
Rheinisch-Westfälische Technische Hochschule Aachen

LEHRSTUHL FÜR TECHISCHE INFORMATIK

Prof. Dr.-Ing. Karl-Friedrich Kraiss

LTI Image Processing Library

Developer’s Guide

Version: 21.07.2004

LTI Computer Vision LibraryAddress

Lehrstuhl für Technische Informatik
Ahornstr. 55
52074 Aachen

ltilib@techinfo.rwth-aachen.deE-Mail

http://www.techinfo.rwth-aachen.de/WWW

http://ltilib.sourceforge.net/

Pablo Alvarado, Peter DörflerCoordinators

Der Lehrstuhl für Technische Informatik (LTI) und die Autoren übernehmen weder
implizit noch explizit Haftung irgendwelcher Art. Der Benutzer trägt sämtliche
Risiken, die aus der Verwendung der Informationen dieses Dokuments resultieren.

In keinem Fall kann der LTI für mittelbare oder unmittelbare, zufällige oder besondere
Schäden oder Folgeschäden, die aus einem Mangel der Dokumentation resultieren,
haftbar gemacht werden. Dies gilt auch, wenn auf die Möglichkeit eines solchen
Schadens hingewiesen wurde.

Der LTI behält sich das Recht vor, dieses Dokument zu überarbeiten und gelegentlich
zu verändern, ohne verpflichtet zu sein, zuvor irgendeine Person oder Organisation
über solch eine Überarbeitung oder Änderung zu unterrichten.

The Chair of Technical Computer Science (LTI) and the authors assume no responsi-
bility for errors or omissions, or for damages resulting from the use of the information
contained herein.

The LTI reserve the right to change the contents of this document at any time without
notice.

All terms mentioned in this document that are known to be trademarks or
service marks have been appropriately capitalized. Use of a term in this doc-
ument should not be regarded as affecting the validity of any trademark or
service mark.

Contents

1 Introduction 1
1.1 History . 1

2 LTI-Lib Architecture 3
2.1 Functors, parameters and states 3
2.2 Input and Output in the LTI-Lib 8

2.2.1 Example . 10
2.3 Visualization Classes . 11
2.4 Classifiers . 11
2.5 Debug and Release Versions . 12

3 C++ Programming Style Guide 13
3.1 Organisation of the data . 13

3.1.1 Version control . 13
3.1.2 File conventions . 13

3.2 Tools . 14
3.2.1 Debugging . 14
3.2.2 Optimization . 14

3.3 General programming conventions 14
3.3.1 Preamble . 14
3.3.2 Name conventions . 15

3.4 C++-Programming . 15
3.4.1 File organization . 15
3.4.2 Naming conventions . 16
3.4.3 Class declaration and definition 17
3.4.4 Type casts . 19
3.4.5 Cases . 21
3.4.6 Heap . 22
3.4.7 Text Formating . 22
3.4.8 Portability . 23
3.4.9 Forbidden language features 24
3.4.10 Templates . 25
3.4.11 Error handling . 26
3.4.12 Status monitors . 28

3.5 Creating new functors . 28
3.6 Documentation . 28

3.6.1 Documentation system 28
3.6.2 Documentation style . 29

i

Contents

4 Class Hierarchy 31
4.1 Introduction . 31
4.2 Data Structures . 32

4.2.1 Basic Types . 32
4.2.2 Vector, Matrix and Image Types 33
4.2.3 Image Regions and Contours 33
4.2.4 Sequences . 33
4.2.5 Histograms . 34
4.2.6 Pyramids . 34
4.2.7 Trees . 34

4.3 Functors . 34
4.3.1 Mathematical Operations 34
4.3.2 Filters . 35
4.3.3 Transforms and Modifiers 36
4.3.4 Other image processing functors 36
4.3.5 Input and Output . 37

4.4 Viewer and Drawing Tools . 37
4.5 Objects for multithreading . 38
4.6 Classifiers . 38

5 Download 39
5.1 Linux . 39
5.2 Windows . 39

Bibliography 39

Index 40

ii

License

Copyright (C) 1998-2004

Lehrstuhl fuer Technische Informatik (LTI), RWTH-Aachen, Germany

This documentation is part of the LTI-Computer Vision Library (LTI-Lib)

The LTI-Lib is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The LTI-Lib is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the LTI-Lib see the file LICENSE. If not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

More information can be found in the Internet:

http://www.gnu.org/licenses/licenses.html

iii

http://www.gnu.org/licenses/licenses.html

1 Introduction

The LTI-Lib encloses a collection of algorithms and data structures commonly
used in image processing and computer vision applications, developed at the
Chair of Technical Computer Science (in German Lehrstuhl fuer Technische
Informatik (LTI)), RWTH Aachen University. It is written in C++ in or-
der to allow both object oriented programming as well as efficient resulting
code. Its main goal is to provide a system independent library, adhering as
closely as possible to the ANSI C++ standards. It is intended to work on
different operating systems, but it specially supports for Linux/gcc and MS
WindowsNT/MS Visual C++ systems.

1.1 History

In the last years, several research groups at the LTI have worked on different
applications in the field of computer vision. Before 1999, all projects using im-
age processing algorithms (Sign Language Recognition, Mobile Service Robots
and Visual Information Retrieval) developed their own software and applica-
tions independently. Two typical problems arose:

1. work efforts were being wasted due to unnecessary code duplication

2. reusing code was difficult or even impossible due to the lack for stan-
dardized interfaces.

These reasons forced the design of an internal library, which has been now
used and extended for a while in all groups at the LTI . The choice to develop
a new library was based on several factors:

First, we required a C++ library that followed a consistent object-oriented
concept. This was intended to simplify the software development, enhance-
ment and maintainability. Many libraries were implemented in C, or in a
C-like C++ that was not appropriate to enhance or to adapt to our require-
ments. Others lacked a fundamental concept that could be employed in further
developments.

Second, the library should provide not only algorithms for image processing,
but also for mathematical and statistical tasks, allowing a flexible interchange
of data between all modules. Many existent libraries did not fulfill these
requirements.

1

1 Introduction

Third, some of the regarded libraries were not maintained any more, some
had no documentation at all. Commercial libraries were well documented
and had nifty rapid prototyping tools, but due to a “closed source” concept,
it would be impossible to enhance or to change existing algorithms without
reimplementing them. This last point is unacceptable for research purposes.

Fourth, very powerful and widespread tools used in research (like Matlab) can
be used to search for solutions of relatively small problems, but they showed
to be usually too slow for more complex applications or complete prototypes
involving the whole scope from image acquisition and processing to feature
extraction and classification. We usually required implementations that can
run in real-time or that involve huge amounts of data.

The creation of a new library at the LTI was not a start-from-scratch project,
due to the existence of previous code and sufficient expertise from all research
projects. At the beginning, an interface was specified and the most important
algorithms were adapted to it. The LTI-Lib has grown to more than 750 classes
(more than 350000 lines), covering image processing, mathematics, statistics,
neural networks, hardware interfaces, etc. with all objects following the same
concept. The LTI-Lib -2 project started as a natural evolution of the previous
concepts middle 2003. In these version more modern concepts can be used
as the restrictions imposed by the Microsoft Visual C++ 6.0 compiler have
been removed since the newer MS compilers (.NET 2003 and newer) are more
ANSI C++ compliant. Also, additional design changes have been done based
on the experience with the LTI-Lib -1.

The use of one library saves development time, which otherwise would be
required in re-implementing commonly used algorithms. This time can now
be invested in the development of new solutions or optimizing already existing
ones. This way, not only one developers group will benefit from improvements,
but all the users of the library. Its use increases also the code readability, due
to the fact that all, complex and simple tasks, will now follow general known
specifications. Further development or maintenance are therefore easier.

The following chapters explain the concepts behind the LTI-Lib interface, and
presents all specifications required in the program coding.

2

2 LTI-Lib Architecture

The LTI-Lib is easy to use due to the specification of a consistent program-
ming interface for all classes. The preservation of this consistency is partially
achieved through the use of the PERL-script ltiGenerator. Based on a few
rudimentary data provided by the programmer (like class name and parent
class) this script builds some template files, containing all standard definitions.
After that, only the functionality needs to be implemented. This chapter ex-
plains all basic concepts required to understand the meaning of this classes.

2.1 Functors, parameters and states

Most algorithms require parameters, i. e. user defined values that modify its
behavior. For example, the file name is a parameter of an image loader class,
or the size of a filter kernel is a parameter of a convolution algorithm. All
algorithms in the LTI-Lib are encapsulated in so called functor-classes. They
always enclose a class called parameters, that can be explicitely declared or
just inherited from the parent class.

This means, when you use the LTI-Lib you do not call some functions or
class methods with lots of confusing arguments, some meaning input data,
others the output data, and additionally a long list of parameters. A default
parameters object is usually stored within the functor class, and all methods
that provide the algorithmic functionality expect from the user only the input
data and the output objects where the results are going to be written. You
can of course change the used parameters to fit the functor’s functionality to
your needs.

The parameters of a functor have to be distinguished from its state, which
consists of all those attributes of the class that are computed during the exe-
cution of the algorithm, but are not directly provided or required by the user.
For the Motion History Images(lti::temporalTemplates) for example, the
last presented image must be kept in order to compute the next iteration. This
image is not a parameter, but a part of the functor’s state. These concepts
are shown in Fig. 2.1.

There are several reasons for an independent parameters class. You can create
several instances with different value sets and change at once the functionality
of your functor with a simple setParameters(). You can load and save your

3

2 LTI-Lib Architecture

Functionality

Parameter

Functor

State

User

Input Data

Output Data

Configuration

Serializable (read/write) Serializable (read/write)

Figure 2.1: Architecture of a functor. The user can change the behavior of
the functor through the parameters. The functor can also have a
state, that eventually (like the parameters) can also be saved.

parameters object in a file, or can give it to a graphical user interface where
the user can choose between several values.

The parameters contain values directly specified by the user and they should
not be modified by the functor. If a programmer thinks his/her algorithm
must change a parameter, this is just a sign that this parameter should be
copied somewhere else at the beginning of the algorithm, like a local variable
or a state variable (an attribute of the functor class).

An usual question is: why do I need to call the method getParameters() to
get the parameters instance? would it not be faster if each functor-class had
its own parameters instance that it could use directly?

The answer relies partially on memory management issues. It would be very
expensive if all classes in the functor hierarchy would have their own in-
stance of the parameters, because all inherited parameter attributes would
be present several times. With the functor hierarchy shown on the left side of
Fig. 2.2 an instance of the functor lti::optimalThresholding would have
two parameter objects: the one of its own with five attributes (precision
and the five attributes of the parent class) and the parameters-instance of
lti::thresholdSegmentation with its four attributes. In other words, the
four attributes of the parent class are present twice!

To avoid this problem, there exist just one instance of the parameters in the
functor class. Each class casts this instance to the proper parameters type
using the overloaded method getParameters().

Another important reason for the use of just one parameters-instance in the
functor class appears when the inherited class calls methods of the parent
classes, the later ones could not see the proper parameters-instance but only
the own one, which could contain other values than those specified by the user.

4

2 LTI-Lib Architecture

float precision;

class parameters

float inRegionValue;
float outRegionValue;
float highThreshold;
float lowThreshold;

class parameters

class parameters

class thresholdSegmentation

class functor

private:
parameters* param;

class functor

class parameters

class optimalThresholding

class segmentation

const parameters& getParameters() const;

const parameters& getParameters() const;

const parameters& getParameters() const;
bool setParameters(const parameters&);

class thresholdSegmentation

parameters param;

float inRegionValue;
float outRegionValue;
float highThreshold;
float lowThreshold;

float precision;

class optimalThresholding

parameters param;

class parameters

class parameters

class segmentation

Figure 2.2: Example for the functor hierarchy: on the left side the naive way
with several parameters-class instances (this implies a very inef-
ficient memory management). On the right side the LTI-Lib way
with just one parameters-class instance.

5

2 LTI-Lib Architecture

The functionality of a functor is always accessed by its methods apply. They
expect input data, (usually constant references to objects like matrices or
images), and references to output objects (references to containers where the
result is written). Functors also provide the so called shortcut-methods that
simplify the use of specific functionality. For example, to load an image file,
the image loaders provide the shortcut load that expects the file name and the
image where the result should be left. Otherwise, you would require to create
a parameters object, set there the filename, give this parameters-instance to
the functor, and at last call the apply method:

// an image
lti::image img;

// functor to load images in Windows BMP format:
lti::loadBMP loader;

// parameters for the loader
lti::loadBMP::parameters loaderParam;

// the file to load
loaderParam.filename = "testimage.bmp";

// load the image into img
loader.setParameters(loaderParam);
loader.apply(img); // load the image!

It is much easier and comfortable to employ following shortcut:

// an image
lti::image img;

// functor to load images with Windows BMP format:
lti::loadBMP loader;

// load an image
loader.load("testimage.bmp",img);

All functors must nevertheless provide an interface based on a parameters-
object and apply-methods, in order to provide complex higher-level applica-
tions a uniform way to access the functionality of the functor.

Within the apply methods you can avoid an unnecessary copy of the
parameters-instance getting a constant reference to them, for example:

/*

6

2 LTI-Lib Architecture

* apply method for myFunctor. Do something on the src vector and
* leave the result in the dest vector.
* @param src the input vector
* @param dest the output vector
* @return true if successful, false otherwise
*/
myFunctor::apply(const vector<double>& src, vector<double>& dest) {

// Get a const reference to the functor parameters
const parameters& param = getParameters();

// use the parameters to do something, assuming you have
// an attribute called "justCopy" in the parameters
if (param.justCopy) {
dest.copy(src)

} else {
// do something else ...

}

return true;
}

Please remember, the parameters should never be changed within the apply-
methods:

bool myFunctor::apply(...) {

...

const parameters& param = getParameters();

param.justCopy = false; // is not possible, param is const!

// you should NEVER EVER do something like this:
const_cast<parameters*>(¶m)->justCopy = false;

// do something like:

// a local copy of the parameters’ attribute
bool justCopy(param.justCopy);

justCopy = false; // the local copy may be changed!

...
}

There exist just one getParameters-method and it returns a constant refer-
ence to the parameters-instance, this due to the fact that the parameters must
not be changed by the functor.

7

2 LTI-Lib Architecture

As mentioned above, the functor may provide some shortcuts that allow chang-
ing specific parameter values. These methods, of course, should not be called
within the apply methods.

Besides the parameters, a functor may have a state, where it stores in-
formation irrelevant for the user but necessary for later computations.
An example for a functor with separated state and parameters is the
lti::principalComponents object. Here you find a parameter autoDim
which indicates that another parameter resultDim should be detected auto-
matically. In the apply method this last value is not changed. The computed
transformation matrix is part of the functor state, which can be used later to
transform other vectors. This matrix is not something that the user can give
directly, but can be saved and loaded with other parts of the functor’s state
(this is done when you load or save the whole functor).

All functors with a state relevant for later computations can be saved and
loaded, i. e. they overload the methods read and write.

2.2 Input and Output in the LTI-Lib

WARNING: Some redesigning of the IO-Handlers concept is taking place in
the LTI-Lib-2, which may conduce to more or less radical changes in the near
future.

Serializable objects in the LTI-Lib (i. e. objects that can be written or read
from disk) never directly use std::fstream objects. The main reason is that
we need to provide a way to support different file formats at the same time.
The desired file format is determined through a so called lti::ioHandler.
At this time there are two file formats. A Lisp-like one writes or reads ASCII
strings in or from a given stream, where different scopes are delimited with
parenthesis. A binary format produces shorter files and is faster to be read or
written, but can not be edited by hand.

A uniform way to load or save LTI-Lib -objects and internal types (int, float,
double, std::string, etc.) is provided through four global functions that
passes them properly to a given ioHandler. These are:

bool lti::write(ioHandler& handler,
const T& data);

bool lti::read(ioHandler& handler,
T& data);

bool lti::write(ioHandler& handler,
const std::string& name,
const T& data,

8

2 LTI-Lib Architecture

const bool complete=true);

bool lti::read(ioHandler& handler,
const std::string& name,
T& data,
const bool complete=true);

The first two functions write or read the contents of an object of type T in
or from the given ioHandler. The third and fourth methods write the data
together with a name that identifies this object. To read the data, the given
name must match the one used as the data was saved.

With a handler of type lti::lispStreamHandler following lines

lti::write(handler,"a",5);
lti::write(handler,"b",9);

produce the following output in the output stream associated with the handler:

(a 5)
(b 9)

The parenthesis around each line can be left out if the fourth parameter of
the functions (complete) is set to false. Note that the default value for this
parameter is true.

The lti::lispStreamHandler can find an object using its name:

int x,y;
lti::read(handler,"a",x);
lti::read(handler,"b",y);

After these lines it applies x==5 and y==9. Some ioHandler (for example
binaryStreamHandler) require that the read order matches the one used
when writing. If this is not true, the read methods will return false. Other
ioHandler (like lispStreamHandler) search for the data using the given name
as key, so that you can use a different reading order. Following lines would
also result in x==5 and y==9:

int x,y;
lti::read(handler,"b",y);
lti::read(handler,"a",x);

The ioHandler concept makes it possible to define new file formats without
requiring to reimplement all read and write methods of the LTI-Lib -classes.

9

2 LTI-Lib Architecture

Due to the fact that the read and write methods use a rigorous syntax, it is
also relative simple to parse the files.

Please note that the variables used in the previous examples could also have
any other type defined in the LTI-Lib . All numerical standard types (int,
double, etc.), the Standard Template Library (STL) types std::vector,
std::list and std::map (if you include the file “ltiSTLIoInterface.h”)
and the most LTI-Lib functors, parameters and data structures can be serial-
ized.

2.2.1 Example

How can I save and load some parameters in my program?

// ltilib functors and their parameters
lti::csPresegmentation segmentor;
lti::csPresegmentation::parameters segParam;

lti::orientationFeature orientor;
lti::orientationFeature orientParam;

// ... initialize the parameters ...

// how can we write the parameters in a file named "param.txt"?
lti::lispStreamHandler handler; // the stream handler
std::ofstream out("param.txt"); // the std::fstream used

// if the output stream is ok, write the data
if (out) {
// the handler have to write the data using the stream "out":
handler.use(out);

// write the parameters:
lti::write(handler,"orientParam",orientParam);
lti::write(handler,"segmentParam",segParam);
lti::write(handler,"anInteger",5);

}

// how can we read the data from "param.txt"?
std::ifstream in("param.txt");

if (in) {
int x;

handler.use(in);

// read the data

10

2 LTI-Lib Architecture

lti::read(handler,"orientParam",orientParam);
lti::read(handler,"segmentParam",segParam);
lti::read(handler,"anInteger",x);

}

2.3 Visualization Classes

Not everything in an image processing or computer vision library can be con-
sidered as functor. Examples for this are the so called drawing and visualiza-
tion objects.

Drawing objects does not execute one algorithm. They provide different tools
to draw simple geometric constructs on images or other output media. To
use a drawing object you need to provide it with your canvas, i. e. you need
to specify the image where you want to draw. This is done with the method
use. After that, you can choose the color you want to use with the method
setColor. All lines, circles or points you draw after this, will be painted using
the given color.

Following example draws a circle and a line on a color image:

lti::image img(256,256); // our canvas

lti::draw<rgbPixel> drawing; // drawing tool

drawing.use(img); // where should "drawing" paint on?
drawing.setColor(lti::Blue); // Blue color
drawing.circle(lti::point(128,128),

20,true)); // filled circle, radius 20
drawing.setColor(lti::Red); // Red color
drawing.line(10,10,128,128); // A red line

Viewer objects do not modify any data, but provide simple ways to visualize
them. The presentation of the data persists as long as the viewer object exists.

You can show the previously drawn image with following code:

lti::viewer viewer("This is art"); // our viewer object
viewer.show(canvas); // show our master piece
getchar(); // just wait

2.4 Classifiers

Other important object classes that do not fit into the functor paradigm are
the classifiers. They provide methods to learn from data and to use the learned

11

2 LTI-Lib Architecture

information to analyze new data. There are different interfaces for the super-
vised and unsupervised classifiers. Both types can be categorized into instance
classifiers that learn single vectors (like traditional neural networks) and se-
quence classifiers that also considered time aspects (like the Hidden Markov
Models).

In the LTI-Lib all classifiers deliver the results using the same data structures
lti::classifier::outputVector, so that the processing of their results does
not depend on the specific classifier used.

2.5 Debug and Release Versions

The LTI-Lib has to provide very efficient methods and functions, and also
ways to find programming errors comfortably. The design paradigm frequently
used with MS Visual Studio has been adopted. There are debug libraries and
release libraries. The former are usually slower because of many boundary
checks. The latter is used in the final programs. It is assumed that in the
debugging process all possible errors have been fixed, and some unnecessary
checks are not done, implying faster code. The debug libraries are postfixed
with a d and the release libraries with a r.

12

3 C++ Programming Style Guide

The Programming Style Guide provides several necessary rules to keep a clean
and consistent development environment. Through this rules it is easier for a
developer to find his way in the code, even if he is not the original author.

The main goal of the LTI-Lib is to provide a system independent library, which
follows as much as possible the ANSI standards. The system should work on
different Unix-Platforms and on Windows, but it is specially maintained
for Linux and WindowsNT machines. To achieve this, strict programming
discipline is required. System dependent “tricks” are not allowed.

In those cases where is not possible to write system independent code (for
example, due to direct hardware access), the platform dependent parts must
be isolated in the smallest possible units. An access class have to be specified,
which provides access to all special supported operations. No direct platform
dependent access is allowed.

3.1 Organisation of the data

3.1.1 Version control

All code files will be administrated using a CVS-database. The repository
will be on the CVS-Server. A few hints to use CVS are available. There
are many graphic front-ends to simplify the use of this version control sys-
tem, like WinCVS for Windows (http://www.wincvs.org/) or Cervisia
for Linux/KDE (http://cervisia.sourceforge.net/).

Each developer should not forget to comment its changes when committing
into the repository. To avoid confusion, he/she should try to get only one copy
of the LTI-Lib (for the CVS-Server there is no problem, but some developers
have lose some work because they did changes somewhere else...).

3.1.2 File conventions

• Header files have always the extention .h.

• Source files have always the extention .cpp.

13

http://www.wincvs.org/
http://cervisia.sourceforge.net/

3 C++ Programming Style Guide

• Different words in a file name are written together, and each word (except
the first one) must begin with an uppercase letter. The first word must
be lti. Examples: ltiFunctor.h ltiLinearFilter.h

• Files which contain implementation for inline or template methods or
functions must be clearly denoted with template or inline. For ex-
ample ltiMatrix template.h (see also section 3.4.10).

3.2 Tools

3.2.1 Debugging

Search your bugs with a Debugger. On Windows NT you can use the MS
Visual C++-Debugger. On Linux there are many front-ends for the GNU-
Debugger gdb, like xxgdb, kdbg and ddd. A class must work without prob-
lems before it is integrated in the rest of the LTI-Lib . To test your new functors,
you can use the tester project provided with the library.

Other commercial products like Purify can help searching for memory prob-
lems like memory leaks or outer-bounds access of arrays.

If a program crashes, it usually helps to catch the lti::exceptions and ask
their content with the method what()) (see also section 3.4.11). It also helps to
check if the called apply() or other functor methods return false, and in that
case the cause of the problem can be checked with the getStatusString()
method.

3.2.2 Optimization

Try to implement efficient code, but in a way that it remains maintainable.
You can use gprof or the MS Visual C++ profilers to detect the critical
parts of your code, which may require special attention by optimization.

3.3 General programming conventions

3.3.1 Preamble

Each violation to the programming conventions must be documented. It is not
always possible to respect all conventions. There are even cases where they
are contradictory and following one will violate another. Each case have to be
studied separately to decide which solution makes more sense. Discuss these
cases with other LTI-Lib developers.

14

3 C++ Programming Style Guide

3.3.2 Name conventions

The names of classes, methods, functions and variables must always make
sense. They all must be in English. Comments must be also in English.
These way, your code can be understand all around the world.

3.4 C++-Programming

C++ was chosen as the main language for the LTI-Lib because it is possible
to efficiently implement time and memory intensive algorithms (which are
common in computer vision) without sacrificing code maintainability and using
modern object oriented approaches. It is also important to know where to
look up for information. There are two helpful books : [2] is a very good
introductory book for C++ and [5], in which almost everything about C++
can be found, even if it is sometimes difficult to find.

3.4.1 File organization

• each file with source code begins with a comment including information
about the file, like licence conditions, filename, authors, creation date,
etc. If a special comment is present (see $Id in the next example), cvs
automatically enters some information in the file history:

/*--
* project: LTI Digital Image/Signal Processing Library
* file: ltiThread.h
* authors: Thomas Rusert
* organization: LTI, RWTH Aachen
* creation ...: 03.11.99
* revisions ..: $Id: ltiThread.h,v 1.6 2003/02/17 07:17:01 author Exp $
*/

• you should avoid multiple inclusion of header files:

#ifndef HEADER_FILE_NAME_H
#define HEADER_FILE_NAME_H
...
#endif

• each class definition required in other header or implementation files,
must have its own header file.

• header files of the LTI-Lib must be included with #include "filename",
system files with #include <filename>.

• cyclical #includes have to be avoided.

15

3 C++ Programming Style Guide

• each function has to show a comment documenting the interface and
the functionality of the function or method. The comment format must
follow the Doxygen style.

3.4.2 Naming conventions

All LTI-Lib declarations must be done within the namespace lti, except those
members which extend other libraries (like Standard Template Library (STL)).

• names of data types, structs, classes, typedefs, enums, functions and
methods begin with a lowercase letter. Only the enum constants and
the template parameters begin with an uppercase letter.

• the name of enumeration types have to begin with the lowercase letter ’e’
(for example eBoundaryType). The constants of the enumeration have
to begin with uppercase letters (e.g. Mirror, Periodic).

• names with more than one word are written without separators, and each
word (except the first one) must be written in uppercase. For example
linearEquationSystemSolutionMethod. The only exception are the
type names used in template classes to designate different properties of
template parameters. This can be done to keep some concordance with
the STL. For example in matrix<T>, the type of T can be accessed
through the value type type. In case of doubt, prefer the LTI-Lib
standard (thisWay instead of this way). In other words, underscores
should only be found a very few times in template classes.

• names must not begin with an underscore ().

• use names that make sense (not mIn for maxIndex)

• use C++ comments //. Comments used for documentation generation
with Doxygen, must follow the Doxygen conventions, i. e. begin with
/**, end with */. In documentation comments with multiple lines, each
line must begin with ’*’. See also section 3.6.

• names must sufficiently differ. Differences in lowercase or uppercase
letters only lead usually to confusion.

• protected and private attributes must have a trailing underscore, to make
it possible in the implementation of class methods to differentiate be-
tween local variables and the internal attributes.

• precompiler macros (which, by the way, have to be avoided in the pro-
gramming context) are written completely in uppercases and must have
an “ LTI ” prefix. Several words are separated here with underscores.

16

3 C++ Programming Style Guide

Table 3.1 summarizes the naming conventions in the library. Please avoid the
use of other conventions (especially the m {type} conventions, you can read
the reasons in [1]).

Table 3.1: Naming Conventions in the LTI-Lib
C++ Item Name convention
class, struct, union theClassName
inner type inner type
public attribute publicAttribute
protected attribute protectedAttribute
private attribute privateAttribute
class method classMethod()
public method getClassAttribute()
for access to inner attributes classAttribute()
public method seekSomething()
for complex computations searchSomething()

findSomething()
computeSomething()
generateSomething()
calculateSomething()

enum eEnumType
constant in enum ConstantInEnum
macro name LTI MACRO NAME

3.4.3 Class declaration and definition

Visibility sections

• The order for the visibility sections in class definitions must be:

1. public

2. protected

3. private

• friend declarations are not allowed! The only valid exception is if a class
needs access to protected attributes of enclosed classes (like iterators).
Otherwise the class design must be revised.

• methods should not be defined in the class declarations, i. e. in the header
file there should not be any code implementation. Template and inline
functions should be implemented in inline.h or template.h files,
which are appended using #include. Due to a bug of MS Visual
C++(version 6.0), the implementation of enclosed classes of a template

17

3 C++ Programming Style Guide

class or template methods must be done directly in the class declaration.
This is one of the reasons why the LTI-Lib-2 cannot be compiled with
this older compiler. (see also section 3.4.10)

Methods and global functions

• global functions are not allowed (except for general tools like minimum,
maximum or general mathematical functions like sin(), cos(), tan(), etc.)

• a method that does not change the state of an object must be declared
as const. These are for example methods to access the value of some
protected attributes.

• classes with attributes must define a copy-constructor and a copy mem-
ber. These receive as parameter a const reference to an object of the
same type. The documentation must specify, if these methods do a deep
copy or a shallow copy (i. e. if the class contains pointers, if the whole
pointed data are copied, or only the pointers.) In the LTI-Lib almost
every copy method and copy constructor do a deep copy.

• classes that allocate data with new must define the operator ‘=’, which
also receives a const reference to an object of the same type.

• methods and functions which do not change the contents of the param-
eters, must declare them as const. This means, the “input” parameters
for a method should always be declared as const.

• classes with virtual functions and own attributes must declare the vir-
tual method clone(), which have exactly the same interface than the
clone() method of the parent class. These method looks as follows:

rootClass* Foo::clone() const {
return new Foo(*this);

}

• classes with virtual methods must have a virtual destructor.

• a public method must not return references or pointers to local vari-
ables, even if these variable are declared static. The reason for this
restriction is that in multi-threaded programs this can cause crashes of
unpredictable behaviours if parallel accesses takes place.

• a public method must not return references or pointers to protected
attributes, except if the returned values are declared const.

• variable argument lists (...) in function definitions are not allowed, due
to the lack of type checking possibilities. You can overload methods to
provide the desired functionality.

18

3 C++ Programming Style Guide

• the names of the arguments must be the same in the declaration and
definition of functions and methods. The names of the arguments must
be self explanatory.

• the returned value of a function or method must be given explicitely.

• The methods in classes should provide one of following name conventions:

– Methods with a name beginning with get or the direct attribute
noun do not make expensive computations. For example, size()
in the LTI-Lib is never as expensive as the size() methods in STL
containers.

– If a method returning a scalar value requires some computations
to produce the desired result, the method should be prefixed with
compute, calculate or search. For example searchMaximum()
seeks the maximum value in a container.

Constants and variables

• Declare constant values with const or enum instead of #define.

• Do not use “magic numbers” in your code (int value = 0x42).

• Declare your variables in the smallest possible scope (if this does not
affect considerably the efficiency of your program!).

• Initialize your variables before their first use (otherwise you will get
megabytes of warnings from tools like Purify or Valgrind without
any logical reason).

• Due to the fact that pointer operations are always one of the most usual
error sources, try to use references instead. If you allocate some memory,
check your code for memory leaks.

3.4.4 Type casts

• Type casts in C-style are not allowed!(new=(NewType)old). C++-Casts
must follow following conditions:

– with polymorphic classes, it can be necessary to cast a static type
into a dynamic one. This can be achieved using dynamic_cast.
This way type checking will take place at compilation time and at
run time, to ensure that the used types are compatible:

class A {
};

19

3 C++ Programming Style Guide

class B: public A {
};

class C {
};

A a1,*a2,*a3;
B b1,*b2;
C *c2;
a2=&b1; // a2 has dynamic type B
a3=&a1; // a3 has dynamic type A
b2=dynamic_cast<B*>(&a2); // Ok, notNull(b2)
c2=dynamic_cast<C*>(a2); // Error at compile type:

// Types not compatible
b2=dynamic_cast<B*>(a3); // b2 is Null!, because B is

// not the type of a3

– if you cannot avoid it (for example using some system functions)
you can replace an old C-case with

new=reinterpret_cast<NewType>(old)

This is though one of the most dangerous error sources. The use of
the C++ cast emphasises when reading code, that the real type of
a variable is just being ignored.

C cast are not allowed due to the fact that they are not type secure,
and the LTI-Lib follows a strong type security philosophy.

– the secure type conversion between static types, which cannot be
implicitly casted, can be done in C++ with static cast. The
compiler can decide if a type conversion is allowed or not. For
example:

float f;
double d;

d = f; // valid
f = d; // not valid
f = static_cast<float>(d);// valid

static castis also used in the LTI-Lib to solve conflicts between
signed and unsigned types. For example:

// compare the sizes of an lti::vector and a
// std::vector
lti::vector ltivector(5);
std::vector stdvector(6);

20

3 C++ Programming Style Guide

if (ltivector.size() ==
static_cast<int>(stdvector.size())) {

...
}

or if this comparison is not in a time critical section of your code,
this slower version can be used:

// compare the sizes of an lti::vector and a
// std::vector
lti::vector ltivector(5);
std::vector stdvector(6);

// use the integer constructor to convert the
// unsigned type into a signed int
if (ltivector.size() == int(stdvector.size())) {
...
}

– the last example shows the other C++ alternative to cast types
using constructors. For example:

float f;
int i;

i=5;
f = float(i); // float constructor receives an

// int parameter

This possibility must be considered carefully, because it can be very slow
depending on the used compiler.

• use 0 instead of NULL. To check pointers if they are 0 or not, use the
predicates isNull or notNull. You can use isZero or notZero to check
integer variables.

• Never ever use const_cast. This is confusing due to the fact that some-
thing declared const must remain const, and should not be changed by
the code.

3.4.5 Cases

• each case-label must end with a break-statement.

• A switch-statement must have a default-option, which handles the
unknown cases, even if this cases does not exist. This is just a measure
for prevention of future bugs.

21

3 C++ Programming Style Guide

• also the default-label must end with break.

3.4.6 Heap

• the C-library functions malloc, realloc, free, etc. should not be used.
Use new and delete instead.

• to free the memory of arrays use delete[].

• after deallocating a memory block, set the pointer to 0.

• functions that allocate some memory must take care of freeing it at the
end.

• check always if a pointer is valid before you use it (except if you are
absolutely sure that it is valid). For example:

myPointer=comingFromSomewhereElse();
if (notNull(myPointer)) {

doSomething(myPointer);
} else {

throw lti::exception("Oooh, missing pointer");
}

• due to the fact that pointers are the most common error sources, you
should try to work with references instead. You should always check
after possible memory leaks, if you really need to use pointers.

3.4.7 Text Formating

An appropriate text formating scheme alleviates the maintenance and further
developing of existing code. It is also helpful in order to keep the code overview.
Following rules have shown their usefulness in practice:

• Use a two-spaces indentation. Almost all modern text editors allow you
to set the width of a tab, and if it should be replaced with spaces. Please
use this options. Your code should never contain tabs, because they may
seem to be all right for you, but for other users they will not.

• Function names, their return type and their parameters should be in the
same line:

void myFuncName(int param1, int param2);

• if the number of parameters is two high, and they do not fit in one line,
try to give one parameter per line:

void myFuncName(const int& paramArraySize,

22

3 C++ Programming Style Guide

const lti::vector<float>& paramArray,
lti::class& className);

• all control flow primitives (if, else, while, for, do) must be followed
by a complete block, even if they consist in just one line:

if (pValue == 0) {
executeFunction();

}

for (int members = 0; members[i] < maxMembers; members++) {
// loop stops, if maxMember value reached

}

• the opening brace must stay exactly after the statement (and not at the
new line). The closing brace at the end should be at the same indentation
level than the statement.

• in the declaration or definition of pointer variables or references, the *- or
&-operators must stay after the data type. I. e. char* p instead of char
*p. The reason is that C++ is a strong typed language, and the type of
p is a pointer to char. To declare more than one pointer/reference use
one line per variable, or define previously a type with typedef.

• before and after ., -> and :: there should not be any spaces.

• All methods and declarations should be printable in a DIN A4-Page (i. e.
less than 70 lines). Lines should not be longer than 80 chars. Source
files should not have more than 1000 lines.

• the priority for the application of operators should be explicitely given
using parenthesis, in those cases where it can be ambiguous.

Some helpful tips for coding, that can also be applied to C++ can be found
in [3].

3.4.8 Portability

Many programming errors are noticed just when the code is compiled using
another compiler or another operating system. Following tips should help
writing portable code:

• do not make any assumptions about the size of data types. The ANSI-
Standard specify only:

sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

• Variables should never be declared as unsigned, even if their values
never become negative. Exception to this rule is when the complete

23

3 C++ Programming Style Guide

value range of an unsigned variable is required (for example the coding
of RGBα-values in a 32-bit int variable). In these cases the unsigned
must be explicitely given. In those situations where unsigned variables of
other libraries (like STL) need to interact with the LTI-Lib you should
use the static cast-operator instead of the C-Cast method in order
make assignments or comparisons.

• a pointer does not have always the size of an integer sizeof(int)!

• type casts between signed/unsigned must be done explicitely.

• do never make assumptions about the size or location of data in memory
(for example the number of bytes of a structure).

• the evaluation order of the operands in an expression should not be as-
sumed. The only exceptions are boolean functions: in a && b or a || b
a is evaluated first. Depending on its value, b is evaluated or not.

• do not replace arithmetical operation with shift operations (this should
be done by the compiler). If you cannot avoid this, use comments to
denote the semantic of the shifts.

• avoid use of pointer arithmetic.

• be aware of the endianness when reading or writing bytes in files. (Big-
/Little-Endian).

• do not ever use MFC special classes, like CList, CString, CPtrList
(they are only available for MS Visual C++). Use instead standard
data structures of the Standard Template Library (Standard Template
Library) (std::list, std::string, etc.)1

3.4.9 Forbidden language features

Following reserved words or language constructs are not allowed in the LTI-Lib .

• goto

• Trigraphs

• functions without proper declaration

• variable argument lists

• friends (see also 3.4.3)

• Old C header files like <stdlib.h>, <math.h>, <stdlib.h>. Please note
that for all this headers an equivalent C++ one exists:

1Documentation for the Standard Template Library can be found in [4].

24

3 C++ Programming Style Guide

C (don’t use) C++ (ok)
<assert.h> <cassert>
<ctype.h> <cctype>
<errno.h> <cerrno>
<float.h> <cfloat>
<limits.h> <climits>
<locale.h> <clocale>
<math.h> <cmath>
<setjmp.h> <csetjmp>
<signal.h> <csignal>
<stdarg.h> <cstdarg>
<stdio.h> <cstdio>
<stdlib.h> <cstdlib>
<string.h> <cstring>
<time.h> <ctime>

You should avoid specially the use of old deprecated stream files like
<fstream.h>, <iostream.h>, etc. The LTI-Lib use the standard files
(e. g. <fstream> or <iostream>) combining them with the old depre-
cated ones leads usually to unpredictible behaviour!

3.4.10 Templates

Templates are sort of komplex strong-typed macros. With them you can write
code for which the types of variables or function parameters are still unspec-
ified. When you use your template classes or functions you will explicitely
give the type (or types) for the variables you left “untyped”. Templates are
extensively used for example in the Standard Template Library (STL).

If you use templates, you should know that

• no C++ compiler has 100% support for templates.

• templates behave sometimes like macros, with all known problems (an-
noying compiling errors, lots of code duplication and replication).

They have however as advantage, that if properly used the code can be im-
plemented in a very efficient manner. Due to the speed requirements in image
processing, templates are used extensively in the LTI-Lib .

For an efficient and clean implementation of code using templates, the ANSI
C++ standard specifies the statement export [5]. MS Visual C++and GCC
do not support this feature. Do not forget this when creating new functors for
the LTI-Lib .

25

3 C++ Programming Style Guide

3.4.11 Error handling

C++ provides many possibilities to deal with errors. In the LTI-Lib you must
follow following conventions:

assert

Assertions are considered by the compiler in debug mode only. They inform
the programmer about critical errors in code, that should NEVER happen,
e. g. outer bound access to matrices or other container classes.

In release versions all assert statements are ignored. If an error like the
one mentioned before is not fixed, the program will crash without giving any
information. Please debug your code using the debug version. In order to
avoid crashes in bigger software systems that use the LTI-Lib , you should
NEVER report usual errors in apply methods using assertions. For this task
you should implement a defined behavior for the functor (see below).

exception

Exceptions can be used in those cases where multiple errors are possible (e. g.
during file access: file does not exist or invalid file format). The constructor of
the class lti::exception will expect a string with a short description of the
problem. You can of course inherit from this class if you think it is convenient.
The most common use for exceptions is to report hardware problems, which
can require special treatment to recover, or where a specific state must be
warranted, even when error occur.

All functor classes in the LTI-Lib throw an lti::exception if the parameters
are requested but not set, or when the parameter type is wrong.

An example for the use of exceptions:

// channels
lti::channel inputChannel, outputChannel;
// a convolution operator
lti::convolution convolver;
// initialize the convolution operator
// ... user sets the parameters here
// try to convolve
try {

// try to convolve the inputChannel with a kernel
// given by the user
convolver.apply(inputChannel,outputChannel);

} catch (lti::functor::invalidParametersException& exc) {

26

3 C++ Programming Style Guide

// some error occured with the parameters
std::cout << "Do not forget to set the proper parameters!"

<< std::endl;
// recover from the error
outputChannel.clear();

} catch (lti::exception& exc) {
// some unexpected error occured
std::cout << "Error in convolver: " << exc.what()

<< std::endl;
// recover from the error
outputChannel.clear();

}

// don’t know what to do with all other errors, they should be
// catched by the enclosing scope
}

If you don’t use the try-catch blocks, all thrown exceptions will arrive en-
closing scope (the calling function).

A nice introduction to exceptions can be found in [5].

Defined error behavior

This should be the error handling method of preference for all functor apply-
methods. If two images with different sizes are given to a functor which expects
images with the same size, the functor should not crash or throw an exception.
It just needs to return false or an invalid result, that can be checked by the
calling functions.

For all those not critical error, which are usually caused by a wrong usage of
functions and classes, please follow these rules:

On-Copy apply The returned data objects should be reset (e. g. with clear() for images,
matrices and vectors) or should return an invalid value (e. g. the result of
a distance computation, which should be always positive, can be in case
of error negative). These special error conditions must be documented.

On-Place apply The input/output parameters should not be changed.

The apply-methods return a boolean with the value true if everything worked
fine and false if a error occurred. Within the methods of the functor
class you can use setStatusString() to report the cause of an error. The
user can check the returned boolean value if there was a problem and get
getStatusString() to determine the cause of the problem.

27

3 C++ Programming Style Guide

3.4.12 Status monitors

If an error occurs in a functor, classifier or other computationally expensive
LTI-Lib object, the failing method can report the error through the functor’s
status string. Internally, the functors will set a status string with messages
that indicate what went wrong, and the user can obtain those strings using
the method getStatusString(). You can additionally configure the behavior
of the whole library with objects inherited from lti::statusMonitor, which
will additionally provide the chance to print out the errors as soon as they
occur, to always throw and exception if you wish so, or, the default behavior,
to do nothing.

3.5 Creating new functors

All functors in the LTI-Lib have a common framework. The PERL-Script
ltiGenerator (to be found in ltilib/tools/perl/) provides a simple way
to create this class frame. You just need to fill out some fields in the text file
ltiTemplateValues.txt and then call the script.

The expected values in ltiTemplateValues.txt are:

classname the name of the new class.

parentclass the name of the class from which the new class will inherit.

author the author (or authors) of the class.

date (Optional) creation date (if leaved empty, the current date will be taken).

includes (Optional) A comma separated list with all header files required.

filename (Optional) The name of the file where this class should be found. If
left empty, the name will be automatically created from the class name,
following the naming conventions of the LTI-Lib .

parameters The list of parameters. Of course you can add later new parameters man-
ually. You just need to update the code in the parameters constructor
and in the methods copy, read and write.

applytype The initial parameters types for the apply-methods.

3.6 Documentation

3.6.1 Documentation system

You can find the online-documentation under

28

3 C++ Programming Style Guide

http://ltilib.sourceforge.net/doc/html/index.html

This will always correspond to the latest released version. It will be created
using the comments in the header-files of each class and the file ltiDocu.h in
ltilib/doc/src/. The documentation system Doxygen is used for this task
(for detailed information see [6]).

Important is to notice that doxygen comments begin with /** and end with
*/.

/**
* This is how a comment should look like
*
* All doxygen commands start with \ or @ (e.g. \param).
* Use % to avoid, that the following word gets linked.
*/

3.6.2 Documentation style

The documentation of all classes must be written in English. It must contain a
brief description, and a detailed explanation with all relevant information like
references to literature with theory to the implemented algorithms. All meth-
ods and attributes of the classes must also be documented. For all attributes
of the parameters-classes you have to give the used default values.

The brief and detail descriptions must begin with an uppercase letter.

Example:

• Classes

/**
* Computes the optical flow between two consecutive images
* according to Horn-Schunks gradient based method. ...
*
* Theory: "The Computation of Optical Flow", Beauchemin
* & Barron, ACM Computing Surveys, Vol.27 No. 3
* Algorithm: "Computer Vision", Klette, Schluens &
* Koschan, Springer, pp.190
*/

• Methods

/**
* Computes the optical flow for the given sequence of images.
* @param theSeq The sequence of images, which must have at least two elements.
* @param mag magnitude of the optical flow

29

3 C++ Programming Style Guide

* @param arg angle of each optical flow vector.
* @return true if successful, false otherwise.
*/
bool apply(const sequence<images>& theSeq,

channel& mag,
channel& arg) const;

• Attributes

/**
* Number of iterations. iterations = 1,2,...
*
* Default value: 100
*/
int iterations;

Of course you should also comment your source code, so that other program-
mers can work on it, but the sources are not going to be parsed by Doxygen.

30

4 Class Hierarchy

All Objects in the LTI-Lib are in the namespace lti. The basis class in the
LTI-Lib is object.

The classlti::mathObject is the parent class for many aggregate classes, like
vectors and matrices. Most algorithms in the library operate on this kind
of data. lti::functor objects implement the algorithms. lti::exception-
objects inherit from std::exception, which are thrown in case of critical
errors.

The basic types in the LTI-Lib are listed in Table 4.1 (all of them defined in
namespace lti).

More details on these and other classes can be found in the Doxygen documen-
tation of the library or in http://ltilib.sourceforge.net. Next sections
provide an short overview of the documentation there1.

4.1 Introduction

The LTI-Lib is a collection of algorithms and data structures frequently used
in the image processing.

1Please note that this section is not at all up-to-date. Only the online documentation
contains the actual functors, which are many more that the ones listed here. The goal of
these paragraphs is only to provide a fast overview of the main topic of the library.

Table 4.1: Basic Types in the LTI-Lib

byte 8-bit Typ signed
ubyte 8-bit Typ unsigned
int16 16-bit Typ signed
uint16 16-bit Typ unsigned
int32 32-bit Typ signed
uint32 32-bit Typ unsigned
point 2D points with lti::int32 coordinates
rectangle Two 2D points (upper-left and bottom-right)
rgbPixel a 32-bit long RGB pixel representation

31

http://ltilib.sourceforge.net

4 Class Hierarchy

These pages will give some informations about the usage of the LTI-Lib Ḟor
details about the usage of each class follow the link ”More...” at the header of
each class documentation.

The data structures used in the LTI-Lib are described in the section Data
Structures (4.2). All the algorithms implemented in the LTI-Lib are Functors
(4.3).

The algorithms can be organized in the following groups:

• Mathematical Operations (4.3.1)

• Filters (4.3.2)

• Transforms and Modifiers (4.3.3)

• Other image processing functors (4.3.4)

• Input and Output (4.3.5)

4.2 Data Structures

The are six groups of data structures:

• Basic Types (4.2.1)

• Vector, Matrix and Image Types (4.2.2)

• Image Regions and Contours (4.2.3)

• Sequences (4.2.4)

• Pyramids (4.2.6)

• Trees (4.2.7)

• Histograms (4.2.5)

4.2.1 Basic Types

The basis types allow the representation of usual data structures like:

• Color pixels: lti::rgbPixel, lti::trgbPixel<T>

• Points in a 2D space: lti::point, lti::tpoint<T>

• Rectangles: lti::rectangle, lti::trectangle<T>

32

4 Class Hierarchy

4.2.2 Vector, Matrix and Image Types

The LTI-Lib Algorithms manipulate two types of containers: one-dimensional
(lti::vector) or two dimensional containers (lti::matrix).

Both of them are implemented as C++ templates. This allow an efficient
reuse of the code with different types of data.

A vector of integers can be created with the following code:

lti::vector<int> aVct(5,0); // this creates a vector with 5 elements

// and initialize them with 0

A 3x4 matrix of double (3 rows and 4 columns) will be created with

lti::matrix<double> aMat(3,4,1.0); // creates a 3x4 matrix of double

// and initialized elements with 1.0

There are some ”alias” for frequently used matrix types:

We have for example the type lti::image, which is defined as a matrix of
color pixels (lti::rgbPixel).

A channel is in this library an image with monochromatic information. There
are two types of channels: 8-bit channels with pixel values between 0 and 255
(lti::channel8) and the lti::channel, which is an matrix of floats.

4.2.3 Image Regions and Contours

The data structures for the representation of Vector, Matrix and Image Types
(4.2.2) are not enough to satisfy every requirement of the image processing
algorithms. Some types to allow the representations of image regions are also
required.

This function will be achieved by classes like lti::pointList and its sub-
classes (lti::areaPoints, lti::borderPoints and lti::ioPoints).

4.2.4 Sequences

The lti::sequence is a sort of vector of other objects. It is indeed based on
the std::vector, but with a LTI-lib standard interface.

33

4 Class Hierarchy

4.2.5 Histograms

The histograms are a collection of classes used to generate n-dimensional statis-
tics. The base class is lti::histogram. Usually a lti::mapperFunctor is
used to map the input space into the histogram cell-space.

4.2.6 Pyramids

The multiresolutional analysis requires frequently the use of pyramidal data
structures. Gaussian, Laplacian and Gabor pyramids are examples of
this data-structures. (see lti::pyramid, lti::gaussianPyramid, lti::
gaborPyramid)

4.2.7 Trees

A container class for ordered n-Trees is implemented in lti::tree

4.3 Functors

The functors are objects which can operate on given data structures. They
can be parameterized with different values of some specific members.

For example, the functor which saves an image in a BMP-File has parameters
which include the name of the image file, the compression rate to be used, the
color depth and so on. For a Gaussian filter we need only the variance and
the dimension of the filter.

The LTI-Lib encapsulates these functor parameters in an object of an internal
class called ”parameters” (see lti::functor::parameters). The program-
mer knows, that all parameters required for a functor will be defined in its
class parameters.

4.3.1 Mathematical Operations

• Noise and probability distributions

– lti::noise adds noise with a given distribution to matrixes or
vectors

– lti::randomDistribution classes are used to generate random
numbers which follow a specific probability distribution

• Linear Algebra

34

4 Class Hierarchy

– lti::linearEquationSystemSolutionMethod

– lti::matrixInversion

– lti::minimizeBasis

– lti::principalComponentsAnalysis

– lti::l1Distance, lti::l2Distance

– lti::varianceFunctor calculates variance and covariance

– lti::serialStatsFunctor and lti::meansFunctor

4.3.2 Filters

• Kernels for linear filters

– gaussian kernels (lti::gaussKernel2D, lti::gaussKernel1D)

– gabor kernels (lti::gaborKernelSep, lti::gaborKernel)

– oriented gaussian derivatives (lti::ogd1Kernel, lti::ogd2-
Kernel)

– gradient approximation kernels (lti::gradientKernelX, lti::
gradientKernelY)

– binary kernels for the morphological operators (lti::city-
BlockKernel, lti::chessBoardKernel, lti::octagonalKernel,
lti::euclideanKernel)

• Linear Filters (convolves objects with linear kernels)

– lti::convolution

– lti::squareConvolution implements convolution with a rectan-
gular filter kernel.

– lti::downsampling Efficient implementation of a filter-
downsampling pair.

– lti::decimation efficient implementation of image decimation

– lti::upsampling Upsampling-filter pair.

– lti::filledUpsampling efficient implementation of upsampling
with a rectangular filter.

– lti::correlation

• Iterating functors This functors apply a simple function to all elements

35

4 Class Hierarchy

of the matrix. Please note, that this can also be done giving the C-Style
function to the apply() method of the matrix.

– lti::absoluteValue

– lti::logarithm

– lti::addScalar, lti::multiplyScalar

– lti::square, lti::squareRoot

• Morphological operators

– lti::dilation

– lti::erosion

4.3.3 Transforms and Modifiers

• Color spaces transformations

– lti::mergeImage Merge three channels in a color image

– lti::splitImage Splits an image in different color spaces

– lti::rgbColorQuant color quantization in RGB space

• Gray value transformations

– lti::histogramEqualization

• Coordinate Transforms

– cartesian↔polar coordinate: lti::cartesianToPolar and lti::
polarToCartesian

• Other Transforms

– FFT: lti::realFFT and lti::realInvFFT

– Optical Flow: lti::opticalFlowHS

– Illuminant Color Normalization: lti::colorNormalization

4.3.4 Other image processing functors

• Edge detectors

– lti::susanEdges Use SUSAN algorithm to extract the edges of an
image

36

4 Class Hierarchy

• Segmentation

– lti::thresholdSegmentation

– lti::regionGrowing

• Tools for segmentation

– lti::objectsFromMask

– lti::boundingBox

4.3.5 Input and Output

• The LTI-Lib supports loading and saving of Windows Bitmap files
(BMP), Jpeg files (JPEG) and Portable Network Graphics files(PNG).

– lti::loadBMP

– lti::saveBMP

– lti::loadJPEG

– lti::saveJPEG

– lti::loadPNG

– lti::savePNG

• It can also acquire data directly from a frame grabber:

– lti::frameGrabber

– lti::quickCam

– lti::toUCam

– lti::ltiFrameGrabber

4.4 Viewer and Drawing Tools

• Viewers There are two viewers in the LTI-Lib

– lti::externViewer

This viewer is used to invoke in a very easy way an external appli-
cation.

– lti::viewer

Is a GTK-based object, which runs in its own thread, to allow the

37

4 Class Hierarchy

user a very easy way to show images, fast as easy as the std::cout
stream!

• Drawing tools

– lti::draw

– lti::draw3D

– lti::epsDraw

– lti::drawFlowField

4.5 Objects for multithreading

Some objects allow a OS independent use of multithreading functions:

• lti::thread

• lti::mutex

• lti::semaphore

4.6 Classifiers

It is possible with the LTI-Lib to use some classifiers.

• lti::rbf Radial Basis Functions

• lti::MLP Back propagation networks

• lti::svm Support Vector Machines

• lti::hmmClassifier Hidden Markov Models

Classifications statistics can be generated using

• lti::classificationStatistics

There are many others supervised and unsupervided classifiers.

38

5 Download

You can get a tar ball of the LTI-Lib latest version from

http://ltilib.sourceforge.net/doc/html/index.html

5.1 Linux

From the shell and using GNU tar you can decompress the file with

tar xzvf ltilib.tar.gz

or

tar xjvf ltilib.tar.gz

After that you will need to build the library:

cd ltilib/linux
./configure
make

and as root or a user with write privileges on the prefix given to the configure
(usually /usr/local) you need to install the library just a

make install

5.2 Windows

In ltilib/win/tester there is an example project that uses all LTI-Lib files
directly. You can make some experiments with this project.

You can of course build the library. For this you will need a Perl-Script
interpreter installed. In ltilib/win/buildLib execute the file buildLib.bat.
This will create the libraries in the directory ltilib/lib. Additionally all
header-files will be collected and placed in ltilib/lib/headerFiles.

More information creating your own projects using the LTI-Lib can be found
in the on-line documentation.

39

http://ltilib.sourceforge.net/doc/html/index.html

Bibliography

[1] Stephen C. Dewhurst. C++ Gotchas. Avoiding Commmon Problems in
Coding and Design. Addison-Wesley, 2003. 17

[2] Stanley B. Lippman and Josée Lajoie. C++ Primer. Addison-Wesley,
Reading, MA, 3rd edition, 1998. 15

[3] Sun Microsystems. Java Code Conventions.
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html ,

April 1999. 23

[4] Silicon Graphics Computer Systems, Inc. Standard Template Library, Pro-
grammer’s Guide.

http://www.sgi.com/Technology/STL/, 1999. 24

[5] Bjarne Stroustrup. Die C++-Programmiersprache (3. Auflage). Addison-
Wesley, Bonn, 1998. 15, 25, 27

[6] Dimitri van Heesch. Doxygen.
http://www.doxygen.org/, April 1997-2003. 29

40

http://www.sgi.com/Technology/STL/
http://www.doxygen.org/

Index

dynamic cast, 19
include, 15
namespace, 16, 31
template, 14
LTI-Lib , 1
export, 25
lti, 31
unsigned, 23

advantages, 2
arguments, 19

C++ Books, 15
copy-constructor, 18
CVS, 13

Debugger, 14
Doxygen, 29

enum, 16

File conventions, 13
filenames, see file conventions
Forbidden language features, 24
functor, 3

name
class, 16
function, 16
method, 16

Naming conventions, 16

struct, 16

template, 25
Type casts, 19
type definition, 16

underscore, 16

version control, see CVS

41

	Contents
	Introduction
	History

	LTI-Lib Architecture
	Functors, parameters and states
	Input and Output in the LTI-Lib
	Example

	Visualization Classes
	Classifiers
	Debug and Release Versions

	C++ Programming Style Guide
	Organisation of the data
	Version control
	File conventions

	Tools
	Debugging
	Optimization

	General programming conventions
	Preamble
	Name conventions

	C++-Programming
	File organization
	Naming conventions
	Class declaration and definition
	Type casts
	Cases
	Heap
	Text Formating
	Portability
	Forbidden language features
	Templates
	Error handling
	Status monitors

	Creating new functors
	Documentation
	Documentation system
	Documentation style

	Class Hierarchy
	Introduction
	Data Structures
	Basic Types
	Vector, Matrix and Image Types
	Image Regions and Contours
	Sequences
	Histograms
	Pyramids
	Trees

	Functors
	Mathematical Operations
	Filters
	Transforms and Modifiers
	Other image processing functors
	Input and Output

	Viewer and Drawing Tools
	Objects for multithreading
	Classifiers

	Download
	Linux
	Windows

	Bibliography
	Index

