
Coxeter version 3.0

Fokko du Cloux

November 25, 2021

Institut Girard Desargues
UMR 5028 CNRS
Université Lyon-I
69622 Villeurbanne Cedex FRANCE
ducloux@igd.univ-lyon1.fr

Coxeter is a program for the exploration of combinatorial issues related to Coxeter
groups and Hecke algebras, with a particular emphasis on the computation of Kazhdan–
Lusztig polynomials and related questions. It is not a symbolic algebra system; rather,
it is an interface for accessing a direct C++ implementation of the concept of a Coxeter
group. Although I have not been able to fully reach this goal in the current version, the
idea is to make the class (actually, the class hierarchy) of Coxeter groups available in
the form of a C++ library, which could then be used efficiently by other programmers.

The program aims for maximum performance, both in terms of speed and in terms
of memory usage; it does not aim for maximal user-friendliness. If your needs are served
by higher-level programs like GAP/Chevie or Maple, by all means use those; the aim of
Coxeter is to pick up where these programs stop. Particularly Chevie includes a nice
set of Kazhdan–Lusztig routines, including some which are not implemented in Coxeter.

Extending the program is certainly possible (see below), but only for users who are on
speaking terms with C++ and are willing to walk a little through the .h files. Extension
takes place by inserting your own additional code, typically in the special.cpp file, and
recompiling (unless you are adding whole new files, recompiling should just be typing
make.)

1 What is wrong with this program

What is mostly wrong with this program is that is neither C nor C++. In fact, this
program has been my learning ground for C++ (where I used to be a C programmer).
I made the shift with some reluctance, as I tend to love the simple-minded no-nonsense

1

approach of C, and particularly the blazing efficiency that you can get out of it. When I
finally decided to make the switch, a sizable amount of C code had already been written;
moreover I couldn’t afford to take the time to learn everything I should have about C++
for such a project. Therefore, although largely C++ in spirit, the program suffers from
a number of severe defects and shortcomings from the C++ standpoint :

• i/o is not C++ at all; it is plain C.

• I didn’t make use of the STL, even though the program makes heavy use of things
that are provided by the STL, and which I had reinvented before even realizing
that the STL existed : my class List is essentially STL’s vector, where I use
binary trees I could have used STL’s set class, of course I should have used STL’s
string, etc.

• I’m not using exceptions at all; instead I’ve implemented my own error handling
mechanism, probably not rigorously enough. Badly handled error conditions have
been the main source of program crashes in my testing.

Memory allocation is another thorny issue. Whether this was due to clumsy program-
ming on my part, or to the overhead of the default memory allocator, when I tried to
use the builtin new, in presence of heavy resizing (which happens often in large com-
putations) performance all of a sudden became terrible (and I mean terrible : slowing
down by a factor of at least ten, maybe more.) Therefore I decided to write my own
primitive allocator, getting only fairly large (never smaller than 216 bytes by default)
blocks from the system, and never returning them during the lifetime of the program.
My allocations always are a power of 2 bytes, and therefore as much as 50% of the mem-
ory might get wasted (although the ratio in practice is much better), but at least the
speed is satisfactory. At that time I hadn’t heard yet about the possibility of specifying
a memory allocator for the STL classes; in any case I will make the switch to STL classes
only if this issue is resolved.

2 What the program does

One of the main improvements with respect to previous versions of Coxeter is that the
program is now able to handle essentially arbitrary Coxeter groups (provided of course
that the computation you require does not overflow your system). For convenience, and
also because it seems to cover all cases where significant computations are possible, in
this version I require that twice the rank of the group not exceed the number of bits in
a long on your system (so the rank is limited to 16 on a 32-bit machine, and to 32 on a
64-bit machine.) One could argue that 16 is a bit restrictive, but certainly 32 will cover
all cases of interest.

2

The functionalities provided by the program may be classified in a number of categories :

elementary operations : reduced form computations; products; descent sets; elementary
Bruhat order comparison; coatoms.

Kazhdan–Lusztig polynomials : individual Kazhdan–Lusztig polynomials and mu-coef-
ficients for the ordinary, unequal-parameter and inverse cases; layout of a polynomial
computation in these cases; Kazhdan–Lusztig basis elements in the Hecke algebra; sin-
gular stratification, rational singular locus, ordinary and IH Betti numbers of a Schubert
variety.

Kazhdan–Lusztig cells : left, right and two-sided cells for the ordinary and unequal-
parameter cases; ordering on the cells of a finite Coxeter group in both these cases.

One of the serious issues that have to be faced in computational mathematics is the
sheer size of the output for the computations that modern-day computers are able to
handle. Dumping the output on a screen is definitely not good enough in many cases. I
have no real solution for this problem; in any case it is clear that more and more output
will be handled electronically, and will have to be analyzed by other programs before
being usable by humans.

I offer a number of output formats for output to files : a human-readable one, a
“terse” one which is designed to be easily computer-readable, for analysis or further
processing, and GAP-format. The latter is a first step towards connecting (some appro-
priate version of) Coxeter with GAP.

3 What is missing from this version

A number of things that I would have liked to put in the program are missing. Foremost
are parabolic Kazhdan–Lusztig polynomials. They are important in their own right, but
also because the parabolic setting comes much closer to capture the real difficulty of a
Kazhdan–Lusztig computation. Some computations, say of parabolic Kazhdan–Lusztig
polynomials in type E8, will not go through in this version even though they are actually
rather small, only because as a preliminary the program tries to construct an enormous
Bruhat interval. If we handled things in a parabolic setting, the parabolic interval
would be constructed instead, which would not be a problem. This would certainly be
my number one project (apart from improving the code structure) for a future version.

Also, there is nowhere as much stuff on Bruhat intervals as I would like to have. A
lot more can be said, asked, and done about them. But perhaps this really would require
a different program. It may not be a good idea trying to do everything in one place.

There is no attempt to handle special groups in any special way. The only way in
which finite groups are special in this program is through the fact that some compu-
tations, such as Kazhdan–Lusztig cell computations for instance, are defined only for

3

them. It is likely that Bruhat order computations could be much improved for finite
groups; still, my measurements seem to show that even in the current state, Bruhat or-
der computations are not all that dominant, so that at most one could expect to gain a
factor of two (and usually much less). In view of the speed already attained, this doesn’t
seem worth the effort. Users who are especially interested in type A should check out
Gregory Warrington’s programs (see http://www.math.upenn.edu/~gwar/research/

research.html)

4 How to extend the program

The usual mechanism used by computer algebra programs to extend the capabilities of
the program beyond the predefined commands is to provide an interpreted programming
language that allows the user to write his own routines.

No such thing is provided here. However, there is a command called special,
defined in special.cpp, which executes the special f function defined in that file.
Currently this function just prints out a short warning message, but it can be redefined
by inserting any code you wish (and then recompiling the program of course.) It is also
easy to insert new command names executing user-defined functions; it should be easy
to guess what needs to be done by looking at the way the special command is defined in
special.cpp. Of course this is only useful for users which are knowledgeable with C++.
Also, to do anything useful, you will want to use the functionalities already provided by
the CoxGroup class; this will require reading a few of the .h files to see what is available.
In fact, I have tried to make the most useful commands available already at the level of
the CoxGroup class (or sometimes in the derived class FiniteCoxGroup if the command
doesn’t make sense for a general Coxeter group.) So in principle it would be enough to
look there; however, most of the functions from CoxGroup are simply forwarded from
the various components of the class, so it will be necessary to look at a number of other
files to see the definitions and comments for all these functions.

5 How things are done: word reduction

The following sections describe in some more detail the algorithms that are used in the
program to perform the computations. We begin with the most fundamental one, which
is word reduction.

What I have done is provide a complete, purely combinatorial implementation of the
minimal root algorithm discovered by Brigitte Brink and Bob Howlett [3]; the usage of
minimal roots for word reduction and normalization, and the practical aspects of the
construction of the set of minimal roots, are nicely discussed in [4].

4

For any Coxeter system (W,S), Brink and Howlett define a canonical finite subset E
of the set of positive roots of W , called the set of minimal (or elementary) roots, which
contains the simple roots. Define an action of S on the set X = E ∪ {+,−}, where +
and − are two special symbols, by letting + and − be fixed points, and setting s.α = +
if α is a positive root not in E, s.α = − if α = αs is the simple root corresponding to
s, and s.α = β ∈ E otherwise. So we can now view X as a finite state automaton with
alphabet S (except that we do not choose an initial state or a set of accept states at
this point.) Then it is shown in [3] that if s1 . . . sp is a reduced word in W , and if we
read this word through the automaton, starting from the state αs, the word s1 . . . sps is
reduced, unless we reach the state −; moreover, if the generator sj takes us from state
αt to state −, we have sj = t and sj+1 . . . sps = tsj+1 . . . sp; hence the reduction. It
is clear now how the above automaton can be used to reduce an arbitrary word in the
generators, in at most quadratic time. This algorithm is implemented in the function
MinTable::prod in minroots.cpp.

Of course it remains to construct the set of minimal roots, together with the ac-
tion of the generators above. In [3] an algorithm is described in terms of the standard
geometrical realization of the group. This algorithm has the drawback that it requires
finding the sign of potentially complicated algebraic real numbers. Using the detailed
analysis of minimal roots in [2], it is possible to make the algorithm entirely combinato-
rial, using only a few explicit irrationalities (and even then, in a formal fashion.) This is
explained in more detail at the beginning of minroots.cpp. The upshot is that we are
able to construct the “minimal root machine” for essentially any Coxeter group. The
only possible source of trouble is memory overflow; even though for the most frequently
used Coxeter groups (such as finite or affine groups) the number of minimal roots is
fairly small (typically a few hundred), it can grow larger for more exotic cases. For
ranks ≤ 16, if the entries of the Coxeter matrix are not too large, there should not be
more than a few tens of thousands of roots; but for ranks ≤ 32, millions of minimal
roots should be expected in bad cases. The program will quit if it is unable to construct
the minimal root table; nothing useful can be done without word reduction.

Another problem that is neatly solved with the minimal root machine is the word
problem for Coxeter groups : recognizing when two words in the generators represent
the same element. If s1 . . . sp is a reduced word in the generators, and s is a generator
such that s1 . . . sps is reduced, it turns out that the procedure described above also finds
all possible ways to insert a generator t in s1 . . . sp, say after the j-th letter, so that
s1 . . . sjtsj+1 . . . sp = s1 . . . sps. Define the normal form of an element w ∈ W to be
the lexicographically smallest reduced expression of w (with respect to a chosen linear
ordering on the set S). Then it is known that if s1 . . . sp is a normal form, and s1 . . . sps
is reduced (not reduced), the normal form of s1 . . . sps is obtained through a suitable
insertion (deletion) in s1 . . . sp. Now it is easy to show that the minimal root machine in
fact will find all possible insertion/deletion places in a given word, for the multiplication

5

by an additional generator s; so it is also possible to construct the normal form of an
element using the finite state automaton described above.

Of course, once we have word reduction it is an easy matter to determine (though
not very efficiently) the descent set of any given element of the group (recall that the left
(right) descent set of w ∈W is the set of s ∈ S such that l(sw) < l(w) (l(ws) < l(w))),
where l is the usual length function on W .

Also, there is an elementary algorithm to decide, given two elements x and y in W ,
if x ≤ y for the Bruhat ordering on W . It goes as follows : (a) if y = e (the identity
element in W), then x ≤ y if and only if x = e; (b) otherwise, choose s ∈ S such that
l(ys) < l(y) (for instance, the last element in a given reduced expression of y); (c) if
l(xs) < l(x), then x ≤ y if and only if xs ≤ ys; otherwise, x ≤ y if and only if x ≤ ys.

Because of the availability of efficient word reduction, the general representation of
group elements in the program is through reduced expressions; this is the CoxWord class
defined in coxtypes.h. Of course, a word in the generators cannot know that it is
reduced; it is the programmer’s responsibility to ensure (using the available reduction
tools if necessary) that words remain reduced at all times. This makes it possible to
implement the length function, for instance, simply by returning the length of the
word as a string. On the other hand, I do not insist that words always be normal forms;
this would impose too heavy an overhead for no great benefit, particularly since we are
allowing the user to redefine the chosen ordering of the generators (this changes all the
normal forms). I treat normal forms as an input/output issue.

An annoying little twist in the program is the following : because in C the zero-
character is used as a string-terminator, it could not be used in the string-representation
of group elements. On the other hand, it is really a bad idea not to start numbering
the generators from zero. So we end up with the awkward situation that generator #s
is represented by character s+ 1; this requires some shifting when reading and writing
strings. Hence the distinction between the types Generator (numbered from 0) and
CoxLetter (numbered from 1) in coxtypes.h. In C++ strings are represented with an
explicit length, so no special terminator character is required, and we could use zero
directly. Since I’m using C++-style strings now, I could dispense with CoxLetter’s
entirely, but haven’t had the courage to take this on yet.

6 How things are done: Bruhat ordering

The elementary operations described above are actually used very little in the program,
because it seems to me that they become prohibitively expensive as soon as one attempts
serious Kazhdan–Lusztig computations.

In my setup, every Coxeter group W has an enumerated part P , which is always
required to be a decreasing set (also called a closed set, or an order ideal) for the Bruhat

6

ordering : if y ∈W belongs to P , then all x ≤ y also belong to P . This just means that
we have set up once and for all a (1, 1) correspondence between the integers in [0, N [,
where N is the cardinality of P , and the elements of P ; the only requirement for this
correspondence is that it be increasing with respect to the Bruhat ordering, i.e. if x ≤ y
for the Bruhat ordering, then x has a smaller label than y. In particular, the label of
the identity element e is necessarily 0. Initially the enumerated part is the one-element
set {e}. An element of the enumerated part of the group may now be represented by a
single number; this is the type CoxNbr, defined in coxtypes.h.

The following tables are maintained for the enumerated part : (a) a table containing
the lengths; (b) a table containing the left and right descent sets; actually both are
packed into a single long integer, where the n rightmost bits flag the right descents, and
the n next bits flag the left descents, if n is the rank of the group; (c) a table recording
the result of right or left multiplication by a generator (in other words, a table with
N rows, each having 2n entries); here a special value undef coxnbr is used when the
multiplication takes the element outside P ; (d) a table which gives for each x ∈ P the
list of coatoms of x; these are the elements z < x such that l(z) = l(x)−1 — in principle,
this table entirely describes the Bruhat ordering on P . The possibility of packing all
descents in one long is the main reason for the requirement that 2n should not exceed
the number of bits in a long.

Note that the data contained in these tables are (more than) sufficient to define
completely the correspondence between [0, N [and the elements of P . Indeed, if an
element of P is given, say as a reduced word s1 . . . sp, it is enough to start from 0, and
using the multiplication table p times we find the corresponding number. Conversely,
if a number a ∈ [0, N [is given, we look at the descent set to find a left descent for
a, then apply this to a, and continue until we reach 0. The corresponding sequence
of generators, read left-to-right, will then constitute a reduced expression of the group
element labelled a. If we choose the smallest left descent (for a given ordering of the
generators) at each step, we even find the normal form of the element corresponding to
a.

The SchubertContext class, defined in schubert.h, maintains the enumerated part
of the group. The main issue is the problem of extension : given an element w in the
group (in the form of a reduced word, as always), which does not belong to the current
enumerated part P , enlarge P so that P contains w (in fact, what we do is replace P
by P ∪ [e, w], which is the smallest possible decreasing subset containing both P and
w.) An algorithm is described in [5] which does exactly that, in a purely “internal”
fashion : using only the data contained in the various tables in P , and the knowledge
of the Coxeter matrix of W , it is able to find which elements of [e, w] do not currently
belong to P , and enlarge P and all its tables accordingly, putting the new elements
on top. This enlargement has the very nice property that the only modifications that
are made to the already existing enumerated part is that some previously right or left

7

multiplications may become defined; otherwise all existing references to elements in P
remain valid. The function which performs this extension is the extendContext member
function of the CoxGroup class.

The same algorithm which is used to build up the enumerated part may be used
to extract a given interval from the identity [e, w] ⊂ P ; things are much simpler here
because nothing needs to be constructed, it is only a matter of lookup. This is done
by the member function extractClosure from the CoxGroup class; this (or rather the
member function from the SchubertContext class that it refers to) is probably the most
heavily-used function in the program.

7 How things are done: Kazhdan–Lusztig polynomials

I believe that it is clear to anyone who has ever attempted to compute Kazhdan–Lusz-
tig polynomials of any substance, that it is essential to remember polynomials already
computed. On the other hand, we do not want too remember too many, since the size
of the table of computed polynomials is usually the limiting factor for Kazhdan–Lusztig
computations. It is well-known, already from the original Kazhdan–Lusztig paper [6],
that the computation of Px,y, for x ≤ y in W , readily reduces to the case where the
two-sided descent set LR(y) is contained in LR(x); I call such pairs extremal.

Kazhdan–Lusztig polynomial computations are attempted only for elements of W
which belong to the enumerated part P (cf. section 6) (in other words, the first stage
of the computation is extending the enumerated part if necessary.) Again a number of
tables are maintained. The first one is the table of extremal pairs : for each y in P , this
table contains a pointer (initially zero), which when non-zero points to a row of numbers
representing the x ≤ y which are extremal w.r.t. y. The second one contains for each y
in P a pointer to a row of polynomials (more precisely, of pointers to polynomials), one
for each extremal x; finally, for each y in P a list is maintained which, when initialized,
is guaranteed to contain all x ≤ y for which the mu-coefficient µ(x, y) (the coefficient of
highest possible degree in Px,y) is non-zero. In the latter list, ideally we would like to
have an entry exactly when µ(x, y) is non-zero; however to do this consistently would
require the computation of the full row as soon as the row is created, which appears at
first sight to be rather expensive (but I think that it would be worthwile to explore this
issue further.)

One of the novel features in Coxeter3 is the fact that it will handle unequal-
parameter and inverse Kazhdan–Lusztig polynomials as well as the ordinary ones. In
each case, the corresponding tables are maintained (although the mu-tables in the
unequal-parameter case are a bit different; one table needs to be maintained for each
generator s, and the entries in the table are (Laurent) polynomials, not numbers.) All
these computations reduce to the same set of extremal pairs, so the extremal-pair tables

8

are shared among the three contexts, and managed by the KLSupport class, defined in
klsupport.h. Perhaps it is worth explaining how the extremal lists are constructed.
First we construct the interval [e, y] using extractClosure, as explained in section 6.
The result is returned in the form of a bitmap. Now the required set of extremal ele-
ments is the subset of [e, y] made up by those elements which are taken down by each
left/right multiplication from the descent set LR(y). What we do is for each left or right
multiplication by a generator, maintain a bitmap of the set of elements in P which are
taken down (these bitmaps have to be enlarged at each extension of the enumerated
part.) Then to compute the extremal elements, it is enough to intersect [e, y] with the
appropriate bitmaps, which is a very fast operation, and finally read the result into a
list. One of the nice features of the enumerated-context setup, by the way, is the com-
pletely symmetric treatment of right and left multiplication; in fact in the program the
parameter s takes values between 0 and 2n − 1, where n is the rank. If s < n we are
dealing with a right multiplication, otherwise with a left multiplication; but very rarely
is this distinction relevant.

In the Kazhdan–Lusztig polynomial-tables I bear the self-imposed burden of filling
the row for y only if y is smaller than its inverse. Otherwise the lookup function knows
that it has to go over to y−1 and get the polynomial from there, as Px,y = Px−1,y−1 .
This does save a sizable amount of memory, but more importantly the discipline of
systematically going over to y−1 when possible seems to drive the recursion down faster
than it would otherwise go, for some reason which I don’t fully understand yet. However,
this setup introduces complications which mar the elegance of the program considerably,
and I’m always on the verge of renouncing it. Since the mu-tables are in fact rather
small (more precisely, the number of non-zero terms in them is small, so that they could
in theory be made small), I have not imposed this additional constraint on them.

The approach taken by Coxeter3 to the computation of Kazhdan–Lusztig polyno-
mials is rather different from that of its predecessor Coxeter1, in that it computes the
polynomials on demand, whereas Coxeter1 would compute the full table of Kazhdan–
Lusztig polynomials for the group before doing anything else. (This has the advantage
that the computation can be organized with optimal efficiency; for instance only non-zero
mu’s need enter the picture, and a lot of searching can be avoided. So for these full-table
computations, when they are possible, the old program will still be faster.) In the case
of Coxeter3, only the row for the identity is filled at startup. Then if a polynomial
Px,y is required, and we are not in a trivial case where the answer can be given without
computation, first the extremal list for y is constructed (if it was not already available),
and the row of polynomials for y is allocated and initialized with zero-pointers; then
the recursion formula for Px,y is mapped out, the corresponding polynomials and mu-
coefficients are computed if not already available, the result is found, and its address
is looked up in the table of existing Kazhdan–Lusztig polynomials, adding the new
polynomial if necessary; then a reference to that table entry is returned. In the course

9

of the computation, positivity of the coefficients is checked; a negative coefficient will
cause an immediate exit with a (congratulatory) error message. The recursion I use is
the original recursion formula from [6]; to my knowledge this is still the most efficient
one, and will automatically take advantage of all the simplifications that I’m aware of
in special cases.

If a whole row of polynomials is requested (this will be the case, for instance, when
an element of the Kazhdan–Lusztig basis of the Hecke algebra of W is desired, or when
one studies the singularities of the Schubert variety corresponding to y), then the com-
putation can be done quite a bit more efficiently. In this case, all computations are done
by full rows (even though this might lead to the computation of some more polynomials
than strictly necessary), and also it turns out that all calls to individual Bruhat order
comparisons, which take up a good deal of the computing time for individual polyno-
mial computations, can be avoided. Even though this is elementary, it is perhaps worth
explaining as I only realized it very recently. Recall that the recursion formula for Px,y,
for an s ∈ S such that ys < y and xs < x, amounts to adding Pxs,ys and qPx,ys, and

then subtracting µ(z, ys)q
1
2
(l(y)−l(z))Px,z for all x ≤ z < ys such that zs < z. The first

two terms can be gotten from the row for ys (and clearly, as x varies, most if not all
of that row will be used, so that one might as well compute it all.) The set of z < ys
s.t. zs < z can be gotten from one call to extractClosure, and intersection with the
“downset” for right multiplication by s as explained above for the construction of ex-
tremal lists. Then we check µ(z, ys); this requires one row in the mu-table, which we
get for free since it is deduced from the row in the Kazhdan–Lusztig table which we
already have. If µ(z, ys) is zero, which will happen most of the time, we move on to the
next z. The annoying condition is x ≤ z. But this is avoided as follows : since we are
computing a full row, we are considering all such x’es; so we extract [e, z] again with
extractClosure, intersect with the extremal list for y, and get the set of x’es for which
we have to do the subtraction of µ(z, ys)q

1
2
(l(y)−l(z))Px,z. Thanks to this trick which is

much better than what I was doing in Coxeter1, some of the speed-differential between
the two programs is removed.

8 How things are done: µ-coefficients

As explained in the previous section, when one is computing whole rows of polynomials,
or the full table of Kazhdan–Lusztig polynomials, the mu-coefficients come for free :
they can be read off from the corresponding polynomials, which are available when the
µ’s are needed. The situation is rather different when one aims for the computation
of a single polynomial, and one wishes, as I try to do in this program, to compute
only the strictly necessary ingredients. It would then be rather wasteful to compute a
whole polynomial (and of course many others because of all the recursions that might

10

be triggered) when only the µ-part is required. This is even more so when we are only
interested in the µ-table, for instance when we wish to determine the W -graph of the
group, or its decomposition into Kazhdan–Lusztig cells.

It turns out that for the ordinary Kazhdan–Lusztig polynomials, the computation
of the µ’s affords some remarkable simplifications which makes it several orders of mag-
nitude easier than the computation of the corresponding polynomials. I should confess,
by the way, that I became fully aware of this fact only rather late in the construction
of the program, and that I’m not quite sure I assessed it yet to the full. Just as in [6],
Corollary 4.3, one sees that the for any given x ≤ y in W , the ordinary Kazhdan–Lusz-
tig polynomial Px,y and the inverse one Qx,y share the same µ-coefficient. So the same
simplifications hold for the inverse µ-coefficients as well. (In fact, the two computations
could actually share the same µ-table, although this is not currently the case in the
program.)

Here is how it goes. Let x ≤ y ∈ W . When the length difference between x and y
is even, we already know that µ(x, y) = 0; when the length difference is one (i.e., x is a
coatom of y), µ(x, y) = 1. So assume that l(y)− l(x) is odd and > 1. If x is not extremal
w.r.t. y, we also know that µ(x, y) = 0; so we may also assume that x is ectremal w.r.t.
y. These easy reductions, by the way, determine the default allocation of a row in the
µ-table : when no further reductions are available, we allocate one entry for each x
satisfying the above conditions. Now look at the recursion formula for µ(x, y) obtained

by taking the term of degree
1

2
(l(y)− l(x)− 1) in the recursion formula for Px,y. We

start with µ(xs, ys), then add the coefficient in degree
1

2
(l(ys)− l(x)− 2) in Px,ys (note

that the length difference between x and ys is even, so this is the highest-possible degree
term in Px,ys, but not a µ-coefficient), and subtract the sum of all µ(x, z)µ(z, ys), where
x < z < ys is such that zs < z (and of course we may assume that l(z) − l(x) is odd.)
Notice already that the only term which prevents this formula from being a recursion
internal to the µ-table is the one coming from Px,ys. But if it is the case that there
is a generator t such that yst < ys, xt > x (following our usual conventions we write
products on the right, but when t > n this is in fact multiplication on the left), in other
words, if x is not also extremal w.r.t. ys, then we see that the term we need from Px,ys

is in fact µ(xt, ys), and the recursion takes place entirely within the µ-table. But much
more is true : following [6], section 4, one sees that in the subtracted sum there are at
most two non-vanishing terms. Indeed, if l(ys) − l(z) = 1, then we will have zt < z
unless z = yst; and if zt < z we have µ(x, z) = 0 because x is then not extremal w.r.t. z.
If l(z)− l(x) = 1, we see symmetrically that zt > z unless z = xt; and if zt > z, z is not
extremal w.r.t. ys. And if both length differences are > 1, we have µ(x, z) = 0 if zt < z,
and µ(z, ys) = 0 if zt > z. Since µ-coefficients are 1 when the length difference is one,
we see that the subtracted sum reduces at most to the two terms µ(x, yst) + µ(xt, ys).

11

The additional condition zs < s yields the final result :

µ(x, y) =


µ(xs, ys) if xts < xt, ysts > yst
µ(xs, ys)− µ(x, yst) if xts < xt, ysts < yst
µ(xs, ys) + µ(xt, ys) if xts > xt, ysts > yst
µ(xs, ys) + µ(xt, ys)− µ(x, yst) if xts > xt, ysts < yst

Since x is extremal w.r.t. y, the condition xt > x implies yt > y; but it is easy to
see that yst < ys is then only possible if s and t do not commute; in particular they
correspond to multiplications which take place on the same side. If the coefficient m(s, t)
of the Coxeter matrix of W is equal to three, there is a further simplification. It is then
easy to see that the case ysts < yst cannot occur. Moreover if xts > xt we have
xs < x < xt < xts so that xs is the shortest element in the coset of x for the parabolic
subgroup of W generated by s and t, and xst > xs, hence xs is not extremal w.r.t. ys,
and µ(xs, ys) = 0. So the formulæ simplify to :

µ(x, y) =

{
µ(xs, ys) if xts < xt
µ(xt, ys) if xts > xt

The upshot is that the full recursion formula involving the extraction of the interval
[x, ys] has to be called only if LR(x) contains not only LR(y), but LR(ys) as well for
every s ∈ LR(y). This will happen only in a very small number of cases. On the
other hand, when it does happen, the computation of µ(x, y) will trigger a great many
recursive calls, so that in the end the gain is not as big as one might expect at first.

Another aspect of things is that one might use these remarks to condense the µ-
table considerably, storing only the “double-extremal” pairs, particularly in the case of
simply-laced groups. This would certainly be the way to go if one were to attempt the
computation of, say, the full W -graph of a group like E7. I plan to explore these issues
further using a suitably modified version of the program.

9 How things are done: Kazhdan–Lusztig cells

Another feature missing from Coxeter1 which is provided by Coxeter3 is the compu-
tation of (left, right and two-sided) Kazhdan–Lusztig cells. This is done only for finite
groups, as I don’t see as yet a rigorous way of doing it for infinite groups even when, as
in the case of affine groups, it is known that the set of cells is finite.

One brute-force way of computing cells is to compute the full µ-table of the group,
get from there the full W -graph, and then notice that the problem is an instance of
a classic computer algebra problem, viz. computing equivalence classes in an oriented
graph. (I wish to thank Bill Casselman for pointing this out, and for explaining to me
the Tarjan algorithm which performs this computation.) In fact, if in addition to the

12

partition of the group in cells, one wishes to recover the poset structure on the set of
cells (which for finite Weyl groups is isomorphic to the poset of primitive ideals in the
enveloping algebra of the corresponding semisimple Lie algebra, with trivial infinitesimal
character), then it is not very likely that one can get away with much less than that.
But if only the partition is required, much less needs to be done.

Here is how one might go about it. We will say that two elements x and y in W are
in the same right descent class, if their right descent sets are equal. It is known already
from [6] that all elements of a given left cell are in the same right descent class. Moreover,
there is a set of partially defined operations on the group, the so-called ∗-operations,
which preserve left cells. One operation is defined for each pair of non-commuting
elements s, t in the group. The idea is to look at the right cosets for the parabolic
subgroup generated by s and t. If we set m = m(s, t), then each coset has 2m elements,
one of minimal length, one of maximal length, and two in each intermediate lengths. The
domain of the operation ∗s,t is the set of elements in W which are neither of minimal nor
of maximal length in their coset (equivalently, this means that R(w)∩{s, t} has exactly
one element.) For each coset C in W with minimal length representative xmin we define
the two {s, t}-chains of C to be the (m − 1)-element sets Cs = {xmins, xminst, . . .} and
Ct = {xmint, xmints, . . .}. Then each element w in the domain of ∗s,t is contained in
exactly one {s, t}-chain {x1, . . . , xm−1}. If j ∈ {1, . . . ,m − 1} is the index such that
w = xj , we set w∗s,t = xm−j . In particular, ∗s,t permutes each {s, t}-chain. Clearly the
domain of each ∗s,t is a union of right descent classes, and therefore of left cells. Then
it is known [7] that ∗s,t takes each left cell in its domain to another left cell.

This allows us to refine the partition of W in right descent classes as follows. We
define a sequence of partitions (Rk)k≥1 of W by letting R1 be the partition in right
descent classes, and saying that x and y have same class in Rk, k > 1, if and only if they
belong to the same class in Rk−1, and for each pair {s, t} of non-commuting generators
in the group such that ∗s,t is defined for x (and hence for y), x∗s,t and y∗s,t also belong to
the same class in Rk−1. We then define R∞ by saying that x and y belong to the same
class in R∞ if and only if they belong to the same class in Rk for all k ≥ 1. Clearly the
partition of W in left cells refines the partition R∞; in the case of a finite Weyl group,
the partition R∞ is the generalized τ -partition introduced by David Vogan [8].

It turns out that it is not hard to compute the partition R∞, by an algorithm rather
similar to the one which will construct the minimal automaton corresponding to any
given finite state automaton (see for instance [1] algorithm 3.6.) On the other hand,
there is also an easy lower approximation to the partition of W in left cells. Indeed,
it is easy to see that each left cell C contains a whole left {s, t}-string as soon as it
contains one of its elements. Denote S the smallest equivalence relation on W which is
compatible with {s, t}-strings for all non-commutaing pairs {s, t}. Again it is not hard
to compute the partition S.

Our approach to left cells is to first compute the partitions S and R∞; the former

13

is a refinement of the latter. Any class for R∞ which is also a class for S must be a
left cell; for the remaining R∞ classes we compute the W -graph of the class and get the
left cells from there. It is known ([6] section 5) that for type A the partitions R∞ and
S coincide; this seems also to be always the case in type B. So in these cases the cell
partition can be determined without any Kazhdan–Lusztig computations whatsoever!

Right cells can of course be deduced from left cells by inversion. I have to confess
that I haven’t found the time to study up on two-sided cells as much as I would have
liked; currently their determination is implemented really brute force-like from the full
two-sided W -graph of the group. This is certainly a point which should be improved in
the future. Another thing that is currently missing from the program is the computation
of Lusztig’s a-function. Hmm...

We now describe the member functions of the FiniteCoxGroup class which are avail-
able for accessing the various partitions defined in this section. Only the actual Kazh-
dan–Lusztig cells have a corresponding command in the default command interface, and
can be printed out in various formats. The standard way of representing a partition of
a set in p classes, is through a function taking values in the set {0, . . . , p − 1}; and a
general function on a set with N elements is just a sequence of N numbers. The various
partition functions all return references to objects of type Partition, defined in bits.h;
in addition to the actual partition function, this class contains the number of classes of
the partition, and a number of member functions for sorting and traversing partitioned
sets conveniently. Since some of these partitions may be rather expensive to compute,
we avoid computing them more than once; the finite group structure contains predefined
partition objects, initially empty, which are filled when first required. So after the first
call, access should be instantaneous.

• lCell, rCell, lrCell : the partitions in ordinary Kazhdan–Lusztig cells (these
partitions may be printed out using the commands lcells, rcells, lrcells from
the default command interface);

• lUneqCell, rUneqCell, lrUneqCell : the partitions in Kazhdan–Lusztig cells
for unequal parameters (these partitions may be printed out using the commands
lcells, rcells, lrcells as above, after passing to “unequal parameter mode”
using the command uneq);

• lDescentPartition, rDescentPartition : the partitions in left and right de-
scent classes;

• lGeneralizedTau, rGeneralizedTau : the partitions in equivalence classes for
the generalized tau-invariant (the relation R∞);

• lStringPartition, rStringPartition : the partitions for the equivalence rela-
tion S defined above.

14

References

[1] A.V. Aho, R. Seti and J.D. Ullman. Compilers. Addison-Wesley, Reading, Mas-
sachussets, 1986.

[2] B. Brink. The set of dominance-minimal roots. J. Algebra, 206:371–412, 1998.

[3] B. Brink and D. Howlett. A finiteness property and an automatic structure for
Coxeter groups. Math. Ann., 296:179–190, 1993.

[4] W. Casselman. Computation in Coxeter groups. I. Multiplication. Electron. J.
Combin., 9(1):Research Paper 25, 22 pages, 2002.

[5] F. du Cloux. Computing Kazhdan-Lusztig polynomials in arbitrary Coxeter groups.
Experiment. Math., 11(3):387–397, 2002.

[6] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras.
Invent. Math., 53:165–184, 1979.

[7] G. Lusztig. Cells in Affine Weyl Groups. In Algebraic Groups and relaed topics (Ky-
oto/Nagoya 1983), volume 6 of Adv. Stud. Pure Math., pages 255–287, Amsterdam,
1985. North-Holland.

[8] D.A. Vogan Jr. A generalized τ -invariant for the primitive spectrum of a semisimple
Lie algebra. Math. Ann., 242:209–224, 1979.

15

