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PETE Tutorials
Introduction

This document is an introduction to PETE, a library of C++ classes and templates for
high-performance numerical computation. PETE, which stands for "Portable Expression
Template Engine", uses a technique called expression templates to eliminate data copying
and the creation of temporary variables. As a result, PETE-based programs can be as
efficient as their C or Fortran equivalents.

PETE was designed and implemented by scientists working at the Los Alamos National
Laboratory's Advanced Computing Laboratory. These scientists have written and tuned
large applications on almost every kind of microprocessor built in the last two decades.
PETE therefore encapsulates its authors' understanding of how to get good performance
out of modern pipelined architectures and their multi-level memory hierarchies.

PETE is free for non-commercial use (i.e. your tax dollars have already paid for it). You
can read its source, extend it to handle platforms or problem domains that the core
distribution doesn't cater for, or integrate it with other libraries and your current
application, at no cost. For more information, please see the license information included
in the appendix.

Of course, nothing is perfect. As of October 1998, some C++ compilers still do not support
the full ANSI/ISO C++ standard. Please see PETE's support page for a list of those that do.

A second compiler-related problem is that most compilers produce very long, and very
cryptic, error messages if they encounter an error while expanding templated functions and
classes, particularly if those functions and classes are nested. Since PETE uses templates
extensively, it is not uncommon for a single error to result in several pages of complaints
from a compiler. Programs that use templates extensively are also still sometimes slower to
compile than programs that do not, and the executables produced by some compilers can
be surprisingly large.

The body of this tutorial starts with a discussion of the two key concepts behind PETE:
C++ templates, and parse trees. The tutorials that follow show how to apply PETE to
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user-defined classes, and to third-party classes such as those in the C++ Standard Template
Library (STL). You may also wish to look at the PETE web site for updates, bug fixes, and
general discussion. As well, an introductory article on PETE appeared in the October 1999
issue of Dr. Dobb's Journal. If you have any questions about PETE or its terms of use, or if
you need help downloading or installing PETE, please mail us at
pete@acl.lanl.gov.

[Home] [Next]
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PETE Tutorials
Background and Terminology

Contents:
    Introduction
    Templates
    Representing Parse Trees
    Looking Ahead

Introduction
Object-oriented languages like C++ make development easier, but performance tuning harder. The same
abstractions that allow programmers to express their ideas compactly also make it hard for compilers to
re-order operations, predict how many times a loop will be executed, or re-use memory instead of copying
values.

For example, suppose that a program uses a Vector class to represent vectors of floating-point values:

class Vector
{
  public :
    Vector();                           // default constructor

    Vector(                             // value constructor
        int size,                       // ..size of vector
        float val                       // ..initial element value
    );

    Vector(                             // copy constructor
        const Vector & v                // ..what to copy
    );

    virtual ~Vector();                  // clean up

    float getAt(                        // get an element
        int index                       // ..which element to get
    ) const;

    void setAt(                         // change an element
        int index,                      // ..which element to set
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        float val                       // ..new value for element
    );

    Vector operator+(                   // add, creating a new vector
        const Vector & right            // ..thing being added
    );

    Vector operator*(                   // multiply (create result)
        const Vector & right            // ..thing being multiplied
    );

    Vector & operator=(                 // assign, returning target
        const Vector & right            // ..source
    );

  protected :
    int len_;                           // current length
    float * val_;                       // current values
};

Consider what happens when the following statement is executed:

Vector x, a, b, c;
// variable initialization omitted
x = a + b * c;

b*c creates a new Vector, and fills it with the elementwise product of b and c by looping over the values
that those two vectors encapsulate. The call to the addition operator creates another temporary, and executes
another loop to fill it. Finally, the call to the assignment operator doesn't create a third temporary, but it does
execute a third loop. Thus, this simple statement is equivalent to:

Vector x, a, b, c;

// ...initialization...

Vector temp_1;
for (int i=0; i<vectorLength; ++i)
{
    temp_1.setAt(i, b.getAt(i) * c.getAt(i));
}

Vector temp_2;
for (int i=0; i<vectorLength; ++i)
{
    temp_2.setAt(i, a.getAt(i) + temp_1.getAt(i));
}

for (int i=0; i<vectorLength; ++i)
{
    x.setAt(i, temp_2.getAt(i));
}
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Clearly, if this program was written in C instead of C++, the three loops would have been combined, and the
two temporary vectors eliminated:

Vector x, a, b, c;
// ...initialization...
for (int i=0; i<vectorLength; ++i)
{
    x.setAt(i, a.getAt(i) + b.getAt(i) * c.getAt(i));
}

The optimizations required to turn the three-loop version of this code into its single-loop equivalent are
beyond the capabilities of existing commercial compilers. Because operations may involve aliasing---i.e.,
because an expression like x=a+b*c can assign to a vector while also reading from it---optimizers must err
on the side of caution, and neither eliminate temporaries nor fuse loops. This has led many programmers to
believe that C++ is intrinsically less efficient than C or Fortran 77.

Luckily, this conclusion is wrong. By using templates in a highly-structured way, PETE exposes
opportunities for optimization to compilers without sacrificing readability or portability. The result is that
modern C++ compilers can deliver the same performance for PETE-based programs as C or Fortran
compilers do for equivalent programs written in those lower-level languages.

In order to understand how and why PETE does what it does, it is necessary to understand what C++
templates are, and how PETE (and similar libraries) use templates to encode parse trees.

Templates
Templates were a late addition to C++, but they have increased the power of the language significantly. One
way to look at templates is as an improvement over macros. Suppose that you wanted to create a set of
classes to store pairs of ints, pairs of floats, and so on. Without templates, you might define a macro:

#define DECLARE_PAIR_CLASS(name_, type_)                            \
class name_                                                         \
{                                                                   \
  public :                                                          \
    name_();                            // default constructor      \
    name_(type_ left, type_ right);     // value constructor        \
    name_(const name_ & right);         // copy constructor         \
    virtual ~name_();                   // destructor               \
    type_ & left();                     // access left element      \
    type_ & right();                    // access right element     \
                                                                    \
  protected :                                                       \
    type_ left_, right_;                // value storage            \
};

then use it to create each class in turn:

DECLARE_PAIR_CLASS(IntPair, int)
DECLARE_PAIR_CLASS(FloatPair, float)

A better way to do this is to declare a template class:
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template<class DataType>
class Pair
{
  public :
    Pair();                             // default constructor
    Pair(DataType left,                 // value constructor
         DataType right);
    Pair(const Pair<DataType> & right);           // copy constructor
    virtual ~Pair();                    // destructor
    DataType & left();                  // access left element
    DataType & right();                 // access right element

  protected :
    DataType left_, right_;             // value storage
};

The keyword template tells the compiler that the class cannot be compiled right away, since it depends on
an as-yet-unknown data type. When the declarations:

Pair<int>   pairOfInts;
Pair<float> pairOfFloats;

are seen, the compiler instantiates Pair once for each underlying data type. This happens automatically: the
programmer does not have to create the actual pair classes explicitly by saying:

typedef Pair<int> IntPair;              // incorrect!
IntPair pairOfInts;

Templates can also be used to define generic functions, as in:

template<class DataType>
void swap(DataType & left, DataType & right)
{
    DataType tmp(left);
    left  = right;
    right = tmp;
}

Once again, this function can be called with two objects of any matching type, without any further work on
the programmer's part:

int   i, j;
swap(i, j);

Shape back, front;
swap(back, front);

Note that the implementation of swap() depends on the actual data type of its arguments having both a
copy constructor (so that tmp can be initialized with the value of left) and an assignment operator (so that
left and right can be overwritten). If the actual data type does not provide either of these, the compiler
will report an error.

PETE Tutorials: Background and Terminology

http://www-internal.acl.lanl.gov/~sa_smith/pete/background.html (4 of 12) [10/29/1999 3:28:27 PM]



Note also that swap() can be made more flexible by not requiring the two objects to have exactly the same
type. The following re-definition of swap() will exchange the values of any two objects, provided
appropriate assignment and conversion operators exist:

template<class LeftType, class RightType>
void swap(LeftType & left, RightType & right)
{
    LeftType tmp(left);
    left  = right;
    right = tmp;
}

Finally, the word class appears in template definitions because other values, such as integers, can also be
used. The code below defines a small fixed-size vector class, but does not fix either its size or underlying data
type:

template<class DataType, int FixedSize>
class FixedVector
{
  public :
    FixedVector();                      // default constructor
    FixedVector(DataType filler);       // value constructor
    virtual ~FixedVector();             // destructor

    FixedVector(                        // copy constructor
        const FixedVector<DataType, FixedSize> & right
    );

    FixedVector<DataType>               // assignment
    operator=(
        const FixedVector<DataType, FixedSize> & right
    );

    DataType & operator[](int index);   // element access

  protected :
    DataType storage[FixedSize];        // fixed-size storage
};

It is at this point that the possible performance advantages of templated classes start to become apparent.
Suppose that the copy constructor for this class is implemented as follows:

template<class DataType, int FixedSize>
FixedVector::FixedVector(
    const FixedVector<DataType, FixedSize> & right
){
    for (int i=0; i<FixedSize; ++i)
    {
        storage[i] = right.storage[i];
    }
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}

When the compiler sees a use of the copy constructor, such as:

FixedVector<DataType, FixedSize> first;
// initialization of first vector omitted
FixedVector<DataType, FixedSize> second(first);

it knows the size as well as the underlying data type of the objects being manipulated, and can therefore do
more optimization than it could if the size was variable.

Automatic instantiation of templates is convenient and powerful, but does have one drawback. Suppose the
Pair class shown earlier is instantiated in one source file to create a pair of ints, and in another source file
to create a pair of Shapes. The compiler and linker could:

treat the two instantiations as completely separate classes;1.  

detect and eliminate redundant instantiations; or2.  

avoid redundancy by not instantiating templates until the program as a whole was being linked.3.  

The first of these can lead to very large programs, as a commonly-used template class may be expanded
dozens of times. The second is difficult to do, as it involves patching up compiled files as they are being
linked. Most recent versions of C++ compilers are therefore taking the third approach, but POOMA II users
should be aware that older versions might still produce much larger executables than one would expect.

The last use of templates that is important to this discussion is template methods. Just as templated functions
are instantiated for different types of arguments, so too are templated methods instantiated for a class when
and as they are used. Suppose a class called Example is defined as follows:

class Example
{
  public :
    Example();                          // default constructor
    virtual ~Example();                 // destructor

    template<class T>
    void foo(T object)
    {
        // some operation on object
    }
};

Whenever the method Example::foo() is called with an object of a particular type, the compiler
instantiates it for that type. Thus, both of the following calls are legal:

Example e;
Shape box;
e.foo(5);                               // instantiate for int
e.foo(box);                             // instantiate for Shape
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Representing Parse Trees
Parse trees are commonly used by compilers to store the essential features of the source of a program. The
leaf nodes of a parse tree consist of atomic symbols in the language, such as variable names or numerical
constants. The parse tree's intermediate nodes represent ways of combining those values, such as arithmetic
operators and while loops. For example, the expression -B + 2 * C could be represented by the parse
tree shown in Figure 1

Figure 1: A Simple Parse Tree

Parse trees are often represented textually using prefix notation, in which the non-terminal combiner and its
arguments are strung together in a parenthesized list. For example, the expression -B + 2 * C can be
represented as (+ (- B) (* 2 C)).

What makes all of this relevant to high-performance computing is that the expression
(+ (- B) (* 2 C)) could equally easily be written
BinaryOp<Add, UnaryOp<Minus, B>, BinaryOp<Multiply, Scalar<2>, C>>: it's just a
different notation. However, this notation is very similar to the syntax of C++ templates --- so similar, in fact,
that it can actually be implemented given a careful enough set of template definitions. As discussed earlier,
by providing more information to the optimizer as programs are being compiled, template libraries can
increase the scope for performance optimization.

Any facility for representing expressions as trees must provide:

a representation for leaf nodes (operands);●   

a way to represent operations to be performed at the leaves (i.e. functions on individual operands);●   

a representation for non-leaf nodes (operators);●   

a way to represent operations to be performed at non-leaf nodes (i.e. combiners);●   

a way to pass information (such as the function to be performed at the leaves) downward in the tree;
and

●   

a way to collect and combine information moving up the tree.●   

C++ templates were not designed with these requirements in mind, but it turns out that they can satisfy them.
The central idea is to use the compiler's representation of type information in an instantiated template to store
operands and operators. For example, suppose that a set of classes have been defined to represent the basic
arithmetic operations:

struct AddOp
{
    static inline double apply(const double & left, const double & y)
    {
        return x + y;
    }
};

struct MulOp
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{
    static inline double apply(const double & left, const double & y)
    {
        return x * y;
    }
};

// ...and so on...

Note the use of the keyword struct; this simply signals that everything else in these classes---in particular,
their default constructors and their destructors---are public.

Now suppose that a templated class BinaryOp has been defined as follows:

template<class Operator, class Vector, class RHS>
class BinaryOp
{
  public :
    // empty constructor will be optimized away, but triggers
    // type identification needed for template expansion
    BinaryOp(
        Operator op,
        const Vector & leftArg,
        const RHS    & rightArg
    ) : left_(leftArg),
        right_(rightArg)
    {}

    // empty destructor will be optimized away
    ~BinaryOp()
    {}

    // calculate value of expression at specified index by recursing
    inline double apply(int i)
    {
        return Operator::apply(leftArg.apply(i), rightArg.apply(i));
    }

  protected :
    const Vector & left_;
    const RHS    & right_;
};

If b and c have been defined as Vector, and if Vector::apply() returns the vector element at the
specified index, then when the compiler sees the following expression:

BinaryOp<MulOp, Vector, Vector>(MulOp(), b, c).apply(3)

it translates the expression into b.apply(3) * c.apply(3). The creation of the intermediate instance
of BinaryOp is optimized away completely, since all that object does is record a couple of references to
arguments.
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Why to go all this trouble? The answer is rather long, and requires a few seemingly-pointless steps. Consider
what happens when the complicated expression above is nested inside an even more complicated expression,
which adds an element of another vector a to the original expression's result:

BinaryOp< AddOp,
          Vector,
          BinaryOp< MulOp, Vector, Vector >
        >(a, BinaryOp< MulOp, Vector, Vector >(b, c)).apply(3);

This expression calculates a.apply(3) + (b.apply(3) *c.apply(3)). If the expression was
wrapped in a for loop, and the loop's index was used in place of the constant 3, the expression would
calculate an entire vector's worth of new values:

BinaryOp< AddOp,
          Vector,
          BinaryOp< MulOp, Vector, Vector > >
        expr(a, BinaryOp< MulOp, Vector, Vector >(b, c));
for (int i=0; i<vectorLength; ++i)
{
  double tmp = expr.apply(i);
}

The possible nesting of BinaryOp inside itself is the reason that the BinaryOp template has two type
parameters. The first argument to a BinaryOp is always a Vector, but the second may be either a
Vector or an expression involving Vectors.

The code above is not something any reasonable person would want to write. However, having a compiler
create this loop and its contained expression automatically is entirely plausible. The first step is to overload
addition and multiplication for vectors, so that operator+(Vector,Vector) (and
operator*(Vector,Vector)) instantiates BinaryOp with AddOp (and MulOp) as its first type
argument, and invokes the apply() method of the instantiated object. The second step is to overload the
assignment operator operator=(Vector,Vector) so that it generates the loop shown above:

template<class Op, T>
Vector & operator=(
    Vector & target,
    BinaryOp<Op> & expr
){
    for (int i=0; i<vectorLength; ++i)
    {
        target.set(i, expr.apply(i));
    }
    return target;
}

With these operator definitions in play, the simple expression:

Vector x, a, b, c;
// ...initialization...
x = a + b * c;

is automatically translated into the efficient loop shown above, rather than into the inefficient loops shown
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earlier. The expression on the right hand side is turned into an instance of a templated class whose type
encodes the operations to be performed, while the implementation of the assignment operator causes that
expression to be evaluated exactly once for each legal index. No temporaries are created, and only a single
loop is executed.

Looking Ahead
Of course, an industrial-strength implementation of these ideas requires definitions that are considerably
more complicated than the ones shown in the previous section. For a start, BinaryOp and its kin are not
defined directly on any one class Vector. It isn't even defined for Vector<T>, but rather for a wrapper
class. This class expects nothing from its contained class except an apply method capable of turning an
index into a value. This allows users to integrate their own classes with PETE simply by providing the
required method. Similarly, the classes that PETE defines to represent unary and binary operators are
considerably more flexible than the ones shown above.

One of the idioms used by PETE that hasn't been shown above is the tag class. A tag class has no methods,
and contains no data; its only reason for existing is as a flag to the C++ compiler during template expansion.
A mutually exclusive set of tag classes is therefore the compile-time equivalent of an enumeration. PETE
uses tag classes to identify operators, the way in which operands are referenced (i.e. directly or through
iterators and other intermediators), and so on.

Another idiom used in PETE is the traits class, which depends on a feature of ANSI C++ called partial
specialization. When a C++ compiler instantiates a template, it tries to choose the best possible match for the
arguments it is given. For example, suppose that both of the following definitions are in scope when the
objects fred and jane are created:

template<class T>
class Example
{
    enum { tag = 123; }
};

template<>
class Example<int>
{
    enum { tag = 456; }
};

Example<int>   fred;
Example<float> jane;

As you would expect, fred's tag has the value 456, while jane's has the generic value 123: the compiler
chooses the most specific type possible.

This facility can be used to create lookup tables. For example, suppose we want to encode the types of the
results of arithmetic operations involving an arbitrary mix of int and double arguments. The following
definitions do the trick:

// generic case
template<class Left, class Right>
class TypeEncoding
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{
    // empty: no generic result possible
};

// int op int => int
template<>
class TypeEncoding<int, int>
{
    typedef int Result_t;
};

// int op double => double
template<>
class TypeEncoding<int, double>
{
    typedef double Result_t;
};

// double op int => double
template<>
class TypeEncoding<double, int>
{
    typedef double Result_t;
};

// double op double => double
template<>
class TypeEncoding<double, double>
{
    typedef double Result_t;
};

We can now overcome one of the biggest shortcomings of C++ templates, and automatically generate the
correct result type of a templated expression:

template<class Left, class Right>
TypeEncoding<Left, Right>::Result_t
add(const Left & left, const Right & right)
{
    return left + right;
}

If add() is called with two int arguments, the compiler will know that that particular instantiation is going
to return an int. If it is called with one or two double arguments, the compiler will know it is going to
return a double. By specializing TypeEncoding for other mixes of types, a library like PETE can tell the
compiler the result type of any expression over any mix of types. In particular, if a new class such as
Complex, Quaternion, or Color is added, the compiler can be told what the result of (for example)
multiplying a Color by a float is, without anything else in the library having to be changed.

TypeEncoding is an example of a traits class. Each specialization of the class defines a typedef with a
particular name (in this case, Result_t). The class designer could also specify that TypeEncoding's
specializations had to define such things as constant strings:
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// int op double => double
template<>
class TypeEncoding<int, double>
{
    typedef double Result_t;

    static const char * const Signature = "{int,double}=>double";
};

// other classes contain similar definitions

to help programs print debugging information:

template<class Left, class Right>
TypeEncoding<Left, Right>::Result_t
add(const Left & left, const Right & right)
{
    cout << TypeEncoding<Left, Right>::Signature << endl;
    return left + right;
}

In general, if the classes in the set associated with a trait all adhere to some conventions regarding name
definitions, then traits classes can be used to implement compile-time polymorphism. Another way to think
of this is that each class in a set of traits classes provides different set of answers to a pre-defined set of
questions.

Since writing a dozen or more specializations of classes like TypeEncoding and BinaryOp by hand
would be tedious, time-consuming, and error-prone, PETE provides some simple command-line tools that
can generate the required C++ code automatically. The first tutorial shows how to use these tools to integrate
a simple 3-element vector class into PETE. Subsequent tutorials show the steps required to integrate more
complex classes, such as the vectors and lists of the Standard Template Library (STL), and how to provide
additional operators and combiners.

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1999

PETE Tutorials: Background and Terminology

http://www-internal.acl.lanl.gov/~sa_smith/pete/background.html (12 of 12) [10/29/1999 3:28:27 PM]

http://www.acl.lanl.gov/pete/


PETE Tutorial 1
Incorporating a Simple Vector Class

Contents:
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    Summary
    Source Files
        Vec3.h
        Vec3Defs.in
        Vec3.cpp

Introduction
This tutorial shows how to integrate a simple class representing 3-element vectors into PETE. The source files for this example are
included in the examples/Vec3 directory of the PETE distribution. These files are:

Vec3.h: defines the Vec3 class on which the example is based. This file also defines or specializes the template classes
needed to integrate Vec3 with PETE. These extra definitions will be discussed below.

●   

Vec3Defs.in: definitions needed to automatically generate the template classes required to integrate Vec3 into PETE.
This file is processed by the MakeOperators tool discussed below.

●   

Vec3Operators.h: the file generated by MakeOperators based on the definitions in Vec3Defs.in. The vector
class definition file Vec3.h #includes this file, so that PETE-based programs only need to #include Vec3.h, rather
than both Vec3.h and Vec3Operators.h.

●   

Vec3.cpp: a short program that shows how to construct expressions using Vec3 and PETE together.●   

makefile: rebuilds the example.●   

The Starting Point
The starting point for this tutorial is the 3-element vector class defined in Vec3.h. Most of this class's declaration is unremarkable.
Each instance of the class contains a 3-element array of integers; the class's default constructor initializes their values to 0, while a
non-default constructor can be used to give them particular initial values. A copy constructor is also provided, as are assignment
operators taking either scalar or vector values. Finally, two versions of operator[] are provided, so that both constant and
non-constant vectors can be indexed, and a print() method is defined for operator<< and other I/O routines to use.
operator<< is overloaded further down, on lines 115-119.

If you do not understand all of the definitions on lines 22-58 and 78-94 of Vec3.h, you may wish to become more familiar with
C++ before proceeding with these tutorials.

In order to understand the particulars of this tutorial, it is necessary to know about some of the indirection classes that PETE uses.
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The most important of these is a general wrapper called Expression<>. It exists to wrap UnaryNode, BinaryNode and
TrinaryNode so that they can all be captured during template expansion by a single type, namely Expression<T>. As we
shall see below, the Expression template also serves to distinguish PETE expressions from other expressions, so that the
compiler will not inadvertently mix PETE expressions with normal arithmetic.

PETE's second indirection class is called MakeReturn. For any type T, MakeReturn<T>::Expression_t is a typedef
that produces the type of value returned by expressions on T. In the general case, this is simply Expression<T>, i.e. MakeReturn
just wraps the expression produced by an operator so that it can be used inside other operators. The POOMA library overrides
MakeReturn<T> (by specializing it explicitly) so that expressions involving POOMA arrays generate new arrays. This technique
is similar to the standard C++ idiom of having a framework define one or more virtual methods with empty bodies, and call them at
specified times, so that users can derive from the framework classes and override those virtual methods to insert their own code in
the framework's processing stream.

Extra Definitions Required for Integration
In order to use Vec3 with PETE, we must provide three things:

A description of the Vec3 class.1.  

A way to extract values from instances of Vec3.2.  

A way to assign to a Vec3 from a PETE expression.3.  

These three issues are discussed in order below.

In addition, this example shows how to add new capabilities to PETE by creating a mechanism for counting the number of instances
of Vec3 involved in an expression. The same kind of mechanism can be used to do such things as check that all of the vectors in an
expression have the same length before starting evaluation of that expression.

Making Leaves for the Parse Tree

PETE uses a traits class called CreateLeaf to record information about the leaf types on which it operates. Each specialization of
CreateLeaf must be able to answer two questions:

What is the type of the leaf?1.  

How can the program make an instance of this leaf?2.  

The first question is answered by providing a typedef for the name Leaf_t. In our example, we want to have access to Vec3's
member functions. However, Vec3 has deep copy semantics so we don't want to store actual Vec3 objects at the leaves, thereby
making copies and negating most of the benefit of expression templates. Instead, we store a Vec3&. This is accomplished by
wrapping the Vec3 class in a Reference wrapper. (By default, PETE stores leaves by value, which is appropriate for leaves that
hold iterators. In this case we would not have to make use of the Reference wrapper.)

Once we have done this, the rest of PETE can be written using expressions like CreateLeaf<T>::Leaf_t. This allows PETE
to work with classes that are added later, in the same way that making a function virtual allows programs that use a library to
add new functionality without re-writing old code.

Making a leaf is a little bit trickier. Every specialization of CreateLeaf must define a static method called make() that takes
something of the specialization's input type as an argument, and returns something of its leaf type. This method must be static so
that it can be called without an instance of CreateLeaf<Vec3> ever having been created

As with most traits classes, the specializations of CreateLeaf are never instantiated, but instead exist only to answer questions.
In this example, the input to make() is a constant reference to a Vec3, which the function simply returns wrapped in a
Reference<Vec3> object. In the case of an STL list, the argument would have type List<T>, but the return type Leaf_t
might be an iterator type.

103  template<>
104  struct CreateLeaf<Vec3>
105  {
106    typedef Reference<Vec3> Leaf_t;
107    inline static
108    Leaf_t make(const Vec3 &a) { return Leaf_t(a); }
109  };
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Operating on Leaves

Our next task is to provide a way for PETE expressions to extract values from Vec3s. This has to be done in a generic way, so that
(for example) scalars can return the same value each time they are queried, while STL lists can be accessed through bidirectional
iterators and Vec3s can be accessed by integer indexing.

PETE's solution to this problem is to require programmers to specialize the traits class LeafFunctor for the combination of their
leaf class and a tag class called EvalLeaf1. EvalLeaf1 is a simple class defined by PETE, whose only purpose is to contain the
single index PETE needs in order to evaluate an expression. (EvalLeaf2 signals that a doubly-indexed expression is being
evaluated, and so on up to EvalLeaf7.)

The specialization of LeafFunctor, shown below, does two things. First, it defines the type of the result of the expression as
Type_t. Second, it defines a static method called apply(), which uses the index stored in its EvalLeaf1 argument and
returns the corresponding element of the Vec3:

127  template<>
128  struct LeafFunctor<Vec3, EvalLeaf1>
129  {
130    typedef int Type_t;
131    static Type_t apply(const Vec3 &a, const EvalLeaf1 &f)
132      { return a[f.val1()]; }
133  };

Assigning to Vectors

The last step in making Vec3 PETE-compatible is to provide a way for PETE to assign to a Vec3 from an arbitrary expression.
This is done by overloading operator= to take a PETE expression as input, and copy values into its owner:

064    template<class RHS>
065    Vec3 &operator=(const Expression<RHS> &rhs)
066    {
067      d[0] = forEach(rhs, EvalLeaf1(0), OpCombine());
068      d[1] = forEach(rhs, EvalLeaf1(1), OpCombine());
069      d[2] = forEach(rhs, EvalLeaf1(2), OpCombine());
070  
071      return *this;
072    }

The first thing to notice about this method is that it is templated on an arbitrary class RHS, but its single formal parameter has type
Expression<RHS>. This combination means that the compiler can match it against anything that is wrapped in the generic
PETE template Expression, and only against things that are wrapped in that way. The compiler cannot match against int,
complex<short>, or GreatAuntJane_t, since these do not have the form Expression<RHS> for some type RHS.

The forEach function is used to traverse expression trees. The first argument is the expression. The second argument is the leaf
tag denoting the operation applied at the leaves. The third argument is a combiner tag, which is used to combine results at non-leaf
nodes. By passing EvalLeaf1(0) in line 67, we are indicating that we want the Vec3s at the leaves to return the element at
index 0. The LeafFunctor<Scalar<T>, EvalLeaf1> (defined inside of PETE) ensures that scalars return their value no
matter the index. While EvalLeaf1 obtains values from the leaves, OpCombine takes these values and combines them
according to the operators present at the non-leaf nodes. The result is that line 67 evaluates the expression on the right side of the
assignment operator at index 0. Line 68 does this at index 1, and so on. Once evaluation is complete, operator= returns the
Vec3 to which values have been assigned, in keeping with normal C++ conventions.

Counting Vectors

We could stop at this point, but in order to show off PETE's flexibility, we will finish by defining a new leaf tag that counts the
number of Vec3s in an arbitrary expression. The required definitions, on lines 152-168 of Vec3.h, are:

141  struct CountLeaf { };
142  
143  template<>
144  struct LeafFunctor<Vec3, CountLeaf>
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145  {
146    typedef int Type_t;
147    static Type_t apply(const Vec3 &, const CountLeaf &)
148      { return 1; }
149  };
150  
151  template<class T>
152  struct LeafFunctor<T, CountLeaf>
153  {
154    typedef int Type_t;
155    static Type_t apply(const T &a, const CountLeaf &)
156      { return 0; }
157  };

CountLeaf is an empty tag class, whose only purpose is to identify the operation we wish to carry out. LeafFunctor is then
specialized separately for CountLeaf on both Vec3 and the generic type T. Applying the first specialization returns 1, since it
wraps a single Vec3. Applying the second specialization returns 0, since nothing else counts as a vector.

Making Operators
We have now provided almost everything that PETE needs in order to operate on our Vec3 class. All that remains is several
thousand lines of templated operator and function definitions. Luckily, these can be generated automatically from a few lines of
information.

The file Vec3Defs.in stores exactly that information, and is used by PETE's MakeOperators tool to generate the 3740 lines
of Vec3Operators.h. The special notation "[n]" is replaced by the digits 1, 2, and so on to distinguish multiple uses of the
same argument. Thus, "class T[n]" becomes "class T1", "class T2", and so on as needed. The entire specification file
is:

001  classes
002  -----
003    ARG   = ""
004    CLASS = "Vec3"

Two values are specified for each of the classes for which definitions are to be generated:

ARG: how to make the template arguments needed to define instances of this class. Vec3's ARG field is empty, since it is not
a templated class. Giving class T[n] for the ARG field for a general Expression causes instances of Expression to
be filled in with class T1, class T2, and so on.

●   

CLASS: the name of the class itself.●   

The command used to build an operator definition file from this input specification is:

MakeOperators --classes Vec3Defs.in --guard VEC3OPS_H --o Vec3Operators.h

Vec3Defs.in is the file shown above. The symbol VEC3OPS_H is copied into the output to guard against multiple inclusion, so
that the output file has the form:

#ifndef VEC3OPS_H
#define VEC3OPS_H

// ...contents of file...

#endif // VEC3OPS_H

Further information about MakeOperators and its command-line argument can be found on its man page.

PETE Tutorial 1: Incorporating a Simple Vector Class

http://www-internal.acl.lanl.gov/~sa_smith/pete/tut-1.html (4 of 9) [10/29/1999 3:28:28 PM]



Using These Definitions
With all this out of the way, we can now write arithmetic expressions that use Vec3, and rely on PETE to optimize them for us.
The file Vec3.cpp shows some of the possibilities. The simplest example is straightforward addition and assignment:

013    a = b + c;

which would automatically be translated into something equivalent to:

a[0] = b[0] + c[0];
a[1] = b[1] + c[1];
a[2] = b[2] + c[2];

This snippet would make use of the overloaded operator+() generated by the MakeOperators tool in the
Vec3Operators.h file and the assignment operator defined above.

This expression could be made much more complex, and PETE would still eliminate redundant temporaries or loops. One such
expression is:

a = sqrt(b*b + c*c);

which would automatically be translated into something equivalent to:

a[0] = sqrt(b[0]*b[0] + c[0]*c[0]);
a[1] = sqrt(b[1]*b[1] + c[1]*c[1]);
a[2] = sqrt(b[2]*b[2] + c[2]*c[2]);

since PETE provides appropriately-templated overloadings of the standard mathematical functions like sqrt() and acos() as
well as overloadings of unary and binary operators.

The next two examples in Vec3.cpp make use of an expression (in this case, the addition of b and c) that has been recorded for
delayed evaluation. In order to do this, the programmer must explicitly specify the type of the expression being stored, but once this
has been done, that expression can be re-used any number of times. The statement that creates the expression is:

018    const Expression<BinaryNode<OpAdd, Vec3, Vec3> > &expr1 = b + c;

Its first use is as a source for assignment:

019    d = expr1;

It can also be passed to PETE's explicit evaluation function, called forEach(), along with the CountLeaf defined earlier, and
PETE's built-in SumCombine tag class, in order to count the number of instances of Vec3 that appear in the expression:

022    int num = forEach(expr1, CountLeaf(), SumCombine());

Note the parentheses after CountLeaf and SumCombine. C++ does not allow raw type names to be used to instantiate templates;
instead, the program must create an unnamed instance of each tag class by invoking their default constructors. Since these classes
contain no data, and their instances are not used inside forEach(), the compiler optimizes away all of the associated code.

The remaining examples in Vec3.cpp use CountLeaf to inspect more complicated expressions.

Summary
This tutorial has shown how to integrate a simple class into PETE's expression template framework, so that compilers can optimize
expressions involving instances of that class. The steps required are:

specializing CreateLeaf to tell PETE how to store instances of the user class in parse trees;●   

specializing LeafFunctor to extract information from these leaf nodes;●   

overloading operator= to read values from expressions and assign them to instances of the user-defined class; and●   

using PETE's MakeOperators tool to generate specialized overloadings of C++'s unary, binary, and ternary operators to
work with the user-defined class.

●   
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In addition, this tutorial showed how to extend PETE's leaf and combiner tags to calculate values on expression trees during
compilation. The next tutorial will look at how to extend the PETE framework itself to synthesize new types.

Source Files

Vec3.h

001  #ifndef PETE_EXAMPLES_VEC3_VEC3_H
002  #define PETE_EXAMPLES_VEC3_VEC3_H
003  
004  //-----------------------------------------------------------------------------
005  // Include files
006  //-----------------------------------------------------------------------------
007  
008  #include "PETE/PETE.h"
009  
010  #include <iostream.h>
011  
012  //-----------------------------------------------------------------------------
013  //
014  // CLASS NAME 
015  //   Vec3
016  //
017  // DESCRIPTION
018  //   A "tiny" three-element expression-template (ET) array class. 
019  //
020  //-----------------------------------------------------------------------------
021  
022  class Vec3
023  {
024  public:
025  
026    //---------------------------------------------------------------------------
027    // Constructors and Destructor
028    //---------------------------------------------------------------------------
029  
030    Vec3() { d[0] = d[1] = d[2] = 0; }
031  
032    Vec3(int i, int j, int k) 
033    {
034      d[0] = i; d[1] = j; d[2] = k;
035    }
036  
037    Vec3(const Vec3 &v) 
038    {
039      d[0] = v.d[0];  d[1] = v.d[1];  d[2] = v.d[2];
040    }
041  
042    ~Vec3() {}
043  
044    //---------------------------------------------------------------------------
045    // Vec3 and scalar assigment operators
046    //---------------------------------------------------------------------------
047  
048    Vec3 &operator=(const Vec3 &v) 
049    {
050      d[0] = v.d[0];  d[1] = v.d[1];  d[2] = v.d[2];
051      return *this;
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052    }
053  
054    Vec3 &operator=(int i) 
055    {
056      d[0] = d[1] = d[2] = i;
057      return *this;
058    }
059  
060    //---------------------------------------------------------------------------
061    // Assignment operator taking expression:
062    //---------------------------------------------------------------------------
063  
064    template<class RHS>
065    Vec3 &operator=(const Expression<RHS> &rhs)
066    {
067      d[0] = forEach(rhs, EvalLeaf1(0), OpCombine());
068      d[1] = forEach(rhs, EvalLeaf1(1), OpCombine());
069      d[2] = forEach(rhs, EvalLeaf1(2), OpCombine());
070  
071      return *this;
072    }
073  
074    //---------------------------------------------------------------------------
075    // Indexing operators
076    //---------------------------------------------------------------------------
077  
078    int &operator[](int i)      { return d[i]; }
079    int operator[](int i) const { return d[i]; }
080  
081    //---------------------------------------------------------------------------
082    // Print method used by operator<< free function.
083    //---------------------------------------------------------------------------
084  
085    void print(ostream &os) const 
086    { 
087      os << "{" << d[0] << "," << d[1] << "," << d[2] << "}";
088    }
089  
090  private:
091  
092    // The underlying complicated data structure
093  
094    int d[3];
095  
096  };
097  
098  //-----------------------------------------------------------------------------
099  // We need to specialize CreateLeaf<T> for our class, so that operators
100  // know what to stick in the leaves of the expression tree.
101  //-----------------------------------------------------------------------------
102  
103  template<>
104  struct CreateLeaf<Vec3>
105  {
106    typedef Reference<Vec3> Leaf_t;
107    inline static
108    Leaf_t make(const Vec3 &a) { return Leaf_t(a); }
109  };
110  
111  //-----------------------------------------------------------------------------
112  // ostream inserter for Vec3s
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113  //-----------------------------------------------------------------------------
114  
115  ostream &operator<<(ostream &os, const Vec3 &a)
116  {
117    a.print(os);
118    return os;
119  }
120  
121  //-----------------------------------------------------------------------------
122  // Specialization of LeafFunctor class for applying the EvalLeaf1
123  // tag to a Vec3. The apply method simply returns the array
124  // evaluated at the point.
125  //-----------------------------------------------------------------------------
126  
127  template<>
128  struct LeafFunctor<Vec3, EvalLeaf1>
129  {
130    typedef int Type_t;
131    static Type_t apply(const Vec3 &a, const EvalLeaf1 &f)
132      { return a[f.val1()]; }
133  };
134  
135  //-----------------------------------------------------------------------------
136  // Specialization of LeafFunctor class for applying the CountLeaf
137  // tag to a Vec3. The apply method simply returns 1 for a Vec3 and 0 for
138  // anything else.
139  //-----------------------------------------------------------------------------
140  
141  struct CountLeaf { };
142  
143  template<>
144  struct LeafFunctor<Vec3, CountLeaf>
145  {
146    typedef int Type_t;
147    static Type_t apply(const Vec3 &, const CountLeaf &)
148      { return 1; }
149  };
150  
151  template<class T>
152  struct LeafFunctor<T, CountLeaf>
153  {
154    typedef int Type_t;
155    static Type_t apply(const T &a, const CountLeaf &)
156      { return 0; }
157  };
158  
159  // We put this include at the end because
160  // the operators can't be defined until after Vec3 and
161  // CreateLeaf<Vec3> have been defined.
162  // (Since Vec3 isn't templated the operators aren't just
163  // templates.)
164  
165  #include "Vec3Operators.h"
166  
167  #endif // PETE_EXAMPLES_VEC3_VEC3_H

Vec3Defs.in

001  classes
002  -----
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003    ARG   = ""
004    CLASS = "Vec3"

Vec3.cpp

001  #include "Vec3.h"
002  
003  int main()
004  {
005    Vec3 a, b, c;
006  
007    c = 4;
008  
009    b[0] = -1;
010    b[1] = -2;
011    b[2] = -3;
012  
013    a = b + c;
014  
015    cout << a << endl;
016  
017    Vec3 d;
018    const Expression<BinaryNode<OpAdd, Vec3, Vec3> > &expr1 = b + c;
019    d = expr1;
020    cout << d << endl;
021    
022    int num = forEach(expr1, CountLeaf(), SumCombine());
023    cout << num << endl;
024  
025    const Expression<BinaryNode<OpAdd, Vec3, 
026      BinaryNode<OpMultiply, Scalar<int>, Vec3> > > &expr2 = b + 3 * c;
027    num = forEach(expr2, CountLeaf(), SumCombine());
028    cout << num << endl;
029    
030    const Expression<BinaryNode<OpAdd, Vec3, 
031      BinaryNode<OpMultiply, Vec3, Vec3> > > &expr3 = b + c * d;
032    num = forEach(expr3, CountLeaf(), SumCombine());
033    cout << num << endl;
034  }

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1999
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PETE Tutorial 2
Integrating with the Standard Template Library

Contents:
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Introduction
This tutorial shows how to use PETE to manipulate expressions involving classes taken from pre-existing libraries---in this case,
from the C++ Standard Template Library (STL). The STL's vector class is a generic resizeable one-dimensional array, which
provides fast, constant-time element access in exchange for making extension expensive. Like the STL's other container classes,
vector is used both as-is, and as a basis for more specialized data structures, such as fixed-size queues and stacks. This tutorial will
show how to use PETE to improve the performance of elementwise expressions on numeric vectors, and how to automatically
determine whether two or more vectors conform (i.e. have the same length).

The source files for this example are included in the examples/Vector directory of the PETE distribution. These files are:

Eval.h: extends PETE's standard definitions to accommodate expressions involving vectors.●   

VectorDefs.in: definitions needed to automatically generate the overloaded operators required to integrate vectors into
PETE. Like Vec3Defs.in in the first tutorial, this file is processed by the MakeOperators tool to create a header file.

●   

VectorOperators.h: the file generated by MakeOperators based on the definitions in VectorDefs.in. The file
Eval.h #includes VectorOperators.h, so that PETE-based programs only need to #include Eval.h, rather than
both Eval.h and VectorOperators.h.

●   

Vector.cpp: a short program that shows how to use the definitions in the header files described above to create values
during compilation.

●   

makefile: rebuilds the example.●   

Required Definitions
Most of the definitions required to integrate vector with PETE are generated automatically by MakeOperators using the
information in VectorDefs.in. The file Eval.h contains the few extra definitions that must be written by hand. Of these, the
most important is the function evaluate(), on lines 102-128. This function's arguments are:

a vector<T, Allocator> (for some type T and some allocator Allocator);●   

an operator specified by an instance of a PETE operator tag class; and●   

a wrapped PETE expression, called rhs, the values of which are to be assigned to the elements of the given vector.●   

The overloaded assignment operators in VectorOperators.h must be able to find an evaluate() to match every assignment
in the user's program. PETE's protocol therefore requires that every class used on the left-hand-side (LHS) in assignment expressions
define a function with this name and signature.
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The first thing evaluate() does is check that its target and expression conform, i.e. have the same length. It does this by applying
the PETE function forEach() with a user-defined functor SizeLeaf() to the expression rhs on line 105. This functor returns
true if the size of each vector at a leaf of PETE's expression tree matches the size of the LHS vector, which is passed as a
contructor argument to the SizeLeaf. We use an AndCombine object to combine results at non-leaf nodes. In order for the
right-hand-side (RHS) to conform, all leaves must agree. The definition of SizeLeaf is discussed below.

If its expression and target conform, evaluate() carries out the required assignment by looping over their mutual index range
(line 110). For each index value, forEach() is used to evaluate the expression, and the given assignment operator's overloaded
operator() method is used to transfer those values to the target vector. Note that a direct assignment is not used, since the
assignment could involve +=, |=, or any one of C++'s other combine-and-assign operators.

The two other definitions that must be present for PETE to work with vector are specializations of CreateLeaf and
LeafFunctor. The first one of these specializations, on lines 29-35, specifies that we store references to the vector objects
themselves at the leaves of the PETE expression tree.

The specialization of LeafFunctor for vector and EvalLeaf1 on lines 86-95 is what tells PETE how to extract elements from
a vector. The '1' in EvalLeaf1 indicates that the class is used to access singly-indexed structures; similar classes called
EvalLeaf2, EvalLeaf3, and so on are used to access more complex classes.

Given an instance of EvalLeaf1, and a vector, this specialization of LeafFunctor defines a inline static method called
apply(), which takes the index value stored in the EvalLeaf1 and fetches the corresponding vector element. Making this
method static means that instances of LeafFunctor never have to be created, while making it inline ensures that the
compiler will replace uses of it with its body. Thus, specializations of LeafFunctor present container element access to compilers
in a uniform way, without any efficiency cost.

Finally, the VectorDefs.in file, which is used to generate the standard operator overloadings for vector, is identical to the one
used in the previous tutorial, except for a substitution of vector<T[n]> for Vec3. (Recall that the [n] notation is a placeholder
for an automatically generated index, so that if vector is used as a formal parameter two or more times, the instances will be
labeled vector<T1>, vector<T2>, and so on.)

Checking Conformance
Our only remaining task is to implement the conformance checking used by evaluate(). The first step is to write a simple functor
that holds a size to compare against and contains a method to return whether an argument matches this value. This is the SizeLeaf
class appearing in lines 43-55 of Eval.h.

Once we've created the functor class, we then need to tell PETE how to apply it at the leaves of the expression tree. We know that
these leaves can consist of either Scalar or vector objects. We therefore need to supply two LeafFunctor specializations. The
first, in lines 57-68 works for scalars and always returns true since scalars always conform. The second, in lines 70-79, uses
SizeLeaf's operator() function to compare the size of the vector object stored at a leaf with the reference value.

Using Vectors with PETE
The program in Vector.cpp shows how to use the definitions given above. The program starts by creating and initializing five
vectors. It then calls PETE's assign() function to evaluate expressions involving vectors and scalars, and copy their values into
other vectors. Note that assign() must be called by name because the STL pre-defines operator= for all of its types.

Summary
This tutorial has shown how to extend PETE so that it can handle expressions involving classes taken from a pre-existing library---in
this case, the Standard Template Library. The definitions required to do this are simple and well-defined, as are the definitions
required to perform other calculations (in this case, conformance checking) on those pre-defined classes.

Source Files

Eval.h

001  #ifndef PETE_EXAMPLES_VECTOR_EVAL_H
002  #define PETE_EXAMPLES_VECTOR_EVAL_H
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003  
004  //-----------------------------------------------------------------------------
005  // Includes
006  //-----------------------------------------------------------------------------
007  
008  #include <iostream.h>
009  #include <vector.h>
010  #include "PETE/PETE.h"
011  #include "VectorOperators.h"
012  
013  //-----------------------------------------------------------------------------
014  // This file contains several class definitions that are used to evaluate
015  // expressions containing STL vectors.  The main function defined at the end
016  // is evaluate(lhs,op,rhs), which allows the syntax:
017  // vector<int> a,b,c;
018  // evaluate(a,OpAssign(),b+c);
019  //
020  // evaluate() is called by all the global assignment operator functions
021  // defined in VectorOperators.h
022  //-----------------------------------------------------------------------------
023  
024  //-----------------------------------------------------------------------------
025  // We need to specialize CreateLeaf<T> for our class, so that operators
026  // know what to stick in the leaves of the expression tree.
027  //-----------------------------------------------------------------------------
028  
029  template<class T, class Allocator>
030  struct CreateLeaf<vector<T, Allocator> >
031  {
032    typedef Reference<vector<T> > Leaf_t;
033    inline static
034    Leaf_t make(const vector<T, Allocator> &a) { return Leaf_t(a); }
035  };
036  
037  //-----------------------------------------------------------------------------
038  // We need to write a functor that is capable of comparing the size of
039  // the vector with a stored value. Then, we supply LeafFunctor specializations
040  // for Scalar<T> and STL vector leaves.
041  //-----------------------------------------------------------------------------
042  
043  class SizeLeaf
044  {
045  public:
046  
047    SizeLeaf(int s) : size_m(s) { }
048    SizeLeaf(const SizeLeaf &model) : size_m(model.size_m) { }
049    bool operator()(int s) const { return size_m == s; }
050    
051  private:
052    
053    int size_m;
054    
055  };
056  
057  template<class T>
058  struct LeafFunctor<Scalar<T>, SizeLeaf>
059  {
060    typedef bool Type_t;
061    inline static
062    bool apply(const Scalar<T> &, const SizeLeaf &) 
063    {
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064      // Scalars always conform.
065      
066      return true;
067    }
068  };
069  
070  template<class T, class Allocator>
071  struct LeafFunctor<vector<T, Allocator>, SizeLeaf>
072  {
073    typedef bool Type_t;
074    inline static
075    bool apply(const vector<T, Allocator> &v, const SizeLeaf &s) 
076    {
077      return s(v.size());
078    }
079  };
080  
081  //-----------------------------------------------------------------------------
082  // EvalLeaf1 is used to evaluate expression with vectors.
083  // (It's already defined for Scalar values.)
084  //-----------------------------------------------------------------------------
085  
086  template<class T, class Allocator>
087  struct LeafFunctor<vector<T, Allocator>,EvalLeaf1>
088  {
089    typedef T Type_t;
090    inline static
091    Type_t apply(const vector<T, Allocator>& vec,const EvalLeaf1 &f)
092    {
093      return vec[f.val1()];
094    }
095  };
096  
097  //-----------------------------------------------------------------------------
098  // Loop over vector and evaluate the expression at each location.
099  //-----------------------------------------------------------------------------
100  
101  template<class T, class Allocator, class Op, class RHS>
102  inline void evaluate(vector<T, Allocator> &lhs, const Op &op, 
103    const Expression<RHS> &rhs)
104  {
105    if (forEach(rhs, SizeLeaf(lhs.size()), AndCombine()))
106      {
107        // We get here if the vectors on the RHS are the same size as those on
108        // the LHS.
109        
110        for (int i = 0; i < lhs.size(); ++i)
111          {
112            // The actual assignment operation is performed here.
113            // PETE operator tags all define operator() to perform the operation.
114            // (In this case op performs an assignment.) forEach is used 
115            // to compute the rhs value.  EvalLeaf1 gets the
116            // values at each node using random access, and the tag 
117            // OpCombine tells forEach to use the operator tags in the expression 
118            // to combine values together.
119  
120            op(lhs[i], forEach(rhs, EvalLeaf1(i), OpCombine()));
121          }
122      }
123    else
124      {
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125        cerr << "Error: LHS and RHS don't conform." << endl;
126        exit(1);
127      }
128  }
129  
130  #endif // PETE_EXAMPLES_VECTOR_EVAL_H

VectorDefs.in

001  classes
002  -----
003    ARG   = "class T[n]"
004    CLASS = "vector<T[n]>"

Vector.cpp

001  #include "Eval.h"
002
003  int main()
004  {
005    int i;
006    const int n = 10;
007    vector<int> a, b, c, d;
008    vector<double> e(n);
009
010    for (i = 0; i < n; ++i)
011    {
012      a.push_back(i);
013      b.push_back(2*i);
014      c.push_back(3*i);
015      d.push_back(i);
016    }
017
018    assign(b, 2);
019    assign(d, a + b * c);
020    a += where(d < 30, b, c);
021
022    assign(e, c);
023    e += e - 4 / (c + 1);
024
025    for (i = 0;i < n; ++i)
026      {
027        cout << " a(" << i << ") = " << a[i]
028          << " b(" << i << ") = " << b[i]
029          << " c(" << i << ") = " << c[i]
030          << " d(" << i << ") = " << d[i]
031          << " e(" << i << ") = " << e[i]
032          << endl;
033      }
034  }
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Introduction
This tutorial shows how to use PETE to perform non-arithmetic operations on a program as it is being compiled, and in particular
how to synthesize new types and values by extending PETE's specialized templates and operator overloadings. The problem domain
is the three primary colors---red, green, and blue---which are combined according to three simple rules:

red and green give blue;●   

red and blue give green; and●   

green and blue give red.●   

While these rules are trivial, the techniques shown below can be used to make compilers optimize much more complex expressions
on more complicated domains.

The source files for this example are included in the examples/RGB directory of the PETE distribution. These files are:

RGB.h: defines the tag classes used in the example to represent colors, and the rules used to combine them.●   

RGBDefs.in: definitions needed to automatically generate the overloaded operators required to integrate the color classes
into PETE. Like the Vec3Defs.in file in the first tutorial, this file is processed by the MakeOperators tool to create a
header file.

●   

RGBOperators.h: the file generated by MakeOperators based on the definitions in RGBDefs.in. The file RGB.h
#includes RGBOperators.h, so that PETE-based programs only need to #include RGB.h, rather than both RGB.h
and RGBOperators.h.

●   

RGB.cpp: a short program that shows how to use the definitions in the header files described above to create values during
compilation.

●   

makefile: rebuilds the example.●   

On the Surface
PETE was created to make it easy for programmers to extend expression templates. In particular, PETE lets programmers specify a
wide range of computations that are to be carried out as the program is being compiled. To do this, the programmer must provide
three things: the type(s) of object(s) to be operated on, the functor(s) to be used to extract values from those objects, and the
combiner(s) to be used to process those values.

In our example, the values being manipulated are the three primary colors red, green, and blue. Each color is represented by an
empty tag class, whose only purpose is to act as a strongly-typed placeholder as the compiler is instantiating templates. The three
classes are defined at the top of RGB.h:
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017  struct Red { };
018  struct Green { };
019  struct Blue { };

Our example defines a single functor, called GetColor. Like Red, Green, and Blue, GetColor is an empty class, no
instances of which are ever actually created by a running program.

In addition, RGB.h defines one more empty tag class, called ColorCombine. This tag is used to signal to the compiler that we
are combining colors, rather than (for example) adding vectors. The two definitions are:

020  struct GetColor { };
021  struct ColorCombine { };

We have one more empty class to define in order to begin building our computational framework. The class Operand serves as a
wrapper around color expressions; its purpose is to identify those expressions by giving them a well-known overall type. Operand
is therefore similar to the generic PETE expression class Expression, which is used to distinguish PETE expressions from other
types of expressions. In our case, the Operand class is used only to wrap up a color expression:

109  template<class ColorTag>
110  struct Operand
111 {
       // body is empty
112  };

We must now tell PETE how to store an Operand value in the leaf of an expression tree. The required definition is:

119  template<class ColorTag>
120  struct CreateLeaf<Operand<ColorTag> >
121  {
122    typedef Operand<ColorTag> Leaf_t;
123    inline static
124    const Leaf_t &make(const Operand<ColorTag> &a) { return a; }
125  };

Note how the formal class name used in the template header, ColorTag, appears as an argument to Operand in the formal
parameter list of the CreateLeaf specialization. This ensures that our definition only applies to properly-formed Operands.

Note also the typedef inside this specialization of CreateLeaf. PETE's template specialization rules require every
specialization of CreateLeaf to have a typedef called Leaf_t, which specifies the type of the leaf node. This is also the
declared return type of the static method make(), which constructs a leaf node given an actual object (in this case, a color class
instance).

CreateLeaf tells PETE how to store values in leaf nodes; specializations of LeafFunctor tell PETE how to apply a
user-defined functor to those nodes to obtain a value. As before, we template our specialization of LeafFunctor on a formal
parameter that will be filled in with a color class, but then nest that formal parameter inside Operand in order to ensure that the
compiler only tries to use this specialization of LeafFunctor on the right kinds of expressions.

LeafFunctor takes a second template parameter, which is the functor that is being applied to the leaf node. In our case, we have
defined only one functor on colors, namely GetColor. Our specialization is therefore:

132  template<class Color>
133  struct LeafFunctor<Operand<Color>, GetColor>
134  {
135    typedef Color Type_t;
136  };

Unlike the LeafFunctor specializations in previous tutorials, notice that this version does not have an apply() method. The
reason is that we're using this functor only for compile-time type calculations. We're never going to call apply() so we therefore
don't need to go to the trouble of defining it.

Our last task is to define some specializations of Combine2, the combiner that PETE uses to operate on values in binary
expressions. Six specializations are defined, for each possible ordered combination of different color values. The combiner for Red
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and Green is:

063  template<class Op>
064  struct Combine2<Red, Green, Op, ColorCombine>
065  {
066    typedef Blue Type_t;
       // not required  inline static
       // not required  Type_t combine(Red, Green, Op, ColorCombine)
       // not required  {
       // not required    return Blue();
       // not required  }
067  };

The generic form of Combine2 takes four template parameters: the classes of its operands, a tag identifying the C++ operator from
which the expression was created (such as OpAdd or OpMultiply), and a user-defined tag, which can be used to force the
compiler to calculate a different expression than the one apparently specified. In the case of this example, the first two parameters
specify the colors being combined, while the last parameter signals that these values are being combined according to our own
rules. This is the only use for ColorCombine. The formal template parameter Op is not referenced anywhere in this class, so that
any binary operation on colors, including addition, multiplication, bitwise OR, or left shift, will use the user-defined rules.

Combiners typically have two elements: a type Type_t that gives the type of object formed by combining the operands and a
combine methods that takes the operands and does whatever is necessary to produce a Type_t object. Like the LeafFunctor
specialization above, we don't need the combine method here since we're synthesizing types. However, we've shown what this
function would look like if it were necessary to define it.

We can now test that our definitions do the right thing by defining three functions to print out the color of an expression involving
colors. The function for Red takes a constant reference to a Red object, and prints a simple string:

027  inline void calc(const Red &)
028  {
029    cout << "This expression is red." << endl;
030  }

The other two overloadings of this function, which are defined on lines 32-40 for the tag classes Green and Blue, print out
"green" and "blue" instead of "red".

Finally, the templated function printColor() takes an expression, evaluates it during compilation by forcing the compiler to
expand the expression using our GetColor and ColorCombine tags, and then uses the deduced color of the expression to select
a version of calc(), which prints out that color's name. The whole definition is:

048  template <class Expr>
049  void printColor(const Expression<Expr> &expr)
050  {
051    typedef typename ForEach<Expression<Expr>, GetColor, ColorCombine>::Type_t 
052      DeducedColor_t;
053    
054    calc(DeducedColor_t());
055  }

It is worth looking at this function definition closely. The expansion of CreateLeaf<>::Leaf_t extracts and formats the type
of the expression according to our color-based evaluation rules. The expansion of the PETE-defined template ForEach does most
of the work. During its expansion, the functor and combiner tags are passed down the parse tree. They are used to extract types
from the leaves of the parse tree. These types are combined at non-leaf nodes to produce new types, which are passed up the parse
tree. The result is a type---Red, Green, or Blue---that is labelled by DeducedColor_t. This type, in turn, triggers instantiation
of an appropriate version of calc().

Under the Hood
Let's take a closer look at exactly what happens when printColor() is instantiated with a color expression, as it is at the start of
the test program in RGB.cpp:
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005    printColor(Operand<Red>() + Operand<Green>());

Let's start with the automatically-generated operator overloadings in RGBOperators.h, which are created using the
MakerOperators tool described in the first tutorial. The overloading for operator+ is:

618  template<class T1,class T2>
619  inline typename MakeReturn<BinaryNode<OpAdd,
620    typename CreateLeaf<Operand<T1> >::Leaf_t,
621    typename CreateLeaf<Operand<T2> >::Leaf_t,
622    StoreByRefTag> >::Expression_t
623  operator+(const Operand<T1> & l,const Operand<T2> & r)
624  {
625    typedef BinaryNode<OpAdd,
626      typename CreateLeaf<Operand<T1> >::Leaf_t,
627      typename CreateLeaf<Operand<T2> >::Leaf_t,
628      StoreByRefTag> Tree_t;
629    return MakeReturn<Tree_t>::make(Tree_t(
630      CreateLeaf<Operand<T1> >::make(l),
631      CreateLeaf<Operand<T2> >::make(r)));
632  }

Once again, there is less going on here than first meets the eye. We are trying to perform computations using C++ template
notation, a job for which that notation was not designed. The first things to look at are the uses of CreateLeaf::Leaf_t. As
we saw above, in the case of an Operand with a color type argument, Leaf_t is just the color type argument wrapped in an
Operand type; the CreateLeaf indirection is provided to give programmers a hook for doing other things if they so desire. This
means that we can simplify the code above as:

618  template<class T1,class T2>
619  inline typename MakeReturn<BinaryNode<OpAdd,
620    Operand<T1>,
621    Operand<T2>,
622    StoreByRefTag> >::Expression_t
623  operator+(const Operand<T1> & l,const Operand<T2> & r)
624  {
625    typedef BinaryNode<OpAdd,
626      Operand<T1>,
627      Operand<T2>,
628      StoreByRefTag> Tree_t;
629    return MakeReturn<Tree_t>::make(Tree_t(
630      CreateLeaf<Operand<T1> >::make(l),
631      CreateLeaf<Operand<T2> >::make(r)));
632  }

By referring back to the arguments of printColor(), we can replace T1 with Red, and T2 with Green:

619  inline typename MakeReturn<BinaryNode<OpAdd,
620    Operand<Red>,
621    Operand<Green>,
622    StoreByRefTag> >::Expression_t
623  operator+(const Operand<Red> & l,const Operand<Green> & r)
624  {
625    typedef BinaryNode<OpAdd,
626      Operand<Red>,
627      Operand<Green>,
628      StoreByRefTag> Tree_t;
629    return MakeReturn<Tree_t>::make(Tree_t(
630      CreateLeaf<Operand<Red> >::make(l),
631      CreateLeaf<Operand<Green> >::make(r)));
632  }

Looking back at CreateLeaf once more, we see that its make() method simply returns its argument. (In the case of STL
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containers, make() could return an iterator over its argument.) Our operator thus becomes simpler still:

619  inline typename MakeReturn<BinaryNode<OpAdd,
620    Operand<Red>,
621    Operand<Green>,
622    StoreByRefTag> >::Expression_t
623  operator+(const Operand<Red> & l,const Operand<Green> & r)
624  {
625    typedef BinaryNode<OpAdd,
626      Operand<Red>,
627      Operand<Green>,
628      StoreByRefTag> Tree_t;
629    return MakeReturn<Tree_t>::make(Tree_t(l, r));
632  }

To simplify this further, we must turn to the definition of MakeReturn in PETE's CreateLeaf.h:

136  template<class T>
137  struct MakeReturn
138  {
139    typedef Expression<T> Expression_t;
140    inline static
141    Expression_t make(const T &a) { return Expression_t(a); }
142  };

The default expansion of MakeReturn<T>::Expression_t is simply Expression<T>, and MakeReturn's make()
method just returns its argument, appropriately typed. This may seem unnecessary, but as the PETE header files themselves explain:

MakeReturn is used to wrap expression objects (UnaryNode, BinaryNode etc.) inside an Expression object.
Usually this indirection is unnecessary, but the indirection allows users to specify their own approach to storing trees.
By specializing MakeReturn<UnaryNode>, MakeReturn<BinaryNode>, etc. you could cause the expression
trees to be stored in another format. For example, POOMA stores expressions inside Arrays, so the result of
Array+Array is another Array.

We can now expand our operator one more level:

623  operator+(const Operand<Red> & l,const Operand<Green> & r)
624  {
625    typedef BinaryNode<OpAdd,
626      Operand<Red>,
627      Operand<Green>,
628      StoreByRefTag> Tree_t;
629    return Expression<Tree_t>(Tree_t(l, r));
632  }

Note that we are no longer bothering to show the return type of the function, since it is the same as the type of the return
statement inside the function body.

With this in hand, let's return to printColor():

048  template <class Expr>
049  void printColor(const Expression<Expr> &expr)
050  {
051    typedef typename ForEach<Expression<Expr>, GetColor, ColorCombine>::Type_t 
052      DeducedColor_t;
053    
054    calc(DeducedColor_t());
055  }

The formal parameter expr is an instance of
Expression<BinaryNode<OpAdd,Operand<Red>,Operand<Green>,StoreByRefTag> >, with an
Operand<Red> and a Operand<Green> as its left and right members. This type is passed to PETE's ForEach class. We use
this class rather than the forEach function because we are synthesizing types. Referring to the PETE header file ForEach.h, we
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see that the most specific matching definition is:

146  template<class T, class FTag, class CTag>
147  struct ForEach<Expression<T>, FTag, CTag>
148  {
149    typedef typename ForEach<T, FTag, CTag>::Type_t Type_t;
150    inline static
151    Type_t apply(const Expression<T> &expr, const FTag &f, 
152                 const CTag &c) 
153    {
154      return ForEach<T, FTag, CTag>::apply(expr.expression(), f, c);
155    }
156  };

As we've mentioned, we are synthesizing types in this example so the apply function (lines 150-155) will never actually be called.
Therefore, in subsequent definitions, we'll omit this for brevity. The important thing to note is that the typedef of Type_t is
generated by extracting the type wrapped by the Expression object and using that in another ForEach. Recall that this wrapped
type in our example is BinaryNode<OpAdd,Operand<Red>,Operand<Green>,StoreByRefTag>. This means that the
relevant ForEach definition is

107  template<class Op, class A, class B, class ST, class FTag, class CTag>
108  struct ForEach<BinaryNode<Op, A, B, ST>, FTag, CTag >
109  {
110    typedef typename ForEach<A, FTag, CTag>::Type_t TypeA_t;
111    typedef typename ForEach<B, FTag, CTag>::Type_t TypeB_t;
112    typedef typename Combine2<TypeA_t, TypeB_t, Op, CTag>::Type_t Type_t;
122  };

Now is a good time to perform some type substitutions. The result is

107  template<>
108  struct ForEach<BinaryNode<OpAdd,Operand<Red>,Operand<Green>,StoreByRefTag>,
OpAdd, GetColor, ColorCombine>
109  {
110    typedef ForEach<Operand<Red>, GetColor, ColorCombine>::Type_t TypeA_t;
111    typedef ForEach<Operand<Green>, GetColor, ColorCombine>::Type_t TypeB_t;
112    typedef Combine2<TypeA_t, TypeB_t, OpAdd, ColorCombine>::Type_t Type_t;
122  };

To proceed, we need to resolve the ForEach types in lines 110 and 111. Looking through ForEach.h, we see that the only
partial specialization that matches is the most general version of ForEach:

074  template<class Expr, class FTag, class CTag>
075  struct ForEach
076  {
077    typedef typename LeafFunctor<Expr, FTag>::Type_t Type_t;
083  };

This version of ForEach is meant to be used for leaves. It simply passes the task to the LeafFunctor class. Substituting this
above gives:

107  template<>
108  struct ForEach<BinaryNode<OpAdd,Operand<Red>,Operand<Green>,StoreByRefTag>,
OpAdd, GetColor, ColorCombine>
109  {
110    typedef LeafFunctor<Operand<Red>, GetColor>::Type_t TypeA_t;
111    typedef LeafFunctor<Operand<Green>, GetColor>::Type_t TypeB_t;
112    typedef Combine2<TypeA_t, TypeB_t, OpAdd, ColorCombine>::Type_t Type_t;
122  };

This is starting to look promising: we now have some invocations of Combine2, the combiner that was overridden in RGB.h, and

PETE Tutorial 3: Synthesizing Types

http://www-internal.acl.lanl.gov/~sa_smith/pete/tut-3.html (6 of 10) [10/29/1999 3:28:29 PM]



some uses of LeafFunctor, which was also overridden. In fact, as we saw earlier, when LeafFunctor has an Operand as its
first type argument, and the GetColor functor tag as its second argument, its Type_t definition is just its color argument. We
can therefore simplify the definition of ForEach on binary nodes to be:

107  template<>
108  struct ForEach<BinaryNode<OpAdd,Operand<Red>,Operand<Green>,StoreByRefTag>,
OpAdd, GetColor, ColorCombine>
109  {
112    typedef Combine2<Red, Green, OpAdd, ColorCombine>::Type_t Type_t;
122  };

The compiler can now match the specialized definition of Combine2 shown earlier against this code. Thus, the return type of the
expansion of ForEach inside of printColor is Blue. This, in turn, is used to select the calc() function, which simply prints
out the word "blue".

This may seem like a lot of work simply to print out a different word. However, it illustrates an extremely powerful capability of
PETE: selecting custom algorithms at compile time based on a synthesized type. All of the type computations outlined above are
performed at compile time. Also, the various calc functions are inlined. This means that the compiler will generate a custom
printColor function for our expression that is equivalent to

048  template <>
049  void printColor(const
Expression<BinaryNode<OpAdd,Operand<Red>,Operand<Green>,StoreByRefTag> > &expr)
050  {
054    cout << "This expression is blue." << endl;
055  }

This is an example of compile-time polymorphism. We've used the C++ compiler to generate special code based on the types we
pass into a function rather than making a run-time choice of a function to call. This can lead to the generation of extremely efficient
code.

Summary
This tutorial has shown how to extend PETE to synthesize type information during compilation by performing symbolic
manipulations on parse trees. The user-level definitions required are more complex than those needed to use PETE simply to
optimize expression evaluation, but tracing through their operation shows how PETE exploit's the C++ compiler's pattern matching
and type expansion facilities to do what it does.

Source Files

RGB.h

001  #ifndef PETE_EXAMPLES_RGB_RGB_H
002  #define PETE_EXAMPLES_RGB_RGB_H
003
004  //-----------------------------------------------------------------------------
005  // Include files
006  //-----------------------------------------------------------------------------
007
008  #include <iostream.h>
009
010  #include "PETE/PETE.h"
011
012  //-----------------------------------------------------------------------------
013  // Tag classes representing colors. Also, a functor for getting a color from
014  // a leaf and a combiner for combining colors.
015  //-----------------------------------------------------------------------------
016
017  struct Red { };
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018  struct Green { };
019  struct Blue { };
020  struct GetColor { };
021  struct ColorCombine { };
022
023  //-----------------------------------------------------------------------------
024  // A few overloaded functions that print out color names given a type.
025  //-----------------------------------------------------------------------------
026
027  inline void calc(const Red &)
028  {
029    cout << "This expression is red." << endl;
030  }
031
032  inline void calc(const Blue &)
033  {
034    cout << "This expression is blue." << endl;
035  }
036
037  inline void calc(const Green &)
038  {
039    cout << "This expression is green." << endl;
040  }
041
042  //-----------------------------------------------------------------------------
043  // A function that deduces a color at compile time and calls a special
044  // function based on the value.
045  //
046  //-----------------------------------------------------------------------------
047
048  template <class Expr>
049  void printColor(const Expression<Expr> &expr)
050  {
051    typedef typename ForEach<Expression<Expr>, GetColor, ColorCombine>::Type_t 
052      DeducedColor_t;
053    
054    calc(DeducedColor_t());
055  }
056
057  //-----------------------------------------------------------------------------
058  // A set of combiners that produce new colors according to some arbitrary
059  // rules: red & green give blue, red & blue give green, blue and green give 
060  // red.
061  //-----------------------------------------------------------------------------
062
063  template<class Op>
064  struct Combine2<Red, Green, Op, ColorCombine>
065  {
066    typedef Blue Type_t;
067  };
068
069  template<class Op>
070  struct Combine2<Red, Blue, Op, ColorCombine>
071  {
072    typedef Green Type_t;
073  };
074
075  template<class Op>
076  struct Combine2<Green, Blue, Op, ColorCombine>
077  {
078    typedef Red Type_t;

PETE Tutorial 3: Synthesizing Types

http://www-internal.acl.lanl.gov/~sa_smith/pete/tut-3.html (8 of 10) [10/29/1999 3:28:29 PM]



079  };
080
081  template<class Op>
082  struct Combine2<Green, Red, Op, ColorCombine>
083  {
084    typedef Blue Type_t;
085  };
086
087  template<class Op>
088  struct Combine2<Blue, Green, Op, ColorCombine>
089  {
090    typedef Red Type_t;
091  };
092
093  template<class Op>
094  struct Combine2<Blue, Red, Op, ColorCombine>
095  {
096    typedef Green Type_t;
097  };
098
099  template<class C1, class C2, class Op>
100  struct Combine2<C1, C2, Op, ColorCombine>
101  {
102    typedef C1 Type_t;
103  };
104
105  //-----------------------------------------------------------------------------
106  // A class that has a single template parameter that specifies a color.
107  //-----------------------------------------------------------------------------
108
109  template<class ColorTag>
110  struct Operand
111  {
112  };
113
114  //-----------------------------------------------------------------------------
115  // We need to specialize CreateLeaf<T> for Operand, so that operators
116  // know what to stick in the leaves of the expression tree.
117  //-----------------------------------------------------------------------------
118
119  template<class ColorTag>
120  struct CreateLeaf<Operand<ColorTag> >
121  {
122    typedef Operand<ColorTag> Leaf_t;
123    inline static
124    const Leaf_t &make(const Operand<ColorTag> &a) { return a; }
125  };
126
127  //-----------------------------------------------------------------------------
128  // Specialization of LeafFunctor class for applying the getting the "color"
129  // of an operand.
130  //-----------------------------------------------------------------------------
131
132  template<class Color>
133  struct LeafFunctor<Operand<Color>, GetColor>
134  {
135    typedef Color Type_t;
136  };
137
138  #include "RGBOperators.h"
139
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140  #endif // PETE_EXAMPLES_RGB_RGB_H

RGBDefs.in

001  classes
002  -----
003    ARG   = "class T[n]"
004    CLASS = "Operand<T[n]>"

RGB.cpp

001  #include "RGB.h"
002  
003  int main()
004  {
005    printColor(Operand<Red>() + Operand<Green>());
006    printColor(Operand<Red>() + Operand<Green>() + Operand<Blue>());
007    printColor(Operand<Red>() + (Operand<Green>() + Operand<Blue>()));
008  }
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PETE Tutorials
The Standard Template Library

The best-known use of templates to date has been the Standard Template Library, or STL.
The STL uses templates to separate containers (such as vectors and lists) from algorithms
(such as finding, merging, and sorting). The two are connected through the use of iterators,
which are classes that know how to read or write particular containers, without exposing
the actual type of those containers.

For example, consider the following code fragment, which finds the first occurrence of a
particular value in a vector of floating-point numbers:

void findValue(vector<double> & values, double target)
{
    vector<double>::iterator loc =
        find(values.begin(), values.end(), target);
    assert(*loc == target);
}

The STL class vector declares another class called iterator, whose job it is to
traverse a vector. The two methods begin() and end() return instances of
vector::iterator marking the beginning and end of the vector. STL's find()
function iterates from the first of its arguments to the second, looking for a value that
matches the one specified. Finally, dereferencing (operator*) is overloaded for
vector::iterator, so that *loc returns the value at the location specified by loc.

If we decide later to store our values in a list instead of in a vector, only the declaration of
the container type needs to change, since list defines a nested iterator class, and
begin() and end() methods, in exactly the same way as vector:

void findValue(list<double> & values, double target)
{
    list<double>::iterator loc =
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        find(values.begin(), values.end(), target);
    assert(*loc == target);
}

If we go one step further, and use a typedef to label our container type, then nothing in
findValue() needs to change at all:

typedef vector<double> Storage;
// typedef list<double> Storage;

void findValue(Storage & values, double target)
{
    Storage::iterator loc =
        find(values.begin(), values.end(), target);
    assert(*loc == target);
}

The performance of this code will change as the storage mechanism changes, but that's the
point: STL-based code can often be tuned using only minor, non-algorithmic changes.
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MakeOperators

Name
MakeOperators - make the operator functions for a given set of classes that return expression trees, so that PETE can
be used with those classes. Also can construct global assignment operators and operator tag structs.

Synopsis

MakeOperators [--help] [--pete-help] [--classes classfile]
[--operators opfile [--pete-ops] ] [--guard INCLUDE_GUARD]
[--scalars] [--extra-classes] [--no-expression] [--assign-ops]
[--op-tags] [--no-shift-guard] [--o outputfile]
  

Description
In order to use PETE with a given set of container classes, operators such as +, -, *, / etc. must be defined to
return expression template parse trees when given those classes. Operators must be defined for combining the
container classes, B + C, for combining the container classes with scalars, 2 * C, and for combining parse trees
with other objects, B + (C + D) + 2. To generate the PETE built-in operators requires over 200 different
templated operator functions to interface PETE with a single container class such as the STL vector.

Command line options are:

--help
--pete-help

Print a simple summary of the command options.

--classes classfile

Input the class definitions from the file "classfile". Omitting this option causes no operator functions to
be produced, which can be useful if you only want to produce operator tags.

To understand the format of the input file, consider the STL vector. MakeOperators will output
definitions for operator+() between vectors and vectors and between vectors and scalars:

template<class T1,class Allocator1,class T2,class Allocator2>
(parse tree return type)
operator+(const vector<T1,Allocator1> &v1,const vector<T2,Allocator2> &v2)
{
  (construct parse tree)
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}
template<class T1,class T2,class Allocator2>
(parse tree return type)
operator+(const T1 &v1,const vector<T2,Allocator2> &v2)
{
  (construct parse tree)
}
template<class T1,class Allocator1,class T2>
(parse tree return type)
operator+(const vector<T1,Allocator1>& v1,const T2 &v2)
{
  (construct parse tree)
}
    

In order to construct the operator, the tool needs to know the template arguments "class T,class
Allocator" and the templated form of the class "vector<T,Allocator>". For the STL vector
example the class definitions file would contain the four lines:

classes
-----
  ARG   = "class T[n],class Allocator[n]"
  CLASS = "vector<T[n],Allocator[n]>"
    

The string [n] needs to be attached to each template argument and represents a number that allows
MakeOperators to uniquely identify each argument in binary and trinary operators. For classes with no
template arguments, use ARG = "". In general, the class definition definition file can look like:

classes
-----
  ARG   = (class 1 args)
  CLASS = (class 1 definition)
-----
  ARG   = (class 2 args)
  CLASS = (class 2 definition)
...

extraClasses
-----
  ARG   = (extra class 1 args)
  CLASS = (extra class 1 definition)
...
scalars
-----
  ARG   = (scalar 1 args)
  CLASS = (scalar 1 definition)
...
    

When multiple classes are listed, operators are produced for all combinations of those classes with each
other, with scalars and with expression objects.

The second optional list starting with the word extraClasses is used if you want to extend a
previously created file. For example, if you produced a file defining all the operators for vector<T>
and wanted to extend your implementation to operations between vectors and list<T>, then you would
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list vector as a class and list under extraClasses and specify the option --extra-classes. The
resulting file would define operations between lists and lists, and between lists and vectors, but omit
those between vectors and vectors, so that you could include both the new file and your previously
generated file. Typically, it would be better to simply create a new file with all the operators, so
extraClasses should rarely be used.

The final part of this list that begins with the word scalars will only rarely need to be used. By the
rules of partial specialization, if any class does not appear in the classes list, it will be treated as a scalar.
Suppose you were to define a tensor class Tensor<T>, then Tensor<T>() +
vector<Tensor<T> >() would invoke the right function: T1 + vector<T2> (which means
treat the tensor on the left as a scalar and add it to each of the tensors in the vector of tensors). A problem
arises if you also define scalar operations with tensors of the form Tensor<T1> + T2 to represent
adding a scalar to each of the tensor components. In this case Tensor<T>() +
vector<Tensor<T> >() is ambiguous as it matches the function for adding scalars to vectors and
the function for addint tensors to scalars. To resolve this case, we must explicitly define Tensor<T> +
vector<Tensor<T> >, which will happen if we add Tensor<T> to the list of scalars. (So the list of
scalars only needs to contain classes that act like scalars but that also define operations between
themselves and classes of arbitrary type.)

--o outputfile

Send MakeOperators output to outputfile; otherwise write to stdout.

--operators opfile

Include the operator descriptions from the file "opfile". Typically this option should be omitted, in which
case the set of 45 PETE built-in operators are used. See the file src/Tools/PeteOps.in in the
PETE distribution to see operator descriptors for all the PETE built-in operators. The general format of
an operator descriptor file is:

type1
-----
  TAG      = "tag"
  FUNCTION = "function"
  EXPR     = "expression"
-----
  TAG      = "tag"
  FUNCTION = "function"
  EXPR     = "expression"
...

type2
-----
  TAG      = "tag"
  FUNCTION = "function"
  EXPR     = "expression"
...
    

The string "tag" is the name of a tag class that is used in expression template nodes to differentiate
between the different operators. For example, "OpAdd" is used for binary operator+(),
"OpSubtract" is used for binary operator-(), and so on. The string "function" is the name
of the operator funtion, "operator+" for example. The string "expression" contains a description
of how to evaluate the operator on specific elements. The string should use the names a, b, and c to
represent the arguments to the function. For example the definition of binary operator+() sets EXPR
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= "(a + b)".

The headings type1, type2, etc. are operator types. Currently the following operator types are
supported:

unaryOps - simple unary operators whose return type is the same as their input type●   

unaryBoolOps - unary operators that return a bool●   

unaryCastOps - actually binary operators where the first argument is used to set the return type
(like peteCast).

●   

unarySpecialOp - unary operators that use the type computation system to compute their return
type. For example real(Complex<T>) returns T.

●   

binaryOps - simple binary operators that compute their return type by promotion.●   

binaryBoolOps - binary operators that return a bool (like <).●   

binaryLeftOps - binary operators that return the type of the left argument.●   

binarySpecialOps - unary operators that use the type computation system to compute their return
type.

●   

binaryAssignOps - assignment operators like +=. If operator functions are produced for these
operators then they call evaluate() instead of returning an expression tree.

●   

binaryAssignBoolOps - assignment operators that always return a bool, like andAssign which
emulates the mythical &&=.

●   

assignOp - operator=().●   

trinaryOps - trinary operators like where() which emulates ?:.●   

--pete-ops

Using the --operators causes the tool to use operator descriptors from a file, but not to use any of
the pre-defined PETE operators. If you wish produce operators for BOTH operators read from a file
AND the pre-defined PETE operators, the use --pete-ops as well as the --operators option. For
example, the first two commands in the POOMA example below could be simplified to produce one file:

MakeOperators --classes PoomaClass.in \
              --operators PoomaOps.in --pete-ops \
              --guard POOMA_ARRAY_ARRAYOPERATORS_H \
              --no-expression --o ArrayOperators.h
    

--guard INCLUDE_GUARD

The code output by MakeOperators includes ifdefs to guard against multiple inclusion of the form:

#ifndef INCLUDE_GUARD
#define INCLUDE_GUARD
 (code goes here)
#endif // INCLUDE_GUARD
    

If this option is omitted then INCLUDE_GUARD will default to either GENERATED_OPERATORS_H if
the --classes option is present, or OPERATOR_TAGS_H otherwise. If you wish to omit the include
guards from the output file, then use the option --guard "".
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--scalars

When this option is present, only operations between classes and scalars are produced. This option is
useful in the situation mentioned in the description of --classes, where operators must be defined
between containers and user defined scalars in order to resolve ambiguities. In the example of a user
defined tensor class, the user would probably only define a small set of operations with general scalars,
like +, -, *, and /. To produce smaller operator files, you could produce all the operators without tensors
and then produce the operators between containers and tensors just for the smaller set of operators. See
the example section for an example of this case.

--extra-classes

When this option is present, only operations involving extraClasses are produced. This option is useful if
you want to create an operator file that extends a previously created operator file. See the --classes
option for a description of extraClasses.

--no-expression

MakeOperators needs to define operations between parse tree objects and containers and scalars. In the
expression A + ( B + C ), the subexpression ( B + C ) returns a parse tree object which must
then be combined with the container A. Some users of PETE, like POOMA, wrap the result of operators
inside their own container class, so there is no need to define such operators. (The sum of two POOMA
arrays is an array containing an expression.) This flag turns off generation of operations with parse tree
objects.

--assign-ops

Generate global assignment operators that call the function evaluate().

--op-tags

Produce definitions of the operator tag classes. PETE already contains definitions of all the PETE
built-in operators, so this flag only needs to be used for user defined operators.

--no-shift-guard

It is typical to define the operator ostream << container, which can get confused with the
operator T << container under some circumstances. To avoid this problem, PETE only defines the
shift operators between scalars and containers if the macro PETE_ALLOW_SCALAR_SHIFT is
defined. If --no-shift-guard is selected, then the ifdefs that implement this guard are eliminated
and shift operators between scalars and containers are always defined.

Examples
Here we build operators to use STL vectors with PETE. The flag --assign-ops is present because we cannot
define the assignment member functions for STL vectors.

MakeOperators --classes vectorDefs.in --assign-ops > VectorOperators.h

For POOMA, we create the built-in PETE operators, some special POOMA operators like real(), and finally
operators between POOMA arrays and the POOMA Vector and Tensor scalars to disambiguate them. The flag
--no-expression is used because POOMA wraps expressions inside POOMA arrays. The flag --assign-ops
not used because POOMA arrays define assignment member functions. In the second command, --op-tags is used
because the POOMA operator tag classes need to be defined. In the third command, --scalars is used because the
first command has already defined operations between POOMA arrays for the operators in PoomaVectorOps.in
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(which is a subset of the PETE operators). In the fourth command, --o VectorOperators.h sends output to
that file rather than stdout.

MakeOperators --classes PoomaClass.in --guard POOMA_ARRAY_ARRAYOPERATORS_H \
              --no-expression > ArrayOperators.h

MakeOperators --classes PoomaClass.in --operators PoomaOps.in \
              --guard POOMA_POOMA_POOMAOPERATORS_H --no-expression \
              --op-tags > PoomaOperators.h

MakeOperators --classes PoomaVectorClass.in --operators PoomaVectorOps.in \
              --guard POOMA_POOMA_VECTOROPERATORS_H --no-expression --scalars \
              > VectorOperators.h

MakeOperators --classes PoomaVectorClass.in --operators PoomaVectorOps.in \
              --guard POOMA_POOMA_VECTOROPERATORS_H --no-expression --scalars \
              --o VectorOperators.h
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PETE Tutorials
Legal Notice

This software and ancillary information (herein called "SOFTWARE") called PETE
(Portable Expression Template Engine) is made available under the terms described here.
The SOFTWARE has been approved for release with associated LA-CC Number
LA-CC-99-5.

Unless otherwise indicated, this SOFTWARE has been authored by an employee or
employees of the University of California, operator of the Los Alamos National
Laboratory under Contract No. W-7405-ENG-36 with the U.S. Department of Energy. The
U.S. Government has rights to use, reproduce, and distribute this SOFTWARE, and to
allow others to do so. The public may copy and use this SOFTWARE, FOR
NONCOMMERCIAL USE ONLY, without charge, provided that this Notice and any
statement of authorship are reproduced on all copies. Neither the Government nor the
University makes any warranty, express or implied, or assumes any liability or
responsibility for the use of this SOFTWARE.

If SOFTWARE is modified to produce derivative works, such modified SOFTWARE
should be clearly marked, so as not to confuse it with the version available from LANL.

For more information about PETE, send e-mail to pete@acl.lanl.gov, or visit the PETE
web page at http://www.acl.lanl.gov/pete.
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