
SS Utility: Quick Intro

Alexey Kuznetsov, kuznet@ms2.inr.ac.ru somenegativenumber, 20 Sep 2001

ss is one another utility to investigate sockets. Functionally it is NOT better than netstat combined with some

perl/awk scripts and though it is surely faster it is not enough to make it much better. :-) So, stop reading this

now and do not waste your time. Well, certainly, it proposes some functionality, which current netstat is still not

able to do, but surely will soon.

1 Why?

/proc interface is inadequate, unfortunately. When amount of sockets is enough large, netstat or even

plain cat /proc/net/tcp/ cause nothing but pains and curses. In linux-2.4 the desease became worse: even

if amount of sockets is small reading /proc/net/tcp/ is slow enough.

This utility presents a new approach, which is supposed to scale well. I am not going to describe technical

details here and will concentrate on description of the command. The only important thing to say is that it

is not so bad idea to load module tcpdiag, which can be found in directory Modules of iproute2. If you

do not make this ss will work, but it falls back to /proc and becomes slow like netstat, well, a bit faster

yet (see section "Some numbers").

2 Old news

In the simplest form ss is equivalent to netstat with some small deviations.

• ss -t -a dumps all TCP sockets

• ss -u -a dumps all UDP sockets

• ss -w -a dumps all RAW sockets

• ss -x -a dumps all UNIX sockets

Option -o shows TCP timers state. Option -e shows some extended information. Etc. etc. etc. Seems, all

the options of netstat related to sockets are supported. Though not AX.25 and other bizarres. :-) If someone

wants, he can make support for decnet and ipx. Some rudimentary support for them is already present in

iproute2 libutils, and I will be glad to see these new members.

However, standard functionality is a bit di�erent:

The �rst: without option -a sockets in states TIME-WAIT and SYN-RECV are skipped too. It is more reasonable

default, I think.

The second: format of UNIX sockets is di�erent. It coincides with tcp/udp. Though standard kernel still

does not allow to see write/read queues and peer address of connected UNIX sockets, the patch doing this

exists.

The third: default is to dump only TCP sockets, rather than all of the types.

3. Time to talk about new functionality. 2

The next: by default it does not resolve numeric host addresses (like ip)! Resolving is enabled with option

-r. Service names, usually stored in local �les, are resolved by default. Also, if service database does not

contain references to a port, ss queries system rpcbind. RPC services are pre�xed with rpc. Resolution of

services may be suppressed with option -n.

It does not accept "long" options (I dislike them, sorry). So, address family is given with family identi�er

following option -f to be algined to iproute2 conventions. Mostly, it is to allow option parser to parse

addresses correctly, but as side e�ect it really limits dumping to sockets supporting only given family.

Option -A followed by list of socket tables to dump is also supported. Logically, id of socket table is di�erent

of address family, which is another point of incompatibility. So, id is one of all, tcp, udp, raw, inet, unix,

packet, netlink. See? Well, inet is just abbreviation for tcp|udp|raw and it is not di�cult to guess that

packet allows to look at packet sockets. Actually, there are also some other abbreviations, f.e. unixdgram

selects only datagram UNIX sockets.

The next: well, I still do not know. :-)

3 Time to talk about new functionality.

It is builtin �ltering of socket lists.

3.1 Filtering by state.

ss allows to �lter socket states, using keywords state and exclude, followed by some state identi�er.

State identi�er are standard TCP state names (not listed, they are useless for you if you already do not

know them) or abbreviations:

• all - for all the states

• bucket - for TCP minisockets (TIME-WAIT|SYN-RECV)

• big - all except for minisockets

• connected - not closed and not listening

• synchronized - connected and not SYN-SENT

F.e. to dump all tcp sockets except SYN-RECV:

ss exclude SYN-RECV

If neither state nor exclude directives are present, state �lter defaults to all with option -a or to all,

excluding listening, syn-recv, time-wait and closed sockets.

3.2 Filtering by addresses and ports.

Option list may contain address/port �lter. It is boolean expression which consists of boolean operation or,

and, not and predicates. Actually, all the �avors of names for boolean operations are eaten: , , |, ||, !, but

3. Time to talk about new functionality. 3

do not forget about special sense given to these symbols by unix shells and escape them correctly, when used

from command line.

Predicates may be of the folowing kinds:

• A. Address/port match, where address is checked against mask and port is either wildcard or exact.

It is one of:

dst prefix:port

src prefix:port

src unix:STRING

src link:protocol:ifindex

src nl:channel:pid

Both pre�x and port may be absent or replaced with *, which means wildcard. UNIX socket use more

powerful scheme matching to socket names by shell wildcards. Also, pre�xes unix: and link: may

be omitted, if address family is evident from context (with option -x or with -f unix or with unix

keyword)

F.e.

dst 10.0.0.1

dst 10.0.0.1:

dst 10.0.0.1/32:

dst 10.0.0.1:*

are equivalent and mean socket connected to any port on host 10.0.0.1

dst 10.0.0.0/24:22

sockets connected to port 22 on network 10.0.0.0...255.

Note that port separated of address with colon, which creates troubles with IPv6 addresses. Generally,

we interpret the last colon as splitting port. To allow to give IPv6 addresses, trick like used in IPv6

HTTP URLs may be used:

dst [::1]

are sockets connected to ::1 on any port

Another way is dst ::1128/. / helps to understand that colon is part of IPv6 address.

Now we can add another alias for dst 10.0.0.1: dst [10.0.0.1]. :-)

Address may be a DNS name. In this case all the addresses are looked up (in all the address families,

if it is not limited by option -f or special address pre�x inet:, inet6) and resulting expression is or

over all of them.

• B. Port expressions:

dport = :1024

dport != :22

sport :32000

4. Examples 4

etc.

All the relations: , , =, >=, =, ==, !=, eq, ge, lt, ne... Use variant which you like more, but not forget

to escape special characters when typing them in command line. :-)

Note that port number syntactically coincides to the case A! You may even add an IP address, but it will

not participate incomparison, except for == and !=, which are equivalent to corresponding predicates

of type A. F.e. dst 10.0.0.1:22 is equivalent to dport eq 10.0.0.1:22 and not dst 10.0.0.1:22

is equivalent to dport neq 10.0.0.1:22

• C. Keyword autobound. It matches to sockets bound automatically on local system.

4 Examples

• 1. List all the tcp sockets in state FIN-WAIT-1 for our apache to network 193.233.7/24 and look at

their timers:

ss -o state fin-wait-1 \(sport = :http or sport = :https \) \

dst 193.233.7/24

Oops, forgot to say that missing logical operation is equivalent to and.

• 2. Well, now look at the rest...

ss -o excl fin-wait-1

ss state fin-wait-1 \(sport neq :http and sport neq :https \) \

or not dst 193.233.7/24

Note that we have to do two calls of ss to do this. State match is always anded to address/port match.

The reason for this is purely technical: ss does fast skip of not matching states before parsing addresses

and I consider the ability to skip fastly gobs of time-wait and syn-recv sockets as more important than

logical generality.

• 3. So, let's look at all our sockets using autobound ports:

ss -a -A all autobound

• 4. And eventually �nd all the local processes connected to local X servers:

ss -xp dst "/tmp/.X11-unix/*"

Pardon, this does not work with current kernel, patching is required. But we still can look at server

side:

ss -x src "/tmp/.X11-unix/*"

5 Returning to ground: real manual

5.1 Command arguments

General format of arguments to ss is:

ss [OPTIONS] [STATE-FILTER] [ADDRESS-FILTER]

5. Returning to ground: real manual 5

5.1.1 OPTIONS

OPTIONS is list of single letter options, using common unix conventions.

• -h - show help page

• -? - the same, of course

• -v, -V - print version of ss and exit

• -s - print summary statistics. This option does not parse socket lists obtaining summary from various

sources. It is useful when amount of sockets is so huge that parsing /proc/net/tcp is painful.

• -D FILE - do not display anything, just dump raw information about TCP sockets to FILE after

applying �lters. If FILE is - stdout is used.

• -F FILE - read continuation of �lter from FILE. Each line of FILE is interpreted like single command

line option. If FILE is - stdin is used.

• -r - try to resolve numeric address/ports

• -n - do not try to resolve ports

• -o - show some optional information, f.e. TCP timers

• -i - show some infomration speci�c to TCP (RTO, congestion window, slow start threshould etc.)

• -e - show even more optional information

• -m - show extended information on memory used by the socket. It is available only with tcpdiag

enabled.

• -p - show list of processes owning the socket

• -f FAMILY - default address family used for parsing addresses. Also this option limits listing to sockets

supporting given address family. Currently the following families are supported: unix, inet, inet6,

link, netlink.

• -4 - alias for -f inet

• -6 - alias for -f inet6

• -0 - alias for -f link

• -A LIST-OF-TABLES - list of socket tables to dump, separated by commas. The following identi�ers are

understood: all, inet, tcp, udp, raw, unix, packet, netlink, unixdgram, unixstream, packetraw,

packetdgram.

• -x - alias for -A unix

• -t - alias for -A tcp

• -u - alias for -A udp

• -w - alias for -A raw

• -a - show sockets of all the states. By default sockets in states LISTEN, TIME-WAIT, SYNRECV and CLOSE

are skipped.

• -l - show only sockets in state LISTEN

5. Returning to ground: real manual 6

5.1.2 STATE-FILTER

STATE-FILTER allows to construct arbitrary set of states to match. Its syntax is sequence of keywords state

and exclude followed by identi�er of state. Available identi�ers are:

• All standard TCP states: established, syn-sent, syn-recv, fin-wait-1, fin-wait-2, time-wait,

closed, close-wait, last-ack, listen and closing.

• all - for all the states

• connected - all the states except for listen and closed

• synchronized - all the connected states except for syn-sent

• bucket - states, which are maintained as minisockets, i.e. time-wait and syn-recv.

• big - opposite to bucket

5.1.3 ADDRESSFILTER

ADDRESSFILTER is boolean expression with operations and, or and not, which can be abbreviated in C style

f.e. as , .

Predicates check socket addresses, both local and remote. There are the following kinds of predicates:

• dst ADDRESSPATTERN - matches remote address and port

• src ADDRESSPATTERN - matches local address and port

• dport RELOP PORT - compares remote port to a number

• sport RELOP PORT - compares local port to a number

• autobound - checks that socket is bound to an ephemeral port

RELOP is some of =, =, == etc. To make this more convinient for use in unix shell, alphabetic FORTRAN-like

notations le, gt etc. are accepted as well.

The format and semantics of ADDRESSPATTERN depends on address family.

• inet - ADDRESSPATTERN consists of IP pre�x, optionally followed by colon and port. If pre�x or port

part is absent or replaced with *, this means wildcard match.

• inet6 - The same as inet, only pre�x refers to an IPv6 address. Unlike inet colon becomes ambiguous,

so that ss allows to use scheme, like used in URLs, where address is suppounded with [...].

• unix - ADDRESSPATTERN is shell-style wildcard.

• packet - format looks like inet, only interface index stays instead of port and link layer protocol id

instead of address.

• netlink - format looks like inet, only socket pid stays instead of port and netlink channel instead of

address.

PORT is syntactically ADDRESSPATTERN with wildcard address part. Certainly, it is unde�ned for UNIX

sockets.

5. Returning to ground: real manual 7

5.2 Environment variables

ss allows to change source of information using various environment variables:

• PROCSLABINFO to override /proc/slabinfo

• PROCNETTCP to override /proc/net/tcp

• PROCNETUDP to override /proc/net/udp

• etc.

Variable PROCROOT allows to change root of all the /proc/ hierarchy.

Variable TCPDIAGFILE prescribes to open a �le instead of requesting kernel to dump information about TCP

sockets.

This option is used mainly to investigate bug reports, when dumps of �les usually found in /proc/ are

recevied by e-mail.

5.3 Output format

Six columns. The �rst is Netid, it denotes socket type and transport protocol, when it is ambiguous: tcp,

udp, raw, ustr is abbreviation for unixstream, udgr for UNIX datagram sockets, nl for netlink, praw and

pdgr for raw and datagram packet sockets. This column is optional, it will be hidden, if �lter selects an

unique netid.

The second column is State. Socket state is displayed here. The names are standard TCP names, except

for UNCONN, which cannot happen for TCP, but normal for not connected sockets of another types. Again,

this column can be hidden.

Then two columns (Recv-Q and Send-Q) showing amount of data queued for receive and transmit.

And the last two columns display local address and port of the socket and its peer address, if the socket is

connected.

If options -o, -e or -p were given, options are displayed not in �xed positions but separated by spaces pairs:

option:value. If value is not a single number, it is presented as list of values, enclosed to (...) and

separated with commas. F.e.

timer:(keepalive,111min,0)

is typical format for TCP timer (option -o).

users:((X,113,3))

is typical for list of users (option -p).

6. Some numbers 8

6 Some numbers

Well, let us use pidentd and a tool ibench to measure its performance. It is 30 requests per second here.

Nothing to test, it is too slow. OK, let us patch pidentd with patch from directory Patches. After this it

handles about 4300 requests per second and becomes handy tool to pollute socket tables with lots of timewait

buckets.

So, each test starts from pollution tables with 30000 sockets and then doing full dump of the table piped to

wc and measuring timings with time:

Results:

• netstat -at - 15.6 seconds

• ss -atr, but without tcpdiag - 5.4 seconds

• ss -atr with tcpdiag - 0.47 seconds

No comments. Though one comment is necessary, most of time without tcpdiag is wasted inside kernel with

completely blocked networking. More than 10 seconds, yes. tcpdiag does the same work for 100 milliseconds

of system time.

	Why?
	Old news
	Time to talk about new functionality.
	Filtering by state.
	Filtering by addresses and ports.

	Examples
	Returning to ground: real manual
	Command arguments
	OPTIONS
	STATE-FILTER
	ADDRESSFILTER

	Environment variables
	Output format

	Some numbers

