Shiva Kernel Language Reference

Cyrille Berger

May 23, 2012

Abstract

This document describes the Shiva Language, which is a kernel-based image
processing language.

Contents

1 Introduction 3
1.1 Goalof Shiva 3

I Language Reference 4
2 Kernel 5
2.1 Structure 5
2.2 Functions e 5
2.2.1 evaluatePixelo oL 5

222 meeded e 6

223 changed 6

224 generated Lo oo 7

225 runTest 7

2.3 Metadata 7
2.3.1 category e 8

232 info ... 8

2.3.3 parameterso oo 8

3 library 10
4 Types 11
4.1 Primitive types 11
4.2 ATTAYS e 11
4.3 Matrixes e e 11
4.4 Vectors e 11
441 Vectorstypes oL 11

4.4.2 Vectors initialisation 11

4.4.3 Access vectors elements 12

4.4.4 Specific members for floating points vector 12

4.5 Complex types 12
4.5.1 Imagestypes 12

4.5.2 Pixelestypes oo 13

4.5.3 Regiontypes oo 14

4.6 Special types 15
4.6.1 Void 15

5 Function declaration 16

6 Statements

6.1 Blocks e
6.1.1 Forloop
6.1.2 Whileloop
6.1.3 dfelse

6.2 Expressions L e
6.2.1 Operators e
6.2.2 Pixel arithmetic
6.2.3 Typeconversion

7 Grammar
7.1 Keywords

II Standard libray
7.2 Constants
7.3 Hints.
7.4 Vector functions

17
17
17
17
17
17
17
17
18

19
19

Chapter 1

Introduction

1.1 Goal of Shiva

The goal of Shiva is to provide a programing language for graphical effects, that
takes as input multiple pixels coming from multiple images and return one pixel.
This type of

Part 1

Language Reference

O~ O T W

= e e e e e s
© 00O Utk W = OO

1

Chapter 2

Kernel

2.1 Structure

N

ernel MyKernel

~ =V .

parameter float firstParameter;
parameter int secondParameter;

void evaluatePixel (input image sourcel , input image source2,
., output pixel result)
{

}

region needed(region output_-region, int input_index,
region input_-DOD [])

{

}

The < ... > is the metadata associated with a kernel and is optional.

While the order of functions in the kernel is not important, if you want to
use a function or a constant it needs to be define before its use. For instance
the needed and changed functions can use the name of source of image to know
the index of the image in the list of parameters, this require the evaluatePixel
function to have been written before.

2.2 Functions

2.2.1 evaluatePixel

void evaluatePixel (input image sourcel, input image source2,
., output pixel result)

U W

T W N~

T W N -~

U W N -~

-~

2.2.2 needed

region needed(region output_-region, int input_index,
region input_-DOD [])
{

}

The needed function indicates the Shiva interpreter which pixel in the input
images are needed. For instance, if you program is a gaussian blur, it needs an
extra pixel around the operated region.

region output_region | the region that will be operated by the kernel
int input_index the index of the image for which we want to
know the region that will be needed
region input_DOD[] the list of input
Exemple for a gaussian blur:

region needed(region output-region, int input_-index,
region input_-DOD [])
{

}

output_region.outset (1,1)

2.2.3 changed

The changed function indicates the Shiva interpreter which pixels in the out-
put images need to be recomputed when a given region of the image has been
changed. As a special note, the changed function is usually called at the first
run to compute the region of the output image.

region changed(region changed_input_-region, int input-index,
region input_-DOD [])
{

}

For instance, for a kernel that apply a translation of 10pizels on z and
15pixels on y, the following changed function:

region changed(region changed_input_region, int input_index,
region input-DOD [])
{

return { changed_input_region.left + 10,
changed_input_region.top + 15,
changed_input_region .width ,
changed_input_region . height };

—_

=W N =

ST W N

O © 00O Uik Wi

2.2.4 generated

The generated function indicate the Shiva interpreter which pixels are changed
when this generator is applied on the image. Even if images are expected to be
of infinite size, some generators can have a more limited area of effect.

region generated ()

{
}

2.2.5 runTest

This function is used for kernel which are used for automatic testing of the
language, and of the interpreter. It’s a function that doesn’t take any parameter
and return the number of failed tests.

Exemple:

int runTest ()

{
int count = 0;
if((14+1) !'= 2) 4++count;
return count;

}

2.3 Metadata

A kernel can contains metadata before the its declaration. Metadata is divided
in optional sections.

e version indicates the version of the Shiva spec used for this kernel, the
current version is 0

e info this section contains various information about the kernel, author,
vendor, license... and it is basically a list of key / value.

e parameters this section allow to define parameters that can be adjusted
by the user and will be given to the kernel as constant parameters before
compilation.

Example of metadatas:

<
version: 0;
category: <
label: Miscaelenous;
key: misc;
description: Miscaelenous kernels;
>
info: <
author: ”Joe Doe; Joe Doe Jr”;
vendor: <

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

name: ”DoeGraphics”;
address: 71242 Main Street”;
>
license: "LGPLv2+";
>3
parameters: <
paraml: <
type: int;
label: ”Param 17;
minValue: O0;
maxValue: 100;
defaultValue: 50;
description: ”This is the first parameter”;
>3
category2: <
description: ”This is a category of parameters”;
param?2: <
label: ”Param 27;
type: curve;
defaultValue: {{0,0},{1,1}};
>
param3: <
label: ”Param 37;
type: color;
defaultValue: {1,0,0};
>3
>
>3
>

2.3.1 category

The category group of the metadata is used by kernel collection management
system to group together a set of kernel. All kernels with the same key are
assummed to be in the same category, even if the label and description fields are
different, those two are only suggestion, it is left to the collection management
system to pick the label and description.

If no category is specified, the kernel is assumed to belong to the misc

category.
List of suggested default category, with labels and descriptions:
key label description

misc | Miscellaneous | Miscellaneous kernels

2.3.2 info
2.3.3 parameters
Supported types of parameters:
e int integer value, if no range is specified it is defaulted to [0, 100]

e float float value (32bits), if no range is specified it is defaulted to [0.0, 1.0]

e curve (mapped to float[][2]) this allow to pass a curve to a kernel,
values are expected to between (0,0) and (1,1).

e color a three components vector of float representing a color

Chapter 3

library

Libraries are used to write reusable code for Shiva Kernel, if you have function
that you use often, you might want to put them in a library.

Libraries are started with the library keyword and can contain constants,
and functions:

1 library MyLibrary {

2 const int value = 2;
3 int addValue(int v)
4 A

5 return v + value;
6 }

7T}

The keyword import allows to use a library in a kernel:

import mylibrary ;

int v = 3;
v = MyLibrary :: addValue(v);

=W N =

10

Chapter 4

Types

4.1 Primitive types
4.2 Arrays

4.3 Matrixes

4.4 Vectors

4.4.1 Vectors types

The four scalar types bool, int, float and pixel are declined in three sizes
of vector, from two elements to four : bool2, bool3, bool4, int2, int3, int4,
float2, float3, float4, pixel2, pixel3 and pixel4.

There is also booln, intn and floatn whose length is decided at compile
time.

4.4.2 Vectors initialisation

Vectors are initialized using a list of elements { first element, second element,
For instance:

float3 v =4 1.0, 2.0, 3.0 };

Alternatively vectors can be initilized using their constructor:

typeN :: typeN (el0, ell, ..., elN)

For instance:

float3 v(1.0, 2.0, 3.0);
float3 v;
v = float3 (1.0, 2.0, 3.0);

11

=W N =

=W N =

4.4.3 Access vectors elements

Vector elements can be access using the classical subscript operator [1. For
instance:

float3 v(1.0, 2.0, 3.0);
float v0 = v[0];

The elements of the vector can be access as named elements using the fol-
lowing sequences :

ergha
e XyzZwW

estpgq

4.4.4 Specific members for floating points vector

length This function return the length of the vector:

floatN floatN ::length()

For instance:

float2 float2::length()

{
}

return sqrt(this[0] * this[0] + this[1] * this[1]);

normalize This function return the normalized version of the vector:

floatN floatN :: normalize()

return this / this.length ();

}

4.5 Complex types

4.5.1 Images types
Shiva defines five specific image types:
e imagel one channel image
e image2 two channels image
e image3 three channels image
e image4 four channels image
e image5 five channels image

And the generic image type image whose number of channels is defined at
compile time.

12

N O U W N

N O U W N

Members

sampleNearest and sampleLinear Those two functions are used to access
the pixel value in the image:

void imageN :: sampleNearest (float2 coord)
void imageN ::sampleLinear (float2 coord)

sampleNearest return the value of the pixel whose coordinates are the clos-
est to the coordinates given as argument. This function does no interpolation
of the pixel data. While sampleLinear performs a bilinear interpolation.

For instance the following function will copy the source image into the out-
put:

kernel Copy

{
void evaluatePixel (input image source, output pixel result)
{
result = source.sampleNearest(result.coord());
}
}

For instance the following function will translate the source image by (—4, —2):

kernel Translate

{
void evaluatePixel (input image source, output pixel result)
{
result = source.sampleNearest(result.coord() + float2(4,2)
}
}

4.5.2 Pixeles types
Shiva defines five specific pixel types:
e pixell one channel pixel

e pixel2 two channels pixel

pixel3 three channels pixel
e pixel4 four channels pixel
e pixelb five channels pixel

And the generic pixel type pixel whose number of channels is defined at
compile type.
pixelN can be cast to the corresponding vector of float.

Members

data Give access to the vector containing the data.

coord Give access to the coordinates of the pixel, the type of this field is
float2.

13

U W N

setAlpha The setAlpha function allows to set the current alpha channel of
a pixel. It takes a float as argument.
When the image doesn’t have an alpha channel, this function does nothing.

alpha The alpha functions allows to get the value of the alpha channel of a
pixel.
For instance:

pixel src, dst;
dst.setAlpha(0.5 % src.alpha());

When the image doesn’t have an alpha channel, this function return 1.0.

4.5.3 Region types

struct Region {
float x;
float y;
float width;
float height ;

}
_ (X, y) _
_ (left, top) (right, top)_.
A
height
\J
~(left, bottom) (bottom, top) ~
- width >
Figure 4.1: Region.
Members

left, right, top and bottom The function left, right, top and bottom
return, respectively, the horrizontal coordinate of the left pixels and of the right
pixels, and the vertical coordinate of the top pixels and bottom pixels.

14

© 00 3O Ui Wi

=W N =

=W N =

region reg = { 1, 2, 10, 20 };

reg.left () = 1;

reg.left () = reg.x

reg.top() = 2;

reg.top() = reg.y

reg.right () = 20;

reg.right () = reg.x + reg.width — 1
reg.bottom () = 11;

reg.bottom () = reg.y + reg.height — 1

Intersect The intersect function will intersect the current region with an
other region.

region regl 0, 0, 2, 2 };
region reg2 1, -1, 3, 2 };
regl.intersect (reg2);

// Now regl — { 1, 0, 1, 1 };

=
=

Union The union function will unify the current region with an other region.

region regl = { 0, 0, 2, 2 };
region reg2 = { 1, -1, 3, 2 };
regl . union(reg2);

// Now regl = { 0, —1, 4, 3 };

Outset The outset function expand each edge of a given amount.

region reg = { 0, 1, 2, 3 };
reg.outset (1);
// Now reg :{ _17 07 47 5 }7

Inset The inset function contract each edge of a given amount.

region reg = { 0, 1, 2, 3 };
reg.inset (1);
/] Now reg = { 1, 2, 0, 1 };

4.6 Special types
4.6.1 Void

Functions that do not return a value are declared with the type void. For
instance:

void addition (input int a, input int b, output int c)

{
c = a + b;

}

15

Chapter 5

Function declaration

16

Chapter 6

Statements

6.1 Blocks

6.1.1 For loop
6.1.2 While loop
6.1.3 if else

6.2 Expressions

6.2.1 Operators

member selection
++ == postfix increment and decrement
++ —— prefix increment and decrement
- not unary negation and logical not
* / multiplication and division
+ - addition and substraction
<><=>= relational operators
== I= equality and different
and logical and
xor logical exclusive or
or logical inclusive or
7 selection
= += -= x= /= | assignement

6.2.2 Pixel arithmetic

Pixel arithmetic is defined depending on the type of the channel, for floating
point channels the arithmetic is the same as for numbers. But for integer chan-
nels, the arithmetic is defined by the following formulas:

MAX is the maximum value of an integer channel, M AX = 255 for 8bits,
MAX = 65535 for 16bits and M AX = 4294967295 for 32bits.

o +: (a+b)/MAX

17

e —: (a—b)/MAX
e x: (axb)/MAX
e /: (ax MAX)/b

To avoid overflow, operations are computed at a higher level of bit depth,
8bits operations are done in 16bits, 16bits operations in 32bits, and 32bits op-
eration in 64bits.

6.2.3 Type conversion

Type conversion between primary types is implicit. They follow the following
priority, from low to highest : bool, unsigned int, int, float, when a low priority
is added to a high priority type, then the result is in the high priority type.
Pixels types can be converted as a vector of float in the range [0, 1] for integer
pixels, or directly for float pixels. The opposite conversion is also possible from
float vectors to pixels.

18

Chapter 7

Grammar

7.1

Keywords
and
or
not
const
void
int
int2
int3
int4
float
float2
float3
float4
bool
bool2
bool3
bool4
kernel
if

else

19

e while

e for

e return

e import
e struct

e true

o false

e image

e region

e pixel

e size

e output
e input
Reserved keywords:
e unsigned
e short

e half

e half2
half3

half4

Part 11

Standard libray

21

0~ O UL W -

DR RN NN NN = = = = e e e
DU R WO OO Utk W - OO©

7.2 Constants

7.3 Hints

Hints are special constants that are available to the Kernel writters (but not
in libraries), they are called hints since they just provide an approximate infor-
mation, since Kernels are expected to operate on an infinite plane, images sizes
should just be used to provide a reasonnable scaling, and bounding to the user.

Constant name | Type | Description

IMAGE_WIDTH float | hint of the width of the image

IMAGE_HEIGHT | float | hind of the height of the image

IMAGE_SIZE float2 | vector containing the width and height of the image
A typical use case of those hints is to control the center of an effect:
<
parameters: <

xcenter: <
label: ”X center”;
type: float;
minValue:
maxValue:
defaultValue: 0.5;

>3

ycenter: <
label: ”Y center”;
type: float;
minValue:
maxValue:
defaultValue: 0.5;

>3

S

kernel MyKernel

{

const float2 center =

void evaluatePixel (output pixel

{

}
}

{ IMAGEWIDTH * xcenter

IMAGE HEIGHT * ycenter };
result)

7.4 Vector functions

distance

dot

Cross

22

