| v

ERLANG

InVISO

Copyright © 2006-2012 Ericsson AB. All Rights Reserved.
Inviso 0.6.3

April 23 2012

Copyright © 2006-2012 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

April 23 2012

Ericsson AB. All Rights Reserved.: Inviso | 1

1.1 Inviso

1 Inviso User's Guide

Inviso, an Erlang trace tool.

1.1 Inviso

1.1.1 Introduction

inviso: (Latin) to go to see, visit, inspect, look at.

Warning:
Thei nvi so application is deprecated and will be removed in the R16 release.

The Inviso trace system consists of one or several runtime components supposed to run on each Erlang node doing
tracing and one control component which can run on any node with available processor power. Inviso may also
be part of a higher layer trace tool. See the inviso-tool as an example. The implementation is spread out over the
Runtime_tools and the Inviso Erlang/OTP applications. Erlang modules necessary to run the runtime component are
located in Runtime_tools and therefore assumed to be available on any node. Even though Inviso is introduced with
Erlang/OTP R11B the runtime component implementation is done with backward compatibility in mind. Meaning that
it is possible to compile and run it on older Erlang/OTP releases.

2 | Ericsson AB. All Rights Reserved.: Inviso

1.1 Inviso

control component

[
Trace bg \l-
collestars .
-

Process hink

Process nontormg

C::) COptional penmanat
I proCEss,
o ___% . Tewporar piocess.
C::D Permarent process.

runtime component

runtinetools application

Augnsart \1 .
/I v Imifigtoy 7oL
e - .

- -

-
s

..

Figure 1.1: Inviso Trace System Architecture Overview.

This document describes the control and runtime components of the Inviso trace system.

Underlying Mechanisms

Inviso is built on Erlang trace BIFs and standard linked in trace-port drivers for efficient trace message logging. This
means that Inviso can not co-exist in runtime with any other trace tool using the trace BIFs.

Trace Recepie

Thisis ashort step-by-step description of how tracing using Inviso can be done.

Start the Inviso control component at any node. Preferably a node that is not participating in the "work™ done
by your "system". The control component runs independently and normally not linked to any other process.
(Prompt 2 in the example below.)

Add al Erlang nodes to the inviso control component where you want to trace. Thisis starting runtime
components on all involved Erlang nodes. Can include the node where the control component runs as well. Note
that the Runtime_Tools application must be running on the nodes where runtime components shall be started.
(Prompt 1 and 3 in the example below.)

Initiate tracing on the added nodes. Initiating tracing means "opening” the output to where trace-messages will
be written. Most commonly thisis afile. Note that it is not actually necessary to initiate the same tracing on all
nodes. It might for instance be wise to use different filenames on different nodes. In the example below tracing
isinitiated on two nodes. The same node as where the shell isrunning (node()) and at node2@ur i n.
Further both "regular” tracing (t r ace) aswell astrace information (t i) are specified for both nodes. (Prompt
4 in the example below).

If needing pid-to-alias trandations, activate meta tracing on the necessary functions. This requires that trace
information was specified when initiating tracing. (Prompt 5 in the example below illustrates using pid to
locally registered name trangl ations).

Ericsson AB. All Rights Reserved.: Inviso | 3

1.1 Inviso

e Set trace-patterns on the functions that shall be traced. (Prompt 6 in the example below).

» Set process trace flags on necessary processes. Do not forget to usethet i mest anp flag in order to be able to
merge log files together in chronological order. (Prompt 7 in the example below).

* Runyour code. (Prompt 8 in the example below).

* Stop tracing (opposite of initiate tracing) and clear trace-patterns on the nodes. It is actually not necessary to
stop tracing on all nodes at once. Nodes no longer of interest can be made to stop tracing before others. (Prompt
9 in the example below stops tracing. Prompt 13 removes all trace flags and trace patterns. Removing trace
flags are really not necessary since those will be removed when the runtime components are stopped. Removing
trace patterns may many times be necessary to "return” the node to a"clean” state from atrace perspective.
Trace patterns are never automatically cleared by the runtime system unless the Erlang module in question is
reloaded.)

» |If necessary fetch the log files from the various nodes. (Prompt 10 in the example blow).
e Mergeand format thelog files. (Prompt 12 in the example below).

e Stop the runtime components. Thisisimportant if the Erlang nodes are real "live" systems, and will not
necessarily be stopped just because the tracing is completed. (Prompt 14 in the example below).

This "recipe" is valid aso when tracing in a non-distributed environment. The only difference is that function calls
not taking a node-name as argument are used. The runtime component will then of course run on the same node as
the control component.

Simple example illustrating the above listed recipe. It traces on two nodes, nodel where the control component also
runs. And node2 which is a remote node from the control components perspective. The example uses a mixture of
API-calls specifying what nodes to trace on and API functions working on all added nodes. Thisis in this example
interchangeable since al to the control component known nodes are participating in the same way.

Eshell V5.5 (abort with "G
(nodel@urin)1>application:start(runtime_tools).
ok
(nodel@urin)2> inviso:start().
{ ok, <0.56. 0>}
(nodel@urin)3> inviso: add_nodes([node(), node2@urin], nyt ag) .
{ok, [{' nodel@wurin', {ok, new}},

{' node2@wurin', {ok, new}}]}
(nodel@urin)4> inviso:init_tracing([{node(),[{trace,{file,"tracefile_nodel.log"}},{ti,{file, "trace_nodel.ti"}]
{ok, [{' nodel@wurin', {ok,[{trace_| og, ok}, {ti_log, ok}]1}},

{' node2@wurin', {ok,[{trace_| og, ok}, {ti_log, ok}]}}1}
(nodel@urin)5> inviso:tpm| ocal nanes([node(), node2@urin]).
{ok, [{' nodel@wurin', {{ok, 1}, {ok, 1}}},

{' node2@wurin', {{ok, 1}, {ok, 1}}}1}
(nodel@urin)6> inviso:tpl ([node(), node2@urin], code, which,' _',[]).
{ok, [{' nodel@wurin', {ok,[2]}},

{' node2@wurin',{ok,[2]}}]}
(nodel@urin)7> inviso:tf(all,[call,timestanp]).
{ok, [{' nodel@wurin', {ok,"/"}},

{' node2@wurin', {ok,"-"}}1}
(nodel@urin) 8> code: whi ch(ordset).
non_exi sting
(nodel@urin)9> inviso:stop_tracing().
{ok, [{' nodel@wurin', {ok,idle}},

{' node2@wurin',{ok,idle}}]}
(nodel@urin)10> inviso:fetch_| og([node2@uwurin],".","aprefix_").
{ok, [{' node2@urin',

{conplete,[{trace_l og, [{ok, "aprefix_tracefil e_node2.l10g"}]},
{ti _log,[{ok,"aprefix_trace_node2.ti"}]}]1}}1}
(nodel@urin)11> inviso:list_|ogs([node()]).
{ok, [{' nodel@wurin',
{ok,[{trace_log,".",["tracefil e_nodel.log"]},

4 | Ericsson AB. All Rights Reserved.: Inviso

1.1 Inviso

{ti _log,".",["trace_nodel.ti"]}]}}1}

(nodel@urin)12> inviso_| fmmerge([{node(),[{trace_log,["tracefile_nodel.log"]}, {ti_log,["trace_nodel.ti"]]
{ ok, 15}
(nodel@urin)13> inviso:clear().
{ok, [{' nodel@wrin', {ok, {new, running}}},

{' node2@urin', {ok, {new, runni ng}}}]}
(nodel@urin) 14> invi so: st op_nodes() .
{ok, [{' node2@wurin', ok},

{' nodel@urin', ok}]}
(nodel@urin) 15>

1.1.2 Incarnation runtime tags

Incarnation runtime tags are used to identify an incarnation of a runtime component. An incarnation is one "start-up"
of a runtime component on a specific Erlang node. The reason why it can sometimes be necessary to examine the
incarnation runtime tag isthat a user wants to connect, adopt, an already running runtime component. This may bethe
caseif the runtime component has autostarted or because the control component terminated without killing the runtime
component. While the user has been out of control of the runtime component it may very well have terminated and
been restarted. If it was restarted without the user's knowledge, its incarnation runtime tag has most likely changed.
The user can therefore, if the current incarnation runtime tag is not what it is supposed to be, conclude that the runtime
component is not "doing" what is expected.

The runtime tag is set at runtime component start-up. This is either done when it is started manually by a call to
i nvi so: add_nodes/ X, or according to a specification in one of the autostart configuration files.

1.1.3 Runtime component state and status

A runtime component hasastate and astatus. Thepossiblestatesare: new,t r aci ng andi dl e. A runtime component
thatist r aci ng has (possibly) open log files. A new runtime component has no current tracer-data. That isit lacks
any history of what it has done just recently. Ani dl e runtime component is no longer tracing. It doestherefore have
current tracer-data that describes what it did do when it was tracing.

The status describes if the runtime component isr unni ng or suspended. A suspended runtime component may very
well bein statet r aci ng. However the point isthat it shall not generate any processor load. It will therefore refrain
from generating any trace messages.

1.1.4 The Runtime Meta Tracer

Metatracing is a trace mechanism separate from the regular tracing. It is normally used by atrace-tool to learn about
function calls made anywhere in an Erlang node. A typical exampleis that there is a possibility in Inviso to get pids
translated to registered namein the final formatted trace-log (for processes having registered names). Thisis done by
meta-tracing onthe BIF r egi st er / 2 to learn about all name/pid associations made.

Metatracing in Inviso isdone by thei nvi so_rt _met a process, which is part of the runtime component if trace-
information, ti, is initiated. See inviso:init_tracing/1 for details. The runtime meta tracer opens and controls the
so called trace information file. Translations can then be done off-line using the associations logged in the trace
information file. Currently the only type of trace information file available isa straight binary file. A wrap-file makes
no sense since pid-to-name associations made in the beginning will most likely be lost.

The runtime meta tracer can also be used to translate pids to own identifiers. The only thing needed is one or several
association points in the form of function calls which will only be made if an association is done in the system. The
pid and own-identifier must be arguments and/or return values from the same function call.

The runtime meta tracer can further more be used to achieve side-effects during tracing, like turning tracing on or off.

Ericsson AB. All Rights Reserved.: Inviso | 5

1.1 Inviso

Matching function calls with return values

It may sometimes be necessary to wait for a meta traced function to return before it can be decided what to do. This
may be due to that one piece of information to make the decision is in the arguments to the function, the other in the
return value. This kind of logic can be programmed to be executed by the inviso meta tracer. In order for the inviso
meta tracer to "remember” function-call arguments until the function return trace message arrives, apubl i ¢ | oop
dat a struct ur e isimplemented. The public loop data structureisfirst created when tracing isinitiated (of course
only when trace information is specified in theinit_tracing call). The public loop data can then later be further initiated
each time metatracing (t pmandt pm_ns) is activated for a certain function.

The default public loop data structure is atuple of size two. The first element in that tuple is used by the predefined
meta tracing for capturing locally registered names. The second element is free to use for any other purpose. The
elements of the tuple must in the default implementation be lists of tuples. Where each sub-tuple shall represent one
waiting call. The last element of that tuple must be a now-stamp (as returned by the BIF now/ 0). See below for an
explanation of the now-stamp. The size of the outer most tuple may be increased as long as the term residing in the
first element isleft unchanged, and all other elements follow the above described rules.

Theinviso metatracer "cleans' the public loop data structure approximately once every minute. The reason for thisis
that entriesin the public loop data structure may become abandoned. If for instance a process crashes while executing
the body of a metatraced function, no return value will be generated. Or in other words, receiving the call metatrace-
message can have caused information to have been written into the public loop data structure. That entry will be used
and removed when the return_trace meta trace-message arrives. But if the meta traced function causes an exception,
no return_trace message will come. The function which normally removes the entry is then therefore never called.

The default clean-function assumes that every item in the public loop data tuple is a list. Where each list contains
tuples where the last element of those tuples are "now-stamps'. The default clean-function considers an entry older
than 30 seconds to be abandoned.

Making pid/alias entries in the ti-file

When activating meta tracing for a function for the purpose of writing pid-alias associations in the trace information
file, acal-func and possibly also areturn-func is specified. These functions will be called when a meta trace message
arrives to the inviso meta tracer as aresult of function calls or returns for this meta traced function. What exactly to
write in the trace information file is dictated by the merge mechanism. This since pid-alias translations are done off
line when merging log-files. See the chapter on merging and formatting log files for more details.

Simple example where the call to the function connecti on: assoc_i d(Pi d, Ref) will associated Pi d with
the id Ref . We will then in a merged log-file see a trandlation between Pi d and Ref . Actualy for al future
since there is no unalias function meta traced in this example. The inviso meta tracer will receive a meta trace
message every time connect i on: assoc_i d/ 2 is called. When that message arrives the meta tracer will call
nmytrace: cal | _assoc_i d/ 3 which must return { ok, NewPubl i cLoopDat a, Qut Put Bi nary}.

-nmodul e(nmytrace).

call _assoc_id(_CallingPid,[Pid, Ref], Publ LoopData) ->
{ ok, Publ LoopDat a, term to_bi nary({Pid, Ref,alias,now()})}.

(nodel@urin)21> inviso:tpn(connection,assoc_id,2,[], {nytrace,call_assoc_id}).
{ok, [{' nodel@wurin', {ok, 1}},

{' node2@wurin', {ok, 1}}]}
(nodel@urin) 22>

6 | Ericsson AB. All Rights Reserved.: Inviso

1.1 Inviso

Extending the public loop data structure.

Itisof coursevery likely that the public loop data structure must be extended to host all functionswherethe metatracer
must delay its action until the function in question returns. What is necessary is to create your own public loop data
structure at trace initialization. Thisis done by usingthe Ti Spec. Ti Spec={I ni t MFA, RenmoveM~, Cl eanMF},
where | ni t MFA creates the structure, RenoveMF removes it (must often not necessary unless a database, file or
similar is used as storage instead of a tuple). G eanMF is the function which will be called each every 60 seconds
to go over the public loop data structure. Following the below rules, not much programming will be needed, apart
fromthel ni t MFA:

« Makethe public loop data structure atuple of lists, where each list isalist of tuples where the tuples represents
one entry.

* Makethe Cal | Func (the function called each time a call meta trace message arrives for the function in
guestion) add atuple to the correct list where the last element of that tuple is a now-stamp.

e Make surethat the first element in the loop data structure tuple is | eft alone for the default implementation of
the handling of registered names.

e Useinviso_rt_meta:clean_std_publ | d/ 1 (whichisexported for this purpose) as Cl eanM-. This
function is normally the default clean function, if not using the possibility to in detail initiate the inner workings
of theinviso meta tracer.

Simple example where tracing is initiated with a public loop data structure having 10 places for nine (the locally
registered names is mandatory) different functions to be metatraced. Notethat theBIF 1 i st _t o_t upl e/ 1 isused
as initialization function. And that the Stdlib function | i st s: dupl i cat e/ 2 is used to create something for the
initialization function to work on.

(nodel@urin)4> inviso:init_tracing([{node2@wurin,[{trace,{file,"tracefile_node2.10g"}}, {ti,{file,"trace_n
{ok, [{' node2@wurin', {ok,[{trace_| og, ok}, {ti_log, ok}]}}1}
(nodel@urin) 5>

Using the inviso meta tracer to achieve side effects

Since meta tracing is independent of regular tracing and catches any function call to a particular function made in
any process, it is well suited to be used to turn things on or off during execution. That trick is done by letting the
Cal | Func and (if used) Ret ur nFunc do these sideeffects. One must of course remember that the inviso metatracer
is a process amongst all other processes in the system. Meaning that the side effect is not necessarily done exactly
when the meta traced function is called. Unless the side effect can be achieved using a match specification action.

1.1.5 Runtime Component Autostart

In order to trace before any user interaction is possible, an autostart mechanism is implemented. The runtime
component is started by the top supervisor of the Runtime_Tool s application top supervisor. Hence the Runtime_Tools
application must be part of the boot script for autostart tracing to work. The Runtime_Tool s applications must of course
be started before any application that is to be traced. Do note that application startup is not entirely synchronous.
Meaning that just because the application controller has begun starting the next application, Runtime_Tools is not
necessarily fully up and running.

The autostart mechanism is configurable. The runtime component comes with a standard autostart configuration, only
missing two text-files to be completely operational.
Autostart Configuration

The autostart is controlled by the Runtime_Tools application configuration parameter i nvi so_aut ost art _nod.
It must be the name of amodule exporting an aut ost ar t / 1 function. The default valueisi nvi so_aut ostart,
amodule which is provided with Runtime_Tools. See below for details.

Ericsson AB. All Rights Reserved.: Inviso | 7

1.1 Inviso

Anaut ost art/ 1 function must offer the following:

autostart (Runti neTool sArg) = {MFA, Options, Tag} | any()

Runt i neTool sAr gs is the argument Ar g provided to the Runtime _Tools application through the application
resourcefile{ nod, { Modul e, Ar g} } parameter.

MFA = { Aut oMbd, Aut oFunc, Aut oArgs} | any() controlshow tracingwill beinitiated. Note that initiating
tracing is not necessarily the same as starting aruntime component. It is possible to have a runtime component without
doing any tracing. The runtime component isstarted aslongasaut ost ar t / 1 returnsthe proper tuple,and Qpt i ons
does not for instance require a certain non-existing control component. If it is not a proper tuple or there are other
faultsin thetupleitems, the autostart will terminate. Typically will this happenif thereisnoaut ost art / 1 function.

If MFA does not properly point out a function possible to call with spawn(Aut oMbd, Aut oFunc, Aut 0Ar g),
there will simply be no initialization. (Initialization is done by a separate process spawned by the runtime component
during autostart.) It may be worth reminding that Aut oMbd must be present at the node where the runtime component
is supposed to run. Not necessarily the node where the control component usually runs.

Opt i ons isthelist of options given to the runtime component. See Opt i ons ininviso:add nodes/2.
Tag isthe runtime component incarnation tag. See Tag in inviso:add_nodes/2.

The Standard Autostart Implementation
As mentioned above, Inviso comes with a complete implementation of autostart sufficient for most situations.
inviso_autostart

The default autostart module isi nvi so_aut ost art , provided as part of the Runtime_Tools application. Since
that name is the default module name, it is not really necessary to set thei nvi so_aut ost art _nod configuration
parameter for the Runtime_Tools application.

Its autostart/1 function reads a configuration file pointed out by the Runtime Tools application
configuration parameter i nvi so_autostart _conf. If the parameter is not present, a default file,
i nvi so_aut ostart. confi g inthecurrent working directory, will be consulted.

The config file must be an ascii text file with one or more tuples ended with a dot. The following parameters are
recognized:

{repeat, N}

Optional parameter where N specifies the maximum remaining autostarts. The autostart functionality will rewrite
the configuration decreasing N if present. If N==0 the autostart will be terminated.

{nfa,{MF, Args}}

Optional parameter controlling how initialization shall be done. The control component will spawn a separate
process to do the initializations by doing spawn(M F, Ar gs) .

{options, Opti ons}

Optional parameter specifying the optionsfor the runtime component itself. SeeQpt i ons ininviso:add_nodes/2.
{tag, Tag}

Optional parameter specifying the runtime component tag. If missing the default tag will bedef aul t _t ag.
Example:

{repeat, 1}.

8 | Ericsson AB. All Rights Reserved.: Inviso

1.1 Inviso

{nfa,{inviso_autostart_server,
init,
[[{tracerdata, {file, "nmylogfile"}},
{cmdfiles,["a_trace_case.txt"]},
{bindings, [{'M,nymod}, {"F ," "}, {" Arity'," _"}1},
{translations,[]}]]1}}.

The examplefileresultsin the start of aruntime component given no specific options. Therewill only be one autostart
since the repeat parameter is set to 1. Tracing will be initiated by the standard initiator (inviso_autostart_server).
The initiator will initiate tracing opening a plain trace-port logfile (" nyl ogfil e"). It will further read the
"a_trace_case.txt" fileto get instructions on what patterns and flags to set. If there are variables mentioned
in the trace-case file "a_trace_case. txt", it is parameterized, the variables M F and Arity will get the
values according to bi ndi ngs. There will be no translations done, hence the trace-case file must be written using
i nvi so_rt function calsdirectly.

inviso_autostart_server

To further facilitate the standard autostart implementation a default initiator isimplemented. To useit, smply specify
it asmfain the config file read by the standard autostart module.

Itsi ni t/ 1 function takes one argument on theform of alist of tuples. The following tuple-parameters are recognized:
{tracerdat a, Tracer Dat a}

Specifies how tracing isinitiated. Seeinviso:init_tracing/1 for detailson Tr acer Dat a.
{cmdfil es, Li st OF Fi | eNanes}

Specifies trace-case files which shall be executed to set the patterns and flags of the trace. See the Trace Cases
chapter for more details. The files will be executed in the order specified.

{transl ati ons, Transl ati ons}

Optional parameter specifying how functionsin trace-casefiles shall betrandated. Thisisuseful sincetrace-cases
can be written for higher-layer Inviso tools, but must during an autostart execute using i nvi so_rt function
calsonly.

Transl ati ons=
[{{Mbd1, Funcl, Arity},
{Mod2, Func2, { Transl Mod, Transl Func}}}, .. .]
Transl Mod: Tr ansl Func(Li st Of Ori gArgs) - >
Li st O Tr ansf or nedAr gs

Mbdl1: Funcl/ Ari ty specifies the function that shall be translated into Mod2: Func2/ Ari ty. The actual
arguments will be tranglated with Tr ans| Mod: Tr ansl Func/ 1. The trandation function shall take a list of
the actual arguments, and return a list of new arguments. The return-value list may for instance have certain
arguments removed, if such are not relevant to the Func 2 function. (Such arguments must actually be removed
since the return-value list from the translation function must have the correct amount of elements corresponding
to the arity of Func?2.)

{ bi ndi ngs, Bi ndi ngs}

Bi ndi ngs=[{ Var, Val }]
Var =at o) , the name of the variable

Optional parameter specifying the actual values of variables used in the trace-cases. Bi ndi ngs is a bindings
structure as used by functionsintheer| _eval module.

Ericsson AB. All Rights Reserved.: Inviso | 9

1.1 Inviso

The Standard Autostart Utility Library

Tofacilitate creating the configuration file described above, there are functionsinamodulenamedi nvi so_as_|i b
which can both create new files according to supplied arguments and update existing configuration files.

The node(s) in question must be running since the functionality in the utility library uses distributed Erlang to access
thefile system.

1.1.6 The Dependency Property

In order to protect real "live" systemsfrom getting aruntime component lingering around without acontrol component,
a dependency property can be specified at runtime component start-up. The property specifies a dependency in
milliseconds. Meaning that if the property is set to O (zero), the runtime component will terminate immediately if its
current control component terminates.

If acontrol component triesto start aruntime component at an Erlang node wherethere already isaruntime component,
the control component will adopt the already existing runtime component if it has no current control component.
Otherwise the control component will experience an error, not being able to start a runtime component at that node.

It must also be noted that an autostart runtime component is running without control component, at least before any
control component adoptsit.

1.1.7 Overload Protection

Since Inviso isintended to be used on real "live" systems, it is possible to protect the system against overload, having
Inviso suspend tracing should an overload situation occur.

What indicates an overload situation must be programmed and configured outside of Inviso. Inviso can initiate an
overload protection, call an overload function periodically and clean-up an overload mechanism should it decide to
terminate.

Internally inside the runtime component, suspending tracing meansremoving all processtrace flags and meta patterns.
Reactivating tracing is outside the scoop of Inviso, but can be implemented in atool using Inviso.

Simple example adding a runtime component and making it protect its Erlang node from overload.

i nvi so: add_node(ny_rt _tag,
[{overl oad, {{ny_ovl, check},
15000,

{ny_ovl,start, [ny_port_pgni},
{ny_ovl, stop, [ny_port_pgni}}}]).

Immediately when the runtime component is started, it will initiate overload protection by calling
ny_ovl :start (m_port_pgn) . Whentracing (not whenin stateidle or new), the runtime component will every
15000 milliseconds call my_ovl : check/ 1. Depending on its return value, the runtime component will either do
nothing or suspend tracing. When the runtime component is stopped, ny_ovl : st op(my_port _pgm) will be
caled.

1.1.8 Merging and Formatting Logfiles

If logging trace messages to a logfile has been used (decided when tracing is initiated) the various log files will be
located on the different Erlang nodes participating in the trace. The log files must be merged and formatted for the
following reasons:

10 | Ericsson AB. All Rights Reserved.: Inviso

1.1 Inviso

e Thevariouslog files from the different nodes must be merged into one logfile in chronological order (where
trace messages from different nodes will be mixed). If only one Erlang node participated in the trace, this step is
obviously not necessary.

e Trace-port log files are on binary format and must in most cases be transformed in some way. This can for
instance be to atext-file format or inserted into a database for analysis.

« Usetraceinformation data to translate process identifiers to aliases, both standard Erlang ones (as registered
names) as well as own invented.

The first step before any merging can take place is of course to get all log files, including any trace information files
to alocation where the logfile merger can access them. This can either be done by simply copying the files. However
if the file systems on the Erlang nodes are not that easily accessed, thereisaf et ch_| og function implemented in
the runtime component. It will transfer log files using distributed Erlang.

Inviso comes with two Erlang modules, i nvi so_I f mandi nvi so_I f m t pf r eader, implementing a standard
log file merger and formatter. The log file merger (i nvi so_I f m) uses a file reader process (implemented in
i nviso_| fmtpfreader)toaccesslog entriesin paralel. It is possible to write your own logfile reader. Thisis
necessary since you may have your own trace-log format and/or own trace information log format. The logfile merger
can further more be configured to use your own formatter, customizing what to do with a trace message.

Trace messagesinthelog filesmust of course betime-stamped for the logfile merger to be capabl e of correctly merging
them. Thismeansusing thet i nest anp process trace flag.

The standard inviso log-file reader understands the following trace information file entries:

{Pid, Alias, al i as, NowSt anp}

{Pid, Al'i as, unal i as, NowSt anp}

ThePi dinanal i as entry must dwaysbeaproper pid. Inanunal i as entry it may also betheatomundef i ned.
The latter means that all associationsinvolving Al i as shall stop to bevalid. The standard inviso log file reader uses
the now-stamp to make sure that associations are only used during time periods in the log-file when such are valid.

1.1.9 Trace Cases

The idea behind trace cases is that someone knowledgeable of a certain system component can write afile specifying
the trace-patterns and process trace flags necessary to trace on certain items once and for all. Hence a trace case will
most likely be a series of callsto functions setting trace patterns and process trace flags.

However, the actual Erlang nodes and values of arguments given in the trace function calls can not be static in order for
the trace cases to become useful and reusable. A trace case file must therefore be possible to parameterize. Introducing
variables that will get their values at the time of trace case execution. It may also be the case that Inviso is used as
a component in a higher layer trace tool. Trace cases may therefore be written calling more complex functions than
thelow level i nvi so_rt functions which are available to autostart mechanisms. In a matter of fact, thei nvi so
API itself can be considered a higher layer. It addresses multiple nodes at once wherethei nvi so_rt API can only
address the local node.

This results in that for trace cases to be useful there must be a function call translation mechanism and an execution
environment capable of handling variable bindings.

A trace-case isatext ascii file consisting of function calls written as they could have been done in the Erlang shell:

nmodul enane: functi onnane(argl, arg3,...).

Ericsson AB. All Rights Reserved.: Inviso | 11

1.1 Inviso

A trace-case may contain any valid function call, including binding new variables which are used later in the trace-
case, but:

* No spawn, send or receive.

* Noapply or similar (including mod: F(Ar g1, Ar g2)). This because the variable environment is not available
during the trandation. Only during execution.

Example: Trace cases are expected to be written to be executed directly in an Erlang shell (by some utility reading a
text fileontrace caseformat) callingi nvi so functions. Thetrandationsmust thentranslatei nvi so function callsto
i nvi so_rt functioncalls, sincei nvi so isnot availablein the Runtime_Tools applications. It can not be assumed
that any trace tools outside the Runtime_Tools application is available on the nodes. Luckily (!) thei nvi so_rt
API resemblesthei nvi so APl very much, apart from that thei nvi so_rt API does not take alist of nodes as an
argument. Therefore in most situations the only transformation necessary isto changefromi nvi so toi nvi so_rt
and remove the first argument to the function call.

Assume that we have the following trace-casefile:

i nvi so:tpl (Nodes, nynod,' _",' ', M5).
inviso:tf(Nodes,all,[call,tinmestanp]).

For thisto work in an autostart the following trand ation is needed:

[{{inviso,tpl,5},{inviso_rt,tpl,{erlang,tl}}},
{{inviso,tf,3},{inviso_rt,tf,{erlang,tl}}}]

Since transforming the arguments from i nvi so callstoi nvi so_rt calsissimply removing the first argument,
there is no need to program any function to do this. The BIF t | / 1 can be used directly.

Further there must be a variable binding for M5 when executing the trace-case. It is not necessary to have one for
Nodes since that argument is removed from all function calls by the trandlation.

12 | Ericsson AB. All Rights Reserved.: Inviso

1.1 Inviso

2 Reference Manual

Inviso, an Erlang trace tool.

Ericsson AB. All Rights Reserved.: Inviso | 13

inviso

INVIiso

Erlang module

Warning:
Thei nvi so application is deprecated and will be removed in the R16 release.

Withthei nvi so API runtime components can be started and tracing managed across anetwork of distributed Erlang
nodes, using a control component also started with i nvi so API functions.

Inviso can be used both in adistributed environment and in anon-distributed. API functions not taking alist of nodesas
argument workson all started runtime components. If it isthe non-distributed case, that isthelocal runtime component.
The API functions taking a list of nodes as argument, or as part of one of the arguments, can not be used in a non-
distributed environment. Return values named NodeResul t refersto return values from a single Erlang node, and
will therefore be the return in the non-distributed environment.

Exports

start() -> {ok,pid()} | {error, Reason}
start(Options) -> {ok,pid()} | {error, Reason}
Types:
Options = [Option]
Opt i ons may contain both optionswhich will be default optionsto aruntime component when started, and optionsto

the control component. See add_nodes/3 for details on runtime component options. The control component recognizes
the following options:

{subscri be, Pi d}
Making the process Pi d receive Inviso events from the control component.

Starts a control component process on the local node. A control component must be started before runtime
components can be started manually or otherwise accessed through thei nvi so API.

stop() -> shutdown

Stops the control component. Runtime components are left as is. They will behave according to their dependency
values.

add_node(RTtag) -> NodeResult | {error, Reason}
add_node(RTt ag, Opti ons) -> NodeResult | {error, Reason}
Types.

RTtag = Previ ousRTtag = term()

Options = [Option]

Option -- see bel ow

Option = {dependency, Dep}

Dep = int() | infinity

14 | Ericsson AB. All Rights Reserved.: Inviso

inviso

The timeout, in milliseconds, before the runtime component will terminate if abandoned by thiscontrol
component.

Option = {overl oad, Overl oad} | overl oad

Controls how and how often overload checks shall be performed. Just over | oadspecifies that no loadcheck
shall be performed.

Overload = Interval | {LoadM, Interval, I nitMA RenoveMA}
LoadMF = {Mod, Func} | function()/1
Interval = int() | infinity
Interval isthe timein milliseconds between overload checks.
I nit MFA = RenoveMFA = {Mbd, Func, ArgList} | void

When starting up the runtime component or when changing options (see change_opt i ons/ 2) the overload
mechanismisinitialized with acall to the | ni t MFAfunction. It shall return LoadCheckDat a. Every timea
load check is performed, LoadMFis called with LoadCheckDat aasits only argument. LoadM~shall return
okor { suspend, Reason} . When the runtime component is stopped or made to change options involving
changing overload-check, the RernmoveMFAfunction is called. Its return value is discarded.

NodeResult = {ok, NAns} | {error, Reason}

NAns = new | {adopted, State, Status, Previ ousRTtag} | al ready_added
State = new | tracing | idle
Status = running | {suspended, SReason}

Starts or tries to connect to an existing runtime component at the local node, regardless if the system is distributed or
not. Opt i ons will override any default options specified at start-up of the control component.

The Pr evi ousRTt ag can indicate if the incarnation of the runtime component at the node in question was started
by "us" and then can be expected to do tracing according to "our" instructions or not.

add_node_if_ref (RTtag) -> NodeResult | {error,{wong reference, &herTag}} |
{error, Reason}

add_node_if_ref (RTtag, Options) -> NodeResult | {error,
{wrong_reference, *herRef}} | {error, Reason}

Types:
O herRef = term()
rttag of the running incarnation

Asadd_node/1,2 but will only adopt the runtime component if its rttag isRTt ag.

add_nodes(Nodes, RTt ag) -> {ok, NodeResults} | {error, Reason}
add_nodes(Nodes, RTt ag, Opti ons) -> {ok, NodeResults} | {error, Reason}
Types.

Nodes = [Node]

NodeResults = [{Node, NodeResul t}]

Asadd_node/1,2 but for a distributed environment.

add_nodes_i f _ref (Nodes, RTtag) -> NodeResult | {error, Reason}
add_nodes_if _ref(Nodes, RTtag, Opti ons) -> NodeResult | {error, Reason}
Types.

Nodes = [Node]

NodeResults = [{Node, NodeResul t}]

Ericsson AB. All Rights Reserved.: Inviso | 15

inviso

Asadd node if ref/1,2 but for adistributed environment.

stop_nodes() -> {ok, NodeResults} | NodeResult
st op_nodes(Nodes) -> {ok, NodeResults} | {error, Reason}
Types:

NodeResults = [{Node, NodeResul t}]

NodeResult = ok | {error, Reason}

Stops runtime component on Nodes. st op_nodes/ 0 will if the control component is running on adistributed node
stop all runtime components. And if running on anon distributed node, stop the local and only runtime component.

stop_all () = {ok, NodeResults} | NodeResult
Types.
NodeResul ts = [{Node, NodeResul t}]
NodeResult = ok | {error, Reason}

A combination of stop/0 and stop_nodes/0.

change_options(Options) -> NodeResult | {ok, NodeResults} | {error, Reason}
change_opti ons(Nodes, Options) -> {ok, NodeResults} | {error, Reason}
Types.

Nodes = [Node]

NodeResults = [{Node, NodeResul t}]

NodeResult = ok | {error, Reason}

Changesthe optionsfor oneor several runtime components. If for instance overload isredefined, the previous overload
will be stopped and the new started. See add _node/1 for details on Opt i ons.

init _tracing(TracerData) -> {ok, NodeResults} | NodeResult | {error, Reason}
init_tracing(TracerlList) -> {ok, NodeResults} | {error, Reason}
init_traci ng(Nodes, TracerData) -> {ok, NodeResults} | {error, Reason}
Types:
TracerData = [{trace, LogTD} [,{ti,TiTD}] }] | LogTD

LogTD = {Handl er Fun, Datal} | collector | {relayer, Coll ecti ngNode} |
{ip, | PPortParaneters} | {file, FilePortParaneters}

TiTD = {file,FileNane} | {file, FileNane, Ti Spec} | {rel ay, Node}
Ti Spec = {I ni t MFA, RenoveMr, C eanMF}
InitMFA = {M , Fi, Argsi}
RemoveM- = {M,Fr} | void
d eanMF = { M, Fc}
M =F =M =F =M =F = atom)
Argsi = [term))]
TracerList = [{Node, Tracer Dat a}]
| PPort Paranmeters = Portno | {Portno, Qsize}
Portno = tcp_portno()

xize = int()

16 | Ericsson AB. All Rights Reserved.: Inviso

inviso

Fil ePort Paraneters = {Fil ename,wap, Tail,{tinme, WapTi ne}, WapCnt} |
{Fi | eName, wr ap, Tai | , WapSi ze, WapCnt} | {FileName,wap, Tail, WapSi ze} |
{Fi |l eNarme, wap, Tail} | FileNane

Fil eName = string()
Tail = string() =/=""
WapTine = WapCnt = WapSize = int() >0
TracerList = [{Node, Tracer Dat a}]
Nodes = [Node]
Handl er Fun = function()/2;
Handl er Fun(TraceMsg, Dat al) -> NewDat a
Col I ecti ngNode = pid() | node()
NodeResults = [{Node, NodeResul t}]
NodeResult = {ok, LogResults} | {error, NReason}
LogResul ts [LogResul t]
LogResult = {trace_l og, LogRes} | {ti_Ilog, LogRes}
LogRes = ok | {error, Reason}

Starts the tracing at the specified nodes, meaning that the runtime components transits from the state newor i dl e to
t raci ng. For trace messages to be generated, there must of course also be trace pattern and/or trace flags set. Such
can not be set before tracing has been initiated withi nit _t raci ng/ 1, 2.

Tr acer Dat a controls how the runtime component will handle generated trace messages. Thet r ace tag controls
how regular trace messages are handled. Thet i tag controlsif and how trace information will be stored and the meta
tracer will be activated. That isif t i isomitted, no metatracer will be started as part of the runtime component. It is
possibleto haveti withoutt r ace, but most likely not useful.

Theip and fil e trace tracerdata instructions results in using the built in trace ip-port and file-port respectively.
rel ayer will result in that all regular trace messages are forwarded to a runtime component at the specified node.
Using a Handl er Fun will result in that every incoming regular trace message is applied to the Handl er Fun.
col | ect or can be used to use this runtime component to receive relayed trace messages and print them to the shell.

The trace information can be configured to either write trace information to a plain trace information file or to relay
it to another inviso meta tracer on another node. The inviso meta tracer is capable of matching function calls with
their function returns (only if r et ur n_t r ace isactivated in the meta trace match specification for the function in
question). This is necessary since it may not be possible to decide what to do, if anything shall be done at all, until
the return value of the function call is examined.

To be able to match callswith returns a state can be saved when detecting afunction call in apublic loop data structure
kept by theinviso metatracer. The publicloop datastructureisgiven asargument to ahandler-function called whenever
ameta trace message arrives to the inviso metatracer (both function calls and function returns). The public loop data
structure is first initiated by the M : Fi function which takes the itemsin Ar gsi as arguments. Fi shall return the
initial public loop data structure. When metatracing is stopped, either because tracing is stopped or becausetracing is
suspended, the M : Fr (Publ i cLoopDat a) iscalled to offer a possibility to clean-up. Note that for every function
meta-tracing is activated, a public loop data modification function can be specified. That function will prepare the
current loop data structure for this particular function.

Further thereisarisk that function call states becomes abandoned insidethe public loop datastructure. Thiswill happen
if afunction call is entered into the public loop data structure, but no function return occurs. To prevent the public
loop data structure from growing infinitely the clean function Fc will periodically be called with the public loop data
structure as argument. Elements entered into the public loop data structure as aresult of afunction call must contain a
timestamp for the Fc to be able to conclude if it is abandoned or not. Fc shall return a new public loop data structure.

Ericsson AB. All Rights Reserved.: Inviso | 17

inviso

When initiating tracing involving trace information without a Ti Spec, a default public loop data structure will be
initiated to handle locally registered process aiases. The default public loop data structure is a two-tuple where the
first element is used by the metatracing onthe BIF r egi st er / 2. The second element is |eft for user usage.

The default public loop data structure may be extended with more element positions. The first position must be | eft to
the implementation of registered-name trandations. If the public loop data structure is changed no longer meeting this
requirement, the tpm_localnames/0,1 and tpm_globalnames/0,1 can no longer be used.

A wrap files specification isused to limit the disk space consumed by thetrace. Thetraceiswritten to alimited number
of files each with alimited size. The actual filenames are Fi | enane ++ SeqCnt ++ Tail , where SeqCnt
counts as a decimal string from 0 to W apCnt and then around again from 0. When a trace message written to the
current file makesit longer than W apSi ze, that fileis closed, if the number of filesin thiswrap traceis as many as
W apCnt theoldest fileis deleted then anew file is opened to become the current. Thus, when awrap trace has been
stopped, there are at most W apCnt trace files saved with asize of at least W apSi ze (but not much bigger), except
for the last file that might even be empty. The default valuesare W apSi ze == 128* 1024 and W apCnt ==

The SeqCnt valuesin the filenames are al in the range 0 through W apCnt with a gap in the circular sequence.
The gap is needed to find the end of the trace.

If the W apSi ze is specified as{t i ne, W apTi e}, the current file is closed when it has been open more than
W apTi ne milliseconds, regardless of it being empty or not.

Theip trace driver has a queue of QSi ze messages waiting to be delivered. If the driver cannot deliver messages as
fast as they are produced by the runtime system, they are dropped. The number of dropped messages are indicated in
the trace log as separate trace message.

stop_traci ng(Nodes) -> {ok, NodeResults} | {error, Reason}
stop_tracing() -> {ok, NodeResults} | NodeResult
Types:

Nodes = [Node]

NodeResul ts = [{Node, NodeResul t}]

NodeResult = {ok, State} | {error, Reason}

State = new | idle

Stops tracing on all or specified Nodes. Flushes the trace buffer if a trace-port is used, closes the trace-port and
removes all trace flags and meta-patterns. The nodes are called in parallel.

Stopping tracing meansgoingto statei dl e<c>. |f the runti me conponent was already in state
<c>new, it will of course remain in state new (then there was no tracing to stop).

clear() -> {ok, NodeResults} | NodeResult
cl ear (Nodes, Options) -> {ok, NodeResults} | {error, Reason}
clear (Options) -> {ok, NodeResults} | NodeResult | {error, Reason}
Types:
Nodes = [Node]
Options = [Option]
Option = keep_trace_patterns | keep_log files
NodeResul ts = [{Node, NodeResul t}]
NodeResult = {ok, {new, Status}} | {error, Reason}
Status = running | {suspended, SReason}

18 | Ericsson AB. All Rights Reserved.: Inviso

inviso

Stopsall tracing including removing meta-trace patterns. Removesall trace patterns. If thenodeist r aci ngori dl e,
trace-logs belonging to the current tracerdata are removed. Hence the node is returned to state new. Note that the node
can still be suspended.

Various options can make the node keep set trace patterns and log-files. The node still enters the new state.

t p(Nodes, Mod, Func, Arity, Mat chSpec, Opts) ->
t p(Nodes, Mbd, Func, Arity, Mat chSpec) -> {ok, NodeResults} | {error, Reason}
t p(Mod, Func, Arity, Mat chSpec, Opts) ->

t p(Mod, Func, Arity, Mat chSpec) -> {ok, NodeResul ts} | NodeResult |
{error, Reason}

t p(Nodes, PatternList) -> {ok, NodeResults} | {error, Reason}
tp(PatternList) -> {ok, NodeResults} | NodeResult | {error, Reason}
Types.
Nodes = [Node]
Mbd = Func = aton() | '_'
Arity =int() | '
Mat chSpec = true | false | [] | matchspec()
PatternList = [Pattern],
Pattern = {Mod, Func, Arity, Mat chSpec, Opt s}
Opts = [Opt]
Opt = only_| oaded
NodeResults = [NodeResul t]
NodeResult = {ok,[Ans]} | {error, Reason}
Ans = int() | {error, Reason}
Set trace pattern (global) on specified or all nodes. Theinteger replied if the call was successfully describes the number
of matched functions. The functions without a Nodes argument means all nodes, in a non-distributed environment

it means the local node. Using wildcards follows the rules for wildcards of er | ang: t race_pattern/ 3. Itisfor

instanceillegal to specify M == ' ' whileFisnot' _'.

When calling several nodes, the nodes are called in parallel.
Theoption onl y_| oaded will prevent modules not loaded (yet) into the runtime system to become loaded just as
aresult of that atrace pattern is requested to be set on it. Otherwise modules are automatically loaded if not already

loaded (since the module must be present for a trace pattern to be set on it). The latter does not apply if the wildcard
' ' isused as module specification.

t pl (Nodes, Mod, Func, Arity, Mat chSpec) ->
t pl (Nodes, Mod, Func, Arity, Mat chSpec, Opts) -> {ok, NodeResul ts} | {error, Reason}
t pl (Mod, Func, Arity, Mat chSpec) ->

t pl (Mod, Func, Arity, Mat chSpec, Opts) -> {ok, NodeResults} | NodeResult|
{error, Reason}

t pl (Nodes, PatternList) -> {ok, NodeResults} | {error, Reason}
tpl (PatternList) -> {ok, NodeResults} | NodeResult | {error, Reason}

See tp/N function above for details on arguments and return values.
Set local trace pattern on specified functions. When calling several nodes, the nodes are called in paralléel.

Ericsson AB. All Rights Reserved.: Inviso | 19

inviso

ct p(Nodes, Mod, Func, Arity) -> {ok, NodeResults} | {error, Reason}
ctp(Md, Func, Arity) -> {ok, NodeResults} | NodeResult | {error, Reason}

See tp/N for argument descriptions.
Clear global trace patterns. When calling several nodes, the nodes are called in parallel.

ct pl (Nodes, Mod, Func, Arity) -> {ok, NodeResults} | {error, Reason}
ctpl (Mod, Funct, Arity) -> {ok, NodeResults} | NodeResult | {error, Reason}

See tp/N for argument description.
Clear local trace patterns. When calling several nodes, the nodes are called in parallel.

t f (Nodes, Pi dSpec, Fl agLi st) -> {ok, NodeResults} | {error, Reason}
tf (Pi dSpec, Fl agLi st) -> {ok, NodeResul ts} | NodeResult | {error, Reason}
t f (Nodes, TraceConfList) -> {ok, NodeResults} | {error, Reason}
tf (NodeTraceConfList) -> {ok, NodeResults} | {error, Reason}
tf(TraceConfList) -> {ok, NodeResults} | NodeResult | {error, Reason}
Types:

Nodes = [Node]

NodeTr aceConf Li st = [{Node, TraceConf Li st}]

TraceConfList = [{PidSpec, Fl agLi st}]

Fl agLi st = [Fl ag]

PidSpec = all | new existing | pid() | locally registered name()
Flag -- see erlang:trace/3

NodeResult = {ok,[Ans]} | {error, Reason}

Ans = int() | {error, Reason}

Set process trace flags on processes on all or specified nodes. The integer returned if the call was successful describes
the matched number of processes. The functions without a Nodes argument means all nodes, in a non-distributed
environment it means the local node.

There are many combinations which does not make much sense. For instance specifying a certain process identifier
at all nodes. Or an empty Tr aceConf Li st for all nodes.

When calling several nodes, the nodes are called in parallel.

ct f (Nodes, Pi dSpec, Fl agLi st) -> {ok, NodeResults} | {error, Reason}

ctf (Pi dSpec, Fl agLi st) -> {ok, NodeResults} | NodeResult | {error, Reason}
ctf (Nodes, TraceConfList) -> {ok, NodeResults} | {error, Reason}
ctf(TraceConflList) -> {ok, NodeResults} | NodeResult | {error, Reason}

See tf/N for arguments and return val ue description.
Clear process trace flags on al or specified nodes. When calling several nodes, the nodes are called in parallel.

ctf_all (Nodes) -> {ok, NodeResults} | {error, Reason}
ctf_all() -> {ok, NodeResults} | NodeResult | {error, Reason}
Types.

Nodes = [Node]

NodeResults = [{Node, NodeResul t}]

20 | Ericsson AB. All Rights Reserved.: Inviso

inviso

NodeResult = ok | {error, Reason}

Clears all trace flags on all or specified nodes. Just for convenience.

init_tpm Md, Func, Arity, Call Func) -> {ok, NodeResults} | NodeResult |
{error, Reason}

i ni t_tpmNodes, Mbd, Func, Arity, Cal |l Func) -> {ok, NodeResults} | {error, Reason}

i nit_tpm Md, Func, Arity, I nitFunc, Call Func, Ret ur nFunc, RenoveFunc) ->
{ok, NodeResul t s} | NodeResult | {error, Reason}

i nit_tpnm Nodes, Mbd, Func, Arity, InitFunc, Call Func, ReturnFunc, RenoveFunc) ->
{ ok, NodeResul ts} | {error, Reason}

Types.
Mod = Func = aton()
Arity = int()
NodeResults = [{Node, NodeResul t}]
NodeResult = ok | {error, Reason}
I ni t Func, RenoveFunc = {Mdul e, Function} | function()/4 | void
Cal | Func = ReturnFunc = {Mdul e, Function} | function()/3 | void
InitializesMbd: Func/ Ari t y for metatracing without setting any metatrace patterns. Thisis necessary if the named

match specs will be used (see tpm _mg/5,6). Otherwise initialization of public loop data can be done at the same time
as setting meta trace patterns using tpnv8,9.

Note that we can not use wildcards here (even if it is perfectly legal in Erlang). It also sets the Cal | Func and
Ret ur nFunc for the meta traced function. That is the functions which will be called when a function call and a
return_trace meta trace message respectively arrivesto the inviso metatracer for Mod: Func/ Arity.

Thisfunction is aso available without | ni t Func and RenbveFunc. That meansthat no initialization of the public
loop data structure will be done and that Cal | Func and Ret ur nFunc must either use already existing parts of
public loop data structure or not useit at all.

The | ni t Func initializes the already existing public loop data structure for use with Mod: Func/ Arity.
I ni t Func(Mod, Func, Arity, Publ LD) -> {ok, NewPubl LD, Qut put } where Qut Put can be abinary
which will then be written to the trace information file. If it is not a binary, no output will be done. RenoveFunc
will be called when the meta tracing is cleared with ctpm/3,4. RenoveFunc(Mod, Func, Arity, Publ LD) -
> { ok, NewPubl LD} .

See tpmVN for details on Cal | Func and Ret ur nFunc.

t pm(Mod, Func, Arity, M5) -> {ok, NodeResults} | NodeResult | {error, Reason}
t pm(Nodes, Mod, Func, Arity, MS) -> {ok, NodeResults} | {error, Reason}

t pn(Mod, Func, Arity, M5, Cal | Func) -> {ok, NodeResults} | NodeResults |
{error, Reason}

t pm(Nodes, Mod, Func, Arity, M5, Cal | Func) -> {ok, NodeResults} | {error, Reason}

t pm(Mod, Func, Arity, M5, I ni t Func, Cal | Func, Ret ur nFunc, RenoveFunc) ->
{ok, NodeResul ts} | NodeResults | {error, Reason}

t pm(Nodes, Mod, Func, Arity, M5, I nitFunc, Call Func, Ret ur nFunc, RenoveFunc) ->
{ ok, NodeResul ts} | {error, Reason}

Types:
Mod = Func = aton()
Arity = int()

Ericsson AB. All Rights Reserved.: Inviso | 21

inviso

M5 = [mat ch_spec()]

Nodes = [Node]

I nit Func = RenoveFunc = {Mddul e, Function} | function()/4 | void
Cal | Func = ReturnFunc {Modul e, Function} | function()/3 | void
NodeResults = [{Node, NodeResul t}]

NodeResult = {ok,1} | {ok,0} | {error, Reason}l

Activates meta-tracing intheinviso_rt_ metatracer. Except whenusingt pntf 6,t pnf 8 andt pni 9 theMod: Func/
Ari ty must first have been initiated using init_tpnVN. When calling several nodes, the nodes are called in parallel.

Cal | Func will be called every time ameta trace message arrivesto the inviso metatracer because of acall to Func.
Cal | Func(Cal I i ngPi d, Act ual ArgLi st, Publ LD) -> {ok, NewPri vLD, Qut put} where Qut put
canbeabinary or voi d. If itisabinary it will be written to the trace information file.

Ret ur nFunc will be caled every time a meta return_trace message arrives to the inviso meta tracer
because of a return_trace of a cal to Func. Ret ur nFunc(Cal | i ngPi d, Ret ur nVal ue, Publ LD) ->
{ ok, NewPri vLD, Qut put }. Further the Ret ur nFunc must handle the fact that a return_trace message arrives
for acall which was never noticed. This because the message queue of the meta tracer may have been emptied.

tpmtracer (Md, Func, Arity, M5) -> {ok, NodeResults} | NodeResult |
{error, Reason}

tpm tracer (Nodes, Mod, Func, Arity, M5) -> {ok, NodeResults} | {error, Reason}

tpmtracer (Md, Func, Arity, M5, Cal | Func) -> {ok, NodeResul ts} | NodeResults |
{error, Reason}

tpm tracer (Nodes, Mod, Func, Arity, M5, Cal | Func) -> {ok, NodeResul t s} |
{error, Reason}

tpmtracer (Md, Func, Arity, M5, I ni t Func, Cal | Func, Ret ur nFunc, RenoveFunc) ->
{ok, NodeResul ts} | NodeResults | {error, Reason}

tpm tracer (Nodes, Mod, Func, Arity, M5, | nitFunc, Cal | Func, Ret ur nFunc, RenoveFunc)
-> {ok, NodeResul ts} | {error, Reason}

See tpm/X for details on arguments and return values.

Sameastpm/X but all match specsin M5 containing at r ace actiontermwill havea{t racer, Tracer} appended
toitsenable-list. Tr acer will bethe current output for regular trace messages as specified when tracing wasinitiated.
This function is useful when setting a meta trace pattern on a function with the intent that its execution shall turn
tracing on for the process executing the match-spec in the meta trace pattern. The reason thet r acer process trace
flag can not be explicitly written in the action term by the user is that it may be difficult to learn its exact value for a
remote node. Further more inviso functions are made to work on several nodes at the same time, requiring different
match specs to be set for different nodes.

Simple example: We want any process executing the function mynod: i ni t (1234) (with theargument, exactly the
integer 1234) to begin function-call tracing. In the example, if the processisfound to be onethat shall start call tracing,
we also first disable al | process trace flags to ensure that we have full control over what the process traces. voi d
in the example specifies that the meta-tracer (inviso_rt_meta) will not call any function when meta trace messages
for mynod: i ni t/ 1 arrives. Thereis no need for aCal | Func since the side-effect (start call-tracing) is achieved
immediately with the match-spec.

inviso:tpmtracer(nynod,init,1,[{[1234],[],[{trace,[all],[call]}]}],void).

Thiswill internally, by the meta tracer on each Erlang node, be translated to:

22 | Ericsson AB. All Rights Reserved.: Inviso

inviso

erlang:trace_pattern({nynod,init,1},[{[1234],[],[{trace,[all],[call,{{tracer,T}}1}1}],[{meta, P}]1).

Where T isthe tracer for regular trace messages (most often a trace-port, but can be the runtime component inviso_rt
process), and P isthe metatracer (the inviso_rt_meta process).

t pm nms(Mod, Func, Arity, Msnanme, M5) -> {ok, NodeResults} | NodeResult |
{error, Reason}

t pm ns(Nodes, Mod, Func, Ari ty, MSsnane, MS) -> {ok, NodeResults} | {error, Reason}
Types:

Nodes = [Node] <v> <v>Mod = Func = aton()<v> <v>Arity = int()<v>

<v>Msnane = tern()<v> <v>M5 = [match_spec()] <v> <v>NodeResults =

[{ Node, NodeResul t}] <v> <v>NodeResult = {ok, 1} | {ok,0} | {error, Reason}<v>

This function adds a list of match-specs to the already existing ones. It uses an internal database to keep track of
existing match-specs. This set of match specs can hereafter be referred to with the name MSnane. If the match-spec
does not result in any metatraced functions (for whatever reason), the M5 is not saved in the database. The previously
known match-specs are not removed. If MSnarre is already in use as aname referring to a set of match-specsfor this
particular meta-traced function, the previous set of match-specs are replaced with MS.

Mod: Func/ Ari t y must previously have been initiated in order for this function to add a match-spec.
When calling several nodes, the nodes are called in parallel. { ok, 1} indicates success.

tpm ns_tracer (Md, Func, Arity, Msnane, M5) -> {ok, NodeResul ts} | NodeResult |
{error, Reason}

tpm ns_tracer (Nodes, Mod, Func, Arity, Msnane, M5) -> {ok, NodeResul ts} |
{error, Reason}

See tpm_ms/X for details on arguments and return values, and tpm_tracer/X for explanations about the appending of
{tracer, Tracer} processtraceflag.

ct pm nms(Mod, Func, Arity, MSnanme) -> {ok, NodeResults} | NodeResult |
{error, Reason}

ct pm ns(Nodes, Mbd, Func, Arity, Msnane) -> {ok, NodeResults} | {error, Reason}
Types.

NodeResul ts = [{Node, NodeResul t}]

NodeResult = ok | {error, Reason}

Removes a named match-spec from the meta traced function. Note that it never isafault to remove amatch spec. Not
even from afunction which is non existent.

When calling severa nodes, the nodes are called in parallél.

ct pm(Mod, Func, Arity) -> {ok, NodeResults} | NodeResult | {error, Reason}
ct pm(Nodes, Mod, Func, Arity) -> {ok, NodeResults} | {error, Reason}
Types.

NodeResults = [{Node, NodeResul t}]

NodeResult = ok | {error, Reason}

Removes the meta trace pattern for the function, means stops generating output for this function. The public loop data
structure may be cleared by the previously entered RemmoveFunc.

Ericsson AB. All Rights Reserved.: Inviso | 23

inviso

When calling several nodes, the nodes are called in parallel.

tpm | ocal nanes() -> {ok, NodeResults} | NodeResult | {error, Reason}
t pm | ocal nanes(Nodes) -> {ok, NodeResults} | {error, Reason}
Types:

NodeResults = [{Node, NodeResul t}]

NodeResult = {R1, R?}

Rl = R2 = {ok,0} | {ok,1} | {error, Reason}
Quick version for setting meta-trace patterns on er | ang: regi ster/ 2. It uses a default Cal | Func and
Ret ur nFunc in the meta-tracer server. The main purpose of this function isto create ti-log entries for associations
between pids and registered name aliases. The implementation uses return_trace to see if the registration was

successful or not, before actually making the ti-log alias entry. Further the implementation also meta traces the BIF
unregi ster/ 1.

If both N1 and N2 is 1, function call was successful. N1 and N2 represent setting metatrace patternonr egi st er/ 2
andunregi ster/ 1.

ct pm | ocal names() -> {ok, NodeResul ts} | NodeResult | {error, Reason}
ctpm | ocal nanes(Nodes) -> {ok, NodeResults} | {error, Reason}
Types:

NodeResults = [{Node, NodeResul t}]

NodeResult = {Rl, R2}

Rl = R2 = ok | {error, Reason}

Function for removing previously set patters by tpm localnames/0. The two results Rl and R2 represents that meta
pattern isremoved from both r egi st er/ 2 andunr egi ster/ 1.

t pm gl obal names() -> {ok, NodeResults} | NodeResult | {error, Reason}
t pm gl obal nanmes(Nodes) -> {ok, NodeResults} | {error, Reason}
Types.

NodeResul ts = [{Node, NodeResul t}]

NodeResult = {R1, R2}

RlL = R2 = {ok,0} | {ok,1} | {error, Reason}
Quick version for setting metatrace patterns capable of learning the association of
a pid with a globaly registered name (registered using gl obal :regi ster_nane). The
implementation meta-traces on gl obal : handl e_cal | ({register," "," "," "}," '," ') and
gl obal : del et e_gl obal _nane/ 2. The N1 and N2 represents the success of the two sub-tmp calls.

ct pm gl obal nanes() -> {ok, NodeResul ts} | NodeResult | {error, Reason}
ct pm_gl obal names(Nodes) -> {ok, NodeResults} | {error, Reason}
Types:

NodeResults = [{Node, NodeResul t}]

NodeResult = {R1,R2} | {error, Reason}

Rl = R2 = ok | {error, Reason}

Function for removing previously set meta patters by tpm_globalnames/0,1. Thetwo resultsR1 and R2 represents that
meta pattern are removed from both gl obal : handl e_cal | / 3 and gl obal : del et e_gl obal _nane/ 1.

24 | Ericsson AB. All Rights Reserved.: Inviso

inviso

ctp_all () -> {ok, NodeResults} | NodeResult | {error, Reason}
ctp_all (Nodes) -> {ok, NodeResults} | {error, Reason}
Types.

NodeResul ts = [{Node, NodeResul t}]

NodeResult = ok | {error, Reason}

Clears all, both global and local trace patterns. Does not clear meta trace patterns. Equivalent to a call to ctp/3,4 and
to ctpl/3,4 with wildcards' _' for al modules, functions and arities.

suspend(SReason) -> {0k, NodeResults} | NodeResult | {error, Reason}
suspend(Nodes, SReason) -> {ok, NodeResults} | {error, Reason}
Types.
SReason = term()
NodeResults = [{Node, NodeResul t}]
NodeResult = ok | {error, Reason}
Suspends the runtime components. SReas on will become the suspend-reason replied in for instance aget_status/0,1
cal. A runtime component that becomes suspended removesall trace flagsand all metatrace patterns. In that way trace

output is no longer generated. The task of reactivating a suspended runtime component is outside the scoop of inviso.
It can for instance be implemented by a higher layer trace-tool "remembering" al trace flags and meta patterns set.

cancel _suspension() -> {ok, NodeResults} | NodeResult | {error, Reason}
cancel _suspend(Nodes) -> {ok, NodeResults} | {error, Reason}
Types:
NodeResults = [{Node, NodeResul t}]
NodeResult = ok | {error, Reason}
Makes the runtime components r unni ng again (as opposite to suspended) . Since reactivating previous trace

flags and meta trace patterns is outside the scoop of inviso, cancelling suspension is simply making it possible to set
trace flags and meta trace patterns again.

get _status() -> {ok, NodeResults} | NodeResult | {error, Reason}
get _st at us(Nodes) -> {ok, NodeResults} | {error, Reason}
Types:
NodeResul ts = [{Node, NodeResul t}]
NodeResult = {ok,{State, Status}} | {error, Reason}
State = new | idle | tracing
Status = running | {suspended, SReason}
SReason = term)
Finds out the state and status of aruntime component. A runtime component isin state newbeforeit hasbeen initiated

to do any tracing the first time. There are clear-functions which can make a runtime component become new again
without having to restart. A runtime component becomesi dl e after tracing is stopped.

get tracerdata() -> {ok, NodeResults} | NodeResult | {error, Reason}
get tracerdat a(Nodes) -> {ok, NodeResults} | {error, Reason}
Types:

NodeResults = [{Node, NodeResul t}]

Ericsson AB. All Rights Reserved.: Inviso | 25

inviso

NodeResult = {ok, NResult} | {error, Reason}
NResult = TracerData | no_tracerdata
Returnsthe current tracerdata of aruntime component. A runtime component in state new can not have tracerdata. An

i dl e runtime component does have tracerdata, the last active tracerdata. Tr acer Dat a will be aterm as specified
toi ni t _traci ng when tracing wasinitiated for the runtime component.

list_logs() -> {ok, NodeResults} | NodeResult | {error, Reason}
list_|ogs(Nodes) -> {ok, NodeResults} | {error, Reason}
list | ogs(NodeTracerData) -> {ok, NodeResults} | {error, Reason}
list_l|ogs(TracerData) -> {ok, NodeResults} | NodeResult | {error, Reason}
Types:
TracerData -- see init_tracing/1,2
NodeResul ts = [{Node, NodeResul t}]
NodeResult = {ok,FileList} | {ok,no_log} | {error, Reason}
FileList = [Fil eType]
FileType = {trace log,Dir,Files} | {ti _log,Dr,Files}
Files = [Fi | eNameW t hQut Pat h]
Returnsthe actually existing log files associated with Tr acer Dat a. If atracerdatais not specified, current tracerdata

is used for that particular runtime component. Fi | es will be a list of one or more files should it be a wrap-set.
Otherwisetheit isalist of only one filename.

This function is useful to learn the name and path of all files belonging to atrace. This information can later be used
to move those files for merging. Note that since it is possible to ask on other tracerdata than the current, it is possible
to learn filenames of previously done traces, under the circumstances that they have not been removed.

fetch_l og(LogSpecLi st, DestDir, Prefix) -> {ok, NodeResul ts} |
{error,not _distributed} | {error, Reason}

fetch | og(DestDir, Prefix) -> {ok, NodeResults} | {error,not _distributed} |
{error, Reason}

Types.
DestDir = string()
Prefix = string()
LogSpeclLi st = [LogSpec]
LogSpec = {Node, Fi | eSpecList} | Node | {Node, Tracer Dat a}
TracerData = see init_tracing/1,/2
Fil eSpecList = [{trace log,Dr,FileList},{ti log,Dir,FileList}] |
[{trace_log,Dir, FileList}]
Fil eLi st = [Renot eFi | eNane]
NodeResult = {Concl usion, ResultFileSpec} | no_log | {error, NReason}
NReason = own_node | Reason
Concl usion = conplete | inconplete
Resul tFil eSpec = [{trace_log, Fil eResults},{ti | og, Fil eResults}]
FileResults = [Fil eResul t]
FileResult = {ok, FileNane} | {error, FReason}
FReason = {fil e_open, {posix(), FileNane}} | {file_open
{posi x(), RenoteFi | eNane}} | {file_open, {posix(),

26 | Ericsson AB. All Rights Reserved.: Inviso

inviso

[DestDir, Prefix, RenoteFil eNane]}} | {file_wite,{posix(), FileNane}} |
{truncated, Fil eNanme} | {truncated, {Reason, Fi | eNane}}
posi x() = aton()
Copieslog files over distributed erlang to the control component node. This function can only be used in a distributed
system.

The resulting transferred files will have the prefix Pr ef i x and will be located in Dest Di r . The source files can
either be pointed out using a Fi | eLi st Spec or tracerdata. If no files are explicitly specified, current tracerdata
for that node will be used. Note that if source files have the same name (on several nodes) they will overwrite each
other at DestDi r.

del et e_| og(Nodes, Tracer Data) -> {ok, NodeResults} | {error, Reason}
del et e_I og(NodeSpeclList) -> {ok, NodeResults} | {error, Reason}
del ete | og(Spec) -> {ok, NodeResults} | NodeResult | {error, Reason}
delete_l og(TracerData) -> {ok, NodeResults} | NodeResult | {error, Reason}
delete log() -> {ok, NodeResults} | NodeResult | {error, Reason}
Types:
Nodes = [Node]
NodeSpecLi st = [{Node, Spec}]
Spec = [AbsPat hFi |l eNane] | LogSpecs
LogSpecs = [LogSpec]
LogSpec = {trace_log,Dir,[FileNaneWthoutPath]} | {ti_log,Dr,
[Fi | eNameW t hout Pat h] }
TracerData -- see init_tracing/1,/2
NodeResults = [{Node, NodeResul t}]
NodeResult = {ok,no_log} | {ok,Loglnfos} | {ok,Filelnfos}
Logl nfos = [Logl nf o]
Loglinfo = {trace_log, Filelnfos} | {ti_log,Filelnfos}
Filelnfos = [Fil el nfo]
Filelnfo = {ok, Fil eNane} | {error, Reason}

Deletes listed files or files corresponding to tracerdata. If no tracerdata or list of files are specified in the call, current
tracerdata at the runtime components will be used to identify filesto delete. All filenames shall be strings.

Fi | eName can either be an absolute path or just a filename depending on if AbsPat hFi | eName or aLogSpec
was used to identify thefile.

subscri be() -> ok | {error, Reason}
subscri be(Pid) -> ok | {error, Reason}
Types:
Pid = pid()
AddsPi d or sel f () if usingsubscri be/ 0 to the inviso-event sending list. Note that it is possible to add a pid
several times and that the Pi d then will receive multiple copies of inviso-event messages.

All eventswill be sent to all subscribers in the event sending list.

Event = {inviso_event, ControllerPid, erlang:|ocaltinme(), Mg}
Msg = {connected, Node, {RTtag, {State, Status}}}

Ericsson AB. All Rights Reserved.: Inviso | 27

inviso

| {disconnected, Node, NA}
| {state_change, Node, {State, Status}}
| {port_down, Node, Reason}

Node = node() | local _runtinme

Subscribing to inviso-event may be necessary for a higher layer trace-tool using inviso to follow the runtime
components. | ocal _r unt i me will be used for a runtime component running in a non-distributed environment.

unsubscri be() -> ok
unsubscri be(Pid) -> ok

Removes Pi d (once) from the subscription list.

28 | Ericsson AB. All Rights Reserved.: Inviso

inviso_as_lib

inviso_as_lib

Erlang module

The purpose of the Inviso autostart utility library isto facilitate the creation and modification of autostart configuration
files used by the standard autostart.

Exports

setup_autostart(Node, R Opts, TracerbData, CnrdFiles, Bindings, Transl, RTtag)
-> ok | {error, Reason}

Types.
Node = atom()
R=int()
Opts -- see inviso:add_nodes/ 2,3
TracerData -- see inviso:init_tracing/1,2
CrdFiles = [CndFi | €]
CrdFile = string()
Bi ndi ngs = [{Var, Val }]
Var = aton()
Val = term()

Transl = [{{M, F1, Arity}, {M,F2,{M,Ft}}}]
ML=F1l=M=F2=M =F =atom)
Arity = int()

RTtag = tern()

Reason = term()

Creates an autostart configuration file on Node. The name of the file is automatically deducted from consulting the
Runtime_Tools configuration parameters at Node.

Risthe number of allowed autostarts remaining.
Opt s isthe options which shall be given to the runtime component. See inviso:add_nodes/2,3.
Tr acer Dat a isused when initiating tracing on this node. See inviso:init_tracing/1,2.

CndFi | es points out files containing instructions understood by the invi so_autostart_server
implementation of an autostart initiator.

Bi ndi ngs isalistof { Var, Val} tuples, where Var isthe name of avariable and Val the actual value of the
variable.

Transl meansthat ML: F1/ Ari ty shall be translated into M2: F2.
RTt ag istheincarnation tag of the runtime component. See See inviso:add_nodes/2,3.

set _repeat(Node, R) -> ok | {error, Reason}

Types:
Node = atom()
R=1int()

Reason = term()

Ericsson AB. All Rights Reserved.: Inviso | 29

inviso_as_lib

Sets the repeat parameter in the autostart file at Node without changing any of its other contents. The autostart
configuration file must exist.

Risthe number of allowed autostarts remaining.

i nhibit_autostart(Node) -> ok | {error, Reason}
Types:

Node = atom()

Reason = term()

Sets the repeat parameter in the autostart file at Node to 0. Equivalent toset _r epeat (Node, 0).

30 | Ericsson AB. All Rights Reserved.: Inviso

inviso_Ifm

inviso_Ifm

Erlang module

Implements an off-line logfile merger, merging binary trace-log files from several nodes together in chronological
order. The logfile merger can also do pid-to-alias trandlations.

Thelogfile merger is supposed to be called from the Erlang shell or a higher layer trace tool. For it to work, al logfiles
and trace information files (containing the pid-alias associations) must be located in the file system accessible from
this node and organized according to the API description.

The logfile merger starts a process, the output process, which in its turn starts one reader process for every node it
shall merge logfiles from. Note that the reason for a process for each node is not remote communication, the logfile
merger is an off-line utility, it isto sort the logfile entriesin chronological order.

Thelogfile merger can be customized both when it comes to the implementation of the reader processes and the output
the output process shall generate for every logfile entry.

Exports

merge(Files, QutFile) ->
merge(Fil es, WorkHFun, 1nitHandlerData) ->

nerge(Fil es, Begi nHFun, WorkHFun, EndHFun, InitHandl erData) -> {ok, Count} |
{error, Reason}

Types.
Files = [Fil eDescription]
Fil eDescription = FileSet | {reader, Rvbd, RFunc, Fil eSet }
FileSet = {Node, LogFiles} | {Node,[LogFiles]}
Node = atom()
LogFiles = [{trace log,[FileNane]}] | [{trace_log,[FileNane]},
{ti_log, TiFileSpec}]
TiFileSpec = [string()] - a list of one string.
Fil eName = string()
RMod = RFunc = atom()
QutFile = string()
Begi nHFun = fun(InitHandl erData) -> {ok, NewHandl erData} | {error, Reason}

Wor kHFun = fun(Node, LogEntry, PidMappings, Handl erData) -> {ok,
NewHand! er Dat a}

LogEntry = tuple()

Pi dMappi ngs = term)

EndHFun = fun(Handl erData) -> ok | {error, Reason}
Count = int()

Reason = term()

Merges the logfilesin Fi | es together into one file in chronological order. The logfile merger consists of an output
process and one or several reader processes.

Returns{ ok, Count} where Count isthetotal number of log entries processed, if successful.
When specifying LogFi | es, currently the standard reader-process only supports:

Ericsson AB. All Rights Reserved.: Inviso | 31

inviso_Ifm

e onesinglefile
» alist of wraplog files, following the naming convention <Pr ef i x><Nr ><Suf f i x>.
Note that (when using the standard reader process) it is possible to give alist of LogFi | es. Thelist must be sorted

starting with the oldest. This will cause several trace-logs (from the same node) to be merged together in the same
Qut Fi | e. Thereader process will simply start reading the next file (or wrapset) when the previous is done.

Fil eDescription == {reader, RMbd, RFunc, Fi |l eSet} indicates that spawn(Rvbd, RFunc,
[Qut put Pi d, LogFi | es]) shall create areader process.

The output processis customized with Begi nHFun, Wor kHFun and EndHFun. If using mer ge/ 2 adefault output
process configuration is used, basically creating atext file and writing the output line by line. Begi nHFun is called
once before requesting log entries from the reader processes. Wor kHFun is called for every log entry (trace message)
LogEnt ry. Here the log entry typically gets written to the output. Pi dMappi ngs is the trandlations produced by
the reader process. EndHFun is called when all reader processes have terminated.

Currently the standard reader can only handle oneti-file (per LogFi | es). The current inviso metatracer isfurther not
capable of wrapping ti-files. (This also because awrapped ti-log will most likely be worthless since alias associations
donein the beginning are erased but still used in the trace-1og).

The standard reader process is implemented in the module i nvi so_I f m t preader (trace port reader). It
understands Erlang linked in trace-port driver generated trace-logs and i nvi so_rt_neta generated trace
information files.

Writing Your Own Reader Process
Writing areader processis not that difficult. It must:

e Export aninit-like function accepting two arguments, pid of the output process and the LogFi | es component.
LogFi | es isactually only used by the reader processes, making it possible to redefine LogFi | es if
implementing an own reader process.

* Respondto{get_next_entry, QutputPid} messageswith{next_entry, self(),
Pi dMappi ngs, NowTi neSt anp, Tern} or{next_entry, self(), {error, Reason}}.

e Terminate normally when no more log entries are available.
e Terminate on an incoming EXIT-signal from Qut put Pi d.

The reader process must of course understand the format of alogfile written by the runtime component.

32| Ericsson AB. All Rights Reserved.: Inviso

inviso_Ifm_tpfreader

inviso_Ifm_tpfreader

Erlang module

Implements the standard reader process to the standard logfile merger i nvi so_| fm

The reader process reads logfiles belonging to the same set (hormally one node) in chronological order and
delivers logged trace messages one by one to the output process. Before any trace messages are delivered, the
i nviso_| fm tpreader implementation reads the entire trace information file (if in use) and builds a database
over pid-to-alias associations.

Thei nvi so_| f m t preader implementationiscapableof considering that an alias may have been used for severa
processes during different times. An alias may also bein use for several pids at the sametime, on purpose. If aprocess
has generated atrace message, all associationsbetween that pid and aliaseswill be presented asthelist Pi dMappi ngs
in the message sent to the output process.

Exports

handl e_| ogfile_sort_wapset(LogFiles) -> FileList2
Types:
LogFi | es [{trace_l og, FileList}]
FileList = FileList2 = [Fil eNane]
Fil eName = string()

Only one{trace_l og, FilelList} tupleisexpectedinLogFi | es, al other tuples areignored. Fi | eLi st
must:

e contain one singlefile name, or
« alist of wraplog files, following the naming convention <Pr ef i x><Nr ><Suf f i x>.

SortsthefilesinFi | eLi st inchronological order beginning with the oldest. Sortingisonly relevant if Fi | eLi st is
alist of wraplogs. The sorting is done on finding the modul o-counter in the filename and not on filesystem timestamps.

This function is exported for convenience should an own reader process be implemented.

The Trace Information File Protocol

The format of a trace information file is dictated by the meta tracer process. The i nvi so_I f m t pf r eader
implementation of a reader process understands the following trace information entries. Note that the
i nvi so_rt _met a trace information file is on binary format prefixing every entry with a4 byte length indicator.

{Pid, Alias, alias, NowStanp}

Pid = pid()
Alias = term)
NowSt anp = tern(), butincurrent implementation as returned from er | ang: now/ 0

This message indicates that from now on shall Pi d be associated with Al i as.
{MaybePi d, Alias, unalias, NowStanp}

MaybePid = pid() | undefined

Alias = term))

NowSt amp = term(), seeabove

This message indicates that, if MaybePi d is apid, this pid shall no longer be associated with Al i as. If itis
undef i ned, al associations with Al i as from now shall be considered invalid.

Ericsson AB. All Rights Reserved.: Inviso | 33

inviso_Ifm_tpfreader

Also note that there are many situations where unal i as entries will be missing. For instance if a process
terminates without making explicit function calls removing its associationsfirst. Thisis seldom aproblem unless
the pid is reused.

34 | Ericsson AB. All Rights Reserved.: Inviso

inviso_rt

inviso_rt

Erlang module

Thei nvi so_rt APl isnormally only used when programming autostart scripts or similar mechanisms. The reason
is that the runtime component is part of the Runtime_tools application and will therefore always be available. But
the regular inviso API is part of the Inviso application not necessarily available on the node doing an autostart. It is
of course possible to runt a"lean™ tracer only using the runtime component manually (i.e not through autostart). The
runtime component shall otherwise be controlled through the control component, which is accessed with thei nvi so
API.

Exports

init_tracing(TracerData) -> NodeResult | {error, Reason}
Seeinviso:init_tracing/2 for details.

t p(Mod, Func, Arity, Mat chSpec, Opts) ->
t p(Mod, Func, Arity, Mat chSpec) -> NodeResult | {error, Reason}
tp(PatternList) -> NodeResult | {error, Reason}

Types.
Mod, Func = atom() | '_' | MddRegExp | { D r RegExp, ModRegEXxp}
MbdRegExp = regexp_string()

Di r RegExp = regexp_string()
Arity =int() | '_
Mat chSpec = true | false | [] | matchspec()

PatternList = [Pattern],

Pattern = {Modd, Func, Arity, Mat chSpec, Opt s}
Opts = [Opt]

Opt = only_| oaded
NodeResult = {ok,[Ans]} | {error, Reason}

Ans = int() | {error, Reason}

Set global trace patterns. The integer replied if the call was successfull describes the number of matched functions.

Using wildcards follows the rules for wildcards of er | ang: t race_pat t er n. It isfor instance illegal to specify
Me=' ' whileFisnot' ' .

Modules can aso be specified using Erlang regular expressions as described in the regexp module. If
{Di r RegExp, MbdRegExp} isused, module selection will further be restricted by that the module must be loaded
from alocation containing Di r RegExp somewhere in the path. This can be used to for instance trace on all modules
belonging to a certain application.

t pl (Mod, Func, Arity, Mat chSpec) ->
t pl (Mod, Func, Arity, Mat chSpec, Opts) -> NodeResult | {error, Reason}
tpl (PatternList) -> NodeResult | {error, Reason}

See tp/N function above for details on arguments and return values.

Set local trace pattern on specified functions.

Ericsson AB. All Rights Reserved.: Inviso | 35

inviso_rt

ctp(Md, Func, Arity) -> NodeResult | {error, Reason}
See tp/N for argument descriptions.
Clear global trace patterns.

ctpl (Mod, Func, Arity) -> NodeResult | {error, Reason}
See tp/N for argument description.
Clear local trace patterns.

tf (Pi dSpec, Fl agLi st) -> NodeResult | {error, Reason}
tf(TraceConflList) -> NodeResult | {error, Reason}
Types.
TraceConfList = [{PidSpec, Fl agLi st}]
Fl agLi st = [Fl ag]
PidSpec = all | new existing | pid() | locally registered nane()
Flag = all process trace flags all owed.
NodeResult = {ok,[Ans]} | {error, Reason}
Ans = int() | {error, Reason}

Set process trace flags. The integer returned if the call was successful describes the matched number of processes.

ctf (Pi dSpec, Fl agLi st) -> NodeResult | {error, Reason}
ctf(TraceConfList) -> NodeResult | {error, Reason}

See tf/1,2 for arguments and return val ue description.
Clear process trace flags.

init_tpm Md, Func, Arity, Call Func) -> NodeResult | {error, Reason}

init_tpm Md, Func, Arity, I nitFunc, Cal | Func, Ret ur nFunc, RenoveFunc) ->
NodeResult | {error, Reason}

Types:
Mbd = Func = aton()
Arity = int()
NodeResult = ok | {error, Reason}
I nit Func = RenobveFunc = {Mddul e, Function} | function()/4 | void

Seeinviso:init_tpnv5,7 for details.

t pm(Mod, Func, Arity, M5) -> NodeResult | {error, Reason}
t pm(Mod, Func, Arity, M5, Cal | Func) -> NodeResults | {error, Reason}

t pm(Mod, Func, Arity, M5, I ni t Func, Cal | Func, Ret ur nFunc, RenoveFunc) -> NodeResults
| {error, Reason}

Types:
Mbod = Func = atom() =/="_"
Arity = int()
M5 = mat ch_spec()

36 | Ericsson AB. All Rights Reserved.: Inviso

inviso_rt

InitFunc = Call Func = ReturnFunc = RenoveFunc = {Mbdul e, Functi on} |
function()

NodeResult = {ok, 1} | {ok,0} | {error, Reason}
See inviso:tpm/4,5,8 for details.

tpm_tracer (Md, Func, Arity, M5) -> NodeResult | {error, Reason}

tpmtracer (Md, Func, Arity, M5, Cal | Func) -> NodeResults | {error, Reason}
tpmtracer (Md, Func, Arity, M5, I ni t Func, Cal | Func, Ret ur nFunc, RenoveFunc) ->
NodeResults | {error, Reason}

See inviso:tpm_tracer/4,5,8 for details.

t pm ms(Mod, Func, Arity, Msnanme, M5) ->d NodeResult | {error, Reason}
Types:

Mbod = Func = aton()

Arity = int()

Msnane = term()

Mat chSpec = [match_spec()]

NodeResult = {ok,1} | {ok,0} | {error, Reason}

Seeinviso:tpm _mg/5 for details.

tpm.ns_tracer (Md, Func, Arity, Msnane, M5) ->d NodeResult | {error, Reason}
Seeinviso:itpm_ms_tracer/5 for details.

ct pm nms(Mod, Func, Arity, MSnane) -> NodeResult | {error, Reason}
Types:

NodeResult = ok | {error, Reason}
See inviso:ctpm _mg/4 for details.

ct pm(Mod, Func, Arity) -> {ok, NodeResults} | NodeResult | {error, Reason}
Types:

NodeResults = [{Node, NodeResul t}]

NodeResult = ok | {error, Reason}

See inviso:ctpm/3 for details.

| ocal _register() ->NodeResult | {error, Reason}
Types:

NodeResult = {R1, R2}

RlL = R2 = {ok,0} | {ok,1} | {error, Reason}

Seeinviso:tpm localnames/O for details.

renove_| ocal register() ->NodeResult | {error, Reason}
Types:
NodeResult = {R1, R2} | {error, Reason}

Ericsson AB. All Rights Reserved.: Inviso | 37

inviso_rt

Rl = R2 = ok | {error, Reason}
See inviso:ctpm_localnames/O for details.

gl obal register() ->NodeResult | {error, Reason}
Types.

NodeResult = {R1,R2} | {error, Reason}

Rl = R2 = {ok,0} | {ok,1} | {error, Reason}
See inviso:tpm_globalnames/O for details.

remove_gl obal _register() ->NodeResult | {error, Reason}
Types:

NodeResult = {R1,R2} | {error, Reason}

Rl = R2 = ok | {error, Reason}

See inviso; ctpm_globalnames/O for details.

38| Ericsson AB. All Rights Reserved.: Inviso

inviso_rt_meta

inviso_rt_meta

Erlang module

Thismodule provides adirect API to the inviso metatracer. These functions are only meant to be used in metatracing
Cal | Func and RenoveFunc.

It can sometimes be necessary to manipul ate metamatch-patternsfrom Cal | Funcsand RenoveFuncs. Theproblem
then is that call-funcs and remove-funcs are meta trace call-backs executed inside the inviso meta tracer's context.
Hence making calls to the regular API's manipulating meta trace-patterns will hang the inviso metatracer!.

To remedy this problem, a number of useful tpm-functions are available in this API. It must be understood that their
actions are local to the Erlang node where they are called.

Exports

t pm nms(Mod, Func, Arity, Msname, M5) -> {ok, 0} | {ok,1} | {error,not _initiated}

Seeinviso:tpm_ms/6 for details. Note that this function only effects meta trace-patterns on the Erlang node where the
functionis called. Thisalso implies that only the local inviso meta tracer's name-database is updated with MSnane.

tpm.ns_tracer (Md, Func, Arity, Msnane, M5) -> {ok, 0} | {ok, 1} |
{error,not _initiated}

Seeinviso:itpm_ms mg/6 for details. Note that this function only effects meta trace-patterns on the Erlang node where
thefunctioniscalled. Thisalsoimpliesthat only thelocal inviso metatracer's name-database is updated with MSnane.

list tpmms(Md, Func, Arity) -> [MSnane]

Returns alist of all MSname in use for Mod: Func/ Ari t'y. This can be useful instead of having to have an own-
implemented database over currently in use meta match-functions for a particular function.

ct pm nms(Mod, Func, Arity, MSnane) -> ok

Seeinviso:ctpm_ms/5 for details. Note that thisfunction only effects metatrace-patterns on the Erlang node where the
functionis called. Thisalso implies that only the local inviso meta tracer's name-database is updated with MSnane.

get tracer() -> Tracer
Types:
Tracer = pid() | port()
Returns the pid or port acting as the receiver of regular trace messages. Thisis useful if it is necessary to manipulate

meta trace-patterns by hand (using er | ang: trace_pattern/ 3) andthe{tracer, Tracer} must beusedin
one of the match-function bodies.

Ericsson AB. All Rights Reserved.: Inviso | 39

	Inviso
	Inviso User's Guide
	Inviso
	Introduction
	Underlying Mechanisms
	Trace Recepie

	Incarnation runtime tags
	Runtime component state and status
	The Runtime Meta Tracer
	Matching function calls with return values
	Making pid/alias entries in the ti-file
	Extending the public loop data structure.
	Using the inviso meta tracer to achieve side effects

	Runtime Component Autostart
	Autostart Configuration
	The Standard Autostart Implementation
	inviso_autostart
	inviso_autostart_server
	The Standard Autostart Utility Library

	The Dependency Property
	Overload Protection
	Merging and Formatting Logfiles
	Trace Cases

	Reference Manual
	inviso
	start/0
	start/1
	stop/0
	add_node/1
	add_node/2
	add_node_if_ref/1
	add_node_if_ref/2
	add_nodes/2
	add_nodes/3
	add_nodes_if_ref/2
	add_nodes_if_ref/3
	stop_nodes/0
	stop_nodes/1
	stop_all/0
	change_options/1
	change_options/2
	init_tracing/1
	init_tracing/1
	init_tracing/2
	stop_tracing/1
	stop_tracing/0
	clear/0
	clear/2
	clear/1
	tp/6
	tp/5
	tp/5
	tp/4
	tp/2
	tp/1
	tpl/5
	tpl/6
	tpl/4
	tpl/5
	tpl/2
	tpl/1
	ctp/4
	ctp/3
	ctpl/4
	ctpl/3
	tf/3
	tf/2
	tf/2
	tf/1
	tf/1
	ctf/3
	ctf/2
	ctf/2
	ctf/1
	ctf_all/1
	ctf_all/0
	init_tpm/4
	init_tpm/5
	init_tpm/7
	init_tpm/8
	tpm/4
	tpm/5
	tpm/5
	tpm/6
	tpm/8
	tpm/9
	tpm_tracer/4
	tpm_tracer/5
	tpm_tracer/5
	tpm_tracer/6
	tpm_tracer/8
	tpm_tracer/9
	tpm_ms/5
	tpm_ms/6
	tpm_ms_tracer/5
	tpm_ms_tracer/6
	ctpm_ms/4
	ctpm_ms/5
	ctpm/3
	ctpm/4
	tpm_localnames/0
	tpm_localnames/1
	ctpm_localnames/0
	ctpm_localnames/1
	tpm_globalnames/0
	tpm_globalnames/1
	ctpm_globalnames/0
	ctpm_globalnames/1
	ctp_all/0
	ctp_all/1
	suspend/1
	suspend/2
	cancel_suspension/0
	cancel_suspend/1
	get_status/0
	get_status/1
	get_tracerdata/0
	get_tracerdata/1
	list_logs/0
	list_logs/1
	list_logs/1
	list_logs/1
	fetch_log/3
	fetch_log/2
	delete_log/2
	delete_log/1
	delete_log/1
	delete_log/1
	delete_log/0
	subscribe/0
	subscribe/1
	unsubscribe/0
	unsubscribe/1

	inviso_as_lib
	setup_autostart/8
	set_repeat/2
	inhibit_autostart/1

	inviso_lfm
	merge/2
	merge/3
	merge/5

	inviso_lfm_tpfreader
	handle_logfile_sort_wrapset/1

	inviso_rt
	init_tracing/1
	tp/5
	tp/4
	tp/1
	tpl/4
	tpl/5
	tpl/1
	ctp/3
	ctpl/3
	tf/2
	tf/1
	ctf/2
	ctf/1
	init_tpm/4
	init_tpm/7
	tpm/4
	tpm/5
	tpm/8
	tpm_tracer/4
	tpm_tracer/5
	tpm_tracer/8
	tpm_ms/5
	tpm_ms_tracer/5
	ctpm_ms/4
	ctpm/3
	local_register/0
	remove_local_register/0
	global_register/0
	remove_global_register/0

	inviso_rt_meta
	tpm_ms/5
	tpm_ms_tracer/5
	list_tpm_ms/3
	ctpm_ms/4
	get_tracer/0

