
Secure Socket Layer
Copyright © 1999-2012 Ericsson AB. All Rights Reserved.

Secure Socket Layer 5.0.1
April 23 2012



Copyright © 1999-2012 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

April 23 2012



Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1



1.1  Transport Layer Security (TLS) and its predecessor, Secure Socket Layer (SSL)

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1    SSL User's Guide

The SSL application provides secure communication over sockets.

1.1  Transport Layer Security (TLS) and its predecessor, Secure
Socket Layer (SSL)
The erlang SSL application currently supports SSL 3.0 and TLS 1.0 RFC 2246, and will in the future also support
later versions of TLS. SSL 2.0 is not supported.

By default erlang SSL is run over the TCP/IP protocol even though you could plug in any other reliable transport
protocol with the same API as gen_tcp.

If a client and server wants to use an upgrade mechanism, such as defined by RFC2817, to upgrade a regular TCP/IP
connection to an SSL connection the erlang SSL API supports this. This can be useful for things such as supporting
HTTP and HTTPS on the same port and implementing virtual hosting.

1.1.1  Security overview
To achieve authentication and privacy the client and server will perform a TLS Handshake procedure before
transmitting or receiving any data. During the handshake they agree on a protocol version and cryptographic
algorithms, they generate shared secrets using public key cryptographics and optionally authenticate each other with
digital certificates.

1.1.2  Data Privacy and Integrity
A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast compared to public key algorithms (using two keys, a public and a private one) and are therefore typically
used for encrypting bulk data.

The keys for the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
in the TLS handshake.

The TLS handshake protocol and data transfer is run on top of the TLS Record Protocol that uses a keyed-hash MAC
(Message Authenticity Code), or HMAC, to protect the message's data integrity. From the TLS RFC "A Message
Authentication Code is a one-way hash computed from a message and some secret data. It is difficult to forge without
knowing the secret data. Its purpose is to detect if the message has been altered."

1.1.3  Digital Certificates
A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is build by having the issuer
in its turn being certified by an other certificate and so on until you reach the so called root certificate that is self
signed i.e. issued by itself.

Certificates are issued by certification authorities (CAs) only. There are a handful of top CAs in the world that issue root
certificates. You can examine the certificates of several of them by clicking through the menus of your web browser.



1.2  Using the SSL API

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.1.4  Authentication of Sender
Authentication of the sender is done by public key path validation as defined in RFC 3280. Simplified that means that
each certificate in the certificate chain is issued by the one before, the certificates attributes are valid ones, and the
root cert is a trusted cert that is present in the trusted certs database kept by the peer.

The server will always send a certificate chain as part of the TLS handshake, but the client will only send one if the
server requests it. If the client does not have an appropriate certificate it may send an "empty" certificate to the server.

The client may choose to accept some path evaluation errors for instance a web browser may ask the user if they want
to accept an unknown CA root certificate. The server, if it request a certificate, will on the other hand not accept any
path validation errors. It is configurable if the server should accept or reject an "empty" certificate as response to a
certificate request.

1.1.5  TLS Sessions
From the TLS RFC "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage hence session data will be lost at application
restart or takeover. Users may define their own callback module to handle session data storage if persistent data storage
is required. Session data will also be invalidated after 24 hours from it was saved, for security reasons. It is of course
possible to configure the amount of time the session data should be saved.

SSL clients will by default try to reuse an available session, SSL servers will by default agree to reuse sessions when
clients ask to do so.

1.2  Using the SSL API

1.2.1  General information
To see relevant version information for ssl you can call ssl:versions/0

To see all supported cipher suites call ssl:cipher_suites/0. Note that available cipher suites for a connection will depend
on your certificate. It is also possible to specify a specific cipher suite(s) that you want your connection to use. Default
is to use the strongest available.

1.2.2  Setting up connections
Here follows some small example of how to set up client/server connections using the erlang shell. The returned value
of the sslsocket has been abbreviated with [...] as it can be fairly large and is opaque.

Minmal example

Note:
The minimal setup is not the most secure setup of ssl.

Start server side

1 server> ssl:start().
ok



1.2  Using the SSL API

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

Create an ssl listen socket

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem"}, {keyfile, "key.pem"},{reuseaddr, true}]).
{ok,{sslsocket, [...]}}

Do a transport accept on the ssl listen socket

3 server> {ok, Socket} = ssl:transport_accept(ListenSocket).
{ok,{sslsocket, [...]}}

Start client side

1 client> ssl:start().
ok

2 client> {ok, Socket} = ssl:connect("localhost", 9999,  [], infinity).
{ok,{sslsocket, [...]}}

Do the ssl handshake

4 server> ok = ssl:ssl_accept(Socket).
ok

Send a messag over ssl

5 server> ssl:send(Socket, "foo").
ok

Flush the shell message queue to see that we got the message sent on the server side

3 client> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

Upgrade example

Note:
To upgrade a TCP/IP connection to an ssl connection the client and server have to aggre to do so. Agreement
may be accompliced by using a protocol such the one used by HTTP specified in RFC 2817.

Start server side

1 server> ssl:start().
ok

Create a normal tcp listen socket



1.2  Using the SSL API

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

2 server> {ok, ListenSocket} = gen_tcp:listen(9999, [{reuseaddr, true}]).
{ok, #Port<0.475>}

Accept client connection

3 server> {ok, Socket} = gen_tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Start client side

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen_tcp:connect("localhost", 9999,  [], infinity).

Make sure active is set to false before trying to upgrade a connection to an ssl connection, otherwhise ssl handshake
messages may be deliverd to the wrong process.

4 server> inet:setopts(Socket, [{active, false}]).
ok

Do the ssl handshake.

5 server> {ok, SSLSocket} = ssl:ssl_accept(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}]).
{ok,{sslsocket,[...]}}

Upgrade to an ssl connection. Note that the client and server must agree upon the upgrade and the server must call
ssl:accept/2 before the client calls ssl:connect/3.

3 client>{ok, SSLSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}], infinity).
{ok,{sslsocket,[...]}}

Send a messag over ssl

4 client> ssl:send(SSLSocket, "foo").
ok

Set active true on the ssl socket

4 server> ssl:setopts(SSLSocket, [{active, true}]).
ok

Flush the shell message queue to see that we got the message sent on the client side

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok



1.3  Using SSL for Erlang Distribution

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3  Using SSL for Erlang Distribution
This chapter describes how the Erlang distribution can use SSL to get additional verification and security.

1.3.1  Introduction
The Erlang distribution can in theory use almost any connection based protocol as bearer. A module that
implements the protocol specific parts of the connection setup is however needed. The default distribution module
is inet_tcp_dist which is included in the Kernel application. When starting an Erlang node distributed,
net_kernel uses this module to setup listen ports and connections.

In the SSL application there is an additional distribution module, inet_tls_dist which can be used as an
alternative. All distribution connections will be using SSL and all participating Erlang nodes in a distributed system
must use this distribution module.

The security level depends on the parameters provided to the SSL connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

Setting up Erlang distribution over SSL involves some simple but necessary steps:

• Building boot scripts including the SSL application

• Specifying the distribution module for net_kernel

• Specifying security options and other SSL options

The rest of this chapter describes the above mentioned steps in more detail.

1.3.2  Building boot scripts including the SSL application
Boot scripts are built using the systools utility in the SASL application. Refer to the SASL documentations for
more information on systools. This is only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
Erlang distributions bin directory. The source for the script can be found under the Erlang installation top directory
under releases/<OTP version>/start_clean.rel. Copy that script to another location (and preferably
another name) and add the applications crypto, public_key and SSL with their current version numbers after the
STDLIB application.

An example .rel file with SSL added may look like this:

      {release, {"OTP  APN 181 01","R15A"}, {erts, "5.9"},
      [{kernel,"2.15"},
      {stdlib,"1.18"},
      {crypto, "2.0.3"},
      {public_key, "0.12"},
      {ssl, "5.0"}
      ]}.
   

Note that the version numbers surely will differ in your system. Whenever one of the applications included in the
script is upgraded, the script has to be changed.

Assuming the above .rel file is stored in a file start_ssl.rel in the current directory, a boot script can be built
like this:

   1> systools:make_script("start_ssl",[]).    



1.3  Using SSL for Erlang Distribution

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

There will now be a file start_ssl.boot in the current directory. To test the boot script, start Erlang with the -
boot command line parameter specifying this boot script (with its full path but without the .boot suffix), in Unix
it could look like this:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0
 
Eshell V5.0  (abort with ^G)
1> whereis(ssl_manager).
<0.41.0>    

The whereis function call verifies that the SSL application is really started.

As an alternative to building a bootscript, one can explicitly add the path to the SSL ebin directory on the command
line. This is done with the command line option -pa. This works as the SSL application does not need to be started
for the distribution to come up, as a clone of the SSL application is hooked into the kernel application, so as long
as the SSL applications code can be reached, the distribution will start. The -pa method is only recommended for
testing purposes.

Note:
Note that the clone of the SSL application is necessary to enable the use of the SSL code in such an early bootstage
as needed to setup the distribution, however this will make it impossible to soft upgrade the SSL application.

1.3.3  Specifying distribution module for net_kernel
The distribution module for SSL is named inet_tls_dist and is specified on the command line with the -
proto_dist option. The argument to -proto_dist should be the module name without the _dist suffix, so
this distribution module is specified with -proto_dist inet_tls on the command line.

Extending the command line from above gives us the following:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls    

For the distribution to actually be started, we need to give the emulator a name as well:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]
 
Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1>     

Note however that a node started in this way will refuse to talk to other nodes, as no ssl parameters are supplied (see
below).

1.3.4  Specifying SSL options
For SSL to work, at least a public key and certificate needs to be specified for the server side. In the following example
the PEM-files consists of two entries the servers certificate and its private key.



1.3  Using SSL for Erlang Distribution

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

On the erl command line one can specify options that the SSL distribution will add when creating a socket.

One can specify the simpler SSL options certfile, keyfile, password, cacertfile, verify, reuse_sessions,
secure_renegotiate, depth, hibernate_after and ciphers (use old string format) by adding the prefix server_ or client_ to
the option name. The server can also take the options dhfile and fail_if_no_peer_cert (also prefixed). client_-prfixed
options are used when the distribution initiates a connection to another node and the server_-prefixed options are
used when accepting a connection from a remote node.

More complex options such as verify_fun are not available at the moment but a mechanism to handle such options
may be added in a future release.

Raw socket options such as packet and size must not be specified on the command line

The command line argument for specifying the SSL options is named -ssl_dist_opt and should be followed by
pairs of SSL options and their values. The -ssl_dist_opt argument can be repeated any number of times.

An example command line would now look something like this (line breaks in the command are for readability, they
should not be there when typed):

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
  -ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem" 
  -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true
  -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]
 
Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1>     

A node started in this way will be fully functional, using SSL as the distribution protocol.

1.3.5  Setting up environment to always use SSL
A convenient way to specify arguments to Erlang is to use the ERL_FLAGS environment variable. All the flags needed
to use SSL distribution can be specified in that variable and will then be interpreted as command line arguments for
all subsequent invocations of Erlang.

In a Unix (Bourne) shell it could look like this (line breaks for readability, they should not be there when typed):

$ ERL_FLAGS="-boot /home/me/ssl/start_ssl -proto_dist inet_tls
  -ssl_dist_opt server_certfile /home/me/ssl/erlserver.pem
  -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]
 
Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
 {progname,["erl "]},
 {sname,["ssl_test"]},
 {boot,["/home/me/ssl/start_ssl"]},
 {proto_dist,["inet_tls"]},
 {ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
 {ssl_dist_opt,["server_secure_renegotiate","true",
                "client_secure_renegotiate","true"]
 {home,["/home/me"]}]    

The init:get_arguments() call verifies that the correct arguments are supplied to the emulator.



1.3  Using SSL for Erlang Distribution

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

2    Reference Manual

The SSL application provides secure communication over sockets.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.



ssl

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl
Application

Environment
The following application environment configuration parameters are defined for the SSL application. Refer to
application(3) for more information about configuration parameters.

Note that the environment parameters can be set on the command line, for instance,

erl ... -ssl protocol_version '[sslv3, tlsv1]' ....

protocol_version = [sslv3|tlsv1] <optional>.

Protocol that will be supported by started clients and servers. If this option is not set it will default to all protocols
currently supported by the erlang ssl application. Note that this option may be overridden by the version option
to ssl:connect/[2,3] and ssl:listen/2.

session_lifetime = integer() <optional>

The lifetime of session data in seconds.

session_cb = atom() <optional>

Name of session cache callback module that implements the ssl_session_cache_api behavior, defaults to
ssl_session_cache.erl.

session_cb_init_args = list() <optional>

List of arguments to the init function in session cache callback module, defaults to [].

SEE ALSO
application(3)



ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

ssl
Erlang module

This module contains interface functions to the Secure Socket Layer.

SSL
• ssl requires the crypto and public_key applications.

• Supported SSL/TLS-versions are SSL-3.0 and TLS-1.0

• For security reasons sslv2 is not supported.

• Ephemeral Diffie-Hellman cipher suites are supported but not Diffie Hellman Certificates cipher suites.

• Export cipher suites are not supported as the U.S. lifted its export restrictions in early 2000.

• CRL and policy certificate extensions are not supported yet.

COMMON DATA TYPES
The following data types are used in the functions below:

boolean() = true | false

option() = socketoption() | ssloption() | transportoption()

socketoption() = proplists:property() - The default socket options are
[{mode,list},{packet, 0},{header, 0},{active, true}].

For valid options see inet(3) and gen_tcp(3).

ssloption() = {verify, verify_type()} | {verify_fun, {fun(), term()}} |
{fail_if_no_peer_cert, boolean()} {depth, integer()} | {cert, der_encoded()}|
{certfile, path()} | {key, {'RSAPrivateKey'| 'DSAPrivateKey' | 'PrivateKeyInfo',
der_encoded()}} | {keyfile, path()} | {password, string()} | {cacerts,
[der_encoded()]} | {cacertfile, path()} | |{dh, der_encoded()} | {dhfile,
path()} | {ciphers, ciphers()} | {ssl_imp, ssl_imp()} | {reuse_sessions,
boolean()} | {reuse_session, fun()}

transportoption() = {CallbackModule, DataTag, ClosedTag} - defaults to {gen_tcp,
tcp, tcp_closed}. Ssl may be run over any reliable transport protocol that has
an equivalent API to gen_tcp's.

      CallbackModule = atom()

      DataTag = atom() - tag used in socket data message.

      ClosedTag = atom() - tag used in socket close message.

verify_type() = verify_none | verify_peer

path() = string() - representing a file path.

der_encoded() = binary() -Asn1 DER encoded entity as an erlang binary.

host() = hostname() | ipaddress()

hostname() = string()

ip_address() = {N1,N2,N3,N4} % IPv4 | {K1,K2,K3,K4,K5,K6,K7,K8} % IPv6

sslsocket() - opaque to the user.

protocol() = sslv3 | tlsv1



ssl

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ciphers() = [ciphersuite()] | string() (according to old API)

ciphersuite() = {key_exchange(), cipher(), hash()}

key_exchange() = rsa | dhe_dss | dhe_rsa | dh_anon

cipher() = rc4_128 | des_cbc | '3des_ede_cbc' | aes_128_cbc | aes_256_cbc

hash() = md5 | sha

prf_random() = client_random | server_random

SSL OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT
Options described here are options that are have the same meaning in the client and the server.

{cert, der_encoded()}
The DER encoded users certificate. If this option is supplied it will override the certfile option.

{certfile, path()}
Path to a file containing the user's certificate.

{key, {'RSAPrivateKey'| 'DSAPrivateKey' | 'PrivateKeyInfo', der_encoded()}}
The DER encoded users private key. If this option is supplied it will override the keyfile option.

{keyfile, path()}
Path to file containing user's private PEM encoded key. As PEM-files may contain several entries this option
defaults to the same file as given by certfile option.

{password, string()}
String containing the user's password. Only used if the private keyfile is password protected.

{cacerts, [der_encoded()]}
The DER encoded trusted certificates. If this option is supplied it will override the cacertfile option.

{cacertfile, path()}
Path to file containing PEM encoded CA certificates (trusted certificates used for verifying a peer certificate).
May be omitted if you do not want to verify the peer.

{ciphers, ciphers()}
The cipher suites that should be supported. The function cipher_suites/0 can be used to find all available
ciphers. Additionally some anonymous cipher suites ({dh_anon, rc4_128, md5}, {dh_anon, des_cbc, sha},
{dh_anon, '3des_ede_cbc', sha}, {dh_anon, aes_128_cbc, sha}, {dh_anon, aes_256_cbc, sha}) are supported
for testing purposes and will only work if explicitly enabled by this option and they are supported/enabled by
the peer also.

{ssl_imp, new | old}
No longer has any meaning as the old implementation has been removed, it will be ignored.

{secure_renegotiate, boolean()}
Specifies if to reject renegotiation attempt that does not live up to RFC 5746. By default secure_renegotiate is
set to false i.e. secure renegotiation will be used if possible but it will fallback to unsecure renegotiation if the
peer does not support RFC 5746.

{depth, integer()}
Specifies the maximum verification depth, i.e. how far in a chain of certificates the verification process can
proceed before the verification is considered to fail. Peer certificate = 0, CA certificate = 1, higher level CA
certificate = 2, etc. The value 2 thus means that a chain can at most contain peer cert, CA cert, next CA cert,
and an additional CA cert. The default value is 1.

{verify_fun, {Verifyfun :: fun(), InitialUserState :: term()}}

The verification fun should be defined as:

fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad_cert, Reason :: atom()} |
      {extension, #'Extension'{}}, InitialUserState :: term()) ->
 {valid, UserState :: term()} | {valid_peer, UserState :: term()} |



ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

 {fail, Reason :: term()} | {unknown, UserState :: term()}.
 

The verify fun will be called during the X509-path validation when an error or an extension unknown to the
ssl application is encountered. Additionally it will be called when a certificate is considered valid by the path
validation to allow access to each certificate in the path to the user application. Note that it will differentiate
between the peer certificate and CA certificates by using valid_peer or valid as the second argument to the verify
fun. See the public_key User's Guide for definition of #'OTPCertificate'{} and #'Extension'{}.

If the verify callback fun returns {fail, Reason}, the verification process is immediately stopped and an alert is
sent to the peer and the TLS/SSL handshake is terminated. If the verify callback fun returns {valid, UserState},
the verification process is continued. If the verify callback fun always returns {valid, UserState}, the TLS/SSL
handshake will not be terminated with respect to verification failures and the connection will be established. If
called with an extension unknown to the user application the return value {unknown, UserState} should be used.

The default verify_fun option in verify_peer mode:

{fun(_,{bad_cert, _} = Reason, _) ->
  {fail, Reason};
    (_,{extension, _}, UserState) ->
  {unknown, UserState};
    (_, valid, UserState) ->
  {valid, UserState};
    (_, valid_peer, UserState) ->
         {valid, UserState}
 end, []}
      

The default verify_fun option in verify_none mode:

{fun(_,{bad_cert, _}, UserState) ->
  {valid, UserState};
    (_,{extension, _}, UserState) ->
  {unknown, UserState};
    (_, valid, UserState) ->
  {valid, UserState};
    (_, valid_peer, UserState) ->
         {valid, UserState}
 end, []}
      

Possible path validation errors:

{bad_cert, cert_expired}, {bad_cert, invalid_issuer}, {bad_cert, invalid_signature}, {bad_cert, unknown_ca},
{bad_cert, selfsigned_peer}, {bad_cert, name_not_permitted}, {bad_cert, missing_basic_constraint}, {bad_cert,
invalid_key_usage}

{hibernate_after, integer()|undefined}
When an integer-value is specified, the

ssl_connection

will go into hibernation after the specified number of milliseconds of inactivity, thus reducing its memory
footprint. When



ssl

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

undefined

is specified (this is the default), the process will never go into hibernation.

SSL OPTION DESCRIPTIONS - CLIENT SIDE
Options described here are client specific or has a slightly different meaning in the client than in the server.

{verify, verify_type()}
In verify_none mode the default behavior will be to allow all x509-path validation errors. See also the
verify_fun option.

{reuse_sessions, boolean()}
Specifies if client should try to reuse sessions when possible.

SSL OPTION DESCRIPTIONS - SERVER SIDE
Options described here are server specific or has a slightly different meaning in the server than in the client.

{dh, der_encoded()}
The DER encoded Diffie Hellman parameters. If this option is supplied it will override the dhfile option.

{dhfile, path()}
Path to file containing PEM encoded Diffie Hellman parameters, for the server to use if a cipher suite using
Diffie Hellman key exchange is negotiated. If not specified default parameters will be used.

{verify, verify_type()}
Servers only do the x509-path validation in verify_peer mode, as it then will send a certificate request to the
client (this message is not sent if the verify option is verify_none) and you may then also want to specify the
option fail_if_no_peer_cert.

{fail_if_no_peer_cert, boolean()}
Used together with {verify, verify_peer} by an ssl server. If set to true, the server will fail if the client does
not have a certificate to send, i.e. sends a empty certificate, if set to false it will only fail if the client sends an
invalid certificate (an empty certificate is considered valid).

{reuse_sessions, boolean()}
Specifies if the server should agree to reuse sessions when the clients request to do so. See also the
reuse_session option.

{reuse_session, fun(SuggestedSessionId, PeerCert, Compression, CipherSuite) -> boolean()}
Enables the ssl server to have a local policy for deciding if a session should be reused or not, only meaningful
if reuse_sessions is set to true. SuggestedSessionId is a binary(), PeerCert is a DER encoded certificate,
Compression is an enumeration integer and CipherSuite is of type ciphersuite().

General
When an ssl socket is in active mode (the default), data from the socket is delivered to the owner of the socket in
the form of messages:

• {ssl, Socket, Data}

• {ssl_closed, Socket}

• {ssl_error, Socket, Reason}

A Timeout argument specifies a timeout in milliseconds. The default value for a Timeout argument is infinity.



ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

Exports

cipher_suites() ->

cipher_suites(Type) -> ciphers()

Types:

Type = erlang | openssl

Returns a list of supported cipher suites. cipher_suites() is equivalent to cipher_suites(erlang). Type openssl is provided
for backwards compatibility with old ssl that used openssl.

connect(Socket, SslOptions) ->

connect(Socket, SslOptions, Timeout) -> {ok, SslSocket} | {error, Reason}

Types:

Socket = socket()

SslOptions = [ssloption()]

Timeout = integer() | infinity

SslSocket = sslsocket()

Reason = term()

Upgrades a gen_tcp, or equivalent, connected socket to an ssl socket i.e. performs the client-side ssl handshake.

connect(Host, Port, Options) ->

connect(Host, Port, Options, Timeout) -> {ok, SslSocket} | {error, Reason}

Types:

Host = host()

Port = integer()

Options = [option()]

Timeout = integer() | infinity

SslSocket = sslsocket()

Reason = term()

Opens an ssl connection to Host, Port.

close(SslSocket) -> ok | {error, Reason}

Types:

SslSocket = sslsocket()

Reason = term()

Close an ssl connection.

controlling_process(SslSocket, NewOwner) -> ok | {error, Reason}

Types:

SslSocket = sslsocket()

NewOwner = pid()

Reason = term()

Assigns a new controlling process to the ssl-socket. A controlling process is the owner of an ssl-socket, and receives
all messages from the socket.



ssl

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

connection_info(SslSocket) -> {ok, {ProtocolVersion, CipherSuite}} | {error,
Reason}

Types:

CipherSuite = ciphersuite()

ProtocolVersion = protocol()

Returns the negotiated protocol version and cipher suite.

format_error(Reason) -> string()

Types:

Reason = term()

Presents the error returned by an ssl function as a printable string.

getopts(Socket, OptionNames) -> {ok, [socketoption()]} | {error, Reason}

Types:

Socket = sslsocket()

OptionNames = [atom()]

Get the value of the specified socket options.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}

Types:

Port = integer()

Options = options()

ListenSocket = sslsocket()

Creates an ssl listen socket.

peercert(Socket) -> {ok, Cert} | {error, Reason}

Types:

Socket = sslsocket()

Cert = binary()

The peer certificate is returned as a DER encoded binary. The certificate can be decoded with
public_key:pkix_decode_cert/2.

peername(Socket) -> {ok, {Address, Port}} | {error, Reason}

Types:

Socket = sslsocket()

Address = ipaddress()

Port = integer()

Returns the address and port number of the peer.

recv(Socket, Length) ->

recv(Socket, Length, Timeout) -> {ok, Data} | {error, Reason}

Types:

Socket = sslsocket()



ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

Length = integer()

Timeout = integer()

Data = [char()] | binary()

This function receives a packet from a socket in passive mode. A closed socket is indicated by a return value {error,
closed}.

The Length argument is only meaningful when the socket is in raw mode and denotes the number of bytes to read. If
Length = 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error; possibly
discarding less than Length bytes of data when the socket gets closed from the other side.

The optional Timeout parameter specifies a timeout in milliseconds. The default value is infinity.

prf(Socket, Secret, Label, Seed, WantedLength) -> {ok, binary()} | {error,
reason()}

Types:

Socket = sslsocket()

Secret = binary() | master_secret

Label = binary()

Seed = [binary() | prf_random()]

WantedLength = non_neg_integer()

Use the pseudo random function (PRF) of a TLS session to generate additional key material. It either takes user
generated values for Secret and Seed or atoms directing it use a specific value from the session security parameters.

This function can only be used with TLS connections, {error, undefined} is returned for SSLv3 connections.

renegotiate(Socket) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Initiates a new handshake. A notable return value is {error, renegotiation_rejected} indicating that the
peer refused to go through with the renegotiation but the connection is still active using the previously negotiated
session.

send(Socket, Data) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Data = iodata()

Writes Data to Socket.

A notable return value is {error, closed} indicating that the socket is closed.

setopts(Socket, Options) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Options = [socketoption]()

Sets options according to Options for the socket Socket.



ssl

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

shutdown(Socket, How) -> ok | {error, Reason}

Types:

Socket = sslsocket()

How = read | write | read_write

Reason = reason()

Immediately close a socket in one or two directions.

How == write means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, the {exit_on_close, false} option
is useful.

ssl_accept(ListenSocket) ->

ssl_accept(ListenSocket, Timeout) -> ok | {error, Reason}

Types:

ListenSocket = sslsocket()

Timeout = integer()

Reason = term()

The ssl_accept function establish the SSL connection on the server side. It should be called directly after
transport_accept, in the spawned server-loop.

ssl_accept(ListenSocket, SslOptions) ->

ssl_accept(ListenSocket, SslOptions, Timeout) -> {ok, Socket} | {error,
Reason}

Types:

ListenSocket = socket()

SslOptions = ssloptions()

Timeout = integer()

Reason = term()

Upgrades a gen_tcp, or equivalent, socket to an ssl socket i.e. performs the ssl server-side handshake.

Warning:
Note that the listen socket should be in {active, false} mode before telling the client that the server is ready to
upgrade and calling this function, otherwise the upgrade may or may not succeed depending on timing.

sockname(Socket) -> {ok, {Address, Port}} | {error, Reason}

Types:

Socket = sslsocket()

Address = ipaddress()

Port = integer()

Returns the local address and port number of the socket Socket.



ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

start() ->

start(Type) -> ok | {error, Reason}

Types:

Type = permanent | transient | temporary

Starts the Ssl application. Default type is temporary. application(3)

stop() -> ok

Stops the Ssl application. application(3)

transport_accept(Socket) ->

transport_accept(Socket, Timeout) -> {ok, NewSocket} | {error, Reason}

Types:

Socket = NewSocket = sslsocket()

Timeout = integer()

Reason = reason()

Accepts an incoming connection request on a listen socket. ListenSocket must be a socket returned from
listen/2. The socket returned should be passed to ssl_accept to complete ssl handshaking and establishing
the connection.

Warning:
The socket returned can only be used with ssl_accept, no traffic can be sent or received before that call.

The accepted socket inherits the options set for ListenSocket in listen/2.

The default value for Timeout is infinity. If Timeout is specified, and no connection is accepted within the
given time, {error, timeout} is returned.

versions() -> [{SslAppVer, SupportedSslVer, AvailableSslVsn}]

Types:

SslAppVer = string()

SupportedSslVer = [protocol()]

AvailableSslVsn = [protocol()]

Returns version information relevant for the ssl application.

SEE ALSO
inet(3)  and gen_tcp(3)



ssl_session_cache_api

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api
Erlang module

Common Data Types
The following data types are used in the functions below:

cache_ref() = opaque()

key() = {partialkey(), session_id()}

partialkey() = opaque()

session_id() = binary()

session() = opaque()

Exports

delete(Cache, Key) -> _

Types:

Cache = cache_ref()

Key = key()

Deletes a cache entry. Will only be called from the cache handling process.

foldl(Fun, Acc0, Cache) -> Acc

Types:

Calls Fun(Elem, AccIn) on successive elements of the cache, starting with AccIn == Acc0. Fun/2 must return a new
accumulator which is passed to the next call. The function returns the final value of the accumulator. Acc0 is returned
if the cache is empty.

init() -> opaque()

Types:

Performs possible initializations of the cache and returns a reference to it that will be used as parameter to the other
api functions. Will be called by the cache handling processes init function, hence putting the same requirements on
it as a normal process init function.

lookup(Cache, Key) -> Entry

Types:

Cache = cache_ref()

Key = key()

Entry = session() | undefined

Looks up a cache entry. Should be callable from any process.

select_session(Cache, PartialKey) -> [session()]

Types:

Cache = cache_ref()



ssl_session_cache_api

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

PartialKey = partialkey()

Session = session()

Selects sessions that could be reused. Should be callable from any process.

terminate(Cache) -> _

Types:

Cache = term() - as returned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

update(Cache, Key, Session) -> _

Types:

Cache = cache_ref()

Key = key()

Session = session()

Caches a new session or updates a already cached one. Will only be called from the cache handling process.


	Secure Socket Layer 
	SSL User's Guide
	Transport Layer Security (TLS) and its predecessor, Secure Socket Layer (SSL)
	Security overview
	Data Privacy and Integrity
	Digital Certificates
	Authentication of Sender
	TLS Sessions

	Using the SSL API
	General information
	Setting up connections
	Minmal example
	Upgrade example


	Using SSL for Erlang Distribution
	Introduction
	Building boot scripts including the SSL application
	Specifying distribution module for net_kernel
	Specifying SSL options
	Setting up environment to always use SSL


	Reference Manual
	ssl
	ssl
	cipher_suites/0
	cipher_suites/1
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	controlling_process/2
	connection_info/1
	format_error/1
	getopts/2
	listen/2
	peercert/1
	peername/1
	recv/2
	recv/3
	prf/5
	renegotiate/1
	send/2
	setopts/2
	shutdown/2
	ssl_accept/1
	ssl_accept/2
	ssl_accept/2
	ssl_accept/3
	sockname/1
	start/0
	start/1
	stop/0
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_session_cache_api
	delete/2
	foldl/3
	init/0
	lookup/2
	select_session/2
	terminate/1
	update/3




