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<PEIE>

Portable Expression Template Engine

PETE Tutorials
Introduction

This document is an introduction to PETE, alibrary of C++ classes and templates for
high-performance numerical computation. PETE, which stands for "Portable Expression
Template Engine", uses a technique called expression templates to eliminate data copying
and the creation of temporary variables. Asaresult, PETE-based programs can be as
efficient astheir C or Fortran equivalents.

PETE was designed and implemented by scientists working at the Los Alamos National
Laboratory's Advanced Computing Laboratory. These scientists have written and tuned

large applications on almost every kind of microprocessor built in the last two decades.

PETE therefore encapsulates its authors understanding of how to get good performance
out of modern pipelined architectures and their multi-level memory hierarchies.

PETE isfree for non-commercial use (i.e. your tax dollars have already paid for it). You
can read its source, extend it to handle platforms or problem domains that the core
distribution doesn't cater for, or integrate it with other libraries and your current
application, at no cost. For more information, please see the license information included

In the appendix.

Of course, nothing is perfect. As of October 1998, some C++ compilers still do not support
the full ANSI/ISO C++ standard. Please see PETE's support page for alist of those that do.

A second compiler-related problem is that most compilers produce very long, and very
cryptic, error messages if they encounter an error while expanding templated functions and
classes, particularly if those functions and classes are nested. Since PETE uses templates
extensively, it is not uncommon for asingle error to result in several pages of complaints
from a compiler. Programs that use templates extensively are also still sometimes slower to
compile than programs that do not, and the executables produced by some compilers can
be surprisingly large.

The body of thistutorial starts with adiscussion of the two key concepts behind PETE:
C++ templates, and parse trees. The tutorials that follow show how to apply PETE to
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user-defined classes, and to third-party classes such as those in the C++ Standard Template
Library (STL). You may also wish to look at the PETE web site for updates, bug fixes, and
general discussion. Aswell, an introductory article on PETE appeared in the October 1999
issue of Dr. Dobb's Journal. If you have any questions about PETE or its terms of use, or if
you need help downloading or installing PETE, please mail us at

pet e@cl . | anl . gov.

[Home] [Next]

Copyright © Los Alamos National Laboratory 1999
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Introduction

Object-oriented languages like C++ make devel opment easier, but performance tuning harder. The same
abstractions that allow programmers to express their ideas compactly also make it hard for compilersto
re-order operations, predict how many times aloop will be executed, or re-use memory instead of copying
values.

For example, suppose that a program uses a Vect or class to represent vectors of floating-point values:

cl ass Vect or

{ |
public :
Vector(); /]l default constructor
Vect or ( /'l val ue constructor
int size, /'l ..size of vector
fl oat val /1 ..initial elenment val ue
);
Vect or ( /'l copy constructor
const Vector & v /1l ..what to copy
);
virtual ~Vector(); /'l clean up
fl oat getAt( /'l get an el enent
i nt index /1l ..which elenent to get
) const;
voi d set At ( /'l change an el enent
i nt index, /1 ..which elenent to set
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fl oat val /1 ..new val ue for el enent

);

Vect or oper at or +( /1 add, creating a new vector
const Vector & right /1l ..thing being added

);

Vect or operat or*( /1 multiply (create result)
const Vector & right /1 ..thing being multiplied

);

Vect or & operat or =( /1l assign, returning target
const Vector & right /'l ..source

);

protected :
int len_; /1l current length
float * val _; /'l current val ues

3
Consider what happens when the following statement is executed:
Vector x, a, b, c;

/! variable initialization omtted
X =a+b* c

b* c createsanew Vect or , and fillsit with the elementwise product of b and ¢ by looping over the values
that those two vectors encapsulate. The call to the addition operator creates another temporary, and executes
another loop to fill it. Finally, the call to the assignment operator doesn't create a third temporary, but it does
execute athird loop. Thus, this simple statement is equivalent to:

Vector x, a, b, c;

[l ...initialization...

Vector tenp_ 1,

for (int i=0; i<vectorLength; ++i)

{
}

Vector tenp_2;
for (int 1=0; i<vectorLength; ++i)

tenp_l.setAt(i, b.getAt(i) * c.getAt(i));

{
tenp_2.setAt(i, a.getAt(i) + tenp_1.getAt(i));
}
for (int i=0; i<vectorLength; ++i)
{
X.setAt (i, tenp_2.getAt(i));
}
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Clearly, if this program was written in C instead of C++, the three loops would have been combined, and the
two temporary vectors eliminated:

Vector x, a, b, c;

[l ...initialization...
for (int i=0; i<vectorLength; ++i)
{

X.setAt (i, a.getAt(i) + b.getAt(i) * c.getAt(i));
}

The optimizations required to turn the three-loop version of this code into its single-loop equivalent are
beyond the capabilities of existing commercial compilers. Because operations may involve aliasing---i.e.,
because an expression like x=a+b* ¢ can assign to a vector while also reading from it---optimizers must err
on the side of caution, and neither eliminate temporaries nor fuse loops. This has led many programmers to
believe that C++ isintrinsically less efficient than C or Fortran 77.

Luckily, this conclusion iswrong. By using templates in a highly-structured way, PETE exposes
opportunities for optimization to compilers without sacrificing readability or portability. The result is that
modern C++ compilers can deliver the same performance for PETE-based programs as C or Fortran
compilers do for equivalent programs written in those lower-level languages.

In order to understand how and why PETE does what it does, it is necessary to understand what C++
templates are, and how PETE (and similar libraries) use templates to encode parse trees.

Templates

Templates were a late addition to C++, but they have increased the power of the language significantly. One
way to look at templatesis as an improvement over macros. Suppose that you wanted to create a set of
classesto store pairsof i nt s, pairsof f | oat s, and so on. Without templates, you might define a macro:

—_

#defi ne DECLARE PAI R CLASS(nane_, type )
cl ass nane_
{
public :
name_(); /'l default constructor
nane_(type_ left, type_ right); /'l val ue constructor
name_(const nane_ & right); /'l copy constructor
virtual ~nane_(); /| destructor
type_ & left(); /| access left el enment
type_ & right(); /| access right el enent
protected :
type_left_, right_; /'l val ue storage
1

then use it to create each classin turn:

DECLARE_PAI R CLASS(IntPair, int)
DECLARE_PAI R _CLASS( Fl oat Pair, float)

A better way to do thisisto declare atemplate class:
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t enpl at e<cl ass Dat aType>

class Pair
{
public :
Pair(); /1 default constructor
Pai r (Dat aType | eft, /'l val ue constructor
Dat aType right);
Pai r (const Pair<DataType> & right); /'l copy constructor
virtual ~Pair(); /1 destructor
Dat aType & left(); /'l access |left el enent
Dat aType & right(); /'l access right el enent
protected :
Dat aType left_, right_; /'l val ue storage
1

The keywordt enpl at e tellsthe compiler that the class cannot be compiled right away, since it depends on
an as-yet-unknown data type. When the declarations:

Pai r <i nt > pairOlnts;
Pai r <f| oat > pairO Fl oat s;

are seen, the compiler instantiates Pai r once for each underlying data type. This happens automatically: the
programmer does not have to create the actual pair classes explicitly by saying:

typedef Pair<int> IntPair; /'l incorrect!
IntPair pairCiints;

Templates can also be used to define generic functions, asin:

t enpl at e<cl ass Dat aType>
voi d swap(Dat aType & |l eft, DataType & right)
{

Dat aType tnmp(left);

| ef t right;

right t np;

}

Once again, this function can be called with two objects of any matching type, without any further work on
the programmer’s part:

I nt i, J;
swap(i, j);

Shape back, front;
swap(back, front);

Note that the implementation of swap() depends on the actual datatype of its arguments having both a
copy constructor (so that t mp can be initialized with the value of | ef t ) and an assignment operator (so that
| eft andri ght canbeoverwritten). If the actual datatype does not provide either of these, the compiler
will report an error.
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Note also that swap() can be made more flexible by not requiring the two objects to have exactly the same
type. The following re-definition of swap() will exchange the values of any two objects, provided
appropriate assignment and conversion operators exist:

t enpl at e<cl ass Left Type, class Ri ght Type>
voi d swap(LeftType & left, RightType & right)

{
Left Type tnp(left);
left = right;
right = tnp;

}

Finally, theword cl ass appears in template definitions because other values, such as integers, can also be
used. The code below defines a small fixed-size vector class, but does not fix either its size or underlying data

type:

t enpl at e<cl ass DataType, int FixedSize>
cl ass Fi xedVect or

{
public :
Fi xedVector () ; /'l default constructor
Fi xedVect or (Dat aType filler); /'l val ue constructor
virtual ~Fi xedVector(); /| destructor
Fi xedVect or ( /'l copy constructor
const Fi xedVect or <Dat aType, Fi xedSi ze> & right
);
Fi xedVect or <Dat aType> /'l assi gnnment
oper at or =(
const Fi xedVect or <Dat aType, Fi xedSi ze> & right
);
Dat aType & operator[](int index); /'l el enent access
protected :
Dat aType storage[ Fi xedSi ze] ; /'l fixed-size storage
1

It isat this point that the possible performance advantages of templated classes start to become apparent.
Suppose that the copy constructor for this class isimplemented as follows.

t enpl at e<cl ass DataType, int FixedSize>
Fi xedVect or: : Fi xedVect or (
const Fi xedVect or <Dat aType, Fi xedSi ze> & ri ght

) {
for (int i=0; i<FixedSize; ++i)
{
storage[i] = right.storage[i];
}
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}

When the compiler sees a use of the copy constructor, such as:

Fi xedVect or <Dat aType, Fi xedSi ze> first;
/1l initialization of first vector omtted
Fi xedVect or <Dat aType, Fi xedSi ze> second(first);

it knows the size as well as the underlying data type of the objects being manipulated, and can therefore do
more optimization than it could if the size was variable.

Automatic instantiation of templates is convenient and powerful, but does have one drawback. Suppose the
Pai r class shown earlier isinstantiated in one source fileto create apair of i nt s, and in another sourcefile
to create apair of Shapes. The compiler and linker could:

1. treat the two instantiations as completely separate classes;
2. detect and eliminate redundant instantiations; or
3. avoid redundancy by not instantiating templates until the program as a whole was being linked.

Thefirst of these can lead to very large programs, as a commonly-used template class may be expanded
dozens of times. The second is difficult to do, asit involves patching up compiled files as they are being
linked. Most recent versions of C++ compilers are therefore taking the third approach, but POOMA |1 users
should be aware that older versions might still produce much larger executables than one would expect.

The last use of templates that isimportant to this discussion is template methods. Just as templated functions
are instantiated for different types of arguments, so too are templated methods instantiated for a class when
and as they are used. Suppose aclass called Exanpl e isdefined asfollows:

cl ass Exanpl e

{
public :
Exanpl e() ; /'l default constructor
virtual ~Exanple(); /'l destructor
t enpl at e<cl ass T>
void foo(T object)
{
/'l some operation on object
}
b

Whenever the method Exanpl e: : f oo() iscalled with an object of a particular type, the compiler
instantiates it for that type. Thus, both of the following calls are legal:

Exanpl e e;

Shape box;

e.foo(5); /1l instantiate for int

e. foo(box); /1l instantiate for Shape
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Representing Parse Trees

Parse trees are commonly used by compilers to store the essential features of the source of a program. The
leaf nodes of a parse tree consist of atomic symbolsin the language, such as variable names or numerical
constants. The parse tree's intermediate nodes represent ways of combining those values, such as arithmetic
operators and whi | e loops. For example, the expression- B + 2 * Ccould be represented by the parse
tree shown in Figure 1

B @ ©
Figure 1: A Simple Parse Tree

Parse trees are often represented textually using prefix notation, in which the non-terminal combiner and its
arguments are strung together in a parenthesized list. For example, the expresson-B + 2 * Ccanbe
representedas(+ (- B) (* 2 Q).

What makes all of thisrelevant to high-performance computing is that the expression

(+ (- B) (* 2 ©) couldequaly easily be written

Bi nar yOp<Add, UnaryQp<M nus, B>, BinaryOp<Multiply, Scal ar<2> C>:it'sjusta
different notation. However, this notation is very similar to the syntax of C++ templates --- so similar, in fact,
that it can actually be implemented given a careful enough set of template definitions. As discussed earlier,

by providing more information to the optimizer as programs are being compiled, template libraries can
increase the scope for performance optimization.

Any facility for representing expressions as trees must provide:
« arepresentation for leaf nodes (operands);
« away to represent operations to be performed at the leaves (i.e. functions on individual operands);
« arepresentation for non-leaf nodes (operators);
« away to represent operations to be performed at non-leaf nodes (i.e. combiners);

» away to passinformation (such as the function to be performed at the leaves) downward in the tree;
and

« away to collect and combine information moving up the tree.
C++ templates were not designed with these requirements in mind, but it turns out that they can satisfy them.
The central ideaisto use the compiler's representation of type information in an instantiated template to store

operands and operators. For example, suppose that a set of classes have been defined to represent the basic
arithmetic operations:

struct AddOp

{
static inline double apply(const double & | eft, const double & vy)
{
return x +vy;
}
b

struct Ml Qp
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{
static inline double apply(const double & left, const double & vy)
{
return x * vy,
}
1
/1 ...and so on...

Note the use of the keyword st r uct ; thissimply signals that everything else in these classes---in particular,
their default constructors and their destructors---are publ i c.

Now suppose that atemplated class Bi nar y Op has been defined as follows:

t enpl at e<cl ass Operator, class Vector, class RHS>
cl ass BinaryQp

{
public :
/1l enpty constructor will be optim zed away, but triggers
/1l type identification needed for tenpl ate expansion
Bi nar yOp(
Oper at or op,
const Vector & leftArg,
const RHS & rightArg
) : left (leftArg),
right _(rightArqg)
{}
[l enpty destructor will be optimzed away
~Bi naryQp()
{}
/1l calcul ate val ue of expression at specified index by recursing
i nline double apply(int i)
{
return Operator::apply(leftArg.apply(i), rightArg.apply(i));
}
protected :
const Vector & left_;
const RHS & right_;
b

If b and ¢ have been defined as Vect or , and if Vect or: : appl y() returnsthe vector element at the
specified index, then when the compiler sees the following expression:

Bi naryOp<Mul Qp, Vector, Vector>(Mil Oo(), b, c).apply(3)

it trandlates the expressioninto b. appl y(3) * c. appl y(3) . The creation of the intermediate instance
of Bi nar yQp isoptimized away completely, since al that object doesis record a couple of references to
arguments.
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Why to go all thistrouble? The answer is rather long, and requires a few seemingly-pointless steps. Consider
what happens when the complicated expression above is nested inside an even more complicated expression,
which adds an element of another vector a to the original expression's result:

Bi nar yQp< AddOp,
Vect or,
Bi naryOp< Mul Op, Vector, Vector >
>(a, BinaryOQp< Mul Op, Vector, Vector >(b, c)).apply(3);

Thisexpression calculatesa. appl y(3) + (b.apply(3) *c.apply(3)).Iftheexpressonwas
wrapped inaf or loop, and the loop's index was used in place of the constant 3, the expression would
calculate an entire vector's worth of new values:

Bi naryOQp< AddOp,
Vect or,
Bi naryQp< Mul Op, Vector, Vector > >
expr(a, BinaryOp< Mul Op, Vector, Vector >(b, c));
for (int i=0; i<vectorLength; ++i)

double tnp = expr.apply(i);
}

The possible nesting of Bi nar yOQp inside itself isthe reason that the Bi nar y Op template has two type
parameters. The first argument to aBi nar yQp isawaysaVect or , but the second may be either a
Vect or or an expression involving Vect or s.

The code above is not something any reasonabl e person would want to write. However, having a compiler
create thisloop and its contained expression automatically is entirely plausible. The first step isto overload
addition and multiplication for vectors, so that oper at or +( Vect or, Vect or) (and

oper at or *( Vect or, Vect or) ) instantiates Bi nar yQp with AddOp (and Mul Qp) asitsfirst type
argument, and invokesthe appl y() method of the instantiated object. The second step isto overload the
assignment operator oper at or =( Vect or, Vect or) so that it generates the loop shown above:

tenpl at e<cl ass Op, T>
Vect or & oper at or =(
Vector & target,
Bi nar yOQp<Qp> & expr

) {
for (int i=0; i<vectorlLength; ++i)
{
target.set (i, expr.apply(i));
}

return target;

}

With these operator definitionsin play, the simple expression:

Vector x, a, b, c:
[/ ...initialization...
X =a+b* c;

isautomatically transated into the efficient loop shown above, rather than into the inefficient [oops shown
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earlier. The expression on the right hand side is turned into an instance of atemplated class whose type
encodes the operations to be performed, while the implementation of the assignment operator causes that
expression to be evaluated exactly once for each legal index. No temporaries are created, and only asingle
loop is executed.

Looking Ahead

Of course, an industrial-strength implementation of these ideas requires definitions that are considerably
more complicated than the ones shown in the previous section. For astart, Bi nar yOp and itskin are not
defined directly on any one class Vect or . It isn't even defined for Vect or <T>, but rather for awrapper
class. This class expects nothing from its contained class except an appl y method capable of turning an
index into avalue. This allows users to integrate their own classes with PETE simply by providing the
required method. Similarly, the classes that PETE defines to represent unary and binary operators are
considerably more flexible than the ones shown above.

One of theidioms used by PETE that hasn't been shown above is the tag class. A tag class has no methods,
and contains no data; its only reason for existing is as aflag to the C++ compiler during template expansion.
A mutually exclusive set of tag classes is therefore the compile-time equivalent of an enumeration. PETE
uses tag classes to identify operators, the way in which operands are referenced (i.e. directly or through
iterators and other intermediators), and so on.

Another idiom used in PETE is the traits class, which depends on a feature of ANSI C++ called partial
specialization. When a C++ compiler instantiates atemplate, it tries to choose the best possible match for the
argumentsit is given. For example, suppose that both of the following definitions are in scope when the
objectsf r ed and j ane are created:

t enpl at e<cl ass T>
cl ass Exanpl e

{
H

t enpl at e<>
cl ass Exanpl e<i nt >

{
s

Exanpl e<int>  fred,;
Exanpl e<f | oat > j ane;

enum{ tag = 123; }

enum { tag = 456; }

Asyou would expect, f r ed'st ag hasthe value 456, whilej ane's has the generic value 123: the compiler
chooses the most specific type possible.

Thisfacility can be used to create lookup tables. For example, suppose we want to encode the types of the
results of arithmetic operations involving an arbitrary mix of i nt and doubl e arguments. The following
definitions do the trick:

/'l generic case
tenpl at e<cl ass Left, class Right>
cl ass TypeEncodi ng
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{
H

/1 int op int => int
t enpl at e<>
cl ass TypeEncodi ng<int, int>

{
b

/'l int op double => double
t enpl at e<>
cl ass TypeEncodi ng<i nt, doubl e>

{
b

/'l double op int => double
t enpl at e<>
cl ass TypeEncodi ng<doubl e, int>

{
s

/'l doubl e op doubl e => doubl e
t enpl at e<>
cl ass TypeEncodi ng<doubl e, doubl e>

{
s

We can now overcome one of the biggest shortcomings of C++ templates, and automatically generate the
correct result type of atemplated expression:

/1l enpty: no generic result possible

typedef int Result _t;

t ypedef double Result t;

t ypedef double Result t;

t ypedef double Result t;

tenpl at e<cl ass Left, class Right>
TypeEncodi ng<Left, Ri ght>::Result _t
add(const Left & left, const Right & right)
{

}

If add() iscaledwithtwoi nt arguments, the compiler will know that that particular instantiation is going
toreturnani nt . If it iscalled with one or two doubl e arguments, the compiler will know it is going to
return adoubl e. By specializing TypeEncodi ng for other mixes of types, alibrary like PETE can tell the
compiler the result type of any expression over any mix of types. In particular, if anew class such as

Conmpl ex, Quat er ni on, or Col or isadded, the compiler can be told what the result of (for example)
multiplying aCol or by af | oat is, without anything else in the library having to be changed.

return left + right;

TypeEncodi ng isan example of atraits class. Each specialization of the class definesat ypedef witha
particular name (in thiscase, Resul t _t ). The class designer could also specify that TypeEncodi ng's
specializations had to define such things as constant strings:
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/1 int op double => double
t enpl at e<>
cl ass TypeEncodi ng<i nt, doubl e>

{
t ypedef double Result t;

static const char * const Signature = "{int, doubl e}=>doubl e";

}s
/] other classes contain simlar definitions

to help programs print debugging information:

tenpl at e<cl ass Left, class Right>

TypeEncodi ng<Left, R ght>::Result _t

add(const Left & left, const Right & right)

{
cout << TypeEncodi ng<Left, Right>::Signature << endl;
return left + right;

}

In general, if the classes in the set associated with atrait all adhere to some conventions regarding name
definitions, then traits classes can be used to implement compile-time polymorphism. Another way to think
of thisisthat each classin a set of traits classes provides different set of answers to a pre-defined set of
guestions.

Since writing a dozen or more specializations of classes like TypeEncodi ng and Bi nar yOp by hand
would be tedious, time-consuming, and error-prone, PETE provides some simple command-line tools that
can generate the required C++ code automatically. Thefirst tutorial shows how to use these tools to integrate
asimple 3-element vector classinto PETE. Subsequent tutorials show the steps required to integrate more
complex classes, such as the vectors and lists of the Standard Template Library (STL), and how to provide
additional operators and combiners.

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1999
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Introduction

Thistutorial shows how to integrate a simple class representing 3-element vectorsinto PETE. The source files for this example are
included in the exanpl es/ Vec3 directory of the PETE distribution. Thesefiles are;
« Vec3. h: definesthe Vec 3 class on which the exampleis based. Thisfile also defines or specializes the template classes
needed to integrate Vec 3 with PETE. These extradefinitions will be discussed bel ow.

« Vec3Def s. i n: definitions needed to automatically generate the template classes required to integrate Vec 3 into PETE.
Thisfileis processed by the MakeOper at or s tool discussed below.
« Vec3Oper at or s. h: thefile generated by MakeOper at or s based on the definitionsin Vec3Def s. i n. The vector

class definition file Vec 3. h #i ncl udesthisfile, so that PETE-based programs only need to #i ncl ude Vec3. h, rather
than both Vec3. h and Vec3Qper at or s. h.

« Vec3. cpp: ashort program that shows how to construct expressions using Vec 3 and PETE together.
o nmakef il e: rebuilds the example.

The Starting Point

The starting point for thistutorial isthe 3-element vector class defined in Vec3. h. Most of this class's declaration is unremarkable.
Each instance of the class contains a 3-element array of integers; the class's default constructor initializes their valuesto O, while a
non-default constructor can be used to give them particular initial values. A copy constructor is also provided, as are assignment
operators taking either scalar or vector values. Finally, two versions of oper at or [ ] are provided, so that both constant and
non-constant vectors can be indexed, and apri nt () method is defined for oper at or << and other I/O routines to use.

oper at or << isoverloaded further down, on lines 115-119.

If you do not understand all of the definitions on lines 22-58 and 78-94 of Vec 3. h, you may wish to become more familiar with
C++ before proceeding with these tutorials.

In order to understand the particulars of thistutorial, it is necessary to know about some of the indirection classes that PETE uses.
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The most important of theseis ageneral wrapper called Expr essi on<>. It existsto wrap Unar yNode, Bi nar yNode and
Tri nar yNode so that they can all be captured during template expansion by asingle type, namely Expr essi on<T>. Aswe
shall see below, the Expr essi on template also serves to distinguish PETE expressions from other expressions, so that the
compiler will not inadvertently mix PETE expressions with normal arithmetic.

PETE's second indirection classis called MakeRet ur n. For any type T, MakeRet ur n<T>: : Expressi on_t isat ypedef
that produces the type of value returned by expressionson T. In the general case, thisis simply Expression<T>, i.e. MakeRet ur n
just wraps the expression produced by an operator so that it can be used inside other operators. The POOMA library overrides
MakeRet ur n<T> (by specializing it explicitly) so that expressions involving POOMA arrays generate new arrays. This technique
is similar to the standard C++ idiom of having a framework define one or more virtual methods with empty bodies, and call them at
specified times, so that users can derive from the framework classes and override those virtual methods to insert their own codein
the framework's processing stream.

Extra Definitions Required for Integration

In order to use Vec3 with PETE, we must provide three things:
1. A description of the Vec3 class.
2. A way to extract values from instances of Vec3.
3. A way to assign to a Vec3 from a PETE expression.
These three issues are discussed in order below.

In addition, this example shows how to add new capabilities to PETE by creating a mechanism for counting the number of instances
of Vec 3 involved in an expression. The same kind of mechanism can be used to do such things as check that all of the vectorsin an
expression have the same length before starting evaluation of that expression.

Making Leaves for the Parse Tree

PETE uses atraits class called Cr eat eLeaf to record information about the leaf types on which it operates. Each specialization of
Cr eat eLeaf must be able to answer two questions:

1. What isthe type of the leaf?
2. How can the program make an instance of this leaf?

Thefirst question is answered by providing at ypedef for thenameLeaf _t . In our example, we want to have accessto Vec3's
member functions. However, Vec 3 has deep copy semantics so we don't want to store actual Vec 3 objects at the |eaves, thereby
making copies and negating most of the benefit of expression templates. Instead, we store a Vec 3&. This is accomplished by
wrapping the Vec3 classin aRef er ence wrapper. (By default, PETE stores leaves by value, which is appropriate for leaves that
hold iterators. In this case we would not have to make use of the Ref er ence wrapper.)

Once we have done this, the rest of PETE can be written using expressions like Cr eat eLeaf <T>: : Leaf _t . Thisallows PETE
to work with classes that are added later, in the same way that making afunction vi r t ual alows programsthat use alibrary to
add new functionality without re-writing old code.

Making aleaf isalittle bit trickier. Every specialization of Cr eat eLeaf must defineast at i ¢ method called make( ) that takes
something of the specialization's input type as an argument, and returns something of its leaf type. This method must be st at i ¢ so
that it can be called without an instance of Cr eat eLeaf <Vec 3> ever having been created

Aswith most traits classes, the speciaizations of Cr eat eLeaf are never instantiated, but instead exist only to answer questions.
In this example, the input to make() isaconstant reference to aVec3, which the function simply returnswrapped in a

Ref er ence<Vec 3> object. In the case of an STL list, the argument would have type Li st <T>, but the return type Leaf _t
might be an iterator type.

103 tenpl ate<>
104 struct Createleaf<Vec3>

105 {

106 typedef Reference<Vec3> Leaf _t;

107 inline static

108 Leaf t make(const Vec3 &a) { return Leaf t(a); }
109 };
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Operating on Leaves

Our next task isto provide away for PETE expressions to extract values from Vec 3s. This hasto be done in a generic way, so that
(for example) scalars can return the same value each time they are queried, while STL lists can be accessed through bidirectional
iterators and Vec 3s can be accessed by integer indexing.

PETE's solution to this problem is to require programmers to specialize the traits class Leaf Funct or for the combination of their
leaf classand atag classcaled Eval Leaf 1. Eval Leaf 1 isasimple class defined by PETE, whose only purposeis to contain the
single index PETE needs in order to evaluate an expression. (Eval Leaf 2 signalsthat a doubly-indexed expression is being
evaluated, and soon upto Eval Leaf 7.)

The speciaization of Leaf Funct or , shown below, does two things. First, it defines the type of the result of the expression as
Type_t . Second, it definesast at i ¢ method called appl y() , which usesthe index stored inits Eval Leaf 1 argument and
returns the corresponding element of the Vec 3:

127 tenpl ate<>

128 struct Leaf Functor<Vec3, Eval Leaf 1>

129 {

130 typedef int Type t;

131 static Type_t apply(const Vec3 &a, const Eval Leafl &f)
132 { return a[f.val1()]; }

133 };

Assigning to Vectors

The last step in making Vec 3 PETE-compatible isto provide away for PETE to assign to a Vec3 from an arbitrary expression.
Thisis done by overloading oper at or = to take a PETE expression as input, and copy valuesinto its owner:

064 t enpl at e<cl ass RHS>
065 Vec3 &oper at or =(const Expressi on<RHS> &r hs)

066 {

067 d[0] = forEach(rhs, Eval Leaf1(0), OpConbine());
068 d[ 1] = forEach(rhs, Eval Leaf1(1), OpConbine());
069 d[2] = forEach(rhs, Eval Leaf1(2), OpConbine());
070

071 return *this;

072 }

Thefirst thing to notice about this method isthat it istemplated on an arbitrary class RHS, but its single formal parameter hastype
Expr essi on<RHS>. This combination means that the compiler can match it against anything that is wrapped in the generic
PETE template Expr essi on, and only against things that are wrapped in that way. The compiler cannot match againsti nt ,
compl ex<short >, or G eat Aunt Jane_t, since these do not have the form Expr essi on<RHS> for some type RHS.

Thef or Each function is used to traverse expression trees. The first argument is the expression. The second argument is the leaf
tag denoting the operation applied at the leaves. The third argument is a combiner tag, which is used to combine results at non-leaf
nodes. By passing Eval Leaf 1( 0) inline 67, we areindicating that we want the Vec 3s at the leaves to return the element at
index 0. The Leaf Funct or <Scal ar <T>, Eval Leaf 1> (defined inside of PETE) ensures that scalars return their value no
matter the index. While Eval Leaf 1 obtains values from the leaves, QpConbi ne takes these values and combines them
according to the operators present at the non-leaf nodes. The result is that line 67 evaluates the expression on the right side of the
assignment operator at index 0. Line 68 does this at index 1, and so on. Once evaluation is complete, oper at or = returns the
Vec 3 to which values have been assigned, in keeping with normal C++ conventions.

Counting Vectors

We could stop at this point, but in order to show off PETE's flexibility, we will finish by defining a new leaf tag that counts the
number of Vec3sin an arbitrary expression. The required definitions, on lines 152-168 of Vec3. h, are:

141 struct CountLeaf { };

142

143 tenpl ate<>

144 struct Leaf Functor<Vec3, CountlLeaf>
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145 {

146 typedef int Type_t;

147 static Type_t apply(const Vec3 & const CountlLeaf &)
148 { return 1; }

149 1};

150

151 tenpl ate<class T>

152 struct Leaf Functor<T, CountLeaf>

153 {

154 typedef int Type_t;

155 static Type_t apply(const T &, const CountlLeaf &)
156 { return 0; }

157 };

Count Leaf isan empty tag class, whose only purposeisto identify the operation we wish to carry out. Leaf Funct or isthen
specialized separately for Count Leaf on both Vec3 and the generic type T. Applying the first specialization returns 1, since it
wraps asingle Vec 3. Applying the second specialization returns 0, since nothing el se counts as a vector.

Making Operators

We have now provided amost everything that PETE needs in order to operate on our Vec3 class. All that remainsis severa
thousand lines of templated operator and function definitions. Luckily, these can be generated automatically from afew lines of
information.

Thefile Vec3Def s. i n stores exactly that information, and is used by PETE's MakeQper at or s tool to generate the 3740 lines
of Vec3Qper at or s. h. The specia notation " [ n] " isreplaced by the digits 1, 2, and so on to distinguish multiple uses of the
same argument. Thus, " cl ass T[ n] " becomes"cl ass T1","cl ass T2", and so on as needed. The entire specification file
is:

001 cl asses

002 -----

003 ARG "

004 CLASS = "Vec3"

Two values are specified for each of the classes for which definitions are to be generated:

« ARG how to make the template arguments needed to define instances of this class. Vec 3's ARGfield is empty, sinceit is not
atemplated class. Giving cl ass T[ n] for the ARGfield for ageneral Expr essi on causesinstances of Expr essi on to
befilledinwithcl ass T1,cl ass T2, and soon.

o CLASS: the name of the classitself.

The command used to build an operator definition file from this input specification is:

MakeQperators --classes Vec3Defs.in --guard VEC3OPS H --0 Vec3Operators. h

Vec3Def s. i nisthefile shown above. The symbol VEC3OPS_His copied into the output to guard against multiple inclusion, so
that the output file has the form:

#i f ndef VEC30OPS H
#defi ne VEC3OPS H

[/ ...contents of file...

#endi f // VEC3OPS_H

Further information about MakeQper at or s and its command-line argument can be found on its man page.
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Using These Definitions

With all this out of the way, we can now write arithmetic expressions that use Vec 3, and rely on PETE to optimize them for us.
Thefile Vec3. cpp shows some of the possibilities. The simplest example is straightforward addition and assignment:

013 a=">b+c;
which would automatically be trandated into something equivalent to:

a[0] = b[0] + c[O];
a[1] = b[1] + c[1];
a[2] =b[2] + c[2];

This snippet would make use of the overloaded oper at or +() generated by the MakeOper at or s tool inthe
Vec3Oper at or s. h file and the assignment operator defined above.

This expression could be made much more complex, and PETE would still eliminate redundant temporaries or loops. One such
expression is:
a = sqgrt(b*b + c*c);

which would automatically be trandated into something equivalent to:

a[0] = sqrt(b[O]*b[0O] + c[O0]*c[O]);
a[1] = sqrt(b[1]*b[1] + c[1]*c[1]);
a[2] = sqart(b[2]*b[2] + c[2]*c[2]);

since PETE provides appropriately-templated overloadings of the standard mathematical functionslikesqrt () andacos() as
well as overloadings of unary and binary operators.

The next two examplesin Vec3. cpp make use of an expression (in this case, the addition of b and c¢) that has been recorded for
delayed evaluation. In order to do this, the programmer must explicitly specify the type of the expression being stored, but once this
has been done, that expression can be re-used any number of times. The statement that creates the expression is:

018 const Expressi on<Bi nar yNode<COpAdd, Vec3, Vec3> > &exprl = b + c;

Itsfirst useis as asource for assignment:

019 d = expri;

It can also be passed to PETE's explicit evaluation function, called f or Each() , dong with the Count Leaf defined earlier, and
PETE's built-in SumConbi ne tag class, in order to count the number of instances of Vec3 that appear in the expression:

022 int num = forEach(exprl, CountLeaf(), SumCombine());

Note the parentheses after Count Leaf and SumConbi ne. C++ does not allow raw type names to be used to instantiate templates;
instead, the program must create an unnamed instance of each tag class by invoking their default constructors. Since these classes
contain no data, and their instances are not used inside f or Each( ) , the compiler optimizes away all of the associated code.

The remaining examplesin Vec3. cpp use Count Leaf toinspect more complicated expressions.

Summary

Thistutorial has shown how to integrate a simple classinto PETE's expression template framework, so that compilers can optimize
expressions involving instances of that class. The steps required are;

o specidizing Cr eat eLeaf to tell PETE how to store instances of the user classin parse trees;
« gpecializing Leaf Funct or to extract information from these leaf nodes;
« overloading oper at or = to read values from expressions and assign them to instances of the user-defined class; and

» using PETE's MakeQper at or s tool to generate specialized overloadings of C++'sunary, binary, and ternary operators to
work with the user-defined class.
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In addition, this tutorial showed how to extend PETE's leaf and combiner tags to calculate values on expression trees during
compilation. The next tutorial will look at how to extend the PETE framework itself to synthesize new types.

Source Files
Vec3. h

001 #ifndef PETE EXAVMPLES VEC3 VEC3 H

002 #define PETE_EXAMPLES VEC3_VEC3_H

003

(00 B e e
005 // Include files

(00 I B e e e
007

008 #include "PETE PETE. h"

009

010 #include <iostream h>

011

0N B e e e R
013 //

014 // CLASS NAME

015 // Vec3

016 //

017 // DESCRI PTI ON

018 // A "tiny" three-el enent expression-tenplate (ET) array class.

019 //

(02 O I B e e e R
021

022 class Vec3

023 {

024 public:

025

026 I
027 /1 Constructors and Destructor

028 I e T
029

030 Vec3() { d[0] =d[1] =d[2] =0; }

031

032 Vec3(int i, int j, int k)

033 {

034 d[0] =i; d[1] =j; d[2] = k;

035 }

036

037 Vec3(const Vec3 &v)

038 {

039 d[0] = v.d[0]; d[1] = v.d[1]; d[2] = v.d2];

040

041

042 ~Vec3() {}

043

044 R e R LR
045 /1 Vec3 and scal ar assi gnent operators

046 R e i LR
047

048 Vec3 &operator=(const Vec3 &v)

049 {

050 d[0] = v.d[0]; d[1] = v.d[1]; d[2] =v.d2];

051 return *this;
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052 }

053

054 Vec3 &operator=(int i)

055 {

056 d[0] =d[1] =d[2] =i

057 return *this;

058 }

059

060 e e L
061 /1 Assignnent operator taking expression:

062 e e
063

064 t enpl at e<cl ass RHS>

065 Vec3 &operat or=(const Expressi on<RHS> &r hs)
066 {

067 d[ 0]
068 d[ 1]
069 d[ 2]
070

071 return *this;

072 }

073

074 R e
075 /1 Indexing operators

076 R e e e
077

078 int &operator[](int i) { return d[i]; }

079 int operator[](int i) const { return d[i]; }

080

081 e I T
082 /1 Print nmethod used by operator<< free function

083 e e e
084

085 void print(ostream &os) const

086 {

087 0s << "{" << d[0] << "," << d[1] << "," << d[2] << "}";

088 }

089

090 private:

091

092 /1 The underlying conplicated data structure

093

094 int d[3];

095

096 };

097

]S I B B e e e
099 // W need to specialize CreatelLeaf<T> for our class, so that operators

100 // know what to stick in the | eaves of the expression tree.

(O R B B e
102

103 tenpl ate<>

104 struct Createleaf<Vec3>

105 {

106 typedef Reference<Vec3> Leaf t;

107 inline static

108 Leaf t make(const Vec3 &) { return Leaf _t(a); }

109 1};

110

R B B e e e
112 // ostreaminserter for Vec3s

forEach(rhs, Eval Leaf 1(0), OpConbi ne());
forEach(rhs, Eval Leaf1(1), OpConbine());
forEach(rhs, Eval Leaf 1(2), OpConbi ne());
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I R B B e e e
114

115 ostream &operat or<<(ostream &os, const Vec3 &a)

116 {

117 a.print(os);

118 return os;

119 }

120

A R B B R e

122 /] Specialization of LeafFunctor class for applying the Eval Leafl
123 // tag to a Vec3. The apply nmethod sinply returns the array

124 /] evaluated at the point.

(2 I B e i
126

127 tenpl at e<>

128 struct Leaf Functor<Vec3, Eval Leaf 1>

129 {

130 typedef int Type_t;

131 static Type_t apply(const Vec3 &a, const Eval Leafl &f)

132 { return a[f.val1()]; }

133 };

134

(R L I B B e e e
136 // Specialization of LeafFunctor class for applying the CountLeaf
137 /] tag to a Vec3. The apply nethod sinmply returns 1 for a Vec3 and 0 for
138 // anything el se.

(L I Y e LR R
140

141 struct CountlLeaf { };

142

143 tenpl ate<>

144 struct Leaf Functor<Vec3, CountLeaf>

145 {

146 typedef int Type_ t;

147 static Type_t apply(const Vec3 & const CountlLeaf &)

148 { return 1; }

149 };

150

151 tenpl ate<class T>

152 struct Leaf Functor<T, CountLeaf>

153

154 typedef int Type t;

155 static Type_t apply(const T &, const CountlLeaf &)

156 { return 0; }

157 };

158

159 // We put this include at the end because

160 // the operators can't be defined until after Vec3 and

161 // CreatelLeaf<Vec3> have been defi ned.

162 // (Since Vec3 isn't tenplated the operators aren't just

163 // tenplates.)

164

165 #include "Vec3Qperators. h"

166

167 #endif // PETE_EXAMPLES VEC3_VEC3_H
Vec3Defs.in

001 classes
002 -----
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003 ARG =""

004 CLASS = "Vec3"
Vec3. cpp

001 #include "Vec3. h"

002

003 int main()

004 {

005 Vec3 a, b, c;

006

007 c = 4,

008

009 b[0] = -1;

010 b[1] = -2;

011 b[2] = -3;

012

013 a=>b+ c;

014

015 cout << a << endl;

016

017 Vec3 d;
018 const Expressi on<Bi nar yNode<OpAdd, Vec3, Vec3> > &exprl = b + c;
019 d = expri;

020 cout << d << endl;

021

022 int num = forEach(exprl, CountLeaf (), SunmConbine());

023 cout << num << endl;

024

025 const Expressi on<Bi nar yNode<COpAdd, Vec3,

026 Bi nar yNode<OpMul tiply, Scalar<int> Vec3> > > &xpr2 =b + 3 * c;
027 num = for Each(expr2, CountlLeaf(), SunCombine());

028 cout << num << endl;

029

030 const Expressi on<Bi nar yNode<OpAdd, Vec3,

031 Bi naryNode<OpMul ti ply, Vec3, Vec3> > > &expr3 = b + ¢ * d;
032 num = for Each(expr3, CountlLeaf(), SunComnbine());

033 cout << num << endl;

034 }

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1999
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Introduction

This tutoria shows how to use PETE to manipulate expressions involving classes taken from pre-existing libraries---in this case,
from the C++ Standard Template Library (STL). The STL'svect or classisageneric resizeable one-dimensional array, which
provides fast, constant-time element access in exchange for making extension expensive. Like the STL's other container classes,
vect or isused both as-is, and as a basis for more specialized data structures, such as fixed-size queues and stacks. This tutorial will
show how to use PETE to improve the performance of elementwise expressions on numeric vectors, and how to automatically
determine whether two or more vectors conform (i.e. have the same length).

The source files for this example are included in the exanpl es/ Vect or directory of the PETE distribution. These files are:
« Eval . h: extends PETE's standard definitions to accommodate expressionsinvolving vect or s.
« Vect or Def s. i n: definitions needed to automatically generate the overloaded operators required to integrate vect or sinto
PETE. Like Vec3Def s. i ninthefirst tutoria, thisfileis processed by the MakeOper at or s tool to create a header file.

« Vect or Qper at or s. h: thefile generated by MakeOper at or s based on the definitionsin Vect or Def s. i n. Thefile
Eval . h #i ncl udesVect or Oper at or s. h, so that PETE-based programs only need to #i ncl ude Eval . h, rather than
both Eval . h and Vect or Qper at or s. h.

« Vect or. cpp: ashort program that shows how to use the definitions in the header files described above to create values
during compilation.
« nmakefi | e: rebuilds the example.

Required Definitions

Most of the definitions required to integrate vect or with PETE are generated automatically by MakeQper at or s using the
information in Vect or Def s. i n. Thefile Eval . h contains the few extra definitions that must be written by hand. Of these, the
most important is the function eval uat e() , on lines 102-128. This function's arguments are:

« avector<T, Allocator> (for sometypeT and somealocator Al | ocat or);
« an operator specified by an instance of a PETE operator tag class; and
« awrapped PETE expression, called r hs, the values of which are to be assigned to the elements of the givenvect or .
The overloaded assignment operatorsin Vect or Oper at or s. h must be ableto find an eval uat e() to match every assignment

in the user's program. PETE's protocol therefore requires that every class used on the left-hand-side (LHS) in assignment expressions
define afunction with this name and signature.
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Thefirst thing eval uat e() doesis check that its target and expression conform, i.e. have the same length. It does this by applying
the PETE function f or Each() with auser-defined functor Si zeLeaf () totheexpressionr hs on line 105. This functor returns
t rue if thesize of each vect or at aleaf of PETE's expression tree matches the size of the LHS vector, which is passed as a
contructor argument to the Si zeLeaf . We use an AndConbi ne object to combine results at non-leaf nodes. In order for the
right-hand-side (RHS) to conform, all leaves must agree. The definition of Si zelLeaf isdiscussed below.

If its expression and target conform, eval uat e() carriesout the required assignment by looping over their mutual index range
(line 110). For each index value, f or Each() isused to evaluate the expression, and the given assignment operator's overloaded
oper at or () method is used to transfer those values to the target vector. Note that a direct assignment is not used, since the
assignment could involve +=, | =, or any one of C++'s other combine-and-assign operators.

The two other definitions that must be present for PETE to work with vect or are specializations of Cr eat eLeaf and
Leaf Funct or . Thefirst one of these specializations, on lines 29-35, specifies that we store referencesto thevect or objects
themselves at the leaves of the PETE expression tree.

The specidlization of Leaf Funct or for vect or and Eval Leaf 1 onlines 86-95 iswhat tells PETE how to extract elements from
avector.The'l'in Eval Leaf 1 indicates that the class is used to access singly-indexed structures; similar classes called
Eval Leaf 2, Eval Leaf 3, and so on are used to access more complex classes.

Given an instance of Eval Leaf 1, andavect or , this speciaization of Leaf Funct or definesai nl i ne st ati ¢ method caled
appl! y() , which takes the index value stored in the Eval Leaf 1 and fetches the corresponding vect or element. Making this
method st at i ¢ meansthat instances of Leaf Funct or never have to be created, while making iti nl i ne ensures that the
compiler will replace uses of it with its body. Thus, specializations of Leaf Funct or present container element access to compilers
in auniform way, without any efficiency cost.

Finally, the Vect or Def s. i n file, which is used to generate the standard operator overloadings for vect or , isidentical to the one
used in the previous tutorial, except for a substitution of vect or <T[ n] > for Vec 3. (Recall that the[ n] notation is a placeholder

for an automatically generated index, so that if vect or isused asaformal parameter two or more times, the instances will be
labeled vect or <T1>,vect or <T2>, and so on.)

Checking Conformance

Our only remaining task is to implement the conformance checking used by eval uat e() . Thefirst step isto write a simple functor
that holds a size to compare against and contains a method to return whether an argument matches thisvalue. Thisisthe Si zelLeaf
class appearing in lines 43-55 of Eval . h.

Once we've created the functor class, we then need to tell PETE how to apply it at the leaves of the expression tree. We know that
these leaves can consist of either Scal ar or vect or objects. We therefore need to supply two Leaf Funct or specializations. The
first, in lines 57-68 works for scalars and always returnst r ue since scalars aways conform. The second, in lines 70-79, uses

Si zelLeaf 'soper at or () functionto compare the size of thevect or object stored at aleaf with the reference value.

Using Vectors with PETE

The programin Vect or . cpp shows how to use the definitions given above. The program starts by creating and initializing five
vectors. It then callsPETE'sassi gn() function to evaluate expressions involving vectors and scalars, and copy their values into
other vectors. Note that assi gn() must be called by name because the STL pre-defines oper at or = for al of itstypes.

Summary

Thistutoria has shown how to extend PETE so that it can handle expressions involving classes taken from a pre-existing library---in
this case, the Standard Template Library. The definitions required to do this are simple and well-defined, as are the definitions
required to perform other calculations (in this case, conformance checking) on those pre-defined classes.

Source Files

Eval . h

001 #ifndef PETE_EXAMPLES VECTOR EVAL_H
002 #define PETE_EXAMPLES_VECTOR EVAL_H
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003

010 B e
005 // Includes

010 T Y B i e
007

008 #include <iostream h>

009 #include <vector. h>

010 #i nclude "PETE/ PETE. h"

011 #include "VectorOperators. h"

012

0 B B B i R R R
014 // This file contains several class definitions that are used to eval uate
015 // expressions containing STL vectors. The main function defined at the end
016 // is evaluate(lhs,op,rhs), which allows the syntax:

017 // vector<int> a,b,c;

018 // evaluate(a, OpAssign(), b+c);

019 //

020 // evaluate() is called by all the gl obal assignnment operator functions

021 // defined in VectorQperators.h

07
023
02

025 // W need to specialize CreatelLeaf <T> for our class, so that operators

026 // know what to stick in the | eaves of the expression tree.

O A e e R
028

029 tenplate<class T, class Allocator>

030 struct Createleaf<vector<T, Allocator> >

031 {

032 typedef Reference<vector<T> > Leaf t;

033 inline static

034 Leaf t nake(const vector<T, Allocator> &) { return Leaf t(a); }

035 1};

036

R A i B e L e e R
038 // W need to wite a functor that is capable of conparing the size of

039 // the vector with a stored value. Then, we supply Leaf Functor specializations
040 // for Scalar<T> and STL vector |eaves.

(0 N B B e e e
042

043 cl ass Sizeleaf

044 {

045 public:

046

047 Si zeLeaf (int s) : size_mis) { }

048 Si zelLeaf (const SizelLeaf &nodel) : size_n(nodel.size n) { }
049 bool operator()(int s) const { return size m==s; }
050

051 private

052

053 int size m

054

055 1};

056

057 tenpl ate<cl ass T>

058 struct Leaf Functor<Scal ar<T>, SizeLeaf>

059 {

060 typedef bool Type_ t;

061 inline static

062 bool appl y(const Scal ar<T> & const Sizeleaf &)
063 {
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064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

/1 Scal ars al ways conform

return true;

}
s

tenpl at e<cl ass T, class All ocator>
struct Leaf Functor<vector<T, Allocator>, SizelLeaf>
{
typedef bool Type_t;
inline static
bool appl y(const vector<T, Allocator> &, const SizelLeaf &s)

return s(v.size());

/1 Eval Leafl is used to eval uate expression with vectors.
/1 (It's already defined for Scal ar val ues.)

tenpl at e<cl ass T, class All ocator>
struct Leaf Functor<vector<T, Allocator>, Eval Leaf 1>
{
typedef T Type_t;
inline static
Type_t apply(const vector<T, Allocator>& vec,const Eval Leaf1 &f)

return vec[f.val 1()];

tenpl ate<class T, class Allocator, class Op, class RHS>
inline void eval uate(vector<T, Allocator> & hs, const Op &op,
const Expressi on<RHS> &r hs)

{
if (forEach(rhs, SizelLeaf(lhs.size()), AndConbine()))

{
/1 W get here if the vectors on the RHS are the sane size as those on
/] the LHS.

for (int i =0; i < |lhs.size(); ++i)
{

/1 The actual assignment operation is perforned here.
/1l PETE operator tags all define operator() to performthe operation.
/1 (In this case op perforns an assignment.) forEach is used
/1 to compute the rhs value. EvallLeafl gets the
/1 values at each node using random access, and the tag
/1 OpConbine tells forEach to use the operator tags in the expression
/1 to combi ne val ues together.

op(lhs[i], forEach(rhs, Eval Leaf1(i), OpConbine()));
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125 cerr << "Error: LHS and RHS don't conform" << endl
126 exit(1);

127 }

128 }

129

130 #endif // PETE_EXAVMPLES VECTOR EVAL_H

VectorDefs.in

001 cl asses

002 -----

003 ARG = "class T[n]"

004 CLASS = "vector<T[n]>"
Vector. cpp

001 #include "Eval.h"

002

003 int main()

004 {

005 int i;

006 const int n = 10;

007 vector<int> a, b, c, d;

008 vect or <doubl e> e(n);

009

010 for (i =0; i < n; ++)

011 {

012 a. push_back(i);

013 b. push_back(2*i);

014 c. push_back(3*i);

015 d. push_back(i);

016 }

017

018 assign(b, 2);

019 assign(d, a + b * c);

020 a += where(d < 30, b, c¢);
021

022 assign(e, c¢);

023 e+=e - 4/ (c +1);

024

025 for (i = 0;i < n; ++i)

026 {

027 cout << " a(" << i << ") =" << g[i]
028 << " b(" <<i << ") =" << b[i]
029 << " (" << << ") =" << [i]
030 << " od(" <<i << ") = << d[i]
031 << " e(" <<i <<") =" << g[i]
032 << endl;

033 }

034 }

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1999
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Portable Expression Template Engine

PETE Tutorial 3
Synthesizing Types
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Introduction

Thistutorial shows how to use PETE to perform non-arithmetic operations on a program as it is being compiled, and in particular
how to synthesize new types and values by extending PETE's specialized templates and operator overloadings. The problem domain
isthe three primary colors---red, green, and blue---which are combined according to three simple rules:

« red and green give blue;
« red and blue give green; and
« green and blue givered.

While these rules are trivial, the technigques shown below can be used to make compilers optimize much more complex expressions
on more complicated domains.

The source files for this example are included in the exanpl es/ RGB directory of the PETE distribution. These files are:

« RGB. h: defines the tag classes used in the example to represent colors, and the rules used to combine them.

« RGBDef s. i n: definitions needed to automatically generate the overloaded operators required to integrate the color classes
into PETE. Likethe Vec3Def s. i n filein thefirst tutorial, thisfile is processed by the MakeOper at or s tool to create a
header file.

« RG@Oper at or s. h: thefile generated by MakeQper at or s based on the definitionsin RGBDef s. i n. ThefileRGB. h
#i ncl udesRGBOper at or s. h, so that PETE-based programs only need to #i ncl ude RGB. h, rather than both RGB. h
and RGBQOper at or s. h.

« RGB. cpp: ashort program that shows how to use the definitions in the header files described above to create values during
compilation.

o nmakef il e: rebuilds the example.

On the Surface

PETE was created to make it easy for programmers to extend expression templates. In particular, PETE lets programmers specify a
wide range of computations that are to be carried out as the program is being compiled. To do this, the programmer must provide
three things: the type(s) of object(s) to be operated on, the functor(s) to be used to extract values from those objects, and the
combiner(s) to be used to process those values.

In our example, the values being manipulated are the three primary colors red, green, and blue. Each color is represented by an
empty tag class, whose only purpose isto act as a strongly-typed placeholder as the compiler isinstantiating templates. The three
classes are defined at the top of RGB. h:
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017 struct Red { };
018 struct Geen { };
019 struct Blue { };

Our example defines a single functor, called Get Col or . Like Red, G- een, and Bl ue, Get Col or isan empty class, no
instances of which are ever actually created by a running program.

In addition, RGB. h defines one more empty tag class, called Col or Conbi ne. Thistag isused to signa to the compiler that we
are combining colors, rather than (for example) adding vectors. The two definitions are:

020 struct GetColor { };
021 struct Col or Conbine { };

We have one more empty class to define in order to begin building our computational framework. The class Oper and servesasa
wrapper around color expressions; its purpose is to identify those expressions by giving them awell-known overall type. Oper and
istherefore similar to the generic PETE expression class Expr essi on, which is used to distinguish PETE expressions from other
types of expressions. In our case, the Oper and classis used only to wrap up a color expression:

109 tenpl at e<cl ass Col or Tag>
110 struct Operand
111 {
/] body is enmpty
112 };

We must now tell PETE how to store an Oper and valuein the leaf of an expression tree. The required definition is:

119 tenpl ate<cl ass Col or Tag>
120 struct CreatelLeaf <Qperand<Col or Tag> >

121 {

122 typedef Operand<Col or Tag> Leaf _t;

123 inline static

124 const Leaf t &make(const Operand<Col orTag> &) { return a; }
125 };

Note how the formal class name used in the template header, Col or Tag, appears as an argument to Oper and in the forma
parameter list of the Cr eat eLeaf speciaization. This ensures that our definition only appliesto properly-formed Oper ands.

Note also thet ypedef inside this speciaization of Cr eat eLeaf . PETE's template specialization rules require every
specialization of Cr eat eLeaf tohaveat ypedef caled Leaf _t, which specifiesthe type of the leaf node. Thisis also the
declared return type of the st at i ¢ method make() , which constructs aleaf node given an actual object (in this case, a color class
instance).

Cr eat eLeaf tells PETE how to store valuesin leaf nodes; specializations of Leaf Funct or tell PETE how to apply a
user-defined functor to those nodes to obtain avalue. As before, we template our specialization of Leaf Funct or on aformal
parameter that will be filled in with a color class, but then nest that formal parameter inside Oper and in order to ensure that the
compiler only triesto use this speciaization of Leaf Funct or on the right kinds of expressions.

Leaf Funct or takesasecond template parameter, which is the functor that is being applied to the leaf node. In our case, we have
defined only one functor on colors, namely Get Col or . Our specidlization is therefore:

132 tenpl ate<cl ass Col or >
133 struct Leaf Funct or <Oper and<Col or >, Cet Col or >

134 {
135 typedef Col or Type_t;
136 };

Unlikethe Leaf Funct or specidizationsin previous tutorials, notice that this version does not have an appl y() method. The
reason is that we're using this functor only for compile-time type calculations. We're never going to call appl y() so we therefore
don't need to go to the trouble of defining it.

Our last task isto define some specializations of Conbi ne2, the combiner that PETE uses to operate on valuesin binary
expressions. Six specializations are defined, for each possible ordered combination of different color values. The combiner for Red
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and G een is.

063 tenpl at e<cl ass Op>
064 struct Conbi ne2<Red, Green, Op, Col or Conbi ne>
065 {
066 typedef Bl ue Type_t;
/1 not required inline static
/1 not required Type_t conbine(Red, Green, Op, Col orConbine)
/1 not required {
/1 not required return Blue();
/1 not required }
067 };

The generic form of Conbi ne2 takes four template parameters: the classes of its operands, a tag identifying the C++ operator from
which the expression was created (such as OpAdd or OpMul ti pl y), and a user-defined tag, which can be used to force the
compiler to calculate a different expression than the one apparently specified. In the case of this example, the first two parameters
specify the colors being combined, while the last parameter signals that these values are being combined according to our own
rules. Thisisthe only use for Col or Combi ne. The formal template parameter Op is not referenced anywhere in this class, so that
any binary operation on colors, including addition, multiplication, bitwise OR, or left shift, will use the user-defined rules.

Combinerstypically have two elements: atype Type_t that givesthe type of object formed by combining the operands and a
conbi ne methods that takes the operands and does whatever is necessary to produce aType_t object. Likethe Leaf Funct or
specialization above, we don't need the conrbi ne method here since we're synthesizing types. However, we've shown what this
function would look like if it were necessary to defineit.

We can now test that our definitions do the right thing by defining three functions to print out the color of an expression involving
colors. The function for Red takes a constant reference to a Red object, and prints asimple string:

027 inline void calc(const Red &)

028 {
029 cout << "This expression is red." << endl;
030 }

The other two overloadings of this function, which are defined on lines 32-40 for the tag classes G een and Bl ue, print out
"green" and "blue" instead of "red".

Finally, the templated function pr i nt Col or () takesan expression, evaluatesit during compilation by forcing the compiler to
expand the expression using our Get Col or and Col or Combi ne tags, and then uses the deduced color of the expression to select
aversion of cal c( ), which prints out that color's name. The whole definition is:

048 tenplate <class Expr>
049 wvoid printCol or(const Expression<Expr> &expr)

050 {

051 typedef typenane For Each<Expressi on<Expr>, Get Col or, Col or Conbi ne>:: Type_t
052 DeducedCol or _t;

053

054 cal c(DeducedCol or _t());

055 }

It isworth looking at this function definition closely. The expansion of Cr eat eLeaf <>: : Leaf t extracts and formatsthe type
of the expression according to our color-based evaluation rules. The expansion of the PETE-defined template For Each does most
of the work. During its expansion, the functor and combiner tags are passed down the parse tree. They are used to extract types
from the leaves of the parse tree. These types are combined at non-leaf nodes to produce new types, which are passed up the parse
tree. Theresult isatype---Red, Gr een, or Bl ue---that islabelled by DeducedCol or _t . Thistype, in turn, triggers instantiation
of an appropriate version of cal c() .

Under the Hood

Let'stake acloser look at exactly what happens when pr i nt Col or () isinstantiated with a color expression, asit is at the start of
the test program in RGB. cpp:
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005 pri nt Col or (Oper and<Red>() + Qperand<G een>());

Let's start with the automatically-generated operator overloadingsin RGBOper at or s. h, which are created using the
Maker Oper at or s tool described in thefirst tutorial. The overloading for oper at or + is:

618 tenplate<class T1,class T2>

619 inline typenanme MakeRet ur n<Bi nar yNode<OpAdd,

620 typenane Createleaf <Operand<T1l> >:: Leaf t,

621 typenane Createleaf <Operand<T2> >.: Leaf t,

622 St or eByRef Tag> >:: Expression_t

623 operator+(const Operand<Tl> & |, const Operand<T2> & r)

624 {

625 typedef Bi nar yNode<(QOpAdd,

626 t ypenane Creat elLeaf <Qperand<T1> >:: Leaf t,
627 typenane CreatelLeaf <Operand<T2> >.: Leaf t,
628 St or eByRef Tag> Tree_t;

629 return MakeReturn<Tree_t>::make(Tree_t(

630 Cr eat eLeaf <Qper and<T1> >:: make(l),

631 Cr eat eLeaf <Oper and<T2> >:: nmake(r)));

632 }

Once again, there isless going on here than first meets the eye. We are trying to perform computations using C++ template
notation, ajob for which that notation was not designed. The first thingsto look at arethe uses of Cr eat eLeaf : : Leaf _t.As
we saw above, in the case of an Oper and with acolor type argument, Leaf _t isjust the color type argument wrapped in an

Oper and type; the Cr eat eLeaf indirection is provided to give programmers a hook for doing other thingsif they so desire. This
means that we can simplify the code above as.

618 tenplate<class T1,class T2>

619 inline typenane MakeRet ur n<Bi nar yNode<OpAdd,

620 Oper and<T1>,

621 Oper and<T2>,

622 St or eByRef Tag> >:: Expression_t

623 operator+(const Operand<Tl> & |, const Operand<T2> & r)

624 {

625 typedef Bi nar yNode<QOpAdd,

626 Qper and<T1>,

627 Oper and<T2>,

628 St or eByRef Tag> Tree_t;

629 return MakeReturn<Tree_t>::make(Tree_ t(
630 Cr eat eLeaf <Qper and<T1> >:: make(l),
631 Cr eat eLeaf <Oper and<T2> >:: nake(r)));
632 }

By referring back to the arguments of pri nt Col or (), we can replace T1 with Red, and T2 with G een:

619 inline typename MakeRet ur n<Bi nar yNode<CpAdd,

620 Oper and<Red>,

621 Oper and<Gr een>,

622 St or eByRef Tag> >:: Expressi on_t

623 operator+(const Operand<Red> & |, const Operand<G een> & r)

624 {

625 t ypedef Bi nar yNode<QOpAdd,

626 Oper and<Red>,

627 Oper and<Gr een>,

628 St or eByRef Tag> Tree_t;

629 return MakeRet urn<Tree_t>:: make(Tree_t(
630 Cr eat eLeaf <Oper and<Red> >:: make(l),

631 Cr eat eLeaf <Qper and<G een> >:: nake(r)));
632 }

Looking back at Cr eat eLeaf once more, we seethat itsnmake() method simply returnsits argument. (In the case of STL
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containers, make() could return an iterator over its argument.) Our operator thus becomes simpler still:

619 inline typenanme MakeRet ur n<Bi nar yNode<OpAdd,

620 Oper and<Red>,

621 Oper and<Gr een>,

622 St or eByRef Tag> >:: Expression_t

623 operator+(const Operand<Red> & |, const Operand<Green> & r)

624 {

625 typedef Bi nar yNode<(QOpAdd,

626 Oper and<Red>,

627 Oper and<Gr een>,

628 St or eByRef Tag> Tree_t;

629 return MakeReturn<Tree_ t>::make(Tree t(l, r));
632 }

To simplify this further, we must turn to the definition of MakeRet ur n in PETE'sCr eat eLeaf . h:

136 tenpl ate<class T>
137 struct MakeReturn

138 {

139 typedef Expressi on<T> Expression_t;

140 inline static

141 Expression_t make(const T &) { return Expression_t(a); }
142},

The default expansion of MakeRet ur n<T>: : Expr essi on_t issimply Expr essi on<T>, and MakeRet ur n'smake()
method just returnsits argument, appropriately typed. This may seem unnecessary, but as the PETE header files themselves explain:

MakeRet ur n isused to wrap expression objects (Unar yNode, Bi nar yNode etc.) inside an Expr essi on object.
Usually thisindirection is unnecessary, but the indirection allows users to specify their own approach to storing trees.
By specializing MakeRet ur n<Unar yNode>, MakeRet ur n<Bi nar yNode>, etc. you could cause the expression
trees to be stored in another format. For example, POOMA stores expressionsinside Ar r ays, so the result of
Array+Arr ay isanother Arr ay.

We can now expand our operator one more level:

623 operator+(const Operand<Red> & |, const Operand<Green> & r)

624 {

625 typedef Bi nar yNode<(QpAdd,

626 Oper and<Red>,

627 Oper and<Gr een>,

628 St or eByRef Tag> Tree_t;

629 return Expression<Tree t>(Tree t(l, r));
632 }

Note that we are no longer bothering to show the return type of the function, sinceit is the same asthe type of ther et ur n
statement inside the function body.

With thisin hand, let'sreturnto pri nt Col or ():

048 tenplate <class Expr>
049 wvoid printCol or(const Expression<Expr> &expr)

050 {

051 typedef typenane For Each<Expressi on<Expr>, Get Col or, Col or Conbi ne>:: Type_t
052 DeducedCol or _t;

053

054 cal c(DeducedCol or _t());

055 }

The formal parameter expr isan instance of

Expr essi on<Bi nar yNode<OpAdd, Oper and<Red>, Oper and<G een>, St or eByRef Tag> >, withan

Oper and<Red> and aOper and<G een> asitsleft and right members. Thistypeis passed to PETE's For Each class. We use
this class rather than the f or Each function because we are synthesizing types. Referring to the PETE header file For Each. h, we
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see that the most specific matching definitionis:

146 tenplate<class T, class FTag, class CTag>

147 struct For Each<Expressi on<T>, FTag, CTag>

148 {

149 typedef typenane For Each<T, FTag, CTag>::Type_t Type_t;
150 inline static

151 Type_t appl y(const Expression<T> &expr, const FTag &f,
152 const CTag &c)

153 {

154 return For Each<T, FTag, CTag>::appl y(expr.expression(), f, c);
155

156 };

Aswe've mentioned, we are synthesizing types in this example so the appl y function (lines 150-155) will never actualy be caled.
Therefore, in subsequent definitions, we'll omit thisfor brevity. The important thing to noteisthat thet ypedef of Type t is
generated by extracting the type wrapped by the Expr essi on object and using that in another For Each. Recall that this wrapped
typein our exampleis Bi nar yNode<OpAdd, Oper and<Red>, Oper and<Gr een>, St or eByRef Tag>. This means that the
relevant For Each definitionis

107 tenplate<class Op, class A class B, class ST, class FTag, class CTag>
108 struct For Each<Bi naryNode<Qp, A, B, ST>, FTag, CTlag >

109 {

110 typedef typenane For Each<A, FTag, CTag>::Type_t TypeA t;

111 typedef typenane For Each<B, FTag, CTag>::Type_t TypeB_t;

112 typedef typenane Conbi ne2<TypeA t, TypeB t, Op, CTag>:: Type_t Type_t;
122 };

Now isagood time to perform some type substitutions. The result is

107 tenplate<>

108 struct For Each<Bi nar yNode<OpAdd, Oper and<Red>, Oper and<Gr een>, St or eByRef Tag>,
OpAdd, Get Col or, Col or Combi ne>

109 {

110 typedef For Each<Operand<Red>, Cet Col or, Col or Conbi ne>:: Type_t TypeA t;
111 typedef For Each<Qperand<Green>, Get Col or, Col or Conbi ne>:: Type_t TypeB_ t;
112 typedef Conbi ne2<TypeA t, TypeB t, OpAdd, Col or Conbi ne>:: Type_ t Type_t;
122 };

To proceed, we need to resolve the For Each typesin lines 110 and 111. Looking through For Each. h, we see that the only
partial speciaization that matches is the most general version of For Each:

074 tenpl ate<class Expr, class FTag, class CTag>
075 struct ForEach

076 {

o077 typedef typenane Leaf Functor<Expr, FTag>::Type_t Type_t;

083 };
Thisversion of For Each is meant to be used for leaves. It ssimply passes the task to the Leaf Funct or class. Substituting this
above gives:

107 tenpl ate<>

108 struct For Each<Bi nar yNode<OpAdd, Oper and<Red>, Oper and<Gr een>, St or eByRef Tag>,
OpAdd, GCet Col or, Col or Conbi ne>

109 {

110 typedef Leaf Funct or <Oper and<Red>, GetCol or>::Type_ t TypeA t;

111 typedef Leaf Functor <Oper and<G een>, GetCol or>:: Type_ t TypeB t;

112 typedef Conbi ne2<TypeA t, TypeB t, OpAdd, Col or Conbi ne>:: Type_t Type_t;
122 };

Thisis starting to look promising: we now have some invocations of Corrbi ne2, the combiner that was overridden in RGB. h, and
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some uses of Leaf Funct or , which was also overridden. In fact, as we saw earlier, when Leaf Funct or hasan Oper and asits
first type argument, and the Get Col or functor tag asits second argument, its Type_t definitionisjust its color argument. We
can therefore simplify the definition of For Each on binary nodes to be:

107 tenpl ate<>
108 struct For Each<Bi nar yNode<OpAdd, Oper and<Red>, Oper and<Gr een>, St or eByRef Tag>,
OpAdd, GCet Col or, Col or Conbi ne>

109 {
112 typedef Conbi ne2<Red, G een, OpAdd, Col or Conbi ne>:: Type_t Type_t;
122 };

The compiler can now match the specialized definition of Conbi ne2 shown earlier against this code. Thus, the return type of the

expansion of For Each inside of pri nt Col or isBl ue. This, inturn, isused to select the cal ¢() function, which simply prints
out the word "blue".

This may seem like alot of work simply to print out a different word. However, it illustrates an extremely powerful capability of
PETE: selecting custom a gorithms at compile time based on a synthesized type. All of the type computations outlined above are
performed at compile time. Also, the various cal ¢ functions are inlined. This means that the compiler will generate a custom
pri nt Col or function for our expression that is equivalent to

048 tenplate <>
049 wvoid printCol or(const
Expr essi on<Bi nar yNode<OpAdd, Oper and<Red>, Oper and<Gr een>, St or eByRef Tag> > &expr)

050 {
054 cout << "This expression is blue." << endl;
055 }

Thisis an example of compile-time polymorphism. We've used the C++ compiler to generate specia code based on the types we
pass into a function rather than making a run-time choice of afunction to call. This can lead to the generation of extremely efficient
code.

Summary

Thistutorial has shown how to extend PETE to synthesize type information during compilation by performing symbolic
manipulations on parse trees. The user-level definitions required are more complex than those needed to use PETE simply to
optimize expression evaluation, but tracing through their operation shows how PETE exploit's the C++ compiler's pattern matching
and type expansion facilitiesto do what it does.

Source Files
RGB. h

001 #ifndef PETE_EXAMPLES RGB_RGB H
002 #define PETE_EXAVPLES RGB_RGB_H

003

(010 R B B R R
005 // Include files

(010 T B A i i I
007

008 #include <iostream h>

009

010 #include "PETE/ PETE. h"

011

(0 R R

013 // Tag classes representing colors. Also, a functor for getting a color from
014 // a leaf and a conbiner for conbining col ors.

(0N R I B e i R
016

017 struct Red { };
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018 struct Geen { };

019 struct Blue { };

020 struct GetColor { };

021 struct Col or Conbine { };

022

(0 I B B e e e
024 |/ A few overloaded functions that print out color names given a type.

(A I B e e R
026

027 inline void calc(const Red &)

028 {

029 cout << "This expression is red." << endl;

030 }

031

032 inline void calc(const Blue &

033 {

034 cout << "This expression is blue." << endl;

035 }

036

037 inline void calc(const Geen &

038 {

039 cout << "This expression is green." << endl;

040 }

041

(0 e e

043 // A function that deduces a color at conpile tine and calls a special
044 |/ function based on the val ue.

045 //
0 e
047

048 tenplate <class Expr>

049 wvoid printCol or(const Expression<Expr> &expr)

050 {

051 typedef typenane For Each<Expressi on<Expr>, Get Col or, Col or Conbi ne>:: Type_t
052 DeducedCol or _t;

053

054 cal c(DeducedCol or _t());

055 }

056

Y A B e e R
058 // A set of conbiners that produce new colors according to sone arbitrary
059 // rules: red & green give blue, red & blue give green, blue and green give

060 // red.
(0] R Y SRR
062

063 tenpl at e<cl ass Op>
064 struct Conbi ne2<Red, Green, Op, Col or Conbi ne>

065 {

066 typedef Blue Type_t;
067 };

068

069 tenpl ate<cl ass Op>
070 struct Conbi ne2<Red, Bl ue, Op, Col or Conbi ne>

071 {

072 typedef G een Type_t;
073 };

074

075 tenpl at e<cl ass Op>

076 struct Conbi ne2<G een, Blue, Op, Col or Conbi ne>
077 {

078 typedef Red Type_t;

http://www-internal.acl.lanl.gov/~sa_smith/pete/tut-3.html (8 of 10) [10/29/1999 3:28:29 PM]



PETE Tutorial 3: Synthesizing Types

079 1};

080

081 tenplate<class Op>

082 struct Conbi ne2<Green, Red, Op, Col or Conmbi ne>

083 {

084 typedef Bl ue Type_t;

085 };

086

087 tenpl ate<class Op>

088 struct Conbi ne2<Bl ue, G een, Op, Col or Conbi ne>

089 {

090 typedef Red Type_t;

091 };

092

093 tenpl ate<class Op>

094 struct Conbi ne2<Blue, Red, Op, Col orConbi ne>

095

096 typedef Green Type_ t;

097 };

098

099 tenplate<class Cl, class C2, class Op>

100 struct Conbi ne2<Cl, C2, Op, Col or Conbi ne>

101 {

102 typedef Cl Type_t;

103 };

104

(O I e e e
106 // A class that has a single tenpl ate paraneter that specifies a color.

(O A Y e I T P
108

109 tenplate<class Col or Tag>

110 struct Operand

111 {

112 };

113

N e
115 // W need to specialize Createleaf <T> for Operand, so that operators

116 // know what to stick in the | eaves of the expression tree.

(A B R e R R E R P PR T P
118

119 tenpl ate<cl ass Col or Tag>

120 struct Createleaf <Qperand<Col or Tag> >

121 {

122 typedef Operand<Col or Tag> Leaf _t;

123 inline static

124 const Leaf t &make(const Operand<Col orTag> &) { return a; }

125 };

126

(A R R T T R
128 // Specialization of LeafFunctor class for applying the getting the "col or"
129 // of an operand.

S 1O B B e e e
131

132 tenpl ate<cl ass Col or >

133 struct Leaf Funct or <Oper and<Col or >, GCet Col or >

134 {

135 typedef Col or Type_t;

136 };

137

138 #include "RG@QOperators. h"

139
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140 #endif // PETE_EXAVPLES RGB RGB H

R@&BDefs.in

001 classes

002 -----

003 ARG = "class T[n]"

004 CLASS = " Qperand<T[ n] >"
RGB. cpp

001 #include "RGB. h"

002

003 int main()

004 {

005 print Col or (Oper and<Red>() + Operand<G een>());

006 print Col or (Qper and<Red>() + Operand<Green>() + Operand<Bl ue>());
007 print Col or (Operand<Red>() + (Operand<Green>() + Operand<Blue>()));
008 }

[Prev] [Home] [Next]
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<PEIE>

Portable Expression Template Engine

PETE Tutorials
The Standard Template Library

The best-known use of templates to date has been the Standard Template Library, or STL.
The STL uses templates to separate containers (such as vectors and lists) from algorithms
(such as finding, merging, and sorting). The two are connected through the use of iterators,
which are classes that know how to read or write particular containers, without exposing
the actual type of those containers.

For example, consider the following code fragment, which finds the first occurrence of a
particular value in avector of floating-point numbers:

voi d findVal ue(vector<doubl e> & val ues, doubl e target)

{
vect or<doubl e>::iterator loc =
find(val ues. begin(), values.end(), target);
assert(*loc == target);
}

The STL classvect or declaresanother classcaledi t er at or , whosejob itisto
traverseavect or . Thetwo methods begi n() and end() return instances of
vector: :iterator marking the beginning and end of the vector. STL'sf i nd()
function iterates from the first of its arguments to the second, looking for a value that
matches the one specified. Finally, dereferencing (oper at or *) isoverloaded for
vector::iterator,sothat*| oc returnsthe value at the location specified by | oc.

If we decide |ater to store our valuesin alist instead of in avector, only the declaration of
the container type needs to change, sincel i st defines a nested iterator class, and
begi n() andend() methods, in exactly the sasmeway asvect or :

voi d findVal ue(list<double> & val ues, double target)

{

| i st<double>::iterator |loc =
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find(val ues. begin(), values.end(), target);
assert(*loc == target);

}

If we go one step further, and use at ypedef to label our container type, then nothing in
fi ndVal ue() needsto changeat all:

t ypedef vector<doubl e> St orage;
/'l typedef |ist<double> Storage;

voi d findVal ue( St orage & val ues, double target)

{
Storage::iterator loc =
find(val ues. begin(), values.end(), target);
assert(*loc == target);
}

The performance of this code will change as the storage mechanism changes, but that's the
point: STL-based code can often be tuned using only minor, non-algorithmic changes.

[Prev] [Home] [Next]
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<PETE>

Portable Expression Template Engine

MakeOperators

Name

M akeOper ator s - make the operator functions for agiven set of classes that return expression trees, so that PETE can
be used with those classes. Also can construct global assignment operators and operator tag structs.

Synopsis

MakeOperators [--help] [--pete-help] [--classes classfile]
[--operators opfile [--pete-ops] ] [--guard | NCLUDE GUARD|
[--scalars] [--extra-classes] [--no-expression] [--assign-ops]
[--op-tags] [--no-shift-guard] [--0 outputfile]

Description

In order to use PETE with a given set of container classes, operatorssuchas+, -, *, [/ etc. must be defined to
return expression template parse trees when given those classes. Operators must be defined for combining the
container classes, B + C, for combining the container classeswith scalars, 2 * C, and for combining parse trees
with other objects,B + (C + D) + 2. To generatethe PETE built-in operators requires over 200 different

templated operator functions to interface PETE with a single container class such asthe STL vector.

Command line options are:

--help
--pete-help

Print a ssmple summary of the command options.

--classes classfile

Input the class definitions from the file "classfile". Omitting this option causes no operator functionsto
be produced, which can be useful if you only want to produce operator tags.

To understand the format of the input file, consider the STL vector. M akeOper ator s will output
definitionsfor oper at or +() between vectors and vectors and between vectors and scalars:

tenpl ate<cl ass T1,class Allocatorl,class T2,class Allocator2>

(parse tree return type)
oper at or +(const vector<Tl, Al l ocator1> &1, const vector<T2, Al |l ocator2> &v2)

{

(construct parse tree)
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}

tenpl ate<cl ass T1,class T2,class All ocator2>
(parse tree return type)
operator+(const Tl &v1, const vector<T2, All ocator2> &v2)

{

(construct parse tree)
}
tenpl at e<cl ass T1,class Allocatorl,class T2>
(parse tree return type)
oper ator +(const vector<Tl, Al |l ocator1>& v1, const T2 &v2)

{

(construct parse tree)

}

In order to construct the operator, the tool needs to know the template arguments” cl ass T, cl ass
Al | ocat or" and the templated form of the class” vect or <T, Al | ocat or >" . For the STL vector
example the class definitions file would contain the four lines:

cl asses
ARG = "class T[n],class Allocator[n]"
CLASS = "vector<T[n], Al l ocator[n]>"

The string [ n] needs to be attached to each template argument and represents a number that allows
M akeOper ator sto uniquely identify each argument in binary and trinary operators. For classes with no
template arguments, use ARG = " " . In general, the class definition definition file can look like:

cl asses
ARG = (class 1 args)
CLASS = (class 1 definition)
ARG = (class 2 args)
CLASS = (class 2 definition)

extraCl asses

ARG = (extra class 1 args)

CLASS = (extra class 1 definition)
scal ars

ARG = (scalar 1 args)

CLASS = (scalar 1 definition)

When multiple classes are listed, operators are produced for al combinations of those classes with each
other, with scalars and with expression objects.

The second optional list starting with theword ext r aCl asses isused if you want to extend a
previously created file. For example, if you produced afile defining all the operatorsfor vect or <T>
and wanted to extend your implementation to operations between vectorsand | i st <T>, then you would
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list vector as aclass and list under extraClasses and specify the option - - ext r a- cl asses. The
resulting file would define operations between lists and lists, and between lists and vectors, but omit
those between vectors and vectors, so that you could include both the new file and your previously
generated file. Typically, it would be better to smply create a new file with all the operators, so
extraClasses should rarely be used.

Thefinal part of thislist that begins with the word scal ar s will only rarely need to be used. By the
rules of partial speciaization, if any class does not appear in the classeslist, it will be treated as a scalar.
Suppose you were to define atensor class Tensor <T>, then Tensor <T>() +

vect or <Tensor <T> >() would invoketheright function: T1 + vect or <T2> (which means
treat the tensor on the left as a scalar and add it to each of the tensors in the vector of tensors). A problem
arises if you also define scalar operations with tensors of theform Tensor <T1> + T2 to represent
adding a scalar to each of the tensor components. In thiscase Tensor <T>() +

vect or <Tensor <T> >() isambiguous as it matches the function for adding scalars to vectors and
the function for addint tensors to scalars. To resolve this case, we must explicitly define Tensor <T> +
vect or <Tensor <T> >, which will happen if we add Tensor <T> to thelist of scalars. (So the list of
scalars only needs to contain classes that act like scalars but that also define operations between
themselves and classes of arbitrary type.)

--0 outputfile

Send MakeOperators output to outputfile; otherwise write to stdout.

--operators opfile

Include the operator descriptions from the file "opfile". Typically this option should be omitted, in which
case the set of 45 PETE built-in operators are used. Seethefilesr c/ Tool s/ Pet eOps. i ninthe
PETE distribution to see operator descriptors for all the PETE built-in operators. The general format of
an operator descriptor fileis:

typel
TAG = "tag"
FUNCTI ON = "function"
EXPR = "expression”
TAG = "tag"
FUNCTI ON = "function”
EXPR = "expression”
type2
TAG = "tag"
FUNCTI ON = "functi on"
EXPR = "expression”

Thestring "t ag" isthe name of atag classthat is used in expression template nodes to differentiate
between the different operators. For example, " OpAdd" isused for binary oper at or +( ),

"OpSubt ract " isused for binary oper at or- () ,andsoon. Thestring " f unct i on" isthe name
of the operator funtion, " oper at or +" for example. The string " expr essi on" contains a description
of how to evaluate the operator on specific elements. The string should use the names a, b, and c to
represent the arguments to the function. For example the definition of binary oper at or +() sets EXPR
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="(a + b)".
The headingst ypel, t ype2, etc. are operator types. Currently the following operator types are
supported:
« unaryOps - ssimple unary operators whose return type is the same as their input type
« unaryBoolOps - unary operators that return a bool
« unaryCastOps - actualy binary operators where the first argument is used to set the return type
(like peteCast).
« unarySpecialOp - unary operators that use the type computation system to compute their return
type. For exampler eal ( Conpl ex<T>) returnsT.
« binaryOps - simple binary operators that compute their return type by promotion.
« binaryBoolOps - binary operators that return a bool (like <).
« binaryL eftOps - binary operators that return the type of the left argument.
« binarySpecialOps - unary operators that use the type computation system to compute their return
type.

« binaryAssignOps - assignment operators like +=. If operator functions are produced for these
operators then they call eval uat e() instead of returning an expression tree.

« binaryAssignBoolOps - assignment operators that always return abool, likeandAssi gn which
emulates the mythical &&=.

« assignOp - operator=().

« trinaryOps- trinary operators likewher e() which emulates ?: .

--pete-ops

Using the - - oper at or s causes the tool to use operator descriptors from afile, but not to use any of
the pre-defined PETE operators. If you wish produce operators for BOTH operators read from afile
AND the pre-defined PETE operators, the use - - pet e- ops aswell asthe - - oper at or s option. For
example, the first two commands in the POOMA example below could be simplified to produce onefile:

MakeOperators --classes Poomad ass.in \
--operators PoomaQps.in --pete-ops \
--guard POOVA ARRAY_ARRAYOPERATORS H \
--no-expression --o ArrayQperators. h

--guard INCLUDE_GUARD

The code output by M akeOper ator s includes ifdefs to guard against multiple inclusion of the form:

#i f ndef | NCLUDE_GUARD

#def i ne | NCLUDE_GUARD
(code goes here)

#endi f // 1 NCLUDE_GUARD

If this option is omitted then | NCLUDE_GUARD will default to either GENERATED OPERATORS Hif
the- - cl asses optionis present, or OPERATOR_TAGS_H otherwise. If you wish to omit the include
guards from the output file, then use the option - - guard ™"
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--scalars

When this option is present, only operations between classes and scalars are produced. Thisoptionis
useful in the situation mentioned in the description of - - cl asses, where operators must be defined
between containers and user defined scalarsin order to resolve ambiguities. In the example of a user
defined tensor class, the user would probably only define a small set of operations with general scalars,
like+, -, *, and /. To produce smaller operator files, you could produce all the operators without tensors
and then produce the operators between containers and tensors just for the smaller set of operators. See
the example section for an example of this case.

--extra-classes

When this option is present, only operations involving extraClasses are produced. This option is useful if
you want to create an operator file that extends a previously created operator file. Seethe- - cl asses
option for adescription of extraClasses.

--no-expression

M akeOper ator s needs to define operations between parse tree objects and containers and scalars. In the
expressonA + ( B + C ), thesubexpression( B + C ) returnsaparse tree object which must
then be combined with the container A. Some users of PETE, like POOMA, wrap the result of operators
inside their own container class, so thereis no need to define such operators. (The sum of two POOMA
arraysisan array containing an expression.) This flag turns off generation of operations with parse tree
objects.

--assign-ops
Generate global assignment operators that call the function eval uat e() .
--0op-tags

Produce definitions of the operator tag classes. PETE already contains definitions of all the PETE
built-in operators, so this flag only needs to be used for user defined operators.

--no-shift-guard

It istypical to define the operator ost r eam << cont ai ner , which can get confused with the
operator T << cont ai ner under some circumstances. To avoid this problem, PETE only defines the
shift operators between scalars and containersif the macro PETE_ALLOW_SCALAR_SHIFT is
defined. If - - no- shi ft - guar d isselected, then the ifdefs that implement this guard are eliminated
and shift operators between scalars and containers are always defined.

Examples

Here we build operators to use STL vectors with PETE. Theflag - - assi gn- ops is present because we cannot
define the assignment member functions for STL vectors.

MakeOperators --cl asses vectorDefs.in --assign-ops > VectorQperators. h

For POOMA, we create the built-in PETE operators, some special POOMA operatorsliker eal (), and finally
operators between POOMA arrays and the POOMA Vector and Tensor scalars to disambiguate them. The flag

- - no- expr essi on isused because POOMA wraps expressions inside POOMA arrays. Theflag - - assi gn- ops
not used because POOMA arrays define assignment member functions. In the second command, - - op-t ags isused
because the POOMA operator tag classes need to be defined. In the third command, - - scal ar s isused because the
first command has already defined operations between POOMA arrays for the operatorsin PoonmaVect or Ops. i n
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(which is asubset of the PETE operators). In the fourth command, - - 0 Vect or Qper at or s. h sends output to
that file rather than stdout.

MakeOperators --cl asses PoomaC ass.in --guard POOVA ARRAY_ ARRAYOPERATORS H \
--no-expression > ArrayQperators. h

MakeQperators --classes PoonmaCl ass.in --operators PoonaQps.in \
--guard POOVA POOVA POOMAOPERATORS H --no-expression \
--op-tags > PoomaQperators. h

MakeQperators --classes PoonmaVectorCl ass.in --operators PoomaVectorQps.in \
--guard POOVA POOVA VECTOROPERATORS H --no-expression --scalars \
> VectorQperators. h

MakeOperat ors --cl asses PoomaVectorC ass.in --operators PoomaVectorOps.in \
--guard POOVA POOVA VECTOROPERATORS H --no-expression --scalars \
--0 VectorQperators.h

[Home]
Copyright © Los Alamos National Laboratory 1999
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<PEIE>

Portable Expression Template Engine

PETE Tutorials
Legal Notice

This software and ancillary information (herein called "SOFTWARE") called PETE
(Portable Expression Template Engine) is made available under the terms described here.
The SOFTWARE has been approved for release with associated LA-CC Number
LA-CC-99-5.

Unless otherwise indicated, this SOFTWARE has been authored by an employee or
employees of the University of California, operator of the Los Alamos National

Laboratory under Contract No. W-7405-ENG-36 with the U.S. Department of Energy. The
U.S. Government has rights to use, reproduce, and distribute this SOFTWARE, and to
allow others to do so. The public may copy and use this SOFTWARE, FOR
NONCOMMERCIAL USE ONLY, without charge, provided that this Notice and any
statement of authorship are reproduced on all copies. Neither the Government nor the
University makes any warranty, express or implied, or assumes any liability or
responsibility for the use of this SOFTWARE.

If SOFTWARE is modified to produce derivative works, such modified SOFTWARE
should be clearly marked, so as not to confuse it with the version available from LANL.

For more information about PETE, send e-mail to pete@acl.lanl.gov, or visit the PETE
web page at http://www.acl.lanl.gov/pete.
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