Open CASCADE Technology
6.5.4
|
This algorithm converts a bounded Torus into a rational
B-spline surface. The torus is a Torus from package gp.
The parametrization of the torus is :
P (U, V) =
Loc + MinorRadius * Sin(V) * Zdir +
(MajorRadius+MinorRadius*Cos(V)) * (Cos(U)*Xdir + Sin(U)*Ydir)
where Loc is the center of the torus, Xdir, Ydir and Zdir are the
normalized directions of the local cartesian coordinate system of
the Torus. The parametrization range is U [0, 2PI], V [0, 2PI].
KeyWords :
Convert, Torus, BSplineSurface.
#include <Convert_TorusToBSplineSurface.hxx>
Public Member Functions | |
DEFINE_STANDARD_ALLOC | Convert_TorusToBSplineSurface (const gp_Torus &T, const Standard_Real U1, const Standard_Real U2, const Standard_Real V1, const Standard_Real V2) |
The equivalent B-spline surface as the same orientation as the torus in the U and V parametric directions. Raised if U1 = U2 or U1 = U2 + 2.0 * Pi Raised if V1 = V2 or V1 = V2 + 2.0 * Pi | |
Convert_TorusToBSplineSurface (const gp_Torus &T, const Standard_Real Param1, const Standard_Real Param2, const Standard_Boolean UTrim=Standard_True) | |
The equivalent B-spline surface as the same orientation as the torus in the U and V parametric directions. Raised if Param1 = Param2 or Param1 = Param2 + 2.0 * Pi | |
Convert_TorusToBSplineSurface (const gp_Torus &T) | |
The equivalent B-spline surface as the same orientation as the torus in the U and V parametric directions. |
Convert_TorusToBSplineSurface::Convert_TorusToBSplineSurface | ( | const gp_Torus & | T, |
const Standard_Real | Param1, | ||
const Standard_Real | Param2, | ||
const Standard_Boolean | UTrim = Standard_True |
||
) |