

Data Exchange

IGES FORMAT
User’s Guide

Version 6.5.4 / October 2012

1

Copyright © 2012, by OPEN CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. Verbatim copying and distribution of
this entire document are permitted worldwide, without royalty, in any medium, provided the
copyright notice and this permission notice are preserved.

The information in this document is subject to change without notice and should not be
construed as a commitment by OPEN CASCADE S.A.S.

OPEN CASCADE S.A.S. assures no responsibility for any errors that may appear in this
document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such a license.

CAS.CADE, Open CASCADE and Open CASCADE Technology are registered trademarks
of OPEN CASCADE S.A.S. Other brand or product names are trademarks or registered
trademarks of their respective holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE Technology study. It may be
incomplete and even contain occasional mistakes, particularly in examples, samples, etc.

OPEN CASCADE S.A.S. bears no responsibility for such mistakes. If you find any mistakes or
imperfections in this document, or if you have suggestions for improving this document,
please, contact us and contribute your share to the development of Open CASCADE
Technology: bugmaster@opencascade.com

http://www.opencascade.com/contact/

mailto:bugmaster@opencascade.com
http://www.opencascade.com/contact/

2

Table of Contents
1. INTRODUCTION ..4

1.1. THE IGES-OPEN CASCADE TECHNOLOGY PROCESSOR ...4

2. READING IGES...5

2.1. PROCEDURE..5
2.2. DOMAIN COVERED..5

2.2.1. Translatable entities ...5
2.2.2. Attributes ..5
2.2.3. Administrative data...5

2.3. DESCRIPTION OF THE PROCESS ...6
2.3.1. Loading the IGES file ...6
2.3.2. Checking the IGES file ...6
2.3.3. Setting translation parameters ...6
2.3.4. Selecting entities ...11
2.3.5. Performing the IGES file translation..13
2.3.6. Getting the translation results ..13

2.4. MAPPING OF IGES ENTITIES TO OPEN CASCADE TECHNOLOGY SHAPES14
2.4.1. Points..15
2.4.2. Curves...15
2.4.3. Surfaces ..16
2.4.4. Boundary Representation Solid Entities ...18
2.4.5. Structure Entities ..18
2.4.6. Subfigures ...19
2.4.7. Transformation Matrix ...19

2.5. MESSAGES..19
2.6. TOLERANCE MANAGEMENT ..19

2.6.1. Values used for tolerances during reading IGES ...19
2.6.2. Initial setting of tolerances in translating objects ..21
2.6.3. Transfer process ...21

2.7. CODE ARCHITECTURE ...23
2.7.1. List of the classes..23
2.7.2. List of API classes...24
2.7.3. Graph of calls ...24

2.8. EXAMPLE..24

3. WRITING IGES...26

3.1. PROCEDURE..26
3.2. DOMAIN COVERED..26
3.3. DESCRIPTION OF THE PROCESS ...26

3.3.1. Initializing the process..26
3.3.2. Setting the translation parameters..26
3.3.3. Performing the Open CASCADE Technology shape translation..29
3.3.4. Writing the IGES file ..29

3.4. MAPPING OPEN CASCADE TECHNOLOGY SHAPES TO IGES ENTITIES ..29
3.4.1. Curves...30
3.4.2. Surfaces ..30
3.4.3. Topological entities ..31

3.5. TOLERANCE MANAGEMENT ..32
3.5.1. Setting resolution in an IGES file ...32

3.6. CODE ARCHITECTURE ...33
3.6.1. List of the classes..33

3

3.6.2. List of API classes...33
3.6.3. Graph of calls ...33

3.7. EXAMPLE..34

4. API FOR READING/WRITING IGES..35

4.1. OVERVIEW..35
4.2. PACKAGE IGESCONTROL...35

4.2.1. General description ..35
4.2.2. Class IGESControl_Controller ..35
4.2.3. Class IGESControl_Reader..36
4.2.4. Class IGESControl_Writer...40
4.2.5. General description ..42
4.2.6. Class IGESToBRep_Reader ...43

4.3. PACKAGE IGESDATA...46
4.3.1. General description ..46
4.3.2. Class IGESData_IGESModel...46
4.3.3. Class IGESData_IGESEntity..49

5. USING XSTEPDRAW...58

5.1. XSDRAWIGES OVERVIEW...58
5.2. SETTING INTERFACE PARAMETERS ...58
5.3. READING IGES FILES ...59
5.4. ANALYZING THE TRANSFERRED DATA..60

5.4.1. Checking file contents...60
5.4.2. Estimating the results of reading IGES ..62

5.5. WRITING AN IGES FILE ..64
5.6. INDEX OF USEFUL COMMANDS..64

6. READING FROM AND WRITING TO XDE...66

6.1. DESCRIPTION OF THE PROCESS ...66
6.1.1. Loading an IGES file ..66
6.1.2. Checking the loaded IGES file..66
6.1.3. Setting parameters for translation to XDE ...66
6.1.4. Performing the translation of an IGES file to XDE..66
6.1.5. Initializing the process of translation from XDE to IGES ..66
6.1.6. Setting parameters for translation from XDE to IGES...66
6.1.7. Performing the translation of an XDE document to IGES..67
6.1.8. Writing an IGES file ...67

Introduction 4

1. Introduction

1.1. The IGES-Open CASCADE Technology
processor

This manual explains how to convert an IGES file to an Open CASCADE Technology (OCCT)
shape and vice versa. It provides basic documentation on conversion. For advanced
information on conversion, see our offerings on our web site at
www.opencascade.org/support/training/

IGES files up to and including IGES version 5.3 can be read. IGES files that are produced by
this interface conform to IGES version 5.3 (Initial Graphics Exchange Specification, IGES 5.3.
ANS US PRO/IPO-100-1996).

This manual principally deals with two OCCT classes:

 The Reader class, which loads IGES files and translates their contents to OCCT
shapes,

 The Writer class, which translates OCCT shapes to IGES entities and then writes
these entities to IGES files.

File translation is performed in the programming mode, via C++ calls, and the resulting OCCT
objects are shapes.

All definitions in IGES version 5.3 are recognized but only 3D geometric entities are
translated. When the processor encounters data, which is not translated, it ignores it and
writes a message identifying the types of data, which was not handled. This message can be
written either to a log file or to screen output.

http://www.opencascade.org/support/training/

Reading IGES 5

2. Reading IGES

2.1. Procedure
You can translate an IGES file to an OCCT shape by following the steps below:

1. Load the file,

2. Check file consistency,

3. Set the translation parameters,

4. Perform the file translation,

5. Fetch the results.

2.2. Domain covered

2.2.1. Translatable entities
The types of IGES entities, which can be translated, are:

 Points

 Lines

 Curves

 Surfaces

 B-Rep entities

 Structure entities (groups). Each entity in the group outputs a shape. There can be a
group of groups.

 Subfigures. Each entity defined in a subfigure outputs a shape

 Transformation Matrix.

NOTE

All non-millimeter length unit values in the IGES file are converted to millimeters.

2.2.2. Attributes
Entity attributes in the Directory Entry Section of the IGES file (such as layers, colors and
thickness) are translated to Open CASCADE Technology using XDE.

2.2.3. Administrative data
Administrative data, in the Global Section of the IGES file (such as the file name, the name of
the author, the date and time a model was created or last modified) is not translated to Open
CASCADE Technology. Administrative data can, however, be consulted in the IGES file.

Reading IGES 6

2.3. Description of the process

2.3.1. Loading the IGES file
Before performing any other operation, you have to load the file using the syntax below.

IGESControl_Reader reader;

IFSelect_ReturnStatus stat = reader.ReadFile(“filename.igs”);

The loading operation only loads the IGES file into computer memory; it does not translate it.

2.3.2. Checking the IGES file
This step is not obligatory. Check the loaded file with:

Standard_Boolean ok = reader.Check(Standard_True);

The variable “ok is True” is returned if no fail message was found; “ok is False” is returned if
there was at least one fail message.

reader.PrintCheckLoad (failsonly, mode);

Error messages are displayed if there are invalid or incomplete IGES entities, giving you
information on the cause of the error.

Standard_Boolean failsonly = Standard_True or Standard_False;

If you give True, you will see fail messages only. If you give False, you will see both fail and
warning messages.

Your analysis of the file can be either message-oriented or entity-oriented. Choose your
preference with:

IFSelect_PrintCount mode = IFSelect_xxx

Where xxx can be any of the following:

ItemsByEntity gives a sequential list of all messages per IGES entity.

CountByItem gives the number of IGES entities with their types per message.

ShortByItem gives the number of IGES entities with their types per message and
displays rank numbers of the first five IGES entities per message.

ListByItem gives the number of IGES entities with their type and rank numbers
per message.

EntitiesByItem gives the number of IGES entities with their types, rank numbers and
Directory Entry numbers per message.

2.3.3. Setting translation parameters
The following parameters can be used to translate an IGES file to an OCCT shape. If you give
a value that is not within the range of possible values, it will be ignored.

read.iges.bspline.continuity

manages the continuity of BSpline curves (IGES entities 106, 112 and 126) after translation to
Open CASCADE Technology (Open CASCADE Technology requires that the curves in a
model be at least C1 continuous; no such requirement is made by IGES).

0: no change; the curves are taken as they are in the IGES file. C0 entities of Open
CASCADE Technology may be produced.

Reading IGES 7

1: if an IGES BSpline, Spline or CopiousData curve is C0 continuous, it is broken down

into pieces of C1 continuous Geom_BSplineCurve.

2: This option concerns IGES Spline curves only. IGES Spline curves are broken down
into pieces of C2 continuity. If C2 cannot be ensured, the Spline curves will be broken
down into pieces of C1 continuity.

Read this parameter with:

Standard_Integer ic =
Interface_Static::IVal("read.iges.bspline.continuity");

Modify this value with:

if (!Interface_Static::SetIVal
("read.iges.bspline.continuity",2))

.. error ..;

Default value is 1.

NOTE

This parameter does not change the continuity of curves that are used in the construction of
IGES BRep entities. In this case, the parameter does not influence the continuity of the
resulting OCCT curves (it is ignored).

read.precision.mode

reads the precision value.

 "File" (0) the precision value is read in the IGES file header (default).

 "User" (1) the precision value is that of the read.precision.val parameter.

Read this parameter with:

Standard_Integer ic =
Interface_Static::IVal("read.precision.mode");

Modify this value with:

if (!Interface_Static::SetIVal ("read.precision.mode",1))

.. error ..;

Default value is "File" (0).

read.precision.val

user precision value. This parameter gives the precision used during translation when the
read.precision.mode parameter value is 1.

 0.0001: default.

 any real positive (non null) value.

This value is a basis value for computation tolerances for TopoDS_Vertex, TopoDS_Edge
and TopoDS_Face entities.

This value is in the measurement unit defined in the IGES file header.

Read this parameter with:

Standard_Real rp = Interface_Static::RVal("read.precision.val");

Modify this parameter with:

if (!Interface_Static::SetRVal ("read.precision.val",0.001))

.. error ..;

Default value is 0.0001.

Reading IGES 8

NOTE

The value given to this parameter is a target value that is applied to TopoDS_Vertex,
TopoDS_Edge and TopoDS_Face entities. The processor does its best to reach it. Under
certain circumstances, the value you give may not be attached to all of the entities concerned
at the end of processing. IGES-to-OCCT translation does not improve the quality of the
geometry in the original IGES file. This means that the value you enter may be impossible to
attain the given quality of geometry in the IGES file.

NOTE

Value of tolerance used for computation is calculated by multiplying the value of
read.precision.val and the value of coefficient of transfer from the file units to millimeters.

read.maxprecision.mode

defines the mode of applying the maximum allowed tolerance. Its possible values are:

"Preferred"(0) maximum tolerance is used as a limit but sometimes it can be exceeded
(currently, only for deviation of a 3D curve of an edge from its pcurves
and from vertices of such edge) to ensure shape validity

"Forced"(1) maximum tolerance is used as a rigid limit, i.e. it can not be exceeded
and, if this happens, tolerance is trimmed to suit the maximum-allowable
value.

Read this parameter with:

Standard_Integer mv =
Interface_Static::IVal("read.maxprecision.mode");

Modify this parameter with:

if (!Interface_Static::SetIVal ("read.maxprecision.mode",1))

.. error ..;

Default value is "Preferred" (0).

read.maxprecision.val

defines the maximum allowable tolerance (in mm) of the shape. It should be not less than the
basis value of tolerance set in processor (either Resolution from the file or read.precision.val).
Actually, the maximum between read.maxprecision.val and basis tolerance is used to define
maximum allowed tolerance.

Read this parameter with:

Standard_Real rp =
Interface_Static::RVal("read.maxprecision.val");

Modify this parameter with:

if (!Interface_Static::SetRVal ("read.maxprecision.val",0.1))

.. error ..;

Default value is 1.

read.stdsameparameter.mode

defines the using of BRepLib::SameParameter. Its possible values are:

0 ("Off") - BRepLib::SameParameter is not called,

1 ("On") - BRepLib::SameParameter is called.

Functionality of BRepLib::SameParameter is used through ShapeFix_Edge::SameParameter.

Reading IGES 9

It ensures that the resulting edge will have the lowest tolerance taking pcurves either
unmodified from the IGES file or modified by BRepLib::SameParameter.

Read this parameter with:

Standard_Integer mv =
Interface_Static::IVal("read.stdsameparameter.mode");

Modify this parameter with:

if (!Interface_Static::SetIVal ("read.stdsameparameter.mode",1))

.. error ..;

Deafault value is 0 ("Off").

read.surfacecurve.mode

preference for the computation of curves in case of 2D/3D inconsistency in an entity which
has both 2D and 3D representations.

Here we are talking about entity types 141 (Boundary), 142 (CurveOnSurface) and 508
(Loop). These are entities representing a contour lying on a surface, which is translated to a
TopoDS_Wire, formed by TopoDS_Edges. Each TopoDS_Edge must have a 3D curve and a
2D curve that reference the surface.

The processor also decides to re-compute either the 3D or the 2D curve even if both curves
are translated successfully and seem to be correct, in case there is inconsistency between
them. The processor considers that there is inconsistency if any of the following conditions is
satisfied:

 the number of sub-curves in the 2D curve is different from the number of sub-curves
in the 3D curve. This can be either due to different numbers of sub-curves given in
the IGES file or because of splitting of curves during translation.

 3D or 2D curve is a Circular Arc (entity type 100) starting and ending in the same
point (note that this case is incorrect according to the IGES standard)

The parameter read.surfacecurve.mode defines which curve (3D or 2D) is used for re-
computing the other one:

1. "Default" (0): use the preference flag value in the entity's Parameter Data section. The
flag values are:

 0: no preference given,

 1: use 2D for 142 entities and 3D for 141 entities,

 2: use 3D for 142 entities and 2D for 141 entities,

 3: both representations are equally preferred.

2. "2DUSE_PREFERRED" (2): THE 2D IS USED TO REBUILD THE 3D IN CASE OF
THEIR INCONSISTENCY,

3. "2DUse_Forced" (-2): the 2D is always used to rebuild the 3D (even if 2D is present in the
file),

4. "3DUse_Preferred" (3): the 3D is used to rebuild the 2D in case of their inconsistency,

5. "3DUse_Forced" (-3): the 3D is always used to rebuild the 2D (even if 2D is present in the
file),

If no preference is defined (if the value of read.surfacecurve.mode is "Default" and the value
of the preference flag in the entity's Parameter Data section is 0 or 3), an additional analysis
is performed.

The 3D representation is preferred to the 2D in two cases:

Reading IGES 10

 if 3D and 2D contours in the file have a different number of curves,

 if the 2D curve is a Circular Arc (entity type 100) starting and ending in the same point
and the 3D one is not.

In any other case, the 2D representation is preferred to the 3D.

If either a 3D or a 2D contour is absent in the file or cannot be translated, then it is re-
computed from another contour. If the translation of both 2D and 3D contours fails, the whole
curve (type 141 or 142) is not translated. If this curve is used for trimming a face, the face will
be translated without this trimming and will have natural restrictions.

Read this parameter with:

Standard_Integer ic =
Interface_Static::IVal("read.surfacecurve.mode");

Modify this value with:

if (!Interface_Static::SetIVal ("read.surfacecurve.mode",3))

.. error ..;

Default value is "Default" (0).

read.encoderegularity.angle

This parameter is used within the BRepLib::EncodeRegularity() function which is called for a
shape read from an IGES or a STEP file at the end of translation process. This function sets
the regularity flag of an edge in a shell when this edge is shared by two faces. This flag shows
the continuity, which these two faces are connected with at that edge.

Read this parameter with:

Standard_Real era =
Interface_Static::RVal("read.encoderegularity.angle");

Modify this parameter with:

if (!Interface_Static::SetRVal
("read.encoderegularity.angle",0.1))

.. error ..;

Default value is 0.01.

read.iges.bspline.approxd1.mode

This parameter is obsolete (it is rarely used in real practice). If set to True, it affects the
translation of bspline curves of degree 1 from IGES: these curves (which geometrically are
polylines) are split by duplicated points, and the translator attempts to convert each of the
obtained parts to a bspline of a higher continuity.

Read this parameter with:

Standard_Real bam =
Interface_Static::CVal("read.iges.bspline.approxd1.mode");

Modify this parameter with:

if (!Interface_Static::SetRVal
("read.encoderegularity.angle","On"))

.. error ..;

Default value is Off.

Reading IGES 11

read.iges.resource.name

read.iges.sequence

These two parameters define the name of the resource file and the name of the sequence of
operators
(defined in that file) for Shape Processing, which is automatically performed by the IGES
translator. The Shape Processing is a user-configurable step, which is performed after
the translation and consists in application of a set of operators to a resulting shape. This is
a very powerful tool allowing to customize the shape and to adapt it to the needs of
a receiving application. By default, the sequence consists of a single operator ShapeFix -
that is how Shape Healing is called from the IGES translator.

Please find an example of the resource file for IGES (which defines parameters
corresponding to the sequence applied by default, i.e. if the resource file is not found) in
the Open CASCADE Technology installation, by the path
%CASROOT%/src/XSTEPResource/IGES ($CASROOT/src/XSTEPResource/IGES).

In order for the IGES translator to use that file, you have to define the environment variable
CSF_IGESDefaults, which should point to the directory where the resource file resides.
Note that if you change parameter read.iges.resource.name, you should change the name
of the resource file and the name of the environment variable correspondingly. The variable
should contain a path to the resource file.

Default values: read.iges.resource.name - IGES, read.iges.sequence - FromIGES.

read.scale.unit

This parameter is obsolete (the parameter xstep.cascade.unit should be used instead
when necessary). If it is set to 'M', the shape is scaled 0.001 times (as if it were in
meters) after translation from IGES or STEP.

Default value is MM.

xstep.cascade.unit

This parameter defines units to which a shape should be converted when translated
from IGES or STEP to CASCADE. Normally it is MM; only those applications that
work internally in units other than MM should use this parameter.

Default value is MM.

2.3.4. Selecting entities
A list of entities can be formed by invoking the method IGESControl_Reader::GiveList.

Handle(TColStd_HSequenceOfTransient) list = reader.GiveList();

Several predefined operators can be used to select a list of entities of a specific type.

To make a selection, you use the method IGESControl_Reader::GiveList with the selection
type in quotation marks as an argument. You can also make cumulative selections. For
example, you would use the following syntax:

1. Requesting the faces in the file:

faces = Reader.GiveList("iges-faces");

2. Requesting the visible roots in the file

visibles = Reader.GiveList("iges-visible-roots");

3. Requesting the visible faces

visfac = Reader.GiveList("iges-visible-roots",faces);

Using a signature, you can define a selection dynamically, filtering the string by means of a
criterion. When you request a selection using the method GiveList, you can give either a

Reading IGES 12

predefined selection or a selection by signature. You make your selection by signature using
the predefined signature followed by your criterion in parentheses as shown in the example
below. The syntaxes given are equivalent to each other.

faces = Reader.GiveList(“xst-type(SurfaceOfRevolution)”);

faces = Reader.GiveList(“iges-type(120)”);

You can also look for:

 values returned by your signature which match your criterion exactly

faces = Reader.GiveList(“xst-type(=SurfaceOfRevolution)”);

 values returned by your signature which do not contain your criterion

faces = Reader.GiveList(“xst-type(!SurfaceOfRevolution)”);

 values returned by your signature which do not exactly match your criterion.

faces = Reader.GiveList(“xst-type(!=SurfaceOfRevolution)”);

List of predefined operators that can be used:

 xst-model-all

Selects all entities.

 xst-model-roots

Selects all roots.

 xst-transferrable-all

Selects all translatable entities.

 xst-transferrable-roots

Selects all translatable roots (default).

 xst-sharing + <selection>

Selects all entities sharing at least one entity selected by <selection>.

 xst-shared + <selection>

Selects all entities shared by at least one entity selected by <selection>.

 iges-visible-roots

Selects all visible roots, whether translatable or not.

 iges-visible-transf-roots

Selects all visible and translatable roots.

 iges-blanked-roots

Selects all blank roots, whether translatable or not.

 iges-blanked-transf-roots

Selects all blank and translatable roots.

 iges-status-independant

Selects entities whose IGES Subordinate Status = 0.

 iges-bypass-group

Selects all root entities. If a root entity is a group (402/7 or 402/9), the entities in the group are
selected.

 iges-bypass-subfigure

Reading IGES 13

Selects all root entities. If a root entity is a subfigure definition (308), the entities in the
subfigure definition are selected.

 iges-bypass-group-subfigure

Selects all root entities. If a root entity is a group (402/7 or 402/9) or a subfigure definition
(308), the entities in the group and in the subfigure definition are selected.

 iges-curves-3d

Selects 3D curves, whether they are roots or not (e.g. a 3D curve on a surface).

 iges-basic-geom

Selects 3D curves and untrimmed surfaces.

 iges-faces

Selects face-supporting surfaces (trimmed or not).

 iges-surfaces

Selects surfaces not supporting faces (i.e. with natural bounds).

 iges-basic-curves-3d

Selects the same entities as iges-curves-3d. Composite Curves are broken down into
their components and the components are selected.

2.3.5. Performing the IGES file translation
Perform translation according to what you want to translate:

1. Translate an entity identified by its rank with:

Standard_Boolean ok = reader.Transfer (rank);

2. Translate an entity identified by its handle with:

Standard_Boolean ok = reader.TransferEntity (ent);

3. Translate a list of entities in one operation with:

Standard_Integer nbtrans = reader.TransferList (list);

reader.IsDone();

 nbtrans returns the number of items in the list that produced a shape.

 reader.IsDone() indicates whether at least one entity was translated.

4. Translate a list of entities, entity by entity:

Standard_Integer i,nb = list->Length();

 for (i = 1; i <= nb; i ++) {

 Handle(Standard_Transient) ent = list->Value(i);

 Standard_Boolean OK = reader.TransferEntity (ent);

 }

5. Translate the whole file (all entities or only visible entities) with:

Standard_Boolean onlyvisible = Standard_True or Standard_False;

reader.TransferRoots(onlyvisible)

2.3.6. Getting the translation results
Each successful translation operation outputs one shape. A series of translations gives a

Reading IGES 14

series of shapes.

Each time you invoke TransferEntity, Transfer or Transferlist, their results are accumulated
and NbShapes increases. You can clear the results (Clear function) between two translation
operations, if you do not do this, the results from the next translation will be added to the
accumulation. TransferRoots operations automatically clear all existing results before they
start.

Standard_Integer nbs = reader.NbShapes();

returns the number of shapes recorded in the result.

TopoDS_Shape shape = reader.Shape(num);,

returns the result <num>, where <num> is an integer between 1 and NbShapes.

TopoDS_Shape shape = reader.Shape();

returns the first result in a translation operation.

TopoDS_Shape shape = reader.OneShape();

returns all results in a single shape which is:

 a null shape if there are no results,

 in case of a single result, a shape that is specific to that result,

 a compound that lists the results if there are several results.

reader.Clear();

erases the existing results.

reader.PrintTransferInfo (failsonly, mode);

displays the messages that appeared during the last invocation of Transfer or TransferRoots.

If <failsonly> is IFSelect_FailOnly, only fail messages will be output, if it is
IFSelect_FailAndWarn, all messages will be output. Parameter “mode” can have IFSelect_xxx
values where xxx can be:

GeneralCount

gives general statistics on the transfer (number of translated IGES entities, number of fails
and warnings, etc)

CountByItem

gives the number of IGES entities with their types per message.

ListByItem

gives the number of IGES entities with their type and DE numbers per message.

ResultCount

gives the number of resulting OCCT shapes per type

Mapping

gives mapping between roots of the IGES file and the resulting OCCT shape per IGES and
OCCT type.

2.4. Mapping of IGES entities to Open CASCADE
Technology shapes

NOTE

IGES entity types that are not given in the following tables are not translatable.

Reading IGES 15

2.4.1. Points
IGES entity type CASCADE shape Comments

116: Point TopoDS_Vertex

2.4.2. Curves
Curves, which form the 2D of face boundaries, are translated as Geom2D_Curves (Geom2D
circles, etc.).

IGES entity type CASCADE shape Comments

100: Circular Arc TopoDS_Edge

The geometrical support is:

- a Geom_Circle,

- or a Geom_TrimmedCurve.

A Geom_TrimmedCurve is output if the arc is not
closed.

102: Composite
Curve

TopoDS_Wire

The resulting shape is always a
TopoDS_Wire that is built from a set of
TopoDS_Edges.

Each TopoDS_Edge is connected to the
preceding and to the following edge by a common
TopoDS_Vertex.

104: Conic Arc TopoDS_Edge The geometric support depends on whether
the IGES entity's form is:

- 0 (Geom_Circle),

- 1 (Geom_Ellipse),

- 2 (Geom_Hyperbola),

- or 3 (Geom_Parabola).

A Geom_TrimmedCurve is output if the arc is not
closed.

106: Copious Data TopoDS_Edge or
TopoDS_Wire

IGES entity Copious Data (type 106, forms
1-3) is translated just as the IGES entities
Linear Path (106/11-13) and the Simple
Closed Planar Curve (106/63). Vectors
applying to forms other than 11,12 or 63 are
ignored.

The Geom_BSplineCurve (geometrical
support) has C0 continuity.

If the Copious Data has vectors (DataType =
3) they will be ignored.

110: Line TopoDS_Edge The supporting curve is a
Geom_TrimmedCurve whose basis curve is
a Geom_Line.

112: Parametric
Spline Curve

TopoDS_Edge or
TopoDS_Wire

The geometric support is a
Geom_BsplineCurve.

126: BSpline Curve TopoDS_Edge or
TopoDS_Wire

130: Offset Curve TopoDS_Edge or The resulting shape is a TopoDS_Edge or a

Reading IGES 16

TopoDS_Wire

TopoDS_Wire (depending on the translation
of the basis curve) whose geometrical
support is a Geom_OffsetCurve built from a
basis Geom_Curve.

Limitation: The IGES Offset Type value must be 1.

141: Boundary TopoDS_Wire Same behavior as for the Curve On Surface
(see below).

The translation of a non-referenced
Boundary IGES entity in a BoundedSurface
IGES entity outputs a TopoDS_Edge or a
TopoDS_Wire with a Geom_Curve.

142: Curve On
Surface

TopoDS_Wire Each TopoDS_Edge is defined by a 3D
curve and by a 2D curve that references the
surface.

NOTE

The type of OCCT shapes (either TopDS_Edges or TopoDS_Wires) that result from the
translation of IGES entities 106, 112 and 126 depends on the continuity of the curve in the
IGES file and the value of the read.iges.bspline.continuity translation parameter.

2.4.3. Surfaces
Translation of a surface outputs either a TopoDS_Face or a TopoDS_Shell.

If a TopoDS_Face is output, its geometrical support is a Geom_Surface and its outer and
inner boundaries (if it has any) are TopoDS_Wires.

IGES entity type CASCADE
shape

Comments

108: Plane

TopoDS_Face

The geometrical support for the TopoDS_Face is
a Geom_Plane and the orientation of its
TopoDS_Wire depends on whether it is an outer
TopoDS_Wire or whether it is a hole.

114: Parametric
Spline Surface

TopoDS_Face The geometrical support of a TopoDS_Face is a
Geom_BSplineSurface.

118: Ruled Surface

TopoDS_Face

 or

TopoDS_Shell

The translation of a Ruled Surface outputs:

- a TopoDS_Face if the profile curves become
TopoDS_Edges,

- a TopoDS_Shell if the profile curves become
TopoDS_Wires.

Limitation: This translation cannot be completed when
these two TopoDS_Wires are oriented in different
directions.

120: Surface Of
Revolution

TopoDS_Face

 or

TopoDS_Shell

The translation of a Surface Of Revolution
outputs:

- a TopoDS_Face if the generatrix becomes a
TopoDS_Edge,

- a TopoDS_Shell if the generatrix becomes a
TopoDS_Wire.

Reading IGES 17

The geometrical support may be:
 - a Geom_CylindricalSurface,
 - a Geom_ConicalSurface,
 - a Geom_SphericalSurface,
 - a Geom_ToroidalSurface
 - or a Geom_SurfaceOfRevolution

depending on the result of the CASCADE
computation (based on the generatrix type).

122: Tabulated
Cylinder

TopoDS_Face

 or

TopoDS_Shell

The translation outputs:

- a TopoDS_Face if the base becomes a
TopoDS_Edge,

- a TopoDS_Shell if the base becomes a
TopoDS_Wire.

The geometrical support may be:

- a Geom_Plane,

- a Geom_Cylindrical Surface,

- a Geom_SurfaceOfLinearExtrusion

depending on the result of the CASCADE
computation (based on the generatrix type).

The Geom_Surface geometrical support is limited
according to the generatrix.

128: BSpline Surface TopoDS_Face The geometrical support of the TopoDS_Face is
a Geom_BsplineSurface.

140: Offset Surface TopoDS_Face

The translation of an Offset Surface outputs a
TopoDS_Face whose geometrical support is a
Geom_OffsetSurface.

Limitations:

For OCCT algorithms, the original surface must
be C1-continuous so that the
Geom_OffsetSurface can be created.

If the basis surface is not C1-continuous, its
translation outputs a TopoDS_Shell and only the
first TopoDS_Face in the TopoDS_Shell is offset.

143: Bounded
Surface

TopoDS_Face
or
TopoDS_Shell

If the basis surface outputs a TopoDS_Shell (that
has more than one TopoDS_Face), the IGES
boundaries are not translated.

Limitations:

If the bounding curves define holes, natural
bounds are not created.

If the orientation of the contours is wrong, it is not
corrected.

144: Trimmed
Surface

TopoDS_Face

or

For the needs of interface processing, the basis
surface must be a face.

Reading IGES 18

TopoDS_Shell

Shells are only processed if they are single-face.

The contours (wires that are correctly oriented
according to the definition of the IGES 142: Curve
On Surface entity) are added to the face that is
already created.

If the orientation of the contours is wrong, it is
corrected.

190: Plane Surface TopoDS_Face

This type of IGES entity can only be used in
BRep entities in place of an IGES 108 type entity.

The geometrical support of the face is a
Geom_Plane.

2.4.4. Boundary Representation Solid Entities
IGES entity type CASCADE

shape
Comments

186: ManifoldSolid TopoDS_Solid

514: Shell TopoDS_Shell

510: Face TopoDS_Face This is the lowest IGES entity in the BRep
structure that can be specified as a starting point
for translation.

508: Loop TopoDS_Wire

504: Edge List

502: Vertex List

2.4.5. Structure Entities
IGES entity type CASCADE shape Comments

402/1: Associativity
Instance: Group with
back pointers

TopoDS_Compound

402/7: Associativity
Instance: Group without
back pointers

TopoDS_Compound

402/9: Associativity
Instance: Single Parent

TopoDS_Face

The translation of a SingleParent entity is
only performed for 402 form 9 with entities
108/1 and 108/-1.

The geometrical support for the
TopoDS_Face is a Geom_Plane with
boundaries:

- the parent plane defines the outer
boundary,

- child planes define the inner
boundaries.

Reading IGES 19

2.4.6. Subfigures
IGES entity type CASCADE shape Comments

308: Subfigure Definition TopoDS_Compound This IGES entity is only translated
when there are no Singular Subfigure
Instance entities.

408: Singular Subfigure
Instance

TopoDS_Compound This shape has the Subfigure
Definition Compound as its origin and
is positioned in space by its translation
vector and its scale factor.

2.4.7. Transformation Matrix
IGES entity type CASCADE shape Comments

124: Transformation Matrix Geom_Transformation This entity is never translated
alone. It must be included in the
definition of another entity.

2.5. Messages
Messages are displayed concerning the normal functioning of the processor (transfer,
loading, etc.).

You must declare an include file:

#include<Interface_DT.hxx>

You have the choice of the following options for messages:

IDT_SetLevel (level);

level modifies the level of messages:

 0: no messages

 1: raise and fail messages are displayed, as are messages concerning file access,

 2: warnings are also displayed.

IDT_SetFile (“tracefile.log”);

prints the messages in a file,

IDT_SetStandard();

restores screen output.

2.6. Tolerance management

2.6.1. Values used for tolerances during reading IGES
During the transfer of IGES to Open CASCADE Technology several parameters are used as
tolerances and precisions for different algorithms. Some of them are computed from other
using specific functions.

Reading IGES 20

3D (spatial) tolerances

Package method Precision::Confusion

The value is 10-7. It is used as a minimal distance between points, which are considered
distinct.

Resolution in the IGES file

This parameter is defined in the Global section of an IGES file. It is used as a fundamental
value of precision during the transfer.

User-defined variable read.precision.val

It is to be used instead of resolution from the file when parameter read.precision.mode is 1
(“User”).

Field EpsGeom of the class IGESToBRep_CurveAndSurface

This value is a basic precision for translating an IGES object. It is set for each object of class
IGESToBRep_CurveAndSurface and its derived classes. It is initialized for the root of transfer
either by value of resolution from the file or by value of read.precision.val, depending on the
value of read.precision.mode parameter. Returned by call to method
IGESToBRep_CurvAndSurface::GetEpsGeom.

NOTE: Since this value is in measurement units of the IGES file, it is usually multiplied by the
coefficient UnitFactor (returned by method IGESToBRep_CurvAndSurface::GetUnitFactor) to
convert it to Open CASCADE Technology units.

Field MaxTol of the class IGESToBRep_CurveAndSurface

This value is used as the maximum tolerance for some algorithms.

Currently, it is computed as the maximum between 1 and GetEpsGeom*GetUnitFactor.

This field is returned by method IGESToBRep_CurvAndSurface::GetMaxTol.

2D (parametric) tolerances

Package method Precision::PConfusion

This is value 0.01*Precision::Confusion = 10-9. It is used to compare parametric bounds of
curves.

Field EpsCoeff of the class IGESToBRep_CurveAndSurface

This value is a parametric precision for translating an IGES object. It is set for each object of
class IGESToBRep_CurveAndSurface and its derived classes. Currently, it always has its
default value 10-6. It is returned by call to method
IGESToBRep_CurvAndSurface::GetEpsCoeff. This value is used for translating 2d objects
(for instance, parametric curves).

Methods UResolution(tolerance3d), VResolution(tolerance3d) of the class
GeomAdaptor_Surface or BRepAdaptor_Surface

Return tolerance in parametric space of a surface computed from 3d tolerance.

NOTE

 When one tolerance value is to be used for both U and V parametric directions, the maximum
or the minimum value of UResolution and VResolution is used.

Methods Resolution(tolerance3d) of the class GeomAdaptor_Curve or
BRepAdaptor_Curve

Return tolerance in the parametric space of a curve computed from 3d tolerance.

Reading IGES 21

Zero-dimensional tolerances

Field Epsilon of the class IGESToBRep_CurveAndSurface

Value is set for each object of class IGESToBRep_CurveAndSurface. Returned by call to
method GetEpsilon. It is used in comparing angles and converting transformation matrices. In
most cases, it is reset to a fixed value (10-5 - 10-3) right before use. Default value is 10-4.

2.6.2. Initial setting of tolerances in translating objects
Transfer starts from one entity treated as a root (either the actual root in the IGES file or an
entity selected by the user). The function which performs the transfer (that is
IGESToBRep_Actor::Transfer or IGESToBRep_Reader::Transfer) creates an object of the
type IGESToBRep_CurveAndSurface, which is intended for translating geometry.

This object contains three tolerances: Epsilon, EpsGeom and EpsCoeff.

Parameter Epsilon is set by default to value 10-4. In most cases when it is used in the
package IGESToBRep, it is reset to a fixed value, either 10-5 or 10-4 or 10-3. It is used as
precision when comparing angles and transformation matrices and does not have influence
on the tolerance of the resulting shape.

Parameter EpsGeom is set right after creating a IGESToBRep_CurveAndSurface object to
the value of resolution, taken either from the Global section of an IGES file, or from the
XSTEP.readprecision.val parameter, depending on the value of XSTEP.readprecision.mode.

Parameter EpsCoeff is set by default to 10-6 and is not changed.

During the transfer of a shape, new objects of type IGESToBRep_CurveAndSurface are
created for translating subshapes. All of them have the same tolerances as the root object.

2.6.3. Transfer process

Translating into Geometry

Geometrical entities are translated by classes IGESToBRep_BasicCurve and
IGESToBRep_BasicSurface. Methods of these classes convert curves and surfaces of an
IGES file to Open CASCADE Technology geometry objects:

Geom_Curve,
Geom_Surface,
Geom_Transformation

Since these objects are not BRep objects, they do not have tolerances. Hence, tolerance
parameters are used in these classes only as precisions: to detect specific cases (e.g., to
distinguish a circle, an ellipse, a parabola and a hyperbola) and to detect bad cases (such as
coincident points).

Use of precision parameters is reflected in the following classes:

Class IGESToBRep_BasicCurve

All parameters and points are compared with precision EpsGeom.

All transformations (except IGESToBRep_BasicCurve::TransferTransformation) are fulfilled
with precision Epsilon which is set to 10-3 (in the
IGESToBRep_BasicCurve::TransferTransformation the value 10-5 is used).

 IGESToBRep_BasicCurve::TransferBSplineCurve

All weights of BSplineCurve are assumed to be more than Precision::PConfusion (else the
curve is not translated).

Class IGESToBRep_BasicSurface

All parameters and points are compared with precision EpsGeom.

Reading IGES 22

All transformations are fulfilled with precision Epsilon, which is set to 10-3.

 IGESToBRep_BasicSurface::TransferBSplineSurface

All weights of BSplineSurface are assumed to be more than Precision::PConfusion (else the
surface is not translated).

Translating into Topology

IGES entities represented as topological shapes and geometrical objects are translated into
OCCT shapes by use of the following classes:

IGESToBRep_TopoCurve,
IGESToBRep_TopoSurface,
IGESToBRep_BRepEntity,
ShapeFix_Wire

Class IGESToBRep_BRepEntity is intended for transferring BRep entities (IGES version 
5.1) while the two former are used for translating geometry and topology defined in IGES <
5.1. Methods from IGESToBRep_BRepEntity call methods from IGESToBRep_TopoCurve
and IGESToBRep_TopoSurface, while those call methods from IGESToBRep_BasicCurve
and IGESToBRep_BasicSurface in order to translate IGES geometry into OCCT geometry.

Although the IGES file contains only one parameter for tolerance in the Global Section, OCCT
shapes are produced with different tolerances. As a rule, updating the tolerance is fulfilled
according to local distances between shapes (distance between vertices of adjacent edges,
deviation of edge’s 3D curve and its parametric curve and so on) and may be less or greater
than precision in the file.

The following classes show what default tolerances are used when creating shapes and how
they are updated during transfer.

Class IGESToBRep_TopoCurve

All the methods which are in charge of transferring curves from IGES curve entities
(TransferCompositeCurve, Transfer2dCompositeCurve, TransferCurveOnFace,
TransferBoundaryOnFace, TransferOffsetCurve, TransferTopoBasicCurve) if an entity has
transformation call to IGESData_ToolLocation::ConvertLocation with Epsilon value set to 10-4.

 IGESToBRep_TopoCurve::TransferPoint

Vertex is constructed from a Point entity with tolerance EpsGeom*UnitFactor.

 IGESToBRep_TopoCurve::Transfer2dPoint

Vertex is constructed from a Point entity with tolerance EpsCoeff.

 IGESToBRep_TopoCurve::TransferCompositeCurveGeneral

Obtains shapes (edges or wires) from other methods and adds them into the resulting wire.
Two adjacent edges of the wire can be connected with tolerance up to MaxTol.

 IGESToBRep_TopoCurve::TransferCurveOnFace and
IGESToBRep_TopoCurve::TransferBoundaryOnFace

This method builds a wire from 3D and 2D representations of a curve on surface.

Edges and vertices of the wire cannot have tolerance larger than MaxTol.

The value EpsGeom*UnitFactor is passed into ShapeFix_Wire::SetPrecision and MaxTol -
into ShapeFix_Wire::MaxTolerance. To find out how these parameters affect the resulting
tolerance changes, please refer to class ShapeFix_Wire.

 IGESToBRep_TopoCurve::TransferTopoBasicCurve and
IGESToBRep_TopoCurve::Transfer2dTopoBasicCurve

The boundary vertices of an edge (or a wire if a curve was of C0 continuity) translated from a
basis IGES curve (BSplineCurve, CopiousData, Line, etc.) are built with tolerance
EpsGeom*UnitFactor, the tolerance of the edge(s) is (are) Precision::Confusion.

Reading IGES 23

If a curve was divided into several edges, the common vertices of such adjacent edges have
tolerance Precision::Confusion.

Class IGESToBRep_TopoSurface

All the faces created by this class have tolerance Precision::Confusion.

Class IGESToBRep_BRepEntity

 IGESToBRep_BRepEntity::TransferVertex

The vertices from the VertexList entity are constructed with tolerance EpsGeom*UnitFactor.

 IGESToBRep_BRepEntity::TransferEdge

The edges from the EdgeList entity are constructed with tolerance Precision::Confusion.

 IGESToBRep_BRepEntity::TransferLoop

This function works like IGESToBRep_TopoCurve::TransferCurveOnFace and
IGESToBRep_TopoCurve::TransferBoundaryOnFace.

 IGESToBRep_BRepEntity::TransferFace

The face from the Face IGES entity is constructed with tolerance Precision::Confusion.

Shape Healing classes

After performing a simple mapping, shape-healing algorithms are called (class
ShapeFix_Shape) by IGESToBRep_Actor::Transfer(). A shape-healing algorithm performs
the correction of a resulting OCCT shape.

Class ShapeFix_Wire can increase the tolerance of a shape. This class is used in
IGESToBRep_BRepEntity::TransferLoop,
IGESToBRep_TopoCurve::TransferBoundaryOnFace and
IGESToBRep_TopoCurve::TransferCurveOnFace for correcting a wire. The maximum
possible tolerance which edges or vertices will have after invoking the methods of this class is
MaxTolerance (set by method ShapeFix_Wire::MaxTolerance()).

2.7. Code architecture

2.7.1. List of the classes
Package IGESControl

IGESControl_Reader

Package IGESToBRep

IGESToBRep_Reader

IGESToBRep_Actor

IGESToBRep_CurveAndSurface

IGESToBRep_BasicCurve

IGESToBRep_BasicSurface

IGESToBRep_TopoCurve

IGESToBRep_TopoSurface

IGESToBRep_BRepEntity

Reading IGES 24

Package IGESConvGeom

For description of classes, refer to CDL.

2.7.2. List of API classes
package IGESControl

IGESControl_Reader

package IGESToBRep

IGESToBRep_Reader

package IGESData

class IGESData_IGESModel

class IGESData_IGESEntity

For details, refer to 4 API for reading/writing IGES and CDL.

2.7.3. Graph of calls
The following diagram illustrates the structure of calls in reading IGES.

The highlighted classes produce OCCT geometry.

2.8. Example
#include “IGESControl_Reader.hxx”

#include “TColStd_HSequenceOfTransient.hxx”

#include “TopoDS_Shape.hxx”

{

IGESControl_Reader myIgesReader;

Reading IGES 25

Standard_Integer nIgesFaces,nTransFaces;

myIgesReader.ReadFile (“MyFile.igs”);

//loads file MyFile.igs

Handle(TColStd_HSequenceOfTransient) myList =
myIgesReader.GiveList(“iges-faces”);

//selects all IGES faces in the file and puts them into a list
called //MyList,

nIgesFaces = myList->Length();

nTransFaces = myIgesReader.TransferList(myList);

//translates MyList,

cout<<“IGES Faces: “<<nIgesFaces<<“
Transferred:”<<nTransFaces<<endl;

TopoDS_Shape sh = myIgesReader.OneShape();

//and obtains the results in an OCCT shape.

}

Writing IGES 26

3. Writing IGES

3.1. Procedure
You can translate OCCT shapes to IGES entities in the following steps:

1. initialize the process.

2. set the translation parameters,

3. perform the model translation,

4. write the output IGES file.

You can translate several shapes before writing a file. Each shape will be a root entity in the
IGES model.

3.2. Domain covered
There are two families of OCCT objects that can be translated:

 geometrical,

 topological.

3.3. Description of the process

3.3.1. Initializing the process
Choose the unit and the mode you want to use to write the output file as follows:

IGESControl_Controller::Init

performs standard initialization. Returns False if an error occurred.

IGESControl_Writer writer;

uses the default unit (millimeters) and the default write mode (Face).

IGESControl_Writer writer (UNIT);

uses the Face write mode and any of the units that are accepted by IGES.

IGESControl_Writer writer (UNIT,modecr);

uses the unit (accepted by IGES) and the write mode of your choice.

 0: Faces,

 1: BRep

The result is an IGESControl_Writer object.

3.3.2. Setting the translation parameters
The following parameters are used for the OCCT-to-IGES translation.

write.iges.brep.mode:

gives the choice of the write mode. You can choose the following write modes:

Writing IGES 27

"Faces" (0): OCCT TopoDS_Faces will be translated into IGES 144 (Trimmed Surface)

entities, no B-Rep entities will be written to the IGES file,

"BRep" (1): OCCT TopoDS_Faces will be translated into IGES 510 (Face) entities, the
IGES file will contain B-Rep entities.

Read this parameter with:

Standard_Integer byvalue =
Interface_Static::IVal("write.iges.brep.mode");

Modify this parameter with:

Interface_Static::SetIVal ("write.iges.brep.mode", 1);

Default value is "Faces" (0).

write.convertsurface.mode

For writing to IGES in the BRep mode (see parameter write.iges.brep.mode), this
parameter indicates whether elementary surfaces (cylindrical, conical, spherical,
and toroidal) are converted into corresponding IGES 5.3 entities (if parameter's
value is On), or written as surfaces of revolution (by default).

Default value is Off.

write.iges.unit:

gives the choice of the unit. The default unit for Open CASCADE Technology is the millimeter.
You can choose to write your file in any of the units that are accepted by IGES.

Read this parameter with:

Standard_String byvalue =
Interface_Static::CVal("write.iges.unit");

Modify this parameter with:

Interface_Static::SetCVal ("write.iges.unit", "INCH");

Default value is "MM".

write.iges.header.autor:

gives the name of the author of the file.

Read this parameter with:

Standard_String byvalue =
Interface_Static::CVal("write.iges.header.author");

Modify this value with:

Interface_Static::SetCVal ("write.iges.header.author", "name");

Default value is the system name of the user.

write.iges.header.company:

gives the name of the sending company.

Read this parameter with:

Standard_String byvalue =
Interface_Static::CVal("write.iges.header.company");

Modify this value with:

Interface_Static::SetCVal ("write.iges.header.company", "MDTV");

Default value is "" (empty).

Writing IGES 28

write.iges.header.product:

gives the name of the sending product.

Read this parameter with:

Standard_String byvalue =
Interface_Static::CVal("write.iges.header.product");

Modify this value with:

Interface_Static::SetCVal ("write.iges.header.product", "product
name");

Default value is "CAS.CADE IGES processor Vx.x" where x.x means the current version of
Open CASCADE Technology.

write.iges.header.receiver:

gives the name of the receiving company.

Read this parameter with:

Standard_String byvalue =
Interface_Static::CVal("write.iges.header.receiver");

Modify this value with:

Interface_Static::SetCVal ("write.iges.header.receiver",
"reciever name");

Default value is "" (empty).

write.precision.mode:

specifies the mode of writing the resolution value into the IGES file.

"Least" (-1): resolution value is set to the minimum tolerance of all edges and all vertices
in an OCCT shape,

"Average" (0): resolution value is set to average between the average tolerance of all edges
and the average tolerance of all vertices in an OCCT shape (default),

"Greatest" (1): resolution value is set to the maximum tolerance of all edges and all vertices
in an OCCT shape,

"Session" (2): resolution value is that of the write.precision.val parameter.

Read this parameter with:

Standard_Integer ic =
Interface_Static::IVal("write.precision.mode");

Modify this parameter with:

if (!Interface_Static::SetIVal("write.precision.mode",1))

.. error ..

Default value is "Average" (0).

write.precision.val:

user precision value. This parameter gives the resolution value for an IGES file when the
write.precision.mode parameter value is 1.

 0.0001: default

 any real positive (non null) value.

Read this parameter with:

Standard_Real rp =
Interface_Static::RVal("write.precision.val");

Writing IGES 29

Modify this parameter with:

if (!Interface_Static::SetRVal("write.precision.val",0.01))

.. error ..

Default value is 0.0001.

write.iges.resource.name

write.iges.sequence

The same as read.iges.*, please see above. Note that the default sequence for writing
contains one operator – DirectFaces - which converts elementary surfaces based on
left-hand axes (valid in CASCADE) to right-hand axes (which are valid only in
IGES).

Default values : write.iges.resource.name – IGES, write.iges.sequence – ToIGES.

3.3.3. Performing the Open CASCADE Technology shape
translation

You can perform the translation in one or several operations. Here is how you translate
topological and geometrical objects:

Standard_Boolean ok = writer.AddShape (shape);

where shape is a TopoDS_Shape.

ok is True if translation was correctly performed and False if there was at least one entity that
was not translated.

Standard_Boolean ok = writer.AddGeom (geom);

where geom is either Handle(Geom_Curve) or Handle(Geom_Surface)

ok is True if the translation was correctly performed and False if there was at least one entity
whose geometry was not among the allowed types.

3.3.4. Writing the IGES file
Write the IGES file with:

Standard_Boolean ok = writer.Write ("filename.igs");

to give the file name.

Standard_Boolean ok = writer.Write (S);

where S is Standard_OStream

ok is True if the operation was correctly performed and False if an error occurred (for
instance, if the processor could not create the file).

3.4. Mapping Open CASCADE Technology
shapes to IGES entities

Translated objects depend on the write mode that you chose. If you chose the Face mode, all
of the shapes are translated, but the level of topological entities becomes lower (geometrical
one). If you chose the BRep mode, topological OCCT shapes become topological IGES
entities.

Writing IGES 30

3.4.1. Curves
CASCADE shape IGES entity type Comments

Geom_BsplineCurve 126: BSpline Curve

Geom_BezierCurve 126: BSpline Curve

Geom_TrimmedCurve All types of
translatable IGES
curves

The type of entity output depends on the
type of the basis curve.

If the curve is not trimmed, limiting points
will be defined by the CASCADE
RealLast value.

Geom_Circle 100: Circular Arc or

126: BSpline Curve

A BSpline Curve is output if the
Geom_Circle is closed

Geom_Ellipse 104: Conic Arc or

126: BSpline Curve

A Conic Arc has Form 1.

A BSpline Curve is output if the
Geom_Ellipse is closed

Geom_Hyperbola 104: Conic Arc Form 2

Geom_Parabola 104: Conic Arc Form 3

Geom_Line 110: Line

Geom_OffsetCurve 130: Offset Curve

3.4.2. Surfaces
CASCADE shapes IGES entity type Comments

Geom_BSplineSurface 128: BSpline
Surface

Geom_BezierSurface 128: BSpline
Surface

Geom_Rectangular
TrimmedSurface

All types of
translatable IGES
surfaces.

The type of entity output depends on the
type of the basis surface.

If the surface is not trimmed and has
infinite edges/sides, the coordinates of
the sides in IGES will be limited to the
CASCADE RealLast value.

Geom_Plane 128: BSpline
Surface

or

190: Plane Surface

A BSpline Surface (of degree 1 in U and
V) is output if you are working in the face
mode.

A Plane Surface is output if you are
working in the BRep mode.

Geom_CylindricalSurface 120: Surface Of
Revolution

Geom_ConicalSurface 120: Surface Of
Revolution

Geom_SphericalSurface 120: Surface Of
Revolution

Geom_ToroidalSurface 120: Surface Of
Revolution

Writing IGES 31

Geom_SurfaceOfLinear
Extrusion

122: Tabulated
Cylinder

Geom_SurfaceOf
Revolution

120: Surface Of
Revolution

Geom_OffsetSurface 140: Offset Surface

3.4.3. Topological entities
Translation in Face mode

CASCADE
shape

IGES entity type Comments

Single
TopoDS_Vertex

116: 3D Point

TopoDS_Vertex
in a
TopoDS_Edge

No equivalent Not transferred.

TopoDS_Edge All types of
translatable IGES
curves

The output IGES curve will be the one that
corresponds to the Open CASCADE Technology
definition.

Single
TopoDS_Wire

102: Composite
Curve

Each TopoDS_Edge in the TopoDS_Wire results
in a curve.

TopoDS_Wire
in a
TopoDS_Face

142: Curve On
Surface

Both of the curves (3D and pcurve) are
transferred if they are defined and result in a
simple curve or a composite curve depending on
whether there is one or more edges in the wire.

Note: if the basis surface is a plane (108), only the 3D
curve is used.

TopoDS_Face 144: Trimmed
Surface

TopoDS_Shell 402: Form 1 Group
or no equivalent

Group is created only if TopoDS_Shell contains
more than one TopoDS_Face. The IGES group
contains Trimmed Surfaces.

TopoDS_Solid 402: Form 1 Group
or no equivalent

Group is created only if TopoDS_Solid contains
more than one TopoDS_Shell. One IGES entity is
created per TopoDS_Shell.

TopoDS_Comp
Solid

402: Form 1 Group
or no equivalent

Group is created only if TopoDS_CompSolid
contains more than one TopoDS_Solid. One
IGES entity is created per TopoDS_Solid.

TopoDS_Comp
ound

402: Form 1 Group
or no equivalent

Group is created only if TopoDS_Compound
contains more than one item. One IGES entity is
created per TopoDS_Shape in the
TopoDS_Compound.

If TopoDS_Compound is nested into another
TopoDS_Compound, it is not mapped.

Writing IGES 32

Translation in BRep mode

CASCADE shape IGES entity type Comments

Single
TopoDS_Vertex

No equivalent Not transferred.

TopoDS_Vertex in a
TopoDS_Edge

One item in a 502:

VertexList

TopoDS_Edge No equivalent Not transferred as such. This entity serves
as a part of a Loop entity.

TopoDS_Edge in a
TopoDS_Wire

One item in a 504:
EdgeList

TopoDS_Wire 508: Loop

TopoDS_Face 510: Face If the geometrical support of the face is a
plane, it will be translated as a 190 entity
PlaneSurface.

TopoDS_Shell 514: Shell

TopoDS_Solid 186: Manifold Solid

TopoDS_CompSolid 402 Form1 Group
or no equivalent

Group is created only if
TopoDS_Compound contains more than
one item. One IGES Manifold Solid is
created for each TopoDS_Solid in the
TopoDS_CompSolid.

TopoDS_Compound 402 Form1 Group
or no equivalent

Group is created only if
TopoDS_Compound contains more than
one item. One IGES entity is created per
TopoDS_Shape in the
TopoDS_Compound.

If TopoDS_Compound is nested into
another TopoDS_Compound it is not
mapped.

3.5. Tolerance management

3.5.1. Setting resolution in an IGES file
There are several possibilities to set resolution in an IGES file. They are controlled by
write.precision.mode parameter; the dependence between the value of this parameter and the
set resolution is described in paragraph 3.3.2 Setting the translation parameters.

If the value of parameter write.precision.mode is -1, 0 or 1, resolution is computed from
tolerances of sub-shapes inside the shape to be translated. In this computation, only
tolerances of TopoDS_Edges and TopoDS_Vertices participate since they reflect the
accuracy of the shape. TopoDS_Faces are ignored in computations since their tolerances
may have influence on resulting computed resolution while IGES resolution mainly concerns
points and curves but not surfaces.

Writing IGES 33

3.6. Code architecture

3.6.1. List of the classes
package IGESControl

IGESControl_Controller

IGESControl_Writer

package BRepToIGES

BRepToIGES_BREntity

BRepToIGES_BRWire

BRepToIGES_BRShell

BRepToIGES_BRSolid

package BRepToIGESBRep

BRepToIGESBRep_Entity

package GeomToIGES

GeomToIGES_GeomPoint

GeomToIGES_GeomVector

GeomToIGES_GeomCurve

GeomToIGES_GeomSurface

package Geom2dToIGES

Geom2dToIGES_Geom2dCurve

package IGESConvGeom

IGESConvGeom_GeomBuilder

For description of classes refer to CDL.

3.6.2. List of API classes
package IGESControl

 IGESControl_Controller

 IGESControl_Writer

package IGESData

 class IGESData_IGESModel

 class IGESData_IGESEntity

For details refer to 4. API for reading/writing IGES and CDL.

3.6.3. Graph of calls
The following diagram illustrates the class structure in writing IGES.

The highlighted classes are intended to translate geometry.

Writing IGES 34

3.7. Example
#include <IGESControl_Controller.hxx>

#include <IGESControl_Writer.hxx>

#include <TopoDS_Shape.hxx>

Standard_Integer main()

{

 IGESControl_Controller::Init();

 IGESControl_Writer ICW ("MM", 0);

 //creates a writer object for writing in Face mode with
millimeters

 TopoDS_Shape sh;

 ICW.AddShape (sh);

 //adds shape sh to IGES model

 ICW.ComputeModel();

 Standard_Boolean OK = ICW.Write ("MyFile.igs");

 //writes a model to the file MyFile.igs

}

API for reading/writing IGES 35

4. API for reading/writing IGES

4.1. Overview
API classes provides the following tools:

 loading IGES files into memory,

 checking IGES files consistency,

 translating IGES files into OCCT shapes,

 translating OCCT shapes into IGES files,

 accessing the IGES model (which is an image of the IGES file in memory),

 selecting entities from the IGES model,

 accessing each entity in the IGES model.

4.2. Package IGESControl

4.2.1. General description
This package is intended to provide a tool to convert IGES-format entities to OCCT shapes
and vice versa.

The package allows the end-user to perform both import from and export to an IGES file.

IGES files up to and including IGES version 5.3 can be read.

IGES files that are produced by this component conform to IGES version 5.3.

The result of reading IGES files is either a single Open CASCADE Technology shape or a set
of them, the result of exporting Open CASCADE Technology geometric or topologic objects is
an IGES file which may include one or several root entities (the ones not referenced by
others).

4.2.2. Class IGESControl_Controller

General description

This class controls the IGES norm.

This class is intended to provide an appropriate initialization of the IGES norm, namely it
includes a set of necessary parameters for IGES translation and declaration of possible
selections for IGES entities.

After the execution of initialization procedures, the use of IGES norm becomes available.

Inheritance

Standard_Transient

MMgt_TShared

XSControl_Controller

Methods

Constructors

IGESControl_Controller(const Standard_Boolean modefnes = Standard_False);

API for reading/writing IGES 36

Purpose: Initializes the use of IGES (if <modefnes> is False) or FNES (if <modefnes> is True)
norm.

Method for performing initialization

IGESControl:: Init

static Standard_Boolean Init() ;

Purpose: Performs standard initialization creating controller objects for both IGES and FNES
norm.

Returns True when done, False if an error occurred.

Method for creating IGES model

IGESControl:: NewModel

Handle_Interface_InterfaceModel NewModel() const;

Purpose: Creates a new empty model ready to receive data of the norm. The Global section
is filled with static parameters (receiver, author, company and unit).

Method for getting the actor object

IGESControl:: ActorRead

Handle_Transfer_ActorOfTransientProcess ActorRead(
const Handle(Interface_InterfaceModel)& model) const;

Purpose: Returns the actor object for reading (actually, it is of type IGESToBRep_Actor) with
a set parameter of spline continuity taken from static parameter.

Method for translating an Open CASCADE Technology shape

IGESControl:: TransferWriteShape

virtual IFSelect_ReturnStatus TransferWriteShape(const TopoDS_Shape&
shape,
const Handle(Transfer_FinderProcess)&
FP, const
Handle(Interface_InterfaceModel)& model,
const Standard_Integer modetrans = 0)
const;

Purpose: Translates <shape> into the interface model.

<modetrans>: 0 - group of Faces (IGES < 5.1) , 1 - for BRep (IGES >= 5.1)

Returns:

IFSelect_RetDone: OK,

IFSelect_RetError: if <modetrans> is not equal to 0 or 1, or <model> is not an IGES
model.

IFSelect_Fail: if <shape> is null.

4.2.3. Class IGESControl_Reader

General description

This object reads IGES files and translates their contents into OCCT shapes.

All definitions in IGES version 5.3 are recognized but only geometric and topologic entities
can be translated. Data, which cannot be translated, is loaded with the file but during
translation it is ignored.

The translation of the IGES model into the OCCT model goes through the following steps:

API for reading/writing IGES 37

 loading a file into memory,

 checking file consistency,

 setting translation parameters,

 performing the translation itself,

 fetching the results.

The resulting OCCT objects belong to topologic shapes. The geometric objects (2D and 3D)
are constructed in intermediate steps and serve as a support for topologic entities.

Each successful translation operation outputs one shape. A series of translations gives a list
of shapes.

Inheritance

IGESToBRep_Reader

This class complements IGESToBRep_Reader class:

 deals directly with WorkSession object,

 computes the list of IGES entities matching specified criteria,

 performs translation of a list of entities and the ones specified by handle,

 outputs the results of checking and translating.

Methods

Constructors:

 IGESControl_Reader ();

Purpose: Creates a reader from scratch and with a new WorkSession object.

 IGESControl_Reader (const Handle(XSControl_WorkSession)& WS,

 const Standard_Boolean scratch);

Purpose: Defines work session for the reader. If <scratch> is True the new model will be
created in the work session.

Methods for dealing with WorkSession object

 IGESControl_Reader::SetWS

void SetWS (const Handle(XSControl_WorkSession)& WS,

 const Standard_Boolean scratch = Standard_True);

Purpose: Defines the work session for the reader.

 If <scratch> is True the new model will be created in the work session object.

 IGESControl_Reader::WS

Handle_XSControl_WorkSession() const;

Purpose: Returns the used work session object.

Method for loading an IGES file into memory

 IGESControl_Reader::ReadFile

IFSelect_ReturnStatus ReadFile(const Standard_CString filename);

Purpose: Loads and memorizes an IGES file in memory.

Returns:

API for reading/writing IGES 38

IFSelect_RetDone: the file was successfully read

IFSelect_RetVoid: no file found

IFSelect_RetError: an error occurred during reading

See also:

 IGESToBRep_Reader::LoadFile()

Methods for selecting entities to transfer

 IGESControl_Reader::GiveList

Handle_TColStd_HSequenceOfTransient GiveList(const
Standard_CString first = "", const Standard_CString second =
"");

Purpose: Returns a list of entities from the model according to the following rules:

 if <first> and <second> are empty - the list of roots for transfer,

 if <first> is a number or label of an entity - this entity itself,

 if <first> is a list of numbers/labels separated by commas - these entities,

 if <first> is a name of a selection in work session and <second> is not defined - the
standard result of this selection,

 if <first> is a name of a selection and <second> is defined - the criterion defined by
<second> is applied to result of <first> selection

Remarks:

 if <second> is erroneous it is ignored.

Handle_TColStd_HSequenceOfTransient GiveList(const
Standard_CString first, const Handle(Standard_Transient)& ent) ;

Purpose: Returns a list of entities from the model according to the following rules:

 if <first> is a selection name and <second> is an entity or a list of entities (as a
HSequenceOfTransient) - the standard result of this selection is applied to this list.

Remarks:

 if <first> is erroneous, a null handle is returned.

Methods for performing translation

 IGESControl_Reader::TransferEntity

Standard_Boolean TransferEntity(const
Handle(Standard_Transient)& start) ;

Purpose: Performs the translation of the entity specified by its handle.

Returns False if an entity is not in the Model, else returns the result of the transfer.

 IGESControl_Reader:: TransferList

Standard_Integer TransferList(
const Handle(TColStd_HSequenceOfTransient)& list) ;

Purpose: Performs the translation of the list of entities.

Returns the number of successful transfers.

Methods for printing statistics

 IGESControl_Reader:: PrintCheckLoad

API for reading/writing IGES 39

void PrintCheckLoad(
const Standard_Boolean failsonly,
const IFSelect_PrintCount mode) const ;

Purpose: Displays the check results on file entities.

If <failsonly> is True prints only « Fail » messages, otherwise all messages.

<mode> determines the contents and the order of messages:

IFSelect_ItemsByEntity - sequential list of messages per entity,

IFSelect_CountByItem - counts the number of entities per message,

IFSelect_ShortByItem - the same function but also of the first five entities,

IFSelect_ListByItem - the same but displays the rank numbers of all (not only five)
entities,

IFSelect_EntitiesByItem - the same plus it displays the Directory Entry number for
each entity

 IGESControl_Reader:: PrintCheckTransfer

void PrintCheckTransfer(
const Standard_Boolean failsonly,
const IFSelect_PrintCount mode) const;

Purpose: Displays the checking results of the last transfer.

The parameters play the same role as in PrintCheckLoad.

 IGESControl_Reader:: PrintStatsTransfer

void PrintStatsTransfer(
const Standard_Integer what,
const Standard_Integer mode = 0) const;

Purpose: Displays all available statistics of the last transfer on the default trace file. The
returned information is filtered by giving parameters.

<what> defines what kind of statistics are to be printed:

0 - basic figures,

1 - root results,

2 - all recorded (roots, intermediate, checked entities),

3 - abnormal records,

4 - warnings and fails messages,

5 - only fail messages

<mode> is used according to <what>:

if <what> is 0 <mode> is ignored

if <what> is 1, 2 or 3 <mode> defines the following:

0 - lists numbers of concerned entities in the model,

1 - for each entity, gives the number, label, type and result type and/or status (fail /
warning...),

2 - for each entity, gives the maximum information (check result),

3 - counts per type of starting entity (class type),

4 - counts per result type and/or status,

5 - counts per couple (starting type / result type/status),

API for reading/writing IGES 40

6 – does the same thing plus gives for each item, the list of numbers of entities in the

starting model

if <what> is 4 or 5 - <mode> is treated as enumeration IFSelect_PrintCount.

 IGESControl_Reader:: PrintTransferInfo

void PrintTransferInfo(
const IFSelect_PrintFail failwarn,
const IFSelect_PrintCount mode) const;

Purpose: Displays information concerning the last transfer on the default trace file according
to the given parameters:

<mode> defines what will be printed:

IFSelect_GeneralCount - general statistics (number of selected IGES entities, number of
root IGES entities, number of resulting OCCT shapes, number of fail and warning messages),

IFSelect_CountByItem - number of IGES entities per each message type and IGES type
and form,

IFSelect_ListByItem - number and a complete list of DE numbers of IGES entities per
each message type and IGES type and form,

IFSelect_ResultCount - number of resulting OCCT shapes per each type of the shape,

IFSelect_Mapping - mapping of root IGES entities into OCCT shapes per IGES type and
form and OCCT shape type.

<failwarn> defines if only fail messages (if <failwarn> is IFSelect_FailOnly) or both fail and
warning messages (if it is IFSelect_FailAndWarn) will be printed if <mode> is
IFSelect_CountByItem or IFSelect_ListByItem.

4.2.4. Class IGESControl_Writer

General description

This class is intended to create and write an IGES file out of OCCT models.

IGES files produced by this component conform to IGES version 5.3.

This component gives a possibility to write an IGES file containing either geometric entities
(conformant to IGES version less than 5.1) only or BRep entities (conformant to IGES version
up to and including 5.3) as well. The writing mode is chosen by specifying the appropriate
parameter.

The translation of an OCCT model (which can be a 2D or 3D geometric object or a topologic
shape) into an IGES file is fulfilled in the following steps:

1. initializing the file,

2. setting the translation parameters,

3. performing the translation itself,

4. writing the IGES file.

Export to the IGES file can be performed on the basis of either an already existing IGES
model (representation of the IGES file in memory) or a new one. The former case gives an
opportunity to add geometric/topologic OCCT objects into an IGES model (file) that already
exists.

Methods

Constructors:

 IGESControl_Writer() ;

API for reading/writing IGES 41

Purpose: Creates a writer object with the default unit and write mode (Face).

 IGESControl_Writer(const Standard_CString unit, const Standard_Integer modecr = 0);

Purpose: Creates a writer object with the given values for the unit and write mode.

<unit> is the name of the units that are accepted by IGES in the upper case (« IN » or
« INCH » for inches, « MM » for millimeters and so on),

<modecr> corresponds to write mode:

0 - Face (default),

1 - BRep

 IGESControl_Writer(const Handle(IGESData_IGESModel)& model,

 const Standard_Integer modecr = 0);

Purpose: Creates a writer object with an already prepared IGES model and write mode.

Methods dealing with IGES models

 IGESControl_Writer:: Model

Handle_IGESData_IGESModel Model() const;

Purpose: Returns the produced model.

 IGESControl_Writer:: ComputeModel() ;

void ComputeModel() ;

Purpose: Prepares the model before writing by setting the required statuses inside the model.

Methods dealing with transfer processes

 IGESControl_Writer:: SetTransferProcess

void SetTransferProcess(const Handle(Transfer_FinderProcess)&
TP) ;

Purpose: Sets the FinderProcess object for the writer.

 IGESControl_Writer:: TransferProcess

Handle_Transfer_FinderProcess TransferProcess() const;

Purpose: Returns the FinderProcess object (containing final results and messages if any).

Methods for performing translation

 IGESControl_Writer:: AddShape

Standard_Boolean AddShape(const TopoDS_Shape& sh) ;

Purpose: Translates a shape <sh> to IGES entities and adds them to the model.

Returns True if done, False if <sh> is not suitable for IGES or is null.

 IGESControl_Writer:: AddGeom

Standard_Boolean AddGeom(const Handle(Standard_Transient)& geom)
;

Purpose: Translates <geom> (which must be a curve or a surface) to IGES entities and adds
them to the model.

Returns True if done, False if <geom> is neither a surface nor a curve suitable for IGES or is
null.

 IGESControl_Writer:: AddEntity

Standard_Boolean AddEntity(const Handle(IGESData_IGESEntity)&
ent) ;

API for reading/writing IGES 42

Purpose: Adds an IGES entity (and the ones it references) to the model.

Returns False if <ent> is null.

Methods for writing an IGES file

 IGESControl_Writer:: Write

Standard_Boolean Write(Standard_OStream& S,
const Standard_Boolean fnes = Standard_False) ;

Standard_Boolean Write(const Standard_CString file,
const Standard_Boolean fnes = Standard_False) ;

Purpose: Prepares (call ComputeModel()) and writes the model to the stream <S> or to the
file <file>.

Returns True if the operation was correctly performed, False in case of error.

If mode <fnes> is equal to True, the resulting file will be written in the FNES format.

Method for obtaining statistics

 IGESControl_Writer:: PrintStatsTransfer

void PrintStatsTransfer(const Standard_Integer what,
const Standard_Integer mode = 0) const;

Purpose: Intended to display all statistics on the last performed translation.

Remarks: At the present moment does nothing (an empty method).

Package IGESToBRep

4.2.5. General description
Performs the actual translation of IGES entities into OCCT objects.

This package recognizes an IGES entity, performs its translation into an OCCT object (which
can be 2D or 3D geometric objects, topologic shapes or transformation matrices) and returns
the resulting shapes with associated messages (if there are any) occurred during the
translation.

Those IGES entities that can be translated into OCCT objects by this package are given in
the following table:

IGES entity Type and Form
number

OCCT class
representing entity

OCCT class
performing translation

Circular Arc Type 100 IGESGeom_CircularArc IGESToBRep_BasicC
urve

Composite Curve Type 102 ..._CompositeCurve ..._TopoCurve

Conic Arc Type 104 ..._ConicArc ..._BasicCurve

Copious Data Type 106, Form 1-3 ..._CopiousData ..._BasicCurve

Linear Path Type 106, Form 11-
13

..._CopiousData ..._BasicCurve

Simple Closed Planar
Curve

Type 106, Form 63 ..._CopiousData ..._BasicCurve

Plane Type 108 ..._Plane ..._TopoSurface

Line Type 110 ..._Line ..._BasicCurve

Parametric Spline Curve Type 112 ..._SplineCurve ..._BasicCurve

API for reading/writing IGES 43

Parametric Spline Surface Type 114 ..._SplineSurface ..._BasicSurface

Point Type 116 ..._Point ..._TopoCurve

Ruled Surface Type 118 ..._RuledSurface ..._TopoSurface

Surface of Revolution Type 120 ..._SurfaceOfRevolution ..._TopoSurface

Tabulated Cylinder Type 122 ..._TabulatedCylinder ..._TopoSurface

Transformation Matrix Type 124 ..._TransformationMatrix ..._BasicCurve

Rational B-Spline Curve Type 126 ..._BSplineCurve ..._BasicCurve

Rational B-Spline Surface Type 128 ..._BSplineSurface ..._BasicSurface

Offset Curve Type 130 ..._OffsetCurve ..._TopoCurve

Offset Surface Type 140 ..._OffsetSurface ..._TopoSurface

Boundary Type 141 ..._Boundary ..._TopoCurve

Curve on a Parametric
Surface

Type 142 ..._CurveOnSurface ..._TopoCurve

Bounded Surface Type 143 ..._BoundedSurface ..._TopoSurface

Trimmed (Parametric)
Surface

Type 144 ..._TrimmedSurface ..._TopoSurface

Manifold Solid B-Rep
Object

Type 186 IGESSolid_ManifoldSoli
d

..._BRepEntity

Plane Surface Type 190 ..._PlaneSurface ..._TopoSurface

Subfigure Definition Type 308 IGESBasic_SubfigureDe
f

..._CurveAndSurface

Group Type 402, Form 1 ..._Group ..._CurveAndSurface

Group Without Back
Pointers

Type 402, Form 7 ..._GroupWithoutBackP ..._CurveAndSurface

Single Parent Type 402, Form 9 ..._SingleParent ..._TopoSurface

Singular Subfigure
Instance

Type 408 ..._SingularSubfigure ..._CurveAndSurface

Vertex List Type 502, Form 1 IGESSolid_VertexList ..._BRepEntity

Edge List Type 504, Form 1 ..._EdgeList ..._BRepEntity

Loop Type 508 ..._Loop ..._BRepEntity

Face Type 510 ..._Face ..._BRepEntity

Shell Type 514 ..._Shell ..._BRepEntity

Finally, all geometric IGES entities (curves and surfaces) are translated into topologic shapes.
OCCT geometric objects serve as a support for topology.

4.2.6. Class IGESToBRep_Reader

General description

This class reads IGES files and translates their contents into OCCT shapes.

This class provides basic tools for loading, checking and translating IGES files into OCCT
topologic shapes. It is complemented with more high-level features by class
IGESControl_Reader.

API for reading/writing IGES 44

The functionalities provided by this class are the following:

 loading a file into memory,

 checking an IGES model in memory,

 translating all root entities or one entity specified by its rank number into OCCT
shapes,

 fetching the results.

Methods

Constructors:

 IGESToBRep_Reader();

Purpose: Performs initialization calling IGESAppli::Init() and IGESSolid::Init(), creates a new
Actor object for transfer.

Method for loading an IGES file into memory

 IGESToBRep_Reader:: LoadFile

Standard_Integer LoadFile(const Standard_CString filename) ;

Purpose: Loads an IGES file <filename> into memory calling IGESFile_Read(), sets the
returned IGES model (representing the loaded IGES file) calling SetModel().

Method for checking an IGES file

 IGESToBRep_Reader:: Check

Standard_Boolean Check(const Standard_Boolean withprint) const;

Purpose: Performs checking of a loaded IGES file calling Interface_CheckTool and
Interface_CheckIterator. If <withprint> is True outputs the results of checking to the default
trace file.

Methods for preparing the transfer process

 IGESToBRep_Reader:: SetModel

void SetModel(const Handle(IGESData_IGESModel)& model) ;

Purpose: Sets a new IGES model object. Clears the list of translated shapes (if there are
any), sets a new transfer process object.

 IGESToBRep_Reader:: Model

Handle_IGESData_IGESModel Model() const;

Purpose: Returns the used IGES model object.

 IGESToBRep_Reader:: SetTransientProcess

void SetTransientProcess(const
Handle(Transfer_TransientProcess)& TP) ;

Purpose: Sets the transfer process object.

 IGESToBRep_Reader:: TransientProcess

Handle_Transfer_TransientProcess TransientProcess() const;

Purpose: Returns the used transfer process object.

 IGESToBRep_Reader:: Actor

Handle_IGESToBRep_Actor Actor() const;

API for reading/writing IGES 45

Purpose: Returns the used actor object.

 IGESToBRep_Reader::Clear

void Clear() ;

Purpose: Clears the list of translated shapes.

Methods for translation

 IGESToBRep_Reader:: TransferRoots

void TransferRoots(const Standard_Boolean onlyvisible =
Standard_True)

Purpose: Performs the translation of root entities (ones that are not referenced by others). If
<onlyvisible> is True, translates only visible entities (with Blank status equal to 0). Sets the
continuity in accordance with the static parameter read.iges.bspline.continuity.

If parameter read.maxprecision.mode is set to 1, calls to ShapeTool_Utils::LimitTolerance()
for the resulting shape with parameters 0 and the maximum between read.maxprecision.val
and the basis tolerance of processor.

 IGESToBRep_Reader:: Transfer

Standard_Boolean Transfer(const Standard_Integer num) ;

Purpose: Performs the translation of an entity specified by its rank number.

Creates an object of class IGESToBRep_CurveAndSurface and sets:

3D precision (taking its value either from the file or from the work session in
accordance with the static parameter read.precision.mode),

the approximation mode parameter in accordance with static the parameter
read.iges.bspline.approxd1.mode,

the mode for a preferred computation of curves on a surface in accordance with the
static parameter read.surfacecurve.mode,

the spline continuity parameter in accordance with the static parameter
read.iges.bspline.continuity,

the transfer process object taken from itself.

Once all the fields have been filled out this method calls method TransferGeometry() with the
IGES entity calculated by its rank number to obtain the OCCT shape.

Like method TransferRoots() this one also limits the tolerance if the static parameter
read.maxprecision.mode is set to 1.

Returns False if <num> is greater than the number of entities in the model or less than 1,
otherwise returns True even if there was an exception during the transfer.

Methods for fetching the results

 IGESToBRep_Reader:: IsDone

Standard_Boolean IsDone() const;

Purpose: Returns True if the last transfer was successful.

 IGESToBRep_Reader:: NbShapes

Standard_Integer NbShapes() const;

Purpose: Returns the number of shapes recorded in the result.

 IGESToBRep_Reader:: Shape

TopoDS_Shape Shape(const Standard_Integer num = 1) const;

API for reading/writing IGES 46

Purpose: Returns the result number <num> where <num> is an integer between 1 and
NbShapes(). If not returns a null shape.

 IGESToBRep_Reader:: OneShape

TopoDS_Shape OneShape() const;

Purpose: Returns all results in a single shape, which is:

 a null shape if there are no results,

 in the case of a single result, only that shape,

 a compound that lists all the results if there are several resulting shapes.

4.3. Package IGESData

4.3.1. General description
This package defines general objects for dealing with the IGES interface.

It gives a basic description of the IGES interface:

 defines the Model for IGES (class IGESData_IGESModel),

 defines the Protocol tool specific for IGES (class IGESData_Protocol)

 defines the basic class IGESData_IGESEntity describing abstract IGES entity

 defines classes derived from IGESEntity and representing general IGES entities
(IGESData_LineFontEntity, IGESData_TransfEntity, IGESData_SingleParentEntity, etc.),

4.3.2. Class IGESData_IGESModel

General description

Gives an access to the general data in the Start and the Global sections of an IGES file.

Defines a model specific for IGES.

An IGES file includes the following sections:

Start,

Global,

Directory Entry,

Parameter Data,

Terminate

Inheritance:

Interface_InterfaceModel

MMgt_TShared

Standard_Transient

Methods

Constructor

 IGESData_IGESModel ();

Purpose: Creates an empty IGES Model.

API for reading/writing IGES 47

Methods for initializing

 IGESData_IGESModel::ClearHeader

void ClearHeader() ;

Purpose: Erases all the data in the Start and Global sections.

 IGESData_IGESModel::NewEmptyModel

Handle_Interface_InterfaceModel NewEmptyModel() const;

Purpose: Returns a new Empty Model of the same type as this object, i.e. of type
IGESData_IGESModel.

Methods for dealing with the Start and the Global sections

 IGESData_IGESModel::DumpHeader

void DumpHeader(Standard_OStream& S,
const Standard_Integer level = 0) const;

Remark: the Integer parameter is intended to be used as a level indicator, but not used for the
moment.

 IGESData_IGESModel::StartSection

Handle_TColStd_HSequenceOfHAsciiString StartSection() const;

Purpose: Returns the Start section of the Model as a list of lines.

 IGESData_IGESModel::NbStartLines

Standard_Integer NbStartLines() const;

Purpose: Returns the number of the lines in the Start section.

 IGESData_IGESModel::StartLine

Standard_CString StartLine(const Standard_Integer num) const;

Purpose: Returns a line from the Start section specified by number num.

Remark: An empty string is returned if number num is out of range [1, NbStartLines()].

 IGESData_IGESModel::ClearStartSection

void ClearStartSection() ;

Purpose: Clears the Start section.

 IGESData_IGESModel::SetStartSection

void SetStartSection(const
Handle(TColStd_HSequenceOfHAsciiString)& list, const
Standard_Boolean copy = Standard_True) ;

Purpose: Sets a new Start section from the list of strings <list>, copying it if <copy> is True
(by default) or pointing to the <list> if <copy> is False.

 IGESData_IGESModel::AddStartLine

void AddStartLine(const Standard_CString line,
const Standard_Integer atnum = 0) ;

Purpose: Adds a new string to the end of the existing Start section if <atnum> is 0 or not
given, or before the <atnum>-th line.

Remark: If a number is out of range [0, NbStartLines()], the line is added at the end of section.

 IGESData_IGESModel::GlobalSection

const IGESData_GlobalSection& GlobalSection() const;

API for reading/writing IGES 48

Purpose: Returns the Global section of the Model.

 IGESData_IGESModel::SetGlobalSection.

void SetGlobalSection(const IGESData_GlobalSection& header) ;

Purpose: Sets the Model's Global section.

 IGESData_IGESModel::ApplyStatic

Standard_Boolean ApplyStatic(const Standard_CString param = "")
;

Purpose: Sets some parameters of the Global section to those defined by static parameters
(see parameters of translation). The allowed values for <param> (all by default) are: receiver,
author and company (these are acronyms of static parameters). Returns True when done and
if <param> is given, False if <param> is unknown or empty.

Remark: To set a unit into the Global section use the IGESData_BasicEditor class.

See also: User’s Guide: Parameters of translation.

 IGESData_IGESModel::GetFromAnother

void GetFromAnother(const Handle(Interface_InterfaceModel)&
other) ;

Purpose: Takes the Global section from another Model.

 IGESData_IGESModel::VerifyCheck

virtual void VerifyCheck(Interface_Check& ach) const;

Purpose: Checks whether the Global section contains valid data according to the IGES
specification. If the Global section is correct this method adds nothing into ach, but if not the
method adds fail messages.

 IGESData_IGESModel::SetLineWeights

void SetLineWeights(const Standard_Real defw) ;

Purpose: Sets LineWeights of entities according to the Global section (MaxLineWeight and
LineWeightGrad values) or to a default value (<defw>) for undefined weights.

Methods for dealing with IGES entities

 IGESData_IGESModel::ClearLabels() ;

void ClearLabels() ;

Purpose: Erases labels. Not yet implemented.

 IGESData_IGESModel::PrintLabel

void PrintLabel(const Handle(Standard_Transient)& ent,
Standard_OStream& S) const;

Purpose: Prints the Directory Entry number of a given entity, i.e. 'Dnn' where Dnn=2*number-
1on the stream S.

 IGESData_IGESModel::StringLabel

Handle_TCollection_HAsciiString StringLabel
(const Handle(Standard_Transient)& ent) const;

Purpose: Returns a string with a Directory Entry number of a given entity, i.e. a string 'Dnn'
where Dnn=2*number-1.

 IGESData_IGESModel::Entity

Handle_IGESData_IGESEntity Entity(const Standard_Integer num)
const;

API for reading/writing IGES 49

Purpose: Returns an entity given by its rank number.

 IGESData_IGESModel::DNum

Standard_Integer DNum(const Handle(IGESData_IGESEntity)& ent)
const;

Purpose: Returns the DE Number of an entity, i.e. 2*Number(ent)-1, or 0 if <ent> is unknown
from this Model.

4.3.3. Class IGESData_IGESEntity

General description

Represents an abstract IGES entity.

This class provides an access to common IGES entity fields (TypeNumber,
TransformationMatrix,

etc.).

This class is a basic one for other classes complementing it to represent a certain IGES
entity.

Refer to the IGES specification for more details.

Inheritance

MMgt_TShared

Standard_Transient

Methods

Constructors:

 IGESData_IGESEntity();

Purpose: Creates an empty object. Sets all values to defaults (calls Clear()).

Methods for initializing fields of object.

 IGESData_IGESEntity::Clear

void Clear() ;

Purpose: Clears all fields of the object.

 IGESData_IGESEntity::InitTypeAndForm

void InitTypeAndForm(const Standard_Integer typenum, const
Standard_Integer formnum) ;

Purpose: Sets the Type and Form Numbers to new values.

Remarks: Private method. Reserved for special use.

 IGESData_IGESEntity::InitDirFieldEntity

void InitDirFieldEntity(const Standard_Integer fieldnum, const
Handle(IGESData_IGESEntity)& ent) ;

Purpose: Sets a directory field to an <ent> of any kind (see DirFieldEntity() for more details).

Remarks: If <fieldnum> is not equal to values listed in DirFieldEntity(), this method does
nothing.

 IGESData_IGESEntity::InitTransf

void InitTransf(const Handle(IGESData_TransfEntity)& ent) ;

API for reading/writing IGES 50

Purpose: Sets the Transf or erases it if <ent> is null.

 IGESData_IGESEntity::InitView

void InitView(const Handle(IGESData_ViewKindEntity)& ent) ;

Purpose: Sets the View or erases it if <ent> is null.

 IGESData_IGESEntity::InitLineFont

void InitLineFont(const Handle(IGESData_LineFontEntity)& ent,
const Standard_Integer rank = 0) ;

Purpose: Sets the LineFont. If <ent> is null the RankLineFont is set to <rank>, otherwise it is
set to a negative value.

 IGESData_IGESEntity::InitLevel

void InitLevel(const Handle(IGESData_LevelListEntity)& ent,
const Standard_Integer val = 0) ;

Purpose: Sets the Level. If <ent> is null the DefLevel is set to <val>, otherwise it is set to a
negative value.

 IGESData_IGESEntity::InitColor

void InitColor(const Handle(IGESData_ColorEntity)& ent, const
Standard_Integer rank = 0) ;

Purpose: Sets the Color. If <ent> is null the DefColor is set to <rank>, otherwise it is set to a
negative value.

 IGESData_IGESEntity::InitStatus

void InitStatus(const Standard_Integer blank,

 const Standard_Integer subordinate,

 const Standard_Integer useflag,

 const Standard_Integer hierarchy) ;

Purpose: Sets the flags of the Directory Part.

 IGESData_IGESEntity::SetLabel

void SetLabel(const Handle(TCollection_HAsciiString)& label,
const Standard_Integer sub = -1) ;

Purpose: Sets a new Label to an Entity. If <sub> is given, it sets the value of
SubScriptNumber, else SubScriptNumber is erased.

 IGESData_IGESEntity::InitMisc

void InitMisc(const Handle(IGESData_IGESEntity)& str,

 const Handle(IGESData_LabelDisplayEntity)& lab,

 const Standard_Integer weightnum) ;

Purpose: Sets data or erases it if it is given as null (zero for <weightnum>):

 <str> for Structure,

 <lab> for LabelDisplay,

 <weightnum> for WeightNumber

 IGESData_IGESEntity::SetLineWeight

void SetLineWeight(const Standard_Real defw,

 const Standard_Real maxw,

 const Standard_Integer gradw) ;

API for reading/writing IGES 51

Purpose: Computes and sets the "true" line weight according to IGES rules from the global
data MaxLineWeight (<maxw>) and LineWeightGrad (<gradw>), or sets it to <defw>
(Default) if LineWeightNumber is null

Remarks: If gradw is zero, there is division by zero in this method.

Methods for querying the corresponding fields of an IGES entity.

 IGESData_IGESEntity::IGESType

IGESData_IGESType IGESType() const;

Purpose: Returns information on the IGES type of an entity including the type and the form of
that entity.

 IGESData_IGESEntity::TypeNumber

Standard_Integer TypeNumber() const;

Purpose: Returns the IGES Type number.

 IGESData_IGESEntity::FormNumber

Standard_Integer FormNumber() const;

Purpose: Returns the IGES Form number.

 IGESData_IGESEntity::DirFieldEntity

Handle_IGESData_IGESEntity DirFieldEntity(const Standard_Integer
fieldnum) const;

Purpose: Returns the Entity that is recorded for a given Field Number <fieldnum> where:

 3 - Structure

 4 - LineFont

 5 - LevelList

 6 - View

 7 - Transf(ormation Matrix)

 8 - LabelDisplay

 13 - Color.

 In a case of other values it returns a null handle.

 IGESData_IGESEntity::HasStructure

Standard_Boolean HasStructure() const;

Purpose: Returns True if an IGES entity is defined with a structure (it is normally reserved for
certain classes, such as Macros).

 IGESData_IGESEntity::Structure

Handle_IGESData_IGESEntity Structure() const;

Purpose: Returns the Structure (used by some types of IGES entities only), returns a null
handle if Structure is not defined.

 IGESData_IGESEntity::DefLineFont

IGESData_DefType DefLineFont() const;

Purpose: Returns the definition status of LineFont.

 IGESData_IGESEntity::RankLineFont

Standard_Integer RankLineFont() const;

API for reading/writing IGES 52

Purpose: Returns LineFont definition as an integer if it is defined as Rank. If LineFont is
defined as an Entity, returns a negative value

 IGESData_IGESEntity::LineFont

Handle_IGESData_LineFontEntity LineFont() const;

Purpose: Returns LineFont as an entity if it is defined as Reference. Returns a null handle if
DefLineFont is not "DefReference".

 IGESData_IGESEntity::DefLevel

IGESData_DefList DefLevel() const;

Purpose: Returns the definition status of Level.

 IGESData_IGESEntity::Level

Standard_Integer Level() const;

Purpose: Returns Level definition as an integer.

 IGESData_IGESEntity::LevelList

Handle_IGESData_LevelListEntity LevelList() const;

Purpose: Returns LevelList if Level is defined as List. Returns a null handle if DefLevel is not
"DefSeveral".

 IGESData_IGESEntity::DefView

IGESData_DefList DefView() const;

Purpose: Returns the definition status of View (None,One or Several).

 IGESData_IGESEntity::View

Handle_IGESData_ViewKindEntity View() const;

Purpose: Returns the View (either Single or List) if it is defined. Returns a null handle if it is
not defined.

 IGESData_IGESEntity::SingleView

Handle_IGESData_ViewKindEntity SingleView() const;

Purpose: Returns View as Single, if defined as One. Returns a null handle if DefView is not
"DefOne".

 IGESData_IGESEntity::ViewList

Handle_IGESData_ViewKindEntity ViewList() const;

Purpose: Returns View as a List. Returns a null handle if DefView is not "DefSeveral".

 IGESData_IGESEntity::HasTransf

Standard_Boolean HasTransf() const;

Purpose: Returns True if a Transformation Matrix is defined.

 IGESData_IGESEntity::Transf

Handle_IGESData_TransfEntity Transf() const;

Purpose: Returns the Transformation Matrix (under IGES definition). Returns a null handle if
there is none.

Remarks: For a more complete use, see Location & CompoundLocation.

 IGESData_IGESEntity::HasLabelDisplay

Standard_Boolean HasLabelDisplay() const;

API for reading/writing IGES 53

Purpose: Returns True if the LabelDisplay mode is defined for this entity.

 IGESData_IGESEntity::LabelDisplay

Handle_IGESData_LabelDisplayEntity LabelDisplay() const;

Purpose: Returns the LabelDisplay, if there is one; else returns a null handle.

 IGESData_IGESEntity::BlankStatus

Standard_Integer BlankStatus() const;

Purpose: Returns the Blank Status (0 - visible, 1 - blanked).

 IGESData_IGESEntity::SubordinateStatus

Standard_Integer SubordinateStatus() const;

Purpose: Returns the Subordinate Switch (0-1-2-3)

 IGESData_IGESEntity::UseFlag

Standard_Integer UseFlag() const;

Purpose: Returns the Use Flag (0 to 5) of an entity.

 IGESData_IGESEntity::HierarchyStatus

Standard_Integer HierarchyStatus() const;

Purpose: Returns the Hierarchy status (0-1-2).

 IGESData_IGESEntity::LineWeightNumber

Standard_Integer LineWeightNumber() const;

Purpose: Returns the LineWeight Number (0 if it is not defined).

See also: LineWeight.

 IGESData_IGESEntity::LineWeight

Standard_Real LineWeight() const;

Purpose: Returns "true" LineWeight, computed from LineWeightNumber and the global
parameter of the Model by call to SetLineWeight.

 IGESData_IGESEntity::DefColor

IGESData_DefType DefColor() const;

Purpose: Returns the definition status of Color.

 IGESData_IGESEntity::RankColor

Standard_Integer RankColor() const;

Purpose: Returns the Color definition as an Integer (if defined as Rank). If Color is defined as
an Entity, returns a negative value.

 IGESData_IGESEntity::Color

Handle_IGESData_ColorEntity Color() const;

Purpose: Returns the Color as an Entity (if defined as Reference) or a null handle if Color
Definition is not "DefReference".

 IGESData_IGESEntity::CResValues

Standard_Boolean CResValues(const Standard_CString res1,

 const Standard_CString res2) const;

API for reading/writing IGES 54

Purpose: Fills <res1> and <res2> with inner "reserved" alphanumeric fields theRes1 and
theRes2. Returns False if both are blank, otherwise returns True.

Warning: Both must be of a length equal to at least 9 characters. The contents of <res1> and
<res2> are modofied. The 9-th character becomes null.

 IGESData_IGESEntity::HasShortLabel

Standard_Boolean HasShortLabel() const;

Purpose: Returns True if ShortLabel is not null.

 IGESData_IGESEntity::ShortLabel

Handle_TCollection_HAsciiString ShortLabel() const;

Purpose: Returns label value as a string (null if ShortLabel is blank).

 IGESData_IGESEntity::HasSubScriptNumber

virtualStandard_Boolean HasSubScriptNumber() const;

Purpose: Returns True if SubScript Number is defined.

 IGESData_IGESEntity::SubScriptNumber

Standard_Integer SubScriptNumber() const;

Purpose: Returns SubScript Number as an integer (0 if not defined).

 IGESData_IGESEntity::HasOneParent()

Standard_Boolean HasOneParent() const;

Purpose: Returns True if an entity has one and only one parent, defined by a
SingleParentEntity Type Associativity (explicit sharing).

Remarks: Thus, implicit sharing remains defined at the model level.

See class ToolLocation.

 IGESData_IGESEntity::UniqueParent() const;

Handle_IGESData_IGESEntity UniqueParent() const;

Purpose: Returns the Unique Parent (if it is the one).

Exceptions: <Interface_InterfaceError> if there are either several or no parents.

 IGESData_IGESEntity::Location()

gp_GTrsf Location() const;

Purpose: Returns the entity Location given by Transf in the Directory Part (see above).
Considers local location only (not taking into account the parent's one - see
CompoundLocation for that). If no Transf is defined, returns Identity.

 IGESData_IGESEntity::VectorLocation()

gp_GTrsf VectorLocation() const;

Purpose: Returns the Translation part of a local location (as for Location).

 IGESData_IGESEntity::CompoundLocation()

gp_GTrsf CompoundLocation() const;

Purpose: Returns the location of this object combined with CompoundLocation of its Parent
(i.e. can be recursive). If the Parent is not single (see HasOneParent) returns Location.

 IGESData_IGESEntity::HasName()

Standard_Boolean HasName() const;

API for reading/writing IGES 55

Purpose: Says if a Name is defined as Short Label or as Name Property. (Property is looked
for first, otherwise ShortLabel is considered).

 IGESData_IGESEntity::NameValue()

Handle_TCollection_HAsciiString NameValue() const;

Purpose: Returns the Name value as a String (Property Name or ShortLabel). If SubNumber
is defined, it is concatenated after ShortLabel as follows - label (number). Ignored in
case of Property Name.

Methods for dealing with associativities and properties.

 IGESData_IGESEntity::ArePresentAssociativities()

Standard_Boolean ArePresentAssociativities() const;

Purpose: Returns True if the Entity is defined with an Associativity list, even an empty one
(i.e., the file is of 0 length). Otherwise returns False (the file contains no identification
concerning this list at all).

 IGESData_IGESEntity::NbAssociativities

Standard_Integer NbAssociativities() const;

Purpose: Returns the number of recorded associativities (0 if no list is defined).

 IGESData_IGESEntity::Associativities

Interface_EntityIterator Associativities() const;

Purpose: Returns the Associativity List in the form of an EntityIterator.

 IGESData_IGESEntity::NbTypedAssociativities

Standard_Integer NbTypedAssociativities

 const Handle(Standard_Type)& atype) const;

Purpose: Returns information on how many Associativities have the given type.

 IGESData_IGESEntity::TypedAssociativity

Handle_IGESData_IGESEntity TypedAssociativity

 (const Handle(Standard_Type)& atype) const;

Purpose: Returns the Associativity of a given Type (if one exists)

Exceptions: <Interface_InterfaceError> if there is none or more than one associativity.

 IGESData_IGESEntity::AddAssociativity

void AddAssociativity(const Handle(IGESData_IGESEntity)& ent) ;

Purpose: Adds an Associativity to the list (called by Associate only).

Exceptions: <Standard_NullObject> if <ent> is null.

 IGESData_IGESEntity::RemoveAssociativity

void RemoveAssociativity(const Handle(IGESData_IGESEntity)& ent)
;

Purpose: Removes an Associativity from the list (called by Dissociate).

Exceptions: <Standard_NullObject> if ent is null.

 IGESData_IGESEntity::LoadAssociativities

void LoadAssociativities(const Interface_EntityList& list) ;

Purpose: Loads a complete List of Asociativities (used during Read or Copy operations).

API for reading/writing IGES 56

 IGESData_IGESEntity::ClearAssociativities

void ClearAssociativities() ;

Purpose: Removes all associativities at once.

 IGESData_IGESEntity::Associate

void Associate(const Handle(IGESData_IGESEntity)& ent) const;

Purpose: Sets this object to the Associativity list of another Entity. If <ent> is a null object,
method does nothing.

 IGESData_IGESEntity::Dissociate

void Dissociate(const Handle(IGESData_IGESEntity)& ent) const;

Purpose: Removes this object from the Associativity list of another Entity. If <ent> is a null
object, method does nothing.

 IGESData_IGESEntity::ArePresentProperties

Standard_Boolean ArePresentProperties() const;

Purpose: Returns True if the Entity is defined with a Property list, even an empty one (i.e., the
file is of 0 length). Otherwise, returns False (file contains no identification concerning this list
at all).

 IGESData_IGESEntity::NbProperties()

Standard_Integer NbProperties() const;

Purpose: Returns the number of recorded properties (0 if no list is defined)

 IGESData_IGESEntity::Properties()

Interface_EntityIterator Properties() const;

Purpose: Returns the Property List in the form of an EntityIterator

 IGESData_IGESEntity::NbTypedProperties

Standard_Integer NbTypedProperties

 (const Handle(Standard_Type)& atype) const;

Purpose: Returns information on how many Properties have a given type

 IGESData_IGESEntity::TypedProperty

Handle_IGESData_IGESEntity TypedProperty

 (const Handle(Standard_Type)& atype) const;

Purpose: Returns the Property of a given Type (if only one exists)

Exceptions: <Interface_InterfaceError> if there is none or more than one Properties.

 IGESData_IGESEntity::AddProperty

void AddProperty(const Handle(IGESData_IGESEntity)& ent) ;

Purpose: Adds a Property to the list.

Exceptions: <Standard_NullObject> if <ent>is null.

 IGESData_IGESEntity::RemoveProperty

void RemoveProperty(const Handle(IGESData_IGESEntity)& ent) ;

Purpose: Removes a Property from the list.

Exceptions: <Standard_NullObject> if <ent>is null.

 IGESData_IGESEntity::LoadProperties

API for reading/writing IGES 57

void LoadProperties(const Interface_EntityList& list) ;

Purpose: Loads a complete List of Properties (used during Read or Copy operations).

 IGESData_IGESEntity::ClearProperties() ;

void ClearProperties() ;

Purpose: Removes all properties at once

Using XSTEPDRAW 58

5. Using XSTEPDRAW

5.1. XSDRAWIGES Overview
XSTEPDRAW UL is intended for creating executables for testing XSTEP interfaces
interactively in the DRAW environment. It provides an additional set of DRAW commands
specific for the data exchange tasks, which allow loading and writing data files and analysis of
resulting data structures and shapes.

This paragraph 5 is divided into several sections. Sections 5.3 and 5.5 deal with reading and
writing of IGES files and are intended specifically for the IGES processor, sections 5.2 and
5.4 describe some general tools for setting parameters and analyzing the data. Most of them
are independent of the norm being tested. Additionally, a table of mentioned DRAW
commands is provided.

NOTE

In the description of commands, square brackets ([]) are used to indicate optional parameters.
Parameters given in the angle brackets (<>) and sharps (#) are to be substituted by an
appropriate value. When several exclusive variants are possible, vertical dash (|) is used.

5.2. Setting interface parameters
A set of parameters for importing and exporting IGES files is defined in the XSTEP resource
file. In XSTEPDRAW, these parameters can be viewed or changed using command

Draw> param [<parameter_name> [<value>]]

Command param with no arguments gives a list of all parameters with their values. When
argument <parameter_name> is specified, information about this parameter is printed (current
value and short description).

The third argument is used to set a new value of the given parameter. The result of the setting
is printed immediately.

During all interface operations, the protocol of the process (fail and warning messages,
mapping of the loaded entities into OCCT shapes etc.) can be output to the trace file. Two
parameters are defined in the DRAW session: trace level (integer value from 0 to 9, default is
0), and trace file (default is a standard output).

Command xtrace is intended to view and change these parameters:

Draw> xtrace

- prints current settings (e.g.: "Level=0 - Standard Output");

Draw> xtrace #

- sets the trace level to the value #;

Draw> xtrace tracefile.log

- sets the trace file as tracefile.log; and

Draw> xtrace .

- directs all messages to the standard output.

Using XSTEPDRAW 59

5.3. Reading IGES files
For a description of parameters used in reading an IGES file refer to 2.3.3 "Setting the
translation parameters ".

These parameters are set by command param:

Description Name Values

Precision for input entities read.precision.mode 0 or 1

 read.precision.val real

Continuity of B-splines read.iges.bspline.continuity 0-2

Surface curves read.surfacecurve.mode 2, 3 or 0

It is possible either only to load an IGES file into memory (i.e. to fill the model with data from
the file), or to read it (i.e. to load and convert all entities to OCCT shapes).

Loading is done by the command

Draw> xload <file_name>

Once the file is loaded, it is possible to investigate the structure of the loaded data. To learn
how to do it see 5.4 Analyzing the transferred.

Reading of an IGES file is done by the command

Draw> igesbrep <file_name> <result_shape_name> [<selection>]

Here a dot can be used instead of a filename if the file is already loaded by xload or
igesbrep command. In that case, only conversion of IGES entities to OCCT shapes will be
done.

Command igesbrep will interactively ask the user to select a set of entities to be converted:

N Mode Description

0 End finish conversion and exit igesbrep

1 Visible roots convert only visible roots

2 All roots convert all roots

3 One entity convert entity with number provided by the user

4 Selection convert only entities contained in selection (refer to 2.3.4)

After the selected set of entities is loaded the user will be asked how loaded entities should
be converted into OCCT shapes (e.g., one shape per root or one shape for all the entities). It
is also possible to save loaded shapes in files, and to cancel loading.

The second parameter of the igesbrep command defines the name of the loaded shape. If
several shapes are created, they will get indexed names. For instance, if the last parameter
was ‘s’, they will be s_1, ... s_N.

<selection> specifies the scope of selected entities in the model, it is xst-transferrable-roots
by default. An asterisk “*” can be specified instead of iges-visible-transf-roots. For possible
values for <selection> refer to 2.3.4.

Instead of igesbrep the following commands can be used:

Draw> trimport <file_name> <result_shape_name> <selection>

Using XSTEPDRAW 60

which outputs the result of translation of each selected entity into one shape,

Draw> trimpcomp <file_name> <result_shape_name> <selection>

which outputs the result of translation of all selected entities into one shape
(TopoDS_Compound for several entities).

An asterisk “*” can be specified instead of <selection>, it means xst-transferrable-roots.

During the IGES translation, a map of correspondence between IGES entities and OCCT
shapes is created.

To get information on the result of translation of the given IGES entity the command

Draw> tpent #

is used.

To create an OCCT shape corresponding to an IGES entity the command

Draw> tpdraw #

is used.

To get the number of an IGES entity corresponding to an OCCT shape the command

Draw> fromshape <shape_name>

is used.

To clear the map of correspondences between IGES entities and OCCT shapes the
command

Draw> tpclear

is used.

5.4. Analyzing the transferred data
The procedure of analysis of the data import can be divided into two stages:

1. checking the file contents,

2. estimation of translation results (conversion and validated ratios).

5.4.1. Checking file contents
General statistics on the loaded data can be obtained by using command

Draw> data <symbol>

The information printed by this command depends on the symbol specified:

Symbol Output

g Prints information contained in the header of the file (Start and Global sections)

c or f Runs check procedure of the integrity of the loaded data and prints the resulting
statistics (f works only with fails while c with both fail and warning messages)

t The same as c or f, with a list of failed or warned entities

m or l The same as t but also prints a status for each entity

e Lists all entities of the model with their numbers, types, status of validity etc.

r The same as e but lists only root entities

Using XSTEPDRAW 61

There is a set of special objects, which can be used to operate with the loaded model. They
can be of the following types:

Special object type Operation

Selection Filters - allow to select subsets of entities of the loaded model

Counters Calculate some statistics on the model data

A list of these objects defined in the current session can be printed in DRAW by command

Draw> listitems

In the following commands if several <selection> arguments are specified the results of each
following selection are applied to those of the one preceding it.

Command

Draw> givelist <selection_name> [<selection_name>]

prints a list of loaded entities defined by selection argument. For possible values of
<selection_name> please refer to 2.3.4.

Command

Draw> givecount <selection_name> [<selection_name>]

prints a number of loaded entities defined by selection argument. For possible values of
<selection_name> please refer to 2.3.4.

Three commands are used to calculate statistics on the entities in the model:

Draw> count <counter> [<selection> ...]

Prints only a number of entities per each type matching the criteria defined by arguments.

Draw> sumcount <counter> [<selection> ...]

Prints the total number of entities of all types matching the criteria defined by arguments and
the largest number corresponding to one type.

Draw> listcount <counter> [<selection> ...]

Prints a list of entities per each type matching the criteria defined by arguments.

Optional <selection> argument, if specified, defines a subset of entities, which are to be taken
into account. Argument <counter> should be one of the currently defined counters:

Counter Operation

xst-types Calculates how much entities of each OCCT type exist

iges-types Calculates how much entities of each IGES type and form exist

iges-levels Calculates how much entities lie in different IGES levels

Command

Draw> listtypes <selection_name> ...

gives a list of entity types which were encountered in the last loaded file (with a number of
IGES entities of each type). The list can be shown not for all entities but for a subset of them.
This subset is defined by an optional selection argument.

Entities in the IGES file are numbered in the succeeding order. An entity can be identified
either by its number (#) or by its label. Label is the letter ‘D’ followed by the index of the first
line with the data for this entity in the Directory Entry section of the IGES file. The label can be

Using XSTEPDRAW 62

calculated on the basis of the number as ‘D(2*# -1)’. For example, entity # 6 has label D11.
To get a label for an entity with a known number, command

Draw> elab #

can be used.

In the same way, command

Draw> enum D#

prints a number for an entity with the given label.

The content of an IGES entity can be obtained by using command

Draw> entity # <level_of_information>

The list of entities referenced by a given entity and the list of entities referencing to it can be
obtained by command

Draw> estat #

5.4.2. Estimating the results of reading IGES
All of the following commands are available only after the data are converted into OCCT
shapes (i.e. after command igesbrep).

Command

Draw> tpstat [*|?]<symbol> [<selection>]

is provided to get all statistics on the last transfer, including the list of transferred entities with
mapping from IGES to OCCT types, as well as fail and warning messages. The parameter
symbol defines what information will be printed:

Symbol Output

G General statistics (list of results and messages)

C Count of all warning and fail messages

C List of all warning and fail messages

F Count of all fail messages

F List of all fail messages

N List of all transferred roots

S The same, with types of source entity and result type

B The same, with messages

T Count of roots for geometrical types

R Count of roots for topological types

l The same, with a type of the source entity

The sign ‘*’ before the parameters n, s, b, t, r makes it work on all entities (not only on roots).
The sign ‘?’ before n, s, b, t limits the scope of information to invalid entities.

Optional argument <selection> can limit the action of the command with a selected subset of
entities.

To get help, run this command without arguments.

Example. Translation ratio on IGES faces.

Using XSTEPDRAW 63

Draw:> tpstat *l iges-faces

The second version of the same command is TPSTAT (not capital spelling).

Draw:> TPSTAT <symbol>

Symbol can be of the following values:

Symbol Output

g General statistics (list of results and messages)

c Count of all warning and fail messages

C List of all warning and fail messages

r Count of resulting OCCT shapes per each type

s Mapping of IGES roots and resulting OCCT shapes

Sometimes the trimming contours of IGES faces (i.e., entity 141 for 143, 142 for 144) can be
lost during translation due to fails. To obtain the number of lost trims and the number of
corresponding IGES entities the command

Draw> tplosttrim [<IGES_type>]

is used. It outputs the rank and DE numbers of faces that lost their trims and their numbers for
each type (143, 144, 510) and their total number. If a face lost several of its trims it is output
only once.

Optional parameter <IGES_type> can be TrimmedSurface, BoundedSurface or Face to
specify the only type of IGES faces.

Example. Untrimmed 144 entities.

Draw> tplosttrim TrimmedSurface

To get information on OCCT shape contents the command

Draw> statshape <shape_name>

is used.

It outputs the number of each kind of shapes (vertex, edge, wire, etc.) in a shape and some
geometrical data (number of C0 surfaces, curves, indirect surfaces, etc.).

Note. The number of faces is returned as a number of references. To obtain the number of
single instances the standard command (from TTOPOLOGY executable) nbshapes can be
used.

To analyze the internal validity of a shape, command

Draw> checkbrep <shape_name> <expurged_shape_name>

is used. It checks the geometry and topology of a shape for different cases of inconsistency,
like self-intersecting wires or wrong orientation of trimming contours. If an error is found, it
copies bad parts of the shape with the names " expurged_subshape_name _#" and
generates an appropriate message. If possible, this command also tries to find IGES entities
the OCCT shape was produced from.

<expurged_shape_name> will contain the original shape without invalid subshapes.

To get information on tolerances of subshapes the command

Draw> tolerance <shape_name> [<min> [<max>] [<symbol>]]

is used. It outputs maximum, average and minimum values of tolerances for each kind of
subshapes having tolerances or it can output tolerances of all subshapes of the whole shape.

Using XSTEPDRAW 64

When specifying <min> and <max> arguments this command outputs shapes with names
<shape_name>_... and their total number with tolerances in the range [min, max].

<Symbol> is used for specifying the kind of sub-shapes to analyze: v - for vertices, e - for
edges, f - for faces, c - for shells and faces.

5.5. Writing an IGES file
For a description of parameters used in reading an IGES file refer to 3.3.2 Setting the
translation parameters.

These parameters are set by command param:

Description Name Values

Author XSTEP.iges.header.author String

Company XSTEP.iges.header.company String

Receiver XSTEP.iges.header.receiver String

Write mode for shapes XSTEP.iges.writebrep.mode 0/Faces or 1/BRep

Measurement units XSTEP.iges.unit 1-11 (or a string value)

Several shapes can be written in one file. To start writing a new file, enter command

Draw> newmodel

Actually, command newmodel will clear the InterfaceModel to make it empty, and the next
command will convert the specified shapes to IGES entities and put them into the
InterfaceModel:

Draw> brepiges <shape_name_1> [<filename.igs>]

To write the prepared model to a file with name <filename.igs>, enter

Draw> writeall <filename.igs>

5.6. Index of useful commands

Command Description

Setting general parameters

Xtrace [#|<file>|.] View and set parameters of the trace file

Param [<param> [<val>]] View and set parameters of transfer

Reading and writing an IGES file

Xload <file> Load a file into memory

Igesbrep {<file>|.} <name> Translates an IGES file into a shape

Newmodel Start new writing

Brepiges <shape_1> [<filename.igs>] Translates a shape into an IGES model

Writeall <file> Write an IGES model in memory to a file

Checking the results of the load procedure

Using XSTEPDRAW 65

data <symbol> Get statistics on the loaded file

listitems Get list of all defined special objects like selections and
counters

count <counter> [<selection>] Count entities by counter

listcount <counter> [<selection>] Count entities by counter and list them

givelist <selection> Get a list of the subset of loaded entities defined by
selection

listtypes [<selection>] Get statistics on the types of the entities loaded

elab # Get the label of an item with a given number

enum D# Get the number of an item with a given label

entity {#|D#} Dump data loaded for a particular entity

estatus {#|D#} Get the load status of an entity and its references

Checking the translation results

tpstate [*| ?]<symbol> Get statistics on the entities converted

tplosttrim Get statistics on the lost trimmings of IGES faces (entities
143, 144, 510)

tpdraw # Get an OCCT shape as a result of translation for a given
entity

tpent # Outputs statistics of translation for a given entity

fromshape <shape> Get the source IGES entity for the specified shape

tpclear Clears the map of correspondences between IGES
entities and OCCT shapes

Analysis of loaded shapes

checkbrep <shape> <expurged_shape> Check a shape for internal errors

statshape <shape> Get statistics on a shape

tolerance <shape> Calculate tolerances for a given shape

Reading from and writing to XDE 66

6. Reading from and writing to XDE

6.1. Description of the process

6.1.1. Loading an IGES file
Before performing any other operation, you must load an IGES file with:

IGESCAFControl_Reader reader(XSDRAW::Session(), Standard_False);

IFSelect_ReturnStatus stat = reader.ReadFile(“filename.igs”);

Loading the file only memorizes, but does not translate the data.

6.1.2. Checking the loaded IGES file
This step is not obligatory. See the description of this step below in paragraph 2.3.2.

6.1.3. Setting parameters for translation to XDE
See the description of this step below in paragraph 2.3.3.

In addition, the following parameters can be set for XDE translation of attributes:

• Parameter for transferring colors:

reader.SetColorMode(mode);

// mode can be Standard_True or Standard_False

• Parameter for transferring names:

reader.SetNameMode(mode);

// mode can be Standard_True or Standard_False

6.1.4. Performing the translation of an IGES file to XDE
The following function performs a translation of the whole document:

Standard_Boolean ok = reader.Transfer(doc);

where "doc" is a variable which contains a handle to the output document and should have a
type Handle(TDocStd_Document).

6.1.5. Initializing the process of translation from XDE to IGES
Here is how the process is initialized:

IGESCAFControl_Writer aWriter(XSDRAW::Session(),Standard_False);

6.1.6. Setting parameters for translation from XDE to IGES
The following parameters can be set for translation of attributes to IGES:

• Parameter for transferring colors:

aWriter.SetColorMode(mode);

// mode can be Standard_True or Standard_False

Reading from and writing to XDE 67

• Parameter for transferring names:

aWriter.SetNameMode(mode);

// mode can be Standard_True or Standard_False

6.1.7. Performing the translation of an XDE document to IGES
You can perform the translation of a document by calling the function:

IFSelect_ReturnStatus aRetSt = aWriter.Transfer(doc);

where "doc" is a variable which contains a handle to the input document for transferring and
should have a type Handle(TDocStd_Document).

6.1.8. Writing an IGES file
Write an IGES file with:

IFSelect_ReturnStatus statw = aWriter.WriteFile("filename.igs");

or

IFSelect_ReturnStatus statw = writer.WriteFile (S);

where S is OStream

	Data Exchange
	1. Introduction
	1.1. The IGES-Open CASCADE Technology processor

	2. Reading IGES
	2.1. Procedure
	2.2. Domain covered
	2.2.1. Translatable entities
	2.2.2. Attributes
	2.2.3. Administrative data

	2.3. Description of the process
	2.3.1. Loading the IGES file
	2.3.2. Checking the IGES file
	2.3.3. Setting translation parameters
	read.iges.bspline.continuity
	NOTE

	read.precision.mode
	read.precision.val
	NOTE
	NOTE

	read.maxprecision.mode
	read.maxprecision.val
	read.stdsameparameter.mode
	read.surfacecurve.mode
	read.encoderegularity.angle
	read.iges.bspline.approxd1.mode
	read.iges.resource.name
	read.iges.sequence
	read.scale.unit
	xstep.cascade.unit

	2.3.4. Selecting entities
	List of predefined operators that can be used:

	2.3.5. Performing the IGES file translation
	2.3.6. Getting the translation results

	2.4. Mapping of IGES entities to Open CASCADE Technology shapes
	2.4.1. Points
	2.4.2. Curves
	NOTE

	2.4.3. Surfaces
	2.4.4. Boundary Representation Solid Entities
	2.4.5. Structure Entities
	2.4.6. Subfigures
	2.4.7. Transformation Matrix

	2.5. Messages
	2.6. Tolerance management
	2.6.1. Values used for tolerances during reading IGES
	3D (spatial) tolerances
	Package method Precision::Confusion
	Resolution in the IGES file
	User-defined variable read.precision.val
	Field EpsGeom of the class IGESToBRep_CurveAndSurface
	Field MaxTol of the class IGESToBRep_CurveAndSurface

	2D (parametric) tolerances
	Package method Precision::PConfusion
	Field EpsCoeff of the class IGESToBRep_CurveAndSurface
	Methods UResolution(tolerance3d), VResolution(tolerance3d) of the class GeomAdaptor_Surface or BRepAdaptor_Surface
	NOTE

	Methods Resolution(tolerance3d) of the class GeomAdaptor_Curve or BRepAdaptor_Curve

	Zero-dimensional tolerances
	Field Epsilon of the class IGESToBRep_CurveAndSurface

	2.6.2. Initial setting of tolerances in translating objects
	2.6.3. Transfer process
	Translating into Geometry
	Class IGESToBRep_BasicCurve
	Class IGESToBRep_BasicSurface

	Translating into Topology
	Class IGESToBRep_TopoCurve
	Class IGESToBRep_TopoSurface
	Class IGESToBRep_BRepEntity
	Shape Healing classes

	2.7. Code architecture
	2.7.1. List of the classes
	Package IGESControl
	Package IGESToBRep
	Package IGESConvGeom

	2.7.2. List of API classes
	package IGESControl
	package IGESToBRep
	package IGESData

	2.7.3. Graph of calls

	2.8. Example

	3. Writing IGES
	3.1. Procedure
	3.2. Domain covered
	3.3. Description of the process
	3.3.1. Initializing the process
	3.3.2. Setting the translation parameters
	write.iges.brep.mode:
	write.convertsurface.mode
	write.iges.unit:
	write.iges.header.autor:
	write.iges.header.company:
	write.iges.header.product:
	write.iges.header.receiver:
	write.precision.mode:
	write.precision.val:
	write.iges.resource.name
	write.iges.sequence

	3.3.3. Performing the Open CASCADE Technology shape translation
	3.3.4. Writing the IGES file

	3.4. Mapping Open CASCADE Technology shapes to IGES entities
	3.4.1. Curves
	3.4.2. Surfaces
	3.4.3. Topological entities
	Translation in Face mode
	Translation in BRep mode

	3.5. Tolerance management
	3.5.1. Setting resolution in an IGES file

	3.6. Code architecture
	3.6.1. List of the classes
	package IGESControl
	package BRepToIGES
	package BRepToIGESBRep
	package GeomToIGES
	package Geom2dToIGES
	package IGESConvGeom

	3.6.2. List of API classes
	package IGESControl
	package IGESData

	3.6.3. Graph of calls

	3.7. Example

	4. API for reading/writing IGES
	4.1. Overview
	4.2. Package IGESControl
	4.2.1. General description
	4.2.2. Class IGESControl_Controller
	General description
	Methods
	Constructors
	Method for performing initialization
	Method for creating IGES model
	Method for getting the actor object
	Method for translating an Open CASCADE Technology shape

	4.2.3. Class IGESControl_Reader
	General description
	Methods
	Constructors:
	Methods for dealing with WorkSession object
	Method for loading an IGES file into memory
	Methods for selecting entities to transfer
	Methods for performing translation
	Methods for printing statistics

	4.2.4. Class IGESControl_Writer
	General description
	Methods
	Constructors:
	Methods dealing with IGES models
	Methods dealing with transfer processes
	Methods for performing translation
	Methods for writing an IGES file
	Method for obtaining statistics

	4.2.5. General description
	4.2.6. Class IGESToBRep_Reader
	General description
	Methods
	Constructors:
	Method for loading an IGES file into memory
	Method for checking an IGES file
	Methods for preparing the transfer process
	Methods for translation
	Methods for fetching the results

	4.3. Package IGESData
	4.3.1. General description
	4.3.2. Class IGESData_IGESModel
	General description
	Methods
	Constructor
	Methods for initializing
	Methods for dealing with the Start and the Global sections
	Methods for dealing with IGES entities

	4.3.3. Class IGESData_IGESEntity
	General description
	Methods
	Constructors:
	Methods for initializing fields of object.
	Methods for querying the corresponding fields of an IGES entity.
	Methods for dealing with associativities and properties.

	5. Using XSTEPDRAW
	5.1. XSDRAWIGES Overview
	5.2. Setting interface parameters
	5.3. Reading IGES files
	5.4. Analyzing the transferred data
	5.4.1. Checking file contents
	5.4.2. Estimating the results of reading IGES

	5.5. Writing an IGES file
	5.6. Index of useful commands

	6. Reading from and writing to XDE
	6.1. Description of the process
	6.1.1. Loading an IGES file
	6.1.2. Checking the loaded IGES file
	6.1.3. Setting parameters for translation to XDE
	6.1.4. Performing the translation of an IGES file to XDE
	6.1.5. Initializing the process of translation from XDE to IGES
	6.1.6. Setting parameters for translation from XDE to IGES
	6.1.7. Performing the translation of an XDE document to IGES
	6.1.8. Writing an IGES file

