
SLEPc for Python
Release 3.3.1

Lisandro Dalcin

April 22, 2013

Contents

1 Overview 2
1.1 Features . 2
1.2 Components . 3

2 Tutorial 4
2.1 Commented source of a simple example . 4
2.2 Example of command-line usage . 7

3 Installation 8
3.1 Requirements . 8
3.2 Using pip or easy_install . 9
3.3 Using distutils . 9

Abstract

This document describes slepc4py, a Python port to the SLEPc libraries.
SLEPc is a software package for the parallel solution of large-scale eigenvalue problems. It
can be used for computing eigenvalues and eigenvectors of large, sparse matrices, or matrix
pairs, and also for computing singular values and vectors of a rectangular matrix.
SLEPc relies on PETSc for basic functionality such as the representation of matrices and
vectors, and the solution of linear systems of equations. Thus, slepc4py must be used together
with its companion petsc4py.

1 Overview

SLEPc for Python (slepc4py) is a Python package that provides convenient access to the function-
ality of SLEPc.

SLEPc 1, 2 implements algorithms and tools for the numerical solution of large, sparse eigenvalue
problems on parallel computers. It covers both standard and generalized eigenproblems (either
symmetric or non-symmetric) as well as the singular value decomposition (SVD) and the quadratic
eigenvalue problem (QEP).

SLEPc is intended for computing a subset of the spectrum of a matrix (or matrix pair). One can
for instance approximate the largest magnitude eigenvalues, or the smallest ones, or even those
eigenvalues located near a given region of the complex plane. Interior eigenvalues are harder
to compute, so SLEPc provides different methodologies. One such method is to use a spectral
transformation. Cheaper alternatives are also available.

1.1 Features

Currently, the following types of eigenproblems can be addressed:

• Standard eigenvalue problem, Ax=kx, either for Hermitian or non-Hermitian matrices.

• Generalized eigenvalue problem, Ax=kBx, either Hermitian positive-definite or not.

• Partial singular value decomposition of a rectangular matrix, Au=sv.

• Quadratic eigenvalue problem, (k^2M+kC+K)x=0.

For the eigenvalue problem, the following methods are available:

• Krylov eigensolvers, particularly Krylov-Schur, Arnoldi, and Lanczos.

1 V. Hernandez, J. E. Roman, E. Romero, A. Tomas and V. Vidal. SLEPc Users Manual. DISC-II/24/02 - Revision
3.1 D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia. 2010.

2 Vicente Hernandez, Jose E. Roman and Vicente Vidal. SLEPc: A Scalable and Flexible Toolkit for the Solution
of Eigenvalue Problems, ACM Trans. Math. Softw. 31(3), pp. 351-362, 2005.

http://slepc4py.googlecode.com
http://www.python.org
http://www.grycap.upv.es/slepc/
http://www.grycap.upv.es/slepc/
http://www.grycap.upv.es/slepc/
http://www.mcs.anl.gov/petsc/
http://slepc4py.googlecode.com
http://petsc4py.googlecode.com

• Davidson-type eigensolvers, including Generalized Davidson and Jacobi-Davidson.

• Subspace iteration and single vector iterations (inverse iteration, RQI).

For singular value computations, the following alternatives can be used:

• Use an eigensolver via the cross-product matrix A’A or the cyclic matrix [0 A; A’ 0].

• Explicitly restarted Lanczos bidiagonalization.

• Implicitly restarted Lanczos bidiagonalization (thick-restart Lanczos).

For quadratic eigenvalue problems, the following methods are available:

• Use an eigensolver to solve the generalized eigenvalue problem obtained after linearization.

• Q-Arnoldi, a memory efficient variant of Arnoldi for quadratic problems.

Computation of interior eigenvalues is supported by means of the following methodologies:

• Spectral transformations, such as shift-and-invert. This technique implicitly uses the inverse
of the shifted matrix (A-tI) in order to compute eigenvalues closest to a given target value, t.

• Harmonic extraction, a cheap alternative to shift-and-invert that also tries to approximate
eigenvalues closest to a target, t, but without requiring a matrix inversion.

Other remarkable features include:

• High computational efficiency, by using NumPy and SLEPc under the hood.

• Data-structure neutral implementation, by using efficient sparse matrix storage provided by
PETSc. Implicit matrix representation is also available by providing basic operations such
as matrix-vector products as user-defined Python functions.

• Run-time flexibility, by specifying numerous setting at the command line.

• Ability to do the computation in parallel.

1.2 Components

SLEPc provides the following components, which are mirrored by slepc4py for its use from
Python.

EPS The Eigenvalue Problem Solver is the component that provides all the function-
ality necessary to define and solve an eigenproblem. It provides mechanisms for
completely specifying the problem: the problem type (e.g. standard symmetric),
number of eigenvalues to compute, part of the spectrum of interest. Once the
problem has been defined, a collection of solvers can be used to compute the
required solutions. The behaviour of the solvers can be tuned by means of a few
parameters, such as the maximum dimension of the subspace to be used during
the computation.

SVD This component is the analog of EPS for the case of Singular Value Decompo-
sitions. The user provides a rectangular matrix and specifies how many singular
values and vectors are to be computed, whether the largest or smallest ones, as
well as some other parameters for fine tuning the computation. Different solvers
are available, as in the case of EPS.

QEP This component is the analog of EPS for the case of Quadratic Eigenvalue Prob-
lems. The user provides three square matrices that define the problem. Several
parameters can be specified, as in the case of EPS. It is also possible to indicate
whether the problem belongs to a special type, e.g., symmetric or gyroscopic.

ST The Spectral Transformation is a component that provides convenient implemen-
tations of common spectral transformations. These are simple transformations
that map eigenvalues to different positions, in such a way that convergence to
wanted eigenvalues is enhanced. The most common spectral transformation is
shift-and-invert, that allows for the computation of eigenvalues closest to a given
target value.

IP This component encapsulates the concept of an Inner Product in a vector space,
which can be either the standard Hermitian inner product x’y or the positive defi-
nite product x’By for a given SPD matrix B. This component provides convenient
access to common operations such as orthogonalization of vectors. The IP com-
ponent is usually not required by end-users.

2 Tutorial

This tutorial is intended for basic use of slepc4py. For more advanced use, the reader is referred to
SLEPc tutorials as well as to slepc4py reference documentation.

2.1 Commented source of a simple example

In this section, we include the source code of example demo/ex1.py available in the slepc4py
distribution, with comments inserted inline.

The first thing to do is initialize the libraries. This is normally not required, as it is done automat-
ically at import time. However, if you want to gain access to the facilities for accesing command-
line options, the following lines must be executed by the main script prior to any petsc4py or
slepc4py calls:

import sys, slepc4py
slepc4py.init(sys.argv)

Next, we have to import the relevant modules. Normally, both PETSc and SLEPc modules have to
be imported in all slepc4py programs. It may be useful to import NumPy as well:

from petsc4py import PETSc
from slepc4py import SLEPc
import numpy

At this point, we can use any petsc4py and slepc4py operations. For instance, the following lines
allow the user to specify an integer command-line argument n with a default value of 30 (see the
next section for example usage of command-line options):

opts = PETSc.Options()
n = opts.getInt(’n’, 30)

It is necessary to build a matrix to define an eigenproblem (or two in the case of generalized
eigenproblems). The following fragment of code creates the matrix object and then fills the non-
zero elements one by one. The matrix of this particular example is tridiagonal, with value 2 in the
diagonal, and -1 in off-diagonal positions. See petsc4py documentation for details about matrix
objects:

A = PETSc.Mat().create()
A.setSizes([n, n])
A.setFromOptions()
A.setUp()

rstart, rend = A.getOwnershipRange()

first row
if rstart == 0:

A[0, :2] = [2, -1]
rstart += 1

last row
if rend == n:

A[n-1, -2:] = [-1, 2]
rend -= 1

other rows
for i in range(rstart, rend):

A[i, i-1:i+2] = [-1, 2, -1]

A.assemble()

The solver object is created in a similar way as other objects in petsc4py:

E = SLEPc.EPS(); E.create()

Once the object is created, the eigenvalue problem must be specified. At least one matrix must be
provided. The problem type must be indicated as well, in this case it is HEP (Hermitian eigenvalue
problem). Apart from these, other settings could be provided here (for instance, the tolerance for
the computation). After all options have been set, the user should call the setFromOptions()
operation, so that any options specified at run time in the command line are passed to the solver
object:

E.setOperators(A)
E.setProblemType(SLEPc.EPS.ProblemType.HEP)
E.setFromOptions()

After that, the solve() method will run the selected eigensolver, keeping the solution stored
internally:

E.solve()

Once the computation has finished, we are ready to print the results. First, some informative data
can be retrieved from the solver object:

Print = PETSc.Sys.Print

Print()
Print("******************************")
Print("*** SLEPc Solution Results ***")
Print("******************************")
Print()

its = E.getIterationNumber()
Print("Number of iterations of the method: %d" % its)

eps_type = E.getType()
Print("Solution method: %s" % eps_type)

nev, ncv, mpd = E.getDimensions()
Print("Number of requested eigenvalues: %d" % nev)

tol, maxit = E.getTolerances()
Print("Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit))

For retrieving the solution, it is necessary to find out how many eigenpairs have converged to the
requested precision:

nconv = E.getConverged()
Print("Number of converged eigenpairs %d" % nconv)

For each of the nconv eigenpairs, we can retrieve the eigenvalue k, and the eigenvector, which
is represented by means of two petsc4py vectors vr and vi (the real and imaginary part of the
eigenvector, since for real matrices the eigenvalue and eigenvector may be complex). We also
compute the corresponding relative errors in order to make sure that the computed solution is
indeed correct:

if nconv > 0:
Create the results vectors
vr, wr = A.getVecs()
vi, wi = A.getVecs()

#
Print()
Print(" k ||Ax-kx||/||kx|| ")
Print("----------------- ------------------")
for i in range(nconv):

k = E.getEigenpair(i, vr, vi)
error = E.computeRelativeError(i)
if k.imag != 0.0:

Print(" %9f%+9f j %12g" % (k.real, k.imag, error))
else:

Print(" %12f %12g" % (k.real, error))
Print()

2.2 Example of command-line usage

Now we illustrate how to specify command-line options in order to extract the full potential of
slepc4py.

A simple execution of the demo/ex1.py script will result in the following output:

$ python demo/ex1.py

*** SLEPc Solution Results ***

Number of iterations of the method: 4
Solution method: krylovschur
Number of requested eigenvalues: 1
Stopping condition: tol=1e-07, maxit=100
Number of converged eigenpairs 4

k ||Ax-kx||/||kx||
----------------- ------------------

3.989739 5.76012e-09
3.959060 1.41957e-08
3.908279 6.74118e-08
3.837916 8.34269e-08

For specifying different setting for the solver parameters, we can use SLEPc command-line op-
tions with the -eps prefix. For instance, to change the number of requested eigenvalues and the
tolerance:

$ python demo/ex1.py -eps_nev 10 -eps_tol 1e-11

The method used by the solver object can also be set at run time:

$ python demo/ex1.py -eps_type lanczos

All the above settings can also be change within the source code by making use of the appropriate
slepc4py method. Since options can be set from within the code and the command-line, it is often
useful to view the particular settings that are currently being used:

$ python demo/ex1.py -eps_view

EPS Object:
problem type: symmetric eigenvalue problem
method: krylovschur
extraction type: Rayleigh-Ritz
selected portion of the spectrum: largest eigenvalues in magnitude
number of eigenvalues (nev): 1
number of column vectors (ncv): 16
maximum dimension of projected problem (mpd): 16
maximum number of iterations: 100
tolerance: 1e-07
convergence test: relative to the eigenvalue
estimates of matrix norms (constant): norm(A)=1
IP Object:

orthogonalization method: classical Gram-Schmidt
orthogonalization refinement: if needed (eta: 0.707100)

ST Object:
type: shift
shift: 0

Note that for computing eigenvalues of smallest magnitude we can use the option
-eps_smallest_magnitude, but for interior eigenvalues things are not so straightforward.
One possibility is to try with harmonic extraction, for instance to get the eigenvalues closest to 0.6:

$ python demo/ex1.py -eps_harmonic -eps_target 0.6

Depending on the problem, harmonic extraction may fail to converge. In those cases, it is necessary
to specify a spectral transformation other than the default. In the command-line, this is indicated
with the -st_ prefix. For example, shift-and-invert with a value of the shift equal to 0.6 would be:

$ python demo/ex1.py -st_type sinvert -eps_target 0.6

3 Installation

3.1 Requirements

You need to have the following software properly installed in order to build SLEPc for Python:

• Any MPI implementation 3 (e.g., MPICH or Open MPI), built with shared libraries.

• PETSc 3.3 or 3.2 release, built with shared libraries.

• SLEPc 3.3 or 3.2 release, built with shared libraries.

• Python 2.4 to 2.7 or 3.1 to 3.2 4.

• NumPy package.

• petsc4py package.

3.2 Using pip or easy_install

You can use pip to install slepc4py and its dependencies (mpi4py is optional but highly rec-
ommended):

$ pip install [--user] numpy mpi4py
$ pip install [--user] petsc petsc4py
$ pip install [--user] slepc slepc4py

Alternatively, you can use easy_install (deprecated):

$ easy_install [--user] slepc4py

If you already have working PETSc and SLEPc builds, set environment variables SLEPC_DIR
and PETSC_DIR (and perhaps PETSC_ARCH for prefix installs) to appropriate values and next
use pip:

$ export SLEPC_DIR=/path/to/slepc
$ export PETSC_DIR=/path/to/petsc
$ export PETSC_ARCH=arch-linux2-c-opt
$ pip install [--user] petsc4py slepc4py

3.3 Using distutils

Downloading

The SLEPc for Python package is available for download at the project website generously hosted
by Google Code. You can get a release tarball curl or wget.

• Using curl:

3 Unless you have appropriately configured and built SLEPc and PETSc without MPI (configure option
--with-mpi=0).

4 You may need to use a parallelized version of the Python interpreter with some MPI-1 implementations (e.g.
MPICH1).

http://www.mpi-forum.org
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org
http://www.mcs.anl.gov/petsc/
http://www.grycap.upv.es/slepc/
http://www.python.org
http://numpy.scipy.org
http://petsc4py.googlecode.com

$ curl -O http://slepc4py.googlecode.com/files/slepc4py-X.Y.tar.gz

• Using wget:

$ wget http://slepc4py.googlecode.com/files/slepc4py-X.Y.tar.gz

Building

After unpacking the release tarball:

$ tar -zxf slepc4py-X.Y.tar.gz
$ cd slepc4py-X.Y

the distribution is ready for building.

Some environmental configuration is needed to inform the location of PETSc and SLEPc. You
can set (using setenv, export or what applies to you shell or system) the environmental variables
SLEPC_DIR‘, PETSC_DIR, and PETSC_ARCH indicating where you have built/installed SLEPc
and PETSc:

$ export SLEPC_DIR=/usr/local/slepc/3.3
$ export PETSC_DIR=/usr/local/petsc/3.3
$ export PETSC_ARCH=arch-linux2-c-opt

Alternatively, you can edit the file setup.cfg and provide the required information below the
[config] section:

[config]
slepc_dir = /usr/local/slepc/3.3
petsc_dir = /usr/local/petsc/3.3
petsc_arch = arch-linux2-c-opt
...

Finally, you can build the distribution by typing:

$ python setup.py build

Installing

After building, the distribution is ready for installation.

You can do a site-install type:

$ python setup.py install

or, in case you need root privileges:

$ su -c ’python setup.py install’

This will install the slepc4py package in the standard location
prefix/lib64/pythonX.Y/site-packages.

You can also do a user-install type. There are two options depending on the target Python version.

• For Python 2.6 and up:

$ python setup.py install --user

• For Python 2.5 and below (assuming your home directory is available through the HOME
environment variable):

$ python setup.py install --home=$HOME

and then add $HOME/lib/python or $HOME/lib64/python to your PYTHONPATH
environment variable.

	Overview
	Features
	Components

	Tutorial
	Commented source of a simple example
	Example of command-line usage

	Installation
	Requirements
	Using pip or easy_install
	Using distutils

