

Software Factory

CDL
(Component Description Language)

User’s Guide

Version 6.5.4 / October 2012

 1

Copyright © 2012, by OPEN CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. Verbatim copying and distribution of this
entire document are permitted worldwide, without royalty, in any medium, provided the copyright
notice and this permission notice are preserved.

The information in this document is subject to change without notice and should not be construed
as a commitment by OPEN CASCADE S.A.S.

OPEN CASCADE S.A.S. assures no responsibility for any errors that may appear in this
document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such a license.

CAS.CADE, Open CASCADE and Open CASCADE Technology are registered trademarks of
OPEN CASCADE S.A.S. Other brand or product names are trademarks or registered trademarks
of their respective holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE Technology study. It may be
incomplete and even contain occasional mistakes, particularly in examples, samples, etc.

OPEN CASCADE S.A.S. bears no responsibility for such mistakes. If you find any mistakes or
imperfections in this document, or if you have suggestions for improving this document, please,
contact us and contribute your share to the development of Open CASCADE Technology:
bugmaster@opencascade.com

http://www.opencascade.com/contact/

mailto:bugmaster@opencascade.com
http://www.opencascade.com/contact/

 2

TTAABBLLEE OOFF CCOONNTTEENNTTSS
TABLE OF CONTENTS... 2

1. CDL AND APPLICATION ARCHITECTURE.. 4

2. INTRODUCTION TO CDL.. 6

2.1 PURPOSES OF THE LANGUAGE ... 6
2. 2 OVERVIEW OF CDL .. 7

2. 2. 1 Classes... 7
2. 2. 2 Categories of Types ... 8
2. 2. 3 Persistence... 9
2. 2. 4 Packages.. 10
2. 2. 5 Inheritance... 10
2. 2. 6 Genericity .. 11
2. 2. 7 Exceptions.. 11
2. 2. 8 Completeness... 12

2. 3 LEXICAL CONVENTIONS ... 12
2. 3. 1 Syntax notation .. 12
2. 3. 2 Lexical elements .. 14
2. 3. 3 Comments .. 14
2. 3. 4 Identifiers... 15
2. 3. 5 Keywords ... 15
2. 3. 6 Constants ... 15

3. SOFTWARE COMPONENTS.. 17

3. 1 PREDEFINED RESOURCES.. 17
3. 1. 1 Primitive types ... 17
3. 1. 2 Manipulating types by reference (by handle) .. 17
3. 1. 3 Manipulating types by value.. 18
3. 1. 4 Summary of properties... 20

3. 2 CLASSES ... 20
3. 2. 1 Class declaration... 20
3. 2. 2 Categories of classes ... 22

3. 3 PACKAGES .. 23
3. 3. 1 Package declaration .. 23
3. 3. 2 Name space.. 26
3. 3. 3 Declaration of classes ... 27

3. 4 OTHER DATA TYPES ... 28
3. 4. 1 Enumerations... 28
3. 4. 2 Imports... 29
3. 4. 3 Aliases ... 30
3. 4. 4 Exceptions.. 30

3. 5 SCHEMAS.. 31
3. 6 EXECUTABLES .. 31

4. DEFINING THE SOFTWARE COMPONENTS ... 33

4. 1 BEHAVIOR .. 33
4. 1. 1 Object Constructors... 33
4. 1. 2 Instance Methods... 35
4. 1. 3 Class Methods ... 36
4. 1. 4 Package Methods... 37
4. 1. 5 Sensitivity to Overloading.. 37

4. 2 INTERNAL REPRESENTATION .. 38

 3

4. 3 EXCEPTIONS ... 38
4. 4 INHERITANCE.. 39

4. 4. 1 Overview.. 39
4. 4. 2 Redefining methods.. 40
4. 4. 3 Non-redefinable methods... 41
4. 4. 4 Deferred Classes and Methods.. 41
4. 4. 5 Declaration by Association.. 42
4. 4. 6 Redefinition of Fields... 44

4. 5 GENERICITY.. 44
4. 5. 1 Overview.. 44
4. 5. 2 Declaration of a Generic Class ... 45
4. 5. 3 Instantiation of a Generic Class .. 47
4. 5. 4 Nested Generic Classes ... 47

4. 6 VISIBILITY .. 49
4. 6. 1 Overview.. 49
4. 6. 2 Visibility of Fields.. 49
4. 6. 3 Visibility of Methods.. 50
4. 6. 4 Visibility of Classes, Exceptions, & Enumerations.. 51
4. 6. 5 Friend Classes & Methods .. 51

APPENDIX A. SYNTAX SUMMARY... 53

APPENDIX B.. 59

5. 1 COMPARISON OF CDL & C++ SYNTAX FOR DATA TYPES MANIPULATED BY HANDLE AND BY VALUE

.. 59

1. CDL and Application Architecture 4

11.. CCDDLL aanndd AApppplliiccaattiioonn
AArrcchhiitteeccttuurree

CDL is the component definition language of the Open CASCADE Technology
(OCCT) programming platform. Some components, which CDL allows you to create,
are specific to OCCT application architecture. These and other components, which
you can define using CDL include the following:

 Class (including enumeration, exception)

 Package

 Schema

 Executable

 Client.

A class is the fundamental software component in object-oriented development.
Because of a very large number of resources used in large-scale applications, the
class itself is too small to be used as a basic management unit.

So, while the class is the basic data component defined in CDL, this language also
provides a way to group classes, enumerations, and exceptions together – the
package. A package groups together a number of classes, which have semantic
links. For example, a geometry package would contain Point, Line, and Circle
classes. A package can also contain enumerations, exceptions, and package
methods. In practice, a class name is prefixed with the name of its package e.g.
Geom_Circle.

Using the services described in the packages, you can construct an executable.
You can also group together services provided by packages.

To save data in a file, you need to define persistent classes. Then, you group these
classes in a schema, which provides the necessary read/write tools.

1. CDL and Application Architecture 5

Figure 1. Building an Open CASCADE Technology application

2. Introduction to CDL 6

22.. IInnttrroodduuccttiioonn ttoo CCDDLL

2.1 Purposes of the Language

You can use CDL to define data in the Open CASCADE Technology environment.
CDL allows you to define various kinds of data types supporting the application
architecture and development methodology, which you envision. CDL is neither an
analysis formalism (e.g. Booch methodology) nor a data manipulation language (e.g.
C++).

You use CDL in the design phase of a development process to define a set of
software components which best model the concepts stated in the application
specification.

Figure 2. The Development Process

From a structural point of view, CDL is an object-oriented language. It is centered on
the notion of the class - a data type, which represents an elementary concept. CDL
offers various means of organizing classes, mostly under the fundamental form of
packages. A package contains a set of classes, which share some semantic
relationship. This greatly simplifies your task of managing individual classes when
confronted with a very large number of them.

2. Introduction to CDL 7

Once you have defined the classes and packages using CDL, you can implement
their methods - i.e., their functionality - in one of the data manipulation languages
supported by the OCCT environment (currently C++).

Even though you can describe classes directly in C++ and save them as header files
(.hxx), to do so would forfeit all the advantages of using CDL. These are:

 Precise, complete, and easy-to-read description of the software

components.

 Creation of a link with the database; object persistence forms part of the

predefined environment of the language.

 Multi-language access to the services of an application engine – a

specific architectural form created using the CDL tools, which serves as

the motor of an application.

2. 2 Overview of CDL

CDL is an object-oriented language. In other words, it structures a system around
data types rather than around the actions carried out on them. In this context, an
object is an instance of a data type, and its definition determines how you can use
it. Each data type is implemented by one or more classes, which make up the basic
elements of the system.

2. 2. 1 Classes

A class is an implementation of a data type. It defines its behavior and its
representation.

The behavior of a class is its programming interface - the services offered by its
methods. The representation of a class is its data structure - the fields, which store
its data.

Every object is an instance of its class. For example, the object p of the data type
Point is an instance of the class Point.

The class Point could be defined as in the example below:

Example

class Point from GeomPack

---Purpose: represents a point in 3D space.
is
Create returns Point;

fields
x, y, z : Real;

end Point;

2. Introduction to CDL 8

The definition of this class comprises two sections:

 one starting with the keywords is

 one starting with the keyword fields.

The first section contains a list of methods available to the clients of the class. The
second section defines the way in which instances are represented. Once this class
has been compiled you could instantiate its data type in a C++ test program as in
the example below:

Example

GeomPack_Point p;

2. 2. 2 Categories of Types

You declare the variables of a data manipulation language as being of certain data
types. These fall into two categories:

 Data types manipulated by handle (or reference)

 Data types manipulated by value

Figure 3. Manipulation of data types

2. Introduction to CDL 9

As seen above, you implement data types using classes. However, classes not only
define their data representation and methods available for their instances, but they
also define how the instances will be manipulated:

 A data type manipulated by value contains the instance itself.

 A data type manipulated by handle contains a reference to the instance.

The most obvious examples of data types manipulated by value are the predefined
primitive types: Boolean, Character, Integer, Real ...

A variable of a data type manipulated by handle, which is not attached to an object,
is said to be null. To reference an object, you need to instantiate the class with one
of its constructors. This is done in C++ as in the following syntax:

Example

Handle(myClass) m = new myClass;

2. 2. 3 Persistence

An object is called persistent if it can be permanently stored. In other words, you
can use the object again at a later date, both in the application, which created it, and
in another application.

In order to make an object persistent, you need to declare it in CDL as inheriting
from the Persistent class, or to have one of its parent classes inheriting from the
Persistent class.

Note that the classes inheriting from the Persistent class are handled by reference.

Example

class Watch inherits Persistent

In this example, building the application, you add the Watch class to the
corresponding schema of data types.
If, running the application, you instantiate an object of the Watch class, you have the
possibility of storing it in a file.
You cannot store objects instantiated from classes, which inherit from the Storable
class. However, you can store them as fields of an object, which inherits from
Persistent.

Note that the objects inheriting from Storable are handled by value.

2. Introduction to CDL
10

Example

If

class WatchSpring inherits Storable
//then this could be stored as a field of a Watch
//object:

class Watch inherits Persistent
is......
fields
name : ConstructorName;

powersource : WatchSpring;
end;

2. 2. 4 Packages

In large-scale long-term development the task of marshalling potentially thousands
of classes is likely to quickly prove unmanageable. CDL introduces the notion of
package of classes containing a set of classes, which have some semantic or
syntactic relationship. For example, all classes representing a particular set of
electronic components might make up a package called Diode.

As the package name prefixes the class name when implementing such class (in
C++ for example), classes belonging to different packages can have the same
name. For example, two packages, one dealing with finance and the other dealing
with aircraft maneuvers, might both contain a class called Bank, without any
possibility of confusion.

Example

Finance_Bank
Attitude_Bank

2. 2. 5 Inheritance

The purpose of inheritance is to reduce development workload. The inheritance
mechanisms allow you to declare a new class as already containing the
characteristics of an existing class. This new class can then be rapidly specialized
for a task at hand. This eliminates the necessity of developing each component
“from scratch”.

For example, having already developed a class BankAccount, you can quickly
specialize new classes - SavingsAccount, LongTermDepositAccount,
MoneyMarketAccount, RevolvingCreditAccount, etc..

As a consequence, when two or more classes inherit from a parent (or ancestor)
class, all these classes surely inherit the behavior of their parent (or ancestor). For
example, if the parent class BankAccount contains the method Print that tells it to
print itself out, then all its descendent classes offer the same service.

2. Introduction to CDL
11

One way of ensuring the use of inheritance is to declare classes at the top of a
hierarchy as being deferred. In such classes, the inherited methods are not
implemented. This forces you to create a new class used to redefine the methods. In
this way, you guarantee a certain minimum common behavior among descendent
classes.

Example

deferred class BankAccount inherits Persistent
is
.......
fields
name : AccountHolderName;

balance : CreditBalance;
end;

2. 2. 6 Genericity

You will often wish to model a certain type of behavior as a class. For example, you
will need a list modeled as a class.

In order to be able to list different objects, the class List must be able to accept
different data types as parameters. This is where genericity comes in: you first
declare a list declared as the generic class List, willing to accept any data type (or
only a particular set of acceptable data types). Then, when you want to make a list
of a certain type of object, you instantiate the class List with the appropriate data
type.

Example

generic class NewList (Item)

inherits OldList
is
.....
end ;

Items may be of any type, an Integer or a Real for example.

When defining the package, add the following line:

Example

class NewListOfInteger instantiates
NewList (Integer);

2. 2. 7 Exceptions

The behavior of any object is implemented by methods, which you define in its class
declaration. The definition of these methods includes not only their signature (their
programming interface) but also their domain of validity.

2. Introduction to CDL
12

In CDL, this domain is expressed by exceptions. Exceptions are raised under
various error conditions. This mechanism is a safeguard of software quality.

2. 2. 8 Completeness

You use CDL to define data types. Such definitions are not considered complete
unless they contain the required amount of structured commentary.

The compiler does not enforce this required degree of completeness, so it is the
responsibility of the developer to ensure that all CDL codes are properly annotated.

Completeness is regarded as an essential component of long-term viability of a
software component.

2. 3 Lexical Conventions

2. 3. 1 Syntax notation

In this manual, CDL declarations are described using a simple variant of the Backus-
Naur formalism. Note the following:

 Italicized words, which may also be hyphenated, denote syntactical categories,

for example:

declaration-of-a-non-generic-class

 Keywords appear in bold type:

class

 Brackets enclose optional elements:

identifier [from package-name]

 Curly braces enclose repeated elements. The element may appear zero or

many times:

integer ::= digit{digit}

 Vertical bars separate alternatives:

passing-method ::= [in] | out | in out

 Two apostrophes enclose a character or a string of characters, which must

appear:

exponent ::= ’E’[’+’]integer | ’E-’ integer

NOTE
So as to introduce ideas progressively, the examples presented in this
manual may be incomplete, and thus not compilable by the CDL
compiler.

2. Introduction to CDL
13

2. Introduction to CDL
14

2. 3. 2 Lexical elements

A CDL source is composed of text from one or more compiled units. The text of
each compiled unit is a string of separate lexical elements: identifiers, keywords,
constants, and separators. The separators (blank spaces, end of line, format
characters) are ignored by the CDL compiler, but these are often necessary for
separating identifiers, keywords, and constants.

2. 3. 3 Comments

With CDL, you cannot use the expression of all useful information about a
development unit. In particular, certain information is more easily expressed in
natural language. You can add such information to the CDL description of a data
type.

Rubrics and free comments are to be differentiated:

Free comments are preceded by the characters “--” (two hyphens), and they
terminate at the end of the line in which they appear.

Example

--This is a comment

Unlike rubrics, free comments can appear before or after any lexical element. The
first written character of the comment itself must not be a hyphen. If a hyphen is
necessary make sure it is preceded by a blank.

Example

-- -List item

Rubrics are various types of comments attached to CDL components. A rubric is a
comment made up of three hyphens, name of the rubric (without any intermediary
space) and then a colon and a space. It is terminated by the beginning of the
following rubric, or by the end of the commentary.

Example

---Purpose:This is an example of a
--rubric composed of a
--comment which extends to
--four lines.

The different categories of rubrics and the form of their content do not depend on the
Component Description Language, but on the tool for which it is intended.

The use of commentary is generally governed by the internal programming
standards of an enterprise. You are encouraged to use various well-defined rubrics,
such as Purpose, Warning, Example, References, Keywords, etc.

2. Introduction to CDL
15

These rubrics can be attached to:

 Packages

 Classes

 Methods

 Schemas

 Executables

 Clients

2. 3. 4 Identifiers

An identifier is an arbitrary chain of characters, either letters or digits, but it must
begin with a letter.

The underscore “_” is considered to be a letter as long as it doesn’t appear at the
beginning or the end of an identifier.
Capital and small letters are not equivalent (i.e. AB, Ab, aB, ab are four different
identifiers).

2. 3. 5 Keywords

The following is a list of keywords.

alias any as asynchronous
class client deferred end
enumeration exception executable external
fields friends from generic
immutable imported inherits instantiates
is library like me
mutable myclass out package
pointer primitive private protected
raises redefined returns schema
static to uses virtual

In a CDL file, the following characters are used as punctuation:
; : , = () [] ‘ “

2. 3. 6 Constants

There are three categories of constants:

 Numeric

 Literal

 Named

Numeric Constants

There are two types of numeric constants: integer and real.

2. Introduction to CDL
16

An integer constant consists of a string of digits, which may or may not be preceded
by a sign. Integer constants express whole numbers.

Examples

1995 0 -273 +78

A real constant may or may not be preceded by a sign, and consists of an integral
part followed by a decimal point and a fractional part (either one or both parts may
be null, but both parts must always be present). It may also be followed by the letter
E to indicate that the following figures represent the exponent (also optionally
signed).

Examples

5.0 0.0 -0.8E+3 5.67E-12

Literal Constants

Literal constants include individual characters and strings of characters.

An individual character constant is a single printable character enclosed by two
apostrophes. (See the definition of the class Character in the Standard Package).

Examples

 ‘B’ ‘y’ ‘&’ ‘*’ ‘’’ ‘‘

A string constant is composed of printable characters enclosed by quotation marks.

Examples

’’G’’ ’’jjjj’’ ’’This is a character string, isn’t it?’’

The quotation mark can itself appear within a character string as long as it is
preceded by a backslash.

Examples

’’This film was originally called \’’Gone with the Tide\’’.’’

Named Constants

Named constants are sub-divided into two categories: Booleans and enumerations.

Booleans can be of two types: True or False.

An enumeration constant is an identifier, which appears in the description of an

3. Software Components
17

enumeration.

33.. SSooffttwwaarree CCoommppoonneennttss

3. 1 Predefined Resources

3. 1. 1 Primitive types

Primitive types are predefined in the language and they are manipulated by value.

Four of these primitives are known to the schema of the database because they
inherit from the class Storable. In other words, they can be used in the
implementation of persistent objects, either when contained in entities declared
within the methods of the object, or when they form part of the internal
representation of the object.

The primitives inheriting from Storable are the following:

Boolean Is used to represent logical data. It has only two values:

True and False.
Byte 8-bit number.
Character Designates any ASCII character.
ExtCharacter Is an extended character.
Integer Is an integer number.
Real Denotes a real number (i.e. one with a whole and a fractional

part, either of which may be null).
ShortReal Real with a smaller choice of values and memory size.

There are also non-storable primitives. They are:

CString Is used for literal constants.
ExtString Is an extended string.
Address Represents a byte address of undetermined size.

The services offered by each of these types are described in the Standard Package.

3. 1. 2 Manipulating types by reference (by handle)

Two types are manipulated by handle:

 Types defined using classes inheriting from the Persistent class are
storable in a file.

 Types defined using classes inheriting from the Transient class.
These types are not storable as such in a file.

3. Software Components
18

Figure 4. Manipulation of a data type by reference

3. 1. 3 Manipulating types by value

Types, which are manipulated by value, behave in a more direct fashion than those
manipulated by handle. As a consequence, they can be expected to perform
operations faster, but they cannot be stored independently in a file.

You can store types known to the schema (i.e. either primitives or inheriting from
Storable) and manipulated by value inside a persistent object as part of the
representation. This is the only way for you to store objects “manipulated by value”
in a file.

3. Software Components
19

Figure 5. Ma

nipulation of a data type by value

3. Software Components
20

3. 1. 4 Summary of properties

3. 2 C

3.

The class is the main system for creating data types under CDL. By analyzing any
CDL-based software, you find that classes are the modular units that make up
packages. When you describe a new class, you introduce a new data type.

Whatever the category of the described type (manipulated by value, Storable or not,
manipulated by handle, Persistent or not) the structure of the class definition
remains the same. The syntax below illustrates it:

Three types are manipulated by value:

 Primitive types

 Enumerated types

 Types defined by classes not inheriting from Persistent or Transient,

whether directly or not

Figure 6. Summary of the relationship for the various data
types between how they are handled and their storability.

lasses

2. 1 Class declaration

Example

-- declaration-of-a-simple-class ::=
class class-name from package-name

[uses data-type { ’,’ data-type }]
[raises exception-name { ’,’ exception-name}]
is class-definition
end [class-name] ’;’
data-type ::= enumeration-name | class-name |

exception-name | primitive-type
package-name ::= identifier
class-name ::= identifier
class-definition ::=
[{member-method}]
[declaration-of-fields]
[declaration-of-friends]

3. Software Components
21

Class name becomes a new data type, which you can use inside its own definition.
Other types appearing in the definition must either be primitive types, previously
declared classes, exceptions, or enumerations.

Apart from the types defined in the Standard Package, which are implicitly visible
everywhere, you need to declare the data types after the keyword uses. This
concerns both the class behavior and its internal representation.

Exceptions are declared after the word raises.

Example

class Line from GeomPack
usesPoint, Direction, Transformation
raisesNullDirection, IdenticalPoints
is-- class definition follows here

-- using Point, Direction and
-- Transformation objects,and the
-- NullDirection and Identical-
-- -Points exceptions.

end Line;

The elements, which make up the definition of a class, are divided into four parts:

 the behavior

 the invariants

 the internal representation

 the friend met



hods and friend classes.

3. Software Components
22

3. Software Components
22

as

epe
 ce

deferred

 Contents of a class

3. 2. 2 Categories of classes

ses fall into three categories:

ary classes

 Deferred classes

vior shared by a hierarchy of classes and
ndent on the implementation of the descendents. This allows you to guarantee
rtain base of inherited behavior common to all classes based on a particular

class. Deferred classes are declared as in the following syntax:

Figure 7.
* a deferred class does not have to contain a constructor

Cl

 Ordin

 Generic classes

Deferred classes

The principal characteristic of a deferred class is that you cannot instantiate it. Its
purpose is to provide you with a given beha
d
a

3. Software Components
23

Example

-- declaration-of-a-deferred-class ::=
ss-name

}]
’ data-type}]
ame {’,’ exception-name}]

on
ss-name]’;’

deferred class cla
[inherits class-name {’,’ class-name
[uses data-type {’,
[raises exception-n
is class-definiti
end [cla

Ge

Th is that it offers you a set of functional
be te a generic class
you need to pa gument. Generic classes are declared as in the
fol

neric classes

e principal characteristic of a generic class
havior allowing you to manipulate other data types. To instantia

ss a data type in ar
lowing syntax:

Example

ferred] generic class class-name ’(’generic-type
{’,’ generic-type}’)’

name {’,’ class-name}]
{’,’ data-type}]
n-name {’,’ exception-name}]

laration-of-a-class}]
nition

r as type-constraint
identifier ::= letter{[underscore]alphanumeric}

-type {’,’

-- declaration-of-a-generic-class ::=
[de

[inheritsclass-
[usesdata-type
[raisesexceptio
[{[visibility] dec
is class-defi
end [class-name]’;’
generic-type ::= identifie

type-constraint ::= any | class-name [’(’data
data-type}’)’]

kages 3. 3 Pa

3. 3.

c

 1 Package declaration

 Packages are used to group classes, which have some logical coherence. For
example, the Standard Package groups together all the predefined resources of the
language. In its simplest form, a package contains the declaration of all data types,
which it introduces. You may also use a package to offer public methods and hide its

ternal classes by declaring them private. in

3. Software Components
24

Example

-- package-declaration ::=
package package-name
[uses package-name {’,’ package-name}]
is package-definition
end [package-name]’;’
-- package-name ::=
identifier
-- package-definition ::=
[{type-declaration}]
[{package-method}]
-- type-declaration ::=
[private] declaration-of-an-enumeration |
[private] declaration-of-a-class |
declaration-of-an-exception
-- package-method ::=
identifier [simple-formal-part][returned-type

-declaration]
[error-declaration]
[is private]’;’

The data types described in a package may include one or more of the following
data types:

 Enumerations

 Object classes

 Exceptions

 Pointers to other object classes.

side a package, two data types cannot have the same name.

ou declare data types be

ed in
lete fashion.

r uses are the names of all the packages containing
def wly introduced data types are clients.

The me s you declare in a package do not belong to any particular class.
Pa ta types contained in the
pa ith the exception of the
ke kage method can only be either public or
pri scribed in the same way as instance methods.

In

Y fore using them in the definition of other data types.

hen two classes are mutually recursive, one of the two must be first declarW
an incomp

G ouped behind the keyword

initio sses of which the nens of cla

thod
ckage methods must carry a name different from the da
ckage. Like any other method, they can be overloaded. W
yword me and the visibil

are de
ity (a pac

vate) package methods

3. Software Components
25

Figure 8. Contents of a package

xample of the package below includes some of the basic data structures:

he eT

Example

package Collection
uses

e t inherits Failure;
e ct inherits Failure;
g ic class SingleList;
g
e

Standard
is

xception NoSuchObjec
xception NoMoreObje
ener
eneric class Set;
nd Collection;

Note that the class Set is declared after the declarations of the NoSuchObject and
NoMoreObject exceptions and the SingleList class of which Set is a client. In the
same way, the classes Failure, Persistent, and the exception NoSuchObject are
defined before they are used. They are defined in the Standard package, which
appears after the keyword uses.

3. Software Components
26

he name space or scope of a class extends from the beginning of its declaration

 an architectural
ackage. As a client of a data type, you can find yourself in the position of having to

3. 3. 2 Name space

T
up to the end of the package in which it appears.

Sometimes, two classes, which come from separate packages, are both visible to a
third package and carry the same name. For example, there might be two different
classes both called “Window” in a screen generator package and in
p
remove the ambiguity over the origin of this type; you do this by means of the
keyword from.

Example

-- class-name ::=
er [from package-name]

ception-name ::=

ckage-name]

identifi
-- ex
identifier [from package-name]

::= -- enumeration-name
ide r [from pantifie

You ca r
en ” you
co

n use the keyword from everywhere the name of a class, exception, o
umeration appears. As a consequence, as a client of the class “Window
uld write wherever necessary:

Ex

eenGenerator
-- or
Window fr

ample

Window from Scr

om ArchitecturalFeatures

Within th ackage the keyword from must be used
w

Here is a furt

NOTES
e description of a p

he age. n referencing any data type that is not defined in this pack

her example:

Example

class L
uses
Point ,
Point
is
-- class definition using
-- Point from <AppropriatePackage>
-- wherever Point appears
e

ine from Geom

 from Geom2d
 from Geom3d

nd;

3. Software Components
27

3. 3. 3 Declaration of classes

t describe a package in one single file. You need to describe it in different
nits and send them separately to the CDL compiler. Each compilation unit can

co lass or of a package. When you describe a class in a
unit diff describes its package, you need to specify which
package longs to. You do this using the keyword from.

If t e package, it does not need to be
rep

e following example takes the package “Collection” which was presented above,
t this time it is divided into three compilation units.

You canno
u

ntain the declaration of a c
erent than that, which

 class be the

he from clause appears in the uses clause of th
eated elsewhere.

Th
bu

Example

 unit, the package “Collection” :

s
ndard

eObject inherits Failure from Standard;
chObject inherits Failure from Standard;
SingleList;
et, Node, Iterator;

ation unit, the class “SingleList” :
leList from Collection (Item as

inherits
Persistent from Standard

bject from Collection

Persistent from Standard;
raises
NoSuchObject from Collection,

antiates SingleList

-- First compilation
package Collection

use
Sta
is
exception NoMor

exception NoSu
generic class
generic class S
end Collection;
-- Second compil
generic class Sing
Storable)

raises
NoSuchO
is
-- definition of the SingleList class
end SingleList;

-- Third compilation unit, the class “Set” :
generic class Set from Collection (Item as Storable)
 inherits

NoMoreObject from Collection
private class Node inst
from Collection (Item);

-- etc....
 end Set;

NOTE
It is not explicitly stated that the “Node” class belongs to the

llection” package. In fact any nested class necessarily belongs to
package of the class, which encompasses it.

ote that a package can hide certain classes (just as it can hide methods) by
eclaring them private. To make a class private, you prefix its description with the
eyword private. In the example of the “Collection” package, the “SingleList” class

“Co
the

N
d
k

3. Software Components
28

serves only to implement the “Set” class. It is recommended to make it private. You
write this as in the following syntax:

Example

package Coll
es

ection

andard

c class Set, Node, Iterator;
e generic class SingleList;

ption NoMoreObject inherits Failure from Standard;

us
tS

is
generi

privat
exce
end Collection;

3. 4 Other Data Types
hese are:

s

 Pointers

3. 4. 1 Enumerations

he enumerated types are the second type, which is manipulated by value. Unlike
the y the user under
the ed whole
co eration constants.

T

 Enumeration

 Imports

 Aliases

 Exceptions

T

 primitive types they are extensible because they are defined b
 form of enumerations. An enumeration is an ordered sequence of nam

nstant values called enum

Examp

dec n-enumeration ::=

er {’,’ identifier}
on-name]]’;’

le

laration-of-a
numeration enumeration-name
is identifi
[end [enumerati
enumeration-name ::= identifier

Th type. An object of this
typ value of any one of the constants cited in the list.

e declaration of an enumeration creates an enumerated
e can successively take the

Ex

, Null, Positive;

ample

enumeration MagnitudeSign is Negative

3. Software Components
29

Inside a package, two enumeration constants cannot have the same name, even if
they be

long to different enumerated types.

Example

numeration Cars is

Honda,

end;
numeration AmericanPresidents is

Ford, -- Error: ‘Ford’ already defined

e

Ford,
Volkswagen,
Renault

e
Nixon,
Reagan,

Carter
end;

3. 4. 2 Imports

n ich which has not been defined in CDL. It is up to the
su re compatibility with the CDL language by providing
services ype.

The CD

eclaration-of-an-imported-type::=
[private] imported <typename> ;

A imported type is one of wh

type to ensupplier of this data
 which allow CDL to recognize the imported data t

L syntax for declaring an imported type is:

d

Example

-- You can define an imported type as follows:
ck.cdl file, you declare the imported

-- package MyPack

yPack_MyImport.hxx file, you write the
following

_MyImport;

yPack_MyImport.hxx>

t)

-- In the MyPa
type:

....
imported MyImport;

....
end Mypack;

-- In the M

-- C++ code:
#ifndef _MyPack_MyImport_HeaderFile
#define _MyPack_MyImport_HeaderFile
#include <Standard_Type.hxx>
typedef unsigned long MyPack
extern const Handle(Standard_Type)& TYPE
(MyPack_MyImport);
-- In the MyPack_MyImport.cxx file, you write the
following
-- C++ code:
#ifndef _MyPack_MyImport_HeaderFile
#include <M
#endif
const Handle(Standard_Type)& TYPE (MyPack_MyImpor

3. Software Components
30

{
static Handle(Standard_Type) _aType =

new Standard_Type (“MyPack_MyImport”,sizeof
(MyPack_MyImport))

 return _aType;
}

Then, add the names of these two files (MyPack_MyImport.hxx,
MyPack_MyImport.cxx) to a file called FILES in the src subdirectory of the package.
If the file does not exist you must create it.

eclaration-of-an-alias::=
 is <type2> [from <apackage>] ;

3. 4. 3 Aliases

An alias is an extra name for a type, which is already known. It is declared as in the
following syntax:

d

[private] alias <type1>

Example

se:
-- Defined as a quantity of matter.
 Gives rise to the inertial and

-- gravitational properties of a body.
sured in kilograms.

alias
---Purpo

 Mass is Real;

--

-- It is mea

Having u can use either Mass or Real to type an
arg

3. 4. 4 Exceptions

In
are hey appear. In other words, the
methods recovering and those raising a given exception are written independently

ubsequently this poses the problem of communication between the two programs.

Consequently, error conditions are defined by means of classes of exceptions.
Exception classes are arranged hierarchically so as to be able to recover them in
groups. They are all descendents of a single root class called “Failure”, and it is at
the level of this class that the behavior linked to the raising of exceptions is
implemented.

declaration-of-an-exception ::=
exception exception-name inherits exception-name

when defining a method.

defined Mass as a type of Real, yo
ument

the model recommended by CDL, the principal characteristic of errors is that they
 treated in a different place from the place where t

from each other.

S
The principle adopted consists in viewing the exception as both a class and an
object. The exception class (by means of one of its instances) is used to take control
of an exception, which has been raised.

3. Software Components
31

ons share identical behavior, that of the class “Failure”. Here are some
n classes:

ailure;
exc ricError;
exc on Underflow inherits NumericError;

The use the normal execution of one program
and then ta ramming language used to
implement “Defining the Software

All excepti

xamples of exceptioe
exception NumericError inherits F

eption Overflow inherits Nume
epti

 of exceptions as a means to interrupt
ke control of another one depends on the prog
the methods. See the following chapter

Components” on page 32.

3. 5 Schemas

e purpose of a schema is to list persistent data types, which will be stored in files
lication. A schema groups together persistent packages. A persistent

ackage is one, which contains at least one persistent class.

declar ma ::=

sch
is
{p >;}
{c

end

Th
by the app
p

ation-of-a-sche
ema <SchemaName>

ackage <PackageName
lass <ClassName>;}
;

Examp

sch cycle

age FrameComponents;
pac elComponents;

le

ema Bi
---Purpose: Defines the Bicycle schema.
is
pack
kage Whe

end;

NOTE

Note that it is unnecessary to specify all the dependencies of the packages.
It is sufficient to specify the highest level ones. The others on which they
depend are automatically supplied.

3. 6 Executables

The purpose of an executable is to make an executable program without a front-
end. It can be used to test more than one package at a time. An executable is
written in a .cdl file as a set of packages.

3. Software Components
32

Example

definition-of-an-executable ::=
executable <ExecutableName>
is

{
executable <ExecutablePart>

[uses [<Identifier> as external]
{’,’ <Identifier> as external}]
<UnitName> as library]
’,’ <UnitName> as library}]

is

[
[
[{

{<FileName> [as C++|c|fortran|object];}
end;

}
end;

Example

executable MyE nit

he executable My

xecU
---Purpose:
-- Describes t ExecUnit

e
-- the binary file

myex2;

is
executable my xec

uses
Tcl_Lib as external
is
myexec;

-- the C++ file
end;

-- several binaries can be specified in one .cdl file.
executable myex2
is

end;
end;

4. Defining the Software Components
33

44.. DDeeffiinniinngg tthhee SSooffttwwaarree
CCoommppoonneennttss

4. 1 Be

ree
ategories of methods:

nstructor Creates an instance of the described class. A class will
ous

one.

stance method Operates on the instance which owns it.

4. 1. 1 Object Constructors

havior

The behavior of an object class is defined by a list of methods, which are either
functions or procedures. Functions return an object, whereas procedures only
communicate by passing arguments. In both cases, when the transmitted object is
an instance manipulated by a handle, its identifier is passed. There are th
c

bject coO
have one or more object constructors with vari
arguments or n

In

Class method Does not work on individual instances, only on the class
 itself.

A constructor is a function, which allows the creation of instances of the class it
describes.

Example

const
Create

ructor-declaration ::=
 [simple-formal-part] declaration-ofconstructed-

type

simple
’(’ initialization-parameter {’;’ initialization
parameter}’)’

mutable | [immutable]

ucted-type ::=

[exception-declarations]
-formal-part ::=

initialization-parameter ::=
identifier {’,’ identifier} ’:’ parameter-access datatype
[’=’ initial-value]
parameter-access ::=

initial_value ::=
numeric-constant | literal-constant | named-constant
declaration-of-constr
returns [mutable] class-name

The name of the constructors is fixed: “Create”. The object returned by a constructor
is always of the type of the described class. If that type is manipulated by a handle,
you must declare it as mutable, in which case the content of the instance it
references is accessible for further modification.

4. Defining the Software Components
34

 the class “Point” For example, the constructor of

Example

Create (X, Y, Z : Real)
returns mutable Point;

Wi pes of initialization
parame nstructor is a
membe

When a dle, an
ac ssociated with it so as to express if the internal representation
of the r efault
op “Line”.

th the exception of the types predefined by the language, all ty
ss of which the coters must appear in the uses clause of the cla

r.

n initialization parameter is of a type which is manipulated by a han
cess right must be a

eferenced object is modifiable (mutable) or not (immutable). The d
xample, the constructor of the persistent class tion is immutable. For e

Examp

Cre ; D : mutable Direction)
;

le

ate (P : mutable Point
returns mutable Line

In the a table because the constructor stores

em in the internal representation of the created line, which is mutable itself. An
ternative would be to accept immutable initialization parameters and then copy

 value: this is expressed by
ssigning a constant of the same type to the parameter concerned. Parameters,

ult value, may not be present when the call to the constructor is
e value specified in the declaration. For this reason,
end of the list. For example, the constructor of the

bove example “P” and “D” must be mu
th
al
them into the constructor in a mutable form.

The parameters of a native type can have a default
a
which have a defa
made, in which case they take th
they must all be grouped at the
persistent class “Vector”.

Example

Create (D : mutable Direction; M : Real = 1.0)
returns mutable Vector;

A class can have many constructors (in this case, you say they are overloaded)
provided that they differ in their syntax and that the presence of parameters having
default values does not create ambiguities.

The restrictions on their use are expressed by a list of exceptions against which
each constructor is protected.

ach class must haE ve at least one constructor to be able to create objects of its
type.

4. Defining the Software Components
35

4. 1. 2 Instance Methods

An instance method is a function or procedure, which applies to any instance of the
class, which describes it.

Example

declaration-of-an-instance-method ::=
identifier formal-part-of-instance-method
[declaration-of-returned-type]
[exception-declaration]

arameter-access] {’;’

rameter ::=
identifier {’,’ identifier} ’:’ passing-mode

parameter-access
]

[in] | out | in out

returns return-access data-type

formal-part-of-instance-method ::=
 ’(’ me [’:’ passing-mode p

parameter}’)’
pa

data-type [’=’ initial-value
passing-mode ::=

parameter-access ::=
mutable | [immutable]
declaration-of-returned-type ::=

return-access ::=
mutable |[immutable]| any

h ied: you call this the
rincipal object” of the method. The passing mode expresses whether the direct

ontent of the principal object or a parameter is either:

 created and returned

d and returned by the method.

f the object itself. Thus, when the
rgument is of this type, out and in out mean that the content of the object will

un a function (as is the case for
co the default mode.

In y a handle, the direct content being
an ses itself to the handle, and no longer
to the internal representation of the object, the modification of which is controlled by

the
method has no right to alter the access right. This functionality is particularly useful
in the case of collections; temporarily storing an object in a structure and unable to
modify its state.

T
“p

e name me denotes the object to which the method is appl

c

 read

 read then update

Remember that the direct content of an argument of a type which is manipulated by
value contains the internal representation o
a

dergo a modification. When the method is
nstructors), all the arguments must be in (read). This is

case of an argument of a type manipulated b
 object identifier, the passing mode addres

the access right. An argument of this type declared mutable may see its internal
representation modified. If declared immutable, it is protected. When a parameter is
both in out and mutable, the identifiers passed and returned denote two distinct
modifiable objects.

When the returned object is manipulated by a handle it can be declared modifiable
or not, or indeterminate (any). To return an object with an indeterminate access right
means that the method transmits the identifier without changing its state and that

4. Defining the Software Components
36

ith the exception of the types predefined by the language, all types of parameters
ed objects, whether manipulated by a handle or by value, must appear in

se of the class of which the method is a member.
ters can have a default value, provided

tha in the in mode, and
ey are found at the end of the list of arguments.

v and post-conditions is
llowed and respects the same rules than constructors.

ote the overloading of “Coord” in the following example of instance methods
lass “Point”:

W
and return

e uses clauth
As is the case for constructors, some parame

t they are of primitive or enumerated type. They are passed
th

O
a

erloading of instance methods and use of exceptions

N
associated with the persistent c

Example

Coord (me; X, Y, Z : out Real);
---Purpose: returns the coordinates of <me>

Coord (me; i : Integer) returns Real;
---Purpose: returns the abscissa (<i>=1), the

-- ordinate (<i>=2) or the value (<i>=3) of <me>

coordinates of <me>

Distance (me; P : Point) returns Real
---Purpose: returns the distance to a point

SetCoord (me : mutable; X, Y, Z : Real);
---Purpose: modifies the

In all these cases, me is implicitly an object

odify the internal representation of a point.
 of type Point. Only “SetCoord” is able to

4. 1. 3 Class M

[exc ion]
formal-p -method ::=

The first s that the method does not apply to a

ass itself. The rest of the syntax is identical
to that of the instance methods. In particular, access rights (mutable, immutable,
any) and the argument passing mode (in, out, in out) must remain unchanged.
With the exception of the types predefined by the language, all types of parameters
must appear in the uses clause of the class of which the method is a member.
Overloading of class methods and the use of exceptions and post-conditions is
allowed, and it follows the same rules as for constructors and instance methods.

m

ethods

A class method is a function or procedure relative to the class it describes, but does
not apply to a particular instance of the class.

declaration-of-a-class-method ::=
identifier formal-part-of-class-method
[declaration-of-returned-type]

eption-declarat
art-of-class

’(’ myclass {’;’ parameter}’)’

parameter myclass indicate
previously created instance, but to the cl

4. Defining the Software Components
37

h the class “Real”: Examples of class methods associated wit

Example

First (myclass) returns Real;
---Purpose: returns lower limit of reals

class) returns Real;

Last (my
---Purpose: returns upper limit of reals

4. 1. 4

ackage methods are methods which are members of a package. They are

s
sed for development purposes but which are not made available to final end-users

Package Methods

P
frequently used for library or application initialization, or for offering an application
programming interface to the sources to the package. They are sometimes method
u
of the package.

package-method ::=
identifier [simple-formal-part][returned-type-declaration]
[exception-declaration]
[is private]’;’

4. 1. 5 Sensitivity to Overloading

hen there is more than one method of a class, several methods share the same
ame but have different syntax, you say the method is overloaded.

 The type of the returned o en the method behaves as a function

e or the mode of passing a parameter

in out)

of a parameter.

W
n

In order that the methods can be considered distinct, they must differ either in the
number of parameters, or one of their parameters must be of a different type. In
particular, you cannot overload a method if you merely modify it as follows:

bject wh

 The nam

(in, out, or

 The mutability of passed objects

(mutable, immutable, any)

 Default value

4. Defining the Software Components
38

4. 2 Int
ct contains its own state in a private space in the memory. This state
 a set of fields, which include or reference other objects.

ernal Representation

Each obje
onsists ofc

Ex

al-representation-of-a-class

 [’[’integer
{’,’integer}’]’]’;’

ample

declaration-of-the-intern
::=
fields field {field}
field ::=
identifier {’,’ identifier} ’:’ data-type

A copy of all the defined fields exists locally in each instance of the class. This group

f fields will be initialized by the class constructors when the object is instantiated.

ields must not have the same name as any method of the class in which they
ld type

brackets, the data will take lti-dimensional array containing objects
f this type.

The following example sho t ways of describing three fields of the
eal” type:

o

F
appear. When the fie is followed by a list of integer constants between square

 the form of a mu
o

ws two equivalen
“R

Example

al;
[3];

fields
x, y, z: Re
coord: Real

Depending on their type, Object fields have one of the two forms. When the field is

 value of the object.
 this case you say the object is embedded.

4. 3 Ex
ations, which can arise during the execution of

 method. With the raising of an exception, the normal course of program execution

’,’
exception-name}

ption name corresponds to a class of exceptions previously defined as
e od under which it appears. Exception

cla the raises clause of the class of which the method is a
me ns is analogous to the class of objects described in
thi

of the “manipulated by handle” type, it corresponds to an identifier. In this case, the
contents of the object can be shared by other objects or by a handle in a program.
When the field is of a “manipulated by value” type, it contains the
In

ceptions

Exceptions describe exceptional situ
a
is interrupted. The actions carried out in response to this situation are called
treatment of exception.

exception-treatment ::= raises exception-name {

ach exceE

b ing susceptible to being raised by the meth
sses must all appear in
mber. The class of exceptio

s manual.

4. Defining the Software Components
39

Ta hich returns the x, y, or z coordinate of a point. ke for example the method w

Example

e abscissa (<i>=1)
-- the ordinate (<i>=2)

Coord (me; i : Integer) returns Real
---Purpose:
-- Returns th

-- or the value (<i>=3)
-- of <me>.
raises OutOfRange;
-- if <i> is not equal to 1, 2, or 3.

Instan stematic

xceptions

when the principal object does not exist.

mutableObject Raised when a method tries to modify an immutable

atch Raised if an argument typed by association is of an
unsuitable type.

Th

4. 4 Inheritance

4. 4.

n first of all consider the group of
bjects, and then differentiate the points, vectors, and curves. You can

the latter into conic sections, and then decompose them into circles,
llipses, and hyperbolae. Then, the class of conics is considered as a sub-class of

cu

 sub-class has at least the behavior of its super-classes. Thus, a circle could be

classes.

ce methods are likely to raise certain exceptions called sy
which do not have to appear. They are: e

NullObject Raised

Im

principal object.

TypeMism

ese exceptions are described in the Standard Package (System Toolkits).

 1 Overview

The notion of inheritance comes from a development strategy according to which
you begin by modeling data in the most general fashion. Then you specialize it more
and more so as to correspond to more and more precise cases.

or example, to develop a basic geometry, you caF
geometric o
specialize
e

rves, and a super-class of circles.

A
viewed as a conic, a curve, or even as a geometric object. In each case, the
applicable methods belong to the level where you view the class. In this case, you
say that the sub-class inherits the behavior from its super-

Example

declaration-of-a-sub-class ::=
class class-name
inherits class-name
[uses data-type {’,’ data-type}]

4. Defining the Software Components
40

xception-name}] [raises exception-name {’,’ e
is class-definition
end [class-name]’;’

A class cannot inherit one of its descendent classes; nor can it inherit a native type.

ll the classes of a system can be described in a non-cyclic diagram called the
e graph.

Th s. Note that a super-
cla
de of a sub-class includes as a minimum all
ins of its super-classes.

NOTE

4. 4.

ertain inherited methods can be redefined.

A
inheritanc

e definition of a sub-class is identical to that of a simple clas
ss must not appear in the uses clause of the sub-class, even if it appears in the
finition of the sub-class. The behavior
tance methods and protected methods

Note that constructors and class methods are never inherited.

 2 Redefining methods

C

Example

declaration-of-a-redefined-method ::=
identifier formal-part-of-instance-method [returnedtype-
declaration]
[declaration-of-exceptions]
 is redefined [visibility]’;’

A redefined method must conform to the syntax described in the super-class where
it appears. The exceptions contained in the super-class can be renewed, and others

ay be added as long as they inherit from an ancestor class.

he redefined attribute can be applied neither to a constructor, nor to a class
me ed method is private or
pro tly repeated in the redefinition. For further
de

m

T

thod, since neither of them can be inherited. If the redefin
tected, the visibility must be exac

tails on visibility, refer to “Visibility” on page 48.

Ex

 Real

ample

SquareDistance (me; P : Point) returns
is redefined private;

it s defined in the super-classes

re, by default, inherited, but they can also be redefined.
W h regards to the internal representation, all field
a

4. Defining the Software Components
41

4. 4. 3 Non-redefinable methods

Instance methods, which are declared virtual are redefinable in descendent classes,
and you can force this redefinition by making a method deferred. For more details,
see the next section.

Example

declaration-of-a-non-redefinable-method ::
identifier formal-part-of-instance-method [

=
returnedtype-

declaration]
[declaration-of-exceptions]
 is virtual [visibility]’;’

All n in all the child classes, add
“is aring the method.

Yo ecome non-

d are: is redefined static.

4. 4.

e its descendent classes to define them.

 methods are static by default. To enable redefinitio
virtual;“ when decl

u must also be able to forbid redefinition. A redefinable method can b
re efinable if you decl

 4 Deferred Classes and Methods

The presence of certain classes in the inheritance graph can be justified purely by
their ability to force certain behavior on other classes, in other words, to make other
lasses provide various services. c

The CDL language allows you to describe a class, which introduces methods
without implementing them, so as to forc
These are called deferred classes; the non-implemented methods are also termed
deferred methods.

Example

declaration-of-a-deferred-class ::=

tion
me]’;’

declaration-of-a-deferred-method ::=
identifier formal-part-of-instance-method [returnedtype-

deferred class class-name
 [inherits class-name
[uses data-type {’,’ data-type}]
[raises exception-name {’,’ exception-name}]
is class-defini
end [class-na

declaration]
[declaration-of-exceptions]
is deferred [visibility]’;’

Only instance methods can be deferred.

It is sufficient for a class to contain one deferred method for it to be a deferred class.

 can contain any number of deferred methods (or none).

-
rotected constructors would be necessary to initialize them. The constructors must

It

A deferred class may still have an internal representation but one or more non
p

4. Defining the Software Components
42

e visible in the sub-classes.

ctors of a deferred class are called Initialize (not Create). They are
ro y object. You cannot create an object of a
eferred class type.
or example, consider the class “Point”, and its declaration as deferred.

b

he construT
p tected by default, and do not return an
d
F

Example

deferred class Point inherits Geometry is
Initialize;

rpose: Initializes the point.
e; X, Y, Z : out Real)

---Purpose: Returns the coordinates

SetCoord (me : mutable; X, Y, Z : Real)
---Purpose: Modifies the coordinates

---Pu
Coord (m

is deferred;

is deferred;
Distance (me; P : Point) returns Real;
---Purpose: Returns the distance from the point P
end Point;

Notice that the function “Distance” is not deferred. Although this class contains no

,
ust be implemented, then redeclared (the attribute redefined is useless for this

nless the sub-class is itself deferred.

 n efined as a deferred one, in which case it will be
de d.

h ss is very useful. The advantage of introducing it, as was
reviously shown in the deferred class “Point”, is that the corresponding resources
ill be available even before being implemented. Later, you can add different
presentations to Point (for example, spherical or Cartesian coordinates) without

having to modify client programs.

Thank ot have any
negative impact on performance: a method implemented at the level of a deferred
class n be reprogrammed in one of its sub-classes while taking into account the

4. 4. 5 Declaration by Association

At le in the ascendant
e e class, an identifier of type
urve can reference an object of type Conic (remember that the behavior of Curve
 applicable to Conic). In other words, you can assign a reference to a Conic to an

For example, once the classes have been compiled you could write a C++ test
program in which you instantiate a Conic but reference it with a handle to a Curve:

representation, this method is programmable by calling “Coord”.

In a sub-class of a deferred class, all deferred methods, which have been inherited
m
purpose), u

A on-deferred method can be red

clared as follows: is redefined deferre

T
p

e notion of deferred cla

w
re

s to the possibility of redefining methods, this approach does n

ca
data representation.

the heart of a class hierarchy, object identifiers are compatib

s
C

nse. Since the Conic class is descended from the Curv

is
identifier of type Curve, but not vice versa.

4. Defining the Software Components
43

Example

Handle(Curve) c = new Conic

This same rule applies to parameters of methods; that is to say, you can call a
method with identifiers corresponding to a sub-type of that specified in its
declaration. To illustrate this, you go back to the “Distance” method of the “Point”
class:

Example

Distance (me; P : point) returns Real;

Conforming to the rule of type compatibility, you could make a call to the method
“Distance” with reference to an object from a class descended from “Point”.
Consequently, if “SphericPoint” is a sub-class of “Point” and therefore inherits this

ethod, it will be possible to calculate the distance between two “SphericPoint”, or
 “SphericPoint” and a “Point”, without having to redefine the method.

On o be exactly
of u
ne parameters in the method declaration.

m
between a

 the other hand, sometimes you may want to force two parameters t
the same type, and thus not apply the rule of type compatibility. To do this, yo
ed to associate the type of the concerned

Example

association-typing ::=
like associated-parameter
associated-parameter ::=
me | identifier

NOTE
identifier is the name of a parameter, which appears
 formal part of the declaration of the method.

You can use this technique, which consists in declaring by association, to declare a

xchange the content of two objects, or a method, which copies

Note that
first in the

method that will e
nother object: a

Example

Swap (me : mutable; With : mutable like me);
DeepCopy (me) returns mutable like me;

Make sure not to write the Swap method as in the syntax below:

4. Defining the Software Components
44

Example

Swap (me : mutable; With : mutable Point);

In ricalPoint, while “With” can only
be

4. 4. 6

Th y of classes should be viewed as a means to specialize
the ed than a conic section). The more you
spe e more it is justified to call into question the inherited
iel the internal

presentation of a sub-class, it is possible not to inherit all of the fields of the super-
lasses. You then say the fields have been redefined.

this case me may be a CartesianPoint or a Sphe
 a Point.

Redefinition of Fields

e creation of a hierarch
ir behavior, (e.g. a circle is more specializ
cialize the object classes, th

f
re

ds in order to obtain greater optimization. So, in the description of

c

Example

redefinition-of-the-representation-of-a-class ::=
redefined redefinition-of-a-field {’,’ redefinition-of-a-
field}’,’
redefinition-of-a-field ::=
[field-name] from [class] class-name

Redefinition of fields can only be done in classes manipulated by a handle.

 breaks the field inheritance. The non-inherited
elds are all those which come from the class specified behind the rubric from.

4. 5 Ge

4. 5. 1 Overview

Inheritance is a powerful mechanism for extending a system, but it does not always
allow you to avoid code duplication, particularly in the case where two classes differ
only in the type of objects they manipulate (you certainly encounter this
phenomenon in all basic structures). In such cases, it is convenient to send arbitrary
parameters representing types to a class. Such a class is called a generic class. Its
parameters are the generic types of the class.

Generic classes are implemented in two steps. You first declare the generic class to
establish the model, and then instantiate this class by giving information about the
generic types.

This declaration appears at the beginning of the definition of the internal
representation of the sub-class, which
fi

nericity

4. Defining the Software Components
45

4. 5. 2 Declaration of a Generic Class

he syntax is as follows:

T

Example

declar
neric-type

{’,’ge

[uses data-t
tion-name {’,’ exception-name}]

end [class-n
-type ::=

identi t

ation-of-a-generic-class ::=
[deferred] generic class class-name ’(’ge

neric-type}’)’
[inherits class-name

ype {’,’ data-type}]
[raises excep
is class-definition

ame]’;’
generic

fier as type-constrain
type-constraint ::=
any | class-name [’(’data-type {’,’data-type}’)’]

Th usable in the definition of
a cla e generic
type is only visible to
ha r generic class using the same generic type within the same package.
When you der the form of a class name, you impose a
minimum set of behavior o ated object.

Th e has as a minimum the services defined in the
lass. This can be any kind of a previously defined class, including another generic
lass, in which case you state exactly with what types they are instantiated.

inherit from a generic class.

 generic class can be a deferred class. A generic class can also accept a deferred
cla d from it will also be
de can then be inherited by another class.

Be mple of a generic class: a persistent singly linked list.

e names of generic types become new types, which are
ss, both in its behavior (methods) and its representation (fields). Th

inside the generic class introducing it. As a result, it is possible
ve anothe

specify the type constraint un
n the manipul

is shows that the generic typ
c
c

When the generic type is constrained by the attribute any, the generic class is
intended to be used for any type at all, and thus corresponds to classes whether
manipulated by a handle or by value.

No class can

A

ss as its argument. In both these cases any class instantiate
ferred. The resulting class

low is a partial exa

4. Defining the Software Components
46

Example

generic class SingleList (Item as Storable)
herits Persistent
raises NoSuchObject
is

;
 -- st

 ---Purpose: Returns true if the list <
SwapTail (me : mutable; S : in out mutable

SingleList)

---Purpose: Returns the tail of the list <me>
-- Exception NoSuchObject raised when <me> is

 Next :
 end SingleList;

in

Create returns mutable SingleList
-Purpose: Creates an empty li
IsEmpty (me) returns Boolean;

me> is empty

 ---Purpose: Exchanges the tail of list <me> with <S>
-- Exception NoSuchObject raised when <me> is

empty
raises NoSuchObject;

 Value (me) returns Item
 ---Purpose: Returns first element of the list <me>

-- Exception NoSuchObject raised when <me> is
empty

raises NoSuchObject;
 Tail (me) returns mutable SingleList

empty
raises NoSuchObject;

 fields
Data : Item;

SingleList;

Even though no object of the type “SingleList” IS created, the class contains a
onstructor. This class constitutes c

ti
a model, which will be recopied at instantiation

cts. The constructor will then be me to create a new class which will generate obje
required.

Example

generic class Sequence(Item as any, Node as
SingleList(Item))
inherits Object
. . .
end Sequence

In the above example, there are two generic types: Item & Node. The first imposes

o restriction. The second must at least have available the services of the class
Sin ence will itself be instantiated.

In generic must
ap

n
gleList instantiated with the type with which Sequ

the incomplete declaration of a generic class, the keyword
pear.

Ex

ge
ge

ample

neric class SingleList;
neric class Sequence;

4. Defining the Software Components
47

4. 5. 3 Instantiation of a Generic Class

The syntax is as follows:

Example

instantiation-of-a-generic-class ::=
[deferred] class class-name

 instantiates class-name ’(’data-type {’,’
data-type}’);’

Instantiation is said to be static. In other words, it must take place before any use
can be made of the type of the instantiated class. Each data type is associated term
by term with those declared at the definition of the generic class. These latter ones,

hen they are not of the type any, restrict instantiation to those classes, ww hich have
 constraint,
lf.

le, let’s instantiate the class “Sequence” for the type “Point”:

a behavior at least equal to that of the class specified in the type
cluding constructors. Note that this is not guaranteed by inheritance itsein

For examp

Example

class instantiates SingleList(Point);
class es

SingleListOfPoint
Sequence instantiat
Sequence(Point,SingleListOfPoint);

The instan ferred
attribute m
declared in

4. 5. 4 Neste

It often hap y classes are linked by a common generic type. This is the
case when n iterator, for example, in the class “Graph”. A
graph is m h join together the nodes, which reference objects of
any type. T node. In this context, it
is necessa neric classes is indeed
instantiated e instantiation, CDL allows
the declara

tiation of a generic deferred class is a deferred class (the de
ust be present during instantiation). An instantiated class cannot be
 an incomplete fashion.

d Generic Classes

pens that man
 a base structure provides a
ade up of arcs, whic
his type is generic both for the graph and for the
ry to make sure that the group of linked ge
 for the same type of object. So as to group th
tion of certain classes to be nested.

Example

declar
 [de neric class class-name ’(’generic-

eric-type}’)’
 [in {’,’ class-name}]
 [us {’,’ data-type}]
 [raises exception-name {’,’ exception-name}]
 [{[visibility] class-declaration}]

-declaration-of-a-class |
 declaration-of-a-non-generic-class |

ation-of-a-generic-class ::=
ferred] ge
type{’,’gen
herits class-name
es data-type

 is class-definition
end [class-name]’;’
 class-declaration ::=
 incomplete

4. Defining the Software Components
48

 instantiation-of-a-generic-class

Nested classes, even though they are described as non-generic classes, are
generic by construction, being inside the class of which they are a part. As a
onsequence, the generic types introduced by the encompassing class can be

 definition of the nested class. This is true even if the generic type is only
nested class. The generic types still must appear as an argument of the

n st appear in its uses
r raises clauses, just as if it were an independent class.

 used in a protected field because

c
used in the

sed in a u
e compassing class. All other types used by a nested class mu
o

Nested classes are, by default, public. In other words, they can be used by the
clients of the encompassing class. On the other hand, when one of the nested
classes is declared private or protected, this class must not appear in any of the

ublic methods of the other classes. It cannot bep
then it could be used in a sub-class, which implies it would not be private.

he following example shows how to write the Set class with its iterator. T

Ex

ate class Node instantiates SingleList (Item);
class Iterator
 uses Set, Node
 raises NoSuchObject, NoMoreObject

 Create (S : Set) returns mutable Iterator;
---Purpose: Creates an iterator on the group <S>

plore
 Next (me) raises NoMoreObject;
---Purpose: Passes to the following element
 Value (me) returns any Item raises NoSuchObject;
---Purpose: Returns the current element
 fields
 Current : Node;
d Iterator;

is
e returns mutable Set;
se: Creates an empty group

 IsEmpty (me) returns Boolean;

oSuchObject;
ose: Removes an item from the group <me>

ds
 Node;

ample

generic class Set (Item as Storable)
inherits Persistent
priv

 is

 More (me) returns Boolean;
---Purpose: Returns true if there are still elements
 -- to ex

en

 Creat
---Purpo

---Purpose: Returns true if the group is empty
 Add (me : mutable; T : Item);
---Purpose: Adds an item to the group <me>
 Remove (me : mutable; T : item) raises

N
---Purp
 etc.
 fiel
 Head :
end Set;

ote that in their fields, both “SN et” and “Iterator” are clients of another class, “Node”.
This last can be effectively declared private for it only appears in fields which are
themselves private.

4. Defining the Software Components
49

s unchanged.

stantiation, separated by “Of”. For example, you instantiate the class “Set”
des or the type “Point” as follows:

The instantiation of a generic class containing nested classes remain
The same declaration is used to instantiate the encompassing class and the nested
classes. These latter will have their name suffixed by the name supplied at
in

cribed above f

Ex

tOfPoint instantiates Set(Point);

ample

class Se

In odeOfSetOfPoint” and
“IteratorOfSetOfPoint”, which are respectively the result of the concatenation of

ode” and “Iterator” with “Of” then “SetOfPoint”.

ote that in the incomplete declaration of an encompassing class, all the names of
nd that of the encompassing class.

-a-generic-class ::=

doing so, you implicitly describe the classes “N

“N

N
the nested classes must appear behi

incomplete-declaration-of
[deferred] generic class-name {’,’ class-name};

For example, an incomplete declaration of the above class “Set” would be as in the
example below:

Example

 Node, Iterator; generic class Set,

ss can be deferred. In the above example only the class Only the encompassing cla
“Set” can be deferred.

4. 6 Visibility

4. 6. 1 Overview

A field, method, class, or p se if it is visible.
Ea which can be explicitly modified

uring class or package declaration. The three possible states of visibility are:

 Protected

4. 6. 2 Visibility of Fields

private. It can never be public - this would destroy the whole concept of
da is applied to a field.

ackage method is only available for u

ch of these components has a default visibility,
d

 Public

 Private

 field is A
ta encapsulation. The attribute private is redundant when it

4. Defining the Software Components
50

This means that a field is only visible to methods within its own class.
 A field can be declared protected which means that it becomes visible in

ubclasses of its own class. Its contents can be modified by methods in subclasses. s

field ::=
identifier {’,’ identifier} ’:’ data-type
[’[’integer{’,’integer}’]’]
[is protected]’;’

Example

fields
 Phi, Delta, Gamma : AngularMomenta [3]
 is protected ;

4. 6.

are public. Methods can be

They describe the behavior of a class or a package, and

by
methods belonging to the same class. Private package
methods can only be called by all methods belonging to
the same package and its classes.

Pr s, which are also callable from the

If y ity as
foll

ed

he declaration of the visibility of a method appears at the end of its definition,

 the class “Line” an internal method allowing the calculation of
e perpendicular distance to the power of two, from the line to a point.

 3 Visibility of Methods

Methods act on fields. Only methods belonging to a class can act on the fields of the
class; this stems from the principle of object encapsulation. Methods can be
haracterized in three ways: by default, methods c

declared private or protected to restrict their usage.

Public methods Are the default and are generally the most common.

they are callable by any part of a program.

Private methods Exist only for the internal structuring of their class or their

package. Private class methods can only be called

otected methods Are private method
interior of descendent classes.

ou want to restrict the usage of a method, you associate with it a visibil
ows :

-- declaration-of-the-visibility ::=
is visibility
visibility ::= private | protect

T
before the final semi-colon. The attribute private indicates that the method will only
be visible to the behavior of the class of which the method is a member; protected
will propagate the visibility among the sub-classes of this class.

For example, add to
th

Example

SquareDistance (me; P : Point) returns Real
is private;

4. Defining the Software Components
51

4. 6. 4 Visibility of Classes, Exceptions, & Enumerations

h ss in the definition of
nother class. The visibility of a class extends from the beginning of its declaration
p to the end of the package in which it appears. You have seen that the keyword

T
a

e visibility of a class is the facility to be able to use this cla

u
uses allows extension of this visibility to other packages.

As was explained in the section on “Name Space”, any ambiguity, which arises from
having two classes with the same name coming from different packages, is dealt

ith by the use of the keyword from.

A class declared private is only available within its own package.

4. 6. 5 Friend Classes & Methods

In certain cases, methods need to have direct access to the private or protected
parts of classes of which they are clients. Such a method is called a friend of the
class, which is accessed. For example, you declare a method to be a friend when a
service can only be obtained via the use of another non-descendent class, or
perhaps when this will help to improve performance.

Classes can also be declared friends of other classes. In this case all the methods of
the friend class will have access to the fields and methods of the host class. The
right is not reciprocal.

Friend classes or methods are declared inside the class, which reveals its private
and protected data or methods to them. This helps in managing the continuing
evolution of a class, helping to recognize and to avoid the creation of side effects.

w

Example

declaration-of-friends ::=
friends friend {’,’friend}
 friend ::=
 identifier from [class] class-name [formal-part] |
Defining the Software Components 67
identifier from [package] package-name [formal-part] |
 class] class-name
 formal-part ::=
 simple-formal-part |
 formal-part-of-instance-method |
 formal-part-of-class-method

he formal part must be presented if the method contains one; thus this can be
verloaded withou nship among its

homonyms. The k ambiguities. For
example, it removes any confusion between “method M from class C” and “method
M from package P”.

As an example, take a method, which calculates the perpendicular distance between
a line and a point. Suppose this method needs to access the fields of the point. In
the class “Point” you would write:

T
o t necessarily propagating the friend relatio

eyword class allows you to avoid certain

4. Defining the Software Components
52

Example

friends Distance from Line (me; P : Point)

A method can be a friend to many classes. The class to which the method belongs
does not need to appear in the uses clause of other classes of which it is a friend.

hen the methods of a class are all friends of another class, you can establish the
e level of the class.

y of various components

W
friendship at th

Figure 9. Visibilit

Appendix A. Syntax Summary
53

AAppppeennddiixx AA.. SSyynnttaaxx SSuummmmaarryy

his summary of the aid in the comprehension of the language, but
t definition thereof. In particular, the grammar described

lidated.

’ | ’G’ | ’H’ |
N’ |

P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ |
| ’X’ | ’Y’ | ’Z’

) non-capital ::=

 ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ |
m’ | ’n’ |

’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ |
’ | ’x’ | ’y’ | ’z’

) digit ::=
’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ |

) underscore ::=

’

) special character
 | ’!’ | ’”’ | ’#’ | ’$’ | ’%’ | ’&’ | ’’’ |

 ’+’ | ’,’ | ’-’ |
’;’ | ’<’ | ’=’ | ’>’ | ’?’ |

[’ | ’\’ | ’]’ | ’^’ | ’‘’ |
’|’ | ’}’ | ’~’

) printable character::=

tals | non-capitals | digits | underscore |

) alphanumeric ::=

letter | digit

(9) identifier ::=
letter{[underscore]alphanumeric}

(10) integer ::=
digit{digit}

(11) exponent ::=

nent] | ’-’integer

T CDL syntax will
does not constitute an exac
here accepts a super-set of CDL constructors semantically va

(1) capital ::=

’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F
’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’
’O’ | ’
’W’

(2
’a’ |
’i’ | ’j’ | ’k’ | ’l’ | ’

’w

(3

’8’ | ’9’

(4
’_

(5 ::=

’ ’
’(’ | ’)’ | ’*’ |
’.’ | ’/’ | ’:’ |
’@’ | ’
’{’ |

(6
capi
special characters

(7) letter ::=

capital | non-capital

(8

’E’[’+’]integer | ’E-’integer

(12) numeric-constant ::=

[’+’]integer ’.’ integer[expo
’.’ integer[exponent]

Appendix A. Syntax Summary
54

(13) literal-constant
’’printable character’’’ | ’~’{printable

e]

identifier [from package-name]

tifier [from package-name]

nitialize’

al’

-name

(21) passed-type ::=

data-type | like me | like identifier

(22) passing-mode

(23) parameter-acc

(24) value ::=

numeric-constant | literal-constant |
fier

(25) parameter ::=
r} ’:’ passing-mode

passed-type [’=’ value]

stance-method ::=
 access-right] {’;’

8) formal-part-of-class-method ::=

’(’myclass {’ ter}’)’

(29) visibility ::=

 ::=
’
character}’~’

(14) package-name ::=

identifier

(15) enumeration-name ::=

identifier [from package-nam

(16) class-name ::=

(17) exception-name ::=

iden

(18) constructor-name ::=

’Create’ | ’I

(19) primitive-type ::=

Character’ | ’Integer’ | ’Re’Boolean’ | ’

(20) data-type ::=

enumeration-name | class-name | exception
| primitive-type

 ::=
[in] | out | in out

ess ::=
mutable | [immutable]

(23A) return-access ::=

mutable | [immutable]| any

identi

identifier {’,’ identifie
access-right

(26) simple-formal-part ::=

’(’parameter {’;’ parameter}’)’

(27) formal-part-of-in

’(’me [’:’ passing-mode
parameter}’)’

(2
;’ parame

Appendix A. Syntax Summary
55

otected
(30) redefinition ::=

static | deferred
-level ::=

) declaration-of-

 [mutable] class-name

) declaration-of-
rn-access passed-type

(34) declaration-of-
eption-name}

6) declaration-of-attribut od ::=

lity | is definition-of-level

ple-formal-part]
ed-type]

;’

-instance-method
ed type]

[declaration-of-errors]
-attributes-of-

(39) class-method :

e-class-method
ype]

;’

on-of-returned-type]
[declaration-of-errors]

(41) member-metho

lass-method

(42) formal-part ::=

|
ce-method|

mal-part-of-class-method

(43) friend ::=
from [class] class-name [formal-part]

entifier from [package] package-name [formal-

private | pr

(31) definition
redefinition | redefined [redefinition]

(32 constructed-type ::=
returns

(33 returned-type ::=

returns retu

errors ::=
raises -name {’,’ exc exception

(35) declaration-of-visibility ::=

is bi visi lity

(3 es-of-instance-meth
is visibi
[visibility]

(37) constructor ::=

constructor-name [sim
[declaration-of-construct
[declaration-of-errors]
[declaration-of-visibility]’

(38) instance-method ::=

identifier formal-part-of
[declaration of return

[declaration-of
instancemethod]’;’

:=
identifier formal-part-of-th
[declaration of returned t
[at of-errors] declar ion-
[declaration-of-visibility]’

(40) package-method ::=

identifier [simple-formal-part]
[declarati

[is private]’;’

d ::=
constructor | instance-method | c

simple-formal-part
formal-part-of-instan
for

identifier
|
id

Appendix A. Syntax Summary
56

[class] class-name

(44) field ::=

identifier {’,’ identifier} ’:’ data-type
[’[’integer {’,’ integer}’]’]
[is protected]’;’

45) redefinition-of-field ::=

[field-name] from [class] class-name

(46) declaration-of-fields ::=

fields [redefined redefinition-of-field {’,’
redefinition-of-field}’;’]
field {field}

(47) declaration-of-an-alias::=

[private] alias <class-name1> is <class-name2> [from
<package-name>]

(48) declaration-of-friends ::=

friends friend {’,’ friend}

(49) class-definition ::=

[{member-method}]
[declaration-of-fields]
[declaration-of-friends]

(50) declaration-of-an-exception ::=

exception exception-name
inherits exception-name

(51) declaration-of-an-enumeration ::=

enumeration enumeration-name
is identifier {’,’ identifier}
[end [enumeration-name]]’;’

(52) incomplete-declaration-of-a-non-generic-class ::=

[deferred] class class-name’;’

(53) incomplete-declaration-of-a-generic-class ::=

[deferred] generic class class-name {’,’ class-
name}’;’

(54) declaration-of-a-non-generic-class ::=

[deferred] class class-name
[inherits class-name
[uses data-type {’,’ data-type}]
[raises exception-name {’,’ exception-name}]
 is definition-of-a-class
end [class-name]’;’

(55) type-constraint ::=

any | class-name [’(’data-type {’,’ data-
type}’)’]

(56) generic-type ::=

part] |

Appendix A. Syntax Summary
57

e-constraint identifier as typ

Appendix A. Syntax Summary
58

(57) declaration-of-a-generic-class ::=
[deferred] generic class class-n
{’,’ generic-type}’)’
[inherits class-name
[uses data-type {’,’ data-type}]
[raises exception-name {’,’ exception-name}]

[deferred] class class-name
instantiates class-name ’(’data-type
{’,’ data-type}’);’

(59) declaration-of-a-class::=

incomplete-declaration-of-a-non-generic-class
|
incomplete-declaration-of-a-generic-class |
declaration-of-a-non-generic-class |
declaration-of-a-generic-class |
instantiation-of-a-generic-class

(60) type-declaration ::=

[private] declaration-of-an-enumeration |
[private] class-declaration |
declaration-of-an-exception

(61) package-definition ::=

[{type-declaration}]
[{package-method}]

(62) package-declaration ::=

package package-name
[uses package-name {’,’ package-name}]
 is package-definition
end [package-name]’;’

(63) executable-declaration ::=
 executable executable-name
 is
 {
 executable executable-part

[uses [identifier as external]
 [{’,’ identifier as external}]
 [unit-name as library]
 [{’,’ unit-name as library}]

 is
 {file-name [as C++|c|fortran|object];}
 end ’;’
 }
 end ’;’

(64) schema-declaration ::=
 schema schema-name

 is
[{package package-name ’;’ }]
[{class class-name ’;’ }]
end ’;’

ame ’(’generic-type

[{[visibility] declaration-of-a-class}]
 is class-definition
end [class-name]’;’

58) instantiation-of-a-generic-class::= (

Appendix B.
59

AAppppeennddiixx BB..

21B5. 1 Comparison of CDL & C++ Syntax for Data
Types manipulated by Handle and by Value

	1. CDL and Application Architecture
	Figure 1. Building an Open CASCADE Technology application

	2. Introduction to CDL
	2.1 Purposes of the Language
	Figure 2. The Development Process

	2. 2 Overview of CDL
	2. 2. 1 Classes
	2. 2. 2 Categories of Types
	Figure 3. Manipulation of data types

	2. 2. 3 Persistence
	2. 2. 4 Packages
	2. 2. 5 Inheritance
	2. 2. 6 Genericity
	2. 2. 7 Exceptions
	2. 2. 8 Completeness

	2. 3 Lexical Conventions
	2. 3. 1 Syntax notation
	NOTE

	2. 3. 2 Lexical elements
	2. 3. 3 Comments
	2. 3. 4 Identifiers
	2. 3. 5 Keywords
	2. 3. 6 Constants

	3. Software Components
	3. 1 Predefined Resources
	3. 1. 1 Primitive types
	3. 1. 2 Manipulating types by reference (by handle)
	Figure 4. Manipulation of a data type by reference

	3. 1. 3 Manipulating types by value
	Figure 5. Manipulation of a data type by value

	3. 1. 4 Summary of properties

	3. 2 Classes
	3. 2. 1 Class declaration
	3. 2. 2 Categories of classes
	Deferred classes
	Generic classes

	3. 3 Packages
	3. 3. 1 Package declaration
	Figure 8. Contents of a package

	3. 3. 2 Name space
	NOTES

	3. 3. 3 Declaration of classes
	NOTE

	3. 4 Other Data Types
	3. 4. 1 Enumerations
	3. 4. 2 Imports
	3. 4. 3 Aliases
	3. 4. 4 Exceptions

	3. 5 Schemas
	3. 6 Executables

	4. Defining the Software Components
	4. 1 Behavior
	4. 1. 1 Object Constructors
	4. 1. 2 Instance Methods
	4. 1. 3 Class Methods
	4. 1. 4 Package Methods
	4. 1. 5 Sensitivity to Overloading

	4. 2 Internal Representation
	4. 3 Exceptions
	4. 4 Inheritance
	4. 4. 1 Overview
	NOTE

	4. 4. 2 Redefining methods
	4. 4. 3 Non-redefinable methods
	4. 4. 4 Deferred Classes and Methods
	4. 4. 5 Declaration by Association
	NOTE

	4. 4. 6 Redefinition of Fields

	4. 5 Genericity
	4. 5. 1 Overview
	4. 5. 2 Declaration of a Generic Class
	4. 5. 3 Instantiation of a Generic Class
	4. 5. 4 Nested Generic Classes

	4. 6 Visibility
	4. 6. 1 Overview
	4. 6. 2 Visibility of Fields
	Example

	4. 6. 3 Visibility of Methods
	4. 6. 4 Visibility of Classes, Exceptions, & Enumerations
	4. 6. 5 Friend Classes & Methods
	Figure 9. Visibility of various components

	Appendix A. Syntax Summary
	Appendix B.
	5. 1 Comparison of CDL & C++ Syntax for Data Types manipulated by Handle and by Value

