éx

Spring

Reference Documentation

Version 1.2.9
(Work in progress)

Copyright (c) 2004-2007 Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack, Thierry
Templier, Erwin Vervaet

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

I I 014 oo 18 ot A oo PR RPPPPI 12
0 T Y= VT T RS 12
1.2, USAQE SCENGITOS .. .uuvvieiieee et e ittt et e e e e e e e ettt e e e e e e e s s e ta b e e e e eeeeeesaaateeeaeeeaaesssaasntsbareeeeeesannnssrnnnes 13

2. Background iNFOrMELTONcueiiieiiiiie ettt st e s e e e e st e e e s anne e e e e s nnneee s 16
2.1. Inversion of Control / Dependency INJECLIONcoooeeiieii i, 16

3. Beans, BeanFactory and the ApplicatioNCONTEXToveiiiiiiiiiiiiiee e 17
G 150 N 1 11 o LB (o1 oo USRS 17
3.2. BeanFactory and BeanDefinitions - the DaSICScvvveeiiiiciiiiiiiecce e 17

3.2, 1. TRHEBEANFECIONYeeiiiiiiiiee ittt e s e e e e 17
3.2.2. The BeanDEfINITIONooiiiiiiiiee et e e 19
e T I 0= o= 1 o =SSR 19
3.2.4. The bean identifiers (i d and
1111 PP PP PP PP 21
3.2.5. Tosingleton or NOt 10 SINGIELONciiiiiiiiiiii e e e e 21
3.3. Properties, collaborators, autowiring and dependency
(01 07C 0] oo PSP P PPPPPPPPPPRP 22
3.3.1. Setting bean properties and Collaboratorscoooviiiiiiieieeeee e 22
3.3.2. Constructor Argument RESOIULIONccoiuuriieiiiiiiee et 25
3.3.3. Bean properties and constructor argumentsdetailed ... 26
3.3.4. MethOd INJECTION ...ceoiiiiiie e e et e e s 30
3.3.5. USINQG GEPENUS- 0N .eeviiiiiiiiieiittiee e ettt e st e et e et e e e e e e e s e e e s an e e e s annn e e e e e nnees 32
3.3.6. AULOWITING COIADOIALONS ...t e et a e e e s ae e e aeeas 33
3.3.7. Checking fOr dEPENAENCIESoviiiiiiiee et 34
3.4. Customizing the Nature Of @bEANcooiiiiiiiiii e 34
341, LifECYCIEINTEITACES ...ooiiieiie ittt 35
3.4.2. KNOWINGWRO YOU @IE ...ccceeviiiiiiiieeeeeeee ettt ettt ettt a e 36
4.3, FACIONYBEAN ... e 37
3.5. Abstract and child bean definitioNSooiiiiiiiiii e 37
3.6. Interacting With the BEANFACIONYccvviiiiiiiiiieiie e e e e e e e e e e e e e eeanes 38
3.6.1. Obtaining a FactoryBean, NOt itSProdUCEc.uevieiiiirieeiiiiee e 39
3.7. Customizing beans with BEaNPOSIPIOCESSOIScciieeiiiiciiiiiiieeee e e ettt e e e e e e e seirrrer e e e e e e e eeanes 39
3.8. Customizing bean factories with BeanFactoryPOSIPrOCESSOI'Scuvvveeriiiieeiiiiiee e e e 39
3.8.1. ThePropertyPl acehol der CONfi QUI @ciiieeiiiieiiiiieeeeeeeeeeeeete e e e e e e e e et ee e e e e e e e e eenaanans 40
3.8.2. The PropertyOverri deCOoNfi QUI B .oiiiieeerueiiieeeeeieeetiiee s e e e e e e eeetae s e e e eeseeesaba e eeeeseeens 41
3.9. Registering additional custom PropertyEditorsccoeeeiiiiiieeiiiiiee e 41
3.10. Usingthe alias element to add aliases for existing beanscccccccivieeiiie i, 42
3.11. Introduction to the Appl i Cat i ONCONT EXT ..iviiiiiiiiiiiiiiiieiiiieeeeee et 43
3.12. Added functionality of the
APPL T CALT ONCONT X eeeeitueeeittisee ettt s eesett s eeseata s eeeeataeeeeataeeeestaaeeestasaaeestneaeestnaerestnseeeestnsaanes 43
3.12.1. USING thE MESSAGESOUN CE ivvviiiiiiiiiiiiiiiiiiiee ettt ettt ettt ettt a e e e e 43
3.12.2. Propagating EVENESeeeieee i i i iciiieeee e e e e e e s ettt e e e e s e et e e e e e e e s et r e e e e e s s aanrararaaaaes 44
3.12.3. Low-level resources and the application CONEXTccoiiiuieieiiiiieeeiiieee e 45
3.13. Customized behavior inthe ApplicatioNCONIEXTcccuvviiiiieee e e 46
3.13.1. Applicati onCont ext Awar e marker
1= o= USRS PPRRPR 46
3.13.2. THE BEANPOSE Pr OCESSOr evivvvvruenieieeereieestuiaeseeesereestsraseeseesererataseeeeesresraraseseesseeens 46
3.13.3. ThEBeanFact O YPOSt Pr OCESSOF ...ccvvuruuiieeeeeeeeerrtieaeeeeeseeerrrsnaaeeeeseeessraaaaaeeeessessssnnns 46
3.13.4. ThePropertyPl acehol der CONfi QUI 8 ...iiiieiviieririiieeeeeeeeeretiee e e e e e s eeeeere s e e eseeeessaaans 47
3.14. Registering additional custom PropertyEditorscceeeeiiiiiiieiiiiiic e 47
3.15. Setting a bean property or constructor arg from a property
L0 £==c o] o TP P P PPPPPP PP 48

Spring Framework Version 1.2.9

Spring - JavalJ2EE Application Framework

3.16. Setting a bean property or constructor arg from afield

V= 11RO RPRPP 49
3.17. Invoking another method and optionally using the return
1722 1 =PRI 49
3.18. Importing Bean Definitions from One File INt0 ANOtNErcooiiiiiiiiiiiiie e 50
3.19. Creating an ApplicationContext from aweb appliCationccoooeeiiiiiiiieeeeiiicieeeee e 51
3.20. Gluecodeand the Vil SINGIELONcooviiiiiiie e e e 52
3.20.1. Using SingletonBeanFactoryL ocator and
ContextSingletonBeanFaCtOryLOCAIOrciiieiiiiiiiiiiiiiee e e e e e e e e e e e 52
4. Abstracting ACCeSStO LOW-LEVEI RESOUICESvviiiiiiiiiieiiiiee ettt 54
T @ V= o USRS 54
4.2, TheResoUrce INTEITACEocviieie e e e e e e e e e e e e e as 54
4.3. Built-in Resource implementalionsoiioieiiiiiiee e e e et e e e e e s e e e e e e e annes 55
G I I U =YY U O o S 55
4.3.2. Cl @SSPAt NRESOUI CB .uuuiiiiiiiieeiiiiieeeetteeee ettt e e e eetteeeeett e e eettneeeataneeessnnaeessanaasesrnneeesnan 55
4.3.3. Fi | ©SYSt EIMRESOUI CE .uiivvueirnieetnereterasesstneeeantertaereaereaeestteraneertaeransranaeeetaeerrnaeranns 56
4.3.4. SErvl €t CONt EXE RESOUI G 1uiiiirruieeiertieererteeeeestteesestteeeestteeessateeesraaesessnaesesrnnaesesnnn 56
4.3.5. I NPUL SET QAMRESOUI CE cevvvrueeeittiieeeittteeeetteeeeastaeeeesnnaseestneeessnnsaeeesanaaeessnnaesessnnseeesnnn 56
£.3.6. Byt EAI T AY RESOUI CB 1uuuiirerrusierertueerestaieerestateerestaeeresttestestaeerssttesrsstatessessntesessnnesesnes 56
4.4. TheResourcelLoader INEITACEcooiiiiiiiiiie e e 56
45. TheResourceLoader Anar e INEITACEooovviiiiiiiiii 57
4.6. SEtting ResoUr CES 8SPIOPEITIESeciiuieieeiiiieieeiaitiee e e ettt e e s st e e e s e e e et e e e s aben e e e e annreeeeennees 57
4.7. Application contexts and Resour ce PAtNSc..uviiiiiii oo 58
4.7.1. Constructing appliCation CONMTEXESccoiiuriieiiiiiiieiiiiee et 58
4.7.2. Theclasspat h*: PrefiX .o 58
4.7.3. Unexpected application context handling of FileSystemResource
ADSOIULE PAENS ... 59
5. PropertyEditors, data binding, validation and the BeanWrappercccccoeeviviveieeeeeeeiccciiineeeeeenn, 61
Co 300 R g 1 oo [0 Tox £ o o PRSP 61
5.2. Binding datausing the Dat @aBi NAErcccuuviiiieieiiiiiiieiee e e e e e e e et e e e e e e e e e eaneneeas 61
5.3. Bean manipulation and the BeanW appereueeeeeiiiiiciiiiiieeeeeessseieeeeeee e e s s ssnnrreeeeeae e s e s snsnennees 61
5.3.1. Setting and getting basic and nested propertiesccccceee e, 62
5.3.2. Built-in propertyEdi t or s, converting
111 63
5.3.3. Other features Worth MENtioNiNgcociiiiiiiiii e 65
5.4. Validation using Spring's Validator INTErfatecoouiiiiiiiiiiee e 65
5.5, TREEITOIrSINLEITACEeeiiiiie ettt e e e et e e e e e e e st e e e e e e e e e nneneeeeas 66
5.6. Res0IVING COOES t0 EITON MESSATESeeeeiurreeeeitireeeaiiteeeeasibeeeessbaeeeesssbseeeeanbe e e e s abaeeeesannneees 66
6. Spring AOP: Aspect Oriented Programming With SPringoocceveeeieieeiiiiiieee e 67
B. . MO LS . i ——— 67
B.1.1. AOP CONCEPLS ...ieiiiiiiiiieeei ittt e e e e s s e e e e e e st e et e e e e s s s nnrr e e e e e e e e s s s annnrnneeeeeeeas 67
6.1.2. Spring AOP capahilities and goalscccuiiiiiiiie i 68
6.1.3. AOP PrOXi€SiN SPIING ...eeeeiiueeeieiiiiiieeeiiiiee e sttt e e et e e ate e s s e e e s asbe e e e s snbeeeeeannnreees 69
6.2. POINICULSIN SPIING ..ooeeeiie e 69
LN B O] 1 1< o £ T TP PP PTP PR POPPPPPPPN 70
6.2.2. Operations 0N POINECULSoicueeiieieieeee e e s ettt e ee e e e e e s et eeeeeeeseaeneeeeeeeaaaeesaanneeneeeaaaess 70
6.2.3. Convenience pointcut implemeNtationsc.eviieiiiiiiiiiiir e 71
6.2.4. POINTCUL SUPEICIBSSESceiiiiiiiieiiiiii ettt e et e e e e st e e e nnnreee s 72
6.2.5. CUSLOM POINTCULSvvieeieeeeiiiiiiiieieeeee e e e s siitrre e e e e e e e s sestrbreeeeeeeesssantrreereaaeessaasnrnneeeeaeess 73
6.3. ACQVICETYPES IN SPIING ...eveeeeeiiiiie ettt e ettt e e e et e e et e e e e e st e e e s anbbeeeeaannneee s 73
6.3.1. AAVICEIITECYCIES ..o, 73
6.3.2. AQVICELYPESIN SPIING .eeveiiiiiiiie ettt e e e e e et e e e s snbb e e e s nnneeee s 73

Spring Framework Version 1.2.9

Spring - JavalJ2EE Application Framework

6.4, ACQVISOISIN SPITNG ..eeeeeiiiiiieeiiee ettt e e e e et e e e e s b e e e e s st e e e s anbne e e e s nnnreee s 78
6.5. Using the ProxyFactoryBean to creat€ AOP PrOXIESuvvveeieeeeiiiiiiiieieee e e cciireee e e e 78
B.5. 1. BaSICS . oiiii e, 78
6.5.2. JavaBeaN PrOPEITIEScccee e e —————— 79
6.5.3. ProXYING INTEITACESeeiiiiiiiiie et e 80
B.5.4. PrOXYING ClaSSESueiiiiiie ittt e e e e e aa e 81
6.5.5. USING 'global’ @0VISOIScoociiiiiiii e 82
6.6. CONVENIENT PIrOXY CIEALIONeeeieeiiiiieeeeitee e e e ettt e e ettt e e et e e e e st e e e e sb e e e e s st e e e e s anbneeeeannnreeens 82
6.6.1. TransaCtionProXyFaCtOryBEaNccciiiiiiiiiiiie et e et e e e e e e 82
6.6.2. EJB PrOXIES ..ooeieieiiee ettt ettt ettt et e e b e et e e s 83
6.7. Concise proxXy defiNitiONSccoooeiiiiii i 84
6.8. Creating AOP proxies programmatically with the ProxyFactoryccccceviiveiiiiiieeniiineenn, 85
6.9. Manipulating adViSed ODJECESeeiiiieeeiiiiie et e e e e e et e e e e e e e e 85
6.10. Using the "autoproXy" faCHITYccoeeeiiiiiiiiiie e e 86
6.10.1. Autoproxy bean definitioNSoooiiiiiiiiiiiii e 87
6.10.2. Using metadata-driven auto-proXYiNgcccceeeeeeeeeeiiiiiiieeeeeeeeessininreeeeeeeeesssnsssneeeeeeens 88
6.11. USING TAIGEISOUITESeeeiiiiiiiieiiiieie e ettt e e e sttt e e et e e e et e e e s et et e e e asbb e e e e anbe e e e s anbbneeeannnneees 20
6.11.1. Hot swappabletarget SOUICESccooeeiei i 90
6.11.2. POOIING target SOUICEScccueviieeeeiee e e e e ettt e e e e e e s e e e e e e e e s s snte e e e e e e e e e s s ssnraaeeeeaeens 91
6.11.3. Prototype target SOUICESceveeerieeeriiiinrrreeeeeeesssannrre e e e ee e s s s s rreee e e e e s s s snnrnneeeeeeeas 92
6.11.4. ThreadL oCal targel SOUICESvvieiieeeeii ittt e e e e e e e e e e e s s st e e e e e e e e s sanb e e e e aaeeas 92
6.12. DEfiNiNG NEW AGVICETYPESeeiieiiiiiie ettt e e s st e e s e e e e e annreee s 93
6.13. Further reading and FESOUICEScoieeiiiiiiiiiiiee et e e e e e e e et e e e e e e e e e eaaneneeas 93
7. ASPECET INTEGIALION ..eiiiiiiiiie ettt e e et e e e st et e e e e abb e e e e e bbe e e e s anbnneeeennnneee s 94
A8 T O Y T PRSI 94
7.2. Configuring AspectJ aspects using SPring [0Ccoccviiieiiee e 94
7.2.1. "SINGIEION" @SPECESveeeieiiiiie ettt 94
7.2.2. NON-SINGIELON BSPECLSoeoeiiiiiiiiiiee et e e e e e e e e st e e e e e e e e e sanbrrereaaeeas 95
4 T € o [= RSO 95
7.3. Using AspectJ pointcuts to target Spring adViCeccvvvveeiee i 95
7.4, SPring asPECES TOI ASPECTTuveiiieiiiiii ettt e e e s 96
8. Transaction MaNAGEIMENTcoooiiii i 97
8.1. The Spring transaction @bSIFACLIONcccuviiiiiiee e s e e e e e e e e e eanaaaes 97
8.2. TranSaCiON SITALEJIESeeeiiiiiiiee ittt e e et e et e e s s e e e e e e e e s nb e e e s anbne e e e s annreee s 98
8.3. Resource synchronization With tranSactionSccccviiieiiee i 100
8.3.1. High-1evel @pproaChooouiiiiiiiice s 100
8.3.2. Low-level approaCh ..., 100
8.3.3. TransactioNAWAreDaaSOUICEPIOXYvveeeiiuirieeeaitiieeesiieee e s e e e snbee e e sbneeeesnnneeees 101
8.4. Programmatic transaction ManageMENtccoiieeiiiiiiiieiireee e e e e eeieiee e e e e e s s eeneeeeeeeeaaeeaeaneneeees 101
8.4.1. USINgthe Transact i ONTEMPI AL € ..eeveeeeeiiiiuriiiiieeeeesieiiitrrereeeesssssntrreeeeeeesssasnnrrnereeaees 102
8.4.2. Using the Pl at f or nTr anSact i ONMANAGET ...eceiiurrreeiiiieeeeeiiiree e st e e e e e e s e e nnneeeeas 102
8.5. Declarative transaction ManNagEMENTuviiiiiiee e e e e e e e e e bbb e e e e e e e e e eaanrneees 103
8.5.1. Source Annotations for Transaction Demarcationcccceeeviieiciieiereeeessssciiiieeeeeens 105
8.5.2. BeanNameAutoProxyCreator,
another declarative apPrOACHeiiiiiiiie e 108
8.5.3. AOP aNd TraNSACLIONSceiiiieiiiiiiiieee e e s ettt e e e e e e s ettt e e e e e e e s e s nteeeeeeeaeeeaaanneeeeeeaaeens 110
8.6. Choosing between programmatic and declarative transaction
MANBOEIMENT ... r e 110
8.7. Do you need an application server for transaction
MANAGEIMENT? ...t eeee ettt e et e e e e e e s e st e e e et e e e e s s s aa e b b e e e et e e e e s e s n bbb e e e e e aeeessannrnreeeeaeeeeaannes 110
8.8. AppServer-speCifiC INEOralioNcccoeeiiii i 110
8.8.1. BEA WEDLOGIC .. .uvviiiiiiie ettt e et e e e e e e st e e e e e e e s et enaeae s 111

Spring Framework Version 1.2.9 iv

Spring - JavalJ2EE Application Framework

8.8.2. IBM WEDSPNEIEcceiiiiiie ettt e et e e e e s 111
8.9. COmMMON PrOBIEIMSueiiiiie i e e e e e s s e e e e e e s s e et b ra e e e e e e e e e e snsnranees 111
8.9.1. Use of the wrong transaction manager for a specific
DAASOUICTEcceeiiiiiii it 111
8.9.2. Spurious AppServer warnings about the transaction or DataSource
NO 1ONQEr DBING BCHIVE ..ottt e e e e e e e e e eaaeeeeaannes 111
9. SourcelLevel Metadata SUPPOIToiiiiiiiiiiieeie e et e e e e s e e e e e e s e et e e e e e e s s e snntareeeeaeeas 113
0.1, SOUrCE-1EVEl MELAOEIAee e i i e e ettt e e e e e e e s e r e e e e e e s et aeeeneaeeeeeansneeees 113
9.2. Spring's Metadata SUPPOITuvviiiiieee e e ittt e e e e e e e e e e e e e e e s s st e e e e e e e e e s ssntbbeeeeeeeeeeennsnenenes 114
9.3. Integration with Jakarta CommOoNS AIDULEScoocueeiiiiiiiiee e 115
9.4. Metadata and Spring AOP @ULOPIOXYING ...ccceeveeeieieie i e e 116
0.4.1. FUNAAMENLEISeeieiiiiiiie et e e s e r e e e e e e e et e e e e e e e e e ssnnnreneeeeaeeas 116
9.4.2. Declarative transaction ManagemeNtueeerieeriiiiiiieieeeee e e e e e e e e e e e e eeneeeeeeeaeens 117
e G T oo T o SRR 117
S A O UL o I 01T =T L= |- SR 118
9.5. Using attributesto minimize MV C web tier configurationcccocceeeeeeiiiiiiiieeee e, 119
9.6. Other uses of metadata attribDULESoccuiiiiiiie e 121
9.7. Adding support for additional metadata APIS ..., 121
OB N @ = 0 o] o Lo o AP PRPRTTRR 122
0 0 T g 11T Lo 1 oo RS 122
10.2. Consistent EXCeption HIErarchycccuviiiiiiic e 122
10.3. Consistent Abstract Classes for DAO SUPPOIToovvrrieiiiiiieeiiiiie e e e 123
11. Data AcCESSUSING JDBCciiiiiiiiie et e e e et e e e e e e e s et bt e e e e e e e e s s serabrbereeaeeeeaaanns 124
0 T 11T [T 1 o T PR EPRP 124
11.2. Using the JDBC Core classes to control basic JDBC processing and
L= o 7= To 1T oo PRSP 124
11.2.1. JODCTEMPIEIE ...oeeeiieiieeeiee ettt et e e e e e e e e e e s annne e e e e 124
10.2.2. DEEASOUICE ... e 125
11.2.3. SQLEXCEPLONTIANSIEIONeeiiiiiiiieeiiieie e ettt e st e e e e s e e e s sneeee e e 125
11.2.4. EXECULING SLALEMENLSuvviiiiiieee e e e iiiiiieee e e e e e e e s ettt te e e e e e e e e et b br e e e e eeeesssnntbaeeeeaaeesannnes 126
11.2.5. RUNNING QUETTESeeieiiiiieee ettt ettt e e sttt e e s e e e et e e e e s nnbne e e e e 126
11.2.6. Updating the datalbasecccooeiiiiii i 127
11.3. Controlling how we connect to the databaseccvveveeeei i, 128
11.3. 1. Dat@aSOUrCEULIIS ...ueviieeiiiiiii ettt e e e e e e e e e e e e nbee e e e snnneeeeanns 128
11.3.2. SMAMDELASOUICE ... e e e e e e e e e e 128
11.3.3. ADSLraCtDEIASOUICEevvviieieeeeeeieiitieeeeeee e e s s eeitaereeeeeesssnettaaeeeaeeessansssnaneeeeeeesannes 128
11.3.4. SINgIeCONNECLIONDAIASOUITEccceieeeeeeeieisce s e 128
11.3.5. DriverManagerDalaSOUICEccceuiuuuieeiiiiiieeeisiteeeesiteeeessbeeeeessisne e e s ssbeeeessneeee e e 128
11.3.6. TransactioNAWareDalaSOUIrCEPTOXY ...cccieeeieieiiieiiiieseeeess s s s s e s ss s s s s s s e s s s s s s e e e s e e e e e e s e n e e 129
11.3.7. DataSourceTranSaCtioNMaNagESc.vvveeiieeeeiiiiiiieieee e e e e eeiirrree e e e e e e s s senrraneeeaaeesannes 129
11.4. Modeling JDBC operations as JAVA ODJECEScocuuriieiiiiiieeiiiie e 129
L1141, SOIQUENY .eeeeiieeieeeeitete ettt et ekttt e e e ettt e e e ab bt e e e ensb et e e s anbae e e e e nan e e e e annbeeeeeantneeeeanns 129
11.4.2. MAPPINGSOIQUETY ...ttt ettt e ettt e e s et e e et e e e et r e e e e nbneeeeann 130
11.4.3. SOIUPEALEeveiieeiiiiie ettt e e e e st e e e e et e e e s nsaneeeeenbeeeeeansneeeeanns 131
11.4.4. SLOrEAPIOCEAUIEeeeiiiciiiieeee e e ettt e e e e s e et e e e e e e s e et e e e e e e e e s snnttaneaeaeeesannnes 131
L1145, SOIFUNCLION «..oviiiieiiiie ettt e et e e e st e e e st e e e e st e e e annsaeeeeannseeeeeansseneeanns 132
12. Data AcCesSUSING O/R MAPPENS ...ccoiiiieiiiee et e e e ettt e e e e e e et e e e e e e s et e e e e e e e s s ssatbbareeaaeeeaanes 133
2250 TR g 11T [o1 o o PRSP SP 133
N o 1] o= 7= = PR UPPRPORTRRR 134
12.2.1. RESOUICE MENBGEIMENTuiiiiiiieeeseiiitiree ittt e e e s s st rerer e e e s s aanbb e eeeeaeessaannrrneeeeeeeesaannes 134
12.2.2. SessionFactory setup in a Spring application Contextcccoeeeevvviiiiiiiiiieee e, 135

12.2.3. Inversion of Control: HibernateTemplate and

Spring Framework Version 1.2.9 Y

Spring - JavalJ2EE Application Framework

HIbDerNat@CalIDACKcoi i e e e e e e e e e e e e e 136
12.2.4. Implementing Spring-based DAOs without callbacksccccceviveeiiiiiiiiiiecee s 137
12.2.5. Implementing DAOs based on plain Hibernate@3 AP ..o 137
12.2.6. Programmatic transaction demarCationccooeeieeiiiiiiiiieisis e e e 138
12.2.7. Declarative transaCtion demarCalionccooiiciiiiiireee it e e e e e s srraeeeea e e e e eenes 139
12.2.8. Transaction management SITAEGIESueiriireeeiiieiiiiieee e e e e e ettt eer e e e e e e e enneeaeeeeaeeeeaennes 141
12.2.9. Container resourceS VersuS |0Cal FESOUICEScuveieeiiiieeeeiiiiieeesniieeessiieee e sieeeeeanes 142
12.2.10. Spurious AppServer warnings about the transaction or DataSource
gTo R olale = o =] oo ot AV SR PPURRRN 143
2 T |5 10 P 144
12.3.1. PersistenceManagerFactory SEIUD ..cccooeeeeeeiiiiie e es s 144
12.3.2. JdoTemplate and JIODAOSUPPOITuveeeriiereeeiiiiieeeeibeee e s st e e e e e e s e e e srneeeeanes 145
12.3.3. Implementing DAOs based on plain DO AP ... 146
12.3.4. Transaction MANBOEMENTceeieeiiiiiiiiieee e e e e e e s esirre e e e e e e e s s srtr e e e aeeessssnnraeeeeaeeesaanes 148
G T TN o (oD T = ot SO RPERR 148
12,4, OraCle TOPLINK ..ouviieiiiii et e e e e e e e e s e e e e e e e e e s e aabrbeeeeeeeeeeennsnrnens 149
12.4.1. SessiONFaCtOry aDSIIaCtiONcoeoiiiiiieiiiiiie et e e 149
12.4.2. TopLinkTemplate and TopLinkKDaoSUPPOITccooeeeiiiieiecee e 150
12.4.3. Implementing DAOs based on plain TOPLINK APlooviiiiiiieeeeee e 151
12.4.4. TranSaction MANAGEIMENTcoiuriieeiiieee e et e e e et e e s ee e e e e e e e s e e e e e anneee e e 153
12.5. APBCNEOUIBoiiiiiiiiiiie ettt e et e e e e b e e e e e nae e e e e nraeeeeaans 153
12.5.1. OJB setup in @ SPring eNVIrONMENTccoiiuirreeiiiieeeeaiieiee et eessnrre e s e e snneee e 154
12.5.2. PersistenceBrokerTemplate and PersistenceBrokerDaoSupportcoocccvvveeeeeeeeeenns 154
12.5.3. Transaction MaNAgEMENTcoiuurieeiiieiee ettt e e e e e et e e s e e e s nbe e e e s sbneeeeane 155
12.6. IBATIS SQL MBS .. .eveiieiiiiiieeeiiiiee e et e e e st e e e ettt e e e sssaeee e e staeeeeanseeeeeaanseeeeeannaeeeesanneeeeeanns 156
12.6.1. Overview and differences between iBATIS 1.X @nd 2.Xccovvvvvereiiiieeeiniiiieeesiieee e 156
12.6.2. iIBATIS SQL MBPS LX 1eiiuetiiieiiiiieeeeiieieeeeiieeeeasnaeaeesstaeeessnsseeeesnssseeeesnnseeaesssseessanns 157
12.6.3. IBATIS SQL MBPS 2.X .uvveeieiiiiieeeaiieieeseiteeeeasittee e e sssbeeeessnbaeesesnnaeeeesanseeeessnsneeeeanns 158
13, WEb MV C framMEWOIK ...ttt e ettt e e e e e e e s sttt eeeaeeessasnttenneeaaeeeannnes 162
13.1. Introduction to the web MV C frameworkocueiieiiiiiieiiiee e 162
13.1.1. Pluggability of other MV C implementationscooruereeiiiieeeeiiiieee e sieeee e 162
13.1.2. Features Of SPriNg MV C ...eeeiiiiii e 163
13.2. TRE DI SPAt ChEIr SEF VI @1 .uuiiiiiiiieiiiie e e e e e ettt e e e e e ettt e e e e e e e e e e e e b eseeeeseesabbb s eeeeesesssasnns 163
GG T 0 11 o | = PRSI 166
13.3.1. AbstractController and WebContentGeNEratorccueeeeviiieeeeeiiiieeeesiieeeeesiieeeennns 166
13.3.2. Other SIMPIE CONTOIENSoeieiiieie e 167
13.3.3. ThEMII ti ACti ONCONE IOl 1 @ iiviiiiieeieieeieeeeiee e e e e e et e e e e e e e et e e e e e e e eeeb e as 167
13.3.4. CommaNACONIOIIENSeeiiiiiiiee e e e e e e st e e e e e e e annnes 169
G N o = 10T | = g0 7= o o o PSS 170
13.4.1. BeanNameUr | HANA! €F MAPPI MO oevvvunieiieriieiietieeeeeetieeessetieessetieeesetaeeesetaeeeseraeeesernnnns 171
13.4.2. Si mpl eUr | HANA] €F MBPPI MU cevereeriiniieieeeeeeeeeiniaseeseeseeesstnaaeeeeeseessssnnaaeeeseessssnnnnnseees 171
13.4.3. Adding Handl € | Nt €r CEPL OIS wieeeiiiciuirieeeeeeeeeisiiitrreeeeeeeeseseatrrereeeaeeesssesntraneeeaaessaanes 172
13.5. Viewsand resolVING ThEM ... 173
13.5.1. VIBWRESDIVENS ..ottt e e e e e et e e e e e e s e ennb b e e eeaeeeeaannes 174
13.5.2. Chaining VIEWRESDIVEN'Scoiuiiiiiiiiiiee ettt e e sbe e e 175
13.5.3. ReAIr€CtiNg 1O VIBWS ... ettt e e e e e ee e e e e e e e e e aeeeeaeeeeaannes 176
13.6. USINGIOCAIESceiiiieiieee ettt e e e e e e et e e e e e e e e s e at b e e e e e e e e e aanssranees 177
13.6.1. Accept Header LOCAl ERESOI VEI uuuuuuiiieeeeeieieiiiiiaseeeeeeeeetatnaseeeeeseeeastnaaaseeeeeeeassnnnnaeeeas 177
13.6.2. CoOKi €LOCAI BRESOI VEI eiiiiuiieeiiiiieeeeitie e e e et e e e et e e e e et e e e e et e e e e et e e e e et e e e s et e eeernnnns 177
13.6.3. SesSi ONLOCAI ERESOI VEI oivvuiiiiiiiiieeeiiiie e e eeeie e e ettt e e e et e e e et e e e e et e e e e et e e e e et e eeerannns 178
13.6.4. Local @Changel Nt @F CEPL OF .uuieeieruieeiiieeeeeetieeeeeet e eeeet e eesetaeeeeetaaeeeetaaeesetanaeaeesnnnns 178
13.7. USING TNEIMES ...ttt e ekt e e e st e e s sbb e e e e e bbn e e e s anbneeeeaae 178

Spring Framework Version 1.2.9 Vi

Spring - JavalJ2EE Application Framework

G 00 R 1 11 o [o1 oo P RPERR 179
13.7.2. DEfININGTNEMESooi oo e e e e 179
13.7.3. TREMETESOIVEN'S ...coiieeiiiiiiieiie e e e ettt e e e s e et e e e e e e s aente e e e e aaeessassttaneeneeeesannnes 179
13.8. Spring's multipart (fileupload) SUPPOITcccooeiiee i 180
G TR 0 R 1 11 [o 1 oo PSPPI 180
13.8.2. USING the Mul ti PArt RESOI VEI eiiieiiiiiiieiiieee e e e e ettt eee e e e e e ettt eeeaae e e e ennnnaeeeeaeeeeeannes 180
13.8.3. Handling afileupload in aformccoeeeiiie oo 181

13.9. HandliNg EXCEPLIONScoiiuiiiieeiiiieee ettt e ettt e e e e et e e e et e e e s s b e e e e e nne e e e s annnreeeaae 182
14. Integrating View tECNNOIOGIEScooiiiiiiieiee e e e s e e e e e s s s bbb e e e e e e e e e ananes 184
72 0 T 11T [o1 o o PR EPRS 184
TA.2. ISP & JSTL eoiiiiiie ettt ettt e e e et e e e ettt e e e e st e e e e st e e e e e nee e e e e nne e e e e e naeeaeeanneeeeeanns 184
N I AT Ll = o L= U RPPRR 184
14.2.2. "Plain-0ld' JSPSVEISUS JSTL ...ccuvviiieiiiiiieeeiiiieeeesiiee e e sieee e s staeeeessnaaeeeesneeeeeesnsneeeeanns 184
14.2.3. Additional tags facilitating develOpmMENtccuiiiiiiii e 185
L. 3, I S i ———————— 185
14.3.1. DEPENAENCIES ...vveieiiieeiii ettt e e e e e e e e e e e e e s e et b b e e e e e eeeessaastbaeeeeaeeesananes 185
14.3.2. HOW tO INEEIIraE THIES ...eeeieieiiiee ettt e e e e 185
14.4. VElOCITY & FrEEMarKEr ... 186
I T D = o 0 (= g o PPPRPR 186
14.4.2. CONEXE CONFIQUIBLIONeiiiieiiiiee et ettt e e e e e e e e e e e e e 187
14.4.3. Creating tEMPIELEScooi ittt e e e e e et e e e e e e e e s et rer e e e e e e e aaanes 187
14.4.4. AdvanCed CONFIQUIBLIONcoiuriiieiiiiiee ettt e e e e snre e e e 187
14.4.5. Bind support and form handlingcueeeiiie oo 188

T R P 194
T T VYA T = B Yo (o £ 194
T s U 11 11 YR 196
14.6. Document VIEWS (PDF/EXCE])uuiiiiiiiiieeeeie ettt 197
G20 I Voo [0 o o o PP PPPRSTPPRR 197
14.6.2. Configuration N0 SEIUPcccoiuueiieiiieieee ittt e et e et e et e e e e e s e e e s sneee e e e 197

N 7= 0T g 00 =P 199
1A.7.1. DEPENAENCIESoiiiiieieeiiiiiie ettt e e ettt e e e sttt e e b e e e et e e e e s aabb e e e asbn e e e e eabe e e e e anbneeeeann 199
2/ @0 1 o 10 = 1 o o 200
14.7.3. Populating the Model ANGVE Wccciiiuiiiiieiiee e e s scciiiieeee e e e e e ettt e e e e e e e s s sanrnaeeeeaeeesannnes 202
14.7.4. Working With SUD-REPOITSoviiiiiiieie e 202
14.7.5. Configuring EXpOrter Parameterseeviieeiiiiiiiiiiiiee et e e e sirae e e e e e e 203

15. Integrating with other Web frameworksoeeioiiiiie s 205
S0 I g oo [F o1 oo PR 205
15.2. JAVBSEIVEN FACES ...uiiiiii it 206
15.2.1. DelegatingVariabl@RESOIVEScooo i e e e 206
15.2.2. FACESCONMEXIULIISeiiiiiiiiii ettt et e e e anes 206
ST TS 1 £ PR ESUPRRSOTRR 207
15.3.1. ConteXtLoaderPIUgiNuvviiiiiie e e e e e e e e s e e e e e e e e aeanes 207
15.3.2. ACtIONSUPPOIT CIBSSESeveeieiiiiiieeeiie ettt e e e e e e e b e e e e anes 209
SN T I o= 1 Y PRSPPSO 209
S T AN o g <ok (U - PSRRI 210
15.4.2. IMPIEMENTALTONoiiieieiieeie et e et e e e et e e e e e e e e e et eeeaeeeeeennnenneeeaeeeeaannes 211
e S 11 11 YRR 216
T T VT o 1YL o 216
16. Remoting and web ServiceS USING SPriNg .ueeeiiie oo e e et re e e e e e e e e 218
00 T g 11T [FTox 1 o o RS S 218
16.2. EXposing SerViCES USING RMI ...een s 219
16.2.1. Exporting the service using the R Ser Vi CEEXPOrt 5 ..uvveveriiieeeeiiiieeeesiiiee e sieeee e 219

Spring Framework Version 1.2.9 Vii

Spring - JavalJ2EE Application Framework

16.2.2. Linkingintheserviceat the Client ... 220
16.3. Using Hessian or Burlap to remotely call servicesVIiaHTTPccccvveeviieiiiiicieeee e, 220
16.3.1. Wiring up the DispatcherServlet for HESSIanoooviiiiiiiiiiiiieiieee e 220
16.3.2. Exposing your beans by using the HessianServiCeEXpPOrterccoeeveevveeeiieieieieeeeeeenn, 221
16.3.3. Linking intheservice onthe Clientcooeiiiiiiiiii e 221
e S U L= oo 8 = g = o SO URPRR 221
16.3.5. Applying HTTP basic authentication to a service exposed through Hessian or Burlap
.. 221
16.4. Exposing servicesUSING HT TP INVOKEN'Scoviiiiiiiiiiieeee ettt 222
16.4.1. EXPOSING the SEIVICE ODJECTevviiiiiiiiiei ettt 222
16.4.2. Linkingintheservice at the ClIeNtccoooeiiiii i 222
L16.5. WED SEIVICES ..ottt e et e e e e e s et e e e e e e e s e st a e e e e e e e e eennnraaees 223
16.5.1. Exposing services usSing JAX-RPC ..o e e e e 223
16.5.2. ACCESSING WED SEIVICES ...ovvviiiiiii i a e 224
16.5.3. Register BEaN MaDPINGSceeiiuurrieeiiirieeaiiieeeeaatte e e e st e e s sbne e e e s e e e s anne e e e s anneeeeanes 225
16.5.4. Registering our OWN HaNAIE!ccuiiiiiiiiee e 226
16.5.5. EXposing WeD ServiceS USING XFITEeiiiiiiiiieiiiiiee ettt 226
16.6. Auto-detection is not implemented for remote interfacesoooeeeeeeeii i, 227
16.7. Considerations when choosing atechnologycccvvveiiveei i 228
17. Accessing and implementing EJBSc.oviiiiiiiiee e 229
170, ACCESSING EIBS ..ouviiiiiiii ettt e e e e e s e e e e e e e e e et r e e e e e e e e arrraaees 229
0 T TR 0 07 o £ OO TP PP PPPPPPPPPP 229
17.1.2. ACCESSING IOCEI SLSBSutiiiiiiiieiiiicieeee et e e e a e e e 229
17.1.3. ACCESSING FEMOLE SLSBS ...oeiiiiiiiiieeiiiiiee ettt e e e st e e e eeeanes 231
17.2. Using Spring convenience EJB implementation ClasseScoooevvvevivi i, 231
S N 1Y S PP RPTPPI 234
IS 50 T g 11T Lo 1 oo RS 234
18.2. DOMEIN UNITICALIONvevieiiiiiie ettt et e e s st e e e e nnbe e e e e nae e e e s annneeeeaan 234
18.3. JMSTEMPIELEeeeeeeiiieie ettt et e e e et e e ekt e e e e et et e e e nbe e e e e e nne e e e e annneeeeaan 234
18.3.1. CONNECLIONFACLONYcooiiiiiiieee e e e e e ettt e e e e et e e e e e e e et e e e e e e e e e eantbaeeeeaaeeeannnes 235
18.3.2. TransaCtion MaNagEMENTccuueiiiiiiiieeiiiiiee ettt e e e e e e e e sbeeeeeanes 235
18.3.3. Destination ManagemeENtccooeieieiiieie s 236
18.4. USINGthe JIMSTEMPIBLEeeviiiiieieee et e e e e e e e e e e e e s et e e e e e e e e e e nnsnrenes 236
18.4.1. SENAING BMESSATEeeeeeuereeeeiaiireee e et e e e atae e e e s sr e e e e asbe e e e s aba e e e e aasnseeeeanreeeesannneeeeann 237
18.4.2. SyNChrONOUS RECEIVINGuvvviiieeeeiiiiiiiieiee e e e e e e et e e e e e e e ettt e e e e e e e e s eanrbaneeeaaeeeaannes 237
18.4.3. USING MESSAFE CONVEITENScuiiiiiieiiiiiee ettt e e ettt e ettt e st e et e e e st e e s nbeeeeeanes 238
18.4.4. SessionCallback and ProducerCallback ... 238
RS TN 1 D Qs U o] o Lo PO P PP PPPPPPPPPPPPRN 240
S 0 T g 11T [T 1 oo PRSP 240
19.2. EXporting your BEANSTO JMXcciiiiiiiiiiiiiiiie e e e e e sttt e e e e s st e e e e e e e e s et ae e e e e e e e e e nnnanaes 240
19.2.1. Creating an MBEANSEIVENcocuuiiieiiiiiie ettt e e e anre e e aaes 241
19.2.2. Lazy-InitialiZEd MBEENScoeiiieiiiiiiiiiiie ettt e et e e e e e e e st ae e e e e e e e e aaanes 242
19.2.3. Automatic Registration of MBEANSccuiiiiiiiiiieeiiiie e 242
19.3. Controlling the Management Interface of Your BEanScccoeeeeeeiiiiii e, 242
19.3.1. The MBean! nf oAssenbl er INEITACEooovviiiiiiiieeeee e 242
19.3.2. Using Source-Level Metadataccevveieiiee e a e e 242
19.3.3. USING JDK 5.0 ANNOLALIONS ..eeviieeiiiiiiiiiieeiee e e e e ettt e e e e e e s et e e e e e e e s s snnnnaeeeeaaeaeannnes 244
19.3.4. Source-Level Metadata TYPEScociiiuiereeiiiieie e ettt e et e et e e s e e snre e e 245
19.3.5. The Aut odet ect Capabl eMBean! nf oAssenbl er
1= = o= USSP 247
19.3.6. Defining Management Interfaces using Java lnterfaces..........coccoeeeeeeeeeie e, 247

19.3.7. Using

Spring Framework Version 1.2.9 viii

Spring - JavalJ2EE Application Framework

Met hodNanmeBasedMBean! nf oAssenbl er

19.4. Controlling the Obj ect Nanes for your
BBANS ... 249
19.4.1. Reading oj ect Nanes from
Properties

... 249

19.4.2. Using the Met adat aNani ngSt r at egy
... 250
19.5. Exporting your Beans With JSR-160 CONNECLOISccoiurrieeiiiiiieeeiiieeeessieeeeesieee e nineee e 250
19.5.1. Server-side CONNECIONSuieiiiieee ettt e e e e e e ettt e e e e e e e e et eeeaeeeeeenneeneeeeaeeeeaannes 250
19.5.2. Client-Side CONNECLOISuuuiiiiieee ittt e e e e s e ettt e e e e e e s astr e ereaeeesesssntaaeeeeaaaesaanes 251
19.5.3. IMX over BUrlap/HESSIAN/SOAPcveieeeeiiiie ettt e e e e srneeeeanes 251
19.6. ACCeSSING MBEANSVIAPTOXIES ..cciieiiiiiiiiiiiiie ettt s et e e e e e et e e e e e e e e e e nnnanees 252
1240 T [@ N O SRS 253
1240 10 O [1o [Tox £ o o SRR 253
20.2. CONFIGUITNG CCl ..ottt e et e e s s b e e e e b e e e e anbne e e e e nnnneee s 253
20.2.1. ConneCtor CONFIGUIALIONcceeeee e 253
20.2.2. ConnectionFactory configuration in SPriNgcoocciivierieeeei e 254
20.2.3. Configuring CCl CONNECLIONSvveiiiiiieeeiiiriee et e e et e e e e e e e e e ennnee s 254
20.2.4. Using asingle CCl CONNECLIONcceeeiiiiiiiiiiiee e et e e e st e e e e e e e e reeeea e 255
20.3. Using SPring's CCl @CCESS SUPPOITcceiurreeeiiiirieeaaiieeeeaiteeee s st e e e s asser e e s anne e e e s ssnneeeannnneees 255
20.3.1. RECOI CONVEISIONuveiiieiiiiieeeaiieeeessieeeeeassteeeesasteeeessnseeeesansseeeeeansteeeessnsseeeeannnseeens 255
20.3.2. COTEMPIALEttt e e s et e e s anbe e e s nnnneee s 256
P20 G TG T D 7 N @ = U 0] oo 258
20.3.4. Automatic output record geNErationc.eeeeeeeeeeiiiiiiiiereee e s s e e e e e e e e e e 258
20.3.5. SUMMEIY ..eeieiiiiieeeeeiiiee e et e e e et e e e e st eeeansee e e e e asteaeeeanseeeeeaassseeeeaseeeeeeansseeeeannseeeens 258
20.3.6. Using a CClI Connection and Interaction direCtlyccceveeeeeiiiiiiiiiieeeee e, 259
20.3.7. Examplefor CCITemMPIal@ USAgEccoicuvriieiiiiie ettt 260
20.4. Modeling CCl access as 0peration ODJECEScccoiiiiiiiiiiii e 261
20.4.1. MappPiNGRECOIAOPENBLIONceeeiereieeiiiiieeeisieie e e et e e e et e e sssbr e e e st e e e abne e e annnreees 262
20.4.2. MappingCommMATEa0PEralioNccooeeei e 262
20.4.3. Automatic output record geNErationc..eeeeeeeeeiiiiiiiiiereee e e s s e e e e e e e e 263
20.4.4. SUMMEIY ..eeieiiuiieeeestaeeeeassteeeesassteeeeessteeeeeaassseeeaassaeeeeassseeeeaassseeeeanssaseesansseeeesnsssenens 263
20.4.5. Example for MappingRecordOpeEration USAQEccccuvveeveeeeeiiiiiiiieeeeeeeeeeesinvnneeeea e 263
20.4.6. Examplefor MappingCommATreaOperation USAJEcueeeerrurreeeinieeeesnieneeesnnneeens 265
20.5. TrANSACLIONS ...ttt e ettt e e e e e e ettt e e e e e e e s s s abeteeeeaeeesaantbbeeeeeaeeeaannsnrnneas 266
21. Sending Email with Spring mail abDstraction layer ... 267
P2 0 N 1 1 L o 1 o o PRSI 267
21.2. Spring mail aDSIraCtion SITUCLUIEooceuiiiiiiiee et e e e e e e e e e enneaees 267
21.3. Using Spring mMail @DSIrACHIONueiiiiiiieeeii et 268
21.3.1. Pluggable MailSender implementationsccceiiiiiiiiiiieeee e 270
21.4. Using the JavaMail MimeMeSsageHEIPErvviiiiiiiiiecee e 270
21.4.1. Creating asimple MimeMessage and sending it ..o, 270
21.4.2. Sending attachments and iNliNE TESOUICESccoiiuviiieiiiiiiiee i 271
22. Scheduling jobs uSINg QUAITZ OF TIMENiiiiiiiie e e e e e e e e e e e e e anneeeeeeaaeeas 272
P25 W [1o 11 Tox o o I PSPPSR 272
22.2. Using the OpenSymphony Quartz SChedulerc.oooiiiiiiiiie e 272
22.2.1. Using the JODDELAIBEENccccuuiiieiiiiiie ettt e e e nnneeee s 272
22.2.2. Using the MethodInvokingJobDetai | FaCtoryBeancccccovviiieeiiiiiiec e 273
22.2.3. Wiring up jobs using triggers and the SchedulerFactoryBeanccceeeeeeieeeeeen, 273
22.3. USING IDK TIMEN SUPPOIT ..eieieeeieiiiiie e ettt e e sttt e e et e e e et e et e e e s e e e et e e e e s anbbe e e e s nnnneee s 274

Spring Framework Version 1.2.9 iX

Spring - JavalJ2EE Application Framework

22.3.1. Creating CUSIOM TIMENS ...o.uiiiieiiiiieee ettt e e s e e e s nnnree s 274

22.3.2. Using the MethodinvokingTimerTaskFactoryBeancccoovcvviveeeeeeeeecccciiiieeeeeeen, 275

22.3.3. Wrapping up: setting up the tasks using the TimerFactoryBeanccccoocvveeeinvnnnen. 275

P22 T I == T TP TSRO PPPTOUPPOUPROTRI 277
231 UNITEESIING ©eeeieiiiiiie ettt e e e et e e e sttt e e e s b bt e e e e nbe e e e e anbbe e e e s annreee s 277

PG I 1 = o = 1o T === oo RS 277
23.2.1. Context management and CaChINGcccuvvveiiieee e e e e e e 278

23.2.2. Dependency Injection of test ClasSiNStANCESccvvveeiiiirieeiiiiie e 278

23.2.3. TransaCtion MaNAGEMENTueiiiiieeeii e e e e e e errrr e e e e e e e s st e e e e e e e e e s s sanbrrereeaeeas 278

23.2.4. CONVENIENCEVANTADIES ...t e e e e e e e e e s eeeaee s 279

23.2.5. EXBIMPIE ... 279

23.2.6. RUNNING INTEGralioN TESLSvvviiiiiiiiee ettt e 281

AL SPriNg-DEANS. At ciiiiiiiiiiiiii e e e e e e e et e e et et e e et e e e e et e e et e eeaaaeteraaaaeeta e aearanans 282

Spring Framework Version 1.2.9 X

Preface

Developing software applicationsis hard enough even with good tools and technol ogies. Implementing
applications using platforms which promise everything but turn out to be heavy-weight, hard to control and not
very efficient during the development cycle makes it even harder. Spring provides a light-weight solution for
building enterprise-ready applications, while still supporting the possibility of using declarative transaction
management, remote access to your logic using RMI or webservices, mailing facilities and various optionsin
persisting your data to a database. Spring provides an MV C framework, transparent ways of integrating AOP
into your software and awell-structured exception hierarchy including automatic mapping from proprietary
exception hierarchies.

Spring could potentially be a one-stop-shop for al your enterprise applications, however, Spring is modular,
allowing you to use parts of it, without having to bring in the rest. Y ou can use the bean container, with Struts
on top, but you could also choose to just use the Hibernate integration or the JDBC abstraction layer. Spring is
non-intrusive, meaning dependencies on the framework are generally none or absolutely minimal, depending
onthe areaof use..

This document provides areference guide to Spring's features. Since this document is still awork-in-progress,
if you have any requests or comments, please post them on the user mailing list or on the forum at the
SourceForge project page: http://www.sf.net/proj ects/springframework

Before we go on, afew words of gratitude: Chris Bauer (of the Hibernate team) prepared and adapted the
DocBook-X SL softwarein order to be able to create Hibernate's reference guide, also allowing usto create this
one. Also thanks to Russell Healy for doing an extensive and valuable review of some of the material.

Spring Framework Version 1.2.9 Xi

http://www.sf.net/projects/springframework

Chapter 1. Introduction

1.1. Overview

Spring contains alot of functionality and features, which are well-organized in seven modules shown in the
diagram below. This section discusses each the of modulesin turn.

Spring ORM Spring Web
Hibernate support WebApplicationContext
iBatis support Multipart resolver
JDO support Web utilities

Spring Web
Spring AOP MvC
Source-level metadata Web MVC Framework
AOP infrastructure Web Views
. JSP / Velocity
Spring Context PDF / Excel
1 Application context
Sprl_ng DAO (e
Transaction infrastructure Validation
JDBC support JNDI, EJB support & Remoting
DAO support Mail

Spring Core
Supporting utilities
Bean container

Overview of the the Spring Framework

The Core package is the most fundamental part of the framework and provides the Dependency Injection
features allowing you to manage bean container functionality. The basic concept here is the BeanFactory,
which provides afactory pattern removing the need for programmatic singletons and allowing you to decouple
the configuration and specification of dependencies from your actual program logic.

On top of the Core package sits the Context package, providing a way to access beans in aframework-style
manner, somewhat resembling a INDI-registry. The context package inherits its features from the beans
package and adds support for text messaging using e.g. resource bundles, event-propagation, resource-loading
and transparent creation of contexts by, for example, a servlet container.

The DAO package provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding and
parsing of database-vendor specific error codes. Also, the IDBC package provides away to do programmatic as
well as declarative transaction management, not only for classes implementing special interfaces, but for all
your POJOs (plain old java objects).

The ORM package provides integration layers for popular object-relational mapping APIs, including JDO,
Hibernate and iBatis. Using the ORM package you can use all those O/R-mappers in combination with all the
other features Spring offers, like simple declarative transaction management mentioned before.

Spring's AOP package provides an AOP Alliance compliant aspect-oriented programming implementation
alowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code implementing
functionality that should logically speaking be separated. Using source-level metadata functionality you can
incorporate all kinds of behavioral information into your code, alittle like .NET attributes.

Spring Framework Version 1.2.9 12

Introduction

Spring's Web package provides basic web-oriented integration features, such as multipart functionality,
initialization of contexts using servlet listeners and a web-oriented application context. When using Spring
together with WebWork or Struts, this is the package to integrate with.

Spring's Web MVC package provides a Model -View-Controller implementation for web-applications. Spring's
MV C implementation is not just any implementation, it provides a clean separation between domain model
code and web forms and allows you to use all the other features of the Spring Framework like validation.

1.2. Usage scenarios

With the building blocks described above you can use Spring in all sorts of scenarios, from applets up to
fully-fledged enterprise applications using Spring's transaction management functionality and Web framework.

Form Controllers . Dynamic binding of Integration with JSP,
" Multipart Resolver X "
hgndllng form to handle file uploads data to the domain Velocity, XSLT, PDF,
interaction model Excel

Spring Web MVC

} WebApplicationContext providing e.g. messaging

Spring Web

—‘ Declarative transaction management for POJOs Ii Remote
Sending access via

Email Hession,
Burlap, SOAP

Spring Context

Custom business logic

Spring AOP Spring ORM

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Typical full-fledged Spring web application

A typical web application using most of Spring's features. Using Tr ansact i onPr oxyFact or yBeans the web
application is fully transactional, just asit would be when using container managed transaction as provided by
Enterprise JavaBeans. All your custom business logic can be implemented using simple POJOs, managed by
Spring's Dependency Injection container. Additional services such as sending email and validation,
independent of the web layer enable you to choose where to execute validation rules. Spring's ORM support is
integrated with Hibernate, JDO and iBatis. Using for example Hi ber nat eDaoSuppor t , yOU Can re-use your
existing Hibernate mappings. Form controllers seamlessly integrate the web-layer with the domain model,
removing the need for Act i onFor ns or other classesthat transform HTTP parameters to values for your domain
model.

Spring Framework Version 1.2.9 13

Introduction

Web frontend using
Struts or WebWork

Spring WEB

Spring AOP Spring ORM

Transaction management
Using Spring decl. trans.

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Spring middle-tier using a third-party web framework

Sometimes the current circumstances do not allow you to completely switch to adifferent framework. Spring
does not force you to use everything within it; it's not an all-or-nothing solution. Existing frontends using
WebWork, Struts, Tapestry, or other Ul frameworks can be integrated perfectly well with a Spring-based
middle-tier, allowing you to use the transaction features that Spring offers. The only thing you needtodo is
wire up your business logic using an Appl i cat i onCont ext and integrate your Web Ul layer using a

WebAppl i cati onCont ext .

RMI

JAX RPC client Hessian client Burlap client .
client

Transprarent remote access (using remote package)

Custom logic contained by beans

Spring Core Spring Context

Servlet Container (e.g. Tomcat / Jetty)

Remoting usage scenario

When you need to access existing code via webservices, you can use Spring's Hessi an-, Bur | ap-, Rni - Or
JaxRpcProxyFact or y classes. Enabling remote access to existing application is al of a sudden not that hard
anymore.

Spring Framework Version 1.2.9 14

Introduction

EJB Access layer using

Slisbinvokers

Spring-managed EJBs (using
AbstractEnterpriseBean

Spring Context

Spring Core

Spring DAO

Application Server (e.g. JBoss, WebLogic)

EJBs - Wrapping existing POJOs

Spring also provides an access layer and abstraction layer for Enterprise JavaBeans, enabling you to reuse your

existing POJOs and wrap them in Statel ess Session Beans, for use in scalable fail safe web applications, that

might need declarative security.

Spring Framework Version 1.2.9

15

Chapter 2. Background information

2.1. Inversion of Control / Dependency Injection

In early 2004, Martin Fowler asked the readers of his site; when talking about Inversion of Control: "the
question, is what aspect of control are they inverting?". After talking about the term Inversion of Control
Martin suggests renaming the pattern, or at least giving it a more self-explanatory name, and starts to use the
term Dependency Injection. His article continues to explain some of the ideas behind Inversion of Control or
Dependency Injection. If you need a decent insight: http://martinfowler.com/articles/injection.html.

Spring Framework Version 1.2.9

16

http://martinfowler.com/articles/injection.html

Chapter 3. Beans, BeanFactory and the
ApplicationContext

3.1. Introduction

Two of the most fundamental and important packagesin Spring are the or g. spri ngf r amewor k. beans and
org. spri ngframewor k. cont ext packages. Code in these packages provides the basis for Spring's Inversion of
Control (aternately called Dependency Injection) features. The BeanFact ory

[http://wwv springfranmework. org/ docs/ api / or g/ spri ngf ramewor k/ beans/ f act ory/ BeanFactory. htm]
provides an advanced configuration mechanism capable of managing beans (objects) of any nature, using
potentially any kind of storage facility. The ApplicationContext
[http://imww.springframework.org/docs/api/org/springframework/context/A ppli cationContext.html] builds on
top of the BeanFactory (it's a subclass) and adds other functionality such as easier integration with Springs
AOP features, message resource handling (for use in internationalization), event propagation, declarative
mechanisms to create the ApplicationContext and optional parent contexts, and application-layer specific
contexts such as the webAppl i cat i onCont ext , among other enhancements.

In short, the BeanFact or y provides the configuration framework and basic functionality, while the

Appl i cati onCont ext adds enhanced capabilities to it, some of them perhaps more J2EE and enterprise-centric.
In general, an ApplicationContext is a complete superset of a BeanFactory, and any description of BeanFactory
capabilities and behavior should be considered to apply to ApplicationContexts as well.

Users are sometimes unsure whether a BeanFactory or an ApplicationContext are best suited for usein a
particular situation. Normally when building most applications in a J2EE-environment, the best option isto use
the ApplicationContext, since it offers all the features of the BeanFactory and adds on to it in terms of features,
while also allowing a more declarative approach to use of some functionality, which is generally desirable. The
main usage scenario when you might prefer to use the BeanFactory is when memory usage is the greatest
concern (such asin an applet where every last kilobyte counts), and you don't need al the features of the
ApplicationContext.

This chapter covers material related to both the BeanFactory and the ApplicationContext. When mention is
made only of the BeanFactory, you may always assume the text also applies to the ApplicationContext. When
functionality is only available in the ApplicationContext, explicit mention is made of this.

3.2. BeanFactory and BeanDefinitions - the basics

3.2.1. The BeanFactory

The BeanFact ory

[http://ww. springfranmework. org/ docs/ api / or g/ spri ngf ramewor k/ beans/ f act ory/ BeanFact ory. ht m]
isthe actual container which instantiates, configures, and manages a number of beans. These beanstypically
collaborate with one another, and thus have dependencies between themselves. These dependencies are
reflected in the configuration data used by the BeanFactory (although some dependencies may not be visible as
configuration data, but rather be a function of programmatic interactions between beans at runtime).

A BeanFactory is represented by the interface or g. spri ngf r amewor k. beans. f act ory. BeanFact ory, for which
there are multiple implementations. The most commonly used simple BeanFactory implementation is
org. springframewor k. beans. f act ory. xm . Xm BeanFact ory. (This should be qualified with the reminder that

Spring Framework Version 1.2.9 17

http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html
http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html

Beans, BeanFactory and the A pplicationContext

ApplicationContexts are a subclass of BeanFactory, and most users end up using XML variants of
ApplicationContext).

Although for most scenarios, almost all user code managed by the BeanFactory does not have to be aware of
the BeanFactory, the BeanFactory does have to be instantiated somehow. This can happen via explicit user
code such as:

Resource res = new Fil eSyst enResour ce("beans. xm ") ;
Xm BeanFactory factory = new Xm BeanFactory(res);

or

Cl assPat hResource res = new Cl assPat hResour ce("beans. xm ") ;
Xm BeanFactory factory = new Xm BeanFactory(res);

or

Cl assPat hXm Appl i cati onCont ext appCont ext = new O assPat hXm Appl i cati onCont ext (
new String[] {"applicationContext.xm ", "applicationContext-part2.xm"});

/] of course, an ApplicationContext is just a BeanFactory

BeanFactory factory = (BeanFactory) appContext;

Note: once you have learned the basics about bean factories and applicaiton contexts, from this chapter, it will
also be useful to learn about Spring's Resour ce abstraction, as described in Chapter 4, Abstracting Accessto
Low-Level Resources. The location path or paths supplied to an ApplicationContext constructor are actually
resource strings, and in simple form are treated appropriately to the specific context implementation (i.e.
ClassPathX ml A pplicationContext treats a simple location path as a classpath location), but may also be used
with special prefixesto force loading of definitions from the classpath or a URL, regardless of the actual
context type. Another specia prefix, cl asspat h*: , alows all context definiton files of the same name on the
classpath to be found and combined to build a context. Please see the chapter referenced above for much more
information on the topic of Resour ces.

For many usage scenarios, user code will not have to instantiate the BeanFactory or ApplicationContext, since
Spring Framework code will do it. For example, the web layer provides support code to load a Spring
ApplicationContext automatically as part of the normal startup process of a J2EE web-app. This declarative
process is described here:

While programmatic manipulation of BeanFactories will be described later, the following sections will
concentrate on describing the configuration of BeanFactories.

A BeanFactory configuration consists of, at its most basic level, definitions of one or more beans that the
BeanFactory must manage. In an XmlBeanFactory, these are configured as one or more bean elementsinside a
top-level beans element.

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE beans PUBLI C "-//SPRI NG / DTD BEAN/ / EN' "htt p://ww. spri ngframewor k. or g/ dt d/ spri ng- beans. dt d" >

<beans>
<bean id="..." class="...">
</ bean>
<bean id="..." class="...">

</ bean>

</ beans>

Spring Framework Version 1.2.9 18

Beans, BeanFactory and the A pplicationContext

3.2.2. The BeanDefinition

Bean definitions inside a DefaultListableBeanFactory variant (like XmlBeanFactory) are represented as
BeanDefinition objects, which contain (among other information) the following details:

 aclass name: thisis normally the actual implementation class of the bean being described in the bean
definition. However, if the bean isto be constructed by calling a static factory method instead of using a
normal constructor, thiswill actually be the class name of the factory class.

 bean behavioral configuration elements, which state how the bean should behave in the container (i.e.
prototype or singleton, autowiring mode, dependency checking mode, initialization and destruction methods)

 constructor arguments and property values to set in the newly created bean. An example would be the
number of connections to use in a bean that manages a connection pool (either specified as a property or asa
constructor argument), or the pool size limit.

* other beans a bean needs to do its work, i.e. collaborators (al so specified as properties or as constructor
arguments). These can also be called dependencies.

The concepts listed above directly trandlate to a set of elements the bean definition consists of. Some of these
element groups are listed below, along with alink to further documentation about each of them.

Table 3.1. Bean definition explanation

Feature Moreinfo

class Section 3.2.3, “ The bean class’

id and name Section 3.2.4, “The bean identifiers (i d and nane)”
singleton or prototype Section 3.2.5, “To singleton or not to singleton”
constructor arguments Section 3.3.1, “ Setting bean properties and collaborators’
bean properties Section 3.3.1, “ Setting bean properties and collaborators’
autowiring mode Section 3.3.6, “ Autowiring collaborators’

dependency checking mode Section 3.3.7, “ Checking for dependencies’

initialization method Section 3.4.1, “Lifecycle interfaces’

destruction method Section 3.4.1, “Lifecycle interfaces’

Note that a bean definition is represented by the real interface

org. springframewor k. beans. fact ory. confi g. BeanDef i ni ti on, and its various implementations
(Root/ChildBeanDefinition). However, it israre that user code works directly with BeanDefinition objects:
Usually, bean definitions will be expressed in a metadata format (such as XML), which will be loaded on
startup. Theinternal representation of such bean definitions are BeanDefinition objects in the factory.

Besides bean definitions which contain information on how to create a specific bean, a BeanFactory can also
allow to register existing bean objects that have been created outside the factory (by custom code).
DefaultListableBeanFactory supports this through the r egi st er Si ngl et on method, as defined by the

org. springframewor k. beans. f act ory. confi g. Confi gur abl eBeanFact ory interface. Typical applications
solely work with beans defined through metadata bean definitions, though.

3.2.3. The bean class

Spring Framework Version 1.2.9 19

Beans, BeanFactory and the A pplicationContext

Thecl ass attribute is normally mandatory (see Section 3.2.3.3, “Bean creation viainstance factory method”
and Section 3.5, “Abstract and child bean definitions” for the two exception) and is used for one of two
purposes. In the much more common case where the BeanFactory itself directly creates the bean by calling its
constructor (equivalent to Java code calling new), the class attribute specifies the class of the bean to be
constructed. In the less common case where the BeanFactory calls a static, so-called factory method on a class
to create the bean, the class attribute specifies the actual class containing the static factory method. (the type of
the returned bean from the static factory method may be the same class or another class entirely, it doesn't
matter).

3.2.3.1. Bean creation via constructor

When creating a bean using the constructor approach, al normal classes are usable by Spring and compatible
with Spring. That is, the class being created does not need to implement any specific interfaces or be coded in a
specific fashion. Just specifying the bean class should be enough. However, depending on what type of 10C you
are going to use for that specific bean, you may need a default (empty) constructor.

Additionally, the BeanFactory isn't limited to just managing true JavaBeans, it is also able to manage virtually
any class you want it to manage. Most people using Spring prefer to have actual JavaBeans (having just a
default (no-argument) constructor and appropriate setters and getters modeled after the properties) in the
BeanFactory, but it it's also possible to have more exotic non-bean-style classes in your BeanFactory. If, for
example, you need to use alegacy connection pool that absolutely does not adhere to the JavaBean
specification, no worries, Spring can manage it as well.

Using the XmlBeanFactory you can specify your bean class as follows:

<bean i d="exanpl eBean"

cl ass="exanpl es. Exanpl eBean"/ >
<bean nane="anot her Exanpl e"

cl ass="exanpl es. Exanpl eBeanTwo"/ >

The mechanism for supplying (optional) arguments to the constructor, or setting properties of the object
instance after it has been constructed, will be described shortly.

3.2.3.2. Bean creation via static factory method

When defining a bean which is to be created using a static factory method, along with the cl ass attribute which
specifies the class containing the static factory method, another attribute named f act or y- et hod is needed to
specify the name of the factory method itself. Spring expects to be able to call this method (with an optional list
of arguments as described later) and get back alive object, which from that point on istreated asif it had been
created normally via a constructor. One use for such a bean definition is to call static factoriesin legacy code.

Following is an example of a bean definition which specifies that the bean isto be created by calling a
factory-method. Note that the definition does not specify the type (class) of the returned object, only the class
containing the factory method. In this example, cr eat el nst ance must be a static method.

<bean i d="exanpl eBean"
cl ass="exanpl es. Exanpl eBean2"
factory- met hod="creat el nst ance"/ >

The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object
instance after it has been returned from the factory, will be described shortly.

3.2.3.3. Bean creation via instance factory method

Spring Framework Version 1.2.9 20

Beans, BeanFactory and the A pplicationContext

Quite similar to using a static factory method to create a bean, is the use of an instance (non-static) factory
method, where afactory method of an existing bean from the factory is called to create the new bean.

To use this mechanism, the cl ass attribute must be left empty, and the f act or y- bean attribute must specify the
name of abean in the current or an ancestor bean factory which contains the factory method. The factory
method itself should still be set viathef act or y- et hod attribute.

Following is an example:

<l-- The factory bean, which contains a nethod called
createl nstance -->
<bean i d="nyFact or yBean"

class="...">
</ bean>
<l-- The bean to be created via the factory bean -->

<bean i d="exanpl eBean"
fact ory- bean="nyFact or yBean"
factory- met hod="creat el nst ance"/ >

Although the mechanisms for setting bean properties are still to be discussed, one implication of this approach
isthat the factory bean itself can be managed and configured via Dependency Injection, by the container.

3.2.4. The bean identifiers (i d and nane)

Every bean has one or moreids (also called identifiers, or names; these terms refer to the same thing). These ids
must be unigue within the BeanFactory or ApplicationContext the bean is hosted in. A bean will almost aways
have only oneid, but if a bean has more than one id, the extra ones can essentially be considered aliases.

In an XmlBeanFactory (including ApplicationContext variants), you use thei d or nane attributes to specify the
bean id(s), and at least one id must be specified in one or both of these attributes. Thei d attribute allows you to
specify oneid, and asit ismarked in the XML DTD (definition document) asareal XML element ID attribute,
the parser is able to do some extra validation when other elements point back to this one. As such, itisthe
preferred way to specify abean id. However, the XML spec does limit the characters which are legal in XML
IDs. Thisisusually not really a constraint, but if you have a need to use one of these characters, or want to
introduce other aliases to the bean, you may also or instead specify one or more bean ids (separated by a
comma (,) or semicolon (;) viathe nane attribute.

3.2.5. To singleton or not to singleton

Beans are defined to be deployed in one of two modes: singleton or non-singleton. (The latter isalso called a
prototype, although theterm is used loosely as it doesn't quite fit). When a bean is a singleton, only one shared
instance of the bean will be managed and all requests for beans with an id or ids matching that bean definition
will result in that one specific bean instance being returned.

The non-singleton, prototype mode of a bean deployment results in the creation of a new bean instance every
time arequest for that specific bean isdone. Thisisideal for situations where for example each user needs an
independent user object or something similar.

Beans are deployed in singleton mode by default, unless you specify otherwise. Keep in mind that by changing
the type to non-singleton (prototype), each request for a bean will result in a newly created bean and this might
not be what you actually want. So only change the mode to prototype when absolutely necessary.

In the example below, two beans are declared of which one is defined as a singleton, and the other oneisa
non-singleton (prototype). exanpl eBean is created each and every time a client asks the BeanFactory for this

Spring Framework Version 1.2.9 21

Beans, BeanFactory and the A pplicationContext

bean, while yet Anot her Exanpl e isonly created once; areference to the exact same instance is returned on each
request for this bean.

<bean i d="exanpl eBean"

cl ass="exanpl es. Exanpl eBean" si ngl eton="fal se"/>
<bean name="yet Anot her Exanpl e"

cl ass="exanpl es. Exanpl eBeanTwo" si ngl et on="true"/>

Note: when deploying a bean in the prototype mode, the lifecycle of the bean changes slightly. By definition,
Spring cannot manage the complete lifecycle of a non-singleton/prototype bean, since after it is created, it is
given to the client and the container does not keep track of it at all any longer. Y ou can think of Spring'srole
when talking about a non-singleton/prototype bean as a replacement for the 'new' operator. Any lifecycle
aspects past that point have to be handled by the client. The lifecycle of abean in the BeanFactory is further
described in Section 3.4.1, “Lifecycle interfaces’.

3.3. Properties, collaborators, autowiring and dependency
checking

3.3.1. Setting bean properties and collaborators

Inversion of Control has already been referred to as Dependency Injection. The basic principleis that beans
define their dependencies (i.e. the other objects they work with) only through constructor arguments, arguments
to afactory method, or properties which are set on the object instance after it has been constructed or returned
from afactory method. Then, it isthe job of the container to actually inject those dependencies when it creates
the bean. Thisis fundamentally the inverse (hence the name Inversion of Control) of the bean instantiating or
locating its dependencies on its own using direct construction of classes, or something like the Service Locator
pattern. While we will not elaborate too much on the advantages of Dependency Injection, it becomes evident
upon usage that code gets much cleaner and reaching a higher grade of decoupling is much easier when beans
do not look up their dependencies, but are provided with them, and additionally do not even know where the
dependencies are located and of what actual type they are.

Astouched on in the previous paragraph, Inversion of Control/Dependency Injection exists in two major
variants:

* setter-based dependency injection isrealized by calling setters on your beans after invoking a no-argument
constructor or no-argument static factory method to instantiate your bean. Beans defined in the BeanFactory
that use setter-based dependency injection are true JavaBeans. Spring generally advocates usage of
setter-based dependency injection, since alarge number of constructor arguments can get unwieldy,
especially when some properties are optional.

« constructor-based dependency injection is realized by invoking a constructor with a number of arguments,
each representing a collaborator or property. Additionaly, calling a static factory method with specific
arguments, to construct the bean, can be considered almost equivalent, and the rest of this text will consider
arguments to a constructor and arguments to a static factory method similarly. Although Spring generally
advocates usage of setter-based dependency injection for most situations, it does fully support the
constructor-based approach as well, since you may wish to use it with pre-existing beans which provide only
multi-argument constructors, and no setters. Additionally, for simpler beans, some people prefer the
constructor approach as a means of ensuring beans cannot be constructed in an invalid state.

The BeanFact or y supports both of these variants for injecting dependencies into beans it manages. (It in fact
also supports injecting setter-based dependencies after some dependencies have already been supplied viathe
constructor approach.) The configuration for the dependencies comes in the form of aBeanDef i ni ti on, which
is used together with JavaBeans Pr oper t yEdi t or s to know how to convert properties from one format to

Spring Framework Version 1.2.9 22

Beans, BeanFactory and the A pplicationContext

another. The actual values being passed around are done in the form of Propert yVval ue objects. However, most
users of Spring will not be dealing with these classes directly (i.e. programmatically), but rather with an XML
definition file which will be converted internally into instances of these classes, and used to load an entire
BeanFactory or ApplicationContext.

Bean dependency resolution generally happens as follows:

1. The BeanFactory is created and initialized with a configuration which describes all the beans. Maost Spring
users use a BeanFactory or ApplicationContext variant which supports XML format configuration files.

2. Each bean has dependencies expressed in the form of properties, constructor arguments, or arguments to the
static-factory method when that is used instead of anormal constructor. These dependencies will be
provided to the bean, when the bean is actually created.

3. Each property or constructor-arg is either an actual definition of the value to set, or areference to another
bean in the BeanFactory. In the case of the ApplicationContext, the reference can be to a bean in a parent
ApplicationContext.

4. Each property or constructor argument which is a value must be able to be converted from whatever format
it was specified in, to the actual type of that property or constructor argument. By default Spring can convert
avalue supplied in string format to al built-in types, such asi nt, | ong, St ri ng, bool ean, etc. Additionally,
when talking about the XML based BeanFactory variants (including the ApplicationContext variants), these
have built-in support for defining Lists, Maps, Sets, and Properties collection types. Additionally, Spring
uses JavaBeans Pr oper t yEdi t or definitions to be able to convert string values to other, arbitrary types. (You
can provide the BeanFactory with your own Proper t yEdi t or definitions to be able to convert your own
custom types; more information about PropertyEditors and how to manually add custom ones, can be found
in Section 3.9, “Registering additional custom PropertyEditors’). When a bean property is a Java Class type,
Spring alows you to specify the value for that property as a string value which is the name of the class, and
the d assEdi t or PropertyEditor, which is built-in, will take care of converting that class name to an actual
Classinstance.

5. Itisimportant to realize that Spring validates the configuration of each bean in the BeanFactory when the
BeanFactory is created, including the validation that properties which are bean references are actualy
referring to valid beans (i.e. the beans being referred to are aso defined in the BeanFactory, or in the case of
ApplicationContext, a parent context). However, the bean properties themselves are not set until the bean is
actually created. For beans which are singleton and set to be pre-instantiated (such as singleton beansin an
ApplicationContext), creation happens at the time that the BeanFactory is created, but otherwise thisis only
when the bean is requested. When a bean actually has to be created, this will potentially cause a graph of
other beans to be created, as its dependencies and its dependencies dependencies (and so on) are created and
assigned.

6. You can generally trust Spring to do the right thing. It will pick up configuration issues, including references
to non-existent beans and circular dependencies, at BeanFactory load-time. It will actually set properties and
resolve dependencies (i.e. create those dependencies if needed) as late as possible, which iswhen the bean is
actually created. This does mean that a BeanFactory which has loaded correctly, can later generate an
exception when you request a bean, if there is a problem creating that bean or one of its dependencies. This
could happen if the bean throws an exception as aresult of amissing or invalid property, for example. This
potentialy delayed visibility of some configuration issues is why ApplicationContext by default
pre-instantiates singleton beans. At the cost of some upfront time and memory to create these beans before
they are actually needed, you find out about configuration issues when the ApplicationContext is created,
not later. If you wish, you can still override this default behavior and set any of these singleton beans to
lazy-load (not be pre-instantiated).

Some examples:

First, an example of using the BeanFactory for setter-based dependency injection. Below isasmall part of an
Xm BeanFact ory configuration file specifying some bean definitions. Following is the code for the actual main
bean itself, showing the appropriate setters declared.

Spring Framework Version 1.2.9 23

Beans, BeanFactory and the A pplicationContext

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<property name="beanOne"><ref bean="anot her Exanpl eBean"/ ></ property>
<property name="beanTwo"><ref bean="yet Anot her Bean"/></ property>
<property nane="integerProperty"><val ue>1</val ue></ property>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

public void set BeanOne(Anot her Bean beanOne) {
thi s. beanOne = beanOne

}

public void set BeanTwo(Yet Anot her Bean beanTwo) {
thi s. beanTwo = beanTwo;

}

public void setlntegerProperty(int i) {
this.i =1i;

}

}

Asyou can see, setters have been declared to match against the properties specified in the XML file. (The
properties from the XML file, directly relate to the Pr oper t yVval ues object from the Root BeanDef i ni ti on)

Now, an example of using the BeanFactory for 10C type 3 (constructor-based dependency injection). Below isa
snippet from an XML configuration that specifies constructor arguments and the actual bean code, showing the
constructor:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg><ref bean="anot her Exanpl eBean"/ ></ construct or - ar g>
<constructor-arg><ref bean="yet Anot her Bean"/ ></ const ruct or - ar g>
<constructor-arg type="int"><val ue>1</val ue></ construct or - ar g>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public cl ass Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
t hi s. beanOne = anot her Bean
t hi s. beanTwo = yet Anot her Bean
this.i =1i;

}

Asyou can see, the constructor arguments specified in the bean definition will be used to passin as arguments
to the constructor of the Exanpl eBean.

Now consider avariant of this where instead of using a constructor, Spring istold to call a static factory method
to return an instance of the object.:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory-net hod="cr eat el nst ance" >
<constructor-arg><ref bean="anot her Exanpl eBean"/ ></ construct or - ar g>
<constructor-arg><ref bean="yet Anot her Bean"/ ></ const ruct or - ar g>
<constructor-ar g><val ue>1</ val ue></ const r uct or - ar g>
</ bean>

Spring Framework Version 1.2.9 24

Beans, BeanFactory and the A pplicationContext

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public cl ass Exanpl eBean {

// a private constructor
private ExanpleBean(...) {

i

// a static factory method
// the argunents to this nmethod can be consi dered the dependenci es of the bean that
/1 is returned, regardl ess of how those arguments are actually used
public static Exanpl eBean creat el nstance(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
Exanpl eBean eb = new Exanpl eBean(...);
/] some other operations

return eb;

Note that arguments to the static factory method are supplied viaconst r uct or - ar g €elements, exactly the same
asif aconstructor had actually been used. These arguments are optional. Also, it isimportant to realize that the
type of the class being returned by the factory method does not have to be of the same type as the class which
contains the static factory method, although in this exampleit is. An instance (non-static) factory method,
mentioned previously, would be used in an essentially identical fashion (aside from the use of the

fact ory- bean attribute instead of the cl ass attribute), so will not be detailed here.

3.3.2. Constructor Argument Resolution

Constructor argument resol ution matching occurs using the argument's type. When another bean is referenced,
the type is known, and matching can occur. When asimple type is used, such as <val ue>t r ue<val ue>, Spring
cannot determine the type of the value, and so cannot match by type without help. Consider the following class,
which is used for the following two sections:

package exanpl es;

public cl ass Exanpl eBean {

private int years; //No. of years to the calculate the Utinate Answer
private String ulti mateAnswer; //The Answer to Life, the Universe, and Everything

publ i c Exanpl eBean(int years, String ultimteAnswer) {
this.years = years
this.ultimateAnswer = ultimateAnswer;

3.3.2.1. Constructor Argument Type Matching

The above scenario can use type matching with simple types by explicitly specifying the type of the constructor
argument using the t ype attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int"><val ue>7500000</ val ue></ const ruct or - ar g>
<constructor-arg type="java.l ang. String"><val ue>42</val ue></ construct or - ar g>
</ bean>

Spring Framework Version 1.2.9 25

Beans, BeanFactory and the A pplicationContext

3.3.2.2. Constructor Argument Index

Constructor arguments can have their index specified explicitly by use of thei ndex attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg index="0"><val ue>7500000</ val ue></ construct or - ar g>
<constructor-arg index="1"><val ue>42</val ue></ constructor - ar g>

</ bean>

Aswell as solving the ambiguity problem of multiple smple values, specifying an index also solvesthe
problem of ambiguity where a constructor may have two arguments of the same type. Note that the index is0
based.

Specifying a constructor argument index is the preferred way of performing constructor 10C.

3.3.3. Bean properties and constructor arguments detailed

As mentioned in the previous section, bean properties and constructor arguments can be defined as either
references to other managed beans (collaborators), or values defined inline. The Xni BeanFact ory Supports a
number of sub-element types within itsproperty and const r uct or - ar g elements for this purpose.

3.3.3.1. The val ue element

Theval ue element specifies a property or constructor argument as a human-readable string representation. As
mentioned in detail previously, JavaBeans PropertyEditors are used to convert these string values from a
java.lang. String to the actual property or argument type.

<bean i d="nyDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">
<l-- results in a setDriverCl assNane(String) call -->
<property nanme="driverd assNane" >
<val ue>com nysql . j dbc. Dri ver </ val ue>
</ property>
<property name="url">
<val ue>j dbc: nysql : / /1 ocal host : 3306/ nydb</ val ue>
</ property>
<property name="user name" >
<val ue>r oot </ val ue>
</ property>
</ bean>

3.3.3.2. The nul | element

Thenul I element is used to handle null values. Spring treats empty arguments for properties and the like as
empty Strings. The following XmlBeanFactory configuration:

<bean cl ass="Exanpl eBean" >
<property name="emai |l " ><val ue></val ue></ property>
</ bean>

resultsin the email property being set to ", equivalent to the java code: exanpl eBean. set Emai | (") . The
special <nul | > element may be used to indicate a null value, so that:

<bean cl ass="Exanpl eBean" >
<property name="email"><nul | /></property>
</ bean>

is equivalent to the java code: exanpl eBean. set Emai | (nul |).

3.3.3.3. The collection elements

Spring Framework Version 1.2.9 26

Beans, BeanFactory and the A pplicationContext

Thelist, set, map, and pr ops elements allow properties and arguments of JavatypeLi st, Set, Map, and
Properti es, respectively, to be defined and set.

<bean i d="nor eConpl ex(hj ect" cl ass="exanpl e. Conpl ex(hj ect " >

<I-- results in a setPeople(java.util.Properties) call -->
<property name="peopl e">
<props>

<prop key="HarryPotter">The magi c property</prop>
<prop key="JerrySei nfeld">The funny property</prop>

</ props>
</ property>
<I-- results in a setSoneList(java.util.List) call -->
<property nanme="soneList">

<list>

<value>a list elenent followed by a reference</val ue>
<ref bean="nyDat aSource"/>
</list>
</ property>
<l-- results in a setSoneMap(java.util.Map) call -->
<property name="soneMap">
<|’T‘Bp>
<entry>
<key><val ue>yup an entry</val ue></key>
<val ue>j ust sone string</val ue>
</entry>
<entry>
<key><val ue>yup a ref</val ue></ key>
<ref bean="nyDat aSource"/>
</entry>
</ map>
</ property>
<l-- results in a setSoneSet (java.util.Set) call -->
<property name="sonmeSet">
<set >
<val ue>j ust some string</val ue>
<ref bean="nyDat aSource"/>
</ set>
</ property>
</ bean>

Note that the value of a map key or value, or a set value, can also again be any of the elements:

(bean | ref | idref | list | set | map | props | value | null)

3.3.3.4. Inner bean definitions via nested bean elements

A bean element inside the pr oper t y element is used to define a bean value inline, instead of referring to a bean
defined elsewhere in the BeanFactory. The inline bean definition does not need to have any id defined.

<bean id="outer" class="...">
<l-- Instead of using a reference to target, just use an inner bean -->
<property name="target">
<bean cl ass="com nyconpany. Per sonl npl ">
<property nanme="nanme"><val ue>Tony</ val ue></ property>
<property nanme="age"><val ue>51</val ue></ property>
</ bean>
</ property>
</ bean>

Note that the si ngl et on flag and any i d attribute are effectively ignored. Inner beans are anonymous
prototypes.

3.3.3.5. The i dref element

Anidref element is simply a shorthand and error-proof way to set a property to the String id or name of another
bean in the container.

Spring Framework Version 1.2.9 27

Beans, BeanFactory and the A pplicationContext

<bean id="t heTarget Bean" class="..."/>

<bean i d="t heC i ent Bean" class="...">
<property name="t ar get Nane">
<i dref bean="theTarget Bean"/>
</ property>
</ bean>

Thisis exactly equivalent at runtime to the following fragment:

<bean i d="t heTar get Bean" class="...">
</ bean>
<bean i d="t heCd i entBean" class="...">

<property name="t ar get Nane">
<val ue>t heTar get Bean</ val ue>
</ property>
</ bean>

The main reason the first form is preferable to the second is that using thei dr ef tag will allow Spring to
validate at deployment time that the other bean actually exists. In the second variation, the class who's
targetName property is forced to do its own validation, and that will only happen when that classis actually
instantiated by Spring, possibly long after the container is actually deployed.

Additionally, if the bean being referred to isin the same actual XML file, and the bean name is the bean id, the
| ocal attribute may be used, which will allow the XML parser itself to validate the bean name even earlier, at
XML document parse time.

<property name="t ar get Nane">
<idref |ocal ="theTarget Bean"/>
</ property>

3.3.3.6. The ref element

Theref dlement isthefinal element alowed inside aproperty definition element. It is used to set the value of
the specified property to be a reference to another bean managed by the container, a collaborator, so to speak.
As mentioned in a previous section, the referred-to bean is considered to be a dependency of the bean who's
property is being set, and will beinitialized on demand as needed (if it is a singleton bean it may have already
been initialized by the container) before the property is set. All references are ultimately just areference to
another object, but there are 3 variations on how the id/name of the other object may be specified, which
determines how scoping and validation is handled.

Specifying the target bean by using the bean attribute of ther ef tagisthe most general form, and will alow
creating areference to any bean in the same BeanFactory/ApplicationContext (whether or not in the same XML
file), or parent BeanFactory/ApplicationContext. The value of the bean attribute may be the same as either the

i d attribute of the target bean, or one of the values in the nane attribute of the target bean.

<ref bean="soneBean"/>

Specifying the target bean by using thel ocal attribute leverages the ability of the XML parser to validate XML
id references within the same file. The value of thel ocal attribute must be the same asthei d attribute of the
target bean. The XML parser will issue an error if no matching element isfound in the samefile. As such, using
thelocal variant isthe best choice (in order to know about errors are early as possible) if the target bean isin
the same XML file.

<ref |ocal ="soneBean"/>

Specifying the target bean by using the par ent attribute allows a reference to be created to abean whichisina

Spring Framework Version 1.2.9 28

Beans, BeanFactory and the A pplicationContext

parent BeanFactory (or ApplicationContext) of the current BeanFactory (or ApplicationContext). The value of
the par ent attribute may be the same as either thei d attribute of the target bean, or one of the valuesin the
name attribute of the target bean, and the target bean must be in a parent BeanFactory or ApplicationContext to
the current one. The main use of this bean reference variant is when there is a need to wrap an existing bean in
a parent context with some sort of proxy (which may have the same name as the parent), and needs the original
object so it may wrap it.

<ref parent="soneBean"/>

3.3.3.7. Value and Ref shortcut forms

It is so common to need to configure avalue or a bean reference, that there exist some shortcut forms which are
less verbose than using the full val ue and ref elements. The property, construct or-arg, and ent ry elements
all support aval ue attribute which may be used instead of embedding afull val ue element. Therefore, the
following:

<property name="nmnyProperty">
<val ue>hel | o</ val ue>
</ property

<constructor-arg>
<val ue>hel | o</ val ue>
</ constructor-arg>

<entry key="nyKey">
<val ue>hel | o</ val ue>
</entry>

are equivalent to:
<property name="nyProperty" val ue="hello0"/>
<constructor-arg val ue="hell 0"/ >

<entry key="nyKey" val ue="hell 0"/ >
In general, when typing definitions by hand, you will probably prefer to use the less verbose shortcut form.
Theproperty and const ruct or - ar g elements support asimilar shortcut r ef attribute which may be used

instead of afull nested ref element. Therefore, the following:

<property name="nmnyProperty">
<ref bean="nyBean">
</ property

<constructor-arg>
<ref bean="nyBean">
</ constructor-arg>

are equivaent to:

Spring Framework Version 1.2.9 29

Beans, BeanFactory and the A pplicationContext

<property name="nyProperty" ref="nyBean"/>
<constructor-arg ref="nyBean"/>

Note however that the shortcut form is equivalent to a<ref bean="xxx"> element, thereis no shortcut for <r ef
| ocal ="xxx">. To enforce astrict local ref, you must use the long form.

Finally, the entry element allows a shortcut form to specify the key and/or value of the map, in the form of the
key / key-ref andval ue / val ue-ref atributes. Therefore, the following:

<entry>
<key><ref bean="nyKeyBean"/ ></key>
<ref bean="nyVal ueBean"/>

</entry>

is equivalent to:

<entry key-ref="nyKeyBean" val ue-ref="nyVal ueBean"/ >

Again, the shortcut form isequivalent to a<ref bean="xxx"> element; there is no shortcut for <r ef
| ocal =" xxx">.

3.3.3.8. Compound property names

Note that compound or nested property names are perfectly legal when setting bean properties, aslong as all
components of the path except the final property name are non-null. For example, in this bean definition:

<bean i d="fo00" class="foo0.Bar">
<property nanme="fred. bob. sammy" val ue="123"/>
</ bean>

the foo bean has af r ed property which has abob property, which has asamy property, and that final samy
property is being set to ascalar value of 123. In order for thisto work, thef r ed property of f oo, and the bob
property of f red must both be non-null after the bean is constructed, or a null-pointer exception will be thrown.

3.3.4. Method Injection

For most users, the majority of the beansin the container will be singletons. When a singleton bean needs to
collaborate with (use) another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, the typical and common approach of handling this dependency by defining one bean to be a
property of the other, is quite adequate. There is however a problem when the bean lifecycles are different.
Consider asingleton bean A which needs to use a non-singleton (prototype) bean B, perhaps on each method
invocation on A. The container will only create the singleton bean A once, and thus only get the opportunity to
set its properties once. There is no opportunity for the container to provide bean A with a new instance of bean
B every time oneis needed.

One solution to this problem isto forgo someinversion of control. Bean A can be aware of the container (as
described here) by implementing BeanFact or yAwar e, and use programmatic means (as described here) to ask
the container viaaget Bean(" B") call for (anew) bean B every timeit needsit. Thisis generally not a desirable
solution since the bean code is then aware of and coupled to Spring.

Spring Framework Version 1.2.9 30

Beans, BeanFactory and the A pplicationContext

Method Injection, an advanced feature of the BeanFactory, allows this use case to be handled in aclean
fashion, along with some other scenarios.

3.3.4.1. Lookup method Injection

Lookup method injection refers to the ability of the container to override abstract or concrete methods on
managed beans in the container, to return the result of looking up another named bean in the container. The
lookup will typically be of a non-singleton bean as per the scenario described above (although it can also be a
singleton). Spring implements this through a dynamically generated subclass overriding the method, using
bytecode generation viathe CGLIB library.

In the client class containing the method to be injected, the method definition must be an abstract (or concrete)
definition in this form:

protected abstract Singl eShot Hel per createSi ngl eShot Hel per();

If the method is not abstract, Spring will simply override the existing implementation. In the XmlBeanFactory
case, you instruct Spring to inject/override this method to return a particular bean from the container, by using
thel ookup- met hod element inside the bean definition. For example:

<l-- a stateful bean deployed as a prototype (non-singleton) -->
<bean i d="si ngl eShot Hel per class="..." singleton="fal se">

</ bean>

<!-- nyBean uses singl eShot Hel per -->

<bean i d="nyBean" class="...">

<l ookup- met hod nane="cr eat eSi ngl eShot Hel per" bean="si ngl eShot Hel per"/>
<property>

</ property>
</ bean>

The bean identified as myBean will call its own method cr eat eSi ngl eShot Hel per whenever it needs a new
instance of the singleShotHelper bean. It isimportant to note that the person deploying the beans must be
careful to deploy singleShotHelper as a non-singleton (if that is actually what is needed). If it is deployed as a
singleton (either explicitly, or relying on the default true setting for this flag), the same instance of
singleShotHel per will be returned each time!

Note that lookup method injection can be combined with Constructor Injection (supplying optional constructor
arguments to the bean being constructed), and also with Setter Injection (settings properties on the bean being
constructed).

3.3.4.2. Arbitrary method replacement

A less commonly useful form of method injection than Lookup Method Injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of
this section (which describes this somewhat advanced feature), until this functionality is actually needed.

In an XmlBeanFactory, ther epl aced- net hod element may be used to replace an existing method
implementation with another, for a deployed bean. Consider the following class, with a method computeValue,
which we want to override:

public class MyVal ueCal cul ator {
public String conputeValue(String input) {
. sonme real code
}

Spring Framework Version 1.2.9 31

Beans, BeanFactory and the A pplicationContext

. sone other nethods

A classimplementing the or g. spri ngf r amewor k. beans. f act ory. support . Met hodRepl acer interfaceis
needed to provide the new method definition.

/** meant to be used to override the existing conputeVal ue
i npl enent ati on in MyVal ueCal cul ator */
public cl ass Repl acenent Conput eVal ue i npl enents Met hodRepl acer {

public oject reinplement(oject o, Method m oject[] args) throws Throwabl e {
/'l get the input value, work with it, and return a conputed result
String input = (String) args[0];

return ...;

The BeanFactory deployment definition to deploy the original class and specify the method override would
look like:

<bean id="nyVal ueCal cul ator class="x.y.z. M/Val ueCal cul at or">
<l-- arbitrary nethod repl acenent -->
<r epl aced- net hod nanme="conput eVal ue" repl acer ="repl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</ repl aced- net hod>
</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl aceMent Conput eVal ue"/ >

One or more contained ar g- t ype elements within ther epl aced- met hod element may be used to indicate the
method signature of the method being overridden. Note that the signature for the argumentsis actually only
needed in the case that the method is actually overloaded and there are multiple variants within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For example,
all the following would match java.lang.String.

java.lang. String
String
Str

Since the number of arguments is often enough to distinguish between each possible choice, this shortcut can
save alot of typing, by just using the shortest string which will match an argument.

3.3.5. Using depends- on

For most situations, the fact that a bean is a dependency of another is expressed simply by the fact that one bean
is set as a property of another. Thisistypically done with theref element in the XmlBeanFactory. In a
variation of this, sometimes a bean which is aware of the container is simply given theid of its dependency
(using astring value or alternately thei dref element, which evaluates the same as a string value). The first
bean then programmatically asks the container for its dependency. In either case, the dependency is properly
initialized before the dependent bean.

For the relatively infrequent situations where dependencies between beans are less direct (for example, when a
static initializer in a class needs to be triggered, such as database driver registration), the depends- on element
may be used to explicitly force one or more beans to be initialized before the bean using this element is
initialized.

Following is an example configuration:

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="nanager" >

Spring Framework Version 1.2.9 32

Beans, BeanFactory and the A pplicationContext

<property nanme="manager"><ref |ocal ="manager"/></property>
</ bean>

<bean i d="manager" cl ass="Manager Bean"/ >

3.3.6. Autowiring collaborators

A BeanFactory is able to autowire relationships between collaborating beans. This meansit's possible to
automatically let Spring resolve collaborators (other beans) for your bean by inspecting the contents of the
BeanFactory. The autowiring functionality has five modes. Autowiring is specified per bean and can thus be
enabled for some beans, while other beans won't be autowired. Using autowiring, it is possible to reduce or
eliminate the need to specify properties or constructor arguments, saving a significant amount of typing.tin an
XmlBeanFactory, the autowire mode for a bean definition is specified by using the aut owi r e attribute of the
bean element. The following values are allowed.

Table 3.2. Autowiring modes

Mode Explanation

no No autowiring at all. Bean references must be defined viaar ef element. Thisisthe
default, and changing thisis discouraged for larger deployments, since explicitly
specifying collaborators gives greater control and clarity. To some extent, it isaform of
documentation about the structure of a system.

byName Autowiring by property name. This option will inspect the BeanFactory and look for a
bean named exactly the same as the property which needs to be autowired. For example, if
you have a bean definition which is set to autowire by name, and it contains a master
property (that is, it has a setMaster(...) method), Spring will look for a bean definition
named master, and use it to set the property.

byType Allows a property to be autowired if there is exactly one bean of the property typein the
BeanFactory. If there is more than one, afatal exception is thrown, and this indicates that
you may nhot use byType autowiring for that bean. If there are no matching beans, nothing
happens; the property is not set. If thisis not desirable, setting the
dependency- check="obj ect s" attribute value specifiesthat an error should be thrownin
this case.

constructor Thisis analogous to byType, but appliesto constructor arguments. If thereisn't exactly one
bean of the constructor argument type in the bean factory, afatal error israised.

autodetect Chooses constructor or byType through introspection of the bean class. If a default
constructor isfound, by Type gets applied.

Note that explicit dependenciesin property and const r uct or - ar g elements always override autowiring.
Autowire behavior can be combined with dependency checking, which will be performed after all autowiring
has been completed.

It'simportant to understand the pros and cons around autowiring. Some advantages of autowiring:

« It can significantly reduce the volume of configuration required. (However, mechanisms such as the use of a
configuration "template," discussed elsewhere in this chapter, are also valuable here.)

See Section 3.3.1, “Setting bean properties and collaborators’

Spring Framework Version 1.2.9 33

Beans, BeanFactory and the A pplicationContext

« |t can cause configuration to keep itself up to date as your objects evolve. For example, if you need to add an
additional dependency to aclass, that dependency can be satisfied automatically without the need to modify
configuration. Thus there may be a strong case for autowiring during development, without ruling out the
option of switching to explicit wiring when the code base becomes more stable.

Some disadvantages of autowiring:

* It'smore magical than explicit wiring. Although, as noted in the above table, Spring is careful to avoid
guessing in case of ambiguity which might have unexpected results, the relationships between your
Spring-managed objects is no longer explicitly documented.

« Wiring information may not be available to tools that may generate documentation from a Spring application
context.

» Autowiring by type will only work when there is a single bean definition of the type specified by the setter
method or constructor argument. Y ou need to use explicit wiring if there is any potential ambiguity.

Thereisno "wrong" or "right" answer in all cases. We recommend a degree of consistency across a project. For
example, if autowiring is not used in general, it might be confusing to developersto useit just to one or two
bean definitions.

3.3.7. Checking for dependencies

Spring has the ability to try to check for the existence of unresolved dependencies of a bean deployed into the
BeanFactory. These are JavaBeans properties of the bean, which do not have actual values set for them in the
bean definition, or alternately provided automatically by the autowiring feature.

This feature is sometimes useful when you want to ensure that all properties (or all properties of a certain type)
are set on abean. Of course, in many cases a bean class will have default values for many properties, or some
properties do not apply to al usage scenarios, so thisfeatureis of limited use. Dependency checking can also
be enabled and disabled per bean, just as with the autowiring functionality. The default isto not check
dependencies. Dependency checking can be handled in several different modes. In an XmlBeanFactory, thisis
specified viathe dependency- check attribute in a bean definition, which may have the following values.

Table 3.3. Dependency checking modes

Mode Explanation

none No dependency checking. Properties of the bean which have no value specified for them
are simply not set.

simple Dependency checking is performed for primitive types and collections (everything except
collaborators, i.e. other beans)

object Dependency checking is performed for collaborators

al Dependency checking is done for collaborators, primitive types and collections

3.4. Customizing the nature of a bean

Spring Framework Version 1.2.9 34

Beans, BeanFactory and the A pplicationContext

3.4.1. Lifecycle interfaces

Spring provides several marker interfaces to change the behavior of your bean in the BeanFactory. They
include ni ti al i zi ngBean and Di sposabl eBean. Implementing these interfaces will result in the BeanFactory
calling af t er Properti esSet () for theformer and dest r oy() for the latter to allow the bean to perform certain
actions upon initialization and destruction.

Internally, Spring uses BeanPost Pr ocessor s t0 process any marker interfaces it can find and call the
appropriate methods. If you need custom features or other lifecycle behavior Spring doesn't offer
out-of-the-box, you can implement a BeanPost Pr ocessor yourself. More information about this can be found
in Section 3.7, “ Customizing beans with BeanPostProcessors’.

All the different lifecycle marker interfaces are described below. In one of the appendices, you can find
diagram that show how Spring manages beans and how those lifecycle features change the nature of your beans
and how they are managed.

3.4.1.1. InitializingBean / i ni t - met hod

Implementing the or g. spri ngf r anewor k. beans. factory. | niti al i zi ngBean allows a bean to perform
initialization work after all necessary properties on the bean are set by the BeanFactory. The InitializingBean
interface specifies exactly one method:

* I nvoked by a BeanFactory after it has set all bean properties supplied
* (and satisfied BeanFactoryAware and Appli cati onCont ext Aware) .
* <p>This nmethod all ows the bean instance to performinitialization only
* possi bl e when all bean properties have been set and to throw an
* exception in the event of m sconfiguration

* @hrows Exception in the event of msconfiguration (such

* as failure to set an essential property) or if initialization fails.

*/

void afterPropertiesSet() throws Exception

Note: generally, the use of the I ni ti al i zi ngBean marker interface can be avoided (and is discouraged since it
unnecessarily couples the code to Spring). A bean definition provides support for a generic initialization
method to be specified. In the case of the XmlBeanFactory, thisis done via thei ni t - met hod attribute. For
example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nmethod="init"/>
public class Exanpl eBean {
public void init() {
// do some initialization work
}

}
Is exactly the same as:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >
public class Anot her Exanpl eBean i npl ements InitializingBean {
public void afterPropertiesSet() {
// do sone initialization work
}

}

but does not couple the code to Spring.

3.4.1.2. DisposableBean / dest r oy- net hod

Spring Framework Version 1.2.9 35

Beans, BeanFactory and the A pplicationContext

Implementing the or g. spri ngf r amewor k. beans. f act ory. Di sposabl eBean interface allows a bean to get a
callback when the BeanFactory containing it is destroyed. The DisposableBean interface specifies one method:

[**

* I nvoked by a BeanFactory on destruction of a singleton.
* @hrows Exception in case of shutdown errors

* Exceptions will get |ogged but not re-thrown to allow
* other beans to rel ease their resources too

*/

voi d destroy() throws Exception

Note: generally, the use of the bi sposabl eBean marker interface can be avoided (and is discouraged since it
unnecessarily couples the code to Spring). A bean definition provides support for a generic destroy method to
be specified. In the case of the XmIBeanFactory, thisis done via the dest r oy- net hod attribute. For example,
the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- nmet hod="cl eanup"/>

public class Exanpl eBean {
public void cleanup() {
/1 do some destruction work (like closing connection)
}

}
Is exactly the same as:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents Di sposabl eBean {
public void destroy() {
/1 do some destruction work
}

}

but does not couple the code to Spring.

Important note: when deploying a bean in the prototype mode, the lifecycle of the bean changes dightly. By
definition, Soring cannot manage the compl ete lifecycle of a non-singleton/prototype bean, since after itis
created, it is given to the client and the container does not keep track of it at all any longer. You can think of
Soring's role when talking about a non-singleton/prototype bean as a replacement for the 'new' operator. Any
lifecycle aspects past that point have to be handled by the client. The lifecycle of a bean in the BeanFactory is
further described in Section 3.4.1, “ Lifecycle interfaces’ .

3.4.2. Knowing who you are

3.4.2.1. BeanFactoryAware

A classwhich implementsthe or g. spri ngf r amewor k. beans. f act ory. BeanFact or yAwar e interfaceis provided
with areference to the BeanFactory that created it, when it is created by that BeanFactory.

public interface BeanFactoryAware {

/**

* Cal | back that supplies the owning factory to a bean instance.

<p>l nvoked after popul ation of normal bean properties but before an init
call back like InitializingBean's afterPropertiesSet or a custominit-nethod.
@ar am beanFact ory owni ng BeanFactory (may not be null).
The bean can imedi ately call nmethods on the factory.
@ hrows BeansException in case of initialization errors
@ee BeanlnitializationException

E I I A

*/
voi d set BeanFact ory(BeanFactory beanFactory) throws BeansExcepti on;

Spring Framework Version 1.2.9 36

Beans, BeanFactory and the A pplicationContext

This alows beans to manipulate the BeanFactory that created them programmatically, through the

org. spri ngframewor k. beans. f act ory. BeanFact ory interface, or by casting the reference to a known subclass
of this which exposes additional functionality. Primarily this would consist of programmatic retrieval of other
beans. While there are cases when this capability is useful, it should generaly be avoided, since it couples the
code to Spring, and does not follow the Inversion of Control style, where collaborators are provided to beans as
properties.

3.4.2.2. BeanNameAware

If abean implementsthe or g. spri ngf ramewor k. beans. f act ory. BeanNanmeAwar e interface and is deployed in a
BeanFactory, the BeanFactory will call the bean through this interface to inform the bean of theid it was
deployed under. The callback will be Invoked after population of normal bean properties but before an init
callback like 1 ni ti al i zi ngBean's after PropertiesSet or a custom init-method.

3.4.3. FactoryBean

Theor g. spri ngf ramewor k. beans. f act ory. Fact or yBean interface isto be implemented by objectsthat are
themsel ves factories. The FactoryBean interface provides three methods:

e (Object getbject(): hasto return an instance of the object this factory creates. The instance can possibly
be shared (depending on whether this factory returns singletons or prototypes).

* bool ean isSingl et on() : hasto return true if this FactoryBean returns singletons, false otherwise

e O ass get Ovj ect Type() : hasto return either the object type returned by the get Obj ect () method or nul | if
the type isn't known in advance

3.5. Abstract and child bean definitions

A bean definition potentially contains a large amount of configuration information, including container specific
information (i.e. initialization method, static factory method name, etc.) and constructor arguments and
property values. A child bean definition is a bean definition which inherits configuration data from a parent
definition. It isthen able to override some values, or add others, as needed. Using parent and child bean
definitions can potentially save alot of typing. Effectively, thisisaform of templating.

When working with a BeanFactory programmeatically, child bean definitions are represented by the

Chi | dBeanDef i ni ti on class. Most users will never work with them on this level, instead configuring bean
definitions declaratively in something like the XmlBeanFactory. In an XmlBeanFactory bean definition, a child
bean definition isindicated simply by using the par ent attribute, specifying the parent bean as the value of this
attribute.

<bean i d="inheritedTest Bean" abstract="true"
cl ass="org. spri ngf ramewor k. beans. Test Bean" >
<property name="nanme" val ue="parent"/>
<property nanme="age" val ue="1"/>
</ bean>

<bean i d="inheritsWthbDifferentC ass" cl ass="org. springframework. beans. Deri vedTest Bean"
parent ="i nheritedTest Bean" init-nmethod="initialize">
<property name="nanme" val ue="override"/>
<!-- age should inherit value of 1 fromparent -->
</ bean>

A child bean definition will use the bean class from the parent definition if none is specified, but can also
overrideit. In the latter case, the child bean class must be compatible with the parent, i.e. it must accept the
parent's property values.

Spring Framework Version 1.2.9 37

Beans, BeanFactory and the A pplicationContext

A child bean definition will inherit constructor argument values, property values and method overrides from the
parent, with the option to add new values. If init method, destroy method and/or static factory method are
specified, they will override the corresponding parent settings.

The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency
check, singleton, lazy init.

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute. In the case that the parent definition does not specify a class:

<bean id="inheritedTest BeanWt hout Cl ass" >
<property name="nanme" val ue="parent"/>
<property nanme="age" val ue="1"/>

</ bean>

<bean i d="inheritsWthd ass" cl ass="org. spri ngfranework. beans. Deri vedTest Bean"
parent ="i nheritedTest BeanW t hout Cl ass" init-nmethod="initialize">
<property name="nanme" val ue="override"/>
<l-- age should inherit value of 1 fromparent -->
</ bean>

the parent bean cannot get instantiated on its own since it isincomplete, and it's also considered abstract. When
adefinition is considered abstract like this (explicitly or implicitly), it's usable just as a pure template or
abstract bean definition that will serve as parent definition for child definitions. Trying to use such an abstract
parent bean on its own (by referring to it as aref property of another bean, or doing an explicit getBean() call
with the parent bean id, will result in an error. Similarly, the container'sinternal prel nstantiateS ngletons
method will completely ignore bean definitions which are considered abstract.

Important Note: Application contexts (but not simple bean factories) will by default pre-instantiate all
singletons. Therefore it isimportant (at least for singleton beans) that if you have a (parent) bean definition
which you intend to use only as a template, and this definition specifies a class, you must make sure to set the
abstract attribute to true, otherwise the application context will actually pre-instantiate it.

3.6. Interacting with the BeanFactory

A BeanFactory is essentially nothing more than the interface for an advanced factory capable of maintaining a
registry of different beans and their dependencies. The BeanFactory enables you to read bean definitions and
access them using the bean factory. When using just the BeanFactory you would create one and read in some
bean definitions in the XML format as follows:

InputStreamis = new Fil el nput Strean("beans. xm ");
Xm BeanFactory factory = new Xm BeanFactory(is);

Basically that's all thereisto it. Using get Bean(St ri ng) you can retrieve instances of your beans. You'll get a
reference to the same bean if you defined it as a singleton (the default) or you'll get a new instance each time if
you set si ngl et on to false. The client-side view of the BeanFactory is surprisingly simple. The BeanFact ory
interface has only five methods for clientsto call:

* bool ean cont ai nsBean(Stri ng) : returnstrue if the BeanFactory contains a bean definition or bean instance
that matches the given name

e Object getBean(String): returnsan instance of the bean registered under the given name. Depending on
how the bean was configured by the BeanFactory configuration, either a singleton and thus shared instance
or anewly created bean will be returned. A BeansExcept i on will be thrown when either the bean could not
be found (in which caseit'll be aNoSuchBeanDef i ni ti onExcept i on), Or an exception occurred while
instantiating and preparing the bean

Spring Framework Version 1.2.9 38

Beans, BeanFactory and the A pplicationContext

e (Object getBean(String, d ass): returns abean, registered under the given name. The bean returned will be
cast to the given Class. If the bean could not be cast, corresponding exceptions will be thrown
(BeanNot OF Requi r edTypeExcept i on). Furthermore, al rules of the getBean(String) method apply (see
above)

* bool ean isSingl eton(String): determineswhether or not the bean definition or bean instance registered
under the given name is asingleton or a prototype. If no bean corresponding to the given name could not be
found, an exception will be thrown (NoSuchBeanDef i ni ti onExcept i on)

e String[] getAliases(String): Returnthealiasesfor the given bean name, if any were defined in the bean
definition

3.6.1. Obtaining a FactoryBean, not its product

Sometimes there is a need to ask a BeanFactory for an actual FactoryBean instance itself, not the bean it
produces. This may be done by prepending the bean id with & when calling the get Bean method of BeanFactory
(including ApplicationContext). So for a given FactoryBean with an id myBean, invoking get Bean(" nyBean")
on the BeanFactory will return the product of the FactoryBean, but invoking get Bean(" &ryBean") will return
the FactoryBean instance itself.

3.7. Customizing beans with BeanPostProcessors

A bean post-processor is ajava class which implements the

org. spri ngf ramewor k. beans. factory. confi g. BeanPost Processor interface, which consists of two callback
methods. When such aclassis registered as a post-processor with the BeanFactory, for each bean instance that
is created by the BeanFactory, the post-processor will get a callback from the BeanFactory before any
initialization methods (after PropertiesSet and any declared init method) are called, and also afterwords. The
post-processor is free to do what it wishes with the bean, including ignoring the callback completely. A bean
post-processor will typically check for marker interfaces, or do something such as wrap a bean with a proxy.
Some Spring helper classes are implemented as bean post-processors.

It isimportant to know that a BeanFactory treats bean post-processors slightly differently than an
ApplicationContext. An ApplicationContext will automatically detect any beans which are deployed into it
which implement the BeanPost Processor interface, and register them as post-processors, to be then called
appropriately by the factory on bean creation. Nothing else needs to be done other than deploying the
post-processor in asimilar fashion to any other bean. On the other hand, when using plain BeanFactories, bean
post-processors have to manually be explicitly registered, with a code sequence such as the following:

Conf i gur abl eBeanFactory bf = new ; /'l create BeanFactory
L // now regi ster some beans

/1 now register any needed BeanPost Processors

MyBeanPost Processor pp = new MyBeanPost Processor ();

bf . addBeanPost Pr ocessor (pp) ;

/1 now start using the factory

Since this manual registration step is not convenient, and ApplictionContexts are functionally supersets of
BeanFactories, it is generally recommended that ApplicationContext variants are used when bean
post-processors are needed.

3.8. Customizing bean factories with
BeanFactoryPostProcessors

Spring Framework Version 1.2.9 39

Beans, BeanFactory and the A pplicationContext

A bean factory post-processor is ajava class which implements the

org. spri ngframewor k. beans. f act ory. conf i g. BeanFact or yPost Processor interface. It is executed manually
(in the case of the BeanFactory) or automatically (in the case of the ApplicationContext) to apply changes of
some sort to an entire BeanFactory, after it has been constructed. Spring includes a number of pre-existing bean
factory post-processors, such as Pr oper t yResour ceConf i gur er and Proper t yPl aceHol der Conf i gur er, both
described below, and BeanNaneAut oPr oxyCr eat or , very useful for wrapping other beans transactionally or with
any other kind of proxy, as described later in this manual. The BeanFactoryPostProcessor can be used to add
custom editors (as also mentioned in Section 3.9, “Registering additional custom PropertyEditors’).

In a BeanFactory, the process of applying a BeanFactoryPostProcessor is manual, and will be similar to this:

Xm BeanFactory factory = new Xm BeanFact ory(new Fi |l eSyst enResour ce("beans. xm ")) ;
/'l create placehol derconfigurer to bring in some property

/1 values froma Properties file

Propert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setlLocation(new Fi | eSyst enResource("j dbc. properties"));

/1 now actually do the repl acenent

cf g. post ProcessBeanFact ory(factory);

An ApplicationContext will detect any beans which are deployed into it which implement the

BeanFact or yPost Processor interface, and automatically use them as bean factory post-processors, at the
appropriate time. Nothing else needs to be done other than deploying these post-processor in asimilar fashion
to any other bean.

Since thismanual step is not convenient, and ApplictionContexts are functionally supersets of BeanFactories, it
is generally recommended that ApplicationContext variants are used when bean factory post-processors are
needed.

3.8.1. The PropertyPl acehol der Confi gurer

The Propert yPl acehol der Confi gur er, implemented as a bean factory post-processor, is used to externalize
some property values from a BeanFactory definition, into another separate file in Java Properties format. Thisis
useful to allow the person deploying an application to customize some key properties (for example database
URLSs, usernames and passwords), without the complexity or risk of modifying the main XML definition file or
files for the BeanFactory.

Consider afragment from a BeanFactory definition, where a DataSource with placeholder values is defined:

In the example below, a datasource is defined, and we will configure some properties from an external
Propertiesfile. At runtime, we will apply aPr oper t yPl acehol der Confi gur er to the BeanFactory which will
replace some properties of the datasource:

<bean i d="dat aSource" class="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- met hod="cl ose">
<property name="driverC assNane" val ue="${j dbc. dri verCl assNane}"/>
<property name="url" value="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernnane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in Properties format:

j dbc. dri ver d assNane=or g. hsql db. j dbcDri ver
j dbc. url =j dbc: hsql db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

Spring Framework Version 1.2.9 40

Beans, BeanFactory and the A pplicationContext

To use this with a BeanFactory, the bean factory post-processor is manually executed on it:

Xm BeanFactory factory = new Xm BeanFactory(new Fi | eSyst enResour ce("beans. xm ")) ;
Propert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setlLocation(new Fi | eSyst enResource("j dbc. properties"));

cf g. post ProcessBeanFact ory(factory);

Note that ApplicationContexts are able to automatically recognize and apply beans deployed in them which
implement BeanFactoryPostProcessor. This means that as described here, applying
PropertyPlaceholderConfiguer is much more convenient when using an ApplicationContext. For this reason, it
is recommended that users wishing to use this or other bean factory postprocessors use an ApplicationContext
instead of a BeanFactory.

The Proper t yPl aceHol der Conf i gur er doesn't only look for propertiesin the Properties file you specify, but
also checks against the Java System propertiesif it cannot find a property you are trying to use. This behavior
can be customized by setting the syst enPr oper t i esMbde property of the configurer. It has three values, one to
tell the configurer to always override, oneto let it never override and oneto let it override only if the property
cannot be found in the properties file specified. Please consult the JavaDoc for the
PropertiesPlaceholderConfigurer for more information.

3.8.2. The PropertyOverri deConfi gurer

The PropertyOverri deConf i gur er, another bean factory post-processor, is similar to the

Propert yPl acehol der Confi gur er, but in contrast to the latter, the original definitions can have default values
or no values at all for bean properties. If an overriding Properties file does not have an entry for a certain bean
property, the default context definition is used.

Note that the bean factory definition is not aware of being overridden, so it is not immediately obvious when
looking at the XML definition file that the override configurer is being used. In case that there are multiple
PropertyOverrideConfigurers that define different values for the same bean property, the last one will win (due
to the overriding mechanism).

Properties file configuration lines are expected to be in the format:

beanNane. property=val ue

An example propertiesfile could look like:

dat aSour ce. dri ver Cl assName=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: mysql : mydb

This example file would be usable against a BeanFactory definition which containsabeaninit called
dataSource, which has driver and url properties.

Note that compound property names are also supported, as long as every component of the path except the final
property being overriden is already non-null (presumably initialized by the constructors). In this example:

f oo. fred. bob. sanmy=123

the sarmy property of the bob property of thef r ed property of thef oo bean is being set to the scalar value 123.

3.9. Registering additional custom PropertyEditors

Spring Framework Version 1.2.9 41

Beans, BeanFactory and the A pplicationContext

When setting bean properties as a string value, a BeanFactory ultimately uses standard JavaBeans
PropertyEditors to convert these Strings to the complex type of the property. Spring pre-registers a number of
custom PropertyEditors (for example, to convert a classname expressed as a string into areal Class object).
Additionally, Java's standard JavaBeans PropertyEditor |ookup mechanism allows a PropertyEditor for aclass
to be simply named appropriately and placed in the same package as the class it provides support for, to be
found automatically.

If thereis aneed to register other custom PropertyEditors, there are several mechanisms available.

The most manual approach, which is not normally convenient or recommended, isto simply use the
regi st er Cust onEdi t or () method of the Conf i gur abl eBeanFact ory interface, assuming you have a
BeanFactory reference.

The more convenient mechanism is to use a special bean factory post-processor called

Cust orEdi t or Conf i gur er . Although bean factory post-processors can be used semi-manually with
BeanFactories, this one has a nested property setup, so it is strongly recommended that, as described here, it is
used with the ApplicationContext, where it may be deployed in similar fashion to any other bean, and
automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property editors,
through their use of something called a Beanw apper to handle property conversions. The standard property
editors that the BeanWrapper registers are listed in the next chapter. Additionally, ApplicationContexts also
override or add an additional 3 editors to handle resource lookups in a manner appropriate to the specific
application context type. Thee are: | nput St r eanEdi t or , Resour ceEdi t or and URLEdi t or .

3.10. Using the alias element to add aliases for existing beans

In a bean definition itself, you may supply more than one name for the bean, by using a combination of up to
one name spcified viathei d attribute, and any number of other namesviatheal i as attribute. All these names
can be considered equivalent aliases to the same bean, and are useful for some situations, such as allowing each
component used in an application to refer to acommon dependency using a bean hame that is specific to that
component itslef.

Having to specify all aliaswhen the bean is actually defined is not always adeguate however. It is sometimes
desirable to introduce an alias for abean which is define elsewhere. This may be done viaa standalone al i as
element.

<al i as nanme="fronmNane" alias="toNane"/>

In this case, a bean in the same context which is named f r oniNare, may also after the use of this alias definition,
be referred to ast oNanre.

As aconcrete example, consider the case where component A defines a DataSource bean called
componentA-dataSource, in its XML fragment. Component B would however like to refer to the DataSource as
componentB-dataSource in its XML fragment. And the main application, MyApp, defines its own XML
fragment and assembles the final application context from all three fragments, and would like to refer to the
DataSource as myA pp-dataSource. This scenario can be easily handled by adding to the MyApp XML
fragement the following standalone aliases:

<al i as nanme="conponent A- dat aSour ce" al i as="conponent B- dat aSource"/ > <al i as
nanme="conponent A- dat aSour ce" al i as="nyApp- dat aSour ce"/ >

Now each component and the main app can refer to the dataSource via a name that is unique and guaranteed

Spring Framework Version 1.2.9 42

Beans, BeanFactory and the A pplicationContext

not to clash with any other definition (effectively there is a namespace), yet they refer to the same bean.

3.11. Introduction to the Appl i cati onCont ext

While the beans package provides basic functionality for managing and manipulating beans, oftenin a
programmatic way, the cont ext package adds Appl i cat i onCont ext

[http://ww. springframework. org/ docs/ api/ org/ springframewor k/ context/Applicati onContext.htnm],
which enhances BeanFactory functionality in a more framework-oriented style. Many users will use
ApplicationContext in a completely declarative fashion, not even having to create it manually, but instead
relying on support classes such as ContextL oader to automatically start an ApplicationContext as part of the
normal startup process of a 2EE web-app. Of coursg, it is il possible to programmatically create an
ApplicationContext.

The basis for the context package isthe Appl i cati onCont ext interface, located in the

or g. spri ngf ramewor k. cont ext package. Deriving from the BeanFactory interface, it provides all the
functionality of BeanFactory. To allow working in a more framework-oriented fashion, using layering and
hierarchical contexts, the context package also provides the following:

» MessageSource, providing access to messagesin, i18n-style

» Access to resources, such as URLs and files

» Event propagation to beans implementing the Appl i cati onLi st ener interface

« Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, for example
the web layer of an application

Asthe ApplicationContext includes al functionality of the BeanFactory, it is generally recommended that it be
used over the BeanFactory, except for afew limited situations such as perhapsin an Applet, where memory
consumption might be critical, and afew extra kilobytes might make a difference. The following sections
described functionality which ApplicationContext adds to basic BeanFactory capabilities.

3.12. Added functionality of the Appl i cati onCont ext

As already stated in the previous section, the ApplicationContext has a couple of features that distinguish it
from the BeanFactory. Let us review them one-by-one.

3.12.1. Using the MmessageSour ce

The ApplicationContext interface extends an interface called MessageSour ce, and therefore provides messaging
(i18n or internationalization) functionality. Together with the Nest i ngMessageSour ce, capable of resolving
hierarchical messages, these are the basic interfaces Spring provides to do message resolution. Let's quickly
review the methods defined there:

* String getMessage (String code, Object[] args, String default, Locale |oc): thebasic method
used to retrieve a message from the MessageSource. When no message is found for the specified locale, the
default message is used. Any arguments passed in are used as replacement values, using the MessageFor nat
functionality provided by the standard library.

e String getMessage (String code, Object[] args, Locale |oc): essentially the same asthe previous
method, but with one difference: no default message can be specified; if the message cannot be found, a
NoSuchMessageExcept i on isthrown.

e String get Message(MessageSour ceResol vabl e resol vabl e, Local e | ocal e): al propertiesused in the
methods above are also wrapped in a class named MessageSour ceResol vabl e, which you can use viathis

Spring Framework Version 1.2.9 43

http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html

Beans, BeanFactory and the A pplicationContext

method.

When an ApplicationContext gets loaded, it automatically searches for a MessageSource bean defined in the
context. The bean has to have the name nessageSour ce. If such abean isfound, all calls to the methods
described above will be delegated to the message source that was found. If no message source was found, the
ApplicationContext attempts to seeif it has a parent containing a bean with the same name. If so, it uses that
bean as the MessageSource. If it can't find any source for messages, an empty St at i cMessageSour ce Will be
instantiated in order to be able to accept calls to the methods defined above.

Spring currently provides two MessageSour ce implementations. These are the Resour ceBundl eMessageSour ce
and the st at i cMessageSour ce. Both implement Nest i ngMessageSour ce in order to do nested messaging. The
StaticMessageSource is hardly ever used but provides programmatic ways to add messages to the source. The

ResourceBundleM essageSource is more interesting and is the one we will provides an example for:

<beans>
<bean i d="nessageSour ce"
cl ass="org. spri ngf ranmewor k. cont ext . support. Resour ceBundl eMessageSour ce" >
<property name="basenanes" >
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>w ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

This assumes you have three resource bundles defined on your classpath called f or mat , except i ons and
wi ndows. Using the JDK standard way of resolving messages through ResourceBundles, any request to resolve
amessage will be handled. TODO: SHOW AN EXAMPLE

3.12.2. Propagating events

Event handling in the ApplicationContext is provided through the Appl i cat i onEvent class and

Appl i cati onLi st ener interface. If abean which implementsthe Appl i cati onLi st ener interfaceis deployed
into the context, every time an Appl i cat i onEvent gets published to the ApplicationContext, that bean will be
notified. Essentially, thisisthe standard Observer design pattern. Spring provides three standard events:

Table 3.4. Built-in Events

Event Explanation

Cont ext Ref r eshedEvent Event published when the ApplicationContext is initialized or refreshed.
Initialized here means that all beans are loaded, singletons are pre-instantiated
and the ApplicationContext is ready for use

Cont ext Cl osedEvent Event published when the ApplicationContext is closed, using the cl ose()
method on the ApplicationContext. Closed here means that singletons are
destroyed

Request Handl edEvent A web-specific event telling all beansthat a HTTP request has been serviced

(i.e. thiswill be published after the request has been finished). Note that this
event is only applicable for web applications using Spring's DispatcherServlet

Implementing custom events can be done aswell. Simply call the publ i shEvent () method on the
ApplicationContext, specifying a parameter which is an instance of your custom event class implementing

Spring Framework Version 1.2.9 44

Beans, BeanFactory and the A pplicationContext

ApplicationEvent. Event listeners receive events synchronously. This means the publishEvent() method blocks
until all listeners have finished processing the event. Furthermore, when alistener receives an event it operates

inside the transaction context of the publisher, if atransaction context is available.

Let'slook at an example. First, the ApplicationContext:

<bean i d="email er" cl ass="exanpl e. Emai | Bean" >
<property name="bl ackLi st">
<list>
<val ue>bl ack@i st . or g</ val ue>
<val ue>white@i st . or g</ val ue>
<val ue>j ohn@oe. or g</ val ue>
</list>
</ property>
</ bean>

<bean id="bl ackLi stListener" class="exanpl e. Bl ackLi st Notifier">
<property name="notificati onAddress" val ue="spam@i st.org"/>
</ bean>

and then, the actual beans:

public class Email Bean inplements ApplicationContextAware {

/** the blacklist */
private List blackList;

public void setBl ackLi st (List blackList) {
this. bl ackLi st = bl ackLi st;
}

public void setApplicationContext(ApplicationContext ctx) {
this.ctx = ctx;
}

public void sendEmail (String address, String text) {
i f (bl ackLi st.contains(address)) {
Bl ackLi st Event evt = new Bl ackLi st Event (address, text);
ct x. publ i shEvent (evt);
return;

}

/1 send emai
}
public class BlackListNotifier inplement ApplicationListener {

/** notification address */
private String notificationAddress;

public void setNotificationAddress(String notificati onAddress) {
this.notificati onAddress = notificati onAddress
}

public void onApplicationEvent (Applicati onEvent evt) {
if (evt instanceof Bl ackListEvent) {
/1 notify appropriate person
}

}

Of course, this particular example could probably be implemented in better ways (perhaps by using AOP
features), but it should be sufficient to illustrate the basic event mechanism.

3.12.3. Low-level resources and the application context

For optimal usage and understanding of application contexts, users should generally familiarize themselves
with Spring's Resour ce abstraction, as described in Chapter 4, Abstracting Access to Low-Level Resources.

An application context is aResour ceLoader , able to be used to load Resour ceS. A Resour ce isessentialy a

Spring Framework Version 1.2.9

45

Beans, BeanFactory and the A pplicationContext

j ava. net. URL on steroids (in fact, it just wraps and uses a URL where appropriate), which can be used to
obtain low-level resources from almost any location in atransparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the resource
location string is a simple path without any special prefixes, where those resources come from is specific and
appropriate to the actual application context type.

A bean deployed into the application context may implement the special marker interface,
Resour ceLoader Avar e, to be automatically called back at initialization time with the application context itself
pased in asthe Resour ceLoader .

A bean may also expose properties of type Resour ce, t0 be used to access static resources, and expect that they
will beinjected into it like any other properties. The person deploying the bean may specify those Resour ce
properties as simple String paths, and rely on a special JavaBean PropertyEditor that is automatically registerd
by the context, to convert those text strings to actual Resour ce objects.

The location path or paths supplied to an ApplicationContext constructor are actually resource strings, and in
simple form are treated appropriately to the specific context implementation (i.e.

ClassPathX ml A pplicationContext treats a simple location path as a classpath location), but may also be used
with special prefixesto force loading of definitions from the classpath or a URL, regardless of the actual
context type.

The previously mentioned chapter provides much more information on these topics.

3.13. Customized behavior in the ApplicationContext

The BeanFactory already offers a number of mechanismsto control the lifecycle of beans deployed in it (such
as marker interfaceslike | ni ti al i zi ngBean Or Di sposabl eBean, their configuration only equivalents such as
thei ni t - met hod and dest r oy- met hod attributes in an XmlBeanFactory config, and bean post-processors. In an
ApplicationContext, all of these still work, but additional mechanisms are added for customizing behavior of
beans and the container.

3.13.1. Appl i cati onCont ext Awar e marker interface

All marker interfaces available with BeanFactories still work. The ApplicationContext does add one extra
marker interface which beans may implement, or g. spri ngf r amewor k. cont ext . Appl i cat i onCont ext Awar e. A
bean which implements this interface and is deployed into the context will be called back on creation of the
bean, using the interface's set Appl i cat i onCont ext () method, and provided with a reference to the context,
which may be stored for later interaction with the context.

3.13.2. The BeanPost Pr ocessor

Bean post-processors, java classes which implement the

org. springframewor k. beans. f act ory. confi g. BeanPost Processor interface, have aready been mentioned.
It isworth mentioning again here though, that post-processors are much more convenient to use in
ApplicationContexts than in plain BeanFactories. In an ApplicationContext, any deployed bean which
implements the above marker interface is automatically detected and registered as a bean post-processor, to be
called appropriately at creation time for each bean in the factory.

3.13.3. The BeanFact or yPost Pr ocessor

Bean factory post-processors, java classes which implement the

Spring Framework Version 1.2.9 46

Beans, BeanFactory and the A pplicationContext

org. springframewor k. beans. f act ory. conf i g. BeanFact or yPost Pr ocessor interface, have aready been
mentioned. It is worth mentioning again here though, that bean factory post-processors are much more
convenient to use in ApplicationContexts than in plain BeanFactories. In an ApplicationContext, any deployed
bean which implements the above marker interface is automatically detected as a bean factory post-processor,
to be called at the appropriate time.

3.13.4. The PropertyPl acehol der Confi gur er

The Propert yPl acehol der Confi gur er has aready been described, as used with a BeanFactory. It isworth
mentioning here though, that it is generally more convenient to use it with an ApplicationContext, since the
context will automatically recognize and apply any bean factory post-processors, such as this one, when they
are simply deployed into it like any other bean. There is no need for a manual step to execute it.

<!-- property placehol der post-processor -->
<bean i d="pl acehol der Confi g"
cl ass="org. spri ngfranmewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="|ocation" val ue="j dbc. properties"/>
</ bean>

3.14. Registering additional custom PropertyEditors

As previously mentioned, standard JavaBeans PropertyEditors are used to convert property values expressed as
strings to the actual complex type of the property. Cust onEdi t or Conf i gur er , a bean factory post-processor,
may be used to conveniently add support for additional PropertyEditors to an ApplicationContext.

Consider a user class ExoticType, and ancther class DependsOnEXxoticType which needs ExoticType set asa
property:
public class ExoticType {
private String nane;

public ExoticType(String nanme) {
thi s. nane = nane;
}

}

public class DependsOnExoti cType {
private ExoticType type;
public void set Type(ExoticType type) {
this.type = type;
}

}

When things are properly set up, we want to be able to assign the type property as a string, which a
PropertyEditor will behind the scenes convert into areal ExoticType object.:

<bean i d="sanpl e" cl ass="exanpl e. DependsOnExot i cType" >
<property name="type"><val ue>aNanmeFor Exot i cType</ val ue></ property>
</ bean>

The PropertyEditor could look similar to this:

/] converts string representation to ExoticType object
public class ExoticTypeEditor extends PropertyEditorSupport {

private String format;
public void setFormat (String format) {

this.format = format;
}

public void set AsText (String text) {
if (format !'= null && fornat.equal s("upperCase")) {

Spring Framework Version 1.2.9 47

Beans, BeanFactory and the A pplicationContext

text = text.toUpperCase();
}
Exoti cType type = new ExoticType(text);
set Val ue(type);

}

Finally, we use Cust onEdi t or Conf i gur er to register the new PropertyEditor with the ApplicationContext,
which will then be ableto use it as needed.:

<bean i d="cust onEdi t or Confi gurer"
cl ass="org. spri ngframewor k. beans. fact ory. confi g. Cust onEdi t or Confi gurer">
<property name="cust omkEdi t ors">
<map>
<entry key="exanpl e. Exoti cType">
<bean cl ass="exanpl e. Exoti cTypeEdi tor">
<property nanme="format" val ue="upper Case"/>
</ bean>
</entry>
</ map>
</ property>
</ bean>

3.15. Setting a bean property or constructor arg from a
property expression

Pr oper t yPat hFact or yBean iS aFact or yBean that evaluates a property path on a given target object. The target
object can be specified directly or viaa bean name. This value may then be used in another bean definition asa
property value or constructor argument.

Here's an example where a path is used against another bean, by name:

// target bean to be referenced by nane
<bean i d="person" cl ass="org. spri ngframework. beans. Test Bean" si ngl eton="fal se">
<property name="age"><val ue>10</val ue></ property>
<property name="spouse">
<bean cl ass="org. spri ngfranmewor k. beans. Test Bean" >
<property nanme="age"><val ue>11</val ue></ property>
</ bean>
</ property>
</ bean>

// will result in 11, which is the value of property 'spouse.age' of bean 'person

<bean i d="t heAge" cl ass="org. springframework. beans. factory. confi g. PropertyPat hFact or yBean" >
<property name="t ar get BeanNane" ><val ue>per son</ val ue></ pr operty>
<property name="propertyPath"><val ue>spouse. age</ val ue></ property>

</ bean>

In this example, a path is evaluated against an inner bean:

[/ will result in 12, which is the value of property 'age' of the inner bean
<bean i d="theAge" class="org. springfranmework. beans. factory. config. PropertyPat hFact or yBean" >
<property nanme="t ar get Obj ect">
<bean cl ass="org. spri ngf ramewor k. beans. Test Bean" >
<property name="age"><val ue>12</val ue></ property>
</ bean>
</ property>
<property name="propertyPath"><val ue>age</ val ue></ property>
</ bean>

Thereis also a shortcut form, where the bean name is the property path.

// will result in 10, which is the value of property 'age' of bean 'person’
<bean i d="person. age" class="org.springfranework. beans. factory. config. PropertyPat hFact oryBean"/>

Spring Framework Version 1.2.9 48

Beans, BeanFactory and the A pplicationContext

This form does mean that there is no choice in the name of the bean, any reference to it will also have to use the
same id, which isthe path. Of curse, if used as an inner bean, thereisno need to refer to it at all:

<bean id="..." class="...">
<property nanme="age">
<bean i d="person. age" cl ass="org. springfranmework. beans. factory. confi g. PropertyPat hFact oryBean"/ >
</ property>
</ bean>

The result type may be specifically set in the actual definition. Thisis not necessary for most use cases, but can
be of use for some. Please see the JavaDocs for more info on this feature.

3.16. Setting a bean property or constructor arg from a field
value

FieldRetrievingFactoryBean is a FactoryBean which retrieves a static or non-static field value. It istypically
used for retrieving public static final constants, which may then be used to set a property value or constructor
arg for another bean.

Here's an example which shows how a static field is exposed, by using the staticField property:

<bean id="nyFi el d"
cl ass="org. spri ngfranmewor k. beans. factory. confi g. Fi el dRetri evi ngFact or yBean" >
<property name="stati cFi el d"><val ue>j ava. sql . Connecti on. TRANSACTI ON_SERI ALI ZABLE</ val ue></ pr operty>
</ bean>

There's also a convenience usage form where the static field is specified as a bean name:

<bean i d="j ava. sql . Connecti on. TRANSACTI ON_SERI ALI ZABLE"
cl ass="org. spri ngframewor k. beans. factory. confi g. Fi el dRetri evi ngFact oryBean"/ >

This means there is no longer any choice in what the bean id is (so any other bean that refersto it will aso have
to use thislonger name), but this form is very concise to define, and very convenient to use as an inner bean
since the id doesn't have to be specified for the bean reference:

<bean id="..." class="...">
<property name="isol ati on">
<bean id="j ava. sql . Connecti on. TRANSACT| ON_SERI AL| ZABLE"
cl ass="org. spri ngframewor k. beans. factory. confi g. Fi el dRetri evi ngFact or yBean"/ >
</ property>
</ bean>

It's also possible to access a non-static field of another bean, as described in the JavaDocs.

3.17. Invoking another method and optionally using the return
value.

it is sometimes necessary to call a static or non-static method in one class, just to perform some sort of
initialization, before some other class is used. Additionally, it is sometimes necessary to set a property on a
bean, as the result of amethod call on another bean in the container, or a static method call on any arbitrary
class. For both of these purposes, a helper class called Met hodl nvoki ngFact or yBean may be used. Thisisa
Fact oryBean Which returns a value which is the result of a static or instance method invocation.

Spring Framework Version 1.2.9 49

Beans, BeanFactory and the A pplicationContext

We would however recommend that for the second use case, factory-methods, described previously, are a better
al around choice.

An example (in an XML based BeanFactory definition) of a bean definition which uses this class to force some
sort of static initialization:

<bean id="force-init" class="org.springfranework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="staticMet hod"><val ue>com exanpl e. MyCl ass.initialize</val ue></property>
</ bean>

<bean i d="beanl" class="..." depends-on="force-init">
</ bean>

Note that the definition for bean1 has used the depends- on attribute to refer to the f or ce- i ni t bean, which will
trigger initializing f or ce-i ni t first, and thus calling the static initializer method, when bean1 isfirst initialized.

Here's an example of a bean definition which usesthis classto call a static factory method:

<bean id="nyC ass" cl ass="org. springfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property nanme="stati cMet hod"><val ue>com what ever. MyCl assFact ory. get | nst ance</ val ue></ property>
</ bean>

An example of calling a static method then an instance method to get at a Java System property. Somewhat
verbose, but it works.

<bean i d="sysProps" class="org. springfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="target d ass"><val ue>j ava. | ang. Syst enx/ val ue></ pr operty>
<property name="t ar get Met hod" ><val ue>get Properti es</val ue></ property>

</ bean>

<bean id="javaVersion" class="org. springfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="tar get Cbj ect"><ref | ocal ="sysProps"/></property>
<property name="t ar get Met hod" ><val ue>get Pr opert y</ val ue></ pr operty>
<property name="argunents">
<list>
<val ue>j ava. ver si on</ val ue>
</list>
</ property>
</ bean>

Note that asit is expected to be used mostly for accessing factory methods, M ethodl nvokingFactoryBean by
default operates in a singleton fashion. The first request by the container for the factory to produce an object
will cause the specified method invocation, whose return value will be cached and returned for the current and
subsequent requests. An internal si ngl et on property of the factory may be set to false, to cause it to invoke the
target method each time it is asked for an object.

A static target method may be specified by setting thet ar get Met hod property to a String representing the static
method name, with t ar get d ass specifying the Class that the static method is defined on. Alternatively, a
target instance method may be specified, by setting thet ar get Obj ect property as the target object, and the

t ar get Met hod property as the name of the method to call on that target object. Arguments for the method
invocation may be specified by setting the ar gurrent s property.

3.18. Importing Bean Definitions from One File Into Another

It's often useful to split up container definitions into multiple XML files. One way to then load an application

Spring Framework Version 1.2.9 50

Beans, BeanFactory and the A pplicationContext

context which is configured from all these XML fragmentsis to use the application context constructor which
takes multiple Resource locations. With a bean factory, a bean definition reader can be used multiple timesto
read definitions from each filein turn.

Generally, the Spring team prefers the above approach, since it keeps container configurations files unaware of
the fact that they are being combined with others. However, an alternate approach is to from one XML bean
definition file, use one or more instances of thei nport element to load definitions from one or more other files.
Any i nport elements must be placed before bean elementsin the file doing the importing. Let'slook at a
sample;

<beans>
<i nport resource="services.xm"/>
<i nport resource="resources/ nessageSource. xm "/ >
<i nmport resource="/resources/themeSource. xm "/ >
<bean id="beanl" class="..."/>

<bean i d="bean2" class="..."/>

In this example, external bean definitions are being loaded from 3 files, servi ces. xm , nessageSour ce. xni
and t heneSour ce. xm . All location paths are considered relative to the definition file doing the importing, so
servi ces. xni inthis case must be in the same directory or classpath location as the file doing the importing,
while nessageSour ce. xm and t hemeSour ce. xmi must bein aresour ces location below the location of the
importing file. Asyou can see, aleading slash is actually ignored, but given that these are considered relative
paths, it is probably better form not to use the slash at al.

The contents of the files being imported must be fully valid XML bean definition files according to the DTD,
including the top level beans element.

3.19. Creating an ApplicationContext from a web application

As opposed to the BeanFactory, which will often be created programmatically, ApplicationContexts can be
created declaratively using for example a Cont ext Loader . Of course you can also create ApplicationContexts
programmatically using one of the ApplicationContext implementations. First, let's examine the ContextL oader
and its implementations.

The ContextL oader has two implementations: the Cont ext Loader Li st ener and the Cont ext Loader Ser vl et .
They both have the same functionality but differ in that the listener cannot be used in Servlet 2.2 compatible
containers. Since the Servlet 2.4 specification, listeners are required to initialize after startup of aweb
application. A lot of 2.3 compatible containers already implement this feature. It is up to you as to which one
you use, but all things being equal you should probably prefer Cont ext Loader Li st ener ; for more information
on compatibility, have alook at the JavaDoc for the Cont ext Loader Ser vl et .

Y ou can register an ApplicationContext using the Cont ext Loader Li st ener asfollows:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ VEB- | NF/ daoCont ext . xmi /WEB- | NF/ appl i cati onCont ext . xm </ par am val ue>
</ cont ext - par an>

<li stener>
<l i stener-cl ass>org. spri ngf ranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

Spring Framework Version 1.2.9 51

Beans, BeanFactory and the A pplicationContext

<I-- OR USE THE CONTEXTLOADERSERVLET | NSTEAD CF THE LI STENER

<servl et >
<ser vl et - nane>cont ext </ ser vl et - nane>
<servl et - cl ass>or g. spri ngf ramewor k. web. cont ext . Cont ext Loader Servl et </ servl et - cl ass>
<l oad- on- st artup>1</1| oad- on-start up>

</ servl et >

-->

The listener inspects the cont ext Conf i gLocat i on parameter. If it doesn't exist, it'll use

/ EB- | NF/ appl i cati onCont ext . xmi as adefault. When it does exist, it'll separate the String using predefined
delimiters (comma, semi-colon and space) and use the values as locations where application contexts will be
searched for. The ContextL oaderServlet can - as said - be used instead of the ContextL oaderListener. The
servlet will use the contextConfigL ocation parameter just as the listener does.

3.20. Glue code and the evil singleton

The majority of the code inside an application is best written in a Dependency Injection (Inversion of Control)
style, where that code is served out of a BeanFactory or ApplicationContext container, has its own
dependencies supplied by the container when it is created, and is completely unaware of the container.
However, for the small glue layers of code that are sometimes needed to tie other code together, thereis
sometimes a heed for singleton (or quasi-singleton) style access to a BeanFactory or ApplicationContext. For
example, third party code may try to construct new objects directly (4 ass. f or Name() style), without the
ability to force it to get these objects out of a BeanFactory. If the object constructed by the third party codeis
just asmall stub or proxy, which then uses a singleton style access to a BeanFactory/ApplicationContext to get
areal object to delegate to, then inversion of control has still been achieved for the mgjority of the code (the
object coming out of the BeanFactory); thus most code is still unaware of the container or how it is accessed,
and remains uncoupled from other code, with all ensuing benefits. EJBs may also use this stub/proxy approach
to delegate to a plain java implementation object, coming out of a BeanFactory. While the BeanFactory ideally
does not have to be asingleton, it may be unrealistic in terms of memory usage or initialization times (when
using beans in the BeanFactory such as a Hibernate SessionFactory) for each bean to use its own, non-singleton
BeanFactory.

As another example, in a complex J2EE apps with multiple layers (i.e. various JAR files, EJBs, and WAR files
packaged as an EAR), with each layer having its own ApplicationContext definition (effectively forming a
hierarchy), the preferred approach when there is only one web-app (WAR) in the top hierarchy isto simply
create one composite ApplicationContext from the multiple XML definition files from each layer. All the
ApplicationContext variants may be constructed from multiple definition filesin this fashion. However, if there
are multiple sibling web-apps at the top of the hierarchy, it is problematic to create an ApplicationContext for
each web-app which consists of mostly identical bean definitions from lower layers, as there may be issues due
to increased memory usage, issues with creating multiple copies of beans which take along time to initialize
(i.e. a Hibernate SessionFactory), and possible issues due to side-effects. As an alternative, classes such as

Cont ext Si ngl et onBeanFact oryLocat or [???] O Si ngl et onBeanFact oryLocat or

[http://ww. springframework. org/ docs/ api / org/ springframewor k/ beans/ fact ory/ access/ Si ngl et onBeanFact oryL
may be used to demand load multiple hierarchical (i.e. oneis aparent of another) BeanFactories or
ApplicationContextsin an effectively singleton fashion, which may then be used as the parents of the web-app
ApplicationContexts. The result is that bean definitions for lower layers are loaded only as needed, and loaded
only once.

3.20.1. Using SingletonBeanFactoryLocator and
ContextSingletonBeanFactoryLocator

Y ou can see a detailed example of using Si ngl et onBeanFact or yLocat or

Spring Framework Version 1.2.9 52

???
???
http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html

Beans, BeanFactory and the A pplicationContext

http://ww. spri ngfranework. or g/ docs/ api / or g/ spri ngf ramewor k/ beans/ f act ory/ access/ Si ngl et onBeanFact oryLo
and Cont ext Si ngl et onBeanFact oryLocat or [???] by viewing their respective JavaDocs.

As mentioned in the chapter on EJBs, the Spring convenience base classes for EJBs normally use a
non-singleton BeanFact or yLocat or implementation, which is easily replaced by the use of
Si ngl et onBeanFact or yLocat or and Cont ext Si ngl et onBeanFact or yLocat or if thereisaneed.

Spring Framework Version 1.2.9 53

http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
???
???

Chapter 4. Abstracting Access to Low-Level
Resources

4.1. Overview

Java's standard j ava. net . URL interface and istandard handlers for vairous URL prefixes are unfortunately not
quite adequate enough for all access to low-level resources. Thereis for example no standardized URL
implementation which may be used to access a resource that needs to be obtained from somewhere on the
classpath, or relative to a Ser vl et Cont ext , for example. While it is possible to register new handlers for
specialized URL prefixes (similar to existing handlers for prefixes such asht t p:), thisis generally quite
complicated, and the URL interface still lacks some desireable functionality, such as a method to check the
existence of the resource being pointed to.

4.2. The Resour ce interface

Spring's Resour ce interface is meant to be a more capable interface for abstracting accessto low-level
resources.
public interface Resource extends |nputStreanSource {
bool ean exists();
bool ean i sOpen();
URL get URL() throws | OException;
File getFile() throws | CExcepti on;
Resource createRel ative(String relativePath) throws | OException;
String getFil enane();

String getDescription();
}

public interface |nputStreanSource {

| nput St ream get | nput Strean{() throws | OExcepti on;

Some of the most important methods are:

e get | nput Strean() : locates and opens the resource, returning an | nput St r eamfor reading it. It is expected
that each invocation returns afresh I nput St ream It isthe responsibility of the caller to close the stream.

e exi sts(): returns aboolean indicating whether this resource actually existsin physical form

e i sOpen() : returns a boolean indicating whether this resource represents a handle with an open stream. If true,
the I nput St r eamcannot be read multiple times, and must be read once only and then closed to avoid
resource leaks. Will befalsefor al usual resource implementations, with the exception of
I nput St r eanResour ce.

e get Descri ption(): returns adescription for this resource, to be used for error output when working with the
resource. Thisis often the fully qualified file name or the actual URL

Spring Framework Version 1.2.9 54

Abstracting Access to Low-Level Resources

Other methods allow you to obtain an actual URL or File object representing the resource, if the underlaying
implementation is compatible, and supports that functionality.

Resour ce isused extensively in Spring itself, as an argument type in many method signatures when a resource
is needed. Other methods in some Spring APIs (such as the constructors to various Appl i cat i onCont ext
implementations), take a st ri ng which in unadorned or smple form is used to create aResour ce appropriate to
that context implementation, or via specia prefixes on the st ri ng path, alow the caller to specify that a
specific Resour ce implementation should be created and used. Internally, a JavaBeans Pr oper t yEdi t or isused
to convert the st ri ng to the appropriate Resour ce type, but thisisirrelevant to the user.

While Resour ce isused alot with Spring and by Spring, it's actually very useful to use as agenera utility class
by itself in your own code, for access to resources, even when your code doesn't know or care about any other
parts of Spring. While this couples your code to Spring, it really only couplesit to this small set of utility
classes, which are serving as a more capable replacement for URL, and can be considered equivalent to any other
library you would use for this purpose.

It's important to note that Resource doesn't replace functionality, it wraps it where possible. For example, a
UrlResource wraps a URL, and uses the wrapped URL to do its work.

4.3. Built-in Resource implementations

There are a number of built-in Resource implementations.

4.3.1. Ur| Resource

Thiswraps ajava.net. URL, and may be used to access any object that is normally accessible viaa URL, such as
files, an http target, an ftp target, etc. All URLs have a standardized String representation, such that appropriate
standardized prefixes are used to indicate one URL type vs. another. Thisincludesfi | e: for accessing
filesystem paths, ht t p: for accessing resources viathe HTTP protocal, f t p: for accessing resources via ftp,

etc.

A Url Resour ce is created by Java code explicitly using the Ur I Resour ce constructor, but will often be created
implicitly when you call an API method which takes a st ri ng argument which is meant to represent a path. For
the latter case, a JavaBeans Pr opert yEdi t or Will ultimately decide which type of Resource to create. If the
path string contains a few well-known (to it, that is) prefixes such ascl asspat h: , it will create an appropriate
specialized Resour ce for that prefix. However, if it doesn't recognize the prefiix, it will assume thethisisjust a
standard URL string, and will create a Ur | Resour ce.

4.3.2. d assPat hResour ce

This class represents a resource which should be obtained from the classpath. This uses either the thread
context class loader, a given class loader, or agiven class for loading resources.

Thisimplementation of Resour ce supportsresolution asj ava. i o. Fi | e if the class path resource resides in the
file system, but not for classpath resources which reside in ajar and have not been expanded (by the servlet
engine, or whatever the environment is) to the filesystem. It always supports resolution asj ava. net . URL.

A d assPat hResour ce iSs created by Java code explicitly using the c assPat hResour ce constructor, but will
often be created implicitly when you call an APl method which takes a st ri ng argument which is meant to
represent a path. For the latter case, a JavaBeans Pr oper t yEdi t or Will recognize the specia prefix

cl asspat h: on the string path, and create ad assPat hResour ce in that case.

Spring Framework Version 1.2.9 55

Abstracting Access to Low-Level Resources

4.3.3. Fi | eSyst enmResour ce

ThisisaResour ce implementation for j ava. i o. Fi | e handles. It obviously supports resolution asaFi | e, and
asaURL.

4.3.4. Servl et Cont ext Resour ce

ThisisaResour ce implementation for ServletContext resources, interpreting relative paths within the web
application root directory.

This always supports stream access and URL access, but only allowsj ava. i o. Fi | e access when the web
application archive is expanded and the resource is physically on the filesystem. Whether or not it's expanded
and on the filesystem like this, or accessed directly from the JAR or somewhere elselike aDB (it's
conceivable) is actually dependent on the Servlet container.

4.3.5. | nput St r eanResour ce

A Resour ce implementation for a given InputStream. This should only be used if no specific Resource
implementation is applicable. In particular, prefer ByteArrayResource or any of the file-based Resource
implementations where possible..

In contrast to other Resource implementations, thisis a descriptor for an already opened resource - therefore
returning "true” fromi spen() . Do not useit if you need to keep the resource descriptor somewhere, or if you
need to read a stream multiple times.

4.3.6. Byt eArr ayResour ce

ThisisaResour ce implementation for agiven byte array. It creates Byt eArr ayl nput St reans for the given byte
array.

It's useful for loading content from any given byte array, without having to resort to a single-use
I nputStreamResource.

4.4. The Resour ceLoader Interface

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e load) Resour ces.

public interface ResourcelLoader {
Resource get Resource(String | ocation);
}

All application contexts implement Resour ceLoader therefore all application contexts may be used to obtain
Resour ceS.

When you call get Resour ce() on aspecific application context, and the location path specified doesn't have a
specific prefix, you will get back a Resource type that is appropriate to that particular application context. For
example, if you ask a ClassPathX mlApplicationContext

Resource tenpl ate = ctx. get Resource("sone/resour ce/ path/ nyTenpl ate. t xt);

Spring Framework Version 1.2.9 56

Abstracting Access to Low-Level Resources

you'll get back ac assPat hResour ce, but if the same method is called on a FileSystemXml ApplicationContext,
you'd get back a FileSystemResource. For awebAppl i cat i onCont ext , you'd get a Ser vl et Cont ext Resour ce,
and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force ClassPathResource to be used, regardless of the application context type,
by specifying the special classpath: prefix:

Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ r esour ce/ pat h/ nyTenpl ate. t xt);

or force a UrlResource to be used by specifyng any of the standard java.net. URL prefixes:
Resource tenplate = ctx.getResource("file:/sone/resource/path/ nyTenpl ate. txt);

Resource tenplate = ctx. get Resource("http://nyhost.coniresource/path/nyTenpl ate.txt);

4.5. The Resour ceLoader Awnar e interface

The Resour ceLoader Avar e interface is a special marker interface, for objects that expect to be provided with a
Resourcel oader:

public interface ResourcelLoader Anare {
voi d set Resour ceLoader (Resour ceLoader resourceloader);

}

When a bean implements Resour ceLoader Awar e and is deployed into an application context, it is recognized by
the application context and called back by it, with the application context itself passed in asthe
Resour ceLoader argument.

Of course, since an Appl i cati onCont ext iSaResour ceLoader , the bean could also implement
ApplicationContextAware and use the passed in context directly to load resources, but in general, it's better to
use the specialized Resourcel oader interface if that's all that's needed, asthereisless of a degree of coupling to
Spring. The code would just be coupled to the resource loading interface, which can be considered a utility
interface, not the whole context interface.

4.6. Setting Resour ceS as properties

If the bean itself is going to determine and supply the resource path through some sort of dynamic process it
probably makes sense for the bean to use the Resour ceLoader interface to load resources. Consider as an
example the loading of atemplate of some sort, where the specific one needed that depends on the role of the
user. If on the other hand the resources are static, it makes sense to eliminate the use of the Resourcel oader
interface completely, and just have the bean expose the Resour ce propertiesit needs, and expect that they will
beinjected into it.

What makesit trivial to then inject these properties, is that all application contexts register and use a special
JavaBeans PropertyEditor which can convert String pathsto Resour ce objects. So if myBean has atemplate
property of type Resource, it can be configured with atext string for that resource, as follows:

<bean i d="nyBean" class="...">

Spring Framework Version 1.2.9 57

Abstracting Access to Low-Level Resources

<property nanme="tenpl ate" val ue="sone/ resource/ path/ nyTenpl ate.txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to be used as the
Resour ceLoader , the resource itself will be loaded viaa d assPat hResour ce, Fi | eSyst enResour ce,
Ser vl et Cont ext Resour ce, €tC., as appropriate depending on the type of the context.

If thereis aneed to force a specifc Resour ce type to be used, then a prefix may be used. The following two
examples show how to force ad assPat hResour ce and aUr | Resour ce (the latter being used to access a
filesystemfile).

<property nanme="tenpl ate" val ue="cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. t xt"/>

<property name="tenpl ate" val ue="file:/some/resource/ path/ myTenpl ate.txt"/>

4.7. Application contexts and Resour ce paths

4.7.1. Constructing application contexts

An application context constuctor (for a specific application context type) generally takes a string or array of
strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context.

When such alocation path doesn't have a prefix, the specific Resource type built from that path and used to
load the definiton, depends on and is appropriate to the specific application context. For example, if you create
a ClassPathXml ApplicationContext as follows:

Appl i cationContext ctx = new C assPat hXnl Appli cati onCont ext (" conf/appContext.xm ");

then the definition will be loaded from the classpath, as a ClassPathResource will be used. But if you create a
FilleSystemXml A pplicationContext as follows:

ApplicationContext ctx =
new Fi | eSyst enCl assPat hXm Appl i cati onCont ext (" conf/appCont ext.xm ");

then the definition will be loaded from a filesystem location, in this case relative to the current working
directory.
Note that the use of the special classpath prefix or a standard URL prefix on the location path will override the

default type of Resour ce created to load the definition. So thisFi | eSyst emXml Appl i cat i onCont ext

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext (" cl asspat h: conf/ appCont ext . xm ") ;

will actually load its definition from the classpath. However, it's still aFi | eSyst emXm Appl i cati onCont ext . If
it's subsequently used as a Resour ceLoader , any unprefixed paths are still treated as filesystem paths.

4.7.2. The cl asspat h*: prefix

Spring Framework Version 1.2.9 58

Abstracting Access to Low-Level Resources

When constructing an XM L-based application context, alocation string may use the special classpath*: prefix:

Appl i cationContext ctx =
new Cl assPat hXm Appl i cati onCont ext (" cl asspat h*: conf/ appCont ext. xm ") ;

This specia prefix specifiesthat all classpath resources that match the gven name should be obtained
(internally, this essentially happensviaad assLoader . get Resour ces(...) cal), and then merged to form the
final application context definition.

One use for this mechanism is when doing component-style application assembly. All components can ‘publish’
context definition fragments to a well-known location path, and when the final application context is created
using the same path prefixed viacl asspat h* :, all component fragments will be picked up automatically.

Note that this specia prefix is specific to application contexts, and is resolved at construction time. It has
nothing to do with the Resour ce typeitself. It's not possible to use the cl asspat h*: prefix to construct an actual
Resour ce, @S a resource points to just one resource at atime.

4.7.3. Unexpected application context handling of FileSystemResource
absolute paths

A Fi | eSyst enResour ce that isnot attached to aFi | eSyst emAppl i cati onCont ext (that is, a

FileSystemA pplicationContext is not the actual Resour ceLoader) will treat absolute vs. relative paths as you
would expect. Relative paths are relative to the current working directory, while absolute paths are relative to
theroot of the filesystem.

For backwards compatibility (historical) reasons however, this changes when the

Fi | eSyst emAppl i cati onCont ext iSthe Resour ceLoader. Fil eSyst emAppl i cati onCont ext simply forcesall
attached Fi | eSyst enResour ces to treat all location paths as relative, whether they start with aleading slash or
not. In practice, this means the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst enCl assPat hXm Appl i cati onCont ext ("conf/context.xm");

Appl i cationContext ctx =
new Fi | eSyst enCl assPat hXnl Appl i cati onCont ext ("/conf/context.xm");

aswell asthe following

Fi | eSyst emXnl Appl i cati onContext ctx = ...;
ct x. get Resour ce(" sone/ resour ce/ pat h/ rryTerrpI ate.txt");

Fi | eSyst enXml Appl i cati onContext ctx = ...;
ct x. get Resour ce("/sone/ resour ce/ pat h/ rryTerrpI ate.txt");

Even though it would make sense for them to be different, as one case being relative vs. one being absol ute.

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with
Fi | eSyst enResour ce/Fi | eSyst enXm Appl i cati onCont ext , and just force the use of a UrlResource, by using
thefile: URL prefix.

/'l actual context type doesn't matter, the Resource will always be Ul Resource
ct x. get Resource("file:/some/resource/path/ nyTenplate. txt");

Spring Framework Version 1.2.9 59

Abstracting Access to Low-Level Resources

/1 force this FileSystenXnl ApplicationContext to load it's definition via a Ul Resource
Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext ("file:/conf/context.xm");

Spring Framework Version 1.2.9

60

Chapter 5. PropertyEditors, data binding, validation
and the BeanWrapper

5.1. Introduction

The big question is whether or not validation should be considered business logic. There are pros and cons for
both answers, and Spring offers adesign for validation (and data binding) that does not exclude either one of
them. Validation should specifically not be tied to the web tier, should be easy to localize and it should be
possible to plug in any validator available. Considering the above, Spring has come up with aval i dat or
interface that's both basic and usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an application
(or whatever objects you use to process user input). Spring provides the so-called Dat aBi nder to do exactly
that. The Validator and the DataBinder make up the val i dat i on package, which is primarily used in but not
limited to the MV C framework.

The Beanw apper isafundamental concept in the Spring Framework and is used in alot of places. However,
you probably will not ever have the need to use the BeanWrapper directly. Because thisis reference
documentation however, we felt that some explanation might be right. We're explaining the BeanWrapper in
this chapter since if you were going to use it at all, you would probably do that when trying to bind data to
objects, which is strongly related to the BeanWrapper.

Spring uses PropertyEditors al over the place. The concept of a PropertyEditor is part of the JavaBeans
specification. Just as the BeanWrapper, it's best to explain the use of PropertyEditors in this chapter aswell,
sinceit's closely related to the BeanWrapper and the DataBinder.

5.2. Binding data using the Dat aBi nder

The DataBinder builds on top of the BeanWrapper®.

5.3. Bean manipulation and the BeanW apper

Theor g. spri ngf ranewor k. beans package adheres to the JavaBeans standard provided by Sun. A JavaBean is
simply a class with a default no-argument constructor, which follows a naming conventions where a property
named pr op has a setter set Prop(...) and agetter get Prop() . For more information about JavaBeans and the
specification, please refer to Sun's website (java.sun.com/products/javabeans
[http://java.sun.com/products/javabeans/]).

One quite important concept of the beans package is the Beanw apper interface and its corresponding
implementation (Beanw apper | npl). As quoted from the JavaDoc, the BeanWrapper offers functionality to set
and get property values (individually or in bulk), get property descriptors, and to query properties to determine
if they are readable or writable. Also, the BeanWrapper offers support for nested properties, enabling the
setting of properties on sub-properties to an unlimited depth. Then, the BeanWrapper supports the ability to add
standard JavaBeans Pr oper t yChangelLi st ener s and Vet oabl eChangelLi st ener s, without the need for
supporting code in the target class. Last but not least, the BeanWrapper provides support for the setting of
indexed properties. The BeanWrapper usually isn't used by application code directly, but by the Dat aBi nder

1See the beans chapter for more information

Spring Framework Version 1.2.9 61

http://java.sun.com/products/javabeans/
http://java.sun.com/products/javabeans/

PropertyEditors, data binding, validation and the

and the BeanFact ory.
The way the BeanWrapper worksis partly indicated by its name: it wraps a bean to perform actions on that

bean, like setting and retrieving properties.

5.3.1. Setting and getting basic and nested properties

Setting and getting propertiesis done using the set Pr oper t yval ue(s) and get Proper t yVal ue(s) methods that
both come with a couple of overloaded variants. They're all described in more detail in the JavaDoc Spring
comes with. What's important to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:

Table 5.1. Examples of properties

Expression Explanation

nane Indicates the property nane corresponding to the methods get Nane() or i sNane()
and set Nare()

account . nane Indicates the nested property nane of the property account corresponding e.g. to
the methods get Account () . set Name() Or get Account (). get Nane()

account [2] Indicates the third element of the indexed property account . Indexed properties
can be of typearray, | i st or other naturally ordered collection

account [COVPANYNANE] Indicates the value of the map entry indexed by the key COMPANYNAME of the
Map property account

Below you'll find some examples of working with the BeanWrapper to get and set properties.

Note: this part is not important to you if you're not planning to work with the BeanWrapper directly. If you're
just using the Dat aBi nder and the BeanFact ory and their out-of-the-box implementation, you should skip
ahead to the section about pr oper t yEdi t or s.

Consider the following two classes:

public class Conmpany {
private String nane;
private Enpl oyee nanagi ngDirector;

public String getName() {
return this.nane;

public void set Name(String nanme) {
thi s. name = naneg;

publ i ¢ Enpl oyee get Managi ngDirector() {
return this.nmanagi ngDirector;
}

public void set Managi ngDi r ect or (Enpl oyee managi ngDi rector) {
t hi s. managi ngDi rect or = managi ngDi rector;

}

public class Enpl oyee {
private float salary;

public float getSalary() {
return sal ary;
}

public void setSalary(float salary) {

Spring Framework Version 1.2.9 62

BeanWrapper

this.salary = salary;

The following code snippets show some examples of how to retrieve and manipul ate some of the properties of
instantiated Conpani es and Enpl oyees:

Conpany ¢ = new Conpany();

BeanW apper bwConp = BeanW apper | npl (c);

// setting the conpany nane...

bwConp. set PropertyVal ue("nane", "Some Conpany Inc.");

/1 ... can also be done like this:

PropertyVal ue v = new PropertyVal ue("name", "Some Conpany Inc.");
bwConp. set PropertyVal ue(v);

Il ok, let's create the director and tie it to the conpany:
Enpl oyee jim = new Enpl oyee();

BeanW apper bwJdi m = BeanW apper | npl (jin);

bwJdi m set PropertyVal ue("nanme", "Jim Stravinsky");

bwConp. set PropertyVal ue("managi ngbirector”, jim;

/'l retrieving the salary of the nmanagi ngDirector through the conpany
Fl oat salary = (Fl oat)bwConp. get PropertyVal ue("managi ngbhi rector. sal ary");

5.3.2. Built-in PropertyEdi tors, converting types

Spring heavily uses the concept of Pr oper t yEdi t or s. Sometimes it might be handy to be able to represent
propertiesin adifferent way than the object itself. For example, a date can be represented in a human readable
way, while we're still able to convert the human readable form back to the original date (or even better: convert
any date entered in a human readable form, back to Date objects). This behavior can be achieved by registering
custom editors, of typej ava. beans. Propert yEdi t or . Registering custom editors on a BeanWrapper or
aternately in a specific Application Context as mentioned in the previous chapter, gives it the knowledge of
how to convert properties to the desired type. Read more about PropertyEditors in the JavaDoc of the

j ava. beans package provided by Sun.

A couple of examples where property editing is used in Spring

* setting properties on beansis done using PropertyEditors. When mentioning j ava. | ang. St ri ng asthe value
of a property of some bean you're declaring in XML file, Spring will (if the setter of the corresponding
property has a Class-parameter) use the d assEdi t or to try to resolve the parameter to a Class object

e parsing HTTP request parametersin Spring's MV C framework is done using al kinds of PropertyEditors
that you can manually bind in al subclasses of the CommandControl | er

Spring has a number of built-in PropertyEditors to make life easy. Each of those islisted below and they are all
located inthe or g. spri ngf r anewor k. beans. propert yedi t or s package. Most, but not al (asindicated below),
areregistered by default by BeanWrapperImpl. Where the property editor is configurable in some fashion, you
can of course still register your own variant to override the default one:

Table 5.2. Built-in PropertyEditors

Class Explanation

Byt eAr r ayPr oper t yEdi t or Editor for byte arrays. Strings will simply be converted to their
corresponding byte representations. Registered by default by
BeanWrapperlmpl.

C assEdi t or Parses Strings representing classes to actual classes and the other
way around. When aclassis not found, an

Spring Framework Version 1.2.9 63

PropertyEditors, data binding, validation and the

Class

Cust onBool eanEdi t or

Explanation

I1legal ArgumentException is thrown. Registered by default by
BeanWrapperimpl.

Customizable property editor for Boolean properties. Registered by
default by BeanWrapperlmpl, but, can be overridden by registering
custom instance of it as custom editor.

Cust onCol | ecti onEdi t or

Cust onDat eEdi t or

Cust omNunber Edi t or

Fi |l eEditor

Property editor for Collections, converting any source Collection to
agiven target Collection type.

Customizable property editor for java.util.Date, supporting a
custom DateFormat. NOT registered by default. Must be user
registered as needed with appropriate format.

Customizable property editor for any Number subclass like Integer,
Long, Float, Double. Registered by default by BeanWrapperimpl,
but, can be overridden by registering custom instance of it as
custom editor.

Capable of resolving Stringstoj ava. i o. Fi | e objects. Registered
by default by BeanWrapperlmpl.

| nput St reanEdi t or

Local eEdi t or

PropertiesEditor

One-way property editor, capable of taking atext string and
producing (via an intermediate ResourceEditor and Resource) an
InputStream, so InputStream properties may be directly set as
Strings. Note that the default usage will not close the InputStream
for you! Registered by default by BeanWrapperlmpl.

Capable of resolving Stringsto Local e objects and vice versa (the
String format is [language] _[country]_[variant], which isthe same
thing the toString() method of Locale provides). Registered by
default by BeanWrapperimpl.

Capable of converting Strings (formatted using the format as
defined in the Javadoc for the java.lang.Properties class) to
Properti es objects. Registered by default by BeanWrapperimpl.

StringArrayPropertyEditor

StringTrinmer Edi t or

URLEdi t or

Capable of resolving acommardelimited list of Stringto a
String-array and vice versa. Registered by default by
BeanWrapperimpl.

Property editor that trims Strings. Optionally allows transforming
an empty string into anull value. NOT registered by default. Must
be user registered as needed.

Capable of resolving a String representation of a URL to an actual
URL object. Registered by default by BeanWrapperlmpl.

Spring usesthej ava. beans. Proper t yEdi t or Manager 10 Set the search path for property editors that might be
needed. The search path aso includes sun. bean. edi t or s, which includes PropertyEditors for Font, Color and
all the primitive types. Note also that the standard JavaBeans infrastructure will automatically discover
PropertyEditors (without you having to register them) if they are in the same package as the class they handle,
and have the same name as that class, with 'Editor' appended.

Spring Framework Version 1.2.9

64

BeanWrapper

5.3.3. Other features worth mentioning

Besides the features you've seen in the previous sections there a couple of features that might be interesting to
you, though not worth an entire section.

 determining readability and writability: using thei sReadabl e() andi swit abl e() methods, you can
determine whether or not a property is readable or writable

* retrieving PropertyDescriptors: using get Propert yDescri ptor (String) and get PropertyDescri pt ors()
you can retrieve objects of typej ava. beans. PropertyDescri pt or, that might come in handy sometimes

5.4. Validation using Spring's Validator interface

Spring's features a Validator interface you can use to validate objects. The Validator interface, is pretty
straightforward and works using with a so-called Errors object. In other words, while validating, validators will
report validation failures to the Errors object.

Assad already, the Validator interface is pretty straightforward, just as implementing one yourself. Let's
consider asmall data object:

public class Person {
private String nane;
private int age;

/1 the usual suspects: getters and setters

}

Using the or g. spri ngf ramewor k. val i dat i on. Val i dat or interface we're going to provide validation behavior
for the Per son class. Thisisthe Validator interface:

e supports(d ass) - indicates whether or not this validator supports the given object

val i dat e(Obj ect, org. springframework. validation. Errors) - validatesthe given object and in case of
validation errors, put registers those with the given Errors object

Implementing avalidator isfairly straightforward, especially when you know of the val i dati onUti | s Spring
also provides. Let'sreview how avalidator is created:

public class PersonValidator inplenments Validator {

publ i ¢ bool ean supports(d ass clzz) {
return Person. cl ass. equal s(cl zz);
}

public void validate(Object obj, Errors e) {
ValidationUils.rejectlfEmpty(e, "nanme", "nanme.enpty");
Person p = (Person)obj;
if (p.getAge() < 0) {

e.reject Val ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rej ect Val ue("age", "toool d");

}
}

Asyou can see, the ValidationUtils is used to reject the name property. Have alook at the JavaDaoc for
ValidationUtils to see what functionality it provides besides the example we gave just now.

Spring Framework Version 1.2.9 65

PropertyEditors, data binding, validation and the

5.5. The Errors interface

Validation errors are reported to the Errors object passed to the validator. In case of Spring Web MV C you can
usespri ng: bi nd tags to inspect the error messages, but of course you can also inspect the errors object
yourself. The methods it offers are pretty straightforward. More information can be found in the JavaDoc.

5.6. Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errorsisthe
last thing we need to discuss. In the example we've shown above, we rejected the nane and the age field. If,
using a MessageSour ce, We're going to output the error messages we will do so using the error code we've
given when rejecting the field (‘'name’ and 'age’ in this case). When you call (either directly, or indirectly, using
for example the val i dati onUti | s class) rej ect Val ue or one of the other r ej ect method from the Errors
interface, the underlying implementation will not only register the code, you've passed in, but also a number of
additional error codes. What error codes it registersis determined by the MessageCodesResol ver that is used.
By default, the Def aul t MessageCodesResol ver isused, which for example not only register a message with the
code you gave, but also messages that include the field name you passed to the reject method. So in case you
reject afield using r ej ect val ue("age", "toool d"), apart fromthet oool d code, Spring will also register

t oool d. age andt oool d. age. i nt (so thefirst will include the field name and the second will include the type
of thefield).

More information on the M essageCodesResolver and the default strategy can be found online with the

JavaDocs for MessageCodesResolver
[http://www.springframework.org/docs/api/org/springframework/validation/M essageCodesResol ver.html] and
DefaultM essageCodesResol ver

[http:/iwww.springframework.org/docs/api/org/springframework/validati on/Def aul tM essageCodesResol ver.html]
respectively.

Spring Framework Version 1.2.9 66

http://www.springframework.org/docs/api/org/springframework/validation/MessageCodesResolver.html
http://www.springframework.org/docs/api/org/springframework/validation/MessageCodesResolver.html
http://www.springframework.org/docs/api/org/springframework/validation/DefaultMessageCodesResolver.html
http://www.springframework.org/docs/api/org/springframework/validation/DefaultMessageCodesResolver.html

Chapter 6. Spring AOP: Aspect Oriented
Programming with Spring

6.1. Concepts

Aspect-Oriented Programming (AOP) complements OOP by providing another way of thinking about program
structure. While OO decomposes applications into a hierarchy of objects, AOP decomposes programs into
aspects or concerns. This enables modularization of concerns such as transaction management that would
otherwise cut across multiple objects. (Such concerns are often termed crosscutting concerns.)

One of the key components of Spring is the AOP framework. While the Spring 10C containers (BeanFactory
and ApplicationContext) do not depend on AOP, meaning you don't need to use AOP if you don't want to, AOP
complements Spring 10C to provide a very capable middleware solution.

AOP isused in Spring:

« To provide declarative enterprise services, especialy as a replacement for EJB declarative services. The most
important such service is declarative transaction management, which builds on Spring's transaction
abstraction.

e Toalow usersto implement custom aspects, complementing their use of OOP with AOP.

Thus you can view Spring AOP as either an enabling technology that allows Spring to provide declarative
transaction management without EJB; or use the full power of the Spring AOP framework to implement custom
aspects.

If you are interested only in generic declarative services or other pre-packaged declarative middleware
services such as pooling, you don't need to work directly with Soring AOP, and can skip most of this chapter.

6.1.1. AOP concepts

Let us begin by defining some central AOP concepts. These terms are not Spring-specific. Unfortunately, AOP
terminology is not particularly intuitive. However, it would be even more confusing if Spring used its own
terminology.

» Aspect: A modularization of a concern for which the implementation might otherwise cut across multiple
objects. Transaction management is a good example of a crosscutting concern in J2EE applications. Aspects
are implemented using Spring as Advisors or interceptors.

 Joinpoint: Point during the execution of a program, such as a method invocation or a particular exception
being thrown. In Spring AOP, ajoinpoint is aways method invocation. Spring does not use the term
joinpoint prominently; joinpoint information is accessible through methods on the Met hodl nvocat i on
argument passed to interceptors, and is evaluated by implementations of the
org. spri ngframewor k. aop. Poi nt cut interface.

« Advice: Action taken by the AOP framework at a particular joinpoint. Different types of advice include
"around," "before" and "throws" advice. Advice types are discussed below. Many AOP frameworks,
including Spring, model an advice as an interceptor, maintaining a chain of interceptors "around" the
joinpoint.

Spring Framework Version 1.2.9 67

Spring AOP: Aspect Oriented Programming with Spring

« Pointcut: A set of joinpoints specifying when an advice should fire. An AOP framework must allow
developers to specify pointcuts: for example, using regular expressions.

« Introduction: Adding methods or fields to an advised class. Spring allows you to introduce new interfacesto
any advised object. For example, you could use an introduction to make any object implement an
I sModi fi ed interface, to simplify caching.

« Target object: Object containing the joinpoint. Also referred to as advised or proxied object.

« AOP proxy: Object created by the AOP framework, including advice. In Spring, an AOP proxy will bea
JDK dynamic proxy or a CGLIB proxy.

* Weaving: Assembling aspects to create an advised object. This can be done at compile time (using the
AspectJ compiler, for example), or at runtime. Spring, like other pure Java AOP frameworks, performs
weaving at runtime.

Different advice types include:

» Around advice: Advice that surrounds ajoinpoint such as a method invocation. This is the most powerful
kind of advice. Around advices will perform custom behavior before and after the method invocation. They
are responsible for choosing whether to proceed to the joinpoint or to shortcut executing by returning their
own return value or throwing an exception.

« Before advice: Advice that executes before a joinpoint, but which does not have the ability to prevent
execution flow proceeding to the joinpoint (unless it throws an exception).

« Throws advice: Adviceto be executed if amethod throws an exception. Spring provides strongly typed
throws advice, so you can write code that catches the exception (and subclasses) you're interested in, without
needing to cast from Throwable or Exception.

 After returning advice: Advice to be executed after ajoinpoint completes normally: for example, if amethod
returns without throwing an exception.

Around advice is the most genera kind of advice. Most interception-based AOP frameworks, such as Nanning
Aspects, provide only around advice.

As Spring, like AspectJ, provides afull range of advice types, we recommend that you use the |least powerful
advice type that can implement the required behavior. For example, if you need only to update a cache with the
return value of a method, you are better off implementing an after returning advice than an around advice,
although an around advice can accomplish the same thing. Using the most specific advice type provides a
simpler programming model with less potential for errors. For example, you don't need to invoke the
proceed() method on the Methodlnvocation used for around advice, and hence can't fail to invokeit.

The pointcut concept is the key to AOP, distinguishing AOP from older technologies offering interception.
Pointcuts enable advice to be targeted independently of the OO hierarchy. For example, an around advice
providing declarative transaction management can be applied to a set of methods spanning multiple objects.
Thus pointcuts provide the structural el ement of AOP.

6.1.2. Spring AOP capabilities and goals

Spring AOP isimplemented in pure Java. There is no need for a special compilation process. Spring AOP does
not need to control the class loader hierarchy, and is thus suitable for use in a J2EE web container or
application server.

Spring Framework Version 1.2.9 68

Spring AOP: Aspect Oriented Programming with Spring

Spring currently supports interception of method invocations. Field interception is not implemented, although
support for field interception could be added without breaking the core Spring AOP APIs.

Field interception arguably violates OO encapsulation. We don't believe it is wise in application devel opment.
If you requirefield interception, consider using AspectJ.

Spring provides classes to represent pointcuts and different advice types. Spring uses the term advisor for an
object representing an aspect, including both an advice and a pointcut targeting it to specific joinpoints.

Different advice types are Met hodl nt er cept or (from the AOP Alliance interception API); and the advice
interfaces defined in the or g. spri ngf r amewor k. aop package. All advices must implement the

org. aopal | i ance. aop. Advi ce tag interface. Advices supported out the box are Met hodl nt er cept or
Thr owsAdvi ce; Bef or eAdvi ce; and Af t er Ret ur ni ngAdvi ce. We'll discuss advice typesin detail below.

Spring implements the AOP Alliance interception interfaces (http://www.sourceforge.net/projects/aopalliance).
Around advice must implement the AOP Alliance or g. aopal | i ance. i nt er cept . Met hodl nt er cept or

interface. Implementations of this interface can run in Spring or any other AOP Alliance compliant
implementation. Currently JAC implements the AOP Alliance interfaces, and Nanning and Dynaop are likely to
in early 2004.

Spring's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide the most
complete AOP implementation (although Spring AOP is quite capable); it is rather to provide a close
integration between AOP implementation and Spring 10C to help solve common problems in enterprise
applications.

Thus, for example, Spring's AOP functionality is normally used in conjunction with a Spring 10C container.
AOP adviceis specified using normal bean definition syntax (although this allows powerful "autoproxying"
capabilities); advice and pointcuts are themselves managed by Spring 10C: acrucia difference from other AOP
implementations. There are some things you can't do easily or efficiently with Spring AOP, such as advise very
fine-grained abjects. AspectJis probably the best choice in such cases. However, our experience is that Spring
AOP provides an excellent solution to most problems in J2EE applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ or AspectWerkz to provide a comprehensive AOP
solution. We believe that both proxy-based frameworks like Spring and full-blown frameworks such as AspectJ
are valuable, and that they are complementary, rather than in competition. Thus amajor priority for Spring 1.1
will be seamlesdly integrating Spring AOP and 10C with AspectJ, to enable al uses of AOP to be catered for
within a consistent Spring-based application architecture. Thisintegration will not affect the Spring AOP API
or the AOP Alliance API; Spring AOP will remain backward-compatible.

6.1.3. AOP Proxies in Spring

Spring defaults to using J2SE dynamic proxies for AOP proxies. This enables any interface or set of interfaces
to be proxied.

Spring can also use CGLIB proxies. Thisis necessary to proxy classes, rather than interfaces. CGLIB is used
by default if abusiness object doesn't implement an interface. Asit's good practice to programto interfaces
rather than classes, business objects normally will implement one or more business interfaces.

It is possible to force the use of CGLIB: we'll discuss this below, and explain why you'd want to do this.
Beyond Spring 1.0, Soring may offer additional types of AOP proxy, including wholly generated classes. This
won't affect the programming model.

6.2. Pointcuts in Spring

Spring Framework Version 1.2.9 69

http://www.sourceforge.net/projects/aopalliance

Spring AOP: Aspect Oriented Programming with Spring

Let'slook at how Spring handles the crucial pointcut concept.

6.2.1. Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target different
advice using the same pointcut.

Theor g. spri ngf ranmewor k. aop. Poi nt cut interface isthe central interface, used to target advices to particular
classes and methods. The complete interface is shown below:
public interface Pointcut {
ClassFilter getCassFilter();

Met hodat cher get Met hodMat cher () ;

Splitting the Poi nt cut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a"union” with another method matcher).

Thed assFi | ter interfaceis used to restrict the pointcut to a given set of target classes. If the mat ches()
method always returns true, all target classes will be matched:
public interface ClassFilter {

bool ean mat ches(d ass cl azz);

The Met hodnat cher interface is normally more important. The complete interface is shown below:

public interface MethodMatcher {
bool ean mat ches(Method m C ass targetd ass);
bool ean i sRunti me();

bool ean mat ches(Method m Cl ass targetC ass, Object[] args);

Themat ches(Met hod, d ass) method is used to test whether this pointcut will ever match a given method on
atarget class. This evaluation can be performed when an AOP proxy is created, to avoid the need for atest on
every method invocation. If the 2-argument matches method returns true for a given method, and the

i sRunti me() method for the MethodMatcher returns true, the 3-argument matches method will be invoked on
every method invocation. This enables a pointcut to look at the arguments passed to the method invocation
immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their i srunti me() method returnsfalse. In this case, the
3-argument matches method will never be invoked.

If possible, try to make pointcuts static, allowing the AOP framework to cache the results of pointcut evaluation
when an AOP proxy is created.

6.2.2. Operations on pointcuts

Spring supports operations on pointcuts: notably, union and inter section.

Union means the methods that either pointcut matches.

Spring Framework Version 1.2.9 70

Spring AOP: Aspect Oriented Programming with Spring

I ntersection means the methods that both pointcuts match.
Union is usually more useful.

Pointcuts can be composed using the static methods in the org.springframewor k.aop.support.Pointcuts class, or
using the ComposablePointcut class in the same package.

6.2.3. Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

6.2.3.1. Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's arguments.
Static pointcuts are sufficient--and best--for most usages. It's possible for Spring to evaluate a static pointcut
only once, when amethod isfirst invoked: after that, there is no need to evaluate the pointcut again with each
method invocation.

Let's consider some static pointcut implementations included with Spring.

6.2.3.1.1. Regular expression pointcuts

One obvious way to specific static pointcuts is regular expressions. Severa AOP frameworks besides Spring
make this possible. or g. spri ngf r amewor k. aop. support . Per | 5RegexpMet hodPoi nt cut iSageneric regular
expression pointcut, using Perl 5 regular expression syntax. the Per | 5RegexpMet hodPoi nt cut Class depends on
Jakarta ORO for regular expression matching. Spring also provides the JdkRegexpMet hodPoi nt cut class that
uses the regular expression support in JDK 1.4+.

Using the Per | 5RegexpMet hodPoi nt cut €lass, you can provide alist of pattern Strings. If any of theseisa
match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:

<bean i d="sett er sAndAbsquat ul at ePoi nt cut "
cl ass="org. spri ngfranmewor k. aop. support . Per | 5RegexpMet hodPoi nt cut ">
<property name="patterns">
<list>
<val ue>. *set . *</val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

Spring provides a convenience class, RegexpMet hodPoi nt cut Advi sor , that allows us to reference an Advice
also (Remember that an Advice can be an interceptor, before advice, throws advice etc.). Behind the scenes,
Spring will use the JdkRegexpMet hodPoi nt cut on J2SE 1.4 or above, and will fall back to

Per | 5RegexpMet hodPoi nt cut on older VMs. The use of Per | 5RegexpMet hodPoi nt cut can be forced by setting
the per | 5 property to true. Using RegexpMet hodPoi nt cut Advi sor sSimplifies wiring, as the one bean serves as
both pointcut and advisor, as shown below:

<bean i d="settersAndAbsquat ul at eAdvi sor"
cl ass="org. spri ngf ramewor k. aop. support. RegexpMet hodPoi nt cut Advi sor ">
<property name="advi ce">
<ref |ocal ="beanNameO AopAl | i ancel nterceptor"/>
</ property>

Spring Framework Version 1.2.9 71

Spring AOP: Aspect Oriented Programming with Spring

<property nanme="patterns">
<list>
<val ue>. *set . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</[list>
</ property>
</ bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

6.2.3.1.2. Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata attributes:
typically, source-level metadata.

6.2.3.2. Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method arguments, as
well as static information. This means that they must be evaluated with every method invocation; the result
cannot be cached, as arguments will vary.

The main exampleisthecontrol 1 ow pointcut.

6.2.3.2.1. Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful.
(Thereis currently no way to specify that a pointcut executes below another pointcut.) A control flow pointcut
matches the current call stack. For example, it might fire if the joinpoint was invoked by a method in the

com nyconpany. web package, or by the sonecal | er class. Control flow pointcuts are specified using the

org. spri ngf ramewor k. aop. support . Cont r ol Fl owPoi nt cut class.

Note

Control flow pointcuts are significantly more expensive to evaluate at runtime than even other
dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts; in Java
1.3 more than 10.

6.2.4. Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticM ethodM atcherPointcut, as shown
below. This requiresimplemented just one abstract method (although it's possible to override other methods to
customize behavior):

class TestStaticPointcut extends StaticMethodMat cher Poi ntcut {

public bool ean matches(Method m C ass targetd ass) {
[/ return true if customcriteria match
}
}

There are also superclasses for dynamic pointcuts.

Spring Framework Version 1.2.9 72

Spring AOP: Aspect Oriented Programming with Spring

Y ou can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

6.2.5. Custom pointcuts

Because pointcutsin Spring are Java classes, rather than language features (as in AspectJ) it's possible to
declare custom pointcuts, whether static or dynamic. However, there is no support out of the box for the
sophisticated pointcut expressions that can be coded in AspectJ syntax. However, custom pointcutsin Spring
can be arbitrarily complex.

Later versions of Spring may offer support for "semantic pointcuts' as offered by JAC: for example, "all
methods that change instance variables in the target object.”

6.3. Advice types in Spring

Let's now look at how Spring AOP handles advice.

6.3.1. Advice lifecycles

Spring advices can be shared across all advised objects, or unigue to each advised object. This corresponds to
per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do
not depend on the state of the proxied object or add new state; they merely act on the method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the
proxied object.

It's possible to use amix of shared and per-instance advice in the same AOP proxy.

6.3.2. Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice types. Let us
look at the basic concepts and standard advice types.

6.3.2.1. Interception around advice
The most fundamental advice typein Spring isinterception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
M ethodl nterceptors implementing around advice should implement the following interface:

public interface Methodl nterceptor extends |nterceptor {

oj ect invoke(Met hodl nvocati on invocation) throws Throwabl e;

The Methodl nvocation argument to the invoke() method exposes the method being invoked; the target
joinpoint; the AOP proxy; and the arguments to the method. The invoke() method should return the invocation's
result: the return value of the joinpoint.

A simple Methodl nterceptor implementation looks as follows:

public class Debuglnterceptor inplements Methodl nterceptor {

Spring Framework Version 1.2.9 73

Spring AOP: Aspect Oriented Programming with Spring

public oject invoke(Methodl nvocation invocation) throws Throwabl e {
System out. println("Before: invocation=[" + invocation + "]");
oj ect rval = invocation. proceed();
System out. println("lnvocation returned");
return rval;

Note the call to the MethodlInvocation's proceed() method. This proceeds down the interceptor chain towards
the joinpoint. Most interceptors will invoke this method, and return its return value. However, a

Methodl nterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

Methodi nter ceptors offer interoperability with other AOP Alliance-compliant AOP implementations. The other
advice types discussed in the remainder of this section implement common AOP concepts, but in a
Soring-specific way. While there is an advantage in using the most specific advice type, stick with

MethodI nterceptor around adviceif you are likely to want to run the aspect in another AOP framework. Note
that pointcuts are not currently interoperable between frameworks, and the AOP Alliance does not currently
define pointcut interfaces.

6.3.2.2. Before advice

A simpler advice type is a before advice. This does not need aMet hodl nvocat i on object, sinceit will only be
called before entering the method.

The main advantage of a before advice isthat there is no need to invoke the proceed() method, and therefore
no possibility of inadvertently failing to proceed down the interceptor chain.

The Met hodBef or eAdvi ce interface is shown below. (Spring's API design would allow for field before advice,
although the usual objects apply to field interception and it's unlikely that Spring will ever implement it).
public interface MethodBef oreAdvi ce extends Bef oreAdvice {

voi d before(Method m Object[] args, Object target) throws Throwabl e;

Note the the return type isvoi d. Before advice can insert custom behavior before the joinpoint executes, but
cannot change the return value. If abefore advice throws an exception, thiswill abort further execution of the
interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on the
signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped in an
unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

public class CountingBeforeAdvice i npl ements Met hodBef oreAdvi ce {
private int count;

public void before(Method m Object[] args, Object target) throws Throwabl e {
++count ;

}

public int getCount() {
return count;
}

}

Before advice can be used with any pointcut.

6.3.2.3. Throws advice

Spring Framework Version 1.2.9 74

Spring AOP: Aspect Oriented Programming with Spring

Throws advice isinvoked after the return of the joinpoint if the joinpoint threw an exception. Spring offers

typed throws advice. Note that this meansthat the or g. spri ngf r amewor k. aop. Thr owsAdvi ce interface does
not contain any methods: it is atag interface identifying that the given object implements one or more typed

throws advice methods. These should be of form

after Throwi ng([Met hod], [args], [target], subcl assOf Throwabl e)

Only the last argument is required. Thus there from one to four arguments, depending on whether the advice
method is interested in the method and arguments. The following are examples of throws advices.

This advice will beinvoked if a Renot eExcept i on isthrown (including subclasses):

public class RenoteThrowsAdvi ce i npl ements ThrowsAdvi ce {

public void afterThrow ng(Renpt eExcepti on ex) throws Throwabl e {
/1 Do something with renpote exception
}

Thefollowing advice isinvoked if a ServietException isthrown. Unlike the above advice, it declares 4
arguments, so that it has access to the invoked method, method arguments and target object:
public class Servlet ThrowsAdvi ceWthArgunments i npl ements ThrowsAdvi ce {

public void after Throwi ng(Method m Object[] args, Object target, ServletException ex) {
/1 Do something will all argunents
}

Thefinal example illustrates how these two methods could be used in asingle class, which handles both
Renot eExcept i on and Ser vl et Except i on. Any number of throws advice methods can be combined in asingle
class.
public static class Conbi nedThrowsAdvi ce inpl ements ThrowsAdvice {
public void afterThrow ng(Renot eException ex) throws Throwabl e {
/1 Do something with renote exception
}
public void afterThrowi ng(Method m Object[] args, Object target, ServletException ex) {

// Do something will all arguments
}

}

Throws advice can be used with any pointcut.

6.3.2.4. After Returning advice

An after returning advice in Spring must implement the org.springframewor k.aop.After ReturningAdvice
interface, shown below:
public interface AfterReturni ngAdvi ce extends Advice {

voi d afterReturning(Object returnValue, Method m Object[] args, Cbject target)
t hrows Throwabl e;

An after returning advice has access to the return value (which it cannot modify), invoked method, methods
arguments and target.

Spring Framework Version 1.2.9 75

Spring AOP: Aspect Oriented Programming with Spring

The following after returning advice counts all successful method invocations that have not thrown exceptions:

public class CountingAfterReturni ngAdvi ce inpl ements AfterReturni ngAdvi ce {
private int count;
public void afterReturning(Qject returnvValue, Method m Object[] args, bject target)

throws Throwabl e {
++count ;

}

public int getCount() {
return count;
}

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor
chain instead of the return value.
After returning advice can be used with any pointcut.

6.3.2.5. Introduction advice

Spring treats introduction advice as a special kind of interception advice.

Introduction requires an I nt r oduct i onAdvi sor, and an | nt r oduct i onl nt er cept or , implementing the
following interface:
public interface Introductionlnterceptor extends Methodl nterceptor {

bool ean i npl enentsinterface(C ass intf);

Thei nvoke() method inherited from the AOP Alliance Met hodl nt er cept or interface must implement the
introduction: that is, if the invoked method is on an introduced interface, the introduction interceptor is
responsible for handling the method call--it cannot invoke pr oceed() .

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method, level. You
can only use introduction advice with the I nt r oduct i onAdvi sor, which has the following methods:
public interface |ntroductionAdvi sor extends Advisor, |ntroductionlnfo {
ClassFilter getClassFilter();

voi d validatelnterfaces() throws IlIegal Argunent Excepti on;

}

public interface Introductionlnfo {

Class[] getlnterfaces();

Thereis no Met hodmat cher , and hence no Poi nt cut , associated with introduction advice. Only classfiltering is
logical.

Theget I nterfaces() method returns the interfaces introduced by this advisor.
Theval i datel nterfaces() method isused internally to see whether or not the introduced interfaces can be
implemented by the configured | nt r oduct i onl nt er cept or.

Let'slook at a simple example from the Spring test suite. Let's suppose we want to introduce the following
interface to one or more objects:

Spring Framework Version 1.2.9 76

Spring AOP: Aspect Oriented Programming with Spring

public interface Lockable {
void | ock();
voi d unl ock();
bool ean | ocked();

Thisillustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and call
lock and unlock methods. If we call the lock() method, we want all setter methods to throw aLockedExcept i on.
Thus we can add an aspect that provides the ability to make objects immutable, without them having any
knowledge of it: agood example of AOP.

Firstly, well need an| ntroducti onl nt er cept or that does the heavy lifting. In this case, we extend the

org. spri ngframewor k. aop. support . Del egat i ngl nt roduct i onl nt er cept or convenience class. We could
implement Introductionlnterceptor directly, but using Del egat i ngl nt r oduct i onl nt er cept or IS best for most
cases.

The Del egat i ngl ntroducti onl nt er cept or isdesigned to delegate an introduction to an actual implementation
of theintroduced interface(s), concealing the use of interception to do so. The delegate can be set to any object
using a constructor argument; the default delegate (when the no-arg constructor is used) isthis. Thusin the
example below, the delegate isthe LockM xi n subclass of Del egat i ngl nt r oduct i onl nt er cept or . Given a
delegate (by default itself) aDel egat i ngl ntroducti onl nt er cept or instance looks for all interfaces
implemented by the delegate (other than Introductionlnterceptor), and will support introductions against any of
them. It's possible for subclasses such asLockM xi n to call the suppressinterflace(d ass intf) method to
suppress interfaces that should not be exposed. However, no matter how many interfaces an

I ntroductionl nterceptor iSprepared to support, the nt roduct i onAdvi sor used will control which
interfaces are actually exposed. An introduced interface will conceal any implementation of the same interface
by the target.

Thus LockMixin subclasses Del egat i ngl nt roduct i onl nt er cept or and implements Lockable itself. The
superclass automatically picks up that Lockable can be supported for introduction, so we don't need to specify
that. We could introduce any number of interfacesin thisway.

Note the use of the | ocked instance variable. This effectively adds additional state to that held in the target
object.

public class LockM xi n extends Del egati ngl ntroducti onl nterceptor
i npl enents Lockabl e {

private bool ean | ocked;

public void lock() {
this.locked = true;
}

public void unlock() {
this.locked = fal se;
}

publ i c bool ean | ocked() {
return this.|ocked,
}

public Object invoke(Methodl nvocation invocation) throws Throwable {
if (locked() && invocation.getMthod().getNane().indexO("set") == 0)
t hrow new LockedException();
return super.invoke(invocation);

Spring Framework Version 1.2.9 77

Spring AOP: Aspect Oriented Programming with Spring

Often it isn't necessary to override thei nvoke() method: the Del egat i ngl nt r oduct i onl nt er cept or
implementation--which calls the delegate method if the method is introduced, otherwise proceeds towards the
joinpoint--is usually sufficient. In the present case, we need to add a check: no setter method can be invoked if
in locked mode.

The introduction advisor required issimple. All it needsto do is hold adistinct LockM xi n instance, and specify
the introduced interfaces--in this case, just Lockabl e. A more complex example might take a reference to the
introduction interceptor (which would be defined as a prototype): in this case, there's no configuration relevant
for aLockM xi n, SO we simply create it using new.

public class LockM xi nAdvi sor extends Defaul tlntroductionAdvi sor {

public LockM xi nAdvi sor () {
super (new LockM xi n(), Lockabl e. cl ass);
}

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It'simpossible to
usean | ntroduct i onl nt er cept or Without an IntroductionAdvisor.) As usual with introductions, the advisor
must be per-instance, asit is stateful. We need a different instance of LockM xi nAdvi sor, and hence LockM xi n,
for each advised object. The advisor comprises part of the advised object's state.

We can apply this advisor programmatically, using the Advi sed. addAdvi sor () method, or (the recommended
way) in XML configuration, like any other advisor. All proxy creation choices discussed below, including
"auto proxy creators,”" correctly handle introductions and stateful mixins.

6.4. Advisors in Spring

In Spring, an Advisor is amodularization of an aspect. Advisors typically incorporate both an advice and a
pointcut.

Apart from the special case of introductions, any advisor can be used with any advice.
org. spri ngframewor k. aop. support . Def aul t Poi nt cut Advi sor iSthe most commonly used advisor class. For
example, it can be used with aMet hodl nt er cept or , Bef or eAdvi ce OF Thr owsAdvi ce.

It is possible to mix advisor and advice typesin Spring in the same AOP proxy. For example, you could use a
interception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary create interceptor chain.

6.5. Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring 10C container (an ApplicationContext or BeanFactory) for your business objects--and
you should be!--you will want to use one of Spring's AOP FactoryBeans. (Remember that a factory bean
introduces alayer of indirection, enabling it to create objects of a different type).

The basic way to create an AOP proxy in Spring isto use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts and
advice that will apply, and their ordering. However, there are simpler options that are preferable if you don't
need such control.

6.5.1. Basics

Spring Framework Version 1.2.9 78

Spring AOP: Aspect Oriented Programming with Spring

The Pr oxyFact or yBean, like other Spring Fact or yBean implementations, introduces a level of indirection. If
you define a Pr oxyFact or yBean With namef oo, what objects referencing f oo see is not the Pr oxyFact or yBean
instance itself, but an object created by the Pr oxyFact or yBean' s implementation of the get Obj ect () method.
This method will create an AOP proxy wrapping atarget object.

One of the most important benefits of using a Pr oxyFact or yBean or other |oC-aware classto create AOP
proxies, isthat it means that advices and pointcuts can also be managed by 10C. Thisis a powerful feature,
enabling certain approaches that are hard to achieve with other AOP frameworks. For example, an advice may
itself reference application objects (besides the target, which should be available in any AOP framework),
benefiting from all the pluggability provided by Dependency Injection.

6.5.2. JavaBean properties

Like most FactoryBean implementations provided with Spring, Pr oxyFact or yBean isitself a JavaBean. Its
properties are used to:

« Specify the target you want to proxy
» Specify whether to use CGLIB

Some key properties are inherited from or g. spri ngf r amewor k. aop. f r amewor k. ProxyConf i g: the superclass
for al AOP proxy factories. These include:

e proxyTarget d ass: trueif we should proxy the target class, rather than itsinterfaces. If thisis true we need
to use CGLIB.

 optim ze: whether to apply aggressive optimization to created proxies. Don't use this setting unless you
understand how the relevant AOP proxy handles optimization. Thisis currently used only for CGLIB
proxies; it has no effect with JDK dynamic proxies (the default).

e frozen: whether advice changes should be disallowed once the proxy factory has been configured. Default is
false.

¢ exposePr oxy: whether the current proxy should be exposed in a ThreadL ocal so that it can be accessed by
the target. (It's available via the Methodlnvocation without the need for a ThreadL ocal.) If atarget needs to
obtain the proxy and exposeProxy istrue, the target can use the AopCont ext . cur r ent Proxy() method.

* aopProxyFact ory: the implementation of AopProxyFactory to use. Offers away of customizing whether to
use dynamic proxies, CGLIB or any other proxy strategy. The default implementation will choose dynamic
proxies or CGLIB appropriately. There should be no need to use this property; it's intended to allow the
addition of new proxy typesin Spring 1.1.

Other properties specific to Pr oxyFact or yBean include:

e proxylnterfaces: array of String interface names. If thisisn't supplied, a CGLIB proxy for the target class
will be used

 interceptorNames: String array of Advisor, interceptor or other advice names to apply. Ordering is
significant. First come, first servethat is. The first interceptor in the list will be the first to be able to intercept
the invocation (of courseif it concerns aregular Met hodl nt er cept or Of Bef or eAdvi ce.

The names are bean names in the current factory, including bean names from ancestor factories. Y ou can't

Spring Framework Version 1.2.9 79

Spring AOP: Aspect Oriented Programming with Spring

mention bean references here since doing so would result in the ProxyFactoryBean ignoring the singleton
setting of the advise.

Y ou can append an interceptor name with an asterisk (*). Thiswill result in the application of all advisor
beans with names starting with the part before the asterisk to be applied. An example of using this feature
can be found below.

« gingleton: whether or not the factory should return a single object, no matter how often the get bj ect ()
method is called. Several Fact or yBean implementations offer such a method. Default valueistrue. If you
want to use stateful advice--for example, for stateful mixins--use prototype advices along with a singleton
value of false.

6.5.3. Proxying interfaces

Let'slook at asimple example of ProxyFactoryBean in action. This example involves:

« A target bean that will be proxied. Thisisthe "personTarget" bean definition in the example below.
e An Advisor and an Interceptor used to provide advice.

* An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces to
proxy, along with the advices to apply.

<bean i d="personTarget" class="com nyconpany. Personl npl ">
<property name="nane"><val ue>Tony</ val ue></ property>
<property name="age"><val ue>51</val ue></ property>

</ bean>

<bean id="nyAdvi sor" cl ass="com nyconpany. MyAdvi sor" >
<property name="soneProperty"><val ue>Custom string property val ue</val ue></ property>
</ bean>

<bean i d="debugl nterceptor" class="org. springfranmework. aop. i nt ercept or. Debugl nt ercept or">
</ bean>

<bean i d="person"
cl ass="org. spri ngf ramewor k. aop. f r amewor k. Pr oxyFact or yBean" >
<property name="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>

<property name="target"><ref |ocal ="personTarget"/></property>
<property name="inter cept or Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Note that thei nt er cept or Nanes property takes alist of String: the bean names of the interceptor or advisorsin
the current factory. Advisors, interceptors, before, after returning and throws advice objects can be used. The
ordering of advisorsis significant.

You might be wondering why the list doesn't hold bean references. The reason for thisisthat if the
ProxyFactoryBean's singleton property is set to false, it must be able to return independent proxy instances. If
any of the advisorsisitself a prototype, an independent instance would need to be returned, so it's necessary to
be able to obtain an instance of the prototype from the factory; holding a reference isn't sufficient.

The "person" bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory.getBean("person");

Spring Framework Version 1.2.9 80

Spring AOP: Aspect Oriented Programming with Spring

Other beans in the same |0C context can express a strongly typed dependency on it, as with an ordinary Java
object:

<bean i d="personUser" cl ass="com myconpany. PersonUser" >
<property name="person"><ref |ocal ="person" /></property>
</ bean>

The Per sonuser classin this example would expose a property of type Person. Asfar asit's concerned, the
AOP proxy can be used transparently in place of a"real" person implementation. However, its class would be a
dynamic proxy class. It would be possible to cast it to the Advi sed interface (discussed below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as follows.
Only the Pr oxyFact or yBean definition is different; the advice isincluded only for completeness:

<bean i d="nyAdvi sor" class="com nyconpany. MyAdvi sor ">
<property name="soneProperty"><val ue>Custom string property val ue</val ue></property>
</ bean>

<bean i d="debugl nterceptor" class="org.springfranmework. aop. i nterceptor.Debuglnterceptor"/>

<bean i d="person" cl ass="org. spri ngframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>
<l-- Use inner bean, not |local reference to target -->
<property name="target">
<bean cl ass="com nyconpany. Per sonl npl ">
<property name="nane"><val ue>Tony</val ue></ property>
<property nanme="age"><val ue>51</val ue></ property>
</ bean>
</ property>
<property nanme="inter ceptor Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

This has the advantage that there's only one abject of type Per son: useful if we want to prevent users of the
application context obtaining a reference to the un-advised object, or need to avoid any ambiguity with Spring
IoC autowiring. There's also arguably an advantage in that the ProxyFactoryBean definition is self-contained.
However, there are times when being able to obtain the un-advised target from the factory might actually be an
advantage: for example, in certain test scenarios.

6.5.4. Proxying classes

What if you need to proxy aclass, rather than one or more interfaces?

Imagine that in our example above, there was no Per son interface: we needed to advise a class called Per son
that didn't implement any business interface. In this case, you can configure Spring to use CGLIB proxying,
rather than dynamic proxies. Simply set the pr oxyTar get O ass property on the ProxyFactoryBean above to
true. While it's best to program to interfaces, rather than classes, the ability to advise classes that don't
implement interfaces can be useful when working with legacy code. (In general, Spring isn't prescriptive. While
it makes it easy to apply good practices, it avoids forcing a particular approach.)

If you want to you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this generated
subclass to delegate method calls to the original target: the subclass is used to implement the Decorator pattern,

Spring Framework Version 1.2.9 81

Spring AOP: Aspect Oriented Programming with Spring

weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:

* Fi nal methods can't be advised, asthey can't be overridden.
¢ You'll need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are dightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.

6.5.5. Using 'global’ advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before the
asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set of 'global’
advisors:

<bean i d="proxy" class="org.springframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target" ref="service"/>
<property nanme="inter ceptor Nanes" >
<list>
<val ue>gl obal *</ val ue>
</list>
</ property>
</ bean>

<bean i d="gl obal _debug" cl ass="org. spri ngframework. aop. i nt er cept or. Debugl nt erceptor"/>
<bean i d="gl obal _performance" class="org. springfranmework. aop.interceptor.PerformanceMnitorlnterceptor"/>

6.6. Convenient proxy creation

Often we don't need the full power of the Pr oxyFact or yBean, because we're only interested in one aspect: For
example, transaction management.

There are a number of convenience factories we can use to create AOP proxies when we want to focus on a

specific aspect. These are discussed in other chapters, so we'll just provide a quick survey of some of them here.

6.6.1. TransactionProxyFactoryBean

The JPetStor e sample application shipped with Spring shows the use of the TransactionProxyFactoryBean.

The Tr ansact i onPr oxyFact or yBean iSasubclass of ProxyConfi g, SO basic configuration is shared with
Pr oxyFact or yBean. (Seelist of ProxyConfi g properties above.)

The following example from the JPetStore illustrates how this works. Aswith aPr oxyFact or yBean, thereisa
target bean definition. Dependencies should be expressed on the proxied factory bean definition (" petStore"
here), rather than the target POJO ("petStoreTarget").

The Transact i onPr oxyFact or yBean requires atarget, and information about "transaction attributes,"
specifying which methods should be transactional and the required propagation and other settings:

<bean i d="pet StoreTarget" cl ass="org. spri ngfranmework. sanpl es. j pet store. domai n. | ogi c. Pet St or el npl ">
<property nanme="account Dao" ><ref bean="account Dao"/></property>

Spring Framework Version 1.2.9 82

Spring AOP: Aspect Oriented Programming with Spring

<l-- O her dependencies omtted -->
</ bean>

<bean i d="pet Store" cl ass="org.springframework.transaction.interceptor. Transacti onProxyFact or yBean">
<property nanme="transacti onManager" ref="transacti onManager"/>
<property name="target" ref="petStoreTarget"/>
<property nanme="transacti onAttributes">
<pr ops>
<prop key="insert*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="updat e*" >PROPAGATI ON_REQUI RED</ pr op>
<prop key="*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

Aswith the Pr oxyFact or yBean, we might choose to use an inner bean to set the value of t ar get property,
instead of areference to atop-level target bean.

The Tr ansact i onPr oxyFact or yBean automatically creates a transaction advisor, including a pointcut based on
the transaction attributes, so only transactional methods are advised.

The Tr ansact i onPr oxyFact or yBean allows the specification of "pre" and "post" advice, using the

prel nterceptors and postinterceptors properties. These take Object arrays of interceptors, other advice or
Advisorsto placein the interception chain before or after the transaction interceptor. These can be populated
using a<list> element in XML bean definitions, as follows:

<property name="prel nterceptors">
<list>
<ref bean="authorizationlnterceptor”/>
<ref bean="notificati onBeforeAdvice"/>
</list>
</ property>
<property name="postlnterceptors">
<list>
<ref bean="nyAdvisor"/>
</list>
</ property>

These properties could be added to the "petStore" bean definition above. A common usage is to combine
transactionality with declarative security: asimilar approach to that offered by EJB.

Because of the use of actual instance references, rather than bean names asin pr oxyFact or yBean, pre and post
interceptors can be used only for shared-instance advice. Thusthey are not useful for stateful advice: for
example, in mixins. Thisis consistent with the TransactionProxyFactoryBean's purpose. It provides asimple
way of doing common transaction setup. If you need more complex, customized, AOP, consider using the
generic Pr oxyFact or yBean, O an auto proxy creator (see below).

Especially if we view Spring AOP as, in many cases, a replacement for EJB, we find that most adviceisfairly
generic and uses a shared-instance model. Declarative transaction management and security checks are classic
examples.

The Tr ansact i onPr oxyFact or yBean depends on a Pl at f or milr ansact i onManager implementation viaits
transact i onManager JavaBean property. This allows for pluggable transaction implementation, based on JTA,
JDBC or other strategies. This relates to the Spring transaction abstraction, rather than AOP. Well discuss the
transaction infrastructure in the next chapter.

If you're interested only in declarative transaction management, the TransactionProxyFactoryBean is a good
solution, and simpler than using a ProxyFactoryBean.

6.6.2. EJB proxies

Spring Framework Version 1.2.9 83

Spring AOP: Aspect Oriented Programming with Spring

Other dedicated proxies create proxies for EJBs, enabling the EJB "business methods" interface to be used
directly by calling code. Calling code does not need to perform JNDI lookups or use EJB create methods: A
significant improvement in readability and architectural flexibility.

See the chapter on Spring EJB servicesin this manual for further information.

6.7. Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The use
of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and more
concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean i d="t xProxyTenpl ate" abstract="true"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri butes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Thiswill never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be created
isjust a child bean definition, which to wraps the target of the proxy as an inner bean definition, since the target
will never be used on its own anyways.

<bean i d="nyService" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngfranmewor k. sanpl es. MySer vi cel npl ">
</ bean>
</ property>
</ bean>

It is of course possible to override properties from the parent template, such asin this case, the transaction
propagation settings:

<bean i d="nySpeci al Servi ce" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngfranmewor k. sanpl es. MySpeci al Servi cel npl ">
</ bean>
</ property>
<property nanme="transactionAttri butes">
<pr ops>
<prop key="get*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="find*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="| oad*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="store*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute, as described previoudly, so that it may not actually ever be instantiated. Application contexts
(but not simple bean factories) will by default pre-instantiate all singletons. Therefore it isimportant (at |east
for singleton beans) that if you have a (parent) bean definition which you intend to use only as atemplate, and
this definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the
application context will actually try to pre-instantiate it.

Spring Framework Version 1.2.9 84

Spring AOP: Aspect Oriented Programming with Spring

6.8. Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP without
dependency on Spring loC.

The following listing shows creation of a proxy for atarget object, with one interceptor and one advisor. The
interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFact ory(nyBusi nessl nterfacel npl);
factory. addl nt er cept or (myMet hodl nt erceptor);

factory. addAdvi sor (myAdvi sor) ;

MyBusi nessinterface tb = (M/Businessinterface) factory.getProxy();

Thefirst step isto construct a object of type or g. spri ngf r amewor k. aop. f r amewor k. ProxyFact ory. You can
create thiswith atarget object, asin the above example, or specify the interfaces to be proxied in an aternate
constructor.

Y ou can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you add an
I ntroductionl nterceptionAroundAdvisor you can cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) allowing you to add
other advice types such as before and throws advice. AdvisedSupport is the superclass of both ProxyFactory
and ProxyFactoryBean.

Integrating AOP proxy creation with the 10C framework is best practice in most applications. We recommend
that you exter nalize configuration from Java code with AOP, asin general.

6.9. Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org. spri ngframewor k. aop. f ramewor k. Advi sed interface. Any AOP proxy can be cast to thisinterface,
whatever other interfaces it implements. This interface includes the following methods:

Advi sor[] get Advi sors();

voi d addAdvi ce(Advi ce advi ce) throws AopConfi gExcepti on;

voi d addAdvi ce(int pos, Advice advice)
t hrows AopConfi gExcepti on;

voi d addAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d addAdvi sor (i nt pos, Advisor advisor) throws AopConfi gExcepti on;
int indexOf (Advi sor advisor);

bool ean renoveAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d renpveAdvi sor (int index) throws AopConfi gExcepti on;

bool ean repl aceAdvi sor (Advi sor a, Advisor b) throws AopConfi gExcepti on;

bool ean i sFrozen();

The get Advi sor s() method will return an Advisor for every advisor, interceptor or other advice type that has
been added to the factory. If you added an Advisor, the returned advisor at thisindex will be the object that you

Spring Framework Version 1.2.9 85

Spring AOP: Aspect Oriented Programming with Spring

added. If you added an interceptor or other advice type, Spring will have wrapped thisin an advisor with a
pointcut that always returns true. Thus if you added a Met hodl nt er cept or , the advisor returned for this index
will be an Def aul t Poi nt cut Advi sor returning your Met hodl nt er cept or and a pointcut that matches all classes
and methods.

The addAdvi sor () methods can be used to add any Advisor. Usually the advisor holding pointcut and advice
will be the generic Def aul t Poi nt cut Advi sor , which can be used with any advice or pointcut (but not for
introduction).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The only
restriction isthat it'simpossible to add or remove an introduction advisor, as existing proxies from the factory
will not show the interface change. (Y ou can obtain a new proxy from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advi sed interface and examining and manipulating its
advice:

Advi sed advi sed = (Advi sed) nyQnj ect;

Advi sor[] advi sors = advi sed. get Advi sors();

i nt ol dAdvi sor Count = advi sors. | ength;

System out . println(ol dAdvi sor Count + " advi sors");

/1 Add an advice like an interceptor w thout a pointcut

/1 WIl match all proxied nethods

/'l Can use for interceptors, before, after returning or throws advice
advi sed. addAdvi ce(new Debugl nterceptor());

// Add sel ective advice using a pointcut
advi sed. addAdvi sor (new Def aul t Poi nt cut Advi sor (mySpeci al Poi nt cut, myAdvice));

assert Equal s("Added two advi sors",
ol dAdvi sor Count + 2, advi sed. get Advi sors().length);

It's questionable whether it's advisable (no pun intended) to modify advice on a business object in production,
although there are no doubt legitimate usage cases. However, it can be very useful in development: for
example, in tests. | have sometimes found it very useful to be able to add test code in the form of an interceptor
or other advice, getting inside a method invocation | want to test. (For example, the advice can get inside a
transaction created for that method: for example, to run SQL to check that a database was correctly updated,
before marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set af r ozen flag, in which case the Advi sed

i sFrozen() method will return true, and any attempts to modify advice through addition or removal will result
in an AopConf i gExcept i on. The ability to freeze the state of an advised object is useful in some cases. For
example, to prevent calling code removing a security interceptor. It may also be used in Spring 1.1 to allow
aggressive optimization if runtime advice modification is known not to be required.

6.10. Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a pPr oxyFact or yBean Or similar factory bean.

Spring aso allows usto use "autoproxy" bean definitions, which can automatically proxy selected bean
definitions. Thisis built on Spring "bean post processor” infrastructure, which enables modification of any bean
definition as the container |oads.

In this model, you set up some special bean definitionsin your XML bean definition file configuring the auto
proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't need to use
Pr oxyFact or yBean.

There are two ways to do this:

Spring Framework Version 1.2.9 86

Spring AOP: Aspect Oriented Programming with Spring

« Using an autoproxy creator that refers to specific beans in the current context

« A specia case of autoproxy creation that deserves to be considered separately; autoproxy creation driven by
source-level metadata attributes

6.10.1. Autoproxy bean definitions

Theor g. spri ngf ranmewor k. aop. f r amewor k. aut opr oxy package provides the following standard autoproxy
creators.

6.10.1.1. BeanNameAutoProxyCreator

The BeanNameA utoProxyCreator automatically creates AOP proxies for beans with names matching literal
values or wildcards.

<bean cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property name="beanNanes" ><val ue>j dk*, onl yJdk</ val ue></ property>
<property name="inter ceptor Nanes" >
<list>
<val ue>nyl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Aswith ProxyFact or yBean, thereis an interceptorNames property rather than alist of interceptor, to alow
correct behavior for prototype advisors. Named "interceptors' can be advisors or any advice type.

Aswith auto proxying in general, the main point of using BeanNameAut oPr oxyCr eat or iSto apply the same
configuration consistently to multiple objects, and with minimal volume of configuration. It isa popular choice
for applying declarative transactions to multiple objects.

Bean definitions whose names match, such as"jdkMyBean" and "onlyJdk" in the above example, are plain old
bean definitions with the target class. An AOP proxy will be created automatically by the

BeanNanmeAut oPr oxyCr eat or . The same advice will be applied to all matching beans. Note that if advisors are
used (rather than the interceptor in the above example), the pointcuts may apply differently to different beans.

6.10.1.2. DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is Def aul t Advi sor Aut oPr oxyCr eat or . Thiswill
automagically apply eligible advisorsin the current context, without the need to include specific bean namesin
the autoproxy advisor's bean definition. It offers the same merit of consistent configuration and avoidance of
duplication as BeanNanmeAut oPr oxyCr eat or .

Using this mechanism involves:

» Specifying aDef aul t Advi sor Aut oPr oxyCr eat or bean definition

» Specifying any number of Advisorsin the same or related contexts. Note that these must be Advisors, not
just interceptors or other advices. Thisis necessary because there must be a pointcut to evaluate, to check the
eigibility of each advice to candidate bean definitions.

The Def aul t Advi sor Aut oPr oxyCr eat or Will automatically evaluate the pointcut contained in each advisor, to
see what (if any) advice it should apply to each business object (such as "businessObject1l" and
"businessObject2" in the example).

Spring Framework Version 1.2.9 87

Spring AOP: Aspect Oriented Programming with Spring

This means that any number of advisors can be applied automatically to each business object. If no pointcut in
any of the advisors matches any method in a business object, the object will not be proxied. As bean definitions
are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain an
un-advised object. Calling getBean(" businessObject1") on this ApplicationContext will return an AOP proxy,
not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or"/ >

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttri buteSourceAdvi sor">
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="cust omAdvi sor" cl ass="com nyconpany. MyAdvi sor"/>

<bean i d="busi nessObj ect 1" cl ass="com myconpany. Busi nessObj ect 1" >
<l-- Properties omtted -->
</ bean>

<bean i d="busi nessObj ect 2" cl ass="com nmyconpany. Busi nessObj ect 2"/ >

The Def aul t Advi sor Aut oPr oxyCr eat or isvery useful if you want to apply the same advice consistently to
many business objects. Once the infrastructure definitions are in place, you can simply add new business
objects without including specific proxy configuration. Y ou can also drop in additional aspects very easily--for
example, tracing or performance monitoring aspects--with minimal change to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evaluated, allowing use of multiple, differently configured, AdvisorAutoProxyCreatorsin
the same factory) and ordering. Advisors can implement the or g. spri ngf r amewor k. cor e. Or der ed interface to
ensure correct ordering if thisis an issue. The TransactionAttributeSourceAdvisor used in the above example
has a configurable order value; default is unordered.

6.10.1.3. AbstractAdvisorAutoProxyCreator

Thisis the superclass of DefaultAdvisorAutoProxyCreator. Y ou can create your own autoproxy creators by
subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to the
behavior of the framework Def aul t Advi sor Aut oPr oxyCr eat or .

6.10.2. Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar programming
model to .NET Ser vi cedConponent s. Instead of using XML deployment descriptors asin EJB, configuration
for transaction management and other enterprise servicesis held in source-level attributes.

In this case, you use the Def aul t Advi sor Aut oPr oxyCr eat or , in combination with Advisors that understand
metadata attributes. The metadata specifics are held in the pointcut part of the candidate advisors, rather than in
the autoproxy creation class itself.

Thisisrealy aspecial case of the Def aul t Advi sor Aut oPr oxyCr eat or , but deserves consideration on its own.
(The metadata-aware code is in the pointcuts contained in the advisors, not the AOP framework itself.)

The/attribut es directory of the JPetStore sample application shows the use of attribute-driven autoproxying.
In this case, there's no need to use the Tr ansact i onPr oxyFact or yBean. Simply defining transactional attributes
on business objects is sufficient, because of the use of metadata-aware pointcuts. The bean definitionsinclude

Spring Framework Version 1.2.9 88

Spring AOP: Aspect Oriented Programming with Spring

the following code, in/ VEB- | NF/ decl ar at i veSer vi ces. xm . Note that thisis generic, and can be used outside
the JPetStore:

<bean cl ass="org. spri ngf ranmewor k. aop. f ranmewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or"/ >

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="transactionlnterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri buteSource">
<bean cl ass="org. springframework.transaction.interceptor.AttributesTransactionAttri buteSource">
<property name="attributes" ref="attributes"/>
</ bean>
</ property>
</ bean>

<bean id="attributes" class="org.springfranework. netadata.comons. CormonsAttri butes"/>

The Def aul t Advi sor Aut oPr oxyCr eat or bean definition (the name is not significant, hence it can even be
omitted) will pick up al eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type Tr ansact i onAt t ri but eSour ceAdvi sor , will apply to classes or
methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor depends on a

Transactionl nterceptor, via constructor dependency. The example resolves this via autowiring. The
AttributesTransactionAttri but eSour ce depends on an implementation of the

org. spri ngframewor k. net adat a. At t ri but es interface. In this fragment, the "attributes" bean satisfies this,
using the Jakarta Commons Attributes APl to obtain attribute information. (The application code must have
been compiled using the Commons Attributes compilation task.)

The/ annot at i on directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection of
Spring's Tr ansact i onal annotation, leading to implicit proxies for beans containing that annotation:

<bean cl ass="org. springframework. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property nanme="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean id="transactionl nterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri buteSource">
<bean cl ass="org. spri ngfranmework.transaction. annot ati on. Annot ati onTransacti onAttri buteSource"/>
</ property>
</ bean>

The Transacti onl nt er cept or defined here dependson aPl at f or nir ansact i onManager definition, whichis
not included in this generic file (although it could be) because it will be specific to the application's transaction
requirements (typically JTA, asin this example, or Hibernate, JDO or JDBC):

<bean id="transacti onManager"
cl ass="org. spri ngframework. transaction.jta.JtaTransacti onManager"/>

If you require only declarative transaction management, using these generic XML definitionswill result in
Soring automatically proxying all classes or methods with transaction attributes. You won't need to work
directly with AOP, and the programming model is similar to that of .NET ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. Y ou heed to:

Spring Framework Version 1.2.9 89

Spring AOP: Aspect Oriented Programming with Spring

« Define your custom attribute.

« Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of the
custom attribute on a class or method. Y ou may be able to use an existing advice, merely implementing a
static pointcut that picks up the custom attribute.

It's possible for such advisors to be unigue to each advised class (for example, mixins): they simply need to be
defined as prototype, rather than singleton, bean definitions. For example, the LockM xi n introduction
interceptor from the Spring test suite, shown above, could be used in conjunction with an attribute-driven
pointcut to target amixin, as shown here. We use the generic Def aul t Poi nt cut Advi sor, configured using
JavaBean properties:

<bean i d="l ockM xi n" cl ass="org. spri ngfranewor k. aop. LockM xi n"
singl eton="fal se"/>

<bean i d="1| ockabl eAdvi sor" cl ass="org. spri ngfranmewor k. aop. support. Def aul t Poi nt cut Advi sor"
si ngl eton="f al se">
<property name="pointcut" ref="nyAttributeAwarePointcut"/>
<property nanme="advi ce" ref="IockM xin"/>
</ bean>

<bean i d="anyBean" cl ass="anycl ass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin will be
applied. Note that both I ockM xi n and | ockabl eAdvi sor definitions are prototypes. The

nyAt t ri but eAwar ePoi nt cut pointcut can be a singleton definition, as it doesn't hold state for individual
advised objects.

6.11. Using TargetSources

Spring offers the concept of a TargetSource, expressed in the or g. spri ngf r amewor k. aop. Tar get Sour ce
interface. Thisinterface is responsible for returning the "target object”" implementing the joinpoint. The
Tar get Sour ce implementation is asked for atarget instance each time the AOP proxy handles a method
invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides a
powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling
TargetSource can return a different target instance for each invocation, using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps alocal object. The same
target isreturned for each invocation (as you would expect).

Let'slook at the standard target sources provided with Spring, and how you can use them.
When using a custom target source, your target will usually need to be a prototype rather than a singleton bean
definition. This allows Spring to create a new target instance when required.

6.11.1. Hot swappable target sources

Theor g. spri ngf ramewor k. aop. t ar get . Hot Swappabl eTar get Sour ce existsto allow the target of an AOP
proxy to be switched while allowing callers to keep their referencesto it.

Changing the target source's target takes effect immediately. The Hot Swappabl eTar get Sour ce is threadsafe.

Y ou can change the target viathe swap() method on HotSwappableTargetSource as follows:

Spring Framework Version 1.2.9 90

Spring AOP: Aspect Oriented Programming with Spring

Hot Swappabl eTar get Sour ce swapper =
(Hot Swappabl eTar get Sour ce) beanFact ory. get Bean(" swapper");
Obj ect ol dTarget = swapper. swap(newTarget);

The XML definitions required look as follows:

<bean id="initial Target" class="myconpany. O dTarget"/>

<bean i d="swapper" cl ass="org. springfranmework. aop.tar get. Hot Swappabl eTar get Sour ce" >
<constructor-arg ref="initial Target"/>
</ bean>

<bean i d="swappabl e" cl ass="org. spri ngfranewor k. aop. f ranewor k. Pr oxyFact or yBean" >
<property name="target Source" ref="swapper"/>
</ bean>

The above swap() cal changes the target of the swappable bean. Clients who hold a reference to that bean will
be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice--and it's not necessary to add advice to use a Tar get Sour ce--Of
course any Tar get Sour ce can be used in conjunction with arbitrary advice.

6.11.2. Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in which a pool
of identical instances is maintained, with method invocations going to free objectsin the pool.

A crucia difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to any
POJO. Aswith Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.1, which provides afairly efficient pooling
implementation. Y ou'll need the commons-pool Jar on your application's classpath to use this feature. It'salso
possibleto subclassor g. spri ngf r amewor k. aop. t ar get . Abst r act Pool i ngTar get Sour ce t0 support any other
pooling API.

Sample configuration is shown below:

<bean i d="busi nessObj ect Target" cl ass="com nyconpany. MyBusi nessObj ect "
si ngl eton="fal se">

. properties omtted

</ bean>

<bean i d="pool Tar get Sour ce" cl ass="org. spri ngfranmewor k. aop. t ar get . CommonsPool Tar get Sour ce" >
<property name="t ar get BeanNane" val ue="busi nessQbj ect Target"/>
<property nanme="maxSi ze" val ue="25"/>

</ bean>

<bean i d="busi nessObj ect" cl ass="org. spri ngfranmewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="t ar get Sour ce" ref="pool Target Source"/>
<property name="interceptorNanes" val ue="nylnterceptor"/>

</ bean>

Note that the target object--"businessObjectTarget" in the example--must be a prototype. This alowsthe

Pool i ngTar get Sour ce implementation to create new instances of the target to grow the pool as necessary. See
the Javadoc for Abst r act Pool i ngTar get Sour ce and the concrete subclass you wish to use for information
about it's properties: maxSize is the most basic, and always guaranteed to be present.

Spring Framework Version 1.2.9 91

Spring AOP: Aspect Oriented Programming with Spring

In this case, "mylnterceptor” is the name of an interceptor that would need to be defined in the same 10C
context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no
other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
org. springframewor k. aop. t ar get . Pool i ngConf i g interface, which exposes information about the
configuration and current size of the pool through an introduction. Y ou'll need to define an advisor like this:

<bean i d="pool Config" class="org. springfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property nanme="t arget Cbj ect" ref="pool Target Source"/ >
<property nanme="t ar get Met hod" val ue="get Pool i ngConfi gM xi n"/ >

</ bean>

This advisor is abtained by calling a convenience method on the Abst r act Pool i ngTar get Sour ce class, hence
the use of MethodlnvokingFactoryBean. This advisor's name (" pool ConfigAdvisor” here) must bein the list of
interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look asfollows:

Pool i ngConfi g conf = (PoolingConfig) beanFactory. get Bean("busi nessObject");
System out. println("Max pool size is " + conf.get MaxSize());

Pooling stateless service objects is not usually necessary. We don't believe it should be the default choice, as
most stateless objects are naturally thread safe, and instance pooling is problematic if resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy
creator.

6.11.3. Prototype target sources

Setting up a"prototype” target source is similar to a pooling TargetSource. In this case, a new instance of the
target will be created on every method invocation. Although the cost of creating a new object isn't highina
modern JVM, the cost of wiring up the new object (satisfying its 10C dependencies) may be more expensive.
Thus you shouldn't use this approach without very good reason.

To do this, you could modify the pool Tar get Sour ce definition shown above as follows. (I've aso changed the
name, for clarity.)

<bean i d="prot ot ypeTar get Source" class="org. springframework. aop.target.PrototypeTar get Sour ce">
<property nanme="t ar get BeanNane" ref ="busi nessObj ect Target"/ >
</ bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource implementations
to ensure consistent naming. As with the pooling target source, the target bean must be a prototype bean
definition.

6.11.4. ThreadLocal target sources

ThreadL ocal target sources are useful if you need an object to be created for each incoming request (per thread
that is). The concept of a Thr eadLocal provide a JDK-wide facility to transparently store resource alongside a
thread. Setting up a ThreadL ocal TargetSource is pretty much the same as was explained for the other target
Sources.

Spring Framework Version 1.2.9 92

Spring AOP: Aspect Oriented Programming with Spring

<bean i d="t hr eadl ocal Tar get Source" cl ass="org. spri ngfranmework. aop. target. ThreadLocal Tar get Sour ce" >
<property name="t ar get BeanNane" val ue="busi nessQbj ect Target"/>
</ bean>

ThreadLocals come with serious issues (potentially resulting in memory leaks) when incorrectly using themin
a multi-threaded and multi-classloader environments. One should always consider wrapping a threadlocal in
some other class and never directly use the ThreadLocal itself (except of coursein the wrapper class). Also,
one should always remember to correctly set and unset (where the latter simply involved a call to
ThreadLocal .set(null)) the resource local to the thread. Unsetting should be done in any case since not
unsetting it might result in problematic behavior. Soring's ThreadLocal support is doing this for you and
should always be considered in favor of using ThreadLocals without other proper handling code.

6.12. Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice typesin addition to interception around advice, before,
throws advice and after returning advice, which are supported out of the box.

Theor g. spri ngf ranmewor k. aop. f r amewor k. adapt er package is an SPI package allowing support for new
custom advice types to be added without changing the core framework. The only constraint on a custom Advice
typeisthat it must implement the or g. aopal | i ance. aop. Advi ce tag interface.

Please refer to the or g. spri ngf r amewor k. aop. f r amewor k. adapt er package's Javadocs for further information

6.13. Further reading and resources

I recommend the excellent AspectJ in Action by Ramnivas Laddad (Manning, 2003) for an introduction to
AOP.

Please refer to the Spring sample applications for further examples of Spring AOP:

« The JPetStore's default configuration illustrates the use of the TransactionProxyFactoryBean for declarative
transaction management

e The/attributes directory of the JPetStoreillustrates the use of attribute-driven declarative transaction
management

If you are interested in more advanced capabilities of Spring AOP, take alook at the test suite. The test
coverageis over 90%, and thisillustrates advanced features not discussed in this document.

Spring Framework Version 1.2.9 93

Chapter 7. AspectJ Integration

7.1. Overview

Spring's proxy-based AOP framework iswell suited for handling many generic middleware and
application-specific problems. However, there are times when amore powerful AOP solution is required: for
example, if we need to add additional fieldsto aclass, or advise fine-grained objects that aren't created by the
Spring 1oC container.

We recommend the use of AspectJin such cases. Accordingly, as of version 1.1, Spring provides a powerful
integration with AspectJ.

7.2. Configuring AspectJ aspects using Spring loC

The most important part of the Spring/AspectJ integration allows Spring to configure AspectJ aspects using
Dependency Injection. This brings similar benefits to aspects as to objects. For example:

« Thereis no need for aspects to use ad hoc configuration mechanisms; they can be configured in the same,
consistent, approach used for the entire application.

« Aspects can depend on application objects. For example, a security aspect can depend on a security manager,
aswe'll seein an example shortly.

* It's possible to obtain a reference to an aspect through the relevant Spring context. This can allow for
dynamic reconfiguration of the aspect.

AspectJ aspects can expose JavaBean properties for Setter Injection, and even implement Spring lifecycle
interfaces such as BeanFact or yAwar e.

Note that AspectJ aspects cannot use Constructor Injection or Method Injection. This limitation is due to the
fact that aspects do not have constructors that can be invoked like constructors of objects.

7.2.1. "Singleton" aspects

In most cases, AspectJ aspects are singletons, with one instance per classloader. Thissingleinstanceis
responsible for advising multiple object instances.

A Spring 1oC container cannot instantiate an aspect, as aspects don't have callable constructors. But it can
obtain areference to an aspect using the static aspect o () method that Aspect] defines for all aspects, and it
can inject dependencies into that aspect.

7.2.1.1. Example

Consider a security aspect, which depends on a security manager. This aspects appliesto al changesin the
value of the bal ance instance variable in the Account class. (We couldn't do thisin the same way using Spring
AOP.)

The AspectJ code for the aspect (one of the Spring/Aspectd samples), is shown below. Note that the
dependency on the Securi t yManager interfaceis expressed in a JavaBean property:

Spring Framework Version 1.2.9 94

AspectJ Integration

publ i ¢ aspect Bal anceChangeSecurityAspect {
private SecurityManager securityManager;

public void setSecurityManager (SecurityManager securityManager) {
t hi s. securityManager = securityManager;
}

private pointcut bal anceChanged() :
set (i nt Account. bal ance) ;

before() : bal anceChanged() {
t hi s. securityManager. checkAut hori zedToModi fy();
}

}

We configure this aspect in the same way as an ordinary class. Note that the way in which we set the property
referenceisidentical. Note that we must usethef act or y- met hod attribute to specify that we want the aspect
"created" using the aspect O () static method. In fact, thisislocating, rather than, cr eat i ng, the aspect, but the
Spring container doesn't care:

<bean i d="securityAspect"
cl ass="org. spri ngframewor k. sanpl es. aspectj . bank. Bal anceChangeSecurit yAspect"
factory-net hod="aspect O "

>

<property name="securityManager" ref="securityManager"/>
</ bean>

We don't need to do anything in Spring configuration to target this aspect. It contains the pointcut information
in AspectJ code that controls where it applies. Thusit can apply even to objects not managed by the Spring 1oC
container.

7.2.1.2. Ordering issues

to be completed

7.2.2. Non-singleton aspects

** Complete material on pertarget etc.

7.2.3. Gotchas

to be completed

- Singleton issue

7.3. Using AspectdJ pointcuts to target Spring advice

In afuture release of Spring, we plan to provide the ability for AspectJ pointcut expressions to be used in
Spring XML or other bean definition files, to target Spring advice. Thiswill allow some of the power of the
AspectJ pointcut model to be applied to Spring's proxy-based AOP framework. Thiswill work in pure Java,
and will not require the AspectJ compiler. Only the subset of AspectJ pointcuts relating to method invocation
will be usable.

Spring Framework Version 1.2.9 95

AspectJ Integration

This feature replaces our previous plan to create a pointcut expression language for Spring.

7.4. Spring aspects for AspectJ

In afuture release of Spring, we will package some Spring services, such as the declarative transaction
management service, as AspectJ aspects. Thiswill enable them to be used by AspectJ users without dependence
on the Spring AOP framework--potentialy, even without dependence on the Spring |oC container.

Thisfeature is probably of more interest to AspectJ users than Spring users.

Spring Framework Version 1.2.9 96

Chapter 8. Transaction management

8.1. The Spring transaction abstraction

Spring provides a consistent abstraction for transaction management. This abstraction is one of the most
important of Spring's abstractions, and delivers the following benefits:

» Provides aconsistent programming model across different transaction APIs such as JTA, JDBC, Hibernate,
iBATIS Database Layer and JDO.

» Providesasimpler, easier to use, API for programmatic transaction management than most of these
transaction APIs

* |Integrates with the Spring data access abstraction

Supports Spring declarative transaction management

Traditionally, J2EE devel opers have had two choices for transaction management: to use global or local
transactions. Global transactions are managed by the application server, using JTA. Local transactions are
resource-specific: for example, a transaction associated with a JDBC connection. This choice had profound
implications. Global transactions provide the ability to work with multiple transactional resources. (It's worth
noting that most applications use a single transaction resource) With local transactions, the application server is
not involved in transaction management, and cannot help ensure correctness across multiple resources.

Global transactions have a significant downside. Code needs to use JTA: a cumbersome API to use (partly due
to its exception model). Furthermore, a JTA User Tr ansact i on hormally needs to be obtained from JNDI:
meaning that we need to use both INDI and JTA to use JTA. Obvioudly all use of global transactions limits the
reusability of application code, as JTA isnormally only available in an application server environment.

The preferred way to use global transactions was via EJB CMT (Container Managed Transaction): aform of
declarative transaction management (as distinguished from programmatic transaction management). EJB
CMT removes the need for transaction-related INDI lookups--although of course the use of EJB itself
necessitates the use of JNDI. It removes most--not all--need to write Java code to control transactions. The
significant downsideisthat CMT is (obvioudly) tied to JTA and an application server environment; and that it's
only available if we choose to implement business logic in EJBs, or at least behind a transactional EJB facade.
The negatives around EJB in general are so great that thisis not an attractive proposition, when there are
aternatives for declarative transaction management.

Local transactions may be easier to use, but also have significant disadvantages: They cannot work across
multiple transactional resources, and tend to invade the programming model. For example, code that manages
transactions using a JDBC connection cannot run within a global JTA transaction.

Spring resolves these problems. It enables application devel opers to use a consistent programming model in any
environment. Y ou write your code once, and it can benefit from different transaction management strategiesin
different environments. Spring provides both declarative and programmatic transaction management.
Declarative transaction management is preferred by most users, and recommended in most cases.

With programmatic transaction management devel opers work with the Spring transaction abstraction, which
can run over any underlying transaction infrastructure. With the preferred declarative model developers
typically write little or no code related to transaction management, and hence don't depend on Spring's or any
other transaction API.

Spring Framework Version 1.2.9 97

Transaction management

8.2. Transaction strategies

The key to the Spring transaction abstraction is the notion of atransaction strategy.

Thisis captured inthe or g. spri ngf ramewor k. t ransacti on. Pl at f or nilr ansact i onManager interface, shown
below:

public interface Platforniransacti onManager {

TransactionSt atus get Transacti on(Transacti onDefinition definition)
throws Transacti onExcepti on;

voi d comm t (Transacti onStatus status) throws Transacti onExcepti on;

voi d rol | back(Transacti onStatus status) throws Transacti onExcepti on;

Thisis primarily an SPI interface, although it can be used programmatically. Note that in keeping with Spring's
philosophy, thisis an interface. Thusit can easily be mocked or stubbed if necessary. Nor isit tied to alookup
strategy such as INDI: PlatformTransactionManager implementations are defined like any other object ina
Spring 1oC container. This benefit alone makes this a worthwhile abstraction even when working with JTA:
transactional code can be tested much more easily than if it directly used JTA.

In keeping with Spring's philosophy, Transact i onExcept i on isunchecked. Failures of the transaction
infrastructure are almost invariably fatal. In rare cases where application code can recover from them, the
application developer can till choose to catch and handle Tr ansact i onExcept i on.

The get Transacti on() method returnsaTr ansact i onSt at us object, depending on aTr ansact i onDef i ni tion
parameter. The returned Transact i onSt at us might represent a new or existing transaction (if there was a
matching transaction in the current call stack).

Aswith J2EE transaction contexts, a Tr ansact i onSt at us iS associated with athread of execution.

The Transact i onDef i ni ti on interface specifies:

e Transaction isolation: The degree of isolation this transaction has from the work of other transactions. For
example, can this transaction see uncommitted writes from other transactions?

* Transaction propagation: Normally all code executed within atransaction scope will run in that
transaction. However, there are several options specifying behavior if atransactional method is executed
when atransaction context aready exists: For example, simply running in the existing transaction (the most
common case); or suspending the existing transaction and creating a new transaction. Spring offers the
transaction propagation options familiar from EJB CMT.

» Transaction timeout: How long this transaction may run before timing out (automatically being rolled back
by the underlying transaction infrastructure).

» Read-only status: A read-only transaction does not modify any data. Read-only transactions can be a useful
optimization in some cases (such as when using Hibernate).

These settings reflect standard concepts. If necessary, please refer to a resource discussing transaction isolation
levels and other core transaction concepts. Understanding such core conceptsis essential to using Spring or any
other transaction management solution.

The Transacti onSt at us interface provides a simple way for transactional code to control transaction execution

Spring Framework Version 1.2.9 98

Transaction management

and query transaction status. The concepts should be familiar, asthey are common to all transaction APIs:

public interface TransactionStatus {
bool ean i sNewTransaction();
voi d set Rol | backOnl y();

bool ean i sRol | backOnl y();
}

However Spring transaction management is used, defining the Pl at f or nilr ansact i onManager implementation
is essential. In good Spring fashion, thisimportant definition is made using Inversion of Control.

PlatformTransactionManager implementations normally require knowledge of the environment in which they
work: JDBC, JTA, Hibernate etc.

The following examples from dat aAccessCont ext -1 ocal . xni from Spring's jPetStor e sample application
show how aloca PlatformTransactionManager implementation can be defined. This will work with JDBC.

We must define a JDBC DataSource, and then use the Spring DataSourceT ransactionManager, giving it a
reference to the DataSource.

<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- nmet hod="cl ose" >
<property name="driverd assNane" val ue="${j dbc. dri verC assNane}"/>
<property name="url" value="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

The PlatformTransactionManager definition will look like this:

<bean i d="t xManager" cl ass="org. springfranmework.j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

If weuse JTA, asinthedat aAccessCont ext -j ta. xm file from the same sample application, we need to use a
container DataSource, obtained via JNDI, and a JtaT ransactionManager implementation. The
JaTransactionManager doesn't need to know about the DataSource, or any other specific resources, asit will
use the container's global transaction management.

<bean i d="dat aSource" cl ass="org. springfranework.jndi.Jndi Obj ect Fact or yBean">
<property name="j ndi Nane" val ue="j dbc/ | petstore"/>>
</ bean>

<bean i d="t xManager" cl ass="org.springframework.transaction.jta.JtaTransacti onManager"/>

We can use Hibernate local transactions easily, as shown in the following examples from the Spring PetClinic
sample application.

In this case, we need to define a Hibernate L ocal SessionFactory, which application code will use to obtain
Hibernate Sessions.

The DataSource bean definition will be similar to one of the above examples, and is not shown. (If it'sa
container DataSource it should be non-transactional as Spring, rather than the container, will manage
transactions.)

Spring Framework Version 1.2.9 99

Transaction management

The "txManager" bean in this caseis of class HibernateTransactionManager. In the same way as the
DataSourceTransactionM anager needs a reference to the DataSource, the HibernateT ransactionM anager needs
areference to the SessionFactory.

<bean i d="sessi onFactory" class="org. springframework. orm hi bernat e. Local Sessi onFact or yBean" >
<property nanme="dat aSour ce" ref="dataSource"/>
<property nanme="nappi ngResources" >
<list>
<val ue>or g/ spri ngf ramewor k/ sanpl es/ pet cl i ni ¢/ hi bernat e/ petclini c. hbom xm </ val ue>
</list>
</ property>
<property nanme="hi bernat eProperties">
<pr ops>
<prop key="hi bernate. di al ect">${hi bernat e. di al ect} </ prop>
</ props>
</ property>
</ bean>

<bean id="txManager" class="org. springfranmework. orm hi bernat e. H ber nat eTransacti onManager " >
<property nanme="sessi onFactory" ref="sessionFactory"/>
</ bean>

With Hibernate and JTA transactions we could simply use the JtaTransactionManager as with JDBC or any
other resource strategy.

<bean i d="t xManager" cl ass="org.springframework.transaction.jta.JtaTransacti onManager"/>

Note that thisisidentical to JTA configuration for any resource, as these are global transactions, which can
enlist any transactional resource.

In all these cases, application code won't need to change at all. We can change how transactions are managed
merely by changing configuration, even if that change means moving fromlocal to global transactions or vice
versa.

8.3. Resource synchronization with transactions

It should now be clear how different transaction managers are created, and how they are linked to related
resources which need to be synchronized to transactions (i.e. Dat aSour ceTr ansact i onManager t0 aJDBC

Dat aSour ce, Hi ber nat eTr ansact i onManager t0 aHibernate Sessi onFact ory, €tc.). There remains the question
however of how the application code directly or indirectly using a persistence APl (JDBC, Hibernate, JDO,
etc.), ensures that these resources are obtained and handled properly, in terms of proper creation/reuse/cleanup
and to trigger (optionally) transaction synchronization viathe relevant i at f or nilr ansact i onManager .

8.3.1. High-level approach

The preferred approach is to use Spring's highest level persistence integration APIs. These do not replace the
native APIs, but do internally handle resource creation/reuse, cleanup, optional transaction synchronization of
the resources and exception mapping, so that user data access code doesn't have to worry about these concerns
at all, but can concentrate purely on non-boilerplate persistence logic. Generally, the same template approach is
followed for al persistence APIs, with classes such as JdbcTenpl at e, Hi ber nat eTenpl at e, JdoTenpl at e, €fC..
These integration classes are detailed in subsequent chapters of this manual.

8.3.2. Low-level approach

Spring Framework Version 1.2.9 100

Transaction management

At alower level exist classes such as Dat aSour celti | s (for IDBC), Sessi onFactoryUti | s (for Hibernate),

Per si st enceManager FactoryUti | s (for JDO), and so on. When it is preferred for application code to deal
directly with the resource types of the native persistence APIs, these classes ensure that proper Spring-managed
instances are obtained, transactions are (optionally) synchronized to, and exceptions which happen in the
process are properly mapped to a consistent API.

For example, for JDBC, instead of the traditional JDBC approach of calling the get Connecti on() method on
the Dat aSour ce, you would instead use Spring'Sor g. spri ngf r amewor k. j dbc. dat asour ce. Dat aSour ceUti | s
classasfollows:

Connection conn = DataSourceltils. get Connecti on(dat aSource);

If an existing transaction exists, and already has a connection synchronized (linked) to it, that instance will be
returned. Otherwise, the method call will trigger the creation of anew connection, which will be (optionally)
synchronized to any existing transaction, and available for subsequent reuse in that same transaction. As
mentioned, this has the added advantage that any SQLExcept i on will be wrapped in a Spring

Cannot Get JdbcConnect i onExcept i on--one of Spring's hierarchy of unchecked DataA ccessExceptions. This
gives you more information than can easily be obtained from the SQLExcept i on, and ensures portability across
databases: even across different persistence technologies.

It should be noted that this will aso work fine without Spring transaction management (transaction
synchronization is optional), so you can use it whether or not you are using Spring for transaction management.

Of course, once you've used Spring's JIDBC support or Hibernate support, you will generally prefer not to use
Dat aSour celt i | s or the other helper classes, because you'll be much happier working via the Spring
abstraction than directly with the relevant APIs. For example, if you use the Spring JdbcTemplate or
jdbc.object package to simplify your use of JDBC, correct connection retrieval happens behind the scenes and
you won't need to write any special code.

All these lower level resource access classes are detailed in subsequent chapters of this manual.

8.3.3. TransactionAwareDataSourceProxy

At the very lowest level existsthe Tr ansact i onAwar eDat aSour cePr oxy class. Thisisaproxy for atarget
Dat aSour ce, which wraps that target Dat aSour ce to add awareness of Spring-managed transactions. In this
respect it issimilar to atransactional INDI Dat aSour ce as provided by a J2EE server.

It should almost never be necessary or desireable to use this class, except when existing code exists which must
be called and passed a standard JDBC Dat aSour ce interface implementation. In this case, it's possible to till
have this code be usable, but participating in Spring managed transactions. It is preferable to write your own
new code using the higher level abstractions mentioned above.

Seethe Transact i onAwar eDat aSour cePr oxy Javadocs for more details.

8.4. Programmatic transaction management

Spring provides two means of programmatic transaction management:

e Using the Transacti onTenpl at e

e Using aPpl at f or nilr ansact i onManager implementation directly

Spring Framework Version 1.2.9 101

Transaction management

We generally recommend the first approach.

The second approach is similar to using the JTA User Transact i on API (although exception handling is less
cumbersome).

8.4.1. Using the Transacti onTenpl at e

The Transact i onTenpl at e adopts the same approach as other Spring templates such as JdbcTenpl at e and
Hi ber nat eTenpl at e. |t uses a callback approach, to free application code from the working of acquiring and
releasing resources. (No more try/catch/finally.) Like other templates, a Tr ansact i onTenpl at e iS threadsafe.

Application code that must execute in atransaction context looks like this. Note that the Tr ansact i onCal | back
can be used to return avaue:

Obj ect result = tt.execute(new TransactionCal |l back() {
public Onject dolnTransacti on(Transacti onStatus status) {
updat eOperationl();
return resul t Of Updat eOperati on2();

}
1)

If there's no return value, use a Tr ansact i onCal | backW t hout Resul t like this:;

tt.execute(new Transacti onCal | backWt hout Resul t () {
protected voi d dol nTransacti onWt hout Resul t (Transacti onSt atus status) {
updat eOper ati onl();
updat eOperati on2();
}
1)

Code within the callback can roll the transaction back by calling the set Rol | backonl y() method on the
Transact i onSt at us object.

Application classes wishing to use the Tr ansact i onTenpl at e must have accessto a
PlatformTransactionManager: usually exposed as a JavaBean property or as a constructor argument.

It's easy to unit test such classes with amock or stub PI at f or nilr ansact i onManager . There's no INDI lookup
or static magic here: it'sasimpleinterface. As usual, you can use Spring to simplify your unit testing.

8.4.2. Using the PI at f or nilr ansact i onManager

You can also usetheor g. spri ngf ramewor k. t ransacti on. Pl at f or niTr ansact i onManager directly to manage
your transaction. Simply pass the implementation of the PlatformTransactionManager you're using to your bean
viaabean reference. Then, using the Tr ansact i onDef i ni ti on and Tr ansact i onSt at us objects you can initiate
transactions, rollback and commit.

Def aul t Transacti onDefinition def = new Default TransactionDefinition();
def . set Propagat i onBehavi or (Transact i onDefi ni ti on. PROPAGATI ON_REQUI RED) ;

TransactionStatus status = txManager. get Transacti on(def);

try {
/] execute your business |ogic here
}

catch (MyException ex) {
t xManager . rol | back(status);
throw ex;

Spring Framework Version 1.2.9 102

Transaction management

}

t xManager . commi t (st at us);

8.5. Declarative transaction management

Spring also offers declarative transaction management. Thisis enabled by Spring AOP, although, as the
transactional aspects code comes with Spring and may be used in a boilerplate fashion, AOP concepts do not
generally have to be understood to make effective use of this code..

Most Soring users choose declar ative transaction management. It is the option with the least impact on
application code, and hence is most consistent with the ideals of a non-invasive lightweight container.

It may be helpful to begin by considering EJB CMT and explaining the similarities and differences with Spring
declarative transaction management. The basic approach is similar: It's possible to specify transaction behavior
(or lack of it) down to individual methods. It's possible to make aset Rol | backonl y() call within atransaction
context if necessary. The differences are:

e Unlike EIB CMT, which istied to JTA, Spring declarative transaction management works in any
environment. It can work with JDBC, JDO, Hibernate or other transactions under the covers, with
configuration changes only.

« Spring enables declarative transaction management to be applied to any POJO, not just specia classes such
as EJBs.

» Spring offers declarative rollback rules: afeature with no EJB equivalent, which we'll discuss below.
Rollback can be controlled declaratively, not merely programmatically.

* Spring gives you an opportunity to customize transactional behavior, using AOP. For example, if you want
to insert custom behavior in the case of transaction rollback, you can. Y ou can also add arbitrary advice,
aong with the transactional advice. With EJB CMT, you have no way to influence the container's transaction
management other than set Rol | backOnl y() .

» Spring does not support propagation of transaction contexts across remote calls, as do high-end application
servers. If you need this feature, we recommend that you use EJB. However, don't use this feature lightly.
Normally we don't want transactions to span remote calls.

The concept of rollback rulesisimportant: they enable us to specify which exceptions (and throwables) should
cause automatic roll back. We specify this declaratively, in configuration, not in Java code. So, while we can
il call set Rol | backOnl y() ontheTransacti onSt at us object to roll the current transaction back
programmatically, most often we can specify arule that MyAppl i cati onExcept i on should alwaysresult in roll
back. This has the significant advantage that business objects don't need to depend on the transaction
infrastructure. For example, they typically don't need to import any Spring APIs, transaction or other.

While the EJB default behavior isfor the EJB container to automatically roll back the transaction on a system
exception (usually aruntime exception), EJB CMT does not roll back the transaction automatically on an
application exception (checked exception other than j ava. r mi . Renot eExcept i on). While the Spring default
behavior for declarative transaction management follows EJB convention (roll back is automatic only on
unchecked exceptions), it's often useful to customize this.

On our benchmarks, the performance of Spring declarative transaction management exceeds that of EJB CMT.

The usual way of setting up transactional proxying in Spring is viathe the use of

Spring Framework Version 1.2.9 103

Transaction management

Transact i onPr oxyFact or yBean to create the transactional proxy. This factory bean is ssmply a specialized
version of Spring's generic Pr oxyFact or yBean, that, in addition to creating a proxy to wrap atarget object, will
also always automatically create and attach a Tr ansact i onl nt er cept or to that proxy, reducing boilerplate
code. (Note that as with Pr oxyFact or yBean, you may still specify other interceptors or AOP advice to apply via
the proxy).

When using Transact i onPr oxyFact or yBean, you need to first of al specify the target object to wrap in the
transactional proxy, viathet ar get attribute.. The target object is normally a POJO bean definition. Y ou must
also specify areference to the relevant Pl at f or niTr ansact i onManager . Finally, you must specify the
transaction attributes. Transaction attributes contain the definition of what transaction semantics we wish to
use (as discussed above), as well as where they apply. Now let's consider the following sample:

<l-- this exanple is in verbose form see note |ater about concise for nmultiple proxies! -->
<l-- the target bean to wap transactionally -->
<bean i d="pet St oreTar get ">
</ bean>
<bean i d="pet Store" cl ass="org.springframework.transaction.interceptor. Transacti onProxyFact or yBean">
<property name="transacti onManager" ref="txManager"/>
<property name="target" ref="petStoreTarget"/>
<property nanme="transactionAttri butes">
<pr ops>
<prop key="insert*">PROPAGATI ON_REQUI RED, - MyCheckedExcept i on</ pr op>
<prop key="updat e*" >PROPAGATI ON_REQUI RED</ pr op>
<prop key="*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

The transactional proxy will implement the interfaces of the target: in this case, the bean with id
petSoreTarget. (Note that using CGLIB it's possible to transactionally proxy non-interface methods of the
target class as well. Set the "proxyTargetClass' property to true to force this to aways happen, although it will
happen automatically if the target doesn't implement any interfaces. In general, of course, we want to program
to interfaces rather than classes.) It's possible (and usually a good idea) to restrict the transactional proxy to
proxying only specific target interfaces, using the proxyl nterfaces property. It's al'so possible to customize the
behavior of aTransacti onProxyFact or yBean via several properties inherited from

org. spri ngframewor k. aop. f ramewor k. Pr oxyConf i g, and shared with all AOP proxy factories.

The transaction interceptor will ultimately use an object implementating Spring's

Transact i onAt t ri but eSour ce interface to get at the transaction attributes (in the form of

Transacti onAttri but e objects) defining the transaction semantics to be applied to specific methods of specific
classes. The most basic way to specify this Tr ansact i onAt t ri but eSour ce instance when creating the proxy is
for you to create a bean implementing the Tr ansact i onAt t ri but eSour ce interface (Spring has several
implementations), and then directly set thethet ransacti onAt t ri but eSour ce property of the proxy factory
bean to refer to it (or wrap it as an inner bean. Alternately, you may set atext string for this property, and rely
on the fact that the pre-registered (by Spring) Tr ansact i onAtt ri but eSour ceEdi t or Will automatically convert
that text string to a Met hodMapTr ansact i onAt t ri but eSour ce instance.

However, as shown in this example, most users will instead prefer to define the transaction attributes by setting
thetransactionAttri but es property. This property has atype of Java. util. Properti es, which will then
internally be converted to a NanmeMat chTr ansact i onAtt ri but eSour ce oObject.

As can be seen in the above definition, a NameMat chTr ansact i onAt t ri but eSour ce object holds alist of
name/value pairs. The key of each pair is amethod or methods (a* wildcard ending is optional) to apply
transactional semantics to. Note that the method name is not qualified with a package name, but rather is
considered relative to the class of the target object being wrapped. The value portion of the name/value pair is
the Transacti onAt t ri but e itself that needs to be applied. When specifying it asthe Properti es valueasin

Spring Framework Version 1.2.9 104

Transaction management

this example, it'sin String format as defined by Tr ansacti onAtt ri but eEdi t or. Thisformat is:

PROPAGATI ON_NANME, | SOLATI ON_NANME, r eadOnl y, ti meout _NNNN, +Excepti onl, - Excepti on2

Note that the only mandatory portion of the string is the propagation setting. The default transactions semantics
which apply are asfollows:

* Exception Handling: RuntimeExceptions roll-back, normal (checked) Exceptions don’'t

* Transactions are read/write

Isolation Level: TransactionDefinition.| SOLATION_DEFAULT
e Timeout: TransactionDefinition. TIMEOUT DEFAULT

See the JavaDocs for or g. spri ngf ramewor k. t ransact i on. Transact i onDef i ni ti on class for the format
allowed for the propagation setting and isolation level setting. The String format is the same as the Integer
constant names for the same values.

In this example, note that the value for the insert* mapping contains arollback rule. Adding

- MyCheckedExcept i on here specifiesthat if the method throws MyCheckedExcept i on or any subclasses, the
transaction will automatically be rolled back. Multiple rollback rules can be specified here, comma-separated.
A - prefix forces rollback; a+ prefix specifies commit. (This allows commit even on unchecked exceptions, if
you really know what you're doing!)

The Transact i onPr oxyFact or yBean allowsyou to set optional "pre" and "post” advice, for additional
interception behavior, using the "prel nterceptors' and "postinterceptors" properties. Any number of pre and
post advices can be set, and their type may be Advi sor (in which case they can contain a pointcut),

Met hodl nt er cept or OF any advice type supported by the current Spring configuration (such as Thr ows Advi ce,
Af t er Ret ur ni ngt Advi ce Or Bef or eAdvi ce, which are supported by default.) These advices must support a
shared-instance modd. If you need transactional proxying with advanced AOP features such as stateful mixins,
it's normally best to use the generic or g. spri ngf r amewor k. aop. f r amewor k. Pr oxyFact or yBean, rather than the
Transact i onPr oxyFact or yBean convenience proxy creator.

Note: Using TransactionProxyFactoryBean definitions in the form above can seem overly verbose when many
almost identical transaction proxies need to be created. Y ou will amost always want to take advantage of
parent and child bean definitions, along with inner bean definitions, to significantly reduce the verbosity of
your transaction proxy definitions, as described in Section 6.7, “Concise proxy definitions”.

8.5.1. Source Annotations for Transaction Demarcation

XM L-based transaction attribute sources definitions are convenient, and work in any environment, but if you
are willing to commit to a dependency on Java 5+ (JDK 1.5+), you will almost certainly want to consider using
Spring's support for transaction Annotationsin JDK standard format, as the attribute source instead.

Declaring transaction semantics directly in the Java source code puts the declarations much closer to the
affected code, and there is generally not much danger of undue coupling, since typically, code that is deployed
as transactional is always deployed that way.

8.5.1.1. The Transacti onal Annotation

Theorg. spri ngfranmework. transacti on. annot ati on. Transacti onal Annot ati on iSused to indicate that an

Spring Framework Version 1.2.9 105

Transaction management

interface, interface method, class, or class method should have transaction semantics.

@r ansacti onal

public interface O derService {

voi d createOrder(Order order);

Li st queryByCriteria(Order criteria);

Used in bare form, this Annotation specifies that an interface, class, or method must be transactional. Default
transaction semantics are read/write, PROPAGATION_REQUIRED, ISOLATION_DEFAULT,
TIMEOUT _DEFAULT, with rollback on aRunt i meExcept i on, but not Except i on.

Optional properties of the annotation modify transaction settings.

Table 8.1. Properties of the Transact i onal Annotation

Property

propagation

i sol ation

readOnly

rol | backFor

rol | backFor Cl assnane

noRol | backFor

Type
enum: Propagation

enum: Isolation

boolean

array of Class objects, must be
derived from Throwable

array of String class names.
Classes must be derived from
Throwable

array of Class objects, must be
derived from Throwable

Description

optional propagation setting
(defaults to
PROPAGATION_REQUIRED)

optional isolation level (defaultsto
ISOLATION_DEFAULT)

read/write vs. read-only transaction
(defaults to false, or read/write)

optional array of exception classes
which should cause rollback. By
default, checked exceptions do not
roll back, unchecked
(RuntimeException derived) roll
back

optional array of names of
exception classes which should
cause rollback

optional array of exception classes
which should not cause rollback.

noRol | backFor Cl assnane

array of String class names, must

be derived from Throwable

optional array of names of
exception classes which should not
rollback

The annotation may be placed before an interface definition, a method on an interface, a class definition, or a
method on aclass. It may exist on both an element of an interface, and a class which implements that interface.
The most derived location takes precedence when eval uating the transaction semantics of a method.

8.5.1.1.1. Transacti onal annotation examples

Annotating a class definition:

public class O derServicelnpl inplenments O derService {

Spring Framework Version 1.2.9

106

Transaction management

@r ansacti onal
voi d createOrder (O der order);
public List queryByCriteria(Order criteria);

}

In the following example, the interface is annotated for read-only transactions, which will thus be the setting
used for methods by default. The Annotation on the createOrder method overrides this, setting the transaction
to read/write, and specifying that transactions should also (in addition to the defualt rollback rule for

Runt i meExcept i on) rollback when the bupl i cat eOr der | dExcept i on (presumably a non-checked Exception) is
thrown.

@ransactional (readOnl y=true)
interface TestService {

@ransacti onal (readOnl y=f al se,
rol | backFor =Dupl i cat eOr der | dExcepti on. cl ass)
void createOrder (Order order) throws DuplicateOr derl dException ;

Li st queryByCriteria(Order criteria);
}

Note that a class definition which implements this interface may still override these settings on its own class or
method elements.

8.5.1.1.2. Telling Spring to apply the Transacti onal annotation

By itsdlf, adding instances of this annotation to interface or class elements will not result in transactional
wrapping of the implementation clases. Spring must still be told somehow to create transactional proxies
around classes with these annotations.

The key isto take advantage of the

org. springframewor k. t ransacti on. annot ati on. Annot ati onTr ansacti onAttri but eSour ce class, which
reads Annotations format transaction attributes from class files. Taking the previous example which uses
TransactionProxyFactoryBean, the Transact i onAt t ri but es property which specified transaction attributesin
text form is replaced by the direct usage of the Tr ansact i onAt t ri but eSour ce property, specifying an

Annot ati onTr ansacti onAttri but eSour ce.

<bean i d="pet Store" cl ass="org.springframework.transaction.interceptor. Transacti onProxyFact oryBean">
<property name="transacti onManager" ref="txManager"/>
<property name="target" ref="petStoreTarget"/>
<property name="transactionAttri buteSource">
<bean cl ass="org. spri ngframework.transaction. annot ati on. Annot ati onTransacti onAttri buteSource"/>

</ property>
</ bean>

Since the TransactionAttributeSource property does not need to change at all for each proxy instance, when
using parent and child bean definitions to avoid code duplication, the property may just be set on the base,
parent definition and forgotten, there is never a need to override it in the child since the attribute source will
read the right settings from each classfile.

8.5.1.1.3. Using AOP to ensure the Transacti onal annotation is applied

The previous exampleis still more work than would be ideal. Thereisin principle no need for XML for each
proxy (to point to the target bean) when the annotationsin the class files themsel ves can be used as an
indication that a proxy needs to be created for the annotated classes.

A more AOP focused approach allows a small amount of boilerplate XML (used once only, not for each target

Spring Framework Version 1.2.9 107

Transaction management

bean) to automatically ensure that proxies are created for all classes with Transactional annotationsin them.
Spring AOP was fully detailed in a previous chapter, which you should consult for general AOP
documentation, but the key is the use of Def aul t Advi sor Aut oPr oxyCr eat or , @ BeanPost Pr ocessor . Because it
is abean post processor, it gets achance to look at every bean that is created asiit is created. If the bean
containsthe Tr ansact i onal annotation, atransactional proxy is automatically created to wrap it.

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property name="transactionlnterceptor” ref="txlnterceptor"/>
</ bean>

<bean id="txlnterceptor" class="org.springframework.transaction.interceptor. Transactionlnterceptor">
<property nanme="transacti onManager" ref="txManager"/>
<property name="transactionAttri buteSource">
<bean cl ass="org. springframework.transaction. annot ati on. Annot ati onTransacti onAttri buteSource"/>
</ property>
</ bean>

A number of classes are involved here:

e Transactionl nter cept or : the AOP Advice, actually intercepts method call and wraps it with atransaction

* TransactionAttri but eSour ceAdvi sor : AOP Advisor (holds the Transactionlnterceptor, which isthe
advice, and a pointcut (where to apply the advice), in the form of a TransactionAttributeSource)

e AnnotationTransacti onAttri but eSour ce: TransactionAttributeSource implementation which provides
transaction attributes read from class files

e Def aul t Advi sor Aut oPr oxyCr eat or : looks for Advisorsin the context, and automatically creates proxy
objects which are the transactional wrappers

8.5.2. BeanNameAutoProxyCreator, another declarative approach

Transact i onProxyFact or yBean is very useful, and gives you full control when wrapping objects with a
transactional proxy. Used with parent/child bean definitions and inner beans holding the target, and when Java
5 Annotations are not available as an option, it is generally the best choice for transactional wrapping. In the
case that you need to wrap a number of beansin a completely identical fashion (for example, a boilerplate,
'make all methods transactional’, using a BeanFact or yPost Processor called BeanNameAut oPr oxyCr eat or can
offer an alternative approach which can end up being even less verbose for this simplified use case.

To recap, once the ApplicationContext has read its initialization information, it instantiates any beans within it
which implement the BeanPost Processor interface, and gives them a chance to post-process al other beansin
the ApplicationContext. So using this mechanism, a properly configured BeanNaneAut oPr oxyCr eat or can be
used to postprocess any other beans in the ApplicationContext (recognizing them by name), and wrap them
with atransactional proxy. The actual transaction proxy produced is essentially identical to that produced by
the use of Transact i onProxyFact or yBean, So will not be discussed further.

Let us consider a sample configuration:

<beans>

<l-- Transaction Interceptor set up to do PROPAGATI ON REQUI RED on all nethods -->
<bean i d="nmat chAl | Wt hPropReq"
cl ass="org. springfranmework. transaction.interceptor.MtchAl waysTransacti onAttri but eSource">
<property name="transactionAttribute" val ue="PROPAGATI ON_REQUI RED'/ >
</ bean>

Spring Framework Version 1.2.9 108

Transaction management

<bean i d="mat chAl | Txl nterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property nanme="transacti onManager" ref="txManager"/>
<property nanme="transacti onAttributeSource" ref="matchAl | WthPropReq"/>
</ bean>

<! -- One BeanNaneAut oProxyCreator handles all beans where we want all nethods to use
PROPAGAT!I ON_REQUI RED - - >
<bean i d="aut oPr oxyCreat or"
cl ass="org. spri ngf ramewor k. aop. f r amewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property name="inter ceptor Nanes" >
<list>
<idref l|ocal ="matchAll Txl nterceptor"/>
<i dref bean="hi bl nterceptor"/>
</list>
</ property>
<property nanme="beanNanes">
<list>
<idref |ocal ="core-services-applicationControllerSevice"/>
<idref |ocal ="core-services-deviceService"/>
<idref |ocal ="core-services-authenticationService"/>
<idref |ocal ="core-services-packagi ngMessageHandl er"/ >
<idref |ocal ="core-services-sendEmil"/>
<idref |ocal ="core-services-userService"/>
</list>
</ property>
</ bean>

</ beans>

Assuming that we already have aTr ansact i onManager instance in our ApplicationContext, the first thing we
need to do iscreate aTransacti onl nt er cept or instanceto use. The Transact i onl nt er cept or decides which
methods to intercept based on a Tr ansact i onAt t ri but eSour ce implementing object passed to it as a property.
In this case, we want to handle the very simple case of matching all methods. Thisis not necessarily the most
efficient approach, but it's very quick to set up, because we can use the special pre-defined

Mat chAl waysTr ansact i onAt tri but eSour ce, which simply matches all methods. If we wanted to be more
specific, we could use other variants such as Met hodMapTr ansact i onAtt ri but eSour ce,

NaneMat chTransacti onAttri but eSource, OF Attri butesTransacti onAttri buteSource.

Now that we have the transaction interceptor, we simply feed it to a BeanNanmeAut oPr oxyCr eat or instance we
define, along with the names of 6 beans in the ApplicationContext that we want to wrap in an identical fashion.
Asyou can see, the net result is significantly less verbose than it would have been to wrap 6 beans identically
with TransactionProxyFactoryBean. Wrapping a 7th bean would add only one more line of config.

Y ou may notice that we are able to apply multiple interceptors. In this case, we are also applying a
Hi ber nat el nt er cept or We have previously defined (bean id=hiblnterceptor), which will manage Hibernate
Sessions for us.

There is one thing to keep in mind, with regards to bean naming, when switching back and forth between the
use of Transacti onProxyFact or yBean, and BeanNaneAut oPr oxyCr eat or . For the former, if the target bean is
not defined as an inner bean, you normally give the target bean you want to wrap an id similar in form to
myServiceTarget, and then give the proxy object an id of myService; then all users of the wrapped object simply
refer to the proxy, i.e. myService. (These are just sample naming conventions, the point is that the target object
has a different name than the proxy, and both are available from the ApplicationContext). However, when
using BeanNaneAut oPr oxyCr eat or , you hame the target object something like myService. Then, when
BeanNanmeAut oPr oxyCr eat or postprocesses the target object and create the proxy, it causes the proxy to be
inserted into the Application context under the name of the original bean. From that point on, only the proxy
(the wrapped object) is available from the ApplicationContext. When using TransactionProxyFactoryBean with
the target specified as an inner bean, this naming issue is not a concern, since the inner bean is not normally
given aname.

Spring Framework Version 1.2.9 109

Transaction management

8.5.3. AOP and Transactions

As you've seen by reading this chapter, you don't really need to be an AOP expert--or indeed, to know much at
all about AOP--to use Soring's declarative transaction management effectively. However, if you do want to
become a "power user" of Soring AOP, you will find it easy to combine declarative transaction management
with powerful AOP capabilities.

8.6. Choosing between programmatic and declarative
transaction management

Programmatic transaction management is usually a good idea only if you have a small number of transactional
operations. For example, if you have aweb application that require transactions only for certain update
operations, you may not want to set up transactional proxies using Spring or any other technology. Using the
TransactionTemplate may be a good approach.

On the other hand, if your applications has numerous transactional operations, declarative transaction
management is usually worthwhile. It keeps transaction management out of businesslogic, and is not difficult
to configurein Spring. Using Spring, rather than EJB CMT, the configuration cost of declarative transaction
management is greatly reduced.

8.7. Do you need an application server for transaction
management?

Spring's transaction management capabilities--and especially its declarative transaction
management--significantly changes traditional thinking as to when a J2EE application requires an application
server.

In particular, you don't need an application server just to have declarative transactions via EJB. In fact, even if
you have an application server with powerful JTA capabilities, you may well decide that Spring declarative
transactions offer more power and a much more productive programming model than EJB CMT.

Y ou need an application server's JTA capability only if you need to enlist multiple transactional resources.
Many applications don't face this requirement. For example, many high-end applications use asingle, highly
scalable, database such as Oracle 9i RAC.

Of course you may need other application server capabilities such as IMS and JCA. However, if you need only
JTA, you could also consider an open source JTA add-on such as JOTM. (Spring integrates with JOTM out of
the box.) However, as of early 2004, high-end application servers provide more robust support for XA
transactions.

The most important point is that with Spring you can choose when to scale your application up to a full-blown
application server. Gone are the days when the only aternative to using EJB CMT or JTA wasto write coding
using local transactions such as those on JDBC connections, and face a hefty rework if you ever needed that
code to run within global, container-managed transactions. With Spring only configuration needs to change:
your code doesn't.

8.8. AppServer-specific integration

Spring Framework Version 1.2.9 110

Transaction management

Spring's transaction abstraction is generally AppServer agnostic. Additionally, Spring's

JtaTransact i onManager class, which can optionally perform a JINDI lookup for the JTA User Transact i on and
Transact i onManager Objects, can be set to autodetect the location for the latter object, which varies by
AppServer. Having access to the Tr ansact i onManager instance does alow enhanced transaction semantics.
Please seethe Jt aTr ansact i onManager Javadocs for more details.

8.8.1. BEA WebLogic

InaWebLogic 7.0, 8.1 or higher environment, you will generally prefer to use

WebLogi cJt aTransact i onManager instead of the stock Jt aTr ansact i onManager class. This special WebL ogic
specific subclass of the normal Jt aTr ansact i onManager . It supports the full power of Spring's transaction
definitions in a WebL ogic managed transaction environment, beyond standard JTA semantics: features include
transaction names, per-transaction isolation levels, and proper resuming of transactionsin all cases.

Please see the Javadocs for full details.

8.8.2. IBM WebSphere

In aWebSphere 5.1, 5.0 and 4 environment, you may wish to use Spring's

WebSpher eTr ansact i onManager Fact or yBean class. Thisis afactory bean which retrieves the JTA
Transact i onManager in a WebSphere environment, which is done via WebSphere's static access methods.
These methods are different for each version of WebSphere.

Oncethe JTA Transact i onManager instance has been obtained viathis factory bean, Spring's
JtaTransact i onManager may be configured with areference to it, for enhanced transaction semantics over the
use of only the JTA User Transact i on object.

Please see the Javadocs for full details.

8.9. Common problems

8.9.1. Use of the wrong transaction manager for a specific DataSource

Developers should take care to use the correct Pl at f or nilr ansact i onManager implementation for their
reguirements.

It'simportant to understand how the Spring transaction abstraction works with JTA global transactions. Used
properly, there is no conflict here: Spring merely provides a simplifying, portable abstraction.

If you are using global transactions, you must use the Spring

org. springframework. transaction.ta.JtaTransacti onManager for al your for al your transactional
operations. Otherwise Spring will attempt to perform local transactions on resources such as container
DataSources. Such local transactions don't make sense, and a good application server will treat them as errors.

8.9.2. Spurious AppServer warnings about the transaction or DataSource
no longer being active

In some JTA environments with very strict X ADataSource implementations -- currently only some WebL ogic
and WebSphere versions -- when using Hibernate configured without any awareness of the JTA

Spring Framework Version 1.2.9 111

Transaction management

Transact i onManager object for that environment, it isis possible for spurious warning or exceptions to show
up in the application server log. These warnings or exceptions will say something to the effect that the
connection being accessed is no longer valid, or JDBC accessis no longer valid, possibly because the
transaction is no longer active. As an example, hereis an actual exception from WebL ogic:

j ava. sql . SQLException: The transaction is no |onger active - status: 'Conmitted' .
No further JDBC access is allowed within this transaction.

Thiswarning is easy to resolve as described in Section 12.2.10, “ Spurious AppServer warnings about the
transaction or DataSource no longer being active’.

Spring Framework Version 1.2.9 112

Chapter 9. Source Level Metadata Support

9.1. Source-level metadata

Source-level metadata is the addition of attributes or annotations to program elements. usually, classes and/or
methods.

For example, we might add metadata to a class as follows:

[**

* Normal conments
* @rg. springframework. transaction.interceptor. DefaultTransacti onAttribute()
*/

public class PetStorelnpl inplements PetStoreFacade, OrderService {

We could add metadata to a method as follows:

/**
* Normal comments
* @@rg. springframework. transaction.interceptor. Rul eBasedTransacti onAttribute()
* @@rg.springframework. transaction.interceptor. RollbackRul eAttribute(Exception.class)
* @rg.springframework.transaction.interceptor. NoRol | backRul eAttri bute(”Servl et Exception")
*/
public void echoException(Exception ex) throws Exception {

}

Both of these examples use Jakarta Commons Attributes syntax.

Source-level metadata was introduced to the mainstream by XDoclet (in the Javaworld) and by the release of
Microsoft's .NET platform, which uses source-level attributes to control transactions, pooling and other
behavior.

The value in this approach has been recognized in the J2EE community. For example, it's much less verbose
than the traditional XML deployment descriptors exclusively used by EJB. While it is desirable to externalize
some things from program source code, some important enterprise settings--notably transaction
characteristics--arguably belong in program source. Contrary to the assumptions of the EJB spec, it seldom
makes sense to modify the transactional characteristics of a method (although parameters like transaction
timeouts might change!).

Although metadata attributes are typically used mainly by framework infrastructure to describe the services
application classes require, it should also be possible for metadata attributes to be queried at runtime. Thisisa
key distinction from solutions such as XDoclet, which primarily view metadata as away of generating code
such as EJB artefacts.

There are anumber of solutions in this space, including:

« Standard Java Annotations: the standard Java metadata implementation (devel oped as JSR-175 and
available in Java 5. Spring already supports specific Java 5 Annotations for transactional demarcation, and
for IMX. But we need a solution for Java 1.4 and even 1.3 too.

« XDoclet: well-established solution, primarily intended for code generation

Spring Framework Version 1.2.9 113

Source Level Metadata Support

« Various open source attribute implementations, for Java 1.3 and 1.4, of which Commons Attributes
appearsto be the most promising. All these require a special pre- or post-compilation step.

9.2. Spring's metadata support

In keeping with its provision of abstractions over important concepts, Spring provides a facade to metadata
implementations, in the form of the or g. spri ngf r anmewor k. net adat a. Att ri but es interface.

Such a facade adds value for several reasons:

« Java5 provides metadata support at language level, there will still be value in providing such an abstraction:

» Java5 metadatais static. It is associated with a class at compile time, and cannot be changed in a deployed
environment. There is aneed for hierarchical metadata, providing the ability to override certain attribute
values in deployment--for example, in an XML file.

» Java5 metadatais returned through the Javareflection API. This makesit impossible to mock during test
time. Spring provides a simple interface to alow this.

« Therewill be aneed for metadata support in 1.3 and 1.4 applications for at least two years. Spring aims to
provide working solutions now; forcing the use of Java5 is not an option in such an important area.

 Current metadata APIs, such as Commons Attributes (used by Spring 1.0-1.2) are hard to test. Spring
provides a simple metadata interface that is much easier to mock.

The Spring At t ri but es interface looks like this:

public interface Attributes {
Col l ection getAttributes(C ass targetd ass);
Col l ection getAttributes(Cl ass targetC ass, Cass filter);
Col l ection getAttri butes(Method target Met hod) ;
Col l ection getAttributes(Method target Method, Class filter);
Col l ection getAttributes(Field targetField);

Col l ection getAttributes(Field targetField, Cass filter);

Thisis alowest common denominator interface. JSSR-175 offers more capabilities than this, such as attributes
on method arguments. As of Spring 1.0, Spring aims to provide the subset of metadata required to provide
effective declarative enterprise servicesala EJB or .NET, on Java 1.3+. As of Spring 1.2, analogous JSR-175
annotations are supported on JDK 1.5, as direct aternative to Commons Attributes.

Note that thisinterface offers j ect attributes, like .NET. This distinguishesit from attribute systems such as
that of Nanning Aspects and JBoss 4 (as of DR2), which offer only st ri ng attributes. There isasignificant
advantage in supporting oj ect attributes. It enables attributes to participate in class hierarchies and enables
attributes to react intelligently to their configuration parameters.

In most attribute providers, attribute classes will be configured via constructor arguments or JavaBean
properties. Commons Attributes supports both.

Spring Framework Version 1.2.9 114

Source Level Metadata Support

Aswith all Spring abstraction APIs, Attri but es isan interface. This makesit easy to mock attribute
implementations for unit tests.

9.3. Integration with Jakarta Commons Attributes

Presently Spring supports only Jakarta Commons Attributes out of the box, although it is easy to provide
implementations of the or g. spri ngf r amewor k. net adat a. At t ri but es interface for other metadata providers.

Commons Attributes 2.1 (http://jakarta.apache.org/commong/attributes/) is a capabl e attributes solution. It
supports attribute configuration via constructor arguments and JavaBean properties, which offers better
self-documentation in attribute definitions. (Support for JavaBean properties was added at the request of the

Spring team.)
We've already seen two examples of Commons Attributes attributes definitions. In general, we will need to

express:

» The name of the attribute class. This can be an FQN, as shown above. If the relevant attribute class has
aready been imported, the FQN isn't required. It's also possible to specify "attribute packages' in attribute
compiler configuration.

» Any necessary parameterization, via constructor arguments or JavaBean properties

Bean properties ook asfollows:

/**

* @WAttribute(myBool eanJavaBeanPr operty=true)
&/

It's possible to combine constructor arguments and JavaBean properties (as in Spring 10C).

Because, unlike Java 1.5 attributes, Commons Attributes is not integrated with the Javalanguage, it is
necessary to run a special attribute compilation step as part of the build process.

To run Commons Attributes as part of the build process, you will need to do the following.

1. Copy the necessary library Jars to $ANT_HOVE/ | i b. Four Jars are required, and all are distributed with Spring:

» The Commons Attributes compiler Jar and API Jar
» Xjavadoc.jar, from XDoclet
e commons-collections.jar, from Jakarta Commons

2. Import the Commons Attributes ant tasks into your project build script, as follows:

<t askdef resource="org/apache/ cormons/attributes/anttasks. properties"/>

3. Next, define an attribute compilation task, which will use the Commons Attributes attribute-compiler task to
"compile" the attributes in the source. This process results in the generation of additional sources, to alocation
specified by the destdir attribute. Here we show the use of atemporary directory:

Spring Framework Version 1.2.9 115

http://jakarta.apache.org/commons/attributes/

Source Level Metadata Support

<target nanme="conpil eAttri butes">
<attribute-conpiler destdir="${commons. attributes.tenpdir}">
<fileset dir="${src.dir}" includes="**/*_java"/>
</attribute-conpiler>
</target>

The compile target that runs Javac over the sources should depend on this attribute compilation task, and must
also compile the generated sources, which we output to our destination temporary directory. If there are syntax
errorsin your attribute definitions, they will normally be caught by the attribute compiler. However, if the
attribute definitions are syntactically plausible, but specify invalid types or class names, the compilation of the
generated attribute classes may fail. In this case, you can look at the generated classes to establish the cause of
the problem.

Commons Attributes also provides Maven support. Please refer to Commons Attributes documentation for
further information.

While this attribute compilation process may ook complex, in fact it's a one-off cost. Once set up, attribute
compilation isincremental, so it doesn't usually noticeably slow the build process. And once the compilation
processis set up, you may find that use of attributes as described in this chapter can save you alot of timein
other aress.

If you require attribute indexing support (only currently required by Spring for attribute-targeted web
controllers, discussed below), you will need an additional step, which must be performed on a Jar file of your
compiled classes. In this, optional, step, Commons Attributes will create an index of all the attributes defined
on your sources, for efficient lookup at runtime. This step looks as follows:

<attribute-indexer jarFile="myConpiledSources.jar">
<cl asspath refi d="master-cl asspath"/>
</attribute-indexer>

See the /attributes directory of the Spring jPetStore sample application for an example of this build process.
You can take the build script it contains and modify it for your own projects.

If your unit tests depend on attributes, try to express the dependency on the Spring Attributes abstraction, rather
than Commons Attributes. Not only is this more portable--for example, your tests will still work if you switch
to Java 1.5 attributes in future--it simplifies testing. Commons Attributes is a static API, while Spring provides
ametadata interface that you can easily mock.

9.4. Metadata and Spring AOP autoproxying
The most important uses of metadata attributes are in conjunction with Spring AOP. This provides a .NET-like
programming model, where declarative services are automatically provided to application objects that declare

metadata attributes. Such metadata attributes can be supported out of the box by the framework, asin the case
of declarative transaction management, or can be custom.

There iswidely held to be a synergy between AOP and metadata attributes.

9.4.1. Fundamentals

This builds on the Spring AOP autoproxy functionality. Configuration might look like this:

Spring Framework Version 1.2.9 116

Source Level Metadata Support

<bean cl ass="org. spri ngfranmewor k. aop. f ranmewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttri buteSourceAdvi sor">
<property nanme="transactionlnterceptor" ref="txlnterceptor"/>
</ bean>

<bean id="txlnterceptor" class="org.springframework.transaction.interceptor.Transactionlnterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri buteSource">
<bean cl ass="org. springframework.transaction.interceptor.AttributesTransacti onAttributeSource">
<property name="attributes" ref="attributes"/>
</ bean>
</ property>
</ bean>

<bean id="attributes" class="org.springfranmework. netadat a. conmons. ConmonsAttri butes"/>

The basic concepts here should be familiar from the discussion of autoproxying in the AOP chapter.

The most important bean definitions are those the auto-proxy creator and the advisor. Note that the actual bean
names are not important; what mattersistheir class.

The bean definition of class

org. spri ngframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or Will automatically
advise ("auto-proxy") al bean instances in the current factory based on matching Advisor implementations.
This class knows nothing about attributes, but relies on Advisors' pointcuts matching. The pointcuts do know
about attributes.

Thus we smply need an AOP advisor that will provide declarative transaction management based on attributes.

It's possible to add arbitrary custom Advisor implementations as well, and they will also be evaluated and
applied automatically. (Y ou can use Advisors whose pointcuts match on criteria besides attributes in the same
autoproxy configuration, if necessary.)

Finally, theatt ri but es bean is the Commons Attributes Attributes implementation. Replace with another
implementation of or g. spri ngf ramewor k. net adat a. At t ri but es to source attributes from a different source.

9.4.2. Declarative transaction management

The commonest use of source-level attributes it to provide declarative transaction management ala .NET. Once
the bean definitions shown above are in place, you can define any number of application objects requiring
declarative transactions. Only those classes or methods with transaction attributes will be given transaction
advice. Y ou need to do nathing except define the required transaction attributes.

Unlikein .NET, you can specify transaction attributes at either class or method level. Class-level attributes, if
specified, will be "inherited" by all methods. Method attributes will wholly override any class-level attributes.

9.4.3. Pooling

Again, aswith .NET, you can enable pooling behavior via class-level attributes. Spring can apply this behavior
to any POJO. Y ou simply need to specify a pooling attribute, as follows, in the business object to be pooled:

/**

* @rg. springframewor k. aop. f ramewor k. aut opr oxy. t arget . Pool i ngAttri but e(10)
* @ut hor Rod Johnson

*/

public class MO ass {

Spring Framework Version 1.2.9 117

Source Level Metadata Support

You'll need the usual autoproxy infrastructure configuration. Y ou then need to specify a pooling

Tar get Sour ceCr eat or , as follows. Because pooling affects the creation of the target, we can't use aregular
advice. Note that pooling will apply even if there are no advisors applicable to the class, if that classhasa
pooling attribute.

<bean i d="pool i ngTar get Sour ceCr eat or "
cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. net adat a. Attri but esPool i ngTar get Sour ceCr eat or " >
<property name="attributes" ref="attributes"/>

</ bean>

The relevant autoproxy bean definition needs to specify alist of "custom target source creators", including the
Pooling target source creator. We could modify the example shown above to include this property as follows:

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or " >
<property name="cust oniar get Sour ceCreators">
<list>
<ref bean="pool i ngTar get SourceCreator"/>
</list>
</ property>
</ bean>

Aswith the use of metadatain Spring in general, thisis a one-off cost: once setup is out of the way, it's very
easy to use pooling for additional business objects.

It's arguabl e that the need for pooling israre, so there's seldom a need to apply pooling to a large number of
business objects. Hence this feature does not appear to be used often.

Please see the Javadoc for the or g. spri ngf r amewor k. aop. f r amewor k. aut opr oxy package for more details. It's
possibleto use a different pooling implementation than Commons Pool with minimal custom coding.

9.4.4. Custom metadata

We can even go beyond the capabilities of .NET metadata attributes, because of the flexibility of the underlying
autoproxying infrastructure.

We can define custom attributes, to provide any kind of declarative behavior. To do this, you need to:

 Define your custom attribute class

Define a Spring AOP Advisor with a pointcut that fires on the presence of this custom attribute.

Add that Advisor as a bean definition to an application context with the generic autoproxy infrastructurein
place.

Add attributes to your POJOs.

There are several potential areas you might want to do this, such as custom declarative security, or possibly
caching.

Thisis a powerful mechanism which can significantly reduce configuration effort in some projects. However,
remember that it does rely on AOP under the covers. The more Advisors you have in play, the more complex
your runtime configuration will be.

(If you want to see what advice appliesto any object, try casting a reference to
org.springframework.aop.framework.Advised. Thiswill enable you to examine the Advisors.)

Spring Framework Version 1.2.9 118

Source Level Metadata Support

9.5. Using attributes to minimize MVC web tier configuration

The other main use of Spring metadata as of 1.0 isto provide an option to simplify Spring MV C web
configuration.

Spring MV C offers flexible handler mappings: mappings from incoming request to controller (or other handler)

instance. Normally handler mappings are configured in the xxxx- ser vl et . xni file for the relevant Spring
DispatcherServlet.

Holding these mappings in the DispatcherServlet configuration fileis normally A Good Thing. It provides
maximum flexibility. In particular:

» Thecontroller instance is explicitly managed by Spring 10C, through an XML bean definition

« The mapping is external to the controller, so the same controller instance could be given multiple mappings

in the same DispatcherServlet context or reused in a different configuration.

» Spring MV C is able to support mappings based on any criteria, rather than merely the request
URL -to-controller mappings available in most other frameworks.

However, this does mean that for each controller we typically need both a handler mapping (normally in a
handler mapping XML bean definition) and an XML mapping for the controller itself.

Spring offers a simpler approach based on source-level attributes, which is an attractive option in simpler
scenarios.

The approach described in this section is best suited to relatively smple MVC scenarios. It sacrifices some of
the power of Soring MVC, such as the ability to use the same controller with different mappings, and the ability

to base mappings on something other than request URL.

In this approach, controllers are marked with one or more class-level metadata attributes, each specifying one

URL they should be mapped to.

The following examples show the approach. In each case, we have a controller that depends on a business

object of type Cruncher. As usual, this dependency will be resolved by Dependency Injection. The Cruncher
must be available through a bean definition in the relevant DispatcherServiet XML file, or a parent context.

We attach an attribute to the controller class specifying the URL that should map to it. We can express the

dependency through a JavaBean property or a constructor argument. This dependency must be resolvable by

autowiring: that is, there must be exactly one business abject of type Cruncher available in the context.

/**
* Normal comments here
* @ut hor Rod Johnson
* @@rg. springframewor k. web. servl et. handl er. net adat a. Pat hMap("/bar.cgi ")
*/
public class BarController extends AbstractController {

private Cruncher cruncher;

public void setCruncher (Cruncher cruncher) {
thi s. cruncher = cruncher;
}

prot ect ed Mbdel AndVi ew handl eRequest I nt er nal (
Ht t pSer vl et Request request, H tpServl et Response response)
throws Exception {
System out.println("Bar Crunching ¢ and d =" +
cruncher. concatenate("c", "d"));
return new Model AndView "test");

Spring Framework Version 1.2.9

119

Source Level Metadata Support

For this auto-mapping to work, we need to add the following to the relevant xxxx- ser vl et . xm file, specifying
the attributes handler mapping. This special handler mapping can handle any number of controllers with
attributes as shown above. The bean id ("commonsAttributesHandlerMapping”) is not important. The typeis
what matters:

<bean i d="commmonsAttri but esHandl er Mappi ng"
cl ass="org. spri ngfranmewor k. web. servl et. handl er. net adat a. ConmonsPat hMapHandl er Mappi ng"/ >

We do not currently need an Attributes bean definition, asin the above example, because this class works
directly with the Commons Attributes API, not via the Spring metadata abstraction.

We now need no XML configuration for each controller. Controllers are automatically mapped to the specified
URL(s). Controllers benefit from |0C, using Spring's autowiring capability. For example, the dependency
expressed in the "cruncher” bean property of the simple controller shown above is automatically resolved in the
current web application context. Both Setter and Constructor Dependency Injection are available, each with
zero configuration.

An example of Constructor Injection, also showing multiple URL paths:

] **

Nor mal conments here
@ut hor Rod Johnson

@mr g. springframewor k. web. servl et . handl er. met adat a. Pat hMap("/f oo. cgi ")
@r g. spri ngfranewor k. web. servl et . handl er. net adat a. Pat hMap("/ baz. cgi ")

*
*
*
*
*
S
public class FooController extends AbstractController {

private Cruncher cruncher;

public FooController(Cruncher cruncher) {

this.cruncher = cruncher;
}

prot ect ed Model AndVi ew handl eRequest | nt er nal (
Ht t pSer vl et Request request, Ht tpServl et Response response)
throws Exception {
return new Model AndView "test");

This approach has the following benefits:

« Significantly reduced volume of configuration. Each time we add a controller we need add no XML
configuration. As with attribute-driven transaction management, once the basic infrastructure isin place, itis
very easy to add more application classes.

» We retain much of the power of Spring 1oC to configure controllers.

This approach has the following limitations:

« One-off cost in more complex build process. We need an attribute compilation step and an attribute indexing

Spring Framework Version 1.2.9 120

Source Level Metadata Support

step. However, once in place, this should not be an issue.
¢ Currently Commons Attributes only, although support for other attribute providers may be added in future.

» Only "autowiring by type" dependency injection is supported for such controllers. However, this till leaves
them far in advance of Struts Actions (with no 1oC support from the framework) and, arguably, WebWork
Actions (with only rudimentary 10C support) where 1oC is concerned.

* Reliance on automagical 10C resolution may be confusing.

Because autowiring by type means there must be exactly one dependency of the specified type, we need to be
careful if we use AOP. In the common case using TransactionProxyFactoryBean, for example, we end up with
two implementations of a business interface such as Cruncher: the original POJO definition, and the
transactional AOP proxy. Thiswon't work, as the owning application context can't resolve the type dependency
unambiguously. The solution isto use AOP autoproxying, setting up the autoproxy infrastructure so that there
is only one implementation of Cruncher defined, and that implementation is automatically advised. Thus this
approach works well with attribute-targeted declarative services as described above. Asthe attributes
compilation process must be in place to handle the web controller targeting, thisis easy to set up.

Unlike other metadata functionality, there is currently only a Commons Attributes implementation available:
org.springframework.web.servlet.handl er.metadata. CommonsPathM apHandlerM apping. This limitation is due
to the fact that not only do we need attribute compilation, we need attribute indexing: the ability to ask the
attributes API for all classes with the PathMap attribute. Indexing is not currently offered on the

org. spri ngf ramewor k. net adat a. At t ri but es abstraction interface, although it may bein future. (If you want
to add support for another attributes implementation--which must support indexing--you can easily extend the
Abst r act Pat hMapHandl er Mappi ng superclass of CommonsPat hMapHandl er Mappi ng, implementing the two
protected abstract methods to use your preferred attributes API.)

Thus we need two additional stepsin the build process: attribute compilation and attribute indexing. Use of the
attribute indexer task was shown above. Note that Commons Attributes presently requires a Jar file asinput to
indexing.

If you begin with a handler metadata mapping approach, it is possible to switch at any point to a classic Soring
XML mapping approach. So you don't close off this option. For thisreason, | find that | often start a web
application using metadata mapping.

9.6. Other uses of metadata attributes

Other uses of metadata attributes appear to be growing in popularity. As of Spring 1.2, metadata attributes for
JMX exposure are supported, through both Commons Attributes (on JDK 1.3+) and JSR-175 annotations (on
JDK 1.5).

9.7. Adding support for additional metadata APIs

Should you wish to provide support for another metadata API it is easy to do so.

Simply implement the or g. spri ngf r amewor k. et adat a. At t ri but es interface as afacade for your metadata
API. You can then include this object in your bean definitions as shown above.

All framework services that use metadata, such as AOP metadata-driven autoproxying, will then automatically
be able to use your new metadata provider.

Spring Framework Version 1.2.9 121

Chapter 10. DAO support

10.1. Introduction

The DAO (Data Access Object) support in Spring is primarily aimed at making it easy to work with data access
technologies like JDBC, Hibernate or JDO in a standardized way. This allows you to switch between them
fairly easily and it also allows you to code without worrying about catching exceptions that are specific to each
technology.

10.2. Consistent Exception Hierarchy

Spring provides a convenient translation from technology specific exceptions like SQLExcept i on to itsown
exception hierarchy with the Dat aAccessExcept i on asthe root exception. These exceptions wrap the original
exception so there is never any risk that you would lose any information as to what might have gone wrong.

In addition to JDBC exceptions, Spring can also wrap Hibernate exceptions, converting them from proprietary,
checked exceptions, to a set of abstracted runtime exceptions. The sameistrue for JDO exceptions. This allows
you to handle most persistence exceptions, which are non-recoverable, only in the appropriate layers, without
annoying boilerplate catches/throws, and exception declarations. Y ou can still trap and handle exceptions
anywhere you need to. As we mentioned above, JDBC exceptions (including DB specific dialects) are also
converted to the same hierarchy, meaning that you can perform some operations with JIDBC within a consistent
programming model.

The above is true for the Template versions of the ORM access framework. If you use the Interceptor based
classes then the application must care about handling HibernateExceptions and JDOEXxceptions itself,
preferably via delegating to Sessi onFact oryUti | s’ convert Hi ber nat eAccessExcept i on Of

convert JdoAccessExcept i on methods respectively. These methods converts the exceptions to ones that are
compatible with the org.springframework.dao exception hierarchy. As JDOEXxceptions are unchecked, they can
simply get thrown too, sacrificing generic DAO abstraction in terms of exceptions though.

The exception hierarchy that Spring usesis outlined in the following graph:

|D ataficeeszResourceF ailureExceptio n| |l’.,\"?categorfzedDataAccessExcepﬁonl

|CIeanupFaiIureDataAccessExceptionl |DataIntegrihr\fiolationExceptionl

|I nvaIidDataAccessApiUsageExceptionl |Dead|ookLoserD ataAccessExceptionl

|In\ra|idDataAccessResourceUsageExceptionl |DataRetrieualFaiIureExceptionI |ElptimisticLod(ingFaiIuleExceptionl

I i I

l?rco.'rectqbo'ate S‘emanﬁcsDataAccessExce,aﬁonI |Dbjec{R etrie\taIFaiIureExceptionl |Dbject0 ptimisticLackingF ailureExece ptionl

|T3rpeMismatchDataAccessExceptionl

Spring Framework Version 1.2.9 122

DAO support

10.3. Consistent Abstract Classes for DAO Support

To make it easier to work with a variety of data access technologieslike JDBC, JDO and Hibernate in a
consistent way, Spring provides a set of abstract DAO classes that you can extend. These abstract classes has
methods for setting the data source and any other configuration settings that are specific to the technology you
currently are using.

Dao Support classes:

* JdbcDaoSupport - super class for JIDBC data access objects. Requires a DataSource to be set, providing a
JdbcTemplate based on it to subclasses.

* Hi ber nat eDaoSupport - super class for Hibernate data access objects. Requires a SessionFactory to be set,
providing a HibernateTemplate based on it to subclasses. Can alternatively be initialized directly viaa
HibernateTemplate, to reuse the latter's settings like SessionFactory, flush mode, exception trandator, etc.

» JdoDaoSupport - super classfor JDO data access objects. Requires a PersistenceM anagerFactory to be set,
providing a JdoTemplate based on it to subclasses.

Spring Framework Version 1.2.9 123

Chapter 11. Data Access using JDBC

11.1. Introduction

The JDBC abstraction framework provided by Spring consists of four different packages cor e, dat asour ce,
obj ect, and support .

Theorg. spri ngf ramewor k. j dbc. cor e package contains the JdbcTemplate class and its various callback
interfaces, plus avariety of related classes.

Theorg. spri ngf ramewor k. j dbc. dat asour ce package contains a utility class for easy DataSource access, and
various simple DataSource implementations that can be used for testing and running unmodified JDBC code
outside of a J2EE container. The utility class provides static methods to obtain connections from JNDI and to
close connections if necessary. It has support for thread-bound connections, e.g. for use with
DataSourceTransactionM anager.

Next, the or g. spri ngf ramewor k. j dbc. obj ect package contains classes that represent RDBM S queries,
updates, and stored procedures as thread safe, reusable objects. This approach is modeled by JDO, although of
course abjects returned by queries are “disconnected” from the database. This higher level of JDBC abstraction
depends on the lower-level abstraction in the or g. spri ngf r amewor k. j dbc. cor e package.

Finally the or g. spri ngf ramewor k. j dbc. support package is where you find the SQLExcept i on trandation
functionality and some utility classes.

Exceptions thrown during JDBC processing are translated to exceptions defined in the

org. spri ngframewor k. dao package. This meansthat code using the Spring JDBC abstraction layer does not
need to implement JDBC or RDBM S-specific error handling. All translated exceptions are unchecked giving
you the option of catching the exceptions that you can recover from while allowing other exceptions to be
propagated to the caller.

11.2. Using the JDBC Core classes to control basic JDBC
processing and error handling

11.2.1. JdbcTemplate

Thisisthe central classin the JIDBC core package. It simplifies the use of JDBC since it handles the creation
and release of resources. This helps to avoid common errors like forgetting to always close the connection. It
executes the core JIDBC workflow like statement creation and execution, leaving application code to provide
SQL and extract results. This class executes SQL queries, update statements or stored procedure calls, imitating
iteration over ResultSets and extraction of returned parameter values. It also catches JDBC exceptions and
translates them to the generic, more informative, exception hierarchy defined in the or g. spri ngf r amewor k. dao
package.

Code using this class only need to implement callback interfaces, giving them a clearly defined contract. The

Pr epar edSt at enent Cr eat or callback interface creates a prepared statement given a Connection provided by
this class, providing SQL and any necessary parameters. The same istrue for the cal | abl eSt at ement Cr eat or
interface which creates callable statement. The RowCal | backHandl er interface extracts values from each row of
aResultSet.

Spring Framework Version 1.2.9 124

Data Accessusing JDBC

This class can be used within a service implementation via direct instantiation with a DataSource reference, or
get prepared in an application context and given to services as bean reference. Note: The DataSource should
always be configured as a bean in the application context, in the first case given to the service directly, in the
second case to the prepared template. Because this class is parameterizable by the callback interfaces and the
SQL ExceptionTrangator interface, it isn't necessary to subclassit. All SQL issued by this classislogged.

11.2.2. DataSource

In order to work with data from a database, we need to obtain a connection to the database. The way Spring
does thisisthrough a bat aSour ce. A Dat aSour ce is part of the JDBC specification and can be seen asa
generalized connection factory. It allows a container or aframework to hide connection pooling and transaction
management issues from the application code. As a developer, you don't need to know any details about how to
connect to the database, that is the responsibility for the administrator that sets up the datasource. Y ou will most
likely have to fulfill both roles while you are developing and testing you code though, but you will not
necessarily have to know how the production data source is configured.

When using Spring's JDBC layer, you can either obtain a data source from JNDI or you can configure your
own, using an implementation that is provided in the Spring distribution. The latter comes in handy for unit
testing outside of aweb container. We will usethe Dri ver Manager Dat aSour ce implementation for this section
but there are several additional implementations that will be covered later on. The Dri ver Manager Dat aSour ce
works the same way that you probably are used to work when you obtain a JDBC connection. Y ou have to
specify the fully qualified class name of the JDBC driver that you are using so that the Dr i ver Manager can load
the driver class. Then you have to provide a url that varies between JDBC drivers. Y ou have to consult the
documentation for your driver for the correct value to use here. Finally you must provide a username and a
password that will be used to connect to the database. Here is an example of how to configure a

Dri ver Manager Dat aSour ce:

Dri ver Manager Dat aSour ce dat aSource = new Dri ver Manager Dat aSour ce() ;
dat aSour ce. set Dri ver Cl assNanme("org. hsqgl db. j dbcDriver");

dat aSour ce. set Url ("j dbc: hsqgl db: hsqgl : //1 ocal host: ") ;

dat aSour ce. set User nane("sa");

dat aSour ce. set Password("");

11.2.3. SQLExceptionTranslator

SQLExcepti onTransl at or isaninterface to be implemented by classes that can translate between
SQL Exceptions and our data access strategy-agnostic or g. spri ngf r amewor k. dao. Dat aAccessExcept i on.

Implementations can be generic (for example, using SQL State codes for JDBC) or proprietary (for example,
using Oracle error codes) for greater precision.

SQLEr r or CodeSQLExcept i onTransl at or iSthe implementation of SQL ExceptionTrandator that is used by
default. Thisimplementation uses specific vendor codes. More precise than sQLst at e implementation, but
vendor specific. The error code tranglations are based on codes held in a JavaBean type class named

SQLError Codes. Thisclassis created and populated by an SQLEr r or CodesFact or y which as the name suggests
isafactory for creating SQLEr r or Codes based on the contents of a configuration file named
"sgl-error-codes.xml”. Thisfile is popul ated with vendor codes and based on the DatabaseProductName taken
from the DatabaseM etaData, the codes for the current database are used.

The SQLEr r or CodeSQLExcept i onTr ansl at or applies the following matching rules:

< Try custom tranglation implemented by any subclass. Note that this classis concrete and is typically used
itself, in which case this rule doesn't apply.

Spring Framework Version 1.2.9 125

Data Accessusing JDBC

» Apply error code matching. Error codes are obtained from the SQL ErrorCodesFactory by default. Thislooks
up error codes from the classpath and keys into them from the database name from the database metadata.
« Usethefallback translator. SQL StateSQL ExceptionTranglator is the default fallback trandator.

SQLEr r or CodeSQLExcept i onTr ansl at or can be extended the following way:

public class MySQLError CodesTransl at or extends SQLError CodeSQLExcepti onTransl ator {
prot ect ed Dat aAccessException custoniranslate(String task, String sql, SQLException sqlex) {

if (sqlex.getErrorCode() == -12345)
return new Deadl ockLoser Dat aAccessExcepti on(task, sqlex);
return null;

}

In this example the specific error code -12345' is translated and any other errors are simply left to be tranglated
by the default translator implementation. To use this custom trandator, it is necessary to passit to the
JdbcTenpl at e using the method set Except i onTransl at or and to use this JdbcTenpl at e for al of the data
access processing where this trandator is needed. Here is an example of how this custom translator can be used:

// create a JdbcTenplate and set data source

JdbcTenpl ate jt = new JdbcTenpl ate();

j t.set Dat aSour ce(dat aSource) ;

/Il create a customtranslator and set the datasource for the default translation | ookup
MySQLEr r or CodesTransal ator tr = new MySQLError CodesTr ansal ator();

tr. set Dat aSour ce(dat aSour ce) ;

jt.setExceptionTransl ator(tr);

/1 use the JdbcTenplate for this Sql Update

Sgl Updat e su = new Sgl Update();

su. set JdbcTenpl ate(jt);

su. set Sgl ("update orders set shipping_charge = shipping_charge * 1.05");
su. conpi |l e();

su. update();

The custom trandator is passed a data source because we still want the default trandation to look up the error
codesinsgl -error-codes. xni .

11.2.4. Executing Statements

To execute an SQL statement, thereis very little code needed. All you need is a bat aSour ce and a

JdbcTenpl at e. Once you have that, you can use a number of convenience methods that are provided with the
JdbcTenpl at e. Hereis a short example showing what you need to include for aminimal but fully functional
classthat creates a new table.

i nport javax.sql . Dat aSour ce;
i nport org.springfranework. jdbc. core.JdbcTenpl at e;

public class Execut eAStatenent {

private JdbcTenpl ate jt;
private DataSource dataSource;

public void doExecute() {
jt = new JdbcTenpl at e(dat aSour ce) ;
jt.execute("create table nytable (id integer, name varchar(100))");

}

public void set Dat aSour ce(Dat aSour ce dat aSource) {
thi s. dat aSource = dat aSource;

}

11.2.5. Running Queries

In addition to the execute methods, there is alarge number of query methods. Some of these methods are

Spring Framework Version 1.2.9 126

Data Accessusing JDBC

intended to be used for queries that return a single value. Maybe you want to retrieve a count or a specific value
from one row. If that is the case then you can use quer yFor | nt ,quer yFor Long OF quer yFor Obj ect . The latter
will convert the returned JDBC Type to the Java class that is passed in as an argument. If the type conversionis
invalid, then an | nval i dDat aAccessApi UsageExcept i on Will be thrown. Here is an example that contains two
query methods, onefor ani nt and onethat queriesfor astri ng.

i nport javax. sql . Dat aSour ce;
i mport org.springframework.jdbc. core.JdbcTenpl at e;

public class RunAQuery ({

private JdbcTenpl ate jt;
private DataSource dat aSource;

public int getCount() {
jt = new JdbcTenpl at e(dat aSour ce) ;
int count = jt.queryForlnt("select count(*) from nytable");
return count;

}

public String get Nanme() ({
jt = new JdbcTenpl at e(dat aSour ce) ;
String nane = (String) jt.queryForCbject("select name from nytable", String.class);
return name;

}

public void set Dat aSour ce(Dat aSour ce dat aSource) {
thi s. dat aSource = dat aSource;

}

In addition to the single results query methods there are several methods that return a List with an entry for
each row that the query returned. The most generic oneis quer yFor Li st which returnsaLi st where each entry
isanap with each entry in the map representing the column value for that row. If we add a method to the above
exampleto retrieve alist of all the rows, it would look like this:

public List getList() {
jt = new JdbcTenpl at e(dat aSour ce) ;
List rows = jt.queryForList("select * from nytable");
return rows;

Thelist returned would look something like this: [{ nane=Bob, id=1}, {nanme=Mary, id=2}].

11.2.6. Updating the database

There are also anumber of update methods that you can use. | will show an example where we update a column
for acertain primary key. In thisexample | am using an SQL statement that has place holders for row
parameters. Most of the query and update methods have this functionality. The parameter values are passed in
asan array of objects.

i mport j avax. sql . Dat aSour ce;
i mport org.springframework. jdbc. core.JdbcTenpl at e;
public class ExecuteAnUpdate {

private JdbcTenpl ate jt;
private DataSource dataSource;

public void setNane(int id, String nane) {
jt = new JdbcTenpl at e(dat aSour ce) ;
jt.update("update nytable set name = ? where id = ?", new Object[] {name, new Integer(id)});

Spring Framework Version 1.2.9 127

Data Accessusing JDBC

public void setDat aSour ce(Dat aSour ce dat aSource) {
thi s. dat aSour ce = dat aSour ce;

}

11.3. Controlling how we connect to the database

11.3.1. DataSourceUtils

Helper class that provides static methods to obtain connections from JNDI and close connections if necessary.
Has support for thread-bound connections, e.g. for use with Dat aSour ceTr ansact i onManager .

Note: The get Dat aSour ceFr omIndi methods are targeted at applications that do not use a bean factory or
application context. With the latter, it is preferable to preconfigure your beans or even jdbcTenpl at e instances in
the factory: Jndi Qbj ect Fact or yBean can be used to fetch a pat asour ce from JNDI and give the pat asour ce bean
reference to other beans. Switching to another pat asour ce IS just a matter of configuration then: Y ou can even
replace the definition of the Fact or yBean with a non-JNDI pat asour ce!

11.3.2. SmartDataSource

Interface to be implemented by classes that can provide a connection to arelational database. Extends the

j avax. sql . Dat aSour ce interface to allow classes using it to query whether or not the connection should be
closed after a given operation. This can sometimes be useful for efficiency, if we know that we want to reuse a
connection.

11.3.3. AbstractDataSource

Abstract base class for Spring's Dat aSour ce implementations, taking care of the "uninteresting” glue. Thisis
the class you would extend if you are writing your own Dat aSour ce implementation.

11.3.4. SingleConnectionDataSource

Implementation of Smar t Dat aSour ce that wraps a single connection which is not closed after use. Obviousdly,
thisis not multi-threading capable.

If client code will call close in the assumption of a pooled connection, like when using persistence tools, set
suppr essd ose to true. Thiswill return a close-suppressing proxy instead of the physical connection. Be aware
that you will not be able to cast thisto a native Oracle Connection or the like anymore.

Thisis primarily atest class. For example, it enables easy testing of code outside an application server, in
conjunction with asimple INDI environment. In contrast to Dri ver Manager Dat aSour ce, it reuses the same
connection all the time, avoiding excessive creation of physical connections.

11.3.5. DriverManagerDataSource

Implementation of snar t Dat aSour ce that configures a plain old JDBC Driver via bean properties, and returns a
new connection every time.

Spring Framework Version 1.2.9 128

Data Accessusing JDBC

Thisis Potentially useful for test or standalone environments outside of a J2EE container, either asa

Dat aSour ce bean in arespective ApplicationContext, or in conjunction with asimple JNDI environment.
Pool-assuming Connect i on. cl ose() callswill simply close the connection, so any DataSource-aware
persistence code should work. However, using JavaBean style connection pools such as commons-dbcp is so
easy, even in atest environment, that it is almost always preferable to use such a connection pool over

Dri ver Manager Dat aSour ce.

11.3.6. TransactionAwareDataSourceProxy

Thisisaproxy for atarget Dat aSour ce, which wraps that target Dat aSour ce to add awareness of
Spring-managed transactions. In this respect it is similar to atransactional INDI Dat aSour ce as provided by a
J2EE server.

It should almost never be necessary or desireable to use this class, except when existing code exists which must
be called and passed a standard JDBC Dat aSour ce interface implementation. In this casg, it's possible to till
have this code be usable, but participating in Spring managed transactions. It is generally preferable to write
your own new code using the higher level abstractions for resource management, such as JdbcTenpl at e Or

Dat aSourceUti | s.

Seethe Tr ansact i onAwar eDat aSour cePr oxy Javadocs for more details.

11.3.7. DataSourceTransactionManager

PlatformTransactionManager implementation for single JDBC data sources. Binds a JDBC connection from the
specified data source to the thread, potentially allowing for one thread connection per data source.

Application code is required to retrieve the JDBC connection via

Dat aSour ceUti | s. get Connect i on(Dat aSour ce) instead of J2EE's standard Dat aSour ce. get Connect i on. This
is recommended anyway, as it throws unchecked or g. spri ngf ramewor k. dao exceptions instead of checked
SQ.Except i on. All framework classeslike JdbcTenpl at e use this strategy implicitly. If not used with this
transaction manager, the lookup strategy behaves exactly like the common one - it can thus be used in any case.

Supports custom isolation levels, and timeouts that get applied as appropriate JDBC statement query timeouts.
To support the latter, application code must either use JdbcTenpl at e or call
Dat aSour ceUti | s. appl yTransact i onTi meout method for each created statement.

Thisimplementation can be used instead of Jt aTr ansact i onManager in the single resource case, as it does not
require the container to support JTA. Switching between both isjust a matter of configuration, if you stick to
the required connection lookup pattern. Note that JTA does not support custom isolation levels!

11.4. Modeling JDBC operations as Java objects
Theor g. spri ngf ramewor k. j dbc. obj ect package contains the classes that allow you to access the database in
amore object oriented manner. Y ou can execute queries and get the results back as alist containing business

objects with the relational column data mapped to the properties of the business object. Y ou can also execute
stored procedures and run update, delete and insert statements.

11.4.1. SqlQuery

Reusabl e thread safe object to represent an SQL query. Subclasses must implement the newResultReader()

Spring Framework Version 1.2.9 129

Data Accessusing JDBC

method to provide an object that can save the results while iterating over the ResultSet. This classisrarely used
directly since the Mappi ngSgl Query, that extends this class, provides a much more convenient implementation
for mapping rows to Java classes. Other implementations that extend Sql Query are

Mappi ngSql Quer yW t hPar anet er s and Updat abl eSql Query.

11.4.2. MappingSqlQuery

Mappi ngSql Query isareusable query in which concrete subclasses must implement the abstract
mapRow(Resul t Set, i nt) method to convert each row of the JDBC Resul t Set into an object.

Of all the sql Query implementations, thisis the one used most often and it is also the one that isthe easiest to
use.

Hereisabrief example of a custom query that maps the data from the customer table to a Java object called
Customer.

private class Custoner Mappi ngQuery extends Mappi ngSql Query {

publ i ¢ Cust omer Mappi ngQuer y(Dat aSour ce ds) {
super (ds, "SELECT id, name FROM customer WHERE id = ?");
super . decl ar ePar anet er (new Sql Paraneter ("id", Types.|NTEGER));
conpil e();

}

public Onject mapRow ResultSet rs, int rowNunmber) throws SQ.Exception {
Cust omer cust = new Custoner();
cust.setld((Integer) rs.getOoject("id"));
cust.set Name(rs. getString("nanme"));
return cust;

We provide a constructor for this customer query that takes the Dat aSour ce as the only parameter. In this
constructor we call the constructor on the superclass with the Dat aSour ce and the SQL that should be executed
to retrieve the rows for this query. This SQL will be used to create a Pr epar edSt at enent SO it may contain
place holders for any parameters to be passed in during execution. Each parameter must be declared using the
decl ar ePar amet er method passing in an Sql Par anet er . The Sql Par anet er takes a name and the JDBC type as
definedinj ava. sql . Types. After al parameters have been defined we call the conpi | e method so the
statement can be prepared and later be executed.

Let'stake alook at the code where this custom query isinstantiated and executed:

public Customer getCustoner(lnteger id) {
Cust omer Mappi ngQuery custQy = new Cust ormrer Mappi ngQuer y(dat aSour ce) ;
oj ect[] parms = new Cbject[1];
parns[0] = id;
Li st customers = custQy.execute(parmnms);
if (custoners.size() > 0)
return (Custoner) custoners. get(0);
el se
return null;

The method in this example retrieves the customer with the id that is passed in as the only parameter. After
creating an instance of the cust omer Mappi ngQuer y class we create an array of objects that will contain all
parameters that are passed in. In this case there is only one parameter and it is passed in asan | nt eger . Now we
are ready to execute the query using this array of parameters and we get aLi st that contains a cust omer object
for each row that was returned for our query. In this case it will only be one entry if there was a match.

Spring Framework Version 1.2.9 130

Data Accessusing JDBC

11.4.3. SglUpdate

RdbmsOperation subclass representing a SQL update. Like a query, an update object isreusable. Like al
RdbmsOperation objects, an update can have parameters and is defined in SQL.

This class provides a number of update() methods anal ogous to the execute() methods of query objects.

Thisclassis concrete. Although it can be subclassed (for example to add a custom update methaod) it can easily
be parameterized by setting SQL and declaring parameters.

i mport java.sql. Types;
i nport javax.sql . Dat aSour ce;

i mport org.springframework. jdbc. core. Sgl Par anet er;
i mport org.springframework. jdbc. obj ect. Sgl Updat e;

public class UpdateCreditRating extends Sgl Update {

publ i c Updat eCreditRati ng(DataSource ds) {
set Dat aSour ce(ds) ;
set Sgl ("update custoner set credit_rating = ? where id = ?");
decl ar ePar anet er (new Sgl Par anet er (Types. NUMERI)) ;
decl ar ePar anet er (new Sql Par anet er (Types. NUVMERI Q)) ;
conpi l e();
}
/~k~k
* @aramid for the Custonmer to be updated
* @aramrating the new value for credit rating
* @eturn nunber of rows updated
*/
public int run(int id, int rating) {
oj ect[] paranms =
new Cbject[] {
new | nteger(rating),
new | nteger(id)};
return update(parans);

11.4.4. StoredProcedure

Superclass for object abstractions of RDBMS stored procedures. This classis abstract and its execute methods
are protected, preventing use other than through a subclass that offers tighter typing.

Theinherited sgl property is the name of the stored procedure in the RDBMS. Note that JDBC 3.0 introduces
named parameters, although the other features provided by this class are still necessary in JDBC 3.0.

Hereis an example of a program that calls a function sysdate() that comes with any Oracle database. To use the
stored procedure functionality you have to create a class that extends St or edPr ocedur e. There are no input
parameters, but there is an output parameter that is declared as a date using the class Sql cut Par amet er . The
execut e() method returns a map with an entry for each declared output parameter using the parameter name as
the key.

i mport java.sql. Types;

i mport java.util.HashMap;
inmport java.util.lterator;
i mport java.util.Mp;

i mport javax. sql . Dat aSour ce;
i mport org.springframework. jdbc. core. Sql Qut Par anet er ;

i nport org. springfranework. jdbc. dat asource. *;
i nport org. springfranework. jdbc. obj ect. St oredProcedure;

Spring Framework Version 1.2.9 131

Data Accessusing JDBC

public class Test StoredProcedure {

public static void main(String[] args) {
Test StoredProcedure t = new Test St oredProcedure();
t.test();
System out. println("Done!");

}

void test() {
Dri ver Manager Dat aSource ds = new Dri ver Manager Dat aSour ce() ;
ds. setDriverC assNanme("oracl e. jdbc. Oracl eDriver");
ds.set Ul ("jdbc: oracl e:thin: @ocal host: 1521: nydb");
ds. set User nane("scott");
ds. set Password("tiger");

My St or edPr ocedure sproc = new MySt or edPr ocedur e(ds);
Map res = sproc. execute();
print Map(res);

}

private class MyStoredProcedure extends StoredProcedure {
public static final String SQL = "sysdate";

public MyStoredProcedure(DataSource ds) {
set Dat aSour ce(ds) ;
set Function(true);
set Sgl (SQL) ;
decl ar ePar anet er (new Sql Qut Par anet er ("date", Types. DATE));
conpi l e();
}

public Map execute() {
Map out = execute(new HashMap());

return out;
}
}
private static void printMap(Map r) {
Iterator i =r.entrySet().iterator();
while (i.hasNext()) {
Systemout.printin((String) i.next().toString());
}
}

11.4.5. SqglFunction

SQL "function" wrapper for a query that returns a single row of results. The default behavior isto return anint,
but that can be overridden by using the methods with an extra return type parameter. Thisis similar to using the
quer yFor Xxx methods of the JdbcTenpl at e. The advantage with Sql Funct i on isthat you don't have to create
the JdbcTenpl at e, it is done behind the scenes.

Thisclassisintended to use to call SQL functions that return asingle result using a query like "select user()" or
"select sysdate from dual”. It is not intended for calling more complex stored functions or for using a

Cal | abl eSt at enent to invoke a stored procedure or stored function. Use St or edPr ocedur e Or Sql Cal | for this
type of processing.

Thisisaconcrete class, which there is normally no need to subclass. Code using this package can create an
object of thistype, declaring SQL and parameters, and then invoke the appropriate run method repeatedly to
execute the function. Here is an example of retrieving the count of rows from atable:

public int countRows() {
Sgl Function sf = new Sgl Functi on(dataSource, "select count(*) fromnytable");
sf.conpile();
return sf.run();

Spring Framework Version 1.2.9 132

Chapter 12. Data Access using O/R Mappers

12.1. Introduction

Spring provides integration with Hibernate, JDO, Oracle TopLink, Apache OJB and iBATIS SQL Maps: in
terms of resource management, DA O implementation support, and transaction strategies. For example for
Hibernate, thereis first-class support with lots of 10C convenience features, addressing many typical Hibernate
integration issues. All of these support packages for O/R mappers comply with Spring's generic transaction and
DAO exception hierarchies. There are usually two integration styles: either using Spring's DAO 'templates' or
coding DAOs against plain Hibernate/JDO/TopLink/etc APIs. In both cases, DAOs can be configured through
Dependency Injection and participate in Spring's resource and transaction management.

Spring's adds significant support when using the O/R mapping layer of your choice to create data access
applications. First of al, you should know that once you started using Spring's support for O/R mapping, you
don't have to go all the way. No matter to what extent, you're invited to review and leverage the Spring
approach, before deciding to take the effort and risk of building asimilar infrastructure in-house. Much of the
O/R mapping support, no matter what technology you're using may be used in alibrary style, as everything is
designed as a set of reusable JavaBeans. Usage inside an ApplicationContext does provide additional benefits
in terms of ease of configuration and deployment; as such, most examplesin this section show configuration
inside an ApplicationContext.

Some of the the benefits of using Spring to create your O/R mapping DAOs include:

« Ease of testing. Spring'sinversion of control approach makes it easy to swap the implementations and config
locations of Hibernate SessionFactory instances, JDBC DataSources, transaction managers, and mapper
object implementations (if needed). This makes it much easier to isolate and test each piece of
persistence-related code in isolation.

« Common data access exceptions.Spring can wrap exceptions from you O/R mapping tool of choice,
converting them from proprietary (potentially checked) exceptions to a common runtime
DataA ccessException hierarchy. This allows you to handle most persistence exceptions, which are
non-recoverable, only in the appropriate layers, without annoying boilerplate catches/throws, and exception
declarations. Y ou can still trap and handle exceptions anywhere you need to. Remember that JDBC
exceptions (including DB specific dialects) are also converted to the same hierarchy, meaning that you can
perform some operations with JIDBC within a consistent programming model.

« General resource management. Spring application contexts can handle the location and configuration of
Hibernate SessionFactory instances, JDBC DataSources, iBATIS SQL Maps configuration objects, and other
related resources. This makes these values easy to manage and change. Spring offers efficient, easy and safe
handling of persistence resources. For example: Related code using Hibernate generally needs to use the
same Hibernate Session for efficiency and proper transaction handling. Spring makes it easy to transparently
create and bind a Session to the current thread, either by using an explicit 'template’ wrapper class at the Java
code level or by exposing a current Session through the Hibernate SessionFactory (for DAOs based on plain
Hibernate3 API). Thus Spring solves many of the issues that repeatedly arise from typical Hibernate usage,
for any transaction environment (local or JTA).

« |Integrated transaction management. Spring allows you to wrap your O/R mapping code with either a
declarative, AOP style method interceptor, or an explicit 'template’ wrapper class at the Java code level. In
either case, transaction semantics are handled for you, and proper transaction handling (rollback, etc) in case
of exceptionsis taken care of. As discussed below, you also get the benefit of being able to use and swap

Spring Framework Version 1.2.9 133

Data Access using O/R Mappers

various transaction managers, without your Hibernate/JDO related code being affected: for example, between
local transactions and JTA, with the same full services (such as declarative transactions) available in both
scenarios. As an additional benefit, JDBC-related code can fully integrate transactionally with the code you
use to do O/R mapping. Thisis useful for data access that's not suitable for O/R mapping, such as batch
processing or streaming of BLOBS, which still needs to share common transactions with O/R mapping
operations.

» To avoid vendor lock-in, and allow mix-and-match implementation strategies. While Hibernate is powerful,
flexible, open source and free, it still uses a proprietary API. Furthermore one could argue that iBATIS isa
bit lightweight, although it's excellent for use in application that don't require complex O/R mapping
strategies. Given the choice, it's usually desirable to implement major application functionality using
standard or abstracted APIs, in case you need to switch to another implementation for reasons of
functionality, performance, or any other concerns. For example, Spring's abstraction of Hibernate
transactions and exceptions, along with its 10C approach which allows you to easily swap in mapper/DAO
objects implementing data access functionality, makes it easy to isolate all Hibernate-specific code in one
area of your application, without sacrificing any of the power of Hibernate. Higher level service code dealing
with the DAOs has no need to know anything about their implementation. This approach has the additional
benefit of making it easy to intentionally implement data access with a mix-and-match approach (i.e. some
data access performed using Hibernate, and some using JDBC, others using iBATIS) in anon-intrusive
fashion, potentially providing great benefits in terms of continuing to use legacy code or leveraging the
strength of each technology.

The PetClinic sample in the Spring distribution offers alternative DA O implementations and application
context configurations for JIDBC, Hibernate, Oracle TopLink, and Apache OJB. PetClinic can therefore serve
as working sample app that illustrates the use of Hibernate, TopLink and OJB in a Spring web application. It
also leverages declarative transaction demarcation with different transaction strategies.

The JPetStore sample illustrates the use of IBATIS SQL Mapsin a Spring environment. It also features two
web tier versions: one based on Spring Web MV C, one based on Struts.

Beyond the samples shipped with Spring, thereis a variety of Spring-based O/R mapping samples provided by
specific vendors: for example, the JIDO implementations JPOX (http://www.jpox.org) and Kodo
(http://www.solarmetric.com).

12.2. Hibernate

We will start with a coverage of Hibernate (http://www.hibernate.org) in a Spring environment, using it to
demonstrate the approach that Spring takes towards integrating O/R mappers. This section will cover many
issuesin detail and show different variations of DA O implementations and transaction demarcations. Maost of
these patterns can be directly translated to all other supported O/R mapping tools. The following sectionsin this
chapter will then cover the other O/R mappers, showing briefer examples there.

The following discussion focuses on "classic" Hibernate: that is, Hibernate 2.1, which has been supported in
Spring since itsinception. All of this can be applied to Hibernate 3.0 as-is, using the analogous Hibernate 3
support package introduced in Spring 1.2 final: or g. spri ngf r amewor k. or m hi ber nat e3, mirroring

org. spri ngframewor k. or m hi ber nat e with analogous support classes for Hibernate 3. Furthermore, all
referencesto thenet . sf . hi ber nat e package need to be replaced with or g. hi ber nat e, following the root
package change in Hibernate 3. Simply adapt the package names (as used in the examples) accordingly.

12.2.1. Resource management

Spring Framework Version 1.2.9 134

http://www.jpox.org
http://www.solarmetric.com
http://www.hibernate.org

Data Access using O/R Mappers

Typical business applications are often cluttered with repetitive resource management code. Many projects try
to invent their own solutions for this issue, sometimes sacrificing proper handling of failures for programming
convenience. Spring advocates strikingly simple solutions for proper resource handling: Inversion of control via
templating, i.e. infrastructure classes with callback interfaces, or applying AOP interceptors. The infrastructure
cares for proper resource handling, and for appropriate conversion of specific APl exceptions to an unchecked
infrastructure exception hierarchy. Spring introduces a DAO exception hierarchy, applicable to any data access
strategy. For direct JDBC, the JdbcTenpl at e class mentioned in a previous section cares for connection
handling, and for proper conversion of SQLExcept i on t0 the Dat aAccessExcept i on hierarchy, including
tranglation of database-specific SQL error codes to meaningful exception classes. It supports both JTA and
JDBC transactions, via respective Spring transaction managers.

Spring also offers Hibernate and JDO support, consisting of aHi ber nat eTenpl at e / JdoTenpl at e analogous to
JdbcTenpl at e, aHi ber nat el nt er cept or / Jdol nt er cept or , and a Hibernate / JDO transaction manager. The
major goal isto allow for clear application layering, with any data access and transaction technology, and for
loose coupling of application objects. No more business service dependencies on the data access or transaction
strategy, no more hard-coded resource lookups, no more hard-to-replace singletons, no more custom service
registries. One simple and consistent approach to wiring up application objects, keeping them as reusable and
free from container dependencies as possible. All the individual data access features are usable on their own but
integrate nicely with Spring's application context concept, providing XML -based configuration and
cross-referencing of plain JavaBean instances that don't need to be Spring-aware. In atypical Spring app, many
important objects are JavaBeans. data access templates, data access objects (that use the templates), transaction
managers, business services (that use the data access objects and transaction managers), web view resolvers,
web controllers (that use the business services), etc.

12.2.2. SessionFactory setup in a Spring application context

To avoid tying application objects to hard-coded resource lookups, Spring allows you to define resources like a
JDBC DataSource or a Hibernate SessionFactory as beansin an application context. Application objects that
need to access resources just receive references to such pre-defined instances via bean references (the DAO
definition in the next section illustrates this). The following excerpt from an XML application context
definition shows how to set up a JDBC Dat aSour ce and a Hibernate Sessi onFact ory on top of it:

<beans>

<bean i d="nyDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose">
<property name="driverCl assName" val ue="org. hsgl db. j dbcDriver"/>
<property name="url" val ue="j dbc: hsqgl db: hsqgl : / /| ocal host: 9001"/ >
<property name="usernane" val ue="sa"/>
<property name="password" val ue=""/>
</ bean>

<bean i d="nySessi onFactory" class="org.springfranmework.orm hi bernat e. Local Sessi onFact or yBean" >
<property name="dat aSource" ref="myDataSource"/>
<property name="nmappi ngResour ces" >
<list>
<val ue>pr oduct . hbm xm </ val ue>
</list>
</ property>
<property nanme="hi bernat eProperties">
<pr ops>
<prop key="hi bernate. dial ect">net.sf. hibernate.dial ect. MySQLDi al ect </ pr op>
</ props>
</ property>
</ bean>

</ beans>

Note that switching from alocal Jakarta Commons DBCP Basi cDat aSour ce t0 a JINDI-located Dat aSour ce

Spring Framework Version 1.2.9 135

Data Access using O/R Mappers

(usually managed by the J2EE server) isjust a matter of configuration:

<beans>

<bean i d="nyDat aSour ce" cl ass="org. spri ngframework. jndi.Jndi Obj ect Fact or yBean" >
<property name="j ndi Nane" val ue="j ava: conp/ env/j dbc/ nyds"/>
</ bean>

</ beans>

Y ou can also access a JNDI-located Sessi onFact ory, using Spring's Jndi ObjectFactoryBean to retrieve and
exposeit. However, that's typically not necessary outside an EJB context. See the "container resources versus
local resources" section for a discussion.

12.2.3. Inversion of Control: HibernateTemplate and HibernateCallback

The basic programming model for templating looks as follows, for methods that can be part of any custom data
access object or business service. There are no restrictions on the implementation of the surrounding object at
all, it just needs to provide a Hibernate Sessi onFact or y. It can get the latter from anywhere, but preferably as
bean reference from a Spring application context - viaasimple set Sessi onFact ory bean property setter. The
following snippets show a DAO definition in a Spring application context, referencing the above defined

Sessi onFact ory, and an example for aDAO method implementation.

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="sessi onFactory" ref="nySessionFactory"/>
</ bean>

</ beans>

public class Product Daol npl inpl ements ProductDao {
private SessionFactory sessi onFactory;

public void set Sessi onFact ory(Sessi onFactory sessionFactory) {
t hi s. sessi onFactory = sessionFactory;
}

public Collection | oadProductsByCategory(final String category) throws DataAccessException {
Hi ber nat eTenpl ate ht = new Hi bernat eTenpl at e(t hi s. sessi onFactory);
return (Collection) ht.execute(new Hi bernateCallback() {
public Onject dol nHi bernat e(Sessi on session) throws Hi bernateException {
Query query = session. createQuery(
"fromtest.Product product where product.category=?");
query.setString(0, category);
return query.list();

58

A callback implementation can effectively be used for any Hibernate data access. Hi ber nat eTenpl at e Will
ensure that sessi ons are properly opened and closed, and automatically participate in transactions. The
template instances are thread-safe and reusabl e, they can thus be kept as instance variables of the surrounding
class. For simple single step actions like a single find, load, saveOrUpdate, or delete call, Hi ber nat eTenpl at e
offers alternative convenience methods that can replace such one line callback implementations. Furthermore,
Spring provides a convenient Hi ber nat eDaoSupport base class that provides aset Sessi onFact ory method for
receiving a Sessi onFact ory, and get Sessi onFact ory and get Hi ber nat eTenpl at e for use by subclasses. In
combination, this allows for very ssmple DAO implementations for typical requirements:

Spring Framework Version 1.2.9 136

Data Access using O/R Mappers

public class Product Daol npl extends Hi ber nat eDaoSupport i npl enents ProductDao {

public Collection |oadProductsByCategory(String category) throws DataAccessException {
return get H bernat eTenpl ate() . fi nd(
"fromtest.Product product where product.category=?", category);

12.2.4. Implementing Spring-based DAOs without callbacks

As dternative to using Spring's Hi ber nat eTenpl at e to implement DAQOs, data access code can also be written
in amore traditional fashion, without wrapping the Hibernate access code in a callback, while still complying
to Spring's generic Dat aAccessExcept i on hierarchy. Spring's Hi ber nat eDaoSuppor t base class offers methods
to access the current transactional Session and to convert exceptionsin such a scenario; similar methods are
also available as static helpers on the Sessi onFact oryUt i | s class. Note that such code will usually pass "false"
into get Sessi on'sthe "allowCreate" flag, to enforce running within a transaction (which avoids the need to
close the returned Session, asit itslifecycle is managed by the transaction).

public class Product Daol npl extends Hi bernat eDaoSupport inplenments ProductDao {

public Collection |oadProductsByCategory(String category)
throws Dat aAccessException, MyException {

Sessi on sessi on = get Sessi on(get Sessi onFactory(), false);

try {
Li st result = session.find(
"fromtest.Product product where product.category=?",
category, Hibernate. STRING;
if (result == null) {
throw new MyException("invalid search result");
}

return result;

catch (H bernateException ex) {
t hrow convert H ber nat eAccessExcepti on(ex);
}

The major advantage of such direct Hibernate access code isthat it allows any checked application exception to
be thrown within the data access code, while Hi ber nat eTenpl at e is restricted to unchecked exceptions within
the callback. Note that one can often defer the corresponding checks and the throwing of application exceptions
to after the callback, which still allows working with Hi ber nat eTenpl at e. In general, Hi ber nat eTenpl at e's
convenience methods are simpler and more convenient for many scenarios.

12.2.5. Implementing DAOs based on plain Hibernate3 API

Hibernate 3.0.1 introduced a feature called "contextual Sessions', where Hibernate itself manages one current
Session per transaction. Thisisroughly equivalent to Spring's synchronization of one Hibernate Session per
transaction. A corresponding DAO implementation looks like as follows, based on plain Hibernate API:

public class Product Daol npl inplenments ProductDao {
private SessionFactory sessi onFactory;
public void set Sessi onFact ory(Sessi onFactory sessionFactory) {

t hi s. sessi onFactory = sessionFactory;
}

public Collection | oadProductsByCategory(String category) {
return this.sessionFactory. get Current Sessi on()
.createQuery("fromtest.Product product where product.category=?")

Spring Framework Version 1.2.9 137

Data Access using O/R Mappers

. set Paranet er (0, category)
dist();

This Hibernate access style is very similar to what you will find in the Hibernate documentation and examples,
except for holding the sessi onFact ory in an instance variable. We strongly recommend such an instance-based
setup over the old-school static Hi ber nat eUt i | class from Hibernate's CaveatEmptor sample application! (In
general, do not keep any resources in static variables unless absolutely necessary!)

Our DA O above follows the Dependency Injection pattern: It still fits nicely into a Spring application context,
just like it would if coded against Spring's Hi ber nat eTenpl at e. Concretely, it uses Setter Injection; if desired,
it could use Constructor Injection instead. Of course, such a DAO can also be set up in plain Java (for example,
in unit tests): simply instantiate it and call set Sessi onFact ory with the desired factory reference. Asa Spring
bean definition, it would look as follows:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="sessi onFactory" ref="nySessi onFactory"/>
</ bean>

</ beans>

The main advantage of this DAO styleisthat it depends on Hibernate API only; no import of any Spring class
isrequired. Thisis of course appealing from anon-invasiveness perspective, and might feel more natural to
Hibernate devel opers.

However, the DAO throws plain H ber nat eExcept i on (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
Hibernate's own exception hierarchy. Catching specific causes such as an optimistic locking failure is not
possible without tying the caller to the implementation strategy. This tradeoff might be acceptable to
applications that are strongly Hibernate-based and/or do not need any special exception treatment.

A further disadvantage of that DAO styleisthat Hibernate's get Cur r ent Sessi on() feature just works within
JTA transactions. It does not work with any other transaction strategy out-of-the-box, in particular not with
local Hibernate transactions.

Fortunately, Spring's Local Sessi onFact or yBean supports Hibernate's Sessi onFact ory. get Cur r ent Sessi on()
method for any Spring transaction strategy, returning the current Spring-managed transactional Sessi on even
with Hi ber nat eTr ansact i onManager . Of course, the standard behavior of that method remains; returning the
current Sessi on associated with the ongoing JTA transaction, if any (no matter whether driven by Spring's
JtaTr ansact i onManager , by EJB CMT, or by plain JTA).

In summary: DAOs can be implemented based on plain Hibernate3 API, while still being able to participate in
Spring-managed transactions. This might in particular appeal to people already familar with Hibernate, feeling
more hatural to them. However, such DAOs will throw plain Hi ber nat eExcept i on; conversion to Spring's

Dat aAccessExcept i on would have to happen explicitly (if desired).

12.2.6. Programmatic transaction demarcation

On top of such lower-level data access services, transactions can be demarcated in a higher level of the
application, spanning any number of operations. There are no restrictions on the implementation of the
surrounding business service here aswell, it just needs a Spring PI at f or mIr ansact i onManager . Again, the

Spring Framework Version 1.2.9 138

Data Access using O/R Mappers

latter can come from anywhere, but preferably as bean reference viaaset Tr ansact i onManager method - just
like the pr oduct DAO should be set viaaset Product Dao method. The following snippets show atransaction
manager and a business service definition in a Spring application context, and an example for abusiness
method implementation.

<beans>

<bean id="nyTxManager" cl ass="org. springfranmewor k. orm hi ber nat e. H ber nat eTr ansact i onManager " >
<property nanme="sessi onFactory" ref="nySessionFactory"/>
</ bean>

<bean i d="nyProduct Servi ce" cl ass="product. Product Servi cel npl ">
<property name="transacti onManager" ref="nyTxManager"/>
<property name="product Dao" ref="nmyProduct Dao"/>

</ bean>

</ beans>

public class Product Servicel npl inplenents ProductService {

private Pl atfornilransacti onManager transacti onManager;
private ProductDao product Dao;

public void setTransacti onManager (Pl at f or nilr ansact i onManager transacti onManager) {
thi s.transacti onManager = transacti onManager;

}

public void setProduct Dao(Product Dao product Dao) {
t hi s. product Dao = product Dao;
}

public void increasePriceC Al | ProductslnCategory(final String category) {
Transacti onTenpl ate transacti onTenpl ate = new Transacti onTenpl at e(t hi s. transacti onManager) ;
transacti onTenpl at e. execut e(
new TransactionCal | backWt hout Resul t () {
public void dol nTransacti onW t hout Resul t (Transacti onSt atus status) {
Li st product sToChange = product DAO. | oadPr oduct sByCat egor y(cat egory)

12.2.7. Declarative transaction demarcation

Alternatively, one can use Spring's AOP Transactionlnterceptor, replacing the transaction demarcation code
with an interceptor configuration in the application context. This allows you to keep business services free of
repetitive transaction demarcation code in each business method. Furthermore, transaction semantics like
propagation behavior and isolation level can be changed in a configuration file and do not affect the business
service implementations.

<beans>

<bean i d="nyTxManager" cl ass="org. spri ngframework. orm hi ber nat e. H ber nat eTr ansact i onManager " >
<property nanme="sessi onFactory" ref="nySessi onFactory"/>
</ bean>

<bean id="nyTxl nterceptor"
cl ass="org. spri ngfranmework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="nyTxManager"/>
<property name="transactionAttri buteSource">
<val ue>
product . Product Ser vi ce. i ncr easePri ce* =PROPAGATI ON_REQUI RED
product . Product Servi ce. someQ her Busi nessMet hod=PROPAGATI ON_MANDATORY
</val ue>
</ property>

Spring Framework Version 1.2.9 139

Data Access using O/R Mappers

</ bean>

<bean i d="nyProduct Servi ceTarget" class="product. Product Servi cel npl ">
<property name="product Dao" ref="nmyProduct Dao"/>
</ bean>

<bean i d="nyProduct Servi ce" class="org. springfranework. aop. f ranewor k. ProxyFact or yBean" >
<property name="proxylnterfaces">
<val ue>pr oduct . Product Servi ce</ val ue>
</ property>
<property name="inter cept or Nanes" >
<list>
<val ue>nmyTxI nt er cept or </ val ue>
<val ue>nyPr oduct Servi ceTar get </ val ue>
</list>
</ property>
</ bean>

</ beans>

public class Product Servicel npl inplenments Product Service {
private Product Dao product Dao;

public void setProduct Dao(Product Dao product Dao) {
this. product Dao = product Dao;
}

public void increasePriceC All ProductslnCategory(final String category) {
Li st product sToChange = this. product DAQ. | oadPr oduct sByCat egor y(cat egory);

Spring's Tr ansact i onl nt er cept or allows any checked application exception to be thrown with the callback
code, while Tr ansact i onTenpl at e is restricted to unchecked exceptions within the callback.

Transacti onTenpl at e Will trigger arollback in case of an unchecked application exception, or if the
transaction has been marked rollback-only by the application (viaTr ansact i onSt at us).

Transact i onl nt er cept or behaves the same way by default but allows configurable rollback policies per
method. A convenient alternative way of setting up declarative transactionsis Tr ansact i onPr oxyFact or yBean,
particularly if there are no other AOP interceptors involved. Tr ansact i onPr oxyFact or yBean combines the
proxy definition itself with transaction configuration for a particular target bean. This reduces the configuration
effort to one target bean plus one proxy bean. Furthermore, you do not need to specify which interfaces or
classes the transactional methods are defined in.

<beans>

<bean id="nyTxManager" cl ass="org. springfranmewor k. orm hi ber nat e. Hi ber nat eTr ansact i onManager " >
<property nanme="sessi onFactory" ref="nySessionFactory"/>
</ bean>

<bean i d="nyProduct Servi ceTarget" class="product. Product Servi cel npl ">
<property nanme="product Dao" ref="nmyProduct Dao"/>
</ bean>

<bean i d="nyProduct Servi ce"
cl ass="org. spri ngfranmework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager" ref="nyTxManager"/>
<property name="target" ref="nyProduct ServiceTarget"/>
<property name="transactionAttri butes">
<pr ops>
<prop key="increasePrice*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="someQ her Busi nessMet hod" >PROPAGATI ON_REQUI RES_NEW&/ pr op>
<prop key="*">PROPAGATI ON_SUPPORTS, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

Spring Framework Version 1.2.9 140

Data Access using O/R Mappers

</ beans>

12.2.8. Transaction management strategies

Both Transact i onTenpl at e and Tr ansact i onl nt er cept or delegate the actual transaction handling to a

Pl at f or nilr ansact i onManager instance, which can be aH ber nat eTr ansact i onvanager (for asingle
Hibernate SessionFactory, using a ThreadL ocal Session under the hood) or aJt aTr ansact i onManager
(delegating to the JTA subsystem of the container) for Hibernate applications. Y ou could even use a custom

Pl at f or nTr ansact i onManager implementation. So switching from native Hibernate transaction management to
JTA, i.e. when facing distributed transaction regquirements for certain deployments of your application, isjust a
matter of configuration. Simply replace the Hibernate transaction manager with Spring's JTA transaction
implementation. Both transaction demarcation and data access code will work without changes, as they just use
the generic transaction management APIs.

For distributed transactions across multiple Hibernate session factories, simply combine

JtaTransact i onManager as atransaction strategy with multiple Local Sessi onFact or yBean definitions. Each
of your DAOs then gets one specific SessionFactory reference passed into its respective bean property. If all
underlying JDBC data sources are transactional container ones, a business service can demarcate transactions
across any number of DAOs and any number of session factories without special regard, aslong asit isusing
JtaTransact i onManager asthe strategy.

<beans>

<bean i d="nyDat aSour cel" cl ass="org. springframework.jndi.Jndi Object Fact or yBean">
<property name="j ndi Nane val ue="j ava: conp/ env/j dbc/ nmyds1"/>
</ bean>

<bean i d="nyDat aSour ce2" cl ass="org. spri ngframework. jndi.Jndi Obj ect Fact or yBean">
<property name="j ndi Nane" val ue="j ava: conp/ env/j dbc/ nyds2"/ >
</ bean>

<bean i d="nySessi onFactoryl" class="org. springfranework. orm hi bernate. Local Sessi onFact or yBean" >
<property nanme="dat aSour ce" ref="nyDat aSourcel"/>
<property nanme="nappi ngResources" >
<list>
<val ue>pr oduct . hbm xm </ val ue>
</list>
</ property>
<property nanme="hi bernat eProperties">
<pr ops>
<prop key="hi bernate. di al ect">net. sf. hi bernate. dial ect. MySQLDi al ect </ prop>
</ props>
</ property>
</ bean>

<bean i d="nySessi onFactory2" cl ass="org. springfranework. orm hi bernate. Local Sessi onFact or yBean" >
<property nanme="dat aSource" ref="myDat aSource2"/>
<property nanme="mappi ngResour ces">
<list>
<val ue>i nvent ory. hbm xm </ val ue>
</list>
</ property>
<property nanme="hi bernat eProperties">
<pr ops>
<prop key="hi bernate.dial ect">net.sf.hibernate.dial ect. O acl eDi al ect </ prop>
</ props>
</ property>
</ bean>

<bean i d="nyTxManager" cl ass="org. springfranework.transaction.jta.JtaTransacti onManager"/>
<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="sessi onFactory" ref="nySessi onFactoryl"/>

</ bean>

<bean i d="nyl nvent oryDao" cl ass="product. | nventoryDaol npl ">

Spring Framework Version 1.2.9 141

Data Access using O/R Mappers

<property nanme="sessi onFactory" ref="nySessi onFactory2"/>
</ bean>

<bean i d="nyProduct Servi ceTarget" cl ass="product. Product Servicel npl ">
<property name="product Dao" ref="nmyProduct Dao"/>
<property name="inventoryDao" ref="nylnventoryDao"/>

</ bean>

<bean i d="nyProduct Servi ce"
cl ass="org. spri ngfranmework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property nanme="transacti onManager" ref="nyTxManager"/>
<property name="target" ref="nyProduct Servi ceTarget"/>
<property name="transactionAttri butes">
<pr ops>
<prop key="increasePrice*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="someQ her Busi nessMet hod" >PROPAGATI ON_REQUI RES_NEW&/ pr op>
<prop key="*">PROPAGATI ON_SUPPORTS, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

</ beans>

Both Hi ber nat eTr ansact i onManager and Jt aTr ansact i onManager alow for proper JVM-level cache handling
with Hibernate - without container-specific transaction manager lookup or JCA connector (aslong as not using
EJB toinitiate transactions).

Hi ber nat eTr ansact i onManager can export the JDBC Connection used by Hibernate to plain JDBC access
code, for a specific DataSource. This allows for high-level transaction demarcation with mixed
Hibernate/JDBC data access completely without JTA, aslong as just accessing one database!

HibernateT ransactionM anager will automatically expose the Hibernate transaction as JDBC transaction if the
passed-in SessionFactory has been set up with a DataSource (through L ocal SessionFactoryBean's "dataSource”
property). Alternatively, the DataSource that the transactions are supposed to be exposed for can also be
specified explicitly, through HibernateTransactionManager's " dataSource" property.

Note, for an alternative approach to using Tr ansact i onPr oxyFact or yBean to declaratively demarcate
transactions, please see Section 8.5.2, “BeanNameAutoProxyCreator, another declarative approach”.

12.2.9. Container resources versus local resources

Spring's resource management allows for simple switching between a INDI SessionFactory and alocal one,
same for a INDI DataSource, without having to change a single line of application code. Whether to keep the
resource definitionsin the container or locally within the application, is mainly a matter of the transaction
strategy being used. Compared to a Spring-defined local SessionFactory, amanually registered JNDI
SessionFactory does not provide any benefits. Deploying a SessionFactory through Hibernate's JCA connector
provides the added value of participating in the J2EE server's management infrastructure, but does not add
actual value beyond that.

An important benefit of Spring's transaction support isthat it isn't bound to a container at all. Configured to any
other strategy than JTA, it will work in a standalone or test environment too. Especialy for the typical case of
single-database transactions, thisis avery lightweight and powerful alternative to JTA. When using local EJB
Statel ess Session Beans to drive transactions, you depend both on an EJB container and JTA - even if you just
access a single database anyway, and just use SL SBs for declarative transactions viaCMT. The alternative of
using JTA programmatically requires a 2EE environment aswell. JTA does not just involve container
dependenciesin terms of JTA itself and of INDI DataSources. For non-Spring JTA-driven Hibernate
transactions, you have to use the Hibernate JCA connector, or extra Hibernate transaction code with the
TransactionM anagerL ookup being configured - for proper VM-level caching.

Spring-driven transactions can work with alocally defined Hibernate SessionFactory nicely, just like with a

Spring Framework Version 1.2.9 142

Data Access using O/R Mappers

local IDBC DataSource - if accessing a single database, of course. Therefore you just have to fall back to
Spring's JTA transaction strategy when actually facing distributed transaction requirements. Note that a JCA
connector needs container-specific deployment steps, and obviously JCA support in the first place. Thisisfar
more hassle than deploying a simple web app with local resource definitions and Spring-driven transactions.
And you often need the Enterprise Edition of your container, as e.g. WebL ogic Express does not provide JCA.
A Spring app with local resources and transactions spanning one single database will work in any J2EE web
container (without JTA, JCA, or EJB) - like Tomcat, Resin, or even plain Jetty. Additionally, such amiddle tier
can be reused in desktop applications or test suites easily.

All things considered: If you do not use EJB, stick with local SessionFactory setup and Spring's

Hi ber nat eTr ansact i onManager Of Jt aTr ansact i onManager . You will get all benefits including proper
transactional JVM-level caching and distributed transactions, without any container deployment hassle. JNDI
registration of a Hibernate SessionFactory viathe JCA connector only adds value for use within EJBs.

12.2.10. Spurious AppServer warnings about the transaction or DataSource
no longer being active

In some JTA environments with very strict X ADataSource implementations -- currently only some WebL ogic
and WebSphere versions -- when using Hibernate configured without any awareness of the JTA

Transact i onManager object for that environment, it isis possible for spurious warning or exceptions to show
up in the application server log. These warnings or exceptions will say something to the effect that the
connection being accessed is no longer valid, or JDBC accessis ho longer valid, possibly because the
transaction is no longer active. As an example, hereis an actual exception from WebL ogic:

j ava. sql . SQLException: The transaction is no |longer active - status: 'Conmitted' .
No further JDBC access is allowed within this transaction.

Thiswarning is easy to resolve by simply making Hibernate aware of the JTA Tr ansact i onManager instance,
to which it will aso synchronize (along with Spring). This may be done in two ways:

« |If inyour application context you are already directly obtaining the JTA Tr ansact i onManager object
(presumably from JNDI viaJndi Obj ect Fact or yBean) and feeding it for example to Spring's
JtaTransact i onManager , then the easiest way isto simply specify areference to this as the value of
Local Sessi onFact or yBean's jtaTransactionManager property. Spring will then make the object available to
Hibernate.

* Morelikely you do not already have the JTA Transact i onManager instance (since Spring's
JtaTransact i onManager can find it itself) so you need to instead configure Hibernate to also look it up
directly. Thisis done by configuring an AppServer specific Tr ansact i onManager Lookup classin the
Hibernate configuration, as described in the Hibernate manual.

It is not necessary to read any more for proper usage, bu the full sequence of events with and without Hibernate
being aware of the JTA Transact i onvanager Will now be described.

When Hibernate is not configured with any awareness of the JTA Tr ansact i onManager , the sequence of events
when a JTA transaction commitsis as follows:

« JTA transaction commits

e Spring'sJt aTr ansact i onManager iS Synchronized to the JTA transaction, so it is caled back viaan
afterCompletion callback by the JTA transaction manager.

Spring Framework Version 1.2.9 143

Data Access using O/R Mappers

« Among other activities, this can trigger a callback by Spring to Hibernate, via Hibernate's
after Transact i onConpl et i on callback (used to clear the Hibernate cache), followed by an explicit cl ose()
call on the Hibernate Session, which resultsin Hibernate trying to cl ose() the JDBC Connection.

* |n some environments, this Connecti on. cl ose() cal then triggers the warning or error, as the application
server no longer considers the Connection usable at all, since the transaction has already been committed.

When Hibernate is configured with awareness of the JTA Tr ansact i onManager , the sequence of events when a
JTA transaction commitsisinstead as follows:

» JTA transaction is ready to commit

» Spring'sJt aTr ansact i onManager IS Synchronized to the JTA transaction, so it is called back viaa
beforeCompl etion callback by the JTA transaction manager.

» Spring is aware that Hibernate itself is synchronized to the JTA Transaction, and behaves differently than in
the previous senario. Assuming the Hibernate Session needs to be closed at all, Spring will close it now.

* JTA Transaction commits

« Hibernate is synchronized to the JTA transaction, so it is called back via an after Completion callback by the
JTA transaction manager, and can properly clear its cache.

12.3. JDO

Spring supports the standard JDO 1.0/2.0 API as data access strategy, following the same style as the Hibernate
support. The corresponding integration classesreside in the or g. spri ngf r amewor k. or m j do package.

12.3.1. PersistenceManagerFactory setup

Spring provides aLocal Per si st enceManager Fact or yBean class that allows for defining alocal JDO
PersistenceM anagerFactory within a Spring application context:

<beans>

<bean i d="nyPnf" class="org. springfranework.orm jdo.Local Persi st enceManager Fact or yBean" >
<property nanme="configlLocati on" val ue="cl asspat h: kodo. properties"/>
</ bean>

</ beans>

Alternatively, aPer si st enceManager Fact ory can also be set up through direct instantiation of a

Per si st enceManager Fact ory implementation class. A JDO Per si st enceManager Fact ory implementation
classis supposed to follow the JavaBeans pattern, just like a JDBC Dat aSour ce implementation class, which is
anatural fit for a Spring bean definition. This setup style usually supports a Spring-defined JDBC Dat aSour ce,
passed into the "connectionFactory" property. For example, for the open source JDO implementation JPOX
(http://www.jpox.org):

<beans>

<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose" >
<property nanme="driverC assNane" val ue="${j dbc. dri verC assNane}"/>

Spring Framework Version 1.2.9 144

http://www.jpox.org

Data Access using O/R Mappers

<property nanme="url" val ue="${jdbc.url}"/>

<property nanme="usernane" val ue="${j dbc. usernane}"/ >

<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

<bean i d="nyPnf" class="org.] pox. Persi stenceManager Factoryl npl " destroy- nmet hod="cl ose" >
<property nanme="connectionFactory" ref="dataSource"/>
<property nanme="nontransacti onal Read" val ue="true"/>

</ bean>

</ beans>

A JDO Per si st enceManager Fact ory can also be set up in the INDI environment of a J2EE application server,
usually through the JCA connector provided by the particular JDO implementation. Spring's standard

Jndi Qbj ect Fact or yBean can be used to retrieve and expose such a Per si st enceManager Fact ory. However,
outside an EJB context, there is often no compelling benefit in holding the Per si st enceManager Fact ory in
JNDI: only choose such setup for a good reason. See "container resources versus local resources’ in the
Hibernate section for a discussion; the arguments there apply to JDO as well.

12.3.2. JdoTemplate and JdoDaoSupport

Each JDO-based DAO will then receive the Per si st enceManager Fact or y through dependency injection, i.e.
through a bean property setter or through a constructor argument. Such a DAO could be coded against plain
JDO API, working with the given Per si st enceManager Fact or y, but will usualy rather be used with Spring's
JdoTenpl at e:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="persi st enceManager Factory" ref="nyPnf"/>
</ bean>

</ beans>

public class Product Daol npl inpl enments ProductDao {
private PersistenceManager Factory persi stenceManager Factory;

public void setPersistenceManager Fact or y(Persi st enceManager Factory pnf) {
t hi s. persi st enceManager Factory = pnf
}

public Collection | oadProductsByCategory(final String category) throws DataAccessException {
JdoTenpl ate jdoTenpl ate = new JdoTenpl at e(t hi s. persi st enceManager Fact ory);
return (Col |l ection) jdoTenpl ate. execut e(new JdoCal | back() {
public Onject dolnJdo(PersistenceManager pn) throws JDOException {
Query query = pm newQuery(Product.class, "category = pCategory");
qguery. decl areParaneters("String pCategory");
List result = query.execute(category);
// do sone further stuff with the result Iist
return result;

5)s

A callback implementation can effectively be used for any JDO data access. JdoTenpl at e Will ensure that

Per si st enceManager S are properly opened and closed, and automatically participate in transactions. The
template instances are thread-safe and reusabl e, they can thus be kept as instance variables of the surrounding
class. For simple single-step actions such asasinglefi nd, | oad, makePer si st ent, Of del et e cal, JdoTenpl at e

Spring Framework Version 1.2.9 145

Data Access using O/R Mappers

offers alternative convenience methods that can replace such one line callback implementations. Furthermore,
Spring provides a convenient JdoDaoSupport base class that provides aset Per si st enceManager Fact ory
method for receiving a Per si st enceManager Fact or y, and get Per si st enceManager Fact ory and

get JdoTenpl at e for use by subclasses. In combination, this allows for very simple DAO implementations for
typical requirements:

public class Product Daol npl extends JdoDaoSupport inplenents ProductDao {

public Collection | oadProductsByCategory(String category) throws DataAccessException {
return getJdoTenpl ate().find(
Product.cl ass, "category = pCategory", "String category", new Cbject[] {category});

As alternative to working with Spring's JdoTenpl at e, you can also code Spring-based DAOs at the JDO API
level, explictly opening and closing a Per si st enceManager . As elaborated in the corresponding Hibernate
section, the main advantage of this approach isthat your data access code is able to throw checked exceptions.
JdoDaoSupport offersavariety of support methods for this scenario, for fetching and releasing a transactional
Per si st enceManager aswell asfor converting exceptions.

12.3.3. Implementing DAOs based on plain JDO API

DAOs can aso be written against plain JDO API, without any Spring dependencies, directly using an injected
Per si st enceManager Fact ory. A corresponding DA O implementation looks like as follows:

public class Product Daol npl inpl enents ProductDao {
private PersistenceManager Factory persistenceManager Factory;

public void setPersistenceManager Fact ory(Persi st enceManager Factory pnf) {
t hi s. persi st enceManager Factory = pnf;
}

public Collection | oadProductsByCategory(String category) {
Per si st enceManager pm = thi s. persi st enceManager Fact ory. get Per si st enceManager () ;

try {
Query query = pm newQuery(Product.class, "category = pCategory");
query. decl areParaneters("String pCategory");
return query. execute(category);

}
finally {
pm cl ose();

}

Asthe above DAO still follows the Dependency Injection pattern, it still fits nicely into a Spring application
context, just like it would if coded against Spring's JdoTenpl at e:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="persi st enceManager Factory" ref="nyPnf"/>
</ bean>

</ beans>

The main issue with such DAOsis that they always get a new Per si st enceManager from the factory. To till
access a Spring-managed transactional Per si st enceManager , consider defining a
Transact i onAwar ePer si st enceManager Fact or yPr oxy (asincluded in Spring) in front of your target

Spring Framework Version 1.2.9 146

Data Access using O/R Mappers

Per si st enceManager Fact ory, passing the proxy into your DAOs.

<beans>

<bean i d="nyPnf Pr oxy"
cl ass="org. spri ngfranmewor k. orm jdo. Transact i onAwar ePer si st enceManager Fact or yPr oxy" >
<property name="t ar get Persi st enceManager Fact ory" ref="nmyPnf"/>
</ bean>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="persi st enceManager Factory" ref="nyPnfProxy"/>
</ bean>

</ beans>

Y our data access code will then receive atransactional Per si st enceManager (if any) from the

Per si st enceManager Fact ory. get Per si st enceManager () method that it calls. The latter method call goes
through the proxy, which will first check for a current transactional Per si st enceManager before getting a new
one from the factory. cl ose calls on the Per si st enceManager Will beignored in case of atransaction

Per si st enceManager .

If your data access code will always run within an active transaction (or at least within active transaction
synchronization), it is safe to omit the Per si st enceManager . cl ose() call and thusthe entirefi nal I y block,
which you might prefer to keep your DAO implementations concise:

public class Product Daol npl inplements Product Dao {
private PersistenceManager Factory persi stenceManager Fact ory;

public void setPersistenceManager Fact ory(Persi st enceManager Factory pnf) {
t hi s. persi st enceManager Factory = pnf;

}

public Collection | oadProductsByCategory(String category) {
Per si st enceManager pm = thi s. persi st enceManager Fact ory. get Per si st enceManager () ;
Query query = pm newQuery(Product.class, "category = pCategory");
query. decl areParaneters("String pCategory");
return query. execute(category);

With such DAOs that rely on active transactions, it is recommended to enforce active transactions through
turning Tr ansact i onAwar ePer si st enceManager Fact or yPr oxy's "alowCreate" flag off:

<beans>

<bean i d="nyPnf Proxy"
cl ass="org. spri ngframewor k. orm jdo. Transact i onAwar ePer si st enceManager Fact or yPr oxy" >
<property name="t ar get Persi st enceManager Fact ory" ref="nyPnf"/>
<property name="al | owCreate" val ue="fal se"/>
</ bean>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="persi st enceManager Fact ory" ref="nyPnf Proxy"/>
</ bean>

</ 'bé'ans>
The main advantage of this DAO styleisthat it depends on JDO API only; no import of any Spring classis

required. Thisis of course appealing from a non-invasiveness perspective, and might feel more natural to JDO
developers.

Spring Framework Version 1.2.9 147

Data Access using O/R Mappers

However, the DAO throws plain JDCExcept i on (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
JDO's own exception structure. Catching specific causes such as an optimistic locking failure is not possible
without tying the caller to the implementation strategy. This tradeoff might be acceptable to applications that
are strongly JDO-based and/or do not need any specia exception treatment.

In summary: DAOs can be implemented based on plain JDO API, while still being able to participate in
Spring-managed transactions. This might in particular appeal to people already familar with JDO, feeling more
natural to them. However, such DAOs will throw plain JDCExcept i on; conversion to Spring's

Dat aAccessExcept i on would have to happen explicitly (if desired).

12.3.4. Transaction management

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example, you could define aTr ansact i onPr oxyFact or yBean for a ProductService, which in turn
delegates to the JDO-based ProductDao. Each specified method would then automatically get executed within a
transaction, with all affected DAO operations automatically participating in it.

<beans>

<bean i d="nyTxManager" cl ass="org. spri ngfranework. orm jdo.JdoTransacti onManager" >
<property nanme="persi st enceManager Factory" ref="nyPnf"/>
</ bean>

<bean i d="nyProduct Servi ceTarget" class="product. Product Servicel npl ">
<property nanme="product Dao" ref="nyProduct Dao"/>
</ bean>

<bean i d="nyProduct Servi ce"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager" ref="nyTxManager"/>
<property name="target" ref="nyProduct ServiceTarget"/>
<property name="transactionAttri butes">
<pr ops>
<prop key="increasePrice*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="someQt her Busi nessMet hod" >PROPAGATI ON_REQUI RES_NEW/ pr op>
<prop key="*">PROPAGATI ON_SUPPORTS, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

</ beans>

Note that JDO requires an active transaction when modifying a persistent object. Thereis no concept likea
non-transactional flushin JDO, in contrast to Hibernate. For this reason, the chosen JDO implementation needs
to be set up for a specific environment: in particular, it needsto be explicitly set up for JTA synchronization, to
detect an active JTA transaction itself. Thisis not necessary for local transactions as performed by Spring's
JdoTransact i onManager , but it is necessary for participating in JTA transactions (whether driven by Spring's
JtaTransact i onManager or by EJB CMT / plain JTA).

JdoTransact i onManager is capable of exposing a JDO transaction to JDBC access code that accesses the same
JDBC Dat aSour ce, provided that the registered JdoDi al ect supports retrieval of the underlying JDBC
Connecti on. Thisis by default the case for JIDBC-based JDO 2.0 implementations; for JDO 1.0
implementations, a custom JdoDi al ect needs to be used. See next section for details on the JdoDi al ect
mechanism.

12.3.5. JdoDialect

Spring Framework Version 1.2.9 148

Data Access using O/R Mappers

As an advanced feature, both JdoTenpl at e and JdoTr ansact i onManager support a custom JdoDi al ect , to be
passed into the "jdoDialect" bean property. In such a scenario, the DAOs won't receive a

Per si st enceManager Fact or y reference but rather afull JdoTenpl at e instance instead (for example, passed
into JdoDaoSupport 's "jdoTemplate" property). A JdobDi al ect implementation can enable some advanced
features supported by Spring, usually in a vendor-specific manner:

* applying specific transaction semantics (such as custom isolation level or transaction timeout)
* retrieving the transactional JDBC Connect i on (for exposure to JDBC-based DAQOS)
 applying query timeouts (automatically calculated from Spring-managed transaction timeout)

 eagerly flushing aper si st enceManager (t0 make transactional changes visible to JDBC-based data access
code)

« advanced trangation of JDOExcept i ons t0 Spring Dat aAccessExcept i ons

Thisis particularly valuable for JDO 1.0 implementations, where none of those features are covered by the
standard API. On JDO 2.0, most of those features are supported in a standard manner: Hence, Spring's

Def aul t JdoDi al ect uses the corresponding JDO 2.0 APl methods by default (as of Spring 1.2). For specia
transaction semantics and for advanced translation of exception, it is still valuable to derive vendor-specific
JdoDi al ect subclasses.

Seethe Jdobi al ect javadoc for more details on its operations and how they are used within Spring's JDO
support.

12.4. Oracle TopLink

Since Spring 1.2, Spring supports Oracle TopLink (http://www.oracle.com/technol ogy/products/ias/toplink) as
data access strategy, following the same style as the Hibernate support. Both TopLink 9.0.4 (the production
version as of Spring 1.2) and 10.1.3 (still in beta as of Spring 1.2) are supported. The corresponding integration
classesresidein theor g. spri ngf ramewor k. orm t opl i nk package.

Spring's TopLink support has been co-devel oped with the Oracle TopLink team. Many thanks to the TopLink
team, in particular to Jim Clark who helped to clarify detailsin all areas!

12.4.1. SessionFactory abstraction

TopLink itself does not ship with a SessionFactory abstraction. Instead, multi-threaded access is based on the
concept of a central Ser ver Sessi on, which in turnisableto spawn c i ent Sessi onsfor single-threaded usage.
For flexible setup options, Spring defines a Sessi onFact or y abstraction for TopLink, enabling to switch
between different Sessi on creation strategies.

As aone-stop shop, Spring provides aLocal Sessi onFact or yBean class that allows for defining a TopLink
Sessi onFact or y with bean-style configuration. It needs to be configured with the location of the TopLink
session configuration file, and usually also receives a Spring-managed JDBC Dat aSour ce t0 Use.

<beans>

<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- nmet hod="cl ose" >
<property nanme="driverd assNane" val ue="${j dbc. dri verC assNane}"/>
<property name="url" value="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernnane}"/>

Spring Framework Version 1.2.9 149

http://www.oracle.com/technology/products/ias/toplink

Data Access using O/R Mappers

<property name="password" val ue="${j dbc. password}"/>
</ bean>

<bean i d="nySessi onFactory" class="org.springfranework.ormtoplink.Local Sessi onFact or yBean" >
<property nanme="configlLocati on" val ue="toplink-sessions. xm"/>
<property nanme="dat aSource" ref="dataSource"/>

</ bean>

</ beans>

<t opl i nk- confi gurati on>

<sessi on>
<nane>Sessi on</ nane>
<proj ect - xm >t opl i nk- mappi ngs. xm </ pr oj ect - xm >
<sessi on-type>
<server-sessi on/ >
</ sessi on-type>
<enabl e- | oggi ng>t r ue</ enabl e- | oggi ng>
<l oggi ng- opti ons/ >
</ sessi on>

</toplink-configuration>

Usually, Local Sessi onFact or yBean Will hold a multi-threaded TopLink Ser ver Sessi on underneath and create
appropriate client sessi onsfor it: either aplain Sessi on (typical), amanaged d i ent Sessi on, Or a
transaction-aware Sessi on (the latter are mainly used internally by Spring's TopLink support). It might also
hold asingle-threaded TopLink Dat abaseSessi on; thisis rather unusual, though.

12.4.2. TopLinkTemplate and TopLinkDaoSupport

Each TopLink-based DAO will then receive the Sessi onFact or y through dependency injection, i.e. through a
bean property setter or through a constructor argument. Such a DA O could be coded against plain TopLink
API, fetching a sessi on from the given Sessi onFact or y, but will usually rather be used with Spring's

TopLi nkTenpl at e:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="sessi onFactory" ref="nySessi onFactory"/>
</ bean>

</ beans>

public class Product Daol npl inplenments ProductDao {
private SessionFactory sessionFactory;

public void set Sessi onFact ory(Sessi onFactory sessi onFactory) {
t hi s. sessi onFactory = sessionFactory;

}

public Collection | oadProductsByCategory(final String category) throws DataAccessException {
TopLi nkTenpl ate tl Tenpl ate = new TopLi nkTenpl at e(t hi s. sessi onFactory);
return (Collection) tlTenpl ate. execut e(new TopLi nkCal | back() {
public Object dol nTopLi nk(Sessi on session) throws TopLi nkException {
ReadAl | Query findOwnersQuery = new ReadAl | Query(Product. cl ass);
fi ndOamner sQuery. addAr gunent (" Cat egory");
Expr essi onBui | der buil der = this.findOwmersQuery. get Expressi onBuil der();
findOmersQuery. set Sel ectionCriteria(
bui | der. get ("category").like(buil der. get Paraneter("Category")));

Vector args = new Vector();
ar gs. add(cat egory);

Spring Framework Version 1.2.9 150

Data Access using O/R Mappers

List result = session. execut eQuery(findOmersQuery, args);
/1 do some further stuff with the result |ist
return result;

});

A callback implementation can effectively be used for any TopLink data access. TopLi nkTenpl at e will ensure
that Sessi ons are properly opened and closed, and automatically participate in transactions. The template
instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class. For
simple single-step actions such asasingle execut eQuery, readAl | , readBy! d, Of ner ge call, JdoTenpl at e
offers aternative convenience methods that can replace such one line callback implementations. Furthermore,
Spring provides a convenient TopLi nkDaoSuppor t base class that provides aset Sessi onFact ory method for
receiving a Sessi onFact ory, and get Sessi onFact ory and get TopLi nkTenpl at e for use by subclasses. In
combination, this allows for ssimple DAO implementations for typical requirements:

public class Product Daol npl ext ends TopLi nkDaoSupport i nplenents ProductDao {

public Collection | oadProductsByCategory(String category) throws DataAccessException {
ReadAl | Query findOwnersQuery = new ReadAl | Query(Product. cl ass);
fi ndOamner sQuery. addAr gunent (" Cat egory");
Expr essi onBui | der buil der = this.findOwersQuery. get Expressi onBui | der () ;
fi ndOmersQuery. set Sel ectionCriteria(
bui | der. get ("category").like(buil der. get Paraneter("Category")));

return get TopLi nkTenpl at e() . execut eQuery(fi ndOmersQuery, new Cbject[] {category});

Side note: TopLink query objects are thread-safe and can be cached within the DAQ, i.e. created on startup and
kept in instance variables.

As alternative to working with Spring's TopLi nkTenpl at e, you can also code your TopLink data access based
ontheraw TopLink API, explictly opening and closing a Sessi on. As elaborated in the corresponding
Hibernate section, the main advantage of this approach is that your data access code is able to throw checked
exceptions. TopLi nkDaoSupport offers avariety of support methods for this scenario, for fetching and releasing
atransactional Sessi on aswell asfor converting exceptions.

12.4.3. Implementing DAOs based on plain TopLink API

DAOs can aso be written against plain TopLink API, without any Spring dependencies, directly using an
injected TopLink Sessi on. The latter will usually be based on aSessi onFact ory defined by a

Local Sessi onFact or yBean, exposed for bean references of type Sessi on through Spring's

Transact i onAwar eSessi onAdapt er .

Theget Acti veSessi on() method defined on TopLink's Sessi on interface will return the current transactional
Sessi on in such ascenario. If thereis no active transaction, it will return the shared TopLink Ser ver Sessi on
as-is, which is only supposed to be used directly for read-only access. Thereis also an analogous

get Act i veUni t OF Wor k() method, returning the TopLink uni t O Wer k associated with the current transaction, if
any (returning null else).

A corresponding DAO implementation looks like as follows:

public class ProductDaol npl i nplenments ProductDao {

private Session session;

Spring Framework Version 1.2.9 151

Data Access using O/R Mappers

public void set Sessi on(Session session) {
thi s. session = session;
}

public Collection | oadProductsByCategory(String category) {
ReadAl | Query findOwnersQuery = new ReadAl | Query(Product.cl ass);
fi ndOmer sQuery. addAr gunent (" Cat egory") ;
Expr essi onBui | der builder = this.findOwersQuery. get Expressi onBui |l der () ;
fi ndOmer sQuery. set Sel ectionCriteria(
bui | der. get ("category”).|like(buil der. getParaneter("Category")));

Vector args = new Vector();
ar gs. add(cat egory);
return session. get Acti veSession().execut eQuery(findOwersQuery, args);

Asthe above DAO still follows the Dependency Injection pattern, it still fits nicely into a Spring application
context, analogous to like it would if coded against Spring's TopLi nkTenpl at e. Spring's

Transact i onAwar eSessi onAdapt er iSused to expose a bean reference of type Sessi on, to be passed into the
DAO:

<beans>

<bean i d="nySessi onAdapt er"
cl ass="org. springframewor k. orm toplink. support. Transacti onAwar eSessi onAdapt er " >
<property name="sessi onFactory" ref="mnmySessionFactory"/>
</ bean>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="session" ref="nySessi onAdapter"/>
</ bean>

</ beans>

The main advantage of this DAO styleisthat it depends on TopLink API only; no import of any Spring classis
required. Thisis of course appealing from a non-invasiveness perspective, and might feel more natural to
TopLink devel opers.

However, the DAO throws plain TopLi nkExcept i on (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
TopLink's own exception structure. Catching specific causes such as an optimistic locking failure is not
possible without tying the caller to the implementation strategy. This tradeoff might be acceptable to
applications that are strongly TopLink-based and/or do not need any special exception treatment.

A further disadvantage of that DAO styleisthat TopLink's standard get Act i veSessi on() feature just works
within JTA transactions. It does not work with any other transaction strategy out-of-the-box, in particular not
with local TopLink transactions.

Fortunately, Spring's Tr ansact i onAwar eSessi onAdapt er €Xposes a corresponding proxy for the TopLink

Ser ver Sessi on Which supports TopLink's Sessi on. get Act i veSessi on() and

Sessi on. get Act i veUni t Of Wor k() methods for any Spring transaction strategy, returning the current
Spring-managed transactional Sessi on even with TopLi nkTr ansact i onManager . Of course, the standard
behavior of that method remains: returning the current Sessi on associated with the ongoing JTA transaction, if
any (no matter whether driven by Spring's Jt aTr ansact i onManager , by EJB CMT, or by plain JTA).

In summary: DAQOs can be implemented based on plain TopLink API, while still being able to participate in
Spring-managed transactions. This might in particular appeal to people already familar with TopLink, feeling
more natural to them. However, such DAOs will throw plain TopLi nkExcept i on; conversion to Spring's

Spring Framework Version 1.2.9 152

Data Access using O/R Mappers

Dat aAccessExcept i on would have to happen explicitly (if desired).

12.4.4. Transaction management

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example, you could define a Tr ansact i onPr oxyFact or yBean for a ProductService, which in turn
delegates to the TopLink-based ProductDao. Each specified method would then automatically get executed
within atransaction, with all affected DAO operations automatically participating in it.

<beans>

<bean id="nyTxManager" cl ass="org. springfranmework. orm toplink. TopLi nkTransacti onManager" >
<property nanme="sessi onFactory" ref="nySessionFactory"/>
</ bean>

<bean i d="nyProduct Servi ceTarget" class="product. Product Servi cel npl ">
<property nanme="product Dao" ref="nyProduct Dao"/>
</ bean>

<bean i d="nyProduct Servi ce"
cl ass="org. spri ngfranmework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager" ref="nyTxManager"/>
<property name="target" ref="nyProduct ServiceTarget"/>
<property nanme="transactionAttri butes">
<pr ops>
<prop key="increasePrice*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="someQ her Busi nessMet hod" >PROPAGATI ON_REQUI RES_NEW&/ pr op>
<prop key="*">PROPAGATI ON_SUPPORTS, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

</ beans>

Note that TopLink requires an active uni t & Wwor k for modifying a persistent object. (Y ou should never modify
objects returned by aplain TopLink Sessi on - those are usually read-only objects, directly taken from the
second-level cache!) Thereis no concept like a non-transactional flush in TopLink, in contrast to Hibernate. For
this reason, TopLink needs to be set up for a specific environment: in particular, it needs to be explicitly set up
for JTA synchronization, to detect an active JTA transaction itself and expose a corresponding active Sessi on
and uni t O Wor k. Thisis not hecessary for local transactions as performed by Spring's

TopLi nkTr ansact i onManager , but it is necessary for participating in JTA transactions (whether driven by
Spring's Jt aTr ansact i onManager or by EJB CMT / plain JTA).

Within your TopLink-based DAO code, use the Sessi on. get Act i veUni t Of Wor k() method to access the
current Uni t of Wor k and perform write operations through it. Thiswill only work within an active transaction
(both within Spring-managed transactions and plain JTA transactions). For special needs, you can also acquire
separate Uni t Of Wor k instances that won't participate in the current transaction; thisis hardly needed, though.

TopLi nkTr ansact i onManager iS capable of exposing a TopLink transaction to JDBC access code that accesses
the same JDBC Dat aSour ce, provided that TopLink works with JDBC in the backend and is thus able to expose
the underlying JDBC Connect i on. The Dat aSour ce t0 expose the transactions for needs to be specified
explicitly; it won't be autodetected.

12.5. Apache OJB

Apache OJB (http://db.apache.org/ojb) offers multiple API levels, such as ODMG and JDO. Aside from
supporting OJB through JDO, Spring also supports OJB's lowe-level PersistenceBroker API as data access

Spring Framework Version 1.2.9 153

http://db.apache.org/ojb

Data Access using O/R Mappers

strategy. The corresponding integration classesresidein the or g. spri ngf r amewor k. or m oj b package.

12.5.1. OJB setup in a Spring environment

In contrast to Hibernate or JDO, OJB does not follow afactory object pattern for its resources. Instead, an OJB
PersistenceBroker has to be obtained from the static PersistenceBrokerFactory class. That factory initializes
itself from an OJB.propertiesfile, residing in the root of the class path.

In addition to supporting OJB's default initialization style, Spring also provides a Local OjbConfigurer class
that allows for using Spring-managed Dat aSour ce instances as OJB connection providers. The Dat aSour ce

instances are referenced in the OJB repository descriptor (the mapping file), through the "jcd-alias” defined

there: each such alias is matched against the Spring-managed bean of the same name.

<beans>
<bean i d="dat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy- nmet hod="cl ose">
<property nanme="driverC assNane" val ue="${j dbc. dri ver Cl assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property name="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

<bean i d="o0j bConfigurer" class="org.springframework. orm oj b. support.Local G bConfigurer"/>

</ beans>

<descriptor-repository version="1.0">
<j dbc- connecti on-descriptor jcd-alias="dataSource" default-connection="true" ...>

</ j dbc- connecti on- descri pt or >

</ descriptor-repository>

A PersistenceBroker can then be opened through standard OJB API, specifying a corresponding "PBKey",
usually through the corresponding "jcd-alias" (or relying on the default connection).

12.5.2. PersistenceBrokerTemplate and PersistenceBrokerDaoSupport

Each OJB-based DAO will be configured with a"PBKey" through bean-style configuration, i.e. through a bean
property setter. Such a DAO could be coded against plain OJB API, working with OJB's static
Per si st enceBr oker Fact ory, but will usualy rather be used with Spring's Per si st enceBr oker Tenpl at e:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="jcdAlias" val ue="dataSource"/> <!-- can be onitted (default) -->
</ bean>

</ beans>

public class Product Daol npl inplements Product Dao {
private String jcdAli as;

public void setJcdAlias(String jcdAlias) {
this.jcdAlias = jcdAli as;
}

Spring Framework Version 1.2.9 154

Data Access using O/R Mappers

public Collection | oadProductsByCategory(final String category) throws DataAccessException {
Per si st enceBr oker Tenpl at e pbTenpl ate =
new Per si st enceBr oker Tenpl at e(new PBKey(this.jcdAlias);
return (Col |l ection) pbTenpl at e. execut e(new Persi st enceBr oker Cal | back() {
public oject dol nPersi stenceBroker (PersistenceBroker pb)
t hrows Persi st enceBr oker Exception {

Criteria criteria = new Criteria();
criteria.addLi ke("category", category + "%);
Query query = new QueryByCriteria(Product.class, criteria);

Li st result = pb.getCollectionByQuery(query);
/1l do some further stuff with the result |ist
return result;

B8

A callback implementation can effectively be used for any OJB data access. Per si st enceBr oker Tenpl at e Will
ensure that Per si st enceBr oker S are properly opened and closed, and automatically participate in transactions.
The template instances are thread-safe and reusabl e, they can thus be kept as instance variables of the
surrounding class. For simple single-step actions such as asingle get bj ect Byl d, get Obj ect ByQuery, store,
or del et e call, Per si st enceBr oker Tenpl at e oOffers alternative convenience methods that can replace such one
line callback implementations. Furthermore, Spring provides a convenient Per si st enceBr oker DaoSuppor t
base class that provides aset JcdAl i as method for receiving an OJB JCD dlias, and

get Per si st enceBr oker Tenpl at e for use by subclasses. In combination, this allows for very smple DAO
implementations for typical requirements:

public class Product Daol npl extends PersistenceBroker DaoSupport inplenents ProductDao {

public Collection | oadProductsByCategory(String category) throws DataAccessException {
Criteria criteria = new Criteria();
criteria.addLi ke("category", category + "%);
Query query = new QueryByCriteria(Product.class, criteria);

return get Persi st enceBroker Tenpl at e() . get Col | ecti onByQuery(query);

As alternative to working with Spring's Per si st enceBr oker Tenpl at e, you can also code your OJB data access
against plain OJB AP, explictly opening and closing a Per si st enceBr oker . As elaborated in the
corresponding Hibernate section, the main advantage of this approach is that your data access codeis able to
throw checked exceptions. Per si st enceBr oker DaoSuppor t Offers avariety of support methods for this
scenario, for fetching and releasing atransactional Per si st enceBr oker aswell asfor converting exceptions.

12.5.3. Transaction management

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example, you could define a Tr ansact i onPr oxyFact or yBean for a ProductService, which in turn
delegates to the OJB-based ProductDao. Each specified method would then automatically get executed within a
transaction, with all affected DAO operations automatically participating in it.

<beans>

<bean i d="nyTxManager" cl ass="org. spri ngframework. orm oj b. Persi st enceBr oker Tr ansact i onManager " >
<property name="j cdAlias" val ue="dataSource"/> <!-- can be onitted (default) -->
</ bean>

Spring Framework Version 1.2.9 155

Data Access using O/R Mappers

<bean i d="nyProduct Servi ceTarget" cl ass="product. Product Servicel npl ">
<property nanme="product Dao" ref="nmyProduct Dao"/>
</ bean>

<bean i d="nyProduct Servi ce"
cl ass="org. springframework.transaction.interceptor. Transacti onProxyFact or yBean" >
<property nanme="transacti onManager" ref="nyTxManager"/>
<property name="target" ref="nyProduct ServiceTarget"/>
<property name="transactionAttri butes">
<pr ops>
<prop key="increasePrice*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="sonmeQ her Busi nessMet hod" >PROPAGATI ON_REQUI RES_NEW&/ pr op>
<prop key="*">PROPAGATI ON_SUPPORTS, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

</ beans>

Note that OJB's PersistenceBroker level does not track changes of loaded objects. Therefore, a
PersistenceBroker transaction is essentially simply a database transaction at the PersistenceBroker level, just
with an additional first-level cache for persistent objects. Lazy loading will work both with and without the
PersistenceBroker being open, in contrast to Hibernate and JDO (where the original Session or
PersistenceManager, respectively, needs to remain open).

Per si st enceBr oker Transact i onManager IS capable of exposing an OJB transaction to JDBC access code that
accesses the same JDBC Dat aSour ce. The Dat aSour ce to expose the transactions for needs to be specified
explicitly; it won't be autodetected.

12.6. iBATIS SQL Maps

Through the or g. spri ngf ramewor k. orm i bat i s package, Spring supportsiBATIS SQL Maps 1.x and 2.x
(http://www.ibatis.com). The iBATIS support much resembles the JDBC / Hibernate support in that it supports
the same template style programming and just as with JDBC or Hibernate, the iBATIS support works with
Spring's exception hierarchy and let's you enjoy the all 10C features Spring has.

Transaction management can be handled through Spring's standard facilities, for example through

Transact i onPr oxyFact or yBean. There are no special transaction strategies for iBATIS, asthereis no special
transactional resource involved other than a JIDBC Connect i on. Hence, Spring's standard JDBC

Dat aSour ceTr ansact i onManager Of Jt aTr ansacti onManager are perfectly sufficient.

12.6.1. Overview and differences between iBATIS 1.x and 2.x

Spring supports both iBATIS SQL Maps 1.x and 2.x. First let's have alook at the differences between the two.

The XML config files have changed a bit, node and attribute names. Also the Spring classes you need to extend
are different, as are some method names.

Table12.1. iBATIS SQL Maps supporting classesfor 1.x and 2.x

Feature 1x 2.X

Creation of SgiMap(Client) Sql MapFact or yBean Sql Mapd i ent Fact or yBean
Template-style helper class Sql MapTenpl at e Sql Mapd i ent Tenpl at e
Callback to use MappedStatement Sql MapCal | back Sql Mapd i ent Cal | back

Spring Framework Version 1.2.9 156

http://www.ibatis.com

Data Access using O/R Mappers

Feature 1.x 2.X

Super class for DAOs Sql MapDaoSuppor t Sql Mapd i ent DaoSuppor t

12.6.2. iBATIS SQL Maps 1.x

12.6.2.1. Setting up the SqlMap

Using iBATIS SQL Mapsinvolves creating SqlMap configuration files containing statements and result maps.
Spring takes care of loading those using the Sql MapFact or yBean.

public class Account {

private String nane;
private String email

public String getName() {

return this.nane;
}

public void setNane(String nane) {
thi s. nane = nane;
}

public String getEmail () {
return this.enil

}

public void setEnmmil (String enmail) {
this.email = email

}

}

Suppose we would want to map this class. We'd have to create the following Sql Map. Using the query, we can
later on retrieve users through their email addresses. Account . xm :

<sqgl - map nanme="Account ">

<result-map name="result" cl ass="exanpl es. Account ">
<property name="nanme" col umm="NAME" col uml ndex="1"/>
<property name="email" col um="EMAI L" col uml ndex="2"/>
</result-mp>

<mapped- st at ement nanme="get Account ByEmai | " resul t-map="result">
sel ect ACCOUNT. NAME, ACCOUNT. EMAI L
from ACCOUNT

wher e ACCOUNT. EMAI L = #val ue#
</ mapped- st at enent >

<mapped- st at ement name="i nsert Account ">
insert into ACCOUNT (NAME, EMAIL) val ues (#nane#, #email#)
</ mapped- st at ement >

</ sql - map>
After having defined the Sgl Map, we have to create a configuration file for iBATIS (sql map- confi g. xm):

<sql - map- confi g>
<sql - map resource="exanpl e/ Account.xm "/ >

</ sql - map- confi g>
iBATIS loads resources from the class path, so be sure to add the Account . xmi file to the class path.

Using Spring, we can now very easily set up the Sql Map, using the Sql MapFact or yBean:

Spring Framework Version 1.2.9 157

Data Access using O/R Mappers

<beans>

<bean i d="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy- nmet hod="cl ose">
<property name="driverd assNane" val ue="${j dbc. dri ver Cl assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property name="user nane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

<bean i d="sqgl Map" cl ass="org. spri ngframework.orm i batis. Sgl MapFact or yBean" >
<property name="configLocati on" val ue="WEB-| NF/ sql map-config.xm"/>
</ bean>

</ beans>

12.6.2.2. Using sql MapTenpl at e and Sql MapDaoSuppor t

The sql MapDaoSupport class offers a supporting class similar to the Hi ber nat eDaoSupport and the
JdoDaoSupport classes. Let'simplement a DAO:

public class Sqgl MapAccount Dao ext ends Sgl MapDaoSupport i npl ements Account Dao {

public Account get Account(String email) throws DataAccessException {
return (Account) get Sql MapTenpl at e() . execut eQuer yFor Obj ect (" get Account ByEmai | *, email)

}

public void insertAccount (Account account) throws DataAccessException {
get Sgl MapTenpl at e() . execut eUpdat e("i nsert Account", account);

}
}

Asyou can see, we're using the pre-configured Sqgl MapTenpl at e to execute the query. Spring hasinitialized the
Sql Map for us using the Sql MapFact or yBean, and when setting up the Sql MapAccount Dao as follows, you're all
set to go. Note that with iBATIS SQL Maps 1.x, the IDBC Dat aSour ce is usually specified on the DAO.

<beans>

<bean i d="account Dao" cl ass="exanpl e. Sql MapAccount Dao" >
<property nanme="dat aSource" ref="dataSource"/>
<property nanme="sqgl Map" ref="sqgl Map"/>

</ bean>

</ beans>

Note that a Sql MapTenpl at e instance could also be created manually, passing in the Dat aSour ce and the
Sql Map as constructor arguments. The Sql MapDaoSuppor t base class ssimply pre-initializes a Sql MapTenpl at e
instance for us.

12.6.3. IBATIS SQL Maps 2.x

12.6.3.1. Setting up the SglMapClient

If we want to map the previous Account class with iBATIS 2.x we need to create the following SQL map
Account . xm :

<sgl Map nanespace="Account ">

<resultMap id="result" class="exanpl es. Account">
<result property="nanme" col um="NAME" col uml ndex="1"/>
<result property="email" colum="EMAI L" col uml ndex="2"/>
</resul t Map>

Spring Framework Version 1.2.9 158

Data Access using O/R Mappers

<sel ect id="getAccountByEmail" result Map="result">
sel ect ACCOUNT. NAME, ACCOUNT. EMAI L
f rom ACCOUNT
where ACCOUNT. EMAI L = #val ue#

</ sel ect >

<insert id="insertAccount">
insert into ACCOUNT (NAME, EMAIL) val ues (#nane#, #email#)
</insert>

</ sql Map>
The configuration file for iIBATIS 2 changes a bit (sql map- confi g. xm):
<sql MapConfi g>
<sql Map resour ce="exanpl e/ Account . xm "/ >
</ sql MapConfi g>

Remember that iBATIS loads resources from the class path, so be sure to add the Account . xmi file to the class
path.

We can use the sql Mapd i ent Fact or yBean in the Spring application context. Note that with iBATIS SQL
Maps 2.x, the IDBC Dat aSour ce is usually specified on the Sql Mapd i ent Fact or yBean, which enables lazy
loading.
<beans>
<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- nmet hod="cl ose" >

<property name="driverd assNane" val ue="${j dbc. dri verC assNane}"/>

<property name="url" val ue="${jdbc.url}"/>

<property nanme="usernane" val ue="${j dbc. usernane}"/>

<property name="password" val ue="${j dbc. password}"/>
</ bean>

<bean i d="sqgl Mapdient" class="org.springframework.ormibatis. Sqgl Mapd i ent Fact or yBean" >
<property name="configlLocati on" val ue="WEB-| NF/ sql map-config.xm"/>

<property nanme="dat aSource" ref="dataSource"/>
</ bean>

</ beans>

12.6.3.2. Using sql Mapd i ent Tenpl at e and Sqgl Mapd i ent DaoSuppor t

The sql Mapd i ent DaoSuppor t class offers a supporting class similar to the Sql MapDaoSuppor t . We extend it to
implement our DAO:

public class Sqgl MapAccount Dao ext ends Sgl MapCl i ent DaoSupport i npl ements Account Dao {
public Account getAccount(String email) throws DataAccessException {

return (Account) get Sql Mapd i ent Tenpl at e() . quer yFor Obj ect (" get Account ByEmai | ", email)
}

public void insertAccount (Account account) throws DataAccessException {
get Sgl MapCl i ent Tenpl at e() . updat e("i nsert Account", account);

}

Inthe DAO, we use the pre-configured sql Mapd i ent Tenpl at e to execute the queries, after setting up the
Sql MapAccount Dao in the application context and wiring it with our Sql Mapd i ent instance:

<beans>

<bean i d="account Dao" cl ass="exanpl e. Sql MapAccount Dao" >
<property name="sqgl Mapdient" ref="sql Mapdient"/>

Spring Framework Version 1.2.9 159

Data Access using O/R Mappers

</ bean>

</ beans>

Note that a Sql MapTenpl at e instance could aso be created manually, passing in the Sql Mapd i ent as
constructor argument. The Sql Mapd i ent DaoSupport base class simply pre-initializes a
Sql Mapd i ent Tenpl at e instance for us.

The sql Mapd i ent Tenpl at e also offers ageneric execut e method, taking a custom Sgl Mapd i ent Cal | back
implementation as argument. This can, for example, be used for batching:

public class Sgl MapAccount Dao extends Sgl MapC i ent DaoSupport i npl ements Account Dao {

public void insertAccount (Account account) throws DataAccessException {
get Sql Mapd i ent Tenpl at e() . execut e(new Sgl MapC i ent Cal | back() {
public oject dolnSgl Mapd i ent (Sgl MapExecut or executor) throws SQ.Exception {
executor.startBatch();
execut or. updat e("i nsert Account", account);
execut or. updat e("i nsert Address", account.get Address());
execut or. execut eBat ch() ;

1)
}
In general, any combination of operations offered by the native Sql MapExecut or API can be used in such a

callback. Any sQLExcept i on thrown will automatically get converted to Spring's generic
Dat aAccessExcept i on hierarchy.

12.6.3.3. Implementing DAOs based on plain iBATIS API

DAOs can aso be written against plain iBATIS API, without any Spring dependencies, directly using an
injected sql Mapd i ent . A corresponding DAO implementation looks like as follows:
public class Sgl MapAccount Dao i npl ements Account Dao {
private Sql MapCient sql MapCient;

public void setSql Mapd i ent (Sql Mapd i ent sql Mapdient) {
this.sqgl MapCient = sql Mapdient;

}
public Account getAccount(String email) {
try {
return (Account) this.sql MapCdient. queryFor Object ("get Account ByEmail", email);
}
catch (SQ.Exception ex) {
t hrow new MyDaoExcepti on(ex);
}
}
public void insertAccount (Account account) throws DataAccessException {
try {
t his. sql MapCl i ent. update("insertAccount”, account);
}
catch (SQ.Exception ex) {
t hrow new MyDaoExcepti on(ex);
}
}

}

In such a scenario, the SQLExcept i on thrown by the iBATIS API needs to be handled in a custom fashion:
usually, wrapping it in your own application-specific DAO exception. Wiring in the application context would
still look like before, due to the fact that the plain iBATIS-based DAO still follows the Dependency Injection
pattern:

Spring Framework Version 1.2.9 160

Data Access using O/R Mappers

<beans>

<bean i d="account Dao" cl ass="exanpl e. Sql MapAccount Dao" >
<property nanme="sqgl Mapdient" ref="sql MapCient"/>
</ bean>

</ beans>

Spring Framework Version 1.2.9 161

Chapter 13. Web MVC framework

13.1. Introduction to the web MVC framework

Spring's web MV C framework is designed around a DispatcherServlet that dispatches requests to handlers, with
configurable handler mappings, view resolution, locale and theme resolution as well as support for upload files.
The default handler is avery simple Controller interface, just offering a Model AndVi ew

handl eRequest (r equest, response) method. This can already be used for application controllers, but you will
prefer the included implementation hierarchy, consisting of, for example Abst ract Control | er,

Abst ract CommandCont rol | er and Si npl eFor nCont r ol | er . Application controllers will typically be subclasses
of those. Note that you can choose an appropriate base class: If you don't have aform, you don't need a
FormController. Thisisamajor difference to Struts.

Y ou can use any object as a command or form object - there's no need to implement an interface or derive from
abase class. Spring's data binding is highly flexible, for example, it treats type mismatches as validation errors
that can be evaluated by the application, not as system errors. So you don't need to duplicate your business
objects properties as Strings in your form objects, just to be able to handle invalid submissions, or to convert
the Strings properly. Instead, it is often preferable to bind directly to your business objects. Thisis another
major difference to Struts which is built around required base classes like Act i on and Act i onFor m- for every
type of action.

Compared to WebWork, Spring has more differentiated object roles. It supports the notion of a Controller, an
optional command or form abject, and amodel that gets passed to the view. The model will normally include
the command or form object but also arbitrary reference data. Instead, a WebWork Action combines all those
roles into one single object. WebWork does allow you to use existing business objects as part of your form, but
only by making them bean properties of the respective Action class. Finaly, the same Action instance that
handles the request is used for evaluation and form population in the view. Thus, reference data needs to be
modeled as bean properties of the Action too. These are arguably too many roles for one object.

Spring's view resolution is extremely flexible. A Controller implementation can even write aview directly to
the response, returning null as ModelAndView. In the normal case, a ModelAndView instance consists of a
view name and amodel Map, containing bean names and corresponding objects (like acommand or form,
containing reference data). View name resolution is highly configurable, either via bean names, via a properties
file, or viayour own ViewResolver implementation. The abstract model Map allows for complete abstraction
of the view technology, without any hassle. Any renderer can be integrated directly, whether JSP, Vel ocity, or
any other rendering technology. The model Map is simply transformed into an appropriate format, such as JSP
request attributes or a VVelocity template model.

13.1.1. Pluggability of other MVC implementations

There are severa reasons why some projects will prefer to use other MV C implementations. Many teams
expect to leverage their existing investment in skills and tools. In addition, there is alarge body of knowledge
and experience avalailable for the Struts framework. Thus, if you can live with Struts' architectural flaws, it can
still be aviable choice for the web layer. The same applies to WebWork and other web MV C frameworks.

If you don't want to use Spring's web MV C, but intend to leverage other solutions that Spring offers, you can
integrate the web MV C framework of your choice with Spring easily. Simply start up a Spring root application
context viaits ContextL oaderListener, and access it viaits ServletContext attribute (or Spring's respective
helper method) from within a Struts or WebWork action. Note that there aren't any "plugins® involved, so no
dedicated integration is necessary. From the web layer's point of view, you'll smply use Spring asalibrary,

Spring Framework Version 1.2.9 162

Web MV C framework

with the root application context instance as the entry point.

All your registered beans and all of Spring's services can be at your fingertips even without Spring's web MV C.
Spring doesn't compete with Struts or WebWork in this scenario, it just addresses the many areas that the pure
web MV C frameworks don't, from bean configuration to data access and transaction handling. So you are able
to enrich your application with a Spring middle tier and/or data access tier, even if you just want to use, for
example, the transaction abstraction with JDBC or Hibernate.

13.1.2. Features of Spring MVC

Spring's web module provides awealth of unique web support features, including:

» Clear separation of roles - controller, validator, command object, form object, model object,
DispatcherServlet, handler mapping, view resolver, etc. Each role can be fulfilled by a specialized object.

« Powerful and straightforward configuration of both framework and application classes as JavaBeans,
including easy referencing across contexts, such as from web controllers to business objects and validators.

e Adaptability, non-intrusiveness. Use whatever controller subclass you need (plain, command, form, wizard,
multi-action, or a custom one) for a given scenario instead of deriving from a single controller for
everything.

» Reusable business code - no need for duplication. Y ou can use existing business objects as command or form
objectsinstead of mirroring them in order to extend a particular framework base class.

» Customizable binding and validation - type mismatches as application-level validation errors that keep the
offending value, localized date and number binding, etc instead of String-only form objects with manual
parsing and conversion to business abjects.

* Customizable handler mapping and view resolution - handler mapping and view resol ution strategies range
from simple URL -based configuration, to sophisticated, purpose-built resolution strategies. Thisis more
flexible than some web MV C frameworks which mandate a particular technique.

» Flexible model transfer - model transfer viaa name/value Map supports easy integration with any view
technology.

« Customizable locale and theme resolution, support for JSPs with or without Spring tag library, support for
JSTL, support for Velocity without the need for extra bridges, etc.

* A simple but powerful tag library that avoids HTML generation at any cost, allowing for maximum
flexibility in terms of markup code.

13.2. The Di spat cher Servl et

Spring'sweb MV C framework is, like many other web MV C frameworks, a request-driven web MVC
framework, designed around a servlet that dispatches requests to controllers and offers other functionality
facilitating the development of web applications. Spring's bi spat cher Ser vl et however, does more than just
that. It is completely integrated with the Spring ApplicationContext and allows you to use every other feature
Spring has.

Like ordinary servlets, the DispatcherServlet is declared in the web. xm of your web application. Requests that
you want the DispatcherServlet to handle, will have to be mapped, using a URL mapping in the same web. xni
file.

<web- app>
<servl et >
<servl et - nane>exanpl e</ servl et - nane>
<servl et - cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et </ servl et - cl ass>
<l oad- on- st artup>1</1| oad-on-start up>

</ servl et >
<servl et - mappi ng>

Spring Framework Version 1.2.9 163

Web MV C framework

<servl et - nane>exanpl e</ servl et - nane>
<url-pattern>*. fornx/url-pattern>
</ servl et - mappi ng>
</ web- app>

In the example above, all requests ending with . f or mwill be handled by the DispatcherServiet. The
DispatcherServlet now needs to be configured.

Asillustrated in Section 3.11, “Introduction to the Appl i cati onCont ext ”, ApplicationContexts in Spring can
be scoped. In the web MV C framework, each DispatcherServlet has its own WebAppl i cat i onCont ext , which
inherits all the beans already defined in in the Root WebA pplicationContext. These inherited beans defined can
be overridden in the servlet-specific scope, and new scope-specific beans can be defined local to a given servlet
instance.

The framework will, on initialization of a DispatcherServlet, ook for a file named
[servl et-nane] -servl et. xni intheWeB- | NF directory of your web application and create the beans defined
there (overriding the definitions of any beans defined with the same name in the global scope).

The config location used by the DispatcherServlet can be modified through a servlet initialization parameter
(see below for details).

The webAppl i cati onCont ext iSjust an ordinary ApplicationContext that has some extra features necessary for
web applications. It differs from anormal ApplicationContext in that it is capable of resolving themes (see
Section 13.7, “Using themes”), and that is knows which servlet it is associated with (by having alink to the
Ser vl et Cont ext). The WebApplicationContext is bound in the ServletContext, and using

Request Cont ext Ut i | s you can always lookup the WebA pplicationContext in case you need it.

The Spring DispatcherServlet has a couple of special beansit uses, in order to be able to process requests and
render the appropriate views. These beans are included in the Spring framework and can be configured in the
WebA pplicationContext, just as any other bean would be configured. Each of those beans, is described in more
detail below. Right now, well just mention them, just to let you know they exist and to enable usto go on
talking about the DispatcherServlet. For most of the beans, defaults are provided so you don't have to worry
about configuring them.

Table 13.1. Special beansin the WebApplicationContext

Expression Explanation

handler mapping(s) | (Section 13.4, “Handler mappings’) alist of pre- and postprocessors and controllers
that will be executed if they match certain criteria (for instance a matching URL
specified with the controller)

controller(s) (Section 13.3, “Controllers’) the beans providing the actual functionality (or at least,
access to the functionality) as part of the MV C triad

view resolver (Section 13.5, “Views and resolving them”) capable of resolving view namesto views,
used by the DispatcherServlet

locale resolver (Section 13.6, “Using locales’) capable of resolving the locale aclient isusing, in order
to be able to offer internationalized views

theme resolver (Section 13.7, “Using themes”) capable of resolving themes your web application can
use, for example, to offer personalized layouts

multipart resolver (Section 13.8, “ Spring's multipart (fileupload) support™) offers functionality to process
file uploads from HTML forms

Spring Framework Version 1.2.9 164

Web MV C framework

Expression Explanation

handlerexception (Section 13.9, “Handling exceptions”) offers functionality to map exceptions to views
resolver or implement other more complex exception handling code

When a DispatcherServlet is setup for use and arequest comesin for that specific DispatcherServlet it starts
processing it. The list below describes the complete process a request goes through if handled by a
DispatcherServlet:

1. The WebApplicationContext is searched for and bound in the request as an attribute in order for the
controller and other elementsin the processto use. It is bound by default under the key
Di spat cher Ser vl et . WEB_APPL| CATI ON_CONTEXT_ATTRI BUTE.

2. Thelocaeresolver is bound to the request to let elements in the process resolve the locale to use when
processing the request (rendering the view, preparing data, etc.) If you don't use the resolver, it won't affect
anything, so if you don't need locale resolving, you don't have to use it.

3. The theme resolver isbound to the request to let elements such as views determine which theme to use. The
theme resolver does not affect anything if you don't useiit, so if you don't need themes you can just ignoreit.

4. If amultipart resolver is specified, the request is inspected for multiparts and if they are found, it is wrapped
inamul tipart H t pServl et Request for further processing by other elements in the process. (See
Section 13.8.2, “Using the mul ti part Resol ver” for further information about multipart handling).

5. An appropriate handler is searched for. If ahandler isfound, the execution chain associated with the handler
(preprocessors, postprocessors, controllers) will be executed in order to prepare a model.

6. If amodel isreturned, the view is rendered, using the view resolver that has been configured with the
WebA pplicationContext. If no model is returned (which could be due to apre- or postprocessor intercepting
the request, for example, for security reasons), no view is rendered, since the request could already have
been fulfilled.

Exceptions that might be thrown during processing of the request get picked up by any of the handlerexception
resolvers that are declared in the WebA pplicationContext. Using these exception resolvers you can define
custom behavior in case such exceptions get thrown.

The Spring DispatcherServlet also has support for returning the last-modification-date, as specified by the
Servlet API. The process of determining the last modification date for a specific request, issimple. The
DispatcherServlet will first lookup an appropriate handler mapping and test if the handler that is found
implements the interface Last Modi fi ed and if so, the value of | ong get Last Modi fi ed(request) isreturned to
the client.

Y ou can customize Spring's DispatcherServlet by adding context parametersin theweb. xni file or servlet init
parameters. The possibilities are listed below.
Table 13.2. Dispatcher Servlet initialization parameters

Parameter Explanation

cont ext O ass Class that implements WebAppl i cat i onCont ext , which will be used to instantiate the
context used by this servlet. If this parameter isn't specified, the
Xnl WebAppl i cati onCont ext will be used.

cont ext Conf i gLocat i Biring which is passed to the context instance (specified by cont ext d ass) to indicate
where context(s) can be found. The String is potentially split up into multiple strings
(using acomma as a delimiter) to support multiple contexts (in case of multiple context
locations, of beans that are defined twice, the latest takes precedence).

namespace the namespace of the WwebAppl i cati onCont ext . Defaultsto [server - nane] - servl et .

Spring Framework Version 1.2.9 165

Web MV C framework

13.3. Controllers

The notion of a controller is part of the MV C design pattern. Controllers define application behavior, or at least
provide access to the application behavior. Controllersinterpret user input and transform the user input into a
sensible model which will be represented to the user by the view. Spring has implemented the notion of a
controller in avery abstract way enabling awide variety of different kinds of controllers to be created. Spring
contains formcontroller, commandcontroller, controllers that execute wizard-style logic, and more.

Spring's basis for the controller architecture isthe or g. spri ngf r amewor k. web. servl et. nvc. Control | er
interface, which islisted below.

public interface Controller {

/**
* Process the request and return a Mddel AndVi ew obj ect whi ch the Di spatcher Servl et
*will render.
*/
Model AndVi ew handl eRequest (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws Excepti on;

}

Asyou can see, the cont rol | er interface requires a single method that should be capable of handling a request
and returning an appropriate model and view. These three concepts are the basis for the Spring MV C
implementation - Model AndView and Controller. Whilethe Cont rol | er interfaceis quite abstract, Spring
offersalot of controllers that already contain alot of the functionality you might need. The Control I er
interface just defines the most common functionality required of every controller - handling a request and
returning amodel and aview.

13.3.1. AbstractController and WebContentGenerator

Of caurse, just a controller interface isn't enough. To provide a basic infrastructure, all of Spring's Controllers
inherit from AbstractController, a class offering caching support and, for example, the setting of the mimetype.

Table 13.3. Features offered by the Abst r act Control | er

Feature Explanation

suppor t edMet hods indicates what methods this controller should accept. Usually thisis set to both
GET and POsT, but you can modify thisto reflect the method you want to support.
If arequest is received with a method that is not supported by the controller, the
client will be informed of this (using a Ser vl et Excepti on)).

requi r esSessi on indicates whether or not this controller requires a session to do itswork. This
feature is offered to all controllers. If asession is not present when such a
controller receives arequest, the user isinformed using a Ser vl et Except i on.

synchr oni zeSessi on use thisif you want handling by this controller to be synchronized on the user's
session. To be more specific, extending controller will override the
handl eRequest I nt er nal method, which will be synchronized if you specify this
variable.

cacheSeconds when you want a controller to generate a caching directive in the HTTP response,
specify a positive integer here. By default it is set to -1 so no caching directives
will be included.

Spring Framework Version 1.2.9 166

Web MV C framework

Feature Explanation

useExpi r esHeader tweaks your controllers to specify the HTTP 1.0 compatible "Expires’ header. By
default it's set to true, so you won't have to change it.

useCacheHeader tweaks your controllers to specify the HTTP 1.1 compatible " Cache-Control "
header. By default thisis set to true so you won't have to changeit.

The last two properties are actually part of the webCont ent Gener at or which is the superclass of
Abstract Control | er but areincluded here for completeness.

When using the AbstractController as a baseclass for your controllers (which is not recommended since there
arealot of other controllers that might already do the job for you) you only have to override the

handl eRequest | nt er nal (Htt pSer vl et Request, Htt pServl et Response) method, implement your logic, and
return aModel AndVi ew object. Here is short example consisting of a class and a declaration in the web
application context.

package sanpl es;
public class Sanpl eControl |l er extends AbstractController {

publ i c Model AndVi ew handl eRequest | nt er nal (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)

throws Exception {
Model AndVi ew mav = new Model AndVi ew(" f 00") ;
mav. addObj ect (" nmessage”, "Hello World!'");
return nav;

<bean i d="sanpl eControll er" class="sanpl es. Sanpl eControl |l er">
<property name="cacheSeconds" val ue="120"/>
</ bean>

The class above and the declaration in the web application context is all you need besides setting up a handler
mapping (see Section 13.4, “Handler mappings’) to get this very simple controller working. This controller will
generate caching directives telling the client to cache things for 2 minutes before rechecking. This controller
returns an hard-coded view (hmm, not so nice), named index (see Section 13.5, “Views and resolving them” for
more information about views).

13.3.2. Other simple controllers

Although you can extend AbstractController, Spring provides a number of concrete implementations which
offer functionality that is commonly used in smple MV C applications. The Par amret eri zabl eVi ewCont rol | er
is basically the same as the example above, except for the fact that you can specify the view name that it will
return in the web application context (ahhh, no need to hard-code the viewname).

Theur! Fi |l enameVi enCont rol | er inspects the URL and retrieves the filename of the file request (the filename
of htt p: // wwv. spri ngframewor k. or g/ i ndex. ht ni iSi ndex) and uses that as a viewname. Nothing more to it.

13.3.3. The mul ti Acti onControl | er

Spring offers a multi-action controller with which you aggregate multiple actions into one controller, grouping

functionality together. The multi-action controller livesin a separate package -

org. spri ngframewor k. web. servl et. nvc. mul ti action - and is capable of mapping requests to method names
and then invoking the right method name. Using the multi-action controller is especially handy when you have

Spring Framework Version 1.2.9 167

Web MV C framework

alot of common functionality in one controller, but want to have multiple entry points to the controller, for
example, to tweak behavior.

Table 13.4. Features offered by the mul ti Acti onControl | er

Feature Explanation

del egat e there are two usage-scenarios for the MultiActionController. Either you subclass
the MultiActionController and specify the methods that will be resolved by the
MethodNameResolver on the subclass (in which case you don't need to set the
delegate), or you define a delegate object, on which methods resolved by the
Resolver will be invoked. If you choose this scenario, you will have to define the
delegate using this configuration parameter as a collaborator.

met hodNanmeResol ver somehow the MultiActionController will need to resolve the method it has to
invoke, based on the request that came in. Y ou can define aresolver that is
capable of doing that using this configuration parameter.

Methods defined for amulti-action controller need to conform to the following signature:

// actionNanme can be replaced by any nethodnane
Mbdel AndVi ew acti onNane(Htt pSer vl et Request, HttpServl et Response);

Method overloading is not allowed since it would confuse the Multi ActionController. Furthermore, you can
define exception handlers capable of handling exceptions that are thrown by the methods you specify.
Exception handler methods need to return a Model AndView object, just as any other action method and need to
conform to the following signature:

/1 anyMeani ngf ul Name can be repl aced by any net hodnane
Model AndVi ew anyMeani ngf ul Name(Ht t pSer vl et Request, HttpServl et Response, ExceptionC ass);

The Excepti ond ass can be any exception, aslong asit'sasubclass of j ava. | ang. Excepti on Or
java.l ang. Runti meExcepti on.

The Met hodNarmeResol ver is supposed to resolve method names based on the request coming in. There are three
resolvers at your disposal, but of course you can implement more of them yourself if you want to.

 Par amet er Met hodNaneResol ver - capable of resolving arequest parameter and using that as the method
name (htt p: / / ww. sf . net/ i ndex. vi ew?t est Par anrt est | t will result in a method
testlt(H tpServl et Request, HitpServletResponse) being called). The par amNane configuration
parameter specifies the parameter that is inspected).

* | nternal Pat hMet hodNaneResol ver - retrieves the filename from the path and uses that as the method name
(http://vww. sf.net/testing.viewwill resultinamethodt esti ng(Htt pSer vl et Request,
Ht t pSer vl et Response) being called).

* PropertiesMet hodNaneResol ver - uses auser-defined properties object with request URLs mapped to
methodnames. When the properties contain / i ndex/ wel cone. ht m =dol t and arequest to
/i ndex/ wel come. ht i comesin, thedol t (Ht t pSer vl et Request, HttpServl et Response) method is called.
This method name resolver works with the Pat hmvat cher , so if the properties contained / **/ wel con®. ht mi , it
would also have worked!

Here are a couple of examples. First, an example showing the Par anet er Met hodNameResol ver and the delegate
property, which will accept requests to urls with the parameter method included and settor et ri evel ndex:

<bean i d="paranResol ver" class="org....nmvc.nultiaction. Paraneter Met hodNaneResol ver" >
<property name="paranmNane" ><val ue>met hod</ val ue></ property>
</ bean>

Spring Framework Version 1.2.9 168

Web MV C framework

<bean id="paramMulti Controller" class="org....mc.multiaction. MiltiActionController">
<property name="mnet hodNanmeResol ver " ><ref bean="paranResol ver"/></property>
<property name="del egat e"><ref bean="sanpl eDel egat e"/></property>
</ bean>
<bean i d="sanpl eDel egat e" cl ass="sanpl es. Sanpl eDel egat e"/ >
together with
public class Sanpl eDel egate {
publ i c Model AndVi ew retri evel ndex(
Ht t pSer vl et Request req
Ht t pSer vl et Response resp) {

return new Model AndVi ew("i ndex", "date", new Long(SystemcurrentTineMIlis()));

}

When using the del egates shown above, we could also use the Proper t i esMet hodNaneResol ver t0o match a
couple of URLs to the method we defined:

<bean i d="propsResol ver" class="org....nmvc.nultiaction.PropertiesMet hodNaneResol ver">
<property nanme="nmappi ngs">
<props>

<prop key="/index/wel cone. htm ">retrievel ndex</ prop>
<prop key="/**/notwel cone. ht ml ">retrievel ndex</ prop>
<prop key="/*/user?.htm ">retrievel ndex</ prop>
</ props>
</ property>
</ bean>

<bean id="paramMulti Controller" class="org....m/c.multiaction. MiltiActionController">
<property name="mnet hodNaneResol ver " ><ref bean="propsResol ver"/></property>
<property nanme="del egat e"><ref bean="sanpl eDel egat e"/ ></ property>

</ bean>

13.3.4. CommandControllers

Spring's CommandControllers are a fundamental part of the Spring MV C package. Command controllers
provide away to interact with data objects and dynamically bind parameters from the Ht t pSer vl et Request to
the data object specified. They perform asimilar role to Struts' ActionForm, but in Spring, your data objects
don't have to implement a framework-specific interface. First, let's examine what command controllers
available, to get overview of what you can do with them:

Abst r act CommandCont r ol | er - acommand controller you can use to create your own command controller,
capable of binding request parameters to a data object you specify. This class does not offer form
functionality, it does however, offer validation features and lets you specify in the controller itself what to do
with the command object that has been filled with the parameters from the request.

Abst ract For mCont r ol | er - an abstract controller offering form submission support. Using this controller
you can model forms and populate them using a command object you retrieve in the controller. After a user
has filled the form, the AbstractFormController binds the fields, validates, and hands the object back to the
controller to take appropriate action. Supported features are: invalid form submission (resubmission),
validation, and normal form workflow. Y ou implement methods to determine which views are used for form
presentation and success. Use this controller if you need forms, but don't want to specify what views you're
going to show the user in the application context.

Si npl eFor mCont rol | er - aconcrete FormController that provides even more support when creating aform
with a corresponding command object. The SimpleFormController let's you specify a command object, a
viewname for the form, a viewname for page you want to show the user when form submission has
succeeded, and more.

Abst ract W zar dFor nCont r ol | er - asthe class hame suggests, thisis an abstract class--your
WizardController should extend it. This means you have to implement the val i dat ePage() , pr ocessFi ni sh

Spring Framework Version 1.2.9 169

Web MV C framework

and processCancel methods.

Y ou probably also want to write a contractor, which should at the very least call set Pages() and

set CommandName() . The former takes asits argument an array of type String. This array isthelist of views
which comprise your wizard. The latter takes as its argument a String, which will be used to refer to your
command object from within your views.

Aswith any instance of AbstractFormController, you are required to use a command object - a JavaBean
which will be populated with the data from your forms. Y ou can do thisin one of two ways: either call
set ConmandC ass() from the constructor with the class of your command object, or implement the

f or mBacki ngObj ect () method.

AbstractWizardFormController has a number of concrete methods that you may wish to override. Of these,
the ones you are likely to find most useful are: r ef er enceDat a Which you can use to pass model datato your
view in the form of a Map; get Tar get Page if your wizard needs to change page order or omit pages
dynamically; and onBi ndAndVval i dat e if you want to override the built-in binding and validation workflow.

Finally, it isworth pointing out the set Al | owDi rt yBack and set Al | owDi rt yFor war d, which you can call
from get Tar get Page to alow users to move backwards and forwards in the wizard even if validation fails
for the current page.

For afull list of methods, see the JavaDoc for AbstractWizardFormController. There is an implemented
example of thiswizard in the jPetStore included in the Spring distribution:
org.springframework.sampl es.j petstore.web.spring.OrderFormController

13.4. Handler mappings

Using a handler mapping you can map incoming web requests to appropriate handlers. There are some handler
mappings you can use out of the box, for example, the Si npl eUr | Hand! er Mappi ng or the
BeanNaneUr | Handl er Mappi ng, but let's first examine the general concept of aHandl er Mappi ng.

The functionality abasic Handl er Mappi ng provides isthe delivering of aHand! er Execut i onChai n, which must
contain the handler that matches the incoming request, and may also contain alist of handler interceptors that
are applied to the request. When arequest comesin, the bi spat cher Ser vl et will hand it over to the handler
mapping to let it inspect the request and come up with an appropriate HandlerExecutionChain. Then the
DispatcherServlet will execute the handler and interceptorsin the chain (if any).

The concept of configurable handler mappings that can optionally contain interceptors (executed before or after
the actual handler was executed, or both) is extremely powerful. A lot of supporting functionality can be built
into custom Hand! er Mappi ngs. Think of a custom handler mapping that chooses a handler not only based on the
URL of the request coming in, but also on a specific state of the session associated with the request.

This section describes two of Spring's most commonly used handler mappings. They both extend the
Abst r act Handl er Mappi ng and share the following properties:

* interceptors:thelist of interceptorsto use. Handl er | nt er cept or Sare discussed in Section 13.4.3, “Adding
Handl er I nt erceptors”.

 defaul t Handl er : the default handler to use, when this handler mapping does not result in a matching
handler.

 order: based on the value of the order property (seetheor g. spri ngf r amewor k. cor e. Or der ed interface),
Spring will sort al handler mappings available in the context and apply the first matching handler.

* al waysUseFul | Pat h: if this property isset tot r ue, Spring will use the full path within the current servlet
context to find an appropriate handler. If this property is set to f al se (the default), the path within the current

Spring Framework Version 1.2.9 170

Web MV C framework

servlet mapping will be used. For example, if aservlet is mapped using/t esti ng/ * and the
al waysUseFul | Pat h property isset totrue, / t est i ng/ vi ewPage. ht i would be used, whereas if the property
isset to false, / vi ewPage. ht i would be used.

e url Pat hHel per : using this property, you can tweak the UrlPathHel per used when inspecting URLSs.
Normally, you shouldn't have to change the default value.

* url Decode: the default value for this property isf al se. The Ht t pSer vl et Request returns request URLs and
URIsthat are not decoded. If you do want them to be decoded before a Hand! er Mappi ng uses them to find an
appropriate handler, you have to set thisto t r ue (note that this requires JDK 1.4). The decoding method uses
either the encoding specified by the request or the default | SO-8859-1 encoding scheme.

* lazylnitHandl ers: allowsfor lazy initialization of singleton handlers (prototype handlers are always lazily
initialized). Default valueisf al se.

(Note: the last four properties are only available to subclasses of

org.springfranemork.meb.servlet.handler.AbstractUrIHandlerthping)

13.4.1. BeanNaneUr | Handl er Mappi ng

A very simple, but very powerful handler mapping is the BeanNaneUr | Hand! er Mappi ng, which maps incoming
HTTP requests to names of beans, defined in the web application context. Let's say we want to enable a user to
insert an account and we've already provided an appropriate FormController (see Section 13.3.4,
“CommandControllers’ for more information on Command- and FormControllers) and a JSP view (or Velocity
template) that renders the form. When using the BeanNameUrIHandlerM apping, we could map the HTTP
request with URL htt p: // sanpl es. cont edi t account . f or mto the appropriate FormController as follows:

<beans>

<bean i d="handl er Mappi ng" cl ass="org. spri ngfranmewor k. web. servl et . handl er. BeanNaneUr | Handl er Mappi ng'/ >

<bean nane="/editaccount.forn class="org.springframework.web. servl et.mvc. Si npl eFor nControl | er">
<property nanme="fornVi ew' ><val ue>account </ val ue></ property>
<property nanme="successVi ew'><val ue>account - cr eat ed</ val ue></ property>
<property name="conmmandNane" ><val ue>Account </ val ue></ pr operty>
<property nanme="commandC ass" ><val ue>sanpl es. Account </ val ue></ property>
</ bean>
<beans>

All incoming requests for the URL / edi t account . f or mwill now be handled by the FormController in the
source listing above. Of course we have to define a servlet-mapping in web.xml as well, to let through all the
reguests ending with .form.

<web- app>
<servl et >
<ser vl et - nane>sanpl e</ servl et - nane>
<servl et - cl ass>or g. spri ngf ranewor k. web. servl et . Di spat cher Ser vl et </ servl et - cl ass>

<l oad- on- st art up>1</ | oad- on- st art up>
</ servl et >

<l-- Maps the sanple dispatcher to /*.form-->
<servl et - mappi ng>
<servl et - nane>sanpl e</ servl et - nane>
<url-pattern>*.fornx/url-pattern>
</ servl et - mappi ng>

</ web- app>

NOTE: if you want to use the BeanNaneUr | Handl er Mappi ng, you don't necessarily have to defineit in the web
application context (asindicated above). By default, if no handler mapping can be found in the context, the
Dispatcher Serviet creates a BeanNarmeUr | Handl er Mappi ng for you!

13.4.2. Si npl eUr | Handl er Mappi ng

Spring Framework Version 1.2.9 171

Web MV C framework

A further - and much more powerful handler mapping - isthe Si npl eUr | Handl er Mappi ng. Thismapping is
configurable in the application context and has Ant-style path matching capabilities (see the JavaDoc for
org. springframework. util . Pat hvat cher). Hereis an example:

<web- app>
<servl et >
<servl et - name>sanpl e</ servl et - name>
<servl et - cl ass>or g. spri ngf ranmewor k. web. servl et. Di spat cher Servl et </ servl et - cl ass>

<l oad- on- st art up>1</1| oad- on-start up>
</ servl et>

<l-- Maps the sanple dispatcher to /*.form-->
<servl et - mappi ng>
<servl et - name>sanpl e</ servl et - nane>
<url-pattern>*.fornx/url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>sanpl e</ servl et - nane>
<url-pattern>*. htm </url-pattern>
</ servl et - mappi ng>

</we5:épp>
Allows all requests ending with .html and .form to be handled by the sample dispatcher serviet.

<beans>
<bean i d="handl er Mappi ng"
cl ass="org. spri ngframewor k. web. servl et . handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="nmappi ngs" >
<pr ops>
<prop key="/*/account. forni>editAccount For nControl | er </ prop>
<prop key="/*/editaccount.forni>editAccount For mControl | er</prop>
<prop key="/ex/view.htm">soneVi ewControll er</prop>
<prop key="/**/hel p. ht Ml ">hel pControl | er </ prop>
</ props>
</ property>
</ bean>

<bean i d="sonmeVi enControl |l er"
cl ass="org. spri ngframewor k. web. servl et. mvc. Ur| Fi | enanmeVi ewControl ler"/>

<bean i d="edi t Account For nControl | er"
cl ass="org. spri ngf ramewor k. web. servl et. mvc. Si npl eFornControl | er">

<property nanme="fornVi ew'><val ue>account </ val ue></ property>
<property name="successVi ew'><val ue>account - cr eat ed</ val ue></ property>
<property name="conmandNane" ><val ue>Account </ val ue></ pr operty>
<property name="conmmandC ass" ><val ue>sanpl es. Account </ val ue></ pr operty>

</ bean>

<beans>

This handler mapping routes requests for hel p. ht mi in any directory to the hel pControl | er, whichisa
UrlFilenameViewController (more about controllers can be found in Section 13.3, “Controllers’). Requests for
aresource beginning with vi ew, and ending with . ht m in the directory ex, will be routed to the

soneVi ewCont r ol | er . Two further mappings are defined for edi t Account For nControl | er.

13.4.3. Adding Handl er I nt ercept or s

Spring's handler mapping mechanism has a notion of handler interceptors, that can be extremely useful when
you want to apply specific functionality to certain requests, for example, checking for a principal.

Interceptors located in the handler mapping must implement Handl er | nt er cept or from the

org. spri ngframewor k. web. servl et package. Thisinterface defines three methods, one that will be called
before the actual handler will be executed, one that will be called after the handler is executed, and onethat is
called after the complete request has finished. These three methods should provide enough flexibility to do all
kinds of pre- and post-processing.

Spring Framework Version 1.2.9 172

Web MV C framework

The pr eHandl e method returns a boolean value. Y ou can use this method to break or continue the processing of
the execution chain. When this method returnst r ue, the handler execution chain will continue, when it returns
false, the DispatcherServlet assumes the interceptor itself has taken care of requests (and, for example, rendered
an appropriate view) and does not continue executing the other interceptors and the actual handler in the
execution chain.

The following example provides an interceptor that intercepts all requests and reroutes the user to a specific
pageif the timeis not between 9 am. and 6 p.m.

<beans>
<bean i d="handl er Mappi ng"
cl ass="org. spri ngfranmewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="interceptors">

<list>
<ref bean="officeHourslnterceptor"/>
</list>

</ property>
<property nanme="mappi ngs">
<pr ops>
<prop key="/*.fornl>editAccount For nControl | er </ prop>
<prop key="/*.view' >editAccount FormControl | er </ prop>
</ props>
</ property>
</ bean>

<bean i d="of fi ceHour sl nterceptor"
cl ass="sanpl es. Ti nreBasedAccessl nt er cept or" >
<property nanme="openi ngTi me" ><val ue>9</ val ue></ property>
<property nanme="cl osi ngTi me" ><val ue>18</ val ue></ pr operty>
</ bean>
<beans>

package sanpl es;
public class Ti mreBasedAccessl nterceptor extends Handl erl nterceptorAdapter {

private int openingTi ne;

private int closingTine;

public void set Openi ngTi me(i nt openi ngTi me) {
t hi s. openi ngTi me = openi ngTi ne;

}

public void setC osingTine(int closingTinme) {
this.cl osingTime = cl osi ngTi ne;

publ i ¢ bool ean preHandl e(
Ht t pSer vl et Request request,
Ht t pSer vl et Response response
bj ect handl er)
throws Exception {
Cal endar cal = Cal endar. getl nstance();
int hour = cal.get(HOUR_COF_DAY);
i f (openingTime <= hour < closingTinme) {
return true;
} else {
response. sendRedi rect ("http://host.conf out si deCf fi ceHours. htm ") ;
return fal se;

}

Any reguest coming in, will be intercepted by the Ti reBasedAccessl nt er cept or, and if the current timeis
outside office hours, the user will be redirected to a static html file, saying, for example, he can only access the
website during office hours.

Asyou can see, Spring has an adapter to make it easy for you to extend the Handl er | nt er cept or .

13.5. Views and resolving them

Spring Framework Version 1.2.9 173

Web MV C framework

All MV C frameworks for web applications provide a way to address views. Spring provides view resolvers,
which enable you to render modelsin a browser without tying you to a specific view technology. Out of the
box, Spring enables you to use Java Server Pages, Velocity templatesand XSLT views, for example.
Chapter 14, Integrating view technol ogies has details of integrating various view technologies.

The two interfaces which are important to the way Spring handles views are Vi ewResol ver and Vi ew. The
Vi ewResol ver provides a mapping between view names and actual views. The vi ew interface addresses the
preparation of the request and hands the request over to one of the view technologies.

13.5.1. ViewResolvers

Asdiscussed in Section 13.3, “ Controllers’, all controllersin the Spring web MV C framework, return a
Model AndVi ew instance. Views in Spring are addressed by aview name and are resolved by aview resolver.
Spring comes with quite afew view resolvers. We'll list most of them and then provide a couple of examples.

Table 13.5. View resolvers

ViewResolver

Description

AbstractCachingViewResolver

An abstract view resolver which takes care of caching views. Often
views need preparation before they can be used, extending thisview
resolver provides caching of views.

XmlViewResolver

ResourceBundleViewResolver

An implementation of ViewResolver that accepts a configuration file
written in XML with the same DTD as Spring's bean factories. The
default configuration fileis/ WEB- | NF/ vi ews. xni .

An implementation of ViewResolver that uses bean definitionsin a
ResourceBundle, specified by the bundle basename. The bundleis
typically defined in a propertiesfile, located in the classpath. The
default file nameisvi ews. properti es.

UrIBasedViewResolver

Internal ResourceViewResolver

VeocityViewResolver /
FreeMarkerViewResolver

A simple implementation of ViewResolver that allows for direct
resolution of symbolic view names to URLSs, without an explicit
mapping definition. Thisis appropriate if your symbolic names match
the names of your view resources in a straightforward manner, without
the need for arbitrary mappings.

A convenience subclass of UrlBasedViewResolver that supports
InternalResourceView (i.e. Servlets and JSPs), and subclasses like
JstlView and TilesView. The view classfor all views generated by this
resolver can be specified via setViewClass. See
UrlBasedViewResolver's javadocs for details.

A convenience subclass of UrlBasedViewResolver that supports
VeocityView (i.e. Velocity templates) or FreeMarkerView respectively
and custom subclasses of them.

As an example, when using JSP for a view technology you can use the Ur | BasedVi ewResol ver . Thisview
resolver translates a view nameto a URL and hands the request over the RequestDispatcher to render the view.

<bean i d="vi ewResol ver"

cl ass="org. spri ngfranmewor k. web. servl et. vi ew. Ur| BasedVi ewResol ver" >
<property name="prefix"><val ue>/ VEB- | NF/ j sp/ </ val ue></ pr operty>
<property name="suffi x"><val ue>. j sp</val ue></ property>

Spring Framework Version 1.2.9

174

Web MV C framework

</ bean>

When returning t est as aviewname, this view resolver will hand the request over to the RequestDispatcher
that will send the request to/ WEB- I NF/ j sp/ t est . j sp.

When mixing different view technologiesin aweb application, you can use the ResourceBundleViewResolver:

<bean i d="vi ewResol ver"
cl ass="org. spri ngf ramewor k. web. servl et. vi ew. Resour ceBundl eVi ewResol ver" >
<property nanme="basenane"><val ue>vi ews</ val ue></ property>
<property nane="def aul t Par ent Vi ew' ><val ue>par ent Vi ew</ val ue></ pr operty>
</ bean>

The ResourceBundleViewResolver inspects the ResourceBundle identified by the basename, and for each view
it is supposed to resolve, it uses the value of the property [vi ewnane] . cl ass asthe view class and the value of
the property [vi ewnane] . url asthe view url. Asyou can see, you can identify a parent view, from which al
views in the propertiesfile sort of extend. Thisway you can specify a default view class, for example.

A note on caching - subclasses of Abst ract Cachi ngVi ewResol ver cache view instances they have resolved.
This greatly improves performance when using certain view technology. It's possible to turn off the cache, by
setting the cache property to false. Furthermore, if you have the requirement to be able to refresh a certain view
at runtime (for example when a Velacity template has been modified), you can use the

r emoveFronCache(String vi ewNane, Local e | oc) method.

13.5.2. Chaining ViewResolvers

Spring supports more than just one view resolver. This allows you to chain resolvers and, for example, override
specific views in certain circumstances. Chaining view resolversis pretty straightforward - just add more than
one resolver to your application context and, if necessary, set the or der property to specify an order.
Remember, the higher the order property, the later the view resolver will be positioned in the chain.

In the following example, the chain of view resolvers consists of two resolvers, a

I nt er nal Resour ceVi ewResol ver (Which isalways automatically positioned as the last resolver in the chain)
and an Xm Vi ewResol ver for specifying Excel views (which are not supported by the

Internal ResourceViewResol ver):

<bean id="j spVi ewResol ver" cl ass="org. spri ngfranmewor k. web. servl et. vi ew. | nt er nal Resour ceVi ewResol ver" >
<property name="vi ewCl ass" val ue="org. spri ngf ramewor k. web. servl et.vi ew Jstl View'/>
<property name="prefix" val ue="/WEB-|NF/jsp/"/>
<property name="suffix" value=".jsp"/>

</ bean>

<bean i d="excel Vi ewResol ver" cl ass="org. spri ngfranework. web. servl et. vi ew. Xnm Vi ewResol ver">
<property name="order" val ue="1"/>
<property nanme="l|ocation" val ue="/WEB-| NF/ vi ews. xm "/ >

</ bean>

vi ews. xm
<beans>

<bean name="report" cl ass="org.springframework. exanpl e. Report Excel Vi ew'/ >
</ beans>

If a specific view resolver does not result in aview, Spring will inspect the context to seeif other view
resolvers are configured. If there are additional view resolvers, it will continue to inspect them. If not, it will
throw an Exception.

Y ou have to keep something else in mind - the contract of a view resolver mentions that a view resolver can

Spring Framework Version 1.2.9 175

Web MV C framework

return null to indicate the view could not be found. Not all view resolvers do this however! Thisisbecausein
some cases, the resolver simply cannot detect whether or not the view exists. For example, the

I nt er nal Resour ceVi ewResol ver uses the RequestDispatcher internally, and dispatching is the only way to
figure out if a JSP exists -this can only be done once. The same holds for the VelocityViewResolver and some
others. Check the JavaDoc for the view resolver to seeif you're dealing with aview resolver that does not
report non-existing views. As aresult of this, putting an I nt er nal Resour ceVi ewResol ver inthechainina
place other than the last, will result in the chain not being fully inspected, since the

I nt er nal Resour ceVi ewResol ver Will always return aview!

13.5.3. Redirecting to views

As has been mentioned, a controller normally returns alogical view name, which aview resolver resolvesto a
particular view technology. For view tehcnologies such as JSPs that are actually processed viathe Servlet/JSP
engine, thisis normally handled via| nt er nal Resour ceVi ewResol ver /I nt er nal Resour ceVi ew which will
ultimately end up issuing an internal forward or include, viathe Servliet API's Request Di spat cher . f or war d()
Or Request Di spat cher . i ncl ude() . For other view technologies, such as Velocity, XSLT, etc., the view itself
produces the content on the response stream.

It is sometimes desireable to issue an HTTP redirect back to the client, before the view isrendered. Thisis
desireable for example when one controller has been called with POSTed data, and the responseis actually a
delegation to another controller (for example on a successful form submission). In this case, a normal internal
forward will mean the other controller will also see the same POST data, whih is potentially problematic if it
can confuse it with other expected data Another reason to do aredirect before displaying the result isthat this
will eliminate the possiblity of the user doing a double submission of form data. The browser will have sent the
initial POST, will have seen aredirect back and done a subsequent GET because of that, and thus asfar asit is
concerned, the current page does not reflect the result of a POST, but rather of a GET, so there is no way the
user can accidentally re-POST the same data by doing arefresh. The refresh would just force a GET of the
result page, not aresend of the initial POST data.

13.5.3.1. Redi rect Vi ew

One way to force aredirect as the result of a controller response is for the controller to create and return an
instance of Spring's Redi r ect Vi ew. In thiscase, Di spat cher Ser vl et will not use the normal view resolution
mechanism, but rather asit has been given the (redirect) view aready, will just ask it to do it's work.

The Redi rect Vi ewsimply ends up issuing an Ht t pSer vl et Response. sendRedi rect () cal, which will come
back to the client browser asan HTTP redirect. All model attributes are ssmply exposed as HTTP query
parameters. This does mean that the model must contain only objects (generally Strings or convertible to
Strings) which can be readily converted to a string-form HTTP query parameter.

If using RedirectView, and the view is created by the Controller itself, it is generally always preferable if the
redirect URL at least isinjected into the Controller, so that it is not baked into the controller but rather
configured in the context along with view names and the like.

13.5.3.2. The redirect: prefix

While the use of Redi rect Vi ewworks fing, if the controller itself is creating the Redi r ect Vi ew, thereisno
getting around the fact that the controller is aware that aredirection is happening. Thisis really suboptimal and
couples things too tightly. The controller should not really care about how the response gets handled. It should
generally think only in terms of view names, that have been injected into it.

The special redirect: prefix allows thisto be achived. If aview nameis returned which has the prefix redirect:,
then ur | BasedVi ewResol ver (and all subclasses) will recognize this as a specia indication that aredirect is

Spring Framework Version 1.2.9 176

Web MV C framework

needed. Therest of the view name will be treated as the redirect URL.

The net effect isthe same asif the controller had returned a Redi r ect Vi ew, but now the controller itself can
deal just in terms of logical view names. A logical view name such as

redirect:/nmy/response/ control | er. ht i will redirect relative to the current servlet context, while a name
such asredirect: http://myhost. conf some/ arbi trary/ path. ht i will redirect to an absolute URL. The
important thing isthat aslong is this redirect view name isinjected into the controller like any other logical
view name, the controller is not even aware that redirection is happening.

13.5.3.3. The forward: prefix

It isaso possible to use a specia forward: prefix for view names that will ultimately be resolved by

Ur | BasedVi ewResol ver and subclasses. All thisdoesis create an | nt er nal Resour ceVi ew (Which ultimately
does aRequest Di spat cher . f orwar d()) around the rest of the view name, which is considered a URL.
Therefore, there is never any use in using this prefix when using

I nt er nal Resour ceVi ewResol ver /I nt er nal Resour ceVi ew anyway (for JSPs for example), but it's of potential
use when you are primarilly using another view technology, but want to still be able to in some cases force a
forward to happen to aresource to be handled by the Servlet/JSP engine. Note that if you need to do thisalot
though, you may also just chain multiple view resolvers.

Aswith theredirect: prefix, if the view name with the prefix is just injected into the controller, the controller
does not have to be aware that anything special is happening in terms of handling the response.

13.6. Using locales

Most parts of Spring's architecture support internationalization, just as the Spring web MV C framework does.
DispatcherServlet enables you to automatically resolve messages using the client's locale. Thisis done with
Local eResol ver Objects.

When arequest comesin, the DispatcherServlet looks for alocale resolver and if it finds oneit triesto useit to
set the locale. Using the Request Cont ext . get Local e() method, you can always retrieve the local e that was
resolved by the locale resolver.

Besides the automatic locale resolution, you can also attach an interceptor to the handler mapping (see
Section 13.4.3, “Adding Handl er I nt er cept or s” for more information on handler mapping interceptors), to
change the locale under specific circumstances, based on a parameter in the request, for example.

Localeresolvers and interceptors are all defined inthe or g. spri ngf ranewor k. web. servl et . i 18n package, and
are configured in your application context in the normal way. Here is a selection of the locale resolvers
included in Spring.

13.6.1. Accept Header Local eResol ver

Thislocale resolver inspects the accept - | anguage header in the request that was sent by the browser of the
client. Usually this header field contains the locale of the client's operating system.

13.6.2. Cooki eLocal eResol ver

Thislocale resolver inspects a Cookie that might exist on the client, to seeif alocaleis specified. If so, it uses
that specific locale. Using the properties of thislocale resolver, you can specify the name of the cookie, as well
as the maximum age.

Spring Framework Version 1.2.9 177

Web MV C framework

<bean i d="| ocal eResol ver">
<property name="cooki eNanme" ><val ue>cl i ent| anguage</ val ue></ property>

<I-- in seconds. If set to -1, the cookie is not persisted (del eted when browser shuts down) -->
<property nane="cooki eMaxAge" ><val ue>100000</ val ue></ property>
</ bean>

Thisis an example of defining a Cookiel ocaleResolver.

Table 13.6. Special beansin the WebApplicationContext

Property Default Description
cookieName classname + The name of the cookie
LOCALE
cookieMaxAge Integer. MAX_INT The maximum time a cookie will stay persistent on the client. If

-1 is specified, the cookie will not be persisted. It will only be
available until the client shuts down his or her browser.

cookiePath / Using this parameter, you can limit the visibility of the cookie to
acertain part of your site. When cookiePath is specified, the
cookie will only be visible to that path, and the paths below it.

13.6.3. Sessi onLocal eResol ver

The sessi onLocal eResol ver allowsyou to retrieve locales from the session that might be associated with the
user's request.

13.6.4. Local eChangel nt er cept or

Y ou can build in changing of locales using the Local eChangel nt er cept or . Thisinterceptor needs to be added
to one of the handler mappings (see Section 13.4, “Handler mappings’). It will detect a parameter in the request
and changethe locale (it calls set Local e() onthe LocaleResolver that also exists in the context).

<bean i d="I| ocal eChangel nt er cept or"
cl ass="org. spri ngframewor k. web. servl et.i 18n. Local eChangel nt ercept or" >
<property nanme="paramNane" ><val ue>sit eLanguage</ val ue></ property>
</ bean>

<bean id="| ocal eResol ver"
cl ass="org. spri ngf ramewor k. web. servl et . i 18n. Cooki eLocal eResol ver"/>

<bean i d="url| Mappi ng"
cl ass="org. spri ngf ramewor k. web. servl et . handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="interceptors">

<list>
<ref bean="I|ocal eChangel nterceptor"/>
</list>

</ property>
<property nanme="nmappi ngs">
<pr ops>
<prop key="/**/*_view' >sonmeControll er</prop>
</ props>
</ property>
</ bean>

All callsto all *.view resources containing a parameter named si t eLanguage Will now change the locale. So a
call tohttp://ww:. sf. net/hone. vi ew?si t eLanguage=nl Will change the site language to Dutch.

Spring Framework Version 1.2.9 178

Web MV C framework

13.7. Using themes

13.7.1. Introduction

The theme support provided by the Spring web MV C framework enables you to further enhance the user
experience by allowing the look and feel of your application to be themed. A theme is basically a collection of
static resources affecting the visual style of the application, typically style sheets and images.

13.7.2. Defining themes

When you want to use themes in your web application you'll have to setup a

org. spri ngf ramewor k. ui . cont ext . TheneSour ce. The WebAppl i cati onCont ext interface extends

TheneSour ce but delegates its responsabilities to a dedicated implementation. By default the delegate will be a
org. springframewor k. ui . cont ext . support. Resour ceBundl eTheneSour ce that |oads properties files from the
root of the classpath. If you want to use a custom ThemeSour ce implementation or if you need to configure the
basename prefix of the Resour ceBundl eThemeSour ce, you can register a bean in the application context with
the reserved name "themeSource”. The web application context will automatically detect that bean and start
using it.

When using the Resour ceBundl eTheneSour ce, atheme is defined in a simple properties file. The propertiesfile
lists the resources that make up the theme. Here's an example:

styl eSheet =/ t henes/ cool / styl e. css
background=/t hemes/ cool /i mg/ cool Bg. j pg

The keys of the properties are the names used to refer to the themed elements from view code. For a JSP this
would typically be done using the spri ng: t hene custom tag, which isvery similar to the spri ng: nessage tag.
The following JSP fragment uses the theme defined above to customize the look and fed!:

<taglib prefix="spring" uri="http://ww.springfranework. org/tags"%
<ht nl >
<head>
<link rel ="styl esheet" href="<spring:theme code="styl eSheet"/>" type="text/css"/>
</ head>
<body background="<spring:thenme code="background"/>">
</ body>
</htm >

By default, the Resour ceBundl eThemeSour ce USes an empty basename prefix. As aresult the propertiesfiles
will be loaded from the root of the classpath, so we'll have to put our cool . properti es theme definitionin a
directory at the root of the classpath, e.g. in/WeB- I NF/ ¢l asses. Note that the Resour ceBundl eTheneSour ce
uses the standard Java resource bundle loading mechanism, allowing for full internationalisation of themes. For
instance, we could have a/ WEB- | NF/ ¢l asses/ cool _nl . properti es that references a specia background
image, e.g. with Dutch text on it.

13.7.3. Theme resolvers

Now that we have our themes defined, the only thing left to do is decide which theme to use. The

Di spat cher Servl et will look for a bean named "themeResolver" to find out which TheneResol ver
implementation to use. A theme resolver works in much the same way asaLocal Resol ver . It can detect the
theme that should be used for a particular request and can also alter the request's theme. The following theme
resolvers are provided by Spring:

Spring Framework Version 1.2.9 179

Web MV C framework

Table 13.7. ThemeResolver implementations

Class Description
FixedThemeResolver Selects a fixed theme, set using the "defaultThemeName" property.

SessionThemeResolver ~ The theme is maintained in the users HTTP session. It only needs to be set once
for each session, but is not persisted between sessions.

CookieThemeResolver The selected theme is stored in a cookie on the client's machine.

Spring also provides a ThemeChangel nt er cept or , which allows changing the theme on every request by
including a simple request parameter.

13.8. Spring's multipart (fileupload) support

13.8.1. Introduction

Spring has built-in multipart support to handle fileuploads in web applications. The design for the multipart
support is done with pluggable mul ti part Resol ver objects, defined in the

org. springframewor k. web. mul ti part package. Out of the box, Spring provides mul t i part Resol ver sfor use
with Commons FileUpload (http://jakarta.apache.org/commons/fileupload) and COS FileUpload
(http://www.servlets.com/cos). How uploading files is supported will be described in the rest of this chapter.

By default, no multipart handling will be done by Spring, as some developers will want to handle multiparts
themselves. Y ou will have to enableit yourself by adding a multipart resolver to the web application's context.
After you have done that, each request will be inspected to see if it contains a multipart. If no multipart is
found, the request will continue as expected. However, if amultipart is found in the request, the
MultipartResolver that has been declared in your context will be used. After that, the multipart attribute in your
request will be treated like any other attribute.

13.8.2. Using the Mul ti part Resol ver

The following example shows how to use the CormonsMul ti part Resol ver :

<bean i d="nul ti part Resol ver"
cl ass="org. spri ngfranmewor k. web. mul ti part. commons. CommonsMil ti part Resol ver" >

<l-- one of the properties available; the maximumfile size in bytes -->
<property nanme="naxUpl oadSi ze" >
<val ue>100000</ val ue>
</ property>
</ bean>

Thisis an example using the CosMul ti part Resol ver:

<bean i d="nul ti part Resol ver"
cl ass="org. spri ngframewor k. web. mul ti part.cos. CosMil ti part Resol ver">

<l-- one of the properties available; the maximumfile size in bytes -->
<property name="nmaxUpl oadSi ze" >
<val ue>100000</ val ue>
</ property>
</ bean>

Spring Framework Version 1.2.9 180

http://jakarta.apache.org/commons/fileupload
http://www.servlets.com/cos

Web MV C framework

Of course you need to stick the appropriate jars in your classpath for the multipart resolver to work. In the case
of the CommonsM ultipartResolver, you need to use conmons- f i | eupl oad. j ar, whilein the case of the
CosMultipartResolver, usecos. j ar .

Now that you have seen how to set Spring up to handle multipart requests, let's talk about how to actually use
it. When the Spring DispatcherServlet detects a Multipart request, it activates the resolver that has been
declared in your context and hands over the request. What it basically does is wrap the current

Ht t pSer vl et Request into amul ti part Hi t pSer vl et Request that has support for multiparts. Using the
MultipartHttpServletRequest you can get information about the multiparts contained by this request and
actually get the multiparts themselvesin your controllers.

13.8.3. Handling a fileupload in a form

After the MultipartResolver has finished doing its job, the request will be processed like any other. To use it,
you create aform with an upload field, then let Spring bind the file on your form. Just as with any other
property that's not automagically convertible to a String or primitive type, to be able to put binary datain your
beans you have to register a custom editor with the Ser vl et Request Dat abi nder . There are a couple of editors
available for handling files and setting the results on abean. There'sastri ngMil ti part Edi t or capable of
converting files to Strings (using a user-defined character set) and thereisaByt eArrayMuil ti part Edi t or Which
convertsfiles to byte arrays. They function just asthe Cust onDat eEdi t or does.

So, to be able to upload files using aform in awebsite, declare the resolver, a url mapping to a controller that
will process the bean, and the controller itself.

<beans>

<bean id="mul ti part Resol ver"
cl ass="org. spri ngframewor k. web. mul ti part. commons. CommonsMil ti part Resol ver"/>

<bean i d="url Mappi ng" cl ass="org. spri ngfranework. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="nmappi ngs" >
<pr ops>
<prop key="/upl oad. fornl'>fil eUpl oadControl | er </ prop>
</ props>
</ property>
</ bean>

<bean id="fil eUpl oadController" class="exanples. FileUpl oadController">
<property name="conmmandd ass" ><val ue>exanpl es. Fi | eUpl oadBean</ val ue></ property>
<property name="fornVi ew' ><val ue>fi | eupl oadf or nx/ val ue></ property>
<property name="successVi ew'><val ue>confirmati on</val ue></ property>

</ bean>

</ beans>

After that, create the controller and the actual bean to hold the file property

/1 snippet from Fil eUpl oadController
public class Fil eUpl oadControl | er extends SinpleFornmController {

prot ect ed Model AndVi ew onSubmi t (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response,
bj ect command,
Bi ndExcepti on errors)
throws Servl et Exception, | CException {

/| cast the bean
Fi | eUpl oadBean bean = (Fil eUpl oadBean) comrand

/] let's see if there's content there
byte[] file = bean.getFile();

Spring Framework Version 1.2.9 181

Web MV C framework

if (file == null) {
/1 hmm that's strange, the user did not upload anything
}

/1 well, let's do nothing with the bean for now and return
return super.onSubnit(request, response, command, errors);

}

protected void initBinder(
Ht t pSer vl et Request request,
Ser vl et Request Dat aBi nder bi nder)
throws Servl et Exception {
// to actually be able to convert Miltipart instance to byte[]
/1 we have to register a customeditor (in this case the
/1 ByteArrayMul tipartEditor
bi nder . regi st er Cust onEdi t or (byte[] . cl ass, new ByteArrayMil tipartFileEditor());
/1 now Spring knows how to handl e multipart object and convert them

}

/1 snippet from Fil eUpl oadBean
public class FileUpl oadBean {
private byte[] file;

public void setFile(byte[] file) {
this.file = file;
}

public byte[] getFile() {
return file;
}

}

Asyou can seg, the FileUploadBean has a property typed byte[] that holds the file. The controller registersa
custom editor to let Spring know how to actually convert the multipart objects the resolver has found to
properties specified by the bean. In these examples, nothing is done with the byte][] property of the bean itself,
but in practice you can do whatever you want (save it in a database, mail it to somebody, etc).

But we're still not finished. To actually let the user upload something, we have to create aform:

<htm >
<head>
<title>Upload a file please</title>
</ head>
<body>
<h1>Pl ease upload a file</hl>
<f orm nmet hod="post" action="upl oad. fornl' enctype="nultipart/formdata">
<input type="file" name="file"/>
<i nput type="submt"/>
</form
</ body>
</htm >

Asyou can see, we've created a field named after the property of the bean that holds the byte[]. Furthermore
we've added the encoding attribute which is necessary to let the browser know how to encode the multipart
fields (do not forget this!). Now everything should work.

13.9. Handling exceptions

Spring provides Handl er Except i onResol ver s t0 ease the pain of unexpected exceptions occurring while your
regquest is being handled by a controller which matched the request. Handl er Except i onResol ver s somewhat
resembl e the exception mappings you can define in the web application descriptor web. xm . However, they
provide amore flexible way to handle exceptions. They provide information about what handler was executing
when the exception was thrown. Furthermore, a programmatic way of handling exception gives you many more
options for how to respond appropriately before the request is forwarded to another URL (the same end result

Spring Framework Version 1.2.9 182

Web MV C framework

as when using the servlet specific exception mappings).

Besides implementing the Hand! er Except i onResol ver , which is only a matter of implementing the

resol veExcept i on(Excepti on, Handl er) method and returning aMdel AndVi ew, you may also use the

Si mpl eMappi ngExcept i onResol ver . Thisresolver enables you to take the class name of any exception that
might be thrown and map it to aview name. Thisis functionally equivalent to the exception mapping feature
from the Servlet API, but it's also possible to implement more fine grained mappings of exceptions from
different handlers.

Spring Framework Version 1.2.9 183

Chapter 14. Integrating view technologies

14.1. Introduction

One of the areasin which Spring excelsisin the separation of view technologies from the rest of the MVC
framework. For example, deciding to use Velocity or XSLT in place of an existing JSP is primarily a matter of
configuration. This chapter covers the major view technologies that work with Spring and touches briefly on
how to add new ones. This chapter assumes you are already familiar with Section 13.5, “Views and resolving
them” which covers the basics of how views in general are coupled to the MV C framework.

14.2. JSP & JSTL

Spring provides a couple of out-of-the-box solutions for JSP and JSTL views. Using JSP or JSTL isdone using
anormal viewresolver defined in the WebA pplicationContext. Furthermore, of course you need to write some
JSPsthat will actually render the view. This part describes some of the additional features Spring providesto
facilitate JSP devel opment.

14.2.1. View resolvers

Just as with any other view technology you're integrating with Spring, for JSPs you'll need aview resolver that
will resolve your views. The most commonly used view resolvers when developing with JSPs are the

I nt er nal Resour ceVi ewResol ver and the Resour ceBundl eVi ewResol ver . Both are declared in the

WebA pplicationContext:

The Resour ceBundl eVi ewResol ver:

<bean i d="vi ewResol ver" cl ass="org. spri ngframework. web. servl et. vi ew. Resour ceBundl eVi ewResol ver" >
<property name="basenane" val ue="vi ews"/>

</ bean>

And a sanple properties file is uses (views.properties in WEB-INF/cl asses):
wel cone. cl ass=or g. spri ngf ramewor k. web. servl et. vi ew. Jst| Vi ew
wel cone. url =/ VEB- | NF/ j sp/ wel cone. j sp

product Li st. cl ass=or g. spri ngf ramewor k. web. servl et. vi ew. Jst| Vi ew
product Li st. url =/ VEB- | NF/ j sp/ productlist.jsp

Asyou can see, the ResourceBundleViewResolver needs a properties file defining the view names mapped to
1) aclassand 2) a URL. With a ResourceBundleViewResolver you can mix different types of views using only
one resolver.

<bean i d="vi ewResol ver" cl ass="org. spri ngframework. web. servl et. vi ew. | nt er nal Resour ceVi ewResol ver" >
<property name="vi ewC ass" val ue="org. spri ngfranmewor k. web. servl et.view JstlView'/>
<property name="prefix" val ue="/WEB-|NF/jsp/"/>
<property name="suffix" value=".jsp"/>

</ bean>

The InternalResourceBundleViewResolver can be configured for using JSPs as described above. As a best
practice, we strongly encourage placing your JSP files in aadirectory under the WEB-INF directory, so there
can be no direct access by clients.

14.2.2. 'Plain-old' JSPs versus JSTL

Spring Framework Version 1.2.9 184

Integrating view technologies

When using Java Standard Tag Library you must use a special view class, the Jst | vi ew, as JSTL needs some
preparation before things such as the i18N features will work.

14.2.3. Additional tags facilitating development

Spring provides data binding of request parameters to command objects as described in earlier chapters. To
facilitate the development of JSP pages in combination with those data binding features, Spring provides afew
tags that make things even easier. All Spring tags have html escaping features to enable or disable escaping of
characters.

Thetag library descriptor (TLD) isincluded inthespri ng. j ar aswell in the distribution itself. More
information about the individual tags can be found online:
http://www.springframework.org/docs/taglib/index.html.

14.3. Tiles

Itis possible to integrate Tiles - just as any other view technology - in web applications using Spring. The
following describesin a broad way how to do this.

14.3.1. Dependencies

To be able to use Tiles you have to have a couple of additional dependenciesincluded in your project. The
following isthelist of dependencies you need.

e Struts version 1.1 or higher
* Commons BeanUtils

* Commons Di gester

e Conmons Lang

* Commons Loggi ng

These dependencies are all available in the Spring distribution.

14.3.2. How to integrate Tiles

To be ableto use Tiles, you have to configure it using files containing definitions (for basic information on
definitions and other Tiles concepts, please have alook at http://jakarta.apache.org/struts). In Spring thisis
done using the Ti | esConfi gur er . Have alook at the following piece of example ApplicationContext
configuration:

<bean id="tilesConfigurer" class="org.springframework.web.servlet.viewtiles.TilesConfigurer">
<property nanme="factoryC ass" val ue="org. apache.struts.tiles.xm Definition.|18nFactorySet"/>
<property name="definitions">
<list>
<val ue>/ WEB- | NF/ def s/ gener al . xm </ val ue>
<val ue>/ VEB- | NF/ def s/ wi dget s. xm </ val ue>
<val ue>/ \EEB- | NF/ def s/ admi ni strat or. xm </ val ue>
<val ue>/ VEB- | NF/ def s/ cust onmer . xm </ val ue>
<val ue>/ WEB- | NF/ def s/ t enpl at es. xm </ val ue>
</list>
</ property>
</ bean>

Asyou can see, there are five files containing definitions, which are al located in the WEB-INF/defs directory.

Spring Framework Version 1.2.9 185

http://www.springframework.org/docs/taglib/index.html
http://jakarta.apache.org/struts

Integrating view technologies

At initialization of the WebA pplicationContext, the files will be loaded and the definitionsfactory defined by
thef act oryd ass-property isinitialized. After that has been done, the tiles includesin the definition files can
be used as views within your Spring web application. To be able to use the views you have to have a

Vi ewResol ver just aswith any other view technology used with Spring. Below you can find two possibilities,
the ! nt er nal Resour ceVi ewResol ver and the Resour ceBundl eVi ewResol ver.

14.3.2.1. I nt er nal Resour ceVi ewResol ver

The Internal ResourceViewResol ver instantiates the given vi ewd ass for each view it has to resolve.

<bean id="vi ewResol ver" class="org. springframework. web. servl et.vi ew. | nt ernal Resour ceVi ewResol ver">
<property name="request ContextAttribute" val ue="request Context"/>
<property name="vi ewCl ass" val ue="org. springfranmework. web. servliet.viewtiles.TilesView'/>

</ bean>

14.3.2.2. Resour ceBundl eVi ewResol ver

The ResourceBundleViewResolver has to be provided with a property file containing viewnames and
viewclasses the resolver can use:

<bean i d="vi ewResol ver" cl ass="org. spri ngfranmewor k. web. servl et . vi ew. Resour ceBundl| eVi ewResol ver" >
<property nanme="basenane" val ue="vi ews"/>
</ bean>

wel coneVi ew. cl ass=or g. spri ngf ramewor k. web. servlet.view tiles. Til esVi ew
wel comeVi ew. ur | =wel cone (this is the name of a definition)

vet sVi ew. cl ass=or g. spri ngf ranewor k. web. servl et.view tiles. Til esView
vetsVi ew. url =vet sVi ew (again, this is the nanme of a definition)

fi ndOamner sForm cl ass=or g. spri ngf ramewor k. web. servl et. vi ew. Jst| Vi ew
fi ndOmer sForm url =/ WEB- | NF/ j sp/ fi ndOmners. j sp

Asyou can see, when using the ResourceBundleViewResolver, you can mix view using different view
technologies.

14.4. Velocity & FreeMarker

Ve ocity [http://jakarta.apache.org/vel ocity] and FreeMarker [http://www.freemarker.org] are two templating
languages that can both be used as view technol ogies within Spring MV C applications. The languages are quite
similar and serve similar needs and so are considered together in this section. For semantic and syntactic
differences between the two languages, see the FreeMarker [http://www.freemarker.org] web site.

14.4.1. Dependencies

Y our web application will need to include vel oci ty- 1. x. x. j ar Of freemar ker- 2. x. j ar in order to work with
Velocity or FreeMarker respectively and commons- col | ecti ons. j ar heeds also to be available for Velocity.
Typically they areincluded in the VeB- | NF/ 1'i b folder where they are guaranteed to be found by a J2EE server
and added to the classpath for your application. It is of course assumed that you already havethespring.jar in
your VEB- | NF/ 1 i b folder too! The latest stable velocity, freemarker and commons collections jars are supplied
with the Spring framework and can be copied from therelevant /1 i b/ sub-directories. If you make use of
Spring's dateT ool Attribute or numberTool Attribute in your Velocity views, you will also need to include the

Spring Framework Version 1.2.9 186

http://jakarta.apache.org/velocity
http://jakarta.apache.org/velocity
http://www.freemarker.org
http://www.freemarker.org
http://www.freemarker.org
http://www.freemarker.org

Integrating view technologies

vel ocity-tool s-generic-1.x.jar

14.4.2. Context configuration

A suitable configuration isinitialized by adding the relevant configurer bean definition to your *-servlet.xml as
shown below:

<l--
This bean sets up the Velocity environment for us based on a root path for tenplates.
Optionally, a properties file can be specified for nmore control over the Velocity
environnent, but the defaults are pretty sane for file based tenplate |oading
s
<bean id="vel ocityConfig" class="org. springfranmework. web. servl et.view vel ocity. Vel oci tyConfigurer">
<property name="resour ceLoader Pat h" val ue="/WEB-| NF/ vel ocity/"/>
</ bean>

<l--
Vi ew resol vers can al so be configured with ResourceBundles or XM. files. If you need
di fferent view resolving based on Local e, you have to use the resource bundl e resol ver.
-->
<bean i d="vi ewResol ver" cl ass="org. spri ngframework.web. servl et.view. vel ocity. Vel ocityVi ewResol ver">
<property nanme="cache" val ue="true"/>
<property name="prefix" val ue=""/>
<property name="suffix" value=".vn'/>
</ bean>

<!-- freemarker config -->

<bean i d="freemarker Config" class="org.springfranework.web. servl et.view freemarker. FreeMar ker Confi gurer">
<property name="tenpl at eLoader Pat h" val ue="/WEB- | NF/ f r eemar ker/"/ >

</ bean>

<l--
Vi ew resol vers can al so be configured with ResourceBundles or XM. files. If you need
di fferent view resolving based on Local e, you have to use the resource bundl e resol ver.
-->
<bean i d="vi ewResol ver" cl ass="org. spri ngframework. web. servl et. vi ew. freenarker. FreeMar ker Vi ewResol ver" >
<property nane="cache" val ue="true"/>
<property name="prefix" val ue=""/>
<property name="suffix" value=".ftl"/>
</ bean>

NB: For non web-apps add a Vel oci t yConf i gur at i onFact or yBean Or a
Fr eeMar ker Conf i gur at i onFact or yBean t0 your application context definition file.

14.4.3. Creating templates

Y our templates need to be stored in the directory specified by the * Conf i gur er bean shown abovein

Section 14.4.2, “ Context configuration” This document does not cover details of creating templates for the two
languages - please see their relevant websites for information. If you use the view resolvers highlighted, then
the logical view names relate to the template file names in similar fashion to I nt er nal Resour ceVi ewResol ver
for JSP's. So if your controller returns a Model AndView object containing aview name of "welcome" then the
resolverswill look for the/ WeB- | NF/ f r eemar ker / wel come. ft1 OF / EB- | NF/ vel oci t y/ wel come. vmtemplate
as appropriate.

14.4.4. Advanced configuration

The basic configurations highlighted above will be suitable for most application requirements, however
additional configuration options are available for when unusual or advanced requirements dictate.

14.4.4.1. velocity.properties

Spring Framework Version 1.2.9 187

Integrating view technologies

Thisfileis completely optional, but if specified, contains the values that are passed to the Velocity runtimein
order to configure velocity itself. Only required for advanced configurations, if you need thisfile, specify its
location on the Vel oci t yConf i gur er bean definition above.

<bean i d="vel oci tyConfig" class="org. springfranmework. web. servl et.view vel ocity. Vel ocityConfigurer">
<property name="configLocati on val ue="/WEB-1 N/ vel ocity. properties"/>
</ bean>

Alternatively, you can specify velocity properties directly in the bean definition for the Velocity config bean by
replacing the "configL ocation" property with the following inline properties.

<bean id="vel ocityConfig" class="org. springfranmework.web. servl et.view vel ocity. Vel oci tyConfigurer">
<property name="vel oci tyProperties">
<pr ops>
<prop key="resource. | oader">fil e</prop>
<prop key="file.resource. | oader.cl ass">
org. apache. vel ocity. runti me. resource. | oader. Fi | eResour ceLoader
</ prop>
<prop key="file.resource. | oader. path">${webapp. root}/WEB-| NF/ vel oci ty</ prop>
<prop key="file.resource.|oader.cache">fal se</ prop>
</ props>
</ property>
</ bean>

Refer to the API documentation

[http:/imww.springframework.org/docs/api/org/springframework/ui/vel ocity/V el acityEngineFactory.html] for
Spring configuration of Velocity, or the Velocity documentation for examples and definitions of the

vel oci ty. properti es fileitsaf.

14.4.4.2. FreeMarker

FreeMarker 'Settings and 'SharedV ariables' can be passed directly to the FreeMarker Confi gur at i on object
managed by Spring by setting the appropriate bean properties on the Fr eeMar ker Conf i gur er bean. The
freemarker Setti ngs property requiresaj ava. util . Properties object and thefreenarker Vari abl es
property requiresaj ava. util . Map.

<bean i d="freemarker Config" class="org. springfranmework. web. servl et.vi ew freemarker. FreeMar ker Confi gurer">
<property nanme="tenpl at eLoader Pat h" val ue="/WEB- | NF/ f r eenar ker/"/ >
<property nanme="freemarker Vari abl es" >
<map>
<entry key="xml _escape" ref="fnXm Escape"/>
</ map>
</ property>
</ bean>

<bean i d="f nXm Escape" class="freemarker.tenplate.utility.Xn Escape"/>

See the FreeMarker documentation for details of settings and variables as they apply to the Confi gurati on
object.

14.4.5. Bind support and form handling

Spring provides atag library for usein JSP's that contains (amongst other things) a<spri ng: bi nd> tag. Thistag
primarily enables formsto display values from form backing objects and to show the results of failed
validations from aval i dat or in the web or businesstier. From version 1.1, Spring now has support for the
same functionality in both Velocity and FreeMarker, with additional convenience macros for generating form
input elements themselves.

Spring Framework Version 1.2.9 188

http://www.springframework.org/docs/api/org/springframework/ui/velocity/VelocityEngineFactory.html
http://www.springframework.org/docs/api/org/springframework/ui/velocity/VelocityEngineFactory.html

Integrating view technologies

14.4.5.1. the bind macros

A standard set of macros are maintained within the spri ng. j ar file for both languages, so they are always
available to a suitably configured application. However they can only be used if your view sets the bean
property exposeSpri ngMacr oHel per s tot rue . The same property can be set on Vel oci t yVi ewResol ver Of

Fr eeMar ker Vi ewResol ver too if you happen to be using it, in which case al of your views will inherit the value
from it. Note that this property is not required for any aspect of HTML form handling except where you wish
to take advantage of the Spring macros. Below is an example of aview.properties file showing correct
configuration of such aview for either language;

per sonFor nV. cl ass=or g. spri ngf ramewor k. web. servl et. vi ew. vel ocity. Vel oci tyVi ew
per sonFor nV. ur | =per sonFor m vm
per sonFor nV. exposeSpri ngMacr oHel per s=true

per sonFor nF. cl ass=or g. spri ngf ramewor k. web. servl et . vi ew. fr eemar ker . Fr eeMar ker Vi ew
per sonFor nF. ur| =per sonForm ft|
per sonFor nF. exposeSpri ngMacr oHel per s=true

Some of the macros defined in the Spring libraries are considered internal (private) but no such scoping exists
in the macro definitions making all macros visible to calling code and user templates. The following sections
concentrate only on the macros you need to be directly calling from within your templates. If you wish to view
the macro code directly, the files are called spring.vm / spring.ftl and are in the packages

org. springframework. web. servl et. view. vel ocity Or

org. springframewor k. web. servl et . vi ew. f r eemar ker respectively.

14.4.5.2. simple binding

In your html forms (vm / ftl templates) that act asthe 'formView' for a Spring form controller, you can use code
similar to the following to bind to field values and display error messages for each input field in similar fashion
to the JSP equivalent. Note that the name of the command object is"command" by default, but can be
overridden in your MV C configuration by setting the ‘commandName' bean property on your form controller.
Example code is shown below for the per sonFor mv and per sonFor nF views configured earlier;

<l-- velocity macros are automatically available -->
<htm >
<form action="" nethod="POST" >

Nane:

#springBi nd("comrand. nane")
<input type="text"
name="${ st at us. expr essi on}"
val ue="$! st at us. val ue" />

#f oreach($error in $status. error Messages) $error
 #end

<i nput type="submt" val ue="submt"/>

</ forne
</htm >
<!-- freemarker macros have to be inported into a namespace. W strongly
recomend sticking to 'spring' -->
<#i nport "spring.ftl" as spring />
<ht m >
<form action="" nethod="POST" >
Name:

<@pring. bi nd "command. nane" />

<i nput type="text"
nane="${spri ng. st at us. expr essi on}"
val ue="${spri ng. status. val ue?defaul t ("")}" />

Spring Framework Version 1.2.9 189

Integrating view technologies

<#list spring.status.errorMssages as error> ${error}
 </ #list>

<input type="submt" val ue="submt"/>
</form

</htm >

#springBi nd / <@pri ng. bi nd> requires a'path’ argument which consists of the name of your command object
(it will be '‘command' unless you changed it in your FormController properties) followed by a period and the
name of the field on the command object you wish to bind to. Nested fields can be used too such as
"command.address.street”. The bi nd macro assumes the default HTML escaping behavior specified by the
ServletContext parameter def aul t Ht m Escape in web.xml

The optional form of the macro called #spri ngBi ndEscaped / <@pri ng. bi ndEscaped> takes a second
argument and explicitly specifies whether HTML escaping should be used in the status error messages or
values. Set to true or false as required. Additional form handling macros simplify the use of HTML escaping
and these macros should be used wherever possible. They are explained in the next section.

14.4.5.3. form input generation macros

Additional convenience macros for both languages simplify both binding and form generation (including
validation error display). It is never necessary to use these macros to generate form input fields, and they can be
mixed and matched with smple HTML or calls direct to the spring bind macros highlighted previously.

The following table of available macros show the VTL and FTL definitions and the parameter list that each
takes.

Table 14.1. table of macro definitions

macr o VTL definition FTL definition
message (output a string from a #spri ngMessage($code) <@pring. nessage code/ >
resource bundle based on the code
parameter)
messageT ext (output astring from #spri ngMessageText ($code <@pring. messageText code,
aresource bundle based on the $defaul t) defaul t/ >

code parameter, falling back to the
value of the default parameter)

url (prefix arelative URL withthe #springUrl ($rel ativeUrl) <@pring.url relativeUrl/>
application's context root)

formlnput (standard input field #spri ngFor m nput ($pat h <@pring. form nput path,
for gathering user input) $attributes) attributes, fieldType/>

formHiddenlnput * (hidden input #spri ngFor nHi ddenl nput ($path | <@pri ng. f or nHi ddenl nput
field for submitting non-user input) $attri but es) path, attributes/>

formPasswordlnput * (standard #spri ngFor nPasswor dl nput ($path <@bpri ng. f or rPasswor dl nput
input field for gathering $attribut es) path, attributes/>
passwords. Note that no value will

ever be populated in fields of this

type)

formTextarea (large text field for | #spri ngFor nifext ar ea($pat h <@pri ng. f or niText ar ea pat h,

Spring Framework Version 1.2.9 190

Integrating view technologies

macro

VTL definition

gathering long, freeform text input) | $attri but es)

formSingleSelect (drop down box
of options allowing asingle
required value to be selected)

formMultiSelect (alist box of
options alowing the user to select
0 or more values)

formRadioButtons (a set of radio
buttons allowing a single selection
to be made from the available
choices)

formCheckboxes (a set of
checkboxes allowing O or more
values to be selected)

showErrors (ssmplify display of
validation errors for the bound
field)

#spri ngFor nSSi ngl eSel ect (
$path $options $attributes)

#springFormvul ti Sel ect ($path
$options $attributes)

#spri ngFor nRadi oBut t ons($pat h
$opti ons $separat or
$attributes)

#spri ngFor nCheckboxes($pat h
$options $separat or
$attri butes)

#spri ngShowEr r or s($separ at or
$cl assOr Styl e)

FTL definition
attributes/>

<@pring. f ornti ngl eSel ect

path, options, attributes/>

<@pring.formvul ti Sel ect

path, options, attributes/>

<@pring. f or nRadi oBut t ons
pat h, options separator,

attributes/>

<@pri ng. f or nCheckboxes pat h,
options, separator,

attributes/>

<@pring. showkrrors

separator, classOrStylel/>

* In FTL (FreeMarker), these two macros are not actually required as you can use the normal f or nl nput
macro, specifying 'hi dden' or 'passwor d' asthe value for thefi el dType parameter.

The parameters to any of the above macros have consistent meanings:

* path: the name of the field to bind to (ie "command.name")

* options; aMap of all the available values that can be selected from in the input field. The keys to the map
represent the values that will be POSTed back from the form and bound to the command object. Map objects
stored against the keys are the label s displayed on the form to the user and may be different from the
corresponding values posted back by the form. Usually such amap is supplied as reference data by the
controller. Any Map implementation can be used depending on required behavior. For strictly sorted maps, a
Sor t edMap such asaTr eevap with a suitable Comparator may be used and for arbitrary Maps that should
return values in insertion order, use aLi nkedHashMap or aLi nkedMap from commons-collections.

* separator: where multiple options are available as discreet elements (radio buttons or checkboxes), the

sequence of characters used to separate each onein thelist (ie "
").

* atributes: an additional string of arbitrary tags or text to be included within the HTML tag itself. This string
is echoed literally by the macro. For example, in atextareafield you may supply attributes as 'rows="5"
cols="60"" or you could pass style information such as 'style="border:1px solid silver"'.

 classOrStyle: for the showErrors macro, the name of the CSS class that the span tag wrapping each error will
use. If no information is supplied (or the value is empty) then the errors will be wrapped in tags.

Examples of the macros are outlined below somein FTL and somein VTL. Where usage differences exist
between the two languages, they are explained in the notes.

14.4.5.3.1. Input Fields

Spring Framework Version 1.2.9

191

Integrating view technologies

<l-- the Nane field exanple from above using formmacros in VIL -->
Nane:
#spri ngFor m nput (" command. nane" "")

#spri ngShowEr ror s("
" "")

The formlnput macro takes the path parameter (command.name) and an additional attributes parameter which
isempty in the example above. The macro, along with al other form generation macros, performs an implicit
spring bind on the path parameter. The binding remains valid until a new bind occurs so the showErrors macro
doesn't need to pass the path parameter again - it simply operates on whichever field a bind was last created for.

The showErrors macro takes a separator parameter (the characters that will be used to separate multiple errors
on agiven field) and also accepts a second parameter, this time a class name or style attribute. Note that
FreeMarker is able to specify default values for the attributes parameter, unlike Velocity, and the two macro
calls above could be expressed asfollowsin FTL:

<@pring.form nput "command. nane"/>
<@pring. showerrors "
"/>

Output is shown below of the form fragment generating the name field, and displaying a validation error after
the form was submitted with no value in the field. Validation occurs through Spring's Validation framework.

The generated HTML looks like this:

Nane:
<i nput type="text" name="nane" val ue=""
>

r equi r ed</ b>

The formTextarea macro works the same way as the formlnput macro and accepts the same parameter list.
Commonly, the second parameter (attributes) will be used to pass style information or rows and cols attributes
for the textarea.

14.4.5.3.2. Selection Fields

Four selection field macros can be used to generate common Ul value selection inputsin your HTML forms.

formSingleSelect

formMulti Select

+ formRadioButtons

formCheckboxes

Each of the four macros accepts a Map of options containing the value for the form field, and the label
corresponding to that value. The value and the label can be the same.

An example of radio buttonsin FTL is below. The form backing object specifies a default value of ‘London’ for
thisfield and so no validation is necessary. When the form is rendered, the entire list of citiesto choose fromis
supplied as reference data in the model under the name ‘cityMap'.

Spring Framework Version 1.2.9 192

Integrating view technologies

Town:
<@pring. f or mMRadi oButt ons "command. addr ess. town", cityMap, "" />

Thisrenders aline of radio buttons, one for each value in ci t yMap using the separator "*. No additional
attributes are supplied (the last parameter to the macro is missing). The cityMap uses the same String for each
key-value pair in the map. The map's keys are what the form actually submits as POSTed request parameters,
map values are the label s that the user sees. In the example above, given alist of three well known citiesand a
default value in the form backing object, the HTML would be

Town:
<i nput type="radi 0" nane="address.town" val ue="London"

>

London

<i nput type="radi 0" nane="address.town" val ue="Paris"
checked="checked"

>

Pari s
<i nput type="radi 0" nane="address.town" val ue="New York"

>
New Yor k

If your application expects to handle cities by internal codes for example, the map of codes would be created
with suitable keys like the exampl e below.

protected Map referenceData(HttpServl et Request request) throws Exception {
Map cityMap = new Li nkedHashMap();
ci tyMap. put ("LDN', "London");
cityMap. put ("PRS", "Paris");
cityMap. put ("NYC', "New York");

Map m = new HashMap();
m put ("ci tyMap", cityMap)
return m

The code would now produce output where the radio values are the relevant codes but the user still seesthe
more user friendly city names.

Town:
<i nput type="radi 0" nane="address.town" val ue="LDN'

>

London

<i nput type="radi 0" nane="address.town" val ue="PRS"
checked="checked"

>

Pari s
<i nput type="radi 0" nane="address.town" val ue="NYC"

>
New Yor k

14.4.5.4. Overriding HTML escaping and making tags XHTML compliant

Default usage of the form macros above will result in HTML tags that are HTML 4.01 compliant and that use
the default value for HTML escaping defined in your web.xml as used by Spring's bind support. In order to
make the tags XHTML compliant or to override the default HTML escaping value, you can specify two
variablesin your template (or in your model where they will be visible to your templates). The advantage of
specifying them in the templates is that they can be changed to different values later in the template processing
to provide different behavior for different fields in your form.

Spring Framework Version 1.2.9 193

Integrating view technologies

To switch to XHTML compliance for your tags, specify avaue of 'true’ for a model/context variable named
xhtmlCompliant:

for Velocity..
#set ($spri ngXht m Conpl i ant = true)

<#-- for FreeMarker -->
<#tassi gn xhtm Conpliant = true in spring>

Any tags generated by the Spring macros will now be XHTML compliant after processing this directive.
In similar fashion, HTML escaping can be specified per field:

<#-- until this point, default HTM. escaping is used -->

<#assign htm Escape = true in spring>
<#-- next field will use HTM. escaping -->
<@pring. form nput "comand. nane" />

<#assign htm Escape = false in spring>
<#-- all future fields will be bound with HTM. escaping off -->

14.5. XSLT

XSLT isatransformation language for XML and is popular as a view technology within web applications.
XSLT can be agood choice as aview technology if your application naturally deals with XML, or if your
model can easily be converted to XML. The following section shows how to produce an XML document as
model data and have it transformed with XSLT in a Spring application.

14.5.1. My First Words

Thisexampleisatrivia Spring application that creates alist of words in the Controller and adds them to the
model map. The map is returned along with the view name of our XSLT view. See Section 13.3, “Controllers’
for details of Spring Control | ers. The XSLT view will turn the list of words into asimple XML document
ready for transformation.

14.5.1.1. Bean definitions

Configuration is standard for a simple Spring application. The dispatcher servlet config file contains a reference
to aVvi ewResol ver , URL mappings and asingle controller bean..

<bean i d="homeControl |l er"cl ass="xslt. HoneControl l er"/>

..that implements our word generation 'logic'.

14.5.1.2. Standard MVC controller code

The controller logic is encapsulated in a subclass of AbstractController, with the handler method being defined
like so..

prot ect ed Mbdel AndVi ew handl eRequest | nt er nal (
Ht t pSer vl et Request req,
Ht t pSer vl et Response resp)
throws Exception {

Map map = new HashMap();
Li st wordLi st = new ArrayList();

Spring Framework Version 1.2.9 194

Integrating view technologies

wor dLi st. add("hel | 0");
wor dLi st . add("world");

map. put ("wordLi st", wordList);

return new Mddel AndVi ew " hore", map);

So far we've done nothing that's XSLT specific. The model data has been created in the same way as you would
for any other Spring MV C application. Depending on the configuration of the application now, that list of
words could be rendered by JSP/JSTL by having them added as request attributes, or they could be handled by
Vel ocity by adding the object to the VelocityContext. In order to have XSLT render them, they of course have
to be converted into an XML document somehow. There are software packages available that will
automatically ‘domify' an object graph, but within Spring, you have complete flexibility to create the DOM
from your model in any way you choose. This prevents the transformation of XML playing too great apart in
the structure of your model data which is a danger when using tools to manage the domification process.

14.5.1.3. Convert the model data to XML

In order to create a DOM document from our list of words or any other model data, we subclass

org. spri ngframewor k. web. servl et . vi ew. xsl t. Abst ract Xsl t Vi ew. In doing so, we must implement the
abstract method cr eat eDomNode() . The first parameter passed to this method is our model Map. Here's the
complete listing of the HomePage classin our trivial word application - it uses JDOM to build the XML
document before converting it to the required W3C Node, but thisis simply because | find JDOM (and Dom4J)
easier API's to handle than the W3C API.

package xslt;
// inports omtted for brevity
public class HonmePage extends Abstract XsltView {

prot ect ed Node creat eDomNode(
Map nodel, String rootNane, H tpServl et Request req, HttpServl et Response res
) throws Exception {

org. jdom Docunment doc = new org.j dom Docunent () ;
El ement root = new El enent (r oot Nane) ;
doc. set Root El ement (root);

Li st words = (List) nodel.get("wordList");
for (lterator it = words.iterator(); it.hasNext();) {
String nextWerd = (String) it.next();
El enent e = new El enent ("word");
e. set Text (next Word) ;
r oot . addCont ent (€e) ;
}

/1 convert JDOM doc to a WBC Node and return
return new DOMOut putter (). output(doc);

14.5.1.3.1. Adding stylesheet parameters

A series of parameter name/value pairs can optionally be defined by your subclass which will be added to the
transformation object. The parameter names must match those defined in your XSLT template declared with
<xsl : par am nanme="nyPar ant >def aul t Val ue</ xs| : par an®> TO specify the parameters, override the method
get Paranet ers() from AbstractXdtView and return amap of the name/value pairs. If your parameters need to
derive information from the current request, you can (from version 1.1) override the

Spring Framework Version 1.2.9 195

Integrating view technologies

get Par amet er s(Ht t pSer vl et Request request) method instead.

14.5.1.3.2. Formatting dates and currency

Unlike JSTL and Velocity, XSLT has relatively poor support for locale based currency and date formatting. In
recognition of the fact, Spring provides a helper class that you can use from within your cr eat eDonNode()
methods to get such support. See the javadocs for

org. springframewor k. web. servl et. vi ew. xsl t. For mat Hel per

14.5.1.4. Defining the view properties

The views.propertiesfile (or equivalent xml definition if you're using an XML based view resolver aswedid in
the Velocity examples above) looks like this for the one-view application that is'My First Words..

hone. cl ass=xsl t . HonePage
home. st yl esheet Locat i on=/ V\EB- | NF/ xsl / hone. xsl t
hore. r oot =wor ds

Here, you can see how the view istied in with the HomePage class just written which handles the model
domification in the first property '.class. The stylesheetL ocation property obviously pointsto the XSLT file
which will handle the XML transformation into HTML for us and the final property ".root' is the name that will
be used as the root of the XML document. This gets passed to the HomePage class above in the second
parameter to the cr eat eDomNode method.

14.5.1.5. Document transformation

Finally, we have the XSLT code used for transforming the above document. As highlighted in the
views.propertiesfile, itiscalled hore. xsI t and it livesin the war file under VEB- | NF/ xsl .

<?xm version="1.0"?>

<xsl:styl esheet version="1.0" xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :output method="text/htm " omt-xm -decl aration="yes"/>

<xsl:tenplate match="/">
<ht nil >
<head><title>Hello! </title></head>
<body>

<h1>My First Words</hil>

<xsl : for-each sel ect ="wordLi st/word">
<xsl :val ue-of select="."/>

</ xsl : for-each>

</ body>
</htm >
</ xsl : tenpl at e>

</ xsl : styl esheet >

14.5.2. Summary

A summary of the files discussed and their location in the WAR fileis shown in the simplified WAR structure
below.

Pr oj ect Root

|
+- WebCont ent

I
+ VEB- | NF
I

+- cl asses

Spring Framework Version 1.2.9 196

Integrating view technologies

xsl t

+-
[

| +- HomePageControl |l er.cl ass
| +- HomePage. cl ass

I

+-

Vi ews. properties
+- spring.jar

+- hone. xsl t
frontcontrol |l er-servlet. xni
Y ou will also need to ensure that an XML parser and an XSLT engine are available on the classpath. JDK 1.4

provides them by default, and most J2EE containers will aso make them available by default, but it's a possible
source of errors to be aware of.

14.6. Document views (PDF/Excel)

14.6.1. Introduction

Returning an HTML page isn't always the best way for the user to view the model output, and Spring makes it
simple to generate a PDF document or an Excel spreadsheet dynamically from the model data. The document is
the view and will be streamed from the server with the correct content type to (hopefully) enable the client PC
to run their spreadsheet or PDF viewer application in response.

In order to use Excel views, you need to add the 'poi’ library to your classpath, and for PDF generation, the
iText.jar. Both areincluded in the main Spring distribution.

14.6.2. Configuration and setup

Document based views are handled in an almost identical fashionto XSLT views, and the following sections
build upon the previous one by demonstrating how the same controller used in the XSLT exampleisinvoked to
render the same model as both a PDF document and an Excel spreadsheet (which can also be viewed or
manipulated in Open Office).

14.6.2.1. Document view definitions

Firstly, let'samend the views.properties file (or xml equivalent) and add a simple view definition for both
document types. The entire file now looks like thiswith the XSLT view shown from earlier..

hore. cl ass=xsl t . HonePage

hone. st yl esheet Locat i on=/ \EB- | NF/ xsl / hone. xsl t
hore. r oot =wor ds

x| . cl ass=excel . HomePage

pdf . cl ass=pdf . HonePage

If you want to start with a template spreadsheet to add your model data to, specify the location as the 'url’
property in the view definition

14.6.2.2. Controller code

Spring Framework Version 1.2.9 197

Integrating view technologies

The controller code we'll use remains exactly the same from the XSLT example earlier other than to change the
name of the view to use. Of course, you could be clever and have this selected based on a URL parameter or
some other logic - proof that Spring really is very good at decoupling the views from the controllers!

14.6.2.3. Subclassing for Excel views

Exactly aswe did for the XSLT example, we'll subclass suitable abstract classesin order to implement custom
behavior in generating our output documents. For Excel, this involves writing a subclass of

org. springframewor k. web. servl et . vi ew. docunent . Abst r act Excel Vi ew (for Excel files generated by POI)
Or or g. spri ngf ramewor k. web. servl et . vi ew. docunent . Abst ract JExcel Vi ew (for JExcel Api-generated Excel
files). and implementing the bui | dExcel Document

Here's the complete listing for our POI Excel view which displays the word list from the model map in
consecutive rows of the first column of a new spreadshest..

package excel;
// inports omtted for brevity
public class HonePage extends Abstract Excel View {

protected void buil dExcel Docunent (
Map nodel ,
HSSFWor kbook wb,
Ht t pSer vl et Request req,
Ht t pSer vl et Response resp)
throws Exception {

HSSFSheet sheet;
HSSFRow sheet Row;
HSSFCel | cel | ;

I/l Go to the first sheet

/] getSheetAt: only if wb is created from an existing docunent
|/ sheet = wb. get SheetAt(0);

sheet = wb. creat eSheet ("Spring");

sheet . set Def aul t Col uimW dt h((short)12);

/]l wite a text at Al

cell = getCell(sheet, 0, 0);

set Text (cel |, " Spring- Excel test");

Li st words = (List) nodel.get("wordList");
for (int i=0; i < words.size(); i++) {

cell = getCell(sheet, 2+i, 0);
set Text (cell, (String) words.get(i));

And this aview generating the same Excel file, now using JExcel Api:

package excel;
// inmports omtted for brevity
public class HonePage extends Abstract Excel Vi ew {
protected voi d buil dExcel Docunent (Map nodel ,
Wit abl eWsr kbook whb,
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws Exception {

Wi tabl eSheet sheet = wb.createSheet("Spring");

sheet . addCel | (new Label (0, 0, "Spring-Excel test");

Spring Framework Version 1.2.9 198

Integrating view technologies

List words = (List)nodel.get("wordList");
for (int i =-; i < words.size(); i++) {

sheet . addCel | (new Label (2+i, O, (String)words.get(i));
}

Note the differences between the APIs. We've found that the JExcel Api is somewhat more intuitive and
furthermore, JExcel Api has a bit better image-handling capabilities. There have been memory problems with
large Excel file when using JExcel Api however.

If you now amend the controller such that it returnsxi as the name of the view (return new
Model AndVi ew(" xI ", map);) and run your application again, you should find that the Excel spreadsheet is
created and downloaded automatically when you request the same page as before.

14.6.2.4. Subclassing for PDF views

The PDF version of the word list is even simpler. Thistime, the class extends
org. springframewor k. web. servl et. vi ew. docunent . Abst r act Pdf Vi ew and implements the
bui | dPdf Docunent () method as follows..
package pdf;
/'l inmports onmitted for brevity
public cl ass PDFPage extends AbstractPdfView {
protected voi d buil dPdf Docurent (
Map nodel ,
Docunent doc,
Pdf Witer witer,
Ht t pSer vl et Request req,
Ht t pSer vl et Response resp)
throws Exception {
Li st words = (List) nodel.get("wordList");
for (int i=0; i<words.size(); i++)

doc. add(new Paragraph((String) words.get(i)));

}

Once again, amend the controller to return the pdf view with aret urn new Mdel AndVi ew(" pdf ", map); and
reload the URL in your application. Thistime a PDF document should appear listing each of the wordsin the
model map.

14.7. JasperReports
JasperReports (http://jasperreports.sourceforge.net) is a powerful, open-source reporting engine that supports

the creation of report designs using an easily understood XML file formats. JasperReportsis capable of
rendering reports output into four different formats. CSV, Excel, HTML and PDF.

14.7.1. Dependencies

Y our application will need to include the latest release of JasperReports, which at the time of writing was 0.6.1.
JasperReportsitself depends on the following projects:

* BeanShell

Spring Framework Version 1.2.9 199

http://jasperreports.sourceforge.net

Integrating view technologies

» Commons BeanUtils
» Commons Collections
» Commons Digester

» Commons Logging

o iText

« POI

JasperReports a so requires a JAXP compliant XML parser.

14.7.2. Configuration

To configure JasperReports views in your Appl i cat i onCont ext you have to define avi ewResol ver to map
view names to the appropriate view class depending on which format you want your report rendered in.

14.7.2.1. Configuring the Vi ewResol ver

Typically, you will use the Resour ceBundl eVi ewResol ver t0 map view namesto view classes and filesin a
propertiesfile

<bean id="vi ewResol ver" cl ass="org. springfranmewor k. web. servl et.vi ew. Resour ceBundl eVi ewResol ver" >
<property name="basenane" val ue="vi ews"/>
</ bean>

Here we've configured an instance of Resour ceBundl eVi ewResol ver which will look for view mappingsin the
resource bundle with base name vi ews. The exact contents of thisfileis described in the next section.

14.7.2.2. Configuring the vi ews

Spring contains five different View implementations for JasperReports four of which corresponds to one of the
four output formats supported by JasperReports and one that allows for the format to be determined at runtime:

Table 14.2. Jasper Reports vi ew Classes

Class Name Render Format

Jasper Repor t sCsvVi ew csv

Jasper Report sHt m Vi ew HTML

Jasper Report sPdf Vi ew PDF

Jasper Repor t sX| sVi ew Microsoft Excel

Jasper Report sMil ti For mat Vi ew Decided at runtime (see Section 14.7.2.4, “Using

Jasper Report sMul ti For mat Vi ew’

Mapping one of these classesto aview name and areport fileis simply a matter of adding the appropriate
entries into the resource bundle configured in the previous section as shown here:

Spring Framework Version 1.2.9 200

Integrating view technologies

si npl eReport. cl ass=org. spri ngframewor k. web. servl et. vi ew. j asperreports. Jasper Report sPdf Vi ew
si npl eReport. url =/ WEB- | NF/ report s/ Dat aSour ceReport.j asper

Here you can see that the view with name, si npl eReport , iS mapped to the Jasper Repor t sPdf Vi ew class. This
will cause the output of thisreport to be rendered in PDF format. Theur | property of the view is set to the
location of the underlying report file.

14.7.2.3. About Report Files

JasperReports has two distinct types of report file: the design file, which hasa. j rxm extension, and the
compiled report file, which hasa. j asper extension. Typically, you use the JasperReports Ant task to compile
your . jrxm designfileintoa.j asper file before deploying it into your application. With Spring you can map
either of these files to your report file and Spring will take care of compiling the . j rxni file on the fly for you.
Y ou should note that after a. j rxmi fileiscompiled by Spring, the compiled report is cached for the life of the
application. To make changes to the file you will need to restart your application.

14.7.2.4. Using Jasper Report sMil ti For mat Vi ew

The Jasper Report sMul ti For mat Vi ew allows for report format to be specified at runtime. The actual rendering
of the report is delegated to one of the other JasperReports view classes - the Jasper Repor t sMul ti For mat Vi ew
class simply adds awrapper layer that allows for the exact implementation to be specified at runtime.

The Jasper Repor t sMul ti For mat Vi ew class introduces two concepts: the format key and the discriminator key.
The Jasper Repor t sMul ti For mat Vi ew €lass uses the mapping key to lookup the actual view implementation
class and uses the format key to lookup up the mapping key. From a coding perspective you add an entry to
your model with the formay key as the key and the mapping key as the value, for example:

publ i c Model AndVi ew handl eSi npl eReport Mul ti (Ht t pSer vl et Request request,
Ht t pSer vl et Response response) throws Exception {

String uri = request. get Request URI ();
String format = uri.substring(uri.lastlndexOri(".") + 1);

Map nodel = get Model ();
nodel . put ("format", fornat);

return new Model AndVi ew(" si npl eReport Mul ti ", nodel);

In this example, the mapping key is determined from the extension of the request URI and is added to the
model under the default format key: f or mat . If you wish to use a different format key then you can configure
thisusing the f or mat Key property of the Jasper Report sMul ti For mat Vi ew Class.

By default the following mapping key mappings are configured in Jasper Repor t sMil ti For mat Vi ew.

Table 14.3. Jasper Repor tsM ultiFormatView Default M apping Key Mappings

Mapping Key View Class

csv Jasper Report sCsvVi ew
html Jasper Report sHt ml Vi ew
pdf Jasper Repor t sPdf Vi ew
xls Jasper Report sXl sVi ew

Spring Framework Version 1.2.9 201

Integrating view technologies

So in the example above arequest to URI /foo/myReport.pdf would be mapped to the Jasper Repor t sPdf Vi ew
class. Y ou can override the mapping key to view class mappings using the f or mat Mappi ngs property of
Jasper Report sMul ti For mat Vi ew.

14.7.3. Populating the Mbdel AndVi ew

In order to render your report correctly in the format you have chosen, you must supply Spring with all of the
data needed to populate your report. For JasperReports this means you must passin all report parameters along
with the report datasource. Report parameters are simple name/value pairs and can be added be to the vap for
your model as you would add any name/value pair.

When adding the datasource to the model you have two approaches to choose from. The first approach is to add
an instance of JRDat aSour ce Of Col | ect i on t0 the model Map under any arbitrary key. Spring will then locate
this object in the model and treat it as the report datasource. For example, you may populate your model like
this:

private Map get Model () {
Map nodel = new HashMap();
Col | ection beanData = getBeanData();
nodel . put (" nyBeanDat a", beanDat a) ;
return nodel ;

}

The second approach is to add the instance of JRDat aSour ce Or Col | ect i on under a specific key and then
configure thiskey using ther epor t Dat akey property of the view class. In both cases Spring will instances of
Col | ecti on in@JRBeanCol | ecti onDat aSour ce instance. For example:

private Map get Model () {
Map nodel = new HashMap();
Col | ection beanData = get BeanData();
Col | ection soneData = get SoneDat a() ;
nodel . put (" nyBeanDat a", beanDat a) ;
nodel . put ("soneDat a", soneDat a);
return nodel;

}

Here you can see that two Col | ect i on instances are being added to the model. To ensure that the correct oneis
used, we simply modify our view configuration as appropriate:

si nmpl eReport. cl ass=org. spri ngf ramewor k. web. servl et. vi ew. j asperreports. Jasper Report sPdf Vi ew
si npl eReport. url =/ WEB- | NF/ r eport s/ Dat aSour ceReport . j asper
si npl eReport . report Dat akey=nyBeanDat a

Be aware that when using the first approach, Spring will use the first instance of JRDat aSour ce Of Col | ecti on
that it encounters. If you need to place multiple instances of JRDat aSour ce Or Col | ect i on into the model then
you need to use the second approach.

14.7.4. Working with Sub-Reports

JasperReports provides support for embedded sub-reports within your master report files. There are awide
variety of mechanisms for including sub-reportsin your report files. The easiest way is to hard code the report
path and the SQL query for the sub report into your design files. The drawback of this approach is obvious - the
values are hard-coded into your report files reducing reusability and making it harder to modify and update
report designs. To overcome this you can configure sub-reports declaratively and you can include additional
datafor these sub-reports directly from your controllers.

Spring Framework Version 1.2.9 202

Integrating view technologies

14.7.4.1. Configuring Sub-Report Files

To control which sub-report files are included in a master report using Spring, your report file must be
configured to accept sub-reports from an external source. To do this you declare a parameter in your report file
like this:

<par anet er nanme="Product sSubReport" cl ass="net.sf.jasperreports. engi ne. Jasper Report"/>

Then, you define your sub-report to use this sub-report parameter:

<subreport >
<reportEl enent isPrintRepeatedVal ues="fal se" x="5" y="25" w dt h="325"
hei ght =" 20" i sRenpvelLi neWenBl ank="true" backcol or="#ffcc99"/>
<subr eport Paraneter name="Cty">
<subr eport Par anet er Expr essi on><! [CDATA[$F{ci ty}]] ></ subr epor t Par anet er Expr essi on>
</ subr eport Par anet er >
<dat aSour ceExpr essi on><! [CDATA[$P{ SubReport Dat a}]] ></ dat aSour ceExpr essi on>
<subreport Expressi on class="net.sf.jasperreports. engi ne. Jasper Report">
<! [CDATA[$P{ Pr oduct sSubReport}]] ></ subr eport Expr essi on>
</ subreport>

This defines a master report file that expects the sub-report to be passed in as an instance of
net.sf.jasperreports. engi ne. Jasper Report s under the parameter Pr oduct sSubRepor t . When configuring
your Jasper view class, you can instruct Spring to load areport file and pass into the JasperReports engine as a
sub-report using the subRepor t Ur | s property:

<property name="subReport Urls">
<map>
<entry key="Product sSubReport" val ue="/WEB-| NF/reports/subReportChild.jrxm"/>
</ map>
</ property>

Here, the key of the Map corresponds to the name of the sub-report parameter in th report design file, and the
entry isthe URL of the report file. Spring will load this report file, compiling it if necessary, and will passinto
the JasperReports engine under the given key.

14.7.4.2. Configuring Sub-Report Data Sources

This step is entirely optional when using Spring configure your sub-reports. If you wish, you can still configure
the data source for your sub-reports using static queries. However, if you want Spring to convert data returned
in your Model AndVi ew into instances of JRDat aSour ce then you need to specify which of the parametersin your
Mbdel AndVi ew Spring should convert. To do this configure the list of parameter names using the

subRepor t Dat aKeys property of the your chosen view class:

<property name="subReport Dat aKeys"
val ue="SubReport Dat a"/ >

Here, the key you supply MUST correspond to both the key used in your Mdel AndVvi ew and the key used in
your report design file.

14.7.5. Configuring Exporter Parameters

If you have special requirements for exporter configuration - perhaps you want a specific page size for your
PDF report, then you can configure these exporter parameters declaratively in your Spring configuration file
using the expor t er Par anet er s property of the view class. The expor t er Par anet er s property istyped as Map
and in your configuration the key of an entry should be the fully-qualified name of a static field that contains
the exporter parameter definition and the value of an entry should be the value you want to assign to the
parameter. An example of thisis shown below:

Spring Framework Version 1.2.9 203

Integrating view technologies

<bean id="htm Report" class="org. springfranmework. web. servl et.vi ew. jasperreports.Jasper ReportsH m Vi ew'>
<property name="url" val ue="/WEB-| NF/reports/sinpleReport.jrxm"/>
<property name="exporterParaneters">
<map>
<entry key="net.sf.jasperreports.engine. export.JRHt m Exporter Paranet er. HTM_._FOOTER" >
<val ue>Foot er by Spri ng!
&t;/td> & t;td w dt h="50% > ; &anp; nbsp; & t;/td> & t;/tr>
</table> & t;/body> & t;/htm >
</val ue>
</entry>
</ map>
</ property>
</ bean>

Here you can see that the Jasper Repor t sHt 1 Vi ew iS being configured with an exporter parameter for
net. sf.jasperreports. engi ne. export. JRH mi Export er Par amet er . HTM._FOOTER Which will output afooter
in the resulting HTML.

Spring Framework Version 1.2.9 204

Chapter 15. Integrating with other web frameworks

15.1. Introduction

Spring can be easily integrated into any Java-based web framework. All you need to do isto declare the

Cont ext Loader Li st ener
[http://www.springframework.org/docs/api/org/springframework/web/context/ContextL oaderListener.html] in
your web. xni and use a contextConfigLocation <context-param> to set which context filesto load.

The <context-param>:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ appl i cat i onCont ext *. xm </ par am val ue>
</ cont ext - par an>

The <listener>:

<li stener>
<l i stener-cl ass>org. spri ngfranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

NOTE: Listeners were added to the Servlet API in version 2.3. If you have a Servlet 2.2 container, you can use
the Cont ext Loader Ser vl et
[http://www.springframework.org/docs/api/org/springframework/web/context/ ContextL oader Servlet.html] to
achieve this same functionality.

If you don't specify the contextConfigLocation context parameter, the Cont ext Loader Li st ener will look for a
/WEB-1NF/applicationContext.xml file to load. Once the context files are loaded, Spring creates a

WebAppl i cat i onCont ext

[http://www.springframework.org/docs/api/org/springframework/web/context/\WebA pplicationContext.html]
object based on the bean definitions and puts it into the Ser v et Cont ext .

All Javaweb frameworks are built on top of the Servlet API, so you can use the following code to get the
Appl i cat i onCont ext that Spring created.

WebAppl i cati onCont ext ctx = WebApplicati onContextUils.get WbApplicati onCont ext (servl et Context);

ThewebAppl i cati onContext Utils
[http:/imwww.springframework.org/docs/api/org/springframework/web/context/support/WebA pplicationContextUtil s.ntml]
classisfor convenience, so you don't have to remember the name of the Ser vl et Cont ext attribute. Its
getWebApplicationContext() method will return null if an object doesn't exist under the

VebAppl i cat i onCont ext . ROOT_WEB_APPLI| CATI ON_CONTEXT_ATTRI BUTE key. Rather than risk getting

Null PointerExceptions in your application, it's better to use the getRequiredWebApplicationContext() method.

This method throws an Exception when the ApplicationContext is missing.

Once you have areference to the webAppl i cat i onCont ext , you can retrieve beans by their name or type. Most
devel opers retrieve beans by name, then cast them to one of their implemented interfaces.

Fortunately, most of the frameworks in this section have simpler ways of looking up beans. Not only do they
make it easy to get beans from the BeanFact or y, but they also alow you to use dependency injection on their
controllers. Each framework section has more detail on its specific integration strategies.

Spring Framework Version 1.2.9 205

http://www.springframework.org/docs/api/org/springframework/web/context/ContextLoaderListener.html
http://www.springframework.org/docs/api/org/springframework/web/context/ContextLoaderListener.html
http://www.springframework.org/docs/api/org/springframework/web/context/ContextLoaderServlet.html
http://www.springframework.org/docs/api/org/springframework/web/context/ContextLoaderServlet.html
http://www.springframework.org/docs/api/org/springframework/web/context/WebApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/web/context/WebApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/web/context/support/WebApplicationContextUtils.html
http://www.springframework.org/docs/api/org/springframework/web/context/support/WebApplicationContextUtils.html

Integrating with other web frameworks

15.2. JavaServer Faces

JavaServer Faces (JSF) is a component-based, event-driven web framework. According to Sun Microsystem's
JSF Overview [http://java.sun.com/j2eeljavaserverfaces/overview.html], JSF technology includes:

« A set of APIsfor representing Ul components and managing their state, handling events and input validation,
defining page navigation, and supporting internationalization and accessibility.

e A JavaServer Pages (JSP) custom tag library for expressing a JavaServer Faces interface within a JSP page.

15.2.1. DelegatingVariableResolver

The easiest way to integrate your Spring middle-tier with your JSF web layer is to use the

Del egati ngVari abl eResol ver

[http:/imww.springframework.org/docs/api/org/springframework/web/jsf/Del egatingV ariableResol ver.html]
class. To configure this variable resolver in your application, you'll need to edit your faces-context.xml. After
the opening <f aces- conf i g> element, add an <appl i cat i on> element and a<vari abl e-r esol ver > element
within it. The value of the variable resolver should reference Spring's Del egat i ngVari abl eResol ver :

<faces-config>
<appl i cati on>

<vari abl e-resol ver >or g. spri ngf ramewor k. web. j sf. Del egati ngVari abl eResol ver </ vari abl e-resol ver >

<l ocal e-confi g>
<defaul t -1 ocal e>en</def aul t -1 ocal e>
<support ed-| ocal e>en</ supported-1| ocal e>
<support ed- | ocal e>es</ supported- 1| ocal e>

</l ocal e-confi g>

<message- bundl e>nmessages</ nessage- bundl e>

</ appl i cation>

By specifying Spring's variable resolver, you can configure Spring beans as managed properties of your
managed beans. The Del egat i ngVari abl eResol ver Will first delegate value lookups to the default resolver of
the underlying JSF implementation, and then to Spring's root WebAppl i cat i onCont ext . Thisallowsyou to
easily inject dependencies into your JSF-managed beans.

Managed beans are defined in your f aces- confi g. xn file. Below is an example where #{userManager} isa
bean that's retrieved from Spring's BeanFact ory.

<managed- bean>
<managed- bean- nane>user Li st </ neanaged- bean- nane>
<managed- bean- cl ass>com what ever . j sf. User Li st </ managed- bean- cl ass>
<managed- bean- scope>r equest </ managed- bean- scope>
<managed- pr operty>
<property- nanme>user Manager </ pr opert y- nane>
<val ue>#{ user Manager } </ val ue>
</ managed- pr operty>
</ managed- bean>

The Del egat i ngVvari abl eResol ver isthe recommended strategy for integrating JSF and Spring. If you're
looking for more robust integration features, you might take a look at the JSF-Spring
[http://jsf-spring.sourceforge.net/] project.

15.2.2. FacesContextULtils

A custom VariableResolver works well when mapping your properties to beans in faces-config.xml, but at
times you may need to grab a bean explicitly. The FacesCont ext Uti | s

Spring Framework Version 1.2.9 206

http://java.sun.com/j2ee/javaserverfaces/overview.html
http://java.sun.com/j2ee/javaserverfaces/overview.html
http://www.springframework.org/docs/api/org/springframework/web/jsf/DelegatingVariableResolver.html
http://www.springframework.org/docs/api/org/springframework/web/jsf/DelegatingVariableResolver.html
http://jsf-spring.sourceforge.net/
http://jsf-spring.sourceforge.net/
http://www.springframework.org/docs/api/org/springframework/web/jsf/FacesContextUtils.html

Integrating with other web frameworks

http://www.springframework.org/docs/api/org/springframework/web/jsf/FacesContextUtils.ntml] class makes
thiseasy. It'ssimilar to webAppl i cati onCont ext Ut i | s, except that it takes aFacesCont ext parameter rather
than aSer vl et Cont ext parameter.

Appl i cationContext ctx = FacesContext Uil s. get WbApplicati onCont ext (FacesCont ext. get Currentl|nstance());

15.3. Struts

Struts [http://struts.apache.org] is the de facto web framework for Java applications, mainly because it was one
of the first to be released (June 2001). Invented by Craig McClanahan, Strutsis an open source project hosted
by the Apache Software Foundation. At the time, it greatly simplified the JSP/Servlet programming paradigm
and won over many devel opers who were using proprietary frameworks. It simplified the programming model,
it was open source, and it had alarge community, which alowed the project to grow and become popular
among Java web developers.

To integrate your Struts application with Spring, you have two options:

« Configure Spring to manage your Actions as beans, using the Cont ext Loader Pl ugi n, and set their
dependenciesin a Spring context file.

« Subclass Spring's ActionSupport classes and grab your Spring-managed beans explicitly using a
getWebApplicationContext() method.

15.3.1. ContextLoaderPlugin

The Cont ext Loader Pl ugi n
[http:/imvww.springframework.org/docs/api/org/springframework/web/struts/ContextL oaderPlugln.html] isa
Struts 1.1+ plug-in that loads a Spring context file for the Struts Act i onSer vl et . This context refers to the root
WebAppl i cati onCont ext (loaded by the Cont ext Loader Li st ener) asits parent. The default name of the
context file is the name of the mapped servlet, plus -serviet.xml. If Acti onSer vl et isdefined in web.xml as
<servl et - name>act i on</ ser vl et - name>, the default is /WEB-INF/action-serviet.xml.

To configure this plug-in, add the following XML to the plug-ins section near the bottom of your
struts-config.xml file:

<pl ug-in cl assNane="or g. spri ngf ramewor k. web. st ruts. Cont ext Loader Pl ugl n"/ >

The location of the context configuration files can be customized using the "contextConfigL ocation" property.

<pl ug-in cl assNane="org. spri ngf ramewor k. web. st rut s. Cont ext Loader Pl ugl n" >
<set-property property="contextConfigLocation"
val ue="/WEB- | NF/ acti on-servl et.xm . xm ,/WEB-| NF/ appl i cati onCont ext.xm "/ >
</ plug-in>

It is possible to use this plugin to load all your context files, which can be useful when using testing tools like
StrutsTestCase. StrutsTestCase's MockSt r ut sTest Case won't initialize Listeners on startup so putting all your
context filesin the plugin is aworkaround. A bug has been filed
[http://sourceforge.net/tracker/index.php?unc=detail & aid=1088866& group_id=39190& atid=424562] for this
issue.

After configuring this plug-in in struts-config.xml, you can configure your Action to be managed by Spring.
Spring 1.1.3 provides two ways to do this:

Spring Framework Version 1.2.9 207

http://www.springframework.org/docs/api/org/springframework/web/jsf/FacesContextUtils.html
http://struts.apache.org
http://struts.apache.org
http://www.springframework.org/docs/api/org/springframework/web/struts/ContextLoaderPlugIn.html
http://www.springframework.org/docs/api/org/springframework/web/struts/ContextLoaderPlugIn.html
http://sourceforge.net/tracker/index.php?func=detail&aid=1088866&group_id=39190&atid=424562
http://sourceforge.net/tracker/index.php?func=detail&aid=1088866&group_id=39190&atid=424562

Integrating with other web frameworks

¢ Override Struts default Request Processor with Spring's Del egat i ngRequest Processor .
« Usethe DelegatingActionProxy classin the type attribute of your <act i on- mappi ng>.

Both of these methods allow you to manage your Actions and their dependencies in the action-context.xml file.
The bridge between the Action in struts-config.xml and action-serviet.xml is built with the action-mapping's
"path" and the bean's "name". If you have the following in your struts-config.xml file:

<action path="/users" .../>

Y ou must define that Action's bean with the "/users' name in action-serviet.xml:

<bean nanme="/users" .../>

15.3.1.1. DelegatingRequestProcessor

To configure the Del egat i ngRequest Pr ocessor
[http://www.springframework.org/docs/api/org/springframework/web/struts/ Del egati ngReguestProcessor. html |
in your struts-config.xml file, override the "processorClass' property in the <controller> element. These lines
follow the <action-mapping> element.

<controller>
<set-property property="processorC ass"
val ue="or g. spri ngf ranewor k. web. st rut s. Del egati ngRequest Processor"/ >
</controller>

After adding this setting, your Action will automatically be looked up in Spring's context file, no matter what
the type. In fact, you don't even need to specify atype. Both of the following snippets will work:

<action path="/user" type="com whatever. struts. UserAction"/>
<action path="/user"/>

If you're using Struts' modules feature, your bean names must contain the module prefix. For example, an
action defined as <acti on pat h="/user"/> with module prefix "admin" reguires a bean name with <bean
name="/adm n/ user"/>.

NOTE: If you're using Tilesin your Struts application, you must configure your <controller> with the
Del egati ngTi | esRequest Processor

[http:/imvww.springframework.org/docs/api/org/springframework/web/struts/Del egating Til esRequestProcessor.html] .

15.3.1.2. DelegatingActionProxy

If you have a custom Request Processor and can't use the Del egat i ngTi | esRequest Pr ocessor , yOU Can use
the Del egat i ngAct i onPr oxy
[http://www.springframework.org/docs/api/org/springframework/web/struts/Del egatingA ctionProxy.html] as
the type in your action-mapping.

<action path="/user" type="org.springframework.web. struts. Del egati ngActi onProxy"
nanme="user Forni' scope="request" validate="fal se" paraneter="net hod">

<forward name="list" path="/userList.jsp"/>
<forward nanme="edit" path="/userFormjsp"/>
</ action>

The bean definition in action-serviet.xml remains the same, whether you use a custom Request Processor Of

Spring Framework Version 1.2.9 208

http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingRequestProcessor.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingRequestProcessor.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingTilesRequestProcessor.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingTilesRequestProcessor.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingActionProxy.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingActionProxy.html

Integrating with other web frameworks

the Del egat i ngAct i onPr oxy.

If you define your Action in acontext file, the full feature set of Spring's bean container will be available for it:
dependency injection as well as the option to instantiate a new Action instance for each request. To activate the
latter, add singleton="false" to your Action's bean definition.

<bean name="/user" singleton="fal se" autow re="byNanme"
cl ass="or g. exanpl e. web. User Acti on"/ >

15.3.2. ActionSupport Classes

As previously mentioned, you can retrieve the webAppl i cat i onCont ext from the Ser vl et Cont ext using the
WebA pplicationContextUtils class. An easier way is to extend Spring's Action classes for Struts. For example,
instead of subclassing Struts Action class, you can subclass Spring's Act i onSuppor t
[http:/imww.springframework.org/docs/api/org/springframework/web/struts/ActionSupport.html] class.

The Act i onSupport class provides additional convenience methods, like getWebApplicationContext(). Below is
an example of how you might use thisin an Action:

public class UserAction extends Di spatchActi onSupport {

public ActionForward execute(Acti onMappi ng mappi ng,
ActionForm form
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws Exception {
if (log.isDebugEnabled()) {
| og. debug("entering 'delete' method...");
}

WebAppl i cati onCont ext ctx = get WebAppli cati onContext();
User Manager ngr = (User Manager) ctx. get Bean("user Manager");

/1 talk to manager for business |ogic

return mappi ng. fi ndForward("success");

Spring includes subclasses for al of the standard Struts Actions - the Spring versions merely have Support
appended to the name:

* ActionSupport
[http:/imvww.springframework.org/docs/api/org/springframework/web/struts/A ctionSupport.html],
* Di spat chActi onSupport
[http://imww.springframework.org/docs/api/org/springframework/web/struts/DispatchA ctionSupport.html],
* LookupDi spat chActi onSupport
[http:/imww.springframework.org/docs/api/org/springframework/web/struts/L ookupDispatchA ctionSupport.htmi]
and
* Mappi ngDi spat chActi onSupport
[http:/iwww.springframework.org/docs/api/org/springframework/web/struts/M appi ngDi spatchA ctionSupport.html].

The recommended strategy is to use the approach that best suits your project. Subclassing makes your code
more readable, and you know exactly how your dependencies are resolved. However, using the

Cont ext Loader Pl ugi n alow you to easily add new dependenciesin your context XML file. Either way, Spring
provides some nice options for integrating the two frameworks.

15.4. Tapestry

Spring Framework Version 1.2.9 209

http://www.springframework.org/docs/api/org/springframework/web/struts/ActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/ActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/ActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/ActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DispatchActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DispatchActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/LookupDispatchActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/LookupDispatchActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/MappingDispatchActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/MappingDispatchActionSupport.html

Integrating with other web frameworks

Tapestry is a powerful, component-oriented web application framework from Apache's Jakarta project

(http://jakarta.apache.org/tapestry). While Spring has its own powerful web ui layer, there are a number of
unique advantages to building a J2EE application using a combination of Tapestry for the web ui, and the
Spring container for the lower layers. This document attempts to detail afew best practices for combining these

two frameworks. It is expected that you are relatively familiar with both Tapestry and Spring Framework

basics, so they will not be explained here. General introductory documentation for both Tapestry and Spring
Framework are available on their respective web sites.

15.4.1. Architecture

A typical layered J2EE application built with Tapestry and Spring will consist of atop Ul layer built with

Tapestry, and a number of lower layers, hosted out of one or more Spring Application Contexts.

* User Interface Layer:

- concerned with the user interface
- contains some application logic

- provided by Tapestry

- aside from providing Ul via Tapestry, code in this layer does its work via objects which implement
interfaces from the Service Layer. The actual objects which implement these service layer interfaces are
obtained from a Spring Application Context.

Service Layer:
- application specific 'service' code

- works with domain objects, and uses the Mapper API to get those domain objects into and out of some sort
of repository (database)

- hosted in one or more Spring contexts

- codein this layer manipulates objects in the domain model, in an application specific fashion. It doesits
work via other code in this layer, and viathe Mapper API. An object in thislayer is given the specific
mapper implementations it needs to work with, viathe Spring context.

- since code in this layer is hosted in the Spring context, it may be transactionally wrapped by the Spring
context, as opposed to managing its own transactions

Domain Model:
- domain specific object hierarchy, which deals with data and logic specific to this domain

- although the domain object hierarchy is built with the idea that it is persisted somehow and makes some
general concessionsto this (for example, bidirectional relationships), it generally has no knowledge of other
layers. As such, it may betested in isolation, and used with different mapping implementations for
production vs. testing.

- these objects may be standalone, or used in conjunction with a Spring application context to take advantage
of some of the benefits of the context, e.g., isolation, inversion of control, different strategy implementations,
etc.

Spring Framework Version 1.2.9 210

http://jakarta.apache.org/tapestry

Integrating with other web frameworks

e Data Source Layer:

- Mapper API (also called Data Access Objects): an APl used to persist the domain model to arepository of
some sort (generally a DB, but could be the filesystem, memory, etc.)

- Mapper APl implementations: one or more specific implementations of the Mapper API, for example, a
Hibernate-specific mapper, a JIDO-specific mapper, JDBC-specific mapper, or a memory mapper.

- mapper implementations live in one or more Spring Application Contexts. A service layer object is given
the mapper objects it needs to work with via the context.

» Database, filesystem, or other repositories:

- objectsin the domain model are stored into one or more repositories via one or more mapper
implementations

- arepository may be very simple (e.g. filesystem), or may have its own representation of the datafrom the
domain model (i.e. aschemain adb). It does not know about other layers howerver.

15.4.2. Implementation

The only real question (which needs to be addressed by this document), is how Tapestry pages get accessto
service implementations, which are simply beans defined in an instance of the Spring Application Context.

15.4.2.1. Sample application context

Assume we have the following simple Application Context definition, in xml form:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE beans PUBLI C "-//SPRI NG / DTD BEAN / EN'
“http://ww. springframewor k. org/dtd/spring-beans. dtd">

<beans>
<I-- CENERAL DEFI NI TI ONS -->
<I-- PERSI STENCE DEFI NI TI ONS -->
<!-- the DataSource -->

<bean i d="dat aSour ce" cl ass="org. springfranmework.jndi.Jndi Obj ect Fact oryBean">
<property nanme="j ndi Nane" ><val ue>j ava: Def aul t DS</ val ue></ pr operty>
<property name="resour ceRef " ><val ue>f al se</val ue></ property>

</ bean>

<I-- define a Hi bernate Session factory via a Spring Local Sessi onFact oryBean -->
<bean i d="hi bSessi onFact ory"

cl ass="org. spri ngframewor k. orm hi ber nat e. Local Sessi onFact or yBean" >

<property nanme="dat aSource"><ref bean="dataSource"/></property>
</ bean>

<l--
- Defines a transacti on manager for usage in business or data access objects.
- No special treatnment by the context, just a bean instance avail able as reference
- for business objects that want to handl e transactions, e.g. via TransactionTenpl ate
-->
<bean i d="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager" >
</ bean>

<bean i d="napper"

cl ass="com what ever . dat aaccess. mapper . hi ber nat e. Mapper | npl ">

<property name="sessi onFactory"><ref bean="hi bSessi onFactory"/></property>
</ bean>

<l-- BUSI NESS DEFI NI TI ONS -->

Spring Framework Version 1.2.9 211

Integrating with other web frameworks

<l-- AuthenticationService, including tx interceptor -->

<bean i d="aut henti cati onServi ceTarget"
cl ass="com what ever. servi ces. servi ce. user. Aut henti cati onServi cel npl ">
<property nanme="mapper"><ref bean="mapper"/></property>

</ bean>

<bean id="aut henti cati onService"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager"><ref bean="transacti onManager"/></property>
<property name="target"><ref bean="authenticati onServi ceTarget"/></property>
<property name="proxyl nterfacesOnl y"><val ue>true</val ue></ property>
<property nanme="transactionAttri butes">

<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>
<I-- UserService, including tx interceptor -->

<bean i d="user Servi ceTar get"
cl ass="com what ever. servi ces. servi ce. user. User Servi cel npl ">
<property nanme="mapper"><ref bean="mapper"/></property>
</ bean>
<bean id="user Service"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager"><ref bean="transacti onManager"/></property>
<property nanme="target"><ref bean="user Servi ceTarget"/></property>
<property nanme="proxyl nterfacesOnly"><val ue>true</val ue></ property>
<property name="transactionAttri butes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

</ beans>

Inside the Tapestry application, we need to load this application context, and allow Tapestry pagesto get the
authenticationService and userService beans, which implement the AuthenticationService and UserService
interfaces, respectively.

15.4.2.2. Obtaining beans in Tapestry pages

At this point, the application context is available to aweb application by calling Spring's static utility function
VebAppl i cati onCont ext Uti | s. get Appl i cati onCont ext (ser vl et Cont ext), where servletContext isthe
standard ser vl et Cont ext from the J2EE Servlet specification. As such, one simple mechanism for a page to
get an instance of the UserService, for example, would be with code such as:

WebAppl i cati onCont ext appCont ext = WebAppl i cati onContext Utils. get Appli cati onCont ext (
get Request Cycl e() . get Request Cont ext (). get Servl et (). get Servl et Context());

User Servi ce user Service = (User Service) appContext.get Bean("user Service");
sone code whi ch uses User Service

This mechanism does work. It can be made alot less verbose by encapsulating most of the functionality in a
method in the base class for the page or component. However, in some respects it goes against the Inversion of
Control approach which Spring encourages, which is being used in other layers of this app, in that ideally you
would like the page to not have to ask the context for a specific bean by name, and in fact, the page would
ideally not know about the context at all.

Luckily, there is a mechanism to allow this. We rely upon the fact that Tapestry already has a mechanism to
declaratively add propertiesto a page, and it isin fact the preferred approach to manage all properties on a page
in this declarative fashion, so that Tapestry can properly manage their lifecycle as part of the page and
component lifecycle.

15.4.2.3. Exposing the application context to Tapestry

Spring Framework Version 1.2.9 212

Integrating with other web frameworks

First we need to make the Appl i cat i onCont ext available to the Tapestry page or Component without having to
have the ser vi et Cont ext ; thisis because at the stage in the page's’component’s lifecycle when we need to
access the Appl i cat i onCont ext , the Ser vI et Cont ext won't be easily available to the page, so we can't use
WebAppl i cati onCont ext Utils. get Appl i cati onCont ext (servl et Cont ext) directly. Oneway is by defining a
custom version of the Tapestry | Engine which exposes this for us:

package com what ever.web. xportal ;
i mport
public class MyEngi ne extends org. apache.tapestry. engi ne. BaseEngi ne {

public static final String APPLI CATI ON CONTEXT_KEY = "appCont ext";

/**
* @ee org.apache. tapestry. engi ne. Abstract Engi ne#set upFor Request (or g. apache. t apestry. request . Request Cont ext
*/
protected voi d set upFor Request (Request Cont ext context) {
super . set upFor Request (cont ext) ;

/1 insert ApplicationContext in global, if not there
Map gl obal = (Map) getd obal ();
Appl i cationContext ac = (ApplicationContext) global.get(APPLI CATI ON_CONTEXT_KEY) ;
if (ac == null) {
ac = WebApplicationContext Uil s. get WebAppl i cati onCont ext (
cont ext. get Servl et (). get Servl et Cont ext ()

)
gl obal . put (APPLI CATI ON_CONTEXT_KEY, ac);

}

This engine class places the Spring Application Context as an attribute called "appContext” in this Tapestry
app's 'Global' object. Make sure to register the fact that this special |Engine instance should be used for this
Tapestry application, with an entry in the Tapestry application definition file. For example:

file: xportal.application:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE appl i cation PUBLIC
"-// Apache Software Foundation//Tapestry Specification 3.0//EN
"http://jakarta.apache. org/tapestry/dtd/ Tapestry_3_0.dtd">
<application
name="\\at ever xPortal"
engi ne- cl ass="com what ever . web. xportal . M/Engi ne" >
</ appl i cation>

15.4.2.4. Component definition files

Now in our page or component definition file (*.page or *.jwc), we simply add property-specification elements
to grab the beans we need out of the ApplicationContext, and create page or component properties for them.
For example:

<property-specificati on nane="user Servi ce"
type="com what ever. servi ces. servi ce. user. User Servi ce">
gl obal . appCont ext . get Bean(" user Servi ce")
</ property-specification>
<property-specificati on name="aut henti cati onService"
type="com what ever. servi ces. servi ce. user. Aut henti cati onServi ce" >
gl obal . appCont ext . get Bean("aut henti cati onServi ce")
</ property-specification>

The OGNL expression inside the property-specification specifies the initial value for the property, as a bean
obtained from the context. The entire page definition might look like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE page- speci ficati on PUBLI C

Spring Framework Version 1.2.9 213

Integrating with other web frameworks

"-// Apache Software Foundation//Tapestry Specification 3.0//EN'
"http://jakarta.apache. org/tapestry/dtd/ Tapestry_3 0.dtd">

<page- specification class="com what ever. web. xportal . pages. Logi n">

<property-specification name="usernanme" type="java.lang. String"/>
<property-specification name="password" type="java.lang.String"/>
<property-specification name="error" type="java.lang. String"/>
<property-specification name="cal | back" type="org.apache.tapestry. call back.|Call back" persistent="yes"/>
<property-specificati on nane="user Servi ce"
type="com what ever. servi ces. servi ce. user. User Servi ce">
gl obal . appCont ext . get Bean("user Servi ce")
</ property-specification>
<property-specificati on name="aut henti cati onService"
type="com what ever. servi ces. servi ce. user. Aut henti cati onServi ce" >
gl obal . appCont ext . get Bean("aut henti cati onServi ce")
</ property-specification>

<bean nane="del egate" cl ass="com what ever. web. xportal . Portal Val i dati onDel egate"/ >

<bean nanme="validator" class="org.apache.tapestry.valid.StringValidator" |ifecycle="page">
<set-property nane="required" expression="true"/>
<set-property nanme="clientScripti ngEnabl ed" expressi on="true"/>

</ bean>

<conponent id="i nput User name" type="ValidField">
<stati c-bi ndi ng nanme="di spl ayNane" val ue="User nane"/ >
<bi ndi ng nane="val ue" expressi on="user nane"/>
<bi ndi ng nane="val i dator" expressi on="beans.validator"/>
</ conponent >

<conponent id="i nput Password" type="ValidField">
<bi ndi ng nane="val ue" expressi on="password"/>
<bi ndi ng nanme="val i dator" expressi on="beans. val i dator"/>
<stati c-bi ndi ng name="di spl ayNanme" val ue="Password"/>
<bi ndi ng nanme="hi dden" expression="true"/>

</ conponent >

</ page- speci fi cati on>

15.4.2.5. Adding abstract accessors

Now in the Java class definition for the page or component itself, all we need to do is add an abstract getter
method for the properties we have defined, to access them. When the page or component is actually loaded by
Tapestry, it performs runtime code instrumentation on the classfile to add the properties which have been
defined, and hook up the abstract getter methods to the newly created fields. For example:

/'l our UserService inplenentation; will come from page definition

public abstract User Service get UserService();

// our AuthenticationService inplenentation; will come from page definition
public abstract AuthenticationService getAuthenticationService();

For compl eteness, the entire Java class, for alogin page in this example, might look like this:

package com what ever. web. xport al . pages;

/**
* Allows the user to login, by providing usernane and password.
* After successfully logging in, a cookie is placed on the client browser
* that provides the default username for future |ogins (the cookie
* persists for a week).
*/
public abstract class Login extends BasePage inplenents ErrorProperty, PageRenderListener {

/** the key under which the authenticated user object is stored in the visit as */
public static final String USER KEY = "user";

/**

* The nane of a cookie to store on the user's nachine that will identify
* them next tine they log in.

**/

private static final String COOKIE_NAME = Login. cl ass. get Nane() + ".usernane";

Spring Framework Version 1.2.9 214

Integrating with other web frameworks

private final

[l --

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

[l --

c
c

c
c

c

c

static int ONE WEEK = 7 * 24 * 60 * 60;

attributes

abstract
abstract

abstract
abstract

abstract
abstract

abstract

abstract

nmet hods

String getUsernane();
voi d setUsernane(String usernane);

String getPassword();
voi d set Password(String password);

| Cal | back get Cal | back();
voi d set Cal | back(I Cal | back val ue);

User Servi ce get User Service();

Aut henti cati onServi ce get Aut henti cati onService();

protected | ValidationDel egate getValidati onDel egate() {
return (1ValidationDel egate) getBeans().getBean("del egate");

}

protected void setErrorField(String conmponentld, String nessage) {
| For mConponent field = (I FornConponent) get Conponent (conponent|d);

I Val i dati onDel egat e del egate = getValidati onDel egate();
del egat e. set For nConponent (fi el d);
del egat e. recor d(new Val i dat or Except i on(nessage)) ;

EE A

*% [

Attenpts to | ogin.

<p>|f the user name is not known, or the password is invalid,
nmessage i s displ ayed.

public void attenptLogin(lRequestCycle cycle) {

String password = getPassword();

// Do alittle extra work to clear out the password.

set Password(nul |);
I Val i dati onDel egat e del egate = getVal i dati onDel egate();

del egat e. set For mConponent ((| For nmConponent) get Conponent ("i nput Password"));

del egat e. recor dFi el dl nput Val ue(nul |');

/1l An error,

froma validation field, may already have occurred.

i f (del egate. getHasErrors())

return;
try {
User user = getAuthenticationService().l|ogin(getUsernane(),
| ogi nUser (user, cycle);
}
catch (Fail edLogi nException ex) {
this.setError("Login failed: " + ex.getMessage());
return;
}
}
/**
* Sets up the {@ink User} as the |logged in user, creates
* a cookie for their usernane (for subsequent | ogins),
* and redirects to the appropriate page, or
* a specified page).
*
**/

public void | oginUser(User user, |RequestCycle cycle) {

String usernane = user.getUsernane();

/] Get the visit object; this will likely force the
Il creation of the visit object and an HttpSession.

then an error

get Password());

Spring Framework Version 1.2.9

215

Integrating with other web frameworks

Map visit = (Map) getVisit();
vi si t. put (USER_KEY, user);

I/ After logging in, go to the MLibrary page, unless otherw se
/'l specified.

| Cal | back cal | back = get Cal | back();

if (callback == null)
cycle.activate("Hone");

el se
cal | back. perforntal | back(cycle);

/! 1've found that failing to set a nmaxi num age and a path neans t hat
/1l the browser (IE 5.0 anyway) quietly drops the cookie.

| Engi ne engi ne = get Engi ne();

Cooki e cooki e = new Cooki e(COOKI E_NAME, usernane) ;
cooki e. set Pat h(engi ne. get Servl et Pat h());

cooki e. set MaxAge(ONE_WEEK) ;

/1 Record the user's usernane in a cookie
cycl e. get Request Cont ext () . addCooki e(cooki e) ;

engi ne. f or get Page(get PageNare()) ;
}

public void pageBegi nRender (PageEvent event) {
if (getUsernane() == null)
set User nane(get Request Cycl e() . get Request Cont ext () . get Cooki eVal ue(COOKI E_NAME)) ;

15.4.3. Summary

In this example, we've managed to allow service beans defined in the Spring Appl i cati onCont ext to be
provided to the page in a declarative fashion. The page class does not know where the service implementations
are coming from, and in fact it is easy to dlip in another implementation, for example, during testing. This
inversion of control is one of the prime goals and benefits of the Spring Framework, and we have managed to
extend it all the way up the J2EE stack in this Tapestry application.

15.5. WebWork

WebWork [http://www.opensymphony.com/webwork] is aweb framework designed with simplicity in mind.
It's built on top of XWork [http://www.opensymphony.com/xwork], which is a generic command framework.
XWork also has an 10C container, but it isn't as full-featured as Spring and won't be covered in this section.
WebWork controllers are called Actions, mainly because they must implement the Acti on
[http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/Action.html] interface. The

Act i onSuppor t [http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ActionSupport.html]
classimplementsthisinterface, and it is most common parent class for WebWork actions.

WebWork maintains its own Spring integration project, located on java.net in the xwork-optional
[https://xwork-optional .dev.java.net/] project. Currently, three options are available for integrating WebWork
with Spring:

¢ SpringObjectFactory: override XWork's default tbj ect Fact ory
[http:/imww.opensymphony.com/xwork/api/com/opensymphony/xwork/ObjectFactory.html] so XWork will
look for Spring beans in the root WebAppl i cat i onCont ext .

Spring Framework Version 1.2.9 216

http://www.opensymphony.com/webwork
http://www.opensymphony.com/webwork
http://www.opensymphony.com/xwork
http://www.opensymphony.com/xwork
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/Action.html
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/Action.html
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ActionSupport.html
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ActionSupport.html
https://xwork-optional.dev.java.net/
https://xwork-optional.dev.java.net/
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ObjectFactory.html
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ObjectFactory.html

Integrating with other web frameworks

e ActionAutowiringl nterceptor: use an interceptor to automatically wire an Action's dependencies asthey're
created.

« SpringExter nalReferenceResolver: ook up Spring beans based on the name defined in an <external -ref>
element of an <action> element.

All of these strategies are explained in further detail in WebWork's Documentation
[http://wiki.opensymphony.com/display/WW/WebWork+2+Spring+I ntegration).

Spring Framework Version 1.2.9 217

http://wiki.opensymphony.com/display/WW/WebWork+2+Spring+Integration
http://wiki.opensymphony.com/display/WW/WebWork+2+Spring+Integration

Chapter 16. Remoting and web services using
Spring

16.1. Introduction

Spring features integration classes for remoting support using various technologies. The remoting support eases
the development of remote-enabled services, implemented by your usual (Spring) POJOs. Currently, Spring
supports four remoting technologies:

* Remote Method Invocation (RMI). Through the use of the Rni Pr oxyFact or yBean and the
Rmi Ser vi ceExpor t er Spring supports both traditional RMI (with java.rmi.Remote interfaces and
java.rmi.RemoteException) and transparent remoting via RMI invokers (with any Java interface).

* Soring'sHTTP invoker. Spring provides a special remoting strategy which allows for Java serialization via
HTTP, supporting any Javainterface (just like the RMI invoker). The corresponding support classes are
Ht t pl nvoker ProxyFact or yBean and Ht t pl nvoker Ser vi ceExport er .

» Hessian. By using the Hessi anPr oxyFact or yBean and the Hessi anSer vi ceExpor t er you can transparently
expose your services using the lightweight binary HTTP-based protocol provided by Caucho.

« Burlap. Burlap is Caucho's XML-based alternative for Hessian. Spring provides support classes such as
Bur | apPr oxyFact or yBean and Bur | apSer vi ceExporter.

« JAX RPC. Spring provides remoting support for Web Services via JAX-RPC.

* JMS(TODO).

While discussing the remoting capabilities of Spring, we'll use the following domain model and corresponding
services:

/1 Account domai n obj ect
public class Account inplenents Serializabl e{
private String nane;

public String get Nanme();
public void setName(String name) {
thi s. name = nang;

}
}

/'l Account service
public interface AccountService {

public void insertAccount (Account acc);

public List getAccounts(String nane);

}

/'l Renote Account service
public interface RenoteAccount Servi ce extends Renpte {

public void insertAccount (Account acc) throws RenpteException;

public List getAccounts(String nane) throws RenoteException;

}

Spring Framework Version 1.2.9 218

Remoting and web services using Spring

/1 ... and correspondi ng inpl enent doing nothing at the nonent
public class Account Servicel npl inplenents Account Service {

public void insertAccount (Account acc) {
/1 do somet hi ng

}

public List getAccounts(String nane) {
/1 do sonet hi ng
}
}

We will start exposing the service to aremote client by using RMI and talk a bit about the drawbacks of using
RMI. WEell then continue to show an example for Hessian.

16.2. Exposing services using RMI

Using Spring's support for RMI, you can transparently expose your services through the RMI infrastructure.
After having this set up, you basically have a configuration similar to remote EJBs, except for the fact that there
is no standard support for security context propagation or remote transaction propagation. Spring does provide
hooks for such additional invocation context when using the RMI invoker, so you can for example plug in
security frameworks or custom security credentials here.

16.2.1. Exporting the service using the Rmi Servi ceExport er

Using the R Ser vi ceExpor t er , we can expose the interface of our AccountService object as RMI object. The
interface can be accessed by using Rni Pr oxyFact or yBean, or viaplain RMI in case of atraditional RMI
service. The Rni Ser vi ceExport er explicitly supports the exposing of any non-RMI services via RMI invokers.

Of course, wefirst have to set up our service in the Spring BeanFactory:

<bean i d="account Servi ce" cl ass="exanpl e. Account Servi cel npl ">
<l-- any additional properties, maybe a DAO? -->
</ bean>

Next we'll have to expose our service using the Rmi Ser vi ceExporter :

<bean cl ass="org. springfranmework. renmpting.rm . Rm Servi ceExporter">
<!-- does not necessarily have to be the same name as the bean to be exported -->
<property name="servi ceName" val ue="Account Servi ce"/>
<property name="service" ref="accountService"/>
<property name="servicelnterface" val ue="exanpl e. Account Servi ce"/>
<!-- defaults to 1099 -->
<property name="regi stryPort" val ue="1199"/>
</ bean>

Asyou can see, we're overriding the port for the RMI registry. Often, your application server also maintains an
RMI registry and it is wise to not interfere with that one. Furthermore, the service nameis used to bind the
service under. So right now, the service will be bound at r i : / / HOST: 1199/ Account Ser vi ce. W€l use the
URL later on to link in the service at the client side.

Note: We've left out one property, i.e. the ser vi cePor t property, which is 0 by default. This means an
anonymous port will be used to communicate with the service. You can specify a different port if you like.

Spring Framework Version 1.2.9 219

Remoting and web services using Spring

16.2.2. Linking in the service at the client

Our client is asimple object using the AccountService to manage accounts:

public class SinpleObject {
private Account Servi ce account Servi ce
public void set Account Servi ce(Account Servi ce account Service) {
thi s. account Servi ce = account Servi ce

}
}

Tolink in the service on the client, welll create a separate bean factory, containing the simple object and the
service linking configuration bits:

<bean cl ass="exanpl e. Si npl eMvj ect " >
<property nanme="account Servi ce" ref="account Service"/>
</ bean>

<bean i d="account Servi ce" cl ass="org. springframework.renoting.rm .Rm ProxyFact oryBean">
<property name="serviceU " value="rm ://HOST: 1199/ Account Servi ce"/ >
<property name="servicelnterface" val ue="exanpl e. Account Servi ce"/>

</ bean>

That's all we need to do to support the remote account service on the client. Spring will transparently create an
invoker and remotely enable the account service through the Rmi ServiceExporter. At the client we're linking it
in using the RmiProxyFactoryBean.

16.3. Using Hessian or Burlap to remotely call services via
HTTP

Hessian offers abinary HTTP-based remoting protocol. It's created by Caucho and more information about
Hessian itself can be found at http://www.caucho.com.

16.3.1. Wiring up the DispatcherServlet for Hessian

Hessian communicates via HT TP and does so using a custom servlet. Using Spring's DispatcherServlet
principles, you can easily wire up such a servlet exposing your services. First well have to create a new servlet
in your application (this an excerpt from web. xm):

<servl et >
<servl et - nane>r enot i ng</ ser vl et - nane>
<servl et - cl ass>or g. spri ngf ranewor k. web. servl et . Di spat cher Ser vl et </ servl et - cl ass>
<| oad- on- st art up>1</1| oad-on-start up>

</ servl et >

<servl et - mappi ng>
<servl et - nanme>r enot i ng</ servl et - nane>
<url-pattern>/renoting/*</url-pattern>
</ servl et - mappi ng>

Y ou're probably familiar with Spring's DispatcherServlet principles and if so, you know that now you'll have to
create an application context named r enot i ng- ser vl et . xni (after the name of your servlet) in the VeB- | NF
directory. The application context will be used in the next section.

Spring Framework Version 1.2.9 220

http://www.caucho.com

Remoting and web services using Spring

16.3.2. Exposing your beans by using the HessianServiceExporter

In the newly created application context called r enot i ng- servl et . xn , welll create a HessianServiceExporter
exporting your services:

<bean i d="account Servi ce" cl ass="exanpl e. Account Servi cel npl ">
<l-- any additional properties, maybe a DAO? -->
</ bean>

<bean nane="/ Account Servi ce" cl ass="org. spri ngfranework.renoting. caucho. Hessi anSer vi ceExporter">
<property name="service" ref="account Service"/>
<property nanme="servicel nterface" val ue="exanpl e. Account Servi ce"/ >

</ bean>

Now we're ready to link in the service at the client. No explicit handler mapping is specified, mapping request
URLs onto services, so BeanNameUrlHandlerMapping will be used: hence, the service will be exported at the
URL indicated through its bean name: ht t p: / / HOST: 8080/ r enot i ng/ Account Ser vi ce.

16.3.3. Linking in the service on the client

Using the Hessi anPr oxyFact or yBean We can link in the service at the client. The same principles apply as with
the RMI example. We'll create a separate bean factory or application context and mention the following beans
where the SimpleObject is using the AccountService to manage accounts:

<bean cl ass="exanpl e. Si npl e(oj ect " >
<property nanme="account Servi ce" ref="account Service"/>
</ bean>

<bean i d="account Servi ce" class="org. springfranmework. renoting. caucho. Hessi anPr oxyFact or yBean" >
<property name="serviceU|" value="http://renotehost: 8080/ Account Servi ce"/ >
<property nanme="servicel nterface" val ue="exanpl e. Account Servi ce"/ >

</ bean>

That's all thereisto it.

16.3.4. Using Burlap

We won't discuss Burlap, the XM L-based equivalent of Hessian, in detail here, sinceit is configured and set up
in exactly the same way as the Hessian variant explained above. Just replace the word Hessi an with Bur | ap and
you're al set to go.

16.3.5. Applying HTTP basic authentication to a service exposed through
Hessian or Burlap

One of the advantages of Hessian and Burlap is that we can easily apply HT TP basic authentication, because
both protocols are HTTP-based. Y our normal HTTP server security mechanism can easily be applied through
using theweb. xm security features, for example. Usually, you don't use per-user security credentials here, but
rather shared credentials defined at the Hessian/BurlapProxyFactoryBean level (similar to aJDBC
DataSource).

<bean cl ass="org. spri ngframewor k. web. servl et . handl er. BeanNameUr | Handl er Mappi ng" >
<property nanme="interceptors">
<list>
<ref bean="authorizationlnterceptor"/>

Spring Framework Version 1.2.9 221

Remoting and web services using Spring

</list>
</ property>
</ bean>

<bean i d="aut hori zati onl nterceptor"
cl ass="org. spri ngframewor k. web. servl et. handl er. User Rol eAut hori zati onl nt er cept or" >
<property nanme="aut hori zedRol es" >

<list>
<val ue>admi ni strat or </ val ue>
<val ue>oper at or </ val ue>
</list>
</ property>

</ bean>

This an example where we explicitly mention the BeanNameUrlIHandlerM apping and set an interceptor
allowing only administrators and operators to call the beans mentioned in this application context.

Note: Of course, this example doesn't show a flexible kind of security infrastructure. For more options as far as
security is concerned, have a look at the Acegi Security System for Soring, to be found at
http: //acegisecurity.sour ceforge.net.

16.4. Exposing services using HTTP invokers

As opposed to Burlap and Hessian, which are both lightweight protocols using their own slim serialization
mechanisms, Spring Http invokers use the standard Java serialization mechanism to expose services through
HTTP. This has a huge advantage if your arguments and return types are complex types that cannot be
serialized using the serialization mechanisms Hessian and Burlap use (refer to the next section for more
considerations when choosing a remoting technology).

Under the hood, Spring uses either the standard facilities provided by J2SE to perform HTTP calls or Commons
HttpClient. Use the latter if you need more advanced and easy-to-use functionality. Refer to
jakarta.apache.org/commong/httpclient [http://jakarta.apache.org/commong/httpclient] for more info.

16.4.1. Exposing the service object

Setting up the HTTP invoker infrastructure for a service objects much resembles the way you would do using
Hessian or Burlap. Just as Hessian support provides the Hessi anSer vi ceExpor t er , Spring Http invoker support
provides the so-called or g. spri ngf ramewor k. renot i ng. ht t pi nvoker . Htt pl nvoker Ser vi ceExporter. TO
expose the Account Ser vi ce (mentioned above), the following configuration needs to be in place:

<bean name="/ Account Servi ce" class="org.sprfr.renoting. httpi nvoker. Httpl nvoker Servi ceExporter">
<property nanme="service" ref="account Service"/>
<property name="servicel nterface" val ue="exanpl e. Account Servi ce"/>

</ bean>

16.4.2. Linking in the service at the client

Again, linking in the service from the client much resembles the way you would do it when using Hessian or
Burlap. Using a proxy, Spring will be able to trandate your callsto HTTP POST requests to the URL pointing
to the exported service.

<bean i d="htt pl nvoker Proxy" class="org.sprfr.renoting.httpinvoker. Httpl nvoker ProxyFact or yBean" >
<property name="serviceUr|" val ue="http://renotehost: 8080/ Account Servi ce"/ >
<property name="servicelnterface" val ue="exanpl e. Account Servi ce"/>

Spring Framework Version 1.2.9 222

http://acegisecurity.sourceforge.net
http://jakarta.apache.org/commons/httpclient
http://jakarta.apache.org/commons/httpclient

Remoting and web services using Spring

</ bean>

As mentioned before, you can choose what HTTP client you want to use. By default, the Httpl nvokerProxy
uses the 22SE HTTP functionality, but you can al so use the Commons HttpClient by setting the
ht t pl nvoker Request Execut or property:

<property nanme="htt pl nvoker Request Execut or" >
<bean cl ass="org. spri ngfranmewor k. renoti ng. htt pi nvoker. CommonsHt t pl nvoker Request Execut or "/ >
</ property>

16.5. Web Services

Spring has support for:

e Exposing services using JAX-RPC
» Accessing Web Services

Next to the support listed above, you can also expose your web services using XFire xfire.codehaus.org
[http://xfire.codehaus.org]. XFireis aligthweight SOAP library, currently in development at Codehaus.

16.5.1. Exposing services using JAX-RPC

Spring has a convenience base class for JAX-RPC servlet endpoint implementations -
Ser vl et Endpoi nt Support . TO expose our AccountService we extend Spring's ServletEndpointSupport class
and implement our business logic here, usualy delegating the call to the business layer.

*

JAX- RPC conpl i ant Renot eAccount Servi ce inpl ementation that sinply del egates
to the AccountService inplenmentation in the root web application context.

This wrapper class is necessary because JAX-RPC requires working with

RM interfaces. If an existing service needs to be exported, a w apper that
ext ends Servl et Endpoi nt Support for sinple application context access is
the sinplest JAX-RPC conpliant way.

This is the class registered with the server-side JAX-RPC i npl ement ati on.
In the case of Axis, this happens in "server-config.wsdd" respectively via
depl oynment calls. The Wb Service tool manages the life-cycle of instances
of this class: A Spring application context can just be accessed here.

E I S S I N I R 1

-~

public class Account Servi ceEndpoi nt extends Servl et Endpoi nt Support i npl ements Renpt eAccount Service {
private Account Service biz;
protected void onlnit() {

this.biz = (Account Servi ce) get WebAppli cati onCont ext (). getBean("account Servi ce");
}

public void insertAccount(Account acc) throws RenoteException {
bi z. i nsert Account (acc);
}

public Account[] getAccounts(String nanme) throws RenoteException {
return biz.get Account s(nane);
}

}

Our AccountServletEndpoint needs to run in the same web application as the Spring context to allow for access
to Spring'sfacilities. In case of Axis, copy the AxisServlet definition into your web.xml, and set up the

Spring Framework Version 1.2.9 223

http://xfire.codehaus.org
http://xfire.codehaus.org

Remoting and web services using Spring

endpoint in "server-config.wsdd" (or use the deploy tool). See the sample application JPetStore where the
OrderService is exposed as a Web Service using Axis.

16.5.2. Accessing Web Services

Spring has two factory beans to create web service proxies Local JaxRpcSer vi ceFact or yBean and

JaxRpcPor t ProxyFact or yBean. The former can only return a JAX-RPC Service class for us to work with. The
latter isthe full fledged version that can return a proxy that implements our business service interface. In this
example we use the later to create a proxy for the AccountService Endpoint we exposed in the previous
paragraph. Y ou will seethat Spring has great support for Web Services requiring little coding efforts - most of
the magic is done in the spring configuration file as usual:

<bean i d="account WebServi ce" cl ass="org. spri ngfranmework. renpting.jaxrpc.JaxRpcPort ProxyFact or yBean" >
<property name="servicelnterface">
<val ue>exanpl e. Renot eAccount Ser vi ce</ val ue>
</ property>
<property nanme="wsdl Docunent Ur| ">
<val ue>http:/ /1 ocal host: 8080/ account/servi ces/ account Servi ce?WsDL</ val ue>
</ property>
<property nanme="nanmespaceUri">
<val ue>http://1 ocal host: 8080/ account/ servi ces/ account Servi ce</ val ue>
</ property>
<property name="servi ceNanme" >
<val ue>Account Servi ce</ val ue>
</ property>
<property name="port Name" >
<val ue>Account Port </ val ue>
</ property>
</ bean>

Whereser vi cel nt er f ace iS our remote business interface the clients will use. wsdl Docunent Ur I isthe URL
for the WSDL file. Spring needs this a startup time to create the JAX-RPC Service. nanespaceUr i corresponds
to the targetNamespace in the .wsdl file. ser vi ceName corresponds to the serivce namein the .wsdl file.

por t Narre corresponds to the port name in the .wsdl file.

Accessing the Web Serviceis now very easy as we have a bean factory for it that will expose it as
Renot eAccount Ser vi ce interface. We can wire thisup in Spring:

<bean id="client" class="exanple.AccountCientlnpl">
<property name="service">
<ref bean="account WebServi ce"/>

</ property>
</ bean>

And from the client code we can access the Web Service just asif it was anormal class, except that it throws
RemoteException.

public class AccountCientlnpl {
private RenoteAccount Service service

public void set Servi ce(Renot eAccount Servi ce service) {
this.service = service

}
public void foo() {
try {
servi ce.insertAccount(...);
} catch (RenoteException e) {
/'l ouch
}
}

Spring Framework Version 1.2.9 224

Remoting and web services using Spring

We can get rid of the checked RemoteException since Spring supports automatic conversion to its
corresponding unchecked Renot eAccessExcept i on. This requires that we provide a non RMI interface also.
Our configuration is now:

<bean i d="account WebServi ce" class="org. springframework.renoting.]jaxrpc.JaxRpcPort ProxyFact oryBean">
<property nanme="servicel nterface">
<val ue>exanpl e. Account Servi ce</ val ue>
</ property>
<property name="portlnterface">
<val ue>exanpl e. Renot eAccount Ser vi ce</ val ue>
</ property>

</ bean>

Whereservi cel nt er f ace iSchanged to our non RMI interface. Our RMI interface is now defined using the
property port | nter f ace. Our client code can now avoid handling j ava. r ni . Renpt eExcept i on:

public class AccountClientlnpl {
private Account Service service

public void setService(Account Service service) {
this.service = service
}

public void foo() {
servi ce.insertAccount(...);
}

16.5.3. Register Bean Mappings
To transfer complex objects over the wire such as Account we must register bean mappings on the client side.

Note
On the server side using Axis registering bean mappingsis usually done in server-config.wsdd.

We will use Axisto register bean mappings on the client side. To do this we need to subclass Spring Bean
factory and register the bean mappings programmatic:

public class AxisPortProxyFactoryBean extends JaxRpcPort ProxyFact oryBean {

protected voi d post ProcessJaxRpcServi ce(Service service) {
TypeMappi ngRegi stry registry = service. get TypeMappi ngRegi stry();
TypeMappi ng mappi ng = regi stry. creat eTypeMappi ng();
r egi st er BeanMappi ng(mappi ng, Account.cl ass, "Account");
registry.register("http://schemas. xm soap. or g/ soap/ encodi ng/ ", nappi ng);

}

prot ected voi d registerBeanMappi ng(TypeMappi ng mappi ng, C ass type, String nane) {
Mane gNane = new QNanme("http://1 ocal host: 8080/ account/ servi ces/ account Servi ce", nane);
mappi ng. regi ster (type, gNane,
new BeanSeri al i zer Factory(type, gNane),
new BeanDeseri al i zer Factory(type, gNane));

Spring Framework Version 1.2.9 225

Remoting and web services using Spring

16.5.4. Registering our own Handler

In this section we will register our own j avax. rpc. xni . handl er. Handl er to the Web Service Proxy where we
can do custom code before the SOAP message is sent over the wire. Thej avax. rpc. xm . handl er. Handl er isa

callback interface. Thereis a convenience base class provided in jaxrpc.jar -
j avax. rpc. xm . handl er. Generi cHandl er that we will extend:

public class Account Handl er extends GenericHandl er {
public QNane[] get Headers() {

return null;

publ i ¢ bool ean handl eRequest (MessageCont ext context) {
SOAPMessageCont ext snt = (SOAPMessageCont ext) context;
SOAPMessage nsg = snt. get Message();

try {
SOAPEnvel ope envel ope = nsg. get SOAPPart (). get Envel ope();

SOAPHeader header = envel ope. get Header () ;

} catch (SOAPException e) {
t hrow new JAXRPCException(e);
}

return true;

}

What we need to do now isto register our AccountHandler to JAX-RPC Service so it would invoke
handl eRequest before the message is sent over the wire. Spring has at this time of writing no declarative

support for registering handlers. So we must use the programmeatic approach. However Spring has made it very

easy for usto do this as we can extend its bean factory and override its post ProcessJaxRpcSer vi ce method

that is designed for this:

public class Account Handl er JaxRpcPor t ProxyFact or yBean ext ends JaxRpcPort ProxyFact or yBean {

prot ected void postProcessJaxRpcServi ce(Service service) {
Mane port = new QNane(thi s. get NamespaceUri (), this.getPortName());
Li st list = service.getHandl er Regi stry(). get Handl er Chai n(port);
l'i st.add(new Handl er | nf o(Account Handl er. cl ass, null, null));

| ogger.info("Registered JAX-RPC Handler [" + AccountHandl er.cl ass. getNane() + "] on port "

}

And the last thing we must remember to do is to change the Spring configuration to use our factory bean:

<bean i d="account WebSer vi ce" cl ass="exanpl e. Account Handl er JaxRpcPor t Pr oxyFact or yBean" >

</ bean>

16.5.5. Exposing web services using XFire

+ port);

XFireisalightweight SOAP library, hosted by Codehaus. At the time of writing (March 2005), XFireisstill in
development. Although Spring support is stable, lots of features should be added in the future. Exposing XFire
is done using an XFire context that shipping with XFire itself in combination with a RemoteExporter-style bean

you have to add to your WebA pplicationContext.

Spring Framework Version 1.2.9

226

Remoting and web services using Spring

Aswith all methods that allow you to expose service, you have to create a DispatcherServlet with a
corresponding WebA pplicationContext containing the services you will be exposing:

<servl et >
<servl et - nane>xfire</servl et - nanme>
<servl et -cl ass>
org. springframewor k. web. servl et. Di spat cher Servl et
</servl et-cl ass>
</servl et >

You also have to link in the XFire configuration. Thisis done by adding a context file to the

cont ext Confi gLocat i ons context parameter picked up by the ContextLoaderListener (or Servlet for that
matter). The configuration file islocated in the XFire jar and should of course be placed on the classpath of
your application archive.

<cont ext - par an>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
cl asspat h: or g/ codehaus/ xfire/ spring/ xfire.xn
</ par am val ue>
</ cont ext - par an>

<li stener>
<l i stener-cl ass>
or g. spri ngf ramewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>
</listener>

After you added a servlet mapping (mapping /* to the XFire servlet declared above) you only have to add one
extra bean to expose the service using XFire. Add for example the following you xfi re-servl et . xm :

<beans>
<bean nanme="/Echo" cl ass="org. codehaus. xfire.spring. XFi reExporter">
<property name="service" ref="echo">
<property name="servicel nterface" val ue="org. codehaus. xfire. spring. Echo"/>
<property name="serviceBuilder" ref="xfire.serviceBuilder"/>

<l-- the XFire bean is wired up in the xfire.xm file you've linked in earlier
<property name="xfire" ref="xfire"/>
</ bean>

<bean i d="echo" cl ass="org. codehaus. xfire. spring. Echol npl "/ >
</ beans>

XFire handles the rest. It introspects your service interface and generates a WSDL from it. Parts of this
documentation have been taken from the XFire site. For more detailed information on XFire Spring integration,
have alook at the docs.codehaus.org/display/X FIRE/Spring [http://docs.codehaus.org/display/ X FIRE/Spring].

16.6. Auto-detection is not implemented for remote interfaces

The main reason why auto-detection of implemented interfaces does not occur for remote interfacesis to avoid
opening too many doors to remote callers. The target object might implement internal callback interfaces like
InitializingBean or DisposableBean which one would not want to expose to callers.

Offering a proxy with all interfaces implemented by the target usually does not matter in the local case. But
when exporting a remote service, you should expose a specific service interface, with specific operations
intended for remote usage. Besides internal callback interfaces, the target might implement multiple business

Spring Framework Version 1.2.9 227

http://docs.codehaus.org/display/XFIRE/Spring
http://docs.codehaus.org/display/XFIRE/Spring

Remoting and web services using Spring

interfaces, with just one of them intended for remote exposure. For these reasons, we require such a service
interface to be specified.

Thisis atrade-off between configuration convenience and the risk of accidental exposure of internal methods.
Always specifying a service interface is not too much effort, and puts you on the safe side regarding controlled
exposure of specific methods.

16.7. Considerations when choosing a technology

Each and every technology presented here has its drawbacks. Y ou should carefully consider you needs, the
services your exposing and the objects you'll be sending over the wire when choosing a technology.

When using RMI, it's hot possible to access the objects through the HTTP protocol, unless you're tunneling the
RMI traffic. RMI isafairly heavy-weight protocol in that it support full-object serialization which isimportant
when using a complex data model that needs serialization over the wire. However, RMI-JRMP istied to Java
clients: It is a Java-to-Java remoting solution.

Spring'sHTTP invoker isagood choice if you need HT TP-based remoting but also rely on Java serialization. It
shares the basic infrastructure with RMI invokers, just using HTTP as transport. Note that HTTP invokers are
not only limited to Java-to-Java remating but a so to Spring on both the client and server side. (The latter also
appliesto Spring's RMI invoker for non-RMI interfaces.)

Hessian and/or Burlap might provide significant value when operating in a heterogeneous environment,
because they explicitly allow for non-Java clients. However, non-Java support is still limited. Known problems
include the serialization of Hibernate objectsin combination with lazily initializing collections. If you have
such adatamodel, consider using RMI or HTTP invokersinstead of Hessian.

JMS can be useful for providing clusters of services and allowing the IMS broker to take care of load
balancing, discovery and auto-failover. By default Java serialization is used when using JM S remoting but the
JMS provider could use a different mechanism for the wire formatting, such as X Stream to allow serversto be
implemented in other technologies.

Last but not least, EJB has an advantage over RMI in that it supports standard role-based authentication and
authorization and remote transaction propagation. It is possible to get RMI invokers or HTTP invokers to
support security context propagation as well, although thisis not provided by core Spring: There are just
appropriate hooks for plugging in third-party or custom solutions here.

Spring Framework Version 1.2.9 228

Chapter 17. Accessing and implementing EJBs

Asalightweight container, Spring is often considered an EJB replacement. We do believe that for many if not
most applications and use cases, Spring as a container, combined with its rich supporting functionality in the
area of transactions, ORM and JDBC access, is a better choice than implementing equivalent functionality via
an EJB container and EJBs.

However, it isimportant to note that using Spring does not prevent you from using EJBs. In fact, Spring makes
it much easier to access EJBs and implement EJBs and functionality within them. Additionally, using Spring to
access services provided by EJBs allows the implementation of those servicesto later transparently be switched
between local EJB, remote EJB, or POJO (plain java object) variants, without the client code client code having
to be changed.

In this chapter, we look at how Spring can help you access and implement EJBs. Spring provides particular
value when accessing statel ess session beans (SLSBS), so welll begin by discussing this.

17.1. Accessing EJBs

17.1.1. Concepts

To invoke amethod on alocal or remote stateless session bean, client code must normally perform a JNDI
lookup to obtain the (local or remote) EJB Home object, then use a ‘create’ method call on that object to obtain
the actual (local or remote) EJB object. One or more methods are then invoked on the EJB.

To avoid repeated low-level code, many EJB applications use the Service Locator and Business Delegate
patterns. These are better than spraying JNDI lookups throughout client code, but their usual implementations
have significant disadvantages. For example:

» Typicaly code using EJBs depends on Service Locator or Business Delegate singletons, making it hard to
test

 Inthe case of the Service Locator pattern used without a Business Delegate, application code till ends up
having to invoke the create() method on an EJB home, and deal with the resulting exceptions. Thus it
remainstied to the EJB API and the complexity of the EJB programming model.

« Implementing the Business Delegate pattern typically resultsin significant code duplication, where we have
to write numerous methods that simply call the same method on the EJB.

The Spring approach is to allow the creation and use of proxy objects, normally configured inside a Spring
ApplicationContext or BeanFactory, which act as code-less business delegates. Y ou do not need to write
another Service Locator, another INDI lookup, or duplicate methods in a hand-coded Business Delegate unless
you're adding real value.

17.1.2. Accessing local SLSBs

Assume that we have aweb controller that needs to use alocal EJB. We'll follow best practice and use the EJB
Business Methods I nterface pattern, so that the EJB’slocal interface extends a non EJB-specific business
methods interface. Let’s call this business methods interface MyComponent.

public interface MyConmponent {

Spring Framework Version 1.2.9 229

Accessing and implementing EJBs

(One of the main reasons to the Business Methods Interface pattern is to ensure that synchronization between
method signatures in local interface and bean implementation class is automatic. Another reason isthat it later
makes it much easier for usto switch to a POJO (plain java object) implementation of the serviceif it makes
sense to do so) Of course we'll aso need to implement the local home interface and provide a bean
implementation class that implements SessionBean and the MyComponent business methods interface. Now
the only Java coding we'll need to do to hook up our web tier controller to the EJB implementation is to expose
a setter method of type MyComponent on the controller. This will save the reference as an instance variable in
the controller:

private MyConponent myConponent;

public void set MyConponent (MyConponent nyConponent) {
t hi s. myConponent = myConponent ;
}

We can subsequently use thisinstance variable in any business method in the controller. Now assuming we are
obtaining our controller object out of a Spring ApplicationContext or BeanFactory, we can in the same context
configure aLocal St at el essSessi onPr oxyFact or yBean instance, which will be EJB proxy object. The
configuration of the proxy, and setting of the myConponent property of the controller is done with a
configuration entry such as:

<bean i d="nyConponent"
cl ass="org. spri ngfranmework. ej b. access. Local St at el essSessi onPr oxyFact or yBean" >
<property name="j ndi Nane" val ue="rmyConponent"/>
<property name="busi nesslnterface" val ue="com mycom MyConponent "/ >
</ bean>

<bean i d="nyController" class="com nycom nyController">
<property name="nyConponent" ref="nmyConponent"/>
</ bean>

There’ salot of magic happening behind the scenes, courtesy of the Spring AOP framework, although you
aren’t forced to work with AOP concepts to enjoy the results. The myConponent bean definition creates a proxy
for the EJB, which implements the business method interface. The EJB local home is cached on startup, so
there' s only asingle JINDI lookup. Each time the EJB isinvoked, the proxy invokes the create() method on the
local EJB and invokes the corresponding business method on the EJB.

ThenyControl | er bean definition setsthe nyControl | er property of the controller classto this proxy.

This EJB access mechanism delivers huge simplification of application code: The web tier code (or other EJB
client code) has no dependence on the use of EJB. If we want to replace this EJB reference with a POJO or a
mock object or other test stub, we could simply change the myComponent bean definition without changing a
line of Java code. Additionally, we haven't had to write asingle line of JNDI lookup or other EJB plumbing
code as part of our application.

Benchmarks and experiencein real applications indicate that the performance overhead of this approach (which
involves reflective invocation of the target EJB) is minimal, and undetectable in typical use. Remember that we
don’t want to make fine-grained calls to EJBs anyway, as there’ s a cost associated with the EJB infrastructure
in the application server.

There is one caveat with regardsto the INDI lookup. In a bean container, this classis normally best used as a
singleton (there smply is no reason to make it a prototype). However, if that bean container pre-instantiates
singletons (as do the XML ApplicationContext variants) you may have a problem if the bean container is
loaded before the EJB container 10ads the target EJB. That is because the INDI lookup will be performed in the

Spring Framework Version 1.2.9 230

Accessing and implementing EJBs

init method of this class and cached, but the EJB will not have been bound at the target location yet. The
solution isto not pre-instantiate this factory object, but allow it to be created on first use. In the XML
containers, thisis controlled viathel azy-i ni t attribute.

Although thiswill not be of interest to the majority of Spring users, those doing programmatic AOP work with
EJBs may want to ook at Local SI sbl nvoker I nt er cept or .

17.1.3. Accessing remote SLSBs

Accessing remote EJBs is essentialy identical to accessing local EJBs, except that the

Si npl eRenpt eSt at el essSessi onPr oxyFact or yBean is used. Of course, with or without Spring, remote
invocation semantics apply; a call to amethod on an object in another VM in another computer does sometimes
have to be treated differently in terms of usage scenarios and failure handling.

Spring's EJB client support adds one more advantage over the non-Spring approach. Normally it is problematic
for EJB client code to be easily switched back and forth between calling EJBslocally or remotely. Thisis
because the remote interface methods must declare that they throw Renot eExcept i on, and client code must deal
with this, while the local interface methods don't. Client code written for local EJBs which needs to be moved
to remote EJBs typically has to be modified to add handling for the remote exceptions, and client code written
for remote EJBs which needs to be moved to local EJBs, can either stay the same but do alot of unnecessary
handling of remote exceptions, or needs to be modified to remove that code. With the Spring remote EJB
proxy, you can instead not declare any thrown Rerot eExcept i on in your Business Method Interface and
implementing EJB code, have aremote interface which isidentical except that it does throw Rerot eExcept i on,
and rely on the proxy to dynamically treat the two interfaces asif they were the same. That is, client code does
not have to deal with the checked Renot eExcept i on class. Any actual Renot eExcept i on that isthrown during
the EJB invocation will be re-thrown as the non-checked Renot eAccessExcept i on class, which is a subclass of
Runt i meExcept i on. The target service can then be switched at will between alocal EJB or remote EJB (or even
plain Java object) implementation, without the client code knowing or caring. Of course, thisis optional; there
is nothing stopping you from declaring Renot eExcept i ons in your business interface.

17.2. Using Spring convenience EJB implementation classes

Spring also provides convenience classes to help you implement EJBs. These are designed to encourage the
good practice of putting business logic behind EJBsin POJOs, leaving EJBs responsible for transaction
demarcation and (optionally) remoting.

To implement a Stateless or Stateful session bean, or Message Driven bean, you derive your implementation
class from Abst r act St at el essSessi onBean, Abst r act St at ef ul Sessi onBean, and
Abst ract MessageDr i venBean/Abst r act JnsMessageDr i venBean, respectively.

Consider an example Statel ess Session bean which actually delegates the implementation to a plain java service
object. We have the business interface:

public interface MyConponent {
public void nmyMethod(...);

We have the plain javaimplementation object:

public class MyConponent | npl inplenments MyConponent {
public String nmyMethod(...) {

}

Spring Framework Version 1.2.9 231

Accessing and implementing EJBs

And finally the Statel ess Session Bean itself:

public class MyConponent EJB ext ends Abstract St at el essSessi onBean
i mpl enents MyConponent {

My Conponent _nyConp;
/**

* Oobtain our PQJO service object fromthe BeanFactory/ Appli cati onCont ext
* @ee org.springfranmework. ej b. support. Abstract St at el essSessi onBean#onEj bCr eat e()
*/
protected void onEj bCreate() throws CreateException {
_nmyConp = (MyConponent) get BeanFact ory(). get Bean(
Ser vi cesConst ant s. CONTEXT_MYCOWVP_I D) ;
}

/1 for business nethod, delegate to PQIO service inpl.
public String nmyMethod(...) {

return _nmyConp. nyMet hod(...);
}

The Spring EJB support base classes will by default create and load a BeanFactory (or in this case, its
ApplicationContext subclass) as part of their lifecycle, which isthen available to the EJB (for example, as used
in the code above to obtain the POJO service object). The loading is done via a strategy object which isa
subclass of BeanFact or yLocat or . The actual implementation of BeanFact oryLocat or used by default is

Cont ext Jndi BeanFact or yLocat or , which creates the ApplicationContext from a resource locations specified as
aJNDI environment variable (in the case of the EJB classes, at j ava: conp/ env/ ej b/ BeanFact or yPat h). If
there is aneed to change the BeanFactory/A pplicationContext loading strategy, the default

BeanFact or yLocat or implementation used may be overridden by calling the set BeanFact or yLocat or ()
method, either in set Sessi onCont ext (), or in the actual constructor of the EJB. Please see the JavaDocs for
more details.

Asdescribed in the JavaDocs, Stateful Session beans expecting to be passivated and reactivated as part of their
lifecycle, and which use a non-serializable BeanFactory/ApplicationContext instance (which is the normal
case) will have to manually call unl oadBeanFact ory() and| oadBeanFact ory from ej bPassi vat e and

ej bAct i vat e, respectively, to unload and reload the BeanFactory on passivation and activation, since it can not
be saved by the EJB container.

The default usage of Cont ext Jndi BeanFact or yLocat or to load an ApplicationContext for the use of the EJB is
adequate for some situations. However, it is problematic when the ApplicationContext is loading a number of
beans, or the initialization of those beans is time consuming or memory intensive (such as a Hibernate
SessionFactory initialization, for example), since every EJB will have their own copy. In this case, the user may
want to override the default Cont ext IJndi BeanFact or yLocat or usage and use another BeanFact or yLocat or
variant, such as Cont ext Si ngl et ongeanFact or yLocat or &, Which can load and use a shared BeanFactory or
ApplicationContext to be used by multiple EJBs or other clients. Doing thisisrelatively simple, by adding code
similar to this to the EJB:

/**

* Override default BeanFactorylLocator inplenmentation

*

* @ee javax.ejb. Sessi onBean#set Sessi onCont ext (j avax. ej b. Sessi onCont ext)

*/

public voi d set Sessi onCont ext (Sessi onCont ext sessi onContext) {

super . set Sessi onCont ext (sessi onCont ext) ;
set BeanFact or yLocat or (Cont ext Si ngl et onBeanFact oryLocat or. get I nstance());
set BeanFact or yLocat or Key(Ser vi cesConst ant s. PRI MARY_CONTEXT_I D) ;

Spring Framework Version 1.2.9 232

Accessing and implementing EJBs

Please see the respective JavaDocs for BeanFact or yLocat or and Cont ext Si ngl et onBeanFact oryLocat or e for
more information on their usage.

Spring Framework Version 1.2.9 233

Chapter 18. IMS

18.1. Introduction

Spring provides a JM S abstraction framework that simplifies the use of the IMS API and shields the user from
differences between the IMS 1.0.2 and 1.1 APIs.

JMS can be roughly divided into two areas of functionality, production and consumption of messages. In a
J2EE environment, the ability to consume messages asynchronously is provided for by message-driven beans
while in a standalone application thisis provided for by the creation of Messagel isteners or
ConnectionConsumers. The functionality in JnsTemplate is focused on producing messages. Future releases of
Spring will address asynchronous message consumption in a standal one environment.

The package or g. spri ngf ramewor k. j ms. cor e provides the core functionality for using JMS. It contains IMS
template classes that simplifies the use of the IMS by handling the creation and release of resources, much like
the JdbcTenpl at e does for IDBC. The design principle common to Spring template classes is to provide helper
methods to perform common operations and for more sophisticated usage, delegate the essence of the
processing task to user implemented callback interfaces. The JIM S templ ate follows the same design. The
classes offer various convenience methods for the sending of messages, consuming a message synchronously,
and exposing the JM S session and message producer to the user.

The package or g. spri ngf ramewor k. j ms. support provides JM SException trandation functionality. The
tranglation converts the checked JM SException hierarchy to amirrored hierarchy of unchecked exceptions. If
there are any provider specific subclasses of the checked javax.jms.JM SException, this exception is wrapped in
the unchecked UncategorizedJmsException. The package or g. spri ngf r amewor k. j ms. support. convert er
provides a MessageConverter abstraction to convert between Java objects and JM S messages. The package
org. springframework. j ms. support . desti nati on provides various strategies for managing JM S destinations,
such as providing a service locator for destinations stored in JNDI.

Finally, the package or g. spri ngf ranewor k. j ms. connect i on provides an implementation of the
ConnectionFactory suitable for use in standalone applications. It also contains an implementation of Spring's
Pl at f or niTr ansact i onManager for IMS. This allows for integration of IMS as atransactional resource into
Spring's transaction management mechanisms.

18.2. Domain unification

There are two major releases of the IMS specification, 1.0.2 and 1.1. IMS 1.0.2 defined two types of messaging
domains, point-to-point (Queues) and publish/subscribe (Topics). The 1.0.2 API reflected these two messaging
domains by providing aparallel class hierarchy for each domain. Consequentialy, a client application was
domain specific in the use of the IMS API. IMS 1.1 introduced the concept of domain unification that
minimized both the functional differences and client API differences between the two domains. As an example
of afunctional difference that was removed, if you useaJMS 1.1 provider you can transactionally consume a
message from one domain and produce a message on the other using the same Sessi on.

The IMS 1.1 specification was released in April 2002 and incorporated as part of J2EE 1.4 in November 2003.
As aresult, most application serversthat are currently in use are only required to support IS 1.0.2.

18.3. ImsTemplate

Spring Framework Version 1.2.9 234

IMS

Two implementations of the JnsTemplate are provided. The class JnsTenpl at e usesthe IMS 1.1 API and the
subclass Jns Tenpl at e102 usesthe IMS 1.0.2 API.

Code that uses the JmsTemplate only needs to implement callback interfaces giving them a clearly defined
contract. The MessageCr eat or callback interface creates a message given a Session provided by the calling
code in JnsTemplate. In order to allow for more complex usage of the IMS API, the callback

Sessi onCal | back providesthe user with the IMS session and the callback Pr oducer Cal | back exposes a
Session and MessageProducer pair.

The IMS API exposes two types of send methods, one that takes delivery mode, priority, and time-to-live as
quality of service (QOS) parameters and one that takes no QOS parameters which uses default values. Since
there are many send methods in JnsTemplate, the setting of the QOS parameters have been exposed as bean
properties to avoid duplication in the number of send methods. Similarly, the timeout value for synchronous
receive callsis set using the property set Recei veTi meout .

Some JM S providers allow the setting of default QOS values administratively through the configuration of the
ConnectionFactory. This has the effect that a call to MessageProducer's send method send(Dest i nat i on
destination, Message nessage) Will use QOS different default values than those specified in the IMS
specification. Therefore, in order to provide consistent management of QOS values, the JnsTemplate must be
specifically enabled to use its own QOS values by setting the boolean property i sExpl i ci t QosEnabl ed to true.

18.3.1. ConnectionFactory

The JmsTemplate requires areference to aConnect i onFact ory. The Connect i onFact ory is part of the IMS
specification and serves as the entry point for working with JIMS. It is used by the client application as a factory
to create connections with the JIMS provider and encapsulates various configuration parameters, many of which
are vendor specific such as SSL configuration options.

When using IMS inside an EJB the vendor provides implementations the IM S interfaces so that they can
participate in declarative transaction management and perform pooling of connections and session. In order to
use this implementation, J2EE containers typically require that you declare a JM S connection factory as a
resour ce-ref inside the EJB or servlet deployment descriptors. To ensure the use of these features with the
JmsTemplate inside an EJB, the client application should ensure that it references the managed implementation
of the ConnectionFactory.

Spring provides an implementation of the ConnectionFactory interface, Si ngl eConnect i onFact ory, that will
return the same Connection on all cr eat eConnect i on calls and ignore callsto cl ose. Thisisuseful for testing
and standal one environments so that the same connection can be used for multiple JnsTemplate calls that may
span any number of transactions. SingleConnectionFactory takes a reference to a standard ConnectionFactory
that would typically comes from JNDI.

18.3.2. Transaction Management

Spring providesaJmsTr ansact i onManager that manages transactions for asingle JIMS ConnectionFactory.
This allows JM S applications to leverage the managed transaction features of Spring as described in Chapt er

7. The JmsTr ansact i onManager binds a Connection/Session pair from the specified ConnectionFactory to the
thread. However, in a 2EE environment the ConnectionFactory will pool connections and sessions, so the
instances that are bound to the thread depend on the pooling behavior. In a standal one environment, using
Spring's Si ngl eConnect i onFact ory Will result in ausing asingle IMS Connection and each transaction having
itsown Session. The JnsTenpl at e can also be used with the Jt aTr ansact i onManager and an XA-capable IMS
ConnectionFactory for performing distributed transactions.

Reusing code across a managed and unmanaged transactional environment can be confusing when using IMS

Spring Framework Version 1.2.9 235

IMS

API to create a Sessi on from a Connection. Thisis because the IMS API only has only one factory method to
create a Session and it requires values for the transaction and acknowledgement modes. In a managed
environment, setting these valuesin the responsibility of the environments transactional infrastructure, so these
values are ignored by the vendor's wrapper to the IM S Connection. When using the JnsTenpl at e in an
unmanaged environment you can specify these values though the use of the properties Sessi onTr ansact ed and
Sessi onAcknow edgeMode. When using a Pl at f or nilr ansact i onManager With JnsTenpl at e, the template will
always be given atransactional IMS Session.

18.3.3. Destination Management

Destinations, like ConnectionFactories, are IMS administered objects that can be stored and retrieved in INDI.
When configuring a Spring application context one can use the INDI factory class Jndi Obj ect Fact or yBean t0O
perform dependency injection on your object's references to JM S destinations. However, often this strategy is
cumbersome if there are alarge number of destinationsin the application or if there are advanced destination
management features unique to the IM S provider. Examples of such advanced destination management would
be the creation of dynamic destinations or support for a hierarchical namespace of destinations. The
JmsTemplate del egates the resolution of a destination name to a JM S destination object to an implementation of
the interface Dest i nat i onResol ver . Dynami cDest i nat i onResol ver isthe default implementation used by
JmsTenpl at e and accommodates resolving dynamic destinations. A Jndi Dest i nat i onResol ver isaso
provided that acts as a service locator for destinations contained in JINDI and optionally falls back to the
behavior contained in Dynani cDest i nati onResol ver .

Quite often the destinations used in a JIM S application are only known at runtime and therefore can not be
administratively created when the application is deployed. Thisis often because there is shared application
logic between interacting system components that create destinations at runtime according to awell known
naming convention. Even though the creation of dynamic destinations are not part of the JIM S specification,
most vendors have provided this functionality. Dynamic destinations are created with a name defined by the
user which differentiates them from temporary destinations and are often not registered in INDI. The APl used
to create dynamic destinations varies from provider to provider since the properties associated with the
destination are vendor specific. However, a simple implementation choice that is sometimes made by vendors
isto disregard the warnings in the IM S specification and to use the Topi cSessi on method

createTopi c(String topicNane) or the QueueSessi on method cr eat eQueue(String queueNare) to create a
new destination with default destination properties. Depending on the vendor implementation,

Dynani cDest i nati onResol ver may then also create a physical destination instead of only resolving one.

The boolean property PubSubDormi n is used to configure the Jns Tenpl at e with knowledge of what IMS

domain is being used. By default the value of this property isfalse, indicating that the point-to-point domain,
Queues, will be used. In the 1.0.2 implementation the value of this property determinesif the JnsTemplate's
send operations will send a message to a Queue or to a Topic. This flag has no effect on send operations for the
1.1 implementation. However, in both implementations, this property determines the behavior of resolving
dynamic destination viaimplementations of Dest i nati onResol ver.

Y ou can also configure the JmsTemplate with a default destination viathe property Def aul t Dest i nati on. The
default destination will be used with send and receive operations that do not refer to a specific destination.

18.4. Using the JmsTemplate

To get started using the JnsTemplate you need to select either the IMS 1.0.2 implementation Jns Tenpl at e102
or the IMS 1.1 implementation Jns Tenpl at e. Check your JM S provider to determine what version is supported.

Spring Framework Version 1.2.9 236

IMS

18.4.1. Sending a message

The JmsTemplate contains many convenience methods to send a message. There are send methods that specify
the destination using aj avax. j ms. Dest i nat i on object and those that specify the destination using a string for
usein aJNDI lookup. The send method that takes no destination argument uses the default destination. Hereis
an example that sends a message to a queue using the 1.0.2 implementation.

i mport javax.jmns. ConnectionFactory;
i mport javax. | nms. JMSExcepti on;

i mport javax. | ms. Message;

i nport javax.jns. Queue;

i mport javax. | ms. Sessi on;

i mport org.springframework. jnms. core. MessageCr eat or;
i nport org.springfranework. jns. core.JnsTenpl at e;
i mport org.springframework. jnms. core. JnsTenpl at e102;

public class JmsQueueSender {
private JnsTenpl ate j msTenpl at e;
private Queue queue;

public void setConnectionFactory(ConnectionFactory cf) {
jt = new JnsTenpl at e102(cf, false);

}

public void set Queue(Queue q) {
queue = q;

}

public void sinpleSend() {
this.jmsTenpl ate. send(thi s. queue, new MessageCreator() {
public Message creat eMessage(Session session) throws JMSException {
return session. creat eText Message("hell o queue world");

}
B8
}
}

This example uses the MessageCr eat or callback to create atext message from the supplied Session abject and
the JmsTemplate is constructed by passing areference to a ConnectionFactory and a boolean specifying the
messaging domain. A zero argument constructor and connect i onFact ory / queue bean properties are provided
and can be used for constructing the instance (using a BeanFactory or plain Java code). Alternatively, consider
deriving from Spring's Jns Gat eway Suppor t convenience base class, which provides pre-built bean properties
for IMS configuration.

When configuring the IMS 1.0.2 support in an application context, it isimportant to remember setting the value
of the boolean property pubSubDorei n property in order to indicate if you want to send to Queues or Topics.

The method send(String destinati onName, MessageCreator creator) |letsyou sendto a message using the
string name of the destination. If these names are registered in JINDI, you should set the Dest i nat i onResol ver
property of the template to an instance of Jndi Dest i nati onResol ver .

If you created the JmsTemplate and specified a default destination, the send(MessageCreat or ¢) sendsa
message to that destination.

18.4.2. Synchronous Receiving

While IMSistypically associated with asynchronous processing, it is possible to consume messages
synchronously. The overloaded r ecei ve methods provide this functionality. During a synchronous receive the

Spring Framework Version 1.2.9 237

IMS

calling thread blocks until a message becomes available. This can be a dangerous operation since the calling
thread can potentially be blocked indefinitely. The property r ecei veTi meout specifies how long the receiver
should wait before giving up waiting for a message.

18.4.3. Using Message Converters

In order to facilitate the sending of domain model objects the JnsTenpl at e has various send methods that take a
Java object as an argument for a message's data content. The overloaded methods conver t AndSend and

recei veAndConvert inJnsTenpl at e delegate the conversion process to an instance of the MessageConvert er
interface. This interface defines a simple contract to convert between Java objects and IM S messages. The
default implementation, Si npl eMessageConvert er SUPPOrts conversion between St ri ng and Text Message,

byt e[] and Byt esMesssage, and j ava. uti | . Map and MapMessage. By using the converter, you your application
code can focus on the business object that is being sent or received via JIM S and not bother with the details of
how it is represented as a JM S message.

The sandbox currently includes a vapMessageConver t er which uses reflection to convert between a JavaBean
and a MapMessage. Other popular implementations choices you might implement yourself are Converters that
bust an existing XML marshalling packages, such as JAXB, Castor, XMLBeans, or X Stream, to create a
TextM essage representing the object.

To accommodate the setting of a message's properties, headers, and body that can not be generically
encapsulated inside a converter class, the interface MessagePost Processor (ivVes you access to the message
after it has been converted, but before it is sent. The example below shows how to modify a message header
and aproperty after aj ava. uti | . Map IS converted to a message.

public void sendWthConversion() {
Map m = new HashMap();
m put (" Nane", "Mark");
m put (" Age", new | nteger(35));
jt.convert AndSend("test Queue", m new MessagePost Processor () {
public Message post ProcessMessage(Message nessage) throws JNMSException {
nessage. set | nt Property("Account| D', 1234);
nessage. set JMSCorrel ati onl D("123-00001") ;
return nessage;
}
1)
}

This results in a message of the form

MapMessage={
Header ={
... standard headers ...
Correl ati onl D={ 123- 00001}
}
Properties={
Account | D={ | nt eger: 1234}
}
Fi el ds={
Name={ St ri ng: Mar k}
Age={ I nt eger: 35}
}
}

18.4.4. SessionCallback and ProducerCallback

Spring Framework Version 1.2.9 238

IMS

While the send operations cover many common usage scenarios, there are cases when you want to perform
multiple operations on a JIMS Session or MessageProducer. The Sessi onCal | back and Pr oducer Cal | back

expose the IM S Session and Session/M essageProducer pair respectfully. The execut e() methods on
JmsTemplate execute these callback methods.

Spring Framework Version 1.2.9 239

Chapter 19. JMX Support

19.1. Introduction

The IMX support in Spring provides you with the features to easily and transparently integrate your Spring
application into a IMX infrastructure. Specifically, Spring IMX provides 4 core features:

e Automatic Registration of any Spring bean asa JMX MBean

» Flexible mechanism for controlling the management interface of your beans
* Declarative exposure of MBeans over remote, JSR-160 connectors

» Simple proxying of both local and remote MBean resources

These features are designed to work without coupling your application components to either Spring or IM X
interfaces and classes. Indeed, for the most part your application classes need not be aware of either Spring or
JMX in order to take advantage of the Spring IMX features.

19.2. Exporting your Beans to JMX

The core classin the Spring IMX framework is the MBeanExpor t er . Thisclassis responsible for taking your
Spring beans and registering them with the IMX MBeanSer ver . For example, consider the simple bean class
shown below:

package org. spri ngframework. j nx;
public class JnkTestBean i npl enents |JnxTest Bean {
private String nane;
private int age;
private bool ean i sSuper man;
public int getAge() {

return age;
}

public void setAge(int age) {
this. age = age;

}

public void setNane(String nane) {
thi s. name = nane;

}

public String getName() {
return name;
}

public int add(int x, int y) {
return x +vy;
}

public void dont ExposeMe() {
t hrow new Runti neExcepti on();
}

Spring Framework Version 1.2.9 240

JMX Support

To expose the properties and methods of this bean as attributes and operations of a IMX MBean you simply
configure an instance of the MBeanExport er classin your configuration file and pass in the bean as shown
below:

<beans>

<bean i d="exporter" class="org.springfranmework.jnx.export.MeanExporter">
<property name="beans">
<map>
<entry key="bean: name=t est Beanl" val ue-ref="testBean"/>
</ map>
</ property>
</ bean>

<bean i d="testBean" class="org. springfranmework.jnx.JnkTest Bean">
<property name="nanme" val ue="TEST"/>
<property nane="age" val ue="100"/>

</ bean>

</ beans>

Here, the important definition isthe export er bean. The beans property is used to tell the MBeanExport er
which of your beans should be exported to the IMX MBeanSer ver . The beans property is of type Map, and thus
you use the <map> and <ent r y> tags to configure the beans to be exported. In the default configuration, the key
of an entry in of the Map is used as the j ect Nane for the bean that is the value of that entry. This behaviour
can be changed as described in section Section 19.4, “Controlling the j ect Names for your Beans”.

With this configuration the t est Bean bean is exposed as a IMX MBean under the bj ect Narre
bean: name=t est Beanl. All public properties of the bean are exposed as attributes and all public methods
(expect those defined in thj ect) are exposed as operations.

19.2.1. Creating an MBeanServer

The configuration shown above assumes that the application is running in an environment that has one and only
one MBeanSer ver already running. In this case, Spring will locate the running MBeanSer ver and register your
beans with that. Thisis useful when your application is running inside a container such as Tomcat or IBM
WebSphere that has its own MBeanSer ver .

However, this approach is of no use in a standal one environment, or when running inside a container that does
not provide an MBeanSer ver . To overcome this you can create an MBeanSer ver instance declaratively by adding
an instance of or g. spri ngf ranewor k. j mx. suppor t . MBeanSer ver Fact or yBean t0 your configuration. You can
also ensure that this MBeanSer ver isused by using MBeanSer ver Fact or yBean to Set the server property of the
MBeanExpor t er . Thisis shown below:

<beans>
<bean i d="nbeanServer" class="org. springfranmework.jnx.support.MeanServer Fact oryBean"/ >

<bean id="exporter" class="org.springfranmework.jnx.export.MBeanExporter">
<property name="beans">
<|’T‘Hp>
<entry key="bean: nane=t est Beanl" val ue-ref="testBean"/>
</ map>
</ property>
<property nanme="server" ref="nbeanServer"/>
</ bean>

<bean i d="testBean" cl ass="org.springfranmework.jnx.JnkTest Bean">
<property name="nanme" val ue="TEST"/>
<property nane="age" val ue="100"/>

</ bean>

</ beans>

Spring Framework Version 1.2.9 241

JMX Support

Here an instance of MBeanSer ver is created by the MBeanSer ver Fact or yBean and is supplied to the
MBeanExpor t er Viathe server property. When you supply your own MBeanSer ver , MBeanExpor t er Will not
attempt to locate a running MBeanSer ver . For this to work correctly, you must have a JIM X implementation on
your classpath.

19.2.2. Lazy-Initialized MBeans

If you configure a bean with the MBeanExport er that isaso configured for lazy initialization, then the
MBeanExpor t er Will NOT break this contract and will avoid instantiating the bean. Instead, it will register a
proxy with the MBeanSer ver and will defer obtaining the bean from the BeanFact or y until the first invocation
on the proxy occurs.

19.2.3. Automatic Registration of MBeans

Any beansthat are exported through the MBeanExpor t er and are already valid MBeans are registered asiswith
the MBeanSer ver without further intervention from Spring. MBeans can be automatically detected by the
MBeanExpor t er by setting the aut odet ect property to true:

<bean id="exporter" class="org.springframework.jnx.export.MBeanExporter">
<property name="autodetect" val ue="true"/>
</ bean>

<bean name="spri ng: nbean=true" cl ass="org. spri ngframework.jnx.export. Test Dynam cMBean"/ >

Here, the bean called spri ng: nbean=t r ue isalready avalid IMX MBean and will be automatically registered
by Spring. By default, beans that are autodetected for IMX registration have their bean name used as the

Qbj ect Nane. This behavior can be overridden as detailed in section Section 19.4, “ Controlling the Obj ect Names
for your Beans'.

19.3. Controlling the Management Interface of Your Beans

In the previous example, you had little control over the management interface of your bean with all the public
properties and methods being exposed. To solve this prablem, Spring IMX provides a comprehensive and
extensible mechanism for controlling the management interfaces of your beans.

19.3.1. The MBeanl nf oAssenbl er Interface

Behind the scenes, the MBeanExpor t er delegates to an implementation of the

org. springframewor k. j mx. export . assenbl er. MBeanl nf oAssenbl er interface which isresponsible for
defining the management interface of each bean that is being exposed. The default implementation,

org. springframewor k. j mx. export . assenbl er. Si npl eRef | ecti veMBeanl nf oAssenbl er , SsSmply defines an
interface that exposes all public properties and methods as you saw in the previous example. Spring provides
two additional implementations of the MBeanl nf oAssenbl er interface that allow you to control the management
interface using source level metadata or any arbitrary interface.

19.3.2. Using Source-Level Metadata

Using the Met adat aMBeanl nf oAssenbl er you can define the management interfaces for your beans using
source level metadata. The reading of metadata is encapsulated by the
org. springframewor k. j mx. export . net adat a. JmxAt t ri but eSour ce interface. Out of the box, Spring IMX

Spring Framework Version 1.2.9 242

JMX Support

provides support for two implementations of this interface:

org. springframewor k. j nx. export. netadata. Attri butesJmxAttributeSour ce for Commons Attributes and
org. springframewor k. j nx. export. annot ati on. Annot ati onJnxAt t ri but eSour ce for JDK 5.0 annotations.
The Met adat aMBean! nf oAssenbl er MUST be configured with an implementation of JmxAt t ri but eSour ce for
it to function correctly. For this example, we will use the Commons Attributes metadata approach.

To mark abean for export to IMX, you should annotate the bean class with the ManagedResour ce attribute. In
the case of the Commons Attributes metadata approach this class can be found in the
org.springframework.jmx.metadata package. Each method you wish to expose as an operation should be
marked with a ManagedQper at i on attribute and each property you wish to expose should be marked with a
ManagedAt t ri but e attribute. When marking properties you can omit either the getter or the setter to create a
write-only or read-only attribute respectively.

The example below shows the JnxTest Bean class that you saw earlier marked with Commons Attributes
metadata:

package org. spri ngframework. jnx;

/**

* @@rg. springframework. j nx. export. nmet adat a. ManagedResour ce

* (description="M/ Mnaged Bean", object Name="spri ng: bean=test",
* log=true, |logFile="jnx.log", currencyTi meLimt=15, persistPolicy="0OnUpdate",
* persistPeriod=200, persistLocation="foo", persistNane="bar")
*

/
public class JnxTestBean i npl ements |JnxTest Bean {

private String nane;

private int age;

/**
* @@rg. springframework. j nx. export. netadat a. ManagedAttri bute
* (description="The Age Attribute", currencyTi meLi nm t=15)
*/
public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

/**
* @rg. springframework. jnx. export.netadata. ManagedAttri bute
* (description="The Name Attribute", currencyTi meLi m t=20,
* def aul t Val ue="bar", persistPolicy="0OnUpdate")
*/
public void setName(String name) {
thi s. name = nane;

}

/**
* @@rg. springframework. j nx. export. net adat a. ManagedAttri bute
* (def aul t Val ue="f 00", persistPeriod=300)
*/
public String getName() {
return nane;

}

/**
* @@rg. springframework. j nx. export. nmet adat a. ManagedQOper at i on
* (description="Add Two Nunbers Toget her")
*/
public int add(int x, int y) {
return x +vy;

}

public void dont ExposeMe() {
t hrow new Runti meException();

}

Spring Framework Version 1.2.9 243

JMX Support

Here you can see that the JnxTest Bean classis marked with the ManagedResour ce attribute and that this
ManagedResour e atribute is configured with a set of properties. These properties can be used to configure
various aspects of the MBean that is generated by the MBeanExpor t er and are explained in greater detail later in
section Section 19.3.4, “ Source-Level Metadata Types’.

Y ou will also notice that both the age and name properties are marked with the ManagedAt t ri but e attribute but
in the case of the age property, only the getter is marked. Thiswill cause both of these properties to be included
in the management interface as attributes, and for the age attribute to be read-only.

Finally, you will notice that the add(i nt, int) method is marked with the ManagedOper at i on attribute
whereas the dont ExposeMe() method is not. Thiswill casue the management interface to contain only one
operation, add(i nt, int),when using the Met adat aMBean| nf oAssenbl er .

The code below shows how you configure the MBeanExpor t er t0 use the Met adat aMBean! nf oAssenbl er :

<beans>

<bean i d="exporter" class="org.springframework.jnx.export.MeanExporter">
<property nanme="beans">
<n’Hp>
<entry key="bean: nane=t est Beanl" >
<ref |ocal ="testBean"/>
</entry>
</ map>
</ property>
<property name="assenbl er">
<ref |ocal ="assenbler"/>
</ property>
</ bean>

<bean i d="testBean" class="org. springfranmework.jnx.JnkTest Bean">
<property name="name">
<val ue>TEST</ val ue>
</ property>
<property nanme="age">
<val ue>100</ val ue>
</ property>
</ bean>

<bean id="attri buteSource"
cl ass="org. spri ngframework.jnx. export. metadata. AttributesJnmkAttri buteSource">
<property name="attributes">
<bean cl ass="org. spri ngfranmewor k. met adat a. coomons. ConmonsAt tri butes"/ >
</ property>
</ bean>

<bean i d="assenbl er" class="org.springframework.jnx.export.assenbl er. Met adat aMBeanl nf oAssenbl er" >
<property name="attri but eSource">
<ref local ="attributeSource"/>
</ property>
</ bean>

</ beans>

Here you can see that a Met adat aMBean! nf oAssenbl er bean has been configured with an instance of
AttributesJmxAttribut eSource and passed to the MBeanExpor t er through the assembler property. Thisisall
that is required to take advantage of metadata-driven management interfaces for your Spring-exposed MBeans.

19.3.3. Using JDK 5.0 Annotations

To enable the use of JDK 5.0 annotations for management interface definition, Spring provides a set of
annotations that mirror the Commons Attribute attribute classes and an implementation of

Spring Framework Version 1.2.9 244

JMX Support

JmxAt t ri but eSour ce, Annot ati onsJmxAttri but eSour ce, that allows the MBean! nf oAssenbl er to read them.

The exampl e below shows a bean with a JDK 5.0 annotation defined management interface:

package org. spri ngfranmewor k. j nx;

i mport org.springframework. jnmx.export.annotation
i nport org.springfranework. jnx.export.annotation
i mport org.springframework.jnx.export.annotation

. ManagedResour ce;
. ManagedQper at i on;
. ManagedAttri bute;

@mnagedResour ce(obj ect Nane="bean: name=t est Bean4", descripti on="My/ Managed Bean", | og=true,

| ogFil e="jmx.log", currencyTineLimt=15, persistPolicy="0OnUpdate",

persi stLocati on="fo00", persistNanme="bar")

public class AnnotationTestBean inplenments |JnkTestBean {

}

private String nane;

private int age;

@managedAt tri but e(descri ption="The Age Attribute", currencyTi neLi m t=15)

public int getAge() {
return age;
}

public void setAge(int age) {
this. age = age;
}

@mnagedAttri but e(description="The Nane Attribute",
currencyTi neLi m t =20,
def aul t Val ue="bar",
persi st Pol i cy="OnUpdat e")
public void setName(String nane) {
thi s. name = naneg;
}

@mnagedAt tri but e(def aul t Val ue="f 00", persistPeri 0d=300)
public String getName() {

return name;
}

@mnagedQper ati on(descri pti on="Add Two Nunbers Toget her")
public int add(int x, int y) {

return x +vy;
}

public void dont ExposeMe() {
t hrow new Runti meException();
}

per si st Peri 0d=200,

Asyou can see little has changed, other than the basic syntax of the metadata definitions. Behind the scenes this
approach is alittle slower at startup because the JDK 5.0 annotations are converted into the classes used by
Commons Attributes. However, thisis only a one-off cost and JDK 5.0 annotations give you the benefit of
compile-time checking.

19.3.4. Source-Level Metadata Types

The following source level metadata types are available for use in Spring IMX:

Table 19.1. Source-Level Metadata Types

Purpose Commons Attributes JDK 5.0 Annotation
Attribute
Mark all instances of a ManagedResour ce @mnagedResour ce

Class as IMX managed

Attribute/ Annotation
Type

Class

Spring Framework Version 1.2.9

245

JMX Support

Purpose

resources

Mark amethod as a IM X
operation

Mark a getter or setter as

Commons Attributes
Attribute

ManagedQOper at i on

ManagedAttri bute

JDK 5.0 Annotation

@mnagedOper ati on

@mnagedAttri bute

Attribute/ Annotation
Type

Method

Method (only getters and

one haf of aJMX
atribute

Define descriptions for
operation parameters

and

setters)

ManagedQOper at i onPar anet e@vanagedQper at i onPar ametMiethod

@mnagedOper at i onPar anet er s

The following configuration parameters are available for use on these source-level metadata types:

Table 19.2. Sour ce-L evel M etadata Parameters

Parameter

obj ect Nane

description

Description

Used by Met adat aNani ngSt r at egy

to determine the j ect Nane of a
managed resource

Sets the friendly description of the

resource, attribute or operation

Appliesto

ManagedResour ce

ManagedResour ce,
ManagedAttri but e,
ManagedQper at i on,
ManagedQOper at i onPar anet er

currencyTi meLi m t

def aul t Val ue

| og

| ogFile

persi st Policy

persi st Peri od

persi st Locati on

persi st Name

Sets the value of the
currencyTi neLi ni t descriptor
field

Sets the value of the def aul t Val ue

descriptor field

Sets the value of the | og descriptor

field

Setsthevalue of thel ogFi | e
descriptor field

Sets the value of the
per si st Pol i cy descriptor field

Sets the value of the
per si st Peri od descriptor field

Sets the value of the

per si st Locat i on descriptor field

Setsthe value of the per si st Nane

descriptor field

ManagedResour ce,
ManagedAttri bute

ManagedAttri but e

ManagedResour ce

ManagedResour ce

ManagedResour ce

ManagedResour ce

ManagedResour ce

ManagedResour ce

nane

Sets the display name of an

ManagedOper at i onPar anet er

Spring Framework Version 1.2.9

246

JMX Support

Parameter Description Appliesto
operation parameter

i ndex Sets the index of an operation ManagedOper at i onPar anet er
parameter

19.3.5. The Aut odet ect Capabl eMBeanl nf oAssenbl er Interface

To simply configuration even further, Spring introduces the Aut odet ect Capabl eMBeanl nf oAssenbl er interface
which extends the MBeanl nf oAssenbl er interface to add support for autodetection of MBean resources. If you
configure the MBeanExpor t er With an instance of Aut odet ect Capabl eMBeanl nf oAssenbl er thenitisallowed to
"vote" on the inclusion of beans for exposure to IMX.

Out of the box, the only implementation of Aut odet ect Capabl eMBeanl nf o iSthe

Met adat aMBeanl nf oAssenbl er which will vote to include any bean which is marked with the ManagedResour ce
attribute. The default approach in this case is to use the bean name as the Obj ect Namre which resultsin a
configuration like this:

<beans>

<bean i d="exporter" class="org.springfranmework.jnx.export.MeanExporter">
<property name="assenbler" ref="assenbler"/>
<property name="autodetect" val ue="true"/>
</ bean>

<bean i d="bean: nane=t est Beanl" cl ass="org. spri ngframework. j nx. JnxTest Bean" >
<property nanme="nanme" val ue="TEST"/>
<property nanme="age" val ue="100"/>

</ bean>

<bean id="attri buteSource"
cl ass="org. springfranmework.jnx.export. netadata. AttributesJnxAttributeSource"/>

<bean i d="assenbl er" class="org.springframework.jnx.export.assenbl er. Met adat aMBeanl nf oAssenbl er" >
<property name="attributeSource" ref="attributeSource"/>
</ bean>

</ beans>

Notice that in this configuration no beans are passed to the MBeanExpor t er , however the JnxTest Bean will still
be registered since it is marked with the ManagedResour ce attribute and the Met adat aMBeanl nf oAssenbl er
detects this and votes to include it. The only problem with this approach is that the name of the JnxTest Bean
now has business meaning. Y ou can solve this problem by changing the default behavior for Qoj ect Nane
creation as defined in section Section 19.4, “Controlling the tbj ect Names for your Beans'.

19.3.6. Defining Management Interfaces using Java Interfaces

In addition to the Met adat aMBeanl nf oAssenbl er, Spring also includes the
I nt er f aceBasedMBeanl nf oAssenbl er which allows you to constrain the methods and properties that are
exposed based on the set of methods defined in a collection of interfaces.

Although the standard mechanism for exposing MBeans is to use interfaces and a simple naming scheme, the

I nt er f aceBasedMBean| nf oAssenbl er extends this functionality by removing the need for naming conventions,
allowing you to use maore than one interface and removing the need for your beans to implement the MBean
interfaces.

Consider thisinterface that is used to define a management interface for the JnxTest Bean class that you saw

Spring Framework Version 1.2.9 247

JMX Support

earlier:

public interface |JnxTestBean {
public int add(int x, int y);
public long nmyQperation();
public int getAge();
public void setAge(int age);
public void setName(String nane);

public String getNanme();

This interface defines the methods and properties that will be exposed as operations and attributes on the IM X
MBean. The code below shows how to configure Spring IMX to use thisinterface as the definition for the
management interface:

<beans>

<bean id="exporter" class="org.springframework.jnx.export.MBeanExporter">
<property nanme="beans">
<map>
<entry key="bean: name=t est Bean5" >
<ref |ocal ="t estBean"/>
</entry>
</ map>
</ property>
<property name="assenbl er">
<bean cl ass="org. springframework.j nmx. export.assenbl er. | nterfaceBasedVBeanl nf oAssenbl er">
<property nanme="nmanagedl| nterfaces">
<val ue>or g. spri ngf ramewor k. j nx. | JnxTest Bean</ val ue>
</ property>
</ bean>
</ property>
</ bean>

<bean id="t estBean" class="org. springfranmework.jnx.JnxTest Bean">
<property nanme="nane">
<val ue>TEST</ val ue>
</ property>
<property name="age">
<val ue>100</ val ue>
</ property>
</ bean>

</ beans>

Here you can see that the | nt er f aceBasedMBeanl nf oAssenbl er isconfigured to usethe | JnxTest Bean
interface when constructing the management interface for any bean. It isimportant to understand that beans
processed by the | nt er f aceBasedMBeanl nf oAssenbl er are NOT required to implement the interface used to
generate the IM X management interface.

In the case above, the | InxTest Bean interface is used to construct all management interfaces for al beans. In
many cases thisis not the desired behavior and you may want to use different interfaces for different beans. In
this case, you can pass| nt er f aceBasedMBeanl nf oAssenbl er aProperties viathei nt er f aceMappi ngs
property, where the key of each entry is the bean name and the value of each entry is a comma-seperated list of
interface names to use for that bean.

If no management interface is specified through either the managedi nt er f aces Or i nt er f aceMappi ngs
properties, then | nt er f aceBasedMBean! nf oAssenbl er will reflect on the bean and use all interfaces
implemented by that bean to create the management interface.

Spring Framework Version 1.2.9 248

JMX Support

19.3.7. Using Met hodNaneBasedMBeanl nf oAssenbl er

The Met hodNanmeBasedMBeanl nf oAssenbl er allows you to specify alist of method names that will be exposed
to IMX as attributes and operations. The code below shows a sample configuration for this:

<bean id="exporter" class="org.springfranmework.jnx.export.MBeanExporter">
<property name="beans">
<|’T‘Bp>
<entry key="bean: nane=t est Bean5" >
<ref |ocal ="testBean"/>
</entry>
</ map>
</ property>
<property name="assenbl er">
<bean cl ass="org. spri ngfranmework. j nx. export.assenbl er. Met hodNaneBasedMBeanl nf oAssenbl er " >
<property name="nanagedMet hods" >
<val ue>add, nyQper at i on, get Nane, set Nane, get Age</ val ue>
</ property>
</ bean>
</ property>
</ bean>

Here you can see that the methods add and nyQper at i on will be exposed as IMX operations and get Nane,

set Nanme and get Age Will be exposed as the appropriate half of aJM X attribute. In the code above, the method
mappings apply to beans that are exposed to IM X. To control method exposure on a bean by bean basis, use the
met hodMappi ngs property of Met hodNameMBean! nf oAssenbl er t0 map bean names to lists of method names.

19.4. Controlling the bj ect Nanes for your Beans

Behind the scenes, the MBeanExpor t er delegates to an implementation of the j ect Nani ngSt r at egy to obtain
vj ect Nanes for each of the beansit is registering. The default implementation, KeyNami ngSt r at egy, will, by
default, use the key of the beans Map asthe j ect Nane. In addition, the KeyNani ngSt r at egy can map the key
of the beans Map to an entry in aproperti es file (or files) to resolve the bj ect Nane. In addition to the
KeyNani ngSt r at egy, Spring provides two additional Gbj ect Nani ngSt r at egy implementations:

I denti t yNanmi ngSt r at egy that builds an tbj ect Name based on the identity of the bean and

Met adat aNani ngSt r at egy that uses the source level metadata to obtain the j ect Nane.

19.4.1. Reading oj ect NanesS from Properti es

Y ou can configure your own KeyNani ngSt r at egy instance and configure it to read oj ect Nanes from a
Properti es instance rather than use bean key. The KeyNani ngSt r at egy Will attempt to locate an entry in the
Properti es with akey corresponding to the bean key. If no entry isfound or if the Properti es instanceis null
then the bean key itself is used.

The code below shows a sample configuration for the KeyNani ngSt r at egy:

<beans>

<bean id="exporter" class="org.springfranmework.jnx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="testBean" val ue-ref="t est Bean"/>
</ map>
</ property>
<property name="nam ngStrategy" ref="nam ngStrategy"/>
</ bean>

<bean i d="t estBean" cl ass="org.springframework.jnx.JnkTest Bean">
<property nanme="nane" val ue="TEST"/>
<property nanme="age" val ue="100"/>

</ bean>

Spring Framework Version 1.2.9 249

JMX Support

<bean i d="nam ngStrategy" class="org.springfranmework.jnx.export.nam ng. KeyNam ngStr at egy" >
<property nanme="nmappi ngs">
<pr ops>
<prop key="t est Bean">bean: name=t est Beanl</ pr op>
</ props>
</ property>
<property name="nmappi ngLocati ons">
<val ue>nanesl. properties, names2. properti es</val ue>
</ property>
</ bean

</ beans>

Here an instance of KeyNani ngSt r at egy is configured with aProperti es instance that is merged from the
Properti es instance defined by the mapping property and the properties files located in the paths defined by
the mappings property. In this configuration, thet est Bean bean will be given the j ect Nane

bean: name=t est Beanl sincethisistheentry inthe Properti es instance that has akey corresponding to the
bean key.

If no entry inthe Properti es instance can be found then the bean key is used as the bj ect Nare.

19.4.2. Using the Met adat aNami ngSt r at egy

The Met adat aNani ngSt r at egy USES obj ect Narre property of the ManagedResour ce attribute on each bean to
create the vj ect Name. The code below shows the configuration for the Met adat aNami ngSt r at egy:

<beans>

<bean i d="exporter" class="org.springfranmework.jnx.export.MeanExporter">
<property name="beans">
<map>
<entry key="testBean" val ue-ref="t est Bean"/>
</ map>
</ property>
<property nanme="nam ngStrategy" ref="nam ngStrategy"/>
</ bean>

<bean id="t estBean" class="org.springfranmework.jnx.JnxTest Bean">
<property name="nanme" val ue="TEST"/>
<property name="age" val ue="100"/>

</ bean>

<bean i d="nam ngStrategy" class="org.springframework.jnx.export.nam ng. Met adat aNam ngStr at egy" >
<property name="attributeSource" ref="attributeSource"/>

</ bean>

<bean id="attri buteSource"
cl ass="org. springfranmework.jnk. export.netadata. Attri butesJnkAttributeSource"/>

</ beans>

19.5. Exporting your Beans with JSR-160 Connectors

For remote access, Spring JM X module offers two Fact or yBean implementations inside the
org. spri ngframewor k. j mx. support package for creating server-side and client-side connectors.

19.5.1. Server-side Connectors

To have Spring IMX create,start and expose a JISR-160 JMxConnect or Ser ver use the following configuration:

<bean i d="server Connector" class="org.springfranmework.jnx. support. Connect or Ser ver Fact or yBean"/ >

Spring Framework Version 1.2.9 250

JMX Support

By default Connect or Ser ver Fact or yBean creates a JMXConnect or Ser ver bound to
"service;jmx:jmxmp://localhost:9875". The ser ver Connect or bean thus exposes the local MBeanSer ver to
clients through the IMXMP protocol on localhost, port 9875. Note that the IMXMP protocol is marked as
optional by the JSR 160: Currently, the main open-source IMX implementation, M X4J, and the one provided
with J2SE 5.0 do not support IMXMP.

To specify another URL and register the JMXConnect or Ser ver itself with the MBeanSer ver usetheservi ceur|
and obj ect Name properties respectively:

<bean i d="server Connector" cl ass="org.springframework.j nx. support. Connect or Ser ver Fact or yBean" >
<property nanme="object Name" val ue="connector: nane=rm "/>
<property name="serviceUrl"
val ue"service:jnmx:rm://local host/jndi/rm://|ocal host: 1099/ nyconnector"/>
</ bean>

If the obj ect Narre property is set Spring will automatically register your connector with the MBeanSer ver under
that oj ect Nanme. The example below shows the full set of parameters which you can passto the
Connect or Ser ver Fact or yBean when creating the JM X Connector:

<bean i d="server Connector" class="org. springfranmework.jnx.support.Connect or Server Fact or yBean" >
<property name="object Nanme" val ue="connect or: name=ii op"/>
<property name="serviceUrl"
val ue="service:jnmx:iiop://local host/jndi/iiop://local host: 900/ myconnector"/>
<property nanme="t hreaded" val ue="true"/>
<property nanme="daenon" val ue="true"/>
<property nanme="environnment">
<map>
<entry key="soneKey" val ue="soneVal ue"/ >
</ map>
</ property>
</ bean>

For more information on these properties consult the JavaDoc. For information of meaning of the environment
variables, consult the JavaDoc for

Note that when using a RMI-based connector you need the lookup service (tnameserv or rmiregistry) to be
started in order for the name registration to complete. If you are using Spring to export remote services for you
viaRMI, then Spring will already have constructed an RMI registry. If not, you can easily start aregistry using
the following snippet of configuration:

<bean id="registry" class="org.springfranmework.renoting.rm .Rm Regi stryFact oryBean">
<property name="port" val ue="1099"/>
</ bean>

19.5.2. Client-side Connectors

To create an MBeanSer ver Connect i on t0 aremote JSR-160 enabled MBeanSer ver usethe
MBeanSer ver Connect i onFact or yBean as shown below:

<bean i d="clientConnector" class="org.springframework.jnx.support.MeanServer Connecti onFact or yBean" >
<property name="serviceU " value="service:jnx:rm://|ocal host: 9875"/ >
</ bean>

19.5.3. JMX over Burlap/Hessian/SOAP

JSR-160 permits extensions to the way in which communication is done between the client and the server. The

Spring Framework Version 1.2.9 251

JMX Support

examples above are using the mandatory RMI-based implementation required by the JSR-160(110P and JRMP)
and the optional IMXMP. By using other providers or implementations like M X4J
[http://mx4j.sourceforge.net] you can take advantage of protocols like SOAP, Hessian, Burlap over simple
HTTP or SSL and other:

<bean i d="server Connector" cl ass="org.springframework.jnx. support. Connect or Ser ver Fact or yBean" >
<property name="object Nane" val ue="connect or: name=burl ap"/ >
<property name="serviceUrl" val ue="service:jnx:burlap://Iocal host: 9874"/ >

</ bean>

For this example, MX4J 3.0.0 was used. See the official M X4J documentation for more information.

19.6. Accessing MBeans via Proxies

Spring IMX allows you to create proxies that re-route calls to MBeans registered in alocal or remote
MBeanSer ver . These proxies provide you with a standard Javainterface through which you can interact with
your MBeans. The code below shows how to to configure a proxy for an MBean running in the local
MBeanSer ver :

<bean i d="proxy" class="org.springframework.jnx.access. MBeanPr oxyFact or yBean" >
<property nanme="obj ect Nane" >
<val ue>bean: nane=t est Bean</ val ue>
</ property>
<property nanme="proxylnterface">
<val ue>org. spri ngf ramewor k. j nx. | JnxTest Bean</ val ue>
</ property>
</ bean>

Here you can see that a proxy is created for the MBean registered under the Qoj ect Nane: bean: nane=t est Bean.
The set of interfaces that the proxy will implement is controlled by the proxy! nt er f aces property and the rules
for mapping methods and properties on these interfaces to operations and attributes on the MBean are the same
rules used by the I nt er f aceBasedMBean! nf oAssenbl er .

The MBeanPr oxyFact or yBean can create a proxy to any MBean that is accessible viaan

MBeanSer ver Connect i on. By default, the local MBeanSer ver islocated and used, but you can override this and
provide an MBeanSer ver Connect i on pointing to aremote MBeanSer ver allowing for proxies pointing to remote
MBeans:

<bean i d="client Connector" class="org.springframework.jnx.support.MeanServer Connecti onFact or yBean" >
<property name="serviceUrl" val ue="service:jnx:rm://renotehost: 9875"/>
</ bean>

<bean id="proxy" class="org.springfranmework.jnx.access. MBeanPr oxyFact or yBean" >
<property nanme="obj ect Nanme" val ue="bean: nane=t est Bean"/ >
<property name="proxyl nterface" val ue="org. springfranmework.jnx.|JnkTest Bean"/ >
</ bean>

Here you can see that we create an MBeanSer ver Connect i on pointing to aremote machine using the

MBeanSer ver Connect i onFact or yBean. This MBeanSer ver Connect i on iSthen passed to the

MBeanPr oxyFact or yBean viatheser ver property. The proxy that is created will pass on al invocations to the
MBeanSer ver ViathisMBeanSer ver Connecti on.

Spring Framework Version 1.2.9 252

http://mx4j.sourceforge.net
http://mx4j.sourceforge.net

Chapter 20. JCA CCI

20.1. Introduction

J2EE provides a specification to standardize accessto EIS; JCA (Java Connector Architecture). This
specification is divided into several different parts:

» SPI (Service provider interfaces) that the connector provider must implement. These interfaces constitute a
resource adapter which can be deployed on a J2EE application server. In such a scenario, the server manages
connection pooling, transaction and security (managed mode). The application server is also responsible for
managing the configuration, which is held outside the client application. A connector can be used without an
application server aswell; in thid case, the application must configure it directly (non-managed mode).

e CCI (Common Client Interface) that an application can use to interact with the connector and thus
communicate with an EIS. An API for local transaction demarcation is provided as well.

The aim of the Spring CCl support isto provide classes to access a CCl connector in typical Spring style,
leveraging's Spring general resource and transaction management facilities.

Important note: The client side of connectors doesn't alway use CCI. Some connectors expose their own APIs,
only providing JCA resource adapter to use the system contracts of a J2EE container (connection pooling,
global transactions, security). Spring does not offer special support for such connector-specific APIs.

20.2. Configuring CCI

20.2.1. Connector configuration

The base resource to use JCA CCI isthe Connect i onFact or y interface. The connector used must provide an
implementation of thisinterface.

To use your connector, you can deploy it on your application server and fetch the Connect i onFact ory from the
server's INDI environment (managed mode). The connector must be packaged as a RAR file (resource adapter
archive) and contain ar a. xni file to describe its deployment characteristics. The actual name of the resourceis
specified when you deploy it. To access it within Spring, simply use Spring's Jndi Obj ect Fact or yBean to fetch
the factory by its INDI name.

Another way to use a connector isto embed it in your application (non-managed mode), not using an
application server to deploy and configure it. Spring offers the possibility to configure a connector as a bean,
through a provided Fact or yBean (Local Connect i onFact or yBean). In this manner, you only need the connector
library in the classpath (no RAR fileand nora. xm descriptor needed). The library must be extracted from the
connector's RAR file, if necessary.

Once you got access to your Connect i onFact or y instance, you can inject it into your components. These
components can either be coded against the plain CCI API or leverage Spring's support classes for CCl access
(e.g. CciTemplate).

Important note: When you use a connector in non-managed mode, you can't use global transactions because the
resource is never enlisted / delisted in the current global transaction of the current thread. The resource is
simply not aware of any global J2EE transactions that might be running.

Spring Framework Version 1.2.9 253

JCA CCI

20.2.2. ConnectionFactory configuration in Spring

In order to make connections to the EIS, you need to obtain a Connect i onFact or y from the application server
if you are in a managed mode, or directly from Spring if you are in a non-managed mode.

In a managed mode, you access it from JNDI; its properties will be configured in the application server.

<bean i d="eci Connecti onFactory" cl ass="org. springfranmework.jndi.Jndi Obj ect Fact or yBean">
<property nanme="j ndi Nane" >
<val ue>ei s/ ci cseci </ val ue>
</ property>
</ bean>

In non-managed mode, you must configure the ConnectionFactory you want to use in the configuration of
Spring as a JavaBean. The Local Connect i onFact or yBean class offersthis setup style, passing in the
ManagedConnect i onFact ory implementation of your connector, exposing the application-level CCl
Connecti onFactory.

<bean i d="eci ManagedConnecti onFactory" cl ass="com i bm connect or 2. ci cs. ECl ManagedConnecti onFact ory" >
<property name="server Name" ><val ue>TXSERI ES</ val ue></ pr operty>
<property name="connecti onURL"><val ue>tcp://| ocal host/ </ val ue></ property>
<property nane="port Nunber"><val ue>2006</ val ue></ property>

</ bean>

<bean i d="eci Connecti onFactory" cl ass="org. springframework.jca.support. Local Connecti onFact or yBean">
<property nanme="nmanagedConnecti onFactory">
<ref |ocal ="eci ManagedConnecti onFactory"/>
</ property>
</ bean>

Important note: Y ou can't directly instantiate a specific Connect i onFact ory. Y ou heed to go through the
corresponding implementation of the ManagedConnect i onFact ory interface for your connector. Thisinterface
is part of the JCA SPI specification.

20.2.3. Configuring CCl connections

JCA CCI alow the developer to configure the connections to the EIS using the Connect i onSpec
implementation of your connector. In order to configure its properties, you need to wrap the target connection
factory with a dedicated adapter, Connect i onSpecConnect i onFact or yAdapt er . SO, the dedicated

Connect i onSpec can be configured with the property connect i onSpec (as an inner bean).

This property is not mandatory because the CCI Connect i onFact ory interface defines two different methods to
obtain a CCl connection. Some of the Connect i onSpec properties can often be configured in the application
server (in managed mode) or on the corresponding local ManagedConnect i onFact ory implementation.

public interface ConnectionFactory inplenments Serializable, Referenceable {

Connection get Connection() throws ResourceException
Connecti on get Connecti on(Connecti onSpec connecti onSpec) throws ResourceException

Spring provided a Connect i onSpecConnect i onFact or yAdapt er that allows for specifying a Connect i onSpec
instance to use for al operations on a given factory. If the adapter's connect i onSpec property is specified, the
adapter usesthe get Connect i on variant without argument, else the one with the Connect i onSpec argument.

<bean i d="nmanagedConnecti onFact ory"
cl ass="com sun. connect or. cci bl ackbox. Cci Local TxManagedConnecti onFact ory" >
<property nanme="connecti onURL" >

Spring Framework Version 1.2.9 254

JCA CCI

<val ue>j dbc: hsql db: hsql : / /| ocal host: 9001</ val ue>
</ property>
<property name="dri ver Nane" ><val ue>or g. hsql db. j dbcDri ver </ val ue></ pr operty>
</ bean>

<bean i d="t arget Connecti onFact ory"
cl ass="org. spri ngf ramewor k. j ca. support. Local Connecti onFact or yBean" >
<property name="nmanagedConnecti onFactory">
<ref |ocal ="managedConnecti onFactory"/>
</ property>
</ bean>

<bean i d="connecti onFactory"
cl ass="org. springframework. jca.cci.connection. Connecti onSpecConnecti onFact or yAdapt er ">
<property nanme="t ar get Connecti onFactory">
<ref bean="target Connecti onFactory"/>
</ property>
<property name="connectionSpec">
<bean cl ass="com sun. connect or. cci bl ackbox. Cci Connecti onSpec" >
<property name="user"><val ue>sa</val ue></ property>
<property name="password"><val ue/ ></ property>
</ bean>
</ property>
</ bean>

20.2.4. Using a single CCIl connection

If you want to use asingle CCI connection, Spring provides afurther Connect i onFact ory adapter to manage
this. The Si ngl eConnect i onFact or y adapter will open a single connection lazily and close it when thisbean is
destroyed at application shutdown. This class will expose special Connect i on proxies that behave accordingly,
all sharing the same underlying physical connection.

<bean i d="eci ManagedConnecti onFact ory"
cl ass="com i bm connect or 2. ci cs. ECl ManagedConnect i onFact or y" >
<property nane="server Nane" ><val ue>TEST</ val ue></ property>
<property name="connecti onURL"><val ue>tcp://| ocal host/ </ val ue></ property>
<property nane="port Nunber"><val ue>2006</ val ue></ property>
</ bean>

<bean i d="t ar get Eci Connecti onFact ory"
cl ass="org. springfranmework. jca. support.Local Connecti onFact or yBean" >
<property nanme="nanagedConnecti onFactory">
<ref |ocal ="eci ManagedConnecti onFactory"/>
</ property>
</ bean>

<bean i d="eci Connecti onFact ory"
cl ass="org. springframework. jca.cci.connection. Si ngl eConnecti onFact ory">
<property name="t ar get Connecti onFactory">
<ref |ocal ="t arget Eci Connecti onFactory"/>
</ property>
</ bean>

Important note: This Connect i onFact ory adapter cannot directly be configured with aConnect i onSpec. Use an
intermediary Connect i onSpecConnect i onFact or yAdapt er that the Si ngl eConnect i onFact ory talkstoif you
require a single connection for a specific Connect i onSpec.

20.3. Using Spring's CCl access support

20.3.1. Record conversion

One of the aims of the JCA CCI support is to provide convenient facilities for manipulating CCI records. The
developer can specify the strategy to create records and extract datas from records, for use with Spring's

Spring Framework Version 1.2.9 255

JCA CCI

CciTemplate. The following interfaces will configure the strategy to use input and output records if you don't
want to work with records directly in your application.

In order to create an input Recor d, the developer can use a dedicated implementation of the Recor dCr eat or
interface.

public interface RecordCreator {

Record creat eRecord(RecordFactory recordFactory) throws ResourceException, DataAccessException;

}

Asyou can see, the cr eat eRecor d method receives a Recor dFact or y instance as parameter, which corresponds
to the RecordFactory of the Connect i onFact ory used. This reference can be used to create | ndexedRecor d Or
MappedRecor d instances. The following sample shows how to use the Recor dCr eat or interface and
indexed/mapped records.

public class MyRecordCreator inplenments RecordCreator {

public Record createRecord(RecordFactory recordFactory) throws ResourceException {
I ndexedRecord i nput = recordFactory. creat el ndexedRecord("i nput");
i nput . add(new | nteger(id));
return input;

}
b

An output Recor d can be used to receive data back from the EIS. Hence, a specific implementation of the
Recor dExt ract or interface can be passed to Spring's CciTemplate for extracting data from the output Recor d.

public interface RecordExtractor {

Obj ect extractData(Record record) throws ResourceException, SQLException, DataAccessException;
}

The following sample shows how to use the RecordExtractor.

public class MyRecordExtractor inplenents RecordExtractor {

public nject extractData(Record record) throws ResourceException {
CommAr eaRecor d conmAr eaRecord = (CommAr eaRecord) record;
String str = new String(comAreaRecord.toByteArray());
String fieldl = string.substring(0, 6);
String field2 = string.substring(6,1);
return new Cut put Cbj ect (Long. parseLong(fieldl), field2);

20.3.2. CciTemplate

Thisisthe central class of the core CCl support package (or g. spri ngf ramewor k. j ca. cci . core). It simplifies
the use of CCl since it handles the creation and release of resources. This helps to avoid common errors like
forgetting to always close the connection. It cares for the lifecycle of connection and interaction objects, letting
application code focus on generating input records from application data and extracting application data from
output records.

The JCA CCI specification defines two distinct methods to call operations on an EIS. The CCl I nteracti on
interface provides two execute method signatures:

public interface javax.resource.cci.lInteraction {

bool ean execut e(l nteractionSpec spec, Record input, Record output) throws ResourceException;

Spring Framework Version 1.2.9 256

JCA CCI

Record execute(lnteracti onSpec spec, Record input) throws ResourceException;

Depending on the template method called, cci Tenpl at e will know which execut e method to call on the
interaction. In any case, acorrectly initialized | nt er act i onSpec instance is mandatory.

Cci Tenpl at e. execut e can be used in two ways.

« With direct Recor d arguments. In this case, you simply need to pass the CCl input record in, and the returned
object be the corresponding CCl output record.

« With application objects, using record mapping. In this case, you need to provide corresponding
Recor dCr eat or and Recor dExt r act or instances.

With the first approach, the following methods of the template will be used. These methods directly correspond
tothose on the I nt er act i on interface.
public class Cci Tenplate i nplenents Cci Qperations {

public Record execute(lnteractionSpec spec, Record inputRecord)
t hrows Dat aAccessException { ... }

public void execute(lnteracti onSpec spec, Record inputRecord, Record outputRecord)
throws DataAccessException { ... }

With the second approach, we need to specify the record creation and record extraction strategies as arguments.
The interfaces used are those describe in the previous section on record conversion. The corresponding
Cci Tenpl at e methods are the following:

public class Cci Tenpl ate i npl enents Cci Qperations {

public Record execute(lnteractionSpec spec, RecordCreator inputCreator)
t hrows Dat aAccessException { ... }

public Onject execute(lnteractionSpec spec, Record inputRecord, RecordExtractor outputExtractor)
throws DataAccessException { ... }

public Object execute(lnteracti onSpec spec, RecordCreator creator, RecordExtractor extractor)
throws DataAccessException { ... }

Unless the out put Recor dCr eat or property is set on the template (see the following section), every method will
call the corresponding execut e method of the CCI | nt er act i on with two parameters: I nt er act i onSpec and
input Recor d, receiving an output Recor d as return value.

Cci Tenpl at e also provides methods to create | ndexRecor d and MappedRecor d Outside a Recor dCr eat or
implementation, through itscr eat el ndexRecor d and cr eat eMappedRecor d methods. This can be used within
DAO implementations to create Recor d instances to pass into corresponding Cci Tenpl at e. execut e methods.
public class Cci Tenpl ate inplenents Cci Operations {
publ i ¢ I ndexedRecord createl ndexedRecord(String nanme) throws DataAccessException { ... }

publ i c MappedRecord creat eMappedRecord(String nane) throws DataAccessException { ... }

}

Spring Framework Version 1.2.9 257

JCA CCI

20.3.3. DAO support

Spring's CCl support provides a abstract class for DAQOs, supporting injection of a Connect i onFact ory Or a

Cci Tenpl at e instances. The name of the classis Cci DaoSupport : It provides simple set Connect i onFact ory

and set Cci Tenpl at e methods. Internally, this class will create a Cci Tenpl at e instance for a passed-in
Connect i onFact ory, EXpOSsing it to concrete data access implementations in subclasses.
public abstract class Cci DaoSupport {

public void setConnectionFactory(Connecti onFactory connectionFactory) { ... }
public ConnectionFactory getConnectionFactory() { ... }

public void setCci Tenpl at e(Cci Tenpl ate cci Tenplate) { ... }
public Cci Tenpl ate getCci Tenplate() { ... }

20.3.4. Automatic output record generation

If the connector used only supportsthe | nt eract i on. execut e method with input and output records as
parameters (that is, it requires the desired output record to be passed in instead of returning an appropriate

output record), you can set the out put Recor dCr eat or property of the Cci Tenpl at e to automatically generate an
output record to be filled by the JCA connector when the response is received. This record will be then returned

to the caller of the template.

This property simply holds an implementation of the Recor dCr eat or interface, used for that purpose. The

Recor dCr eat or interface has already been discussed in a previous section. The out put Recor dCr eat or property

must be directly specified on the cci Tenpl at e. This could be done in the application code:

cci Tenpl at e. set Qut put Recor dCr eat or (new Eci Qut put RecordCreator());

or in the Spring configuration, if the cci Tenpl at e is configured as a dedicated bean instance:

<bean i d="eci Qut put RecordCreator" class="eci.Eci Qut put RecordCreator"/>

<bean i d="cci Tenpl ate" cl ass="org. spri ngfranework.jca.cci.core.Cci Tenpl ate">
<property name="connectionFactory">
<ref |ocal ="eci ConnectionFactory"/>
</ property>
<property nanme="out put Recor dCreator">
<ref | ocal ="eci Qut put RecordCreator"/>
</ property>
</ bean>

Not e: Asthe Cci Tenpl at e classisthread-safe, it will usually be configured as a shared instance.

20.3.5. Summary

The following table summarizes the mechanism of the cci Tenpl at e class and the corresponding methods
called on the CCl I nt er act i on interface:

Table 20.1. Usage of Interaction execute methods

Spring Framework Version 1.2.9

258

JCA CCI

CciTemplate method signature

CciTemplate
outputRecordCreator property

execute method called on the
CCI Interaction

Record execute(InteractionSpec, not set Record execute(I nteractionSpec,
Record) Record)
Record execute(l nteractionSpec, set boolean execute(l nteractionSpec,
Record) Record, Record)
void execute(I nteractionSpec, not set void execute(I nteractionSpec,
Record, Record) Record, Record)
void execute(I nteractionSpec, Set void execute(I nteractionSpec,
Record, Record) Record, Record)
Record execute(lnteractionSpec, not set Record execute(l nteractionSpec,
RecordCreator) Record)
Record execute(I nteractionSpec, set void execute(I nteractionSpec,
RecordCresator) Record, Record)
Record execute(InteractionSpec, not set Record execute(I nteractionSpec,
Record, RecordExtractor) Record)
Record execute(l nteractionSpec, set void execute(l nteractionSpec,
Record, RecordExtractor) Record, Record)
Record execute(lnteractionSpec, not set Record execute(l nteractionSpec,
RecordCreator, RecordExtractor) Record)
Record execute(InteractionSpec, set void execute(I nteractionSpec,

RecordCreator, RecordExtractor)

Record, Record)

20.3.6. Using a CCI Connection and Interaction directly

Cci Tenpl at e also offers the possibility to work directly with CCI connections and interactions, in the same
manner as JdbcTenpl at e and JmsTenpl at e. Thisis useful when you want to perform multiple operations on a
CCI connection or interaction, for example.

Theinterface Connect i onCal | back providesa CCl Connect i on as argument, in order to perform custom
operations on it, plus the CCl Connect i onFact ory which the Connect i on was created with. The latter can be
useful for example to get an associated Recor dFact or y instance and create indexed/mapped records, for
example.

public interface ConnectionCall back {

Obj ect dol nConnecti on(Connection connection, ConnectionFactory connecti onFactory)
t hrows ResourceException, SQLException, DataAccessException;

Theinterface | nt eracti onCal | back providesthe CCl I nt er acti on, in order to perform custom operations on
it, plus the corresponding CCl Connect i onFact ory.

public interface InteractionCallback {

hj ect dolnlnteraction(lnteraction interaction, ConnectionFactory connecti onFactory)
t hrows ResourceException, SQLException, DataAccessExcepti on;

Spring Framework Version 1.2.9 259

JCA CCI

Not e: | nt er act i onSpec 0Objects can either be shared across multiple template calls and newly created inside
every callback method. Thisis completely up to the DAO implementation.

20.3.7. Example for CciTemplate usage

In this section, the usage of the Cci Tenpl at e will be shown to acces to a CICS with ECI mode, with the IBM
CICS ECI connector.

Firstly, someinitializations on the CCl I nt er act i onSpec must be done to specify which CICS program to
access and how to interact withiit.

ECl | nteracti onSpec interacti onSpec = new ECl I nteracti onSpec();
i nteracti onSpec. set Functi onName(" MYPROG') ;
i nteractionSpec. setlnteractionVerb(ECIInteractionSpec. SYNC SEND_RECEI VE) ;

Then the program can use CCl via Spring's template and specify mappings between custom objects and CCl
Recor ds.

public class MyDaol npl extends Cci DaoSupport inplements MyDao {

publ i ¢ Qut put Obj ect get Dat a(l nput Obj ect input) {
ECl I nteractionSpec interacti onSpec = ...;

Qut put Obj ect output = (ObjectQutput) getCci Tenpl ate().execute(interacti onSpec,
new RecordCreator() {
public Record createRecord(RecordFactory recordFactory) throws ResourceException {
return new ConmAr eaRecord(input.toString().getBytes());

}
b
new Recor dExtractor() {
public nject extractData(Record record) throws ResourceException {
CommAr eaRecor d conmmAr eaRecord = (ConmAr eaRecor d) record;
String str = new String(commAreaRecord.toByteArray());
String fieldl = string.substring(0, 6);
String field2 = string.substring(6,1);
return new Cut put Cbj ect (Long. parseLong(fieldl), field2);
}
1)

return output;

}
}

As discussed previously, callbacks can be used to work directly on CCI connections or interactions.

public class MyDaol npl extends Cci DaoSupport inplenents MyDao {

publ i ¢ Qut put Obj ect get Data(l nput Obj ect input) {
Obj ect Qut put output = (ObjectQutput) getCci Tenpl ate(). execut e(
new ConnectionCal | back() {
public Object dol nConnection(Connection connection, ConnectionFactory factory)
t hrows Resour ceException {

}...
});
}

return output;

}
}

Important note: With a ConnectionCallback, the Connect i on used will be managed and closed by the
Cci Tenpl at e, but any interactions created on the connection must be managed by the callback implementation.

For amore specific callback, you can implement an | nt er act i onCal | back. The passed-in I nt er acti on Will be

Spring Framework Version 1.2.9 260

JCA CCI

managed and closed by the Cci Tenpl at e in this case.

public class MyDaol npl extends Cci DaoSupport inplenents MyDao {

public String getData(String input) {
ECl | nteracti onSpec interacti onSpec = ...;

String output = (String) getCci Tenpl ate().execute(interacti onSpec
new | nteractionCal |l back() {
public Onject dolnlnteraction(lnteraction interaction, ConnectionFactory factory)
t hrows Resour ceException {
Record i nput = new CommAr eaRecord(i nput String. getBytes());
Record out put = new ConmAr eaRecord();
i nteraction. execute(hol der.getlnteractionSpec(), input, output);
return new String(output.toByteArray());
}
b

return output;
}
}

For the examples above, the corresponding configuration of the involved Spring beans could look like thisin
non-managed mode:

<bean i d="nmanagedConnecti onFact ory" cl ass="com i bm connector 2. ci cs. ECl ManagedConnecti onFact ory" >
<property name="server Nane" ><val ue>TXSERI ES</ val ue></ pr operty>
<property nane="connecti onURL" ><val ue>l ocal : </ val ue></ property>
<property name="user Nane" ><val ue>Cl CSUSER</ val ue></ pr operty>
<property name="password"><val ue>Cl CS</ val ue></ pr operty>
</ bean>

<bean i d="connectionFactory" class="org.springfranework.jca. support.Local Connecti onFact oryBean">
<property name="nmanagedConnecti onFactory">
<ref |ocal ="managedConnecti onFactory"/>
</ property>
</ bean>

<bean id="conponent" cl ass="nypackage. MyDaol npl ">
<property name="connecti onFactory"><ref |ocal ="connecti onFactory"/></property>
</ bean>

In managed mode (that is, in a J2EE environment), the configuration could look as follows:

<bean i d="connectionFactory" class="org. springfranework.jndi.Jndi Obj ect Fact or yBean">
<property name="j ndi Nane" ><val ue>ei s/ ci cseci </ val ue></ property>
</ bean>

<bean i d="conponent" cl ass="M/Daol npl ">
<property name="connectionFactory"><ref |ocal ="connectionFactory"/></property>
</ bean>

20.4. Modeling CCIl access as operation objects

Theorg. spri ngframework. j ca. cci . obj ect package contains support classes that allow you to accessthe EIS
in adifferent style: through reusable operation objects, analogous to Spring's JDBC operation objects (see
JDBC chapter). Thiswill usually encapsulate the CCI API: an application-level input object will be passed to
the operation object, so it can construct the input record and then convert the received record data to an
application-level output object and return it.

Note: This approach isinternally based on the Cci Tenpl at e class and the Recor dCr eat or / Recor dExt r act or
interfaces, reusing the machinery of Spring's core CCl support.

Spring Framework Version 1.2.9 261

JCA CCI

20.4.1. MappingRecordOperation

Mappi ngRecor dOper at i on essentially performs the same work as Cci Tenpl at e, but represents a specific,
pre-configured operation as an object. It provides two template methods to specify how to convert an input
object to ainput record, and how to convert an output record to an output object (record mapping):

e creat el nput Recor d to specify how to convert an input object to an input Recor d
* extract Qut put Dat a to specify how to extract an output object from an output Record

Here are the signatures of these methods:

public abstract class Mappi ngRecordQperation extends Ei sOperation {

protected abstract Record createl nput Record(RecordFactory recordFactory, Object inputObject)
throws ResourceException, DataAccessException { ... }

protected abstract Object extract QutputData(Record out put Record)
t hrows ResourceException, SQLException, DataAccessException { ... }

Thereafter, in order to execute an EIS operation, you need to use a single execute method, passing in an
application-level input object and receiving an application-level output object as result:

public abstract class Mappi ngRecordQOperati on extends Ei sOperation {

public nject execute(Object inputCbject) throws DataAccessException {

Asyou can see, contrary to the Cci Tenpl at e class, thisexecut e method does not have an | nt er act i onSpec as
argument. Instead, the | nt er act i onSpec is global to the operation. The following constructor must be used to
instantiate an operation object with a specific | nt er act i onSpec:

I nteractionSpec spec = ...;
MyMappi ngRecor dOper ati on ei sOperati on = new MyMappi ngRecor dOper ati on(get Connecti onFactory(), spec);

20.4.2. MappingCommAreaOperation

Some connectors use records based on a COMMAREA which represents an array of bytes containing
parameters to send to the EIS and data returned by it. Spring provides a specia operation class for working
directly on COMMAREA rather than on records. The Mappi ngCommar eaper at i on class extends the

Mappi ngRecor dOper at i on class to provide such special COMMAREA support. It implicitly uses the
CommAr eaRecor d class asinput and output record type, and provides two new methods to convert an input
object into an input COMMAREA and the output COMMAREA into an output object.

public abstract class Mappi ngConmmAr eaOper ati on ext ends Mappi ngRecor dOper ati on {

protected abstract byte[] objectToBytes(bject inCbject)
throws | CException, DataAccessExcepti on;

protected abstract Object bytesToObject(byte[] bytes)
throws | OException, DataAccessException;

Spring Framework Version 1.2.9 262

JCA CCI

20.4.3. Automatic output record generation
Asevery Mappi ngRecor dQper at i on subclass is based on CciTemplate internally, the same way to automatically
generate output records as with Cci Tenpl at e is available. Every operation object provides a corresponding

set Qut put Recor dCr eat or method. For further information, see the previous "automatic output record
generation” section.

20.4.4. Summary

The operation object approach uses records in the same manner asthe Cci Tenpl at e class.

Table 20.2. Usage of Interaction execute methods

M appingRecor dOper ation M appingRecordOperarion execute method called on the
method signature outputRecordCreator property CClI Interaction
Object execute(Object) not set Record execute(l nteractionSpec,
Record)
Object execute(Object) set boolean execute(l nteractionSpec,

Record, Record)

20.4.5. Example for MappingRecordOperation usage

In this section, the usage of the Mappi ngRecor dOper at i on will be shown to access a database with the
Blackbox CCI connector.

Not e: The original version of this connector is provided by the 2EE SDK (version 1.3), available from Sun.

Firstly, someinitializations on the CCl | nt er act i onSpec must be done to specify which SQL request to
execute. In this sample, we directly define the way to convert the parameters of the request to a CCl record and
the way to convert the CCI result record to an instance of the Per son class.

public class PersonMappi ngOperati on extends Mappi ngRecordQperation {

publ i ¢ Per sonMappi ngOper ati on(Connecti onFactory connecti onFactory) {
set Connecti onFact ory(connecti onFactory);
Ccilnteracti onSpec interacti onSpec = new Cci Connecti onSpec();
i nteractionSpec. setSql ("select * from person where person_id=?");
set I nteractionSpec(interacti onSpec);

}

protected Record createl nput Record(RecordFactory recordFactory, Object inputObject)
t hrows Resour ceException {
Integer id = (Integer) inputject;
I ndexedRecord i nput = recordFactory. createl ndexedRecord("i nput");
i nput . add(new | nteger(id));
return input;

}

protected Object extractQutputData(Record out put Record)

t hrows ResourceException, SQLException {

Result Set rs = (ResultSet) outputRecord;

Person person = null;

if (rs.next()) {
Person person = new Person();
person. setld(rs.getlnt("person_id"));
person. set Last Nane(rs. get String("person_l ast_nane"));
person. set Fi rst Nane(rs. get String("person_first_nane"));

}

return person;

Spring Framework Version 1.2.9 263

JCA CCI

Then the application can execute the operation object, with the person identifier as argument. Note that
operation object could be set up as shared instance, asit is thread-safe.

public class MyDaol npl extends Cci DaoSupport inplenments MyDao {

public Person getPerson(int id) {
Per sonMappi ngOper ati on query = new Per sonMappi ngQOper ati on(get Connecti onFactory());
Per son person = (Person) query.execute(new | nteger(id));
return person;
}
}

The corresponding configuration of Spring beans could look as follows in non-managed mode:

<bean i d="nmanagedConnecti onFact ory"
cl ass="com sun. connect or. cci bl ackbox. Cci Local TxManagedConnecti onFact ory" >
<property nanme="connecti onURL" >
<val ue>j dbc: hsql db: hsql : / /| ocal host: 9001</ val ue>
</ property>
<property name="dri ver Name" ><val ue>or g. hsql db. j dbcDri ver </ val ue></ pr operty>
</ bean>

<bean i d="t ar get Connecti onFactory"
cl ass="org. spri ngframework. j ca. support. Local Connecti onFact or yBean" >
<property name="nmanagedConnecti onFactory">
<ref |ocal ="managedConnecti onFactory"/>
</ property>
</ bean>

<bean i d="connecti onFactory"
cl ass="org. springfranmework.jca.cci.connection. Connecti onSpecConnecti onFact or yAdapt er ">
<property nanme="t ar get Connecti onFactory">
<ref bean="t arget Connecti onFactory"/>
</ property>
<property name="connectionSpec">
<bean cl ass="com sun. connect or. cci bl ackbox. Cci Connecti onSpec" >
<property name="user"><val ue>sa</val ue></ property>
<property name="password"><val ue/ ></ property>
</ bean>
</ property>
</ bean>

<bean i d="conponent" cl ass="MDaol npl ">
<property name="connectionFactory"><ref |ocal ="connecti onFactory"/></property>
</ bean>

In managed mode (that is, in a J2EE environment), the configuration could look as follows:

<bean i d="t ar get Connecti onFactory" class="org. springfranework.jndi.Jndi Obj ect Fact or yBean">
<property name="j ndi Nane" ><val ue>ei s/ bl ackbox</ val ue></ pr operty>
</ bean>

<bean i d="connecti onFactory"
cl ass="org. spri ngfranmework.jca.cci.connection. Connecti onSpecConnecti onFact or yAdapter">
<property nanme="t ar get Connecti onFactory">
<ref bean="target Connecti onFactory"/>
</ property>
<property nanme="connecti onSpec" >
<bean cl ass="com sun. connect or. cci bl ackbox. Cci Connecti onSpec" >
<property nanme="user"><val ue>sa</val ue></ property>
<property name="password"><val ue/ ></ property>
</ bean>
</ property>
</ bean>

<bean i d="conponent"” cl ass="MDaol npl ">
<property name="connectionFactory"><ref | ocal ="connectionFactory"/></property>
</ bean>

Spring Framework Version 1.2.9 264

JCA CCI

20.4.6. Example for MappingCommAreaOperation usage

In this section, the usage of the Mappi ngCommar eaCper at i on Will be shown: accessing a CICS with ECI mode
with the IBM CICS ECI connector.

Firstly, the CCl I nt er act i onSpec needsto beinitialized to specify which CICS program to access and how to
interact with it.

public abstract class Eci Mappi ngOperati on extends Mappi ngConmAr eaCOper ati on {

publ i c Eci Mappi ngOper ati on(Connecti onFactory connecti onFactory, String progranName) {
set Connecti onFact ory(connecti onFactory);
ECl | nteracti onSpec interacti onSpec = new ECl I nteractionSpec(),
i nteracti onSpec. set Functi onNanme(pr ogr anNane) ;
i nteracti onSpec. setlnteractionVerb(ECIInteractionSpec. SYNC_SEND_RECEI VE) ;
i nteracti onSpec. set Conmar eaLengt h(30) ;
set I nteracti onSpec(interactionSpec);
set Qut put Recor dCr eat or (new Eci Qut put RecordCreator());
}

private static class Eci Qutput RecordCreator inplenents RecordCreator {
public Record createRecord(RecordFactory recordFactory) throws ResourceException {
return new ConmAr eaRecord();
}
}
}

The abstract Eci Mappi ngQper at i on class can then be subclassed to specify mappings between custom objects
and Recor ds.

public class MyDaol npl extends Cci DaoSupport inplenents MyDao {

publ i c Qutput Obj ect getData(lnteger id) {
Eci Mappi ngOper ati on query = new Eci Mappi ngOper at i on(get Connecti onFactory(), "MPROG') {

protected abstract byte[] objectToBytes(Object inObject) throws | OException {
Integer id = (Integer) inCbject;
return String.val ued (id);

}

protected abstract Object bytesToObject(byte[] bytes) throws | OException;
String str = new String(bytes);
String fieldl str.substring(O0,6);
String field2 str.substring(6,1);
String field3 str.substring(7,1);
return new Qut put Cbject(fieldl, field2, field3);

}
1)

return (QutputObject) query.execute(new Integer(id));

}
}

The corresponding configuration of Spring beans could look as follows in non-managed mode:

<bean i d="nmanagedConnecti onFact ory" cl ass="com i bm connector 2. ci cs. ECl ManagedConnect i onFact ory" >
<property name="server Nane" ><val ue>TXSERI ES</ val ue></ pr operty>
<property nanme="connecti onURL"><val ue>l ocal : </ val ue></ property>
<property nanme="user Nane" ><val ue>Cl CSUSER</ val ue></ pr operty>
<property name="passwor d"><val ue>Cl CS</ val ue></ property>
</ bean>

<bean i d="connectionFactory" class="org. springfranmework.jca.support.Local Connecti onFact or yBean">
<property nanme="nmanagedConnecti onFactory">
<ref |ocal ="managedConnecti onFactory"/>
</ property>
</ bean>

<bean i d="conmponent" cl ass="MDaol npl ">
<property name="connectionFactory"><ref | ocal ="connectionFactory"/></property>
</ bean>

Spring Framework Version 1.2.9 265

JCA CCI

In managed mode (that is, in a J2EE environment), the configuration could look as follows:

<bean i d="connectionFactory" class="org. springfranework.jndi.Jndi Obj ect Fact or yBean">
<property nanme="j ndi Nane" ><val ue>ei s/ ci cseci </ val ue></ property>
</ bean>

<bean id="conponent" cl ass="MDaol npl ">
<property name="connectionFactory"><ref | ocal ="connectionFactory"/></property>
</ bean>

20.5. Transactions

JCA specifies several levels of transaction suppot for resource adapters. The kind of transactions that your
resource adapter supportsis specified initsra. xn file. There are essentially three options: none (for example
with CICS EPI connector), local transactions (for example with CICS ECI connector), global transactions (for
example with IMS connector).

<connect or >
<resour ceadapt er>

<I'-- transaction-support>NoTransaction</transaction-support -->
<l-- transaction-support>Local Transacti on</transacti on-support -->
<transacti on- support >XATr ansact i on</transacti on- support >

<r esour ceadapt er >

<connect or >

For global transactions, you can use Spring's generic transaction infrastructure to demarcate transactions, with
JaTransactionManager as backend (delegating to the J2EE server's distributed transaction coordinator
underneath).

For local transactions on asingle CCl Connect i onFact ory, Spring provides a specific transaction management
strategy for CCl, analogous to the Dat aSour ceTr ansact i onvanager for JDBC. The CCl API definesalocal
transaction object and corresponding local transaction demarcation methods. Spring's

Cci Local Transact i onManager executes such local CCI transactions, fully compliant with Spring's generic

Pl at f or mTr ansact i onManager abstraction.

<bean i d="eci Connecti onFactory" class="org. springfranmework.jndi.Jndi ObjectFact oryBean">
<property nanme="j ndi Nane" >
<val ue>ei s/ ci cseci </ val ue>
</ property>
</ bean>

<bean i d="eci Transacti onManager"
cl ass="org. spri ngframework. jca.cci.connection. Cci Local Transacti onManager" >
<property name="connectionFactory">
<ref |ocal ="eci ConnectionFactory" />
</ property>
</ bean>

Both transaction strategies can be used with any of Spring's transaction demarcation facilities, be it declarative
or programmatic. Thisis aconsequence of Spring's generic Pl at f or mir ansact i onManager abstraction, which
decouples transaction demarcation from the actual execution strategy. Simply switch between

JtaTransact i onManager and Cci Local Transact i onManager as needed, keeping your transaction demarcation
asis.

For more information on Spring's transaction facilities, see the transaction management chapter.

Spring Framework Version 1.2.9 266

Chapter 21. Sending Email with Spring mail
abstraction layer

21.1. Introduction

Spring provides a higher level of abstraction for sending electronic mail which shields the user from the
specifics of underlying mailing system and is responsible for alow level resource handling on behalf of the
client.

21.2. Spring mail abstraction structure

The main package of Spring mail abstraction layer isor g. spri ngf ramewor k. mai | package. It contains central
interface for sending emails called mai | Sender and the value object which encapsul ates properties of asimple
mail such as from, to, cc, subject, text called Si npl eMai | Message. This package also contains a hierarchy of
checked exceptions which provide a higher level of abstraction over the lower level mail system exceptions
with the root exception being Mai | Except i on. Please refer to JavaDocs for more information on mail exception
hierarchy.

Spring also provides a sub-interface of Mai | Sender for specialized JavaMail features such as MIME messages,
namely or g. spri ngf ramewor k. mai | . j avamai | . JavaMai | Sender It also provides a callback interface for
preparation of JavaMail MIME messages, namely

org. springframework. mail.javanmai |l . M neMessagePr epar at or

MailSender:

public interface Mil Sender {

/**

* Send the given sinple mail nessage.

* @aram si npl eMessage nessage to send

* @hrows Mail Exception in case of nmessage, authentication, or send errors
*/

public void send(Sinpl eMai | Message si npl eMessage) throws Mil Excepti on;

/**
* Send the given array of sinple nail nessages in batch.
* @ar am si npl eMessages nessages to send
* @hrows Mil Exception in case of nessage, authentication, or send errors
Sl
public void send(Si npl eMai | Message[] sinpl eMessages) throws Mil Exception;

}
JavaM ail Sender:

public interface JavaMail Sender extends Mail Sender {

/**

* Create a new JavaMail M neMessage for the underlying JavaMail Session
* of this sender. Needs to be called to create M meMessage i nstances

* that can be prepared by the client and passed to send(M neMessage) .

* @eturn the new M neMessage i nstance

* @ee #send(M neMessage)

* @ee #send(M neMessage[])

*/

public M neMessage createM neMessage();

/**

* Send the given JavaMail M ME nessage.
* The message needs to have been created with createM neMessage.

Spring Framework Version 1.2.9 267

Sending Email with Spring mail abstraction layer

* @aram m neMessage nessage to send

* @hrows Mail Exception in case of nmessage, authentication, or send errors
* @ee #createM neMessage

*/

public void send(M neMessage mi neMessage) throws Mil Excepti on;

/**

* Send the given array of JavaMail M ME nessages in batch.

* The messages need to have been created with createM neMessage.

* @aram m neMessages nessages to send

* @hrows Mail Exception in case of nmessage, authentication, or send errors
* @ee #createM neMessage

*/

public void send(M neMessage[] m neMessages) throws Mil Exception;

/**

* Send the JavaMail M ME nessage prepared by the given M neMessagePreparator.

* Alternative way to prepare M nmeMessage instances, instead of createM neMessage
* and send(M neMessage) calls. Takes care of proper exception conversion.

* @aram m neMessagePreparator the preparator to use

* @hrows Mil Exception in case of nessage, authentication, or send errors

*/

public void send(M nmeMessagePreparat or m neMessagePreparator) throws Mil Excepti on;

/**

* Send the JavaMail M ME nessages prepared by the given M neMessagePreparators.

* Alternative way to prepare M neMessage instances, instead of createM neMessage

* and send(M neMessage[]) calls. Takes care of proper exception conversion.

* @aram m meMessagePreparators the preparator to use

* @hrows Mail Exception in case of nmessage, authentication, or send errors

*/

public void send(M neMessagePreparator[] m neMessagePreparators) throws Mil Exception;

MimeM essagePreparator:

public interface M neMessagePreparator {

/**
* Prepare the given new M neMessage i nstance.
* @aram m neMessage the nessage to prepare
* @hrows Messagi ngException passing any exceptions thrown by M neMessage
* methods through for automatic conversion to the Mail Exception hierarchy
*/

voi d prepare(M neMessage m neMessage) throws Messagi ngExcepti on;

21.3. Using Spring mail abstraction

Let's assumethereis abusinessinterface called O der Manager

public interface O derManager {

voi d pl aceOrder (Order order);
}

and there is a use case that says that an email message with order number would need to be generated and sent
to a customer placing that order. So for this purpose we want to use Mai | Sender and Si npl eMai | Message

Please note that as usual, we work with interfaces in the business code and let Soring 10C container take care
of wiring of all the collaborators for us.

Here is the implementation of o der Manager

i nport org.springfranework. mail . Mai | Excepti on;
i mport org.springframework. mail . Mai | Sender ;
i nport org.springfranework. mail . Si npl eMai | Message;

Spring Framework Version 1.2.9 268

Sending Email with Spring mail abstraction layer

public class O derManager| npl inplenents O der Manager {

private Mail Sender mail Sender;
private SinpleMil Message nessage;

public void setMil Sender (Mai | Sender mai | Sender) {
this. mai | Sender = mai |l Sender;
}

public void set Message(Si npl eMai | Message nessage) {
thi s. message = nessage;

}
public void placeOrder(Order order) {
//... * Do the business calculations....
//... * Call the collaborators to persist the order

//Create a thread safe "sandbox" of the nessage
Si npl eMai | Message nsg = new Si npl eMai | Message(t hi s. message) ;
nsg. set To(order. get Cust oner (). get Emai | Address());
nsg. set Text (
"Dear "
+ order. get Cust oner (). get Fi rst Name()
+ order. get Cust oner (). getLast Nanme()
+ ", thank you for placing order. Your order nunber is "
+ order. get Order Nunber());

try{
mai | Sender . send(nmsg) ;

}
cat ch(Mai | Exception ex) {
//1og it and go on
System err.println(ex.get Message());

}
Here is what the bean definitions for the code above would look like:

<bean i d="mai | Sender" cl ass="org. springfranework. mail.javamail.JavaMi |l Sender| npl ">
<property nanme="host"><val ue>mai | . myconpany. conx/ val ue></ property>
</ bean>

<bean i d="mai | Message" cl ass="org. spri ngframework. mail . Si npl eMai | Message" >
<property name="fronl'><val ue>cust oner ser vi ce@ryconpany. conx/ val ue></ pr operty>
<property nanme="subj ect"><val ue>Your order</val ue></property>

</ bean>

<bean i d="order Manager" cl ass="com nyconpany. busi nessapp. support. O der Manager | npl ">
<property name="mail Sender " ><ref bean="mail Sender"/></property>
<property name="nessage"><ref bean="mail Message"/ ></property>

</ bean>

Here is the implementation of o der Manager using M meMessagePr epar at or callback interface. Please note that
the mail Sender property is of type JavaMai | Sender inthiscasein order to be able to use JavaMail
MimeM essage:

i nport javax.nail . Message;
i nport javax. nmil . Messagi ngExcepti on;

i nport javax.nmmil.internet.|nternetAddress;
i mport javax.mail.internet. M meMessage;
import javax.mail.internet. M nmeMessage;

i nport org. springfranework. mail . Mai | Excepti on;

i mport org.springframework. mail.javamail.JavaMai | Sender;

i mport org.springframework. mail.javanail.M neMessagePr epar at or;
public class O derManager|npl inplenments O der Manager {

private JavaMail Sender mail Sender;

public void set Mail Sender (JavaMai | Sender mai | Sender) {
this. mail Sender = mail Sender;

Spring Framework Version 1.2.9 269

Sending Email with Spring mail abstraction layer

}
public void placeOrder(final Oder order) {
//... * Do the business calculations....
//... * Call the collaborators to persist the order

M neMessagePr epar at or preparator = new M neMessagePreparator() {
public void prepare(M neMessage m nmeMessage) throws Messagi ngException {

m meMessage. set Reci pi ent (Message. Reci pi ent Type. TQ,
new | nt er net Addr ess(or der. get Cust oner () . get Enai | Address()));

m neMessage. set Fron{ new | nt er net Addr ess(" nai | @yconpany. cont'));

m meMessage. set Text (

"Dear "

+ order. get Cust oner (). get Fi rst Nanme()
+ order. get Cust oner (). get Last Nane()
+ ", thank you for placing order. Your order nunmber is "
+ order. get O der Nunmber());

}
b
try{

mai | Sender . send(preparator);
}

catch (Mail Exception ex) {
//log it and go on
System err. println(ex.get Message());

If you want to use JavaMail MimeM essage to the full power, the M neMessagePr epar at or isavailable at your
fingertips.

Please note that the mail code is a crosscutting concern and is a perfect candidate for refactoring into a custom
Soring AOP advice, which then could easily be applied to OrderManager target. Please see the AOP chapter.

21.3.1. Pluggable MailSender implementations

Spring comes with two Mail Sender implementations out of the box - the JavaMail implementation and the
implementation on top of Jason Hunter's MailMessage class that's included in http://servlets.com/cos
(com.oreilly.serviet). Please refer to JavaDaocs for more information.

21.4. Using the JavaMail MimeMessageHelper

One of the components that comes in pretty handy when dealing with JavaMail messagesis the
org. springframewor k. mai | . j avamai | . M neMessageHel per . It prevents you from having to use the nasty APIs
thethej avax. mail .internet classes. A couple of possible scenarios:

21.4.1. Creating a simple MimeMessage and sending it

Using the MimeM essageHel per it's pretty easy to setup and send a MimeM essage:

/1 of course you would setup the mail sender using
// DI in any real-world cases

JavaMai | Sender | npl sender = new JavaMai | Sender | npl ();
sender. set Host ("mai | . host. cont');

M neMessage nessage = sender.createM neMesage();

M neMessageHel per hel per = new M neMessageHel per (nessage) ;
hel per. set To("t est @ost.cont);

hel per. set Text (" Thank you for ordering!");

Spring Framework Version 1.2.9 270

http://servlets.com/cos

Sending Email with Spring mail abstraction layer

sender. send(nmessage) ;

21.4.2. Sending attachments and inline resources

Email allow for attachments, but also for inline resources in multipart messages. Inline resources could for
example be images or stylesheet you want to use in your message, but don't want displayed as attachment. The
following shows you how to use the MimeM essageHel per to send an email along with an inline image.

JavaMai | Sender | npl sender = new JavaMai | Sender | npl ();
sender. set Host ("mai | . host. cont');

M nmeMessage nessage = sender. createM neMesage();

// use the true flag to indicate you need a nmultipart nessage
M neMessageHel per hel per = new M neMessageHel per (nessage, true);
hel per. set To("t est @ost.cont);

/] use the true flag to indicate the text included is HTM.
hel per. set Text (
"<ht M ><body><i ng src='cid:identifierl234'></body></htnl >"
true);

/1 let's include the infanpbus wi ndows Sanple file (this tine copied to c:/)
Fi | eSystenResource res = new Fi | eSyst enResource(new File("c:/Sanple.jpg"));
hel per. addl nli ne("identifier1234", res);

/1 if you would need to include the file as an attachnment, use
/| addAttachnment () nethods on the M neMessageHel per

sender. send(message) ;

Inline resources are added to the mime message using the Content-1D specified as you've seen just now
(i dentifier1234 inthiscase). The order in which you're adding the text and the resource are VERY
important. First add the text and after that the resources. If you're doing it the other way around, it won't work!

Spring Framework Version 1.2.9 271

Chapter 22. Scheduling jobs using Quartz or Timer

22.1. Introduction

Spring features integration classes for scheduling support. Currently, Spring supports the Timer, part of the
JDK since 1.3, and the Quartz Scheduler (http://www.quartzscheduler.org). Both schedulers are set up using a
FactoryBean with optional references to Timers or Triggers, respectively. Furthermore, a convenience class for
both the Quartz Scheduler and the Timer is available that allows you to invoke a method of an existing target
object (analogous to normal Met hodl nvoki ngFact or yBeans).

22.2. Using the OpenSymphony Quartz Scheduler

Quartz uses Tri gger s, Jobs and JobDet ai | ro realize scheduling of all kinds of jobs. For the basic concepts
behind Quartz, have alook at http://www.opensymphony.com/quartz. For convenience purposes, Spring offers
acouple of classes that simplify usage of Quartz within Spring-based applications.

22.2.1. Using the JobDetailBean

JobDet ai | objects contain all information needed to run ajob. Spring provides a so-called JobDet ai | Bean that
makes the JobDetail more of an actual JavaBean with sensible defaults. Let's have alook at an example:

<bean name="exanpl eJob" cl ass="org. spri ngframework. schedul i ng. quart z. JobDet ai | Bean" >
<property nanme="j obCl ass" val ue="exanpl e. Exanpl eJob"/ >
<property nanme="j obDat aAsMap" >
<map>
<entry key="timeout" val ue="5"/>
</ map>
</ property>
</ bean>

The job detail bean has all information it needs to run the job (ExampleJob). The timeout is specified as the job
datamap. The job data map is available through the JobExecutionContext (passed to you at execution time),
but the JobDet ai | Bean also maps the properties from the job data map to properties of the actua job. Soin this
case, if the ExampleJob contains a property named t i neout , the JobDetailBean will automatically apply it:

package exanpl e;
public class Exanpl eJob extends QuartzJobBean {

private int tinmeout;

/**
* Setter called after the Exanpl eJob is instantiated
* with the value fromthe JobDetail Bean (5)
*/
public void setTimeout(int timeout) {
this.timeout = tineout;

}

protected voi d execut el nternal (JobExecuti onCont ext ctx)
t hrows JobExecuti onException {

// do the actual work
}

}

Spring Framework Version 1.2.9 272

http://www.quartzscheduler.org
http://www.opensymphony.com/quartz

Scheduling jobs using Quartz or Timer

All additional settings from the job detail bean are of course available to you as well.

Note: Using the nane and gr oup properties, you can modify the name and the group of the job, respectively. By
default the name of the job equals the bean name of the job detail bean (in the example above, thisis
exanpl eJob).

22.2.2. Using the MethodInvokingJobDetailFactoryBean

Often you just need to invoke a method on a specific object. Using the Met hodl nvoki ngJobDet ai | Fact or yBean
you can do exactly this:

<bean id="jobDetail" class="org.springframework. schedul i ng. quartz. Met hodl nvoki ngJobDet ai | Fact or yBean' >
<property nanme="target Obj ect" ref="exanpl eBusi nessObj ect"/>
<property nanme="t ar get Met hod" val ue="dolt"/>

</ bean>

The above example will result in the dol t being called on the exampleBusinessObject (see below):

public class Busi nessCbject {
/] properties and col |l aborators

public void dolt() {
/1 do the actual work

}
}

<bean i d="exanpl eBusi nessObj ect" cl ass="exanpl es. Exanpl eBusi nessObj ect "/ >

Using the Met hodl nvoki ngJobDet ai | Fact or yBean you don't need to create one-line jobs that just invoke a
method, and you only need to create the actual business object and wire up the detail object.

By default, Quartz Jobs are stateless, resulting in the possihility of jobs interfering with each other. If you
specify two triggers for the same JobDetail, it might be possible that before the first job has finished, the second
one will start. If JobDetail objects implement the Stateful interface, this won't happen. The second job will not
start before the first one has finished. To make jobs resulting from the MethodInvokingJobDetail FactoryBean
non-concurrent, set the concurrent flagtof al se.

<bean i d="jobDetail" class="org.springfranmework. schedul i ng. quart z. Met hodl nvoki ngJobDet ai | Fact or yBean" >
<property name="target Cbj ect" ref="exanpl eBusi nessObj ect"/>
<property name="target Met hod" val ue="dolt"/>
<property name="concurrent" val ue="fal se"/>

</ bean>

Note: By default, jobswill run in a concurrent fashion.

22.2.3. Wiring up jobs using triggers and the SchedulerFactoryBean

We've created job details, jobs and we've reviewed the convenience bean that allows to you invoke a method on
a specific object. Of course, we still need to schedule the jobs themselves. Thisis done using triggersand a
Schedul er Fact or yBean. Several triggers are available within Quartz. Spring offers two subclassed triggers
with convenient defaults. ¢ onTri gger Bean and Si npl eTri gger Bean.

Triggers need to be scheduled. Spring offers a Schedul erFactoryBean exposing properties to set the triggers.

Spring Framework Version 1.2.9 273

Scheduling jobs using Quartz or Timer

SchedulerFactoryBean schedules the actual jobs with those triggers.

A couple of examples:

<bean i d="si npl eTri gger" cl ass="org. springframework. schedul i ng. quartz. Si npl eTri gger Bean" >
<l-- see the exanple of nethod invoking job above -->
<property name="jobDetail" ref="jobDetail"/>
<!-- 10 seconds -->
<property nanme="startDel ay" val ue="10000"/>
<!-- repeat every 50 seconds -->
<property name="repeat|nterval" val ue="50000"/>
</ bean>

<bean i d="cronTrigger" class="org.springfranmework.schedul i ng. quartz. CronTriggerBean">
<property name="j obDetail" ref="exanpl eJob"/>
<l-- run every nmorning at 6 AM -->
<property nanme="cronExpressi on" value="0 0 6 * * ?2"/>
</ bean>

OK, now we've set up two triggers, one running every 50 seconds with a starting delay of 10 seconds and one
every morning at 6 AM. To finalize everything, we need to set up the Schedul erFactoryBean:

<bean cl ass="org. spri ngfranmewor k. schedul i ng. quart z. Schedul er Fact or yBean" >
<property nanme="triggers">
<list>
<ref bean="cronTrigger"/>
<ref bean="sinpleTrigger"/>
</list>
</ property>
</ bean>

More properties are available for the Schedul erFactoryBean for you to set, such as the calendars used by the job
details, properties to customize Quartz with, etc. Have alook at the JavaDoc
(http://mvww.springframework.org/docs/api/org/springframework/scheduling/quartz/Schedul erFactoryBean.html)
for more information.

22.3. Using JDK Timer support

The other way to schedule jobsin Spring isusing JDK Timer objects. More information about Timers
themselves can be found at http://java.sun.com/docs/books/tutorial/essential /threads/timer.html. The concepts
discussed above also apply to the Timer support. Y ou can create custom timers or use the timer that invokes
methods. Wiring timers has to be done using the TimerFactoryBean.

22.3.1. Creating custom timers

Using the Ti ner Task you can create customer timer tasks, similar to Quartz jobs:

public class CheckEmai | Addresses extends Ti merTask {
private List email Addresses;

public void setEnmil Addresses(List enmil Addresses) {
this. emai | Addresses = enai | Addr esses;

}

public void run() {
/] iterate over all enmil addresses and archive them
}
}

Spring Framework Version 1.2.9 274

http://www.springframework.org/docs/api/org/springframework/scheduling/quartz/SchedulerFactoryBean.html
http://java.sun.com/docs/books/tutorial/essential/threads/timer.html

Scheduling jobs using Quartz or Timer

Wiring it up issimple:

<bean i d="checkEnmmi | " cl ass="exanpl es. CheckEmai | Addr ess" >
<property nanme="enai | Addr esses" >
<list>

<val ue>t est @pri ngf ramewor k. or g</ val ue>
<val ue>f oo@ar . conx/ val ue>
<val ue>j ohn@oe. net </ val ue>
</list>
</ property>
</ bean>

<bean i d="schedul edTask" cl ass="org. springfranmework. schedul i ng.ti nmer. Schedul edTi ner Task" >

<l-- wait 10 seconds before starting repeated execution -->
<property name="del ay" val ue="10000"/>
<l-- run every 50 seconds -->

<property nanme="period" val ue="50000"/>
<property name="ti mer Task" ref="checkEmail"/>
</ bean>

Letting the task only run once can be done by changing the peri od property to -1 (or some other negative
value)

22.3.2. Using the MethodInvokingTimerTaskFactoryBean

Similar to the Quartz support, the Timer support also features a component that allows you to periodically
invoke a method:

<bean id="dolt" class="org.springfranmework. scheduling.tiner.Methodl nvoki ngTi mer TaskFact or yBean" >
<property nanme="target Cbj ect" ref="exanpl eBusi nessObj ect"/>
<property nanme="t ar get Met hod" val ue="dolt"/>

</ bean>

The above example will result in the dol t being called on the exanpl eBusi nessbj ect (See below):

public class BusinessObject {
/| properties and col | aborators

public void dolt() {
/1 do the actual work

}
}

Changing the reference of the above example (in which the ScheduledTimerTask is mentioned) to the dol t will
result in thistask being executed.

22.3.3. Wrapping up: setting up the tasks using the TimerFactoryBean

The TimerFactoryBean is similar to the Quartz SchedulerFactoryBean in that it serves the same purpose:
setting up the actual scheduling. The TimerFactoryBean sets up an actual Timer and schedules the tasks it has
referencesto. Y ou can specify whether or not daemon threads should be used.

<bean i d="ti merFactory" class="org.springfranmework. schedul i ng.tinmer.Ti ner Fact or yBean" >
<property nanme="schedul edTi mer Tasks" >

<list>
<I-- see the exanpl e above -->
<ref bean="schedul edTask"/>
</list>

</ property>

Spring Framework Version 1.2.9 275

Scheduling jobs using Quartz or Timer

</ bean>

That's al!

Spring Framework Version 1.2.9 276

Chapter 23. Testing

23.1. Unit testing

Y ou don't need this manual to help you write effective unit tests for Spring-based applications.

One of the main benefits of Dependency Injection is that your code should depend far less on the container than
in traditional J2EE development.

The POJOs that comprise your application should be testable in JUnit tests, with objects simply instantiated
using the new operator, without Soring or any other container. Y ou can use mock objects or many other
valuabl e testing techniques, to test your code in isolation. If you follow the architecture recommendations
around Spring--for example, those in J2EE without EJB--you will find that the resulting clean layering will also
greatly facilitate testing. For example, you will be able to test service layer objects by stubbing or mocking
DAO interfaces, without any need to access persistent data while running unit tests.

True unit tests will run extremely quickly, asthereis no runtime infrastructure to set up, whether application
server, database, ORM tool etc. Thus emphasizing true unit tests will boost your productivity.

23.2. Integration testing

However, it's also important to be able to perform some integration testing without deployment to your
application server. Thiswill test things such as:

» Correct wiring of your Spring contexts.

« Dataaccess using JDBC or ORM tool--correctness of SQL statements. For example, you can test your DAO
implementation classes.

Thus Spring provides valuable support for integration testing, in the spri ng- mock. j ar. This can be thought of
as asignificantly superior alternative to in-container testing using tools such as Cactus.

Theor g. spri ngf ramewor k. t est package provides valuable superclasses for integration tests using a Spring
container, but not dependent on an application server or other deployed environment. Such tests can runin
JUnit--even in an IDE--without any specia deployment step. They will be slower to run than unit tests, but
much faster to run than Cactus tests or remote tests relying on deployment to an application server.

The superclasses in this package provide the following functionality:

Context caching.
» Dependency Injection for test classes.

» Transaction management appropriate to tests.

Inherited instance variables useful for testing.

Numerous Interface?21 and other projects since late 2004 have demonstrated the power and utility of this
approach. Let'slook at some of the important areas of functionality in detail.

Spring Framework Version 1.2.9 277

Testing

23.2.1. Context management and caching

Theor g. spri ngf ramewor k. t est package provides support for consistent loading of Spring contexts, and
caching of loaded contexts. The latter isimportant, because if you are working on alarge project startup time
may become an issue--not because of the overhead of Spring itself, but because the objects instantiated by the
Spring container will themselves take time to instantiate. For example, a project with 50-100 Hibernate
mapping files might take 10-20 seconds to load them, and incurring that cost before running every test case will
greatly reduce productivity.

Thus, Abst r act Dependencyl nj ect i onSpri ngCont ext Test s has an abstract protected method that subclasses
must implement, to provide the location of contexts:

protected abstract String[] getConfiglLocations();

This should provide alist of the context locations--typically on the classpath--used to configure the application.
Thiswill be the same, or nearly the same, as the list of config locations specified in web.xml or other
deployment configuration.

By default, once loaded, the set of configs will be reused for each test case. Thus the setup cost will be incurred
only once, and subsequent test execution will be much faster.

In the unlikely case that atest may "dirty" the config location, requiring rel oading--for example, by changing a
bean definition or the state of an application object--you can call theset bi rty() method on

Abst r act Dependencyl nj ecti onSpri ngCont ext Test s to cause it to reload the configurations and rebuild the
application context before executing the next test case.

23.2.2. Dependency Injection of test class instances

When Abst r act Dependencyl nj ect i onSpri ngCont ext Test s (and subclasses) load your application context,
they can optionally configure instances of your test classes by Setter Injection. All you need to do isto define
instance variables and the corresponding setters. Abst r act Dependencyl nj ect i onSpri ngCont ext Test s Will
automatically locate the corresponding object in the set of configuration files specified in the

get Confi gLocati ons() method.

The superclasses use autowire by type. Thus if you have multiple bean definitions of the same type, you cannot
rely on this approach for those particular beans. In that case, you can use the inherited appl i cat i onCont ext
instance variable, and explicit lookup using get Bean() .

If you don't want Setter Injection applied to your test cases, don't declare any setters. Or extend
Abst r act Spri ngCont ext Test s--the root of the class hierarchy inthe or g. spri ngf ramewor k. t est package. It
merely contains convenience methods to load Spring contexts, and performs no Dependency Injection.

23.2.3. Transaction management

One common problem in tests that access areal database istheir effect on the state of the persistence store.
Even when you're using a development database, changes to the state may affect future tests.

Also, many operations--such as inserting to or modifying persistence data--can't be done (or verified) outside a
transaction.

Theorg. spri ngf ramewor k. t est . Abst ract Transact i onal Dat aSour ceSpr i ngCont ext Test s superclass (and

Spring Framework Version 1.2.9 278

Testing

subclasses) exist to meet this need. By default, they create and roll back atransaction for each test case. You
simply write code that can assume the existence of atransaction. If you call transactionally proxied objectsin
your tests, they will behave correctly, according to their transactional semantics.

Abstract Transact i onal Spri ngCont ext Test s dependson apl at f or nilr ansact i onManager bean being defined
in the application context. The name doesn't matter, due to the use of autowire by type.

Typically you will extend the subclass, Abst r act Tr ansact i onal Dat aSour ceSpr i ngCont ext Tests. Thisalso
requires a bat aSour ce bean definition--again, with any name--is present in the configurations. It creates a
JdbcTenpl at e instance variable that is useful for convenient querying, and provides handy methods to delete
the contents of selected tables. (Remember that the transaction will roll back by default, so thisis safe.)

If you want a transaction to commit--unusual, but useful if you want a particular test to populate the database,
for example--you can call the set Conpl et e() method inherited from
Abstract Transact i onal Spri ngCont ext Tests. Thiswill cause the transaction to commit instead of roll back.

Thereis also convenient ability to end a transaction before the test case ends, through calling the
endTransacti on() method. Thiswill roll back the transaction by default, and commit it only if

set Conpl et e() had previously been called. This functionality is useful if you want to test the behaviour of
"disconnected" data objects, such as Hibernate-mapped objects that will be used in aweb or remoting tier
outside a transaction. Often, lazy loading errors are discovered only through Ul testing; if you call
endTransacti on() YOu can ensure correct operation of the Ul through your JUnit test suite.

Note that these test support classes are designed to work with a single database.

23.2.4. Convenience variables

When you extend org.springframework.test package you will have access to the following protected instance
variables:

 applicationContext (Configurabl eApplicationContext): inherited from
AbstractDependency | njectionSpringContextTests. Use this to perfom explicit bean lookup, or test the state of
the context as awhole.

e jdbcTenpl at e: inherited from Abst r act Tr ansact i onal Dat aSour ceSpri ngCont ext Test s. Useful for
querying to confirm state. For example, you might query before and after testing application code that creates
an object and persistsit using an ORM tool, to verify that the data appears in the database. (Spring will
ensure that the query runsin the scope of the same transaction.) Y ou will need to tell your ORM tool to
"flush” its changes for thisto work correctly, for example using thef 1 ush() method on Hibernate's Sessi on
interface.

Often you will provide an application-wide superclass for integration tests that provides further useful instance
variables used in many tests.

23.2.5. Example

The PetClinic sample application included with the Spring distribution illustrates the use of these test
superclasses (Spring 1.1.5 and above).

Most test functionality isincluded in Abst ract d i ni cTest s, for which a partial listing is shown belong:

public abstract class AbstractC inicTests extends Abstract Transacti onal Dat aSour ceSpri ngCont ext Tests {

Spring Framework Version 1.2.9 279

Testing

protected Cinic clinic;

public void setCinic(Cinic clinic) {
this.clinic = clinic;

}

public void testGetVets() {
Col l ection vets = this.clinic.getVets();
assert Equal s("JDBC query must show the same nunber of vets",
j dbcTenpl at e. quer yFor | nt (" SELECT COUNT(0) FROM VETS"),
vets.size());
Vet vl = (Vet) EntityUtils.getByld(vets, Vet.class, 2);
assert Equal s("Leary", vl.getLastName());
assert Equal s(1, v1.getNrOf Specialties());
assert Equal s("radi ol ogy", ((Specialty) vl.getSpecialties().get(0)).getName());
Vet v2 = (Vet) EntityUtils.getByld(vets, Vet.class, 3);
assert Equal s("Dougl as", v2.getLastNane());
assert Equal s(2, v2.getNrOF Specialties());
assert Equal s("dentistry", ((Specialty) v2.getSpecialties().get(0)).getName());
assert Equal s("surgery", ((Specialty) v2. getSpecialties().get(1)).getNanme());

Notes:

* Thistest case extendsor g. spri ngf r amewor k. Abst ract Transact i onal Dat aSour ceSpri ngCont ext Test s,
from which it inherits Dependency Injection and transactional behaviour.

e Thecli ni ¢ instance variable--the application object being tested--is set by Dependency Injection through
the setClinic() method.

¢ ThetestGetVets() method illustrates how the inherited Jdbc Tenpl at e variable can be used to verify correct
behaviour of the application code being tested. This allows for stronger tests, and lessens dependency on the
exact test data. For example, you can add additional rowsin the database without breaking tests.

» Like many integration tests using a database, most of the testsin Abst ract d i ni cTest s depend on a
minimum amount of data already in the database before the test cases run. Y ou might, however, choose to
populate the database in your test cases al so--again, within the one transaction.

The PetClinic application supports three data access technologies--JDBC, Hibernate and Apache OJB. Thus
Abstract d i ni cTests does not specify the context locations--this is deferred to subclasses, that implement the
necessary protected abstract method from Abst r act Dependencyl nj ect i onSpri ngCont ext Test s.

For example, the JIDBC implementation of the PetClinic tests contains the following method:

public class H bernatedinicTests extends AbstractC inicTests {

protected String[] getConfiglLocations() {
return new String[] {
"/ org/ springfranmewor k/ sanpl es/ pet cl i ni ¢/ hi ber nat e/ appl i cati onCont ext - hi bernate. xm "
b

}
}

Asthe PetClinic isavery simple application, there is only one Spring configuration file. Of course, more
complex applications will typically break their Spring configuration across multiple files.

Instead of being defined in aleaf class, config locations will often be specified in a common base class for all
application-specific integration tests. This may also add useful instance variables--popul ated by Dependency
Injection, naturally--such as a Hi ber nat eTenpl at e, in the case of an application using Hibernate.

Asfar as possible, you should have exactly the same Spring configuration filesin your integration testsasin

Spring Framework Version 1.2.9 280

Testing

the deployed environment. One likely point of difference concerns database connection pooling and transaction
infrastructure. If you are deploying to afull-blown application server, you will probably use its connection pool
(available through JNDI) and JTA implementation. Thusin production you will use aJndi Obj ect Fact or yBean
for the Dat aSour ce, and Jt aTr ansact i onManager . JNDI and JTA will not be available in out-of-container
integration tests, so you should use a combination like the Commons DBCP Basi cDat aSour ce and

Dat aSour ceTr ansact i onManager Of Hi ber nat eTr ansact i onManager for them. Y ou can factor out this variant
behaviour into asingle XML file, having the choice between application server and "local" configuration
separated from all other configuration, which will not vary between the test and production environments.

23.2.6. Running integration tests

Integration tests naturally have more environmental dependencies than plain unit tests. Such integration testing
isan additional form of testing, not a substitute for unit testing.

The main dependency will typically be on a devel opment database containing a complete schema used by the
application. This may also contain test data, set up by aatool such asa DBUnit, or an import using your
database's tool set.

Spring Framework Version 1.2.9 281

Appendix A. spring- beans. dt d

<?xm version="1.0" encodi ng="UTF-8"?>

<l--
Spring XML Beans DTD
Aut hors: Rod Johnson, Juergen Hoeller, Al ef Arendsen, Colin Sanpal eanu

This defines a sinple and consi stent way of creating a nanmespace
of JavaBeans obj ects, nmanaged by a Spring BeanFactory, read by
Xm BeanDefi ni ti onReader (w th Defaul t Xm BeanDefi niti onParser).

Thi s docunent type is used by nost Spring functionality, including
web application contexts, which are based on bean factories

Each "bean" el enent in this docunent defines a JavaBean.
Typically the bean class is specified, along with JavaBean properties
and/ or constructor argunents

Bean instances can be "singletons" (shared instances) or "prototypes"
(i ndependent instances). Further scopes are supposed to be built on top
of the core BeanFactory infrastructure and are therefore not part of it.

Ref erences anong beans are supported, i.e. setting a JavaBean property
or a constructor argunment to refer to another bean in the same factory
(or an ancestor factory).

As alternative to bean references, "inner bean definitions" can be used
Singl eton flags of such inner bean definitions are effectively ignored
I nner beans are typically anonynous prototypes.

There is al so support for lists, sets, naps, and java.util.Properties
as bean property types or constructor argunent types

As the format is sinple, a DIDis sufficient, and there's no need
for a schema at this point.

XML docunents that conformto this DID shoul d declare the follow ng doctype:

<! DOCTYPE beans PUBLIC "-//SPRI NG / DTD BEAN / EN'
"http://ww. springframework. org/ dtd/spring-beans. dtd">

<l--
The docunment root. A document can contain bean definitions only,
inports only, or a mxture of both (typically with inports first).
-->
<! ELEMENT beans (
descri ption?
(inmport | alias | bean)*
)>

<l--
Default values for all bean definitions. Can be overridden at
the "bean" level. See those attribute definitions for details.
-->
<I ATTLI ST beans default-lazy-init (true | false) "fal se">
<I ATTLI ST beans def aul t - dependency-check (none | objects | sinple | all) "none">

<I ATTLI ST beans default-autowire (no | byNane | byType | constructor | autodetect) "no">
<l--

El enent containing informative text describing the purpose of the enclosing

el ement. Al ways optional

Used primarily for user documentation of XML bean definition docunents.
-->

<! ELEMENT descri ption (#PCDATA) >

<l--

Specifies an XML bean definition resource to inport.
-->
<! ELEMENT i nport EMPTY>

Spring Framework Version 1.2.9 282

spring-beans. dtd

<l--
The rel ative resource |location of the XM. bean definition file to inport,
for exanple "nylnport.xm " or "includes/nylnport.xm" or "../nylnport.xn".
=D
<! ATTLI ST i nport resource CDATA #REQUI RED>

<l--

Defines an alias for a bean, which can reside in a different definition file.
S
<!l ELEMENT al i as EMPTY>

<l--

The nanme of the bean to define an alias for.
==
<I ATTLI ST al i as name CDATA #REQUI RED>

<l--

The alias nane to define for the bean
oD
<I ATTLI ST alias alias CDATA #REQU RED>

& ==
Defines a single (usually nanmed) bean.

A bean definition may contain nested tags for constructor argunents,
property val ues, |ookup nethods, and repl aced nmet hods. M xi ng constructor
injection and setter injection on the sanme bean is explicitly supported
==
<! ELEMENT bean (
descri ption?

(constructor-arg | property | |ookup-nmethod | repl aced- net hod)*
)>
<l--

Beans can be identified by an id, to enable reference checking.

There are constraints on a valid XM id: if you want to reference your bean

in Java code using a nanme that's illegal as an XM. id, use the optiona

"nane" attribute. If neither is given, the bean class nane is used as id

(with an appended counter like "#2" if there is already a bean with that nane).
-->

<! ATTLI ST bean id I D #l MPLI ED>

<l--
Optional. Can be used to create one or nore aliases illegal in an id.
Miltiple aliases can be separated by any nunber of spaces or comnmas
-->
<! ATTLI ST bean nanme CDATA #l MPLI ED>

<l--
Each bean definition nmust specify the fully qualified nane of the class,
except if it pure serves as parent for child bean definitions.

-->

<! ATTLI ST bean cl ass CDATA # MPLI ED>

<l--
Optionally specify a parent bean definition

W Il use the bean class of the parent if none specified, but can
also override it. In the latter case, the child bean class nust be
conpatible with the parent, i.e. accept the parent's property val ues
and constructor argunment values, if any.

A child bean definition will inherit constructor argunent val ues

property val ues and net hod overrides fromthe parent, with the option

to add new values. If init nmethod, destroy method, factory bean and/or factory
nmet hod are specified, they will override the correspondi ng parent settings.

The remaining settings will always be taken fromthe child definition
depends on, autowi re node, dependency check, singleton, lazy init.
-->
<I ATTLI ST bean parent CDATA #| MPLI ED>

<l--
Is this bean "abstract”, i.e. not neant to be instantiated itself but

Spring Framework Version 1.2.9 283

spring-beans. dtd

rather just serving as parent for concrete child bean definitions.
Default is false. Specify true to tell the bean factory to not try to
instantiate that particul ar bean in any case

-->

<I ATTLI ST bean abstract (true | false) "false">

<l--
Is this bean a "singleton" (one shared instance, which wll
be returned by all calls to getBean() with the id),
or a "prototype" (independent instance resulting fromeach call to
getBean(). Default is singleton
Si ngl etons are nost commonly used, and are ideal for multi-threaded
servi ce obj ects.

==

<I ATTLI ST bean singleton (true | false) "true">

<l--
If this bean should be lazily initialized
If false, it will get instantiated on startup by bean factories
that performeager initialization of singletons.

-->

<I ATTLI ST bean lazy-init (true | false | default) "default">

<l--
Optional attribute controlling whether to "autow re" bean properties.
This is an automagi cal process in which bean references don't need to be coded
explicitly in the XM_ bean definition file, but Spring works out dependenci es.

There are 5 nodes:

1. "no"

The traditional Spring default. No autommgical wring. Bean references
nust be defined in the XM. file via the <ref> elenent. We recommend this
in npbst cases as it nakes docunentation nore explicit.

2. "byNane"

Autowi ring by property name. |f a bean of class Cat exposes a dog property,

Spring will try to set this to the value of the bean "dog" in the current factory.
If there is no matchi ng bean by name, nothing special happens;

use dependency-check="objects" to raise an error in that case

3. "byType"

Autowiring if there is exactly one bean of the property type in the bean factory.
If there is nore than one, a fatal error is raised, and you can't use byType
autowi ring for that bean. If there is none, nothing special happens;

use dependency-check="objects" to raise an error in that case

4. "constructor"”
Anal ogous to "byType" for constructor arguments. If there isn't exactly one bean
of the constructor argument type in the bean factory, a fatal error is raised

5. "autodetect"
Chooses "constructor” or "byType" through introspection of the bean cl ass.
If a default constructor is found, "byType" gets applied

The latter two are simlar to PicoContainer and nake bean factories sinple to
configure for small nanespaces, but doesn't work as well as standard Spring
behavi our for bigger applications.

Note that explicit dependencies, i.e. "property" and "constructor-arg" elenents,
al ways override autow ring. Autow re behaviour can be conbined with dependency
checking, which will be perfornmed after all autow ring has been conpl et ed

-->

<I ATTLI ST bean autowire (no | byNanme | byType | constructor | autodetect | default) "default">

& ==
Optional attribute controlling whether to check whether all this
beans dependenci es, expressed in its properties, are satisfied
Default is no dependency checki ng.
"sinple" type dependency checking includes primtives and String
"object" includes collaborators (other beans in the factory)
"all" includes both types of dependency checking
==
<! ATTLI ST bean dependency-check (none | objects | sinple | all | default) "default">

Spring Framework Version 1.2.9 284

spring-beans. dtd

<l--
The names of the beans that this bean depends on being initialized.
The bean factory will guarantee that these beans get initialized before.

Not e t hat dependencies are nornal |y expressed through bean properties or
constructor argunents. This property should just be necessary for other kinds
of dependencies |ike statics (*ugh*) or database preparation on startup.

-->

<I ATTLI ST bean depends-on CDATA #l MPLI ED>

<l--
Optional attribute for the nane of the custominitialization nethod
to invoke after setting bean properties. The method nust have no argunents,
but may throw any exception.

-->

<! ATTLI ST bean init-nmethod CDATA #l MPLI ED>

<l--
Optional attribute for the nane of the custom destroy nmethod to invoke
on bean factory shutdown. The nethod nust have no argunents,
but may throw any exception. Note: Only invoked on singleton beans!
-->
<! ATTLI ST bean destroy- met hod CDATA #l MPLI ED>

<l--
Optional attribute specifying the nane of a factory nmethod to use to
create this object. Use constructor-arg el ements to specify argunents
to the factory nethod, if it takes arguments. Autow ring does not apply
to factory nethods.

If the "class" attribute is present, the factory method will be a static
nmet hod on the class specified by the "class" attribute on this bean
definition. Often this will be the sane class as that of the constructed
object - for exanple, when the factory nmethod is used as an alternative
to a constructor. However, it may be on a different class. In that case,
the created object will *not* be of the class specified in the "class"
attribute. This is anal ogous to FactoryBean behavi or.

If the "factory-bean" attribute is present, the "class" attribute is not
used, and the factory nethod will be an instance nethod on the object
returned froma getBean call with the specified bean name. The factory
bean may be defined as a singleton or a prototype.

The factory nmethod can have any nunber of argunents. Autowiring is not
supported. Use indexed constructor-arg elenments in conjunction with the
factory-nethod attribute.

Setter Injection can be used in conjunction with a factory nethod.
Met hod | njection cannot, as the factory nmethod returns an instance,
which will be used when the container creates the bean.

-->

<! ATTLI ST bean factory-nmet hod CDATA #l MPLI ED>

<l--
Alternative to class attribute for factory-nmethod usage.
If this is specified, no class attribute should be used.
This should be set to the name of a bean in the current or
ancestor factories that contains the relevant factory nethod.
This allows the factory itself to be configured usi ng Dependency
Injection, and an instance (rather than static) nmethod to be used.
-->
<I ATTLI ST bean factory-bean CDATA #| MPLI ED>

<l--
Bean definitions can specify zero or nore constructor argunents.
This is an alternative to "autowire constructor"”.
Argurments correspond to either a specific index of the constructor argunent
list or are supposed to be matched generically by type.

Note: A single generic argument value will just be used once, rather than
potentially matched nmultiple times (as of Spring 1.1).

constructor-arg elenments are al so used in conjunction with the factory-nethod
el enent to construct beans using static or instance factory methods.

-->

<I ELEMENT constructor-arg (

Spring Framework Version 1.2.9 285

spring-beans. dtd

descri ption?,

(bean | ref | idref | value | null | list | set | map | props)?
) >
<l--
The constructor-arg tag can have an optional index attribute,
to specify the exact index in the constructor argunment list. Only needed
to avoid anmbiguities, e.g. in case of 2 argunents of the sanme type.
-->

<I ATTLI ST constructor-arg i ndex CDATA #l MPLI ED>

<l--
The constructor-arg tag can have an optional type attribute,
to specify the exact type of the constructor argunment. Only needed
to avoid anmbiguities, e.g. in case of 2 single argument constructors
that can both be converted froma String.

s

<I ATTLI ST constructor-arg type CDATA #l MPLI ED>

<l--

A short-cut alternative to a child elenent "ref bean=".
e D
<I ATTLI ST constructor-arg ref CDATA #l MPLI ED>

<l--

A short-cut alternative to a child el enent "val ue".
S
<I ATTLI ST constructor-arg val ue CDATA #| MPLI ED>

<l--
Bean definitions can have zero or nore properties.
Property el enents correspond to JavaBean setter nethods exposed
by the bean classes. Spring supports primtives, references to other
beans in the same or related factories, |lists, maps and properties.
-->
<! ELEMENT property (
descri ption?,

(bean | ref | idref | value | null | list | set | map | props)?

)>

<l--
The property nane attribute is the name of the JavaBean property.
This foll ows JavaBean conventions: a nane of "age" would correspond
to set Age()/optional getAge() nethods.

-->

<I ATTLI ST property name CDATA #REQUI RED>

<l--

A short-cut alternative to a child el ement "ref bean=".
o
<I ATTLI ST property ref CDATA #l MPLI ED>

<l--

A short-cut alternative to a child el enent "val ue".
-->
<I ATTLI ST property val ue CDATA #l MPLI ED>

<l--
A | ookup nethod causes the |10C container to override the given nethod and return

the bean with the nane given in the bean attribute. This is a formof Method Injection.

It's particularly useful as an alternative to inplenenting the BeanFact or yAwar e
interface, in order to be able to make getBean() calls for non-singleton instances
at runtinme. In this case, Method Injection is a |less invasive alternative.

-->

<! ELEMENT | ookup- net hod EMPTY>

& o=

Nane of a | ookup nethod. This nethod shoul d take no argunents.
-->
<! ATTLI ST | ookup- met hod nanme CDATA #l MPLI ED>

<l--
Name of the bean in the current or ancestor factories that the | ookup nethod
shoul d resolve to. Oten this bean will be a prototype, in which case the
| ookup method will return a distinct instance on every invocation. This

Spring Framework Version 1.2.9

286

spring-beans. dtd

is useful for single-threaded objects.
co®

<! ATTLI ST | ookup- net hod bean CDATA #l MPLI ED>

<l--
Simlar to the | ookup nmethod nmechani sm the replaced-nethod el enent is used to control
10C contai ner nmethod overriding: Method | njection. This nmechanismallows the overriding
of a method with arbitrary code.

-->

<! ELEMENT r epl aced- met hod (
(arg-type)*

)>

<l--
Nanme of the nethod whose inpl enentati on should be replaced by the |oC container.
If this method is not overloaded, there's no need to use arg-type subel enents.
If this nethod is overloaded, arg-type subel enents nust be used for all
override definitions for the nethod.

-->

<! ATTLI ST repl aced- met hod name CDATA #| MPLI ED>

<I--
Bean name of an inplenmentation of the MethodRepl acer interface
in the current or ancestor factories. This may be a singleton or prototype
bean. If it's a prototype, a new instance will be used for each nethod repl acenent.
Singl eton usage is the norm
-->

<! ATTLI ST repl aced- net hod repl acer CDATA #| MPLI ED>

<l--
Subel ement of repl aced-nethod identifying an argunent for a replaced nethod
in the event of nethod overl oadi ng.

=D

<! ELEMENT arg-type (#PCDATA) >

<l--
Speci fication of the type of an overl oaded nethod argument as a String.
For conveni ence, this may be a substring of the FON. E.g. all the
foll ow ng woul d match "java.lang. String":
- java.lang. String
- String
- Str
As the nunber of argunents will be checked al so, this convenience can often
be used to save typing.
s

<I ATTLI ST arg-type match CDATA #l MPLI ED>

<l--
Defines a reference to another bean in this factory or an external
factory (parent or included factory).

-->

<! ELEMENT ref EMPTY>

<l--
Ref erences nust specify a nanme of the target bean.
The "bean" attribute can reference any nane from any bean in the context,
to be checked at runtine.
Local references, using the "local" attribute, have to use bean ids;
they can be checked by this DID, thus should be preferred for references
within the sane bean factory XM file.

=D

<! ATTLI ST ref bean CDATA #l MPLI ED>

<! ATTLI ST ref |ocal |DREF #l MPLI ED>

<I ATTLI ST ref parent CDATA #l MPLI ED>

<I--
Defines a string property value, which nust also be the id of another
bean in this factory or an external factory (parent or included factory).
Wiile a regular 'value' elenent could instead be used for the same effect,
using idref in this case allows validation of |ocal bean ids by the xm
parser, and name conpl etion by hel per tools.

-->

<! ELEMENT i dref EMPTY>

Spring Framework Version 1.2.9

287

spring-beans. dtd

<l--
IDrefs nust specify a nane of the target bean
The "bean" attribute can reference any nane from any bean in the context,
potentially to be checked at runtinme by bean factory inplenentations
Local references, using the "local" attribute, have to use bean ids;
they can be checked by this DID, thus should be preferred for references
within the sane bean factory XM file.

-->

<! ATTLI ST i dref bean CDATA #l MPLI ED>

<I ATTLI ST idref |ocal |DREF #l MPLI ED>

<l--
Contains a string representation of a property val ue.
The property nmay be a string, or may be converted to the
required type using the JavaBeans PropertyEditor
machi nery. This nakes it possible for application devel opers
to wite custom PropertyEditor inplenmentations that can
convert strings to objects.

Note that this is reconmended for sinple objects only.
Configure nore conpl ex objects by popul ati ng JavaBean
properties with references to other beans.

-->

<! ELEMENT val ue (#PCDATA) >

<l--
The val ue tag can have an optional type attribute, to specify the
exact type that the value should be converted to. Only needed
if the type of the target property or constructor argunent is
too generic: for exanple, in case of a collection elenent.
-->
<! ATTLI ST val ue type CDATA #l MPLI ED>

<l--
Denotes a Java null value. Necessary because an enpty "val ue" tag
will resolve to an enpty String, which will not be resolved to a
nul | val ue unl ess a special PropertyEditor does so

-->

<! ELEMENT nul | (#PCDATA) >

<l--
A list can contain multiple inner bean, ref, collection, or value el enents.
Java lists are untyped, pending generics support in Java 1.5,
al t hough references will be strongly typed
Alist can also map to an array type. The necessary conversion
is automatically performed by the BeanFactory.
-->
<! ELEMENT |ist (
(bean | ref | idref | value | null | list | set | map | props)*
) >
<l--
A set can contain multiple inner bean, ref, collection, or value el ements.
Java sets are untyped, pending generics support in Java 1.5,
al t hough references will be strongly typed
-->
<! ELEMENT set (
(bean | ref | idref | value | null | list | set | map | props)*
)>
<l--
A Spring map is a mapping froma string key to object.
Maps may be enpty.
-->
<l ELEMENT map (
(entry)*
)>
<l--
A map entry can be an inner bean, ref, value, or collection
The key of the entry is given by the "key" attribute or child el enent.
-->

<I ELEMENT entry (

Spring Framework Version 1.2.9 288

spring-beans. dtd

key?,
(bean | ref | idref | value | null | list | set | map | props)?
) >
<l--
Each map el enent nust specify its key as attribute or as child el enent.
A key attribute is always a String val ue.
-->

<I ATTLI ST entry key CDATA #l MPLI ED>

<l--

A short-cut alternative to a "key" element with a "ref bean=" child el enent.
-->
<! ATTLI ST entry key-ref CDATA #l MPLI ED>

<l--

A short-cut alternative to a child el enent "val ue".
co D
<I ATTLI ST entry val ue CDATA #| MPLI ED>

<l--

A short-cut alternative to a child el ement “"ref bean=".
o
<l ATTLI ST entry val ue-ref CDATA #l MPLI ED>

<l--
A key el ement can contain an inner bean, ref, value, or collection.
-->
<! ELEMENT key (
(bean | ref | idref | value | null | list | set | map | props)
)>
<l--
Props elenents differ fromnmap el enents in that val ues nust be strings.
Props may be enpty.
-->
<! ELEMENT props (
(prop) *
)>
<l--
El ement content is the string value of the property.
Not e that whitespace is trimmed off to avoi d unwant ed whitespace
caused by typical XM. formatting.
-->

<! ELEMENT prop (#PCDATA) >

<l--

Each property el enent nust specify its key.
-->
<! ATTLI ST prop key CDATA #REQUI RED>

Spring Framework Version 1.2.9 289

	Spring - Java/J2EE Application Framework
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Overview
	1.2. Usage scenarios

	Chapter 2. Background information
	2.1. Inversion of Control / Dependency Injection

	Chapter 3. Beans, BeanFactory and the ApplicationContext
	3.1. Introduction
	3.2. BeanFactory and BeanDefinitions - the basics
	3.2.1. The BeanFactory
	3.2.2. The BeanDefinition
	3.2.3. The bean class
	3.2.3.1. Bean creation via constructor
	3.2.3.2. Bean creation via static factory method
	3.2.3.3. Bean creation via instance factory method

	3.2.4. The bean identifiers (id and name)
	3.2.5. To singleton or not to singleton

	3.3. Properties, collaborators, autowiring and dependency checking
	3.3.1. Setting bean properties and collaborators
	3.3.2. Constructor Argument Resolution
	3.3.2.1. Constructor Argument Type Matching
	3.3.2.2. Constructor Argument Index

	3.3.3. Bean properties and constructor arguments detailed
	3.3.3.1. The value element
	3.3.3.2. The null element
	3.3.3.3. The collection elements
	3.3.3.4. Inner bean definitions via nested bean elements
	3.3.3.5. The idref element
	3.3.3.6. The ref element
	3.3.3.7. Value and Ref shortcut forms
	3.3.3.8. Compound property names

	3.3.4. Method Injection
	3.3.4.1. Lookup method Injection
	3.3.4.2. Arbitrary method replacement

	3.3.5. Using depends-on
	3.3.6. Autowiring collaborators
	3.3.7. Checking for dependencies

	3.4. Customizing the nature of a bean
	3.4.1. Lifecycle interfaces
	3.4.1.1. InitializingBean / init-method
	3.4.1.2. DisposableBean / destroy-method

	3.4.2. Knowing who you are
	3.4.2.1. BeanFactoryAware
	3.4.2.2. BeanNameAware

	3.4.3. FactoryBean

	3.5. Abstract and child bean definitions
	3.6. Interacting with the BeanFactory
	3.6.1. Obtaining a FactoryBean, not its product

	3.7. Customizing beans with BeanPostProcessors
	3.8. Customizing bean factories with BeanFactoryPostProcessors
	3.8.1. The PropertyPlaceholderConfigurer
	3.8.2. The PropertyOverrideConfigurer

	3.9. Registering additional custom PropertyEditors
	3.10. Using the alias element to add aliases for existing beans
	3.11. Introduction to the ApplicationContext
	3.12. Added functionality of the ApplicationContext
	3.12.1. Using the MessageSource
	3.12.2. Propagating events
	3.12.3. Low-level resources and the application context

	3.13. Customized behavior in the ApplicationContext
	3.13.1. ApplicationContextAware marker interface
	3.13.2. The BeanPostProcessor
	3.13.3. The BeanFactoryPostProcessor
	3.13.4. The PropertyPlaceholderConfigurer

	3.14. Registering additional custom PropertyEditors
	3.15. Setting a bean property or constructor arg from a property expression
	3.16. Setting a bean property or constructor arg from a field value
	3.17. Invoking another method and optionally using the return value.
	3.18. Importing Bean Definitions from One File Into Another
	3.19. Creating an ApplicationContext from a web application
	3.20. Glue code and the evil singleton
	3.20.1. Using SingletonBeanFactoryLocator and ContextSingletonBeanFactoryLocator

	Chapter 4. Abstracting Access to Low-Level Resources
	4.1. Overview
	4.2. The Resource interface
	4.3. Built-in Resource implementations
	4.3.1. UrlResource
	4.3.2. ClassPathResource
	4.3.3. FileSystemResource
	4.3.4. ServletContextResource
	4.3.5. InputStreamResource
	4.3.6. ByteArrayResource

	4.4. The ResourceLoader Interface
	4.5. The ResourceLoaderAware interface
	4.6. Setting Resources as properties
	4.7. Application contexts and Resource paths
	4.7.1. Constructing application contexts
	4.7.2. The classpath*: prefix
	4.7.3. Unexpected application context handling of FileSystemResource absolute paths

	Chapter 5. PropertyEditors, data binding, validation and the BeanWrapper
	5.1. Introduction
	5.2. Binding data using the DataBinder
	5.3. Bean manipulation and the BeanWrapper
	5.3.1. Setting and getting basic and nested properties
	5.3.2. Built-in PropertyEditors, converting types
	5.3.3. Other features worth mentioning

	5.4. Validation using Spring's Validator interface
	5.5. The Errors interface
	5.6. Resolving codes to error messages

	Chapter 6. Spring AOP: Aspect Oriented Programming with Spring
	6.1. Concepts
	6.1.1. AOP concepts
	6.1.2. Spring AOP capabilities and goals
	6.1.3. AOP Proxies in Spring

	6.2. Pointcuts in Spring
	6.2.1. Concepts
	6.2.2. Operations on pointcuts
	6.2.3. Convenience pointcut implementations
	6.2.3.1. Static pointcuts
	6.2.3.1.1. Regular expression pointcuts
	6.2.3.1.2. Attribute-driven pointcuts

	6.2.3.2. Dynamic pointcuts
	6.2.3.2.1. Control flow pointcuts

	6.2.4. Pointcut superclasses
	6.2.5. Custom pointcuts

	6.3. Advice types in Spring
	6.3.1. Advice lifecycles
	6.3.2. Advice types in Spring
	6.3.2.1. Interception around advice
	6.3.2.2. Before advice
	6.3.2.3. Throws advice
	6.3.2.4. After Returning advice
	6.3.2.5. Introduction advice

	6.4. Advisors in Spring
	6.5. Using the ProxyFactoryBean to create AOP proxies
	6.5.1. Basics
	6.5.2. JavaBean properties
	6.5.3. Proxying interfaces
	6.5.4. Proxying classes
	6.5.5. Using 'global' advisors

	6.6. Convenient proxy creation
	6.6.1. TransactionProxyFactoryBean
	6.6.2. EJB proxies

	6.7. Concise proxy definitions
	6.8. Creating AOP proxies programmatically with the ProxyFactory
	6.9. Manipulating advised objects
	6.10. Using the "autoproxy" facility
	6.10.1. Autoproxy bean definitions
	6.10.1.1. BeanNameAutoProxyCreator
	6.10.1.2. DefaultAdvisorAutoProxyCreator
	6.10.1.3. AbstractAdvisorAutoProxyCreator

	6.10.2. Using metadata-driven auto-proxying

	6.11. Using TargetSources
	6.11.1. Hot swappable target sources
	6.11.2. Pooling target sources
	6.11.3. Prototype target sources
	6.11.4. ThreadLocal target sources

	6.12. Defining new Advice types
	6.13. Further reading and resources

	Chapter 7. AspectJ Integration
	7.1. Overview
	7.2. Configuring AspectJ aspects using Spring IoC
	7.2.1. "Singleton" aspects
	7.2.1.1. Example
	7.2.1.2. Ordering issues

	7.2.2. Non-singleton aspects
	7.2.3. Gotchas

	7.3. Using AspectJ pointcuts to target Spring advice
	7.4. Spring aspects for AspectJ

	Chapter 8. Transaction management
	8.1. The Spring transaction abstraction
	8.2. Transaction strategies
	8.3. Resource synchronization with transactions
	8.3.1. High-level approach
	8.3.2. Low-level approach
	8.3.3. TransactionAwareDataSourceProxy

	8.4. Programmatic transaction management
	8.4.1. Using the TransactionTemplate
	8.4.2. Using the PlatformTransactionManager

	8.5. Declarative transaction management
	8.5.1. Source Annotations for Transaction Demarcation
	8.5.1.1. The Transactional Annotation
	8.5.1.1.1. Transactional annotation examples
	8.5.1.1.2. Telling Spring to apply the Transactional annotation
	8.5.1.1.3. Using AOP to ensure the Transactional annotation is applied

	8.5.2. BeanNameAutoProxyCreator, another declarative approach
	8.5.3. AOP and Transactions

	8.6. Choosing between programmatic and declarative transaction management
	8.7. Do you need an application server for transaction management?
	8.8. AppServer-specific integration
	8.8.1. BEA WebLogic
	8.8.2. IBM WebSphere

	8.9. Common problems
	8.9.1. Use of the wrong transaction manager for a specific DataSource
	8.9.2. Spurious AppServer warnings about the transaction or DataSource no longer being active

	Chapter 9. Source Level Metadata Support
	9.1. Source-level metadata
	9.2. Spring's metadata support
	9.3. Integration with Jakarta Commons Attributes
	9.4. Metadata and Spring AOP autoproxying
	9.4.1. Fundamentals
	9.4.2. Declarative transaction management
	9.4.3. Pooling
	9.4.4. Custom metadata

	9.5. Using attributes to minimize MVC web tier configuration
	9.6. Other uses of metadata attributes
	9.7. Adding support for additional metadata APIs

	Chapter 10. DAO support
	10.1. Introduction
	10.2. Consistent Exception Hierarchy
	10.3. Consistent Abstract Classes for DAO Support

	Chapter 11. Data Access using JDBC
	11.1. Introduction
	11.2. Using the JDBC Core classes to control basic JDBC processing and error handling
	11.2.1. JdbcTemplate
	11.2.2. DataSource
	11.2.3. SQLExceptionTranslator
	11.2.4. Executing Statements
	11.2.5. Running Queries
	11.2.6. Updating the database

	11.3. Controlling how we connect to the database
	11.3.1. DataSourceUtils
	11.3.2. SmartDataSource
	11.3.3. AbstractDataSource
	11.3.4. SingleConnectionDataSource
	11.3.5. DriverManagerDataSource
	11.3.6. TransactionAwareDataSourceProxy
	11.3.7. DataSourceTransactionManager

	11.4. Modeling JDBC operations as Java objects
	11.4.1. SqlQuery
	11.4.2. MappingSqlQuery
	11.4.3. SqlUpdate
	11.4.4. StoredProcedure
	11.4.5. SqlFunction

	Chapter 12. Data Access using O/R Mappers
	12.1. Introduction
	12.2. Hibernate
	12.2.1. Resource management
	12.2.2. SessionFactory setup in a Spring application context
	12.2.3. Inversion of Control: HibernateTemplate and HibernateCallback
	12.2.4. Implementing Spring-based DAOs without callbacks
	12.2.5. Implementing DAOs based on plain Hibernate3 API
	12.2.6. Programmatic transaction demarcation
	12.2.7. Declarative transaction demarcation
	12.2.8. Transaction management strategies
	12.2.9. Container resources versus local resources
	12.2.10. Spurious AppServer warnings about the transaction or DataSource no longer being active

	12.3. JDO
	12.3.1. PersistenceManagerFactory setup
	12.3.2. JdoTemplate and JdoDaoSupport
	12.3.3. Implementing DAOs based on plain JDO API
	12.3.4. Transaction management
	12.3.5. JdoDialect

	12.4. Oracle TopLink
	12.4.1. SessionFactory abstraction
	12.4.2. TopLinkTemplate and TopLinkDaoSupport
	12.4.3. Implementing DAOs based on plain TopLink API
	12.4.4. Transaction management

	12.5. Apache OJB
	12.5.1. OJB setup in a Spring environment
	12.5.2. PersistenceBrokerTemplate and PersistenceBrokerDaoSupport
	12.5.3. Transaction management

	12.6. iBATIS SQL Maps
	12.6.1. Overview and differences between iBATIS 1.x and 2.x
	12.6.2. iBATIS SQL Maps 1.x
	12.6.2.1. Setting up the SqlMap
	12.6.2.2. Using SqlMapTemplate and SqlMapDaoSupport

	12.6.3. iBATIS SQL Maps 2.x
	12.6.3.1. Setting up the SqlMapClient
	12.6.3.2. Using SqlMapClientTemplate and SqlMapClientDaoSupport
	12.6.3.3. Implementing DAOs based on plain iBATIS API

	Chapter 13. Web MVC framework
	13.1. Introduction to the web MVC framework
	13.1.1. Pluggability of other MVC implementations
	13.1.2. Features of Spring MVC

	13.2. The DispatcherServlet
	13.3. Controllers
	13.3.1. AbstractController and WebContentGenerator
	13.3.2. Other simple controllers
	13.3.3. The MultiActionController
	13.3.4. CommandControllers

	13.4. Handler mappings
	13.4.1. BeanNameUrlHandlerMapping
	13.4.2. SimpleUrlHandlerMapping
	13.4.3. Adding HandlerInterceptors

	13.5. Views and resolving them
	13.5.1. ViewResolvers
	13.5.2. Chaining ViewResolvers
	13.5.3. Redirecting to views
	13.5.3.1. RedirectView
	13.5.3.2. The redirect: prefix
	13.5.3.3. The forward: prefix

	13.6. Using locales
	13.6.1. AcceptHeaderLocaleResolver
	13.6.2. CookieLocaleResolver
	13.6.3. SessionLocaleResolver
	13.6.4. LocaleChangeInterceptor

	13.7. Using themes
	13.7.1. Introduction
	13.7.2. Defining themes
	13.7.3. Theme resolvers

	13.8. Spring's multipart (fileupload) support
	13.8.1. Introduction
	13.8.2. Using the MultipartResolver
	13.8.3. Handling a fileupload in a form

	13.9. Handling exceptions

	Chapter 14. Integrating view technologies
	14.1. Introduction
	14.2. JSP & JSTL
	14.2.1. View resolvers
	14.2.2. 'Plain-old' JSPs versus JSTL
	14.2.3. Additional tags facilitating development

	14.3. Tiles
	14.3.1. Dependencies
	14.3.2. How to integrate Tiles
	14.3.2.1. InternalResourceViewResolver
	14.3.2.2. ResourceBundleViewResolver

	14.4. Velocity & FreeMarker
	14.4.1. Dependencies
	14.4.2. Context configuration
	14.4.3. Creating templates
	14.4.4. Advanced configuration
	14.4.4.1. velocity.properties
	14.4.4.2. FreeMarker

	14.4.5. Bind support and form handling
	14.4.5.1. the bind macros
	14.4.5.2. simple binding
	14.4.5.3. form input generation macros
	14.4.5.3.1. Input Fields
	14.4.5.3.2. Selection Fields

	14.4.5.4. Overriding HTML escaping and making tags XHTML compliant

	14.5. XSLT
	14.5.1. My First Words
	14.5.1.1. Bean definitions
	14.5.1.2. Standard MVC controller code
	14.5.1.3. Convert the model data to XML
	14.5.1.3.1. Adding stylesheet parameters
	14.5.1.3.2. Formatting dates and currency

	14.5.1.4. Defining the view properties
	14.5.1.5. Document transformation

	14.5.2. Summary

	14.6. Document views (PDF/Excel)
	14.6.1. Introduction
	14.6.2. Configuration and setup
	14.6.2.1. Document view definitions
	14.6.2.2. Controller code
	14.6.2.3. Subclassing for Excel views
	14.6.2.4. Subclassing for PDF views

	14.7. JasperReports
	14.7.1. Dependencies
	14.7.2. Configuration
	14.7.2.1. Configuring the ViewResolver
	14.7.2.2. Configuring the Views
	14.7.2.3. About Report Files
	14.7.2.4. Using JasperReportsMultiFormatView

	14.7.3. Populating the ModelAndView
	14.7.4. Working with Sub-Reports
	14.7.4.1. Configuring Sub-Report Files
	14.7.4.2. Configuring Sub-Report Data Sources

	14.7.5. Configuring Exporter Parameters

	Chapter 15. Integrating with other web frameworks
	15.1. Introduction
	15.2. JavaServer Faces
	15.2.1. DelegatingVariableResolver
	15.2.2. FacesContextUtils

	15.3. Struts
	15.3.1. ContextLoaderPlugin
	15.3.1.1. DelegatingRequestProcessor
	15.3.1.2. DelegatingActionProxy

	15.3.2. ActionSupport Classes

	15.4. Tapestry
	15.4.1. Architecture
	15.4.2. Implementation
	15.4.2.1. Sample application context
	15.4.2.2. Obtaining beans in Tapestry pages
	15.4.2.3. Exposing the application context to Tapestry
	15.4.2.4. Component definition files
	15.4.2.5. Adding abstract accessors

	15.4.3. Summary

	15.5. WebWork

	Chapter 16. Remoting and web services using Spring
	16.1. Introduction
	16.2. Exposing services using RMI
	16.2.1. Exporting the service using the RmiServiceExporter
	16.2.2. Linking in the service at the client

	16.3. Using Hessian or Burlap to remotely call services via HTTP
	16.3.1. Wiring up the DispatcherServlet for Hessian
	16.3.2. Exposing your beans by using the HessianServiceExporter
	16.3.3. Linking in the service on the client
	16.3.4. Using Burlap
	16.3.5. Applying HTTP basic authentication to a service exposed through Hessian or Burlap

	16.4. Exposing services using HTTP invokers
	16.4.1. Exposing the service object
	16.4.2. Linking in the service at the client

	16.5. Web Services
	16.5.1. Exposing services using JAX-RPC
	16.5.2. Accessing Web Services
	16.5.3. Register Bean Mappings
	16.5.4. Registering our own Handler
	16.5.5. Exposing web services using XFire

	16.6. Auto-detection is not implemented for remote interfaces
	16.7. Considerations when choosing a technology

	Chapter 17. Accessing and implementing EJBs
	17.1. Accessing EJBs
	17.1.1. Concepts
	17.1.2. Accessing local SLSBs
	17.1.3. Accessing remote SLSBs

	17.2. Using Spring convenience EJB implementation classes

	Chapter 18. JMS
	18.1. Introduction
	18.2. Domain unification
	18.3. JmsTemplate
	18.3.1. ConnectionFactory
	18.3.2. Transaction Management
	18.3.3. Destination Management

	18.4. Using the JmsTemplate
	18.4.1. Sending a message
	18.4.2. Synchronous Receiving
	18.4.3. Using Message Converters
	18.4.4. SessionCallback and ProducerCallback

	Chapter 19. JMX Support
	19.1. Introduction
	19.2. Exporting your Beans to JMX
	19.2.1. Creating an MBeanServer
	19.2.2. Lazy-Initialized MBeans
	19.2.3. Automatic Registration of MBeans

	19.3. Controlling the Management Interface of Your Beans
	19.3.1. The MBeanInfoAssembler Interface
	19.3.2. Using Source-Level Metadata
	19.3.3. Using JDK 5.0 Annotations
	19.3.4. Source-Level Metadata Types
	19.3.5. The AutodetectCapableMBeanInfoAssembler Interface
	19.3.6. Defining Management Interfaces using Java Interfaces
	19.3.7. Using MethodNameBasedMBeanInfoAssembler

	19.4. Controlling the ObjectNames for your Beans
	19.4.1. Reading ObjectNames from Properties
	19.4.2. Using the MetadataNamingStrategy

	19.5. Exporting your Beans with JSR-160 Connectors
	19.5.1. Server-side Connectors
	19.5.2. Client-side Connectors
	19.5.3. JMX over Burlap/Hessian/SOAP

	19.6. Accessing MBeans via Proxies

	Chapter 20. JCA CCI
	20.1. Introduction
	20.2. Configuring CCI
	20.2.1. Connector configuration
	20.2.2. ConnectionFactory configuration in Spring
	20.2.3. Configuring CCI connections
	20.2.4. Using a single CCI connection

	20.3. Using Spring's CCI access support
	20.3.1. Record conversion
	20.3.2. CciTemplate
	20.3.3. DAO support
	20.3.4. Automatic output record generation
	20.3.5. Summary
	20.3.6. Using a CCI Connection and Interaction directly
	20.3.7. Example for CciTemplate usage

	20.4. Modeling CCI access as operation objects
	20.4.1. MappingRecordOperation
	20.4.2. MappingCommAreaOperation
	20.4.3. Automatic output record generation
	20.4.4. Summary
	20.4.5. Example for MappingRecordOperation usage
	20.4.6. Example for MappingCommAreaOperation usage

	20.5. Transactions

	Chapter 21. Sending Email with Spring mail abstraction layer
	21.1. Introduction
	21.2. Spring mail abstraction structure
	21.3. Using Spring mail abstraction
	21.3.1. Pluggable MailSender implementations

	21.4. Using the JavaMail MimeMessageHelper
	21.4.1. Creating a simple MimeMessage and sending it
	21.4.2. Sending attachments and inline resources

	Chapter 22. Scheduling jobs using Quartz or Timer
	22.1. Introduction
	22.2. Using the OpenSymphony Quartz Scheduler
	22.2.1. Using the JobDetailBean
	22.2.2. Using the MethodInvokingJobDetailFactoryBean
	22.2.3. Wiring up jobs using triggers and the SchedulerFactoryBean

	22.3. Using JDK Timer support
	22.3.1. Creating custom timers
	22.3.2. Using the MethodInvokingTimerTaskFactoryBean
	22.3.3. Wrapping up: setting up the tasks using the TimerFactoryBean

	Chapter 23. Testing
	23.1. Unit testing
	23.2. Integration testing
	23.2.1. Context management and caching
	23.2.2. Dependency Injection of test class instances
	23.2.3. Transaction management
	23.2.4. Convenience variables
	23.2.5. Example
	23.2.6. Running integration tests

	Appendix A. spring-beans.dtd

