kafka package

Submodules

kafka.client module

class kafka.client.KafkaClient(hosts, client_id='kafka-python', timeout=120)[source]

Bases: object

CLIENT_ID = 'kafka-python'
ID_GEN = count(0)
close()[source]
copy()[source]

Create an inactive copy of the client object A reinit() has to be done on the copy before it can be used again

ensure_topic_exists(topic, timeout=30)[source]
get_partition_ids_for_topic(topic)[source]
has_metadata_for_topic(topic)[source]
load_metadata_for_topics(*topics)[source]

Fetch broker and topic-partition metadata from the server, and update internal data: broker list, topic/partition list, and topic/parition -> broker map

This method should be called after receiving any error

Parameters:*topics (optional) – If a list of topics is provided, the metadata refresh will be limited to the specified topics only.

If the broker is configured to not auto-create topics, expect UnknownTopicOrPartitionError for topics that don’t exist

If the broker is configured to auto-create topics, expect LeaderNotAvailableError for new topics until partitions have been initialized.

Exceptions will not be raised in a full refresh (i.e. no topic list) In this case, error codes will be logged as errors

Partition-level errors will also not be raised here (a single partition w/o a leader, for example)

reinit()[source]
reset_all_metadata()[source]
reset_topic_metadata(*topics)[source]
send_fetch_request(payloads=, []fail_on_error=True, callback=None, max_wait_time=100, min_bytes=4096)[source]

Encode and send a FetchRequest

Payloads are grouped by topic and partition so they can be pipelined to the same brokers.

send_metadata_request(payloads=, []fail_on_error=True, callback=None)[source]
send_offset_commit_request(group, payloads=, []fail_on_error=True, callback=None)[source]
send_offset_fetch_request(group, payloads=, []fail_on_error=True, callback=None)[source]
send_offset_request(payloads=, []fail_on_error=True, callback=None)[source]
send_produce_request(payloads=, []acks=1, timeout=1000, fail_on_error=True, callback=None)[source]

Encode and send some ProduceRequests

ProduceRequests will be grouped by (topic, partition) and then sent to a specific broker. Output is a list of responses in the same order as the list of payloads specified

Parameters:
  • payloads – list of ProduceRequest
  • fail_on_error – boolean, should we raise an Exception if we encounter an API error?
  • callback – function, instead of returning the ProduceResponse, first pass it through this function
Returns:

list of ProduceResponse or callback(ProduceResponse), in the order of input payloads

kafka.codec module

kafka.codec.gzip_decode(payload)[source]
kafka.codec.gzip_encode(payload)[source]
kafka.codec.has_gzip()[source]
kafka.codec.has_snappy()[source]
kafka.codec.snappy_decode(payload)[source]
kafka.codec.snappy_encode(payload, xerial_compatible=False, xerial_blocksize=32768)[source]

Encodes the given data with snappy if xerial_compatible is set then the stream is encoded in a fashion compatible with the xerial snappy library

The block size (xerial_blocksize) controls how frequent the blocking occurs 32k is the default in the xerial library.

The format winds up being
Header
16 bytes
Block1 len Block1 data Blockn len
Blockn data
snappy bytes
BE int32 snappy bytes BE int32

It is important to not that the blocksize is the amount of uncompressed data presented to snappy at each block, whereas the blocklen is the number of bytes that will be present in the stream, that is the length will always be <= blocksize.

kafka.common module

class kafka.common.BrokerMetadata

Bases: tuple

BrokerMetadata(nodeId, host, port)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

host

Alias for field number 1

nodeId

Alias for field number 0

port

Alias for field number 2

exception kafka.common.BrokerNotAvailableError[source]

Bases: kafka.common.BrokerResponseError

errno = 8
message = 'BROKER_NOT_AVAILABLE'
exception kafka.common.BrokerResponseError[source]

Bases: kafka.common.KafkaError

exception kafka.common.BufferUnderflowError[source]

Bases: kafka.common.KafkaError

exception kafka.common.ChecksumError[source]

Bases: kafka.common.KafkaError

exception kafka.common.ConnectionError[source]

Bases: kafka.common.KafkaError

exception kafka.common.ConsumerFetchSizeTooSmall[source]

Bases: kafka.common.KafkaError

exception kafka.common.ConsumerNoMoreData[source]

Bases: kafka.common.KafkaError

exception kafka.common.ConsumerTimeout[source]

Bases: kafka.common.KafkaError

exception kafka.common.FailedPayloadsError[source]

Bases: kafka.common.KafkaError

class kafka.common.FetchRequest

Bases: tuple

FetchRequest(topic, partition, offset, max_bytes)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

max_bytes

Alias for field number 3

offset

Alias for field number 2

partition

Alias for field number 1

topic

Alias for field number 0

class kafka.common.FetchResponse

Bases: tuple

FetchResponse(topic, partition, error, highwaterMark, messages)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

error

Alias for field number 2

highwaterMark

Alias for field number 3

messages

Alias for field number 4

partition

Alias for field number 1

topic

Alias for field number 0

exception kafka.common.InvalidFetchRequestError[source]

Bases: kafka.common.BrokerResponseError

errno = 4
message = 'INVALID_FETCH_SIZE'
exception kafka.common.InvalidMessageError[source]

Bases: kafka.common.BrokerResponseError

errno = 2
message = 'INVALID_MESSAGE'
exception kafka.common.KafkaConfigurationError[source]

Bases: kafka.common.KafkaError

exception kafka.common.KafkaError[source]

Bases: exceptions.RuntimeError

class kafka.common.KafkaMessage

Bases: tuple

KafkaMessage(topic, partition, offset, key, value)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

key

Alias for field number 3

offset

Alias for field number 2

partition

Alias for field number 1

topic

Alias for field number 0

value

Alias for field number 4

exception kafka.common.KafkaTimeoutError[source]

Bases: kafka.common.KafkaError

exception kafka.common.KafkaUnavailableError[source]

Bases: kafka.common.KafkaError

exception kafka.common.LeaderNotAvailableError[source]

Bases: kafka.common.BrokerResponseError

errno = 5
message = 'LEADER_NOT_AVAILABLE'
class kafka.common.Message

Bases: tuple

Message(magic, attributes, key, value)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

attributes

Alias for field number 1

key

Alias for field number 2

magic

Alias for field number 0

value

Alias for field number 3

exception kafka.common.MessageSizeTooLargeError[source]

Bases: kafka.common.BrokerResponseError

errno = 10
message = 'MESSAGE_SIZE_TOO_LARGE'
class kafka.common.MetadataRequest

Bases: tuple

MetadataRequest(topics,)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

topics

Alias for field number 0

class kafka.common.MetadataResponse

Bases: tuple

MetadataResponse(brokers, topics)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

brokers

Alias for field number 0

topics

Alias for field number 1

exception kafka.common.NotLeaderForPartitionError[source]

Bases: kafka.common.BrokerResponseError

errno = 6
message = 'NOT_LEADER_FOR_PARTITION'
class kafka.common.OffsetAndMessage

Bases: tuple

OffsetAndMessage(offset, message)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

message

Alias for field number 1

offset

Alias for field number 0

class kafka.common.OffsetCommitRequest

Bases: tuple

OffsetCommitRequest(topic, partition, offset, metadata)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

metadata

Alias for field number 3

offset

Alias for field number 2

partition

Alias for field number 1

topic

Alias for field number 0

class kafka.common.OffsetCommitResponse

Bases: tuple

OffsetCommitResponse(topic, partition, error)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

error

Alias for field number 2

partition

Alias for field number 1

topic

Alias for field number 0

class kafka.common.OffsetFetchRequest

Bases: tuple

OffsetFetchRequest(topic, partition)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

partition

Alias for field number 1

topic

Alias for field number 0

class kafka.common.OffsetFetchResponse

Bases: tuple

OffsetFetchResponse(topic, partition, offset, metadata, error)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

error

Alias for field number 4

metadata

Alias for field number 3

offset

Alias for field number 2

partition

Alias for field number 1

topic

Alias for field number 0

exception kafka.common.OffsetMetadataTooLargeError[source]

Bases: kafka.common.BrokerResponseError

errno = 12
message = 'OFFSET_METADATA_TOO_LARGE'
exception kafka.common.OffsetOutOfRangeError[source]

Bases: kafka.common.BrokerResponseError

errno = 1
message = 'OFFSET_OUT_OF_RANGE'
class kafka.common.OffsetRequest

Bases: tuple

OffsetRequest(topic, partition, time, max_offsets)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

max_offsets

Alias for field number 3

partition

Alias for field number 1

time

Alias for field number 2

topic

Alias for field number 0

class kafka.common.OffsetResponse

Bases: tuple

OffsetResponse(topic, partition, error, offsets)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

error

Alias for field number 2

offsets

Alias for field number 3

partition

Alias for field number 1

topic

Alias for field number 0

class kafka.common.PartitionMetadata

Bases: tuple

PartitionMetadata(topic, partition, leader, replicas, isr, error)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

error

Alias for field number 5

isr

Alias for field number 4

leader

Alias for field number 2

partition

Alias for field number 1

replicas

Alias for field number 3

topic

Alias for field number 0

class kafka.common.ProduceRequest

Bases: tuple

ProduceRequest(topic, partition, messages)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

messages

Alias for field number 2

partition

Alias for field number 1

topic

Alias for field number 0

class kafka.common.ProduceResponse

Bases: tuple

ProduceResponse(topic, partition, error, offset)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

error

Alias for field number 2

offset

Alias for field number 3

partition

Alias for field number 1

topic

Alias for field number 0

exception kafka.common.ProtocolError[source]

Bases: kafka.common.KafkaError

exception kafka.common.ReplicaNotAvailableError[source]

Bases: kafka.common.BrokerResponseError

errno = 9
message = 'REPLICA_NOT_AVAILABLE'
exception kafka.common.RequestTimedOutError[source]

Bases: kafka.common.BrokerResponseError

errno = 7
message = 'REQUEST_TIMED_OUT'
exception kafka.common.StaleControllerEpochError[source]

Bases: kafka.common.BrokerResponseError

errno = 11
message = 'STALE_CONTROLLER_EPOCH'
exception kafka.common.StaleLeaderEpochCodeError[source]

Bases: kafka.common.BrokerResponseError

errno = 13
message = 'STALE_LEADER_EPOCH_CODE'
class kafka.common.TopicAndPartition

Bases: tuple

TopicAndPartition(topic, partition)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

partition

Alias for field number 1

topic

Alias for field number 0

class kafka.common.TopicMetadata

Bases: tuple

TopicMetadata(topic, error, partitions)

__getnewargs__()

Return self as a plain tuple. Used by copy and pickle.

__getstate__()

Exclude the OrderedDict from pickling

__repr__()

Return a nicely formatted representation string

error

Alias for field number 1

partitions

Alias for field number 2

topic

Alias for field number 0

exception kafka.common.UnknownError[source]

Bases: kafka.common.BrokerResponseError

errno = -1
message = 'UNKNOWN'
exception kafka.common.UnknownTopicOrPartitionError[source]

Bases: kafka.common.BrokerResponseError

errno = 3
message = 'UNKNOWN_TOPIC_OR_PARTITON'
exception kafka.common.UnsupportedCodecError[source]

Bases: kafka.common.KafkaError

kafka.common.check_error(response)[source]
kafka.common.x

alias of UnknownTopicOrPartitionError

kafka.conn module

class kafka.conn.KafkaConnection(host, port, timeout=120)[source]

Bases: thread._local

A socket connection to a single Kafka broker

This class is _not_ thread safe. Each call to send must be followed by a call to recv in order to get the correct response. Eventually, we can do something in here to facilitate multiplexed requests/responses since the Kafka API includes a correlation id.

Parameters:
  • host – the host name or IP address of a kafka broker
  • port – the port number the kafka broker is listening on
  • timeout – default 120. The socket timeout for sending and receiving data in seconds. None means no timeout, so a request can block forever.
close()[source]

Shutdown and close the connection socket

copy()[source]

Create an inactive copy of the connection object A reinit() has to be done on the copy before it can be used again return a new KafkaConnection object

recv(request_id)[source]

Get a response packet from Kafka

Parameters:request_id – can be any int (only used for debug logging...)
Returns:Encoded kafka packet response from server
Return type:str
reinit()[source]

Re-initialize the socket connection close current socket (if open) and start a fresh connection raise ConnectionError on error

send(request_id, payload)[source]

Send a request to Kafka

Parameters:
  • request_id (int) – can be any int (used only for debug logging...)
  • payload – an encoded kafka packet (see KafkaProtocol)
kafka.conn.collect_hosts(hosts, randomize=True)[source]

Collects a comma-separated set of hosts (host:port) and optionally randomize the returned list.

kafka.context module

Context manager to commit/rollback consumer offsets.

class kafka.context.OffsetCommitContext(consumer)[source]

Bases: object

Provides commit/rollback semantics around a SimpleConsumer.

Usage assumes that auto_commit is disabled, that messages are consumed in batches, and that the consuming process will record its own successful processing of each message. Both the commit and rollback operations respect a “high-water mark” to ensure that last unsuccessfully processed message will be retried.

Example:

consumer = SimpleConsumer(client, group, topic, auto_commit=False)
consumer.provide_partition_info()
consumer.fetch_last_known_offsets()

while some_condition:
    with OffsetCommitContext(consumer) as context:
        messages = consumer.get_messages(count, block=False)

        for partition, message in messages:
            if can_process(message):
                context.mark(partition, message.offset)
            else:
                break

        if not context:
            sleep(delay)

These semantics allow for deferred message processing (e.g. if can_process compares message time to clock time) and for repeated processing of the last unsuccessful message (until some external error is resolved).

__enter__()[source]

Start a new context:

  • Record the initial offsets for rollback
  • Reset the high-water mark
__exit__(exc_type, exc_value, traceback)[source]

End a context.

  • If there was no exception, commit up to the current high-water mark.
  • If there was an offset of range error, attempt to find the correct initial offset.
  • If there was any other error, roll back to the initial offsets.
__nonzero__()[source]

Return whether any operations were marked in the context.

commit()[source]

Commit this context’s offsets:

  • If the high-water mark has moved, commit up to and position the consumer at the high-water mark.
  • Otherwise, reset to the consumer to the initial offsets.
commit_partition_offsets(partition_offsets)[source]

Commit explicit partition/offset pairs.

handle_out_of_range()[source]

Handle out of range condition by seeking to the beginning of valid ranges.

This assumes that an out of range doesn’t happen by seeking past the end of valid ranges – which is far less likely.

mark(partition, offset)[source]

Set the high-water mark in the current context.

In order to know the current partition, it is helpful to initialize the consumer to provide partition info via:

consumer.provide_partition_info()
rollback()[source]

Rollback this context:

  • Position the consumer at the initial offsets.
update_consumer_offsets(partition_offsets)[source]

Update consumer offsets to explicit positions.

kafka.protocol module

class kafka.protocol.KafkaProtocol[source]

Bases: object

Class to encapsulate all of the protocol encoding/decoding. This class does not have any state associated with it, it is purely for organization.

FETCH_KEY = 1
METADATA_KEY = 3
OFFSET_COMMIT_KEY = 8
OFFSET_FETCH_KEY = 9
OFFSET_KEY = 2
PRODUCE_KEY = 0
classmethod decode_fetch_response(data)[source]

Decode bytes to a FetchResponse

Parameters:data – bytes to decode
classmethod decode_metadata_response(data)[source]

Decode bytes to a MetadataResponse

Parameters:data – bytes to decode
classmethod decode_offset_commit_response(data)[source]

Decode bytes to an OffsetCommitResponse

Parameters:data – bytes to decode
classmethod decode_offset_fetch_response(data)[source]

Decode bytes to an OffsetFetchResponse

Parameters:data – bytes to decode
classmethod decode_offset_response(data)[source]

Decode bytes to an OffsetResponse

Parameters:data – bytes to decode
classmethod decode_produce_response(data)[source]

Decode bytes to a ProduceResponse

Parameters:data – bytes to decode
classmethod encode_fetch_request(client_id, correlation_id, payloads=None, max_wait_time=100, min_bytes=4096)[source]

Encodes some FetchRequest structs

Parameters:
  • client_id – string
  • correlation_id – int
  • payloads – list of FetchRequest
  • max_wait_time – int, how long to block waiting on min_bytes of data
  • min_bytes – int, the minimum number of bytes to accumulate before returning the response
classmethod encode_metadata_request(client_id, correlation_id, topics=None, payloads=None)[source]

Encode a MetadataRequest

Parameters:
  • client_id – string
  • correlation_id – int
  • topics – list of strings
classmethod encode_offset_commit_request(client_id, correlation_id, group, payloads)[source]

Encode some OffsetCommitRequest structs

Parameters:
  • client_id – string
  • correlation_id – int
  • group – string, the consumer group you are committing offsets for
  • payloads – list of OffsetCommitRequest
classmethod encode_offset_fetch_request(client_id, correlation_id, group, payloads)[source]

Encode some OffsetFetchRequest structs

Parameters:
  • client_id – string
  • correlation_id – int
  • group – string, the consumer group you are fetching offsets for
  • payloads – list of OffsetFetchRequest
classmethod encode_offset_request(client_id, correlation_id, payloads=None)[source]
classmethod encode_produce_request(client_id, correlation_id, payloads=None, acks=1, timeout=1000)[source]

Encode some ProduceRequest structs

Parameters:
  • client_id – string
  • correlation_id – int
  • payloads – list of ProduceRequest
  • acks – How “acky” you want the request to be 0: immediate response 1: written to disk by the leader 2+: waits for this many number of replicas to sync -1: waits for all replicas to be in sync
  • timeout – Maximum time the server will wait for acks from replicas. This is _not_ a socket timeout
kafka.protocol.create_gzip_message(payloads, key=None)[source]

Construct a Gzipped Message containing multiple Messages

The given payloads will be encoded, compressed, and sent as a single atomic message to Kafka.

Parameters:
  • payloads – list(bytes), a list of payload to send be sent to Kafka
  • key – bytes, a key used for partition routing (optional)
kafka.protocol.create_message(payload, key=None)[source]

Construct a Message

Parameters:
  • payload – bytes, the payload to send to Kafka
  • key – bytes, a key used for partition routing (optional)
kafka.protocol.create_message_set(messages, codec=0, key=None)[source]

Create a message set using the given codec.

If codec is CODEC_NONE, return a list of raw Kafka messages. Otherwise, return a list containing a single codec-encoded message.

kafka.protocol.create_snappy_message(payloads, key=None)[source]

Construct a Snappy Message containing multiple Messages

The given payloads will be encoded, compressed, and sent as a single atomic message to Kafka.

Parameters:
  • payloads – list(bytes), a list of payload to send be sent to Kafka
  • key – bytes, a key used for partition routing (optional)

kafka.util module

class kafka.util.ReentrantTimer(t, fn, *args, **kwargs)[source]

Bases: object

A timer that can be restarted, unlike threading.Timer (although this uses threading.Timer)

Parameters:
  • t – timer interval in milliseconds
  • fn – a callable to invoke
  • args – tuple of args to be passed to function
  • kwargs – keyword arguments to be passed to function
start()[source]
stop()[source]
kafka.util.crc32(data)[source]
kafka.util.group_by_topic_and_partition(tuples)[source]
kafka.util.kafka_bytestring(s)[source]

Takes a string or bytes instance Returns bytes, encoding strings in utf-8 as necessary

kafka.util.read_int_string(data, cur)[source]
kafka.util.read_short_string(data, cur)[source]
kafka.util.relative_unpack(fmt, data, cur)[source]
kafka.util.write_int_string(s)[source]
kafka.util.write_short_string(s)[source]

Module contents

class kafka.KafkaClient(hosts, client_id='kafka-python', timeout=120)

Bases: object

CLIENT_ID = 'kafka-python'
ID_GEN = count(0)
close()
copy()

Create an inactive copy of the client object A reinit() has to be done on the copy before it can be used again

ensure_topic_exists(topic, timeout=30)
get_partition_ids_for_topic(topic)
has_metadata_for_topic(topic)
load_metadata_for_topics(*topics)

Fetch broker and topic-partition metadata from the server, and update internal data: broker list, topic/partition list, and topic/parition -> broker map

This method should be called after receiving any error

Parameters:*topics (optional) – If a list of topics is provided, the metadata refresh will be limited to the specified topics only.

If the broker is configured to not auto-create topics, expect UnknownTopicOrPartitionError for topics that don’t exist

If the broker is configured to auto-create topics, expect LeaderNotAvailableError for new topics until partitions have been initialized.

Exceptions will not be raised in a full refresh (i.e. no topic list) In this case, error codes will be logged as errors

Partition-level errors will also not be raised here (a single partition w/o a leader, for example)

reinit()
reset_all_metadata()
reset_topic_metadata(*topics)
send_fetch_request(payloads=, []fail_on_error=True, callback=None, max_wait_time=100, min_bytes=4096)

Encode and send a FetchRequest

Payloads are grouped by topic and partition so they can be pipelined to the same brokers.

send_metadata_request(payloads=, []fail_on_error=True, callback=None)
send_offset_commit_request(group, payloads=, []fail_on_error=True, callback=None)
send_offset_fetch_request(group, payloads=, []fail_on_error=True, callback=None)
send_offset_request(payloads=, []fail_on_error=True, callback=None)
send_produce_request(payloads=, []acks=1, timeout=1000, fail_on_error=True, callback=None)

Encode and send some ProduceRequests

ProduceRequests will be grouped by (topic, partition) and then sent to a specific broker. Output is a list of responses in the same order as the list of payloads specified

Parameters:
  • payloads – list of ProduceRequest
  • fail_on_error – boolean, should we raise an Exception if we encounter an API error?
  • callback – function, instead of returning the ProduceResponse, first pass it through this function
Returns:

list of ProduceResponse or callback(ProduceResponse), in the order of input payloads

class kafka.KafkaConnection(host, port, timeout=120)

Bases: thread._local

A socket connection to a single Kafka broker

This class is _not_ thread safe. Each call to send must be followed by a call to recv in order to get the correct response. Eventually, we can do something in here to facilitate multiplexed requests/responses since the Kafka API includes a correlation id.

Parameters:
  • host – the host name or IP address of a kafka broker
  • port – the port number the kafka broker is listening on
  • timeout – default 120. The socket timeout for sending and receiving data in seconds. None means no timeout, so a request can block forever.
close()

Shutdown and close the connection socket

copy()

Create an inactive copy of the connection object A reinit() has to be done on the copy before it can be used again return a new KafkaConnection object

recv(request_id)

Get a response packet from Kafka

Parameters:request_id – can be any int (only used for debug logging...)
Returns:Encoded kafka packet response from server
Return type:str
reinit()

Re-initialize the socket connection close current socket (if open) and start a fresh connection raise ConnectionError on error

send(request_id, payload)

Send a request to Kafka

Parameters:
  • request_id (int) – can be any int (used only for debug logging...)
  • payload – an encoded kafka packet (see KafkaProtocol)
class kafka.SimpleProducer(client, async=False, req_acks=1, ack_timeout=1000, codec=None, batch_send=False, batch_send_every_n=20, batch_send_every_t=20, random_start=True)

Bases: kafka.producer.base.Producer

A simple, round-robin producer. Each message goes to exactly one partition

Parameters:

client – The Kafka client instance to use

Keyword Arguments:
 
  • async – If True, the messages are sent asynchronously via another thread (process). We will not wait for a response to these
  • req_acks – A value indicating the acknowledgements that the server must receive before responding to the request
  • ack_timeout – Value (in milliseconds) indicating a timeout for waiting for an acknowledgement
  • batch_send – If True, messages are send in batches
  • batch_send_every_n – If set, messages are send in batches of this size
  • batch_send_every_t – If set, messages are send after this timeout
  • random_start – If true, randomize the initial partition which the the first message block will be published to, otherwise if false, the first message block will always publish to partition 0 before cycling through each partition
send_messages(topic, *msg)
class kafka.KeyedProducer(client, partitioner=None, async=False, req_acks=1, ack_timeout=1000, codec=None, batch_send=False, batch_send_every_n=20, batch_send_every_t=20)

Bases: kafka.producer.base.Producer

A producer which distributes messages to partitions based on the key

Parameters:

client – The kafka client instance

Keyword Arguments:
 
  • partitioner – A partitioner class that will be used to get the partition to send the message to. Must be derived from Partitioner
  • async – If True, the messages are sent asynchronously via another thread (process). We will not wait for a response to these
  • ack_timeout – Value (in milliseconds) indicating a timeout for waiting for an acknowledgement
  • batch_send – If True, messages are send in batches
  • batch_send_every_n – If set, messages are send in batches of this size
  • batch_send_every_t – If set, messages are send after this timeout
send(topic, key, msg)
send_messages(topic, key, *msg)
class kafka.RoundRobinPartitioner(partitions)

Bases: kafka.partitioner.base.Partitioner

Implements a round robin partitioner which sends data to partitions in a round robin fashion

partition(key, partitions=None)
class kafka.HashedPartitioner(partitions)

Bases: kafka.partitioner.base.Partitioner

Implements a partitioner which selects the target partition based on the hash of the key

partition(key, partitions=None)
class kafka.SimpleConsumer(client, group, topic, auto_commit=True, partitions=None, auto_commit_every_n=100, auto_commit_every_t=5000, fetch_size_bytes=4096, buffer_size=4096, max_buffer_size=32768, iter_timeout=None)

Bases: kafka.consumer.base.Consumer

A simple consumer implementation that consumes all/specified partitions for a topic

Parameters:
  • client – a connected KafkaClient
  • group – a name for this consumer, used for offset storage and must be unique
  • topic – the topic to consume
Keyword Arguments:
 
  • partitions – An optional list of partitions to consume the data from
  • auto_commit – default True. Whether or not to auto commit the offsets
  • auto_commit_every_n – default 100. How many messages to consume before a commit
  • auto_commit_every_t – default 5000. How much time (in milliseconds) to wait before commit
  • fetch_size_bytes – number of bytes to request in a FetchRequest
  • buffer_size – default 4K. Initial number of bytes to tell kafka we have available. This will double as needed.
  • max_buffer_size – default 16K. Max number of bytes to tell kafka we have available. None means no limit.
  • iter_timeout – default None. How much time (in seconds) to wait for a message in the iterator before exiting. None means no timeout, so it will wait forever.

Auto commit details: If both auto_commit_every_n and auto_commit_every_t are set, they will reset one another when one is triggered. These triggers simply call the commit method on this class. A manual call to commit will also reset these triggers

get_message(block=True, timeout=0.1, get_partition_info=None)
get_messages(count=1, block=True, timeout=0.1)

Fetch the specified number of messages

Keyword Arguments:
 
  • count – Indicates the maximum number of messages to be fetched
  • block – If True, the API will block till some messages are fetched.
  • timeout – If block is True, the function will block for the specified time (in seconds) until count messages is fetched. If None, it will block forever.
provide_partition_info()

Indicates that partition info must be returned by the consumer

seek(offset, whence)

Alter the current offset in the consumer, similar to fseek

Parameters:
  • offset – how much to modify the offset
  • whence

    where to modify it from

    • 0 is relative to the earliest available offset (head)
    • 1 is relative to the current offset
    • 2 is relative to the latest known offset (tail)
class kafka.MultiProcessConsumer(client, group, topic, auto_commit=True, auto_commit_every_n=100, auto_commit_every_t=5000, num_procs=1, partitions_per_proc=0)

Bases: kafka.consumer.base.Consumer

A consumer implementation that consumes partitions for a topic in parallel using multiple processes

Parameters:
  • client – a connected KafkaClient
  • group – a name for this consumer, used for offset storage and must be unique
  • topic – the topic to consume
Keyword Arguments:
 
  • auto_commit – default True. Whether or not to auto commit the offsets
  • auto_commit_every_n – default 100. How many messages to consume before a commit
  • auto_commit_every_t – default 5000. How much time (in milliseconds) to wait before commit
  • num_procs – Number of processes to start for consuming messages. The available partitions will be divided among these processes
  • partitions_per_proc – Number of partitions to be allocated per process (overrides num_procs)

Auto commit details: If both auto_commit_every_n and auto_commit_every_t are set, they will reset one another when one is triggered. These triggers simply call the commit method on this class. A manual call to commit will also reset these triggers

__iter__()

Iterator to consume the messages available on this consumer

get_messages(count=1, block=True, timeout=10)

Fetch the specified number of messages

Keyword Arguments:
 
  • count – Indicates the maximum number of messages to be fetched
  • block – If True, the API will block till some messages are fetched.
  • timeout – If block is True, the function will block for the specified time (in seconds) until count messages is fetched. If None, it will block forever.
stop()
kafka.create_message(payload, key=None)

Construct a Message

Parameters:
  • payload – bytes, the payload to send to Kafka
  • key – bytes, a key used for partition routing (optional)
kafka.create_gzip_message(payloads, key=None)

Construct a Gzipped Message containing multiple Messages

The given payloads will be encoded, compressed, and sent as a single atomic message to Kafka.

Parameters:
  • payloads – list(bytes), a list of payload to send be sent to Kafka
  • key – bytes, a key used for partition routing (optional)
kafka.create_snappy_message(payloads, key=None)

Construct a Snappy Message containing multiple Messages

The given payloads will be encoded, compressed, and sent as a single atomic message to Kafka.

Parameters:
  • payloads – list(bytes), a list of payload to send be sent to Kafka
  • key – bytes, a key used for partition routing (optional)
class kafka.KafkaConsumer(*topics, **configs)

Bases: object

A simpler kafka consumer

# A very basic 'tail' consumer, with no stored offset management
kafka = KafkaConsumer('topic1',
                      metadata_broker_list=['localhost:9092'])
for m in kafka:
  print m

# Alternate interface: next()
print kafka.next()

# Alternate interface: batch iteration
while True:
  for m in kafka.fetch_messages():
    print m
  print "Done with batch - let's do another!"
# more advanced consumer -- multiple topics w/ auto commit offset
# management
kafka = KafkaConsumer('topic1', 'topic2',
                      metadata_broker_list=['localhost:9092'],
                      group_id='my_consumer_group',
                      auto_commit_enable=True,
                      auto_commit_interval_ms=30 * 1000,
                      auto_offset_reset='smallest')

# Infinite iteration
for m in kafka:
  process_message(m)
  kafka.task_done(m)

# Alternate interface: next()
m = kafka.next()
process_message(m)
kafka.task_done(m)

# If auto_commit_enable is False, remember to commit() periodically
kafka.commit()

# Batch process interface
while True:
  for m in kafka.fetch_messages():
    process_message(m)
    kafka.task_done(m)

messages (m) are namedtuples with attributes:

  • m.topic: topic name (str)
  • m.partition: partition number (int)
  • m.offset: message offset on topic-partition log (int)
  • m.key: key (bytes - can be None)
  • m.value: message (output of deserializer_class - default is raw bytes)

Configuration settings can be passed to constructor, otherwise defaults will be used:

client_id='kafka.consumer.kafka',
group_id=None,
fetch_message_max_bytes=1024*1024,
fetch_min_bytes=1,
fetch_wait_max_ms=100,
refresh_leader_backoff_ms=200,
metadata_broker_list=None,
socket_timeout_ms=30*1000,
auto_offset_reset='largest',
deserializer_class=lambda msg: msg,
auto_commit_enable=False,
auto_commit_interval_ms=60 * 1000,
consumer_timeout_ms=-1

Configuration parameters are described in more detail at http://kafka.apache.org/documentation.html#highlevelconsumerapi

commit()

Store consumed message offsets (marked via task_done()) to kafka cluster for this consumer_group.

Note: this functionality requires server version >=0.8.1.1 See this wiki page.

configure(**configs)

Configuration settings can be passed to constructor, otherwise defaults will be used:

client_id='kafka.consumer.kafka',
group_id=None,
fetch_message_max_bytes=1024*1024,
fetch_min_bytes=1,
fetch_wait_max_ms=100,
refresh_leader_backoff_ms=200,
metadata_broker_list=None,
socket_timeout_ms=30*1000,
auto_offset_reset='largest',
deserializer_class=lambda msg: msg,
auto_commit_enable=False,
auto_commit_interval_ms=60 * 1000,
auto_commit_interval_messages=None,
consumer_timeout_ms=-1

Configuration parameters are described in more detail at http://kafka.apache.org/documentation.html#highlevelconsumerapi

fetch_messages()

Sends FetchRequests for all topic/partitions set for consumption Returns a generator that yields KafkaMessage structs after deserializing with the configured deserializer_class

Refreshes metadata on errors, and resets fetch offset on OffsetOutOfRange, per the configured auto_offset_reset policy

Key configuration parameters:

  • fetch_message_max_bytes
  • fetch_max_wait_ms
  • fetch_min_bytes
  • deserializer_class
  • auto_offset_reset
get_partition_offsets(topic, partition, request_time_ms, max_num_offsets)

Request available fetch offsets for a single topic/partition

Parameters:
  • (str) (topic) –
  • (int) (max_num_offsets) –
  • request_time_ms (int) – Used to ask for all messages before a certain time (ms). There are two special values. Specify -1 to receive the latest offset (i.e. the offset of the next coming message) and -2 to receive the earliest available offset. Note that because offsets are pulled in descending order, asking for the earliest offset will always return you a single element.
  • (int)
Returns:

offsets (list)

next()

Return a single message from the message iterator If consumer_timeout_ms is set, will raise ConsumerTimeout if no message is available Otherwise blocks indefinitely

Note that this is also the method called internally during iteration:

for m in consumer:
    pass
offsets(group=None)
Keyword Arguments:
 group – Either “fetch”, “commit”, “task_done”, or “highwater”. If no group specified, returns all groups.
Returns:A copy of internal offsets struct
set_topic_partitions(*topics)

Set the topic/partitions to consume Optionally specify offsets to start from

Accepts types:

  • str (utf-8): topic name (will consume all available partitions)

  • tuple: (topic, partition)

  • dict:
    • { topic: partition }
    • { topic: [partition list] }
    • { topic: (partition tuple,) }

Optionally, offsets can be specified directly:

  • tuple: (topic, partition, offset)
  • dict: { (topic, partition): offset, ... }

Example:

kafka = KafkaConsumer()

# Consume topic1-all; topic2-partition2; topic3-partition0
kafka.set_topic_partitions("topic1", ("topic2", 2), {"topic3": 0})

# Consume topic1-0 starting at offset 123, and topic2-1 at offset 456
# using tuples --
kafka.set_topic_partitions(("topic1", 0, 123), ("topic2", 1, 456))

# using dict --
kafka.set_topic_partitions({ ("topic1", 0): 123, ("topic2", 1): 456 })
task_done(message)

Mark a fetched message as consumed. Offsets for messages marked as “task_done” will be stored back to the kafka cluster for this consumer group on commit()