Loading...
Searching...
No Matches
STRIDE.cpp
1/*********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2008, Willow Garage, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of the Willow Garage nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *********************************************************************/
34
35/* Author: Bryant Gipson, Mark Moll, Ioan Sucan */
36
37#include "ompl/geometric/planners/stride/STRIDE.h"
38// enable sampling from the GNAT data structure
39#define GNAT_SAMPLER
40#include "ompl/datastructures/NearestNeighborsGNAT.h"
41#include "ompl/base/goals/GoalSampleableRegion.h"
42#include "ompl/tools/config/SelfConfig.h"
43#include <limits>
44#include <cassert>
45
46ompl::geometric::STRIDE::STRIDE(const base::SpaceInformationPtr &si, bool useProjectedDistance, unsigned int degree,
47 unsigned int minDegree, unsigned int maxDegree, unsigned int maxNumPtsPerLeaf,
48 double estimatedDimension)
49 : base::Planner(si, "STRIDE")
50 , useProjectedDistance_(useProjectedDistance)
51 , degree_(degree)
52 , minDegree_(minDegree)
53 , maxDegree_(maxDegree)
54 , maxNumPtsPerLeaf_(maxNumPtsPerLeaf)
55 , estimatedDimension_(estimatedDimension)
56{
58
59 if (estimatedDimension_ < 1.)
60 estimatedDimension_ = si->getStateDimension();
61
62 Planner::declareParam<double>("range", this, &STRIDE::setRange, &STRIDE::getRange, "0.:1.:10000.");
63 Planner::declareParam<double>("goal_bias", this, &STRIDE::setGoalBias, &STRIDE::getGoalBias, "0.:.05:1.");
64 Planner::declareParam<bool>("use_projected_distance", this, &STRIDE::setUseProjectedDistance,
66 Planner::declareParam<unsigned int>("degree", this, &STRIDE::setDegree, &STRIDE::getDegree, "2:20");
67 Planner::declareParam<unsigned int>("max_degree", this, &STRIDE::setMaxDegree, &STRIDE::getMaxDegree, "2:20");
68 Planner::declareParam<unsigned int>("min_degree", this, &STRIDE::setMinDegree, &STRIDE::getMinDegree, "2:20");
69 Planner::declareParam<unsigned int>("max_pts_per_leaf", this, &STRIDE::setMaxNumPtsPerLeaf,
71 Planner::declareParam<double>("estimated_dimension", this, &STRIDE::setEstimatedDimension,
73 Planner::declareParam<double>("min_valid_path_fraction", this, &STRIDE::setMinValidPathFraction,
75}
76
77ompl::geometric::STRIDE::~STRIDE()
78{
79 freeMemory();
80}
81
83{
84 Planner::setup();
85 tools::SelfConfig sc(si_, getName());
86 sc.configureProjectionEvaluator(projectionEvaluator_);
87 sc.configurePlannerRange(maxDistance_);
88 setupTree();
89}
90
92{
93 tree_.reset(
94 new NearestNeighborsGNAT<Motion *>(degree_, minDegree_, maxDegree_, maxNumPtsPerLeaf_, estimatedDimension_));
95 if (useProjectedDistance_)
96 tree_->setDistanceFunction([this](const Motion *a, const Motion *b)
97 {
98 return projectedDistanceFunction(a, b);
99 });
100 else
101 tree_->setDistanceFunction([this](const Motion *a, const Motion *b)
102 {
103 return distanceFunction(a, b);
104 });
105}
106
108{
109 Planner::clear();
110 sampler_.reset();
111 freeMemory();
112 setupTree();
113}
114
116{
117 if (tree_)
118 {
119 std::vector<Motion *> motions;
120 tree_->list(motions);
121 for (auto &motion : motions)
122 {
123 if (motion->state)
124 si_->freeState(motion->state);
125 delete motion;
126 }
127 tree_.reset();
128 }
129}
130
132{
133 checkValidity();
134 base::Goal *goal = pdef_->getGoal().get();
135 auto *goal_s = dynamic_cast<base::GoalSampleableRegion *>(goal);
136
137 while (const base::State *st = pis_.nextStart())
138 {
139 auto *motion = new Motion(si_);
140 si_->copyState(motion->state, st);
141 addMotion(motion);
142 }
143
144 if (tree_->size() == 0)
145 {
146 OMPL_ERROR("%s: There are no valid initial states!", getName().c_str());
148 }
149
150 if (!sampler_)
151 sampler_ = si_->allocValidStateSampler();
152
153 OMPL_INFORM("%s: Starting planning with %u states already in datastructure", getName().c_str(), tree_->size());
154
155 Motion *solution = nullptr;
156 Motion *approxsol = nullptr;
157 double approxdif = std::numeric_limits<double>::infinity();
158 base::State *xstate = si_->allocState();
159
160 while (ptc == false)
161 {
162 /* Decide on a state to expand from */
163 Motion *existing = selectMotion();
164 assert(existing);
165
166 /* sample random state (with goal biasing) */
167 if (goal_s && rng_.uniform01() < goalBias_ && goal_s->canSample())
168 goal_s->sampleGoal(xstate);
169 else if (!sampler_->sampleNear(xstate, existing->state, maxDistance_))
170 continue;
171
172 std::pair<base::State *, double> fail(xstate, 0.0);
173 bool keep = si_->checkMotion(existing->state, xstate, fail) || fail.second > minValidPathFraction_;
174
175 if (keep)
176 {
177 /* create a motion */
178 auto *motion = new Motion(si_);
179 si_->copyState(motion->state, xstate);
180 motion->parent = existing;
181
182 addMotion(motion);
183 double dist = 0.0;
184 bool solved = goal->isSatisfied(motion->state, &dist);
185 if (solved)
186 {
187 approxdif = dist;
188 solution = motion;
189 break;
190 }
191 if (dist < approxdif)
192 {
193 approxdif = dist;
194 approxsol = motion;
195 }
196 }
197 }
198
199 bool solved = false;
200 bool approximate = false;
201 if (solution == nullptr)
202 {
203 solution = approxsol;
204 approximate = true;
205 }
206
207 if (solution != nullptr)
208 {
209 /* construct the solution path */
210 std::vector<Motion *> mpath;
211 while (solution != nullptr)
212 {
213 mpath.push_back(solution);
214 solution = solution->parent;
215 }
216
217 /* set the solution path */
218 auto path(std::make_shared<PathGeometric>(si_));
219 for (int i = mpath.size() - 1; i >= 0; --i)
220 path->append(mpath[i]->state);
221 pdef_->addSolutionPath(path, approximate, approxdif, getName());
222 solved = true;
223 }
224
225 si_->freeState(xstate);
226
227 OMPL_INFORM("%s: Created %u states", getName().c_str(), tree_->size());
228
229 return {solved, approximate};
230}
231
233{
234 tree_->add(motion);
235}
236
241
243{
244 Planner::getPlannerData(data);
245
246 std::vector<Motion *> motions;
247 tree_->list(motions);
248 for (auto &motion : motions)
249 {
250 if (motion->parent == nullptr)
251 data.addStartVertex(base::PlannerDataVertex(motion->state, 1));
252 else
253 data.addEdge(base::PlannerDataVertex(motion->parent->state, 1), base::PlannerDataVertex(motion->state, 1));
254 }
255}
Geometric Near-neighbor Access Tree (GNAT), a data structure for nearest neighbor search.
Abstract definition of a goal region that can be sampled.
Abstract definition of goals.
Definition Goal.h:63
virtual bool isSatisfied(const State *st) const =0
Return true if the state satisfies the goal constraints.
Base class for a vertex in the PlannerData structure. All derived classes must implement the clone an...
Definition PlannerData.h:59
Object containing planner generated vertex and edge data. It is assumed that all vertices are unique,...
unsigned int addStartVertex(const PlannerDataVertex &v)
Adds the given vertex to the graph data, and marks it as a start vertex. The vertex index is returned...
virtual bool addEdge(unsigned int v1, unsigned int v2, const PlannerDataEdge &edge=PlannerDataEdge(), Cost weight=Cost(1.0))
Adds a directed edge between the given vertex indexes. An optional edge structure and weight can be s...
Encapsulate a termination condition for a motion planner. Planners will call operator() to decide whe...
PlannerSpecs specs_
The specifications of the planner (its capabilities)
Definition Planner.h:429
Definition of an abstract state.
Definition State.h:50
The definition of a motion.
Definition STRIDE.h:239
Motion * parent
The parent motion in the exploration tree.
Definition STRIDE.h:254
base::State * state
The state contained by the motion.
Definition STRIDE.h:251
void getPlannerData(base::PlannerData &data) const override
Get information about the current run of the motion planner. Repeated calls to this function will upd...
Definition STRIDE.cpp:242
void setupTree()
Initialize GNAT data structure.
Definition STRIDE.cpp:91
double getMinValidPathFraction() const
Get the value of the fraction set by setMinValidPathFraction()
Definition STRIDE.h:210
void setDegree(unsigned int degree)
Set desired degree of a node in the GNAT.
Definition STRIDE.h:127
void setMinDegree(unsigned int minDegree)
Set minimum degree of a node in the GNAT.
Definition STRIDE.h:137
void setUseProjectedDistance(bool useProjectedDistance)
Set whether nearest neighbors are computed based on distances in a projection of the state rather dis...
Definition STRIDE.h:114
void setEstimatedDimension(double estimatedDimension)
Set estimated dimension of the free space, which is needed to compute the sampling weight for a node ...
Definition STRIDE.h:171
void clear() override
Clear all internal datastructures. Planner settings are not affected. Subsequent calls to solve() wil...
Definition STRIDE.cpp:107
void setRange(double distance)
Set the range the planner is supposed to use.
Definition STRIDE.h:188
STRIDE(const base::SpaceInformationPtr &si, bool useProjectedDistance=false, unsigned int degree=16, unsigned int minDegree=12, unsigned int maxDegree=18, unsigned int maxNumPtsPerLeaf=6, double estimatedDimension=0.0)
Constructor.
Definition STRIDE.cpp:46
bool getUseProjectedDistance() const
Return whether nearest neighbors are computed based on distances in a projection of the state rather ...
Definition STRIDE.h:121
double getEstimatedDimension() const
Get estimated dimension of the free space, which is needed to compute the sampling weight for a node ...
Definition STRIDE.h:178
Motion * selectMotion()
Select a motion to continue the expansion of the tree from.
Definition STRIDE.cpp:237
void setup() override
Perform extra configuration steps, if needed. This call will also issue a call to ompl::base::SpaceIn...
Definition STRIDE.cpp:82
void setMinValidPathFraction(double fraction)
When extending a motion, the planner can decide to keep the first valid part of it,...
Definition STRIDE.h:204
double getGoalBias() const
Get the goal bias the planner is using.
Definition STRIDE.h:106
void setGoalBias(double goalBias)
In the process of randomly selecting states in the state space to attempt to go towards,...
Definition STRIDE.h:100
double estimatedDimension_
Estimate of the local dimensionality of the free space around a state.
Definition STRIDE.h:313
void addMotion(Motion *motion)
Add a motion to the exploration tree.
Definition STRIDE.cpp:232
base::PlannerStatus solve(const base::PlannerTerminationCondition &ptc) override
Function that can solve the motion planning problem. This function can be called multiple times on th...
Definition STRIDE.cpp:131
void setMaxNumPtsPerLeaf(unsigned int maxNumPtsPerLeaf)
Set maximum number of elements stored in a leaf node of the GNAT.
Definition STRIDE.h:158
void setMaxDegree(unsigned int maxDegree)
Set maximum degree of a node in the GNAT.
Definition STRIDE.h:147
double getRange() const
Get the range the planner is using.
Definition STRIDE.h:194
unsigned int getDegree() const
Get desired degree of a node in the GNAT.
Definition STRIDE.h:132
void freeMemory()
Free the memory allocated by this planner.
Definition STRIDE.cpp:115
unsigned int getMaxDegree() const
Set maximum degree of a node in the GNAT.
Definition STRIDE.h:152
unsigned int getMaxNumPtsPerLeaf() const
Get maximum number of elements stored in a leaf node of the GNAT.
Definition STRIDE.h:164
unsigned int getMinDegree() const
Get minimum degree of a node in the GNAT.
Definition STRIDE.h:142
This class contains methods that automatically configure various parameters for motion planning....
Definition SelfConfig.h:60
void configurePlannerRange(double &range)
Compute what a good length for motion segments is.
void configureProjectionEvaluator(base::ProjectionEvaluatorPtr &proj)
If proj is undefined, it is set to the default projection reported by base::StateSpace::getDefaultPro...
#define OMPL_INFORM(fmt,...)
Log a formatted information string.
Definition Console.h:68
#define OMPL_ERROR(fmt,...)
Log a formatted error string.
Definition Console.h:64
bool approximateSolutions
Flag indicating whether the planner is able to compute approximate solutions.
Definition Planner.h:202
A class to store the exit status of Planner::solve()
@ INVALID_START
Invalid start state or no start state specified.