Open CASCADE Technology  6.5.4
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Public Member Functions
GccAna_Circ2d2TanOn Class Reference

Describes functions for building a 2D circle
More...

#include <GccAna_Circ2d2TanOn.hxx>

Public Member Functions

DEFINE_STANDARD_ALLOC GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc &Qualified1, const GccEnt_QualifiedCirc &Qualified2, const gp_Lin2d &OnLine, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to two 2d circles and
having the center ON a 2d line.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc &Qualified1, const GccEnt_QualifiedLin &Qualified2, const gp_Lin2d &OnLine, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to a 2d circle and a 2d line
having the center ON a 2d line.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedLin &Qualified1, const GccEnt_QualifiedLin &Qualified2, const gp_Lin2d &OnLine, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to two 2d lines
having the center ON a 2d line.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc &Qualified1, const gp_Pnt2d &Point2, const gp_Lin2d &OnLine, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to a 2d circle and a point
having the center ON a 2d line.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedLin &Qualified1, const gp_Pnt2d &Point2, const gp_Lin2d &OnLine, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to a 2d line and a point
having the center ON a 2d line.

 GccAna_Circ2d2TanOn (const gp_Pnt2d &Point1, const gp_Pnt2d &Point2, const gp_Lin2d &OnLine, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to two points
having the center ON a 2d line.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc &Qualified1, const GccEnt_QualifiedCirc &Qualified2, const gp_Circ2d &OnCirc, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to two 2d circles and
having the center ON a 2d circle.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc &Qualified1, const GccEnt_QualifiedLin &Qualified2, const gp_Circ2d &OnCirc, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to a circle and a line
having the center ON a 2d circle.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc &Qualified1, const gp_Pnt2d &Point2, const gp_Circ2d &OnCirc, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to a circle and a point
having the center ON a 2d circle.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedLin &Qualified1, const GccEnt_QualifiedLin &Qualified2, const gp_Circ2d &OnCirc, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to two 2d lines
having the center ON a 2d circle.

 GccAna_Circ2d2TanOn (const GccEnt_QualifiedLin &Qualified1, const gp_Pnt2d &Point2, const gp_Circ2d &OnCirc, const Standard_Real Tolerance)
 This method implements the algorithms used to
create 2d circles TANgent to a line and a point
having the center ON a 2d circle.

 GccAna_Circ2d2TanOn (const gp_Pnt2d &Point1, const gp_Pnt2d &Point2, const gp_Circ2d &OnCirc, const Standard_Real Tolerance)
 This method implements the algorithms used to create
2d circles TANgent to two points having the center ON
a 2d circle.

Standard_Boolean IsDone () const
 Returns true if the construction algorithm does not fail
(even if it finds no solution).
Note: IsDone protects against a failure arising from a
more internal intersection algorithm, which has reached its numeric limits.

Standard_Integer NbSolutions () const
 Returns the number of circles, representing solutions
computed by this algorithm.
Exceptions
StdFail_NotDone if the construction fails.

gp_Circ2d ThisSolution (const Standard_Integer Index) const
 Returns the solution number Index and raises OutOfRange
exception if Index is greater than the number of solutions.
Be careful: the Index is only a way to get all the
solutions, but is not associated to those outside the context
of the algorithm-object.
Exceptions
Standard_OutOfRange if Index is less than zero or
greater than the number of solutions computed by this algorithm.
StdFail_NotDone if the construction fails.

void WhichQualifier (const Standard_Integer Index, GccEnt_Position &Qualif1, GccEnt_Position &Qualif2) const
 Returns the qualifiers Qualif1 and Qualif2 of the
tangency arguments for the solution of index Index
computed by this algorithm.
The returned qualifiers are:

void Tangency1 (const Standard_Integer Index, Standard_Real &ParSol, Standard_Real &ParArg, gp_Pnt2d &PntSol) const
 Returns the informations about the tangency point between the
result number Index and the first argument.
ParSol is the intrinsic parameter of the point PntSol on
the solution
ParArg is the intrinsic parameter of the point PntSol on
the first argument. Raises OutOfRange if Index is greater than the number
of solutions and NotDone if IsDone returns false.

void Tangency2 (const Standard_Integer Index, Standard_Real &ParSol, Standard_Real &ParArg, gp_Pnt2d &PntSol) const
 Returns the informations about the tangency point between the
result number Index and the second argument.
ParSol is the intrinsic parameter of the point PntSol on
the solution.
ParArg is the intrinsic parameter of the point PntSol on
the second argument. Raises OutOfRange if Index is greater than the number
of solutions and NotDone if IsDone returns false.

void CenterOn3 (const Standard_Integer Index, Standard_Real &ParArg, gp_Pnt2d &PntArg) const
 Returns the informations about the center (on the curv) of
the result number Index and the third argument.
ParArg is the intrinsic parameter of the point PntArg on
the third argument.
Exceptions
Standard_OutOfRange if Index is less than zero or
greater than the number of solutions computed by this algorithm.
StdFail_NotDone if the construction fails.

Standard_Boolean IsTheSame1 (const Standard_Integer Index) const
 True if the solution and the first argument are the same
(2 circles).
If R1 is the radius of the first argument and Rsol the radius
of the solution and dist the distance between the two centers,
we concider the two circles are identical if R1+dist-Rsol is
less than Tolerance.
False in the other cases.
Raises OutOfRange if Index is greater than the number
of solutions and NotDone if IsDone returns false.

Standard_Boolean IsTheSame2 (const Standard_Integer Index) const
 True if the solution and the second argument are the same
(2 circles).
If R2 is the radius of the second argument and Rsol the radius
of the solution and dist the distance between the two centers,
we concider the two circles are identical if R2+dist-Rsol is
less than Tolerance.
False in the other cases.
Raises OutOfRange if Index is greater than the number
of solutions and NotDone if IsDone returns false.


Detailed Description


Constructor & Destructor Documentation


Member Function Documentation

void GccAna_Circ2d2TanOn::CenterOn3 ( const Standard_Integer  Index,
Standard_Real ParArg,
gp_Pnt2d PntArg 
) const
void GccAna_Circ2d2TanOn::Tangency1 ( const Standard_Integer  Index,
Standard_Real ParSol,
Standard_Real ParArg,
gp_Pnt2d PntSol 
) const
void GccAna_Circ2d2TanOn::Tangency2 ( const Standard_Integer  Index,
Standard_Real ParSol,
Standard_Real ParArg,
gp_Pnt2d PntSol 
) const
  • those specified at the start of construction when the
    solutions are defined as enclosed, enclosing or
    outside with respect to the arguments, or
  • those computed during construction (i.e. enclosed,
    enclosing or outside) when the solutions are defined
    as unqualified with respect to the arguments, or
  • GccEnt_noqualifier if the tangency argument is a point.
    Exceptions
    Standard_OutOfRange if Index is less than zero or
    greater than the number of solutions computed by this algorithm.
    StdFail_NotDone if the construction fails.

The documentation for this class was generated from the following file: