

APPLICATION
FRAMEWORK

1. WHAT IS OCAF ?..2 1. WHAT IS OCAF ?

1.1 Purpose of OCAF... 2
1.2 Overview of the Architecture.. 2
1.3 Getting Started... 4
1.4 Benefits of OCAF ... 5

2. A LOOK INSIDE OCAFF..5 2. A LOOK INSIDE OCA

2.1 The Design of OCAF.. 5
2.2 The Data Framework ... 8
2.3 Persistent Data Storage... 11

Version 6.5.4 / October 2012

1

Copyright © 2012, by OPEN CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. Verbatim copying and distribution of this
entire document are permitted worldwide, without royalty, in any medium, provided the copyright
notice and this permission notice are preserved.

The information in this document is subject to change without notice and should not be
construed as a commitment by OPEN CASCADE S.A.S.

OPEN CASCADE S.A.S. assures no responsibility for any errors that may appear in this
document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such a license.

CAS.CADE, Open CASCADE and Open CASCADE Technology are registered trademarks of
OPEN CASCADE S.A.S. Other brand or product names are trademarks or registered
trademarks of their respective holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE Technology study. It may be
incomplete and even contain occasional mistakes, particularly in examples, samples, etc.
OPEN CASCADE S.A.S. bears no responsibility for such mistakes. If you find any mistakes or
imperfections in this document, or if you have suggestions for improving this document, please,
contact us and contribute your share to the development of Open CASCADE Technology:
bugmaster@opencascade.com

http://www.opencascade.com/contact/

mailto:bugmaster@opencascade.com
http://www.opencascade.com/contact/

 What is OCAF ? 2

1.1. What is OCAF ? What is OCAF ?

1.1 Purpose of OCAF

The Open CASCADE Application Framework (OCAF) is an easy-to-use platform
for rapidly developing sophisticated domain-specific design applications. A typical
application developed using OCAF deals with two or three-dimensional (2D or
3D) geometric modeling in trade-specific Computer Aided Design (CAD)
systems, manufacturing or analysis applications, simulation applications or
illustration tools.

Developing a design application requires addressing many technical aspects. In
particular, given the functional specification of your application, you must at least:

 Design the architecture of the application — definition of the software
components and the way they cooperate

 Define the data model able to support the functionality required — a
design application operates on data maintained during the whole end-user
working session

 Structure the software in order to

o synchronize the display with the data — commands modifying objects
must update the views

o support generalized undo-redo commands — this feature has to be
taken into account very early in the design process

 Implement the function for saving the data — if the application has a long
life cycle, the compatibility of data between versions of the application has
to be addressed

 Build the application user interface

By providing architectural guidance and ready-to-use solutions to these issues,
OCAF helps you to develop your application significantly faster: you concentrate
on the application's functionality.

1.2 Overview of the Architecture

OCAF provides you with an object-oriented Application-Document-Attribute
model. This consists of C++ class libraries. The main class, Application, is an
abstract class in charge of handling documents during the working session.
Services provided by this class include:

 What is OCAF ? 3

 Creating new documents

 Saving documents and opening them

 Initializing document views

The document, implemented by the concrete class Document, is the container for
the application data. Its main purpose is to centralize notifications of data editing
in order to provide Undo-Redo. Each document is saved in a single flat ASCII file
defined by its format and extension (a ready-to-use format is provided with
OCAF).

Application data are attributes, that is, instances of classes derived from the
Attribute abstract class, organized according to the OCAF Data Framework.
The OCAF Data Framework references aggregations of attributes using
persistent identifiers in a single hierarchy (the Data Framework is described in
the next chapter, A Look Inside OCAF). A wide range of attributes come with
OCAF, including:

 Primitive attributes such as Integer, Real, Name and Comment

 Shape attribute containing the geometry of the whole model or elements
of it

 Other geometric attributes such as Datums (points, axis and plane) and
Constraints such as tangent-to, at-a-given-distance, from-a-given-angle,
concentric, etc.

 Modeling step and Function attributes — the purpose of these attributes is
to rebuild objects after they have been modified (parameterization of
models)

 Visualization attributes — these attributes allow data to be visualized in a
2D or 3D viewer

 User attributes, that is, attributes typed by the application

 In addition, application-specific data can be added by defining new
attribute classes; naturally, this changes the standard file format. The only
functions that have to be implemented are:

 Copying the attribute

 Converting it from and to its persistent homolog (persistence is briefly
presented in the paragraph Persistent Data Storage in the next chapter)

Figure 1 below illustrates this architecture.

Figure 1 The Application-Document-Attribute model

 What is OCAF ? 4

Note As OCAF uses other modules of Open CASCADE Technology — see the
technical overview of Open CASCADE Technology in the appendix — the
Shape attribute is implemented with the geometry supported by the Modeling
Data module and the viewer is the one provided with the Visualization module.
Modeling functions can be implemented using the Modeling Algorithms module.

1.3 Getting Started
At the beginning of your development, you first define an application class by
inheriting from the Application abstract class. You only have to create and
determine the resources of the application for specifying the format of your
documents (you generally use the standard one) and their file extension.

Then, you design the application data model by organizing attributes you choose
among those provided with OCAF. You can specialize these attributes using the
User attribute. For example, if you need a reflection coefficient, you aggregate a
User attribute identified as a reflection coefficient with a Real attribute containing
the value of the coefficient (as such, you don't define a new class).

If you need application specific data not provided with OCAF, for example, to
incorporate a finite element model in the data structure, you define a new
attribute class containing the mesh, and you include its persistent homolog in a
new file format.

Once you have implemented the commands which create and modify the data
structure according to your specification, OCAF provides you, without any
additional programming:

 Persistent reference to any data, including geometric elements — several
documents can be linked with such reference

 Document-View association

 Ready-to-use functions such as

 A Look Inside OCAF 5

o Undo-redo

o Save and open application data

 Finally, you develop the application's graphical user interface using the
toolkit of your choice, for example:

 KDE Qt or GNOME GTK+ on Linux

 Microsoft Foundation Classes (MFC) on Windows Motif on Sun

 Other commercial products such as Ilog Views

You can also implement the user interface in the Java language using the Swing-
based Java Application Desktop component (JAD) provided with OCAF.

1.4 Benefits of OCAF
As you use the architecture provided by OCAF, the design of your application is
made easy: the application developer concentrates on the functionality instead of
the underlying mechanisms required to support this functionality.

Also, thanks to the coupling with the other Open CASCADE Technology
modules, your application can rapidly be prototyped. In addition, the final
application can be developed by industrializing the prototype — you don't need to
restart the development from scratch.

Last but not least, you base your application on an Open Source component: this
guarantees the perenniality of your development.

2.2. A Look Inside OCAF A Look Inside OCAF

2.1 The Design of OCAF

Reference-key model

In most existing geometric modeling systems, the data are topology driven. They
usually use a boundary representation (BRep), where geometric models are
defined by a collection of faces, edges and vertices, to which application data are
attached. Examples of data include:

 a color

 a material

 information that a particular edge is blended

When the geometric model is parameterized, that is, when you can change the
value of parameters used to build the model (the radius of a blend, the thickness

 A Look Inside OCAF 6

of a rib, etc.), the geometry is highly subject to change. In order to maintain the
attachment of application data, the geometry must be distinguished from other
data.

In OCAF, the data are reference-key driven. It is a uniform model in which
reference-keys are the persistent identification of data. All accessible data,
including the geometry, are implemented as attributes attached to reference-
keys. The geometry becomes the value of the Shape attribute, just as a number
is the value of the Integer and Real attributes and a string that of the Name
attribute.

On a single reference-key, many attributes can be aggregated; the application
can ask at runtime which attributes are available. For example, to associate a
texture to a face in a geometric model, both the face and the texture are attached
to the same reference-key.

Figure 2 Topology driven versus reference-key driven approaches

Topological naming

Reference-keys can be created in two ways:

 At programming time, by the application

 At runtime, by the end-user of the application (providing that you include
this capability in the application)

As an application developer, you generate reference-keys in order to give
semantics to the data. For example, a function building a prism may create three
reference-keys: one for the base of the prism, a second for the lateral faces and

 A Look Inside OCAF 7

a third for the top face. This makes up a semantic built-in the application's prism
feature. On the other hand, in a command allowing the end-user to set a texture
to a face he/she selects, you must create a reference-key to the selected face if it
has not previously been referenced in any feature (as in the case of one of the
lateral faces of the prism).

When you create a reference-key to selected topological elements (faces, edges
or vertices), OCAF attaches to the reference-key information defining the
selected topology — the Naming attribute. For example, it may be the faces to
which a selected edge is common to. This information, as well as information
about the evolution of the topology at each modeling step (the modified, newed
and deleted faces), is used by the naming algorithm to maintain the topology
attached to the reference-key. As such, on a parameterized model, after
modifying the value of a parameter, the reference-keys still address the
appropriate faces, even if their geometry has changed. Consequently, you
change the size of the cube shown in the figure 2 above, the user texture stay
attached to the right face.

Note As Topological naming is based on the reference-key and attributes such
as Naming (selection information) and Shape (topology evolution information),
OCAF is not coupled to the underlying modeling libraries. The only modeling
services required by OCAF are the following:

 Each algorithm must provide information about the evolution of the
topology (the list of faces modified, newed and deleted by the algorithm)

 Exploration of the geometric model must be available (a 3D model is
made of faces bounded by close wires, themselves composed by a
sequence of edges connected by their vertices)

Currently, OCAF uses the Open CASCADE Technology modeling libraries.

Aggregation of attributes

To design an OCAF-based data model, the application developer is encouraged
to aggregate ready-to-use attributes instead of defining new attributes by
inheriting from an abstract root class.
There are two major advantages in using aggregation rather than inheritance:

 As you don't implement data by defining new classes, the format of saved
data provided with OCAF doesn't change; so you don't have to write the
Save and Open functions

 The application can query the data at runtime if a particular attribute is
available

Summary

 OCAF is based on a uniform reference-key model in which:

o Reference-keys provide persistent identification of data

 A Look Inside OCAF 8

o Data, including geometry, are implemented as attributes attached to
reference-keys

o Topological naming maintains the selected geometry attached to
reference-keys in parameterized models

 In many applications, the data format provided with OCAF doesn't need to
be extended

 OCAF is not coupled to the underlying modeling libraries

2.2 The Data Framework

Data structure

The OCAF Data Framework is the Open CASCADE Technology realization of
the reference-key model presented in the previous paragraph. It implements the
reference-key as label objects, organized in a tree structure characterized by the
following features:

 A document contains only one tree of labels

 Each label has a tag expressed as an integer value unique at its level in
the tree

 A label is identified by a string — the entry — built by concatenation of
tags from the root of the tree, for example [0:1:2:1]

 Attributes are of a type identified by a universal unique identifier (GUID)

 Attributes are attached to labels; a label may refer to many attributes as
long as each has a different GUID

As such, each piece of data has a unique persistent address made up of the
document path, its entry and the GUID of its class.

For example, an application for designing coffee machines first allocates a label
for the machine unit. It then adds sub-labels for the main features (glass coffee
pot, water receptacle and filter) which it refines as needed (handle and reservoir
of the coffee pot and spout of the reservoir). You now attach technical data
describing the handle — its geometry and color — and the reservoir — its
geometry and material. Later on, you can modify the handle's geometry without
changing its color — both remain attached to the same label.

Figure 3 below illustrates this data structure.

Figure 3 The data structure of the coffee machine

 A Look Inside OCAF 9

The nesting of labels is key to OCAF. This allows a label to have its own
structure with its local addressing scheme which can be reused in a more
complex structure. Take, for example, the coffee machine. Given that the coffee
pot's handle has a label of tag [1], the entry for the handle in the context of the
coffee pot only (without the machine unit) is [0:1:1]. If you now model a coffee
machine with two coffee pots, one at the label [1], the second at the label [4]
in the machine unit, the handle of the first pot would have the entry [0:1:1:1]
(as in the Figure 3 above) whereas the handle of the second pot would be
[0:1:4:1] . This way, we avoid any confusion between coffee pot handles.

Note The purpose of the label hierarchy is to provide the data with persistent
addresses. In particular, applications which show the end-user the data in a tree-
list view do not display this hierarchy. For that, an attribute (TreeNode) which
you insert in the data structure is provided.

Compound documents

As the identification of data is persistent, one document can reference data
contained in another document, the referencing and referenced documents being
saved in two separate files.

Lets look at the coffee machine application again. The coffee pot can be placed
in one document. The coffee machine document then includes an occurrence —
a positioned copy — of the coffee pot. This occurrence is defined by an XLink
attribute (the external Link) which references the coffee pot of the first document
(the XLink contains the relative path of the coffee pot document and the entry of
the coffee pot data [0:1]).

 A Look Inside OCAF 10

Figure 4 The coffee machine compound document

In this context, the end-user of the coffee machine application can open the
coffee pot document, modify the geometry of, for example, the reservoir, and
overwrite the document without worrying about the impact of the modification in
the coffee machine document. To deal with this situation, OCAF provides a
service which allows the application to check whether a document is up-to-date.
This service is based on a modification counter included in each document: when
an external link is created, a copy of the referenced document counter is
associated to the XLink in the referencing document. Providing that each
modification of the referenced document increments its own counter, we can
detect that the referencing document has to be updated by comparing the two
counters (an update function importing the data referenced by an XLink into the
referencing document is also provided).

Transaction mechanism

The Data Framework also provides a transaction mechanism inspired from
database management systems: the data are modified within a transaction which
is terminated either by a Commit if the modifications are validated or by an Abort
if the modifications are abandoned — the data are then restored to the state it
was in prior to the transaction. This mechanism is extremely useful for:

 A Look Inside OCAF 11

 Securing editing operations (if an error occurs, the transaction is
abandoned and the structure retains its integrity)

 Simplifying the implementation of the Cancel function (when the end-user
begins a command, the application may launch a transaction and operate
directly in the data structure; abandoning the action causes the transaction
to Abort)

 Executing Undo (at commit time, the modifications are recorded in order to
be able to restore the data to their previous state)

The transaction mechanism consists simply of managing a backup copy of
attributes. During a transaction, attributes are copied before their first
modification. If the transaction is validated, the copy is destroyed. If the
transaction is abandoned, the attribute is restored to its initial value (when
attributes are added or deleted, the operation is simply reversed).

Transactions are document-centered, that is, the application starts a transaction
on a document. So, modifying a referenced document and updating one of its
referencing documents requires two transactions, even if both operations are
done in the same working session.

2.3 Persistent Data Storage
In OCAF, persistence, that is, the mechanism used to save a document in a file,
is based on an explicit formal description of the data saved.

When you open a document, the application reads the corresponding file and first
creates a memory representation of it. This representation is then converted to
the application data model — the OCAF-based data structure the application
operates on. The file's memory representation consists of objects defined by
classes known as persistent. The persistent classes needed by an application to
save its documents make the application's data schema. This schema defines
the way the data are organized in the file — the format of the data. In other
words, the file is simply an ASCII dump of the persistent data defined by the
schema, the persistent data being created from the application data model during
the save process.

Only canonical information is saved. As a matter of fact, the application data
model usually contains additional data to optimize processing. For example, the
persistent Bézier curve is defined by its poles, whereas its data model equivalent
also contains coefficients used to compute a point at a given parameter. The
additional data is calculated when the document is opened.

The major advantages of this approach are the following:

 Providing that the data format is published, files created by OCAF-based
applications can be read without needing a runtime of the application
(openness)

 Although the persistence approach makes the data format more stable,
OCAF provides a framework for managing compatibility of data between

 A Look Inside OCAF 12

versions of the application — modification of the data format is supported
through the versioning of schema.

OCAF includes a ready-to-use schema suitable for most applications. However, it
can be extended if needed. For that, the only things you have to do are:

 To define the additional persistent attributes

 To implement the functions converting these persistent attribute to and
from the application data model.

Note Applications using compound documents extensively (saving data in many files

linked together) should implement data management services. As a matter of
fact, it's out the scope of OCAF to provide functions such as:

 Version and configuration management of compound documents

 Querying a referenced document for its referencing documents

In order to ease the delegation of document management to a data
management application, OCAF encapsulates the file management functions in
a driver (the meta-data driver). You have to implement this driver for your
application to communicate with the data management system of your choice.

	1. What is OCAF ?
	1.1 Purpose of OCAF
	1.2 Overview of the Architecture
	1.3 Getting Started
	1.4 Benefits of OCAF

	2. A Look Inside OCAF
	2.1 The Design of OCAF
	2.2 The Data Framework
	2.3 Persistent Data Storage

