
JBossProfiler – JVMTI Module – Memory and Method
execution - Index

Author: Clebert Suconic @ jboss.com

JBossProfiler – JVMTI Module – Memory and Method execution - Index _________ 1

Concepts: ___ 2

Runtime Execution- Use JVMPI version if you need ______________________________ 2

Memory Profiler__ 2

File Formats: __ 2
Classes File ___ 2
Objects File ___ 3
References Files: ___ 3

Controllers __ 4
MBean - JVMTIClass ___ 4
org.jboss.profiler.memoryprofiler.engine.MemorySnapshotEngine __________________________ 4
org.jboss.profiler.memoryprofiler.engine.MemorySnapshotController________________________ 5

Using the Tool__ 6
Installing the Agent ___ 6
Using the Tool ___ 6

jboss.profiler___ 6
Analyze data __ 7

Features:__ 8

Concepts:

Runtime Execution- Use JVMPI version if you need
This stills under construction. If you need to capture methods callings, please use the
JVMPI version for now.

Memory Profiler
The memory module at JBossProfiler uses heap navigations functions presented in
JVMTI.
JBossProfiler memory module captures into three plain text files:

<Chosen prefix >_classes.<chosen suffix>
<Chosen prefix >_objects.<chosen suffix>
<Chosen prefix >_references.<chosen suffix>

We will refer to these classes as just classes, objects and references classes.

File Formats:
All the files are text based separated by comma, CVS like files. We made these files
easily understandable as you might create external tools to analyze it, like uploading
values to the database.
As a CSV file, the first line always contains the names of the columns.

Classes File
Three fields used:

- tagClass – An unique count id for the class
- signature – The JNI signature for the class
- tagClassLoader – The unique object id for the classLoader

Example:
tagClass,signature,tagClassLoader
 1,Ljava/io/BufferedWriter;,0
 2,Ljava/util/Collections$ReverseComparator;,0
 3,Ljava/lang/StringCoding$StringDecoder;,0

Objects File
Three fields used:

ObjectTag – The Unique Count Id of an object
ClassTag – The Unique Count Id of the declaring class for this object
Size – The size in bytes for this object

Example:
objectTag,classTag,size
1338,59,480
1339,106,88
1340,106,88
1341,106,88

References Files:
Three fields used:

tagReferrer – Unique CountId for the object holding a reference
tagReferred – Unique CountId for the object referred
index – JVMTI sends this count that I didn’t find any usage for this. It’s here for future
usage.

Example:
tagReferrer, tagReferee,index
0,134,0
0,168,0
0,16,0
0,270,0

Controllers

This topic explains the purpose of each controller existent in JBossProfile

MBean - JVMTIClass

It controls the life cycle of the profiler.
For example, to extract a snapshot you have a method heapSnapsho(prefix, suffix)

The methods existent at this Bean can be also used directly without the use of JMX.
Refer to org.jboss.profiler.jvmti.JVMTIInterface and you have all the available methods.

org.jboss.profiler.memoryprofiler.engine.MemorySnap shotEngine

This class process the text files, generating a POJO model in memory defined by the
package org.jboss.profiler.memoryprofiler.model.

If you want to create a tool to deal with files directly, use this class.

org.jboss.profiler.memoryprofiler.engine.MemorySnap shotController

As a general rule I would say to never solve a reference between entities directly in the
POJO model.
For example don’t look for the classLoder responsible for the loading of any specific
class. For this use solveClassLoaderReference(MemoryClass) from this class.

I’m imposing this caveat as there is a possibility of stop using in memory model to use an
in file model by using org.jboss.profiler.util.FileCollection, and I can’t have these
references serialized directly into those objects and the model might change based on
that.

There are two particular functions in this controller:

- filterRoots
o Maybe we should change this name ☺ But basically what it doest is the

main view of loaded classes. It shows a reference between classes and
number of objects

- summarizeReferenceByPath(boolean forward,String [] path)
o You can tell the direction you want to navigate. Forward means from

referencer to referencee. If you want to look at who is holding a reference
you should use false (backwards).

o In the path you can use class references (C<ObjectId>) if you want to
know all the references, or object reference (O<ObjectId>) if you want to
look at references in a specific object. (References to a classLoader for
example)

Using the Tool

Installing the Agent
First thing you need to use Java 5 on this as JVMTI is only present on Java 5.

I - You have to modify you Java argument to load the agent. You can do this by:
set JAVA_OPTS=%JAVA_OPTS% -agentlib:jbossAgent

II – You have to install the SAR for JVMTI to have access to the MBean controller.
Do that by copying jboss-profiler-jvmti.sar into your deployment dir.

Using the Tool

III – Use the MBean. Look for:

jboss.profiler

• mbean=JVMTIClass

IV – Create the memory snapshot by defining the prefix directory and the suffix.
For example “C:\temp\snap”, and “shot” for the suffix (or extension).

Analyze data
You can either use the WEB application or to write a tool that uses
MemorySnapshotEngine or MemorySnapshotController.

Important: I don’t recommend using the same JVM you are capturing the snapshot to
analyze it, as for now we are processing everything in memory and by my short
experience this produces three times memory as you had in your VM. So, if you execute
a snapshot after analyzed a snapshot you will have a mirror like loop, although if you
don’t capture snapshots after analyzed snapshots you will be okay using the same VM.

V – If you want to use the WEB application, install jboss-profiler.war in your
deploy dir, then:

Use the second form, proving the prefix and suffix for your snapshot.

All you have to do after that is navigate in the model.

Notice that the front-end is really really simple. The intention here was to prove the
model’s capability and we are looking for contributors (preferably with design skills) to
contribute with a better UI.

Features:

- The capability of trace references to classes or objects is a pretty nice feature, hard to
find in any other profiler.
- You can introspect references to ClassLoaders through Classes analysis.
- The snapshot capability without a need of any software besides what’s in the VM is also
good, you can retrieve a snapshot easily for both runtime (throught JVMPI and TI in the
future) and memory.

