Open CASCADE Technology  6.5.4
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Public Member Functions
IGESGeom_ConicArc Class Reference

defines IGESConicArc, Type <104> Form <0-3> in package IGESGeom
A conic arc is a bounded connected portion of a parent
conic curve which consists of more than one point. The
parent conic curve is either an ellipse, a parabola, or
a hyperbola. The definition space coordinate system is
always chosen so that the conic arc lies in a plane either
coincident with or parallel to XT, YT plane. Within such
a plane a conic is defined by the six coefficients in the
following equation.
A*XT^2 + B*XT*YT + C*YT^2 + D*XT + E*YT + F = 0

#include <IGESGeom_ConicArc.hxx>

Inheritance diagram for IGESGeom_ConicArc:
Inheritance graph
[legend]

Public Member Functions

 IGESGeom_ConicArc ()
void Init (const Standard_Real A, const Standard_Real B, const Standard_Real C, const Standard_Real D, const Standard_Real E, const Standard_Real F, const Standard_Real ZT, const gp_XY &aStart, const gp_XY &anEnd)
 This method is used to set the fields of the class
ConicalArc

Standard_Boolean OwnCorrect ()
 sets the Form Number equal to ComputedFormNumber,
returns True if changed

Standard_Integer ComputedFormNumber () const
 Computes the Form Number according to the equation
1 for Ellipse, 2 for Hyperbola, 3 for Parabola

void Equation (Standard_Real &A, Standard_Real &B, Standard_Real &C, Standard_Real &D, Standard_Real &E, Standard_Real &F) const
Standard_Real ZPlane () const
 returns the Z displacement of the arc from XT, YT plane

gp_Pnt2d StartPoint () const
 returns the starting point of the arc

gp_Pnt TransformedStartPoint () const
 returns the starting point of the arc after applying
Transf. Matrix

gp_Pnt2d EndPoint () const
 returns the end point of the arc

gp_Pnt TransformedEndPoint () const
 returns the end point of the arc after applying
Transf. Matrix

Standard_Boolean IsFromEllipse () const
 returns True if parent conic curve is an ellipse

Standard_Boolean IsFromParabola () const
 returns True if parent conic curve is a parabola

Standard_Boolean IsFromHyperbola () const
 returns True if parent conic curve is a hyperbola

Standard_Boolean IsClosed () const
 returns True if StartPoint = EndPoint

gp_Dir Axis () const
 Z-Axis of conic (i.e. [0,0,1])

gp_Dir TransformedAxis () const
 Z-Axis after applying Trans. Matrix

void Definition (gp_Pnt &Center, gp_Dir &MainAxis, Standard_Real &rmin, Standard_Real &rmax) const
 Returns a Definition computed from equation, easier to use

: the center of the the conic (meaningless for
a parabola) (defined with Z displacement)
<MainAxis> : the Main Axis of the conic (for a Circle,
arbitrary the X Axis)
<Rmin,Rmax> : Minor and Major Radii of the conic
For a Circle, Rmin = Rmax,
For a Parabola, Rmin = Rmax = the Focal
Warning : the basic definition (by equation) is not very stable,
limit cases may be approximative

void TransformedDefinition (gp_Pnt &Center, gp_Dir &MainAxis, Standard_Real &rmin, Standard_Real &rmax) const
 Same as Definition, but the Location is applied on the
Center and the MainAxis

void ComputedDefinition (Standard_Real &Xcen, Standard_Real &Ycen, Standard_Real &Xax, Standard_Real &Yax, Standard_Real &Rmin, Standard_Real &Rmax) const
 Computes and returns the coordinates of the definition of
a comic from its equation. Used by Definition &
TransformedDefinition, or may be called directly if needed


Constructor & Destructor Documentation


Member Function Documentation

void IGESGeom_ConicArc::Definition ( gp_Pnt Center,
gp_Dir MainAxis,
Standard_Real rmin,
Standard_Real rmax 
) const
  • A, B, C, D, E, F : Coefficients of the equation
    defining conic arc
  • ZT : Parallel ZT displacement of the arc
    from XT, YT plane.
  • aStart : Starting point of the conic arc
  • anEnd : End point of the conic arc
void IGESGeom_ConicArc::TransformedDefinition ( gp_Pnt Center,
gp_Dir MainAxis,
Standard_Real rmin,
Standard_Real rmax 
) const

The documentation for this class was generated from the following file: