libflame
revision_anchor
|
Functions | |
FLA_Error | FLA_Househ2_UT (FLA_Side side, FLA_Obj chi_1, FLA_Obj x2, FLA_Obj tau) |
FLA_Error | FLA_Househ2_UT_l_ops (int m_x2, float *chi_1, float *x2, int inc_x2, float *tau) |
FLA_Error | FLA_Househ2_UT_l_opd (int m_x2, double *chi_1, double *x2, int inc_x2, double *tau) |
FLA_Error | FLA_Househ2_UT_l_opc (int m_x2, scomplex *chi_1, scomplex *x2, int inc_x2, scomplex *tau) |
FLA_Error | FLA_Househ2_UT_l_opz (int m_x2, dcomplex *chi_1, dcomplex *x2, int inc_x2, dcomplex *tau) |
FLA_Error | FLA_Househ2_UT_r_ops (int m_x2, float *chi_1, float *x2, int inc_x2, float *tau) |
FLA_Error | FLA_Househ2_UT_r_opd (int m_x2, double *chi_1, double *x2, int inc_x2, double *tau) |
FLA_Error | FLA_Househ2_UT_r_opc (int m_x2, scomplex *chi_1, scomplex *x2, int inc_x2, scomplex *tau) |
FLA_Error | FLA_Househ2_UT_r_opz (int m_x2, dcomplex *chi_1, dcomplex *x2, int inc_x2, dcomplex *tau) |
References FLA_Check_error_level(), FLA_Househ2_UT_check(), FLA_Househ2_UT_l_opc(), FLA_Househ2_UT_l_opd(), FLA_Househ2_UT_l_ops(), FLA_Househ2_UT_l_opz(), FLA_Househ2_UT_r_opc(), FLA_Househ2_UT_r_opd(), FLA_Househ2_UT_r_ops(), FLA_Househ2_UT_r_opz(), FLA_Obj_datatype(), FLA_Obj_vector_dim(), and FLA_Obj_vector_inc().
Referenced by FLA_Bidiag_UT_u_step_unb_var1(), FLA_Bidiag_UT_u_step_unb_var2(), FLA_Bidiag_UT_u_step_unb_var3(), FLA_Bidiag_UT_u_step_unb_var4(), FLA_Bidiag_UT_u_step_unb_var5(), FLA_CAQR2_UT_unb_var1(), FLA_Hess_UT_step_unb_var1(), FLA_Hess_UT_step_unb_var2(), FLA_Hess_UT_step_unb_var3(), FLA_Hess_UT_step_unb_var4(), FLA_Hess_UT_step_unb_var5(), FLA_LQ_UT_unb_var1(), FLA_LQ_UT_unb_var2(), FLA_QR2_UT_unb_var1(), FLA_QR_UT_unb_var1(), FLA_QR_UT_unb_var2(), FLA_Tridiag_UT_l_step_unb_var1(), FLA_Tridiag_UT_l_step_unb_var2(), and FLA_Tridiag_UT_l_step_unb_var3().
{ FLA_Datatype datatype; int m_x2; int inc_x2; datatype = FLA_Obj_datatype( x2 ); m_x2 = FLA_Obj_vector_dim( x2 ); inc_x2 = FLA_Obj_vector_inc( x2 ); if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING ) FLA_Househ2_UT_check( side, chi_1, x2, tau ); switch ( datatype ) { case FLA_FLOAT: { float* chi_1_p = ( float* ) FLA_FLOAT_PTR( chi_1 ); float* x2_p = ( float* ) FLA_FLOAT_PTR( x2 ); float* tau_p = ( float* ) FLA_FLOAT_PTR( tau ); if ( side == FLA_LEFT ) FLA_Househ2_UT_l_ops( m_x2, chi_1_p, x2_p, inc_x2, tau_p ); else // if ( side == FLA_RIGHT ) FLA_Househ2_UT_r_ops( m_x2, chi_1_p, x2_p, inc_x2, tau_p ); break; } case FLA_DOUBLE: { double* chi_1_p = ( double* ) FLA_DOUBLE_PTR( chi_1 ); double* x2_p = ( double* ) FLA_DOUBLE_PTR( x2 ); double* tau_p = ( double* ) FLA_DOUBLE_PTR( tau ); if ( side == FLA_LEFT ) FLA_Househ2_UT_l_opd( m_x2, chi_1_p, x2_p, inc_x2, tau_p ); else // if ( side == FLA_RIGHT ) FLA_Househ2_UT_r_opd( m_x2, chi_1_p, x2_p, inc_x2, tau_p ); break; } case FLA_COMPLEX: { scomplex* chi_1_p = ( scomplex* ) FLA_COMPLEX_PTR( chi_1 ); scomplex* x2_p = ( scomplex* ) FLA_COMPLEX_PTR( x2 ); scomplex* tau_p = ( scomplex* ) FLA_COMPLEX_PTR( tau ); if ( side == FLA_LEFT ) FLA_Househ2_UT_l_opc( m_x2, chi_1_p, x2_p, inc_x2, tau_p ); else // if ( side == FLA_RIGHT ) FLA_Househ2_UT_r_opc( m_x2, chi_1_p, x2_p, inc_x2, tau_p ); break; } case FLA_DOUBLE_COMPLEX: { dcomplex* chi_1_p = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( chi_1 ); dcomplex* x2_p = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( x2 ); dcomplex* tau_p = ( dcomplex* ) FLA_DOUBLE_COMPLEX_PTR( tau ); if ( side == FLA_LEFT ) FLA_Househ2_UT_l_opz( m_x2, chi_1_p, x2_p, inc_x2, tau_p ); else // if ( side == FLA_RIGHT ) FLA_Househ2_UT_r_opz( m_x2, chi_1_p, x2_p, inc_x2, tau_p ); break; } } return FLA_SUCCESS; }
FLA_Error FLA_Househ2_UT_l_opc | ( | int | m_x2, |
scomplex * | chi_1, | ||
scomplex * | x2, | ||
int | inc_x2, | ||
scomplex * | tau | ||
) |
References bli_cinvscalv(), bli_cnrm2(), BLIS_NO_CONJUGATE, FLA_ONE_HALF, scomplex::imag, and scomplex::real.
Referenced by FLA_Bidiag_UT_u_step_ofc_var2(), FLA_Bidiag_UT_u_step_ofc_var3(), FLA_Bidiag_UT_u_step_ofc_var4(), FLA_Bidiag_UT_u_step_opc_var1(), FLA_Bidiag_UT_u_step_opc_var2(), FLA_Bidiag_UT_u_step_opc_var3(), FLA_Bidiag_UT_u_step_opc_var4(), FLA_Bidiag_UT_u_step_opc_var5(), FLA_CAQR2_UT_opc_var1(), FLA_Hess_UT_step_ofc_var2(), FLA_Hess_UT_step_ofc_var3(), FLA_Hess_UT_step_ofc_var4(), FLA_Hess_UT_step_opc_var1(), FLA_Hess_UT_step_opc_var2(), FLA_Hess_UT_step_opc_var3(), FLA_Hess_UT_step_opc_var4(), FLA_Hess_UT_step_opc_var5(), FLA_Househ2_UT(), FLA_Househ2_UT_r_opc(), FLA_QR2_UT_opc_var1(), FLA_QR_UT_opc_var1(), FLA_QR_UT_opc_var2(), FLA_Tridiag_UT_l_step_ofc_var2(), FLA_Tridiag_UT_l_step_ofc_var3(), FLA_Tridiag_UT_l_step_opc_var1(), FLA_Tridiag_UT_l_step_opc_var2(), and FLA_Tridiag_UT_l_step_opc_var3().
{ scomplex one_half = *FLA_COMPLEX_PTR( FLA_ONE_HALF ); scomplex y[2]; scomplex alpha; scomplex chi_1_minus_alpha; float abs_chi_1; float norm_x_2; float norm_x; float abs_sq_chi_1_minus_alpha; int i_one = 1; int i_two = 2; // // Compute the 2-norm of x_2: // // norm_x_2 := || x_2 ||_2 // bli_cnrm2( m_x2, x2, inc_x2, &norm_x_2 ); // // If 2-norm of x_2 is zero, then return with trivial values. // if ( norm_x_2 == 0.0F ) { chi_1->real = -(chi_1->real); chi_1->imag = -(chi_1->imag); tau->real = one_half.real; tau->imag = one_half.imag; return FLA_SUCCESS; } // // Compute the absolute value (magnitude) of chi_1, which equals the 2-norm // of chi_1: // // abs_chi_1 := | chi_1 | = || chi_1 ||_2 // bli_cnrm2( i_one, chi_1, i_one, &abs_chi_1 ); // // Compute the 2-norm of x via the two norms previously computed above: // // norm_x := || x ||_2 = || / chi_1 \ || = || / || chi_1 ||_2 \ || // || \ x_2 / ||_2 || \ || x_2 ||_2 / ||_2 // y[0].real = abs_chi_1; y[0].imag = 0.0F; y[1].real = norm_x_2; y[1].imag = 0.0F; bli_cnrm2( i_two, y, i_one, &norm_x ); // // Compute alpha: // // alpha := - || x ||_2 * chi_1 / | chi_1 | // alpha.real = -chi_1->real * norm_x / abs_chi_1; alpha.imag = -chi_1->imag * norm_x / abs_chi_1; // // Overwrite x_2 with u_2: // // x_2 := x_2 / ( chi_1 - alpha ) // chi_1_minus_alpha.real = chi_1->real - alpha.real; chi_1_minus_alpha.imag = chi_1->imag - alpha.imag; bli_cinvscalv( BLIS_NO_CONJUGATE, m_x2, &chi_1_minus_alpha, x2, inc_x2 ); // // Compute tau: // // tau := ( 1 + u_2' * u_2 ) / 2 // = ( ( chi_1 - alpha ) * conj( chi_1 - alpha ) + x_2' * x_2 ) / // ( 2 * ( chi_1 - alpha ) * conj( chi_1 - alpha ) ) // = ( | chi_1 - alpha |^2 + || x_2 ||_2^2 ) / // ( 2 * | chi_1 - alpha |^2 ) // abs_sq_chi_1_minus_alpha = chi_1_minus_alpha.real * chi_1_minus_alpha.real + chi_1_minus_alpha.imag * chi_1_minus_alpha.imag; tau->real = ( abs_sq_chi_1_minus_alpha + norm_x_2 * norm_x_2 ) / ( 2.0F * abs_sq_chi_1_minus_alpha ); tau->imag = 0.0F; // // Overwrite chi_1 with alpha: // // chi_1 := alpha // chi_1->real = alpha.real; chi_1->imag = alpha.imag; return FLA_SUCCESS; }
FLA_Error FLA_Househ2_UT_l_opd | ( | int | m_x2, |
double * | chi_1, | ||
double * | x2, | ||
int | inc_x2, | ||
double * | tau | ||
) |
References bli_dinvscalv(), bli_dnrm2(), BLIS_NO_CONJUGATE, and FLA_ONE_HALF.
Referenced by FLA_Bidiag_UT_u_step_ofd_var2(), FLA_Bidiag_UT_u_step_ofd_var3(), FLA_Bidiag_UT_u_step_ofd_var4(), FLA_Bidiag_UT_u_step_opd_var1(), FLA_Bidiag_UT_u_step_opd_var2(), FLA_Bidiag_UT_u_step_opd_var3(), FLA_Bidiag_UT_u_step_opd_var4(), FLA_Bidiag_UT_u_step_opd_var5(), FLA_CAQR2_UT_opd_var1(), FLA_Hess_UT_step_ofd_var2(), FLA_Hess_UT_step_ofd_var3(), FLA_Hess_UT_step_ofd_var4(), FLA_Hess_UT_step_opd_var1(), FLA_Hess_UT_step_opd_var2(), FLA_Hess_UT_step_opd_var3(), FLA_Hess_UT_step_opd_var4(), FLA_Hess_UT_step_opd_var5(), FLA_Househ2_UT(), FLA_Househ2_UT_r_opd(), FLA_QR2_UT_opd_var1(), FLA_QR_UT_opd_var1(), FLA_QR_UT_opd_var2(), FLA_Tridiag_UT_l_step_ofd_var2(), FLA_Tridiag_UT_l_step_ofd_var3(), FLA_Tridiag_UT_l_step_opd_var1(), FLA_Tridiag_UT_l_step_opd_var2(), and FLA_Tridiag_UT_l_step_opd_var3().
{ double one_half = *FLA_DOUBLE_PTR( FLA_ONE_HALF ); double y[2]; double alpha; double chi_1_minus_alpha; double abs_chi_1; double norm_x_2; double norm_x; double abs_sq_chi_1_minus_alpha; int i_one = 1; int i_two = 2; // // Compute the 2-norm of x_2: // // norm_x_2 := || x_2 ||_2 // bli_dnrm2( m_x2, x2, inc_x2, &norm_x_2 ); // // If 2-norm of x_2 is zero, then return with trivial values. // if ( norm_x_2 == 0.0 ) { *chi_1 = -(*chi_1); *tau = one_half; return FLA_SUCCESS; } // // Compute the absolute value (magnitude) of chi_1, which equals the 2-norm // of chi_1: // // abs_chi_1 := | chi_1 | = || chi_1 ||_2 // bli_dnrm2( i_one, chi_1, i_one, &abs_chi_1 ); // // Compute the 2-norm of x via the two norms previously computed above: // // norm_x := || x ||_2 = || / chi_1 \ || = || / || chi_1 ||_2 \ || // || \ x_2 / ||_2 || \ || x_2 ||_2 / ||_2 // y[0] = abs_chi_1; y[1] = norm_x_2; bli_dnrm2( i_two, y, i_one, &norm_x ); // // Compute alpha: // // alpha := - || x ||_2 * chi_1 / | chi_1 | // = -sign( chi_1 ) * || x ||_2 // alpha = -dsign( *chi_1 ) * norm_x; // // Overwrite x_2 with u_2: // // x_2 := x_2 / ( chi_1 - alpha ) // chi_1_minus_alpha = *chi_1 - alpha; bli_dinvscalv( BLIS_NO_CONJUGATE, m_x2, &chi_1_minus_alpha, x2, inc_x2 ); // // Compute tau: // // tau := ( 1 + u_2' * u_2 ) / 2 // = ( ( chi_1 - alpha ) * conj( chi_1 - alpha ) + x_2' * x_2 ) / // ( 2 * ( chi_1 - alpha ) * conj( chi_1 - alpha ) ) // = ( | chi_1 - alpha |^2 + || x_2 ||_2^2 ) / // ( 2 * | chi_1 - alpha |^2 ) // abs_sq_chi_1_minus_alpha = chi_1_minus_alpha * chi_1_minus_alpha; *tau = ( abs_sq_chi_1_minus_alpha + norm_x_2 * norm_x_2 ) / ( 2.0 * abs_sq_chi_1_minus_alpha ); // // Overwrite chi_1 with alpha: // // chi_1 := alpha // *chi_1 = alpha; return FLA_SUCCESS; }
FLA_Error FLA_Househ2_UT_l_ops | ( | int | m_x2, |
float * | chi_1, | ||
float * | x2, | ||
int | inc_x2, | ||
float * | tau | ||
) |
References bli_sinvscalv(), bli_snrm2(), BLIS_NO_CONJUGATE, and FLA_ONE_HALF.
Referenced by FLA_Bidiag_UT_u_step_ofs_var2(), FLA_Bidiag_UT_u_step_ofs_var3(), FLA_Bidiag_UT_u_step_ofs_var4(), FLA_Bidiag_UT_u_step_ops_var1(), FLA_Bidiag_UT_u_step_ops_var2(), FLA_Bidiag_UT_u_step_ops_var3(), FLA_Bidiag_UT_u_step_ops_var4(), FLA_Bidiag_UT_u_step_ops_var5(), FLA_CAQR2_UT_ops_var1(), FLA_Hess_UT_step_ofs_var2(), FLA_Hess_UT_step_ofs_var3(), FLA_Hess_UT_step_ofs_var4(), FLA_Hess_UT_step_ops_var1(), FLA_Hess_UT_step_ops_var2(), FLA_Hess_UT_step_ops_var3(), FLA_Hess_UT_step_ops_var4(), FLA_Hess_UT_step_ops_var5(), FLA_Househ2_UT(), FLA_Househ2_UT_r_ops(), FLA_QR2_UT_ops_var1(), FLA_QR_UT_ops_var1(), FLA_QR_UT_ops_var2(), FLA_Tridiag_UT_l_step_ofs_var2(), FLA_Tridiag_UT_l_step_ofs_var3(), FLA_Tridiag_UT_l_step_ops_var1(), FLA_Tridiag_UT_l_step_ops_var2(), and FLA_Tridiag_UT_l_step_ops_var3().
{ float one_half = *FLA_FLOAT_PTR( FLA_ONE_HALF ); float y[2]; float alpha; float chi_1_minus_alpha; float abs_chi_1; float norm_x_2; float norm_x; float abs_sq_chi_1_minus_alpha; int i_one = 1; int i_two = 2; // // Compute the 2-norm of x_2: // // norm_x_2 := || x_2 ||_2 // bli_snrm2( m_x2, x2, inc_x2, &norm_x_2 ); // // If 2-norm of x_2 is zero, then return with trivial values. // if ( norm_x_2 == 0.0F ) { *chi_1 = -(*chi_1); *tau = one_half; return FLA_SUCCESS; } // // Compute the absolute value (magnitude) of chi_1, which equals the 2-norm // of chi_1: // // abs_chi_1 := | chi_1 | = || chi_1 ||_2 // bli_snrm2( i_one, chi_1, i_one, &abs_chi_1 ); // // Compute the 2-norm of x via the two norms previously computed above: // // norm_x := || x ||_2 = || / chi_1 \ || = || / || chi_1 ||_2 \ || // || \ x_2 / ||_2 || \ || x_2 ||_2 / ||_2 // y[0] = abs_chi_1; y[1] = norm_x_2; bli_snrm2( i_two, y, i_one, &norm_x ); // // Compute alpha: // // alpha := - || x ||_2 * chi_1 / | chi_1 | // = -sign( chi_1 ) * || x ||_2 // alpha = -ssign( *chi_1 ) * norm_x; // // Overwrite x_2 with u_2: // // x_2 := x_2 / ( chi_1 - alpha ) // chi_1_minus_alpha = *chi_1 - alpha; bli_sinvscalv( BLIS_NO_CONJUGATE, m_x2, &chi_1_minus_alpha, x2, inc_x2 ); // // Compute tau: // // tau := ( 1 + u_2' * u_2 ) / 2 // = ( ( chi_1 - alpha ) * conj( chi_1 - alpha ) + x_2' * x_2 ) / // ( 2 * ( chi_1 - alpha ) * conj( chi_1 - alpha ) ) // = ( | chi_1 - alpha |^2 + || x_2 ||_2^2 ) / // ( 2 * | chi_1 - alpha |^2 ) // abs_sq_chi_1_minus_alpha = chi_1_minus_alpha * chi_1_minus_alpha; *tau = ( abs_sq_chi_1_minus_alpha + norm_x_2 * norm_x_2 ) / ( 2.0F * abs_sq_chi_1_minus_alpha ); // // Overwrite chi_1 with alpha: // // chi_1 := alpha // *chi_1 = alpha; return FLA_SUCCESS; }
FLA_Error FLA_Househ2_UT_l_opz | ( | int | m_x2, |
dcomplex * | chi_1, | ||
dcomplex * | x2, | ||
int | inc_x2, | ||
dcomplex * | tau | ||
) |
References bli_zinvscalv(), bli_znrm2(), BLIS_NO_CONJUGATE, FLA_ONE_HALF, dcomplex::imag, and dcomplex::real.
Referenced by FLA_Bidiag_UT_u_step_ofz_var2(), FLA_Bidiag_UT_u_step_ofz_var3(), FLA_Bidiag_UT_u_step_ofz_var4(), FLA_Bidiag_UT_u_step_opz_var1(), FLA_Bidiag_UT_u_step_opz_var2(), FLA_Bidiag_UT_u_step_opz_var3(), FLA_Bidiag_UT_u_step_opz_var4(), FLA_Bidiag_UT_u_step_opz_var5(), FLA_CAQR2_UT_opz_var1(), FLA_Hess_UT_step_ofz_var2(), FLA_Hess_UT_step_ofz_var3(), FLA_Hess_UT_step_ofz_var4(), FLA_Hess_UT_step_opz_var1(), FLA_Hess_UT_step_opz_var2(), FLA_Hess_UT_step_opz_var3(), FLA_Hess_UT_step_opz_var4(), FLA_Hess_UT_step_opz_var5(), FLA_Househ2_UT(), FLA_Househ2_UT_r_opz(), FLA_QR2_UT_opz_var1(), FLA_QR_UT_opz_var1(), FLA_QR_UT_opz_var2(), FLA_Tridiag_UT_l_step_ofz_var2(), FLA_Tridiag_UT_l_step_ofz_var3(), FLA_Tridiag_UT_l_step_opz_var1(), FLA_Tridiag_UT_l_step_opz_var2(), and FLA_Tridiag_UT_l_step_opz_var3().
{ dcomplex one_half = *FLA_DOUBLE_COMPLEX_PTR( FLA_ONE_HALF ); dcomplex y[2]; dcomplex alpha; dcomplex chi_1_minus_alpha; double abs_chi_1; double norm_x_2; double norm_x; double abs_sq_chi_1_minus_alpha; int i_one = 1; int i_two = 2; // // Compute the 2-norm of x_2: // // norm_x_2 := || x_2 ||_2 // bli_znrm2( m_x2, x2, inc_x2, &norm_x_2 ); // // If 2-norm of x_2 is zero, then return with trivial values. // if ( norm_x_2 == 0.0 ) { chi_1->real = -(chi_1->real); chi_1->imag = -(chi_1->imag); tau->real = one_half.real; tau->imag = one_half.imag; return FLA_SUCCESS; } // // Compute the absolute value (magnitude) of chi_1, which equals the 2-norm // of chi_1: // // abs_chi_1 := | chi_1 | = || chi_1 ||_2 // bli_znrm2( i_one, chi_1, i_one, &abs_chi_1 ); // // Compute the 2-norm of x via the two norms previously computed above: // // norm_x := || x ||_2 = || / chi_1 \ || = || / || chi_1 ||_2 \ || // || \ x_2 / ||_2 || \ || x_2 ||_2 / ||_2 // y[0].real = abs_chi_1; y[0].imag = 0.0; y[1].real = norm_x_2; y[1].imag = 0.0; bli_znrm2( i_two, y, i_one, &norm_x ); // // Compute alpha: // // alpha := - || x ||_2 * chi_1 / | chi_1 | // alpha.real = -chi_1->real * norm_x / abs_chi_1; alpha.imag = -chi_1->imag * norm_x / abs_chi_1; // // Overwrite x_2 with u_2: // // x_2 := x_2 / ( chi_1 - alpha ) // chi_1_minus_alpha.real = chi_1->real - alpha.real; chi_1_minus_alpha.imag = chi_1->imag - alpha.imag; bli_zinvscalv( BLIS_NO_CONJUGATE, m_x2, &chi_1_minus_alpha, x2, inc_x2 ); // // Compute tau: // // tau := ( 1 + u_2' * u_2 ) / 2 // = ( ( chi_1 - alpha ) * conj( chi_1 - alpha ) + x_2' * x_2 ) / // ( 2 * ( chi_1 - alpha ) * conj( chi_1 - alpha ) ) // = ( | chi_1 - alpha |^2 + || x_2 ||_2^2 ) / // ( 2 * | chi_1 - alpha |^2 ) // abs_sq_chi_1_minus_alpha = chi_1_minus_alpha.real * chi_1_minus_alpha.real + chi_1_minus_alpha.imag * chi_1_minus_alpha.imag; tau->real = ( abs_sq_chi_1_minus_alpha + norm_x_2 * norm_x_2 ) / ( 2.0 * abs_sq_chi_1_minus_alpha ); tau->imag = 0.0; // // Overwrite chi_1 with alpha: // // chi_1 := alpha // chi_1->real = alpha.real; chi_1->imag = alpha.imag; return FLA_SUCCESS; }
FLA_Error FLA_Househ2_UT_r_opc | ( | int | m_x2, |
scomplex * | chi_1, | ||
scomplex * | x2, | ||
int | inc_x2, | ||
scomplex * | tau | ||
) |
References bli_cconjv(), and FLA_Househ2_UT_l_opc().
Referenced by FLA_Bidiag_UT_u_step_ofc_var2(), FLA_Bidiag_UT_u_step_opc_var1(), FLA_Bidiag_UT_u_step_opc_var2(), FLA_Bidiag_UT_u_step_opc_var5(), FLA_Househ2_UT(), FLA_LQ_UT_opc_var1(), and FLA_LQ_UT_opc_var2().
{ FLA_Househ2_UT_l_opc( m_x2, chi_1, x2, inc_x2, tau ); bli_cconjv( m_x2, x2, inc_x2 ); return FLA_SUCCESS; }
FLA_Error FLA_Househ2_UT_r_opd | ( | int | m_x2, |
double * | chi_1, | ||
double * | x2, | ||
int | inc_x2, | ||
double * | tau | ||
) |
References FLA_Househ2_UT_l_opd().
Referenced by FLA_Bidiag_UT_u_step_ofd_var2(), FLA_Bidiag_UT_u_step_opd_var1(), FLA_Bidiag_UT_u_step_opd_var2(), FLA_Bidiag_UT_u_step_opd_var5(), FLA_Househ2_UT(), FLA_LQ_UT_opd_var1(), and FLA_LQ_UT_opd_var2().
{ FLA_Househ2_UT_l_opd( m_x2, chi_1, x2, inc_x2, tau ); return FLA_SUCCESS; }
FLA_Error FLA_Househ2_UT_r_ops | ( | int | m_x2, |
float * | chi_1, | ||
float * | x2, | ||
int | inc_x2, | ||
float * | tau | ||
) |
References FLA_Househ2_UT_l_ops().
Referenced by FLA_Bidiag_UT_u_step_ofs_var2(), FLA_Bidiag_UT_u_step_ops_var1(), FLA_Bidiag_UT_u_step_ops_var2(), FLA_Bidiag_UT_u_step_ops_var5(), FLA_Househ2_UT(), FLA_LQ_UT_ops_var1(), and FLA_LQ_UT_ops_var2().
{ FLA_Househ2_UT_l_ops( m_x2, chi_1, x2, inc_x2, tau ); return FLA_SUCCESS; }
FLA_Error FLA_Househ2_UT_r_opz | ( | int | m_x2, |
dcomplex * | chi_1, | ||
dcomplex * | x2, | ||
int | inc_x2, | ||
dcomplex * | tau | ||
) |
References bli_zconjv(), and FLA_Househ2_UT_l_opz().
Referenced by FLA_Bidiag_UT_u_step_ofz_var2(), FLA_Bidiag_UT_u_step_opz_var1(), FLA_Bidiag_UT_u_step_opz_var2(), FLA_Bidiag_UT_u_step_opz_var5(), FLA_Househ2_UT(), FLA_LQ_UT_opz_var1(), and FLA_LQ_UT_opz_var2().
{ FLA_Househ2_UT_l_opz( m_x2, chi_1, x2, inc_x2, tau ); bli_zconjv( m_x2, x2, inc_x2 ); return FLA_SUCCESS; }