die(const char *pathname);
int explain_chroot_on_error(const char *pathname))
DESCRIPTION
The explain_chroot_or_die function is used to call thehroot(2) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_chroo{3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_chroot_on_error function is used to call thehroot(2) system call. On failure axganation
will be printed tostderr, obtained from thexplain_chroof3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed totto®t(2) system call.

RETURN VALUE
The explain_chroot_or_die function only returns on success, sg®oot(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_chroot_on_error function alvays returns the value return by the wrapplmot(2) system
call.

EXAMPLE
Theexplain_chroot_or_diefunction is intended to be used in a fashion similar to the following example:
explain_chroot_or_die(pathname);

SEE ALSO
chroot(2)
change root directory
explain_chroof3)
explain chroot(2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

158

explain_close(3) Libraryrunctions Manual explain_close(3)

NAME
explain_close - explain close(2) errors

SYNOPSIS
#include <libexplain/close.h>

const char *explain_close(int fildes);

const char *explain_errno_close(int errnum, int fildes);

void explain_message_close(char *message, int message_size, int fildes);

void explain_message_errno_close(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchst#®) system call.

explain_close
const char *explain_close(int fildes);

Theexplain_closefunction is used to obtain an explanation of an error returned lyab&€2) system call.
The least the message will contain is thtug ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)
{
fprintf(stderr, "%s\n", explain_close(fildes));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed todlmeseg?2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_close
const char *explain_errno_close(int errnum, int fildes);

The explain_errno_closefunction is used to obtain an explanation of an error returned bygldbe2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_close(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todlmeseg?2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

159

explain_close(3) Libraryrunctions Manual explain_close(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_close
void explain_message_close(char *message, int message_size, int fildes);

The explain_message_closiinction is used to obtain axmanation of an error returned by tbhiesg2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)

{
char message[3000];
explain_message_close(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todlmese?2) system call.

explain_message_errno_close
void explain_message_errno_close(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_closinction is used to obtain axmanation of an error returned by the
clos€?) system call. The least the message will contain isahe\ofstrerror(errnum) , but usually
it will do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_close(message, sizeof(message), err, fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetiro global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todlmeseg?2) system call.

SEE ALSO
close close a file descriptor

explain_close_or_die
close a file descriptor and report errors

160

explain_close(3) Libraryrunctions Manual explain_close(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

161

explain_closedir(3) Libraryrunctions Manual explain_closedir(3)

NAME
explain_closedir — explain closedir(3) errors

SYNOPSIS
#include <libexplain/closedir.h>

const char *explain_closedir(DIR *dir);

const char *explain_errno_closedir(int errnum, DIR *dir);

void explain_message_closedir(char *message, int message_size, DIR *dir);

void explain_message_errno_closedir(char *message, int message_size, int errnum, DIR *dir);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedclystoi(3) system call.

explain_closedir
const char *explain_closedir(DIR *dir);

The explain_closedir function is used to obtain arxmanation of an error returned by teksedi(3)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)

{
fprintf(stderr, "%s\n", explain_closedir(dir));
exit(EXIT_FAILURE);
}
dir The original dir exactly as passed to tiotosedi(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_closedir
const char *explain_errno_closedir(int errnum, DIR *dir);

The explain_errno_closedir function is used to obtain an explanation of an error returned by the
closedi(3) system call. The least the message will contain is the vals&esfor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_closedir(err, dir));
exit(EXIT_FAILURE);

}

errnum The error @alue to be decoded, usually obtained from eh@o global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

dir The original dir exactly as passed to tlotosedi(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

162

explain_closedir(3) Libraryrunctions Manual explain_closedir(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_closedir
void explain_message_closedir(char *message, int message_size, DIR *dir);

The explain_message_closedfunction may be used to obtain axptanation of an error returned by the
closedi(3) system call. The least the message will contain is #hgevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)

{
char message[3000];
explain_message_closedir(message, sizeof(message), dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

dir The original dir exactly as passed to tiotosedi(3) system call.

explain_message_errno_closedir
void explain_message_errno_closedir(char *message, int message_size, int errnum, DIR *dir);

The explain_message_errno_closediunction may be used to obtain axpknation of an error returned
by theclosedif3) system call.The least the message will contain is the valustrefror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_closedir(message, sizeof(message), err, dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

dir The original dir exactly as passed to tiotosedi(3) system call.
SEE ALSO
closedi(3)

close a directory

163

explain_closedir(3) Libraryrunctions Manual explain_closedir(3)

explain_closedir_or_di€3)
close a directory and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

164

explain_closedir_or_die(3) Libraryunctions Manual explain_closedir_or_die(3)

NAME
explain_closedir_or_die — close a directory and report errors

SYNOPSIS

#include <libexplain/closedir.h>

void explain_closedir_or_die(DIR *dir);
DESCRIPTION

Theexplain_closedir_or_diefunction is used to call thelosedi(3) system call.On failure an gplanation

will be printed tostderr, obtained fromexplain_closedif3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_closedir_or_die(dir);
dir The dir, exactly as to be passed to ttlesedi(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
closedi(3)
close a directory
explain_closedi(3)
explain closedif3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

165

explain_close_or_die(3) Libraryunctions Manual explain_close_or_die(3)

NAME
explain_close_or_die — close a file descriptor and report errors

SYNOPSIS
#include <libexplain/close.h>

void explain_close_or_die(int fildes);
DESCRIPTION
The explain_close_or_digunction is used to call thelos€2) system call. On failure an explanation will

be printed tostderr, obtained from explain_clos€3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_close_or_die(fildes);

fildes The fildes, exactly as to be passed todlos€?2) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
clos€?2) close a file descriptor

explain_clos€3)
explainclos€?) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

166

explain_connect(3) Librarfrunctions Manual explain_connect(3)

NAME
explain_connect — explain connect(2) errors

SYNOPSIS
#include <libexplain/connect.h>

const char *explain_connect(int fildes, const struct sockaddr *sery_iatiderv_addr_size);

const char *explain_errno_connect(int errnum, int fildes, const struct sockaddr *serviaddr
serv_addr_size);

void explain_message_connect(char *message, int message_size, int fildes, const struct sockaddr
*serv_addrint serv_addr_size);

void explain_message_errno_connect(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *serv_addint serv_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedcopnniee2) system call.

explain_connect
const char *explain_connect(int fildes, const struct sockaddr *sery_iatiderv_addr_size);

The explain_connectfunction is used to obtain arxmanation of an error returned by tkennecf2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)

{
fprintf(stderr, "%s\n", explain_connect(fildes, serv_addr,
serv_addr_size));
exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed to¢banecf2) system call.

serv_addr
The original serv_addexactly as passed to titennecf2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed todheecf2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_connect
const char *explain_errno_connect(int errnum, int fildes, const struct sockaddr *serviaddr
serv_addr_size);

The explain_errno_connect function is used to obtain an explanation of an error returned by the
connecf2) system call. The least the message will contain is the vals&esfor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)
{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_connect(err,
fildes, serv_addr, serv_addr_size));

167

explain_connect(3) Librarfrunctions Manual explain_connect(3)

exit(EXIT_FAILURE);
}

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed to¢banecf2) system call.

serv_addr
The original serv_addexactly as passed to titennecf2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed todheecf2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_connect
void explain_message_connect(char *message, int message_size, int fildes, const struct sockaddr
*serv_addrint serv_addr_size);

The explain_message_connedtinction may be used to obtain axpkanation of an error returned by the
connecf2) system call. The least the message will contain is the valuestadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)

{
char message[3000];
explain_message_connect(message, sizeof(message),
fildes, serv_addr, serv_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to¢banecf2) system call.

serv_addr
The original serv_addexactly as passed to tisennecf2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed todheecf2) system call.

explain_message_errno_connect
void explain_message_errno_connect(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *serv_addint serv_addr_size);

The explain_message_errno_connedtinction may be used to obtain axpkanation of an error returned
by theconnecf2) system call. The least the message will contain is ahee\ofstrerror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

168

explain_connect(3) Librarfrunctions Manual explain_connect(3)

if (connect(fildes, serv_addr, serv_addr_size) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_connect(message, sizeof(message), err,
fildes, serv_addr, serv_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed to¢banecf2) system call.

serv_addr
The original serv_addexactly as passed to tisennecf2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed todheecf2) system call.
SEE ALSO
connecf2)
initiate a connection on a socket
explain_connect_or_di@)
initiate a connection on a socket and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

169

explain_connect_or_die(3) Librafunctions Manual explain_connect_or_die(3)

NAME
explain_connect_or_die - initiate a connection on a socket and report errors

SYNOPSIS
#include <libexplain/connect.h>

void explain_connect_or_die(int fildes, const struct sockaddr *serv, imtlderv_addr_size);
DESCRIPTION
Theexplain_connect_or_digunction is used to call theonnecf2) system call.On failure an gplanation

will be printed tostderr, obtained fromexplain_connedB), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_connect_or_die(fildes, serv_addr, serv_addr_size);
fildes The fildes, exactly as to be passed todthenec{2) system call.

serv_addr
The serv_addexactly as to be passed to ttennecf2) system call.

serv_addr_size
The serv_addr_size, exactly as to be passed totheecf2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
connecf2)

initiate a connection on a socket
explain_conned)

explainconnecf2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

170

explain_creat(3) Libraryrunctions Manual explain_creat(3)

NAME
explain_creat — explain creat(2) errors

SYNOPSIS
#include <libexplain/creat.h>

const char *explain_creat(const char *pathname, int mode);

const char *explain_errno_creat(int errnum, const char *pathname, int mode);

void explain_message_creat(char *message, int message_size, const char *pathname, int mode);

void explain_message_errno_creat(char *message, int message_size, int errnum, const char *pathname, int
mode);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedchgatt®) system call.

explain_creat
const char *explain_creat(const char *pathname, int mode);

Theexplain_creatfunction is used to obtain an explanation of an error returned lyah€2) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)

fprintf(stderr, "%s\n", explain_creat(pathname, mode));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed tcia(2) system call.

mode The original mode, exactly as passed todteai2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_creat
const char *explain_errno_creat(int errnum, const char *pathname, int mode);

The explain_errno_creat function is used to obtain arxmanation of an error returned by theeaf(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_creat(err, pathname, mode));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

171

explain_creat(3) Libraryrunctions Manual explain_creat(3)

pathname
The original pathname, exactly as passed tcia(2) system call.

mode The original mode, exactly as passed todteai2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_creat
void explain_message_creat(char *message, int message_size, const char *pathname, int mode);

The explain_message_creafunction may be used to obtain an explanation of an error returned by the
creal(2) system call. The least the message will contain is the valsteeofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)

{
char message[3000];
explain_message_creat(message, sizeof(message), pathname, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tcia(2) system call.

mode The original mode, exactly as passed todteai2) system call.

explain_message_errno_creat
void explain_message_errno_creat(char *message, int message_size, int errnum, const char *pathname, int
mode);

The explain_message_errno_credtunction may be used to obtain axpknation of an error returned by
the creaf(2) system call. The least the message will contain is ahgevof strerror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)

int err = errno;

char message[3000];

explain_message_errno_creat(message, sizeof(message), err, pathname,
mode);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

172

explain_creat(3) Libraryrunctions Manual explain_creat(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tcia(2) system call.

mode The original mode, exactly as passed todteai2) system call.

SEE ALSO
crea(2) open and possibly create a file or device
explain_creat_or_di€3)
create and open a file and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

173

explain_creat_or_die(3) Libraryunctions Manual explain_creat_or_die(3)

NAME
explain_creat_or_die — create and open a file creat and report errors

SYNOPSIS
#include <libexplain/creat.h>

void explain_creat_or_die(const char *pathname, int mode);

DESCRIPTION
The explain_creat_or_diefunction is used to call thereaf2) system call.On failure an explanation will
be printed tostderr, obtained from explain_creaf3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_creat_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed torde(2) system call.

mode The mode, exactly as to be passed tactha2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
crea(2) open and possibly create a file or device

explain_crea(3)
explaincreaf(2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

174

explain_dirfd(3) LibraryFunctions Manual explain_dirfd(3)

NAME
explain_dirfd — explain dirfd(3) errors

SYNOPSIS
#include <libexplain/dirfd.h>

const char *explain_dirfd(DIR *dir);

const char *explain_errno_dirfd(int errnum, DIR *dir);

void explain_message_dirfd(char *message, int message_size, DIR *dir);

void explain_message_errno_dirfd(char *message, int message_size, int errnum, DIR *dir);
DESCRIPTION

These functions may be used to obtain explanations for errors returneddinydt® system call.

explain_dirfd
const char *explain_dirfd(DIR *dir);
Theexplain_dirfd function is used to obtain an explanation of an error returned lirtd€3) system call.

The least the message will contain is th&ug ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
dir The original dir exactly as passed to tlokirfd(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)

fprintf(stderr, "%s\n", explain_dirfd(dir));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_dirfd_or_di€3) function.

explain_errno_dirfd
const char *explain_errno_dirfd(int errnum, DIR *dir);

The explain_errno_dirfd function is used to obtain axmanation of an error returned by tdefd(3)

system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

dir The original dir exactly as passed to tlokirfd(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);

175

explain_dirfd(3) LibraryFunctions Manual explain_dirfd(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_dirfd(err, dir));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_dirfd_or_di€3) function.
explain_message_dirfd

void explain_message_dirfd(char *message, int message_size, DIR *dir);

The explain_message_dirfdunction is used to obtain an explanation of an error returned hyirfdé€3)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

dir The original dir exactly as passed to tlokirfd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)

{
char message[3000];
explain_message_dirfd(message, sizeof(message), dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_dirfd_or_di€3) function.

explain_message_errno_dirfd
void explain_message_errno_dirfd(char *message, int message_size, int errnum, DIR *dir);

The explain_message_errno_dirfdfunction is used to obtain axmanation of an error returned by the
dirfd(3) system call. The least the message will contain isghe ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

dir The original dir exactly as passed to tlokirfd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_dirfd(message, sizeof(message), err,

176

explain_dirfd(3) LibraryFunctions Manual explain_dirfd(3)

dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_dirfd_or_di€3) function.

SEE ALSO
dirfd(3) get directory stream file descriptor
explain_dirfd_or_di€3)
get directory stream file descriptor and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

177

explain_dirfd_or_die(3) Libraryrunctions Manual explain_dirfd_or_die(3)

NAME
explain_dirfd_or_die — get directory stream file descriptor and report errors

SYNOPSIS
#include <libexplain/dirfd.h>
int explain_dirfd_or_die(DIR *dir);
int explain_dirfd_on_error(DIR *dir);
DESCRIPTION
The explain_dirfd_or_die function is used to call theirfd(3) system call. On failure an explanation will

be printed testderr, obtained from thexplain_dirfd(3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_dirfd_on_error function is used to call thdirfd(3) system call. Ondilure an gplanation
will be printed tostderr, obtained from thexplain_dirfd(3) function, but still returns to the caller.

dir The dir, exactly as to be passed to tiiefd(3) system call.

RETURN VALUE
The explain_dirfd_or_die function only returns on success, skéd(3) for more information. Oraflure,
prints an explanation and exits, it does not return.

Theexplain_dirfd_on_error function alvays returns the value return by the wrappettl(3) system call.

EXAMPLE
Theexplain_dirfd_or_die function is intended to be used in a fashion similar to the following example:
int result = explain_dirfd_or_die(dir);
SEE ALSO
dirfd(3) get directory stream file descriptor

explain_dirfd(3)
explaindirfd(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

178

explain_dup2(3) Libraryrunctions Manual explain_dup2(3)

NAME

explain_dup2 - explain dup2(2) errors

SYNOPSIS

#include <libexplain/dup2.h>

const char *explain_dup?2(int oldfd, int newfd);

const char *explain_errno_dup2(int errnum, int oldfd, int newfd);

void explain_message_dup2(char *message, int message_size, int oldfd, int newfd);

void explain_message_errno_dup2(char *message, int message_size, int errnum, int oldfd, int newfd);

DESCRIPTION

These functions may be used to obtain explanations for errors returneddop &) system call.

explain_dup2

const char *explain_dup2(int oldfd, int newfd);

The explain_dup?2 function is used to obtain an explanation of an error returned bguph&2) system
call. Theleast the message will contain is tre@ue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)
{
fprintf(stderr, "%s\n", explain_dup2(oldfd, newfd));
exit(EXIT_FAILURE);

}
oldfd The original oldfd, exactly as passed to dup22) system call.

newfd The original newfd, exactly as passed todbpZ2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_dup2

const char *explain_errno_dup2(int errnum, int oldfd, int newfd);

The explain_errno_dup2 function is used to obtain axmganation of an error returned by thep22)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_dup2(err, oldfd, newfd));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

oldfd The original oldfd, exactly as passed to dup22) system call.
newfd The original newfd, exactly as passed todbpZ2) system call.

179

explain_dup2(3) Libraryrunctions Manual explain_dup2(3)

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_dup2
void explain_message_dup2(char *message, int message_size, int oldfd, int newfd);
The explain_message_dup2unction may be used to obtain an explanation of an error returned by the

dup22) system call. The least the message will contain is the valsteeofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)
{

char message[3000];

explain_message_dup2(message, sizeof(message), oldfd, newfd);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

oldfd The original oldfd, exactly as passed to dup22) system call.
newfd The original newfd, exactly as passed todbpZ2) system call.

explain_message_errno_dup2
void explain_message_errno_dup2(char *message, int message_size, int errnum, int oldfd, int newfd);
The explain_message_errno_dupfunction may be used to obtain an explanation of an error returned by

the dupZ2) system call. The least the message will contain is the valustiarror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_dup2(message, sizeof(message), err, oldfd, newfd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

oldfd The original oldfd, exactly as passed to dup22) system call.

180

explain_dup2(3) Libraryrunctions Manual

newfd The original newfd, exactly as passed todbpZ2) system call.

SEE ALSO
dup22) duplicate a file descriptor
explain_dup2_or_di€3)
duplicate a file descriptor and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

explain_dup2(3)

181

explain_dup2_or_die(3) Librarlfunctions Manual explain_dup2_or_die(3)

NAME
explain_dup2_or_die — duplicate a file descriptor and report errors

SYNOPSIS
#include <libexplain/dup2.h>

void explain_dup2_or_die(int oldfd, int newfd);
DESCRIPTION
The explain_dup2_or_diefunction is used to call theup22) system call. On failure an explanation will

be printed tostderr, obtained from explain_dupZ3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_dup2_or_die(oldfd, newfd);

oldfd The oldfd, exactly as to be passed todbp22) system call.
newfd The newfd, exactly as to be passed todine2) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
dup22) duplicate a file descriptor

explain_dupZ3)
explaindup22) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

182

explain_dup(3) LibraryFunctions Manual explain_dup(3)

NAME
explain_dup — explain dup(2) errors

SYNOPSIS
#include <libexplain/dup.h>

const char *explain_dup(int fildes);

const char *explain_errno_dup(int errnum, int fildes);

void explain_message_dup(char *message, int message_size, int fildes);

void explain_message_errno_dup(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddoyp@)esystem call.

explain_dup
const char *explain_dup(int fildes);

The explain_dup function is used to obtain axmanation of an error returned by thep2) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)
{
fprintf(stderr, "%s\n", explain_dup(fildes));
exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed todhg(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_dup
const char *explain_errno_dup(int errnum, int fildes);

Theexplain_errno_dup function is used to obtain amm@anation of an error returned by thep(2) system
call. Theleast the message will contain is the valustodrror(errnum) , but usually it will do much
better and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_dup(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetireo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todhg(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

183

explain_dup(3) LibraryFunctions Manual explain_dup(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.
explain_message_dup
void explain_message_dup(char *message, int message_size, int fildes);
The explain_message_dugunction may be used tmbtain an explanation of an error returned by the

dup(2) system call. The least the message will contain is the vakteeofor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)

{
char message[3000];
explain_message_dup(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed todhg(2) system call.

explain_message_errno_dup
void explain_message_errno_dup(char *message, int message_size, int errnum, int fildes);
The explain_message_errno_dugpunction may be used to obtain an explanation of an error returned by

the dup(2) system call. The least the message will contain is &heevof strerror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_dup(message, sizeof(message), err, fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed todhg(2) system call.

SEE ALSO
dup(2) duplicate a file descriptor

explain_dup_or_di€3)
duplicate a file descriptor and report errors

184

explain_dup(3) LibraryFunctions Manual explain_dup(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

185

explain_dup_or_die(3) Librarifunctions Manual explain_dup_or_die(3)

NAME
explain_dup_or_die — duplicate a file descriptor and report errors

SYNOPSIS
#include <libexplain/dup.h>

void explain_dup_or_die(int fildes);
DESCRIPTION
Theexplain_dup_or_diefunction is used to call theup(2) system call.On failure an explanation will be

printed to stderr, obtained from explain_dug3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_dup_or_die(fildes);

fildes The fildes, exactly as to be passed todbg2) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
dup(2) duplicate a file descriptor

explain_dup(3)
explaindup(2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

186

explain_endgrent(3) Librarifunctions Manual explain_endgrent(3)

NAME
explain_endgrent — explaiendgreng3) errors

SYNOPSIS
#include <libexplain/endgrent.h>

const char *explain_endgrent(void);

const char *explain_errno_endgrent(int errnum, void);

void explain_message_endgrent(char *message, int message_size, void);

void explain_message_errno_endgrent(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returnecdelmyglginen{3) system call.

explain_endgrent
const char *explain_endgrent(void);

The explain_endgrentfunction is used to obtain axmanation of an error returned by teadgreng3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
void result = endgrent();
if (result < 0 && errno != 0)
{
fprintf(stderr, "%s\n", explain_endgrent());

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_endgrent_or_di@) function.

explain_errno_endgrent
const char *explain_errno_endgrent(int errnum, void);

The explain_errno_endgrent function is used to obtain an explanation of an error returned by the
endgreng3) system call. The least the message will contain is the valuetadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = endgrent();
if (result < 0 && errno != 0)

187

explain_endgrent(3) Librarifunctions Manual explain_endgrent(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_endgrent(err,));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_endgrent_or_di@) function.

explain_message_endgrent
void explain_message_endgrent(char *message, int message_size, void);

The explain_message_endgrentunction is used to obtain arxmanation of an error returned by the
endgreng3) system call. The least the message will contain is the vals&resfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = endgrent();
if (result < 0 && errno != 0)

{
char message[3000];
explain_message_endgrent(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_endgrent_or_di@) function.

explain_message_errno_endgrent
void explain_message_errno_endgrent(char *message, int message_size, int errnum, void);

The explain_message_errno_endgrerfunction is used to obtain axmanation of an error returned by
the endgren3) system call.The least the message will contain is the valustrafror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = endgrent();
if (result < 0 && errno != 0)
{
int err = errno;
char message[3000];
explain_message_errno_endgrent(message, sizeof(message), err,
).

fprintf(stderr, "%s\n", message);

188

explain_endgrent(3) Librarifunctions Manual explain_endgrent(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_endgrent_or_di@) function.
SEE ALSO
endgreng3)
finish group file accesses
explain_endgrent_or_di@)
finish group file accesses and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

189

explain_endgrent_or_die(3) LibraRunctions Manual explain_endgrent_or_die(3)

NAME
explain_endgrent_or_die — finish group file accesses and report errors

SYNOPSIS
#include <libexplain/endgrent.h>
void explain_endgrent_or_die(void);
void explain_endgrent_on_error(void);
DESCRIPTION
The explain_endgrent_or_die function is used to call thendgrenf3) system call. On failure an

explanation will be printed tstderr, obtained from thexplain_endgren3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_endgrent_on_error function is used to call thendgrent3) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_endgren®) function, but still returns to the
caller.

RETURN VALUE
The explain_endgrent_or_diefunction only returns on success, seelgrent3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_endgrent_on_error function alvays returns the value return by the wrappadigren3)
system call.

EXAMPLE
The explain_endgrent_or_die function is intended to be used in a fashion similar to the violip
example:
explain_endgrent_or_die();
SEE ALSO
endgreng3)
finish group file accesses
explain_endgrern3)
explainendgreng3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

190

explain_eventfd(3) LibraryFunctions Manual explain_eventfd(3)

NAME
explain_eventfd — explain gentfd(2) errors

SYNOPSIS
#include <libexplainfeentfd.h>
const char *explain ventfd(unsigned int initval, int flags);
const char *explain_errnoventfd(int errnum, unsigned int initval, int flags);
void explain_messageventfd(char *message, int message_size, unsigned int initval, int flags);
void explain_message_errnaeatfd(char *message, int message_size, int errnum, unsigned int initval, int
flags);
DESCRIPTION
These functions may be used to obtain explanations for errors returnecdebgritid2) system call.

explain_eventfd
const char *explain ventfd(unsigned int initval, int flags);

Theexplain_eventfd function is used to obtain ampanation of an error returned by tbentfd2) system
call. The least the message will contain is the valustrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
initval ~ The original initval, exactly as passed to ¢ventfd2) system call.
flags The original flags, exactly as passed todtentfd2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)

fprintf(stderr, "%s\n", explain_eventfd(initval, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_eventfd or_di@) function.

explain_errno_eventfd
const char *explain_errnoventfd(int errnum, unsigned int initval, int flags);

Theexplain_errno_eventfd function is used to obtain ammanation of an error returned by tbentfd2)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

initval ~ The original initval, exactly as passed to ¢ventfd2) system call.
flags The original flags, exactly as passed todtentfd2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther

191

explain_eventfd(3) LibraryFunctions Manual explain_eventfd(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_eventfd(err, initval,
flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_eventfd or_di@) function.

explain_message wentfd
void explain_messageventfd(char *message, int message_size, unsigned int initval, int flags);

The explain_message wentfd function is used to obtain an explanation of an error returned by the
ewentfd2) system call. The least the message will contain is the vabkteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

initval ~ The original initval, exactly as passed to ¢ventfd2) system call.
flags The original flags, exactly as passed todtentfd2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)

{
char message[3000];
explain_message_eventfd(message, sizeof(message), initval,
flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_eventfd or_di@) function.

explain_message_errno \entfd

void explain_message_errnaeatfd(char *message, int message_size, int errnum, unsigned int initval, int
flags);

Theexplain_message_errno ventfd function is used to obtain an explanation of an error returned by the
ewentfd2) system call. The least the message will contain isgheeofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

192

explain_eventfd(3) LibraryFunctions Manual explain_eventfd(3)

initval ~ The original initval, exactly as passed to ¢ventfd2) system call.
flags The original flags, exactly as passed todtentfd2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)

{
int err = errno;
char message[3000];
explain_message_errno_eventfd(message, sizeof(message), err,
initval, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre-packaged as thglain_eventfd or_di@) function.
SEE ALSO
ewentfd2)

create a file descriptor fowent notification
explain_eventfd_or_di@)
create a file descriptor fowent notification and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

193

explain_eventfd_or_die(3) LibraryFunctions Manual explain_eventfd_or_die(3)

NAME
explain_eventfd_or_die — createvent notify file descriptor and report errors

SYNOPSIS
#include <libexplainfeentfd.h>
int explain_eentfd_or_die(unsigned int initval, int flags);
int explain_eentfd_on_error(unsigned int initval, int flags);
DESCRIPTION
The explain_eventfd_or_die function is used to call theventfd2) system call. Ondilure an gplanation

will be printed tostderr, obtained from thexplain_eventf@) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_eventfd_on_error function is used to call thewntfd2) system call. On failure an
explanation will be printed tatderr, obtained from theexplain_eventf@3) function, but still returns to the
caller.

initval ~ The initval, exactly as to be passed toakentfd2) system call.
flags The flags, exactly as to be passed toeemtfd2) system call.

RETURN VALUE
The explain_eventfd_or_die function only returns on success, saentfd2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_eventfd_on_error function alvays returns the value return by the wrappeehtfd2) system
call.

EXAMPLE
Theexplain_eventfd_or_die function is intended to be used in a fashion similar to the following example:
int result = explain_eventfd_or_die(initval, flags);

SEE ALSO
ewentfd2)
create a file descriptor fowent notification

explain_eventf¢B)
explainewentfd2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

194

explain_eeclp(3) LibraryFunctions Manual explain_eeclp(3)

NAME
explain_eeclp — explainexeclp(3) errors

SYNOPSIS
#include <libexplain/eeclp.h>

const char *explain eclp(, ...);

const char *explain_errnoxeclp(int errnum, , ...);

void explain_messagexeclp(char *message, int message_size, , ...);

void explain_message_errnxeelp(char *message, int message_size, int errnum, , ...);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedebydipE3) system call.

explain_execlp
const char *explain eclp(, ...);

The explain_execlpfunction is used to obtain an explanation of an error returned lBstloi(3) system
call. The least the message will contain is the valustrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{

fprintf(stderr, "%s\n", explain_execlp());
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_execlp_or_dig) function.

explain_errno_execlp
const char *explain_errnoxeclp(int errnum, , ...);

The explain_errno_execlpfunction is used to obtain axpanation of an error returned by tbreclp(3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_execlp(err,));
exit(EXIT_FAILURE);

195

explain_eeclp(3) LibraryFunctions Manual explain_eeclp(3)

}
The abee mde example isvailable pre-packaged as thgplain_execlp_or_dig@) function.

explain_message_execlp
void explain_messagexeclp(char *message, int message_size, , ...);

The explain_message_execlfunction is used to obtain an explanation of an error returned by the
execlp(3) system call. The least the message will contain isghe ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{

char message[3000];
explain_message_execlp(message, sizeof(message),);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_execlp_or_dig) function.

explain_message_errno_execlp
void explain_message_errnxeelp(char *message, int message_size, int errnum, , ...);

The explain_message_errno_execlunction is used to obtain an explanation of an error returned by the
execlp(3) system call. The least the message will contain is the vaktesofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)

{
int err = errno;
char message[3000];
explain_message_errno_execlp(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_execlp_or_dig) function.

SEE ALSO
execlp(3)
execute a file

196

explain_eeclp(3) LibraryFunctions Manual explain_eeclp(3)

explain_execlp_or_dig)
execute a file and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

197

explain_eeclp_or_die(3) LibraryFunctions Manual explain_eeclp_or_die(3)

NAME
explain_eeclp_or_die — gecute a file and report errors

SYNOPSIS
#include <libexplain/eeclp.h>
void explain_eeclp_or_die(, ...);
int explain_eaeclp_on_errory(, ...);
DESCRIPTION
The explain_execlp_or_diefunction is used to call thexeclp(3) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_execl3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_execlp_on_errorfunction is used to call thexeclp(3) system call. On failure axganation
will be printed tostderr, obtained from thexplain_execlg3) function, but still returns to the caller.

RETURN VALUE
The explain_execlp_or_diefunction only returns on success, soeclp(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_execlp_on_errorfunction alvays returns the value return by the wrapmgeeclp(3) system
call.

EXAMPLE
Theexplain_execlp_or_didunction is intended to be used in a fashion similar to the following example:
explain_execlp_or_die();

SEE ALSO
execlp(3)
execute a file

explain_execl3)
explain execlp(3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

198

explain_eecv(3) LibraryFunctions Manual explain_eecv(3)

NAME
explain_eecv — explainexec3) errors

SYNOPSIS
#include <libexplainfeecv.h>

const char *explain x&cv(const char *pathname, char *const*argv);

const char *explain_errnoxecv(int errnum, const char *pathname, char *const*argv);

void explain_messagexecv(char *message, int message_size, const char *pathname, char *const*argv);
void explain_message_errnxeev(char *message, int message_size, int errnum, const char *pathname,
char *const*argv);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedelyaii®) system call.

explain_execv
const char *explain x&cv(const char *pathname, char *const*argv);

The explain_execvfunction is used to obtain axmanation of an error returned by threcy3) system
call. The least the message will contain is the valustrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed texhey3) system call.

argv The original argvexactly as passed to tlesecy3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)

fprintf(stderr, "%s\n", explain_execv(pathname, argv));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as thgplain_execv_or_di@) function.

explain_errno_execv
const char *explain_errnoxecv(int errnum, const char *pathname, char *const*argv);

The explain_errno_execvfunction is used to obtain axmanation of an error returned by thaecy3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ah@o global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed texhey3) system call.

argv The original argvexactly as passed to tlesecy3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

199

explain_eecv(3) LibraryFunctions Manual explain_eecv(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_execv(err, pathname,
argv));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_execv_or_di@) function.

explain_message_execv
void explain_messagexecv(char *message, int message_size, const char *pathname, char *const*argv);

The explain_message_exedunction is used to obtain an explanation of an error returned bpelod3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed texhey3) system call.

argv The original argvexactly as passed to tlesecy3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)

char message[3000];
explain_message_execv(message, sizeof(message), pathname,
argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_execv_or_di@) function.

explain_message_errno_execv

void explain_message_errnxeev(char *message, int message_size, int errnum, const char *pathname,
char *const*argv);

The explain_message_errno_exedunction is used to obtain axpmanation of an error returned by the
exec\3) system call. The least the message will contain is the vakieeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

200

explain_eecv(3) LibraryFunctions Manual explain_eecv(3)

pathname
The original pathname, exactly as passed texhey3) system call.

argv The original argvexactly as passed to tlesecy3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_execv(message, sizeof(message), err,
pathname, argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as thgplain_execv_or_di@) function.
SEE ALSO
exec(3) execute a file
explain_execv_or_di@)
execute a file and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2012 Peter Miller

201

explain_eecve(3) LibraryFunctions Manual explain_execve(3)

NAME
explain_eecve — explain execve(2) errors

SYNOPSIS
#include <libexplainfeecve.h>

const char *explain xecve(const char *pathname, const char *const *argnst char *const *envp);

const char *eplain_errno_gecve(int errnum, const char *pathname, const char *congjv*apnst char

*const *envp);

void explain_message xecve(char *message, int message_size, const char *pathname, const char *const
*argv, const char *const *envp);

void explain_message_errnaeeve(char *message, int message_size, int errnum, const char *pathname,
const char *const *argwonst char *const *envp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedebya€?) system call.

explain_execve
const char *explain x&cve(const char *pathname, const char *const *argnst char *const *envp);

The explain_execvdunction is used to obtain an explanation of an error returned Bxtoed2) system
call. Theleast the message will contain is tre@ue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
fprintf(stderr, "%s\n", explain_execve(pathname, argv, envp));
exit(EXIT_FAILURE);

pathname
The original pathname, exactly as passed t@xhevé?2) system call.

argv The original argvexactly as passed to tlesecveg?2) system call.
envp The original envp, exactly as passed togkexve?2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_execve
const char *eplain_errno_gecve(int errnum, const char *pathname, const char *congjvapnst char
*const *envp);

The explain_errno_execvefunction is used to obtain axmanation of an error returned by terecvg?2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
int err = errno;
fprintf(stderr, "%s\n", explain_errno_execve(err, pathname, argv, envp));
exit(EXIT_FAILURE);

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

202

explain_eecve(3) LibraryFunctions Manual explain_execve(3)

pathname
The original pathname, exactly as passed t@xhevé2) system call.

argv The original argvexactly as passed to tiesecveg?2) system call.
envp The original envp, exactly as passed togkexve?2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_execve
void explain_message xecve(char *message, int message_size, const char *pathname, const char *const
*argv, const char *const *envp);

The explain_message_execvanction may be used tobtain an explanation of an error returned by the
execve?2) system call. The least the message will contain is the valustrefror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
char message[3000];
explain_message_execve(message, sizeof(message), pathname, argv, envp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed t@xhevé?2) system call.

argv The original argvexactly as passed to tlesecveg?2) system call.
envp The original envp, exactly as passed togkexve?2) system call.

explain_message_errno_execve
void explain_message_errnaxeeve(char *message, int message_size, int errnum, const char *pathname,
const char *const *argwonst char *const *envp);

Theexplain_message_errno_exec¥enction may be used to obtain atpanation of an error returned by
the execveg?2) system call. The least the message will contain is the valskeeofor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
int err = errno;
char message[3000];
explain_message_errno_execve(message, sizeof(message), err,
pathname, argv, envp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

203

explain_eecve(3) LibraryFunctions Manual explain_execve(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed t@xhevé2) system call.

argv The original argvexactly as passed to tlesecvg?2) system call.
envp The original envp, exactly as passed togkerve?2) system call.

SEE ALSO
execve?)
execute program
explain_execve_or_d(8)
execute program and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

204

explain_execve_or_die(3) Libraryrunctions Manual explain_eecve_or_die(3)

NAME
explain_execve_or_die —xecute program and report errors

SYNOPSIS
#include <libexplainfeecve.h>
void explain_e&ecve_or_die(const char *pathname, const char *const *aogét char *const *envp);

DESCRIPTION
The explain_execve_or_didunction is used to call thexecvg2) system call. Ondilure an gplanation

will be printed tostderr, obtained fromexplain_execvg8), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_execve_or_die(pathname, argv, envp);

pathname
The pathname, exactly as to be passed texdev€2) system call.

argv The argyexactly as to be passed to thecveg?2) system call.
envp The envp, exactly as to be passed tcetlreve?2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
execve?2)
execute program

explain_execvgs)
explainexecve?2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

205

explain_eecv_or_die(3) LibraryFunctions Manual explain_eecv_or_die(3)

NAME
explain_execv_or_die — gecute a file and report errors

SYNOPSIS
#include <libexplainfeecv.h>

void explain_e&ecv_or_die(const char *pathname, char *const*argv);
int explain_eecv_on_error(const char *pathname, char *const*argv);

DESCRIPTION
The explain_execv_or_digfunction is used to call thexec(3) system call. Ondilure an explanation will
be printed tostderr, obtained from theexplain_exec{B) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_execv_on_errorfunction is used to call thexec(3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_exec{B) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed tex#®(3) system call.

argv The argyexactly as to be passed to tecy3) system call.

RETURN VALUE
Theexplain_execv_or_didunction only returns on success, seec\3) for more information. Orgflure,
prints an explanation and exits, it does not return.

Theexplain_execv_on_erroifunction alvays returns the value return by the wrappsety(3) system call.

EXAMPLE
Theexplain_execv_or_didunction is intended to be used in a fashion similar to the following example:
explain_execv_or_die(pathname, argv);

SEE ALSO
exec(3) execute a file
explain_exec(3)
explainexec\3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

206

explain_eecvp(3) LibraryFunctions Manual explain_execvp(3)

NAME
explain_eecvp — explain gecvp(3) errors

SYNOPSIS
#include <libexplainfeecvp.h>

const char *explain x&cvp(const char *pathname, char *const *argv);

const char *explain_errnoxecvp(int errnum, const char *pathname, char *const *argv);

void explain_messagexecvp(char *message, int message_size, const char *pathname, char *const *argv);
void explain_message_errnaxxeevp(char *message, int message_size, int errnum, const char *pathname,
char *const *argv);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedelyahg3) system call.
explain_execvp
const char *explain x&cvp(const char *pathname, char *const *argv);
The explain_execvpfunction is used to obtain amanation of an error returned by tbeecvi(3) system

call. Theleast the message will contain is tre@ue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)

fprintf(stderr, "%s\n", explain_execvp(pathname, argv));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_execvp_or_d{8) function.

pathname
The original pathname, exactly as passed t@thevid3) system call.

argv The original argvexactly as passed to tleeecvi(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_execvp
const char *explain_errnoxecvp(int errnum, const char *pathname, char *const *argv);

The explain_errno_execvpfunction is used to obtain axpanation of an error returned by teeecvi(3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)

int err = errno;

fprintf(stderr, "%s\n", explain_errno_execvp(err,
pathname, argv));

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_execvp_or_d{8) function.

207

explain_eecvp(3) LibraryFunctions Manual explain_execvp(3)

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tethevd3) system call.

argv The original argvexactly as passed to tleeecvi(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_execvp
void explain_messagexecvp(char *message, int message_size, const char *pathname, char *const *argv);

The explain_message_execviuinction may be used to obtain an explanation of an error returned by the
execvi(3) system call. The least the message will contain isahe\ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)

char message[3000];
explain_message_execvp(message, sizeof(message), pathname, argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_execvp_or_d{8) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed t@thevd3) system call.

argv The original argvexactly as passed to tleeecvi(3) system call.

explain_message_errno_execvp
void explain_message_errnxeevp(char *message, int message_size, int errnum, const char *pathname,
char *const *argv);

Theexplain_message_errno_execvpnction may be used to obtain atpkanation of an error returned by
the execvf(3) system call.The least the message will contain is the valustm@rror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)

int err = errno;

char message[3000];

explain_message_errno_execvp(message, sizeof(message),
err, pathname, argv);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

208

explain_eecvp(3) LibraryFunctions Manual explain_execvp(3)

}

The abee mde example isvailable pre-packaged as thglain_execvp_or_d{8) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed t@thevid3) system call.

argv The original argvexactly as passed to tleeecvi3) system call.

SEE ALSO
execvi(3)
execute a file
explain_execvp_or_d(8)
execute a file and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

209

explain_execvp_or_die(3) Libraryrunctions Manual explain_eecvp_or_die(3)

NAME
explain_execvp_or_die — recute a file and report errors

SYNOPSIS
#include <libexplainfeecvp.h>

void explain_e&ecvp_or_die(const char *pathname, char *const *argv);
DESCRIPTION
The explain_execvp_or_didunction is used to call thexecv3) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_execv(B), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_execvp_or_die(pathname, argv);

pathname
The pathname, exactly as to be passed tex@wv/3) system call.

argv The argyexactly as to be passed to tecvid3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
execvi(3)
execute a file

explain_execv(B)
explain execvf(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

210

explain_«it(3) Library Functions Manual explain_exit(3)

NAME
explain_exit — print an explanation of exit status before exiting

SYNOPSIS
#include <libexplain/libexplain.h>
void explain_exit_on_exit(void);
void explain_exit_on_error(void);
void explain_exit_cancel(void);
DESCRIPTION

The explain_exit_on_exifunction may be used to Y& the calling program print an explanation of itste
status (the value passedebdt(3) or the return value fromain) immediately before it terminates.

Theexplain_exit_on_errofunction may be used to &the calling program print an explanation of ixste
status immediately before it terminates, if that exit status is not EXIT_SUCCESS.

The explain_exit_cancelfunction may be used to cancel the effect of thelain_exit_on_exitor
explain_exit_on_errofunction.

These functions may be called multiple times, and w ader The last called has precedencEhe
explanation will neer be ginted more than once.

Call Exit As Normal
In order to hge the explanation printed, simply calkit(3) as normal, or return fromainas normal.Do
not call aiy of these functions in order to exit your programytle called before you exit your program.

Caveat
This functionality is only @ailable on systems with then_exi{3) system call.Unfortunately the atexi{(3)
system call is not sfitiently capable, as it does not pass the exit status to the registered function.

SEE ALSO
ext(3) cause normal process termination
atexii(3) register a function to be called at normal process termination
on_exif3)
register a function to be called at normal process termination

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

211

explain_fchdir(3) LibraryFunctions Manual explain_fchdir(3)

NAME
explain_fchdir — explain fchdir(2) errors

SYNOPSIS
#include <libexplain/fchdir.h>
const char *explain_fchdir(int fildes);
void explain_message_fchdir(char *message, int message_size, int fildes);
const char *explain_errno_fchdir(int errnum, int fildes);
void explain_message_errno_fchdir(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanatiorfstidir(2) errors.

explain_fchdir
const char *explain_fchdir(int fildes);

The explain_fchdir function is used to obtain an explanation of an error returned fohdh€2) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{
fprintf(stderr, '%s0, explain_fchdir(fildes));
exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed tofttteir(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fchdir
const char *explain_errno_fchdir(int errnum, int fildes);

The explain_errno_fchdir function is used to obtain gplamation of an error returned by tfehdir(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{

int err = errno;
fprintf(stderr, '%s0, explain_errno_fchdir(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftttedir(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

212

explain_fchdir(3) LibraryFunctions Manual explain_fchdir(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.
explain_message_fchdir
void explain_message_fchdir(char *message, int message_size, int fildes);
The explain_message_fchdir function is used to obtairxplamation of an error returned by tfuadir(2)

system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)

{
char message[3000];
explain_message_fchdir(message, sizeof(message), fildes);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofitteir(2) system call.

explain_message_errno_fchdir
void explain_message_errno_fchdir(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fchdir function is used to obtaixm@anation of an error returned by the
fchdir(2) system call. The least the message will contain is the valuestadrror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fchdir(message, sizeof(message), err,
fildes);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofitteir(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

213

explain_fchdir(3) LibraryFunctions Manual explain_fchdir(3)

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

214

explain_fchdir_or_die(3) Libraryunctions Manual explain_fchdir_or_die(3)

NAME
explain_fchdir_or_die — change directory and report errors

SYNOPSIS
#include <libexplian/fchdir.h>
void explain_fchdir_or_die(int fildes);

DESCRIPTION
The explain_fchdir_or_die function is used to change directory vitchitir(2) system call. On failure, it
prints an error message on stderresjalain_fchdin3), and exits.

This function is intended to be used in a fashion similar to the following example:

explain_fchdir_or_die(fildes);
fildes exactly as to be passed to tiebdir(2) system call.

SEE ALSO

fchdir(3)

change working directory
explain_fchdir(3)

reportfchdir(2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

215

explain_fchmod(3) Libraryrunctions Manual explain_fchmod(3)

NAME
explain_fchmod - explaifchmod2) errors

SYNOPSIS
#include <libexplain/fchmod.h>
const char *explain_fchmod(int fildes, mode_t mode);
const char *explain_errno_fchmod(int errnum, int fildes, mode_t mode);
void explain_message_fchmod(char *message, int message_size, int fildes, mode_t mode);
void explain_message_errno_fchmod(char *message, int message_size, int errnum, int fildes, mode_t
mode);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddyntlog2) system call.

explain_fchmod
const char *explain_fchmod(int fildes, mode_t mode);

The explain_fchmod function is used to obtain arxmanation of an error returned by tfighmod2)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toftttenod2) system call.
mode The original mode, exactly as passed tofthenod2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)
{

fprintf(stderr, "%s\n", explain_fchmod(fildes, mode));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_fchmod_or_dig) function.

explain_errno_fchmod
const char *explain_errno_fchmod(int errnum, int fildes, mode_t mode);

Theexplain_errno_fchmodfunction is used to obtain ammanation of an error returned by tfthmod2)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftttenod2) system call.
mode The original mode, exactly as passed tofthenod2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

216

explain_fchmod(3) Libraryrunctions Manual explain_fchmod(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fchmod(err, fildes,
mode));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_fchmod_or_dig) function.

explain_message_fchmod
void explain_message_fchmod(char *message, int message_size, int fildes, mode_t mode);

The explain_message_fchmodunction is used to obtain an explanation of an error returned by the
fchmod2) system call. The least the message will contain isahe wfstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftttenod2) system call.
mode The original mode, exactly as passed tofthenod2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)

{
char message[3000];
explain_message_fchmod(message, sizeof(message), fildes,
mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_fchmod_or_dig) function.

explain_message_errno_fchmod
void explain_message_errno_fchmod(char *message, int message_size, int errnum, int fildes, mode_t
mode);

Theexplain_message_errno_fchmoélnction is used to obtain an explanation of an error returned by the
fchmod2) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftttenod2) system call.
mode The original mode, exactly as passed tofthenod2) system call.
Example: This function is intended to be used in a fashion similar to the following example:

217

explain_fchmod(3) Libraryrunctions Manual explain_fchmod(3)

if (fchmod(fildes, mode) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_fchmod(message, sizeof(message), err,
fildes, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_fchmod_or_dig) function.
SEE ALSO
fchmod?2)

change permissions of an open file
explain_fchmod_or_di@)
change permissions of an open file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

218

explain_fchmod_or_die(3) Librarlfunctions Manual explain_fchmod_or_die(3)

NAME
explain_fchmod_or_die — change permissions of an open file and report errors

SYNOPSIS
#include <libexplain/fchmod.h>

void explain_fchmod_or_die(int fildes, mode_t mode);
int explain_fchmod_on_error(int fildes, mode_t mode);
DESCRIPTION
The explain_fchmod_or_diefunction is used to call thiehmod2) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_fchmod3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fchmod_on_error function is used to call thdchmod2) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_fchmod@3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed tofthenod2) system call.
mode The mode, exactly as to be passed td¢thmod?2) system call.

RETURN VALUE

The explain_fchmod_or_diefunction only returns on success, seemod2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_fchmod_on_errorfunction alvays returns the value return by the wrapfatinod2) system
call.
EXAMPLE
Theexplain_fchmod_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fchmod_or_die(fildes, mode);

SEE ALSO
fchmod2)
change permissions of an open file

explain_fchmod3)
explainfchmod?2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

219

explain_fchavn(3) LibraryFunctions Manual explain_fchown(3)

NAME
explain_fchown — explain fchown(2) errors

SYNOPSIS
#include <libexplain/fchown.h>

const char *explain_fchown(int fildes, int ownait group);
const char *explain_errno_fchown(int errnum, int fildes, int owimérgroup);
void explain_message_fchown(char *message, int message_size, int fildes, intioigreup);
void explain_message_errno_folkn(char *message, int message_size, int errnum, int fildesywimgroint
group);
DESCRIPTION
These functions may be used to obtain explanations for errors returneddyotivg2) system call.

explain_fchown
const char *explain_fchown(int fildes, int ownait group);

Theexplain_fchownfunction is used to obtain an explanation of an error returned Wghber(2) system
call. Theleast the message will contain is tre@ue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)

fprintf(stderr, "%s\n", explain_fchown(fildes, owner, group));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fchown_or_di€) function.
fildes The original fildes, exactly as passed toftteown(2) system call.
owner The original ownerexactly as passed to tiighowr(2) system call.
group The original group, exactly as passed toftthewn(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fchown
const char *explain_errno_fchown(int errnum, int fildes, int owimérgroup);

Theexplain_errno_fchownfunction is used to obtain anpanation of an error returned by tfeowr(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)

{
int err = errno;
fprintf(stderr, "%s\n",
explain_errno_fchown(err, fildes, owner, group));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fchown_or_di€) function.

220

explain_fchavn(3) LibraryFunctions Manual explain_fchown(3)

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftteown(2) system call.
owner The original ownerexactly as passed to tiighowr(2) system call.
group The original group, exactly as passed toftthewn(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fchown
void explain_message_fchown(char *message, int message_size, int fildes, intioigreup);

The explain_message_fchowifunction may be used to obtain an explanation of an error returned by the
fchowr(2) system call. The least the message will contain is the valtresfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)

{
char message[3000];
explain_message_fchown(message, sizeof(message), fildes, owner, group);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fchown_or_di€) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftteown(2) system call.
owner The original ownerexactly as passed to tiighowr(2) system call.
group The original group, exactly as passed toftthewn(2) system call.

explain_message_errno_fchown
void explain_message_errno_folkn(char *message, int message_size, int errnum, int fildesywimgroint
group);

The explain_message_errno_fchowifunction may be used to obtain an explanation of an error returned
by thefchown(2) system call.The least the message will contain is the valusti@tror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fchown(message, sizeof(message),
err, fildes, owner, group);
fprintf(stderr, "%s\n", message);

221

explain_fchavn(3) LibraryFunctions Manual explain_fchown(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fchown_or_di€) function.

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftteown(2) system call.
owner The original ownerexactly as passed to tiighowr(2) system call.
group The original group, exactly as passed toftthewn(2) system call.

SEE ALSO
fchowr(2)
change ownership of a file
explain_fchown_or_di€3)
change ownership of a file and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

222

explain_fchavnat(3) LibraryFunctions Manual explain_fchownat(3)

NAME
explain_fchownat — explaifchownaf2) errors

SYNOPSIS
#include <libexplain/fchownat.h>

const char *explain_fchownat(int dirfd, const char *pathname, int gwmtegroup, int flags);

const char *explain_errno_fchownat(int errnum, int dirfd, const char *pathname, int, onérggoup, int

flags);

void explain_message_fchownat(char *message, int message_size, int dirfd, const char *pathname, int
owner, int group, int flags);

void explain_message_errno_fchownat(char *message, int message_size, int errnum, int dirfd, const char
*pathname, int owneint group, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidyotiuraf2) system call.

explain_fchownat
const char *explain_fchownat(int dirfd, const char *pathname, int gwmtegroup, int flags);

The explain_fchownat function is used to obtain an explanation of an error returned bfghbe/na(2)
system call. The least the message will contain is @ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
dirfd The original dirfd, exactly as passed to ttleownaf2) system call.

pathname
The original pathname, exactly as passed tdcti@vnaf2) system call.

owner The original ownerexactly as passed to tfieghownaf2) system call.
group The original group, exactly as passed toftt@wnaf2) system call.
flags The original flags, exactly as passed tofti®wna(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchownat(dirfd, pathname, owner, group, flags) < 0)

{
fprintf(stderr, "%s\n", explain_fchownat(dirfd, pathname,
owner, group, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_fchownat_or_dig) function.

explain_errno_fchownat
const char *explain_errno_fchownat(int errnum, int dirfd, const char *pathname, int, onérggoup, int
flags);

The explain_errno_fchownat function is used to obtain an explanation of an error returned by the
fchownaf2) system call. The least the message will contain is the valustadrror(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained froretir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be

223

explain_fchavnat(3) LibraryFunctions Manual explain_fchownat(3)

explained and this function, because m#hc functions will alter the value @frrno.
dirfd The original dirfd, exactly as passed to ttleowna(2) system call.

pathname
The original pathname, exactly as passed tdcti@vnaf2) system call.

owner The original ownerexactly as passed to tfieghownaf2) system call.
group The original group, exactly as passed toftt@wnaf2) system call.
flags The original flags, exactly as passed tofti®wna(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchownat(dirfd, pathname, owner, group, flags) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fchownat(err, dirfd,
pathname, owner, group, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_fchownat_or_dig) function.

explain_message_fchownat
void explain_message_fchownat(char *message, int message_size, int dirfd, const char *pathname, int
owner, int group, int flags);

The explain_message_fchownatunction is used to obtain arxmanation of an error returned by the
fchownaf2) system call. The least the message will contain is &hgevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

dirfd The original dirfd, exactly as passed to ttleowna(2) system call.

pathname
The original pathname, exactly as passed tdcti@wvnaf2) system call.

owner The original ownerexactly as passed to tfieghownaf2) system call.
group The original group, exactly as passed toftt@wnaf2) system call.
flags The original flags, exactly as passed toftimwnaf2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchownat(dirfd, pathname, owner, group, flags) < 0)
{
char message[3000];
explain_message_fchownat(message, sizeof(message), dirfd,
pathname, owner, group, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

224

explain_fchavnat(3) LibraryFunctions Manual explain_fchownat(3)

}

The abee mde example isvailable pre—packaged as thgplain_fchownat_or_dig) function.

explain_message_errno_fchownat

void explain_message_errno_fchownat(char *message, int message_size, int errnum, int dirfd, const char
*pathname, int owneint group, int flags);

The explain_message_errno_fchowndtnction is used to obtain an explanation of an error returned by
the fchowna(2) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

dirfd The original dirfd, exactly as passed to ttleowna(2) system call.

pathname
The original pathname, exactly as passed tdcti@wvnaf2) system call.

owner The original ownerexactly as passed to tfieghownaf2) system call.
group The original group, exactly as passed toftt@wnaf2) system call.
flags The original flags, exactly as passed tofti®wna(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchownat(dirfd, pathname, owner, group, flags) < 0)

SEE ALSO

{
int err = errno;
char message[3000];
explain_message_errno_fchownat(message, sizeof(message), err,
dirfd, pathname, owner, group, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as thgplain_fchownat_or_dig) function.
fchownaf2)

change ownership of a file releito a drectory

explain_fchownat_or_dig)
change ownership of a file relei o a drectory and report errors

COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

225

explain_fchavnat_or_die(3) Libraryrunctions Manual explain_fchownat_or_die(3)

NAME
explain_fchownat_or_die — change ownership of a file ndaith a drectory andreport errors

SYNOPSIS
#include <libexplain/fchownat.h>

void explain_fchownat_or_die(int dirfd, const char *pathname, int owimegroup, int flags);
int explain_fchownat_on_error(int dirfd, const char *pathname, int gumtegroup, int flags);

DESCRIPTION
The explain_fchownat_or_die function is used to call théchowna(2) system call. Onadilure an
explanation will be printed tstderr, obtained from thexplain_fchownat3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_fchownat_on_error function is used to call thé&chownaf2) system call. Ondilure an
explanation will be printed tetderr, obtained from thexplain_fchownat3) function, but still returns to the
caller.

dirfd The dirfd, exactly as to be passed toftf®wnaf2) system call.

pathname
The pathname, exactly as to be passed té&ctmvnaf2) system call.

owner The ownerexactly as to be passed to fichownaf2) system call.
group The group, exactly as to be passed tdthewnaf2) system call.
flags The flags, exactly as to be passed tofthewnaf2) system call.

RETURN VALUE
Theexplain_fchownat_or_diefunction only returns on success, seggwna(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fchownat_on_error function alvays returns the value return by the wrapgeldowna(2)
system call.

EXAMPLE
The explain_fchownat_or_die function is intended to be used in a fashion similar to the viollp
example:
explain_fchownat_or_die(dirfd, pathname, owner, group, flags);

SEE ALSO
fchownaf2)
change ownership of a file rebeito a drectory

explain_fchowna3)
explainfchownaf?) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

226

explain_fchavn_or_die(3) LibraryFunctions Manual explain_fchown_or_die(3)

NAME
explain_fchown_or_die — change ownership of a file and report errors

SYNOPSIS
#include <libexplain/fchown.h>

void explain_fchown_or_die(int fildes, int ownént group);
DESCRIPTION
The explain_fchown_or_diefunction is used to call thehowr(2) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_fchowi{3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fchown_or_die(fildes, owner, group);

fildes The fildes, exactly as to be passed tofthewr(2) system call.
owner The ownerexactly as to be passed to flichowr(2) system call.
group The group, exactly as to be passed tdthewn(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fchowr(2)
change ownership of a file
explain_fchowi(3)
explainfchowr(2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

227

explain_fclose(3) Libraryrunctions Manual explain_fclose(3)

NAME
explain_fclose - explain fclose(3) errors

SYNOPSIS
#include <libexplain/fclose.h>
const char *explain_fclose(FILE *fp);
const char *explain_errno_fclose(int errnum, FILE *fp);
void explain_message_fclose(char *message, int message_size, FILE *fp);
void explain_message_errno_fclose(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanatiofdasd3) errors.

explain_fclose
const char *explain_fclose(FILE * fp);

The explain_fclose function is used to obtain an explanation of an error returnedftipsg8) function.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))
{
fprintf(stderr, "%s\n", explain_fclose(fp));
exit(EXIT_FAILURE);

}
fp The original fp, exactly as passed to tbles€3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Note: This function may be of little diagnostic value, because libc mag testroyed ary useful contet,
leaving nothing for libexplain to work with (this is true of glibc in particulaFor files that are open for
writing, you will obtain more useful information by first calliffush(3), as in the following example
if (fflush(fp))
{
fprintf(stderr, "%s\n", explain_fflush(fp));
exit(EXIT_FAILURE);

}

if (fclose(fp))

{
fprintf(stderr, "%s\n", explain_fclose(fp));
exit(EXIT_FAILURE);

}

explain_errno_fclose
const char *explain_errno_fclose(int errnum, FILE * fp);

The explain_errno_fclose function is used to obtain an explanation of an error returnedfddyskig)
function. Theleast the message will contain is the valustodrror(errnum) , but usually it will do
much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))

228

explain_fclose(3) Libraryrunctions Manual explain_fclose(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fclose(err, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to tbles€3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Note: This function may be of little diagnostic value, because libc mag testroyed ary useful contet,
leaving nothing for libeplain to work with (this is true of glibc in particularkor files that are open for
writing, you will obtain more useful information by first calliffush(3), as in the following example
if (fflush(fp))
{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fflush(err, fp));
exit(EXIT_FAILURE);

}

if (fclose(fp))

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fclose(err, fp));
exit(EXIT_FAILURE);

}

explain_message_fclose
void explain_message_fclose(char *message, int message_size, FILE *fp);

The explain_message_fclose function is used to obtain an explanation of an error returndd|bsetBe
function. Theleast the message will contain is the@ue ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))

{
char message[3000];

explain_message_fclose(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to tblese(3)system call.
Note: This function may be of little diagnostic value, because libc mag testroyed ary useful contet,

229

explain_fclose(3) Libraryrunctions Manual explain_fclose(3)

leaving nothing for libexplain to work with (this is true of glibc in particulaFor files that are open for
writing, you will obtain more useful information by first calliffush(3), as in the following example

if (fflush(fp))

{

char message[3000];

explain_message_fflush(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
if (fclose(fp))
{
char message[3000];
explain_message_fclose(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

explain_message_errno_fclose
void explain_message_errno_fclose(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fclose function is used to obtairptanation of an error returned by the
fclos€3) function. The least the message will contain is the valg&rafror(errnum) , but usually it
will do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following exameple:
if (fclose(fp))
{
int err = errno;
char message[3000];
explain_message_errno_fclose(message, sizeof(message),
err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thles€3) system call.

Note: This function may be of little diagnostic value, because libc mag testroyed ary useful contet,
leaving nothing for libeplain to work with (this is true of glibc in particularkor files that are open for
writing, you will obtain more useful information by first calliffush(3), as in the following example

if (fflush(fp))

{

int err = errno;

char message[3000];

explain_message_errno_fflush(message, sizeof(message),
err, fp);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

230

explain_fclose(3) Libraryrunctions Manual

if (fclose(fp))
{
int err = errno;
char message[3000];
explain_message_errno_fclose(message, sizeof(message),
err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

explain_fclose(3)

231

explain_fclose _or_die(3) Librarlfunctions Manual explain_fclose_or_die(3)

NAME
explain_fclose_or_die — close a stream and report errors

SYNOPSIS
#include <libexplain/fclose.h>
void explain_fclose_or_die(FILE *fp);

DESCRIPTION
The explain_fclose_or_die function is usedfliash(3) andfclosg3) the given gream. Ifthere is an errort
will be reported usingxplain_fclos€3), and then terminates by calliegit(EXIT_FAILURE)
explain_fclose_or_die(fp);

fp The fp, exactly as to be passed toftiesd€3) system call.
Returns: Only returns on success. Reports error and process exits on failure.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

232

explain_fentl(3) LibraryFunctions Manual explain_fentl(3)

NAME
explain_fentl — explain fentl(2) errors

SYNOPSIS
#include <libexplain/fcntl.h>

const char *explain_fcntl(int fildes, int command, long arg);

const char *explain_errno_fcntl(int errnum, int fildes, int command, long arg);

void explain_message_fcntl(char *message, int message_size, int fildes, int command, long arg);

void explain_message_errno_fcntl(char *message, int message_size, int errnum, int fildes, int command,
long arg);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidti{Be system call.

explain_fcntl
const char *explain_fcntl(int fildes, int command, long arg);

Theexplain_fcntl function is used to obtain ammanation of an error returned by tfomtl(2) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fentl(fildes, command, arg) < 0)

fprintf(stderr, "%s\n", explain_fcntl(fildes, command, arg));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed toftrl(2) system call.

command
The original command, exactly as passed tdaht(2) system call.

arg The original arg, exactly as passed toftiml(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fentl
const char *explain_errno_fcntl(int errnum, int fildes, int command, long arg);

The explain_errno_fcntl function is used to obtain arxmanation of an error returned by tfentl(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fentl(fildes, command, arg) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fcntl(err, fildes, command, arg));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

233

explain_fentl(3) LibraryFunctions Manual explain_fentl(3)

fildes The original fildes, exactly as passed toftrl(2) system call.

command
The original command, exactly as passed td¢ht(2) system call.

arg The original arg, exactly as passed toftiml(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fcntl
void explain_message_fcntl(char *message, int message_size, int fildes, int command, long arg);

The explain_message_fcntfunction may be used t@btain an explanation of an error returned by the
fentl(2) system call. The least the message will contain isahe\ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fentl(fildes, command, arg) < 0)

{
char message[3000];
explain_message_fcntl(message, sizeof(message), fildes, command, arg);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftrl(2) system call.

command
The original command, exactly as passed td¢ht(2) system call.

arg The original arg, exactly as passed toftml(2) system call.

explain_message_errno_fcntl
void explain_message_errno_fcntl(char *message, int message_size, int errnum, int fildes, int command,
long arg);

The explain_message_errno_fcntfunction may be used to obtain axpkanation of an error returned by
the fentl(2) system call. The least the message will contain is g vof strerror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (fentl(fildes, command, arg) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fcntl(message, sizeof(message), err, fildes,
command, arg);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

234

explain_fentl(3) LibraryFunctions Manual explain_fentl(3)

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftrl(2) system call.

command
The original command, exactly as passed tdaht(2) system call.
arg The original arg, exactly as passed toftiml(2) system call.
SEE ALSO

fcntl(2) manipulate a file descriptor
explain_fentl_or_dig€3)
manipulate a file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

235

explain_fentl_or_die(3) Libraryrunctions Manual explain_fentl_or_die(3)

NAME
explain_fentl_or_die — manipulate a file descriptor and report errors

SYNOPSIS
#include <libexplain/fcntl.h>

int explain_fcntl_or_die(int fildes, int command, long arg);
DESCRIPTION
Theexplain_fentl_or_diefunction is used to call thfentl(2) system call.On failure an explanation will be

printed to stderr, obtained from explain_fcnt(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int result = explain_fcntl_or_die(fildes, command, arg);

fildes The fildes, exactly as to be passed toftmti(2) system call.

command
The command, exactly as to be passed tdécti?2) system call.

arg The arg, exactly as to be passed tofithé(2) system call.

Returns: This function only returns on success, and it returns whateas returned by the fcntl(2) call;
depending on the command, this mayeheo use. Onfailure, prints an explanation and exits, it
does not return.

SEE ALSO
fcntl(2) manipulate a file descriptor

explain_fcnt(3)
explainfcntl(2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

236

explain_fdopen(3) Libraryrunctions Manual explain_fdopen(3)

NAME
explain_fdopen - explain fdopen(3) errors

SYNOPSIS
#include <libexplain/fdopen.h>

const char *explain_fdopen(int fildes, const char *flags);
const char *explain_errno_fdopen(int errnum, int fildes, const char *flags);
void explain_message_fdopen(char *message, int message_size, int fildes, const char *flags);
void explain_message_errno_fdopen(char *message, int message_size, int errnum, int fildes, const char
*flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidypibg3) system call.

explain_fdopen

const char *explain_fdopen(int fildes, const char *flags);
Theexplain_fdopenfunction is used to obtain an explanation of an error returned dygdper{3) system

call. Theleast the message will contain is tre@ue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if ('fp)
{

fprintf(stderr, "%s\n", explain_fdopen(fildes, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fdopen_or_di@) function.
fildes The original fildes, exactly as passed toftt@per{3) system call.
flags The original flags, exactly as passed tofttaper{3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fdopen
const char *explain_errno_fdopen(int errnum, int fildes, const char *flags);

Theexplain_errno_fdopenfunction is used to obtain an explanation of an error returned bddper(3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

FILE *fp = fdopen(fildes, flags);

if ('fp)

{ .
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fdopen(err, fildes, flags));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as tbgplain_fdopen_or_di@) function.

237

explain_fdopen(3) Libraryrunctions Manual explain_fdopen(3)

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftt@per{3) system call.
flags The original flags, exactly as passed tofttaper{3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fdopen
void explain_message_fdopen(char *message, int message_size, int fildes, const char *flags);

The explain_message fdopefunction may be used to obtain an explanation of an error returned by the
fdoper{3) system call.The least the message will contain is the valugtrefror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if ('fp)
{

char message[3000];

explain_message_fdopen(message, sizeof(message), fildes, flags);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_fdopen_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftt@per{3) system call.
flags The original flags, exactly as passed tofttaper{3) system call.

explain_message_errno_fdopen
void explain_message_errno_fdopen(char *message, int message_size, int errnum, int fildes, const char
*flags);

The explain_message_errno_fdopefunction may be used to obtain an explanation of an error returned
by thefdoper{3) system call. The least the message will contain is the valggenfor(errnum)
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if ('fp)

{

int err = errno;

char message[3000];

explain_message_errno_fdopen(message, sizeof(message),
err, fildes, flags);

fprintf(stderr, "%s\n", message);

238

explain_fdopen(3) Libraryrunctions Manual explain_fdopen(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fdopen_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftt@per{3) system call.
flags The original flags, exactly as passed tofttaper{3) system call.

SEE ALSO
fdoper{3)
stream open functions
explain_fdopen_or_dig)
stream open functions and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

239

explain_fdopendir(3) Libraryrunctions Manual explain_fdopendir(3)

NAME
explain_fdopendir — explaifdopendi(3) errors

SYNOPSIS
#include <libexplain/fdopendir.h>

const char *explain_fdopendir(int fildes);

const char *explain_errno_fdopendir(int errnum, int fildes);

void explain_message_fdopendir(char *message, int message_size, int fildes);

void explain_message_errno_fdopendir(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidytbiedi(3) system call.
explain_fdopendir
const char *explain_fdopendir(int fildes);

The explain_fdopendir function is used to obtain axmanation of an error returned by tfdopendi(3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toftt@pendif3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);
if (Iresult)

fprintf(stderr, "%s\n", explain_fdopendir(fildes));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fdopendir_or_di€) function.

explain_errno_fdopendir
const char *explain_errno_fdopendir(int errnum, int fildes);

The explain_errno_fdopendir function is used to obtain an explanation of an error returned by the
fdopendi(3) system call. The least the message will contain is the vals&revfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftt@pendif3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);

240

explain_fdopendir(3) Libraryrunctions Manual explain_fdopendir(3)

if (Iresult)
{ .
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fdopendir(err, fildes));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fdopendir_or_di€) function.

explain_message_fdopendir
void explain_message_fdopendir(char *message, int message_size, int fildes);

The explain_message_fdopendifunction is used to obtain an explanation of an error returned by the
fdopendi(3) system call. The least the message will contain is the valustadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftt@pendif3) system call.

Example: This function is intended to be used in a fashion similar to the following example:

DIR *result = fdopendir(fildes);
if (Iresult)
{

char message[3000];

explain_message_fdopendir(message, sizeof(message), fildes);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_fdopendir_or_di€) function.

explain_message_errno_fdopendir
void explain_message_errno_fdopendir(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fdopendifunction is used to obtain axpanation of an error returned by
thefdopendi(3) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftt@pendif3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);
if (Iresult)
{ .
int err = errno;
char message[3000];
explain_message_errno_fdopendir(message, sizeof(message), err,

241

explain_fdopendir(3) Libraryrunctions Manual explain_fdopendir(3)

fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fdopendir_or_di€) function.
SEE ALSO
fdopendi(3)
open a directory
explain_fdopendir_or_di€3)
open a directory and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

242

explain_fdopendir_or_die(3) Libraryunctions Manual explain_fdopendir_or_die(3)

NAME
explain_fdopendir_or_die — open a directory and report errors

SYNOPSIS
#include <libexplain/fdopendir.h>
DIR *explain_fdopendir_or_die(int fildes);
DIR *explain_fdopendir_on_error(int fildes);
DESCRIPTION
The explain_fdopendir_or_die function is used to call thédopendi(3) system call. On failure an

explanation will be printed tstderr, obtained from thexplain_fdopendi¢3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_fdopendir_on_error function is used to call thédopendi(3) system call. On failure an
explanation will be printed tatderr, obtained from theexplain_fdopendi¢3) function, but still returns to
the caller.

fildes The fildes, exactly as to be passed toftitopendif3) system call.

RETURN VALUE
The explain_fdopendir_or_die function only returns on success, $dependi(3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_fdopendir_on_error function alays returns the value return by the wrappeopendi(3)
system call.

EXAMPLE
The explain_fdopendir_or_die function is intended to be used in ashion similar to the folleing
example:
DIR *result = explain_fdopendir_or_die(fildes);
SEE ALSO
fdopendi(3)
open a directory
explain_fdopendi¢3)
explainfdopendi(3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

243

explain_fdopen_or_die(3) Librayunctions Manual explain_fdopen_or_die(3)

NAME
explain_fdopen_or_die — stream open functions and report errors

SYNOPSIS

#include <libexplain/fdopen.h>

void explain_fdopen_or_die(int fd, const char *mode);
DESCRIPTION

The explain_fdopen_or_diefunction is used to call thigloper{3) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_fdopeif3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
FILE *fp = explain_fdopen_or_die(fd, mode);

fd The fd, exactly as to be passed tofttaper{3) system call.
mode The mode, exactly as to be passed tddbper{3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fdoper{3)
stream open functions
explain_fdopeii3)
explainfdoper{3) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

244

explain_feof(3) LibraryFunctions Manual explain_feof(3)

NAME
explain_feof — explairfeof3) errors

SYNOPSIS
#include <libexplain/feof.h>

const char *explain_feof(FILE *fp);

const char *explain_errno_feof(int errnum, FILE *fp);

void explain_message_feof(char *message, int message_size, FILE *fp);

void explain_message_errno_feof(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddy{B)esystem call.
explain_feof
const char *explain_feof(FILE *fp);
The explain_feoffunction is used to obtain axmanation of an error returned by tfe®{3) system call.

The least the message will contain is th&ug ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to tbef3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)
{
fprintf(stderr, "%s\n", explain_feof(fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_feof or_di€3) function.

explain_errno_feof
const char *explain_errno_feof(int errnum, FILE *fp);

Theexplain_errno_feoffunction is used to obtain an explanation of an error returned bgadkig) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to tbef3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)
{

245

explain_feof(3) LibraryFunctions Manual explain_feof(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_feof(err, fp));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_feof or_di€3) function.

explain_message_feof
void explain_message_feof(char *message, int message_size, FILE *fp);

The explain_message_feadfunction is used to obtain an explanation of an error returned bfedi{8)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to tbef3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)

{
char message[3000];
explain_message_feof(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_feof or_di€3) function.

explain_message_errno_feof
void explain_message_errno_feof(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_feofunction is used to obtain an explanation of an error returned by the
feof3) system call. The least the message will contain isah& \ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to tbef3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_feof(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre-packaged as thgplain_feof or_di€3) function.

246

explain_feof(3) LibraryFunctions Manual explain_feof(3)

SEE ALSO
feof3) check and reset stream status
explain_feof or_di€3)
check and reset stream status and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

247

explain_feof or_die(3) Libraryunctions Manual explain_feof or_die(3)

NAME
explain_feof or_die — check and reset stream status and report errors

SYNOPSIS
#include <libexplain/feof.h>
void explain_feof or_die(FILE *fp);
int explain_feof _on_error(FILE *fp);
DESCRIPTION
The explain_feof _or_diefunction is used to call thieo{3) system call. On failure axganation will be

printed tostderr, obtained from theexplain_feo{3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_feof _on_errorfunction is used to call thieof3) system call. Onaflure an explanation will
be printed tcstderr, obtained from thexplain_feo{3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofta(3) system call.

RETURN VALUE
The explain_feof or_diefunction only returns on success, $eef3) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_feof _on_errorfunction alays returns the value return by the wrapfeu{3) system call.

EXAMPLE
Theexplain_feof or_diefunction is intended to be used in a fashion similar to the following example:
explain_feof or_die(fp);

SEE ALSO
feof3) check and reset stream status
explain_feof3)
explainfeof(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

248

explain_ferror(3) LibraryFunctions Manual explain_ferror(3)

NAME
explain_ferror — explain ferror(3) errors

SYNOPSIS
#include <libexplain/ferror.h>

const char *explain_ferror(FILE *fp);

const char *explain_errno_ferror(int errnum, FILE *fp);

void explain_message_ferror(char *message, int message_size, FILE *fp);

void explain_message_errno_ferror(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddaydh(@) system call.

explain_ferror
const char *explain_ferror(FILE *fp);

The explain_ferror function is used to obtain an explanation of an error returned Hgrttoe(3) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)
{
fprintf(stderr, "%s\n", explain_ferror(fp));
exit(EXIT_FAILURE);

}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the

problem, otherwise intervening code couldéddtered theerrno global variable.
fp The original fp, exactly as passed to theor(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_ferror
const char *explain_errno_ferror(int errnum, FILE *fp);

The explain_errno_ferror function is used to obtain an explanation of an error returned bfgttoe(3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ferror(err, fp));
exit(EXIT_FAILURE);

}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the

problem, otherwise intervening code couldéddtered theerrno global variable.

errnum The error @alue to be decoded, usually obtained from ah@o global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

249

explain_ferror(3) LibraryFunctions Manual explain_ferror(3)

fp The original fp, exactly as passed to theor(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_ferror
void explain_message_ferror(char *message, int message_size, FILE *fp);

The explain_message_ferroffunction may be used to obtain an explanation of an error returned by the
ferror(3) system call. The least the message will contain isahe\ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)

{
char message[3000];
explain_message_ferror(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code couldéddtered theerrno global variable.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to theor(3) system call.

explain_message_errno_ferror
void explain_message_errno_ferror(char *message, int message_size, int errnum, FILE *fp);

Theexplain_message_errno_ferrofunction may be used to obtain atpknation of an error returned by
the ferror(3) system call. The least the message will contain is the valsteofor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_ferror(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code couldéddtered theerrno global variable.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

250

explain_ferror(3) LibraryFunctions Manual explain_ferror(3)

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to theor(3) system call.

SEE ALSO
ferror(3)
check stream status
explain_ferror_or_dig3)
check stream status and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

251

explain_ferror_or_die(3) Librarfrunctions Manual explain_ferror_or_die(3)

NAME
explain_ferror_or_die — check stream status and report errors

SYNOPSIS

#include <libexplain/ferror.h>

void explain_ferror_or_die(FILE *fp);
DESCRIPTION

The explain_ferror_or_die function is used to call thierror(3) system call. On failure arxglanation
will be printed tostderr, obtained fromexplain_ferron(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_ferror_or_die(fp);

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code couldéddtered theerrno global variable.

fp The fp, exactly as to be passed toftreor(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
ferror(3)
check stream status
explain_ferron(3)
explainferror(3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

252

explain_fllush(3) LibraryFunctions Manual explain_fflush(3)

NAME
explain_fflush — explain fflush(3) errors

SYNOPSIS
#include <libexplain/fflush.h>

const char *explain_fflush(FILE *fp);

const char *explain_errno_fflush(int errnum, FILE *fp);

void explain_message_fflush(char *message, int message_size, FILE *fp);

void explain_message_errno_fflush(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedthysti(g) system call.

explain_fflush
const char *explain_fflush(FILE *fp);

The explain_fflush function is used to obtain an explanation of an error returned biflub3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to ttesh(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{
fprintf(stderr, "%s\n", explain_fflush(fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fflush_or_di€3) function.

explain_errno_fflush
const char *explain_errno_fflush(int errnum, FILE *fp);

The explain_errno_fflush function is used to obtain an explanation of an error returned biflubR3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frometiro global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ttesh(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{

253

explain_fllush(3) LibraryFunctions Manual explain_fflush(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fflush(err, fp));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_fflush_or_di€3) function.

explain_message_fflush
void explain_message_fflush(char *message, int message_size, FILE *fp);

Theexplain_message_fflusliunction is used to obtain axmanation of an error returned by tffleish(3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to ttesh(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)

{
char message[3000];
explain_message_fflush(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fflush_or_di€3) function.

explain_message_errno_fflush
void explain_message_errno_fflush(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fflushunction is used to obtain an explanation of an error returned by the
fflush(3) system call. The least the message will contain is the vakieeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from eh@o global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ttesh(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fflush(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

254

explain_fllush(3) LibraryFunctions Manual explain_fflush(3)

The abee mde example isvailable pre-packaged as thgplain_fflush_or_di€3) function.

SEE ALSO
fflush(3) flush a stream
explain_fflush_or_di€3)
flush a stream and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

255

explain_filush_or_die(3) Libraryrunctions Manual explain_fflush_or_die(3)

NAME
explain_fflush_or_die - flush a stream and report errors

SYNOPSIS
#include <libexplain/fflush.h>
void explain_fflush_or_die(FILE *fp);
int explain_fflush_on_error(FILE *fp);
DESCRIPTION
Theexplain_fflush_or_diefunction is used to call thiflush(3) system call. On failure an explanation will

be printed tostderr, obtained from theexplain_fflusi3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fflush_on_error function is used to call thiflush(3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fflush(3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofthesh(3) system call.

RETURN VALUE
Theexplain_fflush_or_diefunction only returns on success, #ffesh(3) for more information. Orgflure,
prints an explanation and exits, it does not return.

The explain_fflush_on_error function alvays returns the value return by the wrapftash(3) system
call.

EXAMPLE
Theexplain_fflush_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fflush_or_die(fp);
SEE ALSO
fflush(3) flush a stream
explain_fflusi(3)
explainfflush(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

256

explain_fgetc(3) LibraryFunctions Manual explain_fgetc(3)

NAME
explain_fgetc — explain fgetc(3) errors

SYNOPSIS
#include <libexplain/fgetc.h>

const char *explain_fgetc(FILE *fp);

const char *explain_errno_fgetc(int errnum, FILE *fp);

void explain_message_fgetc(char *message, int message_size, FILE *fp);

void explain_message_errno_fgetc(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidptdf®) system call.

explain_fgetc
const char *explain_fgetc(FILE *fp);

Theexplain_fgetcfunction is used to obtain an explanation of an error returned bgeteS) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int ¢ = fgetc(fp);
if (c == EOF && ferror(fp))

fprintf(stderr, "%s\n", explain_fgetc(fp));
exit(EXIT_FAILURE);
}

fp The original fp, exactly as passed to thetq3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fgetc
const char *explain_errno_fgetc(int errnum, FILE *fp);

The explain_errno_fgetc function is used to obtain arxmanation of an error returned by tfgetq3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int ¢ = fgetc(fp);
if (c == EOF && ferror(fp))

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgetc(err, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetireo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetq3) system call.

257

explain_fgetc(3) LibraryFunctions Manual explain_fgetc(3)

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fgetc
void explain_message_fgetc(char *message, int message_size, FILE *fp);
The explain_message_fgettunction may be used to obtain an explanation of an error returned by the

fgetd3) system call. The least the message will contain is the vakteeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int ¢ = fgetc(fp);
if (c == EOF && ferror(fp))

{
char message[3000];
explain_message_fgetc(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thetq3) system call.

explain_message_errno_fgetc
void explain_message_errno_fgetc(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fgetfunction may be used to obtain an explanation of an error returned by
the fgetd3) system call. The least the message will contain is the valustgrror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int ¢ = fgetc(fp);
if (c == EOF && ferror(fp))

{
int err = errno;
char message[3000];
explain_message_errno_fgetc(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

258

explain_fgetc(3) LibraryFunctions Manual

fp The original fp, exactly as passed to thetq3) system call.

SEE ALSO
fgetd3) input of characters
explain_fgetc_or_di€3)
input of characters and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

explain_fgetc(3)

259

explain_fgetc_or_die(3) Librarifunctions Manual explain_fgetc_or_die(3)

NAME
explain_fgetc_or_die — input of characters and report errors

SYNOPSIS
#include <libexplain/fgetc.h>

int explain_fgetc_or_die(FILE *fp);
DESCRIPTION
The explain_fgetc_or_diefunction is used to call thiggetq3) system call. On failure an explanation will

be printed tostderr, obtained from explain_fget¢3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int ¢c = explain_fgetc_or_die(fp);

fp The fp, exactly as to be passed tofthetq3) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fgetd3) input of characters

explain_fget¢3)
explainfgetd3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

260

explain_fgetpos(3) Libraryunctions Manual explain_fgetpos(3)

NAME
explain_fgetpos — explaifgetpog3) errors

SYNOPSIS

#include <libexplain/fgetpos.h>

const char *explain_fgetpos(FILE *fp, fpos_t *pos);

const char *explain_errno_fgetpos(int errnum, FILE *fp, fpos_t *pos);

void explain_message_fgetpos(char *message, int message_size, FILE *fp, fpos_t *pos);

void explain_message_errno_fgetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedidpstiog3) system call.

explain_fgetpos
const char *explain_fgetpos(FILE *fp, fpos_t *pos);
Theexplain_fgetposfunction is used to obtain ammanation of an error returned by tlyetpo$3) system

call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofgetpog¢3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{

fprintf(stderr, "%s\n", explain_fgetpos(fp, pos));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fgetpos_or_di@) function.

explain_errno_fgetpos
const char *explain_errno_fgetpos(int errnum, FILE *fp, fpos_t *pos);

Theexplain_errno_fgetposfunction is used to obtain an explanation of an error returned Hygetpo$3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofgetpog¢3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

261

explain_fgetpos(3) Libraryunctions Manual explain_fgetpos(3)

if (fgetpos(fp, pos) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgetpos(err, fp, pos));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fgetpos_or_di@) function.
explain_message_fgetpos

void explain_message_fgetpos(char *message, int message_size, FILE *fp, fpos_t *pos);

The explain_message_fgetpofunction is used to obtain an explanation of an error returned by the

fgetpog3) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofgfetpog3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{

char message[3000];

explain_message_fgetpos(message, sizeof(message), fp, pos);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_fgetpos_or_di@) function.
explain_message_errno_fgetpos
void explain_message_errno_fgetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);
The explain_message_errno_fgetpdsinction is used to obtain an explanation of an error returned by the

fgetpog3) system call. The least the message will contain isahm ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetpog3) system call.
pos The original pos, exactly as passed tofgfetpog¢3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{
int err = errno;
char message[3000];

262

explain_fgetpos(3) Libraryunctions Manual explain_fgetpos(3)

explain_message_errno_fgetpos(message, sizeof(message), err,

fp, pos);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fgetpos_or_di@) function.

SEE ALSO
fgetpog3)
reposition a stream
explain_fgetpos_or_di@)
reposition a stream and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

263

explain_fgetpos_or_die(3) Librayunctions Manual explain_fgetpos_or_die(3)

NAME
explain_fgetpos_or_die — reposition a stream and report errors

SYNOPSIS
#include <libexplain/fgetpos.h>
void explain_fgetpos_or_die(FILE *fp, fpos_t *pos);
int explain_fgetpos_on_error(FILE *fp, fpos_t *pos);
DESCRIPTION
The explain_fgetpos_or_diefunction is used to call thigietpo$3) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_fgetpo&3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fgetpos_on_error function is used to call thdgetpog3) system call. On failure an
explanation will be printed tatderr, obtained from theexplain_fgetpog3) function, but still returns to the
caller.

fp The fp, exactly as to be passed toftietpog¢3) system call.
pos The pos, exactly as to be passed tddglegpo$3) system call.

RETURN VALUE
The explain_fgetpos_or_diefunction only returns on success, $getpog3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fgetpos_on_errorfunction alvays returns the value return by the wrapfgetpo$3) system
call.

EXAMPLE
Theexplain_fgetpos_or_didunction is intended to be used in a fashion similar to the following example:
explain_fgetpos_or_die(fp, pos);
SEE ALSO
fgetpog3)
reposition a stream
explain_fgetpoé3)
explainfgetpo$3) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

264

explain_fgets(3) Libraryrunctions Manual explain_fgets(3)

NAME
explain_fgets — explain fgets(3) errors

SYNOPSIS
#include <libexplain/fgets.h>

const char *explain_fgets(char *data, int data_size, FILE *fp);

const char *explain_errno_fgets(int errnum, char *data, int data_size, FILE *fp);

void explain_message_fgets(char *message, int message_size, char *data, int data_size, FILE *fp);

void explain_message_errno_fgets(char *message, int message_size, int errnum, char *data, int data_size,
FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidpst €3 system call.
explain_fgets
const char *explain_fgets(char *data, int data_size, FILE *fp);
Theexplain_fgetsfunction is used to obtain an explanation of an error returned bgetg€3) system call.

The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)

fprintf(stderr, "%s\n", explain_fgets(data, data_size, fp));
exit(EXIT_FAILURE);
}

data The original data, exactly as passed tofgjetg3) system call.

data_size
The original data_size, exactly as passed tdg#ig3) system call.

fp The original fp, exactly as passed to thetg3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fgets
const char *explain_errno_fgets(int errnum, char *data, int data_size, FILE *fp);

The explain_errno_fgetsfunction is used to obtain arxmanation of an error returned by tfgetg3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgets(err, data, data_size, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

265

explain_fgets(3) Libraryrunctions Manual explain_fgets(3)

data The original data, exactly as passed tofgjetg3) system call.

data_size
The original data_size, exactly as passed tdgbig3) system call.

fp The original fp, exactly as passed to thetg3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fgets
void explain_message_fgets(char *message, int message_size, char *data, int data_size, FILE *fp);
The explain_message_fgethunction may be used to obtain axp&anation of an error returned by the

fgetg3) system call. The least the message will contain isghe\ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)

{
char message[3000];
explain_message_fgets(message, sizeof(message), data, data_size, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed tofgjetg3) system call.

data_size
The original data_size, exactly as passed tdg#ig3) system call.

fp The original fp, exactly as passed to thetg3) system call.

explain_message_errno_fgets
void explain_message_errno_fgets(char *message, int message_size, int errnum, char *data, int data_size,

FILE *fp);
The explain_message_errno_fgetiinction may be used to obtain axpknation of an error returned by
the fgetg3) system call. The least the message will contain is the valstesfor(errnum) , but

usually it will do much betteend indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fgets(message, sizeof(message), err,
data, data_size, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

266

explain_fgets(3) Libraryrunctions Manual explain_fgets(3)

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed tofgjetg3) system call.

data_size
The original data_size, exactly as passed tdg#ig3) system call.
fp The original fp, exactly as passed to thetg3) system call.
SEE ALSO

fgetg3) input of strings
explain_fgets_or_di€3)
input of strings and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

267

explain_fgets_or_die(3) Librarlfunctions Manual explain_fgets_or_die(3)

NAME
explain_fgets_or_die — input of strings and report errors

SYNOPSIS
#include <libexplain/fgets.h>

char *explain_fgets_or_die(char *data, int data_size, FILE *fp);
DESCRIPTION
The explain_fgets_or_diefunction is used to call thigiet3) system call. On failure an explanation will

be printed tostderr, obtained from explain_fget¢3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fgets_or_die(data, data_size, fp);

data The data, exactly as to be passed tddghtg3) system call.

data_size
The data_size, exactly as to be passed tégttg3) system call.

fp The fp, exactly as to be passed toftietg3) system call.

Returns: This function only returns on success; data when a line is read, or NULL on ahed-abh
failure, prints an explanation and exits.

SEE ALSO
fgetg3) input of strings
explain_fget¢3)
explainfget43) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

268

explain_filename_from ilides(3) LibraryFunctions Manual explain_filename_from_fildes(3)

NAME
explain_filename_from_fildes — obtain filename from file descriptor

SYNOPSIS
#include <libexplain/filename.h>

int explain_filename_from_fildes(int fildes, char *data, size_t data_size);
int explain_filename_from_stream(FILE *stream, char *data, size_t data_size);
DESCRIPTION

The explain_filename_from_fildeunction may be used to obtain the name of the file associated with the
file descriptor.

The explain_filename_from_strearfiunction may be used to obtain the name of the file associated with a
file stream.

The filename is returned in the array pointed talbta The flename will avays be NUL terminatedIf
the returned filename is longer thdata_sizeit will be silently truncated; a size of at leasATlP_MAX +
1) is suggested.

On success, returns zero. If the file name cannot be determined, returns -1 (imatt deésrrno.)

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

269

explain_fileno(3) LibraryFunctions Manual explain_fileno(3)

NAME
explain_fileno — explain fileno(3) errors

SYNOPSIS
#include <libexplain/fileno.h>

const char *explain_fileno(FILE *fp);

const char *explain_errno_fileno(int errnum, FILE *fp);

void explain_message_fileno(char *message, int message_size, FILE *fp);

void explain_message_errno_fileno(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returneditgnit{8) system call.
explain_fileno
const char *explain_fileno(FILE *fp);
The explain_fileno function is used to obtain axpanation of an error returned by tfiena(3) system

call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to fitenq(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{
fprintf(stderr, "%s\n", explain_fileno(fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fileno_or_di€3) function.

explain_errno_fileno
const char *explain_errno_fileno(int errnum, FILE *fp);

The explain_errno_fileno function is used to obtain axpanation of an error returned by tfikeng(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to fitenq(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{

270

explain_fileno(3) LibraryFunctions Manual explain_fileno(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fileno(err, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fileno_or_di€3) function.

explain_message_fileno
void explain_message_fileno(char *message, int message_size, FILE *fp);

Theexplain_message_filendunction is used to obtain an explanation of an error returned Hilehg3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to fitenq(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)

{
char message[3000];
explain_message_fileno(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fileno_or_di€3) function.

explain_message_errno_fileno
void explain_message_errno_fileno(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_filendunction is used to obtain an explanation of an error returned by the
filena(3) system call. The least the message will contain isahe \ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to fitenq(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fileno(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

271

explain_fileno(3) LibraryFunctions Manual explain_fileno(3)

The abee mde example isvailable pre-packaged as thgplain_fileno_or_di€3) function.

SEE ALSO
filena(3) check and reset stream status
explain_fileno_or_di€3)
check and reset stream status and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

272

explain_fleno_or_die(3) Libraryrunctions Manual explain_fileno_or_die(3)

NAME
explain_fileno_or_die — check and reset stream status and report errors

SYNOPSIS
#include <libexplain/fileno.h>
int explain_fileno_or_die(FILE *fp);
int explain_fileno_on_error(FILE *fp);
DESCRIPTION
Theexplain_fileno_or_diefunction is used to call thi#enq(3) system call. Ondilure an explanation will

be printed tostderr, obtained from theexplain_filenq3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fileno_on_error function is used to call thiglend3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_filend3) function, but still returns to the caller.

fp The fp, exactly as to be passed toftleno(3) system call.

RETURN VALUE
Theexplain_fileno_or_diefunction only returns on success, §igena(3) for more information. Orgflure,
prints an explanation and exits, it does not return.

The explain_fileno_on_error function aays returns the value return by the wrapfiéehq(3) system
call.

EXAMPLE
Theexplain_fileno_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fileno_or_die(fp);
SEE ALSO
filena(3) check and reset stream status
explain_filenq3)
explainfilend(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

273

explain_flock(3) LibraryFunctions Manual explain_flock(3)

NAME
explain_flock — explain flock(2) errors

SYNOPSIS
#include <libexplain/flock.h>

const char *explain_flock(int fildes, int command);

const char *explain_errno_flock(int errnum, int fildes, int command);

void explain_message_flock(char *message, int message_size, int fildes, int command);

void explain_message_errno_flock(char *message, int message_size, int errnum, int fildes, int command);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedibgkt® system call.

explain_flock
const char *explain_flock(int fildes, int command);

Theexplain_flock function is used to obtain anpanation of an error returned by theck(2) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toftbek(2) system call.

command
The original command, exactly as passed tdltoi(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)

{

fprintf(stderr, "%s\n", explain_flock(fildes, command));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_flock or_di€3) function.

explain_errno_flock
const char *explain_errno_flock(int errnum, int fildes, int command);

The explain_errno_flock function is used to obtain an explanation of an error returned bffoiti€2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftbek(2) system call.

command
The original command, exactly as passed tdltoi(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther

274

explain_flock(3) LibraryFunctions Manual explain_flock(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_flock(err, fildes,
command));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_flock or_di€3) function.

explain_message_flock
void explain_message_flock(char *message, int message_size, int fildes, int command);

The explain_message_flockunction is used to obtain axmanation of an error returned by tfieck(2)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftbek(2) system call.

command
The original command, exactly as passed tdltoi(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)

{
char message[3000];
explain_message_flock(message, sizeof(message), fildes,
command);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_flock or_di€3) function.

explain_message_errno_flock
void explain_message_errno_flock(char *message, int message_size, int errnum, int fildes, int command);

The explain_message_errno_flockunction is used to obtain axpanation of an error returned by the
flock(2) system call. The least the message will contain isghee ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftbek(2) system call.

275

explain_flock(3) LibraryFunctions Manual explain_flock(3)

command
The original command, exactly as passed tdltoi(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_flock(message, sizeof(message), err,
fildes, command);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_flock or_di€3) function.

SEE ALSO
flock(2) apply or remee an advisory lock on an open file
explain_flock or_di€3)
apply or remue an advisory lock on an open file and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

276

explain_flock or_die(3) Libraryrunctions Manual explain_flock or_die(3)

NAME
explain_flock or_die — control advisory lock on open file and report errors

SYNOPSIS
#include <libexplain/flock.h>

void explain_flock_or_die(int fildes, int command);
int explain_flock_on_error(int fildes, int command))

DESCRIPTION
The explain_flock_or_die function is used to call thitbock(2) system call. On failure an explanation will
be printed testderr, obtained from thexplain_flock3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

Theexplain_flock_on_error function is used to call thibock(2) system call. On failure an explanation will
be printed tcstderr, obtained from thexplain_flock3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed tofthek(2) system call.

command
The command, exactly as to be passed tdldlok(2) system call.

RETURN VALUE
The explain_flock_or_diefunction only returns on success, $ieek(2) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_flock_on_error function alvays returns the value return by the wrapfledk(2) system call.

EXAMPLE
Theexplain_flock_or_diefunction is intended to be used in a fashion similar to the following example:
explain_flock_or_die(fildes, command);

SEE ALSO
flock(2) apply or remee an advisory lock on an open file

explain_flock3)
explainflock(2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

277

explain_fopen(3) Libraryrunctions Manual explain_fopen(3)

NAME
explain_fopen - explain fopen(3) errors

SYNOPSIS
#include <libexplain/fopen.h>
const char *explain_fopen(const char *path, const char *mode);
const char *explain_errno_fopen(int errnum, const char *path, const char *mode);
void explain_message_fopen(char *message, int message_size, const char *path, const char *mode);
void explain_message_errno_fopen(char *message, int message_size, int errnum, const char *path, const
char *mode);

DESCRIPTION
These functions may be used to obtain explanatiorfeper(3) errors.

explain_fopen
const char *explain_fopen(const char *path, const char *mode);

The explain_fopen function is used to obtain aplanation of an error returned by tfapen(3) system
call. Theleast the message will contain is tte@ue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if ('fp)
{

const char *message = explain_fopen(path, mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);

}

path The original path, exactly as passed toftieen(3) system call.
mode The original mode, exactly as passed toftiper(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fopen
const char *explain_errno_fopen(int errnum, const char *path, const char *mode);

The explain_errno_fopen function is used to obtain an explanation of an error returnedfdpet{s)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if ('fp)
{

const char *message = explain_errno_fopen(err, path, mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

278

explain_fopen(3) Libraryrunctions Manual explain_fopen(3)

path The original path, exactly as passed toftheen(3) system call.
mode The original mode, exactly as passed toftiper(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_fopen
void explain_message_fopen(char *message, int message_size, const char *path, const char *mode);

The explain_message_fopen function is used to obtain an explanation of an error returnddpBr(@)e
system call. The least the message will contain is the value of strerror(ectojullly it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if ('fp)
{
char message[3000];
explain_message_fopen(message, sizeof(message), path, mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

path The original path, exactly as passed toftheen(3) system call.
mode The original mode, exactly as passed toftiper(3) system call

explain_message_errno_fopen
void explain_message_errno_fopen(char *message, int message_size, int errnum, const char *path, const
char *mode);

The explain_message_errno_fopen function is used to obtairptanation of an error returned by the
fopen(3) system call. The least the message will contain is the valsteeofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if ('fp)
{

int err = errno;
char message[3000];
explain_message_errno_fopen(message, sizeof(message), err, path,
mode);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

279

explain_fopen(3) Libraryrunctions Manual explain_fopen(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

path The original path, exactly as passed toftieen(3) system call.
mode The original mode, exactly as passed toftiper(3) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

280

explain_fopen_or_die(3) Librarlfunctions Manual explain_fopen_or_die(3)

NAME
explain_fopen_or_die — open file and report errors

SYNOPSIS
#include <libexplain/fopen.h>

FILE *explain_fopen_or_die(const char *pathname, const char *flags);

DESCRIPTION
The explain_fopen_or_di€) function opens thelé whose name is the string pointed to by pathname and
associates a stream with it. Seper(3) for more information.

This is a quick and simple way for programs to constitently refderopen errors in a consistent and
detailed fahion.

RETURN VALUE
Upon successful completi@xplain_fopen_or_diereturns & ILE pointer.

If an error occursexplain_fopenwill be called to &plain the errgrwhich will be printed ontstderr, and
then the process will terminate by calliegit(EXIT_FAILURE)

SEE ALSO
fopen(3) stream open functions

explain_fopelt3)
explainfopen(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

281

explain_fork(3) LibraryFunctions Manual explain_fork(3)

NAME
explain_fork — explain fork(2) errors

SYNOPSIS
#include <libexplain/fork.h>

const char *explain_fork(void);

const char *explain_errno_fork(int errnum);

void explain_message_fork(char *message, int message_size);

void explain_message_errno_fork(char *message, int message_size, int errnum);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidmkBesystem call.

explain_fork
const char *explain_fork(void);

The explain_fork function is used to obtain an explanation of an error returned k(&) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)
{
fprintf(stderr, "%s\n", explain_fork());
exit(EXIT_FAILURE);

}

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_fork
const char *explain_errno_fork(int errnum);

The explain_errno_fork function is used to obtain arxganation of an error returned by thark(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fork(err,));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

282

explain_fork(3) LibraryFunctions Manual explain_fork(3)

explain_message_fork
void explain_message_fork(char *message, int message_size);

The explain_message_forkfunction may be used to obtain an explanation of an error returned by the
fork(2) system call.The least the message will contain is the valustreirror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)

{
char message[3000];
explain_message_fork(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

explain_message_errno_fork
void explain_message_errno_fork(char *message, int message_size, int errnum);

The explain_message_errno_forkunction may be used to obtain an explanation of an error returned by
the fork(2) system call. The least the message will contain is dhgevof strerror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)
{

int err = errno;

char message[3000];

explain_message_errno_fork(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

SEE ALSO
fork(2) create a child process
explain_fork_or_di€3)
create a child process and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

283

explain_fork_or_die(3) Libraryrunctions Manual explain_fork_or_die(3)

NAME
explain_fork_or_die — create a child process and report errors

SYNOPSIS
#include <libexplain/fork.h>

void explain_fork_or_die(void);
DESCRIPTION
Theexplain_fork_or_die function is used to call thferk(2) system call. Ondfilure an explanation will be

printed to stderr, obtained from explain_forl(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fork_or_die();
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fork(2) create a child process

explain_fork(3)
explainfork(2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

284

explain_fpathconf(3) Libraryrunctions Manual explain_fpathconf(3)

NAME
explain_fpathconf — explain fpathconf(3) errors

SYNOPSIS
#include <libexplain/fpathconf.h>

const char *explain_fpathconf(int fildes, int name);

const char *explain_errno_fpathconf(int errnum, int fildes, int name);

void explain_message_fpathconf(char *message, int message_size, int fildes, int name);

void explain_message_errno_fpathconf(char *message, int message_size, int errnum, int fildes, int name);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedimgtticen(3) system call.

explain_fpathconf
const char *explain_fpathconf(int fildes, int name);

The explain_fpathconf function is used to obtain an explanation of an error returned hiypaligcon(3)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:

if (fpathconf(fildes, name) < 0)
{

fprintf(stderr, "%s\n", explain_fpathconf(fildes, name));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fpathconf_or_di@) function.
fildes The original fildes, exactly as passed toffiethcon(3) system call.
name The original name, exactly as passed tdla¢hcon{3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fpathconf
const char *explain_errno_fpathconf(int errnum, int fildes, int name);

The explain_errno_fpathconf function is used to obtain arxmanation of an error returned by the
fpathcon(3) system call. The least the message will contain is the valagesfor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fpathconf(err, fildes, name));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fpathconf_or_di@) function.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

285

explain_fpathconf(3) Libraryrunctions Manual explain_fpathconf(3)

fildes The original fildes, exactly as passed toffiethcon(3) system call.
name The original name, exactly as passed tdla¢chcon{3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fpathconf
void explain_message_fpathconf(char *message, int message_size, int fildes, int name);

The explain_message_fpathconfunction may be used tobtain an explanation of an error returned by
the fpathcon(3) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)

{
char message[3000];
explain_message_fpathconf(message, sizeof(message), fildes, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fpathconf_or_di@) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toffiethcon(3) system call.
name The original name, exactly as passed tdla¢hcon{3) system call.

explain_message_errno_fpathconf
void explain_message_errno_fpathconf(char *message, int message_size, int errnum, int fildes, int name);

Theexplain_message_errno_fpathcorfiinction may be used to obtain an explanation of an error returned
by thefpathcon(3) system call. The least the message will contain is the vaktecofor(errnum)
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fpathconf(message, sizeof(message),
err, fildes, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fpathconf_or_di@) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

286

explain_fpathconf(3) Libraryrunctions Manual explain_fpathconf(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @alue to be decoded, usually obtained from ah@o global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toffiethcon(3) system call.
name The original name, exactly as passed tdla¢hcon{3) system call.

SEE ALSO
fpathcon(3)
get configuration values for files
explain_fpathconf_or_di@)
get configuration values for files and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

287

explain_fpathconf_or_die(3) Librayunctions Manual explain_fpathconf_or_die(3)

NAME
explain_fpathconf_or_die — get file configuration and report errors

SYNOPSIS
#include <libexplain/fpathconf.h>
long explain_fpathconf_or_die(int fildes, int name);
DESCRIPTION
The explain_fpathconf_or_die function is used to call thépathconf3) system call. On failure an

explanation will be printed tstderr, obtained fromexplain_fpathconf3), and then the process terminates
by callingexit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
long result = explain_fpathconf_or_die(fildes, name);

fildes The fildes, exactly as to be passed toffaghcon{3) system call.
name The name, exactly as to be passed tdghthcon(3) system call.

Returns: This function only returns on success, fmthcon(3) for more information. On failure, prints
an explanation and exits.

SEE ALSO
fpathcon(3)
get configuration values for files
explain_fpathcon(3)
explainfpathcon(3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

288

explain_fprintf(3) LibraryFunctions Manual explain_fprintf(3)

NAME

explain_fprintf — explairfprintf(3) errors

SYNOPSIS

#include <libexplain/fprintf.h>

const char *explain_fprintf(FILE *fp, const char *format, ...);

const char *explain_errno_fprintf(int errnum, FILE *fp, const char *format, ...);

void explain_message_fprintf(char *message, int message_size, FILE *fp, const char *format,);

void explain_message_errno_fprintf(char *message, int message_size, int errnum, FILE *fp, const char
*format, ...);

DESCRIPTION

These functions may be used to obtain explanations for errors returnedfiyntfig) system call.

explain_fprintf

const char *explain_fprintf(FILE *fp, const char *format, ...);

The explain_fprintf function is used to obtain axanation of an error returned by tfintf(3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to thentf(3) system call.
format The original format, exactly as passed toffirntf(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = fprintf(fp, format, ...);
if (result < 0)
{
fprintf(stderr, "%s\n", explain_fprintf(fp, format, ...));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fprintf_or_di€3) function.

explain_errno_fprintf

const char *explain_errno_fprintf(int errnum, FILE *fp, const char *format, ...);

The explain_errno_fprintf function is used to obtain an explanation of an error returned bipring(3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thentf(3) system call.
format The original format, exactly as passed toffirntf(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

289

explain_fprintf(3) LibraryFunctions Manual explain_fprintf(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = fprintf(fp, format, ...);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fprintf(err, fp, format,
=)
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fprintf_or_di€3) function.
explain_message_fprintf
void explain_message_fprintf(char *message, int message_size, FILE *fp, const char *format, ...);

The explain_message_fprintffunction is used to obtain an explanation of an error returned by the
fprintf(3) system call. The least the message will contain isahee ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
fp The original fp, exactly as passed to thentf(3) system call.
format The original format, exactly as passed toffirntf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = fprintf(fp, format, ...);
if (result < 0)

{
char message[3000];
explain_message_fprintf(message, sizeof(message), fp, format,
o)
printf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fprintf_or_di€3) function.

explain_message_errno_fprintf
void explain_message_errno_fprintf(char *message, int message_size, int errnum, FILE *fp, const char
*format, ...);

The explain_message_errno_fprintffunction is used to obtain axmanation of an error returned by the
fprintf(3) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

290

explain_fprintf(3) LibraryFunctions Manual explain_fprintf(3)

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thentf(3) system call.
format The original format, exactly as passed toffirntf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = fprintf(fp, format, ...);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fprintf(message, sizeof(message), err,
fp, format, ...);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fprintf_or_di€3) function.
SEE ALSO
fprintf(3)
formatted output corersion
explain_fprintf_or_di€3)
formatted output carersion and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

291

explain_fprintf_or_die(3) Libraryrunctions Manual explain_fprintf_or_die(3)

NAME
explain_fprintf_or_die — formatted output ogmsion and report errors

SYNOPSIS
#include <libexplain/fprintf.h>

int explain_fprintf_or_die(FILE *fp, const char *format, ...);
int explain_fprintf_on_error(FILE *fp, const char *format, ...);

DESCRIPTION
The explain_fprintf_or_die function is used to call thiprintf(3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fprintf(3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fprintf_on_error function is used to call thiprintf(3) system call. On failure axganation
will be printed tostderr, obtained from thexplain_fprintf(3) function, but still returns to the caller.

fp The fp, exactly as to be passed toffrantf(3) system call.
format The format, exactly as to be passed tofphimtf(3) system call.

RETURN VALUE
The explain_fprintf_or_die function only returns on success, dpentf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fprintf_on_error function alays returns the value return by the wrapfadntf(3) system
call.

EXAMPLE
Theexplain_fprintf_or_die function is intended to be used in a fashion similar to the following example:
int result = explain_fprintf_or_die(fp, format, ...);
SEE ALSO
fprintf(3)
formatted output carersion
explain_fprintf(3)
explain fprintf(3) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

292

explain_fpuge(3) LibraryFunctions Manual explain_fpurge(3)

NAME
explain_fpurge — explaifpurge(3) errors

SYNOPSIS

#include <libexplain/fpurge.h>

const char *explain_fpurge(FILE *fp);

const char *explain_errno_fpurge(int errnum, FILE *fp);

void explain_message_fpurge(char *message, int message_size, FILE *fp);

void explain_message_errno_fpurge(char *message, int message_size, int errnum, FILE *fp);
DESCRIPTION

These functions may be used to obtain explanations for errors returnediyrgiet8) system call.

explain_fpurge
const char *explain_fpurge(FILE *fp);
The explain_fpurge function is used to obtain an explanation of an error returned Hpulg(3) system

call. The least the message will contain is the valugtrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to therge(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

if (fpurge(fp) < 0)

{

fprintf(stderr, "%s\n", explain_fpurge(fp));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_fpuige or_dig3) function.
explain_errno_fpurge

const char *explain_errno_fpurge(int errnum, FILE *fp);

The explain_errno_fpurge function is used to obtain axmanation of an error returned by tfrirge3)
system call. The least the message will contain is daheeofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to therge(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)
{

293

explain_fpuge(3) LibraryFunctions Manual explain_fpurge(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fpurge(err, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fpulge or_dig3) function.

explain_message_fpurge
void explain_message_fpurge(char *message, int message_size, FILE *fp);

The explain_message_fpurgdunction is used to obtain an explanation of an error returned by the
fpurge(3) system call. The least the message will contain isahee ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to therge(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)

{
char message[3000];
explain_message_fpurge(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fpuige or_dig3) function.

explain_message_errno_fpurge
void explain_message_errno_fpurge(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fpurgéunction is used to obtain an explanation of an error returned by the
fpurge(3) system call. The least the message will contain is the vaktesofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to therge(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fpurge(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

294

explain_fpuge(3) LibraryFunctions Manual explain_fpurge(3)

The abee mde example isvailable pre-packaged as thgplain_fpuige or_dig3) function.

SEE ALSO
fpurge(3)
purge a stream
explain_fpuige or_dig3)
purge a stream and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

295

explain_fpuge_or_die(3) Libraryrunctions Manual explain_fpurge_or_die(3)

NAME
explain_fpurge_or_die — purge a stream and report errors

SYNOPSIS
#include <libexplain/fpurge.h>
void explain_fpurge_or_die(FILE *fp);
int explain_fpurge_on_error(FILE *fp);
DESCRIPTION
The explain_fpurge_or_diefunction is used to call thipurge(3) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_fpuige3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

Theexplain_fpurge_on_error function is used to call thipurge(3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fpuige(3) function, but still returns to the caller.

fp The fp, exactly as to be passed toffhage(3) system call.

RETURN VALUE
The explain_fpurge_or_die function only returns on success, deearge(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fpurge_on_error function alvays returns the value return by the wrapfeuarge(3) system
call.

EXAMPLE

Theexplain_fpurge_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fpurge_or_die(fp);

SEE ALSO

fpurge(3)

purge a stream
explain_fpuige(3)
explainfpurgg(3) errors

ext(2) terminate the calling process

COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

296

explain_fputc(3) LibraryFunctions Manual explain_fputc(3)

NAME
explain_fputc — explain fputc(3) errors

SYNOPSIS
#include <libexplain/fputc.h>
const char *explain_fputc(int ¢, FILE *fp);
const char *explain_errno_fputc(int errnum, int ¢, FILE *fp);
void explain_message_fputc(char *message, int message_size, int ¢, FILE *fp);
void explain_message_errno_fputc(char *message, int message_size, int errnum, int ¢, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedfiyttf® system call.

explain_fputc
const char *explain_fputc(int ¢, FILE *fp);
The explain_fputc function is used to obtain axganation of an error returned by thautq3) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)

{ fprintf(stderr, "%s\n", explain_fputc(c, fp));
exit(EXIT_FAILURE);
}
c The original c, exactly as passed to finetq3) system call.
fp The original fp, exactly as passed to thetd3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fputc
const char *explain_errno_fputc(int errnum, int ¢, FILE *fp);
The explain_errno_fputc function is used to obtain axmanation of an error returned by thmutq(3)

system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fputc(err, c, fp));
exit(EXIT_FAILURE);

}

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

c The original c, exactly as passed to finetq3) system call.
fp The original fp, exactly as passed to thetd3) system call.

297

explain_fputc(3) LibraryFunctions Manual explain_fputc(3)

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fputc
void explain_message_fputc(char *message, int message_size, int ¢, FILE *fp);

The explain_message_fputdunction may be used to obtain an explanation of an error returned by the
fputq3) system call. The least the message will contain is the valsteeofor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)
{

char message[3000];

explain_message_fputc(message, sizeof(message), ¢, fp);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
c The original c, exactly as passed to finetq3) system call.
fp The original fp, exactly as passed to thetd3) system call.

explain_message_errno_fputc
void explain_message_errno_fputc(char *message, int message_size, int errnum, int ¢, FILE *fp);
The explain_message_errno_fputéunction may be used to obtain an explanation of an error returned by

the fputq3) system call. The least the message will contain is dhgevof strerror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)

{
int err = errno;
char message[3000];
explain_message_errno_fputc(message, sizeof(message), err, c, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

c The original c, exactly as passed to finetq3) system call.

298

explain_fputc(3) LibraryFunctions Manual

fp The original fp, exactly as passed to thetd3) system call.

SEE ALSO
fputq3) output of characters
explain_fputc_or_di€3)
output of characters and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

explain_fputc(3)

299

explain_fputc_or_die(3) Librarfrunctions Manual explain_fputc_or_die(3)

NAME
explain_fputc_or_die - output of characters and report errors

SYNOPSIS
#include <libexplain/fputc.h>

void explain_fputc_or_die(int ¢, FILE *fp);
DESCRIPTION
The explain_fputc_or_diefunction is used to call thiputq3) system call.On failure an explanation will

be printed tostderr, obtained from explain_fput€3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fputc_or_die(c, fp);

c The c, exactly as to be passed tofthe3) system call.
fp The fp, exactly as to be passed toffheq3) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fputq3) output of characters

explain_fputg3)
explainfputq3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

300

explain_fputs(3) LibraryFunctions Manual explain_fputs(3)

NAME
explain_fputs — explaifiput{3) errors

SYNOPSIS
#include <libexplain/fputs.h>

const char *explain_fputs(const char *s, FILE *fp);

const char *explain_errno_fputs(int errnum, const char *s, FILE *fp);

void explain_message_fputs(char *message, int message_size, const char *s, FILE *fp);

void explain_message_errno_fputs(char *message, int message_size, int errnum, const char *s, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnediyt4® system call.

explain_fputs
const char *explain_fputs(const char *s, FILE *fp);

Theexplain_fputsfunction is used to obtain an explanation of an error returned bBputg3) system call.
The least the message will contain is tatug ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
S The original s, exactly as passed tofinaq3) system call.
fp The original fp, exactly as passed to thetg3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{

fprintf(stderr, "%s\n", explain_fputs(s, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fputs_or_di€3) function.

explain_errno_fputs
const char *explain_errno_fputs(int errnum, const char *s, FILE *fp);

The explain_errno_fputs function is used to obtain axmanation of an error returned by thautg3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from eh@o global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

S The original s, exactly as passed tofinaq3) system call.
fp The original fp, exactly as passed to thetg3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

301

explain_fputs(3) LibraryFunctions Manual explain_fputs(3)

if (fputs(s, fp) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fputs(err, s, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fputs_or_di€3) function.
explain_message_fputs

void explain_message_fputs(char *message, int message_size, const char *s, FILE *fp);

The explain_message_fputéunction is used to obtain an explanation of an error returned Hipuke3)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
S The original s, exactly as passed tofinaq3) system call.
fp The original fp, exactly as passed to thetg3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{

char message[3000];
explain_message_fputs(message, sizeof(message), s, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fputs_or_di€3) function.

explain_message_errno_fputs
void explain_message_errno_fputs(char *message, int message_size, int errnum, const char *s, FILE *fp);

The explain_message_errno_fput$unction is used to obtain axganation of an error returned by the
fputy3) system call. The least the message will contain isahee wfstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

S The original s, exactly as passed tofinaq3) system call.
fp The original fp, exactly as passed to thetg3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{
int err = errno;
char message[3000];

302

explain_fputs(3) LibraryFunctions Manual explain_fputs(3)

explain_message_errno_fputs(message, sizeof(message), err, s,

fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fputs_or_di€3) function.

SEE ALSO
fputg3) write a string to a stream
explain_fputs_or_di€3)
write a string to a stream and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

303

explain_fputs_or_die(3) Librarifunctions Manual explain_fputs_or_die(3)

NAME
explain_fputs_or_die — write a string to a stream and report errors

SYNOPSIS
#include <libexplain/fputs.h>

void explain_fputs_or_die(const char *s, FILE *fp);
int explain_fputs_on_error(const char *s, FILE *fp);

DESCRIPTION
The explain_fputs_or_diefunction is used to call thiputg3) system call. On failure an explanation will
be printed testderr, obtained from thexplain_fput¢3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_fputs_on_error function is used to call thiputq3) system call. Ondilure an gplanation
will be printed tostderr, obtained from thexplain_fput¢3) function, but still returns to the caller.

S The s, exactly as to be passed toftheq3) system call.
fp The fp, exactly as to be passed tofthag3) system call.

RETURN VALUE
Theexplain_fputs_or_diefunction only returns on success, $getg3) for more information. Oraflure,
prints an explanation and exits, it does not return.

Theexplain_fputs_on_error function alvays returns the value return by the wrapfiadq3) system call.

EXAMPLE
Theexplain_fputs_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fputs_or_die(s, fp);
SEE ALSO
fputg3) write a string to a stream
explain_fput$3)
explainfputq3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

304

explain_fread(3) Libraryrunctions Manual explain_fread(3)

NAME
explain_fread — explain fread(3) errors

SYNOPSIS
#include <libexplain/fread.h>

const char *explain_fread(void *p&ize_t size, size_t nmemb, FILE *fp);

const char *explain_errno_fread(int errnum, void *gize_t size, size_t nmemb, FILE *fp);

void explain_message_fread(char *message, int message_size, vollz&ptr size, size_t nmemb, FILE
*fp);

void explain_message_errno_fread(char *message, int message_size, int errnum, yade*ptisize,
size_t nmemb, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnediead® system call.

explain_fread
const char *explain_fread(void *p&ize_t size, size_t nmemb, FILE *fp);

The explain_fread function is used to obtain an explanation of an error returned biyeth&3) system
call. Theleast the message will contain is tre@ue ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))

{
fprintf(stderr, "%s\n", explain_fread(ptr, size, nmemb, fp));
exit(EXIT_FAILURE);
}
ptr The original ptrexactly as passed to tifiwad3) system call.

size The original size, exactly as passed tofthad3) system call.
nmemb The original nmemb, exactly as passed tdftbed3) system call.
fp The original fp, exactly as passed to fiead3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fread
const char *explain_errno_fread(int errnum, void *gize_t size, size_t nmemb, FILE *fp);

The explain_errno_fread function is used to obtain axmganation of an error returned by tfread3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fread(err, ptr, size, nmemb, fp));
exit(EXIT_FAILURE);

}

305

explain_fread(3) Libraryrunctions Manual explain_fread(3)

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

ptr The original ptrexactly as passed to tifiwad3) system call.
size The original size, exactly as passed tofthad3) system call.
nmemb The original nmemb, exactly as passed tdfthed3) system call.
fp The original fp, exactly as passed to fiead3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fread
void explain_message_fread(char *message, int message_size, vollz&ptr size, size_t nmemb, FILE

*fp);
The explain_message_freadunction may be used to obtain axpknation of an error returned by the
fread3) system call. The least the message will contain isdhe\ofstrerror(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.
Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))

{
char message[3000];
explain_message_fread(message, sizeof(message), ptr, size, nmemb, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
ptr The original ptrexactly as passed to tifiwad3) system call.
size The original size, exactly as passed tofthad3) system call.
nmemb The original nmemb, exactly as passed tdfthed3) system call.
fp The original fp, exactly as passed to fiead3) system call.

explain_message_errno_fread
void explain_message_errno_fread(char *message, int message_size, int errnum, yade*gtisize,
size_t nmemb, FILE *fp);

The explain_message_errno_freafunction may be used to obtain an explanation of an error returned by
the fread3) system call. The least the message will contain is the valagresfor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))
{

int err = errno;

306

explain_fread(3) Libraryrunctions Manual explain_fread(3)

char message[3000];

explain_message_errno_fread(message, sizeof(message), err,
ptr, size, nmemb, fp);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ah@o global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

ptr The original ptrexactly as passed to tifiwad3) system call.
size The original size, exactly as passed tofthad3) system call.
nmemb The original nmemb, exactly as passed tdfthed3) system call.
fp The original fp, exactly as passed to fiead3) system call.

SEE ALSO
fread3) binary stream input
explain_fread or_di€3)
binary stream input and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

307

explain_fread _or_die(3) Librarlfunctions Manual explain_fread_or_die(3)

NAME
explain_fread_or_die - binary stream input and report errors

SYNOPSIS
#include <libexplain/fread.h>

void explain_fread_or_die(void *ptsize_t size, size_t nmemb, FILE *fp);

DESCRIPTION
Theexplain_fread_or_diefunction is used to call thieead3) system call. On failure an explanation will

be printed tostderr, obtained from explain_fread3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
size_t how_many = explain_fread_or_die(ptr, size, nmemb, fp);

ptr The ptr exactly as to be passed to tinead3) system call.
size The size, exactly as to be passed tdrad3) system call.
nmemb The nmemb, exactly as to be passed tdrde(3) system call.
fp The fp, exactly as to be passed toftkad3) system call.

Returns: This function only returns on success, the number read or 0 on end-of-@ptgilure, prints an
explanation and exits.

SEE ALSO
fread3) binary stream input

explain_fread3)
explainfread(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

308

explain_freopen(3) Libraryrunctions Manual explain_freopen(3)

NAME
explain_freopen — explain freopen(3) errors

SYNOPSIS
#include <libexplain/freopen.h>
const char *explain_freopen(const char *pathname, const char *flags, FILE *fp);
const char *explain_errno_freopen(int errnum, const char *pathname, const char *flags, FILE *fp);
void explain_message_freopen(char *message, int message_size, const char *pathname, const char *flags,
FILE *fp);
void explain_message_errno_freopen(char *message, int message_size, int errnum, const char *pathname,
const char *flags, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanatiorfssfoper3) errors.
explain_freopen
const char *explain_freopen(const char *pathname, const char *flags, FILE *fp);
The explain_freopen function is used to obtaingriamation of an error returned by theoper{3) system

call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if ({freopen(pathname, flags, fp))
{

fprintf(stderr, '%s0, explain_freopen(pathname, flags, fp));
exit(EXIT_FAILURE);
}

pathname
The original pathname, exactly as passed tdrédmper{3) system call.

flags The original flags, exactly as passed tofteeper{3) system call.
fp The original fp, exactly as passed to tlemper{3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_freopen
const char *explain_errno_freopen(int errnum, const char *pathname, const char *flags, FILE *fp);

The explain_errno_freopen function is used to obtainxatapation of an error returned by tfieoper{3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (freopen(pathname, flags, fp))

{
int err = errno;
fprintf(stderr, '%s0, explain_errno_freopen(err, pathname,
flags, fp));
exit(EXIT_FAILURE);
}

309

explain_freopen(3) Libraryrunctions Manual explain_freopen(3)

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tdréduper{3) system call.

flags The original flags, exactly as passed tofteeper{3) system call.
fp The original fp, exactly as passed to tlemper{3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.
explain_message_freopen
void explain_message_freopen(char *message, int message_size, const char *pathname, const char *flags,

FILE *fp);
The explain_message freopen function is used to obtain an explanation of an error returned by the
freoperf3) system call. The least the message will contain is #heevof strerror(errno) , but

usually it will do much betteand indicate the underlying cause in more detalil.
Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if ({freopen(pathname, flags, fp))
{

char message[3000];
explain_message_freopen(message, sizeof(message), pathname, flags,
fp);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tdréduper{3) system call.

flags The original flags, exactly as passed tofteeper{3) system call.
fp The original fp, exactly as passed to tleper{3) system call.

explain_message_errno_freopen
void explain_message_errno_freopen(char *message, int message_size, int errnum, const char *pathname,
const char *flags, FILE *fp);

The explain_message_errno_freopen function is used to obtakpkmation of an error returned by the
freoperf3) system call. The least the message will contain is the valustadrror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if ({freopen(pathname, flags, fp))
{
int err = errno;
char message[3000];
explain_message_errno_freopen(message, sizeof(message), err,

310

explain_freopen(3) Libraryrunctions Manual explain_freopen(3)

pathname, flags, fp);
fprintf(stderr, '%s0, message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. Because a messageuffsuirad been
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed téréduper{3) system call.

flags The original flags, exactly as passed tofteeper{3) system call.
fp The original fp, exactly as passed to tlemper{3) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

311

explain_freopen_or_die(3) Librayunctions Manual explain_freopen_or_die(3)

NAME
explain_freopen_or_die - open file and report errors

SYNOPSIS
#include <libexplain/freopen.h>
void explain_freopen_or_die(const char *pathname, const char *flags, FILE *fp);

DESCRIPTION
The explain_freopen_or_die function is used to reopen a file viftgbper{3) system call.On failure it
will print an explanation, obtained from ttieexplain_freope(B) function, on the standard error stream
and then exit.

This function is intended to be used in a fashion similar to the following example:
explain_freopen_or_die(pathname, flags, fp);

pathname
The pathname, exactly as to be passed térd¢bper{3) system call.

flags The flags, exactly as to be passed toftbeper{3) system call.
fp The fp, exactly as to be passed tofteeper{3) system call.
Returns: Only eer return on success. Mer returns on failure.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

312

explain_fseek(3) Libraryrunctions Manual explain_fseek(3)

NAME
explain_fseek — explaifseek3) errors

SYNOPSIS
#include <libexplain/fseek.h>

const char *explain_fseek(FILE *fp, long offset, int whence);

const char *explain_errno_fseek(int errnum, FILE *fp, long offset, int whence);

void explain_message_fseek(char *message, int message_size, FILE *fp, long offset, int whence);

void explain_message_errno_fseek(char *message, int message_size, int errnum, FILE *fp, long offset, int
whence);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedisse®) system call.

explain_fseek
const char *explain_fseek(FILE *fp, long offset, int whence);

Theexplain_fseekfunction is used to obtain an explanation of an error returned gebk3) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to theek3) system call.

offset The original offset, exactly as passed tofdexk3) system call.
whence The original whence, exactly as passed tddbek3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)

fprintf(stderr, "%s\n", explain_fseek(fp, offset, whence));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fseek or_di@) function.

explain_errno_fseek
const char *explain_errno_fseek(int errnum, FILE *fp, long offset, int whence);

The explain_errno_fseekfunction is used to obtain axmganation of an error returned by tfseek3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to theek3) system call.
offset The original offset, exactly as passed tofdexk3) system call.
whence The original whence, exactly as passed tddbek3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

313

explain_fseek(3) Libraryrunctions Manual explain_fseek(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fseek(err, fp, offset,
whence));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fseek or_di@) function.

explain_message_fseek
void explain_message_fseek(char *message, int message_size, FILE *fp, long offset, int whence);

The explain_message_fseekinction is used to obtain axpanation of an error returned by tfeeek3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to theek3) system call.
offset The original offset, exactly as passed tofdexk3) system call.
whence The original whence, exactly as passed tdsbek3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)

{
char message[3000];
explain_message_fseek(message, sizeof(message), fp, offset,
whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as tbgplain_fseek or_di@) function.

explain_message_errno_fseek
void explain_message_errno_fseek(char *message, int message_size, int errnum, FILE *fp, long offset, int
whence);

The explain_message_errno_fseekunction is used to obtain an explanation of an error returned by the
fseek3) system call. The least the message will contain isahm ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

314

explain_fseek(3) Libraryrunctions Manual explain_fseek(3)

fp The original fp, exactly as passed to theek3) system call.
offset The original offset, exactly as passed tofdexk3) system call.
whence The original whence, exactly as passed tddbek3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fseek(message, sizeof(message), err, fp,
offset, whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre-packaged as thgplain_fseek or_di@) function.
SEE ALSO
fseek3) reposition a stream
explain_fseek or_di@)
reposition a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

315

explain_fseebk(3) LibraryFunctions Manual explain_fseeko(3)

NAME
explain_fseek — explainfseek@3) errors

SYNOPSIS
#include <libexplain/fseeko.h>

const char *explain_fseeko(FILE *fp, off t offset, int whence);

const char *explain_errno_fseeko(int errnum, FILE *fp, off t offset, int whence);

void explain_message_fseeko(char *message, int message_size, FILE *fp, off _t offset, int whence);

void explain_message_errno_fseeko(char *message, int message_size, int errnum, FILE *fp, off t offset,
int whence);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedissetg) system call.

explain_fseeko
const char *explain_fseeko(FILE *fp, off t offset, int whence);

The explain_fseekofunction is used to obtain axmanation of an error returned by tfeeek¢3) system
call. The least the message will contain is the valustrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to theekd3) system call.

offset The original offset, exactly as passed tofdeek(3) system call.
whence The original whence, exactly as passed tdibek¢3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseeko(fp, offset, whence) < 0)

fprintf(stderr, "%s\n", explain_fseeko(fp, offset, whence));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_fseeko_or_d{8) function.

explain_errno_fseeko
const char *explain_errno_fseeko(int errnum, FILE *fp, off t offset, int whence);

The explain_errno_fseekofunction is used to obtain axpanation of an error returned by tfemek¢3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to theekd3) system call.
offset The original offset, exactly as passed tofdeek¢3) system call.
whence The original whence, exactly as passed tdthek¢3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

316

explain_fseebk(3) LibraryFunctions Manual explain_fseeko(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseeko(fp, offset, whence) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fseeko(err, fp, offset,
whence));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_fseeko_or_d{8) function.

explain_message_fseeko
void explain_message_fseeko(char *message, int message_size, FILE *fp, off_t offset, int whence);

The explain_message_fseekfunction is used to obtain an explanation of an error returned by the
fseek@3) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to theekd3) system call.
offset The original offset, exactly as passed tofdeek(3) system call.
whence The original whence, exactly as passed tdtbek¢3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseeko(fp, offset, whence) < 0)

{
char message[3000];
explain_message_fseeko(message, sizeof(message), fp, offset,
whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_fseeko_or_d{8) function.

explain_message_errno_fseeko
void explain_message_errno_fseeko(char *message, int message_size, int errnum, FILE *fp, off t offset,
int whence);

The explain_message_errno_fseekimnction is used to obtain an explanation of an error returned by the
fseek@3) system call. The least the message will contain isahee ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

317

explain_fseebk(3) LibraryFunctions Manual explain_fseeko(3)

fp The original fp, exactly as passed to theekd3) system call.
offset The original offset, exactly as passed tofdeek(3) system call.
whence The original whence, exactly as passed tdibek¢3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseeko(fp, offset, whence) < 0)

{

int err = errno;
char message[3000];
explain_message_errno_fseeko(message, sizeof(message), err,
fp, offset, whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_fseeko_or_d{8) function.

SEE ALSO
fseek@3)
seek to or report file position
explain_fseeko _or_d(8)
seek to or report file position and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

318

explain_fseek or_die(3) LibraryFunctions Manual explain_fseeko_or_die(3)

NAME
explain_fseeko_or_die - seek to or report file position and report errors

SYNOPSIS
#include <libexplain/fseeko.h>

void explain_fseeko_or_die(FILE *fp, off t offset, int whence);
int explain_fseeko_on_error(FILE *fp, off t offset, int whence);

DESCRIPTION
Theexplain_fseeko_or_digunction is used to call thiseek@3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fseek{) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fseeko_on_errorfunction is used to call thiseek@3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fseek(B) function, but still returns to the caller.

fp The fp, exactly as to be passed tofdeekd3) system call.
offset The offset, exactly as to be passed tofseek@3) system call.
whence The whence, exactly as to be passed tdstbek¢3) system call.

RETURN VALUE
The explain_fseeko_or_diefunction only returns on success, deeekd3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fseeko_on_errorfunction alvays returns the value return by the wrapfseekd3) system
call.

EXAMPLE
Theexplain_fseeko_or_didunction is intended to be used in a fashion similar to the following example:
explain_fseeko_or_die(fp, offset, whence);

SEE ALSO
fseek@3)
seek to or report file position

explain_fseek(B)
explainfseek@3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

319

explain_fseek_or_die(3) Libraryunctions Manual explain_fseek_or_die(3)

NAME
explain_fseek_or_die - reposition a stream and report errors

SYNOPSIS
#include <libexplain/fseek.h>

void explain_fseek or_die(FILE *fp, long offset, int whence);
int explain_fseek _on_error(FILE *fp, long offset, int whence);

DESCRIPTION
The explain_fseek or_diefunction is used to call thiseek3) system call. On failure an explanation will
be printed testderr, obtained from thexplain_fseek3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_fseek_on_errorfunction is used to call thiseek3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fseek3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofdexk3) system call.
offset The offset, exactly as to be passed tofseek3) system call.
whence The whence, exactly as to be passed tdstbek3) system call.

RETURN VALUE
Theexplain_fseek or_diefunction only returns on success, $eeek3) for more information. Oraflure,
prints an explanation and exits, it does not return.

Theexplain_fseek_on_errorfunction alvays returns the value return by the wrapfsskk3) system call.

EXAMPLE
Theexplain_fseek_or_digunction is intended to be used in a fashion similar to the following example:
explain_fseek or_die(fp, offset, whence);

SEE ALSO
fseek3) reposition a stream

explain_fseel3)
explainfseek3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

320

explain_fsetpos(3) LibrarfFunctions Manual explain_fsetpos(3)

NAME
explain_fsetpos — explaifsetpo$3) errors

SYNOPSIS
#include <libexplain/fsetpos.h>
const char *explain_fsetpos(FILE *fp, fpos_t *pos);
const char *explain_errno_fsetpos(int errnum, FILE *fp, fpos_t *pos);
void explain_message_fsetpos(char *message, int message_size, FILE *fp, fpos_t *pos);
void explain_message_errno_fsetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedisstpiog3) system call.

explain_fsetpos
const char *explain_fsetpos(FILE *fp, fpos_t *pos);

Theexplain_fsetposfunction is used to obtain an explanation of an error returned bgetpo$3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to thetpo$3) system call.
pos The original pos, exactly as passed tofieepo$3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{

fprintf(stderr, "%s\n", explain_fsetpos(fp, pos));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fsetpos_or_d{8) function.

explain_errno_fsetpos
const char *explain_errno_fsetpos(int errnum, FILE *fp, fpos_t *pos);

Theexplain_errno_fsetposfunction is used to obtain axpdanation of an error returned by tfsetpo$3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetpo$3) system call.
pos The original pos, exactly as passed tofieepo$3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

321

explain_fsetpos(3) LibrarfFunctions Manual explain_fsetpos(3)

if (fsetpos(fp, pos) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fsetpos(err, fp, pos));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fsetpos_or_d{8) function.
explain_message_fsetpos

void explain_message_fsetpos(char *message, int message_size, FILE *fp, fpos_t *pos);

The explain_message_fsetpofunction is used to obtain arxmanation of an error returned by the

fsetpog3d) system call. The least the message will contain is the vaktesafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
fp The original fp, exactly as passed to thetpo$3) system call.
pos The original pos, exactly as passed tofieepo$3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{

char message[3000];

explain_message_fsetpos(message, sizeof(message), fp, pos);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_fsetpos_or_d{8) function.
explain_message_errno_fsetpos
void explain_message_errno_fsetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);

The explain_message_errno_fsetpdsinction is used to obtain axmanation of an error returned by the
fsetpog3d) system call. The least the message will contain is the vaktesafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to thetpo$3) system call.
pos The original pos, exactly as passed tofieepo$3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{
int err = errno;
char message[3000];

322

explain_fsetpos(3) LibrarfFunctions Manual explain_fsetpos(3)

explain_message_errno_fsetpos(message, sizeof(message), err,

fp, pos);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fsetpos_or_d{8) function.

SEE ALSO
fsetpo§l)
reposition a stream
explain_fsetpos_or_d(8)
reposition a stream and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

323

explain_fsetpos_or_die(3) Librafyunctions Manual explain_fsetpos_or_die(3)

NAME
explain_fsetpos_or_die - reposition a stream and report errors

SYNOPSIS
#include <libexplain/fsetpos.h>
void explain_fsetpos_or_die(FILE *fp, fpos_t *pos);
int explain_fsetpos_on_error(FILE *fp, fpos_t *pos);
DESCRIPTION
The explain_fsetpos_or_diegfunction is used to call thisetpo$3) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_fsetpo€3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

Theexplain_fsetpos_on_errorfunction is used to call thisetpo$3) system call. On failure axganation
will be printed tostderr, obtained from thexplain_fsetpo€3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofdetpo$3) system call.
pos The pos, exactly as to be passed tdtkgo$3) system call.

RETURN VALUE
The explain_fsetpos_or_diefunction only returns on success, geetpo$3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fsetpos_on_errorfunction alvays returns the value return by the wrapeetpog3) system
call.

EXAMPLE

Theexplain_fsetpos_or_didunction is intended to be used in a fashion similar to the following example:

explain_fsetpos_or_die(fp, pos);

SEE ALSO

fsetpo§l)

reposition a stream
explain_fsetpog3)
explainfsetpo$3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

324

explain_fstat(3) LibraryFunctions Manual explain_fstat(3)

NAME
explain_fstat — explain fstat(2) errors

SYNOPSIS
#include <libexplain/fstat.h>

const char *explain_fstat(int fildes, struct stat *buf);

const char *explain_errno_fstat(int errnum, int fildes, struct stat *buf);

void explain_message_fstat(char *message, int message_size, int fildes, struct stat *buf);

void explain_message_errno_fstat(char *message, int message_size, int errnum, int fildes, struct stat *buf);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddtatBe system call.

explain_fstat
const char *explain_fstat(int fildes, struct stat *buf);

Theexplain_fstat function is used to obtain an explanation of an error returned Hgt#i@) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)

{
fprintf(stderr, "%s\n", explain_fstat(fildes, buf));

exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed tofdtai2) system call.
buf The original buf, exactly as passed to f$taf2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fstat
const char *explain_errno_fstat(int errnum, int fildes, struct stat *buf);

The explain_errno_fstat function is used to obtain arxmanation of an error returned by tfstai(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstat(err, fildes, buf));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdtai2) system call.
buf The original buf, exactly as passed to f$taf2) system call.

325

explain_fstat(3) LibraryFunctions Manual explain_fstat(3)

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fstat
void explain_message_fstat(char *message, int message_size, int fildes, struct stat *buf);

The explain_message_fstafunction may be used to obtain arpi&nation of an error returned by the
fsta(2) system call.The least the message will contain is the valustrefror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)

{
char message[3000];
explain_message_fstat(message, sizeof(message), fildes, buf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofdtai2) system call.
buf The original buf, exactly as passed to f$taf2) system call.

explain_message_errno_fstat
void explain_message_errno_fstat(char *message, int message_size, int errnum, int fildes, struct stat *buf);

The explain_message_errno_fstafunction may be used to obtain an explanation of an error returned by
the fstaf2) system call. The least the message will contain is the valsgesfor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_fstat(message, sizeof(message), err, fildes, buf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdtai2) system call.

326

explain_fstat(3) LibraryFunctions Manual explain_fstat(3)

buf The original buf, exactly as passed to f$taf2) system call.

SEE ALSO
fstaf2) get file status
explain_fstat_or_di€3)
get file status and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

327

explain_fstatat(3) Libraryrunctions Manual explain_fstatat(3)

NAME
explain_fstatat — explaifstata(2) errors

SYNOPSIS
#include <libexplain/fstatat.h>
const char *explain_fstatat(int fildes, const char *pathname, struct stat *data, int flags);
const char *explain_errno_fstatat(int errnum, int fildes, const char *pathname, struct stat *data, int flags);
void explain_message_fstatat(char *message, int message_size, int fildes, const char *pathname, struct stat
*data, int flags);
void explain_message_errno_fstatat(char *message, int message_size, int errnum, int fildes, const char
*pathname, struct stat *data, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedsiptig?) system call.

explain_fstatat
const char *explain_fstatat(int fildes, const char *pathname, struct stat *data, int flags);

The explain_fstatat function is used to obtain axmganation of an error returned by tfatata(2) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed tofdtata{2) system call.

pathname
The original pathname, exactly as passed tdstiaa{2) system call.

data The original data, exactly as passed tof¢teta(2) system call.
flags The original flags, exactly as passed tofgiata(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatat(fildes, pathname, data, flags) < 0)

{
fprintf(stderr, "%s\n", explain_fstatat(fildes, pathname,
data, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_fstatat_or_di€3) function.

explain_errno_fstatat
const char *explain_errno_fstatat(int errnum, int fildes, const char *pathname, struct stat *data, int flags);

The explain_errno_fstatat function is used to obtain axmanation of an error returned by tfetata(2)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdtata{2) system call.

328

explain_fstatat(3) Libraryrunctions Manual explain_fstatat(3)

pathname
The original pathname, exactly as passed tdstiaa{2) system call.

data The original data, exactly as passed toféteta(2) system call.
flags The original flags, exactly as passed tofgata(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatat(fildes, pathname, data, flags) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstatat(err, fildes,
pathname, data, flags));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_fstatat_or_di€3) function.

explain_message_fstatat
void explain_message_fstatat(char *message, int message_size, int fildes, const char *pathname, struct stat
*data, int flags);

The explain_message_fstatafunction is used to obtain an explanation of an error returned by the
fstata(2) system call. The least the message will contain isahee ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofdtata{2) system call.

pathname
The original pathname, exactly as passed tdstia¢a{2) system call.

data The original data, exactly as passed tof¢teta(2) system call.
flags The original flags, exactly as passed tofgata(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatat(fildes, pathname, data, flags) < 0)

{
char message[3000];
explain_message_fstatat(message, sizeof(message), fildes,
pathname, data, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_fstatat_or_di€3) function.

explain_message_errno_fstatat
void explain_message_errno_fstatat(char *message, int message_size, int errnum, int fildes, const char
*pathname, struct stat *data, int flags);

329

explain_fstatat(3) Libraryrunctions Manual explain_fstatat(3)

The explain_message_errno_fstatatunction is used to obtain axmanation of an error returned by the
fstata(2) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdtata{2) system call.

pathname
The original pathname, exactly as passed tdstia¢a{2) system call.

data The original data, exactly as passed toféteta(2) system call.
flags The original flags, exactly as passed tofgata(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatat(fildes, pathname, data, flags) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_fstatat(message, sizeof(message), err,
fildes, pathname, data, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as thgplain_fstatat_or_di€3) function.
SEE ALSO
fstata(2)

get file status relate t a drectory file descriptor
explain_fstatat_or_di€3)
get file status relate t a drectory file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

330

explain_fstatat_or_die(3) Libraryunctions Manual explain_fstatat_or_die(3)

NAME
explain_fstatat_or_die — get file status relatio a dr fd and report errors

SYNOPSIS
#include <libexplain/fstatat.h>

void explain_fstatat_or_die(int fildes, const char *pathname, struct stat *data, int flags);
int explain_fstatat_on_error(int fildes, const char *pathname, struct stat *data, int flags);

DESCRIPTION
The explain_fstatat_or_die function is used to call thistata(2) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fstataf3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fstatat_on_error function is used to call thistata(2) system call. On failure axganation
will be printed tostderr, obtained from thexplain_fstataf3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed tofsi@ta(2) system call.

pathname
The pathname, exactly as to be passed téstam{2) system call.

data The data, exactly as to be passed tddta&al2) system call.
flags The flags, exactly as to be passed tofstetal2) system call.

RETURN VALUE
The explain_fstatat_or_die function only returns on success, detata(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fstatat_on_error function alvays returns the value return by the wrapfsdta(2) system
call.

EXAMPLE
Theexplain_fstatat_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fstatat_or_die(fildes, pathname, data, flags);

SEE ALSO
fstata(2)
get file status relate t a drectory file descriptor
explain_fstata(3)
explainfstata{2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

331

explain_fstatfs(3) LibraryFunctions Manual explain_fstatfs(3)

NAME
explain_fstatfs — explain fstatfs(2) errors

SYNOPSIS
#include <libexplain/fstatfs.h>

const char *explain_fstatfs(int fildes, struct statfs *data);

const char *explain_errno_fstatfs(int errnum, int fildes, struct statfs *data);

void explain_message_fstatfs(char *message, int message_size, int fildes, struct statfs *data);

void explain_message_errno_fstatfs(char *message, int message_size, int errnum, int fildes, struct statfs
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedidiatiig@) system call.

explain_fstatfs
const char *explain_fstatfs(int fildes, struct statfs *data);

The explain_fstatfs function is used to obtain an explanation of an error returned bgtdtég2) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed tofdtatfg2) system call.
data The original data, exactly as passed tofstetfg2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)

{
fprintf(stderr, "%s\n", explain_fstatfs(fildes, data));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as tbgplain_fstatfs_or_di€) function.

explain_errno_fstatfs
const char *explain_errno_fstatfs(int errnum, int fildes, struct statfs *data);

The explain_errno_fstatfs function is used to obtain axmanation of an error returned by tfatatfg2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdtatfg2) system call.
data The original data, exactly as passed tofstetf§2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

332

explain_fstatfs(3) LibraryFunctions Manual explain_fstatfs(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstatfs(err, fildes,
data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fstatfs_or_di€3) function.

explain_message_fstatfs
void explain_message_fstatfs(char *message, int message_size, int fildes, struct statfs *data);

Theexplain_message_fstatfunction is used to obtain an explanation of an error returned bgttitg2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofdtatfg2) system call.
data The original data, exactly as passed tofstetf§2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)

{
char message[3000];
explain_message_fstatfs(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fstatfs_or_di€3) function.

explain_message_errno_fstatfs
void explain_message_errno_fstatfs(char *message, int message_size, int errnum, int fildes, struct statfs

*data);
The explain_message_errno_fstatffunction is used to obtain an explanation of an error returned by the
fstatf¢2) system call. The least the message will contain is the vaktesofor(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdtatfg2) system call.
data The original data, exactly as passed tofstetf§2) system call.
Example: This function is intended to be used in a fashion similar to the following example:

333

explain_fstatfs(3) LibraryFunctions Manual explain_fstatfs(3)

if (fstatfs(fildes, data) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fstatfs(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fstatfs_or_di€3) function.

SEE ALSO
fstatf¢2)
get file system statistics
explain_fstatfs_or_di€3)
get file system statistics and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

334

explain_fstatfs_or_die(3) Librarlfunctions Manual explain_fstatfs_or_die(3)

NAME
explain_fstatfs_or_die — get file system statistics and report errors

SYNOPSIS
#include <libexplain/fstatfs.h>

void explain_fstatfs_or_die(int fildes, struct statfs *data);
int explain_fstatfs_on_error(int fildes, struct statfs *data);

DESCRIPTION
Theexplain_fstatfs_or_diefunction is used to call thfstatf2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fstatf$3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fstatfs_on_error function is used to call thistatf€2) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fstatf$3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed tofsatf{2) system call.
data The data, exactly as to be passed tddtaf{2) system call.

RETURN VALUE
The explain_fstatfs_or_die function only returns on success, dstatf€2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fstatfs_on_error function alvays returns the value return by the wrappsatf{2) system
call.

EXAMPLE
Theexplain_fstatfs_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fstatfs_or_die(fildes, data);

SEE ALSO
fstatf¢2)
get file system statistics
explain_fstatf¢3)
explainfstatfg2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

335

explain_fstat_or_die(3) Librarffunctions Manual explain_fstat_or_die(3)

NAME
explain_fstat_or_die — get file status and report errors

SYNOPSIS
#include <libexplain/fstat.h>

void explain_fstat_or_die(int fildes, struct stat *buf);

DESCRIPTION
Theexplain_fstat_or_diefunction is used to call thfstai(2) system call. On failure an explanation will be

printed to stderr, obtained from explain_fsta{3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_fstat_or_die(fildes, buf);

fildes The fildes, exactly as to be passed tofgit@(2) system call.
buf The buf, exactly as to be passed tofttef2) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fstaf2) get file status

explain_fsta(3)
explainfstai(2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

336

explain_fstatvfs(3) LibraryFunctions Manual explain_fstatvfs(3)

NAME
explain_fstatvfs — explaifstatvf¢2) errors

SYNOPSIS
#include <libexplain/fstatvfs.h>

const char *explain_fstatvfs(int fildes, struct statvfs *data);

const char *explain_errno_fstatvfs(int errnum, int fildes, struct statvfs *data);

void explain_message_fstatvfs(char *message, int message_size, int fildes, struct statvfs *data);

void explain_message_errno_fstatvfs(char *message, int message_size, int errnum, int fildes, struct statvfs
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddtatirfg?) system call.

explain_fstatvfs
const char *explain_fstatvfs(int fildes, struct statvfs *data);

Theexplain_fstatvfsfunction is used to obtain an explanation of an error returned bgtttef§2) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed tofdtatvf§2) system call.
data The original data, exactly as passed tof¢itetvfg2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)
{

fprintf(stderr, "%s\n", explain_fstatvfs(fildes, data));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_fstatvfs_or_di@) function.

explain_errno_fstatvfs
const char *explain_errno_fstatvfs(int errnum, int fildes, struct statvfs *data);

Theexplain_errno_fstatvfsfunction is used to obtain ammanation of an error returned by tfstatvf$2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdtatvf§2) system call.
data The original data, exactly as passed tof¢itetvfg2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

337

explain_fstatvfs(3) LibraryFunctions Manual explain_fstatvfs(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstatvfs(err, fildes,
data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fstatvfs_or_di@) function.

explain_message_fstatvfs
void explain_message_fstatvfs(char *message, int message_size, int fildes, struct statvfs *data);

The explain_message_fstatvfdunction is used to obtain an explanation of an error returned by the
fstatvf¢2) system call. The least the message will contain is #hagevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofdtatvf§2) system call.
data The original data, exactly as passed tof¢itetvf¢2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)

{
char message[3000];
explain_message_fstatvfs(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fstatvfs_or_di@) function.

explain_message_errno_fstatvfs
void explain_message_errno_fstatvfs(char *message, int message_size, int errnum, int fildes, struct statvfs

*data);
Theexplain_message_errno_fstatvfunction is used to obtain an explanation of an error returned by the
fstatvf¢2) system call. The least the message will contain is the valuestadrror(errno) , but

usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdtatvf§2) system call.
data The original data, exactly as passed tof¢itetvf$2) system call.
Example: This function is intended to be used in a fashion similar to the following example:

338

explain_fstatvfs(3) LibraryFunctions Manual explain_fstatvfs(3)

if (fstatvfs(fildes, data) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_fstatvfs(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre-packaged as thgplain_fstatvfs_or_di@) function.
SEE ALSO
fstatvfg2)

get file system statistics

explain_fstatvfs_or_di@)
get file system statistics and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

339

explain_fstatvfs_or_die(3) Librarlfunctions Manual explain_fstatvfs_or_die(3)

NAME
explain_fstatvfs_or_die — get file system statistics and report errors

SYNOPSIS
#include <libexplain/fstatvfs.h>

void explain_fstatvfs_or_die(int fildes, struct statvfs *data);
int explain_fstatvfs_on_error(int fildes, struct statvfs *data);

DESCRIPTION
The explain_fstatvfs_or_diefunction is used to call thistatvf§2) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fstatvf§3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_fstatvfs_on_error function is used to call thdstatvf¢2) system call. On failure an
explanation will be printed tetderr, obtained from theexplain_fstatvf$¢3) function, lut still returns to the
caller.

fildes The fildes, exactly as to be passed tofsatvfg2) system call.
data The data, exactly as to be passed tdttavf$2) system call.

RETURN VALUE

The explain_fstatvfs_or_diefunction only returns on success, dstatvf§2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fstatvfs_on_errorfunction alvays returns the value return by the wrapfsdtvf$2) system
call.

EXAMPLE

Theexplain_fstatvfs_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fstatvfs_or_die(fildes, data);

SEE ALSO
fstatvfg2)
get file system statistics

explain_fstatvf§3)
explainfstatvf¢2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

340

explain_fsync(3) LibraryFunctions Manual explain_fsync(3)

NAME
explain_fsync — explaifisyng?2) errors

SYNOPSIS
#include <libexplain/fsync.h>

const char *explain_fsync(int fildes);

const char *explain_errno_fsync(int errnum, int fildes);

void explain_message_fsync(char *message, int message_size, int fildes);

void explain_message_errno_fsync(char *message, int message_size, int errnum, int fildes);
DESCRIPTION

These functions may be used to obtain explanations for errors returneddyntt®) system call.

explain_fsync
const char *explain_fsync(int fildes);
The explain_fsync function is used to obtain an explanation of an error returned bfgyhdg2) system

call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed tofdyd?2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

if (fsync(fildes) < 0)

{

fprintf(stderr, "%s\n", explain_fsync(fildes));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_fsync_or_di€) function.
explain_errno_fsync

const char *explain_errno_fsync(int errnum, int fildes);

The explain_errno_fsync function is used to obtain axmanation of an error returned by theyng2)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdyd2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)
{

341

explain_fsync(3) LibraryFunctions Manual explain_fsync(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fsync(err, fildes));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_fsync_or_di€) function.

explain_message_fsync
void explain_message_fsync(char *message, int message_size, int fildes);

The explain_message_fsynfunction is used to obtain an explanation of an error returned fgythé2)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed tofdyd2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)

{
char message[3000];
explain_message_fsync(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_fsync_or_di€3) function.

explain_message_errno_fsync
void explain_message_errno_fsync(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fsynfunction is used to obtain an explanation of an error returned by the
fsynd2) system call. The least the message will contain isahe \ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tofdyd?2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fsync(message, sizeof(message), err,
fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

342

explain_fsync(3) LibraryFunctions Manual explain_fsync(3)

The abee mde example isvailable pre-packaged as thglain_fsync_or_di€) function.

SEE ALSO
fsyn€2) synchronize a fil&' in-core state with storage device
explain_fsync_or_di€)
synchronize a files in-core state with storage device and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

343

explain_fsync_or_die(3) Librarffunctions Manual explain_fsync_or_die(3)

NAME
explain_fsync_or_die — synchronize a file with storage device and report errors

SYNOPSIS
#include <libexplain/fsync.h>

void explain_fsync_or_die(int fildes);
int explain_fsync_on_error(int fildes);
DESCRIPTION
The explain_fsync_or_diefunction is used to call thisyng2) system call. Onaflure an explanation will

be printed tcstderr, obtained from thexplain_fsyng€3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_fsync_on_errorfunction is used to call thisyng¢2) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_fsyn¢3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed tofya¢2) system call.

RETURN VALUE
Theexplain_fsync_or_diefunction only returns on success, $&md?2) for more information. Oraflure,
prints an explanation and exits, it does not return.

Theexplain_fsync_on_errorfunction alvays returns the value return by the wrapfmehd¢2) system call.

EXAMPLE
Theexplain_fsync_or_diefunction is intended to be used in a fashion similar to the following example:
explain_fsync_or_die(fildes);

SEE ALSO
fsyn€2) synchronize a file' in-core state with storage device

explain_fsyn¢3)
explainfsynd?2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

344

explain_ftell(3) LibraryFunctions Manual explain_ftell(3)

NAME
explain_ftell — explairftell(3) errors

SYNOPSIS
#include <libexplain/ftell.h>

const char *explain_ftell(FILE *fp);

const char *explain_errno_ftell(int errnum, FILE *fp);

void explain_message_ftell(char *message, int message_size, FILE *fp);

void explain_message_errno_ftell(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedteylBlesystem call.

explain_ftell
const char *explain_ftell(FILE *fp);

The explain_ftell function is used to obtain axmanation of an error returned by tfiell(3) system call.
The least the message will contain is th&ug ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to ttedi(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)

fprintf(stderr, "%s\n", explain_ftell(fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_ftell_or_di€3) function.

explain_errno_ftell
const char *explain_errno_ftell(int errnum, FILE *fp);

Theexplain_errno_ftell function is used to obtain an explanation of an error returned lett{@) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ttedi(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);

345

explain_ftell(3) LibraryFunctions Manual explain_ftell(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftell(err, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_ftell_or_di€3) function.

explain_message_ftell
void explain_message_ftell(char *message, int message_size, FILE *fp);

The explain_message_ftelfunction is used to obtain arxmanation of an error returned by thell(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to ttedi(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)

{
char message[3000];
explain_message_ftell(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_ftell_or_di€3) function.

explain_message_errno_ftell
void explain_message_errno_ftell(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_ftelfunction is used to obtain an explanation of an error returned by the
ftell(3) system call. The least the message will contain isahee ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ttedi(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_ftell(message, sizeof(message), err,

346

explain_ftell(3) LibraryFunctions Manual explain_ftell(3)

fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_ftell_or_di€3) function.

SEE ALSO
ftell(3) reposition a stream
explain_ftell_or_di€3)
reposition a stream and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

347

explain_ftello(3) LibraryFunctions Manual explain_ftello(3)

NAME
explain_ftello — explairftello(3) errors

SYNOPSIS
#include <libexplain/ftello.h>

const char *explain_ftello(FILE *fp);

const char *explain_errno_ftello(int errnum, FILE *fp);

void explain_message_ftello(char *message, int message_size, FILE *fp);

void explain_message_errno_ftello(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedtejldt®) system call.

explain_ftello
const char *explain_ftello(FILE *fp);

The explain_ftello function is used to obtain axpanation of an error returned by tftello(3) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to tfedio(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = ftello(fp);
if (result < 0)

fprintf(stderr, "%s\n", explain_ftello(fp));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_ftello_or_di€3) function.

explain_errno_ftello
const char *explain_errno_ftello(int errnum, FILE *fp);

The explain_errno_ftello function is used to obtain arxmanation of an error returned by thello(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to tfedio(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = ftello(fp);

348

explain_ftello(3) LibraryFunctions Manual explain_ftello(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftello(err, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_ftello_or_di€3) function.

explain_message_ftello
void explain_message_ftello(char *message, int message_size, FILE *fp);

The explain_message_ftelldunction is used to obtain axmanation of an error returned by tfiello(3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to tfedio(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = ftello(fp);
if (result < 0)

{
char message[3000];
explain_message_ftello(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_ftello_or_di€3) function.

explain_message_errno_ftello
void explain_message_errno_ftello(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_ftelldunction is used to obtain an explanation of an error returned by the
ftello(3) system call. The least the message will contain is the vakteeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to tfedio(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = ftello(fp);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_ftello(message, sizeof(message), err,

349

explain_ftello(3) LibraryFunctions Manual explain_ftello(3)

fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_ftello_or_di€3) function.

SEE ALSO
ftello(3) get stream position
explain_ftello_or_dig€3)
get stream position and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

350

explain_ftello_or_die(3) Libraryrunctions Manual explain_ftello_or_die(3)

NAME
explain_ftello_or_die — get stream position and report errors

SYNOPSIS
#include <libexplain/ftello.h>
off_t explain_ftello_or_die(FILE *fp);
off_t explain_ftello_on_error(FILE *fp);
DESCRIPTION
The explain_ftello_or_die function is used to call thigello(3) system call. On failure an explanation will

be printed tcstderr, obtained from thexplain_ftella3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_ftello_on_error function is used to call thitello(3) system call. Onailure an gplanation
will be printed tostderr, obtained from thexplain_ftello(3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofte#o(3) system call.

RETURN VALUE
Theexplain_ftello_or_diefunction only returns on success, $&dlo(3) for more information. Onraflure,
prints an explanation and exits, it does not return.

Theexplain_ftello_on_error function alays returns the value return by the wrapftetlo(3) system call.

EXAMPLE
Theexplain_ftello_or_diefunction is intended to be used in a fashion similar to the following example:
off_t result = explain_ftello_or_die(fp);
SEE ALSO
ftello(3) get stream position
explain_ftella(3)
explainftello(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

351

explain_ftell_or_die(3) Libraryrunctions Manual explain_ftell_or_die(3)

NAME
explain_ftell_or_die — get stream position and report errors

SYNOPSIS
#include <libexplain/ftell.h>
long explain_ftell_or_die(FILE *fp);
long explain_ftell_on_error(FILE *fp);
DESCRIPTION
The explain_ftell_or_die function is used to call thigell(3) system call. On failure axganation will be

printed tostderr, obtained from theexplain_ftell(3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_ftell_on_error function is used to call thigell(3) system call. On failure an explanation will
be printed tcstderr, obtained from thexplain_ftell(3) function, but still returns to the caller.

fp The fp, exactly as to be passed tofte#(3) system call.

RETURN VALUE
The explain_ftell_or_die function only returns on success, $e#l(3) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_ftell_on_error function alvays returns the value return by the wrapftetl(3) system call.

EXAMPLE
Theexplain_ftell_or_diefunction is intended to be used in a fashion similar to the following example:
long result = explain_ftell_or_die(fp);

SEE ALSO
ftell(3) get stream position
explain_ftell(3)
explainftell(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

352

explain_ftime(3) LibraryFunctions Manual explain_ftime(3)

NAME
explain_ftime — explain ftime(3) errors

SYNOPSIS
#include <libexplain/ftime.h>

const char *explain_ftime(struct timeb *tp);

const char *explain_errno_ftime(int errnum, struct timeb *tp);

void explain_message_ftime(char *message, int message_size, struct timeb *tp);

void explain_message_errno_ftime(char *message, int message_size, int errnum, struct timeb *tp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedtionéf® system call.
explain_ftime
const char *explain_ftime(struct timeb *tp);
The explain_ftime function is used to obtain an explanation of an error returned bffirng3) system

call. The least the message will contain is the valustrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
tp The original tp, exactly as passed to firag(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

if (ftime(tp) < 0)

{

fprintf(stderr, "%s\n", explain_ftime(tp));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_ftime_or_di€3) function.
explain_errno_ftime

const char *explain_errno_ftime(int errnum, struct timeb *tp);

The explain_errno_ftime function is used to obtain an explanation of an error returned bfirte3)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

tp The original tp, exactly as passed to firag(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{

353

explain_ftime(3) LibraryFunctions Manual explain_ftime(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftime(err, tp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_ftime_or_di€3) function.

explain_message_ftime
void explain_message_ftime(char *message, int message_size, struct timeb *tp);

The explain_message_ftimdéunction is used to obtain axmanation of an error returned by tfieng(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

tp The original tp, exactly as passed to firag(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)

{
char message[3000];
explain_message_ftime(message, sizeof(message), tp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_ftime_or_di€3) function.

explain_message_errno_ftime
void explain_message_errno_ftime(char *message, int message_size, int errnum, struct timeb *tp);

The explain_message_errno_ftimdunction is used to obtain an explanation of an error returned by the
ftimg(3) system call. The least the message will contain is the vaktesafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

tp The original tp, exactly as passed to firag(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{

int err = errno;

char message[3000];
explain_message_errno_ftime(message, sizeof(message), err,
tp);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

354

explain_ftime(3) LibraryFunctions Manual explain_ftime(3)

The abee mde example isvailable pre-packaged as thgplain_ftime_or_di€3) function.

SEE ALSO
ftimeg(3) return date and time
explain_ftime_or_di€3)
return date and time and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

355

explain_ftime_or_die(3) Libraryunctions Manual explain_ftime_or_die(3)

NAME
explain_ftime_or_die — return date and time and report errors

SYNOPSIS
#include <libexplain/ftime.h>
void explain_ftime_or_die(struct timeb *tp);
int explain_ftime_on_error(struct timeb *tp);
DESCRIPTION
The explain_ftime_or_die function is used to call thiime(3) system call. Onaflure an explanation will

be printed testderr, obtained from thexplain_ftimeg3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_ftime_on_error function is used to call th#éimeg3) system call. On failure arxganation
will be printed tostderr, obtained from thexplain_ftime3) function, but still returns to the caller.

tp The tp, exactly as to be passed toftimeg3) system call.

RETURN VALUE
Theexplain_ftime_or_diefunction only returns on success, $&me(3) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_ftime_on_error function alvays returns the value return by the wrapftede(3) system call.

EXAMPLE
Theexplain_ftime_or_diefunction is intended to be used in a fashion similar to the following example:
explain_ftime_or_die(tp);
SEE ALSO
ftimeg(3) return date and time
explain_ftimg3)
explain ftimg(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

356

explain_ftruncate(3) Libraryunctions Manual explain_ftruncate(3)

NAME
explain_ftruncate — explain ftruncate(2) errors

SYNOPSIS
#include <libexplain/ftruncate.h>

const char *explain_ftruncate(int fildes, long long length);
const char *explain_errno_ftruncate(int errnum, int fildes, long long length);
void explain_message_ftruncate(char *message, int message_size, int fildes, long long length);
void explain_message_errno_ftruncate(char *message, int message_size, int errnum, int fildes, long long
length);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedtoyrtbateg2) system call.

explain_ftruncate
const char *explain_ftruncate(int fildes, long long length);

The explain_ftruncate function is used to obtain axpanation of an error returned by tfteuncateg?2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)

fprintf(stderr, "%s\n", explain_ftruncate(fildes, length));
exit(EXIT_FAILURE);

}
fildes The original fildes, exactly as passed toftnencatg2) system call.
length The original length, exactly as passed tofthecatg2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_ftruncate
const char *explain_errno_ftruncate(int errnum, int fildes, long long length);

The explain_errno_ftruncate function is used to obtain an explanation of an error returned by the
ftruncatg?) system call. The least the message will contain is the valatresfor(errnum) , but
usually it will do much betteend indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftruncate(err, fildes, length));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from ah@o global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftnencatg2) system call.

357

explain_ftruncate(3) Libraryunctions Manual explain_ftruncate(3)

length The original length, exactly as passed tofthecatg2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_ftruncate
void explain_message_ftruncate(char *message, int message_size, int fildes, long long length);

Theexplain_message_ftruncatéunction may be used tobtain an explanation of an error returned by the
ftruncat€?) system call. The least the message will contain is &heevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)

{
char message[3000];
explain_message_ftruncate(message, sizeof(message), fildes, length);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftnencatg2) system call.
length The original length, exactly as passed tofthecatg2) system call.

explain_message_errno_ftruncate
void explain_message_errno_ftruncate(char *message, int message_size, int errnum, int fildes, long long
length);

Theexplain_message_errno_ftruncatéunction may be used to obtain atpknation of an error returned
by theftruncatg2) system call.The least the message will contain is the valugtrefror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_ftruncate(message, sizeof(message), err,
fildes, length);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ah@o global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be

358

explain_ftruncate(3) Libraryunctions Manual explain_ftruncate(3)

explained and this function, because méhc functions will alter the value @frrno.
fildes The original fildes, exactly as passed tofthencatg2) system call.
length The original length, exactly as passed tofthecatg2) system call.

SEE ALSO
ftruncate2)
truncate a file to a specified length

explain_ftruncate_or_di€3)
truncate a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

359

explain_ftruncate_or_die(3) Librayunctions Manual explain_ftruncate_or_die(3)

NAME
explain_ftruncate_or_die - truncate a file and report errors

SYNOPSIS
#include <libexplain/ftruncate.h>

void explain_ftruncate_or_die(int fildes, long long length);
DESCRIPTION
The explain_ftruncate_or_die function is used to call théruncat€2) system call. On failure an

explanation will be printed tatderr, obtained fromexplain_ftruncat¢3), and then the process terminates
by callingexit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_ftruncate_or_die(fildes, length);

fildes The fildes, exactly as to be passed tofthencatg2) system call.
length The length, exactly as to be passed tdtituacatg2) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
ftruncate2)
truncate a file to a specified length
explain_ftruncaté3)
explainftruncat€?) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

360

explain_futimens(3) Libraryrunctions Manual explain_futimens(3)

NAME
explain_futimens — explaifutimeng3) errors

SYNOPSIS
#include <libexplain/futimens.h>

const char *explain_futimens(int fildes, const struct time_spec *data);

const char *explain_errno_futimens(int errnum, int fildes, const struct time_spec *data);

void explain_message_futimens(char *message, int message_size, int fildes, const struct time_spec *data);
void explain_message_errno_futimens(char *message, int message_size, int errnum, int fildes, const struct
time_spec *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returnediynieag3) system call.

explain_futimens
const char *explain_futimens(int fildes, const struct time_spec *data);

The explain_futimens function is used to obtain axpmanation of an error returned by thegimeng3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toftiteneng3) system call.
data The original data, exactly as passed toftiieneng3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimens(fildes, data) < 0)
{
fprintf(stderr, "%s\n", explain_futimens(fildes, data));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_futimens_or_di@) function.

explain_errno_futimens
const char *explain_errno_futimens(int errnum, int fildes, const struct time_spec *data);

The explain_errno_futimens function is used to obtain an explanation of an error returned by the
futimeng3) system call. The least the message will contain is #heevof strerror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftiteneng3) system call.
data The original data, exactly as passed tofttieneng3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

361

explain_futimens(3) Libraryrunctions Manual explain_futimens(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (futimens(fildes, data) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_futimens(err, fildes,
data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_futimens_or_di@) function.

explain_message_futimens
void explain_message_futimens(char *message, int message_size, int fildes, const struct time_spec *data);

The explain_message_futimengunction is used to obtain an explanation of an error returned by the
futimeng3) system call. The least the message will contain is #heevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftiteneng3) system call.
data The original data, exactly as passed toftiieneng3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimens(fildes, data) < 0)

{
char message[3000];
explain_message_futimens(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_futimens_or_di@) function.

explain_message_errno_futimens
void explain_message_errno_futimens(char *message, int message_size, int errnum, int fildes, const struct
time_spec *data);

The explain_message_errno_futimengunction is used to obtain an explanation of an error returned by
the futimeng3) system call.The least the message will contain is the valustm@ror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftiteneng3) system call.
data The original data, exactly as passed toftiieneng3) system call.
Example: This function is intended to be used in a fashion similar to the following example:

362

explain_futimens(3) Libraryrunctions Manual explain_futimens(3)

if (futimens(fildes, data) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_futimens(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_futimens_or_di@) function.
SEE ALSO
futimeng3)

change file timestamps with nanosecond precision

explain_futimens_or_di@)
change file timestamps with nanosecond precision and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

363

explain_futimens_or_die(3) Libraryunctions Manual explain_futimens_or_die(3)

NAME
explain_futimens_or_die - change file timestamps and report errors

SYNOPSIS
#include <libexplain/futimens.h>

void explain_futimens_or_die(int fildes, const struct time_spec *data);
int explain_futimens_on_error(int fildes, const struct time_spec *data);

DESCRIPTION
The explain_futimens_or_die function is used to call thdutimeng3) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_futimeng3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_futimens_on_error function is used to call théutimeng3) system call. On failure an
explanation will be printed tetderr, obtained from thexplain_futimeng3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed tofthieneng3) system call.
data The data, exactly as to be passed tdutimeng3) system call.

RETURN VALUE
The explain_futimens_or_diefunction only returns on success, $emeng3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_futimens_on_error function alvays returns the value return by the wrapgatimeng3)
system call.

EXAMPLE
The explain_futimens_or_die function is intended to be used in asliion similar to the folleing
example:
explain_futimens_or_die(fildes, data);

SEE ALSO
futimeng3)
change file timestamps with nanosecond precision
explain_futimeng3)
explainfutimeng3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

364

explain_futimes(3) LibraryFunctions Manual explain_futimes(3)

NAME
explain_futimes — explain futimes(3) errors

SYNOPSIS
#include <libexplain/futimes.h>

const char *explain_futimes(int fildes, const struct tish&tv);

const char *explain_errno_futimes(int errnum, int fildes, const strucvéimey);

void explain_message_futimes(char *message, int message_size, int fildes, const stracttiine

void explain_message_errno_futimes(char *message, int message_size, int errnum, int fildes, const struct
timeval * tv);

DESCRIPTION
These functions may be used to obtain explanations for errors returnediynieg3) system call.

explain_futimes
const char *explain_futimes(int fildes, const struct tigh&tv);

Theexplain_futimesfunction is used to obtain an explanation of an error returned Wytthneg3) system
call. Theleast the message will contain is the valustadrror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (futimes(fildes, tv) < 0)

fprintf(stderr, "%s\n", explain_futimes(fildes, tv));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_futimes_or_dig) function.
fildes The original fildes, exactly as passed toftiteneg3) system call.
tv The original ty exactly as passed to thigimeg3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_futimes
const char *explain_errno_futimes(int errnum, int fildes, const strucvéimey);

Theexplain_errno_futimesfunction is used to obtain ammanation of an error returned by thgimeg3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (futimes(fildes, tv) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_futimes(err, fildes, tv));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_futimes_or_dig) function.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

365

explain_futimes(3) LibraryFunctions Manual explain_futimes(3)

fildes The original fildes, exactly as passed toftiteneg3) system call.
tv The original ty exactly as passed to thigimeg3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.
explain_message_futimes
void explain_message_futimes(char *message, int message_size, int fildes, const stracttiine
The explain_message_futimefunction may be used tobtain an explanation of an error returned by the

futimeg3) system call. The least the message will contain is the valuestadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (futimes(fildes, tv) < 0)

{
char message[3000];
explain_message_futimes(message, sizeof(message), fildes, tv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_futimes_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftiteneg3) system call.
tv The original ty exactly as passed to thigimeg3) system call.

explain_message_errno_futimes

void explain_message_errno_futimes(char *message, int message_size, int errnum, int fildes, const struct
timeval * tv);

The explain_message_errno_futimefunction may be used to obtain an explanation of an error returned
by thefutimeg3) system call. The least the message will contain is dhes\ofstrerror(errnum)
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (futimes(fildes, tv) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_futimes(message, sizeof(message), err, fildes, tv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_futimes_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

366

explain_futimes(3) LibraryFunctions Manual explain_futimes(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftiteneg3) system call.

tv The original ty exactly as passed to thigimeg3) system call.
SEE ALSO
futimeg3)

change file timestamps
explain_futimes_or_dig)
change file timestamps and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

367

explain_futimesat(3) Libraryunctions Manual explain_futimesat(3)

NAME
explain_futimesat — explaifutimesaf2) errors

SYNOPSIS
#include <libexplain/futimesat.h>

const char *explain_futimesat(int fildes, const char *pathname, const struettirdata);

const char *explain_errno_futimesat(int errnum, int fildes, const char *pathname, const sttt time

*data);

void explain_message_futimesat(char *message, int message_size, int fildes, const char *pathname, const
struct timeal * data);

void explain_message_errno_futimesat(char *message, int message_size, int errnum, int fildes, const char
*pathname, const struct tiva * data);

DESCRIPTION
These functions may be used to obtain explanations for errors returnediyniesaf?) system call.

explain_futimesat
const char *explain_futimesat(int fildes, const char *pathname, const struettirdata);

The explain_futimesat function is used to obtain axpanation of an error returned by theéimesaf2)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toftitenesaf2) system call.

pathname
The original pathname, exactly as passed tdutimesaf2) system call.

data The original data, exactly as passed tofttienesaf2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimesat(fildes, pathname, data) < 0)

{
fprintf(stderr, "%s\n", explain_futimesat(fildes, pathname,
data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_futimesat_or_di@) function.

explain_errno_futimesat
const char *explain_errno_futimesat(int errnum, int fildes, const char *pathname, const sttt time

*data);
The explain_errno_futimesat function is used to obtain an explanation of an error returned by the
futimesaf2) system call. The least the message will contain is the valustadrror(errno) , but

usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftitenesaf2) system call.

368

explain_futimesat(3) Libraryunctions Manual explain_futimesat(3)

pathname
The original pathname, exactly as passed tdutimesaf2) system call.

data The original data, exactly as passed tofttienesaf2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimesat(fildes, pathname, data) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_futimesat(err, fildes,
pathname, data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_futimesat_or_di@) function.

explain_message_futimesat

void explain_message_futimesat(char *message, int message_size, int fildes, const char *pathname, const
struct timea * data);

The explain_message_futimesatunction is used to obtain an explanation of an error returned by the
futimesaf2) system call. The least the message will contain is &hgevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toftitenesaf2) system call.

pathname
The original pathname, exactly as passed tdutimesaf2) system call.

data The original data, exactly as passed tofttienesaf2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimesat(fildes, pathname, data) < 0)

{
char message[3000];
explain_message_futimesat(message, sizeof(message), fildes,
pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_futimesat_or_di@) function.

explain_message_errno_futimesat
void explain_message_errno_futimesat(char *message, int message_size, int errnum, int fildes, const char
*pathname, const struct tiva * data);

The explain_message_errno_futimesdiunction is used to obtain axmanation of an error returned by
the futimesaf2) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

369

explain_futimesat(3) Libraryunctions Manual explain_futimesat(3)

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toftitenesaf2) system call.

pathname
The original pathname, exactly as passed tdutimesaf2) system call.

data The original data, exactly as passed tofttienesaf2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimesat(fildes, pathname, data) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_futimesat(message, sizeof(message), err,
fildes, pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_futimesat_or_di@) function.

SEE ALSO
futimesaf2)
change timestamps of a file relatito a drectory
explain_futimesat_or_di@)
change timestamps of a file relatito a drectory andeport errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

370

explain_futimesat_or_die(3) Librayunctions Manual explain_futimesat_or_die(3)

NAME
explain_futimesat_or_die — change timestamps dla frelative o a drectory andeport errors

SYNOPSIS
#include <libexplain/futimesat.h>

void explain_futimesat_or_die(int fildes, const char *pathname, const strugttihtata);
int explain_futimesat_on_error(int fildes, const char *pathname, const structitirdata);

DESCRIPTION
The explain_futimesat_or_die function is used to call théutimesaf2) system call. On failure an
explanation will be printed tgtderr, obtained from thexplain_futimesa) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_futimesat_on_error function is used to call théutimesaf2) system call. On failure an
explanation will be printed tetderr, obtained from thexplain_futimesg3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed tofthignesaf2) system call.

pathname
The pathname, exactly as to be passed téutireesaf2) system call.

data The data, exactly as to be passed tdutimesaf2) system call.

RETURN VALUE
Theexplain_futimesat_or_diefunction only returns on success, $atimesaf2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_futimesat_on_error function alvays returns the alue return by the wrappéddtimesaf2)
system call.

EXAMPLE
The explain_futimesat_or_die function is intended to be used in asliion similar to the folleing
example:
explain_futimesat_or_die(fildes, pathname, data);

SEE ALSO
futimesaf2)
change timestamps of a file relatito a drectory
explain_futimesa)
explainfutimesaf2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

371

explain_futimes_or_die(3) Librarlfunctions Manual explain_futimes_or_die(3)

NAME
explain_futimes_or_die — change file timestamps and report errors

SYNOPSIS
#include <libexplain/futimes.h>

void explain_futimes_or_die(int fildes, const struct tuaé tv);
DESCRIPTION
The explain_futimes_or_diefunction is used to call thieitimeg3) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_futime$3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_futimes_or_die(fildes, tv);

fildes The fildes, exactly as to be passed tofthieneg3) system call.
tv The ty exactly as to be passed to filuitimeg3) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
futimeg3)
change file timestamps
explain_futime$3)
explainfutimeg3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

372

explain_fwrite(3) LibraryFunctions Manual explain_fwrite(3)

NAME
explain_fwrite — explain fwrite(3) errors

SYNOPSIS
#include <libexplain/fwrite.h>

const char *explain_fwrite(const void *ptize_t size, size_t nmemb, FILE *fp);

const char *explain_errno_fwrite(int errnum, const void *gie_t size, size_t nmemb, FILE *fp);

void explain_message_fwrite(char *message, int message_size, const vpfit&ptrsize, size_t nmemb,
FILE *fp);

void explain_message_errno_fwrite(char *message, int message_size, int errnum, const yveirke *ptr
size, size_t nmemb, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnediyité(8) system call.

explain_fwrite
const char *explain_fwrite(const void *ptize_t size, size_t nmemb, FILE *fp);

The explain_fwrite function is used to obtain an explanation of an error returned biyvthe(3) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (fwrite(ptr, size, nmemb, fp) < 0)

fprintf(stderr, "%s\n", explain_fwrite(ptr, size, nmemb, fp));
exit(EXIT_FAILURE);
}

ptr The original ptrexactly as passed to tierite(3) system call.
size The original size, exactly as passed tofthgte(3) system call.
nmemb The original nmemb, exactly as passed tothrée(3) system call.
fp The original fp, exactly as passed to tiveite(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_fwrite
const char *explain_errno_fwrite(int errnum, const void *ge_t size, size_t nmemb, FILE *fp);

The explain_errno_fwrite function is used to obtain axmganation of an error returned by therite(3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fwrite(ptr, size, nmemb, fp) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fwrite(err,
ptr, size, nmemb, fp));
exit(EXIT_FAILURE);
}

373

explain_fwrite(3) LibraryFunctions Manual explain_fwrite(3)

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

ptr The original ptrexactly as passed to tiarite(3) system call.
size The original size, exactly as passed tofthgte(3) system call.
nmemb The original nmemb, exactly as passed tothrée(3) system call.
fp The original fp, exactly as passed to tiveite(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_fwrite
void explain_message_fwrite(char *message, int message_size, const vpfit&ptrsize, size_t nmemb,

FILE *fp);
The explain_message_fwrit€function may be used to obtain axpkanation of an error returned by the
fwrite(3) system call. The least the message will contain isahe\ofstrerror(errno) , but usually

it will do much betterand indicate the underlying cause in more detail.
Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fwrite(ptr, size, nmemb, fp) < 0)

{
char message[3000];
explain_message_fwrite(message, sizeof(message), ptr, size, nmemb, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

ptr The original ptrexactly as passed to tiarite(3) system call.
size The original size, exactly as passed tofthgte(3) system call.
nmemb The original nmemb, exactly as passed tathrée(3) system call.
fp The original fp, exactly as passed to tiveite(3) system call.

explain_message_errno_fwrite
void explain_message_errno_fwrite(char *message, int message_size, int errnum, const yveirke *ptr
size, size_t nmemb, FILE *fp);

Theexplain_message_errno_fwritdunction may be used to obtain an explanation of an error returned by
the fwrite(3) system call.The least the message will contain is the valustm@rror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (fwrite(ptr, size, nmemb, fp) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_fwrite(message, sizeof(message), err,

374

explain_fwrite(3) LibraryFunctions Manual explain_fwrite(3)

ptr, size, nmemb, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

ptr The original ptrexactly as passed to tierite(3) system call.
size The original size, exactly as passed tofthgte(3) system call.
nmemb The original nmemb, exactly as passed tothrée(3) system call.
fp The original fp, exactly as passed to tiveite(3) system call.

SEE ALSO
fwrite(3) binary stream output
explain_fwrite_or_dig€3)
binary stream output and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

375

explain_fwrite_or_die(3) Libraryrunctions Manual explain_fwrite_or_die(3)

NAME
explain_fwrite_or_die — binary stream output and report errors

SYNOPSIS
#include <libexplain/fwrite.h>

size_t explain_fwrite_or_die(const void *psize t size, size_t nmemb, FILE *fp);

DESCRIPTION
Theexplain_fwrite_or_die function is used to call thievrite(3) system call.On failure an explanation will
be printed tostderr, obtained from explain_fwrite(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
size_t result = explain_fwrite_or_die(ptr, size, nmemb, fp);

ptr The ptr exactly as to be passed to theite(3) system call.

size The size, exactly as to be passed tdhrée(3) system call.

nmemb The nmemb, exactly as to be passed tduiite(3) system call.

fp The fp, exactly as to be passed tofthite(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fwrite(3) binary stream output
explain_fwrite(3)
explainfwrite(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

376

explain_getaddrinfo(3) Librarfrunctions Manual explain_getaddrinfo(3)

NAME
explain_getaddrinfo — explain getaddrinfo(3) errors

SYNOPSIS
#include <libexplain/getaddrinfo.h>

const char *explain_errcode_getaddrinfo(int errnum, const char *node, const char *service, const struct
addrinfo *hints, struct addrinfo **res);

void explain_message_errcode_getaddrinfo(char *message, int message_size, int errnum, const char *node,
const char *service, const struct addrinfo *hints, struct addrinfo **res);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetatitrinfa(3) system call.

explain_errcode_getaddrinfo
const char *explain_errcode_getaddrinfo(int errnum, const char *node, const char *service, const struct
addrinfo *hints, struct addrinfo **res);

The explain_errcode_getaddrinfofunction is used to obtain an explanation of an error returned by the
getaddrinfo(3) system call. The least the message will contain is the value of
gai_strerror(errcode) , but usually it will do much betterand indicate the underlying cause in
more detail.

This function is intended to be used in a fashion similar to the following example:
int errcode = getaddrinfo(node, service, hints, res);
if (errncode == GAI_SYSTEM)
errcode = erro;
if (errcode)

{
fprintf(stderr, "%s\n", explain_errcode_getaddrinfo(errcode,
node, service, hints, res));
exit(EXIT_FAILURE);
}

The abee mde example isvailable as theexplain_getaddrinfo_or_dig) function.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

node The original node, exactly as passed tog#taddrinfa(3) system call.
service The original service, exactly as passed togétaddrinfa(3) system call.
hints The original hints, exactly as passed togaaddrinfa(3) system call.
res The original res, exactly as passed tog&addrinfo(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_errno_getaddrinfo
void explain_message_errno_getaddrinfo(char *message, int message_size, int errnum, const char *node,
const char *service, const struct addrinfo *hints, struct addrinfo **res);

The explain_message_errno_getaddrinfdunction may be used to obtain an explanation of an error
returned by thegetaddrinfa3) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much betterand indicate the underlying cause in more
detail.

377

explain_getaddrinfo(3) Librarfrunctions Manual explain_getaddrinfo(3)

This function is intended to be used in a fashion similar to the following example:
int errcode = getaddrinfo(node, service, hints, res);
if (errnode == EAI_SYSTEM)
errcode = erro;
if (errcode)

{
char message[3000];
explain_message_errcode_getaddrinfo(message, sizeof(message),
errcode, node, service, hints, res);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getaddrinfo_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

node The original node, exactly as passed tog#taddrinfa3) system call.
service The original service, exactly as passed togétaddrinfa(3) system call.
hints The original hints, exactly as passed togaaddrinfa(3) system call.

res The original res, exactly as passed tog&addrinfq(3) system call.
SEE ALSO
getaddrinfq(3)

network address and
explain_getaddrinfo_or_dig)
network address and and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

378

explain_getaddrinfo_or_die(3) Librafpunctions Manual explain_getaddrinfo_or_die(3)

NAME
explain_getaddrinfo_or_die — network address translation and report errors

SYNOPSIS
#include <libexplain/getaddrinfo.h>

void explain_getaddrinfo_or_die(const char *node, const char *service, const struct addrinfo *hints, struct
addrinfo **res);

DESCRIPTION
The explain_getaddrinfo_or_die function is used to call thgetaddrinfa(3) system call. On failure, an
explanation will be printed tstderr, obtained fromexplain_getaddrinf@3), and then the process terminates
by callingexit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_getaddrinfo_or_die(node, service, hints, res);

node The node, exactly as to be passed tagd@ddrinfa(3) system call.

service The service, exactly as to be passed tqtteddrinfa(3) system call.

hints The hints, exactly as to be passed tog#taddrinfa(3) system call.

res The res, exactly as to be passed tagtteddrinfo(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getaddrinfo(3)
network address and service translation

explain_getaddrinf¢3)
explain getaddrinfa(3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

379

explain_getc(3) Libraryrunctions Manual explain_getc(3)

NAME
explain_getc — explain getc(3) errors

SYNOPSIS
#include <libexplain/getc.h>

const char *explain_getc(FILE *fp);

const char *explain_errno_getc(int errnum, FILE *fp);

void explain_message_getc(char *message, int message_size, FILE *fp);

void explain_message_errno_getc(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetc{B8esystem call.

explain_getc
const char *explain_getc(FILE *fp);

The explain_getcfunction is used to obtain axanation of an error returned by thec(3) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int ¢ = getc(fp);
if (c == EOF && ferror(fp))

fprintf(stderr, "%s\n", explain_getc(fp));
exit(EXIT_FAILURE);
}

fp The original fp, exactly as passed to ¢fee(3) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_getc
const char *explain_errno_getc(int errnum, FILE *fp);

The explain_errno_getcfunction is used to obtain arxmanation of an error returned by tletc(3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int ¢ = getc(fp);
if (c == EOF && ferror(fp))

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getc(err, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ¢fae(3) system call.

380

explain_getc(3) Libraryrunctions Manual explain_getc(3)

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_getc
void explain_message_getc(char *message, int message_size, FILE *fp);

The explain_message_gettunction may be used to obtain an explanation of an error returned by the
getc(3) system call.The least the message will contain is the valustrefror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int ¢ = getc(fp);
if (c == EOF && ferror(fp))

{
char message[3000];
explain_message_getc(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to ¢fae(3) system call.

explain_message_errno_getc
void explain_message_errno_getc(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_getfunction may be used to obtain an explanation of an error returned by
the getc(3) system call. The least the message will contain is dhgevof strerror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int ¢ = getc(fp);
if (c == EOF && ferror(fp))

{
int err = errno;
char message[3000];
explain_message_errno_getc(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

381

explain_getc(3) Libraryrunctions Manual

fp The original fp, exactly as passed to ¢fae(3) system call.

SEE ALSO
getc(3) input of characters
explain_getc_or_di€3)
input of characters and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

explain_getc(3)

382

explain_getchar(3) Librarfrunctions Manual explain_getchar(3)

NAME
explain_getchar — explain getchar(3) errors

SYNOPSIS
#include <libexplain/getchar.h>

const char *explain_getchar(void);

const char *explain_errno_getchar(int errnum, void);

void explain_message_getchar(char *message, int message_size);

void explain_message_errno_getchar(char *message, int message_size, int errnum);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgeictze(3) system call.

explain_getchar
const char *explain_getchar(void);

The explain_getchar function is used to obtain an explanation of an error returned bgethban(3)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int ¢ = getchar();
if (c == EOF && ferror(stdin))

fprintf(stderr, "%s\n", explain_getchar());
exit(EXIT_FAILURE);

}

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_getchar
const char *explain_errno_getchar(int errnum);

Theexplain_erro_getcharfunction is used to obtain armanation of an error returned by theichan(3)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int ¢ = getchar();
if (c == EOF && ferror(stdin))

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getchar(err,));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther

383

explain_getchar(3) Librarfrunctions Manual explain_getchar(3)

functions in this library.

explain_message_getchar
void explain_message_getchar(char *message, int message_size);

The explain_message_getchdunction may be used to obtain an explanation of an error returned by the
getchan(3) system call. The least the message will contain is the valuestarror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int ¢ = getchar();
if (c == EOF && ferror(stdin))

{
char message[3000];
explain_message_getchar(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

explain_message_errno_getchar
void explain_message_errno_getchar(char *message, int message_size, int errnum);

The explain_message_errno_getchaunction may be used to obtain an explanation of an error returned
by thegetchan(3) system call. The least the message will contain is dhee\ofstrerror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int ¢ = getchar();
if (c == EOF && ferror(stdin))

{
int err = errno;
char message[3000];
explain_message_errno_getchar(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

SEE ALSO
getchan(3)
input of characters

explain_getchar_or_di€3)
input of characters and report errors

384

explain_getchar(3) Librarfrunctions Manual explain_getchar(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

385

explain_getchar_or_die(3) Librafpunctions Manual explain_getchar_or_die(3)

NAME
explain_getchar_or_die - input of characters and report errors

SYNOPSIS
#include <libexplain/getchar.h>
void explain_getchar_or_die(void);
DESCRIPTION
Theexplain_getchar_or_diefunction is used to call thgetchan(3) system call. On failure arxglanation

will be printed tostderr, obtained fromexplain_getcha(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int ¢ = explain_getchar_or_die();
Returns: This function only returns on success. On failure, prints an explanation and exits.
SEE ALSO
getchan(3)
input of characters

explain_getcha(3)
explain getchar(3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

386

explain_getc_or_die(3) Librarlfunctions Manual explain_getc_or_die(3)

NAME
explain_getc_or_die — input of characters and report errors

SYNOPSIS
#include <libexplain/getc.h>

int explain_getc_or_die(FILE *fp);
DESCRIPTION
Theexplain_getc_or_diefunction is used to call thgetc(3) system call. On failure an explanation will be

printed to stderr, obtained from explain_get¢3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int c = explain_getc_or_die(fp);
fp The fp, exactly as to be passed toghe(3) system call.

Returns: This function only returns on success, and returns thieaharacter or EOF at end of inpudn
failure, prints an explanation and exits.

SEE ALSO
getc(3) input of characters

explain_get¢3)
explain getc(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

387

explain_getcwd(3) Libraryrunctions Manual explain_getcwd(3)

NAME
explain_getcwd — explain getcwd(2) errors

SYNOPSIS
#include <libexplain/getcwd.h>

const char *explain_getcwd(char *buf, size_t size);

const char *explain_errno_getcwd(int errnum, char *buf, size_t size);

void explain_message_getcwd(char *message, int message_size, char *buf, size_t size);

void explain_message_errno_getcwd(char *message, int message_size, int errnum, char *buf, size_t size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgeictid?) system call.

explain_getcwd
const char *explain_getcwd(char *buf, size_t size);

Theexplain_getcwdfunction is used to obtain ammanation of an error returned by thecwd2) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (getcwd(buf, size) < 0)
{
fprintf(stderr, "%s\n", explain_getcwd(buf, size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getcwd_or_dig) function.
buf The original buf, exactly as passed to getewd2) system call.
size The original size, exactly as passed togitewd2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_getcwd
const char *explain_errno_getcwd(int errnum, char *buf, size_t size);

Theexplain_errno_getcwdfunction is used to obtain apanation of an error returned by thecwd2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getcwd(buf, size) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getcwd(err, buf, size));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_getcwd_or_dig) function.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

388

explain_getcwd(3) Libraryrunctions Manual explain_getcwd(3)

buf The original buf, exactly as passed to getewd2) system call.
size The original size, exactly as passed togitewd2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_getcwd
void explain_message_getcwd(char *message, int message_size, char *buf, size_t size);

The explain_message_getcwilinction may be used to obtain an explanation of an error returned by the
getcwd2) system call. The least the message will contain is #heevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getcwd(buf, size) < 0)

{
char message[3000];
explain_message_getcwd(message, sizeof(message), buf, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getcwd_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

buf The original buf, exactly as passed to getewd2) system call.
size The original size, exactly as passed togitewd2) system call.

explain_message_errno_getcwd
void explain_message_errno_getcwd(char *message, int message_size, int errnum, char *buf, size_t size);

The explain_message_errno_getcwtlinction may be used to obtain axpkanation of an error returned
by thegetcwd2) system call.The least the message will contain is the valusti@tror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getcwd(buf, size) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_getcwd(message, sizeof(message), err, buf, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getcwd_or_dig) function.

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

389

explain_getcwd(3) Libraryrunctions Manual explain_getcwd(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

buf The original buf, exactly as passed to getewd2) system call.
size The original size, exactly as passed togitewd2) system call.

SEE ALSO
getcwd(2)
Get current working directory
explain_getcwd_or_dig)
Get current working directory and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

390

explain_getcwd_or_die(3) Libraryunctions Manual explain_getcwd_or_die(3)

NAME
explain_getcwd_or_die — get current working directory and report errors

SYNOPSIS

#include <libexplain/getcwd.h>

void explain_getcwd_or_die(char *buf, size_t size);
DESCRIPTION

The explain_getcwd_or_diefunction is used to call thgetcwd2) system call. On failure arxglanation
will be printed tostderr, obtained fromexplain_getcw@3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_getcwd_or_die(buf, size);

buf The buf, exactly as to be passed togbewd2) system call.
size The size, exactly as to be passed tagdtewd2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getcwd(2)
Get current working directory
explain_getcwd3)
explain getcwd2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

391

explain_getdomainname(3) LibraRunctions Manual explain_getdomainname(3)

NAME
explain_getdomainname — explain getdomainname(2) errors

SYNOPSIS
#include <libexplain/getdomainname.h>

const char *explain_getdomainname(char *data, size_t data_size);

const char *explain_errno_getdomainname(int errnum, char *data, size_t data_size);

void explain_message_getdomainname(char *message, int message_size, char *data, size_t data_size);
void explain_message_errno_getdomainname(char *message, int message_size, int errnum, char *data,
size_t data_size);

DESCRIPTION
These functions may be used to obtaiplanations for errors returned by thegdomainnamg) system
call.

explain_getdomainname
const char *explain_getdomainname(char *data, size_t data_size);

The explain_getdomainnamefunction is used to obtain an explanation of an error returned by the
getdomainnamg) system call. The least the message will contain is dhes\of strerror(errno) ,
but usually it will do much betteland indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
data The original data, exactly as passed togidomainnamg) system call.

data_size
The original data_size, exactly as passed tgé&domainnamg) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getdomainname(data, data_size) < 0)

{
fprintf(stderr, "%s\n", explain_getdomainname(data,
data_size));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_getdomainname_or_d& function.

explain_errno_getdomainname
const char *explain_errno_getdomainname(int errnum, char *data, size_t data_size);

The explain_errno_getdomainnamefunction is used to obtain an explanation of an error returned by the
getdomainnamg) system call. The least the message will contain is dhes\ofstrerror(errno) ,
but usually it will do much betteland indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed togidomainnamg) system call.

data_size
The original data_size, exactly as passed tg&tomainnam) system call.

392

explain_getdomainname(3) LibraRunctions Manual explain_getdomainname(3)

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getdomainname(data, data_size) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getdomainname(err, data,
data_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_getdomainname_or_d& function.

explain_message_getdomainname
void explain_message_getdomainname(char *message, int message_size, char *data, size_t data_size);

The explain_message_getdomainnanfenction is used to obtain an explanation of an error returned by
the gedomainnam@) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed togidomainnamg) system call.

data_size
The original data_size, exactly as passed tg&tomainnamg) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getdomainname(data, data_size) < 0)

{
char message[3000];
explain_message_getdomainname(message, sizeof(message), data,
data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_getdomainname_or_d& function.

explain_message_errno_getdomainname
void explain_message_errno_getdomainname(char *message, int message_size, int errnum, char *data,
size_t data_size);
The explain_message_errno_getdomainnaméunction is used to obtain arxmanation of an error

returned by theggdomainnam@) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

393

explain_getdomainname(3) LibraRunctions Manual explain_getdomainname(3)

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed togidomainnamg) system call.

data_size
The original data_size, exactly as passed tg&tomainnamg) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getdomainname(data, data_size) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_getdomainname(message, sizeof(message),
err, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_getdomainname_or_d& function.

SEE ALSO
getdomainname)
get domain name

explain_getdomainname_or_d®
get domain name and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

394

explain_getdomainname_or_die(3) Librdfynctions Manual explain_getdomainname_or_die(3)

NAME
explain_getdomainname_or_die — get domain name and report errors

SYNOPSIS
#include <libexplain/getdomainname.h>

void explain_getdomainname_or_die(char *data, size_t data_size);
int explain_getdomainname_on_error(char *data, size_t data_size);

DESCRIPTION
The explain_getdomainname_or_diefunction is used to call thgetddomainnamg) system call. On
failure an explanation will be printed stderr, obtained from thexplain_getdomainnan{®) function, and
then the process terminates by caléxit(EXIT _FAILURE)

The explain_getdomainname_on_errorfunction is used to call thgegdomainnamg) system call. On
failure an &planation will be printed tstderr, obtained from thexplain_getdomainnang@) function, lut
still returns to the caller.

data The data, exactly as to be passed tgy#gomainnamg2) system call.

data_size
The data_size, exactly as to be passed tgdid®mainnamg) system call.

RETURN VALUE
The explain_getdomainname_or_digunction only returns on success, ggdomainnam) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_getdomainname_on_error function alvays returns the value return by the wrapped
getdomainnamg) system call.

EXAMPLE
The explain_getdomainname_or_didunction is intended to be used inasliion similar to the folleing
example:
explain_getdomainname_or_die(data, data_size);

SEE ALSO
getdomainnamg)
get domain name

explain_getdomainnan{a)
explain ggdomainnam@?) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

395

explain_getgrent(3) Librarfrunctions Manual explain_getgrent(3)

NAME
explain_getgrent — explaigetigrent(3) errors

SYNOPSIS
#include <libexplain/getgrent.h>

const char *explain_getgrent(void);

const char *explain_errno_getgrent(int errnum, void);

void explain_message_getgrent(char *message, int message_size, void);

void explain_message_errno_getgrent(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedjetgteat3) system call.

explain_getgrent
const char *explain_getgrent(void);

The explain_getgrent function is used to obtain arxmanation of an error returned by tigetgrent(3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
struct group *result = getgrent();
if (Iresult && errno !'=0)
{
fprintf(stderr, "%s\n", explain_getgrent());
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_getgrent_or_dig) function.

explain_errno_getgrent
const char *explain_errno_getgrent(int errnum, void);

The explain_errno_getgrent function is used to obtain an explanation of an error returned by the
getgreni(3) system call. The least the message will contain is the valuestadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct group *result = getgrent();
if (Iresult && errno '=0)

396

explain_getgrent(3) Librarfrunctions Manual explain_getgrent(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getgrent(err,));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getgrent_or_dig) function.

explain_message_getgrent
void explain_message_getgrent(char *message, int message_size, void);

The explain_message_getgrentunction is used to obtain an explanation of an error returned by the
getgreni(3) system call. The least the message will contain is the valséresfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct group *result = getgrent();
if (Iresult && errno !'=0)

{
char message[3000];
explain_message_getgrent(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getgrent_or_dig) function.

explain_message_errno_getgrent
void explain_message_errno_getgrent(char *message, int message_size, int errnum, void);

Theexplain_message_errno_getgrerftinction is used to obtain amp#anation of an error returned by the
getgreni(3) system call. The least the message will contain is the valuestadrror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
struct group *result = getgrent();
if (Iresult && errno !'=0)
{ .
int err = errno;
char message[3000];
explain_message_errno_getgrent(message, sizeof(message), err,
).

fprintf(stderr, "%s\n", message);

397

explain_getgrent(3) Librarfrunctions Manual explain_getgrent(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getgrent_or_dig) function.
SEE ALSO
getgren{(3)
get group file entry
explain_getgrent_or_dig)
get group file entry and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

398

explain_getgrent_or_die(3) Librafunctions Manual explain_getgrent_or_die(3)

NAME
explain_getgrent_or_die — get group file entry and report errors

SYNOPSIS
#include <libexplain/getgrent.h>
struct group *explain_getgrent_or_die(void);
struct group *explain_getgrent_on_error(void);
DESCRIPTION
Theexplain_getgrent_or_diefunction is used to call thgetgreni3) system call. On failure axganation

will be printed tostderr, obtained from thexplain_getgren3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_getgrent_on_error function is used to call thgegren{3) system call. Onaflure an
explanation will be printed tstderr, obtained from thexplain_getgren{3) function, but still returns to the
caller.

RETURN VALUE
The explain_getgrent_or_diefunction only returns on success, ggigreni3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_getgrent_on_error function alvays returns the value return by the wrappgtigrent(3)
system call.

EXAMPLE
Theexplain_getgrent_or_diefunction is intended to be used in a fashion similar to the following example:
struct group *result = explain_getgrent_or_die();

SEE ALSO
getgrent(3)
get group file entry
explain_getgrent3)
explain getgren{(3) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

399

explain_getgrouplist(3) Librarffunctions Manual explain_getgrouplist(3)

NAME
explain_getgrouplist — explaigetgrouplisi(3) errors

SYNOPSIS
#include <libexplain/getgrouplist.h>
const char *explain_getgrouplist(const char *uggt t group, gid_t *groups, int *ngroups);
const char *explain_errno_getgrouplist(int errnum, const char *gset group, gid_t *groups, int
*ngroups);
void explain_message_getgrouplist(char *message, int message_size, const chgid*uggoup, gid_t
*groups, int *ngroups);
void explain_message_errno_getgrouplist(char *message, int message_size, int errnum, const char *user,
gid_t group, gid_t *groups, int *ngroups);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetgtbaplisi3) system call.
explain_getgrouplist
const char *explain_getgrouplist(const char *uggt t group, gid_t *groups, int *ngroups);
The explain_getgrouplist function is used to obtain an explanation of an error returned by the

getgrouplis{3) system call. The least the message will contain is the valsteofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
user The original userexactly as passed to tigetgrouplis{3) system call.
group The original group, exactly as passed tog&grouplis{3) system call.
groups The original groups, exactly as passed togtgrouplis{(3) system call.
ngroups The original ngroups, exactly as passed taytgrouplis{(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (getgrouplist(user, group, groups, ngroups) < 0 && errno = 0)

fprintf(stderr, "%s\n", explain_getgrouplist(user, group,
groups, ngroups));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as thgplain_getgrouplist_or_dig) function.

explain_errno_getgrouplist
const char *explain_errno_getgrouplist(int errnum, const char *gset group, gid_t *groups, int
*ngroups);

The explain_errno_getgrouplist function is used to obtain an explanation of an error returned by the
getgrouplis{3) system call. The least the message will contain is the valsteofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

400

explain_getgrouplist(3) Librarffunctions Manual explain_getgrouplist(3)

user The original userexactly as passed to tigetgrouplis{3) system call.
group The original group, exactly as passed tog&grouplis{3) system call.
groups The original groups, exactly as passed togtgrouplis{(3) system call.
ngroups The original ngroups, exactly as passed taytgrouplis{(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (getgrouplist(user, group, groups, ngroups) < 0 && errno = 0)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getgrouplist(err, user,
group, groups, ngroups));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getgrouplist_or_dig) function.

explain_message_getgrouplist
void explain_message_getgrouplist(char *message, int message_size, const chgid*uggoup, gid_t
*groups, int *ngroups);

The explain_message_getgrouplisiunction is used to obtain axganation of an error returned by the
getgrouplis{3) system call. The least the message will contain is the valsteofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

user The original userexactly as passed to tigetgrouplis{3) system call.
group The original group, exactly as passed tog&grouplis{3) system call.
groups The original groups, exactly as passed togtgrouplis{(3) system call.
ngroups The original ngroups, exactly as passed taytgrouplis{(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (getgrouplist(user, group, groups, ngroups) < 0 && errno !=0)

char message[3000];
explain_message_getgrouplist(message, sizeof(message), user,
group, groups, ngroups);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_getgrouplist_or_dig) function.

401

explain_getgrouplist(3) Librarffunctions Manual explain_getgrouplist(3)

explain_message_errno_getgrouplist
void explain_message_errno_getgrouplist(char *message, int message_size, int errnum, const char *user,
gid_t group, gid_t *groups, int *ngroups);

Theexplain_message_errno_getgroupliftinction is used to obtain an explanation of an error returned by
the getgrouplis{3) system call. The least the message will contain is the valsieofor(errno) ,
but usually it will do much betteland indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

user The original userexactly as passed to tigetgrouplis{3) system call.

group The original group, exactly as passed tog&grouplis{3) system call.

groups The original groups, exactly as passed togtgrouplis{(3) system call.

ngroups The original ngroups, exactly as passed taytgrouplis{(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:

errno = 0;
if (getgrouplist(user, group, groups, ngroups) < 0 && errno !=0)
{

int err = errno;

char message[3000];
explain_message_errno_getgrouplist(message, sizeof(message),
err, user, group, groups, ngroups);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_getgrouplist_or_dig) function.
SEE ALSO
getgrouplisi(3)
get list of groups to which a user belongs
explain_getgrouplist_or_dig)
get list of groups to which a user belongs and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

402

explain_getgrouplist_or_die(3) Librafpunctions Manual explain_getgrouplist_or_die(3)

NAME
explain_getgrouplist_or_die — get list of groups and report errors

SYNOPSIS

#include <libexplain/getgrouplist.h>

void explain_getgrouplist_or_die(const char *ygiat_t group, gid_t *groups, int *ngroups);

int explain_getgrouplist_on_error(const char *ug&l t group, gid_t *groups, int *ngroups);
DESCRIPTION

The explain_getgrouplist_or_diefunction is used to call thgetgrouplis{3) system call. On failure an

explanation will be printed testderr, obtained from theexplain_getgroupligt3) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_getgrouplist_on_errorfunction is used to call thgetgrouplis{3) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_getgrouplisf3) function, lut still returns to
the caller.

user The userexactly as to be passed to thegrouplis{3) system call.
group The group, exactly as to be passed tagttgrouplis{3) system call.
groups The groups, exactly as to be passed tagdmgrouplisi3) system call.
ngroups The ngroups, exactly as to be passed tgégrouplisi3) system call.

RETURN VALUE
The explain_getgrouplist_or_die function only returns on success, sgetgrouplis{3) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_getgrouplist_on_error function alvays returns the value return by the wrapped
getgrouplis{3) system call.

EXAMPLE
The explain_getgrouplist_or_die function is intended to be used in a fashion similar to theviolip
example:
explain_getgrouplist_or_die(user, group, groups, ngroups);
SEE ALSO
getgrouplist(3)
get list of groups to which a user belongs
explain_getgroupligt3)
explain getgrouplis{3) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

403

explain_getgroups(3) Librarlfunctions Manual explain_getgroups(3)

NAME
explain_getgroups — explain getgroups(2) errors

SYNOPSIS
#include <libexplain/getgroups.h>
const char *explain_getgroups(int data_size, gid_t *data);
const char *explain_errno_getgroups(int errnum, int data_size, gid_t *data);
void explain_message_getgroups(char *message, int message_size, int data_size, gid_t *data);
void explain_message_errno_getgroups(char *message, int message_size, int errnum, int data_size, gid_t
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetgtbapg2) system call.
explain_getgroups
const char *explain_getgroups(int data_size, gid_t *data);
The explain_getgroupsfunction is used to obtain axmanation of an error returned by theigroupg2)

system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data_size
The original data_size, exactly as passed tgégroupg2) system call.

data The original data, exactly as passed togiigroupg2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getgroups(data_size, data) < 0)

fprintf(stderr, "%s\n", explain_getgroups(data_size, data));
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre-packaged as tbgplain_getgroups_or_d{8) function.
explain_errno_getgroups
const char *explain_errno_getgroups(int errnum, int data_size, gid_t *data);

The explain_errno_getgroups function is used to obtain an explanation of an error returned by the
getgroupg2) system call. The least the message will contain is the valustidrror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data_size
The original data_size, exactly as passed tgégroupg2) system call.

data The original data, exactly as passed togiigroupg2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

404

explain_getgroups(3) Librarlfunctions Manual explain_getgroups(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getgroups(data_size, data) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getgroups(err,
data_size, data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as tbgplain_getgroups_or_d{8) function.
explain_message_getgroups

void explain_message_getgroups(char *message, int message_size, int data_size, gid_t *data);

The explain_message_getgroupfunction is used to obtain arxmanation of an error returned by the

getgroupg2) system call. The least the message will contain is the valustidrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
data_size

The original data_size, exactly as passed tgégroupg2) system call.

data The original data, exactly as passed togiigroupg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getgroups(data_size, data) < 0)

char message[3000];

explain_message_getgroups(message, sizeof(message), data_size,
data);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as tbgplain_getgroups_or_d{8) function.

explain_message_errno_getgroups
void explain_message_errno_getgroups(char *message, int message_size, int errnum, int data_size, gid_t
*data);

The explain_message_errno_getgroupiinction is used to obtain an explanation of an error returned by
the getgroupg2) system call.The least the message will contain is the valustrafrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained froretire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

405

explain_getgroups(3) Librarlfunctions Manual explain_getgroups(3)

data_size
The original data_size, exactly as passed tgégroupg2) system call.

data The original data, exactly as passed togiigroupg2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getgroups(data_size, data) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_getgroups(message, sizeof(message), err,
data_size, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre-packaged as tbgplain_getgroups_or_d{8) function.
SEE ALSO
getgroups?2)

get/set list of supplementary group IDs
explain_getgroups_or_di&)
get/set list of supplementary group IDs and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

406

explain_getgroups_or_die(3) LibraRunctions Manual explain_getgroups_or_die(3)

NAME
explain_getgroups_or_die — get supplementary group IDs and report errors

SYNOPSIS
#include <libexplain/getgroups.h>
void explain_getgroups_or_die(int data_size, gid_t *data);
int explain_getgroups_on_error(int data_size, gid_t *data);
DESCRIPTION
The explain_getgroups_or_diefunction is used to call thgegroupg2) system call. On failure an

explanation will be printed tstderr, obtained from thexplain_getgroup€3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_getgroups_on_errorfunction is used to call thgetgroupg2) system call. On failure an
explanation will be printed tstderr, obtained from theexplain_getgroup€3) function, but still returns to
the caller.

data_size
The data_size, exactly as to be passed tgdigeoupg2) system call.

data The data, exactly as to be passed tqyttigroupg2) system call.

RETURN VALUE
The explain_getgroups_or_diefunction only returns on success, sgigroupg2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_getgroups_on_errorfunction alvays returns the alue return by the wrappegtgroupg2)
system call.

EXAMPLE
The explain_getgroups_or_diefunction is intended to be used in a fashion similar to the violip
example:
explain_getgroups_or_die(data_size, data);
SEE ALSO
getgroups?2)
get/set list of supplementary group IDs
explain_getgroup€3)
explain getgroupg?2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

407

explain_gethostbyname(3) LibraRunctions Manual explain_gethostbyname(3)

NAME
explain_gethostbyname - explajethostbynamgd) errors

SYNOPSIS
#include <libexplain/gethostbyname.h>

const char *explain_gethostbyname(const char *name);

const char *explain_errno_gethostbyname(int errnum, const char *name);

void explain_message_gethostbyname(char *message, int message_size, const char *name);

void explain_message_errno_gethostbyname(char *message, int message_size, int errnum, const char
*name);

DESCRIPTION

These functions may be used to obtain explanations for errors returned dmthibstbynam@@) system
call.

explain_gethostbyname
const char *explain_gethostbyname(const char *name);

The explain_gethostbynamefunction is used to obtain an explanation of an error returned by the
gethostbynam@) system call. The least the message will contain isahm wfstrerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
name The original name, exactly as passed togiikostbynam@) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
struct hostent *result = gethostbyname(name);
if (Iresult)
{
fprintf(stderr, "%s\n", explain_gethostbyname(name));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as thgplain_gethostbyname_or_ & function.

explain_errno_gethostbyname
const char *explain_errno_gethostbyname(int errnum, const char *name);

The explain_errno_gethostbynamefunction is used to obtain an explanation of an error returned by the
gethostbynam@@) system call. The least the message will contain is the vakteeafor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

name The original name, exactly as passed togiikostbynam@) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

408

explain_gethostbyname(3) LibraRunctions Manual explain_gethostbyname(3)

Example: This function is intended to be used in a fashion similar to the following example:
struct hostent *result = gethostbyname(name);
if (Iresult)
{ .
int err = errno;
fprintf(stderr, "%s\n", explain_errno_gethostbyname(err,
name));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_gethostbyname_or_ {8 function.

explain_message_gethostbyname
void explain_message_gethostbyname(char *message, int message_size, const char *name);

Theexplain_message_gethostbynanienction is used to obtain ammanation of an error returned by the
gethostbynam@@) system call. The least the message will contain is the vakteeafor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

name The original name, exactly as passed togiikostbynam@) system call.

Example: This function is intended to be used in a fashion similar to the following example:
struct hostent *result = gethostbyname(name);
if (Iresult)
{
char message[3000];
explain_message_gethostbyname(message, sizeof(message), name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_gethostbyname_or_ 8 function.

explain_message_errno_gethostbyname

void explain_message_errno_gethostbyname(char *message, int message_size, int errnum, const char
*name);

The explain_message_errno_gethostbynaméunction is used to obtain an explanation of an error
returned by thegethostbynam@@) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frometire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

name The original name, exactly as passed togiikostbynam@) system call.

Example: This function is intended to be used in a fashion similar to the following example:
struct hostent *result = gethostbyname(name);
if (Iresult)

409

explain_gethostbyname(3) LibraRunctions Manual explain_gethostbyname(3)

{
int err = errno;
char message[3000];
explain_message_errno_gethostbyname(message, sizeof(message),
err, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_gethostbyname_or_d8 function.
SEE ALSO
gethostbynam@)

get host address\gn host name

explain_gethostbyname_or_d8)
get host address\gin host name and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

410

explain_gethostbyname_or_die(3) Librdfynctions Manual explain_gethostbyname_or_die(3)

NAME
explain_gethostbyname_or_die — get host address by host name and report errors

SYNOPSIS
#include <libexplain/gethostbyname.h>

struct hostent *explain_gethostbyname_or_die(const char *name);
struct hostent *explain_gethostbyname_on_error(const char *name);

DESCRIPTION
The explain_gethostbyname_or_didunction is used to call thgethostbynam@) system call. Onafllure
an explanation will be printed siderr, obtained from thexplain_gethostbynan(@&) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_gethostbyname_on_errorfunction is used to call thgethostbynam@) system call. On
failure an explanation will be printed &iderr, obtained from thexplain_gethostbynan(@&) function, lut
still returns to the caller.

name The name, exactly as to be passed tg#igostbynam@) system call.

RETURN VALUE
The explain_gethostbyname_or_diefunction only returns on success, sgthostbynam@) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_gethostbyname_on_error function alvays returns the value return by the wrapped
gethostbynam@) system call.

EXAMPLE
The explain_gethostbyname_or_didunction is intended to be used in a fashion similar to theviolip
example:
struct hostent *result = explain_gethostbyname_or_die(hame);
SEE ALSO
gethostbynam@)

get host address\gn host name
explain_gethostbynan(a)

explain gethostbynam@) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

411

explain_gethostid(3) LibrarfFunctions Manual explain_gethostid(3)

NAME
explain_gethostid — explaigethostid3) errors

SYNOPSIS
#include <libexplain/gethostid.h>

const char *explain_gethostid(void);

const char *explain_errno_gethostid(int errnum, void);

void explain_message_gethostid(char *message, int message_size, void);

void explain_message_errno_gethostid(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgethtistid 3) system call.

explain_gethostid
const char *explain_gethostid(void);

The explain_gethostidfunction is used to obtain axmganation of an error returned by thethostid3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
long result = gethostid();
if (result < 0 || errno !'=0)
{
fprintf(stderr, "%s\n", explain_gethostid());
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as thgplain_gethostid_or_di@®) function.

explain_errno_gethostid
const char *explain_errno_gethostid(int errnum, void);

The explain_errno_gethostid function is used to obtain an explanation of an error returned by the
gethostid3) system call. The least the message will contain is the valustadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
long result = gethostid();
if (result < 0 || errno = 0)

412

explain_gethostid(3) LibrarfFunctions Manual explain_gethostid(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_gethostid(err,));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_gethostid_or_di@) function.

explain_message_gethostid
void explain_message_gethostid(char *message, int message_size, void);

The explain_message_gethostifunction is used to obtain arxmanation of an error returned by the
gethostid3) system call. The least the message will contain is the valgs&esfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
long result = gethostid();
if (result < 0 || errno !'=0)

{
char message[3000];
explain_message_gethostid(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_gethostid_or_di@) function.

explain_message_errno_gethostid
void explain_message_errno_gethostid(char *message, int message_size, int errnum, void);

The explain_message_errno_gethostitlnction is used to obtain an explanation of an error returned by
the gethostid’3) system call.The least the message will contain is the valustr@iror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
long result = gethostid();
if (result < 0 || errno = 0)
{
int err = errno;
char message[3000];
explain_message_errno_gethostid(message, sizeof(message), err,
).

fprintf(stderr, "%s\n", message);

413

explain_gethostid(3) LibrarfFunctions Manual explain_gethostid(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_gethostid_or_di@) function.

SEE ALSO
gethostid3)
get the unique identifier of the current host
explain_gethostid_or_di@)
get the unique identifier of the current host and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

414

explain_gethostid_or_die(3) Librafunctions Manual explain_gethostid_or_die(3)

NAME
explain_gethostid_or_die — get the unique identifier of the current host and report errors

SYNOPSIS
#include <libexplain/gethostid.h>
long explain_gethostid_or_die(void);
long explain_gethostid_on_error(void);
DESCRIPTION
The explain_gethostid_or_die function is used to call thgethostid3) system call. Ondilure an

explanation will be printed tgtderr, obtained from thexplain_gethosti@B) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_gethostid_on_error function is used to call thgehostid3) system call. Ondilure an
explanation will be printed tetderr, obtained from thexplain_gethosti@B) function, but still returns to the
caller.

RETURN VALUE
Theexplain_gethostid_or_diefunction only returns on success, gethostid3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_gethostid_on_error function alays returns the alue return by the wrappegkthostid3)
system call.

EXAMPLE
The explain_gethostid_or_diefunction is intended to be used in a fashion similar to the violip
example:
long result = explain_gethostid_or_die();

SEE ALSO
gethostid3)
get the unique identifier of the current host

explain_gethosti(B)
explain gethostid3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

415

explain_gethostname(3) LibraRunctions Manual explain_gethostname(3)

NAME
explain_gethostname — explain gethostname(2) errors

SYNOPSIS
#include <libexplain/gethostname.h>
const char *explain_gethostname(char *data, size_t data_size);
const char *explain_errno_gethostname(int errnum, char *data, size_t data_size);
void explain_message_gethostname(char *message, int message_size, char *data, size_t data_size);
void explain_message_errno_gethostname(char *message, int message_size, int errnum, char *data, size t
data_size);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedgeshttetname?) system call.

explain_gethostname
const char *explain_gethostname(char *data, size_t data_size);

The explain_gethostnamefunction is used to obtain an explanation of an error returned by the
gethostnam€) system call. The least the message will contain is the valsieofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (gethostname(data, data_size) < 0)

fprintf(stderr, "%s\n", explain_gethostname(data, data_size));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_gethostname_or_di#®) function.
data The original data, exactly as passed togithostnamg?) system call.

data_size
The original data_size, exactly as passed tg#ieostnamg) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_gethostname
const char *explain_errno_gethostname(int errnum, char *data, size_t data_size);

The explain_errno_gethostnamefunction is used to obtain an explanation of an error returned by the
gethostnam@) system call.The least the message will contain is the valustrafror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (gethostname(data, data_size) < 0)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_gethostname(err, data, data_size));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_gethostname_or_di#®) function.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be

416

explain_gethostname(3) LibraRunctions Manual explain_gethostname(3)

explained and this function, because méhc functions will alter the value @frrno.
data The original data, exactly as passed togithostnamg?) system call.

data_size
The original data_size, exactly as passed tg#ieostnamg) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_gethostname
void explain_message_gethostname(char *message, int message_size, char *data, size_t data_size);

The explain_message_gethostnanfenction is used to obtain an explanation of an error returned by the
gethostnam€) system call. The least the message will contain is dhe\ofstrerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (gethostname(data, data_size) < 0)

{
char message[3000];
explain_message_gethostname(message, sizeof(message), data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_gethostname_or_di#®) function.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed togithostnamg?) system call.

data_size
The original data_size, exactly as passed tg#teostnamg) system call.

explain_message_errno_gethostname
void explain_message_errno_gethostname(char *message, int message_size, int errnum, char *data, size t
data_size);

The explain_message_errno_gethostnanfanction is used to obtain an explanation of an error returned
by the gehostnamg) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

if (gethostname(data, data_size) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_gethostname(message, sizeof(message), err, data,

data_size);

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_gethostname_or_di#®) function.

417

explain_gethostname(3) LibraRunctions Manual explain_gethostname(3)

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

data The original data, exactly as passed togithostnamg?) system call.

data_size
The original data_size, exactly as passed tg#ieostnamg) system call.

SEE ALSO
gethostnamé2)
get/set hostname

explain_gethostname_or_di&)
get/set hostname and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

418

explain_gethostname_or_die(3) Librdfynctions Manual explain_gethostname_or_die(3)

NAME
explain_gethostname_or_die — get/set hostname and report errors

SYNOPSIS
#include <libexplain/gethostname.h>

void explain_gethostname_or_die(char *data, size_t data_size);
intexplain_gethostname_on_error(char *data, size_t data_size);

DESCRIPTION
The explain_gethostname_or_didunction is used to call thgethostnamg) system call. Onafilure an
explanation will be printed testderr, obtained from theexplain_gethostnam@) function, and then the
process terminates by calliegit(EXIT_FAILURE)

Theexplain_gethostname_on_errofunction is used to call thggthostnam&) system call. Onaflure an
explanation will be printed tstderr, obtained from thexplain_gethostnam(@&) function, but still returns to
the caller.

data The data, exactly as to be passed tqyttieostnamg?) system call.

data_size
The data_size, exactly as to be passed tgdih@stnamg) system call.

RETURN VALUE
The explain_gethostname_or_diefunction only returns on success, sgehostnamg) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_gethostname_on_error function alays returns the value return by the wrapped
gethostnamé€) system call.

EXAMPLE
The explain_gethostname_or_digunction is intended to be used in asliion similar to the folleing
example:
explain_gethostname_or_die(data, data_size);
SEE ALSO
gethostnamé2)

get/set hostname

explain_gethostnam(@)
explain gethostnamé) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

419

explain_getpeername(3) LibraRunctions Manual explain_getpeername(3)

NAME
explain_getpeername - explain getpeername(2) errors

SYNOPSIS
#include <libexplain/getpeername.h>

const char *explain_getpeername(int fildes, struct sockaddr *sock sadklien_t *sock addr_size);

const char *explain_errno_getpeername(int errnum, int fildes, struct sockaddr *sockscadidiEn t

*sock addr_size);

void explain_message_getpeername(char *message, int message_size, int fildes, struct sockaddr
*sock addrsocklen_t *sock _addr_size);

void explain_message_errno_getpeername(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock _addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetptrernamé2) system call.

explain_getpeername
const char *explain_getpeername(int fildes, struct sockaddr *sock sadklien_t *sock addr_size);

The explain_getpeernamefunction is used to obtain anxmanation of an error returned by the
getpeernam@) system call. The least the message will contain is the valskeeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;
socklen_t sock _addr_len = sizeof(sock_addr);
if (getpeername(fildes, &sock_addr, &sock_addr_size) < 0)

fprintf(stderr, "%s\n", explain_getpeername(fildes,
&sock_addr, &sock addr_size));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_getpeername_or_di#) function.
fildes The original fildes, exactly as passed togbgeernamg) system call.

sock _addr
The original sock_addexactly as passed to tigetpeernamg2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tgapeernamg) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_getpeername
const char *explain_errno_getpeername(int errnum, int fildes, struct sockaddr *sockscadidiEn t
*sock_addr_size);

The explain_errno_getpeernamefunction is used to obtain arxmanation of an error returned by the
getpeernam@) system call.The least the message will contain is the valugtrefror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;

420

explain_getpeername(3) LibraRunctions Manual explain_getpeername(3)

socklen_t sock _addr_len = sizeof(sock_addr);
if (getpeername(fildes, &sock_addr, &sock_addr_size) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getpeername(err,
fildes, &sock addr, &sock addr_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getpeername_or_di#) function.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed togbgeernamg) system call.

sock _addr
The original sock_addexactly as passed to tigetpeernamg2) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tgapeernamg) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_getpeername
void explain_message_getpeername(char *message, int message_sizéldemt dtruct sockaddr
*sock addrsocklen_t *sock _addr_size);

Theexplain_message_getpeernanfenction may be used to obtain axpination of an error returned by
the getpeernamg?) system call. The least the message will contain is dhe\ofstrerror(errno) ,
but usually it will do much betteland indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;
socklen_t sock _addr_len = sizeof(sock_addr);
if (getpeername(fildes, &sock_addr, &sock_addr_size) < 0)

{
char message[3000];
explain_message_getpeername(message, sizeof(message),
fildes, &sock _addr, &sock addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getpeername_or_di#) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed togbgeernamg) system call.

421

explain_getpeername(3) LibraRunctions Manual explain_getpeername(3)

sock _addr
The original sock_addexactly as passed to tigetpeernamg) system call.

sock addr_size
The original sock_addr_size, exactly as passed tgapeernamg) system call.

explain_message_errno_getpeername
void explain_message_errno_getpeername(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock _addr_size);

The explain_message_errno_getpeernani@nction may be used to obtain arpkanation of an error
returned by thegepeernamg) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much betterand indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;
socklen_t sock_addr_len = sizeof(sock_addr);
if (getpeername(fildes, &sock_addr, &sock_addr_size) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_getpeername(message, sizeof(message),
err, fildes, &sock_addr, &sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_getpeername_or_di#) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed togbgeernamg) system call.

sock _addr
The original sock_addexactly as passed to tigetpeernamg) system call.

sock _addr_size
The original sock_addr_size, exactly as passed tgapeernamg) system call.

SEE ALSO
getpeernamé?)
get name of connected peer socket
explain_getpeername_or_di#®)
get name of connected peer socket and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

422

explain_getpeername_or_die(3) Librdfynctions Manual explain_getpeername_or_die(3)

NAME
explain_getpeername_or_die — get name of peer socket and report errors

SYNOPSIS
#include <libexplain/getpeername.h>

void explain_getpeername_or_die(int fildes, struct sockaddr *sock saa#tten t *sock_addr_size);
DESCRIPTION
The explain_getpeername_or_didunction is used to call thgetpeernamg) system call. Ondfilure an

explanation will be printed tostderr, obtained fromexplain_getpeernam@), and then the process
terminates by callingxit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
struct sockadd sock_addr;
socklen_t sock _addr_size = sizeof(sock_addr);
explain_getpeername_or_die(fildes, &sock addr, &sock addr_size);

fildes The fildes, exactly as to be passed togpeernamé?) system call.

sock _addr
The sock addexactly as to be passed to thepeernamg) system call.

sock addr_size
The sock_addr_size, exactly as to be passed getheernamg) system call.

Returns: This function only returns on success, ggepeernamg) for more information. Onaiflure,
prints an explanation and exits.

SEE ALSO
getpeernamg?)
get name of connected peer socket
explain_getpeernan(8)
explain getpeernamé?) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

423

explain_getpgid(3) Libraryrunctions Manual explain_getpgid(3)

NAME
explain_getpgid — explaigetpgid(2) errors

SYNOPSIS

#include <libexplain/getpgid.h>

const char *explain_getpgid(pid_t pid);

const char *explain_errno_getpgid(int errnum, pid_t pid);

void explain_message_getpgid(char *message, int message_size, pid_t pid);

void explain_message_errno_getpgid(char *message, int message_size, int errnum, pid_t pid);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedgepthie(2) system call.

explain_getpgid
const char *explain_getpgid(pid_t pid);
The explain_getpgid function is used to obtain arxmanation of an error returned by tletpgid(2)

system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
pid The original pid, exactly as passed to gleogid(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgid(pid);
if (result < 0)

fprintf(stderr, "%s\n", explain_getpgid(pid));
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_getpgid_or_di€8) function.
explain_errno_getpgid
const char *explain_errno_getpgid(int errnum, pid_t pid);

Theexplain_errno_getpgidfunction is used to obtain aranation of an error returned by thetpgid(2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pid The original pid, exactly as passed to gleogid(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgid(pid);

424

explain_getpgid(3) Libraryrunctions Manual explain_getpgid(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getpgid(err, pid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getpgid_or_di€8) function.
explain_message_getpgid

void explain_message_getpgid(char *message, int message_size, pid_t pid);

The explain_message_getpgidunction is used to obtain an explanation of an error returned by the

getpgid(2) system call. The least the message will contain is the vakteeafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to gleogid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgid(pid);
if (result < 0)

{
char message[3000];
explain_message_getpgid(message, sizeof(message), pid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getpgid_or_di€8) function.

explain_message_errno_getpgid
void explain_message_errno_getpgid(char *message, int message_size, int errnum, pid_t pid);

Theexplain_message_errno_getpgitlinction is used to obtain an explanation of an error returned by the
getpgid(2) system call. The least the message will contain isahe wfstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pid The original pid, exactly as passed to gleogid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgid(pid);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_getpgid(message, sizeof(message), err,

425

explain_getpgid(3) Libraryrunctions Manual explain_getpgid(3)

pid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_getpgid_or_di€8) function.

SEE ALSO
getpgid(2)
get process group

explain_getpgid_or_di€3)
get process group and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

426

explain_getpgid_or_die(3) Libraryunctions Manual explain_getpgid_or_die(3)

NAME
explain_getpgid_or_die — get process group and report errors

SYNOPSIS
#include <libexplain/getpgid.h>
pid_t explain_getpgid_or_die(pid_t pid);
pid_t explain_getpgid_on_error(pid_t pid);
DESCRIPTION
The explain_getpgid_or_diefunction is used to call thgetpgid(2) system call. Onaflure an gplanation

will be printed tostderr, obtained from thexplain_getpgid3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_getpgid_on_error function is used to call th@etpgid(2) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_getpgid3) function, but still returns to the
caller.

pid The pid, exactly as to be passed togdpgid(2) system call.

RETURN VALUE

The explain_getpgid_or_diefunction only returns on success, sgpgid(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_getpgid_on_errorfunction alvays returns the value return by the wrappeigbgid(2) system
call.

EXAMPLE
Theexplain_getpgid_or_diefunction is intended to be used in a fashion similar to the following example:
pid_t result = explain_getpgid_or_die(pid);
SEE ALSO
getpgid(2)
get process group
explain_getpgid3)
explain getpgid(2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2011 Peter Miller

427

explain_getpgrp(3) Libraryunctions Manual explain_getpgrp(3)

NAME
explain_getpgrp — explaigetpgrp(2) errors

SYNOPSIS
#include <libexplain/getpgrp.h>
const char *explain_getpgrp(pid_t pid);
const char *explain_errno_getpgrp(int errnum, pid_t pid);
void explain_message_getpgrp(char *message, int message_size, pid_t pid);
void explain_message_errno_getpgrp(char *message, int message_size, int errnum, pid_t pid);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetptire(2) system call.

Note: the getpgrp(2) function has tew implementations. ThEOSIX.1 \ersion has no arguments, while the
BSD version has onegument. Br simplicity of implementation, the gument list seen here includes the
pid argument.

The POSIX.1getpgid() semantics can be obtained by callgejpgrp(0) on BSD systems, and this
is the API for libexplain, ¥en on g/stems that do not use the BSD API.

explain_getpgrp
const char *explain_getpgrp(pid_t pid);
The explain_getpgrp function is used to obtain arxmanation of an error returned by thetpgrp(2)

system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
pid The original pid, exactly as passed to gleogrp(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgrp(pid);
if (result < 0)
{
fprintf(stderr, "%s\n", explain_getpgrp(pid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getpgrp_or_di€) function.
explain_errno_getpgrp

const char *explain_errno_getpgrp(int errnum, pid_t pid);

The explain_errno_getpgrp function is used to obtain an explanation of an error returned by the

getpgrp(2) system call. The least the message will contain is #heevof strerror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pid The original pid, exactly as passed to gleogrp(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn

428

explain_getpgrp(3) Libraryunctions Manual explain_getpgrp(3)

libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgrp(pid);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getpgrp(err, pid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getpgrp_or_di€) function.
explain_message_getpgrp

void explain_message_getpgrp(char *message, int message_size, pid_t pid);

The explain_message_getpgrgunction is used to obtain an explanation of an error returned by the

getpgrp(2) system call. The least the message will contain is #heevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to gieogrp(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgrp(pid);
if (result < 0)

{
char message[3000];
explain_message_getpgrp(message, sizeof(message), pid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getpgrp_or_di€) function.

explain_message_errno_getpgrp
void explain_message_errno_getpgrp(char *message, int message_size, int errnum, pid_t pid);

Theexplain_message_errno_getpgrfunction is used to obtain an explanation of an error returned by the
getpgrp(2) system call. The least the message will contain is #heevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pid The original pid, exactly as passed to gleogrp(2) system call.
Example: This function is intended to be used in a fashion similar to the following example:

429

explain_getpgrp(3) Libraryunctions Manual explain_getpgrp(3)

pid_t result = getpgrp(pid);
if (result < 0)

{
int err = errno;
char message[3000];
explain_message_errno_getpgrp(message, sizeof(message), err,
pid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_getpgrp_or_di€) function.
SEE ALSO
getpgrp(2)

get process group
explain_getpgrp_or_di€3)
get process group and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

430

explain_getpgrp_or_die(3) Librayunctions Manual explain_getpgrp_or_die(3)

NAME
explain_getpgrp_or_die — get process group and report errors

SYNOPSIS
#include <libexplain/getpgrp.h>
pid_t explain_getpgrp_or_die(pid_t pid);
pid_t explain_getpgrp_on_error(pid_t pid);
DESCRIPTION

The explain_getpgrp_or_diefunction is used to call thgetpgrp(2) system call. On failure axganation
will be printed tostderr, obtained from thexplain_getpgrig3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_getpgrp_on_error function is used to call thgetpgrp(2) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_getpgrg3) function, but still returns to the
caller.

pid The pid, exactly as to be passed togdpgrp(2) system call.

API Inconsistencies
Note: the getpgrp(2) function has tw implementations. ThEOSIX.1 \ersion has no arguments, while the

BSD version has onegument. Br simplicity of implementation, the gument list seen here includes the
pid argument.

The POSIX.1getpgid() semanatics can be obtained by callgepgrp(0) on BSD systems, and
this is the API for libexplain,\&n on ystems that do not use the BSD API.

RETURN VALUE
The explain_getpgrp_or_diefunction only returns on success, sgpgrp(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_getpgrp_on_errorfunction alvays returns the value return by the wrapgeigrp(2) system
call.

EXAMPLE
Theexplain_getpgrp_or_diefunction is intended to be used in a fashion similar to the following example:
pid_t result = explain_getpgrp_or_die(pid);
SEE ALSO
getpgrp(2)
get process group
explain_getpgri3)
explain getpgrp(2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2011 Peter Miller

431

explain_getpriority(3) LibraryFunctions Manual explain_getpriority(3)

NAME
explain_getpriority — explaigetpriority (2) errors

SYNOPSIS
#include <libexplain/getpriority.h>
const char *explain_getpriority(int which, int who);
const char *explain_errno_getpriority(int errnum, int which, int who);
void explain_message_getpriority(char *message, int message_size, int which, int who);
void explain_message_errno_getpriority(char *message, int message_size, int errnum, int which, int who);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetptiazity (2) system call.
explain_getpriority
const char *explain_getpriority(int which, int who);
Theexplain_getpriority function is used to obtain ammanation of an error returned by thepriority(2)

system call. The least the message will contain is @ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
which The original which, exactly as passed togepriority (2) system call.
who The original who, exactly as passed togepriority(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getpriority(which, who);
if (result < 0)
{
fprintf(stderr, "%s\n", explain_getpriority(which, who));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_getpriority or_di€3) function.

explain_errno_getpriority
const char *explain_errno_getpriority(int errnum, int which, int who);
The explain_errno_getpriority function is used to obtain an explanation of an error returned by the

getpriority (2) system call.The least the message will contain is the valustiarror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained froretireo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

which The original which, exactly as passed togepriority (2) system call.
who The original who, exactly as passed togepriority(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

432

explain_getpriority(3) LibraryFunctions Manual explain_getpriority(3)

Example: This function is intended to be used in a fashion similar to the following example:
int result = getpriority(which, who);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getpriority(err, which,
who));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_getpriority or_di€3) function.

explain_message_getpriority
void explain_message_getpriority(char *message, int message_size, int which, int who);

The explain_message_getpriorityfunction is used to obtain axmanation of an error returned by the
getpriority (2) system call.The least the message will contain is the valustiarror(errno) , but
usually it will do much betteend indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

which The original which, exactly as passed togkpriority (2) system call.
who The original who, exactly as passed togepriority(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getpriority(which, who);
if (result < 0)

{
char message[3000];
explain_message_getpriority(message, sizeof(message), which,
who);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_getpriority or_di€3) function.

explain_message_errno_getpriority
void explain_message_errno_getpriority(char *message, int message_size, int errnum, int which, int who);

The explain_message_errno_getpriorityfunction is used to obtain an explanation of an error returned by
the getpriority (2) system call.The least the message will contain is the valugtrefror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

which The original which, exactly as passed togepriority (2) system call.
who The original who, exactly as passed togepriority(2) system call.

433

explain_getpriority(3) LibraryFunctions Manual explain_getpriority(3)

Example: This function is intended to be used in a fashion similar to the following example:
int result = getpriority(which, who);
if (result < 0)

{
int err = errno;
char message[3000];
explain_message_errno_getpriority(message, sizeof(message),
err, which, who);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as thgplain_getpriority or_di€3) function.
SEE ALSO
getpriority (2)

get program scheduling priority
explain_getpriority_or_di€3)
get program scheduling priority and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

434

explain_getpriority_or_die(3) Librarifunctions Manual explain_getpriority_or_die(3)

NAME
explain_getpriority_or_die — get program scheduling priority and report errors

SYNOPSIS
#include <libexplain/getpriority.h>
int explain_getpriority_or_die(int which, int who);
int explain_getpriority_on_error(int which, int who);

DESCRIPTION
The explain_getpriority_or_die function is used to call thgetpriority(2) system call. Ondilure an
explanation will be printed tcstderr, obtained from theexplain_getpriorit(3) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_getpriority_on_error function is used to call thgepriority(2) system call. Ondilure an
explanation will be printed tstderr, obtained from theexplain_getpriority(3) function, but still returns to
the caller.

which The which, exactly as to be passed togégriority(2) system call.
who The who, exactly as to be passed togépriority(2) system call.

RETURN VALUE
The explain_getpriority_or_die function only returns on success, ggipriority(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_getpriority_on_error function alvays returns thealue return by the wrappegktpriority (2)
system call.

EXAMPLE
The explain_getpriority_or_die function is intended to be used in asHion similar to the folleing
example:
int result = explain_getpriority_or_die(which, who);

SEE ALSO
getpriority (2)
get program scheduling priority
explain_getpriority(3)
explain getpriority (2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

435

explain_getresgid(3) Librarffunctions Manual explain_getresgid(3)

NAME
explain_getresgid — explaigetresgid2) errors

SYNOPSIS
#include <libexplain/getresgid.h>
const char *explain_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid);
const char *explain_errno_getresgid(int errnum, gid_t *rgid, gid_t *egid, gid_t *sgid);
void explain_message_getresgid(char *message, int message_size, gid_t *rgid, gid_t *egid, gid_t *sgid);
void explain_message_errno_getresgid(char *message, int message_size, int errnum, gid_t *rgid, gid_t
*egid, gid_t *sgid);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedjetrebgid2) system call.
explain_getresgid
const char *explain_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid);
The explain_getresgidfunction is used to obtain axmanation of an error returned by thetresgid2)

system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
rgid The original rgid, exactly as passed to gieFesgid2) system call.
egd The original egid, exactly as passed todHeesgid2) system call.
sgid The original sgid, exactly as passed todheesgid2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresgid(rgid, egid, sgid) < 0)
{

fprintf(stderr, "%s\n", explain_getresgid(rgid, egid, sgid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getresgid_or_di@) function.

explain_errno_getresgid
const char *explain_errno_getresgid(int errnum, gid_t *rgid, gid_t *egid, gid_t *sgid);

The explain_errno_getresgid function is used to obtain arxmanation of an error returned by the
getresgid2) system call. The least the message will contain is the vals&asfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

rgid The original rgid, exactly as passed to gieFesgid2) system call.
egd The original egid, exactly as passed todHeesgid2) system call.
sgid The original sgid, exactly as passed todheesgid2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

436

explain_getresgid(3) Librarffunctions Manual explain_getresgid(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresgid(rgid, egid, sgid) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getresgid(err, rgid,
egid, sgid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getresgid_or_di@) function.

explain_message_getresgid
void explain_message_getresgid(char *message, int message_size, gid_t *rgid, gid_t *egid, gid_t *sgid);

The explain_message_getresgitlnction is used to obtain an explanation of an error returned by the
getresgid2) system call. The least the message will contain is the vals&esfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

rgid The original rgid, exactly as passed to gieFesgid2) system call.
egd The original egid, exactly as passed todHeesgid2) system call.
sgid The original sgid, exactly as passed todheesgid2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresgid(rgid, egid, sgid) < 0)

{
char message[3000];
explain_message_getresgid(message, sizeof(message), rgid,
egid, sgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getresgid_or_di@) function.

explain_message_errno_getresgid
void explain_message_errno_getresgid(char *message, int message_size, int errnum, gid_t *rgid, gid_t
*egid, gid_t *sgid);
The explain_message_errno_getresgifiinction is used to obtain an explanation of an error returned by

the getresgid2) system call. The least the message will contain isadhe\ofstrerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

437

explain_getresgid(3) Librarffunctions Manual explain_getresgid(3)

rgid The original rgid, exactly as passed to gieFesgid2) system call.
egd The original egid, exactly as passed todHeesgid2) system call.
sgid The original sgid, exactly as passed todheesgid2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresgid(rgid, egid, sgid) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_getresgid(message, sizeof(message), err,
rgid, egid, sgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tbgplain_getresgid_or_di@) function.
SEE ALSO
getresgid2)

get real, effectie and saed group IDs
explain_getresgid_or_di@)
get real, effectie and saed group IDs and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

438

explain_getresgid_or_die(3) LibraRunctions Manual explain_getresgid_or_die(3)

NAME
explain_getresgid_or_die — get r/e/s group IDs and report errors

SYNOPSIS
#include <libexplain/getresgid.h>
void explain_getresgid_or_die(gid_t *rgid, gid_t *egid, gid_t *sgid);
int explain_getresgid_on_error(gid_t *rgid, gid_t *egid, gid_t *sgid);
DESCRIPTION
The explain_getresgid_or_diefunction is used to call thgeresgid2) system call. On failure an

explanation will be printed tstderr, obtained from thexplain_getresgi@) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_getresgid_on_errorfunction is used to call thgeresgid2) system call. On failure an
explanation will be printed tetderr, obtained from thexplain_getresgi@@) function, lut still returns to the
caller.

rgid The rgid, exactly as to be passed togheesgid2) system call.
egd The egid, exactly as to be passed togeesgid2) system call.
sgid The sgid, exactly as to be passed togiresgid2) system call.

RETURN VALUE
Theexplain_getresgid_or_digfunction only returns on success, gefresgid2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_getresgid_on_errorfunction alvays returns the alue return by the wrappegkresgid?2)
system call.

EXAMPLE
The explain_getresgid_or_diefunction is intended to be used in a fashion similar to the violip
example:
explain_getresgid_or_die(rgid, egid, sgid);
SEE ALSO
getresgid2)
get real, effectie and saed group IDs
explain_getresgi@3)
explain getresgid2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2012 Peter Miller

439

explain_getresuid(3) Librarffunctions Manual explain_getresuid(3)

NAME
explain_getresuid — explaigetresuid2) errors

SYNOPSIS
#include <libexplain/getresuid.h>

const char *explain_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid);
const char *explain_errno_getresuid(int errnum, uid_t *ruid, uid_t *euid, uid_t *suid);
void explain_message_getresuid(char *message, int message_size, uid_t *ruid, uid_t *euid, uid_t *suid);
void explain_message_errno_getresuid(char *message, int message_size, int errnum, uid_t *ruid, uid_t
*euid, uid_t *suid);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetrebeid2) system call.
explain_getresuid
const char *explain_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid);

The explain_getresuidfunction is used to obtain an explanation of an error returned byettesuid2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
ruid The original ruid, exactly as passed to glegesuid2) system call.
euid The original euid, exactly as passed todgheesuid2) system call.
suid The original suid, exactly as passed todheesuid2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresuid(ruid, euid, suid) < 0)

fprintf(stderr, "%s\n", explain_getresuid(ruid, euid, suid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getresuid_or_di@) function.

explain_errno_getresuid
const char *explain_errno_getresuid(int errnum, uid_t *ruid, uid_t *euid, uid_t *suid);

The explain_errno_getresuid function is used to obtain arxmanation of an error returned by the
getresuid2) system call. The least the message will contain is the vals&asfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

ruid The original ruid, exactly as passed to glegesuid2) system call.
euid The original euid, exactly as passed todgheesuid2) system call.
suid The original suid, exactly as passed todheesuid2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

440

explain_getresuid(3) Librarffunctions Manual explain_getresuid(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresuid(ruid, euid, suid) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getresuid(err, ruid,
euid, suid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getresuid_or_di@) function.

explain_message_getresuid
void explain_message_getresuid(char *message, int message_size, uid_t *ruid, uid_t *euid, uid_t *suid);

The explain_message_getresuiflnction is used to obtain an explanation of an error returned by the
getresuid2) system call. The least the message will contain is the vals&asfor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

ruid The original ruid, exactly as passed to glegesuid2) system call.
euid The original euid, exactly as passed todgheesuid2) system call.
suid The original suid, exactly as passed todheesuid2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresuid(ruid, euid, suid) < 0)

{
char message[3000];
explain_message_getresuid(message, sizeof(message), ruid,
euid, suid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getresuid_or_di@) function.

explain_message_errno_getresuid
void explain_message_errno_getresuid(char *message, int message_size, int errnum, uid_t *ruid, uid_t
*euid, uid_t *suid);

The explain_message_errno_getresuitunction is used to obtain an explanation of an error returned by
the getresuid2) system call. The least the message will contain isahe\ofstrerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

441

explain_getresuid(3) Librarffunctions Manual explain_getresuid(3)

ruid The original ruid, exactly as passed to glegesuid2) system call.
euid The original euid, exactly as passed togheesuid2) system call.
suid The original suid, exactly as passed todheesuid2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresuid(ruid, euid, suid) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_getresuid(message, sizeof(message), err,
ruid, euid, suid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_getresuid_or_di@) function.
SEE ALSO
getresuid2)

get real, effectie and saed user IDs
explain_getresuid_or_di@)
get real, effectie and saed user IDs and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

442

explain_getresuid_or_die(3) LibraRunctions Manual explain_getresuid_or_die(3)

NAME
explain_getresuid_or_die — get r/e/s user IDs and report errors

SYNOPSIS
#include <libexplain/getresuid.h>
void explain_getresuid_or_die(uid_t *ruid, uid_t *euid, uid_t *suid);
int explain_getresuid_on_error(uid_t *ruid, uid_t *euid, uid_t *suid);
DESCRIPTION
The explain_getresuid_or_die function is used to call thgetresuid2) system call. On failure an

explanation will be printed tstderr, obtained from thexplain_getresui@) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_getresuid_on_error function is used to call thgeresuid2) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_getresui@@) function, lut still returns to the
caller.

ruid The ruid, exactly as to be passed togHeesuid2) system call.
euid The euid, exactly as to be passed togesuid2) system call.
suid The suid, exactly as to be passed togiresuid2) system call.

RETURN VALUE
Theexplain_getresuid_or_diefunction only returns on success, geFesuid2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_getresuid_on_errorfunction aays returns the alue return by the wrappegktresuid?2)
system call.

EXAMPLE
The explain_getresuid_or_diefunction is intended to be used in a fashion similar to the violip
example:
explain_getresuid_or_die(ruid, euid, suid);

SEE ALSO
getresuid2)
get real, effectie and saed user IDs

explain_getresui@3)
explain getresuid2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

443

explain_getrlimit(3) LibraryFunctions Manual explain_getrlimit(3)

NAME
explain_getrlimit — explain getrlimit(2) errors

SYNOPSIS
#include <libexplain/getrlimit.h>

const char *explain_getrlimit(int resource, struct rlimit *rlim);
const char *explain_errno_getrlimit(int errnum, int resource, struct rlimit *rlim);
void explain_message_getrlimit(char *message, int message_size, int resource, struct rlimit *rlim);
void explain_message_errno_getrlimit(char *message, int message_size, int errnum, int resource, struct
rlimit *rlim);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedgelyliimt (2) system call.

explain_getrlimit
const char *explain_getrlimit(int resource, struct rlimit *rlim);

The explain_getrlimit function is used to obtain arxmanation of an error returned by thetrlimit(2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
This function is intended to be used in a fashion similar to the following example:
if (getrlimit(resource, rlim) < 0)

fprintf(stderr, "%s\n", explain_getrlimit(resource, rlim));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_getrlimit_or_di€3) function.
resource The original resource, exactly as passed taédimit(2) system call.
rlim The original rlim, exactly as passed to gelimit(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_getrlimit
const char *explain_errno_getrlimit(int errnum, int resource, struct rlimit *rlim);

The explain_errno_getrlimit function is used to obtain an explanation of an error returned by the
getrlimit(2) system call. The least the message will contain is the valustrror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (getrlimit(resource, rlim) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getrlimit(err, resource, rlim));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_getrlimit_or_di€3) function.

errnum The error @alue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

444

explain_getrlimit(3) LibraryFunctions Manual explain_getrlimit(3)

resource The original resource, exactly as passed taédimit(2) system call.
rlim The original rlim, exactly as passed to gelimit(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_getrlimit
void explain_message_getrlimit(char *message, int message_size, int resource, struct rlimit *rlim);
Theexplain_message_getrlimifunction may be used tobtain an explanation of an error returned by the

getrlimit(2) system call. The least the message will contain is the valuetadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getrlimit(resource, rlim) < 0)

{
char message[3000];
explain_message_getrlimit(message, sizeof(message), resource, rlim);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getrlimit_or_di€3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

resource The original resource, exactly as passed taédimit(2) system call.
rlim The original rlim, exactly as passed to gelimit(2) system call.

explain_message_errno_getrlimit
void explain_message_errno_getrlimit(char *message, int message_size, int errnum, int resource, struct
rlimit *rlim);
Theexplain_message_errno_getrlimifunction may be used to obtain an explanation of an error returned

by thegerlimit(2) system call. The least the message will contain isdahe\ofstrerror(errnum)
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getrlimit(resource, rlim) < 0)

int err = errno;

char message[3000];

explain_message_errno_getrlimit(message, sizeof(message),
err, resource, rlim);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_getrlimit_or_di€3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

445

explain_getrlimit(3) LibraryFunctions Manual explain_getrlimit(3)

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

resource The original resource, exactly as passed taédimit(2) system call.

rlim The original rlim, exactly as passed to gelimit(2) system call.
SEE ALSO
getrlimit(2)

get resource limits
explain_getrlimit_or_di€3)
get resource limits and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

446

explain_getrlimit_or_die(3) Libraryunctions Manual explain_getrlimit_or_die(3)

NAME
explain_getrlimit_or_die — get resource limits and report errors

SYNOPSIS
#include <libexplain/getrlimit.h>
void explain_getrlimit_or_die(int resource, struct rlimit *rlim);
DESCRIPTION
The explain_getrlimit_or_die function is used to call thgerlimit(2) system call. On failure an

explanation will be printed tetderr, obtained fromexplain_getrlimi(3), and then the process terminates by
calling exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_getrlimit_or_die(resource, rlim);

resource The resource, exactly as to be passed tgéfnkmit (2) system call.
rlim The rlim, exactly as to be passed to glelimit (2) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getrlimit(2)
get resource limits
explain_getrlimi(3)
explain getrlimit (2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

447

explain_getrusage(3) Librayunctions Manual explain_getrusage(3)

NAME
explain_getrusage — explagerusage(2) errors

SYNOPSIS
#include <libexplain/getrusage.h>

const char *explain_getrusage(int who, struct rusage *usage);
const char *explain_errno_getrusage(int errnum, int who, struct rusage *usage);
void explain_message_getrusage(char *message, int message_size, int who, struct rusage *usage);
void explain_message_errno_getrusage(char *message, int message_size, int errnum, int who, struct rusage
*usage);
DESCRIPTION
These functions may be used to obtain explanations for errors returnedgeribege(2) system call.

explain_getrusage
const char *explain_getrusage(int who, struct rusage *usage);

The explain_getrusagefunction is used to obtain an explanation of an error returned hyethesage(2)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
who The original who, exactly as passed togbeusage(2) system call.
usagge The original usage, exactly as passed tagtmrisage(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getrusage(who, usage) < 0)

{

fprintf(stderr, "%s\n", explain_getrusage(who, usage));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_getrusge or_dig3) function.

explain_errno_getrusage
const char *explain_errno_getrusage(int errnum, int who, struct rusage *usage);

The explain_errno_getrusagefunction is used to obtain an explanation of an error returned by the
getrusage(2) system call. The least the message will contain is #éiigevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error @alue to be decoded, usually obtained from eh@o global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

who The original who, exactly as passed togbeusage(2) system call.
usagge The original usage, exactly as passed tagtrisage(2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

448

explain_getrusage(3) Librayunctions Manual explain_getrusage(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (getrusage(who, usage) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getrusage(err, who,
usage));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_getrusge or_dig3) function.

explain_message_getrusage
void explain_message_getrusage(char *message, int message_size, int who, struct rusage *usage);

The explain_message_getrusagiinction is used to obtain arxmanation of an error returned by the
getrusage(2) system call. The least the message will contain is #éiigevof strerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

who The original who, exactly as passed togbeusage(2) system call.
usagge The original usage, exactly as passed tagtmisage(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getrusage(who, usage) < 0)

{
char message[3000];
explain_message_getrusage(message, sizeof(message), who,
usage);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The aboe mde example isvailable pre—packaged as tegplain_getrusge or_dig3) function.

explain_message_errno_getrusage

void explain_message_errno_getrusage(char *message, int message_size, int errnum, int who, struct rusage
*usage);

The explain_message_errno_getrusadenction is used to obtain axmanation of an error returned by
the getrusage(2) system call.The least the message will contain is the valugtrefrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

who The original who, exactly as passed togbeusage(2) system call.
usgge The original usage, exactly as passed tagtmrisage(2) system call.
Example: This function is intended to be used in a fashion similar to the following example:

449

explain_getrusage(3) Librayunctions Manual explain_getrusage(3)

if (getrusage(who, usage) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_getrusage(message, sizeof(message), err,
who, usage);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_getrusge or_dig3) function.
SEE ALSO
getrusage(2)

get resource usage
explain_getrusge or_dig3)
get resource usage and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

450

explain_getrusage_or_die(3) LibraRgnctions Manual explain_getrusage_or_die(3)

NAME
explain_getrusage_or_die — get resource usage and report errors

SYNOPSIS
#include <libexplain/getrusage.h>
void explain_getrusage_or_die(int who, struct rusage *usage);
int explain_getrusage_on_error(int who, struct rusage *usage);

DESCRIPTION
The explain_getrusage_or_diefunction is used to call thgerusage2) system call. Onadflure an
explanation will be printed tstderr, obtained from thexplain_getrusge(3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_getrusage_on_errorfunction is used to call thgetrusagg(2) system call. Onaflure an
explanation will be printed tstderr, obtained from theexplain_getrusge(3) function, but still returns to
the caller.

who The who, exactly as to be passed togéteusage(2) system call.
usgge The usage, exactly as to be passed tgétrasage(2) system call.

RETURN VALUE
The explain_getrusage_or_digunction only returns on success, sgrusage(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_getrusage_on_errorfunction alays returns the value return by the wrapgettusage2)
system call.

EXAMPLE
The explain_getrusage_or_diefunction is intended to be used in asliion similar to the folleing
example:
explain_getrusage_or_die(who, usage);
SEE ALSO
getrusage(2)
get resource usage
explain_getrusge(3)
explain getrusage(2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

451

explain_getsockname(3) LibraRunctions Manual explain_getsockname(3)

NAME
explain_getsockname — explain getsockname(2) errors

SYNOPSIS
#include <libexplain/getsockname.h>

const char *explain_getsockname(int fildes, struct sockaddr *sock sadklen t *sock_addr_size);

const char *gplain_errno_getsockname(int errnum, int fildes, struct sockaddr *sock smitklen t

*sock addr_size);

void explain_message_getsockname(char *message, int message_size, int fildes, struct sockaddr
*sock addrsocklen_t *sock _addr_size);

void explain_message_errno_getsockname(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock _addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgetsttoknamg2) system call.

explain_getsockname
const char *explain_getsockname(int fildes, struct sockaddr *sock sadllen t *sock_addr_size);

The explain_getsocknamefunction is used to obtain an explanation of an error returned by the
getsocknam@) system call.The least the message will contain is the valustr@fror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;
socklen_t sock addr_size = sizeof(sock_addr);
if (getsockname(fildes, &sock addr, &sock addr_size) < 0)

fprintf(stderr, "%s\n", explain_getsockname(fildes,
&sock _addr, &sock addr_size));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_getsockname_or_d®) function.
fildes The original fildes, exactly as passed toghlsocknamg) system call.

sock _addr
The original sock_addexactly as passed to tigetsocknamg) system call.

sock addr_size
The original sock_addr_size, exactly as passed tgasecknamg) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_getsockname
const char *gplain_errno_getsockname(int errnum, int fildes, struct sockaddr *sock smitklen t
*sock addr_size);

The explain_errno_getsocknamefunction is used to obtain an explanation of an error returned by the
getsocknam@) system call. The least the message will contain isaghe\ofstrerror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;

452

explain_getsockname(3) LibraRunctions Manual explain_getsockname(3)

socklen_t sock _addr_size = sizeof(sock_addr);
if (getsockname(fildes, &sock addr, &sock addr_size) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getsockname(err,
fildes, &sock addr, &sock addr_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_getsockname_or_d®) function.

errnum The error value to be decoded, usually obtained frormetire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toghBsocknamg) system call.

sock _addr
The original sock_addexactly as passed to tigetsocknamg) system call.

sock addr_size
The original sock_addr_size, exactly as passed tgasecknamg) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_message_getsockname
void explain_message getsockname(char *message, int message_sizéldesit $truct sockaddr
*sock addrsocklen_t *sock _addr_size);

Theexplain_message_getsocknanfignction may be used to obtain an explanation of an error returned by
the getisocknamg?) system call. The least the message will contain is dheofstrerror(errno) ,
but usually it will do much betteland indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;
socklen_t sock _addr_size = sizeof(sock_addr);
if (getsockname(fildes, &sock addr, &sock addr_size) < 0)

{
char message[3000];
explain_message_getsockname(message, sizeof(message),
fildes, &sock _addr, &sock addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getsockname_or_d®) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toghlsocknamg) system call.

453

explain_getsockname(3) LibraRunctions Manual explain_getsockname(3)

sock _addr
The original sock_addexactly as passed to tigetsocknamg) system call.

sock addr_size
The original sock_addr_size, exactly as passed tgasecknamg) system call.

explain_message_errno_getsockname
void explain_message_errno_getsockname(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addsocklen_t *sock _addr_size);

The explain_message_errno_getsocknamf@nction may be used to obtain arpknation of an error
returned by thegeisocknamg) system call. The least the message will contain is tdaevof
strerror(errnum) , but usually it will do much betterand indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;
socklen_t sock_addr_size = sizeof(sock_addr);
if (getsockname(fildes, &sock_addr, &sock_addr_size) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_getsockname(message, sizeof(message),
err, fildes, &sock_addr, &sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_getsockname_or_d®) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toghlsocknamg) system call.

sock _addr
The original sock_addexactly as passed to tigetsocknamg) system call.

sock addr_size
The original sock_addr_size, exactly as passed tgasecknamg) system call.

SEE ALSO
getsocknamg)
get socket name

explain_getsockname_or_d®)
get socket name and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

454

explain_getsockname_or_die(3) Librdfynctions Manual explain_getsockname_or_die(3)

NAME
explain_getsockname_or_die — get socket name and report errors

SYNOPSIS
#include <libexplain/getsockname.h>

void explain_getsockname_or_die(int fildes, struct sockaddr *sock, smbdten_t *sock_addr_size);
DESCRIPTION
The explain_getsockname_or_didunction is used to call thgetsocknamg) system call.On failure an

explanation will be printed tostderr, obtained fromexplain_getsocknan{8), and then the process
terminates by callingxit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock addr;
socklen_t sock _addr_size = sizeof(sock_addr);
explain_getsockname_or_die(fildes, &sock_addr, &sock_addr_size);

fildes The fildes, exactly as to be passed togteocknamg) system call.

sock _addr
The sock addexactly as to be passed to thesocknamg) system call.

sock addr_size
The sock_addr_size, exactly as to be passed mabecknamg) system call.

Returns: This function only returns on success, ggsockaddfl) for more information. Onaéiflure,
prints an explanation and exits.

SEE ALSO
getsocknamg)
get socket name

explain_getsocknant8)
explain getsocknam@) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

455

explain_getsocépt(3) LibraryFunctions Manual explain_getsockopt(3)

NAME
explain_getsockopt — explain getsockopt(2) errors

SYNOPSIS
#include <libexplain/getsockopt.h>

const char *explain_getsockopt(int fildes, intde int name, void *data, socklen_t *data_size);

const char *gplain_errno_getsodpt(int errnum, int ifdes, int level, int name, void *data, socklen_t
*data_size);

void explain_message_getsagit(char *message, int message_size, int fildes, ird, lint name, wvid
*data, socklen_t *data_size);

void explain_message_errno_getsopkchar *message, int message_size, int errnum, int fildesvaht le
int name, void *data, socklen_t *data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgestideopt(2) system call.

explain_getsockopt
const char *explain_getsockopt(int fildes, intde int name, void *data, socklen_t *data_size);

The explain_getsockoptfunction is used to obtain an explanation of an error returned lyetbekopt(2)
system call. The least the message will contain is @heevofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getsockopt(fildes, level, name, data, data_size) < 0)

{
fprintf(stderr, "%s\n", explain_getsockopt(fildes,
level, name, data, data_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getsokopt _or_dig3) function.
fildes The original fildes, exactly as passed togkesodopt(2) system call.

level The original leel, exactly as passed to thetsodkopt(2) system call.

name The original name, exactly as passed togitsodkopt(2) system call.

data The original data, exactly as passed togiieodkopt(2) system call.

data_size
The original data_size, exactly as passed tg#&sodopt(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_getsockopt
const char *gplain_errno_getsodpt(int errnum, int ifdes, int level, int name, void *data, socklen_t
*data_size);

The explain_errno_getsockoptfunction is used to obtain an explanation of an error returned by the
getsokopt(2) system call. The least the message will contain is the valskeeofor(errnum) , but
usually it will do much betteand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getsockopt(fildes, level, name, data, data_size) < 0)

456

explain_getsocépt(3) LibraryFunctions Manual explain_getsockopt(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getsockopt(err,
fildes, level, name, data, data_size));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_getsokopt _or_dig3) function.

errnum The error value to be decoded, usually obtained frometire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toghesodopt(2) system call.
level The original leel, exactly as passed to thetsodkopt(2) system call.
name The original name, exactly as passed togitsodkopt(2) system call.
data The original data, exactly as passed togiisodkopt(2) system call.

data_size
The original data_size, exactly as passed tg#&sodopt(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_getsockopt
void explain_message_getsagit(char *message, int message_size, ildeg, int level, int name, wid
*data, socklen_t *data_size);

The explain_message_getsockoftinction may be used to obtain an explanation of an error returned by
the getsodkopt(2) system call. The least the message will contain is the vakteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getsockopt(fildes, level, name, data, data_size) < 0)

{
char message[3000];
explain_message_getsockopt(message, sizeof(message),
fildes, level, name, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example iswvailable pre-packaged as thgplain_getsokopt _or_dig3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toghesodopt(2) system call.
level The original leel, exactly as passed to thetsodkopt(2) system call.
name The original name, exactly as passed togitsodkopt(2) system call.

457

explain_getsocépt(3) LibraryFunctions Manual explain_getsockopt(3)

data The original data, exactly as passed togiisodkopt(2) system call.

data_size
The original data_size, exactly as passed tg#&sodopt(2) system call.

explain_message_errno_getsockopt
void explain_message_errno_getsopkchar *message, int message_size, int errnum, int fildesvaht le
int name, void *data, socklen_t *data_size);

The explain_message_errno_getsockogtinction may be used to obtain ampkanation of an error
returned by thegesodkopt(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much betterand indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
if (getsockopt(fildes, level, name, data, data_size) < 0)

{

int err = errno;

char message[3000];

explain_message_errno_getsockopt(message, sizeof(message),
err, fildes, level, name, data, data_size);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_getsokopt _or_dig3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @yl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed togkesodopt(2) system call.
level The original leel, exactly as passed to thetsodkopt(2) system call.
name The original name, exactly as passed togitsodkopt(2) system call.
data The original data, exactly as passed togiieodkopt(2) system call.

data_size
The original data_size, exactly as passed tg#&sodopt(2) system call.
SEE ALSO
getsokopt(2)
get and set options on sockets
explain_getsokopt _or_dig3)
get and set options on sockets and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

458

explain_getsoctpt_or_die(3) Libraryrunctions Manual explain_getsockopt_or_die(3)

NAME
explain_getsockopt_or_die — get and set options on sockets and report errors

SYNOPSIS
#include <libexplain/getsockopt.h>

void explain_getsockopt_or_die(int fildes, invé int name, void *data, socklen_t *data_size);

DESCRIPTION
The explain_getsockopt_or_diefunction is used to call thgesokopt(2) system call. On failure an
explanation will be printed tstderr, obtained fromexplain_getsokopt(3), and then the process terminates
by callingexit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_getsockopt_or_die(fildes, level, name, data, data_size);

fildes The fildes, exactly as to be passed togeodopt(2) system call.
level The level, exactly as to be passed to tasodkopt(2) system call.
name The name, exactly as to be passed tag#modkopt(2) system call.
data The data, exactly as to be passed tgyttsodkopt(2) system call.

data_size
The data_size, exactly as to be passed tgdisedkopt(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getsokopt(2)
get and set options on sockets
explain_getsokopt(3)
explain getsodkopt(2) errors
ext(2) terminate the calling process
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

459

explain_gettimeofday(3) Librarffunctions Manual explain_gettimeofday(3)

NAME
explain_gettimeofday — explain gettimeofday(2) errors

SYNOPSIS
#include <libexplain/gettimeofday.h>

const char *explain_gettimeofday(struct tivele* tv, sruct timezone *tz);

const char *explain_errno_gettimeofday(int errnum, structvérey, struct timezone *tz);

void explain_message_gettimeofday(char *message, int message_size, stnait*timetruct timezone
*tz);

void explain_message_errno_gettimeofday(char *message, int message_size, int errnum, stali¢téime
struct timezone *tz);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgettitheofday?) system call.

explain_gettimeofday
const char *explain_gettimeofday(struct tivele* tv, sruct timezone *tz);

The explain_gettimeofday function is used to obtain an explanation of an error returned by the
gettimeofday?2) system call.The least the message will contain is the valustr@fror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (gettimeofday(tv, tz) < 0)

fprintf(stderr, "%s\n", explain_gettimeofday(tv, tz));
exit(EXIT_FAILURE);

}

tv The original ty exactly as passed to tigettimeofday2) system call.
tz The original tz, exactly as passed to getimeofday2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_gettimeofday
const char *explain_errno_gettimeofday(int errnum, structvéreyv, struct timezone *tz);

The explain_errno_gettimeofday function is used to obtain arxmanation of an error returned by the
gettimeofday?2) system call.The least the message will contain is the valugtrefror(errnum) , but
usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (gettimeofday(tv, tz) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_gettimeofday(err, tv, tz));
exit(EXIT_FAILURE);

}

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

460

explain_gettimeofday(3) Librarffunctions Manual explain_gettimeofday(3)

tv The original ty exactly as passed to tigettimeofday?2) system call.
tz The original tz, exactly as passed to getimeofday2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_gettimeofday
void explain_message_gettimeofday(char *message, int message_size, stnait*timetruct timezone
*tz);

The explain_message_gettimeofdafunction may be used to obtain axpkanation of an error returned
by the getimeofday2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (gettimeofday(tv, tz) < 0)

{
char message[3000];
explain_message_gettimeofday(message, sizeof(message), tv, tz);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
tv The original ty exactly as passed to tigettimeofday?2) system call.
tz The original tz, exactly as passed to getimeofday2) system call.

explain_message_errno_gettimeofday
void explain_message_errno_gettimeofday(char *message, int message_size, int errnum, stalittwime
struct timezone *tz);

The explain_message_errno_gettimeofdafunction may be used to obtain an explanation of an error
returned by thegetimeofday?) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much betterand indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
if (gettimeofday(tv, tz) < 0)

int err = errno;
char message[3000];
explain_message_errno_gettimeofday(message, sizeof(message), err,
tv, tz);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

461

explain_gettimeofday(3) Librarffunctions Manual explain_gettimeofday(3)

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this

function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

tv The original ty exactly as passed to tigettimeofday2) system call.
tz The original tz, exactly as passed to getimeofday2) system call.
SEE ALSO
gettimeofday?)
get time

explain_gettimeofday_or_d{8)
get time and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

462

explain_gettimeofday_or_die(3) LibraRunctions Manual explain_gettimeofday_or_die(3)

NAME
explain_gettimeofday_or_die — get time and report errors

SYNOPSIS
#include <libexplain/gettimeofday.h>

void explain_gettimeofday_or_die(struct timak* tv, struct timezone *tz);

DESCRIPTION
The explain_gettimeofday_or_diefunction is used to call thgettimeofday2) system call.On failure an
explanation will be printed tostderr, obtained fromexplain_gettimeofdaid), and then the process
terminates by callingxit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
explain_gettimeofday_or_die(tv, tz);

tv The ty exactly as to be passed to tipgtimeofday2) system call.
tz The tz, exactly as to be passed togatimeofday2) system call.
Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
gettimeofday?)
get time

explain_gettimeofdaid)
explain gettimeofday?) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

463

explain_getw(3) LibraryFunctions Manual explain_getw(3)

NAME
explain_getw — explaigew(3) errors

SYNOPSIS
#include <libexplain/getw.h>

const char *explain_getw(FILE *fp);

const char *explain_errno_getw(int errnum, FILE *fp);

void explain_message_getw(char *message, int message_size, FILE *fp);

void explain_message_errno_getw(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedgeyni3y system call.

explain_getw
const char *explain_getw(FILE *fp);

Theexplain_getwfunction is used to obtain an explanation of an error returned lgethés) system call.
The least the message will contain is the valugtrefror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fp The original fp, exactly as passed to ¢feav(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getw(fp);
if (result < 0)

fprintf(stderr, "%s\n", explain_getw(fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_getw_or_di€3) function.

explain_errno_getw
const char *explain_errno_getw(int errnum, FILE *fp);

The explain_errno_getw function is used to obtain arxmanation of an error returned by tgetw(3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ¢feav(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getw(fp);

464

explain_getw(3) LibraryFunctions Manual explain_getw(3)

if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getw(err, fp));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_getw_or_di€3) function.

explain_message_getw
void explain_message_getw(char *message, int message_size, FILE *fp);

The explain_message_getfunction is used to obtain an explanation of an error returned byatwé3)
system call. The least the message will contain is ahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to ¢feav(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getw(fp);
if (result < 0)

{
char message[3000];
explain_message_getw(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thglain_getw_or_di€3) function.

explain_message_errno_getw
void explain_message_errno_getw(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_getfunction is used to obtain axmganation of an error returned by the
getw(3) system call. The least the message will contain isaheofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fp The original fp, exactly as passed to ¢gfeav(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getw(fp);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_getw(message, sizeof(message), err, fp);

465

explain_getw(3) LibraryFunctions Manual explain_getw(3)

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thglain_getw_or_di€3) function.
SEE ALSO
getw(3) input a word (int)
explain_getw_or_di€3)
input a word (int) and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2010 Peter Miller

466

explain_getw_or_die(3) Librarffunctions Manual explain_getw_or_die(3)

NAME
explain_getw_or_die — input a word (int) and report errors

SYNOPSIS
#include <libexplain/getw.h>
int explain_getw_or_die(FILE *fp);
int explain_getw_on_error(FILE *fp);
DESCRIPTION
Theexplain_getw_or_diefunction is used to call thgetw(3) system call. On failure an explanation will be

printed tostderr, obtained from theexplain_getw3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

Theexplain_getw_on_errorfunction is used to call thggw(3) system call. On failure an explanation will
be printed tcstderr, obtained from thexplain_getw3) function, but still returns to the caller.

fp The fp, exactly as to be passed todghsv(3) system call.

RETURN VALUE
The explain_getw_or_diefunction only returns on success, ggv(3) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_getw_on_errorfunction alvays returns the value return by the wrappgeiv(3) system call.

EXAMPLE
Theexplain_getw_or_diefunction is intended to be used in a fashion similar to the following example:
int result = explain_getw_or_die(fp);

SEE ALSO
getw(3) input a word (int)
explain_getw3)
explain getw(3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

467

explain_icomv(3) Library Functions Manual explain_iconv(3)

NAME
explain_icorv — explainicon3) errors

SYNOPSIS
#include <libexplain/icomh>

const char *explain_iconv(iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf, size_t

*outbytesleft);

const char *explain_errno_iconv(int errnum, iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf,
size_t *outbytesleft);

void explain_message_iconv(char *message, int message_size, iconv_t cd, char **inbuf, size_t
*inbytesleft, char **outbuf, size_t *outbytesleft);

void explain_message_errno_iconv(char *message, int message_size, int errnum, iconv_t cd, char **inbuf,
size_t *inbytesleft, char **outbuf, size_t *outbytesleft);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddontkig) system call.

explain_iconv
const char *explain_iconv(iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf, size_t
*outbytesleft);

The explain_iconv function is used to obtain axpanation of an error returned by tlewny3) system
call. The least the message will contain is the valustrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
cd The original cd, exactly as passed toitm\3) system call.
inbuf The original inbuf, exactly as passed to idw@\y3) system call.

inbytesleft
The original inbytesleft, exactly as passed toitbeu3) system call.

outbuf The original outbuf, exactly as passed toittoe(3) system call.

outbytesleft
The original outbytesleft, exactly as passed tddbev3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

errno = 0;

size_t result = iconv(cd, inbuf, inbytesleft, outbuf,
outbytesleft);

if (result < 0 && errno != 0)

{

fprintf(stderr, "%s\n", explain_iconv(cd, inbuf, inbytesleft,
outbuf, outbytesleft));
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_iconv_or_di€3) function.

explain_errno_iconv
const char *explain_errno_iconv(int errnum, iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf,
size_t *outbytesleft);

468

explain_icomv(3) Library Functions Manual explain_iconv(3)

The explain_errno_iconv function is used to obtain arxmanation of an error returned by thwny3)
system call. The least the message will contain is the valsteeofor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

cd The original cd, exactly as passed toitm\3) system call.
inbuf The original inbuf, exactly as passed to id@\3) system call.

inbytesleft
The original inbytesleft, exactly as passed toitbeu3) system call.

outbuf The original outbuf, exactly as passed toittoe(3) system call.

outbytesleft
The original outbytesleft, exactly as passed tddbeV3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

errno = 0;

size_t result = iconv(cd, inbuf, inbytesleft, outbuf,
outbytesleft);

if (result < 0 && errno != 0)

{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_iconv(err, cd, inbuf,
inbytesleft, outbuf, outbytesleft));

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_iconv_or_di€3) function.

explain_message_iconv
void explain_message_iconv(char *message, int message_size, iconv_t cd, char **inbuf, size_t
*inbytesleft, char **outbuf, size_t *outbytesleft);

The explain_message_iconfunction is used to obtain an explanation of an error returned hgahé3)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

cd The original cd, exactly as passed toitm\3) system call.
inbuf The original inbuf, exactly as passed to idw@\y3) system call.

inbytesleft
The original inbytesleft, exactly as passed toitbeu3) system call.

outbuf The original outbuf, exactly as passed toittoe(3) system call.

469

explain_icomv(3) Library Functions Manual explain_iconv(3)

outbytesleft
The original outbytesleft, exactly as passed tddabev3) system call.

Example: This function is intended to be used in a fashion similar to the following example:

erro = 0;

size_t result = iconv(cd, inbuf, inbytesleft, outbuf,
outbytesleft);

if (result < 0 && errno != 0)

{

char message[3000];

explain_message_iconv(message, sizeof(message), cd, inbuf,
inbytesleft, outbuf, outbytesleft);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_iconv_or_di€3) function.

explain_message_errno_iconv
void explain_message_errno_iconv(char *message, int message_size, int errnum, iconv_t cd, char **inbuf,
size_t *inbytesleft, char **outbuf, size_t *outbytesleft);

The explain_message_errno_iconfunction is used to obtain an explanation of an error returned by the
icon3) system call. The least the message will contain is the vakteeafor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

cd The original cd, exactly as passed toitm\3) system call.
inbuf The original inbuf, exactly as passed to id@\y3) system call.

inbytesleft
The original inbytesleft, exactly as passed toitbeu3) system call.

outbuf The original outbuf, exactly as passed toittoe(3) system call.

outbytesleft
The original outbytesleft, exactly as passed tddbev3) system call.

Example: This function is intended to be used in a fashion similar to the following example:

erro = 0;

size_t result = iconv(cd, inbuf, inbytesleft, outbuf,
outbytesleft);

if (result < 0 && errno != 0)

{

int err = errno;

char message[3000];
explain_message_errno_iconv(message, sizeof(message), err, cd,
inbuf, inbytesleft, outbuf, outbytesleft);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as tegplain_iconv_or_di€3) function.

470

explain_icomv(3) Library Functions Manual explain_iconv(3)

SEE ALSO
icon3) perform character set ogaision
explain_iconv_or_di€3)
perform character set commsion and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

471

explain_icorv_close(3) LibraryFunctions Manual explain_iconv_close(3)

NAME
explain_iconv_close — explaiilgonv_clos€3) errors

SYNOPSIS
#include <libexplain/iconv_close.h>

const char *explain_iconv_close(iconv_t cd);

const char *explain_errno_iconv_close(int errnum, iconv_t cd);

void explain_message_iconv_close(char *message, int message_size, iconv_t cd);

void explain_message_errno_iconv_close(char *message, int message_size, int errnum, iconv_t cd);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddontheclosé3) system call.
explain_iconv_close
const char *explain_iconv_close(iconv_t cd);
The explain_iconv_close function is used to obtain an explanation of an error returned by the

iconv_clos€3) system call. The least the message will contain is the vals&eofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
cd The original cd, exactly as passed toittmwv_clos€3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;
if (iconv_close(cd) < 0 && errno = 0)

fprintf(stderr, "%s\n", explain_iconv_close(cd));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_iconv_close_or_d({8) function.

explain_errno_iconv_close
const char *explain_errno_iconv_close(int errnum, iconv_t cd);

The explain_errno_iconv_closefunction is used to obtain an explanation of an error returned by the
iconv_clos€3) system call.The least the message will contain is the valustm@ror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

cd The original cd, exactly as passed toitmwv_clos€3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
erro = 0;

472

explain_icorv_close(3) LibraryFunctions Manual explain_iconv_close(3)

if (iconv_close(cd) < 0 && errno = 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_iconv_close(err, cd));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_iconv_close_or_d({8) function.

explain_message_iconv_close
void explain_message_iconv_close(char *message, int message_size, iconv_t cd);

The explain_message_iconv_clodenction is used to obtain an explanation of an error returned by the
iconv_clos€3) system call. The least the message will contain is ahee\ofstrerror(errno) , but
usually it will do much betteend indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
cd The original cd, exactly as passed toittmwv_clos€3) system call.
Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (iconv_close(cd) < 0 && errno = 0)
{

char message[3000];
explain_message_iconv_close(message, sizeof(message), cd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as thgplain_iconv_close_or_d({8) function.

explain_message_errno_iconv_close
void explain_message_errno_iconv_close(char *message, int message_size, int errnum, iconv_t cd);

Theexplain_message_errno_iconv_cloganction is used to obtain an explanation of an error returned by
theiconv_clos€3) system call.The least the message will contain is the valusti@tror(errno)
but usually it will do much betteland indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.
errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

cd The original cd, exactly as passed toittmwv_clos€3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (iconv_close(cd) < 0 && errno = 0)
{

int err = errno;
char message[3000];
explain_message_errno_iconv_close(message, sizeof(message),

473

explain_icorv_close(3) LibraryFunctions Manual explain_iconv_close(3)

err, cd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The abee mde example isvailable pre—packaged as thgplain_iconv_close_or_d({8) function.

SEE ALSO
iconv_closé€3)
deallocate descriptor for character setveosion
explain_iconv_close_or_d(8)
deallocate descriptor for character setveosion and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

474

explain_icorv_close_or_die(3) Librarffunctions Manual explain_iconv_close_or_die(3)

NAME
explain_iconv_close_or_die — deallocate wension descriptor and report errors

SYNOPSIS
#include <libexplain/iconv_close.h>
void explain_iconv_close_or_die(iconv_t cd);
int explain_iconv_close_on_error(iconv_t cd);
DESCRIPTION
The explain_iconv_close_or_diefunction is used to call thizonv_closé3) system call. On failure an

explanation will be printed tastderr, obtained from theexplain_iconv_closg) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_iconv_close_on_errorfunction is used to call thieonv_clos€3) system call. On failure an
explanation will be printed tstderr, obtained from thexplain_iconv_clos€) function, but still returns to
the caller.

cd The cd, exactly as to be passed toithav_clos€3) system call.

RETURN VALUE
The explain_iconv_close_or_diefunction only returns on success, se@mnv_closé3) for more
information. On failure, prints an explanation and exits, it does not return.

Theexplain_iconv_close_on_errofunction alvays returns the value return by the wrapsthv_closé€3)
system call.

EXAMPLE
The explain_iconv_close_or_diegfunction is intended to be used in asliion similar to the folleing
example:
explain_iconv_close_or_die(cd);

SEE ALSO
iconv_closé€3)
deallocate descriptor for character setveosion
explain_iconv_closg)
explainiconv_clos€3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

475

explain_icorv_open(3) LibraryFunctions Manual explain_iconv_open(3)

NAME
explain_iconv_open - explailconv_ope(B) errors

SYNOPSIS
#include <libexplain/iconv_open.h>

const char *explain_iconv_open(const char *tocode, const char *fromcode);

const char *explain_errno_iconv_open(int errnum, const char *tocode, const char *fromcode);

void explain_message_iconv_open(char *message, int message_size, const char *tocode, const char
*fromcode);

void explain_message_errno_iconv_open(char *message, int message_size, int errnum, const char *tocode,
const char *fromcode);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddpnthepe(3) system call.
explain_iconv_open
const char *explain_iconv_open(const char *tocode, const char *fromcode);
The explain_iconv_open function is used to obtain anxmanation of an error returned by the

iconv_ope(B) system call. The least the message will contain is @hes\ofstrerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
tocode The original tocode, exactly as passed tatbav_ope(B) system call.

fromcode
The original fromcode, exactly as passed ta¢bav_ope(3) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
iconv_t result = iconv_open(tocode, fromcode);
if (result < 0)
{
fprintf(stderr, "%s\n", explain_iconv_open(tocode, fromcode));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as thgplain_iconv_open_or_d(8) function.
explain_errno_iconv_open
const char *explain_errno_iconv_open(int errnum, const char *tocode, const char *fromcode);
The explain_errno_iconv_openfunction is used to obtain arxmanation of an error returned by the

iconv_ope(B) system call. The least the message will contain is @he\ofstrerror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained frormetir global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

tocode The original tocode, exactly as passed tatbav_ope(B) system call.

fromcode
The original fromcode, exactly as passed ta¢bav_ope(B) system call.

476

explain_icorv_open(3) LibraryFunctions Manual explain_iconv_open(3)

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
iconv_t result = iconv_open(tocode, fromcode);
if (result < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_iconv_open(err, tocode,
fromcode));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_iconv_open_or_d(8) function.

explain_message_iconv_open
void explain_message_iconv_open(char *message, int message_size, const char *tocode, const char
*fromcode);

The explain_message_iconv_opefunction is used to obtain an explanation of an error returned by the
iconv_ope(B) system call. The least the message will contain is the valustierror(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

tocode The original tocode, exactly as passed tatbav_ope(B) system call.

fromcode
The original fromcode, exactly as passed ta¢bav_ope(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
iconv_t result = iconv_open(tocode, fromcode);
if (result < 0)

{
char message[3000];
explain_message_iconv_open(message, sizeof(message), tocode,
fromcode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_iconv_open_or_d(8) function.

explain_message_errno_iconv_open
void explain_message_errno_iconv_open(char *message, int message_size, int errnum, const char *tocode,
const char *fromcode);

Theexplain_message_errno_iconv_opduinction is used to obtain an explanation of an error returned by
theiconv_ope(3) system call.The least the message will contain is the valusti@rror(errno)
but usually it will do much betteland indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

477

explain_icorv_open(3) LibraryFunctions Manual explain_iconv_open(3)

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

tocode The original tocode, exactly as passed tatbav_ope(B) system call.

fromcode
The original fromcode, exactly as passed ta¢bav_ope(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
iconv_t result = iconv_open(tocode, fromcode);
if (result < 0)
{
int err = errno;
char message[3000];
explain_message_errno_iconv_open(message, sizeof(message),
err, tocode, fromcode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as thgplain_iconv_open_or_d(8) function.
SEE ALSO
iconv_ope(B)
allocate descriptor for character setwaaion
explain_iconv_open_or_d{8)
allocate descriptor for character sety@aion and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2013 Peter Miller

478

explain_icorv_open_or_die(3) Librarffunctions Manual explain_iconv_open_or_die(3)

NAME
explain_iconv_open_or_die — prepare for charseveion and report errors

SYNOPSIS
#include <libexplain/iconv_open.h>

iconv_t explain_iconv_open_or_die(const char *tocode, const char *fromcode);
iconv_t explain_iconv_open_on_error(const char *tocode, const char *fromcode);

DESCRIPTION
The explain_iconv_open_or_diefunction is used to call theconv_ope(3) system call. On failure an
explanation will be printed tcstderr, obtained from theexplain_iconv_ope(8) function, and then the
process terminates by calliegit(EXIT_FAILURE)

The explain_iconv_open_on_errorfunction is used to call thigonv_ope(B) system call. On failure an
explanation will be printed tstderr, obtained from theaxplain_iconv_ope(B) function, but still returns to
the caller.

tocode The tocode, exactly as to be passed tadbiev_ope(3) system call.

fromcode
The fromcode, exactly as to be passed todtwev_ope(B) system call.

RETURN VALUE
The explain_iconv_open_or_die function only returns on success, s@&mdnv_ope(3) for more
information. On failure, prints an explanation and exits, it does not return.

Theexplain_iconv_open_on_errorfunction alvays returns the value return by the wrapjeshv_ope(i)
system call.

EXAMPLE
The explain_iconv_open_or_diefunction is intended to be used in a fashion similar to theviolip
example:
iconv_t result = explain_iconv_open_or_die(tocode, fromcode);

SEE ALSO
iconv_ope(B)
allocate descriptor for character setweaion
explain_iconv_ope(8)
explainiconv_ope(3) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

479

explain_icorv_or_die(3) LibraryFunctions Manual explain_iconv_or_die(3)

NAME
explain_iconv_or_die — perform character setvasion and report errors

SYNOPSIS
#include <libexplain/icomh>

size_t aplain_iconv_or_die(icon t cd, char **inbuf, size t *inbytesleft, char **outbuf, size t
*outbytesleft);

size_t aplain_iconv_on_error(icont cd, char **inbuf, size t *inbytesleft, char **outh size t
*outbytesleft);

DESCRIPTION
The explain_iconv_or_diefunction is used to call theon3) system call. On failure an explanation will
be printed tcstderr, obtained from thexplain_icony3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

The explain_iconv_on_error function is used to call thieony3) system call. Onaflure an gplanation
will be printed tostderr, obtained from thexplain_icony3) function, but still returns to the caller.

cd The cd, exactly as to be passed toithey3) system call.
inbuf The inbuf, exactly as to be passed toitlea(3) system call.

inbytesleft
The inbytesleft, exactly as to be passed tadbe\3) system call.

outbuf The outbuf, exactly as to be passed toicbey3) system call.

outbytesleft
The outbytesleft, exactly as to be passed tacthe(3) system call.

RETURN VALUE
Theexplain_iconv_or_diefunction only returns on success, smny3) for more information. Onaflure,
prints an explanation and exits, it does not return.

Theexplain_iconv_on_errorfunction alvays returns the value return by the wrapjeuhy(3) system call.

EXAMPLE
Theexplain_iconv_or_diefunction is intended to be used in a fashion similar to the following example:
size_t result = explain_iconv_or_die(cd, inbuf, inbytesleft, outbuf,
outbytesleft);

SEE ALSO
icon3) perform character set ogision

explain_icon\(3)
explainicon3) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

480

explain_ioctl(3) LibraryFunctions Manual explain_ioctl(3)

NAME
explain_ioctl — explain ioctl(2) errors

SYNOPSIS
#include <libexplain/ioctl.h>

const char *explain_ioctl(int fildes, int request, void *data);

const char *explain_errno_ioctl(int errnum, int fildes, int request, void *data);

void explain_message_ioctl(char *message, int message_size, int fildes, int request, void *data);

void explain_message_errno_ioctl(char *message, int message_size, int errnum, int fildes, int reiguest, v
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returnedadmt/{Be system call.
explain_ioctl
const char *explain_ioctl(int fildes, int request, void *data);
The explain_ioctl function is used to obtain an explanation of an error returned hgadth@) system call.

The least the message will contain is th&ug ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int result = ioctl(fildes, request, data);
if (result < 0)
{
fprintf(stderr, "%s\n", explain_ioctl(fildes, request, data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as tbgplain_ioctl_or_di€3) function.
fildes The original fildes, exactly as passed toitadl(2) system call.

request The original request, exactly as passed tadb#(2) system call.

data The original data, exactly as passed toidke(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

explain_errno_ioctl
const char *explain_errno_ioctl(int errnum, int fildes, int request, void *data);

The explain_errno_ioctl function is used to obtain arxmanation of an error returned by tietl(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ioctl(fildes, request, data) < 0)

{
int err = errno;
fprintf(stderr, "%s\n",
explain_errno_ioctl(err, fildes, request, data));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_ioctl_or_di€3) function.

481

explain_ioctl(3) LibraryFunctions Manual explain_ioctl(3)

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toitadl(2) system call.
request The original request, exactly as passed tadb#(2) system call.
data The original data, exactly as passed toidle(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.
explain_message_ioctl
void explain_message_ioctl(char *message, int message_size, int fildes, int request, void *data);
The explain_message_ioctfunction may be used to obtain axpknation of an error returned by the

ioctl(2) system call. The least the message will contain isahe\ofstrerror(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ioctl(fildes, request, data) < 0)

{
char message[3000];
explain_message_ioctl(message, sizeof(message), fildes, request, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as tbgplain_ioctl_or_di€3) function.

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toital(2) system call.
request The original request, exactly as passed tadb#(2) system call.
data The original data, exactly as passed toidke(2) system call.

explain_message_errno_ioctl
void explain_message_errno_ioctl(char *message, int message_size, int errnum, int fildes, int reiguest, v

*data);
The explain_message_errno_ioctiunction may be used to obtain an explanation of an error returned by
the ioctl(2) system call. The least the message will contain is the valustirror(errnum) , but

usually it will do much betteand indicate the underlying cause in more detalil.

This function is intended to be used in a fashion similar to the following example:
if (ioctl(fildes, request, data) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_ioctl(message, sizeof(message), err,
fildes, request, data);
fprintf(stderr, "%s\n", message);

482

explain_ioctl(3) LibraryFunctions Manual explain_ioctl(3)

exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_ioctl_or_di€3) function.

messge The location in which to store the returned message. If a suitable message wéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toitadl(2) system call.
request The original request, exactly as passed tadb#(2) system call.
data The original data, exactly as passed toidke(2) system call.

SEE ALSO
ioctl(2) control device
explain_ioctl_or_di€3)
control device and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

483

explain_ioctl_or_die(3) Libraryrunctions Manual explain_ioctl_or_die(3)

NAME
explain_ioctl_or_die — control device and report errors

SYNOPSIS
#include <libexplain/ioctl.h>

int explain_ioctl_or_die(int fildes, int request, void *data);
DESCRIPTION
Theexplain_ioctl_or_diefunction is used to call thectl(2) system call. Ondilure an explanation will be

printed to stderr, obtained from explain_ioctl(3), and then the process terminates by calling
exit(EXIT_FAILURE)

This function is intended to be used in a fashion similar to the following example:
int result = explain_ioctl_or_die(fildes, request, data);

fildes The fildes, exactly as to be passed toitkedd(2) system call.
request The request, exactly as to be passed taoittf2) system call.
data The data, exactly as to be passed tadb#(2) system call.

Returns: This function only returns on success, &al(2) for more information. On failure, prints an
explanation and exit()s.

SEE ALSO
ioctl(2) control device

explain_ioctk(3)
explainioctl(2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

484

explain_kill(3) Library Functions Manual explain_kill(3)

NAME
explain_kill — explain kill(2) errors

SYNOPSIS
#include <libexplain/kill.h>

const char *explain_Kkill(pid_t pid, int sig);

const char *explain_errno_Kkill(int errnum, pid_t pid, int sig);

void explain_message_Kill(char *message, int message_size, pid_t pid, int sig);

void explain_message_errno_kill(char *message, int message_size, int errnum, pid_t pid, int sig);
DESCRIPTION

These functions may be used to obtain explanations for errors returnedkibly(2hesystem call.

explain_Kill
const char *explain_Kkill(pid_t pid, int sig);
The explain_kill function is used to obtain amxmanation of an error returned by tkidl (2) system call.

The least the message will contain is tatug ofstrerror(errno) , but usually it will do much better
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
pid The original pid, exactly as passed to kilg2) system call.
sig The original sig, exactly as passed tokhig2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and ryasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (kill(pid, sig) < 0)
{

fprintf(stderr, "%s\n", explain_kill(pid, sig));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_kill_or_dig3) function.

explain_errno_Kkill
const char *explain_errno_Kkill(int errnum, pid_t pid, int sig);

Theexplain_errno_kill function is used to obtain an explanation of an error returned Lylltf®) system
call. The least the message will contain is thkie ofstrerror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pid The original pid, exactly as passed to kilg2) system call.
sig The original sig, exactly as passed tokhig2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

485

explain_kill(3) Library Functions Manual explain_kill(3)

if (kill(pid, sig) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_kill(err, pid, sig));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre-packaged as thgplain_kill_or_dig3) function.
explain_message_Kill

void explain_message_Kkill(char *message, int message_size, pid_t pid, int sig);

The explain_message_killfunction is used to obtain arxmanation of an error returned by thil (2)

system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size

The size in bytes of the location in which to store the returned message.
pid The original pid, exactly as passed to kilg2) system call.
sig The original sig, exactly as passed tokhig2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (kill(pid, sig) < 0)
{

char message[3000];

explain_message_Kkill(message, sizeof(message), pid, sig);
fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre-packaged as thgplain_kill_or_dig3) function.
explain_message_errno_Kkill
void explain_message_errno_Kkill(char *message, int message_size, int errnum, pid_t pid, int sig);
The explain_message_errno_Kkillfunction is used to obtain arxmanation of an error returned by the

kill(2) system call. The least the message will contain is the valsteeofor(errno) , but usually it
will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetir global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pid The original pid, exactly as passed to kilg2) system call.
sig The original sig, exactly as passed tokhig2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (kill(pid, sig) < 0)
{
int err = errno;
char message[3000];

486

explain_kill(3) Library Functions Manual

explain_message_errno_kill(message, sizeof(message), err, pid,
sig);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

The abee mde example isvailable pre-packaged as thgplain_kill_or_dig3) function.

SEE ALSO
kill(2) send signal to a process
explain_Kkill_or_dig3)
send signal to a process and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2009 Peter Miller

explain_kill(3)

487

explain_kill_or_die(3) LibraryFunctions Manual explain_kill_or_die(3)

NAME
explain_kill_or_die — send signal to a process and report errors

SYNOPSIS
#include <libexplain/kill.h>

void explain_Kill_or_die(pid_t pid, int sig);
int explain_kill_on_error(pid_t pid, int sig);
DESCRIPTION
The explain_kill_or_die function is used to call thkill(2) system call. On failure an explanation will be

printed tostderr, obtained from theexplain_Kkill(3) function, and then the process terminates by calling
exit(EXIT_FAILURE)

Theexplain_kill_on_error function is used to call thill (2) system call. On failure axganation will be
printed tostderr, obtained from thexplain_kill(3) function, but still returns to the caller.

pid The pid, exactly as to be passed tokiti¢2) system call.
sig The sig, exactly as to be passed tokili€2) system call.

RETURN VALUE
The explain_Kkill_or_die function only returns on success, da&(2) for more information. Onaiflure,
prints an explanation and exits, it does not return.

Theexplain_kill_on_error function alvays returns the value return by the wrapg#d2) system call.

EXAMPLE
Theexplain_kill_or_die function is intended to be used in a fashion similar to the following example:
explain_Kill_or_die(pid, sig);
SEE ALSO
kill(2) send signal to a process
explain_kill(3)
explainkill (2) errors
ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

488

explain_Ichmod(3) Libraryrunctions Manual explain_lchmod(3)

NAME
explain_Ichmod - explaitchmod?2) errors

SYNOPSIS
#include <libexplain/lchmod.h>

const char *explain_Ichmod(const char *pathname, mode_t mode);

const char *explain_errno_lchmod(int errnum, const char *pathname, mode_t mode);

void explain_message_Ichmod(char *message, int message_size, const char *pathname, mode_t mode);
void explain_message_errno_lchmod(char *message, int message_size, int errnum, const char *pathname,
mode_t mode);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddiynbd?2) system call.

explain_Ichmod
const char *explain_Ichmod(const char *pathname, mode_t mode);

Theexplain_Ichmodfunction is used to obtain an explanation of an error returned bghimed2) system
call. The least the message will contain is the valustrefror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed tdctiraod2) system call.

mode The original mode, exactly as passed tolthenod?2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (Ichmod(pathname, mode) < 0)

fprintf(stderr, "%s\n", explain_lchmod(pathname, mode));
exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_Ichmod_or_di€) function.

explain_errno_Ilchmod
const char *explain_errno_lchmod(int errnum, const char *pathname, mode_t mode);

Theexplain_errno_Ichmodfunction is used to obtain an explanation of an error returned bghtmed2)
system call. The least the message will contain is dahee\ofstrerror(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed tdctiraod2) system call.

mode The original mode, exactly as passed tolthenod?2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their argument list. This will beverwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

489

explain_Ichmod(3) Libraryrunctions Manual explain_lchmod(3)

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (Ichmod(pathname, mode) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_Ichmod(err, pathname,
mode));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_Ichmod_or_di€) function.

explain_message_Ichmod
void explain_message_Ichmod(char *message, int message_size, const char *pathname, mode_t mode);

The explain_message_Ichmodunction is used to obtain an explanation of an error returned by the
Ichmod?2) system call. The least the message will contain isghe ofstrerror(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed tdctiraod2) system call.

mode The original mode, exactly as passed tolthenod?2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (Ichmod(pathname, mode) < 0)

char message[3000];

explain_message_Ichmod(message, sizeof(message), pathname,
mode);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}
The abee mde example isvailable pre—packaged as tegplain_Ichmod_or_di€) function.

explain_message_errno_lchmod

void explain_message_errno_lchmod(char *message, int message_size, int errnum, const char *pathname,
mode_t mode);

Theexplain_message_errno_Ilchmoélinction is used to obtain an explanation of an error returned by the
Ichmod?2) system call. The least the message will contain is the vakiesafor(errno) , but usually
it will do much betterand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @lue to be decoded, usually obtained from ehmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

490

explain_Ichmod(3) Libraryrunctions Manual explain_lchmod(3)

pathname
The original pathname, exactly as passed tdctiraod2) system call.

mode The original mode, exactly as passed tolthenod?2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (Ichmod(pathname, mode) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_lchmod(message, sizeof(message), err,
pathname, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_Ichmod_or_di€) function.
SEE ALSO
Ichmod?2)

change permissions of a file
explain_Ichmod_or_di€3)
change permissions of a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

491

explain_Ichmod_or_die(3) Librarlfunctions Manual explain_Ichmod_or_die(3)

NAME
explain_Ichmod_or_die — change permissions of a file and report errors

SYNOPSIS
#include <libexplain/lchmod.h>

void explain_Ichmod_or_die(const char *pathname, mode_t mode);
int explain_lchmod_on_error(const char *pathname, mode_t mode);
DESCRIPTION
The explain_Ichmod_or_diefunction is used to call thehmod?2) system call. On failure arxganation

will be printed tostderr, obtained from thexplain_Ichmod@3) function, and then the process terminates by
calling exit(EXIT_FAILURE)

The explain_Ichmod_on_error function is used to call théchmod?2) system call. Ondilure an
explanation will be printed tstderr, obtained from thexplain_Ichmod3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed tickimod2) system call.

mode The mode, exactly as to be passed tdahmod?2) system call.

RETURN VALUE
The explain_Ilchmod_or_diefunction only returns on success, delemod?2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_lchmod_on_errorfunction alvays returns the value return by the wrapfmanod?2) system
call.
EXAMPLE
Theexplain_Ichmod_or_diefunction is intended to be used in a fashion similar to the following example:
explain_Ichmod_or_die(pathname, mode);

SEE ALSO
Ichmod?2)
change permissions of a file
explain_lchmod3)
explainichmod?2) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

492

explain_Ichavn(3) LibraryFunctions Manual explain_Ichown(3)

NAME
explain_Ichown — explain Ichown(2) errors

SYNOPSIS
#include <libexplain/lchown.h>

const char *explain_lchown(const char *pathname, int ownegroup);

const char *explain_errno_Ilchown(int errnum, const char *pathname, int,anihgroup);

void explain_message_Icha(char *message, int message_size, const char *pathnameynet, int
group);

void explain_message_errno_lckin(char *message, int message_size, int errnum, const char *pathname,
int owner int group);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddhothig2) system call.

explain_Ichown
const char *explain_lchown(const char *pathname, int ownegroup);

Theexplain_Ichownfunction is used to obtain an explanation of an error returned bgtinrn(2) system
call. Theleast the message will contain is the valustaérror(errno) , but usually it will do much
better and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (Ichown(pathname, owner, group) < 0)

fprintf(stderr, "%s\n", explain_Ilchown(pathname, owner, group));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed téctimvr(2) system call.

owner The original ownerexactly as passed to thehown(2) system call.
group The original group, exactly as passed tolthewn(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their agument list. This will be werwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_errno_lchown
const char *explain_errno_Ilchown(int errnum, const char *pathname, int,anihgroup);

Theexplain_errno_Ichownfunction is used to obtain apanation of an error returned by tlohown(2)
system call. The least the message will contain is the valstesfor(errnum) , but usually it will
do much betterand indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (Ichown(pathname, owner, group) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_Ichown(err,
pathname, owner, group));
exit(EXIT_FAILURE);
}

493

explain_Ichavn(3) LibraryFunctions Manual explain_Ichown(3)

errnum The error @lue to be decoded, usually obtained from ahmo global variable just before this
function is called.This is necessary if you need to cafly code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed téctimvr(2) system call.

owner The original ownerexactly as passed to thehown(2) system call.
group The original group, exactly as passed tolthewn(2) system call.

Returns: The message explaining the errdrhis message Uffer is shared by all libexplain functions
which do not supply auffer in their argument listThis will be overwritten by the next call to
ary libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

explain_message_Ichown
void explain_message_Icha(char *message, int message_size, const char *pathnameynet, int

group);
The explain_message_Ichowfunction may be used to obtain axpkanation of an error returned by the
Ichown(2) system call. The least the message will contain is the valstrexfor(errno) , but

usually it will do much betteand indicate the underlying cause in more detail.
Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (Ichown(pathname, owner, group) < 0)

char message[3000];

explain_message_Ichown(message, sizeof(message),
pathname, owner, group);

fprintf(stderr, "%s\n", message);

exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed téctimvr(2) system call.

owner The original ownerexactly as passed to thehown(2) system call.
group The original group, exactly as passed tolthewn(2) system call.

explain_message_errno_lchown
void explain_message_errno_lckin(char *message, int message_size, int errnum, const char *pathname,
int owner int group);

The explain_message_errno_Ichowifunction may be used to obtain an explanation of an error returned
by thelchown(2) system call.The least the message will contain is the valusti@tror(errnum) ,
but usually it will do much betteland indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (Ichown(pathname, owner, group) < 0)
{
int err = errno;
char message[3000];
explain_message_errno_lchown(message, sizeof(message), err,

494

explain_Ichavn(3) LibraryFunctions Manual explain_Ichown(3)

pathname, owner, group);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

messge The location in which to store the returned message. If a suitable message wéfeerrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained frormetire global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

pathname
The original pathname, exactly as passed téctimvr(2) system call.

owner The original ownerexactly as passed to thehown(2) system call.
group The original group, exactly as passed tolthewn(2) system call.

SEE ALSO
Ichown(2)
change ownership of a file
explain_Ichown_or_di€3)
change ownership of a file and report errors
COPYRIGHT

libexplain version 1.4
Copyright © 2008 Peter Miller

495

explain_Ichavnat(3) LibraryFunctions Manual explain_Ichownat(3)

NAME
explain_Ichownat - explaitchownat2) errors

SYNOPSIS
#include <libexplain/lchownat.h>

const char *explain_Ichownat(int fildes, const char *pathname, int uid, int gid);

const char *explain_errno_lchownat(int errnum, int fildes, const char *pathname, int uid, int gid);

void explain_message_Ichownat(char *message, int message_size, int fildes, const char *pathname, int uid,
int gid);

void explain_message_errno_lchownat(char *message, int message_size, int errnum, int fildes, const char
*pathname, int uid, int gid);

DESCRIPTION
These functions may be used to obtain explanations for errors returneddhothieat2) system call.

explain_Ichownat
const char *explain_Ichownat(int fildes, const char *pathname, int uid, int gid);

The explain_Ichownat function is used to obtain axmanation of an error returned by tlilownaf2)
system call. The least the message will contain is the valsteenfor(errno) , but usually it will do
much betterand indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.
fildes The original fildes, exactly as passed toltimwna(2) system call.

pathname

The original pathname, exactly as passed tdcti@vnaf2) system call.
uid The original uid, exactly as passed to lttownaf2) system call.
gid The original gid, exactly as passed to lttownaf2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (Ichownat(fildes, pathname, uid, gid) < 0)

{
fprintf(stderr, "%s\n", explain_lchownat(fildes, pathname,
uid, gid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_Ichownat_or_di€) function.

explain_errno_lchownat
const char *explain_errno_lchownat(int errnum, int fildes, const char *pathname, int uid, int gid);

The explain_errno_lchownat function is used to obtain an explanation of an error returned by the
Ichownaf2) system call. The least the message will contain is the valustadrror(errno) , but
usually it will do much betteand indicate the underlying cause in more detalil.

errnum The error value to be decoded, usually obtained froretire global variable just before this
function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed toltfmwna(2) system call.

496

explain_Ichavnat(3) LibraryFunctions Manual explain_Ichownat(3)

pathname

The original pathname, exactly as passed tdcti@vnaf2) system call.
uid The original uid, exactly as passed to lttownaf2) system call.
gid The original gid, exactly as passed to lttownaf2) system call.

Returns: The message explaining the erfbinis messageuffer is shared by all libexplain functions which
do not supply a differ in their agument list. This will be werwritten by the next call to gn
libexplain function which shares this buffercluding other threads.

Note: This function isnot thread safe, because it shares a retuffebacross all threads, and rgasther
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (Ichownat(fildes, pathname, uid, gid) < 0)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_Ichownat(err, fildes,
pathname, uid, gid));
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as tegplain_Ichownat_or_di€) function.

explain_message_Ichownat
void explain_message_Ichownat(char *message, int message_size, int fildes, const char *pathname, int uid,

int gid);
The explain_message_Ichownatunction is used to obtain arxmanation of an error returned by the
Ichownaf2) system call. The least the message will contain is #gevof strerror(errno) , but

usually it will do much betteand indicate the underlying cause in more detail.
Theerrnoglobal variable will be used to obtain the error value to be decoded.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed toltfmwna(2) system call.

pathname

The original pathname, exactly as passed tdcti@vnaf2) system call.
uid The original uid, exactly as passed to lttownaf2) system call.
gid The original gid, exactly as passed to lttownaf2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (Ichownat(fildes, pathname, uid, gid) < 0)

{
char message[3000];
explain_message_Ichownat(message, sizeof(message), fildes,
pathname, uid, gid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}

The abee mde example isvailable pre—packaged as thgplain_Ichownat_or_di€) function.

explain_message_errno_lchownat
void explain_message_errno_lchownat(char *message, int message_size, int errnum, int fildes, const char
*pathname, int uid, int gid);

497

explain_Ichavnat(3) LibraryFunctions Manual explain_Ichownat(3)

The explain_message_errno_Ichownafunction is used to obtain an explanation of an error returned by
thelchownaf2) system call. The least the message will contain is the valsteeofor(errno) , but
usually it will do much betteand indicate the underlying cause in more detail.

messge The location in which to store the returned message. If a suitable message uéferrisb
supplied, this function is thread safe.

messge size
The size in bytes of the location in which to store the returned message.

errnum The error @alue to be decoded, usually obtained from ehmo global variable just before this

function is called. This is necessary if you need to @ayl code between the system call to be
explained and this function, because méhc functions will alter the value @frrno.

fildes The original fildes, exactly as passed tolttmwna(2) system call.

pathname

The original pathname, exactly as passed tdcti@vnaf2) system call.
uid The original uid, exactly as passed to lttownaf2) system call.
gid The original gid, exactly as passed to lttownaf2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (Ichownat(fildes, pathname, uid, gid) < 0)

{
int err = errno;
char message[3000];
explain_message_errno_lchownat(message, sizeof(message), err,
fildes, pathname, uid, gid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);
}
The abee mde example isvailable pre—packaged as tegplain_Ichownat_or_di€) function.
SEE ALSO
Ichownat(?2)
Executdchownat2)

explain_Ichownat_or_di€3)
Executdchownaf2) and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

498

explain_Ichavnat_or_die(3) Libraryrunctions Manual explain_Ichownat_or_die(3)

NAME
explain_Ichownat_or_die — Execulighowna(2) and report errors

SYNOPSIS
#include <libexplain/lchownat.h>
void explain_Ichownat_or_die(int fildes, const char *pathname, int uid, int gid);
int explain_lchownat_on_error(int fildes, const char *pathname, int uid, int gid);
DESCRIPTION
The explain_Ichownat_or_die function is used to call théchownaf2) system call. On failure an

explanation will be printed tstderr, obtained from thexplain_Ichownag3) function, and then the process
terminates by callingxit(EXIT_FAILURE)

The explain_Ichownat_on_error function is used to call thé&chownaf2) system call. On failure an
explanation will be printed tetderr, obtained from thexplain_Ichownat3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed tolthewna(2) system call.

pathname

The pathname, exactly as to be passed tichimavnaf2) system call.
uid The uid, exactly as to be passed tolthewnaf2) system call.
gid The gid, exactly as to be passed tolthewnaf2) system call.

RETURN VALUE
Theexplain_Ichownat_or_diefunction only returns on success, sgewna(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_Ichownat_on_error function alays returns the value return by the wrappettbwnaf2)
system call.

EXAMPLE
The explain_Ichownat_or_die function is intended to be used in ashion similar to the folleing
example:
explain_Ichownat_or_die(fildes, pathname, uid, gid);

SEE ALSO
Ichownat(?2)
Executdchownat2)

explain_lchownaf3)
explainichownaf?) errors

ext(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

499

explain_Ichavn_or_die(3) LibraryFunctions Manual explain_lchown_or_die(3)

NAME
explain_Ichown_or_die — change ownership of a file and report errors

SYNOPSIS
#include <libexplain/lchown.h>
void explain_Ichown_or_die(const char *pathname, int oninéigroup);

DESCRIPTION
The explain_Ichown_or_diefunction is used to call thehown(2) system call. Ondilure an gplanation

will be printed tostderr, obtained fromexplain_Ichowr{3), and then the process terminates by cal