JBossProfiler — JVMTI Module — Memory and Method
execution - Index

Author: Clebert Suconic @ jboss.com

JBossProfiler — JVMTI Module — Memory and Method egution - Index

Concepts:

Runtime Execution- Use JVMPI version if you need

N

Memory Profiler

File Formats:

Classes File

Objects File

References Files:

Controllers

MBean - JVMTIClass

org.jboss.profiler.memoryprofiler.engine.MemorySnapshgtie

org.jboss.profiler.memoryprofiler.engine.MemorySnapsbaotéller

Using the Tool

Installing the Agent

Using the Tool

jboss.profiler

Analyze data

Features:

® N 3O OB RA WNN N N

Concepts:

Runtime Execution- Use JVMPI version if you need

This stills under construction. If you need to ceptmethods callings, please use the
JVMPI version for now.

Memory Profiler

The memory module at JBossProfiler uses heap niagafunctions presented in
JVMTI.
JBossProfiler memory module captures into threm péxt files:

<Chosen prefix >_classes.<chosen suffix>
<Chosen prefix >_objects.<chosen suffix>
<Chosen prefix >_references.<chosen suffix>

We will refer to these classes as just classesctibpnd references classes.

File Formats:

All the files are text based separated by comma§ Gkeé files. We made these files
easily understandable as you might create extésntd to analyze it, like uploading
values to the database.

As a CSV file, the first line always contains themes of the columns.

Classes File

Three fields used:
- tagClass — An unique count id for the class
- signature — The JNI signature for the class
- tagClassLoader — The unique object id for the tlaader

Example:

tagClass,signature,tagClassLoader
1,Ljava/io/BufferedWriter;,0
2,Ljavalutil/Collections$ReverseComparg€or
3,Ljava/lang/StringCoding$StringDecoder;,0

Objects File
Three fields used:

ObjectTag — The Unique Count Id of an object
ClassTag — The Unique Count Id of the declaringscfar this object
Size — The size in bytes for this object

Example:
objectTag,classTag,size
1338,59,480
1339,106,88
1340,106,88
1341,106,88

References Files:
Three fields used:

tagReferrer — Unique Countld for the object holdingeference

tagReferred — Unique Countld for the object ref@rre

index — JVMTI sends this count that | didn’t findyausage for this. It's here for future
usage.

Example:

tagReferrer, tagReferee,index
0,134,0

0,168,0

0,16,0

0,270,0

Controllers

This topic explains the purpose of each contr@lestent in JBossProfile

MBean - JVMTIClass

It controls the life cycle of the profiler.
For example, to extract a snapshot you have a mdtéapSnapsho(prefix, suffix)

The methods existent at this Bean can be alsodisectly without the use of IMX.
Refer to org.jboss.profiler.jvmti.JVMTlIInterface dgou have all the available methods.

org.jboss.profiler.memoryprofiler.engine.MemorySnap shotEngine

This class process the text files, generating aP@ddel in memory defined by the
package org.jboss.profiler.memoryprofiler.model.

If you want to create a tool to deal with filesaditly, use this class.

org.jboss.profiler.memoryprofiler.engine.MemorySnap shotController

As a general rule | would say to never solve aregfee between entities directly in the
POJO model.

For example don't look for the classLoder respdedibr the loading of any specific
class. For this use solveClassLoaderReference(MgDtass) from this class.

I’m imposing this caveat as there is a possibditgtop using in memory model to use an
in file model by using org.jboss.profiler.util. Fid®llection, and | can’t have these
references serialized directly into those objentsthe model might change based on
that.

There are two particular functions in this contall
- filterRoots

o Maybe we should change this naf@eBut basically what it doest is the
main view of loaded classes. It shows a refereet@den classes and
number of objects

- summarizeReferenceByPath(boolean forward, Stripa{fh)

0 You can tell the direction you want to navigaterifrd means from
referencer to referencee. If you want to look abwhholding a reference
you should use false (backwards).

o Inthe path you can use class references (C<Obpeati you want to
know all the references, or object reference (O€Ctg>) if you want to
look at references in a specific object. (Refereroea classLoader for
example)

Using the Tool

Installing the Agent
First thing you need to use Java 5 on this as JViSIohly present on Java 5.

| - You have to modify you Java argument to load te agent You can do this by:
set JAVA_OPTS=%JAVA_ OPTS% -agentlib:jbossAgent

Il — You have to install the SAR for JVMTI to have access to the MBean controller
Do that by copying jboss-profiler-jymti.sar intowyrodeployment dir.

Using the Tool
[l — Use the MBean. Look for:
jboss.profiler

« mbean=JVMTIClass

IV — Create the memory snapshot by defining the priex directory and the suffix.
For example “C:\temp\snap”, and “shot” for the sufbr extension).

Analyze data

You can either use the WEB application or to wait®ol that uses
MemorySnapshotEngine or MemorySnapshotController.

Important: | don't recommend using the same JVM you are cagjuhe snapshot to
analyze it, as for now we are processing everythirgemory and by my short
experience this produces three times memory atigdun your VM. So, if you execute
a snapshot after analyzed a snapshot you will hawaror like loop, although if you
don’t capture snapshots after analyzed snapshatsiifiobe okay using the same VM.

V — If you want to use the WEB application, installjboss-profiler.war in your
deploy dir, then:

Use the second form, proving the prefix and suffixyour snapshot.
All you have to do after that is navigate in thedslo
Notice that the front-end is really really simpldae intention here was to prove the

model’s capability and we are looking for contritmst (preferably with design skills) to
contribute with a better Ul.

Features:

- The capability of trace references to classesbf@cts is a pretty nice feature, hard to
find in any other profiler.

- You can introspect references to ClassLoadeatjir Classes analysis.

- The snapshot capability without a need of anywearie besides what'’s in the VM is also
good, you can retrieve a snapshot easily for hattime (throught JVMPI and Tl in the
future) and memory.

