Open CASCADE Technology  6.5.4
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Data Structures
AdvApp2Var_ApproxAFunc2Var.hxx File Reference
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>
#include <Standard_Integer.hxx>
#include <Handle_TColStd_HArray1OfReal.hxx>
#include <Handle_TColStd_HArray2OfReal.hxx>
#include <Standard_Real.hxx>
#include <GeomAbs_IsoType.hxx>
#include <GeomAbs_Shape.hxx>
#include <AdvApp2Var_Context.hxx>
#include <AdvApp2Var_Network.hxx>
#include <AdvApp2Var_Framework.hxx>
#include <Standard_Boolean.hxx>
#include <Handle_TColGeom_HArray1OfSurface.hxx>
#include <AdvApp2Var_EvaluatorFunc2Var.hxx>
#include <Handle_Geom_BSplineSurface.hxx>
#include <Standard_OStream.hxx>
#include <AdvApp2Var_ApproxAFunc2Var.lxx>

Data Structures

class  AdvApp2Var_ApproxAFunc2Var
 Perform the approximation of <Func> F(U,V)
Arguments are :
Num1DSS, Num2DSS, Num3DSS :The numbers of 1,2,3 dimensional subspaces
OneDTol, TwoDTol, ThreeDTol: The tolerance of approximation in each
subspaces
OneDTolFr, TwoDTolFr, ThreeDTolFr: The tolerance of approximation on
the boundarys in each subspaces
[FirstInU, LastInU]: The Bounds in U of the Approximation
[FirstInV, LastInV]: The Bounds in V of the Approximation
FavorIso : Give preference to extract u-iso or v-iso on F(U,V)
This can be usefull to optimize the <Func> methode
ContInU, ContInV : Continuity waiting in u and v
PrecisCode : Precision on approximation's error mesurement
1 : Fast computation and average precision
2 : Average computation and good precision
3 : Slow computation and very good precision
MaxDegInU : Maximum u-degree waiting in U
MaxDegInV : Maximum u-degree waiting in V
Warning:
MaxDegInU (resp. MaxDegInV) must be >= 2*iu (resp. iv) + 1,
where iu (resp. iv) = 0 if ContInU (resp. ContInV) = GeomAbs_C0,
= 1 if = GeomAbs_C1,
= 2 if = GeomAbs_C2.
MaxPatch : Maximun number of Patch waiting
number of Patch is number of u span * number of v span
Func : The external method to evaluate F(U,V)
Crit : To (re)defined condition of convergence
UChoice, VChoice : To define the way in U (or V) Knot insertion
Warning:
for the moment, the result is a 3D Surface
so Num1DSS and Num2DSS must be equals to 0
and Num3DSS must be equal to 1.
Warning:
the Function of type EvaluatorFunc2Var from Approx
must be a subclass of AdvApp2Var_EvaluatorFunc2Var

the result should be formatted in the following way :
<--Num1DSS--> <--2 * Num2DSS--> <--3 * Num3DSS-->
R[0,0] .... R[Num1DSS,0]..... R[Dimension-1,0] for the 1st parameter
R[0,i] .... R[Num1DSS,i]..... R[Dimension-1,i] for the ith parameter
R[0,N-1] .... R[Num1DSS,N-1].... R[Dimension-1,N-1] for the Nth parameter

the order in which each Subspace appears should be consistent
with the tolerances given in the create function and the
results will be given in that order as well that is :
Surface(n) will correspond to the nth entry described by Num3DSS
More...