Table of Contents
Dive Into Python

CPRgpiteinl. Installing
1RytWdmdk right for you?
P2thon on Windows
Pgthon on Mac OS X
P¥thon on Mac OS 9
Python on RedHat Linux
P§thon on Debian GNU/Linux
Python Installation from Source
1IBterhetive Shell
1.9. Summary

CRaptdPyh¥olrrogram
2id. Diving
2FRurizéolasing
2Ruriationsienting
214 aBvehjtdthg
2Godiedenting
2Modelsting

Chapptty3eNative
30ictrdnzdligsng
3lstmtroducing
3Ruphesoducing
3variabtdaring
3SiriRgamatting
3l8sti¥lapping
3lstyoamddsplitting Strings
3.8. Summary

CPRapter @fThgospection
41t Diving
4Qptitsiagand Named Arguments
Ay dindir, and Other Built-In Functions
4@bjeettreferences Withgetattr
415stsiltering
4Redtiar Nature ofand andor
4amhbsnigunctions
418APTWIggther
4.9. Summary

Chapt@lfje @fpeatation
51a. Diving
5Motajesrtirgingfrom module import
5@ aBsdming
5Qlakwstantiating
R seMmorbVrapper Class
5@aSpddethods
5Spheuirib@izss Methods
5@ akgrattubungs

Dive Into Python

Chapt@je @fpeatation
SRurRtions
5.10. Summary

Chapit€ilé.Haxmdipiopns
6Bxdeatidinsg
6viatiVFer&idpjects
6V@ithferdtiogps
&yis.bidgles
6Vt V\Dirkicipries
6I6ARUtiggther
6.7. Summary

ChExpiesgidRsegular
71a. Diving
73u@psBtreet Addresses
7Su@gsRoman Numerals
Tthe{ysip Syntax
7ReyddodSepressions
7hu@adearsing Phone Numbers
7.7. Summary

CRapoes8ingTML
8id. Diving
&@mitivgniucing
8dat& ftoantiML documents
Bashirolldingcessor.py
8deals andglobals
8dirimychowmatyibgised
8attrQuttinglues
gRléctrpglucing
SialPtagether
8.10. Summary

CRapo=sSingML
9id. Diving
9.2. Packages
9XdMRarsing
9.4. Unicode
9fér Sleaneinitsy
9dlemece saingutes
9.7. Segue

Chapt&treanscripts
1hputdisiraesng
1mguStaugatdand error
16&leCackings
10ivedticldidgen of a node
16epatatatiagdlers by node type
16osniMandlinge arguments

1.3l Ragéitier

Dive Into Python

Table of Contents

Chapt&treanscripts
10.8. Summary

Chéphebadvit€ETP
1ih1. Diving
1ad.teidetch data over HTTP
1af3dFERtures
1HATPetriygenyices
1thBUSettiAgent
1b6t-Maddisd)andETag
ldedireietsdling
1¢Bnptasdedgdata
1it 8ll Rugetiwer
11.10. Summary

Chéphebaf/iSQAP
1lh1. Diving
1the . SsAdllinidpraries
13t8pBirgith SOAP
13@APeMaiyBeyrvices
1WSDhtroducing
13GARtWspestEngces with WSDL
1&dodearching
13GAR Wble Smvoiteg
12.9. Summary

Chagtergl3. Unit
18 Romyandnctoerals
1B 2. Diving
I8r@ahtestpging
1R sliestisg)
1 bfdilesEng
1fh6sdeiying

CPRaptgadvmingst-First
Ydrhan.py, stage 1
Ydérdan.py, stage 2
YdrBan.py, stage 3
Yéman.py, stage 4
Ydrian.py, stage 5

Chapter 15. Refactoring
1bugsHandling
létangarglheguirements
15.3. Refactoring
15.4. Postscript
15.5. Summary

CPRaptgadtningnctional

1m1. Diving
1. datiding

Dive Into Python

Table of Contents

CPRaptgadtningnctional
1bsBs Felesitegl
1bsts Majgiiad
1prbgEamanaentric
1 diymamiodilies
16.4ll Ragéetiger
16.8. Summary

Chapttois. Dynamic
linl. Diving
Jlwal.py, stage 1
Plusal.py, stage 2
Plugal.py, stage 3
Jiusal.py, stage 4
Piwal.py, stage 5
Jlural.py, stage 6
17.8. Summary

Chapieg18. Performance
1B 1. Diving
1hetidsindlodule
1B &y DatiEnprEssions
1BidtiQaimizoukups
1BiSt Opdirationg
181éin@pamipotation
18.7. Summary

Appadidig A. Further
ApperliteBrefiew
ApperttickS. Tips
Appendmplesist
Apsodix E. Revision
Apipe bdisk=. About

AppeaddoGun@Mitation License
G.0. Preamble
GahdAlgbircabiigy
G8pylaghatim
GrBqCamying
G.4. Modifications
GdbcQoenttiving
QbdCGalieditns
GuthAgdepgatoent works
G.8. Translation
G.9. Termination
Gavisiensird this license

Dive Into Python

Table of Contents

Table of Contents
AppeaddoGunaMitation License
QGd Wseltivis License for your documents

Apipensié H. Python

HoAtHdisioftyvare
HaBd temdgions for accessing or otherwise using Python

Dive Into Python

Dive Into Python
20 May 2004

Copyright © 2000, 2001, 2002, 2003, 2004 Mark Pilgrim (mailto:mark@diveintopython.org)
This book lives at http://diveintopython.org/. If you're reading it somewhere else, you may not have the latest version.
Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Documentation License

The example programs in this book are free software; you can redistribute and/or modify them under the terms of the Python lice

Dive Into Python 1

mailto:mark@diveintopython.org
http://diveintopython.org/

Chapter 1. Installing Python

Welcome to Python. Let’s dive in. In this chapter, you'll install the version of Python that’s right for you.

1.1. Which Python is right for you?

The first thing you need to do with Python is install it. Or do you?

If you're using an account on a hosted server, your ISP may have already installed Python. Most popular Linux distributions corr
Windows does not come with any version of Python, but don’t despair! There are several ways to point-and-click your way to Py
As you can see already, Python runs on a great many operating systems. The full list includes Windows, Mac OS, Mac OS X, at
What's more, Python programs written on one platform can, with a little care, run on any supported platform. For instance, | regt
So back to the question that started this section, "Which Python is right for you?" The answer is whichever one runs on the comj
1.2. Python on Windows

On Windows, you have a couple choices for installing Python.

ActiveState makes a Windows installer for Python called ActivePython, which includes a complete version of Python, an IDE wit
ActivePython is freely downloadable, although it is not open source. It is the IDE | used to learn Python, and | recommend you tr
The second option is the "official” Python installer, distributed by the people who develop Python itself. It is freely downloadable
Procedure 1.1. Option 1: Installing ActivePython

Here is the procedure for installing ActivePython:

1.
Download ActivePython from http://www.activestate.com/Products/ActivePython/.

2.
If you are using Windows 95, Windows 98, or Windows ME, you will also need to download and install Windows Installe

3.
Double-click the installer, #

4,
Step through the installer program.

5.
If space is tight, you can do a custom installation and deselect the documentation, but | don’t recommend this unless yo

6.
After the installation is complete, close the installer and choose Start->Programs->ActiveState ActivePython 2.2->Pytho

Dive Into Python 2

http://www.activestate.com/Products/ActivePython/
http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe

Procedure 1.2. Option 2: Installing Python from Python.org (http://www.python.org/)
1.
Download the latest Python Windows installer by going to http://www.python.org/ftp/python/ and selecting the highest ve

2.
Double-click the installer, BThe name will depend on the version of Python available when you read this.

3.
Step through the installer program.

4,
If disk space is tight, you can deselect the HTMLHelp file, the utility scripts (Jf and/or the test suite (}

5.
If you do not have administrative rights on your machine, you can select Advanced Options, then choose Non-Admin In:

6.
After the installation is complete, close the installer and select Start->Programs->Python 2.3->IDLE (Python GUI). You'll

* BN WY OO % -l .

vV &

1.3. Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don’t install it. You probably want to install it.

Mac OS X 10.2 and later comes with a command-line version of Python preinstalled. If you are comfortable with the command li
Rather than using the preinstalled version, you'll probably want to install the latest version, which also comes with a graphical int
Procedure 1.3. Running the Preinstalled Version of Python on Mac OS X

To use the preinstalled version of Python, follow these steps:

1.
Open the folder.

2.
Open the Hiolder.

Dive Into Python 3

http://www.python.org/
http://www.python.org/ftp/python/

Double-click #io open a terminal window and get to a command line.3.

4,
Typepat the command prompt.

Try it out:

LR R R R

Procedure 1.4. Installing the Latest Version of Python on Mac OS X
Follow these steps to download and install the latest version of Python:

1.
Download the Bisk image from http://homepages.cwi.nl/~jack/macpython/download.html.

2.
If your browser has not already done so, double-click Bo mount the disk image on your desktop.

3.
Double-click the installer, B

4,
The installer will prompt you for your administrative username and password.

5.
Step through the installer program.

6.
After installation is complete, close the installer and open the Holder.

7.
Open the Holder

8.
Double-click Bo launch Python.

The MacPython IDE should display a splash screen, then take you to the interactive shell. If the interactive shell does not appea

V i W e

Dive Into Python 4

http://homepages.cwi.nl/~jack/macpython/download.html

Note that once you install the latest version, the pre-installed version is still present. If you are running scripts from the commanc

Example 1.1. Two versions of Python

LR R B R N KR B R

1.4. Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very simple, and there is only one choice.

Follow these steps to install Python on Mac OS 9:

1.
Download the Bile from http://homepages.cwi.nl/~jack/macpython/download.html.

2.
If your browser does not decompress the file automatically, double-click Bo decompress the file with Stuffit Expander.

3.
Double-click the installer, B

4,
Step through the installer program.

5.
AFter installation is complete, close the installer and open the Holder.

6.
Open the Holder.

7.
Double-click Ro launch Python.

The MacPython IDE should display a splash screen, and then take you to the interactive shell. If the interactive shell does not af

V i W e

Dive Into Python 5

http://homepages.cwi.nl/~jack/macpython/download.html

1.5. Python on RedHat Linux

Installing under UNIX-compatible operating systems such as Linux is easy if you're willing to install a binary package. Pre-built b

Download the latest Python RPM by going to http://www.python.org/ftp/python/ and selecting the highest version number listed,

Example 1.2. Installing on RedHat Linux 9

LA LEERELLEEETL TEL BEE LY L

0 Whoops! Just typingjgives you the older version of Python -- the one that was installed by default. That's not the one you
@ At the time of this writing, the newest version is calledfYou'll probably want to change the path on the first line of the sam|
® Thisisthe complete path of the newer version of Python that you just installed. Use this on the #ine (the first line of each ¢

1.6. Python on Debian GNU/Linux

If you are lucky enough to be running Debian GNU/Linux, you install Python through the apt command.

Example 1.3. Installing on Debian GNU/Linux

Y O W G W a8

Dive Into Python 6

http://www.python.org/ftp/python/

L L A A R e X N N N J§ K 3 § K B N N N B N B J

1.7. Python Installation from Source

If you prefer to build from source, you can download the Python source code from http://www.python.org/ftp/python/. Select the |

Example 1.4. Installing from source

R D R D W - U U U S R U - G O a9 G e e

Dive Into Python 7

http://www.python.org/ftp/python/

FEEWHWEWES W WMW - W

1.8. The Interactive Shell

Now that you have Python installed, what's this interactive shell thing you're running?
It's like this: Python leads a double life. It's an interpreter for scripts that you can run from the command line or run like applicatic

Launch the Python interactive shell in whatever way works on your platform, and let's dive in with the steps shown here:

Example 1.5. First Steps in the Interactive Shell

Q@ The Python interactive shell can evaluate arbitrary Python expressions, including any basic arithmetic expression.
@ The interactive shell can execute arbitrary Python statements, including the print statement.

® vYoucanalso assign values to variables, and the values will be remembered as long as the shell is open (but not any long

1.9. Summary
You should now have a version of Python installed that works for you.

Depending on your platform, you may have more than one version of Python intsalled. If so, you need to be aware of your paths

Congratulations, and welcome to Python.

Dive Into Python 8

Chapter 2. Your First Python Program

You know how other books go on and on about programming fundamentals and finally work up to building a complete, working {

2.1. Diving in

Here is a complete, working Python program.

It probably makes absolutely no sense to you. Don’t worry about that, because you're going to dissect it line by line. But read thr

Example 2.1. §

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

- R B

Now run this program and see what happens.

In the ActivePython IDE on Wihdows, you can run the Python program you're editing by choosing File->Run... (Ctrl-R). Output i

In the Python IDE on Mac OSjyou can run a Python program with Python->Run window... (Cmd-R), but there is an important oy

On UNIX-compatible systems {including Mac OS X), you can run a Python program from the command line:ji

The output of fvill look like this:

2.2. Declaring Functions

Python has functions like most other languages, but it does not have separate header files like C++ or #sections like Pascal. Wt

Dive Into Python 9

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Note that the keyword &tarts the function declaration, followed by the function name, followed by the arguments in parentheses.

Also note that the function doesn’t define a return datatype. Python functions do not specify the datatype of their return value; th

In Visual Basic, functions (thatreturn a value) start with fiand subroutines (that do not return a value) start with BThere are no st

The argument, gdoesn’t specify a datatype. In Python, variables are never explicitly typed. Python figures out what type a variab

In Java, C++, and other statically-typed languages, you must specify the datatype of the function return value and each function

2.2.1. How Python’s Datatypes Compare to Other Programming Languages

An erudite reader sent me this explanation of how Python compares to other programming languages:

statically typed language

A language in which types are fixed at compile time. Most statically typed languages enforce this by requiring yc
dynamically typed language

A language in which types are discovered at execution time; the opposite of statically typed. VBScript and Pythc
strongly typed language

A language in which types are always enforced. Java and Python are strongly typed. If you have an integer, yot
weakly typed language

A language in which types may be ignored; the opposite of strongly typed. VBScript is weakly typed. In VBScrip

So Python is both dynamically typed (because it doesn’t use explicit datatype declarations) and strongly typed (because once a

2.3. Documenting Functions

You can document a Python function by giving it a §

Example 2.2. Defining the Brunction’s §
b
|

Triple quotes signify a multi-line string. Everything between the start and end quotes is part of a single string, including carriage

Triple quotes are also an easyway to define a string with both single and double quotes, like dn Perl.

Everything between the triple quotes is the function’s §which documents what the function does. A #if it exists, must be the first

Many Python IDEs use the #lasprovide context-sensitive documentation, so that when you type a function name, its #appears as
Further Reading on Documenting Functions

Dive Into Python 10

PEP 257 (http://www.python.org/peps/pep-0257.html) defines &onventions.O
Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses how to write a good #1
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses conventions for spacing in § (http://www.pytho

2.4. Everything Is an Object

In case you missed it, | just said that Python functions have attributes, and that those attributes are available at runtime.
A function, like everything else in Python, is an object.

Open your favorite Python IDE and follow along:

Example 2.3. Accessing the Brunction’s §

The first line imports the fprogram as a module -- a chunk of code that you can use interactively, or from a larger Python p
When you want to use functions defined in imported modules, you need to include the module name. So you can't just sa)

(]
]
P
¥
9
g
8
1]
2]
©

Instead of calling the function as you would expect to, you asked for one of the function’s attributes, d

fin Python is like d@n Perl. Onceéyou fm Python module, you access its functions with flonce you & Perl module, you access its fu

2.4.1. The Import Search Path

Before you go any further, | want to briefly mention the library search path. Python looks in several places when you try to impor

Example 2.4. Import Search Path

Importing the gnodule makes all of its functions and attributes available.
jis a list of directory names that constitute the current search path. (Yours will look different, depending on your operating
Actually, | lied; the truth is more complicated than that, because not all modules are stored as giles. Some, like the gnodul

You can add a new directory to Python’s search path at runtime by appending the directory name to fiand then Python wil

Dive Into Python 11

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000

2.4.2. What's an Object?

Everything in Python is an object, and almost everything has attributes and methods. All functions have a built-in attribute dwhic
Still, this begs the question. What is an object? Different programming languages define "object" in different ways. In some, it me
This is so important that I'm going to repeat it in case you missed it the first few times: everything in Python is an object. Strings
Further Reading on Objects

Python Reference Manual (http://www.python.org/doc/current/ref/) explains exactly what it means to say that everything
eff-bot (http://www.effbot.org/guides/) summarizes Python objects (http://www.effbot.org/guides/python-objects.htm).

2.5. Indenting Code

Python functions have no explicit #pr gand no curly braces to mark where the function code starts and stops. The only delimiter i

Example 2.5. Indenting the §Function
§
|

Code blocks are defined by their indentation. By "code block", | mean functions, Btatements, $oops, lioops, and so forth. Indenti

Example 2.6, “if Statements” shows an example of code indentation with &tatements.

Example 2.6. tatements

>

®

L]

e

B

]

@ Thisis a function named fihat takes one argument, nAll the code within the function is indented.

(2] Printing to the screen is very easy in Python, just use fistatements can take any data type, including strings, integers, anc
® Htatements are a type of code block. If the £xpression evaluates to true, the indented block is executed, otherwise it falls
@ Of course fand dlocks can contain multiple lines, as long as they are all indented the same amount. This #lock has two li

After some initial protests and several snide analogies to Fortran, you will make peace with this and start seeing its benefits. On

Python uses carriage returns:io separate statements and a colon and indentation to separate code blocks. C++ and Java use s¢

Further Reading on Code Indentation
Python Reference Manual (http://www.python.org/doc/current/ref/) discusses cross-platform indentation issues and sho
Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses good indentation style.[]

Dive Into Python 12

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html

2.6. Testing Modules

Python modules are objects and have several useful attributes. You can use this to easily test your modules as you write them. |

Some quick observations before you get to the good stuff. First, parentheses are not required around the Expression. Second, t

Like C, Python uses #or comparison and =or assignment. Unlike C, Python does not support in-line assignment, so there’s no c

So why is this particular tatement a trick? Modules are objects, and all modules have a built-in attribute BA module’s mlepends

#
#
B

Knowing this, you can design a test suite for your module within the module itself by putting it in this tatement. When you run tl

On MacPython, there is an adlitional step to make the #irick work. Pop up the module’s options menu by clicking the black trian

Further Reading on Importing Modules
Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the low-level details of importing modules

Dive Into Python 13

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html

Chapter 3. Native Datatypes

You'll get back to your first Python program in just a minute. But first, a short digression is in order, because you need to know a

3.1. Introducing Dictionaries

One of Python'’s built-in datatypes is the dictionary, which defines one-to-one relationships between keys and values.

A dictionary in Python is like l@hash in Perl. In Perl, variables that store hashes always start with a S¢haracter. In Python, variabl
A dictionary in Python is like lafrinstance of the Klass in Java.

A dictionary in Python is like afrinstance of the fpbject in Visual Basic.

3.1.1. Defining Dictionaries

Example 3.1. Defining a Dictionary

First, you create a new dictionary with two elements and assign it to the variable dEach element is a key-value pair, and tt
@is a key, and its associated value, referenced by &is @
lis a key, and its associated value, referenced by 8is #

g
3
§
®
)
®
)
]
'
L
(1]
e
(3]
o

You can get values by key, but you can't get keys by value. So # gbut aises an exception, because fis not a key.

3.1.2. Modifying Dictionaries

Example 3.2. Modifying a Dictionary

Dive Into Python 14

@ Youcan not have duplicate keys in a dictionary. Assigning a value to an existing key will wipe out the old value.
@ You can add new key-value pairs at any time. This syntax is identical to modifying existing values. (Yes, this will annoy yo

Note that the new element (key fivalue happears to be in the middle. In fact, it was just a coincidence that the elements appeare

Dictionaries have no conceptof'order among elements. It is incorrect to say that the elements are "out of order"; they are simply

When working with dictionaries, you need to be aware that dictionary keys are case-sensitive.

Example 3.3. Dictionary Keys Are Case-Sensitive

1] Assigning a value to an existing dictionary key simply replaces the old value with a new one.
@ Thisis not assigning a value to an existing dictionary key, because strings in Python are case-sensitive, so &s not the sarn

Example 3.4. Mixing Datatypes in a Dictionary

Dictionaries aren't just for strings. Dictionary values can be any datatype, including strings, integers, objects, or even othe

@a mungum_‘um_

Dictionary keys are more restricted, but they can be strings, integers, and a few other types. You can also mix and match

3.1.3. Deleting Items From Dictionaries

Example 3.5. Deleting Items from a Dictionary

-n'uun

Dive Into Python 15

e
g

Q Hets you delete individual items from a dictionary by key.
® @eletes all items from a dictionary. Note that the set of empty curly braces signifies a dictionary without any items.

Further Reading on Dictionaries
How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about dictionaries and shows hc
Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) has a lot of example code using d
Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses how to sort the values of a dictionar
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the dictionary methods (http://www.py

3.2. Introducing Lists

Lists are Python's workhorse datatype. If your only experience with lists is arrays in Visual Basic or (God forbid) the datastore in

A list in Python is like an arraysin Perl. In Perl, variables that store arrays always start with the @haracter; in Python, variables cz

A list in Python is much moreithan an array in Java (although it can be used as one if that's really all you want out of life). A bett

3.2.1. Defining Lists

Example 3.6. Defining a List

4
3
b
®

Q~

P
B
QO Fist, you define a list of five elements. Note that they retain their original order. This is not an accident. A list is an ordere
@ Alist can be used like a zero-based array. The first element of any non-empty list is always

3]

The last element of this five-element list is 3because lists are always zero-based.

Example 3.7. Negative List Indices

A negative index accesses elements from the end of the list counting backwards. The last element of any non-empty list i

@g Gﬂm'llﬁ-ih“

If the negative index is confusing to you, think of it this way: #So in this list, &

Dive Into Python 16

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html

Example 3.8. Slicing a List

You can get a subset of a list, called a "slice", by specifying two indices. The return value is a new list containing all the el
Slicing works if one or both of the slice indices is negative. If it helps, you can think of it this way: reading the list from left t

Lists are zero-based, so &eturns the first three elements of the list, starting at flup to but not including 3

Example 3.9. Slicing Shorthand

If the left slice index is 0, you can leave it out, and O is implied. So 3s the same as From Example 3.8, “Slicing a List".
Similarly, if the right slice index is the length of the list, you can leave it out. So 3s the same as 3because this list has five
Note the symmetry here. In this five-element list, }eturns the first 3 elements, and }eturns the last two elements. In fact, i

If both slice indices are left out, all elements of the list are included. But this is not the same as the original 1ist; it is a new

3.2.2. Adding Elements to Lists

Example 3.10. Adding Elements to a List

gadds a single element to the end of the list.
iinserts a single element into a list. The numeric argument is the index of the first element that gets bumped out of positior

o0 O LAl L R L L L e

toncatenates lists. Note that you do not call #lvith multiple arguments; you call it with one argument, a list. In this case, thi

Example 3.11. The Difference between #hnd @

Dive Into Python 17

Lists have two methods, #hnd dthat look like they do the same thing, but are in fact completely different. #fakes a single ar
Here you started with a list of three elements (aband ¥; and you extended the list with a list of another three elements (dga
On the other hand, dakes one argument, which can be any data type, and simply adds it to the end of the list. Here, you're

QOO Q

Now the original list, which started as a list of three elements, contains four elements. Why four? Because the last elemer

3.2.3. Searching Lists

Example 3.12. Searching a List

b 3

’

5

®

2

P

]

]

]

Y

B

@ inds the first occurrence of a value in the list and returns the index.

@ inds the first occurrence of a value in the list. In this case, ccurs twice in the list, in Band Bbut @vill return only the first in
® if the value is not found in the list, Python raises an exception. This is notably different from most languages, which will ret
@ To test whether a value is in the list, use pwhich returns & the value is found or §f it is not.

Before version 2.2.1, Pythonih&ad no separate boolean datatype. To compensate for this, Python accepted almost anything in a
@s false; all other numbers are true.O]
An empty string ()'is false, all other strings are true.O

Dive Into Python 18

An empty list (Jis false; all other lists are true.OJ
An empty tuple (}is false; all other tuples are true.O]
An empty dictionary (¥is false; all other dictionaries are true.O
These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean, which has a value of ®r BNote

3.2.4. Deleting List Elements

Example 3.13. Removing Elements from a List

memoves the first occurrence of a value from a list.
memoves only the first occurrence of a value. In this case, wppeared twice in the list, but #iemoved only the first occurrenc
If the value is not found in the list, Python raises an exception. This mirrors the behavior of the dnethod.

OO0 O LR R R R Ll L L -1

ps an interesting beast. It does two things: it removes the last element of the list, and it returns the value that it removed. |

3.2.5. Using List Operators

Example 3.14. List Operators

@ Lists can also be concatenated with the fperator. dhas the same result as §But the #operator returns a new (concatenatec
(2] Python supports the soperator. s equivalent to #The soperator works for lists, strings, and integers, and it can be overloac
® The *bperator works on lists as a repeater. 3s equivalent to 2which concatenates the three lists into one.

Further Reading on Lists
How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about lists and makes an impor

Dive Into Python 19

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to use lists as stacks and queues (http://www
Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common questions abou
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the list methods (http://www.python.or

3.3. Introducing Tuples

A tuple is an immutable list. A tuple can not be changed in any way once it is created.

Example 3.15. Defining a tuple

A tuple is defined in the same way as a list, except that the whole set of elements is enclosed in parentheses instead of st
The elements of a tuple have a defined order, just like a list. Tuples indices are zero-based, just like a list, so the first elen
Negative indices count from the end of the tuple, just as with a list.

Slicing works too, just like a list. Note that when you slice a list, you get a new list; when you slice a tuple, you get a hew t

Example 3.16. Tuples Have No Methods

*

i’

]

]

B

®

]

]

o

]

]

]

[

[

@ Youcan't add elements to a tuple. Tuples have no gr #inethod.
® You can’t remove elements from a tuple. Tuples have no mr pnethod.
® Youcan'tfind elements in a tuple. Tuples have no #@inethod.

@ You can, however, use iio see if an element exists in the tuple.

So what are tuples good for?

Tuples are faster than lists. If you're defining a constant set of values and all you're ever going to do with it is iterate thrc

Dive Into Python 20

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html

It makes your code safer if you "write-protect” data that does not need to be changed. Using a tuple instead of a list is il
Remember that | said that dictionary keys can be integers, strings, and "a few other types"? Tuples are one of those typ
Tuples are used in string formatting, as you'll see shortly.(]

Tuples can be converted into-dists, and vice-versa. The built-in fiunction takes a list and returns a tuple with the same elements,

Further Reading on Tuples
How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about tuples and shows how to

Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) shows how to sort a tuple (http://w
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to define a tuple with one element (http://ww

3.4. Declaring variables

Now that you know something about dictionaries, tuples, and lists (oh my!), let's get back to the sample program from Chapter 2

Python has local and global variables like most other languages, but it has no explicit variable declarations. Variables spring intc

Example 3.17. Defining the Wariable

b % & N

Notice the indentation. An Btatement is a code block and needs to be indented just like a function.

Also notice that the variable assignment is one command split over several lines, with a backslash (") serving as a line-continue

When a command is split amang several lines with the line-continuation marker ("4, the continued lines can be indented in any
Strictly speaking, expressions in parentheses, straight brackets, or curly braces (like defining a dictionary) can be split into multiy

Third, you never declared the variable Ryou just assigned a value to it. This is like VBScript without the fpption. Luckily, unlike VI

3.4.1. Referencing Variables

Example 3.18. Referencing an Unbound Variable

=X R W N X

You will thank Python for this one day.

Dive Into Python 21

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000

3.4.2. Assigning Multiple Values at Once

One of the cooler programming shortcuts in Python is using sequences to assign multiple values at once.

Example 3.19. Assigning multiple values at once

oD M T m-x'li

QO sa tuple of three elements, and ¥s a tuple of three variables. Assigning one to the other assigns each of the values of \c

This has all sorts of uses. | often want to assign names to a range of values. In C, you would use snd manually list each consta

Example 3.20. Assigning Consecutive Values

9
2
P
P
0
B
1
|
6

@ The built-in gunction returns a list of integers. In its simplest form, it takes an upper limit and returns a zero-based list cout
@ pEEEPMMand Bhre the variables you're defining. (This example came from the #inodule, a fun little module that prints calendz
® Now each variable has its value: Bs PBs land so forth.

You can also use multi-variable assignment to build functions that return multiple values, simply by returning a tuple of all the va

Further Reading on Variables
Python Reference Manual (http://www.python.org/doc/current/ref/) shows examples of when you can skip the line contir
How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use multi-variable assignn

3.5. Formatting Strings

Python supports formatting values into strings. Although this can include very complicated expressions, the most basic usage is

String formatting in Python usgsithe same syntax as the fiunction in C.

Example 3.21. Introducing String Formatting
#
]

Dive Into Python 22

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm

®
d
©® The whole expression evaluates to a string. The first %s replaced by the value of kthe second %s replaced by the value of :

Note that ¥s a tuple. | told you they were good for something.

You might be thinking that this is a lot of work just to do simple string concatentation, and you would be right, except that string f

Example 3.22. String Formatting vs. Concatenating

4s the string concatenation operator.

In this trivial case, string formatting accomplishes the same result as concatentation.

§s a tuple with one element. Yes, the syntax is a little strange, but there’s a good reason for it: it's unambiguously a tuple.
String formatting works with integers by specifying #instead of %

@e@@g ‘-ﬂumsm@‘@‘ih

Trying to concatenate a string with a non-string raises an exception. Unlike string formatting, string concatenation works o

As with fin C, string formatting in Python is like a Swiss Army knife. There are options galore, and modifier strings to specially fol

Example 3.23. Formatting Numbers

TOTe=®

@ The $tring formatting option treats the value as a decimal, and prints it to six decimal places.
@ The ".2" modifier of the $option truncates the value to two decimal places.
® vYou can even combine modifiers. Adding the #modifier displays a plus or minus sign before the value. Note that the ".2" m

Further Reading on String Formatting
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string formatting format characters
Effective AWK Programming (http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top) discusses all the format che

Dive Into Python 23

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers

3.6. Mapping Lists

One of the most powerful features of Python is the list comprehension, which provides a compact way of mapping a list into ano

Example 3.24. Introducing List Comprehensions

?

®

B

e

L]

P

b 3

B

@ 7o make sense of this, look at it from right to left. is the list you're mapping. Python loops through bne element at a time,
® Note that list comprehensions do not change the original list.

® tissafeto assign the result of a list comprehension to the variable that you're mapping. Python constructs the new list in

Here are the list comprehensions in the Bunction that you declared in Chapter 2:

First, notice that you're calling the diunction of the mlictionary. This function returns a list of tuples of all the data in the dictionary.

Example 3.25. The g#iand #runctions

The gmethod of a dictionary returns a list of all the keys. The list is not in the order in which the dictionary was defined (ren
The #method returns a list of all the values. The list is in the same order as the list returned by gso fior all values of n

The @method returns a list of tuples of the form §The list contains all the data in the dictionary.

Now let's see what Boes. It takes a list, land maps it to a new list by applying string formatting to each element. The new list wil

Example 3.26. List Comprehensions in §Step by Step

Dive Into Python 24

@ Note that you're using two variables to iterate through the flist. This is another use of multi-variable assignment. The first
@ Here you're doing the same thing, but ignoring the value of kso this list comprehension ends up being equivalent to
e Combining the previous two examples with some simple string formatting, you get a list of strings that include both the ke

Further Reading on List Comprehensions
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to map lists using the built-in giun
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to do nested list comprehensions (http://www

3.7. Joining Lists and Splitting Strings

You have a list of key-value pairs in the form fand you want to join them into a single string. To join any list of strings into a sing|

Here is an example of joining a list from the Bunction:

One interesting note before you continue. | keep repeating that functions are objects, strings are objects... everything is an objec

The @nethod joins the elements of the list into a single string, with each element separated by a semi-colon. The delimiter doesn

tworks only on lists of strings; it does not do any type coercion. Joining a list that has one or more non-string elements will raise

Example 3.27. Output of §i

This string is then returned from the fiunction and printed by the calling block, which gives you the output that you marveled at w

You're probably wondering if there’s an analogous method to split a string into a list. And of course there is, and it's called &

Example 3.28. Splitting a String

Eeverses tby splitting a string into a multi-element list. Note that the delimiter (*}) is stripped out completely; it does not ap

o =] LR VLR LA

fiakes an optional second argument, which is the number of times to split. (""Oooooh, optional arguments..." You'll learn h

J5 a useful technique when yol want to search a string for a substring and then work with everything before the substring (whicl
Further Reading on String Methods

Dive Into Python 25

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000

Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common questions abou
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string methods (http://www.python
Python Library Reference (http://www.python.org/doc/current/lib/) documents the #module (http://www.python.org/doc/cL
The Whole Python FAQ (http://www.python.org/doc/FAQ.html) explains why @s a string method (http://www.python.org/

3.7.1. Historical Note on String Methods

When | first learned Python, | expected Gio be a method of a list, which would take the delimiter as an argument. Many people fe

3.8. Summary

The gprogram and its output should now make perfect sense.

- o LR |

L ey BN N Bl

Here is the output of #

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Using the Python IDE to test expressions interactively

Writing Python programs and running them from within your IDE, or from the command line[

Importing modules and calling their functionsO

Declaring functions and using #, local variables, and proper indentation]

Defining dictionaries, tuples, and lists[J

Accessing attributes and methods of any object, including strings, lists, dictionaries, functions, and modules]
Concatenating values through string formattingd

Mapping lists into other lists using list comprehensions[]

Splitting strings into lists and joining lists into strings(]

Dive Into Python 26

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

Chapter 4. The Power Of Introspection

This chapter covers one of Python's strengths: introspection. As you know, everything in Python is an object, and introspection i

4.1. Diving In

Here is a complete, working Python program. You should understand a good deal about it just by looking at it. The numbered lin

Example 4.1. |

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

This module has one function, iAccording to its function declaration, it takes three parameters: fgand gThe last two are a
The diunction has a multi-line #hat succinctly describes the function’s purpose. Note that no return value is mentioned; this
Code within the function is indented.

The fiiick allows this program do something useful when run by itself, without interfering with its use as a module for other

Btatements use #or comparison, and parentheses are not required.

The diunction is designed to be used by you, the programmer, while working in the Python IDE. It takes any object that has funct

Example 4.2. Sample Usage of |

L B _E & R K R K& R N I

By default the output is formatted to be easy to read. Multi-line #§ are collapsed into a single long line, but this option can be char

Dive Into Python 27

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Example 4.3. Advanced Usage of

= N Y EE U8R EE

4.2. Using Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without the argument, the argument gets its def

Here is an example of fia function with two optional arguments:

fand gare optional, because they have default values defined. fis required, because it has no default value. If dis called with only

Say you want to specify a value for fibut want to accept the default value for gin most languages, you would be out of luck, becat

Example 4.4. Valid Calls of &

With only one argument, @ets its default value of @&nd fgets its default value of 1
With two arguments, fgets its default value of 1
Here you are naming the fargument explicitly and specifying its value. gstill gets its default value of @

CO0O ©ODe

Even required arguments (like fiwhich has no default value) can be named, and named arguments can appear in any orde

This looks totally whacked until you realize that arguments are simply a dictionary. The "normal” method of calling functions with

The only thing you need to de#o call a function is specify a value (somehow) for each required argument; the manner and order

Further Reading on Optional Arguments
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default arguments are

4.3. Using pkdland Other Built-In Functions

Python has a small set of extremely useful built-in functions. All other functions are partitioned off into modules. This was actuall

4.3.1. The prunction

The giunction returns the datatype of any arbitrary object. The possible types are listed in the gmodule. This is useful for helper ft

Dive Into Python 28

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000

Example 4.5. Introducing @
P
¥
¥
P
|
#
P
¢
P
|
@

1] fiakes anything -- and | mean anything -- and returns its datatype. Integers, strings, lists, dictionaries, tuples, functions, cle
(2 fran take a variable and return its datatype.
(3 falso works on modules.

@ You can use the constants in the pnodule to compare types of objects. This is what the @iunction does, as you'll see shortl

4.3.2. The #unction

The foerces data into a string. Every datatype can be coerced into a string.

Example 4.6. Introducing &

o

1

#

]

¥

)

)

o

R

®

;]

QO ror simple datatypes like integers, you would expect o work, because almost every language has a function to convert a
@ However, works on any object of any type. Here it works on a list which you've constructed in bits and pieces.

® flso works on modules. Note that the string representation of the module includes the pathname of the module on disk, s
@ Asubtle but important behavior of #s that it works on Bthe Python null value. It returns the string BYou'll use this to your a

At the heart of the diunction is the powerful dunction. deturns a list of the attributes and methods of any object: modules, functior

Example 4.7. Introducing &
]
L
#

Dive Into Python 29

is a list, so &eturns a list of all the methods of a list. Note that the returned list contains the names of the methods as strin
ds a dictionary, so feturns a list of the names of dictionary methods. At least one of these, fgshould look familiar.

This is where it really gets interesting. fis a module, so feturns a list of all kinds of stuff defined in the module, including bt

Finally, the Bunction takes any object and returns & the object can be called, or btherwise. Callable objects include functions, cl

Example 4.8. Introducing &

The functions in the #module are deprecated (although many people still use the giunction), but the module contains a lot c
#s a function that joins a list of strings.

fis not callable; it is a string. (A string does have callable methods, but the string itself is not callable.)

#s callable; it's a function that takes two arguments.

Any callable object may have a §By using the Biunction on each of an object’s attributes, you can determine which attributi
4.3.3. Built-In Functions
pEdland all the rest of Python’s built-in functions are grouped into a special module called l(That's two underscores before and &

The advantage of thinking like this is that you can access all the built-in functions and attributes as a group by getting informatiol

Example 4.9. Built-in Attributes and Functions
]
b

Dive Into Python 30

L]

Python comes with excellentigference manuals, which you should peruse thoroughly to learn all the modules Python has to offe

Further Reading on Built-In Functions
Python Library Reference (http://www.python.org/doc/current/lib/) documents all the built-in functions (http://www.pythor

4.4. Getting Object References With §

You already know that Python functions are objects. What you don’'t know is that you can get a reference to a function without ki

Example 4.10. Introducing §

This gets a reference to the pnethod of the list. Note that this is not calling the pnethod; that would be @This is the method
This also returns a reference to the pnethod, but this time, the method name is specified as a string argument to the gunct
In case it hasn't sunk in just how incredibly useful this is, try this: the return value of #s the method, which you can then ca
trlso works on dictionaries.

In theory, §vould work on tuples, except that tuples have no methods, so §vill raise an exception no matter what attribute 1
4.4.1. §vith Modules

fisn't just for built-in datatypes. It also works on modules.

Example 4.11. The $runction in

Dive Into Python 31

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html

This returns a reference to the Bunction in the finodule, which you studied in Chapter 2, Your First Python Program. (The |
Using gyou can get the same reference to the same function. In general, #s equivalent to #iffis a module, thenian be any
And this is what you actually use in the fiunction. lis passed into the function as an argument; liis a string which is the nam
In this case, liis the name of a function, which you can prove by getting its @

Q000 Q

Since f#ils a function, it is callable.

4.4.2. #§\s a Dispatcher

A common usage pattern of #is as a dispatcher. For example, if you had a program that could output data in a variety of different

For example, let's imagine a program that prints site statistics in HTML, XML, and plain text formats. The choice of output forma

Example 4.12. Creating a Dispatcher with §

The tiunction takes one required argument, gland one optional argument, #if fis not specified, it defaults to gand you will el
You concatenate the #rgument with "output_" to produce a function name, and then go get that function from the #module

@0e DV® =

Now you can simply call the output function in the same way as any other function. The fariable is a reference to the app

Did you see the bug in the previous example? This is a very loose coupling of strings and functions, and there is no error checki

Luckily, #akes an optional third argument, a default value.

Example 4.13. @efault Values
B

Dive Into Python 32

@ This function call is guaranteed to work, because you added a third argument to the call to §The third argument is a defau

As you can see, §s quite powerful. It is the heart of introspection, and you'll see even more powerful examples of it in later chapt

4.5. Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, via list comprehensions (Section 3.6, “Mapping L

Here is the list filtering syntax:

]

This is an extension of the list comprehensions that you know and love. The first two thirds are the same; the last part, starting w

Example 4.14. Introducing List Filtering

The mapping expression here is simple (it just returns the value of each element), so concentrate on the filter expression.
Here, you are filtering out a specific value, bNote that this filters all occurrences of bsince each time it comes up, the filter

tis a list method that returns the number of times a value occurs in a list. You might think that this filter would eliminate du

Let's get back to this line from f

§

This looks complicated, and it is complicated, but the basic structure is the same. The whole filter expression returns a list, whicl
The filter expression looks scary, but it's not. You already know about bjand mAs you saw in the previous section, the expressio
So this expression takes an object (named § Then it gets a list of the names of the object’s attributes, methods, functions, and a

Further Reading on Filtering Lists
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to filter lists using the built-in #un

4.6. The Peculiar Nature of éhnd ©

In Python, eand gerform boolean logic as you would expect, but they do not return boolean values; instead, they return one of th

Example 4.15. Introducing d

Dive Into Python 33

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000

@ When using gvalues are evaluated in a boolean context from left to right.] J Fand Bare false in a boolean context; everyt
B any value is false in a boolean context, deturns the first false value. In this case, s the first false value.
® Al values are true, so geturns the last value, ¢

Example 4.16. Introducing ©

®

a

®

b

i

i

|

[]

@

a

Q@ When using pvalues are evaluated in a boolean context from left to right, just like dIf any value is true, @eturns that value i
@ @valuates which is false, then pwhich is true, and returns b

© |fall values are false, @eturns the last value. ®valuates ;' which is false, then Jwhich is false, then Fwhich is false, and rett
@ Note that ®valuates values only until it finds one that is true in a boolean context, and then it ignores the rest. This distinc

If you're a C hacker, you are certainly familiar with the Bxpression, which evaluates to affis true, and lotherwise. Because of the

4.6.1. Using the drick

Example 4.17. Introducing the drick

Q@ This syntax looks similar to the Bexpression in C. The entire expression is evaluated from left to right, so the ds evaluated
@ @valutes to fand then @valuates to §

However, since this Python expression is simply boolean logic, and not a special construct of the language, there is one extreme

Example 4.18. When the drick Fails
L]

8
®
4

©® Sinceasan empty string, which Python considers false in a boolean context, &valutes to ,'and then évalutes to 80ops! T

Dive Into Python 34

The drick, Bwill not work like the C expression Bvhen as false in a boolean context.
The real trick behind the drick, then, is to make sure that the value of as never false. One common way of doing this is to turn an

Example 4.19. Using the drick Safely
4

8
’

@ Since #s a non-empty list, it is never false. Even if as ®r 'or some other false value, the list &s true because it has one elel
By now, this trick may seem like more trouble than it's worth. You could, after all, accomplish the same thing with an Statement,

Further Reading on the drick
Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses alternatives to the drick (http://www.

4.7. Using #Functions

Python supports an interesting syntax that lets you define one-line mini-functions on the fly. Borrowed from Lisp, these so-called

Example 4.20. Introducing #unctions

O\!O\@'O\M-

e

This is a Bunction that accomplishes the same thing as the normal function above it. Note the abbreviated syntax here: the

®

You can use a #Hiunction without even assigning it to a variable. This may not be the most useful thing in the world, but it ju

To generalize, a #iunction is a function that takes any number of arguments (including optional arguments) and returns the value

liunctions are a matter of style¥Using them is never required; anywhere you could use them, you could define a separate norme

4.7.1. Real-World #Functions

Here are the Munctions in §

Notice that this uses the simple form of the drick, which is okay, because a Biunction is always true in a boolean context. (That d

Dive Into Python 35

http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310

Also notice that you're using the fiunction with no arguments. You've already seen it used with one or two arguments, but withol

Example 4.21. Vith No Arguments

®

]

i

&

L]

[]

@ Thisis a multiline string, defined by escape characters instead of triple quotes. Ks a carriage return, and Xs a tab characte
(2] Bvithout any arguments splits on whitespace. So three spaces, a carriage return, and a tab character are all the same.

® You can normalize whitespace by splitting a string with fand then rejoining it with flusing a single space as a delimiter. Thi

So what is the fiunction actually doing with these Bunctions, §, and dricks?

s now a function, but which function it is depends on the value of the fvariable. If fis true, §vill collapse whitespace; otherwise, §
To do this in a less robust language, like Visual Basic, you would probably create a function that took a string and agargument ar

Further Reading on Wrunctions
Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) discusses using Mo call functions |
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to access outside variables from inside a #ur
The Whole Python FAQ (http://www.python.org/doc/FAQ.html) has examples of obfuscated one-liners using lhttp://wwv

4.8. Putting It All Together

The last line of code, the only one you haven’t deconstructed yet, is the one that does all the work. But by now the work is easy,

This is the meat of

Note that this is one command, split over multiple lines, but it doesn’t use the line continuation character (\ Remember when | s
Now, let’s take it from the end and work backwards. The
]

shows that this is a list comprehension. As you know, lis a list of all the methods you care about in §So you're looping through tf

Example 4.22. Getting a #dynamically
#
o

Dive Into Python 36

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search

In the diunction, fis the object you're getting help on, passed in as an argument.
As you're looping through Hiis the name of the current method.
Using the $unction, you're getting a reference to the#function in the§module.

cCOOO * wewo®

Now, printing the actual #f the method is easy.

The next piece of the puzzle is the use of faround the #As you may recall, s a built-in function that coerces data into a string. Bl

Example 4.23. Why Use n a §

#

]

2

®

LY

[

P

;|

Q@ vYoucan easily define a function that has no #§so its dttribute is BConfusingly, if you evaluate the dttribute directly, the Pyt
@ You can verify that the value of the aittribute is actually by comparing it directly.
® The function takes the null value and returns a string representation of it, §

In SQL, you must use Binstead?of Mo compare a null value. In Python, you can use either #br libut Bs faster.

Now that you are guaranteed to have a string, you can pass the string to fwhich you have already defined as a function that eith

Stepping back even further, you see that you're using string formatting again to concatenate the return value of f@vith the return \

Example 4.24. Introducing #&

pads the string with spaces to the given length. This is what the diunction uses to make two columns of output and line ug

If the given length is smaller than the length of the string, #will simply return the string unchanged. It never truncates the st

You're almost finished. Given the padded method name from the #method and the (possibly collapsed) #from the call to fyou cor

Dive Into Python 37

Example 4.25. Printing a List

ncrm‘li

@ Thisis also a useful debugging trick when you're working with lists. And in Python, you're always working with lists.

That's the last piece of the puzzle. You should now understand this code.

4.9. Summary

The fprogram and its output should now make perfect sense.

Here is the output of §

LR B R N R KRN

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Defining and calling functions with optional and named arguments

Dive Into Python 38

Using %o coerce any arbitrary value into a string representation]

Using #o get references to functions and other attributes dynamically(]

Extending the list comprehension syntax to do list filteringd

Recognizing the drick and using it safely

Defining BunctionsJ

Assigning functions to variables and calling the function by referencing the variable. | can’t emphasize this enough, bec:

Dive Into Python 39

Chapter 5. Objects and Object-Orientation

This chapter, and pretty much every chapter after this, deals with object-oriented Python programming.

5.1. Diving In

Here is a complete, working Python program. Read the § of the module, the classes, and the functions to get an overview of wh:

Example 5.1. §

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

. . . L L _E N R R |

B EE M B - W e e

Dive Into Python 40

http://diveintopython.org/download/diveintopython-examples-5.4.zip

el B R K R RN R R BogE N |

'E-‘III

Q@ This program’s output depends on the files on your hard drive. To get meaningful output, you'll need to change the directc

This is the output | got on my machine. Your output will be different, unless, by some startling coincidence, you share my exact t

Dive Into Python 41

o W

W R Gy O W G e

= W Gy @ @ L B N CNC N N N

5.2. Importing Modules Using i

Python has two ways of importing modules. Both are useful, and you should know when to use each. One way, fiyou've already

Here is the basic Byntax:

This is similar to the gbyntax that you know and love, but with an important difference: the attributes and methods of the importec

#ih Python is like @ Perl; fin P;ython is like #n Perl.

Dive Into Python 42

fin Python is like jih Java; liniRython is like fih Java.

Example 5.2. jis.f

The gmodule contains no methods; it just has attributes for each Python object type. Note that the attribute, fimust be qual
Py itself has not been defined in this namespace; it exists only in the context of
This syntax imports the attribute firom the gmodule directly into the local namespace.

Now Ean be accessed directly, without reference to @

When should you use fi

If you will be accessing attributes and methods often and don’t want to type the module name over and over, use]
If you want to selectively import some attributes and methods but not others, use i

If the module contains attributes or functions with the same name as ones in your module, you must use Mo avoid name

Other than that, it's just a matter of style, and you will see Python code written both ways.

Use @paringly, because it makes it difficult to determine where a particular function or attribute came from, and that makes debt

Further Reading on Module Importing Techniques
eff-bot (http://www.effbot.org/guides/) has more to say on ls.Hhttp://www.effbot.org/guides/import-confusion.htm).
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses advanced import techniques, including Rhttp://

5.3. Defining Classes

Python is fully object-oriented: you can define your own classes, inherit from your own or built-in classes, and instantiate the clac

Defining a class in Python is simple. As with functions, there is no separate interface definition. Just define the class and start cc

Example 5.3. The Simplest Python Class
@
(23]

@ The name of this class is iand it doesn’t inherit from any other class. Class names are usually capitalized, Wbut this is onl)
@ This class doesn't define any methods or attributes, but syntactically, there needs to be something in the definition, so yot
® vou probably guessed this, but everything in a class is indented, just like the code within a function, Btatement, doop, anc

Dive Into Python 43

http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000

The gtatement in Python is like"an empty set of braces (¥in Java or C.

Of course, realistically, most classes will be inherited from other classes, and they will define their own class methods and attribt

Example 5.4. Defining the IElass
B

Q9 n Python, the ancestor of a class is simply listed in parentheses immediately after the class name. So the Elass is inherit

In Python, the ancestor of a ¢lass is simply listed in parentheses immediately after the class name. There is no special keyword

Python supports multiple inheritance. In the parentheses following the class name, you can list as many ancestor classes as yot

5.3.1. Initializing and Coding Classes

This example shows the initialization of the Elass using the imethod.

Example 5.5. Initializing the KClass

L)

@

[L34

@ Classes can (and should) have §too, just like modules and functions.

(2 tis called immediately after an instance of the class is created. It would be tempting but incorrect to call this the constructo
® The first argument of every class method, including liis always a reference to the current instance of the class. By conven
(4] fimethods can take any number of arguments, and just like functions, the arguments can be defined with default values, m

By convention, the first argument of any Python class method (the reference to the current instance) is called &This argument fil

Example 5.6. Coding the IElass

Some pseudo-object-oriented languages like Powerbuilder have a concept of "extending" constructors and other events, \
I told you that this class acts like a dictionary, and here is the first sign of it. You're assigning the argument #as the value o

@ @ ; @EI'I-I-

Note that the imethod never returns a value.

Dive Into Python 44

5.3.2. Knowing When to Use #&nd ik

When defining your class methods, you must explicitly list &s the first argument for each method, including @When you call a me

Whew. | realize that's a lot to absorb, but you'll get the hang of it. All Python classes work the same way, so once you learn one,

imethods are optional, but when'you define one, you must remember to explicitly call the ancestor’s imethod (if it defines one). -

Further Reading on Python Classes
Learning to Program (http://www.freenetpages.co.uk/hp/alan.gauld/) has a gentler introduction to classes (http://www.fre

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use classes to model com
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) has an in-depth look at classes, hamespaces, and inheri
Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common questions abou

5.4. Instantiating Classes

Instantiating classes in Python is straightforward. To instantiate a class, simply call the class as if it were a function, passing the

Example 5.7. Creating a linstance

You are creating an instance of the Elass (defined in the #imodule) and assigning the newly created instance to the variabl
Every class instance has a built-in attribute, gwhich is the object’s class. (Note that the representation of this includes the
You can access the instance’s #ust as with a function or a module. All instances of a class share the same #

e@@g Ianlg-lg‘ﬁ

Remember when the imethod assigned its &rgument to fi Well, here’s the result. The arguments you pass when you crea

In Python, simply call a classtas)if it were a function to create a new instance of the class. There is no explicit mperator like C++

5.4.1. Garbage Collection

If creating new instances is easy, destroying them is even easier. In general, there is no need to explicitly free instances, becaus

Example 5.8. Trying to Implement a Memory Leak
)
9

g
)

@ Every time the #iunction is called, you are creating an instance of land assigning it to the variable fwhich is a local variable

Dive Into Python 45

http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242

@ No matter how many times you call the Bunction, it will never leak memory, because every time, Python will destroy the ne
The technical term for this form of garbage collection is "reference counting". Python keeps a list of references to every instance
In previous versions of Python, there were situations where reference counting failed, and Python couldn’t clean up after you. If
As a former philosophy major, it disturbs me to think that things disappear when no one is looking at them, but that’s exactly wh:
Further Reading on Garbage Collection

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes built-in attributes like #http://mww.python
Python Library Reference (http://www.python.org/doc/current/lib/) documents the gnodule (http://www.python.org/doc/cL

5.5. Exploring BA Wrapper Class

As you've seen, Bis a class that acts like a dictionary. To explore this further, let's look at the ilass in the inodule, which is the a

In the ActivePython IDE on Wihdows, you can quickly open any module in your library path by selecting File->Locate... (Ctrl-L).

Example 5.9. Defining the IClass

Note that lls a base class, not inherited from any other class.

This is the imethod that you overrode in the Elass. Note that the argument list in this ancestor class is different than the d
Python supports data attributes (called "instance variables" in Java and Powerbuilder, and "member variables" in C++). D
The @inethod is a dictionary duplicator: it copies all the keys and values from one dictionary to another. This does not clea

Q000 eQ ’3’5"5'

This is a syntax you may not have seen before (I haven't used it in the examples in this book). It's an Ftatement, but inste
Java and Powerbuilder suppertfunction overloading by argument list, i.e. one class can have multiple methods with the same n
Guido, the original author of Python, explains method overriding this way: "Derived classes may override methods of their base

Always assign an initial valuefoall of an instance’s data attributes in the imethod. It will save you hours of debugging later, tracl

Example 5.10. INormal Methods

4
P
®
"
(]
¥
®
i

Dive Into Python 46

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html

éis a normal class method; it is publicly available to be called by anyone at any time. Notice that #like all class methods, h:
The gmethod of a real dictionary returns a new dictionary that is an exact duplicate of the original (all the same key-value |
You use the @attribute to see if #is a Bif so, you're golden, because you know how to copy a Bjust create a new End give it
If @s not Bthen @must be some subclass of Klike maybe § in which case life gets trickier. Bloesn’t know how to make an ex:

o0 ™

The rest of the methods are straightforward, redirecting the calls to the built-in methods on #

In versions of Python prior tor2t2, you could not directly subclass built-in datatypes like strings, lists, and dictionaries. To compel

In Python, you can inherit directly from the #built-in datatype, as shown in this example. There are three differences here compar

Example 5.11. Inheriting Directly from Built-In Datatype

.IEI‘

@ The first difference is that you don’t need to import the nodule, since ds a built-in datatype and is always available. The s
@ The third difference is subtle but important. Because of the way Bvorks internally, it requires you to manually call its imetht

Further Reading on i
Python Library Reference (http://www.python.org/doc/current/lib/) documents the linodule (http://www.python.org/doc/cuL

5.6. Special Class Methods

In addition to normal class methods, there are a number of special methods that Python classes can define. Instead of being cal

As you saw in the previous section, normal methods go a long way towards wrapping a dictionary in a class. But normal method

5.6.1. Getting and Setting Items

Example 5.12. The #gpecial Method

The #pecial method looks simple enough. Like the normal methods #ggand #it just redirects to the dictionary to return its v

© @ T I DI

This looks just like the syntax you would use to get a dictionary value, and in fact it returns the value you would expect. Bt

Of course, Python has a #pecial method to go along with as shown in the next example.

Example 5.13. The #Bpecial Method

Dive Into Python 47

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html

Like the #method, ®imply redirects to the real dictionary #o do its work. And like flyou wouldn't ordinarily call it directly like

This looks like regular dictionary syntax, except of course that fs really a class that’s trying very hard to masquerade as a
special class method because it gets called for you, but it's still a class method. Just as easily as the #imethod was defined i

§
b2
]
L
b2
s
L
b2
}
0
(2
iis a

This concept is the basis of the entire framework you're studying in this chapter. Each file type can have a handler class that knc

For example, Bs a descendant of EWhen an B s set, it doesn't just set the &key (like the ancestor Eloes); it also looks in the file |

Example 5.14. Overriding #in il

Notice that this imethod is defined exactly the same way as the ancestor method. This is important, since Python will be ¢
Here's the crux of the entire Blass: if you're assigning a value to the &key, you want to do something extra.
The extra processing you do for mis encapsulated in the gmethod. This is another class method defined in Band when you

P
P
L
1]
2]
©
o

After doing this extra processing, you want to call the ancestor method. Remember that this is never done for you in Pythc

When accessing data attributes within a class, you need to qualify the attribute name: BWhen calling other methods within a cla

Example 5.15. Settingan B m

First, you create an instance of Bwithout passing it a filename. (You can get away with this because the fargument of the |

Dive Into Python 48

® Now the real fun begins. Setting the ey of firiggers the finethod on Bnot | which notices that you're setting the gkey with
® Modifying the ey will go through the same process again: Python calls Bwhich calls gwhich sets all the other keys.

5.7. Advanced Special Class Methods
Python has more special methods than just gand BSome of them let you emulate functionality that you may not even know about

This example shows some of the other special methods in B

Example 5.16. More Special Methods in il

gs a special method that is called when you call §The gunction is a built-in function that returns a string representation of ¢
s called when you compare class instances. In general, you can compare any two Python objects, not just class instance
fis called when you call §The #unction is a built-in function that returns the length of an object. It works on any object that

fis called when you call fwhich you may remember as the way to delete individual items from a dictionary. When you use

In Java, you determine whethertwo string variables reference the same physical memory location by using #This is called objec
At this point, you may be thinking, "All this work just to do something in a class that | can do with a built-in datatype." And it's true

Special methods mean that any class can store key/value pairs like a dictionary, just by defining the simethod. Any class can act

While other object-oriented languages only let you define the physical model of an object (“this object has a Bnethod"), Python'’s
Python has a lot of other special methods. There’s a whole set of them that let classes act like numbers, allowing you to add, su

Further Reading on Special Class Methods
Python Reference Manual (http://www.python.org/doc/current/ref/) documents all the special class methods (http://www.

5.8. Introducing Class Attributes

You already know about data attributes, which are variables owned by a specific instance of a class. Python also supports class
Example 5.17. Introducing Class Attributes

R

|

.

]

Dive Into Python 49

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html

Bs the class itself, not any particular instance of the class.
Bs a class attribute: literally, an attribute of the class. It is available before creating any instances of the class.

@0Q

Class attributes are available both through direct reference to the class and through any instance of the class.

In Java, both static variables{€alled class attributes in Python) and instance variables (called data attributes in Python) are defir

Class attributes can be used as class-level constants (which is how you use them in B but they are not really constants. You car

There are no constants in Pyﬁ:’qn. Everything can be changed if you try hard enough. This fits with one of the core principles of

Example 5.18. Modifying Class Attributes

I—'II—'EEOQI-I-

Dive Into Python 50

NIN&N&E

tis a class attribute of the &lass.

&is a built-in attribute of every class instance (of every class). It is a reference to the class that #is an instance of (in this ca:
Because tis a class attribute, it is available through direct reference to the class, before you have created any instances of
Creating an instance of the class calls the imethod, which increments the class attribute tby 1This affects the class itself, 1

Q000 Q

Creating a second instance will increment the class attribute tagain. Notice how the class attribute is shared by the class ¢
5.9. Private Functions
Like most languages, Python has the concept of private elements:
Private functions, which can’t be called from outside their module[
Private class methods, which can't be called from outside their class]
Private attributes, which can’'t be accessed from outside their class.[]
Unlike in most languages, whether a Python function, method, or attribute is private or public is determined entirely by its name.

If the name of a Python function, class method, or attribute starts with (but doesn’t end with) two underscores, it's private; everyt

In Bthere are two methods: gnd BAs you have already discussed, &s a special method; normally, you would call it indirectly by u

In Python, all special methods(like jand built-in attributes (like Hfollow a standard naming convention: they both start with and e

Example 5.19. Trying to Call a Private Method

R Rl R R

Q i you try to call a private method, Python will raise a slightly misleading exception, saying that the method does not exist.

Further Reading on Private Functions
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses the inner workings of private variables (http://v

5.10. Summary

That's it for the hard-core object trickery. You'll see a real-world application of special class methods in Chapter 12, which uses |
The next chapter will continue using this code sample to explore other Python concepts, such as exceptions, file objects, and $o

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Dive Into Python 51

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000

Importing modules using either jbr

Defining and instantiating classesl]

Defining @methods and other special class methods, and understanding when they are called
Subclassing llo define classes that act like dictionaries[

Defining data attributes and class attributes, and understanding the differences between them(
Defining private attributes and methodsO

Dive Into Python

52

Chapter 6. Exceptions and File Handling

In this chapter, you will dive into exceptions, file objects, #ioops, and the eand gnodules. If you've used exceptions in another pro

6.1. Handling Exceptions

Like many other programming languages, Python has exception handling via gplocks.

Python uses #io handle exceptions and #o generate them. Java and C++ use $#o handle exceptions, and #o generate them.

Exceptions are everywhere in Python. Virtually every module in the standard Python library uses them, and Python itself will rais
Accessing a non-existent dictionary key will raise a Bexception.]
Searching a list for a non-existent value will raise a #exception.
Calling a non-existent method will raise an Eexception.O
Referencing a non-existent variable will raise a Exception.O
Mixing datatypes without coercion will raise a gxception.]

In each of these cases, you were simply playing around in the Python IDE: an error occurred, the exception was printed (depenc

An exception doesn’t need result in a complete program crash, though. Exceptions, when raised, can be handled. Sometimes al

Example 6.1. Opening a Non-Existent File

Using the built-in gunction, you can try to open a file for reading (more on gn the next section). But the file doesn't exist, st
You're trying to open the same non-existent file, but this time you’re doing it within a gplock.
When the pnethod raises an Exception, you're ready for it. The fline catches the exception and executes your own block ¢

[]
]
[
]
¥
P
®
]
P
§
¥
(1]
a
(3]
(4]

Once an exception has been handled, processing continues normally on the first line after the gblock. Note that this line wi

Exceptions may seem unfriendly (after all, if you don’t catch the exception, your entire program will crash), but consider the alter

6.1.1. Using Exceptions For Other Purposes
There are a lot of other uses for exceptions besides handling actual error conditions. A common use in the standard Python libre

You can also define your own exceptions by creating a class that inherits from the built-in flass, and then raise your exceptions

The next example demonstrates how to use an exception to support platform-specific functionality. This code comes from the gr

Dive Into Python 53

Example 6.2. Supporting Platform-Specific Functionality

iis a UNIX-specific module that provides low-level control over the input terminal. If this module is not available (because i
OK, you didn’t have iso let’s try lwhich is a Windows-specific module that provides an API to many useful functions in the
If the first two didn’t work, you try to import a function from §which is a Mac OS-specific module that provides functions to
None of these platform-specific modules is available (which is possible, since Python has been ported to a lot of different |
A Pplock can have an &lause, like an Ftatement. If no exception is raised during the ¥plock, the &lause is executed afterw:

Further Reading on Exception Handling
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses defining and raising your own exceptions, and
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the built-in exceptions (http://www.pytt
Python Library Reference (http://www.python.org/doc/current/lib/) documents the getpass (http://www.python.org/doc/cu
Python Library Reference (http://www.python.org/doc/current/lib/) documents the Bmodule (http://www.python.org/doc/cL
Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the inner workings of the gblock (http://wwy

6.2. Working with File Objects

Python has a built-in function, pfor opening a file on disk. geturns a file object, which has methods and attributes for getting infor

Example 6.3. Opening a File

The gnethod can take up to three parameters: a filename, a mode, and a buffering parameter. Only the first one, the filenc
The gunction returns an object (by now, this should not surprise you). A file object has several useful attributes.
The shttribute of a file object tells you in which mode the file was opened.

OCO0Q TO-DTD®

The mttribute of a file object tells you the name of the file that the file object has open.

Dive Into Python 54

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html

6.2.1. Reading Files

After you open a file, the first thing you'll want to do is read from it, as shown in the next example.

Example 6.4. Reading a File

b3

)

-

0

L

L3

a

LY

B

. |

n

3]

8

Q@ Afie object maintains state about the file it has open. The #nethod of a file object tells you your current position in the ope
® The method of a file object moves to another position in the open file. The second parameter specifies what the first one
® The #method confirms that the current file position has moved.

@ The dnethod reads a specified number of bytes from the open file and returns a string with the data that was read. The op
@ The #method confirms that the current position has moved. If you do the math, you'll see that after reading 128 bytes, the |

6.2.2. Closing Files

Open files consume system resources, and depending on the file mode, other programs may not be able to access them. It's im

Example 6.5. Closing a File

Dive Into Python 55

The éattribute of a file object indicates whether the object has a file open or not. In this case, the file is still open (dis B

To close a file, call the @method of the file object. This frees the lock (if any) that you were holding on the file, flushes buffe
The éhttribute confirms that the file is closed.

Just because a file is closed doesn’t mean that the file object ceases to exist. The variable fwill continue to exist until it go

O0OPO Ymwm

Calling #n a file object whose file is already closed does not raise an exception; it fails silently.

6.2.3. Handling 1/0O Errors

Now you've seen enough to understand the file handling code in the fsample code from teh previous chapter. This example sho

Example 6.6. File Objects in il

o

P

¥

L]

L4

P

§

[

B

©® Because opening and reading files is risky and may raise an exception, all of this code is wrapped in a #plock. (Hey, isn't s
@ The gunction may raise an #(Maybe the file doesn't exist.)

® The Emethod may raise an B(Maybe the file is smaller than 128 bytes.)

@ The dnethod may raise an B(Maybe the disk has a bad sector, or it's on a network drive and the network just went down.)
@ Thisisnew: a Plock. Once the file has been opened successfully by the gunction, you want to make absolutely sure that
@ Atlast, you handle your Exception. This could be the Exception raised by the call to pkor dHere, you really don’t care, be

6.2.4. Writing to Files

As you would expect, you can also write to files in much the same way that you read from them. There are two basic file modes:

"Append” mode will add data to the end of the file.O
"write" mode will overwrite the file.O

Either mode will create the file automatically if it doesn’t already exist, so there’s never a need for any sort of fiddly "if the log file

Example 6.7. Writing to Files

P
L

Dive Into Python 56

You start boldly by creating either the new file #pr overwrites the existing file, and opening the file for writing. (The second
You can add data to the newly opened file with the dmethod of the file object returned by p

&s a synonym for pThis one-liner opens the file, reads its contents, and prints them.

You happen to know that gexists (since you just finished writing to it), so you can open it and append to it. (The garamete!

Q000 Q

As you can see, both the original line you wrote and the second line you appended are now in §Also note that carriage ret

Further Reading on File Handling
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses reading and writing files, including how to reac
eff-bot (http://www.effbot.org/guides/) discusses efficiency and performance of various ways of reading a file (http://www
Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common questions abou
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the file object methods (http://www.py!

6.3. Iterating with #.oops

Like most other languages, Python has §oops. The only reason you haven’t seen them until now is that Python is good at so ma

Most other languages don’t have a powerful list datatype like Python, so you end up doing a lot of manual work, specifying a sta

Example 6.8. Introducing the &.oop

)

®

a

b

e

a

b

e

Q The syntax for a #oop is similar to list comprehensions. is a list, and swill take the value of each element in turn, starting ft
@ Like an Statement or any other indented block, a $oop can have any number of lines of code in it.

® Thisis the reason you haven't seen the $oop yet: you haven't needed it yet. It's amazing how often you use §oops in othe

Doing a "normal” (by Visual Basic standards) counter $oop is also simple.

Example 6.9. Simple Counters

®
B

Dive Into Python 57

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html

® Q0 Umug-ﬁhwwn—lo

Q As you saw in Example 3.20, “Assigning Consecutive Values”, gproduces a list of integers, which you then loop through. |

® Don't ever do this. This is Visual Basic-style thinking. Break out of it. Just iterate through the list, as shown in the previous
doops are not just for simple counters. They can iterate through all kinds of things. Here is an example of using a $oop to iterate

Example 6.10. Iterating Through a Dictionary

#s a dictionary of the environment variables defined on your system. In Windows, these are your user and system variable
Weturns a list of tuples: #The $oop iterates through this list. The first round, it assigns #o kand &o yso k= Bind = BIn the sec

o0 ® =) o e C-\-C-‘.-gi-

With multi-variable assignment and list comprehensions, you can replace the entire #oop with a single statement. Whethe

Now we can look at the @ioop in Bfrom the sample §program introduced in Chapter 5.

Example 6.11. &oop in il

Dive Into Python 58

Bs a class attribute that defines the tags you're looking for in an MP3 file. Tags are stored in fixed-length fields. Once you
This looks complicated, but it's not. The structure of the #ariables matches the structure of the elements of the list returne

’

@
0
0
(2

® Now that you've extracted all the parameters for a single MP3 tag, saving the tag data is easy. You sliceffrom #o do get tf

6.4. Using #i

Modules, like everything else in Python, are objects. Once imported, you can always get a reference to a module through the glc

Example 6.12. Introducing #

e B E BB« awla-tmvwgt

Q@ The gnodule contains system-level information, such as the version of Python you're running (#or § and system-level optic
(2] iis a dictionary containing all the modules that have ever been imported since Python was started; the key is the module n

This example demonstrates how to use #

Example 6.13. Using #

« awls-‘amww-‘

Dive Into Python 59

‘i'"‘iﬁ' N e BB

@ Asnew modules are imported, they are added to #iThis explains why importing the same module twice is very fast: Pythor
® Given the name (as a string) of any previously-imported module, you can get a reference to the module itself through the |

The next example shows how to use the ilass attribute with the Blictionary to get a reference to the module in which a class is ¢

Example 6.14. The KClass Attribute

Every Python class has a built-in class attributefiwhich is the name of the module in which the class is defined.

@g ‘Iih!all-'-

Combining this with the Blictionary, you can get a reference to the module in which a class is defined.

Now you're ready to see how Bis used in fithe sample program introduced in Chapter 5. This example shows that portion of the c

Example 6.15. #in i

This is a function with two arguments; fis required, but fis optional and defaults to the module that contains the Elass. This
You'll plow through this line later, after you dive into the enodule. For now, take it on faith that Ends up as the name of a c

4
§

e
L
o
(2
©

You already know about gwhich gets a reference to an object by name. #is a complementary function that checks whether

Further Reading on Modules
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default arguments are
Python Library Reference (http://www.python.org/doc/current/lib/) documents the ghttp://www.python.org/doc/current/lib

6.5. Working with Directories

The fmodule has several functions for manipulating files and directories. Here, we're looking at handling pathnames and listing t

Example 6.16. Constructing Pathnames

)
2]
]

Dive Into Python 60

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html

@0CO0Q TOEome e

fis a reference to a module -- which module depends on your platform. Just as gencapsulates differences between platforn
The diunction of fronstructs a pathname out of one or more partial pathnames. In this case, it simply concatenates strings.
In this slightly less trivial case, fwill add an extra backslash to the pathname before joining it to the filename. | was overjoy
pvill expand a pathname that uses o represent the current user's home directory. This works on any platform where user
Combining these techniques, you can easily construct pathnames for directories and files under the user’'s home directory

Example 6.17. Splitting Pathnames

»
)
[
P
]
®
]
P
B
é
&
]
(1]
(2]
(3]
(4]
(5]

The filunction splits a full pathname and returns a tuple containing the path and filename. Remember when | said you coul
You assign the return value of the filunction into a tuple of two variables. Each variable receives the value of the correspor
The first variable, fireceives the value of the first element of the tuple returned from fithe file path.

The second variable, fireceives the value of the second element of the tuple returned from fithe filename.

falso contains a function fwhich splits a filename and returns a tuple containing the filename and the file extension. You u

Example 6.18. Listing Directories

B
§
9
i
P
]
¥
s
)
L]
]
P
|
§
]

Dive Into Python 61

The #unction takes a pathname and returns a list of the contents of the directory.
#eturns both files and folders, with no indication of which is which.
You can use list filtering and the #unction of the fimodule to separate the files from the folders. fiakes a pathname and retL

COPQ Wm=e

falso has a dfunction which returns 1 if the path represents a directory, and 0 otherwise. You can use this to get a list of th

Example 6.19. Listing Directories in §

#eturns a list of all the files and folders in #

Iterating through the list with fyou use fio normalize the case according to operating system defaults. ss a useful little func
Iterating through the normalized list with fagain, you use fio split each filename into name and extension.

For each file, you see if the extension is in the list of file extensions you care about (Ewhich was passed to the Bunction).

@00®Q §"“"3"“""‘

For each file you care about, you use fo construct the full pathname of the file, and return a list of the full pathnames.

Whenever possible, you should"use the functions in eand for file, directory, and path manipulations. These modules are wrappe

There is one other way to get the contents of a directory. It's very powerful, and it uses the sort of wildcards that you may alread

Example 6.20. Listing Directories with i

Dive Into Python 62

As you saw earlier, &imply takes a directory path and lists all files and directories in that directory.
The Bmodule, on the other hand, takes a wildcard and returns the full path of all files and directories matching the wildcard
If you want to find all the files in a specific directory that start with "s" and end with ".mp3", you can do that too.

Co®Q

Now consider this scenario: you have a mlirectory, with several subdirectories within it, with files within each subdirectory.

Further Reading on the eModule
Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) answers questions about the anoc
Python Library Reference (http://www.python.org/doc/current/lib/) documents the ghttp://www.python.org/doc/current/lib.

6.6. Putting It All Together

Once again, all the dominoes are in place. You've seen how each line of code works. Now let’s step back and see how it all fits 1

Example 6.21. R

s the main attraction of this entire module. It takes a directory (like Bn my case) and a list of interesting file extensions (lik
As you saw in the previous section, this line of code gets a list of the full pathnames of all the files in #hat have an interest
Old-school Pascal programmers may be familiar with them, but most people give me a blank stare when | tell them that P
Now that you've seen the anodule, this line should make more sense. It gets the extension of the file (J§ forces it to upperc
Having constructed the name of the handler class that would handle this file, you check to see if that handler class actuall

g
§
B
¥
¥
]
L
§
»
L
o
(2]
©
o
(6
6

For each file in the "interesting files" list (g you call Bvith the filename (¥ Calling §eturns a class; you don’t know exactly w

Note that fis completely generic. It doesn’t know ahead of time which types of files it will be getting, or which classes are defined

6.7. Summary

The gprogram introduced in Chapter 5 should now make perfect sense.

L L R BB R -

Dive Into Python 63

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html

.- 8-S L% BN AR N B M

DS S e Al D NS B, S, e R OHE R R o

64

Dive Into Python

= N s

Before diving into the next chapter, make sure you're comfortable doing the following things:

Catching exceptions with @

Protecting external resources with §

Reading from filesO

Assigning multiple values at once in a $oopC

Using the amodule for all your cross-platform file manipulation needsC

Dynamically instantiating classes of unknown type by treating classes as objects and passing them around

Dive Into Python

65

Chapter 7. Regular Expressions

Regular expressions are a powerful and standardized way of searching, replacing, and parsing text with complex patterns of che
7.1. Diving In

Strings have methods for searching (#ifland) replacing (5 and parsing (B but they are limited to the simplest of cases. The sear
If what you're trying to do can be accomplished with string functions, you should use them. They're fast and simple and easy to |
Although the regular expression syntax is tight and unlike normal code, the result can end up being more readable than a hand-

7.2. Case Study: Street Addresses

This series of examples was inspired by a real-life problem I had in my day job several years ago, when | needed to scrub and s

Example 7.1. Matching at the End of a String

My goal is to standardize a street address so that Bs always abbreviated as BAt first glance, | thought this was simple eno
Life, unfortunately, is full of counterexamples, and | quickly discovered this one. The problem here is that Bappears twice it
To solve the problem of addresses with more than one Bsubstring, you could resort to something like this: only search and
It's time to move up to regular expressions. In Python, all functionality related to regular expressions is contained in the e
Take a look at the first parameter: BThis is a simple regular expression that matches Bonly when it occurs at the end of a s

Q0000 Q ‘3"“3"!""

Using the Hunction, you search the string dor the regular expression Bnd replace it with BThis matches the Bt the end of 1

Continuing with my story of scrubbing addresses, | soon discovered that the previous example, matching Bt the end of the addr

Example 7.2. Matching Whole Words

Dive Into Python 66

http://www.python.org/doc/current/lib/module-re.html

What | really wanted was to match Bvhen it was at the end of the string and it was its own whole word, not a part of some
To work around the backslash plague, you can use what is called a raw string, by prefixing the string with the letter rThis
sigh Unfortunately, | soon found more cases that contradicted my logic. In this case, the street address contained the wr

QOO Q

To solve this problem, | removed the §€haracter and added another RNow the regular expression reads "match Bvhen it's

7.3. Case Study: Roman Numerals

You've most likely seen Roman numerals, even if you didn’t recognize them. You may have seen them in copyrights of old movi
In Roman numerals, there are seven characters that are repeated and combined in various ways to represent numbers.

ED
\E B
x
=B
Gm
B8
M @

The following are some general rules for constructing Roman numerals:

Characters are additive. Is 1Is 2and Is 3¥s gliterally, "5and 7), ¥s 7and ¥s &1

The tens characters (IXCand Mcan be repeated up to three times. At 4you need to subtract from the next highest fives ¢
Similarly, at 9you need to subtract from the next highest tens character: 8s Ybut 9s X1ess than §) not ¥since the Eharact
The fives characters can not be repeated. The number @s always represented as Xnever as VThe number @s always {ne
Roman numerals are always written highest to lowest, and read left to right, so the order the of characters matters very

7.3.1. Checking for Thousands

What would it take to validate that an arbitrary string is a valid Roman numeral? Let’s take it one digit at a time. Since Roman nu

Example 7.3. Checking for Thousands

@ "oog=-mpEpEpe™

This pattern has three parts:
1o match what follows only at the beginning of the string. If this were not specified, the pattern would match no m:

Dive Into Python 67

Mo optionally match a single Mharacter. Since this is repeated three times, you're matching anywhere from zero tc
$0 match what precedes only at the end of the string. When combined with the tharacter at the beginning, this m

The essence of the enodule is the Hunction, that takes a regular expression (Jand a string (¥to try to match against the re
Mnatches because the first and second optional Mharacters match and the third Ns ignored.

Mnatches because all three Mharacters match.

Mioes not match. All three Mharacters match, but then the regular expression insists on the string ending (because of the !

Q0000

Interestingly, an empty string also matches this regular expression, since all the Mharacters are optional.

7.3.2. Checking for Hundreds

The hundreds place is more difficult than the thousands, because there are several mutually exclusive ways it could be expresse

&0
g0
B0
0]
B D
&0
&0
&0
em

So there are four possible patterns:
U]
0]
Zero to three Characters (zero if the hundreds place is 0)0
Pfollowed by zero to three €haractersd
The last two patterns can be combined:

an optional Pfollowed by zero to three CharactersC

This example shows how to validate the hundreds place of a Roman numeral.

Example 7.4. Checking for Hundreds

@ "ogmpEoEpe™

This pattern starts out the same as the previous one, checking for the beginning of the string (¥; then the thousands place

Dive Into Python 68

Bnatches because the first Mnatches, the second and third Mharacters are ignored, and the Bnatches (so the and Battern
Bnatches because the first Mnatches, the second and third Mharacters are ignored, and the Battern matches [Qeach of the
Bnatches because all three Mharacters match, and the Bpattern matches Gthe Ds optional and is ignored). Bs the Roman n
Rioes not match. The first Mnatches, the second and third Mharacters are ignored, and the Bnatches, but then the $loes nc

Q0000

Interestingly, an empty string still matches this pattern, because all the Mharacters are optional and ignored, and the empit

Whew! See how quickly regular expressions can get nasty? And you've only covered the thousands and hundreds places of Ro

7.4. Using the #Byntax

In the previous section, you were dealing with a pattern where the same character could be repeated up to three times. There is

Example 7.5. The Old Way: Every Character Optional

]

n

[

L

n

P

L

n

P

N

P

>

@ This matches the start of the string, and then the first optional Mbut not the second and third Mbut that's okay because they
@ This matches the start of the string, and then the first and second optional Mbut not the third Mbut that's okay because it's |
® This matches the start of the string, and then all three optional Mand then the end of the string.

@ This matches the start of the string, and then all three optional Mbut then does not match the the end of the string (becaus

Example 7.6. The New Way: From ro m

‘eoEeEeEee

Q@ This pattern says: "Match the start of the string, then anywhere from zero to three Mharacters, then the end of the string."
@ This matches the start of the string, then one Mut of a possible three, then the end of the string.
® This matches the start of the string, then two Mut of a possible three, then the end of the string.

Dive Into Python 69

@ This matches the start of the string, then three Mut of a possible three, then the end of the string.
@ This matches the start of the string, then three Mut of a possible three, but then does not match the end of the string. The

There is no way to programmatically determine that two regular expressions are equivalent. The best you can do is write a lot o

7.4.1. Checking for Tens and Ones

Now let's expand the Roman numeral regular expression to cover the tens and ones place. This example shows the check for te

Example 7.7. Checking for Tens

n
[
N
®
N
[1
N
P
)
[)
>
@ This matches the start of the string, then the first optional Mthen Fthen Kthen the end of the string. Remember, the Byntax
@ This matches the start of the string, then the first optional Mthen Fthen KOf the Kit matches the land skips all three optional
® This matches the start of the string, then the first optional Mthen Fthen the optional land the first optional Xskips the secont
@ This matches the start of the string, then the first optional Mthen Fithen the optional land all three optional Xharacters, then
@ This matches the start of the string, then the first optional Mthen Fithen the optional land all three optional Xharacters, then

The expression for the ones place follows the same pattern. I'll spare you the details and show you the end result.

So what does that look like using this alternate gyntax? This example shows the new syntax.

Example 7.8. Validating Roman Numerals with i

D= o= gpEgm-

Dive Into Python 70

This matches the start of the string, then one of a possible four Mharacters, then BOf that, it matches the optional Band zer
This matches the start of the string, then two of a possible four Mharacters, then the Bvith a and one of three possible €h:
This matches the start of the string, then four out of four Mharacters, then Bvith a Band three out of three €haracters; then

QOO Q

Watch closely. (I feel like a magician. "Watch closely, kids, I'm going to pull a rabbit out of my hat.") This matches the star
If you followed all that and understood it on the first try, you're doing better than | did. Now imagine trying to understand someon
In the next section you'll explore an alternate syntax that can help keep your expressions maintainable.

7.5. Verbose Regular Expressions

So far you've just been dealing with what I'll call "compact" regular expressions. As you've seen, they are difficult to read, and e\
Python allows you to do this with something called verbose regular expressions. A verbose regular expression is different from &

Whitespace is ignored. Spaces, tabs, and carriage returns are not matched as spaces, tabs, and carriage returns. They
Comments are ignored. A comment in a verbose regular expression is just like a comment in Python code: it starts with

This will be more clear with an example. Let’s revisit the compact regular expression you've been working with, and make it a ve

Example 7.9. Regular Expressions with Inline Comments

]
§
L]
B
L]
¥
¥
§
[
N
P
N
P
N
[
Q@ The most important thing to remember when using verbose regular expressions is that you need to pass an extra argume!
@ This matches the start of the string, then one of a possible four Mthen Fithen land three of a possible three Xthen Xthen the
® This matches the start of the string, then four of a possible four Mthen Band three of a possible three (then land three of a |
© This does not match. Why? Because it doesn't have the Hlag, so the Bunction is treating the pattern as a compact regular

Dive Into Python 71

7.6. Case study: Parsing Phone Numbers

So far you've concentrated on matching whole patterns. Either the pattern matches, or it doesn’t. But regular expressions are mi
This example came from another real-world problem | encountered, again from a previous day job. The problem: parsing an Am

Here are the phone numbers | needed to be able to accept:

Quite a variety! In each of these cases, | need to know that the area code was Bthe trunk was 5and the rest of the phone numbe

Let’s work through developing a solution for phone number parsing. This example shows the first step.

Example 7.10. Finding Numbers

VoEee

1] Always read regular expressions from left to right. This one matches the beginning of the string, and then §What's § Well,
@ 7o get access to the groups that the regular expression parser remembered along the way, use the gnethod on the object
® This regular expression is not the final answer, because it doesn’t handle a phone number with an extension on the end. |

Example 7.11. Finding the Extension

2

>

>

Q@ This regular expression is almost identical to the previous one. Just as before, you match the beginning of the string, then
@ The #inethod now returns a tuple of four elements, since the regular expression now defines four groups to remember.

(3 Unfortunately, this regular expression is not the final answer either, because it assumes that the different parts of the phot
(4] Oops! Not only does this regular expression not do everything you want, it's actually a step backwards, because now you

Dive Into Python 72

The next example shows the regular expression to handle separators between the different parts of the phone number.

Example 7.12. Handling Different Separators

4

P

2

P

]

[

>

P

>

1] Hang on to your hat. You're matching the beginning of the string, then a group of three digits, then RWhat the heck is that'
(2] Using Binstead of imeans you can now match phone numbers where the parts are separated by spaces instead of hyphen
® Ofcourse, phone numbers separated by hyphens still work too.

(4] Unfortunately, this is still not the final answer, because it assumes that there is a separator at all. What if the phone numb
4] Oops! This still hasn't fixed the problem of requiring extensions. Now you have two problems, but you can solve both of th

The next example shows the regular expression for handling phone numbers without separators.

Example 7.13. Handling Numbers Without Separators

4

P

)

»

)

LY

B

[1)

>

Q@ The only change you've made since that last step is changing all the 4o *Instead of Bbetween the parts of the phone numt
@ o andbehold, it actually works. Why? You matched the beginning of the string, then a remembered group of three digits
® Other variations work now too: dots instead of hyphens, and both a space and an >before the extension.

@ Finally, you've solved the other long-standing problem: extensions are optional again. If no extension is found, the §netho
@ | hate to be the bearer of bad news, but you're not finished yet. What's the problem here? There’s an extra character befo

The next example shows how to handle leading characters in phone numbers.

Example 7.14. Handling Leading Characters

4
P

Dive Into Python 73

\' ‘Eﬁ'

This is the same as in the previous example, except now you're matching Rzero or more non-numeric characters, before t
You can successfully parse the phone number, even with the leading left parenthesis before the area code. (The right par
Just a sanity check to make sure you haven’t broken anything that used to work. Since the leading characters are entirely

QOO Q

This is where regular expressions make me want to gouge my eyes out with a blunt object. Why doesn't this phone numb

Let's back up for a second. So far the regular expressions have all matched from the beginning of the string. But now you see th

Example 7.15. Phone Number, Wherever | May Find Ye

4

P

?

P

8

[

?

@ Note the lack of n this regular expression. You are not matching the beginning of the string anymore. There’s nothing tha
@ Now you can successfully parse a phone number that includes leading characters and a leading digit, plus any number of
® Sanity check. this still works.

@ That still works too.

See how quickly a regular expression can get out of control? Take a quick glance at any of the previous iterations. Can you tell t

While you still understand the final answer (and it is the final answer; if you've discovered a case it doesn’t handle, | don't want t

Example 7.16. Parsing Phone Numbers (Final Version)

ol R e e L

Dive Into Python 74

[)
]

@ Otherthan being spread out over multiple lines, this is exactly the same regular expression as the last step, so it's no surf
® final sanity check. Yes, this still works. You're done.
Further Reading on Regular Expressions

Regular Expression HOWTO (http://py-howto.sourceforge.net/regex/regex.html) teaches about regular expressions and
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the enodule (http://www.python.org/doc/c

7.7. Summary

This is just the tiniest tip of the iceberg of what regular expressions can do. In other words, even though you're completely overw
You should now be familiar with the following techniques:

“matches the beginning of a string.[]

$natches the end of a string.O

Ematches a word boundary.[

datches any numeric digit.C]

Bnatches any non-numeric character.]

fnatches an optional xcharacter (in other words, it matches an »xero or one times).]
Jmatches xero or more times.O

¥mnatches one or more times.O

@matches an xharacter at least times, but not more than nimes.[

fmatches either ar tor 41

xn general is a remembered group. You can get the value of what matched by using the gnethod of the object returned |

Regular expressions are extremely powerful, but they are not the correct solution for every problem. You should learn enough al

Some people, when confronted with a problem, think "I know, I'll use regular expressions." Now they have two probl
--Jamie Zawinski, in

Dive Into Python 75

http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html
http://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com

Chapter 8. HTML Processing
8.1. Diving in

| often see questions on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python) like "How can I list all th

Here is a complete, working Python program in two parts. The first part, Wis a generic tool to help you process HTML files by wal

Example 8.1. B

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

LRk K K L L KU K L G UiE G R R G S EN S S N W N B L L E_K | -

Dive Into Python 76

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip

L3 HE D S9N D AR H S ah i R e) B dh M D LN N)

Example 8.2. #§

. [

L R

77

Dive Into Python

LR N % B N 3 Al BN R A 0B O

[B R - o R AR B o gk AEF oSk HEK HEk ARk IR o ok @B Bk BBk dER Ak ABk EEF VD B B T iR

78

Dive Into Python

L

H D N OGN oK G G G G o G oS ol I R SR I @ S B o R R ok Bk ok oK o oS oSk HEF o GER oBR oBR oER SR ok ol HIR B o

79

Dive Into Python

LR R R N E_E_E E & B | L

MR CEE SR N N O B g e

L]
|
Example 8.3. Output of i

Running this script will translate Section 3.2, “Introducing Lists” into mock Swedish Chef-speak (../native_data_types/chef.html)

LA A R B B N

8.2. Introducing |

HTML processing is broken into three steps: breaking down the HTML into its constituent pieces, fiddling with the pieces, and re
The key to understanding this chapter is to realize that HTML is not just text, it is structured text. The structure is derived from th

frontains one important class: Bbarses HTML into useful pieces, like start tags and end tags. As soon as it succeeds in breakin
Barses HTML into 8 kinds of data, and calls a separate method for each of them:
Start tag

An HTML tag that starts a block, like failor gor a standalone tag like #r gWhen it finds a start taggvill look for
End tag

An HTML tag that ends a block, like §##lor gWhen it finds an end tag, Bvill look for a method called #if found, Bz
Character reference

Dive Into Python 80

An escaped character referenced by its decimal or hexadecimal equivalent, like #Vhen found, Ralls Bvith the te
Entity reference

An HTML entity, like §When found, Ralls §vith the name of the HTML entity.
Comment

An HTML comment, enclosed in #When found, Balls Bivith the body of the comment.
Processing instruction

An HTML processing instruction, enclosed in #When found, Balls fivith the body of the processing instruction.
Declaration

An HTML declaration, such as a Benclosed in #When found, Balls Bvith the body of the declaration.
Text data

A block of text. Anything that doesn't fit into the other 7 categories. When found, Balls #vith the text.

Python 2.0 had a bug where ﬂ/guld not recognize declarations at all (Bvould never be called), which meant that Bwere silently i
omes with a test suite to illustrate this. You can run fpassing the name of an HTML file on the command line, and it will print o

In the ActivePython IDE on Wihdows, you can specify command line arguments in the "Run script" dialog. Separate multiple arg

Example 8.4. Sample test of §

Here is a snippet from the table of contents of the HTML version of this book. Of course your paths may vary. (If you haven't dov

Running this through the test suite of fyields this output:

B G WS G 2x B Bx W 2k G =x W

Dive Into Python 81

http://diveintopython.org/

Here’s the roadmap for the rest of the chapter:
Subclass Ho create classes that extract interesting data out of HTML documents.[
Subclass Ho create Bwhich overrides all 8 handler methods and uses them to reconstruct the original HTML from the pie
Subclass Mo create Bwhich adds some methods to process specific HTML tags specially, and overrides the #inethod to |
Subclass Bo create classes that define text processing rules used by i
Write a test suite that grabs a real web page from fand processes it.00

Along the way, you'll also learn about #jand dictionary-based string formatting.

8.3. Extracting data from HTML documents

To extract data from HTML documents, subclass the Blass and define methods for each tag or entity you want to capture.

The first step to extracting data from an HTML document is getting some HTML. If you have some HTML lying around on your h

Example 8.5. Introducing &

[

P

P

®

®

"

]

’

B

)

»

|

o

L

L

»

8

§

]

@ The imodule is part of the standard Python library. It contains functions for getting information about and actually retrieving
@ The simplest use of Bis to retrieve the entire text of a web page using the fiunction. Opening a URL is similar to opening a
® The simplest thing to do with the file-like object returned by fis gwhich reads the entire HTML of the web page into a single
@ When you're done with the object, make sure to @i, just like a normal file object.

@ You now have the complete HTML of the home page of fin a string, and you're ready to parse it.

Dive Into Python 82

Example 8.6. Introducing

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

#is called by the imethod of Band it can also be called manually once an instance of the parser has been created. So if yot
#s called by Bvhenever it finds an #ag. The tag may contain an #attribute, and/or other attributes, like mr £The fparameter
You can find out whether this #ag has an #ttribute with a simple multi-variablelist comprehension.

e@@g ﬁmslg ﬂ.‘ﬂ]

String comparisons like #are always case-sensitive, but that's safe in this case, because Bonverts attribute names to lowe

Example 8.7. Using §

[}

|

]

P

L)

[1]

(]

[

|

§

[

i

|

]

¥

]

|

|

]

]

Q [ihkes drsitingl, wiiohes intBOEEUHEML into the parser.

& ke files, you should &our URL objects as soon as you're done with them.
® You should &our parser object, too, but for a different reason. You've read all the data and fed it to the parser, but the dne
@ Oncethe parser is @, the parsing is complete, and fontains a list of all the linked URLs in the HTML document. (Your out,

Dive Into Python 83

http://diveintopython.org/download/diveintopython-examples-5.4.zip

8.4. Introducing B

Bloesn’t produce anything by itself. It parses and parses and parses, and it calls a method for each interesting thing it finds, but 1
Bubclasses Bnd provides all 8 essential handler methods: iijEg#jiland 8

Example 8.8. Introducing il

WS WP WS WBERWNE W@ @ W Eegm

Edalled by Hinitializes fas an empty list before calling the ancestor method. fiis a data attribute which will hold the pieces of
Since Boes not define any methods for specific tags (like the #method in | Bvill call §or every start tag. This method takes
Reconstructing end tags is much simpler; just take the tag name and wrap it in the grackets.

When Binds a character reference, it calls Bvith the bare reference. If the HTML document contains the reference &#vill be
Entity references are similar to character references, but without the hash mark. Reconstructing the original entity referen
Blocks of text are simply appended to funaltered.

HTML comments are wrapped in Eharacters.

060 OPO W=

Processing instructions are wrapped in #haracters.

The HTML specification requirk'_s that all non-HTML (like client-side JavaScript) must be enclosed in HTML comments, but not a

Dive Into Python 84

Example 8.9. butput

This is the one method in What is never called by the ancestor BSince the other handler methods store their reconstructed

L
8

P
1]
(2]

If you prefer, you could use the gmethod of the #inodule instead: §

Further reading
W3C (http://lwww.w3.0rg/) discusses character and entity references (http://www.w3.org/TR/REC-html40/charset.html#e
Python Library Reference (http://www.python.org/doc/current/lib/) confirms your suspicions that the $nodule (http://www

8.5.&nd §
Let's digress from HTML processing for a minute and talk about how Python handles variables. Python has two built-in functions

Remember 8 You first saw it here:

No, wait, you can’t learn about #et. First, you need to learn about namespaces. This is dry stuff, but it's important, so pay attent
Python uses what are called namespaces to keep track of variables. A namespace is just like a dictionary where the keys are ne
At any particular point in a Python program, there are several namespaces available. Each function has its own namespace, cal
When a line of code asks for the value of a variable xPython will search for that variable in all the available namespaces, in orde
local namespace - specific to the current function or class method. If the function defines a local variable xor has an arg
global namespace - specific to the current module. If the module has defined a variable, function, or class called xPytho

built-in namespace - global to all modules. As a last resort, Python will assume that xs the name of built-in function or ve

If Python doesn't find n any of these namespaces, it gives up and raises a Bvith the message Bwhich you saw back in Example

Python 2.2 introduced a subtld but important change that affects the namespace search order: nested scopes. In versions of Py

#

Are you confused yet? Don’t despair! This is really cool, | promise. Like many things in Python, namespaces are directly accessi

Example 8.10. Introducing &

Uﬁﬂlﬂ- “I{-“

Dive Into Python 85

http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html

@ The function thas two variables in its local namespace: gwhose value is passed in to the function, and xwhich is defined w
@ getunsa dictionary of name/value pairs. The keys of this dictionary are the names of the variables as strings; the values
® Remember, Python has dynamic typing, so you could just as easily pass a string in for gthe function (and the call to fwou

WRloablpets the focdl(Eis ciong spacespalel diined ite-tbed]) iduad fhes card) crarsispia cit | lis ines aktitnynitionghabd cdasses o

Remember the difference between fand @ With lithe module itself is imported, but it retains its own namespace, which is why yo

Example 8.11. Introducing B

Look at the following block of code at the bottom of i

» ‘|'

Q@ Justso you don't get intimidated, remember that you've seen all this before. The Bunction returns a dictionary, and you're

Now running the script from the command line gives this output (note that your output may be slightly different, depending on yo

Bvas imported from Busing HThat means that it was imported directly into the module’s namespace, and here it is.
Contrast this with $iwhich was imported using @That means that the $nodule itself is in the namespace, but the #ariable d
This module only defines one class, Band here it is. Note that the value here is the class itself, not a specific instance of th

cCopO =OooRDEe™

Remember the #irick? When running a module (as opposed to importing it from another module), the built-in mttribute is a

Using the &nd Bunctions, youzcan get the value of arbitrary variables dynamically, providing the variable name as a string. This

There is one other important difference between the &nd unctions, which you should learn now before it bites you. It will bite yc

Example 8.12. &s read-only, ls not

D2VP -

a‘@‘ L

Dive Into Python 86

Since @s called with 3this will print §This should not be a surprise.

#is a function that returns a dictionary, and here you are setting a value in that dictionary. You might think that this would c
This prints #not 2

After being burned by #you might think that this wouldn’t change the value of zbut it does. Due to internal differences in h
This prints gnot 2

030 Q

8.6. Dictionary-based string formatting

Why did you learn about &nd § So you can learn about dictionary-based string formatting. As you recall, regular string formattin

There is an alternative form of string formatting that uses dictionaries instead of tuples of values.

Example 8.13. Introducing dictionary-based string formatting

Instead of a tuple of explicit values, this form of string formatting uses a dictionary, BAnd instead of a simple Snarker in the
Dictionary-based string formatting works with any number of named keys. Each key must exist in the given dictionary, or t

You can even specify the same key twice; each occurrence will be replaced with the same value.

So why would you use dictionary-based string formatting? Well, it does seem like overkill to set up a dictionary of keys and value

Example 8.14. Dictionary-based string formatting in i
)

(1] Using the built-in #unction is the most common use of dictionary-based string formatting. It means that you can use the ne

Example 8.15. More dictionary-based string formatting
¥
L 4
P

@ When this method is called, #s a list of keyl/value tuples, just like the #bf a dictionary, which means you can use multi-varia
Suppose #s §.
In the first round of the list comprehension, &vill get fiand @vill get .
ZBhe string formatting '%
Wil resolve to "B
This string becomes the first element of the list comprehension’s return value.
In the second round, #vill get #and @wvill get §.
The string formatting will resolve to §p.
the list comprehension returns a list of these two resolved strings, and #will join both elements of this list together

Dive Into Python 87

® Now, using dictionary-based string formatting, you insert the value of gnd #into a string. So if éis Athe final result would be

Using dictionary-based string ﬁ)_rmatting with @is a convenient way of making complex string formatting expressions more readat

8.7. Quoting attribute values
Kidumis ge nerestjoprecigitatsd yppytbiect(htgn dgeswpsabas unthth ek yrisspstantaidng imithojoinnt hduege ipuojetctod it

Eonsumes HTML (since it's descended from Band produces equivalent HTML, but the HTML output is not identical to the input.

Example 8.16. Quoting attribute values

-=E‘t‘-‘ﬂ“¢tmtl"

@ Note that the attribute values of the lttributes in the #ags are not properly quoted. (Also note that you're using triple quote
® Feedthe parser.
e Using the tiunction defined in Byou get the output as a single string, complete with quoted attribute values. While this may

8.8. Introducing #

s a simple (and silly) descendant of Bt runs blocks of text through a series of substitutions, but it makes sure that anything with

To handle the glocks, you define two methods in Bfand g

Dive Into Python 88

http://groups.google.com/groups?group=comp.lang.python

Example 8.17. Handling specific tags

®
$
P
p
®
o
(2]
©
(4
(6
6

fis called every time Binds a gag in the HTML source. (In a minute, you'll see exactly how this happens.) The method take
In the #method, you initialize a data attribute that serves as a counter for gags. Every time you hit a gag, you increment the
That's it, that's the only special processing you do for gags. Now you pass the list of attributes along to #0 it can do the de
fis called every time Hinds a fiag. Since end tags can not contain attributes, the method takes no parameters.

First, you want to do the default processing, just like any other end tag.

Second, you decrement your counter to signal that this glock has been closed.

At this point, it's worth digging a little further into BI've claimed repeatedly (and you've taken it on faith so far) that Books for and

Example 8.18. B

At this point, Bhas already found a start tag and parsed the attribute list. The only thing left to do is figure out whether there
The "magic" of Bs nothing more than your old friend, §What you may not have realized before is that #vill find methods det
fraises an lif the method it's looking for doesn't exist in the object (or any of its descendants), but that's okay, because yoL
Since you didn't find a #method, you'll also look for a Enethod before giving up. This alternate naming scheme is generally
Another Biwhich means that the call to $ailed with #Since you found neither a #or a gnethod for this tag, you catch the exc
Remember, gplocks can have an lause, which is called if no exception is raised during the glock. Logically, that means t
By the way, don't worry about these different return values; in theory they mean something, but they’re never actually use
#nd gnethods are not called directly; the tag, method, and attributes are passed to this function, §so that descendants cal

Dive Into Python 89

Now back to our regularly scheduled program: BWhen you left, you were in the process of defining specific handler methods for

Example 8.19. Overriding the #nethod
[4

®

1] #is called with only one argument, the text to process.
@ |n the ancestor Bthe #inethod simply appended the text to the output buffer, fiHere the logic is only slightly more complicat

You're close to completely understanding BThe only missing link is the nature of the text substitutions themselves. If you know a

8.9. Putting it all together

It's time to put everything you've learned so far to good use. | hope you were paying attention.

Example 8.20. The #unction, part 1

The #unction has an optional argumentliwhich is a string that specifies the dialect you'll be using. You'll see how this is us
Hey, wait a minute, there’s an fstatement in this function! That's perfectly legal in Python. You're used to seeing statemer

®
[
[1]
]
¥
L1
2
3

Now you get the source of the given URL.

Example 8.21. The #unction, part 2: curiouser and curiouser

P
[1]
0 fis a string method you haven't seen before; it simply capitalizes the first letter of a string and forces everything else to low
® You have the name of a class as a string (l and you have the global namespace as a dictionary (§). Combined, you can ¢
e

Finally, you have a class object (f and you want an instance of the class. Well, you already know how to do that: call the
Why bother? After all, there are only 3 Elasses; why not just use a &statement? (Well, there’s no statement in Python, but why n
Even better, imagine putting lin a separate module, and importing it with liYou've already seen that this includes it in §, so &voul
Now imagine that the name of the dialect is coming from somewhere outside the program, maybe from a database or from a use

Finally, imagine a liramework with a plug-in architecture. You could put each klass in a separate file, leaving only the #unction i

Example 8.22. The #unction, part 3

L
P
P

Dive Into Python 90

@ After all that imagining, this is going to seem pretty boring, but the dunction is what does the entire transformation. You ha
@ Because dnaintains an internal buffer, you should always call the parser's @method when you're done (even if you fed it all
® Remember, fis the function you defined on Bhat joins all the pieces of output you've buffered and returns them in a single

And just like that, you've "translated" a web page, given nothing but a URL and the name of a dialect.

Further reading
You thought | was kidding about the server-side scripting idea. So did I, until | found this web-based dialectizer (http://rir

8.10. Summary

Python provides you with a powerful tool, gto manipulate HTML by turning its structure into an object model. You can use this to
parsing the HTML looking for something specificC
aggregating the results, like the URL lister]

altering the structure along the way, like the attribute quoter
transforming the HTML into something else by manipulating the text while leaving the tags alone, like the

Along with these examples, you should be comfortable doing all of the following things:

Using § and § to access namespaces
Formatting strings using dictionary-based substitutions[]

[The technical term for a parser like Bs a consumer: it consumes HTML and breaks it down. Presumably, the name dvas chosen
Phe reason Python is better at lists than strings is that lists are mutable but strings are immutable. This means that appending t
[BHon't get out much.

[Alll right, it's not that common a question. It's not up there with "What editor should | use to write Python code?" (answer: Emacs

Dive Into Python 91

http://rinkworks.com/dialect/

Chapter 9. XML Processing
9.1. Diving in

These next two chapters are about XML processing in Python. It would be helpful if you already knew what an XML document Ic
If you're not particularly interested in XML, you should still read these chapters, which cover important topics like Python packag
Being a philosophy major is not required, although if you have ever had the misfortune of being subjected to the writings of Imm:
There are two basic ways to work with XML. One is called SAX ("Simple API for XML"), and it works by reading the XML a little |

The following is a complete Python program which generates pseudo-random output based on a context-free grammar defined i

Example 9.1.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

G 9N GRS W s W . - - -

- L] [T

Dive Into Python 92

http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and_Tutorials/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

L3 O - R R

e 40 M B

93

Dive Into Python

94

Dive Into Python

WL OHED R - W O e A 0N D AR R AR LR W % 3 k-

[<-8

LN) LN R BEE N RS 3D HED N R N S AR =

95

Dive Into Python

C W N By R R Y B D & - - el R D S R D B i IR N BRIk R 3D B MR D

L I N3

Example 9.2. k

96

Dive Into Python

AR R R AR EE AR EE O B T L E LK R

W W OW < =W - . o

T WOt R

- @

Run the program gpy itself, and it will parse the default XML-based grammar, in kand print several paragraphs worth of philosopl

Example 9.3. Sample output of §

Dive Into Python 97

L. A L L A R B B B B N AR K E B R R L B B R A K_K_ K.

]

This is, of course, complete gibberish. Well, not complete gibberish. It is syntactically and grammatically correct (although very v
Let me repeat that this is much, much funnier if you are now or have ever been a philosophy major.

The interesting thing about this program is that there is nothing Kant-specific about it. All the content in the previous example wa

Example 9.4. Simpler output from j
)

Q
?
Q
You will take a closer look at the structure of the grammar file later in this chapter. For now, all you need to know is that the gran

9.2. Packages

Actually parsing an XML document is very simple: one line of code. However, before you get to that line of code, you need to tal

Example 9.5. Loading an XML document (a sneak peek)

Dive Into Python 98

Q@ Thisisa syntax you haven't seen before. It looks almost like the ou know and love, but the ‘hives it away as something :

That sounds complicated, but it's really not. Looking at the actual implementation may help. Packages are little more than direct

Example 9.6. File layout of a package

So when you say BPython figures out that that means "look in the Mlirectory for a mlirectory, and look in that for the dnodule, and

Example 9.7. Packages are modules, too

Here you're importing a module (lifrom a nested package (i The result is that fis imported into your namespace, and in or
Here you are importing a class (Bfrom a module (jifrom a nested package (M The result is that lis imported directly into yo
Here you are importing the gbackage (a nested package of kas a module in and of itself. Any level of a package can be tre

]
i
"
B
]
P
B
]
B
]
)
o
B
)
]
B
L1
2]
o
(4]

Here you are importing the root level gpackage as a module.

So how can a package (which is just a directory on disk) be imported and treated as a module (which is always a file on disk)? T

A package is a directory with:the special fiile in it. The fiile defines the attributes and methods of the package. It doesn’t need to

So why bother with packages? Well, they provide a way to logically group related modules. Instead of having an #package with &

Dive Into Python 99

If you ever find yourself writing a large subsystem in Python (or, more likely, when you realize that your small subsystem has grc

9.3. Parsing XML

As | was saying, actually parsing an XML document is very simple: one line of code. Where you go from there is up to you.

Example 9.8. Loading an XML document (for real this time)

[

0

[|

[

[|

L

|

g

#

£

|

]

]

£

|

Q As you saw in the previous section, this imports the dnodule from the dbackage.

@ Hereis the one line of code that does all the work: flakes one argument and returns a parsed representation of the XML d
® The object returned from giis a bbbject, a descendant of the Blass. This Bbbject is the root level of a complex tree-like struct
@ s a method of the Mlass (and is therefore available on the Bbbject you got from M #prints out the XML that this Bepresents

Now that you have an XML document in memory, you can start traversing through it.

Example 9.9. Getting child nodes

Every bhas a Bhttribute, which is a list of the Bbbjects. A Blways has only one child node, the root element of the XML docu
To get the first (and in this case, the only) child node, just use regular list syntax. Remember, there is nothing special goin

@0 "oe=e=e

Since getting the first child node of a node is a useful and common activity, the Blass has a kttribute, which is synonymol

Example 9.10. #vorks on any node

Dive Into Python 100

G Wk N K WE WR WR W W

@ Since the imethod is defined in the Blass, it is available on any XML node, not just the Belement.

Example 9.11. Child nodes can be text

o

B

)

P

’

|

g

#

£

L

§

[]

]

£

LY

L1 Looking at the XML in flyou might think that the #has only two child nodes, the two &lements. But you're missing somethin
® Thefirstchildis a bbject representing the carriage return after the #ag and before the first #ag.

® The second child is an Bbject representing the first &lement.

@ The fourth child is an bbject representing the second &lement.

©@ Thelastchildis a bbject representing the carriage return after the #nd tag and before the gend tag.

Example 9.12. Drilling down all the way to text

Dive Into Python 101

As you saw in the previous example, the first &lement is Bsince childNodes|[0] is a #ode for the carriage return.

The &lement has its own set of child nodes, one for the carriage return, a separate one for the spaces, one for the peleme
You can even use the #imethod here, deeply nested within the document.

The lement has only one child node (you can't tell that from this example, but look at fif you don't believe me), and it is a

Q000 Q

The thttribute of a #ode gives you the actual string that the text node represents. But what is that tn front of the string? Tt
9.4. Unicode

Unicode is a system to represent characters from all the world’s different languages. When Python parses an XML document, al
You'll get to all that in a minute, but first, some background.

Historical note. Before unicode, there were separate character encoding systems for each language, each using the same numt
[EasblZehyieseynilele represeris & nemopse nimeacie chaeacie abteast-byee afuhtban fidiml @npuelfe35 (Characters that are used in r
Of course, there is still the matter of all these legacy encoding systems. 7-bit ASCII, for instance, which stores English character
When dealing with unicode data, you may at some point need to convert the data back into one of these other legacy encoding
And on that note, let’s get back to Python.

Python has had unicode support throughout the language since version 2.0. The XML package uses unicode to store all parsed

Example 9.13. Introducing unicode

®

5

[]

®

(]

@ To create a unicode string instead of a regular ASCII string, add the letter "Ubefore the string. Note that this particular strir
@ When printing a string, Python will attempt to convert it to your default encoding, which is usually ASCII. (More on this in a

Example 9.14. Storing non-ASCII characters

Dive Into Python 102

The real advantage of unicode, of course, is its ability to store non-ASCII characters, like the Spanish "i" (with a tilde ove
Remember | said that the jfunction attempts to convert a unicode string to ASCII so it can print it? Well, that's not going to

@0 Q

Here’'s where the conversion-from-unicode-to-other-encoding-schemes comes in. gs a unicode string, but fEan only print

Remember | said Python usually converted unicode to ASCII whenever it needed to make a regular string out of a unicode string
Example 9.15. §

]
#
]
g
[1

(1] #is a special script; Python will try to import it on startup, so any code in it will be run automatically. As the comment menti
(2] #unction sets, well, the default encoding. This is the encoding scheme that Python will try to use whenever it needs to autt

Example 9.16. Effects of setting the default encoding

Q@ This example assumes that you have made the changes listed in the previous example to your file, and restarted Python.
@ Now that the default encoding scheme includes all the characters you use in your string, Python has no problem auto-coe

Example 9.17. Specifying encoding in piles
If you are going to be storing non-ASCII strings within your Python code, you'll need to specify the encoding of each individual g

¥
¥

Now, what about XML? Well, every XML document is in a specific encoding. Again, ISO-8859-1 is a popular encoding for data i

Example 9.18. f

®

]
Bpegucnosuel®

Dive Into Python 103

#

Q@ Thisisa sample extract from a real Russian XML document; it's part of a Russian translation of this very book. Note the e
@ Theseare Cyrillic characters which, as far as | know, spell the Russian word for "Preface”. If you open this file in a regular

Example 9.19. Parsing i

b

|

e

|

]

’

3

P

|

| |

Mpegucnosue

Q9 assuming here that you saved the previous example as fin the current directory. | am also, for the sake of completene:
@ Note that the text data of the #ag (now in the #variable, thanks to that long concatenation of Python functions which | hasti
(3] Printing the title is not possible, because this unicode string contains non-ASCII characters, so Python can’t convert it to A
@ You can, however, explicitly convert it to &in which case you get a (regular, not unicode) string of single-byte characters (f
(5] Printing the & ncoded string will probably show gibberish on your screen, because your Python IDE is interpreting those ¢

To sum up, unicode itself is a bit intimidating if you've never seen it before, but unicode data is really very easy to handle in Pyth
Further reading
Unicode.org (http://www.unicode.org/) is the home page of the unicode standard, including a brief technical introduction

Unicode Tutorial (http://www.reportlab.com/i18n/python_unicode_tutorial.html) has some more examples of how to use
PEP 263 (http://www.python.org/peps/pep-0263.html) goes into more detail about how and when to define a character €

9.5. Searching for elements

Traversing XML documents by stepping through each node can be tedious. If you're looking for something in particular, buried d

For this section, you'll be using the lgrammar file, which looks like this:

Example 9.20. &

VEE Wk CWR CWR B 9

Dive Into Python 104

http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html

G Wk I

It has two &, fand BA fis either a ®r land a #is 8 f.

Example 9.21. Introducing B

L & B B W] --m“w

@ Pakes one argument, the name of the element you wish to find. It returns a list of Bbjects, corresponding to the XML elem

Example 9.22. Every element is searchable

Continuing from the previous example, the first object in your &s the #lement.
You can use the same ¥nethod on this lio find all the glements within the #lement.

Just as before, the Bnethod returns a list of all the elements it found. In this case, you have two, one for each bit.

Example 9.23. Searching is actually recursive

Dive Into Python 105

Note carefully the difference between this and the previous example. Previously, you were searching for glements within
The first two lements are within the first &the

The last glement is the one within the second #&the §

9.6. Accessing element attributes

XML elements can have one or more attributes, and it is incredibly simple to access them once you have parsed an XML docum

For this section, you'll be using the lgrammar file that you saw in the previous section.

This section may be a little confusing, because of some overlapping terminology. Elements in an XML document have attributes

Example 9.24. Accessing element attributes

Each bbject has an attribute called #which is a Bbbject. This sounds scary, but it's not, because a lls an object that acts lik
Treating the Bhs a dictionary, you can get a list of the names of the attributes of this element by using §This element has o
Attribute names, like all other text in an XML document, are stored in unicode.

Again treating the Bhs a dictionary, you can get a list of the values of the attributes by using &The values are themselves o

S0P -E'gagigmwm - CEN

Still treating the Bhs a dictionary, you can access an individual attribute by name, using normal dictionary syntax. (Readers

Example 9.25. Accessing individual attributes

Dive Into Python 106

Eﬁ&‘-m-

The bject completely represents a single XML attribute of a single XML element. The name of the attribute (the same ne
The actual text value of this XML attribute is stored in &

®e

Like a dictionary, attributes of@n XML element have no ordering. Attributes may happen to be listed in a certain order in the oric
9.7. Segue
OK, that's it for the hard-core XML stuff. The next chapter will continue to use these same example programs, but focus on othe
Before moving on to the next chapter, you should be comfortable doing all of these things:

Parsing XML documents using fisearching through the parsed document, and accessing arbitrary element attributes anc

Organizing complex libraries into packagesO
Converting unicode strings to different character encodings

[Fhis, sadly, is still an oversimplification. Unicode now has been extended to handle ancient Chinese, Korean, and Japanese tex

Dive Into Python 107

Chapter 10. Scripts and Streams
10.1. Abstracting input sources

One of Python’s greatest strengths is its dynamic binding, and one powerful use of dynamic binding is the file-like object.

Many functions which require an input source could simply take a filename, go open the file for reading, read it, and close it whe
In the simplest case, a file-like object is any object with a @nethod with an optional gparameter, which returns a string. When calle
This is how reading from real files works; the difference is that you're not limiting yourself to real files. The input source could be

In case you were wondering how this relates to XML processing, s one such function which can take a file-like object.

Example 10.1. Parsing XML from a file

First, you open the file on disk. This gives you a file object.
You pass the file object to fiwhich calls the d@nethod of #and reads the XML document from the file on disk.
Be sure to call the @method of the file object after you're done with it. @vill not do this for you.

e@@a G Wk N CHEN W %R MR U G -‘E“i

Calling the @method on the returned XML document prints out the entire thing.

Well, that all seems like a colossal waste of time. After all, you've already seen that ftan simply take the filename and do all the

Example 10.2. Parsing XML from a URL

Dive Into Python 108

L

B

¥

|

|

]

|

]

]

Q As you saw in a previous chapter, plakes a web page URL and returns a file-like object. Most importantly, this object has ¢
@ Now you pass the file-like object to fiwhich obediently calls the @nethod of the object and parses the XML data that the @n
® As soon as you're done with it, be sure to close the file-like object that figives you.

@ By the way, this URL is real, and it really is XML. It's an XML representation of the current headlines on Slashdot (http:/s!

Example 10.3. Parsing XML from a string (the easy but inflexible way)

@ thas a method, §which takes an entire XML document as a string and parses it. You can use this instead of fif you know y

OK, so you can use the giunction for parsing both local files and remote URLSs, but for parsing strings, you use... a different funct

If there were a way to turn a string into a file-like object, then you could simply pass this object to #And in fact, there is a module

Example 10.4. Introducing B

-9 owpe==

Dive Into Python 109

http://slashdot.org/

The Enodule contains a single class, also called @which allows you to turn a string into a file-like object. The glass takes tl
Now you have a file-like object, and you can do all sorts of file-like things with it. Like gwhich returns the original string.
Calling @gain returns an empty string. This is how real file objects work too; once you read the entire file, you can't read a
You can explicitly seek to the beginning of the string, just like seeking through a file, by using the &nethod of the #bbject.
You can also read the string in chunks, by passing a gparameter to the @nethod.

QOO0O0O BDE=E=

At any time, awvill return the rest of the string that you haven’t read yet. All of this is exactly how file objects work; hence the

Example 10.5. Parsing XML from a string (the file-like object way)

R AR Y O

QO Now you can pass the file-like object (really a Bto iwhich will call the object’s d@nethod and happily parse away, never kno

So now you know how to use a single function, ito parse an XML document stored on a web page, in a local file, or in a hard-cc

Example 10.6. §

L 4
¥
b
¥
[]
B
B
¥
¥
[1]
B
B
L]
§
®
Q@ The Bunction takes a single parameter, gand returns a file-like object. @s a string of some sort; it can either be a URL (like
@ First, you see if @#s a URL. You do this through brute force: you try to open it as a URL and silently ignore errors caused by
® On the other hand, if Welled at you and told you that @vasn'’t a valid URL, you assume it's a path to a file on disk and try to

Dive Into Python 110

(4] By this point, you need to assume that @s a string that has hard-coded data in it (since nothing else worked), so you use #

Now you can use this fjunction in conjunction with lo make a function that takes a @hat refers to an XML document somehow (e

Example 10.7. Using §n §

B A N N A P

10.2. Standard input, output, and error

UNIX users are already familiar with the concept of standard input, standard output, and standard error. This section is for the re

Standard output and standard error (commonly abbreviated thnd Hare pipes that are built into every UNIX system. When you [

Example 10.8. Introducing #nd #

Q A you saw in Example 6.9, “Simple Counters”, you can use Python’s built-in gunction to build simple counter loops that re
@ s afile-like object; calling its dunction will print out whatever string you give it. In fact, this is what the filunction really does
(3

In the simplest case, thnd #end their output to the same place: the Python IDE (if you're in one), or the terminal (if you're
thnd #hre both file-like objects, like the ones you discussed in Section 10.1, “Abstracting input sources”, but they are both write-o

Example 10.9. Redirecting output

(On Windows, you can use finstead of #o display the contents of a file.)

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

¥

Dive Into Python 111

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Q0000 QO TOVOR"TT =

This will print to the IDE "Interactive Window" (or the terminal, if running the script from the command line).
Always save tbefore redirecting it, so you can set it back to normal later.

Open a file for writing. If the file doesn’t exist, it will be created. If the file does exist, it will be overwritten.
Redirect all further output to the new file you just opened.

This will be "printed"” to the log file only; it will not be visible in the IDE window or on the screen.

Set thack to the way it was before you mucked with it.

Close the log file.

Redirecting #ivorks exactly the same way, using #instead of #

Example 10.10. Redirecting error information

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

20 e 3!‘" -

Open the log file where you want to store debugging information.

Redirect standard error by assigning the file object of the newly-opened log file to #

Raise an exception. Note from the screen output that this does not print anything on screen. All the normal traceback infor
Also note that you're not explicitly closing your log file, nor are you setting thack to its original value. This is fine, since onc

Since it is so common to write error messages to standard error, there is a shorthand syntax that can be used instead of going tl

Example 10.11. Printing to &

Dive Into Python 112

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Q\“I‘lﬂ\

@ This shorthand syntax of the ptatement can be used to write to any open file, or file-like object. In this case, you can rediri

Standard input, on the other hand, is a read-only file object, and it represents the data flowing into the program from some previ

Example 10.12. Chaining commands

As you saw in Section 9.1, “Diving in”, this will print a string of eight random bits, ®r 1
This simply prints out the entire contents of B(Windows users should use ginstead of §

This prints the contents of fibut the ™| character, called the "pipe" character, means that the contents will not be printed to

Instead of specifying a module (like | you specify "*, which causes your script to load the grammar from standard input in:

So how does the script "know" to read from standard input when the grammar file is "*? It's not magic; it's just code.

Example 10.13. Reading from standard input in §§

= = A L

Dive Into Python 113

@ This is the function from fwhich you previously examined in Section 10.1, “Abstracting input sources”. All you've done is
10.3. Caching node lookups

gmploys several tricks which may or may not be useful to you in your XML processing. The first one takes advantage of the cor
A grammar file defines a series of &lements. Each &€ontains one or more elements, which can contain a lot of different things, i
This is how you build up the grammar: define &lements for the smallest pieces, then define &lements which “include" the first &

This is all very flexible, but there is one downside: performance. When you find an #&nd need to find the corresponding &lement,

Example 10.14. #

Start by creating an empty dictionary, &
As you saw in Section 9.5, “Searching for elements”, Feturns a list of all the elements of a particular name. You easily car
As you saw in Section 9.6, “Accessing element attributes”, you can access individual attributes of an element by name, us

o0 e 3"‘"

The values of the #ictionary will be the &lements themselves. As you saw in Section 9.3, “Parsing XML", each element, €
Once you build this cache, whenever you come across an #&nd need to find the &lement with the same dhattribute, you can simpl

Example 10.15. Using the &lement cache
§

You'll explore the Bunction in the next section.

10.4. Finding direct children of a node

Another useful techique when parsing XML documents is finding all the direct child elements of a particular element. For instanc

You might think you could simply use ¥or this, but you can’t. Bearches recursively and returns a single list for all the elements it
Example 10.16. Finding direct child elements

¥
]
[4223
L
b

@ Asyou saw in Example 9.9, “Getting child nodes”, the Bhttribute returns a list of all the child nodes of an element.
@ However, as you saw in Example 9.11, “Child nodes can be text”, the list returned by Eontains all different types of nodes
® Eachnode has a attribute, which can be ERllor any number of other values. The complete list of possible values is in the

Dive Into Python 114

® Once you have a list of actual elements, choosing a random one is easy. Python comes with a module called sivhich inclu

10.5. Creating separate handlers by node type

The third useful XML processing tip involves separating your code into logical functions, based on node types and element nam

Example 10.17. Class names of parsed XML objects

|

[

|

|

@

[|

)

B

@ Assume for a moment that #is in the current directory.

@ As you saw in Section 9.2, “Packages”, the object returned by parsing an XML document is a Bbbject, as defined in the gin
® Furthermore, BS a built-in attribute of every Python class, and it is a string. This string is not mysterious; it's the same as tt

Fine, so now you can get the class name of any particular XML node (since each XML node is represented as a Python object).

Example 10.18. ga generic XML node dispatcher

First off, notice that you're constructing a larger string based on the class name of the node you were passed (in the grgu
Now you can treat that string as a function name, and get a reference to the function itself using §

o ‘53"

Finally, you can call that function and pass the node itself as an argument. The next example shows the definitions of eac

Example 10.19. Functions called by the glispatcher

Dive Into Python 115

fis only ever called once, since there is only one Bhode in an XML document, and only one Bbbject in the parsed XML repre
is called on nodes that represent bits of text. The function itself does some special processing to handle automatic capita
fis just a psince you don't care about embedded comments in the grammar files. Note, however, that you still need to defi

QOO Q

The Einethod is actually itself a dispatcher, based on the name of the element’s tag. The basic idea is the same: take what
In this example, the dispatch functions gnd Eimply find other methods in the same class. If your processing is very complex (or
10.6. Handling command-line arguments

Python fully supports creating programs that can be run on the command line, complete with command-line arguments and eithe

It's difficult to talk about command-line processing without understanding how command-line arguments are exposed to your Py

Example 10.20. Introducing §

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

]
"

L
]

@ Each command-line argument passed to the program will be in gwhich is just a list. Here you are printing each argument «

Example 10.21. The contents of §

o

B

b

d

B

o

B

m

[]

Q@ Thefirst thing to know about gs that it contains the name of the script you're calling. You will actually use this knowledge t
@ Command-line arguments are separated by spaces, and each shows up as a separate element in the gist.

® Ccommand-line flags, like fpalso show up as their own element in the gist.

@ Tomake things even more interesting, some command-line flags themselves take arguments. For instance, here you hav

So as you can see, you certainly have all the information passed on the command line, but then again, it doesn’t look like it's goi

Dive Into Python 116

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Example 10.22. Introducing @

L
L
¥
P
9
LY
}
&
¥
@ First off, look at the bottom of the example and notice that you're calling the giunction with §Remember, §s the name of the
® Thisis where all the interesting processing happens. The gunction of the gmodule takes three parameters: the argument li
® |f anything goes wrong trying to parse these command-line flags, @il raise an exception, which you catch. You told gall th
@ Asis standard practice in the UNIX world, when the script is passed flags it doesn’t understand, you print out a summary

So what are all those parameters you pass to the giunction? Well, the first one is simply the raw list of command-line flags and ai

Y
h
print usage summary
9
use specified grammar file or URL
d

show debugging information while parsing
The first and third flags are simply standalone flags; you specify them or you don’t, and they do things (print help) or change stat

To further complicate things, the script accepts either short flags (like jor long flags (like and you want them to do the same th

)
]

print usage summary
L
use specified grammar file or URL
Three things of note here:
All long flags are preceded by two dashes on the command line, but you don'’t include those dashes when calling gThey
The #lag must always be followed by an additional argument, just like the dlag. This is notated by an equals sign, .

The list of long flags is shorter than the list of short flags, because the dlag does not have a corresponding long version.

Confused yet? Let's look at the actual code and see if it makes sense in context.

Example 10.23. Handling command-line arguments in f§

Dive Into Python 117

The wyariable will keep track of the grammar file you're using. You initialize it here in case it's not specified on the commar
The pvariable that you get back from fgontains a list of tuples: &nd Bif the flag doesn’t take an argument, then gvill simply |
pvalidates that the command-line flags are acceptable, but it doesn’t do any sort of conversion between short and long flac
Remember, the dlag didn’t have a corresponding long flag, so you only need to check for the short form. If you find it, you
If you find a grammar file, either with a dlag or a #lag, you save the argument that followed it (stored in jinto the wariable,

6000 ™" © "PEcPpreBPTSmE

That's it. You've looped through and dealt with all the command-line flags. That means that anything left must be commar

10.7. Putting it all together

You've covered a lot of ground. Let’s step back and see how all the pieces fit together.

To start with, this is a script that takes its arguments on the command line, using the gnodule.

@ - - -

You create a new instance of the Elass, and pass it the grammar file and source that may or may not have been specified on th

The Bnstance automatically loads the grammar, which is an XML file. You use your custom function to open the file (which coult

¢ N 9 e

Dive Into Python 118

Oh, and along the way, you take advantage of your knowledge of the structure of the XML document to set up a little cache of re

If you specified some source material on the command line, you use that; otherwise you rip through the grammar looking for the

Now you rip through the source material. The source material is also XML, and you parse it one node at a time. To keep the cod

You bounce through the grammar, parsing all the children of each glement,
#
il
B

replacing Elements with a random child,
§
W

and replacing &lements with a random child of the corresponding &lement, which you previously cached.

Eventually, you parse your way down to plain text,

-
which you print out.
L
y
]

Dive Into Python 119

10.8. Summary
Python comes with powerful libraries for parsing and manipulating XML documents. The dakes an XML file and parses it into Py
Before moving on to the next chapter, you should be comfortable doing all of these things:

Chaining programs with standard input and output[

Defining dynamic dispatchers with #
Using command-line flags and validating them with §

Dive Into Python 120

Chapter 11. HTTP Web Services
11.1. Diving in
You've learned about HTML processing and XML processing, and along the way you saw how to download a web page and hov
Simply stated, HTTP web services are programmatic ways of sending and receiving data from remote servers using the operatic
The main advantage of this approach is simplicity, and its simplicity has proven popular with a lot of different sites. Data -- usuall
Examples of pure XML-over-HTTP web services:
Amazon API (http://www.amazon.com/webservices) allows you to retrieve product information from the Amazon.com or
National Weather Service (http://www.nws.noaa.gov/alerts/) (United States) and Hong Kong Observatory (http://demo.x|
Atom API (http://atomenabled.org/) for managing web-based content.O
Syndicated feeds (http://syndic8.com/) from weblogs and news sites bring you up-to-the-minute news from a variety of s

In later chapters, you'll explore APIs which use HTTP as a transport for sending and receiving data, but don’'t map application se

Here is a more advanced version of the nodule that you saw in the previous chapter:

Example 11.1. §

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

oY o S N B] [

oY Y BN AN BN oY o S A .

Dive Into Python 121

http://www.amazon.com/webservices
http://www.nws.noaa.gov/alerts/
http://demo.xml.weather.gov.hk/
http://atomenabled.org/
http://syndic8.com/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

B Bk O A - R e a B an -~

o

W . N aF RS R R R R Mk SR S @

- e W S R A B

122

Dive Into Python

LN R R B E_§ L X N R X

Further reading
Paul Prescod believes that pure HTTP web services are the future of the Internet (http://webservices.xml.com/pub/a/ws|

11.2. How not to fetch data over HTTP

Let's say you want to download a resource over HTTP, such as a syndicated Atom feed. But you don’t just want to download it c

Example 11.2. Downloading a feed the quick-and-dirty way

b R I NU R -_I“I‘

(1] Downloading anything over HTTP is incredibly easy in Python; in fact, it's a one-liner. The imodule has a handy ffunction 1
So what's wrong with this? Well, for a quick one-off during testing or development, there’s nothing wrong with it. | do it all the tim
Let’s talk about some of the basic features of HTTP.

11.3. Features of HTTP

There are five important features of HTTP which you should support.

11.3.1. 8

The Bs simply a way for a client to tell a server who it is when it requests a web page, a syndicated feed, or any sort of web serv

By default, Python sends a generic #flin the next section, you’'ll see how to change this to something more specific.

Dive Into Python 123

http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html

11.3.2. Redirects

Sometimes resources move around. Web sites get reorganized, pages move to new addresses. Even web services can reorgan
Every time you request any kind of resource from an HTTP server, the server includes a status code in its response. Status codk
HTTP has two different ways of signifying that a resource has moved. Status code 8s a temporary redirect; it means "oops, that
Bvill automatically "follow" redirects when it receives the appropriate status code from the HTTP server, but unfortunately, it does
11.3.3. 1

Some data changes all the time. The home page of CNN.com is constantly updating every few minutes. On the other hand, the |
If you ask for the same data a second time (or third, or fourth), you can tell the server the last-modified date that you got last tim
All modern web browsers support last-modified date checking. If you've ever visited a page, re-visited the same page a day latel
Python’s URL library has no built-in support for last-modified date checking, but since you can add arbitrary headers to each req
11.3.4. R

ETags are an alternate way to accomplish the same thing as the last-modified date checking: don’t re-download data that hasn't
Python’s URL library has no built-in support for ETags, but you'll see how to add it later in this chapter.

11.3.5. Compression

The last important HTTP feature is gzip compression. When you talk about HTTP web services, you're almost always talking ab
Python’s URL library has no built-in support for gzip compression per se, but you can add arbitrary headers to the request. And |
Note that our little one-line script to download a syndicated feed did not support any of these HTTP features. Let's see how you

11.4. Debugging HTTP web services

First, let's turn on the debugging features of Python’s HTTP library and see what's being sent over the wire. This will be useful tf

Example 11.3. Debugging HTTP

Dive Into Python 124

lelies on another standard Python library, iNormally you don't need to fiirectly (lloes that automatically), but you will her
Now that the debugging flag is set, information on the the HTTP request and response is printed out in real time. The first
When you request the Atom feed, lsends three lines to the server. The first line specifies the HTTP verb you're using, and
The second line is the theader, which specifies the domain name of the service you're accessing. This is important, becau
The third line is the Bheader. What you see here is the generic Bhat the Bibrary adds by default. In the next section, you'll s
The server replies with a status code and a bunch of headers (and possibly some data, which got stored in the #ariable).
The server tells you when this Atom feed was last modified (in this case, about 13 minutes ago). You can send this date b

Q000 OO®e

The server also tells you that this Atom feed has an ETag hash of BThe hash doesn’t mean anything by itself; there’s noth

11.5. Setting the B

The first step to improving your HTTP web services client is to identify yourself properly with a §To do that, you need to move be

Example 11.4. Introducing &

Q i you still have your Python IDE open from the previous section’s example, you can skip this, but this turns on HTTP debt
(2] Fetching an HTTP resource with lis a three-step process, for good reasons that will become clear shortly. The first step is
® The second step is to build a URL opener. This can take any number of handlers, which control how responses are handls

Dive Into Python 125

® Thefinal step is to tell the opener to open the URL, using the Bpbject you created. As you can see from all the debugging |

Example 11.5. Adding headers with the §

9

|

§

¥

|

P

P

L

d

[

¥

P

|

|

[|

[]

|

§

B

L

B

@ You're continuing from the previous example; you've already created a Bpbject with the URL you want to access.

(2] Using the Eimethod on the Bpbject, you can add arbitrary HTTP headers to the request. The first argument is the header, th
® The mbject you created before can be reused too, and it will retrieve the same feed again, but with your custom #header.
@ Andhere’s you sending your custom Bin place of the generic one that Python sends by default. If you look closely, you'll n

11.6. Handling lhnd §

Now that you know how to add custom HTTP headers to your web service requests, let’s look at adding support for Bind Bheade

These examples show the output with debugging turned off. If you still have it turned on from the previous section, you can turn

Example 11.6. Testing il

Eaia b R RN R R

Dive Into Python 126

@ Remember all those HTTP headers you saw printed out when you turned on debugging? This is how you can get access
@ On the second request, you add the Bheader with the last-modified date from the first request. If the data hasn’t changed,

® sure enough, the data hasn’t changed. You can see from the traceback that Bhrows a special exception, Hin response to
Blso raises an Exception for conditions that you would think of as errors, such as gpage not found). In fact, it will raise Hor any ¢

Example 11.7. Defining URL handlers

This custom URL handler is part of §

®
P
[]
§
@
(]
Q0 K designed around URL handlers. Each handler is just a class that can define any number of methods. When something
@ Bearches through the defined handlers and calls the finethod when it encounters a &tatus code from the server. By defini
® Thisisthe key part: before returning, you save the status code returned by the HTTP server. This will allow you easy acce

Example 11.8. Using custom URL handlers

- - P

Dive Into Python 127

Bl Lo]

You're continuing the previous example, so the Bbbject is already set up, and you've already added the Bheader.
This is the key: now that you've defined your custom URL handler, you need to tell Bo use it. Remember how | said that k&
Now you can quietly open the resource, and what you get back is an object that, along with the usual headers (use Ho ace

QOO Q

Note that when the server sends back a &tatus code, it doesn’t re-send the data. That's the whole point: to save bandwidi

Handling Bvorks much the same way, but instead of checking for Bhnd sending Byou check for Band send BLet’s start with a fresh

Example 11.9. Supporting B

Using the #pseudo-dictionary, you can get the Beturned from the server. (What happens if the server didn’t send back an
OK, you got the data.

Now set up the second call by setting the lheader to the Bou got from the first call.

The second call succeeds quietly (without throwing an exception), and once again you see that the server has sent back ¢

2000 Q

Regardless of whether the Bs triggered by Blate checking or Bhash matching, you'll never get the data along with the 8Tha

Dive Into Python 128

In these examples, the HTTR:server has supported both Bnd Beaders, but not all servers do. As a web services client, you sho

11.7. Handling redirects

You can support permanent and temporary redirects using a different kind of custom URL handler.

First, let's see why a redirect handler is necessary in the first place.

Example 11.10. Accessing web services without a redirect handler

~_‘luﬂh-' Hu"‘ﬁ -~ . e . I&-'ﬂ-‘."

O S A O T e I T

Dive Into Python 129

You'll be better able to see what’s happening if you turn on debugging.

This is a URL which | have set up to permanently redirect to my Atom feed at §

Sure enough, when you try to download the data at that address, the server sends back a Btatus code, telling you that the
The server also sends back a #header that gives the new address of this data.

hotices the redirect status code and automatically tries to retrieve the data at the new location specified in the #header.

Q0000 Q

The object you get back from the gontains the new permanent address and all the headers returned from the second req

This is suboptimal, but easy to fix. Bloesn’t behave exactly as you want it to when it encounters a @br Bso let’s override its behavi

Example 11.11. Defining the redirect handler

This class is defined in §

L

o

¥

@

(]

R

¥

é

(]

@ Redirect behavior is defined in Iin a class called BYou don’t want to completely override the behavior, you just want to ext
@ When it encounters a Btatus code from the server, Will search through its handlers and call the finethod. The first thing ot
® Here'sthe key: before you return, you store the status code (f so that the calling program can access it later.

4 Temporary redirects (status code Bwork the same way: override the finethod, call the ancestor, and save the status code

So what has this bought us? You can now build a URL opener with the custom redirect handler, and it will still automatically follc

Example 11.12. Using the redirect handler to detect permanent redirects

Dive Into Python 130

~ERUEE W . H@"-‘ ~ R U I e Ak

@ First, build a URL opener with the redirect handler you just defined.
® vousentoffa request, and you got a Bstatus code in response. At this point, the finethod gets called. You call the ancestc
® This is the payoff: now, not only do you have access to the new URL, but you have access to the redirect status code, so

The same redirect handler can also tell you that you shouldn’t update your address book.

Example 11.13. Using the redirect handler to detect temporary redirects

- e . m:u-:‘.

Dive Into Python 131

~_IE&" m_"‘-a -

|

|

[|

"

§

B

L

L]

[]

®

a

]

¥

Q@ Thisisa sample URL I've set up that is configured to tell clients to temporarily redirect to §

@ The server sends back a Btatus code, indicating a temporary redirect. The temporary new location of the data is given in
® Ralls your fnethod, which calls the ancestor method of the same name in Bwhich follows the redirect to the new location.
® Andhere you are, having successfully followed the redirect to lifiells you that this was a temporary redirect, which means

11.8. Handling compressed data

The last important HTTP feature you want to support is compression. Many web services have the ability to send data compress

Servers won't give you compressed data unless you tell them you can handle it.

Example 11.14. Telling the server you would like compressed data

W S Ik e G

Dive Into Python 132

~E_ll

|

N

[|

n

§

B

]

P

LY

B

[]

@ Thisisthe key: once you've created your Bpbject, add an gheader to tell the server you can accept gzip-encoded data. @is t
@ There's your header going across the wire.

® And here’s what the server sends back: the fheader means that the data you're about to receive has been gzip-compress
O The fheader is the length of the compressed data, not the uncompressed data. As you'll see in a minute, the actual length

Example 11.15. Decompressing the data

®

¥

8

)

P

b

P

4

)

§

|

b

»

L

i

5

§

#

9

1] Continuing from the previous example, fs the file-like object returned from the URL opener. Using its gnethod would ordin
@ Ok, this step is a little bit of messy workaround. Python has a gnodule, which reads (and actually writes) gzip-compressec
® Now you can create an instance of fiand tell it that its "file" is the file-like object #

@ Thisis the line that does all the actual work: "reading" from fvill decompress the data. Strange? Yes, but it makes sense i
@ Look ma, real data. (15955 bytes of it, in fact.)

Dive Into Python 133

"But wait!" | hear you cry. "This could be even easier!" | know what you're thinking. You're thinking that geturns a file-like object,

Example 11.16. Decompressing the data directly from the server

.‘ﬂ‘ﬁ"ﬂﬁ@-!‘

1] Continuing from the previous example, you already have a Bbbject set up with an gheader.
(2] Simply opening the request will get you the headers (though not download any data yet). As you can see from the returne
® Since pgeturns a file-like object, and you know from the headers that when you read it, you're going to get gzip-compresse

11.9. Putting it all together

You've seen all the pieces for building an intelligent HTTP web services client. Now let's see how they all fit together.

Example 11.17. The §unction

This function is defined in §

fis a handy utility module for, you guessed it, parsing URLSs. It's primary function, also called gtakes a URL and splits it int
You identify yourself to the HTTP server with the Bpassed in by the calling function. If no Bvas specified, you use a default
If an Bhash was given, send it in the Bheader.

If a last-modified date was given, send it in the Bheader.

Tell the server you would like compressed data if possible.

20000 C VODRRBEPpEwPEW

Build a URL opener that uses both of the custom URL handlers: Bor handling Band Bedirects, and Bor handling 88and othe

Dive Into Python 134

@ Thats it! Open the URL and return a file-like object to the caller.

Example 11.18. The Bunction

This function is defined in §

]

B

&

@

§

o

|

§

]

L

]

)

L

&

§

(]

@ First, you call the function with a URL, Bhash, Bate, and §

® Read the actual data returned from the server. This may be compressed; if so, you'll decompress it later.
® savethe Bhash returned from the server, so the calling application can pass it back to you next time, and you can pass it
@ save the Bate too.

@ ifthe server says that it sent compressed data, decompress it.

@ i you got a URL back from the server, save it, and assume that the status code is @ntil you find out otherwise.
@ if one of the custom URL handlers captured a status code, then save that too.

Example 11.19. Using §

Dive Into Python 135

The very first time you fetch a resource, you don't have an #ash or Blate, so you'll leave those out. (They’re optional para
What you get back is a dictionary of several useful headers, the HTTP status code, and the actual data returned from the
If you ever get a Btatus code, that's a permanent redirect, and you need to update your URL to the new address.

The second time you fetch the same resource, you have all sorts of information to pass back: a (possibly updated) URL, tl

What you get back is again a dictionary, but the data hasn’t changed, so all you got was a &tatus code and no data.

11.10. Summary

The fand its functions should now make perfect sense.
There are 5 important features of HTTP web services that every client should support:

Identifying your application by setting a proper §

Handling permanent redirects properly.]

Supporting Bate checking to avoid re-downloading data that hasn’t changed.O
Supporting Bhashes to avoid re-downloading data that hasn’'t changed.
Supporting gzip compression to reduce bandwidth even when data has changed.O

Dive Into Python 136

Chapter 12. SOAP Web Services

Chapter 11 focused on document-oriented web services over HTTP. The "input parameter” was the URL, and the "return value”
This chapter will focus on SOAP web services, which take a more structured approach. Rather than dealing with HTTP requests
SOAP is a complex specification, and it is somewhat misleading to say that SOAP is all about calling remote functions. Some pe

12.1. Diving In

You use Google, right? It's a popular search engine. Have you ever wished you could programmatically access Google search r

Example 12.1.

= N TEN N WA - (B

You can import this as a module and use it from a larger program, or you can run the script from the command line. On the com

Here is the sample output for a search for the word "python".

Example 12.2. Sample Usage of

L. A L & R

Dive Into Python 137

- . - W . W L L L K &

Further Reading on SOAP
http://www.xmethods.net/ is a repository of public access SOAP web services.[
The SOAP specification (http://www.w3.0rg/TR/soap/) is surprisingly readable, if you like that sort of thing.(I

12.2. Installing the SOAP Libraries
Unlike the other code in this book, this chapter relies on libraries that do not come pre-installed with Python.

Before you can dive into SOAP web services, you'll need to install three libraries: PyXML, fpconst, and SOAPpy.

12.2.1. Installing PyXML

The first library you need is PyXML, an advanced set of XML libraries that provide more functionality than the built-in XML librari
Procedure 12.1.

Here is the procedure for installing PyXML:

1.
Go to http://pyxml.sourceforge.net/, click Downloads, and download the latest version for your operating system.

2.
If you are using Windows, there are several choices. Make sure to download the version of PyXML that matches the velr

3.
Double-click the installer. If you download PyXML 0.8.3 for Windows and Python 2.3, the installer program will be §&

4,
Step through the installer program.

5.
After the installation is complete, close the installer. There will not be any visible indication of success (no programs inst

Dive Into Python 138

http://www.xmethods.net/
http://www.w3.org/TR/soap/
http://pyxml.sourceforge.net/

To verify that you installed PyXML correctly, run your Python IDE and check the version of the XML libraries you have installed,

Example 12.3. Verifying PyXML Installation

> In W

This version number should match the version number of the PyXML installer program you downloaded and ran.

12.2.2. Installing fpconst

The second library you need is fpconst, a set of constants and functions for working with IEEE754 double-precision special valus
Procedure 12.2.

Here is the procedure for installing fpconst:

1.
Download the latest version of fpconst from http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/.

2.
There are two downloads available, one in §ormat, the other in giormat. If you are using Windows, download the file; ott

3.
Decompress the downloaded file. On Windows XP, you can right-click on the file and choose Extract All; on earlier versi

4,
Open a command prompt and navigate to the directory where you decompressed the fpconst files.

5.
Typefio run the installation program.

To verify that you installed fpconst correctly, run your Python IDE and check the version number.

Example 12.4. Verifying fpconst Installation

This version number should match the version number of the fpconst archive you downloaded and installed.

12.2.3. Installing SOAPpy

The third and final requirement is the SOAP library itself: SOAPpy.
Procedure 12.3.

Here is the procedure for installing SOAPpy:

Dive Into Python 139

http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/

Go to http://pywebsvcs.sourceforge.net/ and select Latest Official Release under the SOAPpy section.1.

2.
There are two downloads available. If you are using Windows, download the file; otherwise, download the #ile.

3.
Decompress the downloaded file, just as you did with fpconst.

4,
Open a command prompt and navigate to the directory where you decompressed the SOAPpy files.

5.
Typefo run the installation program.

To verify that you installed SOAPpy correctly, run your Python IDE and check the version number.

Example 12.5. Verifying SOAPpy Installation

This version number should match the version number of the SOAPpy archive you downloaded and installed.

12.3. First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number of public access SOAP servers that provide simple

The most popular public access SOAP server is http://www.xmethods.net/. This example uses a demonstration function that tak

Example 12.6. Getting the Current Temperature

P

[]

P

L

P

0

@ You access the remote SOAP server through a proxy class, BThe proxy handles all the internals of SOAP for you, includir
(2 Every SOAP service has a URL which handles all the requests. The same URL is used for all function calls. This particula
® voure creating the Bith the service URL and the service namespace. This doesn’t make any connection to the SOAP sel
@ Now with everything configured properly, you can actually call remote SOAP methods as if they were local functions. You

Let's peek under those covers.

Dive Into Python 140

http://pywebsvcs.sourceforge.net/
http://www.xmethods.net/

12.4. Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what's going on behind the scenes.

Turning on debugging is a simple matter of setting two flags in the B configuration.

Example 12.7. Debugging SOAP Web Services

@ =

Q@ Fist, create the Bike normal, with the service URL and the namespace.
® Second, turn on debugging by setting fnd §
® Third, call the remote SOAP method as usual. The SOAP library will print out both the outgoing XML request document, a

Dive Into Python 141

Most of the XML request document that gets sent to the server is just boilerplate. Ignore all the namespace declarations; they're

The element name is the function name, gRises #s a dispatcher. Instead of calling separate local methods based on the 1

The function’s XML element is contained in a specific namespace, which is the namespace you specified when you create

e moeree

The arguments of the function also got translated into XML. Bntrospects each argument to determine its datatype (in this ¢

The XML return document is equally easy to understand, once you know what to ignore. Focus on this fragment within the &

The server wraps the function return value within a felement. By convention, this wrapper element is the name of the func
The server returns the response in the same namespace we used in the request, the same namespace we specified whel

PO mOemB|e

The return value is specified, along with its datatype (it's a float). Rises this explicit datatype to create a Python object of tt
12.5. Introducing WSDL

The Rtlass proxies local method calls and transparently turns then into invocations of remote SOAP methods. As you've seen, th
Consider this: the previous two sections showed an example of calling a simple remote SOAP method with one argument and ol
That shouldn’t come as a big surprise. If | wanted to call a local function, | would need to know what package or module it was ir
The big difference is introspection. As you saw in Chapter 4, Python excels at letting you discover things about modules and fun
WSDL lets you do that with SOAP web services. WSDL stands for "Web Services Description Language". Although designed to
A WSDL file is just that: a file. More specifically, it's an XML file. It usually lives on the same server you use to access the SOAP
A WSDL file contains a description of everything involved in calling a SOAP web service:

The service URL and namespacel]

The type of web service (probably function calls using SOAP, although as | mentioned, WSDL is flexible enough to desc
The list of available functions[

The arguments for each function(d

The datatype of each argument(]

The return values of each function, and the datatype of each return valuell

In other words, a WSDL file tells you everything you need to know to be able to call a SOAP web service.

Dive Into Python 142

12.6. Introspecting SOAP Web Services with WSDL

Like many things in the web services arena, WSDL has a long and checkered history, full of political strife and intrigue. I will skif

The most fundamental thing that WSDL allows you to do is discover the available methods offered by a SOAP server.

Example 12.8. Discovering The Available Methods

“e9ewe

(1] SOAPpy includes a WSDL parser. At the time of this writing, it was labeled as being in the early stages of development, b
® Touse a WSDL file, you again use a proxy class, Bwhich takes a single argument: the WSDL file. Note that in this case y«
® The WSDL proxy class exposes the available functions as a Python dictionary, BSo getting the list of available methods is

Okay, so you know that this SOAP server offers a single method: §But how do you call it? The WSDL proxy object can tell you tl

Example 12.9. Discovering A Method’s Arguments

o

»

’

Q@ The ilictionary is filled with a SOAPpy-specific structure called BA Bbbject contains information about one specific function
@ The function arguments are stored in fiwhich is a Python list of bbjects that hold information about each parameter.

® Each bbject contains a mittribute, which is the argument name. You are not required to know the argument name to call tt
® Each parameter is also explicitly typed, using datatypes defined in XML Schema. You saw this in the wire trace in the pre

WSDL also lets you introspect into a function’s return values.

Example 12.10. Discovering A Method’s Return Values

- o P

Dive Into Python 143

Q@ The adjunct to fior function arguments is fior return value. It is also a list, because functions called through SOAP can rett
@ Each ibbject contains mnd gThis function returns a single value, named @which is a float.

Let's put it all together, and call a SOAP web service through a WSDL proxy.

Example 12.11. Calling A Web Service Through A WSDL Proxy

o =

Q@ The configuration is simpler than calling the SOAP service directly, since the WSDL file contains the both service URL an
® Oncethe Bbject is created, you can call a function as easily as you did with the Bbbject. This is not surprising; the Bs just
® You can access the B Bvith gThis is useful to turning on debugging, so that when you can call functions through the WSD

Dive Into Python 144

12.7. Searching Google
Let’s finally turn to the sample code that you saw that the beginning of this chapter, which does something more useful and exci
Google provides a SOAP API for programmatically accessing Google search results. To use it, you will need to sign up for Goog
Procedure 12.4. Signing Up for Google Web Services

1

Go to http://www.google.com/apis/ and create a Google account. This requires only an email address. After you sign up

2.
Also on http://www.google.com/apis/, download the Google Web APIs developer kit. This includes some sample code in

3.
Decompress the developer kit file and find §Copy this file to some permanent location on your local drive. You will need

Once you have your developer key and your Google WSDL file in a known place, you can start poking around with Google Web

Example 12.12. Introspecting Google Web Services

L L LR EE L E YL Y L

L1 Getting started with Google web services is easy: just create a ¥bject and point it at your local copy of Google’s WSDL filt
(2] According to the WSDL file, Google offers three functions: B§and §These do exactly what they sound like: perform a Goog
® The Bunction takes a number of parameters of various types. Note that while the WSDL file can tell you what the argumer

Here is a brief synopsis of all the parameters to the Bunction:

& Your Google API key, which you received when you signed up for Google web services.[

@ The search word or phrase you're looking for. The syntax is exactly the same as Google’'s web form, so if you know al
& The index of the result to start on. Like the interactive web version of Google, this function returns 10 results at a time.
R The number of results to return. Currently capped at 10, although you can specify fewer if you are only interested in a
& If Google will filter out duplicate pages from the results.

Set this to Iplus a country code to get results only from a particular country. Example: o search pages in the United K

Dive Into Python 145

http://www.google.com/apis/
http://www.google.com/apis/

B If @Google will filter out porn sites.[
K"language restrict") - Set this to a language code to get results only in a particular language.]
déand q"input encoding” and "output encoding") - Deprecated, both must be &

Example 12.13. Searching Google

LA R R R L L A R

Q@ After setting up the Bbject, you can call Bvith all ten parameters. Remember to use your own Google API key that you rec
® There's a lot of information returned, but let's look at the actual search results first. They're stored in Band you can access
® Each element in the Bis an object that has a Biand other useful attributes. At this point you can use normal Python intros,

The #pbject contains more than the actual search results. It also contains information about the search itself, such as how long it

Example 12.14. Accessing Secondary Information From Google

e O S

@ This search took 0.224919 seconds. That does not include the time spent sending and receiving the actual SOAP XML dc
@ |ntotal, there were approximately 30 million results. You can access them 10 at a time by changing the #parameter and ce
® Forsome gueries, Google also returns a list of related categories in the Google Directory (http://directory.google.com/). Y

12.8. Troubleshooting SOAP Web Services

Of course, the world of SOAP web services is not all happiness and light. Sometimes things go wrong.

As you've seen throughout this chapter, SOAP involves several layers. There’s the HTTP layer, since SOAP is sending XML do

Dive Into Python 146

http://directory.google.com/

Beyond the underlying HTTP layer, there are a number of things that can go wrong. SOAPpy does an admirable job hiding the S

Here are a few examples of common mistakes that I've made in using SOAP web services, and the errors they generated.

Example 12.15. Calling a Method With an Incorrectly Configured Proxy

® Dpid you spot the mistake? You're creating a Bnanually, and you've correctly specified the service URL, but you haven't sp
@ The server responds by sending a SOAP Fault, which SOAPpy turns into a Python exception of type BAIl errors returned 1

Misconfiguring the basic elements of the SOAP service is one of the problems that WSDL aims to solve. The WSDL file contains

Example 12.16. Calling a Method With the Wrong Arguments

LE R T L R LR

Q@ Did you spot the mistake? It's a subtle one: you're calling @vith an integer instead of a string. As you saw from introspectin
(2] Again, the server returns a SOAP Fault, and the human-readable part of the error gives a clue as to the problem: you're ¢

Dive Into Python 147

It's also possible to write Python code that expects a different number of return values than the remote function actually returns.

Example 12.17. Calling a Method and Expecting the Wrong Number of Return Values

Q@ Did you spot the mistake? @nly returns one value, a float, but you've written code that assumes you're getting two values

What about Google’s web service? The most common problem I've had with it is that | forget to set the application key properly.

Example 12.18. Calling a Method With An Application-Specific Error

Dive Into Python 148

o & N R R & & X A A A K B Rk & N R E &L X &L K N R N K F_ R B R BN N -E E _FE R _E VN

Q® can you spot the mistake? There’s nothing wrong with the calling syntax, or the number of arguments, or the datatypes. T
@ The Google server responds with a SOAP Fault and an incredibly long error message, which includes a complete Java st

Further Reading on Troubleshooting SOAP
New developments for SOAPpy (http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html) steps tht

12.9. Summary

SOAP web services are very complicated. The specification is very ambitious and tries to cover many different use cases for we

Dive Into Python 149

http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Connecting to a SOAP server and calling remote methods
Loading a WSDL file and introspecting remote methods
Debugging SOAP calls with wire tracesd

Troubleshooting common SOAP-related errors

Dive Into Python 150

Chapter 13. Unit Testing
13.1. Introduction to Roman numerals

In previous chapters, you "dived in" by immediately looking at code and trying to understand it as quickly as possible. Now that \
In the next few chapters, you're going to write, debug, and optimize a set of utility functions to convert to and from Roman nume
The rules for Roman numerals lead to a number of interesting observations:

There is only one correct way to represent a particular number as Roman numerals.1.

The converse is also true: if a string of characters is a valid Roman numeral, it represents only one number (i.e. it can ol
There is a limited range of numbers that can be expressed as Roman numerals, specifically Through 9(The Romans dic
There is no way to represent Gn Roman numerals. (Amazingly, the ancient Romans had no concept of Gis a number. Nt
There is no way to represent negative numbers in Roman numerals.5.

There is no way to represent fractions or non-integer numbers in Roman numerals.6.

Given all of this, what would you expect out of a set of functions to convert to and from Roman numerals?

Fequirements
BEhould return the Roman numeral representation for all integers o 4.
Bhould fail when given an integer outside the range 1o 2.
Bhould fail when given a non-integer number.3.
Bhould take a valid Roman numeral and return the number that it represents.4.
BEhould fail when given an invalid Roman numeral.5.
If you take a number, convert it to Roman numerals, then convert that back to a number, you should end up with the nur
Bhould always return a Roman numeral using uppercase letters.7.
Ehould only accept uppercase Roman numerals (i.e. it should fail when given lowercase input).8.
Further reading
This site (http://www.wilkiecollins.demon.co.uk/roman/front.htm) has more on Roman numerals, including a fascinating |

13.2. Diving in
Now that you've completely defined the behavior you expect from your conversion functions, you're going to do something a littl

This is called unit testing, since the set of two conversion functions can be written and tested as a unit, separate from any larger

#is included with Python 2.1 and later. Python 2.0 users can download it from ghttp://pyunit.sourceforge.net/).

Unit testing is an important part of an overall testing-centric development strategy. If you write unit tests, it is important to write tt

Before writing code, it forces you to detail your requirements in a useful fashion.O

While writing code, it keeps you from over-coding. When all the test cases pass, the function is complete.[]

When refactoring code, it assures you that the new version behaves the same way as the old version.[

When maintaining code, it helps you cover your ass when someone comes screaming that your latest change broke the
When writing code in a team, it increases confidence that the code you're about to commit isn’t going to break other pec

Dive Into Python 151

http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm
http://pyunit.sourceforge.net/

13.3. Introducing B

This is the complete test suite for your Roman numeral conversion functions, which are yet to be written but will eventually be in

Example 13.1.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

L E-E- E K R B R E R B - E R B E E E R R R E_E E E_E-E-E_R--E-E_ E-“E-E -E -"E_ E_}E_§E E_ | = = =

Dive Into Python 152

http://diveintopython.org/download/diveintopython-examples-5.4.zip

o O R N N N W R LN LN R o .. N N N N

153

Dive Into Python

K R K K R _E | A P 9B T E N R P G R CEE L. B R N K | L E B B |

Further reading
The PyUnit home page (http://pyunit.sourceforge.net/) has an in-depth discussion of using the #framework (http://pyunit.
The PyUnit FAQ (http://pyunit.sourceforge.net/pyunit.html) explains why test cases are stored separately (http://pyunit.s
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the &http://www.python.org/doc/current/lil
ExtremeProgramming.org (http://www.extremeprogramming.org/) discusses why you should write unit tests (http://www.
The Portland Pattern Repository (http://www.c2.com/cgi/wiki) has an ongoing discussion of unit tests (http://www.c2.con

13.4. Testing for success
The most fundamental part of unit testing is constructing individual test cases. A test case answers a single question about the ¢
A test case should be able to...

...run completely by itself, without any human input. Unit testing is about automation.

...determine by itself whether the function it is testing has passed or failed, without a human interpreting the results.O
...run in isolation, separate from any other test cases (even if they test the same functions). Each test case is an island.!

Dive Into Python 154

http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial

Given that, let’s build the first test case. You have the following requirement:

Bhould return the Roman numeral representation for all integers 1o 4.

Example 13.2. &

= S N E R E EGE EE S E R EE S S SRR e S S 5 B I8 S 8T G S e e e R P

Dive Into Python 155

To write a test case, first subclass the &lass of the #module. This class provides many useful methods which you can use
This is a list of integer/numeral pairs that | verified manually. It includes the lowest ten numbers, the highest number, ever
Every individual test is its own method, which must take no parameters and return no value. If the method exits normally v
Here you call the actual Bunction. (Well, the function hasn’t be written yet, but once it is, this is the line that will call it.) Not
Also notice that you are not trapping any exceptions when you call BThis is intentional. Bhouldn't raise an exception when

2000008 ﬂgtﬂt—g L LA EEEERE |

Assuming the Bunction was defined correctly, called correctly, completed successfully, and returned a value, the last step
13.5. Testing for failure

It is not enough to test that functions succeed when given good input; you must also test that they fail when given bad input. Anc
Remember the other requirements for &

BEhould fail when given an integer outside the range 1o 2.
Bhould fail when given a non-integer number.3.

In Python, functions indicate failure by raising exceptions, and the #module provides methods for testing whether a function raise

Example 13.3. Testing bad input to R

@WE @S @A P

Dive Into Python 156

@ The Elass of the #brovides the inethod, which takes the following arguments: the exception you're expecting, the function
2 Along with testing numbers that are too large, you need to test numbers that are too small. Remember, Roman numerals
(3 Requirement #3 specifies that BEannot accept a non-integer number, so here you test to make sure that Raises a Exceptic

The next two requirements are similar to the first three, except they apply to Binstead of &

Bhould take a valid Roman numeral and return the number that it represents.4.
Bhould fail when given an invalid Roman numeral.5.

Requirement #4 is handled in the same way as requirement #1, iterating through a sampling of known values and testing each il

Example 13.4. Testing bad input to |k

@ Not much new to say about these; the pattern is exactly the same as the one you used to test bad input to BI will briefly nc
13.6. Testing for sanity

Often, you will find that a unit of code contains a set of reciprocal functions, usually in the form of conversion functions where on
Consider this requirement:

If you take a number, convert it to Roman numerals, then convert that back to a number, you should end up with the nur

Example 13.5. Testing lgainst |l

You've seen the gunction before, but here it is called with two arguments, which returns a list of integers starting at the firs
| just wanted to mention in passing that #s not a keyword in Python; here it's just a variable name like any other.

The actual testing logic here is straightforward: take a number (§ convert it to a Roman numeral (J then convert it back to

Dive Into Python 157

The last two requirements are different from the others because they seem both arbitrary and trivial:

Bhould always return a Roman numeral using uppercase letters.7.
BEhould only accept uppercase Roman numerals (i.e. it should fail when given lowercase input).8.

In fact, they are somewhat arbitrary. You could, for instance, have stipulated that Bccept lowercase and mixed case input. But ti

Example 13.6. Testing for case

[Bhe thaswotdcesinigtehars alfdbe thindest ealse islal teachires takeshiuebarisdesontytestihgletige estioe ranaget: fioat fis
There’s a similar lesson to be learned here: even though "you know" that Blways returns uppercase, you are explicitly cor
Note that you're not assigning the return value of o anything. This is legal syntax in Python; if a function returns a value t

This is a complicated line, but it's very similar to what you did in the fland fiests. You are testing to make sure that calling &

In the next chapter, you'll see how to write code that passes these tests.

[6] can resist everything except temptation.” --Oscar Wilde

Dive Into Python 158

Chapter 14. Test-First Programming
14.1. pstage 1

Now that the unit tests are complete, it's time to start writing the code that the test cases are attempting to test. You're going to c

Example 14.1. j
This file is available in @#in the examples directory.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

[|

i

[

P

]

[

]

]

e

]

L

B

Q@ Thisis how you define your own custom exceptions in Python. Exceptions are classes, and you create your own by subcl:
& The #nd Exceptions will eventually be used by flo flag various forms of invalid input, as specified in li

® The Exception will eventually be used by Ho flag invalid input, as specified in |

@ Atthis stage, you want to define the API of each of your functions, but you don’t want to code them yet, so you stub them

Now for the big moment (drum roll please): you're finally going to run the unit test against this stubby little module. At this point,

Run @with the wommand-line option, which will give more verbose output so you can see exactly what's going on as each test ce

Example 14.2. Output of jrgainst j

Dive Into Python 159

http://diveintopython.org/download/diveintopython-examples-5.4.zip

L N B % NN RN N N & WA BN N R N N N BN TRl N N N N W BNIEE SEEN N R N N N BN CEEEN N N N N N BN

160

Dive Into Python

161

Dive Into Python

Running the script runs fiwhich runs each test case, which is to say each method defined in each class within @For each t
For each failed test case, Wisplays the trace information showing exactly what happened. In this case, the call to Kalso ca
After the detail, #ilisplays a summary of how many tests were performed and how long it took.

ceOee © ©

Overall, the unit test failed because at least one test case did not pass. When a test case doesn't pass, #listinguishes bety

14.2. pstage 2

Now that you have the framework of the emodule laid out, it's time to start writing code and passing test cases.

Example 14.3. @

This file is available in #in the examples directory.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

= G e R S S S S E P LKL R R]

2 I‘lﬂ! LU -]

Dive Into Python 162

http://diveintopython.org/download/diveintopython-examples-5.4.zip

]
L
p

1] s a tuple of tuples which defines three things:
The character representations of the most basic Roman numerals. Note that this is not just the single-character R
The order of the Roman numerals. They are listed in descending value order, from Ml the way down to P.
The value of each Roman numeral. Each inner tuple is a pair of §8.

@ Here's where your rich data structure pays off, because you don’'t need any special logic to handle the subtraction rule. Tc

Example 14.4. How Bvorks

If you're not clear how Bvorks, add a statement to the end of the filoop:

| & K K K K K b o U B UF

So Bppears to work, at least in this manual spot check. But will it pass the unit testing? Well no, not entirely.

Example 14.5. Output of grgainst g

Remember to run fivith the xvommand-line flag to enable verbose mode.

ioes, in fact, always return uppercase, because Mefines the Roman numeral representations as uppercase. So this test
Here's the big news: this version of the Blunction passes the known values test. Remember, it's not comprehensive, but it

OOO® TEER@EPWWW N PW

However, the function does not "work" for bad values; it fails every single bad input test. That makes sense, because you

Dive Into Python 163

Here’s the rest of the output of the unit test, listing the details of all the failures. You're down to 10.

Dive Into Python 164

L B B B K N K BN MIEC R B K K B BN BNNC R R N L N BN B R B K L K _ BN M Nk N

14.3. pstage 3

Now that Bbehaves correctly with good input (integers from o 8 it's time to make it behave correctly with bad input (everything e

Example 14.6. g

This file is available in @#in the examples directory.

Dive Into Python 165

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

=B K -E-RE-E E--E E_R E-_—-RE- R X | L K KR]

™ U .

This is a nice Pythonic shortcut: multiple comparisons at once. This is equivalent to @but it's much easier to read. This is tl
You raise exceptions yourself with the @statement. You can raise any of the built-in exceptions, or you can raise any of yol
This is the non-integer check. Non-integers can not be converted to Roman numerals.

Co20®Q

The rest of the function is unchanged.

Example 14.7. Watching lhandle bad input

R
[}

Dive Into Python 166

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Example 14.8. Output of ghgainst g

[|

§

|

|

.|

B

P

R

P

L

B

|

QO Bl passes the known values test, which is comforting. All the tests that passed in stage 2 still pass, so the latest code he
@ More exciting is the fact that all of the bad input tests now pass. This test, Bpasses because of the heck. When a non-in
® This test, §passes because of the &heck, which raises an Exception, which is what Bs looking for.
B

]

|

L

|

[

| |

|

]

|

R

|

[

| |

|

Dive Into Python 167

@ You're down to 6 failures, and all of them involve fithe known values test, the three separate bad input tests, the case che

The most important thing thatigomprehensive unit testing can tell you is when to stop coding. When all the unit tests for a functic

14.4. pstage 4

Now that lis done, it's time to start coding BThanks to the rich data structure that maps individual Roman numerals to integer val

Example 14.9. ¢

This file is available in fin the examples directory.

Dive Into Python 168

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

=B K -E-RE-E E--E E_R E-_—-RE- R X | L K KR]

H“_"IDD'I .

Q The pattern here is the same as BYou iterate through your Roman numeral data structure (a tuple of tuples), and instead ¢

Example 14.10. How Bvorks

If you're not clear how Bvorks, add a statement to the end of the filoop:

L X B J U - W

Dive Into Python 169

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Example 14.11. Output of grgainst

Two pieces of exciting news here. The first is that Bvorks for good input, at least for all the known values you test.

@@ WE®mmPE PN W W W™

The second is that the sanity check also passed. Combined with the known values tests, you can be reasonably sure that

Dive Into Python 170

14.5. pstage 5
Now that Bivorks properly with good input, it's time to fit in the last piece of the puzzle: making it work properly with bad input. Th:
If you're not familiar with regular expressions and didn't read Chapter 7, Regular Expressions, now would be a good time.

As you saw in Section 7.3, “Case Study: Roman Numerals”, there are several simple rules for constructing a Roman numeral, u:

Characters are additive. Is 1Is 2and Is 3¥s Gliterally, "Jand 7), ¥s Jand ¥s 4.

The tens characters (IXCand Mcan be repeated up to three times. At 4you need to subtract from the next highest fives ¢
Similarly, at 9you need to subtract from the next highest tens character: 8s Ybut 9s X"1less than ©, not ¥since the Ihara
The fives characters can not be repeated. @s always represented as Xnever as V@s always Cnever 14.

Roman numerals are always written highest to lowest, and read left to right, so order of characters matters very much. [

Example 14.12. @
This file is available in #in the examples directory.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

LR E-E KE-—-R E_-XE-E-—-E-R J] - . e A W = m

Dive Into Python 171

http://diveintopython.org/download/diveintopython-examples-5.4.zip

W ok R W (Y R = e

mPpEE Pw @ naE e

R R e

Q@ Thisis just a continuation of the pattern you discussed in Section 7.3, “Case Study: Roman Numerals”. The tens places is
(2 Having encoded all that logic into a regular expression, the code to check for invalid Roman numerals becomes trivial. If B

At this point, you are allowed to be skeptical that that big ugly regular expression could possibly catch all the types of invalid Ror

Example 14.13. Output of gagainst

G G G PP

Dive Into Python 172

[|

o

Q@ oOne thing | didn’t mention about regular expressions is that, by default, they are case-sensitive. Since the regular express
@ More importantly, the bad input tests pass. For instance, the malformed antecedents test checks cases like FIAs you've se
® |nfact, all the bad input tests pass. This regular expression catches everything you could think of when you made your tes
(4]

And the anticlimax award of the year goes to the word "B which is printed by the #module when all the tests pass.

When all of your tests pass, stop coding.

Dive Into Python 173

Chapter 15. Refactoring
15.1. Handling bugs

Despite your best efforts to write comprehensive unit tests, bugs happen. What do | mean by "bug"? A bug is a test case you ha

Example 15.1. The bug

B
®
0

@ Remember in the previous section when you kept seeing that an empty string would match the regular expression you we

After reproducing the bug, and before fixing it, you should write a test case that fails, thus illustrating the bug.

Example 15.2. Testing for the bug (f

L1 Pretty simple stuff here. Call Bvith an empty string and make sure it raises an Eexception. The hard part was finding the bu

Since your code has a bug, and you now have a test case that tests this bug, the test case will fail:

Example 15.3. Output of against f

Dive Into Python 174

Now you can fix the bug.

Example 15.4. Fixing the bug (j

This file is available in fin the examples directory.

R R ®

1 Only two lines of code are required: an explicit check for an empty string, and a &tatement.

Example 15.5. Output of fhgainst #

©® The blank string test case now passes, so the bug is fixed.
@ Al the other test cases still pass, which means that this bug fix didn’t break anything else. Stop coding.

Dive Into Python 175

Coding this way does not make fixing bugs any easier. Simple bugs (like this one) require simple test cases; complex bugs will r
15.2. Handling changing requirements
Despite your best efforts to pin your customers to the ground and extract exact requirements from them on pain of horrible nasty

Suppose, for instance, that you wanted to expand the range of the Roman numeral conversion functions. Remember the rule th:

Example 15.6. Modifying test cases for new requirements (J
This file is available in #n the examples directory.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

L B E E E R E-RE R R B E B R B E E_R E R _E-E-E_-R--RE-R -E-E -E -E-E E_.~E_ R X] =

Dive Into Python 176

http://diveintopython.org/download/diveintopython-examples-5.4.zip

EBEEEEE BERPES EeRE SEe PEs W

177

Dive Into Python

Q@ The existing known values don’t change (they’re all still reasonable values to test), but you need to add a few more in the
® The definition of "large input" has changed. This test used to call Bvith @&nd expect an error; now that @re good values, yo

Dive Into Python 178

® The definition of "too many repeated numerals" has also changed. This test used to call livith Mind expect an error; now th
Q The sanity check and case checks loop through every number in the range, from 1o 9Since the range has now expanded,

Now your test cases are up to date with the new requirements, but your code is not, so you expect several of the test cases to f

Example 15.7. Output of ghgainst §

§

§

|

fi

o

P

B

B

B

i

@ Our case checks now fail because they loop from o 8but Bbnly accepts numbers from Yo 9so it will fail as soon the test ce
® The known values test will fail as soon as it hits Mbecause Btill thinks this is an invalid Roman numeral.
® The known values test will fail as soon as it hits Bbecause Btill thinks this is out of range.
O The sanity check will also fail as soon as it hits @because Btill thinks this is out of range.
[

]

|

B

[|

|

5

§

]

]

B

[|

|

5

R

]

B

Dive Into Python 179

Now that you have test cases that fail due to the new requirements, you can think about fixing the code to bring it in line with the

Example 15.8. Coding the new requirements (§i

This file is available in #in the examples directory.

[-E _E-—-E E-XE -E-E- R N] L KRR &] = m

Dive Into Python 180

. AH R U AR =1 W e e

L E B N _ N R !'- o oo B UF 8 Ay

R R e

L1 fbnly needs one small change, in the range check. Where you used to check 8you now check 8And you change the error
® You don't need to make any changes to it all. The only change is to Hif you look closely, you'll notice that you added ano

You may be skeptical that these two small changes are all that you need. Hey, don't take my word for it; see for yourself:

Example 15.9. Output of fhgainst §

R R e N R R

Dive Into Python 181

@ Al the test cases pass. Stop coding.

Comprehensive unit testing means never having to rely on a programmer who says "Trust me."

15.3. Refactoring

The best thing about comprehensive unit testing is not the feeling you get when all your test cases finally pass, or even the feeli
Refactoring is the process of taking working code and making it work better. Usually, "better" means "faster", although it can als

Here, "better" means "faster". Specifically, the Bunction is slower than it needs to be, because of that big nasty regular expressic

Example 15.10. Compiling regular expressions

This is the syntax you've seen before: Bakes a regular expression as a string (jand a string to match against it (1 If the pe
This is the new syntax: fiakes a regular expression as a string and returns a pattern object. Note there is no string to matc
The compiled pattern object returned from finas several useful-looking functions, including several (like Bnd pthat are avai

Calling the compiled pattern object’'s Bunction with the string Miccomplishes the same thing as calling Bvith both the regula

Whenever you are going to usea regular expression more than once, you should compile it to get a pattern object, then call the

Example 15.11. Compiled regular expressions in f
This file is available in fin the examples directory.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

Dive Into Python 182

http://diveintopython.org/download/diveintopython-examples-5.4.zip

L]

R R e

@ This looks very similar, but in fact a lot has changed. lis no longer a string; it is a pattern object which was returned from
® That means that you can call methods on Blirectly. This will be much, much faster than calling Bvery time. The regular ex

So how much faster is it to compile regular expressions? See for yourself:

Example 15.12. Output of frgainst

(1]
5
®
@ Justanotein passing here: this time, | ran the unit test without the woption, so instead of the full #or each test, you only ge
@ vYou ran 3ests in Beconds, compared to Beconds without precompiling the regular expressions. That's an 8mprovement c
(3

Oh, and in case you were wondering, precompiling the regular expression didn’t break anything, and you just proved it.

There is one other performance optimization that | want to try. Given the complexity of regular expression syntax, it should come

Example 15.13. j

This file is available in fin the examples directory.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

)
i
W
'

Dive Into Python 183

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip

|
]
4
©® vYouhave replaced Rvith BBoth mean the same thing: "match 0 to 4 Mharacters". Similarly, ®ecame §"match 0 to 3 Chara

This form of the regular expression is a little shorter (though not any more readable). The big question is, is it any faster?

Example 15.14. Output of fhgainst

L
2]
@ Overall, the unit tests run 2% faster with this form of regular expression. That doesn’t sound exciting, but remember that tt
@ More important than any performance boost is the fact that the module still works perfectly. This is the freedom | was talki

One other tweak | would like to make, and then | promise I'll stop refactoring and put this module to bed. As you've seen repeate

Example 15.15. j
This file is available in fin the examples directory.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

WP o 10 N LI

@

The fiunction can take an optional second argument, which is a set of one or more flags that control various options aboult

Example 15.16. Output of fhgainst

Dive Into Python 184

http://diveintopython.org/download/diveintopython-examples-5.4.zip

This new, "verbose" version runs at exactly the same speed as the old version. In fact, the compiled pattern objects are th

®
2
L1
® This new, "verbose" version passes all the same tests as the old version. Nothing has changed, except that the programn

15.4. Postscript

A clever reader read the previous section and took it to the next level. The biggest headache (and performance drain) in the pro

And best of all, he already had a complete set of unit tests. He changed over half the code in the module, but the unit tests staye

Example 15.17. f
This file is available in fin the examples directory.

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

I - - e . .

(=R K -B-E -E E_-E E_-R E-_-R-E N]

Dive Into Python 185

http://diveintopython.org/download/diveintopython-examples-5.4.zip

2 By B SR a9 LR L B N N _E

So how fast is it?

Example 15.18. Output of fagainst fi

Remember, the best performance you ever got in the original version was 13 tests in 3.315 seconds. Of course, it's not entirely «
The moral of the story?
Simplicity is a virtue.[

Dive Into Python 186

Especially when regular expressions are involved.[]
And unit tests can give you the confidence to do large-scale refactoring... even if you didn’t write the original code.l

15.5. Summary

Unit testing is a powerful concept which, if properly implemented, can both reduce maintenance costs and increase flexibility in

This chapter covered a lot of ground, and much of it wasn't even Python-specific. There are unit testing frameworks for many lar

Designing test cases that are specific, automated, and independent(]

Writing test cases before the code they are testing

Writing tests that test good input and check for proper resultstd

Writing tests that test bad input and check for proper failurest

Writing and updating test cases to illustrate bugs or reflect new requirements(]

Refactoring mercilessly to improve performance, scalability, readability, maintainability, or whatever other -ility you're lac

Additionally, you should be comfortable doing all of the following Python-specific things:

Subclassing #nd writing methods for individual test cases[]
Using §o check that a function returns a known valuel
Using lto check that a function raises a known exception[]
Calling #in your lause to run all your test cases at oncelJ
Running unit tests in verbose or regular mode]

Further reading

XProgramming.com (http://www.xprogramming.com/) has links to download unit testing frameworks (http://www.xprogra

Dive Into Python 187

http://www.xprogramming.com/
http://www.xprogramming.com/software.htm

Chapter 16. Functional Programming
16.1. Diving in

In Chapter 13, Unit Testing, you learned about the philosophy of unit testing. In Chapter 14, Test-First Programming, you steppe

The following is a complete Python program that acts as a cheap and simple regression testing framework. It takes unit tests the

Example 16.1. @

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

Running this script in the same directory as the rest of the example scripts that come with this book will find all the unit tests, nar

Example 16.2. Sample output of §

Dive Into Python 188

http://diveintopython.org/download/diveintopython-examples-5.4.zip

BN OB OB OB OB 02N OBR WR GNR ONR ONR AR R O AR CER R G e

@ The first 5 tests are from gwhich tests the example script from Chapter 4, The Power Of Introspection.
® The next5 tests are from Bwhich tests the example script from Chapter 2, Your First Python Program.
® The restare from gwhich you studied in depth in Chapter 13, Unit Testing.

16.2. Finding the path

When running Python scripts from the command line, it is sometimes useful to know where the currently running script is locatec

This is one of those obscure little tricks that is virtually impossible to figure out on your own, but simple to remember once you s

Example 16.3. |

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

Regardless of how you run a script, @vill always contain the name of the script, exactly as it appears on the command line
flakes a filename as a string and returns the directory path portion. If the given filename does not include any path informe

20 ©OTR|Ee =

fis the key here. It takes a pathname, which can be partial or even blank, and returns a fully qualified pathname.

Dive Into Python 189

http://diveintopython.org/download/diveintopython-examples-5.4.zip

fleserves further explanation. It is very flexible; it can take any kind of pathname.

Example 16.4. Further explanation of j

geturns the current working directory.

Calling fwith an empty string returns the current working directory, same as §

Calling fvith a partial pathname constructs a fully qualified pathname out of it, based on the current working directory.
Calling pwith a full pathname simply returns it.

S0P e TV9OTFVTEREREOT

flso normalizes the pathname it returns. Note that this example worked even though | don't actually have a 'foo’ directory

The pathnames and filenames#you pass to flo not need to exist.

ot only constructs full path n@mes, it also normalizes them. That means that if you are in the #lirectory, Wwill return Elt normaliz

Example 16.5. Sample output from

In the first case, @§ncludes the full path of the script. You can then use the fiunction to strip off the script name and return tl
If the script is run by using a partial pathname, @il still contain exactly what appears on the command line. jiivill then give

If the script is run from the current directory without giving any path, livill simply return an empty string. Given an empty st

Dive Into Python 190

Like the other functions in theiand @modules, fis cross-platform. Your results will look slightly different than my examples if you'r
Addendum. One reader was dissatisfied with this solution, and wanted to be able to run all the unit tests in the current directory,

Example 16.6. Running scripts in the current directory

Instead of setting fio the directory where the currently running script is located, you set it to the current working directory ir
Append this directory to the Python library search path, so that when you dynamically import the unit test modules later, P

P e DD|e= =

The rest of the function is the same.

This technique will allow you to re-use this gcript on multiple projects. Just put the script in a common directory, then change to

16.3. Filtering lists revisited

You're already familiar with using list comprehensions to filter lists. There is another way to accomplish this same thing, which s
Ayibdorw®a padsad Esittefirstracouniat todangt itssitsakefometiarganteatlistndide disirtiabadisturns will contain all the element

Got all that? It's not as difficult as it sounds.

Example 16.7. Introducing &

@

B

)

L)

%

L

§

L+

#

]

]

%

@ dises the built-in mod function "%to return & ris odd and Bf ris even.

® §akes two arguments, a function (Jand a list (L It loops through the list and calls dvith each element. If deturns a true valu
® You could accomplish the same thing using list comprehensions, as you saw in Section 4.5, “Filtering Lists”.

® vYoucould also accomplish the same thing with a §oop. Depending on your programming background, this may seem mor
Example 16.8. #n §

[

Y

Dive Into Python 191

L}

Q As you saw in Section 16.2, “Finding the path”, fmay contain the full or partial pathname of the directory of the currently ru
® Thisisa compiled regular expression. As you saw in Section 15.3, “Refactoring”, if you’re going to use the same regular €
(3]

For each element in the #ist, you're going to call the Bmethod of the compiled regular expression object, &lIf the regular exg
Historical note. Versions of Python prior to 2.0 did not have list comprehensions, so you couldn't filter using list comprehensions

Example 16.9. Filtering using list comprehensions instead
¥

@ This will accomplish exactly the same result as using the &unction. Which way is more expressive? That’s up to you.

16.4. Mapping lists revisited

You're already familiar with using list comprehensions to map one list into another. There is another way to accomplish the same

Example 16.10. Introducing p

B

B

)

[

)

®

?

¥

®

]

W

?

(1] ek sedLfiumsctioreaniisabigalling the function with each element of the list in order. In this case, the function simply multipl
® You could accomplish the same thing with a list comprehension. List comprehensions were first introduced in Python 2.0;
® vou could, if you insist on thinking like a Visual Basic programmer, use a $oop to accomplish the same thing.

Example 16.11. mvith lists of mixed datatypes

)

[

B

@ Asaside note, I'd like to point out that gvorks just as well with lists of mixed datatypes, as long as the function you're usin

All right, enough play time. Let’s look at some real code.

Dive Into Python 192

Example 16.12. gn @

4
[

9 As you saw in Section 4.7, “Using lambda Functions”, Biefines an inline function. And as you saw in Example 6.17, “Splitti
(2 Calling makes each filename listed in Epasses it to the function Band returns a list of the return values of each of those fun

As you'll see in the rest of the chapter, you can extend this type of data-centric thinking all the way to the final goal, which is to d
16.5. Data-centric programming

By now you're probably scratching your head wondering why this is better than using §oops and straight function calls. And that’
In this case, you started with no data at all; the first thing you did was get the directory path of the current script, and got a list of
However, you knew you didn’t care about all of those files, only the ones that were actually test suites. You had too much data,
Now you had the filenames of each of the test suites (and only the test suites, since everything else had been filtered out), but y
Instead of Eyou could have used a $oop with an ktatement. Instead of pyou could have used a $oop with a function call. But usi
Oh sure, you could try to be fancy and delete elements in place without creating a new list. But you've been burned by that befo
| resisted list comprehensions when | first learned Python, and | resisted &nd gven longer. | insisted on making my life more dif
Let it all go. Busywork code is not important. Data is important. And data is not difficult. It's only data. If you have too much, filter
16.6. Dynamically importing modules

OK, enough philosophizing. Let’s talk about dynamically importing modules.

First, let's look at how you normally import modules. The @yntax looks in the search path for the named module and imports it b

Example 16.13. Importing multiple modules at once

P

Q@ This imports four modules at once: ¥for system functions and access to the command line parameters), gfor operating sy:

Now let's do the same thing, but with dynamic imports.

Example 16.14. Importing modules dynamically

@

Dive Into Python 193

©® The built-in fiunction accomplishes the same goal as using the fstatement, but it's an actual function, and it takes a string
@ The variable gs now the ynodule, just as if you had said @iThe variable ds now the eanodule, and so forth.

So imports a module, but takes a string argument to do it. In this case the module you imported was just a hard-coded string, bt

Example 16.15. Importing a list of modules dynamically

L
|
P
0
B
"
"
§
®
B
]
¥
B
9 & just a list of strings. Nothing fancy, except that the strings happen to be names of modules that you could import, if you
(2 Surprise, you wanted to import them, and you did, by mapping the fiunction onto the list. Remember, this takes each elenr
® S0 now from a list of strings, you've created a list of actual modules. (Your paths may be different, depending on your ope
® To drive home the point that these are real modules, let's look at some module attributes. Remember, fis the gnodule, so

Now you should be able to put this all together and figure out what most of this chapter's code sample is doing.

16.7. Putting it all together

You've learned enough now to deconstruct the first seven lines of this chapter’'s code sample: reading a directory and importing

Example 16.16. The #unction

Let's look at it line by line, interactively. Assume that the current directory is fiwhich contains the examples that come with this b

Example 16.17. Step 1: Get all the files

Dive Into Python 194

@ & alist of all the files and directories in the script’s directory. (If you've been running some of the examples already, you r

Example 16.18. Step 2: Filter to find the files you care about

-oee

Q@ This regular expression will match any string that ends with gNote that you need to escape the period, since a period in a
® The compiled regular expression acts like a function, so you can use it to filter the large list of files and directories, to find
® And you're left with the list of unit testing scripts, because they were the only ones named

Example 16.19. Step 3: Map filenames to module names

[4

P

]

]

B

P

P

B

Q A you saw in Section 4.7, “Using lambda Functions”, lis a quick-and-dirty way of creating an inline, one-line function. Thit
@ & afunction. There’s nothing magic about Munctions as opposed to regular functions that you define with a &tatement. Y
® Now you can apply this function to each file in the list of unit test files, using @

@ Andthe resultis just what you wanted: a list of modules, as strings.

Example 16.20. Step 4: Mapping module names to modules

Dive Into Python 195

‘.!E‘-‘.!‘-

Q As you saw in Section 16.6, “Dynamically importing modules”, you can use a combination of gand filo map a list of module
@ i now a list of modules, fully accessible like any other module.
® The last module in the list is the #module, just as if you had said @

Example 16.21. Step 5: Loading the modules into a test suite

‘n_nn_n.

@ These are real module objects. Not only can you access them like any other module, instantiate classes and call functions
(2] Finally, you wrap the list of Bbjects into one big test suite. The #module has no problem traversing this tree of nested test

This introspection process is what the #module usually does for us. Remember that magic-looking fiunction that our individual te:

Example 16.22. Step 6: Telling #o use your test suite
]

@ Instead of letting the #module do all its magic for us, you've done most of it yourself. You've created a function (fthat impc

16.8. Summary

The gprogram and its output should now make perfect sense.
You should now feel comfortable doing all of these things:

Manipulating path information from the command line.(
Filtering lists using #nstead of list comprehensions.O
Mapping lists using instead of list comprehensions.[]
Dynamically importing modules.[

[Technically, the second argument to &an be any sequence, including lists, tuples, and custom classes that act like lists by defir

Dive Into Python 196

[Blgain, | should point out that gcan take a list, a tuple, or any object that acts like a sequence. See previous footnote about &

Dive Into Python 197

Chapter 17. Dynamic functions

17.1. Diving in

| want to talk about plural nouns. Also, functions that return other functions, advanced regular expressions, and generators. Gen
If you haven't read Chapter 7, Regular Expressions, now would be a good time. This chapter assumes you understand the basic
English is a schizophrenic language that borrows from a lot of other languages, and the rules for making singular nouns into plur
If you grew up in an English-speaking country or learned English in a formal school setting, you're probably familiar with the bas

If aword ends in S, X, or Z, add ES. "Bass" becomes "basses", "fax" becomes "faxes", and "waltz" becomes "waltzes".1
If a word ends in a noisy H, add ES; if it ends in a silent H, just add S. What's a noisy H? One that gets combined with o
If a word ends in Y that sounds like I, change the Y to IES; if the Y is combined with a vowel to sound like something els
If all else fails, just add S and hope for the best.4.

(I know, there are a lot of exceptions. "Man" becomes "men" and "woman" becomes "women", but "human" becomes "humans".

Other languages are, of course, completely different.

Let's design a module that pluralizes nouns. Start with just English nouns, and just these four rules, but keep in mind that you'll i

17.2. pstage 1

So you're looking at words, which at least in English are strings of characters. And you have rules that say you need to find diffe

Example 17.1.

Q@ oK thisisa regular expression, but it uses a syntax you didn’t see in Chapter 7, Regular Expressions. The square bracke
@ This Bunction performs regular expression-based string substitutions. Let’s look at it in more detail.

Example 17.2. Introducing B

Dive Into Python 198

>0

@ Does the string Bontain apor @ Yes, it contains a

® Ok, now find abor cand replace it with obbecomes M

® The same function turns #into &

@ You might think this would turn ginto pbut it doesn’t. Beplaces all of the matches, not just the first one. So this regular expr
Example 17.3. Back to

]

#

]

9

P

®

§

|

&

&

@ Backtothe fiunction. What are you doing? You're replacing the end of string with gIn other words, adding &o the string. Y
@ ook closely, this is another new variation. The “as the first character inside the square brackets means something specia
® same pattern here: match words that end in Y, where the character before the Y is notagipor uYou're looking for words tt

Example 17.4. More on negation regular expressions

VOV Ve e

L1 gmatches this regular expression, because it ends in gand ds not ag;ipor u
(2 loes not match, because it ends in gand you specifically said that the character before the yould not be ogloes not matc

(3] floes not match, because it does not end in y

Example 17.5. More on b

E@-- H-‘

Dive Into Python 199

@ This regular expression turns gnto @nd gnto gwhich is what you wanted. Note that it would also turn gnto lbut that will ne\
® Justin passing, | want to point out that it is possible to combine these two regular expressions (one to find out if the rule a

Regular expression substitutions are extremely powerful, and the yntax makes them even more powerful. But combining the el

17.3. pstage 2

Now you’re going to add a level of abstraction. You started by defining a list of rules: if this, then do that, otherwise go to the nex

Example 17.6. p
i

This version looks more complicated (it's certainly longer), but it does exactly the same thing: try to match four different ru

Dive Into Python 200

(2 Using a @oop, you can pull out the match and apply rules two at a time (one match, one apply) from the #uple. On the first
® Remember that everything in Python is an object, including functions. &ontains actual functions; not names of functions, t
@ On the first iteration of the doop, this is equivalent to calling §and so forth.

If this additional level of abstraction is confusing, try unrolling the function to see the equivalence. This oop is equivalent to the

Example 17.7. Unrolling the fiunction

M N MEN MR MR SR MR R

The benefit here is that that fiunction is now simplified. It takes a list of rules, defined elsewhere, and iterates through them in a ¢
Now, was adding this level of abstraction worth it? Well, not yet. Let’s consider what it would take to add a new rule to the functi
This is really just a stepping stone to the next section. Let's move on.

17.4. pstage 3

Defining separate named functions for each match and apply rule isn't really necessary. You never call them directly; you define

Example 17.8. j
)

- oo EE -~ — - — W — N

Dive Into Python 201

"!

@ This is the same set of rules as you defined in stage 2. The only difference is that instead of defining named functions like
® Note that the fiunction hasn't changed at all. It iterates through a set of rule functions, checks the first rule, and if it returns

Now to add a new rule, all you need to do is define the functions directly in the #ist itself: one match rule, and one apply rule. Bu

17.5. pstage 4

Let’s factor out the duplication in the code so that defining new rules can be easier.

Example 17.9. §

Bs a function that builds other functions dynamically. It takes gand factually it takes a tuple, but more on that in a minute)
Building the apply function works the same way. The apply function is a function that takes one parameter, and calls @vith
Finally, the Bunction returns a tuple of two values: the two functions you just created. The constants you defined within thc

@0o DR|em =

If this is incredibly confusing (and it should be, this is weird stuff), it may become clearer when you see how to use it.

Example 17.10. fontinued

Our pluralization rules are now defined as a series of strings (not functions). The first string is the regular expression that \
This line is magic. It takes the list of strings in @nd turns them into a list of functions. How? By mapping the strings to the |

| swear | am not making this up: &nds up with exactly the same list of functions as the previous example. Unroll the #lefinition, a

Example 17.11. Unrolling the rules definition

Dive Into Python 202

— — NN~ — NN~ — W —

Example 17.12. Jfinishing up
#

R
@ Since the #ist is the same as the previous example, it should come as no surprise that the fiunction hasn’t changed. Reme

Just in case that wasn’t mind-blowing enough, | must confess that there was a subtlety in the definition of Bhat | skipped over. Le

Example 17.13. Another look at ji

@ Notice the double parentheses? This function doesn’t actually take three parameters; it actually takes one parameter, a tu

Example 17.14. Expanding tuples when calling functions

'B‘!B"E'"'!"E'E‘l

QO The proper way to call the function @s with a tuple of three elements. When the function is called, the elements are assign

Now let’'s go back and see why this auto-tuple-expansion trick was necessary. @ivas a list of tuples, and each tuple had three ele

17.6. jstage 5

You've factored out all the duplicate code and added enough abstractions so that the pluralization rules are defined in a list of st

First, let’s create a text file that contains the rules you want. No fancy data structures, just space- (or tab-)delimited strings in thr

Dive Into Python 203

Example 17.15. &

A Vil

Now let’'s see how you can use this rules file.

Example 17.16. §

]

¥

b

]

®

&

@ voure sitil using the closures technique here (building a function dynamically that uses variables defined outside the funct
@ our fiunction now takes an optional second parameter, gwhich defaults to B

® Youuse the gparameter to construct a filename, then open the file and read the contents into a list. If §s gthen you’ll open
Q As you saw, each line in the file really has three values, but they're separated by whitespace (tabs or spaces, it makes no
® i fis a list of tuples, then #will be a list of the functions created dynamically by each call to BCalling Returns a function that
@ Because you’re now building a combined match-and-apply function, you need to call it differently. Just call the function, ar

So the improvement here is that you've completely separated the pluralization rules into an external file. Not only can the file be

The downside here is that you're reading that file every time you call the fiunction. | thought | could get through this entire book \

17.7. pstage 6

Now you're ready to talk about generators.

Example 17.17. §

LK R HE W @R @ =

Dive Into Python 204

This uses a technique called generators, which I'm not even going to try to explain until you look at a simpler example first.

Example 17.18. Introducing generators

[]

§

]

¥

&

P

0

3

)

§

2

L)

9

3

L)

9

4

@ The presence of the geyword in imeans that this is not a normal function. It is a special kind of function which generates \
@ 7o create an instance of the igenerator, just call it like any other function. Note that this does not actually execute the func
® The #unction returns a generator object.

@ The first time you call the #method on the generator object, it executes the code in lup to the first §tatement, and then retu
(5] Repeatedly calling #n the generator object resumes where you left off and continues until you hit the next gstatement. The
@ The second time you call #you do all the same things again, but this time s now 4And so forth. Since Bets up an infinite |

Example 17.19. Using generators instead of recursion

The Fibonacci sequence is a sequence of numbers where each number is the sum of the two numbers before it. It starts v
as the current number in the sequence, so yield it.

@®Po SDeFe=

bis the next number in the sequence, so assign that to abut also calculate the next value (gand assign that to bor later use

So you have a function that spits out successive Fibonacci numbers. Sure, you could do that with recursion, but this way is easic

Example 17.20. Generators in #00ps

Dive Into Python 205

®
P

@ Youcanusea generator like lin a $oop directly. The doop will create the generator object and successively call the #meth
® Each time through the doop, rgets a new value from the gtatement in liand all you do is print it out. Once luns out of num

OK, let's go back to the fiunction and see how you're using this.

Example 17.21. Generators that generate dynamic functions

o
o
R
(]
@ § a common idiom for reading lines from a file, one line at a time. It works because#&ctually returns a generator whose
@ No magic here. Remember that the lines of the rules file have three values separated by whitespace, so fieturns a tuple o
® Andthen you yield. What do you yield? A function, built dynamically with Bthat is actually a closure (it uses the local varial
@ Sinceisa generator, you can use it directly in a #oop. The first time through the doop, you will call the #unction, which wil

What have you gained over stage 57? In stage 5, you read the entire rules file and built a list of all the possible rules before you €

Further reading
PEP 255 (http://www.python.org/peps/pep-0255.html) defines generators.[]
Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) has many more examples of generators (http:;

17.8. Summary
You talked about several different advanced techniques in this chapter. Not all of them are appropriate for every situation.
You should now be comfortable with all of these techniques:
Performing string substitution with regular expressions.
Treating functions as objects, storing them in lists, assigning them to variables, and calling them through those variables
Building dynamic functions with #1
Building closures, dynamic functions that contain surrounding variables as constants.[]

Building generators, resumable functions that perform incremental logic and return different values each time you call th

Adding abstractions, building functions dynamically, building closures, and using generators can all make your code simpler, mac

Dive Into Python 206

http://www.python.org/peps/pep-0255.html
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com

Chapter 18. Performance Tuning

Performance tuning is a many-splendored thing. Just because Python is an interpreted language doesn’t mean you shouldn’t wc
18.1. Diving in

There are so many pitfalls involved in optimizing your code, it's hard to know where to start.

Let’s start here: are you sure you need to do it at all? Is your code really so bad? Is it worth the time to tune it? Over the lifetime
Second, are you sure you're done coding? Premature optimization is like spreading frosting on a half-baked cake. You spend hc
This is not to say that code optimization is worthless, but you need to look at the whole system and decide whether it's the best |
Oh yes, unit tests. It should go without saying that you need a complete set of unit tests before you begin performance tuning. T|
With these caveats in place, let's look at some techniques for optimizing Python code. The code in question is an implementatio
There are several subtle variations of the Soundex algorithm. This is the one used in this chapter:

Keep the first letter of the name as-is.1.
Zonvert the remaining letters to digits, according to a specific table:
B, F, P, and V become 1.0
C, G, 1K QS X, and Z become 2.0
D and T become 3.0
L becomes 4.0
M and N become 5.0
R becomes 6.0
All other letters become 9.00
Remove consecutive duplicates.3.
Remove all 9s altogether.4.
If the result is shorter than four characters (the first letter plus three digits), pad the result with trailing zeros.5.
if the result is longer than four characters, discard everything after the fourth character.6.

For example, my name, Bbecomes P942695. That has no consecutive duplicates, so nothing to do there. Then you remove the
Another example: Wecomes W99, which becomes W9, which becomes W, which gets padded with zeros to become WO00O.

Here’s a first attempt at a Soundex function:

Example 18.1. §

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

N AR5 -

Dive Into Python 207

http://diveintopython.org/download/diveintopython-examples-5.4.zip

e i o BB oM DB NP N

o C

& aah @R W R Al WA SR WA WD - = L R)

208

Dive Into Python

ek L E N K &N

urther Reading on Soundex
Soundexing and Genealogy (http://www.avotaynu.com/soundex.html) gives a chronology of the evolution of the Sounde

18.2. Using the Module

The most important thing you need to know about optimizing Python code is that you shouldn’t write your own timing function.
Timing short pieces of code is incredibly complex. How much processor time is your computer devoting to running this code? Ar
And then there’s the matter of the variations introduced by the timing framework itself. Does the Python interpreter cache metho

The Python community has a saying: "Python comes with batteries included." Don’t write your own timing framework. Python 2.:

Example 18.2. Introducing i

If you have not already done so, you can download this and other examples (http://diveintopython.org/download/diveintopython-

]
]
[]
LY
a
[1)
?
@ The #module defines one class, #which takes two arguments. Both arguments are strings. The first argument is the staten
@ Once you have the Bbject, the easiest thing to do is call fwhich calls your function 1 million times and returns the number
® The other major method of the @bject is fwhich takes two optional arguments. The first argument is the number of times t

You can use the @module ontije/command line to test an existing Python program, without modifying the code. See http://docs.

Note that feturns a list of times. The times will almost never be identical, due to slight variations in how much processor time the
In fact, that's almost certainly wrong. The tests that took longer didn’t take longer because of variations in your code or in the Py

Python has a handy miunction that takes a list and returns the smallest value:

Dive Into Python 209

http://www.avotaynu.com/soundex.html
http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://docs.python.org/lib/node396.html

The dmodule only works if youjalready know what piece of code you need to optimize. If you have a larger Python program and
18.3. Optimizing Regular Expressions

The first thing the Soundex function checks is whether the input is a non-empty string of letters. What's the best way to do this?
If you answered "regular expressions”, go sit in the corner and contemplate your bad instincts. Regular expressions are almost

This code fragment from ghecks whether the function argument @s a word made entirely of letters, with at least one letter (not tt

§
L]
]

How does gberform? For convenience, the Bection of the script contains this code that calls the #module, sets up a timing test wi

L L K W N Al

So how does gperform with this regular expression?

As you might expect, the algorithm takes significantly longer when called with longer names. There will be a few things we can c
The other thing to keep in mind is that we are testing a representative sample of names. W& a kind of trivial case, in that it gets st
So what about that regular expression? Well, it's inefficient. Since the expression is testing for ranges of characters (&n upperca:

gsays fis slightly faster than @ibut nothing to get terribly excited about:

Dive Into Python 210

http://docs.python.org/lib/module-hotshot.html

We saw in Section 15.3, “Refactoring” that regular expressions can be compiled and reused for faster results. Since this regular

Using a compiled regular expression in fiis significantly faster:

But is this the wrong path? The logic here is simple: the input emeeds to be non-empty, and it needs to be composed entirely of |

Here is #§

It turns out that this technique in fis not faster than using a compiled regular expression (although it is faster than using a non-co

Why isn't flaster? The answer lies in the interpreted nature of Python. The regular expression engine is written in C, and compile
It turns out that Python offers an obscure string method. You can be excused for not knowing about it, since it's never been men
This is §

How much did we gain by using this specific method in § Quite a bit.

Dive Into Python 211

Example 18.3. Best Result So Far: §

- SRR SD RN MOGEDBRO SR M DB MNP N

R @ e S WS i R R SR TR TED R R D W

R .

212

Dive Into Python

§
18.4. Optimizing Dictionary Lookups

The second step of the Soundex algorithm is to convert characters to digits in a specific pattern. What's the best way to do this?

The most obvious solution is to define a dictionary with individual characters as keys and their corresponding digits as values, at

NG EEAHEUL DI DI OCTETERNGER MO TSN

LR N N R R]

You timed ghlready; this is how it performs:

This code is straightforward, but is it the best solution? Calling #on each individual character seems inefficient; it would probably

Dive Into Python 213

Then there’s the matter of incrementally building the #tring. Incrementally building strings like this is horribly inefficient; internally
Python is good at lists, though. It can treat a string as a list of characters automatically. And lists are easy to combine into string:

Here is fiwhich converts letters to digits by using Cand #

i
#
¥
’

Surprisingly, fils not faster:

The overhead of the anonymous Bunction kills any performance you gain by dealing with the string as a list of characters.

fiises a list comprehension instead of Cand #

#
L

Using a list comprehension in fis faster than using Cand #in gibut still not faster than the original code (incrementally building a str

It's time for a radically different approach. Dictionary lookups are a general purpose tool. Dictionary keys can be any length strin

Thisis #§

- N

What the heck is going on here? lgreates a translation matrix between two strings: the first argument and the second argument.

ghows that fs significantly faster than defining a dictionary and looping through the input and building the output incrementally:

Dive Into Python 214

You're not going to get much better than that. Python has a specialized function that does exactly what you want to do; use it an

Example 18.4. Best Result So Far: §

U R G G U2 YR B YR W D S -

LK WK N R

18.5. Optimizing List Operations

The third step in the Soundex algorithm is eliminating consecutive duplicate digits. What's the best way to do this?

Here’s the code we have so far, in §
§
§
L
@

Here are the performance results for g

The first thing to consider is whether it's efficient to check §ach time through the loop. Are list indexes expensive? Would we be

Dive Into Python 215

To answer this question, here is #§

oes not run any faster than land may even be slightly slower (although it's not enough of a difference to say for sure):

CRC N IR TET TRU T YT T T

Why isn’'t glaster? It turns out that list indexes in Python are extremely efficient. Repeatedly accessing #s no problem at all. On tt
Let’s try something radically different. If it's possible to treat a string as a list of characters, it should be possible to use a list conr
However, it is possible to create a list of index numbers using the built-in §unction, and use those index numbers to progressivel

Here is §

Is this faster? In a word, no.

It's possible that the techniques so far as have been "string-centric". Python can convert a string into a list of characters with a s

Here is #lwhich modifies a list in place to remove consecutive duplicate elements:

o e e O @ D W

Is this faster than gbr @ No, in fact it's the slowest method yet:

Dive Into Python 216

We haven’'t made any progress here at all, except to try and rule out several "clever” techniques. The fastest code we've seen s

Example 18.5. Best Result So Far: §

C_NC X N NUCR NN N N R LK K -

L L K N N A

18.6. Optimizing String Manipulation

The final step of the Soundex algorithm is padding short results with zeros, and truncating long results. What is the best way to ¢

This is what we have so far, taken from #§
8

)

8

|

These are the results for @

|

| |

|

Dive Into Python 217

The first thing to consider is replacing that regular expression with a loop. This code is from #
§
L)
é
8

Is gaster? Yes it is:

But wait a minute. A loop to remove characters from a string? We can use a simple string method for that. Here's §

Is flaster? That's an interesting question. It depends on the input:

The string method in @is faster than the loop for most names, but it's actually slightly slower than gn the trivial case (of a very shc

Last but not least, let’'s examine the final two steps of the algorithm: padding short results with zeros, and truncating long results

Why do we need a filoop to pad out the result? We know in advance that we're going to truncate the result to four characters, an

How much speed do we gain in gby dropping the Bioop? It's significant:

Finally, there is still one more thing you can do to these three lines of code to make them faster: you can combine them into one

Dive Into Python 218

Putting all this code on one line in gs barely faster than g

It is also significantly less readable, and for not much performance gain. Is that worth it? | hope you have good comments. Perfc

18.7. Summary

This chapter has illustrated several important aspects of performance tuning in Python, and performance tuning in general.
If you need to choose between regular expressions and writing a loop, choose regular expressions. The regular express
If you need to choose between regular expressions and string methods, choose string methods. Both are compiled in C
General-purpose dictionary lookups are fast, but specialtiy functions such as #and string methods such as fare faster. If |

Don't be too clever. Sometimes the most obvious algorithm is also the fastest.[]
Don't sweat it too much. Performance isn’t everything.[

| can’t emphasize that last point strongly enough. Over the course of this chapter, you made this function three times faster and

Dive Into Python 219

Appendix A. Further reading

Chapter 1. Installing Python
Chapter 2. Your First Python Program

213. Documenting Functions
PEP 257 (http://www.python.org/peps/pep-0257.html) defines &onventions.O
Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses how to write a good #
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses conventions for spacing in #§ (http://ww
P14.2. What's an Object?
Python Reference Manual (http://www.python.org/doc/current/ref/) explains exactly what it means to say that ev
eff-bot (http://www.effbot.org/guides/) summarizes Python objects (http://www.effbot.org/guides/python-objects.|
215. Indenting Code
Python Reference Manual (http://www.python.org/doc/current/ref/) discusses cross-platform indentation issues
Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses good indentation style.[]
P16. Testing Modules
Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the low-level details of importing n

Chapter 3. Native Datatypes

B11.3. Deleting Items From Dictionaries

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about dictionaries and <

Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) has a lot of example code

Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses how to sort the values of a

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the dictionary methods (http://
B12.5. Using List Operators

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about lists and makes &

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to use lists as stacks and queues (ht

Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common questio

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the list methods (http://www.p
B813. Introducing Tuples

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about tuples and shows

Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) shows how to sort a tuple

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to define a tuple with one element (h
8l4.2. Assigning Multiple Values at Once

Python Reference Manual (http://www.python.org/doc/current/ref/) shows examples of when you can skip the lir

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use multi-variable
815. Formatting Strings

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string formatting format ch

Effective AWK Programming (http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk) Top) discusses all the fo
Bl6. Mapping Lists

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to map lists using the bui

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to do nested list comprehensions (ht
Bl7. Joining Lists and Splitting Strings

Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common questio

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string methods (http://wwv

Python Library Reference (http://www.python.org/doc/current/lib/) documents the #nodule (http://www.python.or

The Whole Python FAQ (http://www.python.org/doc/FAQ.html) explains why s a string method (http://www.pytt

Chapter 4. The Power Of Introspection

a12. Using Optional and Named Arguments

Dive Into Python 220

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default argume
413.3. Built-In Functions

Python Library Reference (http://www.python.org/doc/current/lib/) documents all the built-in functions (http://mw
a15. Filtering Lists

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to filter lists using the bui
416.1. Using the and-or Trick

Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses alternatives to the drick (htt
417.1. Real-World lambda Functions

Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) discusses using o call fu

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to access outside variables from insi

The Whole Python FAQ (http://www.python.org/doc/FAQ.html) has examples of obfuscated one-liners using ih

Chapter 5. Objects and Object-Orientation

Bl2. Importing Modules Using from module import

eff-bot (http://www.effbot.org/guides/) has more to say on l's.lhttp://www.effbot.org/guides/import-confusion.htr

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses advanced import technigues, includin
B13.2. Knowing When to Use self and __init__

Learning to Program (http://www.freenetpages.co.uk/hp/alan.gauld/) has a gentler introduction to classes (http:/

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use classes to mc

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) has an in-depth look at classes, hamespaces, ar

Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common questio
bl4.1. Garbage Collection

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes built-in attributes like #http://mww

Python Library Reference (http://www.python.org/doc/current/lib/) documents the gnodule (http://www.python.or
Bl5. Exploring UserDict: A Wrapper Class

Python Library Reference (http://www.python.org/doc/current/lib/) documents the linodule (http://www.python.or
Bl7. Advanced Special Class Methods

Python Reference Manual (http://www.python.org/doc/current/ref/) documents all the special class methods (htt
Bl9. Private Functions

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses the inner workings of private variables

Chapter 6. Exceptions and File Handling

611.1. Using Exceptions For Other Purposes
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses defining and raising your own exceptit
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the built-in exceptions (http://v
Python Library Reference (http://www.python.org/doc/current/lib/) documents the getpass (http://www.python.or
Python Library Reference (http://www.python.org/doc/current/lib/) documents the Bmodule (http://www.python.or
Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the inner workings of the glock (h
612.4. Writing to Files
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses reading and writing files, including hoy
eff-bot (http://www.effbot.org/guides/) discusses efficiency and performance of various ways of reading a file (ht
Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) answers common questic
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the file object methods (http:/
614. Using sys.modules
Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default argume
Python Library Reference (http://www.python.org/doc/current/lib/) documents the ghttp://www.python.org/doc/ct
615. Working with Directories
Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) answers questions about
Python Library Reference (http://www.python.org/doc/current/lib/) documents the ghttp://www.python.org/doc/ct

Chapter 7. Regular Expressions

Dive Into Python 221

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search
http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000
http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html

716. Case study: Parsing Phone Numbers
Regular Expression HOWTO (http://py-howto.sourceforge.net/regex/regex.html) teaches about regular expressi
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the @nodule (http://www.python.c

Chapter 8. HTML Processing

8l4. Introducing BaseHTMLProcessor.py
W3C (http://lwww.w3.0rg/) discusses character and entity references (http://www.w3.org/TR/REC-html40/charse
Python Library Reference (http://www.python.org/doc/current/lib/) confirms your suspicions that the §nodule (htt
819. Putting it all together
You thought | was kidding about the server-side scripting idea. So did I, until | found this web-based dialectizer |

Chapter 9. XML Processing

0l4. Unicode
Unicode.org (http://www.unicode.org/) is the home page of the unicode standard, including a brief technical intrc
Unicode Tutorial (http://www.reportlab.com/i18n/python_unicode_tutorial.html) has some more examples of hov
PEP 263 (http://www.python.org/peps/pep-0263.html) goes into more detail about how and when to define a chi

Chapter 10. Scripts and Streams
Chapter 11. HTTP Web Services

[1.1. Diving in
Paul Prescod believes that pure HTTP web services are the future of the Internet (http://webservices.xml.com/p

Chapter 12. SOAP Web Services

[P.1. Diving In

http://www.xmethods.net/ is a repository of public access SOAP web services.[

The SOAP specification (http://www.w3.0rg/TR/soap/) is surprisingly readable, if you like that sort of thing.(I
IP.8. Troubleshooting SOAP Web Services

New developments for SOAPpy (http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html)

Chapter 13. Unit Testing

13.1. Introduction to Roman numerals
This site (http://www.wilkiecollins.demon.co.uk/roman/front.htm) has more on Roman numerals, including a fasc
I8B.3. Introducing romantest.py
The PyUnit home page (http://pyunit.sourceforge.net/) has an in-depth discussion of using the #iramework (http:
The PyUnit FAQ (http://pyunit.sourceforge.net/pyunit.html) explains why test cases are stored separately (http:/
Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the #http://www.python.org/doc/c
ExtremeProgramming.org (http://www.extremeprogramming.org/) discusses why you should write unit tests (htt
The Portland Pattern Repository (http://www.c2.com/cgi/wiki) has an ongoing discussion of unit tests (http://ww\

Chapter 14. Test-First Programming
Chapter 15. Refactoring

I6.5. Summary
XProgramming.com (http://www.xprogramming.com/) has links to download unit testing frameworks (http://www

Chapter 16. Functional Programming

Dive Into Python 222

http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html
http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html
http://rinkworks.com/dialect/
http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://www.xmethods.net/
http://www.w3.org/TR/soap/
http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html
http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm
http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial
http://www.xprogramming.com/
http://www.xprogramming.com/software.htm

Chapter 17. Dynamic functions
I7.7. plural.py, stage 6
PEP 255 (http://www.python.org/peps/pep-0255.html) defines generators.[
Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) has many more examples of generatc

Chapter 18. Performance Tuning

I8.1. Diving in
Soundexing and Genealogy (http://www.avotaynu.com/soundex.html) gives a chronology of the evolution of the

Dive Into Python 223

http://www.python.org/peps/pep-0255.html
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com
http://www.avotaynu.com/soundex.html

Appendix B. A 5-minute review
Chapter 1. Installing Python

m1.

m2.

1a3.

14.

15.

16.

mz.

18.

mo.

Which Python is right for you?

The first thing you need to do with Python is install it. Or do you?
Python on Windows

On Windows, you have a couple choices for installing Python.
Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don't install it. You probably want to instal
Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very simple, and there is only one choic
Python on RedHat Linux

Download the latest Python RPM by going to http://www.python.org/ftp/python/ and selecting the highest versiol
Python on Debian GNU/Linux

If you are lucky enough to be running Debian GNU/Linux, you install Python through the apt command.
Python Installation from Source

If you prefer to build from source, you can download the Python source code from http://www.python.org/ftp/pyt
The Interactive Shell

Now that you have Python installed, what's this interactive shell thing you're running?
Summary

You should now have a version of Python installed that works for you.

Chapter 2. Your First Python Program

pll.

P12,

P13.

Diving in

Here is a complete, working Python program.
Declaring Functions

Python has functions like most other languages, but it does not have separate header files like C++ or #section:
Documenting Functions

You can document a Python function by giving it a §

Dive Into Python 224

http://www.python.org/ftp/python/
http://www.python.org/ftp/python/

P4,

P15,

Pl6.

Everything Is an Object

A function, like everything else in Python, is an object.
Indenting Code

Python functions have no explicit #pr gdand no curly braces to mark where the function code starts and stops. Th
Testing Modules

Python modules are objects and have several useful attributes. You can use this to easily test your modules as

Chapter 3. Native Datatypes

8l1.

8l2.

813.

Bl4.

8l5.

8l6.

8l7.

g8l8.

Introducing Dictionaries

One of Python’s built-in datatypes is the dictionary, which defines one-to-one relationships between keys and ve
Introducing Lists

Lists are Python’s workhorse datatype. If your only experience with lists is arrays in Visual Basic or (God forbid)
Introducing Tuples

A tuple is an immutable list. A tuple can not be changed in any way once it is created.
Declaring variables

Python has local and global variables like most other languages, but it has no explicit variable declarations. Var
Formatting Strings

Python supports formatting values into strings. Although this can include very complicated expressions, the mo:t
Mapping Lists

One of the most powerful features of Python is the list comprehension, which provides a compact way of mappi
Joining Lists and Splitting Strings

You have a list of key-value pairs in the form fand you want to join them into a single string. To join any list of s
Summary

The fprogram and its output should now make perfect sense.

Chapter 4. The Power Of Introspection

a11.

a2,

Diving In
Here is a complete, working Python program. You should understand a good deal about it just by looking at it. T

Using Optional and Named Arguments

Dive Into Python 225

a3.

a4,

415,

a6.

al7.

418.

a9,

Python allows function arguments to have default values; if the function is called without the argument, the argu
Using type, str, dir, and Other Built-In Functions

Python has a small set of extremely useful built-in functions. All other functions are partitioned off into modules.
Getting Object References With getattr

You already know that Python functions are objects. What you don’t know is that you can get a reference to a fu
Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, via list comprehensions (Sectior
The Peculiar Nature of and and or

In Python, eand gerform boolean logic as you would expect, but they do not return boolean values; instead, the
Using lambda Functions

Python supports an interesting syntax that lets you define one-line mini-functions on the fly. Borrowed from Lisp
Putting It All Together

The last line of code, the only one you haven't deconstructed yet, is the one that does all the work. But by now t
Summary

The fprogram and its output should now make perfect sense.

Chapter 5. Objects and Object-Orientation

Bl1.

Bl2.

Bl13.

Bl4.

Bl15.

Bl6.

Diving In

Here is a complete, working Python program. Read the § of the module, the classes, and the functions to get ar
Importing Modules Using from module import

Python has two ways of importing modules. Both are useful, and you should know when to use each. One way,
Defining Classes

Python is fully object-oriented: you can define your own classes, inherit from your own or built-in classes, and in
Instantiating Classes

Instantiating classes in Python is straightforward. To instantiate a class, simply call the class as if it were a funct
Exploring UserDict: A Wrapper Class

As you've seen, Bis a class that acts like a dictionary. To explore this further, let's look at the ilass in the inodul

Special Class Methods

Dive Into Python 226

In addition to normal class methods, there are a number of special methods that Python classes can define. Ins
Bl7. Advanced Special Class Methods

Python has more special methods than just gand BSome of them let you emulate functionality that you may not ¢
Bl18. Introducing Class Attributes

You already know about data attributes, which are variables owned by a specific instance of a class. Python als
Bl9. Private Functions

Unlike in most languages, whether a Python function, method, or attribute is private or public is determined entil
Bl10. Summary

That's it for the hard-core object trickery. You'll see a real-world application of special class methods in Chapter

Chapter 6. Exceptions and File Handling

6l1. Handling Exceptions

Like many other programming languages, Python has exception handling via #plocks.
Bl2. Working with File Objects

Python has a built-in function, pfor opening a file on disk. geturns a file object, which has methods and attribute:
B13. Iterating with for Loops

Like most other languages, Python has $oops. The only reason you haven’t seen them until now is that Python
614. Using sys.modules

Modules, like everything else in Python, are objects. Once imported, you can always get a reference to a modul
B15. Working with Directories

The fmodule has several functions for manipulating files and directories. Here, we're looking at handling pathna
B16. Putting It All Together

Once again, all the dominoes are in place. You've seen how each line of code works. Now let's step back and s
B6l7. Summary

The gprogram introduced in Chapter 5 should now make perfect sense.

Chapter 7. Regular Expressions

711. Diving In

If what you're trying to do can be accomplished with string functions, you should use them. They're fast and sim

Dive Into Python 227

2.

73.

4.

5.

76.

nz.

Case Study: Street Addresses

This series of examples was inspired by a real-life problem | had in my day job several years ago, when | neede
Case Study: Roman Numerals

You've most likely seen Roman numerals, even if you didn’t recognize them. You may have seen them in copyr
Using the {n,m} Syntax

In the previous section, you were dealing with a pattern where the same character could be repeated up to thres
Verbose Regular Expressions

So far you've just been dealing with what I'll call "compact" regular expressions. As you've seen, they are difficu
Case study: Parsing Phone Numbers

So far you've concentrated on matching whole patterns. Either the pattern matches, or it doesn’t. But regular ex
Summary

This is just the tiniest tip of the iceberg of what regular expressions can do. In other words, even though you're

Chapter 8. HTML Processing

8l1.

8l2.

813.

8l4.

8l5.

8l6.

8l7.

818.

Diving in

| often see questions on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python) like "Hc
Introducing sgmllib.py

HTML processing is broken into three steps: breaking down the HTML into its constituent pieces, fiddling with tt
Extracting data from HTML documents

To extract data from HTML documents, subclass the Elass and define methods for each tag or entity you want
Introducing BaseHTMLProcessor.py

Bloesn’t produce anything by itself. It parses and parses and parses, and it calls a method for each interesting
locals and globals

Let’s digress from HTML processing for a minute and talk about how Python handles variables. Python has two
Dictionary-based string formatting

There is an alternative form of string formatting that uses dictionaries instead of tuples of values.
Quoting attribute values

Hldumis ge npedygor eci picated dygapytbiect(htgmédgeswpsbag moothihebfd?hrsup-stantatdnglgitrojoinint hde

Introducing dialect.py
Bis a simple (and silly) descendant of Bt runs blocks of text through a series of substitutions, but it makes sure tt

Dive Into Python 228

http://groups.google.com/groups?group=comp.lang.python
http://groups.google.com/groups?group=comp.lang.python

819. Putting it all together

It's time to put everything you've learned so far to good use. | hope you were paying attention.
8110. Summary

Python provides you with a powerful tool, fito manipulate HTML by turning its structure into an object model. Yo

Chapter 9. XML Processing

Al1. Diving in

There are two basic ways to work with XML. One is called SAX ("Simple API for XML"), and it works by reading
012. Packages

Actually parsing an XML document is very simple: one line of code. However, before you get to that line of code
A13. Parsing XML

As | was saying, actually parsing an XML document is very simple: one line of code. Where you go from there is
Al4. Unicode

Unicode is a system to represent characters from all the world’s different languages. When Python parses an X
A15. Searching for elements

Traversing XML documents by stepping through each node can be tedious. If you're looking for something in pe
Al6. Accessing element attributes

XML elements can have one or more attributes, and it is incredibly simple to access them once you have parset
al7. Seqgue

OK, that's it for the hard-core XML stuff. The next chapter will continue to use these same example programs, b

Chapter 10. Scripts and Streams

ID.1. Abstracting input sources

One of Python’s greatest strengths is its dynamic binding, and one powerful use of dynamic binding is the file-lil
[D.2. Standard input, output, and error

UNIX users are already familiar with the concept of standard input, standard output, and standard error. This se
ID.3. Caching node lookups

Employs several tricks which may or may not be useful to you in your XML processing. The first one takes adve
10.4. Finding direct children of a node

Another useful techique when parsing XML documents is finding all the direct child elements of a particular elen

Dive Into Python 229

1D.5.

1D.6.

10.7.

10.8.

Creating separate handlers by node type

The third useful XML processing tip involves separating your code into logical functions, based on node types a
Handling command-line arguments

Python fully supports creating programs that can be run on the command line, complete with command-line arg
Putting it all together

You've covered a lot of ground. Let's step back and see how all the pieces fit together.
Summary

Python comes with powerful libraries for parsing and manipulating XML documents. The dlakes an XML file and

Chapter 11. HTTP Web Services

m.1.

Diving in

You've learned about HTML processing and XML processing, and along the way you saw how to download a w

. How not to fetch data over HTTP

Let's say you want to download a resource over HTTP, such as a syndicated Atom feed. But you don’t just wan

. Features of HTTP

There are five important features of HTTP which you should support.

. Debugging HTTP web services

First, let’s turn on the debugging features of Python’s HTTP library and see what's being sent over the wire. Thi

. Setting the User-Agent

The first step to improving your HTTP web services client is to identify yourself properly with a §To do that, you

. Handling Last-Modified and ETag

Now that you know how to add custom HTTP headers to your web service requests, let's look at adding suppor

. Handling redirects

You can support permanent and temporary redirects using a different kind of custom URL handler.

. Handling compressed data

The last important HTTP feature you want to support is compression. Many web services have the ability to sen

. Putting it all together

You've seen all the pieces for building an intelligent HTTP web services client. Now let's see how they all fit tog

Dive Into Python 230

[1.10. Summary

The fand its functions should now make perfect sense.

Chapter 12. SOAP Web Services

Ip.1.

Diving In

You use Google, right? It's a popular search engine. Have you ever wished you could programmatically access

. Installing the SOAP Libraries

Unlike the other code in this book, this chapter relies on libraries that do not come pre-installed with Python.

. First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number of public access SOAP servers th:

. Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what's going on behind the scenes.

. Introducing WSDL

The Rlass proxies local method calls and transparently turns then into invocations of remote SOAP methods. A

. Introspecting SOAP Web Services with WSDL

Like many things in the web services arena, WSDL has a long and checkered history, full of political strife and it

. Searching Google

Let’s finally turn to the sample code that you saw that the beginning of this chapter, which does something more

. Troubleshooting SOAP Web Services

Of course, the world of SOAP web services is not all happiness and light. Sometimes things go wrong.

. Summary

SOAP web services are very complicated. The specification is very ambitious and tries to cover many different

Chapter 13. Unit Testing

IB.1.

1B.2.

IB.3.

Introduction to Roman numerals

In previous chapters, you "dived in" by immediately looking at code and trying to understand it as quickly as pos
Diving in

Now that you've completely defined the behavior you expect from your conversion functions, you're going to do

Introducing romantest.py

Dive Into Python 231

This is the complete test suite for your Roman numeral conversion functions, which are yet to be written but will
[B.4. Testing for success

The most fundamental part of unit testing is constructing individual test cases. A test case answers a single que
I3.5. Testing for failure

It is not enough to test that functions succeed when given good input; you must also test that they fail when give
IB.6. Testing for sanity

Often, you will find that a unit of code contains a set of reciprocal functions, usually in the form of conversion fur

Chapter 14. Test-First Programming

[¥.1. roman.py, stage 1

Now that the unit tests are complete, it's time to start writing the code that the test cases are attempting to test.
[4.2. roman.py, stage 2

Now that you have the framework of the emodule laid out, it's time to start writing code and passing test cases.
[¥.3. roman.py, stage 3

Now that Bbehaves correctly with good input (integers from 1o 8 it's time to make it behave correctly with bad in
[¥.4. roman.py, stage 4

Now that fis done, it's time to start coding BThanks to the rich data structure that maps individual Roman numer
I[4.5. roman.py, stage 5

Now that livorks properly with good input, it's time to fit in the last piece of the puzzle: making it work properly w

Chapter 15. Refactoring

Ib.1. Handling bugs

Despite your best efforts to write comprehensive unit tests, bugs happen. What do | mean by "bug"? A bug is a
Ib.2. Handling changing requirements

Despite your best efforts to pin your customers to the ground and extract exact requirements from them on pain
Ib.3. Refactoring

The best thing about comprehensive unit testing is not the feeling you get when all your test cases finally pass,
Ib.4. Postscript

A clever reader read the previous section and took it to the next level. The biggest headache (and performance

Dive Into Python 232

Ib.5.

Summary

Unit testing is a powerful concept which, if properly implemented, can both reduce maintenance costs and incre

Chapter 16. Functional Programming

I6.1.

Diving in

In Chapter 13, Unit Testing, you learned about the philosophy of unit testing. In Chapter 14, Test-First Programi

. Finding the path

When running Python scripts from the command line, it is sometimes useful to know where the currently running

. Filtering lists revisited

You're already familiar with using list comprehensions to filter lists. There is another way to accomplish this sar

. Mapping lists revisited

You're already familiar with using list comprehensions to map one list into another. There is another way to acce

. Data-centric programming

By now you're probably scratching your head wondering why this is better than using $oops and straight functio

. Dynamically importing modules

OK, enough philosophizing. Let’s talk about dynamically importing modules.

. Putting it all together

You've learned enough now to deconstruct the first seven lines of this chapter’s code sample: reading a directol

. Summary

The gprogram and its output should now make perfect sense.

Chapter 17. Dynamic functions

17.1.

17.2.

17.3.

17 .4.

Diving in

| want to talk about plural nouns. Also, functions that return other functions, advanced regular expressions, and
plural.py, stage 1

So you're looking at words, which at least in English are strings of characters. And you have rules that say you |
plural.py, stage 2

Now you’re going to add a level of abstraction. You started by defining a list of rules: if this, then do that, otherw

plural.py, stage 3

Dive Into Python 233

Defining separate named functions for each match and apply rule isn’t really necessary. You never call them dir
II7.5. plural.py, stage 4

Let’s factor out the duplication in the code so that defining new rules can be easier.
II7.6. plural.py, stage 5

You've factored out all the duplicate code and added enough abstractions so that the pluralization rules are defi
I7.7. plural.py, stage 6

Now you're ready to talk about generators.
Ii7.8. Summary

You talked about several different advanced techniques in this chapter. Not all of them are appropriate for every

Chapter 18. Performance Tuning

IB.1. Diving in

There are so many pitfalls involved in optimizing your code, it's hard to know where to start.
I8.2. Using the timeit Module

The most important thing you need to know about optimizing Python code is that you shouldn’t write your own ti
IB.3. Optimizing Regular Expressions

The first thing the Soundex function checks is whether the input is a non-empty string of letters. What's the best
IB.4. Optimizing Dictionary Lookups

The second step of the Soundex algorithm is to convert characters to digits in a specific pattern. What's the bes
I8.5. Optimizing List Operations

The third step in the Soundex algorithm is eliminating consecutive duplicate digits. What’s the best way to do thi
IB.6. Optimizing String Manipulation

The final step of the Soundex algorithm is padding short results with zeros, and truncating long results. What is
IB.7. Summary

This chapter has illustrated several important aspects of performance tuning in Python, and performance tuning

Dive Into Python 234

Appendix C. Tips and tricks

Chapter 1. Installing Python
Chapter 2. Your First Python Program

P11. Diving in

In the ActivePython IDE on findows, you can run the Python program you're editing by choosing File->Run... (Ctrl-R).
In the Python IDE on Mac Of, you can run a Python program with Python->Run window... (Cmd-R), but there is an imp
On UNIX-compatible systengs (including Mac OS X), you can run a Python program from the command line:ji

P12. Declaring Functions

In Visual Basic, functions (tixat return a value) start with fiand subroutines (that do not return a value) start with BThere «
In Java, C++, and other statically-typed languages, you must specify the datatype of the function return value and each
213. Documenting Functions

Triple quotes are also an easy way to define a string with both single and double quotes, like gn Perl.

Many Python IDEs use thetlfo provide context-sensitive documentation, so that when you type a function name, its 8apr

P14. Everything Is an Object

fin Python is like #n Perl. Onte you g Python module, you access its functions with flonce you & Perl module, you acce
215. Indenting Code

Python uses carriage returasto separate statements and a colon and indentation to separate code blocks. C++ and Jav
P16. Testing Modules

Like C, Python uses #or camparison and #or assignment. Unlike C, Python does not support in-line assignment, so thel

On MacPython, there is an gdditional step to make the #irick work. Pop up the module’s options menu by clicking the bl

Chapter 3. Native Datatypes

B8l1. Introducing Dictionaries

A dictionary in Python is likesa/hash in Perl. In Perl, variables that store hashes always start with a *character. In Python

Dive Into Python 235

A dictionary in Python is likeZan instance of the Klass in Java.

A dictionary in Python is likesan instance of the fpbject in Visual Basic.
B8l1.2. Modifying Dictionaries

Dictionaries have no conceptof order among elements. It is incorrect to say that the elements are "out of order"; they al
812. Introducing Lists

A list in Python is like an afray|in Perl. In Perl, variables that store arrays always start with the @haracter; in Python, var

A list in Python is much maotethan an array in Java (although it can be used as one if that's really all you want out of life
Bl2.3. Searching Lists

Before version 2.2.1, Pythomrhad no separate boolean datatype. To compensate for this, Python accepted almost anyth
s false; all other numbers are true.
An empty string ()'is false, all other strings are true.]
An empty list (Jis false; all other lists are true.OJ
An empty tuple (}is false; all other tuples are true.O]
An empty dictionary (¥is false; all other dictionaries are true.O
These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean, which has a value of &
813. Introducing Tuples

Tuples can be converted intelists, and vice-versa. The built-in fiunction takes a list and returns a tuple with the same el
Bl4. Declaring variables

When a command is split among several lines with the line-continuation marker (™Y, the continued lines can be indentec
815. Formatting Strings

String formatting in Pythontases the same syntax as the fiunction in C.
Bl7. Joining Lists and Splitting Strings

tworks only on lists of stringél; it does not do any type coercion. Joining a list that has one or more non-string elements v

#5 a useful technique when you want to search a string for a substring and then work with everything before the substrir

Chapter 4. The Power Of Introspection

a12. Using Optional and Named Arguments

The only thing you need tordo'to call a function is specify a value (somehow) for each required argument; the manner a
413.3. Built-In Functions

Python comes with excellentreference manuals, which you should peruse thoroughly to learn all the modules Python h:
4l7. Using lambda Functions

Dive Into Python 236

liunctions are a matter of style. Using them is never required; anywhere you could use them, you could define a separa
a18. Putting It All Together

In SQL, you must use Binstead of Mo compare a null value. In Python, you can use either #br libut Bs faster.

Chapter 5. Objects and Object-Orientation

Bl2. Importing Modules Using from module import

fin Python is like @n Perl; lindPython is like #i Perl.

fin Python is like fin Java; iaxPython is like fin Java.

Use paringly, because it mblkes it difficult to determine where a particular function or attribute came from, and that ma
B13. Defining Classes

The gtatement in Python isiike an empty set of braces (¥in Java or C.

In Python, the ancestor of aiclass is simply listed in parentheses immediately after the class name. There is no special |
B13.1. Initializing and Coding Classes

By convention, the first argument of any Python class method (the reference to the current instance) is called &This arg
B13.2. Knowing When to Use self and __init__

fmethods are optional, butwhen you define one, you must remember to explicitly call the ancestor’s imethod (if it define
bl4. Instantiating Classes

In Python, simply call a classas if it were a function to create a new instance of the class. There is no explicit @perator

Bl5. Exploring UserDict: A Wrapper Class

In the ActivePython IDE on YVindows, you can quickly open any module in your library path by selecting File->Locate...

Java and Powerbuilder support function overloading by argument list, i.e. one class can have multiple methods with the
Guido, the original author of:Python, explains method overriding this way: "Derived classes may override methods of th

Always assign an initial valié to all of an instance’s data attributes in the imethod. It will save you hours of debugging la

In versions of Python priorite2.2, you could not directly subclass built-in datatypes like strings, lists, and dictionaries. Tc

Dive Into Python 237

Bl6.1. Getting and Setting Items

When accessing data attribltes within a class, you need to qualify the attribute name: BWhen calling other methods witl
Bl7. Advanced Special Class Methods

In Java, you determine whether two string variables reference the same physical memory location by using #This is call

While other object-oriented-languages only let you define the physical model of an object (“this object has a Bnethod"), |
Bl18. Introducing Class Attributes

In Java, both static variables#(called class attributes in Python) and instance variables (called data attributes in Python)

There are no constants in Rython. Everything can be changed if you try hard enough. This fits with one of the core princ
Bl9. Private Functions

In Python, all special methods)(like jand built-in attributes (like Hfollow a standard naming convention: they both start w
Chapter 6. Exceptions and File Handling

6l1. Handling Exceptions

Python uses #io handle exc¢eptions and #o generate them. Java and C++ use $#0 handle exceptions, and #0o generate th
B15. Working with Directories

Whenever possible, you shatild use the functions in eand for file, directory, and path manipulations. These modules are
Chapter 7. Regular Expressions

714. Using the {n,m} Syntax

There is no way to programmatically determine that two regular expressions are equivalent. The best you can do is writ
Chapter 8. HTML Processing

812. Introducing sgmllib.py

Python 2.0 had a bug Wherelﬂ_vould not recognize declarations at all (Bvould never be called), which meant that Bwere

In the ActivePython IDE on findows, you can specify command line arguments in the "Run script" dialog. Separate mu
8l4. Introducing BaseHTMLProcessor.py

The HTML specification requ.'lires that all non-HTML (like client-side JavaScript) must be enclosed in HTML comments, |
815. locals and globals

Dive Into Python 238

Python 2.2 introduced a subll_e but important change that affects the namespace search order: nested scopes. In versio

#

Using the &nd Bjunctions, yatrican get the value of arbitrary variables dynamically, providing the variable name as a stril
8l6. Dictionary-based string formatting

Using dictionary-based strinf formatting with @is a convenient way of making complex string formatting expressions mor
Chapter 9. XML Processing

f12. Packages

A package is a directory withrthe special fiile in it. The fiile defines the attributes and methods of the package. It doesn't
016. Accessing element attributes

This section may be a littlereonfusing, because of some overlapping terminology. Elements in an XML document have ¢

Like a dictionary, attributessef'an XML element have no ordering. Attributes may happen to be listed in a certain order ir
Chapter 10. Scripts and Streams
Chapter 11. HTTP Web Services

I1.6. Handling Last-Modified and ETag

In these examples, the HTTP server has supported both Bnd Bheaders, but not all servers do. As a web services client,
Chapter 12. SOAP Web Services
Chapter 13. Unit Testing

[B.2. Diving in

#is included with Python 2.t@nd later. Python 2.0 users can download it from ghttp://pyunit.sourceforge.net/).

Chapter 14. Test-First Programming

[¥.3. roman.py, stage 3

The most important thing that’comprehensive unit testing can tell you is when to stop coding. When all the unit tests for
[¥.5. roman.py, stage 5

When all of your tests pass,sstop coding.
Chapter 15. Refactoring
Ib.3. Refactoring

Dive Into Python 239

http://pyunit.sourceforge.net/

Whenever you are going to-eise a regular expression more than once, you should compile it to get a pattern object, then

Chapter 16. Functional Programming

I6.2. Finding the path

The pathnames and filenames you pass to flo not need to exist.
ot only constructs full pathenames, it also normalizes them. That means that if you are in the #irectory, will return it

Like the other functions in the"&and fmodules, fis cross-platform. Your results will look slightly different than my example

Chapter 17. Dynamic functions
Chapter 18. Performance Tuning

I8.2. Using the timeit Module

You can use the #module onjthe command line to test an existing Python program, without modifying the code. See http

The #module only works if ydu/already know what piece of code you need to optimize. If you have a larger Python progr

Dive Into Python 240

http://docs.python.org/lib/node396.html
http://docs.python.org/lib/module-hotshot.html

Appendix D. List of examples
Chapter 1. Installing Python

113. Python on Mac OS X

Bxample 1.1. Two versions of Python
115. Python on RedHat Linux

Bxample 1.2. Installing on RedHat Linux 9
116. Python on Debian GNU/Linux

Bxample 1.3. Installing on Debian GNU/Linux
117. Python Installation from Source

Bxample 1.4. Installing from source
118. The Interactive Shell

Bxample 1.5. First Steps in the Interactive Shell

Chapter 2. Your First Python Program

P11. Diving in
BExample 2.1. odbchelper.py
P13. Documenting Functions

BExample 2.2. Defining the buildConnectionString Function’s doc string

P14. Everything Is an Object

BExample 2.3. Accessing the buildConnectionString Function’s doc string

P14.1. The Import Search Path
Bxample 2.4. Import Search Path
P15. Indenting Code

BExample 2.5. Indenting the buildConnectionString Function

Bxample 2.6. if Statements
Chapter 3. Native Datatypes

Bl1.1. Defining Dictionaries

Bxample 3.1. Defining a Dictionary
B8l1.2. Modifying Dictionaries

BExample 3.2. Modifying a Dictionary

Bxample 3.3. Dictionary Keys Are Case-Sensitive
Bxample 3.4. Mixing Datatypes in a Dictionary

B11.3. Deleting Items From Dictionaries

BExample 3.5. Deleting Items from a Dictionary

B12.1. Defining Lists
BExample 3.6. Defining a List
Bxample 3.7. Negative List Indices
BExample 3.8. Slicing a List
BExample 3.9. Slicing Shorthand
Bl2.2. Adding Elements to Lists
BExample 3.10. Adding Elements to a List

Bxample 3.11. The Difference between extend and append

Bl2.3. Searching Lists
Bxample 3.12. Searching a List
Bl2.4. Deleting List Elements

Bxample 3.13. Removing Elements from a List

812.5. Using List Operators
BExample 3.14. List Operators

Dive Into Python

241

813. Introducing Tuples
Bxample 3.15. Defining a tuple
BExample 3.16. Tuples Have No Methods
Bl4. Declaring variables
BExample 3.17. Defining the myParams Variable
Bl4.1. Referencing Variables
BExample 3.18. Referencing an Unbound Variable
Bl4.2. Assigning Multiple Values at Once
BExample 3.19. Assigning multiple values at once
BExample 3.20. Assigning Consecutive Values
815. Formatting Strings
Bxample 3.21. Introducing String Formatting
Bxample 3.22. String Formatting vs. Concatenating
Bxample 3.23. Formatting Numbers
Bl6. Mapping Lists
Bxample 3.24. Introducing List Comprehensions
Bxample 3.25. The keys, values, and items Functions
Bxample 3.26. List Comprehensions in buildConnectionString, Step by Step
Bl7. Joining Lists and Splitting Strings
Bxample 3.27. Output of odbchelper.py
BExample 3.28. Splitting a String

Chapter 4. The Power Of Introspection

4l1. Diving In
BExample 4.1. apihelper.py
Bxample 4.2. Sample Usage of apihelper.py
Bxample 4.3. Advanced Usage of apihelper.py
412. Using Optional and Named Arguments
BExample 4.4. Valid Calls of info
413.1. The type Function
Bxample 4.5. Introducing type
413.2. The str Function
Bxample 4.6. Introducing str
Bxample 4.7. Introducing dir
BExample 4.8. Introducing callable
413.3. Built-In Functions
BExample 4.9. Built-in Attributes and Functions
al4. Getting Object References With getattr
Bxample 4.10. Introducing getattr
a14.1. getattr with Modules
BExample 4.11. The getattr Function in apihelper.py
a14.2. getattr As a Dispatcher
BExample 4.12. Creating a Dispatcher with getattr
Bxample 4.13. getattr Default Values
a15. Filtering Lists
Bxample 4.14. Introducing List Filtering
416. The Peculiar Nature of and and or
BExample 4.15. Introducing and
Bxample 4.16. Introducing or
416.1. Using the and-or Trick
BExample 4.17. Introducing the and-or Trick
BExample 4.18. When the and-or Trick Fails

Dive Into Python 242

BExample 4.19. Using the and-or Trick Safely
417. Using lambda Functions

BExample 4.20. Introducing lambda Functions
417.1. Real-World lambda Functions

BExample 4.21. split With No Arguments
418. Putting It All Together

BExample 4.22. Getting a doc string Dynamically

BExample 4.23. Why Use str on a doc string?

Bxample 4.24. Introducing ljust

BExample 4.25. Printing a List

Chapter 5. Objects and Object-Orientation

Bl1. Diving In
BExample 5.1. fileinfo.py
Bl2. Importing Modules Using from module import
Bxample 5.2. import module vs. from module import
B13. Defining Classes
Bxample 5.3. The Simplest Python Class
Bxample 5.4. Defining the Filelnfo Class
B13.1. Initializing and Coding Classes
BExample 5.5. Initializing the Filelnfo Class
Bxample 5.6. Coding the Filelnfo Class
Bl4. Instantiating Classes
Bxample 5.7. Creating a Filelnfo Instance
bl4.1. Garbage Collection
BExample 5.8. Trying to Implement a Memory Leak
Bl5. Exploring UserDict: A Wrapper Class
Bxample 5.9. Defining the UserDict Class
BExample 5.10. UserDict Normal Methods
Bxample 5.11. Inheriting Directly from Built-In Datatype dict
Bl6.1. Getting and Setting Items
Bxample 5.12. The __getitem___ Special Method
Bxample 5.13. The __setitem__ Special Method
Bxample 5.14. Overriding __setitem___in MP3Filelnfo
Bxample 5.15. Setting an MP3Filelnfo’s name
Bl7. Advanced Special Class Methods
Bxample 5.16. More Special Methods in UserDict
Bl18. Introducing Class Attributes
Bxample 5.17. Introducing Class Attributes
Bxample 5.18. Modifying Class Attributes
Bl9. Private Functions
BExample 5.19. Trying to Call a Private Method

Chapter 6. Exceptions and File Handling

6l1. Handling Exceptions
Bxample 6.1. Opening a Non-Existent File
611.1. Using Exceptions For Other Purposes
BExample 6.2. Supporting Platform-Specific Functionality
612. Working with File Objects
Example 6.3. Opening a File
612.1. Reading Files

Dive Into Python 243

BExample 6.4. Reading a File
B12.2. Closing Files
Bxample 6.5. Closing a File
612.3. Handling I/O Errors
BExample 6.6. File Objects in MP3Filelnfo
B12.4. Writing to Files
BExample 6.7. Writing to Files
B13. Iterating with for Loops
Bxample 6.8. Introducing the for Loop
BExample 6.9. Simple Counters
Bxample 6.10. Iterating Through a Dictionary
Bxample 6.11. for Loop in MP3Filelnfo
Bl4. Using sys.modules
Bxample 6.12. Introducing sys.modules
Bxample 6.13. Using sys.modules
Bxample 6.14. The __module__ Class Attribute
BExample 6.15. sys.modules in fileinfo.py
B15. Working with Directories
BExample 6.16. Constructing Pathnames
BExample 6.17. Splitting Pathnames
BExample 6.18. Listing Directories
BExample 6.19. Listing Directories in fileinfo.py
Bxample 6.20. Listing Directories with glob
B16. Putting It All Together
BExample 6.21. listDirectory

Chapter 7. Regular Expressions

712. Case Study: Street Addresses
Bxample 7.1. Matching at the End of a String
BExample 7.2. Matching Whole Words
713.1. Checking for Thousands
BExample 7.3. Checking for Thousands
713.2. Checking for Hundreds
Bxample 7.4. Checking for Hundreds
714. Using the {n,m} Syntax
Bxample 7.5. The Old Way: Every Character Optional
Bxample 7.6. The New Way: Fromnhom
714.1. Checking for Tens and Ones
Bxample 7.7. Checking for Tens
Bxample 7.8. Validating Roman Numerals with {n,m}
715. Verbose Regular Expressions
BExample 7.9. Regular Expressions with Inline Comments
716. Case study: Parsing Phone Numbers
Bxample 7.10. Finding Numbers
Bxample 7.11. Finding the Extension
Bxample 7.12. Handling Different Separators
Bxample 7.13. Handling Numbers Without Separators
Bxample 7.14. Handling Leading Characters
BExample 7.15. Phone Number, Wherever | May Find Ye
BExample 7.16. Parsing Phone Numbers (Final Version)

Chapter 8. HTML Processing

Dive Into Python 244

8l1.

812.

813.

8l4.

815.

8l6.

8l7.

g18.

819.

Diving in
Bxample 8.1. BaseHTMLProcessor.py
Bxample 8.2. dialect.py
BExample 8.3. Output of dialect.py
Introducing sgmllib.py
BExample 8.4. Sample test of sgmllib.py
Extracting data from HTML documents
BExample 8.5. Introducing urllib
Bxample 8.6. Introducing urllister.py
BExample 8.7. Using urllister.py
Introducing BaseHTMLProcessor.py
BExample 8.8. Introducing BaseHTMLProcessor
BExample 8.9. BaseHTMLProcessor output
locals and globals
Bxample 8.10. Introducing locals
Bxample 8.11. Introducing globals
Bxample 8.12. locals is read-only, globals is not
Dictionary-based string formatting
Bxample 8.13. Introducing dictionary-based string formatting
Bxample 8.14. Dictionary-based string formatting in BaseHTMLProcessor.py
BExample 8.15. More dictionary-based string formatting
Quoting attribute values
Bxample 8.16. Quoting attribute values
Introducing dialect.py
Bxample 8.17. Handling specific tags
BExample 8.18. SGMLParser
BExample 8.19. Overriding the handle_data method
Putting it all together
BExample 8.20. The translate function, part 1
Bxample 8.21. The translate function, part 2: curiouser and curiouser
Bxample 8.22. The translate function, part 3

Chapter 9. XML Processing

al1.

a12.

a13.

a14.

Diving in
Bxample 9.1. kgp.py
Bxample 9.2. toolbox.py
Bxample 9.3. Sample output of kgp.py
BExample 9.4. Simpler output from kgp.py
Packages
Bxample 9.5. Loading an XML document (a sneak peek)
BExample 9.6. File layout of a package
BExample 9.7. Packages are modules, too
Parsing XML
BExample 9.8. Loading an XML document (for real this time)
BExample 9.9. Getting child nodes
Bxample 9.10. toxml works on any node
Bxample 9.11. Child nodes can be text
Bxample 9.12. Drilling down all the way to text
Unicode
BExample 9.13. Introducing unicode
Bxample 9.14. Storing non-ASCII characters
Bxample 9.15. sitecustomize.py

Dive Into Python

245

Bxample 9.16. Effects of setting the default encoding
Bxample 9.17. Specifying encoding in .py files
BExample 9.18. russiansample.xml
BExample 9.19. Parsing russiansample.xml

A15. Searching for elements
BExample 9.20. binary.xml
Bxample 9.21. Introducing getElementsByTagName
Bxample 9.22. Every element is searchable
Bxample 9.23. Searching is actually recursive

Al6. Accessing element attributes
BExample 9.24. Accessing element attributes
BExample 9.25. Accessing individual attributes

Chapter 10. Scripts and Streams
ID.1. Abstracting input sources

Bxample 10.1. Parsing XML from a file
Bxample 10.2. Parsing XML from a URL

Bxample 10.3. Parsing XML from a string (the easy but inflexible way)

Bxample 10.4. Introducing StringlO

Bxample 10.5. Parsing XML from a string (the file-like object way)

BExample 10.6. openAnything
Bxample 10.7. Using openAnything in kgp.py
ID.2. Standard input, output, and error
Bxample 10.8. Introducing stdout and stderr
Bxample 10.9. Redirecting output
BExample 10.10. Redirecting error information
BExample 10.11. Printing to stderr
Bxample 10.12. Chaining commands
BExample 10.13. Reading from standard input in kgp.py
ID0.3. Caching node lookups
BExample 10.14. loadGrammar
Bxample 10.15. Using the ref element cache
ID.4. Finding direct children of a node
Bxample 10.16. Finding direct child elements
ID.5. Creating separate handlers by node type
Bxample 10.17. Class names of parsed XML objects
BExample 10.18. parse, a generic XML node dispatcher
BExample 10.19. Functions called by the parse dispatcher
1D.6. Handling command-line arguments
Bxample 10.20. Introducing sys.argv
Bxample 10.21. The contents of sys.argv
BExample 10.22. Introducing getopt
Bxample 10.23. Handling command-line arguments in kgp.py

Chapter 11. HTTP Web Services

[1.1. Diving in

Bxample 11.1. openanything.py
In.2. How not to fetch data over HTTP

BExample 11.2. Downloading a feed the quick-and-dirty way
[1.4. Debugging HTTP web services

Bxample 11.3. Debugging HTTP

Dive Into Python

246

[n.5. Setting the User-Agent
BExample 11.4. Introducing urllib2
BExample 11.5. Adding headers with the Request
I1.6. Handling Last-Modified and ETag
BExample 11.6. Testing Last-Modified
BExample 11.7. Defining URL handlers
Bxample 11.8. Using custom URL handlers
Bxample 11.9. Supporting ETag/If-None-Match
I1.7. Handling redirects
Bxample 11.10. Accessing web services without a redirect handler
Bxample 11.11. Defining the redirect handler
Bxample 11.12. Using the redirect handler to detect permanent redirects
Bxample 11.13. Using the redirect handler to detect temporary redirects
I1.8. Handling compressed data
Bxample 11.14. Telling the server you would like compressed data
Bxample 11.15. Decompressing the data
Bxample 11.16. Decompressing the data directly from the server
[1.9. Putting it all together
Bxample 11.17. The openanything function
BExample 11.18. The fetch function
Bxample 11.19. Using openanything.py

Chapter 12. SOAP Web Services

Ip.1. Diving In
Bxample 12.1. search.py
Bxample 12.2. Sample Usage of search.py
Ip.2.1. Installing PyXML
Bxample 12.3. Verifying PyXML Installation
[p.2.2. Installing fpconst
Bxample 12.4. Verifying fpconst Installation
Ip.2.3. Installing SOAPpy
Bxample 12.5. Verifying SOAPpy Installation
Ip.3. First Steps with SOAP
Bxample 12.6. Getting the Current Temperature
Ip.4. Debugging SOAP Web Services
Bxample 12.7. Debugging SOAP Web Services
IP.6. Introspecting SOAP Web Services with WSDL
Bxample 12.8. Discovering The Available Methods
Bxample 12.9. Discovering A Method’s Arguments
Bxample 12.10. Discovering A Method’s Return Values
Bxample 12.11. Calling A Web Service Through A WSDL Proxy
Ip.7. Searching Google
Bxample 12.12. Introspecting Google Web Services
Bxample 12.13. Searching Google
Bxample 12.14. Accessing Secondary Information From Google
Ip.8. Troubleshooting SOAP Web Services
Bxample 12.15. Calling a Method With an Incorrectly Configured Proxy
Bxample 12.16. Calling a Method With the Wrong Arguments
Bxample 12.17. Calling a Method and Expecting the Wrong Number of Return Values
BExample 12.18. Calling a Method With An Application-Specific Error

Chapter 13. Unit Testing

Dive Into Python

247

IB.3. Introducing romantest.py
Bxample 13.1. romantest.py
IB.4. Testing for success
Bxample 13.2. testToRomanKnownValues
I3.5. Testing for failure
Bxample 13.3. Testing bad input to toRoman
Bxample 13.4. Testing bad input to fromRoman
[B.6. Testing for sanity
Bxample 13.5. Testing toRoman against fromRoman
BExample 13.6. Testing for case

Chapter 14. Test-First Programming

[¥.1. roman.py, stage 1

Bxample 14.1. romanl.py

Bxample 14.2. Output of romantest1.py against romanl.py
[¥.2. roman.py, stage 2

Bxample 14.3. roman2.py

Bxample 14.4. How toRoman works

Bxample 14.5. Output of romantest2.py against roman2.py
[¥.3. roman.py, stage 3

Bxample 14.6. roman3.py

BExample 14.7. Watching toRoman handle bad input

Bxample 14.8. Output of romantest3.py against roman3.py
[¥.4. roman.py, stage 4

Bxample 14.9. roman4.py

Bxample 14.10. How fromRoman works

Bxample 14.11. Output of romantest4.py against roman4.py
I[¥.5. roman.py, stage 5

BExample 14.12. roman5.py

Bxample 14.13. Output of romantest5.py against roman5.py

Chapter 15. Refactoring

Ib.1. Handling bugs
BExample 15.1. The bug
BExample 15.2. Testing for the bug (romantest61.py)
BExample 15.3. Output of romantest61.py against roman61.py
Bxample 15.4. Fixing the bug (roman62.py)
BExample 15.5. Output of romantest62.py against roman62.py
[b.2. Handling changing requirements

Bxample 15.6. Modifying test cases for new requirements (romantest71.py)

BExample 15.7. Output of romantest71.py against roman71.py

BExample 15.8. Coding the new requirements (roman72.py)

BExample 15.9. Output of romantest72.py against roman72.py
Ib.3. Refactoring

BExample 15.10. Compiling regular expressions

Bxample 15.11. Compiled regular expressions in roman81.py

BExample 15.12. Output of romantest81.py against roman81.py

BExample 15.13. roman82.py

BExample 15.14. Output of romantest82.py against roman82.py

BExample 15.15. roman83.py

BExample 15.16. Output of romantest83.py against roman83.py

Dive Into Python

248

Ib.4. Postscript
BExample 15.17. roman9.py
BExample 15.18. Output of romantest9.py against roman9.py

Chapter 16. Functional Programming

I6.1. Diving in
BExample 16.1. regression.py
BExample 16.2. Sample output of regression.py
16.2. Finding the path
Bxample 16.3. fullpath.py
Bxample 16.4. Further explanation of os.path.abspath
Bxample 16.5. Sample output from fullpath.py
Bxample 16.6. Running scripts in the current directory
16.3. Filtering lists revisited
BExample 16.7. Introducing filter
BExample 16.8. filter in regression.py
Bxample 16.9. Filtering using list comprehensions instead
16.4. Mapping lists revisited
BExample 16.10. Introducing map
Bxample 16.11. map with lists of mixed datatypes
BExample 16.12. map in regression.py
16.6. Dynamically importing modules
Bxample 16.13. Importing multiple modules at once
Bxample 16.14. Importing modules dynamically
Bxample 16.15. Importing a list of modules dynamically
I6.7. Putting it all together
Bxample 16.16. The regressionTest function
Bxample 16.17. Step 1: Get all the files
BExample 16.18. Step 2: Filter to find the files you care about
Bxample 16.19. Step 3: Map filenames to module names
BExample 16.20. Step 4: Mapping module names to modules
Bxample 16.21. Step 5: Loading the modules into a test suite
Bxample 16.22. Step 6: Telling unittest to use your test suite

Chapter 17. Dynamic functions

II7.2. plural.py, stage 1
Bxample 17.1. plurall.py
BExample 17.2. Introducing re.sub
BExample 17.3. Back to plurall.py
BExample 17.4. More on negation regular expressions
Bxample 17.5. More on re.sub
II7.3. plural.py, stage 2
Bxample 17.6. plural2.py
Bxample 17.7. Unrolling the plural function
II7.4. plural.py, stage 3
Bxample 17.8. plural3.py
II7.5. plural.py, stage 4
Bxample 17.9. plural4.py
Bxample 17.10. plural4.py continued
Bxample 17.11. Unrolling the rules definition
Bxample 17.12. plural4.py, finishing up

Dive Into Python

249

Bxample 17.13. Another look at buildMatchAndApplyFunctions
Bxample 17.14. Expanding tuples when calling functions
II7.6. plural.py, stage 5
Bxample 17.15. rules.en
BExample 17.16. plural5.py
Ii7.7. plural.py, stage 6
BExample 17.17. plural6.py
BExample 17.18. Introducing generators
BExample 17.19. Using generators instead of recursion
BExample 17.20. Generators in for loops
Bxample 17.21. Generators that generate dynamic functions

Chapter 18. Performance Tuning

IB.1. Diving in

Bxample 18.1. soundex/stagel/soundexla.py
IB.2. Using the timeit Module

BExample 18.2. Introducing timeit
IB.3. Optimizing Regular Expressions

Bxample 18.3. Best Result So Far: soundex/stagel/soundexle.py
IB.4. Optimizing Dictionary Lookups

Bxample 18.4. Best Result So Far: soundex/stage2/soundex2c.py
IB.5. Optimizing List Operations

BExample 18.5. Best Result So Far: soundex/stage2/soundex2c.py

Dive Into Python 250

Appendix E. Revision history

Revision History
Revision 5.4 2004-05-20

Added Section 12.1, “Diving In".

Added Section 12.2, “Installing the SOAP Libraries”.

Added Section 12.3, “First Steps with SOAP”.

Added Section 12.4, “Debugging SOAP Web Services”.

Added Section 12.5, “Introducing WSDL”".

Added Section 12.6, “Introspecting SOAP Web Services with WSDL”".
Added Section 12.7, “Searching Google”.

Added Section 12.8, “Troubleshooting SOAP Web Services”.

Added Section 12.9, “Summary”.

[Dcorporated technical reviewer revisions in Chapter 16, Functional Programming and Chapter 18, Performance Tuning

Revision 5.3 2004-05-12

Bdded fexample to Section 18.3, “Optimizing Regular Expressions”. Thanks, Paul.
[corporated copyediting revisions into Chapter 5, Objects and Object-Orientation and Chapter 6, Exceptions ahd File |
Fixed URL of Section 9.7, “Segue”.

Revision 5.2 2004-05-09

Eixed URL of Section 14.1, “roman.py, stage 1”.

Added Section 18.1, “Diving in”.

Added Section 18.2, “Using the timeit Module”.

Added Section 18.3, “Optimizing Regular Expressions”.
Added Section 18.4, “Optimizing Dictionary Lookups”.
Added Section 18.5, “Optimizing List Operations”.
Added Section 18.6, “Optimizing String Manipulation”.
Added Section 18.7, “Summary”.

Revision 5.1 2004-05-05

Qlarified Example 7.7, “Checking for Tens” and Example 7.8, “Validating Roman Numerals with {n,m}".
Qlarified Example 7.10, “Finding Numbers”.

Bixed typo in Example 11.6, “Testing Last-Modified”. Thanks, Jesir.

Eixed typo in Example 3.11, “The Difference between extend and append”. Thanks, Daniel.
Incorporated technical reviewer revisions.[

[corporated copy editor revisions in Chapter 1, Installing Python, Chapter 2, Your First Python Program, Chapfer 3, Na

Revision 5.0 2004-04-16

Added Section 11.1, “Diving in”.

Added Section 11.2, “How not to fetch data over HTTP".

Added Section 11.3, “Features of HTTP”.

Added Section 11.4, “Debugging HTTP web services”.

Added Section 11.5, “Setting the User-Agent”.

Added Section 11.6, “Handling Last-Modified and ETag".

Added Section 11.7, “Handling redirects”.

Added Section 11.8, “Handling compressed data”.

Added Section 11.9, “Putting it all together”.

Added Section 11.10, “Summary”.

Added Example 3.11, “The Difference between extend and append”.
Changed descriptions of how to download Python throughout Chapter 1, Installing Python to be more generic ahd less \
Changed references of "module” to "program" in Section 2.1, “Diving in” and Section 2.4, “Everything Is an Object” sinc:
Added explicit instructions in Section 2.4, “Everything Is an Object” for the reader to open their Python IDE and|follow a

Dive Into Python 251

Changed all examples and descriptions that referred to truth values Iland @o refer to @&nd &J
Updated Example 3.22, “String Formatting vs. Concatenating” to show new Python 2.3 §inessage.
Fixed typo in Example 17.19, “Using generators instead of recursion”.

Bixed typo in Section 7.7, “Summary”.

Bixed typo in Example 17.9, “plurald.py”.

Revision 4.9 2004-03-25

Einished Section 16.7, “Putting it all together”.
Added Section 16.8, “Summary”.

Split unit testing introduction into two chapters, Chapter 13, Unit Testing and Chapter 14, Test-First Programming.
Bixed typo in Example 17.12, “plural4.py, finishing up”.
Blixed typo in Example 17.18, “Introducing generators”.

Revision 4.8 |2004-03-25

Einished Section 17.7, “plural.py, stage 6”.
Einished Section 17.8, “Summary”.
Eixed broken links in Appendix A, Further reading, Appendix B, A 5-minute review, Appendix C, Tips and tricks| Appenc

Revision 4.7 |2004-03-21

Added Section 17.1, “Diving in”.

Added Section 17.2, “plural.py, stage 1”.

Added Section 17.3, “plural.py, stage 2”.

Added Section 17.4, “plural.py, stage 3”.

Added Section 17.5, “plural.py, stage 4”.

Added Section 17.6, “plural.py, stage 5”.

Added Section 17.7, “plural.py, stage 6” (unfinished).
Added Section 17.8, “Summary” (unfinished).

Revision 4.6 2004-03-14

Einished Section 7.4, “Using the {n,m} Syntax”.

Einished Section 7.5, “Verbose Regular Expressions”.
Einished Section 7.6, “Case study: Parsing Phone Numbers”.
Expanded Section 7.7, “Summary”.

Revision 4.5 |2004-03-07

Added Section 7.1, “Diving In".

Added Section 7.4, “Using the {n,m} Syntax” (incomplete).

Added Section 7.5, “Verbose Regular Expressions” (incomplete).
Added Section 7.6, “Case study: Parsing Phone Numbers” (incomplete).
Added Section 7.7, “Summary”.

Moved Section 7.2, “Case Study: Street Addresses” and Section 7.3, “Case Study: Roman Numerals” to regulal expres
Added Example 6.20, “Listing Directories with glob”.

Added Example 6.7, “Writing to Files”.

Added Example 5.11, “Inheriting Directly from Built-In Datatype dict”.

Added Example 10.11, “Printing to stderr”.

Added Example 4.12, “Creating a Dispatcher with getattr” and Example 4.13, “getattr Default Values”.
Added Example 2.6, “if Statements”.

Added Example 3.23, “Formatting Numbers”.

Bplit Chapter 5, Objects and Object-Orientation into 2 chapters: Chapter 5, Objects and Object-Orientation and|Chapter
Bplit Chapter 9, XML Processing into 2 chapters: Chapter 9, XML Processing and Chapter 10, Scripts and Streams.
Bplit Chapter 13, Unit Testing into 2 chapters: Chapter 13, Unit Testing and Chapter 15, Refactoring.
Renamed fio din Chapter 4, The Power Of Introspection.

Bixed incorrect back-reference in Section 8.5, “locals and globals”.

Eixed broken example links in Section 8.1, “Diving in”.

Bixed missing line in example in Section 9.1, “Diving in”.

Dive Into Python 252

Eixed typo in Section 8.2, “Introducing sgmllib.py”.

Revision 4.4 2003-10-08

Added Section 1.1, “Which Python is right for you?”.
Added Section 1.2, “Python on Windows”.

Added Section 1.3, “Python on Mac OS X".

Added Section 1.4, “Python on Mac OS 9".

Added Section 1.5, “Python on RedHat Linux”.

Added Section 1.6, “Python on Debian GNU/Linux”.
Added Section 1.7, “Python Installation from Source”.
Added Section 1.9, “Summary”.

Removed preface.O

Bixed typo in Example 3.27, “Output of odbchelper.py”.
Added link to PEP 257 in Section 2.3, “Documenting Functions”.

Added note about implied assert in Section 3.3, “Introducing Tuples”.

Eixed link to How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) in Section 3.4.2, “Alssigning

Revision 4.3 |2003-09-28

Added Section 16.6, “Dynamically importing modules”.
Added Section 16.7, “Putting it all together” (incomplete).
Eixed links in Appendix F, About the book.

Revision 4.2.1 2003-09-17

Fixed links on index page.[
Fixed syntax highlighting.O

Revision 4.2 |2003-09-12

Eixed typos in Section 16.4, “Mapping lists revisited”, Section 16.3, “Filtering lists revisited”, Section 7.2, “Case
Eixed external link in Section 5.3, “Defining Classes”. Thanks, Harry.
Changed wording at the end of Section 4.5, “Filtering Lists”. Thanks, Paul.

Eixed typo in Section 8.8, “Introducing dialect.py”. Thanks, Wellie.
Fixed links to dialectized examples.O
Fixed external link to the history of Roman numerals. Thanks to many concerned Roman numeral fans around

Study: S

Added sentence in Section 13.5, “Testing for failure” to make it clearer that we're passing a function to gnot a function n

he worl

Revision 4.1 2002-07-28

Added Section 10.3, “Caching node lookups”.

Added Section 10.4, “Finding direct children of a node”.

Added Section 10.5, “Creating separate handlers by node type”.

Added Section 10.6, “Handling command-line arguments”.

Added Section 10.7, “Putting it all together”.

Added Section 10.8, “Summary”.

Eixed typo in Section 6.5, “Working with Directories”. It's §not §Thanks, Abhishek.

Fixed typo in Section 3.7, “Joining Lists and Splitting Strings”. When evaluated (instead of printed), the Python
Changed &xample in Section 4.8, “Putting It All Together” to use a user-defined function, since Python 2.2 obs
Eixed typo in Section 9.4, “Unicode”, "anyway" to "anywhere". Thanks Frank.

Fixed typo in Section 13.6, “Testing for sanity”, doubled word "accept". Thanks Ralph.

Eixed typo in Section 15.3, “Refactoring”, @natches 0 to 3 €haracters, not 4. Thanks Ralph.

Clarified and expanded explanation of implied slice indices in Example 3.9, “Slicing Shorthand”. Thanks Petr.
Added historical note in Section 5.5, “Exploring UserDict: A Wrapper Class” now that Python 2.2 supports subc
Added explanation of g@ilictionary method in Example 5.9, “Defining the UserDict Class”. Thanks Petr.

Clarified Python's lack of overloading in Section 5.5, “Exploring UserDict: A Wrapper Class”. Thanks Petr.
Eixed typo in Example 8.8, “Introducing BaseHTMLProcessor”. HTML comments end with two dashes and a br
Changed tense of note about nested scopes in Section 8.5, “locals and globals” now that Python 2.2 is out. Thg
Eixed typo in Example 8.14, “Dictionary-based string formatting in BaseHTMLProcessor.py”; a space should ha

DE will ¢
bleted th

assing k

acket, nc
nks Peti
ve been

Dive Into Python 253

http://www.ibiblio.org/obp/thinkCSpy/

Added title to note on derived classes in Section 5.5, “Exploring UserDict: A Wrapper Class”. Thanks Petr.
Bdded title to note on downloading #in Section 15.3, “Refactoring”. Thanks Petr.

Bixed typesetting problem in Example 16.6, “Running scripts in the current directory”; tabs should have been sgaces, ar
Fixed capitalization typo in the tip on truth values in Section 3.2, “Introducing Lists”. It's @nd Bnot @nd &Thanks|to every
Changed section titles of Section 3.1, “Introducing Dictionaries”, Section 3.2, “Introducing Lists”, and Section 3.8, “Introc
Upgraded to version 1.52 of the DocBook XSL stylesheets.[]

Upgraded to version 6.52 of the SAXON XSLT processor from Michael Kay.O

Various accessibility-related stylesheet tweaks.[]

Somewhere between this revision and the last one, she said yes. The wedding will be next spring.OJ

Revision 4.0-2 [2002-04-26

Blixed typo in Example 4.15, “Introducing and”.
Blixed typo in Example 2.4, “Import Search Path”.
Fixed Windows help file (missing table of contents due to base stylesheet changes).[]

Revision 4.0 |2002-04-19

Expanded Section 2.4, “Everything Is an Object” to include more about import search paths.
Eixed typo in Example 3.7, “Negative List Indices”. Thanks to Brian for the correction.
Rewrote the tip on truth values in Section 3.2, “Introducing Lists”, now that Python has a separate boolean datatype.
Eixed typo in Section 5.2, “Importing Modules Using from module import” when comparing syntax to Java. Tharjks to Ri
Added note in Section 5.5, “Exploring UserDict: A Wrapper Class” about derived classes always overriding ancestor cla
Eixed typo in Example 5.18, “Modifying Class Attributes”. Thanks to Kevin for the correction.
Added note in Section 6.1, “Handling Exceptions” that you can define and raise your own exceptions. Thanks tg Rony f
Eixed typo in Example 8.17, “Handling specific tags”. Thanks for Rick for the correction.
Added note in Example 8.18, “SGMLParser” about what the return codes mean. Thanks to Howard for the suggestion.
Added #function when creating finstance in Example 10.6, “openAnything”. Thanks to Ganesan for the idea.
Added link in Section 13.3, “Introducing romantest.py” to explanation of why test cases belong in a separate filg.
Ohanged Section 16.2, “Finding the path” to use finstead of Thanks to Marc for the idea.
Added code samples (fgand gifor the upcoming regular expressions chapter.[

Updated and expanded list of Python distributions on home page.[

Revision 3.9 [2002-01-01

Added Section 9.4, “Unicode”.
Added Section 9.5, “Searching for elements”.
Added Section 9.6, “Accessing element attributes”.
Added Section 10.1, “Abstracting input sources”.
Added Section 10.2, “Standard input, output, and error”.
Added simple counter §oop examples (good usage and bad usage) in Section 6.3, “Iterating with for Loops”. THanks to
Eixed typo in Example 3.25, “The keys, values, and items Functions” (two elements of fivere reversed).
Eixed mistake in Section 4.3, “Using type, str, dir, and Other Built-In Functions” with regards to the name of the [imodule
Added additional example in Section 16.2, “Finding the path” to show how to run unit tests in the current working directc
Modified explanation of how to derive a negative list index from a positive list index in Example 3.7, “Negative List Indic
Updated links on home page for downloading latest version of Python.[I
Added link on home page to Bruce Eckel’s preliminary draft of Thinking in Python (http://www.mindview.net/Bogks/TIPy
Revision 3.8 2001-11-18
Added Section 16.2, “Finding the path”.
Added Section 16.3, “Filtering lists revisited”.
Added Section 16.4, “Mapping lists revisited”.
Added Section 16.5, “Data-centric programming”.
Expanded sample output in Section 16.1, “Diving in”.
Einished Section 9.3, “Parsing XML".
Revision 3.7 2001-09-30

Added Section 9.2, “Packages”.

Dive Into Python 254

http://www.mindview.net/Books/TIPython

Added Section 9.3, “Parsing XML".

Qleaned up introductory paragraph in Section 9.1, “Diving in”. Thanks to Matt for this suggestion.
Added Java tip in Section 5.2, “Importing Modules Using from module import”. Thanks to Ori for this suggestion|.
Eixed mistake in Section 4.8, “Putting It All Together” where | implied that you could not use Bo compare to a nyll value
Qlarified in Section 3.2, “Introducing Lists” where | said that fivas equivalent to #The result is the same, but #is faster bet
Eixed mistake in Section 3.2, “Introducing Lists” where | said that livas equivalent to #In fact, it's equivalent to Esince it ¢
Bixed typographical laziness in Chapter 2, Your First Python Program; when | was writing it, | had not yet standardized
Fixed mistake in Section 2.2, “Declaring Functions” where | said that statically typed languages always use explicit varic
Added link to Spanish translation (http://es.diveintopython.org/).0

Revision 3.6.4 |2001-09-06

Added code in WMo handle non-HTML entity references, and added a note about it in Section 8.4, “Introducing BaseHTM|
Modified Example 8.11, “Introducing globals” to include #in the output.

Revision 3.6.3 |2001-09-04
Eixed typo in Section 9.1, “Diving in”.
Added link to Korean translation (http://kr.diveintopython.org/html/index.htm).0]

Revision 3.6.2 |2001-08-31
Eixed typo in Section 13.6, “Testing for sanity” (the last requirement was listed twice).
Revision 3.6 |[2001-08-31

Einished Chapter 8, HTML Processing with Section 8.9, “Putting it all together” and Section 8.10, “Summary”.
Added Section 15.4, “Postscript”.

Started Chapter 9, XML Processing with Section 9.1, “Diving in”.

Started Chapter 16, Functional Programming with Section 16.1, “Diving in”.

Eixed long-standing bug in colorizing script that improperly colorized the examples in Chapter 8, HTML Procesging.
Added link to French translation (http://fr.diveintopython.org/toc.html). They did the right thing and translated the¢ source
Upgraded to version 1.43 of the DocBook XSL stylesheets.[

Upgraded to version 6.43 of the SAXON XSLT processor from Michael Kay.O
Massive stylesheet changes, moving away from a table-based layout and towards more appropriate use of casgading s
Moved to Ant (http://jakarta.apache.org/ant/) to have better control over the build process, which is especially important
Consolidated the available downloadable archives; previously, | had different files for each platform, because the .zip fil
Now hosting the complete XML source, XSL stylesheets, and associated scripts and libraries on SourceForge. [There’s
Re-licensed the example code under the new-and-improved GPL-compatible Python 2.1.1 license (http://www.python.o

Revision 3.5 |2001-06-26

Added explanation of strong/weak/static/dynamic datatypes in Section 2.2, “Declaring Functions”.
Added case-sensitivity example in Section 3.1, “Introducing Dictionaries”.

Use fin Chapter 5, Objects and Object-Orientation to compensate for inferior operating systems whose files areh’t case-
Fixed indentation problems in code samples in PDF version.[]

Revision 3.4 2001-05-31

Added Section 14.5, “roman.py, stage 5”.

Added Section 15.1, “Handling bugs”.

Added Section 15.2, “Handling changing requirements”.

Added Section 15.3, “Refactoring”.

Added Section 15.5, “Summary”.

Fixed yet another stylesheet bug that was dropping nested gags.[]
Revision 3.3 |2001-05-24

Added Section 13.2, “Diving in”.

Added Section 13.3, “Introducing romantest.py”.

Added Section 13.4, “Testing for success”.

Added Section 13.5, “Testing for failure”.

Added Section 13.6, “Testing for sanity”.

Dive Into Python 255

http://es.diveintopython.org/
http://kr.diveintopython.org/html/index.htm
http://fr.diveintopython.org/toc.html
http://jakarta.apache.org/ant/
http://www.python.org/2.1.1/license.html

Added Section 14.1, “roman.py, stage 1”.
Added Section 14.2, “roman.py, stage 2”.
Added Section 14.3, “roman.py, stage 3".
Added Section 14.4, “roman.py, stage 4”.
Tweaked stylesheets in an endless quest for complete Netscape/Mozilla compatibility.(]

Revision 3.2 2001-05-03

Added Section 8.8, “Introducing dialect.py”.

Added Section 7.2, “Case Study: Street Addresses”.

Fixed bug in #inethod that would produce incorrect declarations (adding a space where it couldn’t be).0
Fixed bug in CSS (introduced in 2.9) where body background color was missing.[]

Revision 3.1 2001-04-18

Added code in Mo handle declarations, now that Python 2.1 supports them.[
Added note about nested scopes in Section 8.5, “locals and globals”.

Eixed obscure bug in Example 8.1, “BaseHTMLProcessor.py” where attribute values with character entities wol
Now recommending (but not requiring) Python 2.1, due to its support of declarations in f§J
Updated download links on the home page (http://diveintopython.org/) to point to Python 2.1, where available.O
Moved to versioned filenames, to help people who redistribute the book.O

Revision 3.0 [2001-04-16

Bixed minor bug in code listing in Chapter 8, HTML Processing.

Added link to Chinese translation on home page (http://diveintopython.org/).C]

Revision 2.9 [2001-04-13

Added Section 8.5, “locals and globals”.

Added Section 8.6, “Dictionary-based string formatting”.

Tightened code in Chapter 8, HTML Processing, specifically Bto use fewer and simpler regular expressions.
Fixed a stylesheet bug that was inserting blank pages between chapters in the PDF version.O

Fixed a script bug that was stripping the Birom the home page (http://diveintopython.org/).0

Switched to Google (http://www.google.com/services/free.html) for searching on §J

Revision 2.8 |2001-03-26

Added Section 8.3, “Extracting data from HTML documents”.
Added Section 8.4, “Introducing BaseHTMLProcessor.py”.
Added Section 8.7, “Quoting attribute values”.

Moved Section 5.2, “Importing Modules Using from module import” from Chapter 4, The Power Of Introspection
Bixed typo in code example in Section 5.1, “Diving In” (added colon).
Added several additional downloadable example scripts.O

Added Windows Help output format.(]

Revision 2.7 |[2001-03-16
Added Section 8.2, “Introducing sgmllib.py”.
Tightened up code in Chapter 8, HTML Processing.

Ohanged code in Chapter 2, Your First Python Program to use imethod instead of &
Moved Section 3.4.2, “Assigning Multiple Values at Once” section to Chapter 2, Your First Python Program.

Reorganized language comparisons into &.0]
Revision 2.6 2001-02-28

The Word version is now in native Word format, compatible with Word 97.0

Id not b

Added link to Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/), and added a few links tp individ

Upgraded to version 1.36 of the DocBook XSL stylesheets, which was much more difficult than it sounds. Ther¢ may sti

TMightened up code in Chapter 4, The Power Of Introspection, using the built-in function linstead of manually chécking ty

to Chay

Edited note about gstring method, and provided a link to the new entry in The Whole Python FAQ (http://www.python.or¢
Rewrote Section 4.6, “The Peculiar Nature of and and or” to emphasize the fundamental nature of éand @nd defempha:s

The PDF and Word versions now have colorized examples, an improved table of contents, and properly indentg¢d & and

Dive Into Python 256

http://diveintopython.org/
http://diveintopython.org/
http://diveintopython.org/
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/services/free.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

The PDF and text versions now have fewer problems with improperly converted special characters (like tradempark sym
Added link to download Word version for UNIX, in case some twisted soul wants to import it into StarOffice or spmethin

Fixed several & which were missing titles.[]

Fixed stylesheets to work around bug in Internet Explorer 5 for Mac OS which caused colorized words in the examples:

Fixed archive corruption in Mac OS downloads.[]
In first section of each chapter, added link to download examples. (My access logs show that people skim or sk

p the tw

Tightened the home page (http://diveintopython.org/) and preface even more, in the hopes that someday somepne will |

Soon | hope to get back to actually writing this book instead of debugging it.(]
Revision 2.5 [2001-02-23

Added Section 6.4, “Using sys.modules”.

Added Section 6.5, “Working with Directories”.

Moved Example 6.17, “Splitting Pathnames” from Section 3.4.2, “Assigning Multiple Values at Once” to Section
Added Section 6.6, “Putting It All Together”.

Added Section 5.10, “Summary”.

Added Section 8.1, “Diving in”.

Bixed program listing in Example 6.10, “Iterating Through a Dictionary” which was missing a colon.

Revision 2.4.1 |2001-02-12

Changed newsgroup links to use "news:" protocol, now that s defunct.O
Added file sizes to download links.[

Revision 2.4 2001-02-12

Added "further reading" links in most sections, and collated them in Appendix A, Further reading.
Added URLs in parentheses next to external links in text version.[]

Revision 2.3 |[2001-02-09

Rewrote some of the code in Chapter 5, Objects and Object-Orientation to use class attributes and a better exg
Reorganized Chapter 5, Objects and Object-Orientation to put the class sections first.

Added Section 5.8, “Introducing Class Attributes”.

Added Section 6.1, “Handling Exceptions”.

Added Section 6.2, “Working with File Objects”.

Merged the "review" section in Chapter 5, Objects and Object-Orientation into Section 5.1, “Diving In”.
Colorized all program listings and examples.O

6.5, “Wi

mple of

Eixed important error in Section 2.2, “Declaring Functions”: functions that do not explicitly return a value return Hso you

Added minor clarifications to Section 2.3, “Documenting Functions”, Section 2.4, “Everything Is an Object”, and
Revision 2.2 2001-02-02

Edited Section 4.4, “Getting Object References With getattr”.
Added titles to #ags, so they can have their cute little tooltips too.O
Changed the look of the revision history page.O

Fixed problem | introduced yesterday in my HTML post-processing script that was causing invalid HTML charag
Upgraded to version 1.29 of the DocBook XSL stylesheets.[]

Section

ter refel

Revision 2.1 |2001-02-01

Rewrote the example code of Chapter 4, The Power Of Introspection to use #instead of &nd @iand rewrote expla
Added example of list operators in Section 3.2, “Introducing Lists”.
Added links to relevant sections in the summary lists at the end of each chapter (Section 3.8, “Summary” and §

inatory t

lection 4

Revision 2.0 |2001-01-31

Split Section 5.6, “Special Class Methods” into three sections, Section 5.5, “Exploring UserDict: A Wrapper Cla
Changed notes on garbage collection to point out that Python 2.0 and later can handle circular references withd
Fixed UNIX downloads to include all relevant files.[

5S”, Sect
ut addit

Revision 1.9 |2001-01-15

Removed introduction to Chapter 2, Your First Python Program.
Removed introduction to Chapter 4, The Power Of Introspection.

Dive Into Python

257

http://diveintopython.org/
http://diveintopython.org/

Removed introduction to Chapter 5, Objects and Object-Orientation.
Edited text ruthlessly. | tend to ramble.O

Revision 1.8 2001-01-12

Added more examples to Section 3.4.2, “Assigning Multiple Values at Once”.
Added Section 5.3, “Defining Classes”.

Added Section 5.4, “Instantiating Classes”.

Added Section 5.6, “Special Class Methods”.

More minor stylesheet tweaks, including adding titles to liags, which, if your browser is cool enough, will display

a descli

Revision 1.71 |2001-01-03

Made several modifications to stylesheets to improve browser compatibility.d

Revision 1.7 |2001-01-02

Added introduction to Chapter 2, Your First Python Program.

Added introduction to Chapter 4, The Power Of Introspection.

Added review section to Chapter 5, Objects and Object-Orientation [later removed]
Added Section 5.9, “Private Functions”.

Added Section 6.3, “lterating with for Loops”.

Added Section 3.4.2, “Assigning Multiple Values at Once”.

Wrote scripts to convert book to new output formats: one single HTML file, PDF, Microsoft Word 97, and plain t
Registered the fflomain and moved the book there, along with links to download the book in all available output
Modified the XSL stylesheets to change the header and footer navigation that displays on each page. The top @

Revision 1.6 |2000-12-11

Added Section 4.8, “Putting It All Together”.
Einished Chapter 4, The Power Of Introspection with Section 4.9, “Summary”.
Started Chapter 5, Objects and Object-Orientation with Section 5.1, “Diving In”.

Revision 1.5 |2000-11-22

Added Section 4.6, “The Peculiar Nature of and and or”.

Added Section 4.7, “Using lambda Functions”.

Added appendix that lists section abstracts.[]

Added appendix that lists tips.[

Added appendix that lists examples.[]

Added appendix that lists revision history.[]

Expanded example of mapping lists in Section 3.6, “Mapping Lists”.
Encapsulated several more common phrases into entities.[]
Upgraded to version 1.25 of the DocBook XSL stylesheets.[]

Revision 1.4 2000-11-14

Added Section 4.5, “Filtering Lists”.

Bdded dlocumentation to Section 4.3, “Using type, str, dir, and Other Built-In Functions”.
Bdded texample in Section 3.3, “Introducing Tuples”.

Added additional note about dirick under MacPython.[I

Switched to the SAXON XSLT processor from Michael Kay.O

Upgraded to version 1.24 of the DocBook XSL stylesheets.[]

Added db-html processing instructions with explicit filenames of each chapter and section, to allow deep links tq
Made several common phrases into entities for easier reuse.J
Changed several #fags to #

Revision 1.3 2000-11-09

Added section on dynamic code execution.d
Added links to relevant section/example wherever | refer to previously covered concepts.
Expanded introduction of chapter 2 to explain what the function actually does.

pxt.[]
formats
f each

conten

Explicitly placed example code under the GNU General Public License and added appendix to display license. [Note 8/

Dive Into Python 258

Changed links to licenses to use #ags, now that | know how to use them.[]
Revision 1.2 2000-11-06
Added first four sections of chapter 2.00
Tightened up preface even more, and added link to Mac OS version of Python.[
Filled out examples in "Mapping lists" and "Joining strings" to show logical progression.
Added output in chapter 1 summary.[]
Revision 1.1 |2000-10-31
Finished chapter 1 with sections on mapping and joining, and a chapter summary.[]
Toned down the preface, added links to introductions for non-programmers.[]
Fixed several typos.[
Revision 1.0 |2000-10-30

Initial publicationd

Dive Into Python 259

Appendix F. About the book

This book was written in DocBook XML (http://www.oasis-open.org/docbook/) using Emacs (http://www.gnu.org/software/emacs

If you're interested in learning more about DocBook for technical writing, you can download the XML source (http://diveintopythc

Dive Into Python 260

http://www.oasis-open.org/docbook/
http://www.gnu.org/software/emacs/
http://saxon.sourceforge.net/
http://www.nwalsh.com/xsl/
http://www.easysw.com/htmldoc/
http://ei5nazha.yz.yamagata-u.ac.jp/~aito/w3m/eng/
http://diveintopython.org/download/diveintopython-xml-5.4.zip
http://diveintopython.org/download/diveintopython-common-5.4.zip
http://www.docbook.org/
http://lists.oasis-open.org/archives/

Appendix G. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyong
G.0. Preamble
The purpose of this License is to make a manual, textbook, or other written document “free" in the sense of freedom: to assure ¢
This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sel
We have designed this License in order to use it for manuals for free software, because free software needs free documentation
G.1. Applicability and definitions
This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distribute
A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or witt
A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationshi
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the
The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice tha
A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is availabl
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input form
The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the ma
G.2. Verbatim copying
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License,
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
G.3. Copying in quantity
If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires Cover Tex
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonab
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-reada
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of cop
G.4. Modifications
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous ve
List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the

Dive Into Python 261

State on the Title page the name of the publisher of the Modified Version, as the publisher.3.

Preserve all the copyright notices of the Document.4.

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.5.

Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Versiol
Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s licen:
Include an unaltered copy of this License.8.

Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and
Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, ¢
In any section entitled "Acknowledgements" or "Dedications"”, preserve the section’s title, and preserve in the section all
Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the eqt
Delete any section entitled "Endorsements”. Such a section may not be included in the Modified Version.13.

Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.14.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no mat
You may add a section entitled "Endorsements”, provided it contains nothing but endorsements of your Modified Version by vari
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to tf
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to &
G.5. Combining documents

You may combine the Document with other documents released under this License, under the terms defined in section 4 above
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a
In the combination, you must combine any sections entitled "History" in the various original documents, forming one section enti
G.6. Collections of documents

You may make a collection consisting of the Document and other documents released under this License, and replace the indivi
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a
G.7. Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one c

G.8. Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4

G.9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any othe

G.10. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. S

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered versi

Dive Into Python 262

http://www.gnu.org/copyleft/

G.11. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyrig
Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the term
If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Fr

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your

Dive Into Python 263

Appendix H. Python license
H.A. History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI) in the Netherlands as a
Following the release of Python 1.6, and after Guido van Rossum left CNRI to work with commercial software developers, it bec.
After Python 2.0 was released by BeOpen.com, Guido van Rossum and the other PythonLabs developers joined Digital Creatiol

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

H.B. Terms and conditions for accessing or otherwise using Python

H.B.1. PSF license agreement

This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and the Individual or Organization ("
Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive, royalty-free
In the event Licensee prepares a derivative work that is based on or incorporates Python 2.1.1 or any part thereof, and \
PSF is making Python 2.1.1 available to Licensee on an "AS IS" basis. PSF MAKES NO REPRESENTATIONS OR WA
PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.1.1 FOR ANY INCIDENTAL, SF
This License Agreement will automatically terminate upon a material breach of its terms and conditions.6.

Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint venture be
By copying, installing or otherwise using Python 2.1.1, Licensee agrees to be bound by the terms and conditions of this

H.B.2. BeOpen Python open source license agreement version 1

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at 160 Saratoga Avenue, Santa Clz
Subiject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee a non-
BeOpen is making the Software available to Licensee on an "AS IS" basis. BEOPEN MAKES NO REPRESENTATIONS
BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR ANY INCIDEN
This License Agreement will automatically terminate upon a material breach of its terms and conditions.5.

This License Agreement shall be governed by and interpreted in all respects by the law of the State of California, exclud
By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions of this |

H.B.3. CNRI open source GPL-compatible license agreement

This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office at 1895 Pre:
Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive, royalty-fre
In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof, and \
CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI MAKES NO REPRESENTATIONS OR W
CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY INCIDENTAL, S
This License Agreement will automatically terminate upon a material breach of its terms and conditions.6.

This License Agreement shall be governed by the federal intellectual property law of the United States, including withou
By clicking on the "ACCEPT" button where indicated, or by copying, installing or otherwise using Python 1.6.1, Licensee

H.B.4. CWI permissions statement and disclaimer
Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby gr

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDIN

Dive Into Python 264

	Table of Contents
	 Dive Into Python
	 Chapter�1.�Installing Python
	 1.1.�Which Python is right for you?
	 1.2.�Python on Windows
	 1.3.�Python on Mac OS X
	 1.4.�Python on Mac OS 9
	 1.5.�Python on RedHat Linux
	 1.6.�Python on Debian GNU/Linux
	 1.7.�Python Installation from Source
	 1.8.�The Interactive Shell
	 1.9.�Summary

	 Chapter�2.�Your First Python Program
	 2.1.�Diving in
	 2.2.�Declaring Functions
	 2.3.�Documenting Functions
	 2.4.�Everything Is an Object
	 2.5.�Indenting Code
	 2.6.�Testing Modules

	 Chapter�3.�Native Datatypes
	 3.1.�Introducing Dictionaries
	 3.2.�Introducing Lists
	 3.3.�Introducing Tuples
	 3.4.�Declaring variables
	 3.5.�Formatting Strings
	 3.6.�Mapping Lists
	 3.7.�Joining Lists and Splitting Strings
	 3.8.�Summary

	 Chapter�4.�The Power Of Introspection
	 4.1.�Diving In
	 4.2.�Using Optional and Named Arguments
	 4.3.�Using type, str, dir, and Other Built-In Functions
	 4.4.�Getting Object References With getattr
	 4.5.�Filtering Lists
	 4.6.�The Peculiar Nature of and and or
	 4.7.�Using lambda Functions
	 4.8.�Putting It All Together
	 4.9.�Summary

	 Chapter�5.�Objects and Object-Orientation
	 5.1.�Diving In
	 5.2.�Importing Modules Using from module import
	 5.3.�Defining Classes
	 5.4.�Instantiating Classes
	 5.5.�Exploring UserDict: A Wrapper Class
	 5.6.�Special Class Methods
	 5.7.�Advanced Special Class Methods
	 5.8.�Introducing Class Attributes
	 5.9.�Private Functions
	 5.10.�Summary

	 Chapter�6.�Exceptions and File Handling
	 6.1.�Handling Exceptions
	 6.2.�Working with File Objects
	 6.3.�Iterating with for Loops
	 6.4.�Using sys.modules
	 6.5.�Working with Directories
	 6.6.�Putting It All Together
	 6.7.�Summary

	 Chapter�7.�Regular Expressions
	 7.1.�Diving In
	 7.2.�Case Study: Street Addresses
	 7.3.�Case Study: Roman Numerals
	 7.4.�Using the {n,m} Syntax
	 7.5.�Verbose Regular Expressions
	 7.6.�Case study: Parsing Phone Numbers
	 7.7.�Summary

	 Chapter�8.�HTML Processing
	 8.1.�Diving in
	 8.2.�Introducing sgmllib.py
	 8.3.�Extracting data from HTML documents
	 8.4.�Introducing BaseHTMLProcessor.py
	 8.5.�locals and globals
	 8.6.�Dictionary-based string formatting
	 8.7.�Quoting attribute values
	 8.8.�Introducing dialect.py
	 8.9.�Putting it all together
	 8.10.�Summary

	 Chapter�9.�XML Processing
	 9.1.�Diving in
	 9.2.�Packages
	 9.3.�Parsing XML
	 9.4.�Unicode
	 9.5.�Searching for elements
	 9.6.�Accessing element attributes
	 9.7.�Segue

	 Chapter�10.�Scripts and Streams
	 10.1.�Abstracting input sources
	 10.2.�Standard input, output, and error
	 10.3.�Caching node lookups
	 10.4.�Finding direct children of a node
	 10.5.�Creating separate handlers by node type
	 10.6.�Handling command-line arguments
	 10.7.�Putting it all together
	 10.8.�Summary

	 Chapter�11.�HTTP Web Services
	 11.1.�Diving in
	 11.2.�How not to fetch data over HTTP
	 11.3.�Features of HTTP
	 11.4.�Debugging HTTP web services
	 11.5.�Setting the User-Agent
	 11.6.�Handling Last-Modified and ETag
	 11.7.�Handling redirects
	 11.8.�Handling compressed data
	 11.9.�Putting it all together
	 11.10.�Summary

	 Chapter�12.�SOAP Web Services
	 12.1.�Diving In
	 12.2.�Installing the SOAP Libraries
	 12.3.�First Steps with SOAP
	 12.4.�Debugging SOAP Web Services
	 12.5.�Introducing WSDL
	 12.6.�Introspecting SOAP Web Services with WSDL
	 12.7.�Searching Google
	 12.8.�Troubleshooting SOAP Web Services
	 12.9.�Summary

	 Chapter�13.�Unit Testing
	 13.1.�Introduction to Roman numerals
	 13.2.�Diving in
	 13.3.�Introducing romantest.py
	 13.4.�Testing for success
	 13.5.�Testing for failure
	 13.6.�Testing for sanity

	 Chapter�14.�Test-First Programming
	 14.1.�roman.py, stage 1
	 14.2.�roman.py, stage 2
	 14.3.�roman.py, stage 3
	 14.4.�roman.py, stage 4
	 14.5.�roman.py, stage 5

	 Chapter�15.�Refactoring
	 15.1.�Handling bugs
	 15.2.�Handling changing requirements
	 15.3.�Refactoring
	 15.4.�Postscript
	 15.5.�Summary

	 Chapter�16.�Functional Programming
	 16.1.�Diving in
	 16.2.�Finding the path
	 16.3.�Filtering lists revisited
	 16.4.�Mapping lists revisited
	 16.5.�Data-centric programming
	 16.6.�Dynamically importing modules
	 16.7.�Putting it all together
	 16.8.�Summary

	 Chapter�17.�Dynamic functions
	 17.1.�Diving in
	 17.2.�plural.py, stage 1
	 17.3.�plural.py, stage 2
	 17.4.�plural.py, stage 3
	 17.5.�plural.py, stage 4
	 17.6.�plural.py, stage 5
	 17.7.�plural.py, stage 6
	 17.8.�Summary

	 Chapter�18.�Performance Tuning
	 18.1.�Diving in
	 18.2.�Using the timeit Module
	 18.3.�Optimizing Regular Expressions
	 18.4.�Optimizing Dictionary Lookups
	 18.5.�Optimizing List Operations
	 18.6.�Optimizing String Manipulation
	 18.7.�Summary

	 Appendix�A.�Further reading
	 Appendix�B.�A 5-minute review
	 Appendix�C.�Tips and tricks
	 Appendix�D.�List of examples
	 Appendix�E.�Revision history
	 Appendix�F.�About the book
	 Appendix�G.�GNU Free Documentation License
	 G.0.�Preamble
	 G.1.�Applicability and definitions
	 G.2.�Verbatim copying
	 G.3.�Copying in quantity
	 G.4.�Modifications
	 G.5.�Combining documents
	 G.6.�Collections of documents
	 G.7.�Aggregation with independent works
	 G.8.�Translation
	 G.9.�Termination
	 G.10.�Future revisions of this license
	 G.11.�How to use this License for your documents

	 Appendix�H.�Python license
	 H.A.�History of the software
	 H.B.�Terms and conditions for accessing or otherwise using Python

