Open CASCADE Technology  6.5.4
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Data Structures
PLib_JacobiPolynomial.hxx File Reference
#include <Standard.hxx>
#include <Standard_DefineHandle.hxx>
#include <Handle_PLib_JacobiPolynomial.hxx>
#include <Standard_Integer.hxx>
#include <Handle_TColStd_HArray1OfReal.hxx>
#include <PLib_Base.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Real.hxx>
#include <PLib_JacobiPolynomial.lxx>

Data Structures

class  PLib_JacobiPolynomial
 This class provides method to work with Jacobi Polynomials
relativly to an order of constraint
q = myWorkDegree-2*(myNivConstr+1)
Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t)
iorder is the integer value for the constraints:
iorder = 0 <=> ConstraintOrder = GeomAbs_C0
iorder = 1 <=> ConstraintOrder = GeomAbs_C1
iorder = 2 <=> ConstraintOrder = GeomAbs_C2
P(t) = R(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2)
the coefficients JacCoeff represents P(t) JacCoeff are stored as follow:

c0(1) c0(2) .... c0(Dimension)
c1(1) c1(2) .... c1(Dimension)



cDegree(1) cDegree(2) .... cDegree(Dimension)

The coefficients
c0(1) c0(2) .... c0(Dimension)
c2*ordre+1(1) ... c2*ordre+1(dimension)

represents the part of the polynomial in the
canonical base: R(t)
R(t) = c0 + c1 t + ...+ c2*iordre+1 t**2*iordre+1
The following coefficients represents the part of the
polynomial in the Jacobi base ie Q(t)
Q(t) = c2*iordre+2 J0(t) + ...+ cDegree JDegree-2*iordre-2
More...