libflame  revision_anchor
Functions
FLA_Apply_G_rf_opt_var1.c File Reference

(r)

Functions

FLA_Error FLA_Apply_G_rf_opt_var1 (FLA_Obj G, FLA_Obj A)
FLA_Error FLA_Apply_G_rf_ops_var1 (int k_G, int m_A, int n_A, scomplex *buff_G, int rs_G, int cs_G, float *buff_A, int rs_A, int cs_A)
FLA_Error FLA_Apply_G_rf_opd_var1 (int k_G, int m_A, int n_A, dcomplex *buff_G, int rs_G, int cs_G, double *buff_A, int rs_A, int cs_A)
FLA_Error FLA_Apply_G_rf_opc_var1 (int k_G, int m_A, int n_A, scomplex *buff_G, int rs_G, int cs_G, scomplex *buff_A, int rs_A, int cs_A)
FLA_Error FLA_Apply_G_rf_opz_var1 (int k_G, int m_A, int n_A, dcomplex *buff_G, int rs_G, int cs_G, dcomplex *buff_A, int rs_A, int cs_A)

Function Documentation

FLA_Error FLA_Apply_G_rf_opc_var1 ( int  k_G,
int  m_A,
int  n_A,
scomplex buff_G,
int  rs_G,
int  cs_G,
scomplex buff_A,
int  rs_A,
int  cs_A 
)

References bli_s0(), bli_s1(), scomplex::imag, and scomplex::real.

Referenced by FLA_Apply_G_rf_opc_var2(), FLA_Apply_G_rf_opc_var3(), FLA_Apply_G_rf_opc_var6(), FLA_Apply_G_rf_opc_var9(), and FLA_Apply_G_rf_opt_var1().

{
    float     one    = bli_s1();
    float     zero   = bli_s0();
    int       nG_app = n_A - 1;
    int       l, j;
    float     gamma;
    float     sigma;
    scomplex* a1;
    scomplex* a2;
    scomplex* g1;
    scomplex* g11;

    g1 = buff_G;

    for ( l = 0; l < k_G; ++l )
    {
        a1 = buff_A;
        a2 = buff_A + cs_A;
        g11 = g1;

        for ( j = 0; j < nG_app; ++j )
        {
            gamma = g11->real;
            sigma = g11->imag;

            // Skip the current iteration if the rotation is identity.
            if ( gamma != one || sigma != zero )
            {
                MAC_Apply_G_mx2_opc( m_A,
                                     &gamma,
                                     &sigma,
                                     a1, rs_A,
                                     a2, rs_A );
            }

            a1 += cs_A;
            a2 += cs_A;
            g11 += rs_G;
        }

        g1 += cs_G;
    }

    return FLA_SUCCESS;
}
FLA_Error FLA_Apply_G_rf_opd_var1 ( int  k_G,
int  m_A,
int  n_A,
dcomplex buff_G,
int  rs_G,
int  cs_G,
double *  buff_A,
int  rs_A,
int  cs_A 
)

References bli_d0(), bli_d1(), dcomplex::imag, and dcomplex::real.

Referenced by FLA_Apply_G_rf_opd_var2(), FLA_Apply_G_rf_opd_var3(), FLA_Apply_G_rf_opd_var6(), FLA_Apply_G_rf_opd_var9(), and FLA_Apply_G_rf_opt_var1().

{
    double    one    = bli_d1();
    double    zero   = bli_d0();
    int       nG_app = n_A - 1;
    int       l, j;
    double    gamma;
    double    sigma;
    double*   a1;
    double*   a2;
    dcomplex* g1;
    dcomplex* g11;

    g1 = buff_G;

    for ( l = 0; l < k_G; ++l )
    {
        a1 = buff_A;
        a2 = buff_A + cs_A;
        g11 = g1;

        for ( j = 0; j < nG_app; ++j )
        {
            gamma = g11->real;
            sigma = g11->imag;

            // Skip the current iteration if the rotation is identity.
            if ( gamma != one || sigma != zero )
            {
                MAC_Apply_G_mx2_opd( m_A,
                                     &gamma,
                                     &sigma,
                                     a1, rs_A,
                                     a2, rs_A );
            }

            a1 += cs_A;
            a2 += cs_A;
            g11 += rs_G;
        }

        g1 += cs_G;
    }

    return FLA_SUCCESS;
}
FLA_Error FLA_Apply_G_rf_ops_var1 ( int  k_G,
int  m_A,
int  n_A,
scomplex buff_G,
int  rs_G,
int  cs_G,
float *  buff_A,
int  rs_A,
int  cs_A 
)

References bli_s0(), bli_s1(), scomplex::imag, and scomplex::real.

Referenced by FLA_Apply_G_rf_ops_var2(), FLA_Apply_G_rf_ops_var3(), FLA_Apply_G_rf_ops_var6(), FLA_Apply_G_rf_ops_var9(), and FLA_Apply_G_rf_opt_var1().

{
    float     one    = bli_s1();
    float     zero   = bli_s0();
    int       nG_app = n_A - 1;
    int       l, j;
    float     gamma;
    float     sigma;
    float*    a1;
    float*    a2;
    scomplex* g1;
    scomplex* g11;

    g1 = buff_G;

    for ( l = 0; l < k_G; ++l )
    {
        a1 = buff_A;
        a2 = buff_A + cs_A;
        g11 = g1;

        for ( j = 0; j < nG_app; ++j )
        {
            gamma = g11->real;
            sigma = g11->imag;

            // Skip the current iteration if the rotation is identity.
            if ( gamma != one || sigma != zero )
            {
                MAC_Apply_G_mx2_ops( m_A,
                                     &gamma,
                                     &sigma,
                                     a1, rs_A,
                                     a2, rs_A );
            }

            a1 += cs_A;
            a2 += cs_A;
            g11 += rs_G;
        }

        g1 += cs_G;
    }

    return FLA_SUCCESS;
}

References FLA_Apply_G_rf_opc_var1(), FLA_Apply_G_rf_opd_var1(), FLA_Apply_G_rf_ops_var1(), FLA_Apply_G_rf_opz_var1(), FLA_Obj_col_stride(), FLA_Obj_datatype(), FLA_Obj_length(), FLA_Obj_row_stride(), and FLA_Obj_width().

Referenced by FLA_Apply_G_internal().

{
    FLA_Datatype datatype;
    int          k_G, m_A, n_A;
    int          rs_G, cs_G;
    int          rs_A, cs_A;

    datatype = FLA_Obj_datatype( A );

    k_G      = FLA_Obj_width( G );
    m_A      = FLA_Obj_length( A );
    n_A      = FLA_Obj_width( A );

    rs_G     = FLA_Obj_row_stride( G );
    cs_G     = FLA_Obj_col_stride( G );

    rs_A     = FLA_Obj_row_stride( A );
    cs_A     = FLA_Obj_col_stride( A );

    switch ( datatype )
    {
        case FLA_FLOAT:
        {
            scomplex* buff_G = ( scomplex* ) FLA_COMPLEX_PTR( G );
            float*    buff_A = ( float*    ) FLA_FLOAT_PTR( A );

            FLA_Apply_G_rf_ops_var1( k_G,
                                     m_A,
                                     n_A,
                                     buff_G, rs_G, cs_G,
                                     buff_A, rs_A, cs_A );

            break;
        }

        case FLA_DOUBLE:
        {
            dcomplex* buff_G = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( G );
            double*   buff_A = ( double*   ) FLA_DOUBLE_PTR( A );

            FLA_Apply_G_rf_opd_var1( k_G,
                                     m_A,
                                     n_A,
                                     buff_G, rs_G, cs_G,
                                     buff_A, rs_A, cs_A );

            break;
        }

        case FLA_COMPLEX:
        {
            scomplex* buff_G = ( scomplex* ) FLA_COMPLEX_PTR( G );
            scomplex* buff_A = ( scomplex* ) FLA_COMPLEX_PTR( A );

            FLA_Apply_G_rf_opc_var1( k_G,
                                     m_A,
                                     n_A,
                                     buff_G, rs_G, cs_G,
                                     buff_A, rs_A, cs_A );

            break;
        }

        case FLA_DOUBLE_COMPLEX:
        {
            dcomplex* buff_G = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( G );
            dcomplex* buff_A = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( A );

            FLA_Apply_G_rf_opz_var1( k_G,
                                     m_A,
                                     n_A,
                                     buff_G, rs_G, cs_G,
                                     buff_A, rs_A, cs_A );

            break;
        }
    }

    return FLA_SUCCESS;
}
FLA_Error FLA_Apply_G_rf_opz_var1 ( int  k_G,
int  m_A,
int  n_A,
dcomplex buff_G,
int  rs_G,
int  cs_G,
dcomplex buff_A,
int  rs_A,
int  cs_A 
)

References bli_d0(), bli_d1(), dcomplex::imag, and dcomplex::real.

Referenced by FLA_Apply_G_rf_opt_var1(), FLA_Apply_G_rf_opz_var2(), FLA_Apply_G_rf_opz_var3(), FLA_Apply_G_rf_opz_var6(), and FLA_Apply_G_rf_opz_var9().

{
    double    one    = bli_d1();
    double    zero   = bli_d0();
    int       nG_app = n_A - 1;
    int       l, j;
    double    gamma;
    double    sigma;
    dcomplex* a1;
    dcomplex* a2;
    dcomplex* g1;
    dcomplex* g11;

    g1 = buff_G;

    for ( l = 0; l < k_G; ++l )
    {
        a1 = buff_A;
        a2 = buff_A + cs_A;
        g11 = g1;

        for ( j = 0; j < nG_app; ++j )
        {
            gamma = g11->real;
            sigma = g11->imag;

            // Skip the current iteration if the rotation is identity.
            if ( gamma != one || sigma != zero )
            {
                MAC_Apply_G_mx2_opz( m_A,
                                     &gamma,
                                     &sigma,
                                     a1, rs_A,
                                     a2, rs_A );
            }

            a1 += cs_A;
            a2 += cs_A;
            g11 += rs_G;
        }

        g1 += cs_G;
    }

    return FLA_SUCCESS;
}