Simple Parser
How to easily write parsers in Python

Author: Christophe Delord

Contact: cdelord@cdsoft.fr

Web site: http://www.cdsoft.fr/sp

Date: Sunday 22 August 2010

License: This software is released under the LGPL license.
Download: http://www.cdsoft.fr/sp/sp-v2.2.2.tgz

Table of Contents

1

Introduction and tutorial

1.1
1.2
1.3

Introduction oo
Installation
Tutorial

SP reference

2.1
2.2
2.3
2.4
2.5

Usage . . . o o e e

Older Python versions

3.1

Separatorso e e e

SP mini language

Some examples to illustrate SP

5.1
5.2
5.3

Newick format o
Infix/Prefix/Postfix notation converter
Complete interactive calculator

1 Introduction and tutorial

1.1

Introduction

SP (Simple Parser) is a Python! parser generator. It is aimed at easy usage
rather than performance. SP produces Top-Down Recursive descent parsers. SP

mailto:cdelord@cdsoft.fr
http://www.cdsoft.fr/sp
http://www.cdsoft.fr/sp/sp-v2.2.2.tgz
http://en.wikipedia.org/wiki/Top-down_parser
http://en.wikipedia.org/wiki/Recursive_descent_parser

also uses memoization to optimize parsers’ speed when dealing with ambiguous
grammars.

License

SP is available under the GNU Lesser General Public:

Simple Parser: A Python parser generator
Copyright (C) 2009-2010 Christophe Delord

Simple Parser is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published

by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Simple Parser is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License

along with Simple Parser. If not, see <http://www.gnu.org/licenses/>.

Structure of the document

Introduction and tutorial starts smoothly with a gentle tutorial as an in-
troduction. I think this tutorial may be sufficent to start with SP.

SP reference is a reference documentation. It will detail SP as much as pos-
sible.

Some examples to illustrate SP gives the reader some examples to illus-
trate SP.

1.2 Installation
Getting SP

SP is freely available on its web page (http://www.cdsoft.fr/sp).

Requirements

SP is a pure Python package. It may run on any platform supported by Python.
The only requirement of SP is Python 2.6, Python 8.1 or newer?. Python can
be downloaded at http://www.python.org.

Python is a wonderful object oriented programming language available at
http://www.python.org

20lder Python versions may work (tested with Python 2.4 and 2.5). See the Older Python
versions chapter.

http://en.wikipedia.org/wiki/Memoization
http://www.cdsoft.fr/sp
http://www.python.org
http://www.python.org

1.3 Tutorial

Introduction

This short tutorial presents how to make a simple calculator. The calculator
will compute basic mathematical expressions (+, -, *, /) possibly nested in
parenthesis. We assume the reader is familiar with regular expressions.

Defining the grammar

Expressions are defined with a grammar. For example an expression is a sum
of terms and a term is a product of factors. A factor is either a number or a
complete expression in parenthesis.

We describe such grammars with rules. A rule describes the composition of
an item of the language. In our grammar we have 3 items (expr, term, factor).
We will call these items symbols or non terminal symbols. The decomposition
of a symbol is symbolized with ->.

Grammar for expressions:

Grammar rule Description
expr -> term ((°+2[’-?) An expression is a term eventually fol-
term) * lowed with a plus (+) or a minus (-) sign

and an other term any number of times
(* is a repetition of an expression 0 or
more times).

term -> fact ((?%’]?/?) A term is a factor eventually followed

fact)* with a * or / sign and an other factor
any number of times.

fact -> (°+’]|’-?) fact | A factor is either a factor precedeed by a

number | ’(’ expr ’)’ sign, a number or an expression in paren-
thesis.

We have defined here the grammar rules (i.e. the sentences of the language).
We now need to describe the lexical items (i.e. the words of the language). These
words - also called terminal symbols - are described using regular expressions. In
the rules we have written some of these terminal symbols (+, -, *, /, (,)). We
have to define number. For sake of simplicity numbers are integers composed
of digits (the corresponding regular expression can be [0-9]+). To simplify
the grammar and then the Python script we define two terminal symbols to
group the operators (additive and multiplicative operators). We can also define
a special symbol that is ignored by SP. This symbol is used as a separator. This
is generaly useful for white spaces and comments.

Terminal symbol definition for expressions:

Terminal sym- | Regular expression | Comment
bol

number [0-9]+ or \d+ One or more digits

. continued on next page

Terminal sym- | Regular expression | Comment

bol

addop [+-] atora -

mulop [x/1] ax*xora/

spaces \s+ One or more spaces

This is sufficient to define our parser with SP.
Grammar of the expression recognizer:

def Calc():
number = R(r’[0-9]+?)
addop = R(C’ [+-]1?)
mulop = R(’[*/]17)

with Separator(r’\s+’):

expr = Rule()

fact = Rule()

fact |= addop & fact

fact |= °C & expr & ’)’

fact |= number

term = fact & (mulop & fact)[:]
expr |= term & (addop & term)[:]

return expr

Calc is the name of the Python function that returns a parser. This function
returns expr which is the aziom?® of the grammer.

expr and fact are recursive rules. They are first declared as empty rules
(expr = Rule()) and alternatives are later added (expr |= ...).

Slices are used to implement repetitions. foo[:] parses foo zero or more
times, which is equivalent to foo* in a classical grammar notation.

The grammar can also be defined with the mini grammar language provided
by SP:

def CalcQ):
return compile("""
number = r’[0-9]+’ ;
addop = r’[+-]’ ;
mulop = r’[*/]1’ ;

separator: r’\s+’ ;

lexpr = term (addop term)x* ;
term = fact (mulop fact)* ;
fact = addop fact ;

fact = *(? expr ’)’

fact = number ;

llllll)

Here the aziom? is identified by !.

With this small grammar we can only recognize a correct expression. We
will see in the next sections how to read the actual expression and to compute
its value.

Reading the input and returning values

The input of the grammar is a string. To do something useful we need to read
this string in order to transform it into an expected result.

This string can be read by catching the return value of terminal symbols.
By default any terminal symbol returns a string containing the current token.
So the token ’(’ always returns the string ’(’. For some tokens it may be
useful to compute a Python object from the token. For example number should
return an integer instead of a string, addop and mulop, followed by a number,
should return a function corresponding to the operator. That’s why we will add
a function to the token and rule definitions. So we associate int to number and
opl and op2 to unary and binary operators.

int is a Python function converting objects to integers and opl and op2 are
user defined functions.

opl and op2 functions:

lambda f,x: {’+’:pos, ’-’:neg}[f](x)
lambda f,y: lambda x: {’+’: add, ’-’: sub, ’%’: mul, ’/’: div}[f](x,y)

opl
op2

red applyies functions to a number
def red(x, fs):

for f in fs: x = £(x)

return x

To associate a function to a token or a rule it must be applyed using / or * operators:

e / applyies a function to an object returned by a (sub)parser.

e x applyies a function to an tuple of objects returned by a sequence
of (sub) parsers.

Token and rule definitions with functions:

number = R(r’[0-9]+’) / int

fact |= (addop & fact) * opl
term = (fact & ((mulop & fact) * op2)[:]) * red

R(r’[0-9]+’) applyed on "42" will return "42".
R(r’[0-9]+’) / int will return int("42")

addop & fact applyied on "+ 42" will return (°+’, 42)
(addop & fact) * opl will return opl(*(’°+’, 42)), i.e. opl(’+’, 42)
so (addop & fact) * opl returns +42

3 The axiom is the symbol from which the parsing starts

(addop & fact) * op2 will return op2(*(’°+’, 42)), i.e. op2(°+’, 42)
so (addop & fact) * op2 returns lambda x: add(x, 42)

++

fact & ((mulop & fact) * op2)[:] returns a number and a list of functions
for instance (42, [(lambda x:mul(x, 43)), (lambda x:mul(x, 44))1)

so (fact & ((mulop & fact) * op2)[:1) * red applyied on "42%43%44"

will return red(42, [(lambda x:mul(x, 43)), (lambda x:mul(x, 44))])

i.e. 42x43%44

And with the SP language:

number = r’[0-9]+’ : ‘int‘ ;

addop = r’[+-]1’ ;

mulop = r’[*/]’ ;

fact = addop fact :: ‘opl¢ ;

term = fact (mulop fact :: ‘op2¢)* :: ‘red‘ ;
r’[0-9]+’ applyed on "42" will return "42".

r’[0-9]+° : ‘int‘ will return int("42")

"addop fact" applyied on "+ 42" will return (°+’, 42)

"addop fact :: ‘opl‘" will return opl(x(’+’, 42)), i.e. opl(’+’, 42)

so "addop fact :: ‘opl‘" returns +42

"addop fact :: ‘op2‘" will return op2(*x(’+’, 42)), i.e. op2(’+’, 42)

so "addop fact :: ‘op2‘" returns lambda x: add(x, 42)

"fact (mulop fact :: ‘op2¢)*" returns a number and a list of functions
for instance (42, [(lambda x:mul(x, 43)), (lambda x:mul(x, 44))])

so "fact (mulop fact :: ‘op2¢)* :: ‘red‘" applyied on "42%43%44"

will return red(42, [(lambda x:mul(x, 43)), (lambda x:mul(x, 44))])

i.e. 42%43%44

In the SP language, : (as /) applies a Python function (more generally a
callable object) to a value returned by a sequence and :: (as *) applies a Python
function to several values returned by a sequence.

Here is finally the complete parser.

Expression recognizer and evaluator:

from sp import *
def Calc():
from operator import pos, neg, add, sub, mul, truediv as div

opl = lambda f,x: {’+’:pos, ’-’:neg}[f](x)
op2 = lambda f,y: lambda x: {’+’: add, ’-’: sub, ’*’: mul, ’/’: div}[f](x,y)

def red(x, fs):
for f in fs: x = f(x)
return x

number =

R(r’[0-9]+’) / int

addop = R(C’ [+-]1?)
mulop = R(’[*/17)

with Separator(r’\s+’):

expr
fact
fact
fact
fact
term
expr

Rule()
= Rule()
|= (addop & fact) * opl
= °C & expr &)’
|

= number
(fact & ((mulop & fact) * op2)[:]1) * red
|[= (term & ((addop & term) * op2)[:]) * red

return expr

Or with SP langu

age:

from sp import *

def Calc():

from operator import pos, neg, add, sub, mul, truediv as div

opl = lambda f,x: {’+’:pos, ’-’:neg}[f](x)

op2

lambda f,y: lambda x: {’+’: add, ’-’: sub, ’*’: mul, ’/’:

def red(x, fs):

for £
retur

return co
numbe
addop
mulop

separ

'expr

term

fact

fact

fact
llllll)

in fs: x = f(x)
n x

mpile("ll "
r = r’[0-9]+° : ‘int‘ ;
r’ [+_:|) ;

=0 [+/1

ator: r’\s+’ ;

= term (addop term :: ‘op2¢)* :: ‘red‘ ;
= fact (mulop fact :: ‘op2°)* :: ‘red‘ ;
addop fact :: ‘opl¢ ;

)(7 expr))7

number ;

div}[£f] (x,y)

Embeding the parser in a script

A parser is a simple Python object. This example show how to write a function
that returns a parser. The parser can be applyied to strings by simply calling
the parser.

Writting SP grammars in Python:

from sp import *

def MyParser():
parser = ...
return parser

You can instanciate your parser here
my_parser = MyParser()

and use it
parsed_object = my_parser(string_to_be_parsed)

To use this parser you now just need to instanciate an object.
Complete Python script with expression parser:

from sp import *

def Calc():

calc = Calc()
while True:
expr = input(’Enter an expression: ’)

try: print(expr, ’=’, calc(expr))
except Exception as e: print("%s:")e.__class__.__name__, e)
Conclusion

This tutorial shows some of the possibilities of SP. If you have read it carefully
you may be able to start with SP. The next chapters present SP more precisely.
They contain more examples to illustrate all the features of SP.

Happy SP’ing!

2 SP reference

2.1 Usage

SP is a package which main function is to provide basic objects to build a
complete parser.

The grammar is a Python object.

Grammar embeding example:

def Foo():
bar = R(’bar?’)
return bar

Then you can use the new generated parser. The parser is simply a Python
object.
Parser usage example:

test = "bar"

my_parser = Foo()

x = my_parser (test) # Parses "bar"
print x

2.2 Grammar structure
SP grammars are Python objects. SP grammars may contain two parts:
Tokens are built by the R or K keywords.
Rules are described after tokens in a Separator context.
Example of SP grammar structure:

def Foo():

Tokens
number = R(r’\d+’) / int

Rules
with Separator(r’\s+’):
S = number[:]

return S

foo = Foo()
result = foo("42 43 44") # return [42, 43, 44]

2.3 Lexer

Regular expression syntax

The lexer is based on the re* module. SP profits from the power of Python

regular expressions. This document assumes the reader is familiar with regular
expressions.
You can use the syntax of regular expressions as expected by the re® module.

4re is a standard Python module. Tt handles regular expressions. For further information
about re you can read http://docs.python.org/library/re.html

5Read the Python documentation for further information:
http://docs.python.org/library /re.html#re-syntax

http://docs.python.org/library/re.html
http://docs.python.org/library/re.html#re-syntax

Predefined tokens

Tokens can be explicitely defined by the R, K and Separator keywords.

Expression | Usage

R defines a regular token. The token is defined with a regular
expression and returns a string (or a tuple of strings if the
regular expression defines groups).

K defines a token that returns nothing (useful for keywords for
instance). The keyword is defined by an identifier (in this
case word boundaries are expected around the keyword) or
another string (in this case the pattern is not considered as a
regular expression). The token just recognizes a keyword and
returns nothing.

Separator is a context manager used to define separators for the rules
defined in the context. The token is defined with a regular
expression and returns nothing.

A token can be defined by:
a name which identifies the token. This name is used by the parser.
a regular expression which describes what to match to recognize the token.

an action which can translate the matched text into a Python object. It can
be a function of one argument or a non callable object. If it is not callable,
it will be returned for each token otherwise it will be applied to the text
of the token and the result will be returned. This action is optional. By
default the token text is returned.

Token definition examples:

integer = R(r’\d+’) / int
identifier = R(r’[a-zA-Z]\w*\b?)
boolean = R(r’(True|False)\b’) / (lambda b: b==’True’)

spaces = K(r’\s+?)
comments = K(r’#.x%?)

with Separator (spaces|comments):
rules defined here will use spaces and comments as separators
atom = *(’ & expr & ’)’

There are two kinds of tokens. Tokens defined by the R or K keywords
are parsed by the parser and tokens defined by the Separator keyword are
considered as separators (white spaces or comments for example) and are wiped
out by the lexer.

The word boundary \b can be used to avoid recognizing “True” at the be-
ginning of “Truexyz”.

If the regular expression defines groups, the parser returns a tuple containing
these groups:

10

couple = R(’<(\d+)-(\d+)>?)

couple("<42-43>") == (’42’, ’43’)

If the regular expression defines only one group, the parser returns the value
of this group:

first = R(C<(\d+)-\d+>?)

first("<42-43>") == 742’

Unwanted groups can be avoided using (?7:...).
A name can be given to a token to make error messages easier to read:

couple = R(’<(\d+)-(\d+)>’, name="couple")

Regular expressions can be compiled using specific compilation options. Op-
tions are defined in the re module:

token = R(’...’, flags=re.IGNORECASE|re.DOTALL)
re defines the following flags:
I (IGNORECASE) Perform case-insensitive matching.
L (LOCALE) Make \w, \W, \b, \B, dependent on the current locale.

M (MULTILINE) "~" matches the beginning of lines (after a newline) as
well as the string. "$" matches the end of lines (before a newline) as well
as the end of the string.

S (DOTALL) "." matches any character at all, including the newline.
X (VERBOSE) Ignore whitespace and comments for nicer looking RE’s.
U (UNICODE) Make \w, \W, \b, \B, dependent on the Unicode locale

Inline tokens

Tokens can also be defined on the fly. Their definition are then inlined in the
grammar rules. This feature may be useful for keywords or punctuation signs.
In this case tokens can be written without the R or K keywords. They are
considered as keywords (as defined by K).
Inline token definition examples:

IfThenElse = ’if’ & Cond &
’then’ & Statement &
’else’ & Statement

2.4 Parser

Declaration

A parser is declared as a Python object.

11

Grammar rules

Rule declarations have two parts. The left side declares the symbol associated
to the rule. The right side describes the decomposition of the rule. Both parts
of the declaration are separated with an equal sign (=).

Rule declaration example:

SYMBOL = (A & B) * (lambda a, b: f(a, b))

Sequences

Sequences in grammar rules describe in which order symbols should appear in
the input string. For example the sequence A & B recognizes an A followed by
a B.

For example to say that a sum is a term plus another term you can write:

Sum = Term & ’+’ & Term

Alternatives

Alternatives in grammar rules describe several possible decompositions of a
symbol. The infix pipe operator (|) is used to separate alternatives. A | B
recognizes either an A or a B. If both A and B can be matched only the first
longest match is considered. So the order of alternatives may be very important
when two alternatives can match texts of the same size.

For example to say that an atom is an integer or an expression in paranthesis
you can write:

Atom = integer | ’(’ & Expr & ’)°

Repetitions

Repetitions in grammar rules describe how many times an expression should be
matched.

Expression | Usage

A[:1] recognizes zero or one A.

Al:] recognizes zero or more A.

Al1:] recognizes one or more A.

Alm:n] recognizes at least m and at most n A.

Afm:n:s] recognizes at least m and at most n A using s as a separator.

Repetitions are greedy. Repetitions are implemented as Python loops. Thus
whatever the length of the repetitions, the Python stack will not overflow.

The separator is useful to parse lists. For instance a comma separated pa-
rameter list is parameter[::?,’].

12

Precedence and grouping

The following table lists the different structures in increasing precedence order.
To override the default precedence you can group expressions with parenthesis.
Precedence in SP expressions:

Structure Example

Alternative Al B

Sequence A& B ‘
Repetitions Alx:y]

Symbol and grouping | Aand (...) ‘

Actions

Grammar rules can contain actions as Python functions.
Functions are applyied to parsed objects using / or *.

Expression Value

parser / returns function(result of parser).
function

parser * returns function(*result of parser).
function

* can be used to analyse the result of a sequence.

Abstract syntax trees

An abstract syntax tree (AST) is an abstract representation of the structure of
the input. A node of an AST is a Python object (there is no constraint about
its class). AST nodes are completely defined by the user.

AST example (parsing a couple):

class Couple:
def __init__(self, a, b):
self.a = a
self.b b

def Foo():
couple = (°(C’ & item & ’,’ & item & ’)’) * Couple
return couple

13

Constants

It is sometimes useful to return a constant. C defines a parser that matches an
empty input and returns a constant.
Constant example:

number = (’1’ & C("one")
| 29 & C("two")
| °3° & C("three")
)

Position in the input string

To know the current position in the input string, the At () parser returns an
object containing the current index (attribute index) and the corresponding
line and column numbers (attributes line and column):

position = At() / ‘lambda p: (p.line, p.column)*
rule = ... & pos & ...

2.5 Performances and memory consumption

Backtracking has a cost. The parser may often try to parse again the same string
at the same position. To improve the speed of the parser, some time consumming
functions are memoized. This drastically fasten the parser but requires more
memory. If a lot of string are parsed in a single script this mechanism can slow
down the computer because of heavy swap disk usage or even lead to a memory
€rror.

To avoid such problems it is recommanded to clean the memoization cache
by calling the sp.clean function:

import sp

for s in a_lot_of_strings:
parse(s)
sp.clean()

3 Older Python versions

This document describes the usage of SP with Python 2.6 or Python 3.1. Gram-
mars need some adaptations to work with Python 2.5. or older.

3.1 Separators

Separators use context managers which don’t exist in Python 2.4. Context man-
agers have been introduced in Python 2.5 (from __future__ import with_statement)
and in Python 2.6 (as a standard feature). When the context managers are not
available, it may be possible to call the __enter__ and __exit__ method ex-
plicitly (tested for Python 2.4).

Python 2.6 and later:

14

number = R(r’\d+’) / int
with Separator(’\s+’):

coord = number & ’,’ & number

Python 2.5 with with_statement:

from __future__ import with_statement

number = R(r’\d+’) / int
with Separator(’\s+’):
coord = number & ’,’ & number

Python 2.5 or 2.4 (or older but not tested) without with_statement:

sep = Separator (’\s+?)

number = R(r’\d+’) / int

sep.__enter__()

coord = number & ’,

sep.__exit__Q)

’ & number

4 SP mini language

Instead of using Python expressions that can sometimes be difficult to read,
it’s possible to write grammars in a cleaner syntax and compile these grammar
with the sp.compile function. This function takes the grammar as a string
parameter. The sp.compile_file function reads the grammar in a separate

file.

Here the equivalence between Python expressions and the SP mini language:

SP Python expres- | SP mini language Description
sions

Token defined by a reg-
R("regular r"regular expression" | ular expression

expression")
R("regexpr",
name="name")

name.r'"regexpr"

K("plain text")

K("plain text",
name="name")

"plain text"

name."plain text"

Keyword defined by a
non interpreted string

t =RC...7, lexer: I S; t = Regular expression op-
flags=re.I|re.S) ...} tions

with Separator(...): separator: ... ; Separator definition
C(object) ‘object® Parses nothing and re-

turns object

15

. continued on next page

SP Python
sions

expres-

SP mini language

Description

/ function

‘function®

Parses ... and apply
the result to function
(function(...))

* function ‘function® Parses and ap-
ply the result (multi-
ple values) to function
(function(*...))

& At & ... e . Position in the input
string

(... [:] (..0)x% Zero or more matches

(...)[1:] ..o+ One or more matches

(...)[:1] (...)7 Zero or one matche

(...)[::8] [.../8]* Zero or more matches
separated by S

(...)[1::8] [.../8]+ One or more matches
separated by S

A&B&C ABC Sequence

AlB]|C A|lB]|C Alternative

... ... Grouping

rule_name = ... rule_name = ... ; Rule definition

axiom_name = ...

laxiom_name = ...

Axiom definition

5 Some examples to illustrate SP

Newick format

In mathematics, Newick tree format (or Newick notation or New
Hampshire tree format) is a way to represent graph-theoretical trees
with edge lengths using parentheses and commas. It was created
by James Archie, William H. E. Day, Joseph Felsenstein, Wayne
Maddison, Christopher Meacham, F. James Rohlf, and David Swof-
ford, at two meetings in 1986, the second of which was at Newick’s
restaurant in Dover, New Hampshire, USA.

—Wikipedia, the free encyclopedia

The grammar given by Wikipedia is:

Tree --> Subtree
Subtree --> Leaf
Leaf --> Name

" ; " | Branch " ; "

Internal

Internal --> " (" BranchSet ")" Name

BranchSet --> Branch | Branch "," BranchSet

Branch --> Subtree Length
Name --> empty | string

16

Length --> empty |

":" number

With very few transformation, this grammar can be converted to a Simple

Parser grammar.

Only BranchSet is rewritten to use a comma separated list

parser:
Tree = Subtree ’;’ | Branch ’;’ ;
Subtree = Leaf | Internal ;
Leaf = Name ;
Internal = ’(’ [Branch/’,’]+ ’)’ Name ;
Branch = Subtree Length ;
Name = r’[~;:,()]*7;
Length = 72 | ?:? r’[0-9.]+> ;

Here is the complete parser (newick.py):

#!/usr/bin/env python

#
#
#

Simple Parser
Copyright (C) 2009-2010 Christophe Delord
http://www.cdsoft.fr/sp

This file is part of Simple Parser.

Simple Parser is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Simple Parser is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Simple Parser. If not, see <http://www.gnu.org/licenses/>.

H oH HF HH O HHE R H R

++

from http://en.wikipedia.org/wiki/Newick_format

import sp

EXAMPLES = """\

GLG))s no nodes are named

(A,B,(C,D)); leaf nodes are named

(A,B, (C,D)E)F; all nodes are named
(:0.1,:0.2,(:0.3,:0.4):0.5); all but root node have a distance to parent
(:0.1,:0.2,(:0.3,:0.4):0.5):0.0; all have a distance to parent
(A:0.1,B:0.2,(C:0.3,D:0.4):0.5); distances and leaf names (popular)
(A:0.1,B:0.2,(C:0.3,D:0.4)E:0.5)F; distances and all names
((B:0.2,(C:0.3,D:0.4)E:0.5)F:0.1)A; a tree rooted on a leaf node (rare)

17

clas

clas

clas

s Leaf:
def __init__(self, name): self.name =
def str__(self): return self.name

def nb_leaves(self): return 1

s Internal:
def __init__(self, subtrees, name):

name

self.subtrees, self.name = subtrees, name

def __str__(self):

return " (%s)%s"%(

’,7.join(str(st) for st in self.subtrees),

self.name

)
def nb_leaves(self):

return sum(st.nb_leaves() for st in self.subtrees)

s Branch:
def __init__(self, subtree, length):

self.subtree, self.length = subtree, length

def __str__(self):

return "Ys:%s"%(self.subtree, self.length)

def nb_leaves(self):
return self.subtree.nb_leaves()

parser = sp.compile(r"""

|l|ll|)

for

!Tree = Subtree ’;’ | Branch ’;’ ;
Subtree = Leaf | Internal ;
Leaf = Name : ‘Leaf® ;

Internal = ’(’ [Branch/’,’]+ ’)’ Name ::

‘Internal® ;

Branch = Subtree Length :: ‘Branch® ;
Name = r’[~;:,()]*;
Length = ?:? r’[0-9.]+’ : ‘float‘ | ¢0.0°¢ ;

example in EXAMPLES.splitlines():

example, description = example.split(’ ’, 1)

description = description.strip()
tree = parser(example)

print ("%s:"%description)

print ("-"xlen(description))

print (" Input : %s'"%example)

print (" Parsed: Ys"/tree)

print (" Leaves: Ys"itree.nb_leaves())
print("")

18

5.2 Infix/Prefix/Postfix notation converter
Introduction

In the previous example, the parser computes the value of the expression on the
fly, while parsing. It is also possible to build an abstract syntax tree to store an
abstract representation of the input. This may be usefull when several passes
are necessary.

This example shows how to parse an expression (infix, prefix or postfix) and
convert it in infix, prefix and postfix notation. The expression is saved in a tree.
Each node of the tree correspond to an operator in the expression. Each leaf is
a number. Then to write the expression in infix, prefix or postfix notation, we
just need to walk throught the tree in a particular order.

Abstract syntax trees

The AST of this converter has three types of node:

class Op is used to store operators (+, -, *, /, ~). It has two sons associated
to the sub expressions.

class Atom is an atomic expression (a number or a symbolic name).
class Func is used to store functions.

These classes are instanciated by the init method. The infix, prefix and
postfix methods return strings containing the representation of the node in
infix, prefix and postfix notation.

Grammar

Lexical definitions

ident = r’\b(?!sinl|cos|tan|minimax)\w+\b’ : ‘Atom‘ ;

funcl = r’sin’ | r’cos’ | r’tan’ ;

func2 = r’min’ | r’max’ ;

op = op_add | op_mul | op_pow ;
op_add = r’[+-]°

op_mul = r’[*/]’ ;

op_pow = r’\"’

Infix expressions The grammar for infix expressions is similar to the gram-
mar used in the previous example:

expr = term (op_add term :: ‘lambda op, y: lambda x: Op(op, x, y)‘)*
term = fact (op_mul fact :: ‘lambda op, y: lambda x: Op(op, x, y)‘)*
fact = atom (op_pow fact :: ‘lambda op, y: lambda x: Op(op, x, y) ‘)7 ::

atom = ident ;

atom = ’(’ expr ’)’

atom = funcl ’(’ expr ’)’ :: ‘Func‘ ;

atom = func2 ’(’ expr ’,’ expr ’)’ :: ‘Func‘ ;

19

‘redf
‘red*
‘red*

2
s

s

red is a function that applies a list of functions to a value:

def red(x, fs):
for £ in fs:
x = f(x)
return x

Prefix expressions The grammar for prefix expressions is very simple. A
compound prefix expression is an operator followed by two subexpressions, or
a binary function followed by two subexpressions, or a unary function followed
by one subexpression:

expr_pre = ident ;

expr_pre = op expr_pre expr_pre :: ‘Op‘ ;
expr_pre = funcl expr_pre :: ‘Func® ;
expr_pre = func2 expr_pre expr_pre :: ‘Func‘ ;

Postfix expressions At first sight postfix and infix grammars may be very
similar. Only the position of the operators changes. So a compound postfix
expression is a first expression followed by a second one and an operator. This
rule is left recursive. As SP is a descendant recursive parser, such rules are
forbidden to avoid infinite recursion. To remove the left recursion a classical
solution is to rewrite the grammar like this:

expr_post = ident expr_post_rest :: ‘lambda x, f: f(x)¢ ;
expr_post_rest =
(expr_post op :: ‘lambda y, op: lambda x: Op(op, X,
| expr_post func2 :: ‘lambda y, f: lambda x: Func(f, x,
| funcl : ‘lambda f: lambda x: Func(f, x)°¢
) expr_post_rest :: ‘lambda f, g: lambda x: g(£f(x))°¢ ;

expr_post_rest = ‘lambda x: x‘¢ ;

The parser searches for an atomic expression and builds the AST correspond-
ing to the remaining subexpression. expr_post_rest returns a function that
builds the complete AST when applied to the first atomic expression. This is a
way to simulate inherited attributes.

Using the previous red function and the repetitions, this rule can be rewrit-
ten as:

expr_post = ident expr_post_rest* :: ‘red‘ ;
expr_post_rest =
(expr_post op :: ‘lambda y, op: lambda x: Op(op, x,
| expr_post func2 :: ‘lambda y, f: lambda x: Func(f, x,
| funcl : ‘lambda f: lambda x: Func(f, x)°¢
)
or simply:

expr_post = ident

(expr_post op :: ‘lambda y, op: lambda x: Op(op, X,
| expr_post func2 :: ‘lambda y, f: lambda x: Func(f, x,
| funcl : ‘lambda f: lambda x: Func(f, x)°¢

) :: ‘redf

20

¥

y)¢
¥

¥
¥

Source code
Here is the complete source code (notation.py):

#!/usr/bin/env python
#coding: UTF-8

Simple Parser
Copyright (C) 2009-2010 Christophe Delord
http://www.cdsoft.fr/sp

This file is part of Simple Parser.

Simple Parser is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Simple Parser is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Simple Parser. If not, see <http://www.gnu.org/licenses/>.

HoH H HHF R HHEHH R

Infix/prefix/postfix expression conversion
import sp
try:

import readline
except ImportError:

pass
class Op:
mnn Binary operator mnn
precedence = {’+’:1, ’-’:1, ’%’:2, ?/?:2, *~’:3}
def __init__(self, op, a, b):
self.op = op # operator ("+", "M, UxM on/noonsn)
self.prec = Op.precedence[op] # precedence of the operator
self.a, self.b = a, b # operands

def infix(self):
a = self.a.infix()
if self.a.prec < self.prec: a = "(%s)"%a
b = self.b.infix()
if self.b.prec <= self.prec: b = "(%s)"%Db
return "Ys %s %s"%(a, self.op, b)
def prefix(self):
a = self.a.prefix()
b = self.b.prefix()

21

return "%s %s %s"h(self.op, a, b)
def postfix(self):

a = self.a.postfix()

b = self.b.postfix()

return "Ys %s %s"%k(a, b, self.op)

class Atom:
""" Atomic expression """
def __init__(self, s):
self.a = s
self.prec = 99
def infix(self): return self.a
def prefix(self): return self.a
def postfix(self): return self.a

class Func:
""" Function expression
def __init__(self, name, *args):
self.name = name
self.args = args
self.prec = 99
def infix(self):
args = [a.infix() for a in self.args]
return "Ys(%s)"/(self.name, ",".join(args))
def prefix(self):
args = [a.prefix() for a in self.args]
return "s %s"/%(self.name, " ".join(args))
def postfix(self):
args = [a.postfix() for a in self.args]
return "Ys %s"%(" ".join(args), self.name)

Grammar for arithmetic expressions

def red(x, fs):
for £ in fs:
x = f(x)
return x

parser = sp.compile(r"""

ident = ident.r’\b(?!sin|cos|tan|min|max)\w+\b’

funcl = r’sin’ | r’cos’ | r’tan’ ;
func2 = r’min’ | r’max’ ;

op = op_add | op_mul | op_pow ;
op_add = r’[+-]’ ;

op_mul = r’[*/]° ;

op_pow = r’\~’

22

‘Atom¢

B

separator: r’\s+’ ;

| expr_pre
| expr_post

Infix expressions

expr = term (op_add term :: ‘lambda op, y: lambda x: Op(op, x, y)‘)*
term = fact (op_mul fact :: ‘lambda op, y: lambda x: Op(op, x, y)*)*
fact = atom (op_pow fact :: ‘lambda op, y: lambda x: Op(op, x, y)‘)7? ::
atom = ident ;

atom = ’(’ expr ’)’ ;

atom = funcl ’>(° expr ’)’ :: ‘Func‘ ;

atom = func2 ’(’ expr ’,’ expr ’)’ :: ‘Func‘ ;

Prefix expressions

expr_pre = ident ;

expr_pre = op expr_pre expr_pre :: ‘Op‘

expr_pre = funcl expr_pre :: ‘Func‘ ;

expr_pre = func2 expr_pre expr_pre :: ‘Func‘ ;

¢ "infiX" 3
¢ |lprefixll [4
‘llpostfixll‘

Postfix expressions

expr_post = ident

(

) *

llllll)

expr_post op :: ‘lambda y, op: lambda x: Op(op, x, y)°¢
expr_post func2 :: ‘lambda y, f: lambda x: Func(f, x, y)°¢
funcl ‘lambda f: lambda x: Func(f, x)°¢

‘red® ;

try: raw_input
except NameError: raw_input = input

while 1:
e = raw_input(":")
if e == "": break
try:

expr, t = parser(e)
except Exception as e:
print(e)

else:

print("<« %s » is a %s expression") (e, t))
print ("\tinfix
print ("\tprefix
print ("\tpostfix : %s"/expr.postfix())

: hs"%hexpr.infix())
: %s"%expr.prefix())

23

‘red*

‘redf
‘redf

s
s

s

5.3 Complete interactive calculator

This chapter presents an extention of the calculator described in the tutorial.
This calculator has a memory.
The grammar has been rewritten using the SP language.

New functions

The calculator has memories. A memory cell is identified by a name. For
example, if the user types pi = 3.14, the memory cell named pi will contain
the value of pi and 2*pi will return 6.28.

Source code

Note

Another calculator is available as a separate package. Calc is a full
featured programmers’ calculator. It is scriptable and allows user func-
tions.

Here is the complete source code (calc.py):

#!

#
#
#

HoH O HHF R HHEH R

from __future_

/usr/bin/env python

Simple Parser
Copyright (C) 2009-2010 Christophe Delord
http://www.cdsoft.fr/sp

This file is part of Simple Parser.

Simple Parser is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Simple Parser is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Simple Parser. If not, see <http://www.gnu.org/licenses/>.

import division

import sys
import sp

try:

import readline

except ImportError:

pass

24

http://www.cdsoft.fr/calc.html

class Calc(dict):

def

__init__(self):
dict.__init__(self)
_fy = lambda f, y: lambda x: f(x, y)
fx = lambda f, x: f(x)
def reduce(x, fs):
for £ in fs: x = f(x)
return x
self.parser = sp.compile(r

ident = r’[a-zA-Z_]\w*’

real = r’(7:\d+\.\d*|\d*\.\d+) (7: [eE] [-+]17\d+) 7 |\d+[eE] [-+]7\d+’

int = r’\d+’ : ‘int‘¢ ;
var = ident : ‘self.__getitem__°¢;
add_op = ’+’ ‘lambda x, y: x + y¢
add_op = ’-? ‘lambda x, y: x - y¢ ;
add_op = | ‘lambda x, y: x | y¢ ;
add_op = ’? ‘lambda x, y: x ~ y¢ ;
mul_op = 7%’ ‘lambda x, y: X * y¢ ;
mul_op = ’/? ‘lambda x, y: x / y°¢ ;
mul_op = %’ ‘lambda x, y: x %h y° 3
mul_op = &’ ‘lambda x, y: x & y°¢ ;
mul_op = ’>>’ ‘lambda x, y: x << y¢ ;
mul_op = ’<<? ‘lambda x, y: x >> y¢ ;
pow_op = ¥’ ‘lambda x, y: X ** y¢ ;
un_op = ’+’ ‘lambda x: +x¢ ;
un_op = ’-’ ‘lambda x: -x¢ ;
un_op = ’7? ‘lambda x: “x¢ ;
separator: r’\s+’;
!S = ident ’=’ expr :: ‘self.__setitem__°
| expr
expr = term (add_op term :: ‘_fy‘)* :: ‘reduce‘ ;
term = fact (mul_op fact :: ‘_fy‘)* :: ‘reduce‘ ;
fact = un_op fact :: ‘fx‘ | pow ;
pow = atom (pow_op fact :: ‘_fy‘)? :: ‘reduce‘ ;
atom = ’(’ expr ’)’

atom = real | int ;
atom

var ;

25

‘float

llllll)

def __call__(self, input):
return self.parser(input)

def exc():
e = getattr(sys, ’exc_value’, None)
if e is None:
info = getattr(sys, ’exc_info’, None)
if info is not Nome: e = info()[1]
return e

try: raw_input
except NameError: raw_input = input

calc = Calc()

while True:

expr = raw_input(": ")
sp.clean()
try:

val = calc(expr)
if val is not None:
print ("= Ys"%calc(expr))

except:
print (! %s"l%exc())
print (u u)

26

	Table of Contents
	1 Introduction and tutorial
	1.1 Introduction
	1.2 Installation
	1.3 Tutorial

	2 SP reference
	2.1 Usage
	2.2 Grammar structure
	2.3 Lexer
	2.4 Parser
	2.5 Performances and memory consumption

	3 Older Python versions
	3.1 Separators

	4 SP mini language
	5 Some examples to illustrate SP
	5.1 Newick format
	5.2 Infix/Prefix/Postfix notation converter
	5.3 Complete interactive calculator

