
ComputeConf
User Documentation

December 10, 2010

1 Overview
Computeconf is a script in coopr.pysp to generate a confidence interval. It
is based on Monte Carlo Sampling in stochastic programming and uses the
multiple replication procedure (MRP).
To execute computeconf it is necessary to provide command line arguments.
Which ones are needed in particular will be explained in Subsection 3.1 and
Subsection 3.2. To get an overview of all command line arguments type
computeconf −−help.
These command line arguments are also summarized in Section 4.

2 Monte Carlo Sampling in Stochastic Program-
ming, MRP

Extract of [1]:

1

Monte Carlo Sampling

Suppressing the (fixed) decision x

Let z = Ef (ξ), σ2 = varf (ξ) <∞ and ξ1, . . . , ξn be i.i.d. as ξ

Let zn =
1

n

n∑

i=1

f (ξi) be the sample mean estimator of z

FACT 1. Ezn = z zn is an unbiased estimator of z

FACT 2. zn → z, wp1 (strong LLN) zn is a strongly consistent estimator of z

FACT 3.
√
n(zn − z)⇒ N(0, σ2) (CLT) Rate of convergence is 1/

√
n and scaled

difference is normally distributed

FACTS 4,5,. . . law of iterated logarithm, large deviations results,. . .

Monte Carlo Methods in Stochastic Programming

• True/population problem:

z∗ = min
x∈X

Ef (x, ξ) (SP)

Denote optimal solution x∗

• Sample problem:

z∗n = min
x∈X


1

n

n∑

j=1

f (x, ξj)


 (SPn)

Here, ξ1, . . . , ξn i.i.d. as ξ. Denote optimal solution x∗n

• View z∗n as an estimator of z∗ and x∗n as an estimator of x∗

• What should we want to say about z∗n and x∗n as n→∞?

Want names? external sampling method, sample-path optimization, sample average approximation,

stochastic counterpart, retrospective optimization, and non-recursive method

2

Monte Carlo Methods in SP: Possible Goals

1. x∗n → x∗, wp1 and
√
n(x∗n − x∗)⇒ N(0,Σ)

2. z∗n → z∗, wp1 and
√
n(z∗n − z∗)⇒ N(0, σ2)

3. Ef(x∗n, ξ)→ z∗,wp1

4. lim
n→∞

P (Ef(x∗n, ξ)− z∗ ≤ εn) ≥ 1− α where εn → 0

Modeling Issues:

• If (SPn) is for maximum-likelihood estimation then goal 1 could be appropriate

• If (SP) is to price a financial option then goal 2 could be appropriate

•When (SP) is a decision-making model, 1 may be more then we need and 2 is of secondary
interest. Goals 3 and 4 are arguably adequate

Technical Issues:

• In general, we shouldn’t expect {x∗n}∞n=1 to converge when (SP) has multiple optimal solutions.
In this case, we want: “limit points of {x∗n}∞n=1 solve (SP) ”

• If we achieve “limit points” result, X is compact & Ef(·, ξ) is continuous then we obtain goal 3

•The limiting distributions may not be normal

Monte Carlo Methods in SP: Example

z∗ = min
−1≤x≤1

[E f(x, ξ) = Eξx] , where ξ ∼ N(0, 1)

Every feasible solution, x ∈ [−1, 1] is optimal and z∗ = 0

z∗n = min
−1≤x≤1

(
1

n

n∑

j=1

ξj

)
x

x∗n = ±1, z∗n = − |N(0, 1/n)|

Observations

1. Ez∗n ≤ z∗ ∀n (negative bias)

2. Ez∗n ≤ Ez∗n+1 ∀n (monotonically shrinking bias)

3. z∗n → z∗,wp1 (strongly consistent)

4.
√
n(z∗n − z∗) = − |N(0, 1)| (non-normal errors)

5. b(z∗n) ≡ Ez∗n − z∗ = a1/
√
n (O(n−1/2) bias)

So, optimization changes the nature of sample-mean estimators

Note: What if x ∈ [−1, 1] is replaced with x ∈ R?

3

Monte Carlo Methods in SP: Bias

min
x∈X

E


1

n

n∑

j=1

f (x, ξj)


 = min

x∈X
E f (x, ξ) = z∗

and so we obtain

Ez∗n = E


min
x∈X

1

n

n∑

j=1

f (x, ξj)


 ≤ min

x∈X
E f (x, ξ) = z∗, i.e., Ez∗n ≤ z∗

Simple example when n = 1

Emin
x∈X

f (x, ξ) ≤ min
x∈X

Ef (x, ξ)

Interpretation: We’ll do better if we get to “wait and see” ξ before choosing x

Also, can show bias decreases monotonically

Ez∗n ≤ Ez∗n+1 ≤ z∗

Intuition. . .

Assessing Solution Quality

z∗ = min
x∈X

E f (x, ξ)

Our goal: Given x̂ ∈ X and α find a (random) CI width ε with:

P(E f (x̂, ξ)− z∗ ≤ ε) ≈ 1− α

Using the bias result,

E


1

n

n∑

j=1

f (x̂, ξj)−min
x∈X

1

n

n∑

j=1

f (x, ξj)




︸ ︷︷ ︸
Gn(x̂)

≥ Ef (x̂, ξ)− z∗

Remarks

• Anticipate varGn(x̂) ≤ var [1
n

∑n
j=1 f (x̂, ξj)] + var z∗n

• Gn(x̂) ≥ 0

• Gn(x̂) is not asymptotically normal (what to do?)

4

Assessing Solution Quality: Multiple Replication Procedure (MRP)

Input: CI level 1− α, sample size n, replication size ng, candidate solution x̂ ∈ X
Output: Approximate (1− α)-level CI on E f (x̂, ξ)− z∗

1. For k = 1, . . . , ng

1.1. Sample i.i.d. observations ξk1, . . . , ξkn from the distribution of ξ

1.2. Solve (SPn) using ξk1, . . . , ξkn to obtain xk∗n

1.3. Calculate Gk
n(x̂) = 1

n

∑n
j=1

(
f (x̂, ξkj)− f (xk∗n , ξ

kj)
)

2. Calculate gap estimate and sample variance:

Ḡn(ng) =
1

ng

ng∑

k=1

Gk
n(x̂) and s2

G(ng) =
1

ng − 1

ng∑

k=1

(
Gk
n(x̂)− Ḡn(ng)

)2

3. Let εg = tng−1,αsG(ng)/
√
ng, and output one-sided CI:

[
0, Ḡn(ng) + εg

]

Justified via bias result and
√
ng
[
Ḡ(ng)− EGn(x̂)

]
⇒ N(0, σ2g) as ng →∞

For more information about MRP, see [2].

3 Execute computeconf
Computeconf can be used for minimization problems as well as for maximization
problems. Furthermore, there are two different ways to get the replicates for
the MRP.
One way is to take a certain fraction of the provided scenarios to generate x̂, i.e.
n̂ many, and devide the remaining scenarios in ng groups of n scenarios. That
means if N is the total number of scenarios then N = n̂ + n · ng.
Another way would be to provide ng sets of each the same number of scenarios,
i.e. n. That means we use one set of n scenarios to generate x̂ and then we use
ng sets of each n scenarios to get the confidence intervall.

3.1 "Old" computeconf
To execute computeconf the old way, at least the following command line ar-
guments are needed:

computeconf −−model-directory=MODEL_DIRECTORY

−−instance-directory=INSTANCE_DIRECTORY

−−number-samples-for-confidence-interval=N_G

−−fraction-scenarios-for-solve=FRACTION_FOR_SOLVE

5

3.2 "New" computeconf
To execute computeconf the second way, least the following command line ar-
guments are needed:

computeconf −−model-directory=MODEL_DIRECTORY

−−instance-directory=INSTANCE_DIRECTORY

−−number-samples-for-confidence-interval=N_G

−−MRP-directory-basename=MRP_DIRECTORY_BASENAME

4 Command Line Arguments
Besides specific command line arguments for computeconf, one can also use
arguments which are specified for PH to control the algorithm.

4.1 Computeconf Command Line Arguments
• −−fraction-scenarios-for-solve=FRACTION_FOR_SOLVE
The fraction of scenarios that are allocated to finding a solution. Default
is 0.5.

• −−number-samples-for-confidence-interval=N_G
The number of samples of scenarios that are allocated to the confidence
inteval (ng). Default is 10.

• −−confidence-interval-alpha=CONFIDENCE_INTERVAL_ALPHA
The alpha level for the confidence interval. Default is 0.05.

• −−solve-xhat-with-ph
Perform xhat solve via PH rather than an EF solve. Default is False.

• −−random-seed=RANDOM_SEED
Seed the random number generator used to select samples. Defaults to 0,
indicating time seed will be used.

• −−append-file=APPEND_FILE
File to which summary run information is appended, for output tracking
purposes.

• −−write-xhat-solution
Write xhat solutions (first stage variables only) to the append file. Defaults
to False.

• −−generate-weighted-cvar
Add a weighted CVaR term to the primary objective.

• −−cvar-weight=CVAR_WEIGHT
The weight associated with the CVaR term in the risk-weighted objective
formulation. Default is 1.0. If the weight is 0, then *only* a non-weighted
CVaR cost will appear in the EF objective - the expected cost component
will be dropped.

6

• −−risk-alpha=RISK_ALPHA
The probability threshold associated with cvar (or any future) risk-oriented
performance metrics. Default is 0.95.

• −−MRP-directory-basename=MRP_DIRECTORY_BASENAME
The basename for the replicate directories. It will be appended by the
number of the group (loop over ng). Default is None.

4.2 PH Command Line Arguments
• −−help, −h
Show help message and exit.

• −−verbose
Generate verbose output for both initialization and execution. Default is
False.

• −−report-solutions
Always report PH weights prior to each iteration. Enabled if −−verbose
is enabled. Default is False.

• −−model-directory=MODEL_DIRECTORY
The directory in which all model (reference and scenario) definitions are
stored. I.e., the ".py" files. Default is ".".

• −−instance-directory=INSTANCE_DIRECTORY
The directory in which all instances (reference and scenario) definitions
are stored. I.e., the ".dat" files. Default is ".".

• −−solver=SOLVER_TYPE
The type of solver used to solve scenario sub-problems. Default is cplex.

• −−solver-manager=SOLVER_MANAGER_TYPE
The type of solver manager used to coordinate scenario sub-problem solves.
Default is serial. This option is changed in parallel applications as de-
scribed in [3].

• −−max-iterations=MAX_ITERATIONS
The maximal number of PH iterations. Default is 100.

• −−default-rho=DEFAULT_RHO
The default (global) rho for all blended variables. Default is 1.

• −−rho-cfgfile=RHO_CFGFILE
The name of a configuration script to compute PH rho values. Default is
None.

• −−enable-termdiff-convergence
Terminate PH based an the termdiff convergence metric. The convergence
metric is the unscaled sum of differences between variable values and the
mean. Default is True.

7

• −−enable-normalized-termdiff-convergence
Terminate PH based on the normalized termdiff convergence metric. Each
term in the termdiff sum is normalized by the average value (NOTE: it is
NOT normalized by the number of scenarios). Default is False.

• −−termdiff-threshold=TERNDIFF_THRESHOLD
The convergence threshold used in the term-diff and normalized term-diff
convergence criteria. Default is 0.01, which is too low for most problems.

• −−enable-free-discrete-count-convergence
Terminate PH based on the free discrete variable count convergence metric.
Default is False.

• −−free-discrete-count-threshold=FREE_DISCRETE_COUNT_THRESHOLD
The convergence threshold used in the criterion based on when the free
discrete variable count convergence criterion. Default is 20.

• −−enable-ww-extensions
Enable the Watson-Woodruff PH extensions plugin. Default is False.

• −−ww-extension-cfgfile=WW_EXTENSION_CFGFILE
The name of a configuration file for the Watson-Woodruff PH extensions
plugin. Default is wwph.cfg.

• −−ww-extension-suffixfile=WW_EXTENSION_SUFFIXFILE
The name of a variable suffix file for the Watson-Woodruff PH extensions
plugin. Default is wwph.suffixes.

• −−user-defined-extension=EXTENSIONFILE
Here, "EXTENSIONFILE" is the module name, which is in either the
current directory (most likely) or somewhere on your PYTHONPATH.
A simple example is "testphextension" plugin that simply prints a mes-
sage to the screen for each callback. The file testphextension.py can
be found in the sources directory. A test of this would be to specify
"−−user-defined-extension=testphextension", assuming testphexten-
sion.py is in your PYTHONPATH or current directory. Note that both
PH extensions (WW PH and your own) can co-exist; however, the WW
plugin will be invoked first.

• −−scenario-solver-options
The options are specified just as in pyomo, e.g.,
−−scenario-solver-options="mip_tolerances_mipgap=0.2" to set the
mipgap for all scenario sub-problem solves to 20% for the CPLEX solver.
The options are specified in a quote delimited string that is passed to the
sub-problem solver. Whatever options specified are persistent across all
solves.

• −−ef-solver-options
The options are specified just as in pyomo, e.g.,
−−ef-solver-options="mip_tolerances_mipgap=0.2" to set the mip-
gap for all scenario sub-problem solves to 20% for the CPLEX solver. The
options are specified in a quote delimited string that is passed to the EF
problem solver.

8

• −−write-ef
Upon termination, write the extensive form of the model - accounting for
all fixed variables.

• −−solve-ef
Following write of the extensive form model, solve it.

• −−ef-output-file=EF_OUTPUT_FILE The name of the extensive form
output file (currently only LP format is supported), if writing of the ex-
tensive form is enabled. Default is efout.lp.

• −−suppress-continuous-variable-output
Eliminate PH-related output involving continuous variables. Default: no
output.

• −−keep-solver-files
Retain temporary input and output files for scenario sub-problem solves.
Default: files not kept.

• −−output-solver-logs Output solver logs during scenario sub-problem
solves. Default: no output.

• −−output-ef-solver-log
Output solver log during the extensive form solve. Default: no output.

• −−output-solver-results
Output solutions obtained after each scenario sub-problem solve. Default:
no output.

• −−output-times
Output timing statistics for various PH components. Default: no output.

• −−disable-warmstarts
Disable warm-start of scenario sub-problem solves in PH iterations. Default
is False (i.e., warm starts are the default).

• −−drop-proximal-terms
Eliminate proximal terms (i.e., the quadratic penalty terms) from the
weighted PH objective. Default is False (i.e., but default, the proximal
terms are included).

• −−retain-quadratic-binary-terms
Do not linearize PH objective terms involving binary decision variables.
Default is False (i.e., the proximal term for binary variables is linearized
by default; this can have some impact on the relaxations during the branch
and bound solution process).

• −−linearize-nonbinary-penalty-terms=BPTS
Approximate the PH quadratic term for non-binary variables with a piece-
wise linear function. The argument BPTS gives the number of breakpoints
in the linear approximation. The argument BPTS gives the number of
breakpoints in the linear approximation. The default is 0. Reasonable
non-zero values are usually in the range of 3 to 7. Note that if a break-
point would be very close to a variable bound, then the break point is om-
mited. IMPORTANT: this option requires that all variables have bounds

9

that are established in the reference model or by code specified using the
bounds-cfgfile command line option.

• −−breakpoint-strategy=BREAKPOINT_STRATEGY
Specify the strategy to distribute breakpoints on the [lb, ub] interval of
each variable when linearizing. 0 indicates uniform distribution. 1 in-
dicates breakpoints at the node min and max, uniformly in between. 2
indicates more aggressive concentration of breakpoints near the observed
node min/ max.

• −−bounds-cfgfile=BOUND_CFGFILE
The argument BOUNDS_CFGFILE specifies the name of an executable
pyomo file that sets bounds. The default is that there is no file. When
specified, the code in this file is executed after the initialization of scenario
data so the bounds can be based on data from all scenarios.

• −−checkpoint-interval
The number of iterations between writing of a checkpoint file. Default is
0, indicating never.

• −−restore-from-checkpoint
The name of the checkpoint file from which PH should be initialized. De-
fault is not to restore from a checkpoint.

• −−profile=PROFILE
Enable profiling of Python code. The value of this option is the number
of functions that are summarized. The default is no profiling.

• −−enable-gc
Enable the python garbage collecter. The default is no garbage collection.

5 Examples
5.1 Example for the "old" way
5.2 Example for the "new" way

References
[1] G. Bayraksan and D. Morton. Monte Carlo Sampling in Stochastic Pro-

gramming: Assessing Solution Quality and Sequential Sampling.

[2] W.-K. Mak, D. P. Morton and R. K. Wood. Monte Carlo bounding tech-
niques for determining solution quality in stochastic programs. October
1998

[3] J.-P. Watson and D. L. Woodruff. PYSP Version 1.1, User Documenta-
tion. January 2010

10

