
February 4, 2015

Yices Manual

Version 2.3

Bruno Dutertre
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Contents

1 Introduction 1
1.1 Download and Installation . 1

1.1.1 Binary Distributions . 1
1.1.2 Source Distribution . 2

1.2 Content of the Distributions . 3
1.3 Library Dependencies . 3
1.4 Supported Logics . 3
1.5 Getting Help and Reporting Bugs . 5

2 Yices 2 Logic 7
2.1 Type System . 7
2.2 Terms and Formulas . 8
2.3 Theories . 9

2.3.1 Arithmetic . 9
2.3.2 Bitvectors . 11

3 Yices 2 Architecture 15
3.1 Main Components . 15
3.2 Solvers . 16
3.3 Context Configurations . 18

4 Yices Tool 19
4.1 Example . 20
4.2 Exists/Forall Problems . 21
4.3 Tool Invocation . 22
4.4 Input Language . 24

4.4.1 Lexical Elements . 24
4.4.2 Declarations . 27
4.4.3 Types . 27
4.4.4 Terms . 30
4.4.5 Commands . 38

iii

5 Support for SMT-LIB 47
5.1 SMT-LIB 2.0 . 47

5.1.1 Tool Invocation . 47
5.1.2 SMT-LIB 2.0 Compliance . 48

5.2 SMT-LIB 1.2 . 51
5.2.1 Tool Usage . 52
5.2.2 Command-Line Options . 52

6 Yices API 53
6.1 A Minimal Example . 53
6.2 Basic API Usage . 54
6.3 Full API . 56

A License Terms 61

B GMP License Terms 65

iv

Chapter 1

Introduction

This manual is an introduction to the logic, language, and architecture of the Yices 2 SMT
solver. Yices is developed at SRI International’s Computer Science Laboratory and is
distributed free-of-charge for noncommercial use, under the terms of the Yices License
(reproduced in Appendix A). To discuss alternative license terms, please contact us at
fm-license@csl.sri.com.

1.1 Download and Installation

The latest version of Yices 2 can be downloaded at http://yices.csl.sri.com. We
provide pre-compiled binaries for the platforms and operating systems listed in Table 1.1.
We also provide source code.

1.1.1 Binary Distributions

To download Yices 2, go to http://yices.csl.sri.com and select the distribution
that you want to install. This will open a web page showing the license terms. If you agree
to the terms, click on the “accept” button to download a tarfile or zip file. Untar or unzip
the file and follow the instructions in the included README file. The binary distributions
are self-contained and do not require installation of third-party libraries.

OS/Hardware Notes
Linux 64 bits Kernel 2.6.24 or more recent
Mac OS X 64 bits Mac OS X Mavericks or Yosemite
Windows (32 and 64 bits) Compatible with Windows XP, Vista, 7 and 8

Table 1.1: Binary Distributions

1

http://yices.csl.sri.com
http://yices.csl.sri.com

To complete installation on Linux or Mac OS X, the binary distributions include a shell
script called install-yices. By default, this script installs Yices in /usr/local. If
this is fine for you, type

sudo ./install-yices

This will install the binaries in /usr/local/bin, the library in /usr/local/lib,
and the header files in /usr/local/include.

To install Yices in a different location, you can type

./install-yices <directory>

(use sudo if necessary).

1.1.2 Source Distribution

The source distribution must be used for operating systems not listed in Table 1.1 (or for old
versions of Linux or Mac OS X). It is also useful if you desire to compile Yices with debug-
ging information, or if you want to link Yices with your own version of the GMP library.
The source is available as a tarfile at http://yices.csl.sri.com. To download it,
you will be asked to agree to the Yices license terms (cf. Appendix A).

Yices 2 is straightforward to compile on UNIX-like systems. Any recent version of
GCC or Clang should work. The compilation uses standard tools such as GNU make and
sed. It also requires the gperf utility and the GMP library. On many systems, gperf
and GMP can be installed using package managers. For example, on Ubuntu:

sudo apt-get install libgmp-dev
sudo apt-get install gperf

After this, compiling and installing Yices uses the following standard steps:

./configure
make -j
sudo make install

This will build binaries and libraries, and install them in /usr/local. You can change
the installation location by giving a --prefix option to configure.

For Windows, we recommend building Yices using Cygwin. If you want a version
that works natively on Windows (i.e., does not depend on the Cygwin DLLs) then you
can compile form Cygwin using the MinGW cross-compilers. The file doc/COMPILING
included in the source distribution gives more details.

2

http://yices.csl.sri.com

1.2 Content of the Distributions

The binary distributions include the Yices executables, the Yices library and header files,
and examples and documentation. Four solvers are currently included:

• yices is the main SMT solver. It can read and process input given in Yices 2’s
specification language. This language is explained in Chapter 4.

• yices-smt is a solver for input in the SMT-LIB 1.2 notation [RT06].

• yices-smt2 is a solver for input in the SMT-LIB 2.0 notation [BST12].

• yices-sat is a Boolean satisfiability solver that can read input in the DIMACS
CNF format.

The Yices library and header files allows you to use Yices via its API, as explained in
Chapter 6.

The source distribution includes source code for the above four solvers and for the
library. It also includes documentation for the source, more examples and regression tests,
various scripts and utilities, and the LATEX source for this manual.

1.3 Library Dependencies

Yices uses the GNU Multiple Precision Arithmetic Library (GMP). The binary distribution
are statically linked against GMP. If you build Yices from source, you will need to install
GMP on your system. The GMP library can be installed using common package managers
in most Linux distributions. It can also be built and installed from source. For more infor-
mation, please visit the GMP website http://gmplib.org. GMP is distributed under
the LGPLv3 License, reproduced in Appendix B.

1.4 Supported Logics

The current Yices 2 release supports quantifier-free combinations of linear integer and real
arithmetic, uninterpreted function, arrays, and bitvectors. Currently, Yices 2 supports all
SMT-LIB logics that do not involve quantifiers or nonlinear arithmetic as summarized in
Table 1.2. The meaning of the logics and theories in this table is explained at the SMT-LIB
website (http://www.smtlib.org). In addition, Yices 2 supports a more general
set of array operations than required by SMT-LIB, and Yices 2 has support for tuple and
enumeration types, which are not part of SMT-LIB.

3

http://gmplib.org
http://www.smtlib.org

Logic Description Supported

ALIA Arrays, Linear Integer Arithmetic, Quantifiers no

AUFLIA Arrays, Linear Integer Arithmetic, Quantifiers, Uninterpreted Functions no

AUFLIRA Arrays, Mixed Linear Arithmetic, Quantifiers, Uninterpreted Functions no

AUFNIRA
Arrays, Nonlinear Integer Arithmetic, Quantifiers,
Uninterpreted Functions

no

LIA Linear Integer Arithmetic, Quantifiers no

LRA Linear Real Arithmetic, Quantifiers no

NIA Nonlinear Integer Arithmetic, Quantifiers no

NRA Nonlinear Real Arithmetic, Quantifiers no

QF ABV Arrays and Bitvectors yes

QF ALIA Arrays and Linear Integer Arithmetic yes

QF AUFBV Arrays, Bitvectors Uninterpreted Functions yes

QF AUFLIA Arrays, Linear Integer Arithmetic, Uninterpreted Functions yes

QF AX Arrays (with extensionality) yes

QF BV Bitvectors yes

QF IDL Integer Difference Logic yes

QF LIA Linear Integer Arithmetic yes

QF LRA Linear Real Arithmetic yes

QF NIA Nonlinear Integer Arithmetic no

QF NRA Nonlinear Real Arithmetic no

QF RDL Real Difference Logic yes

QF UF Uninterpreted Functions yes

QF UFBV Uninterpreted Functions, Bitvectors yes

QF UFIDL Uninterpreted Functions, Integer Difference Logic yes

QF UFLIA Uninterpreted Functions, Linear Integer Arithmetic yes

QF UFLRA Uninterpreted Functions, Linear Real Arithmetic yes

QF UFNIA Uninterpreted Functions, Nonlinear Integer Arithmetic no

QF UFNRA Uninterpreted Functions, Nonlinear Real Arithmetic no

UFLRA Nonlinear Real Arithmetic, Quantifiers, Uninterpreted Functions no

UFNIA Nonlinear Integer Arithmetic, Quantifiers, Uninterpreted Functions no

Table 1.2: Logics Supported by Yices 2

4

From: ...
Subject: Yices 1.0.36 segfault
To: yices-bugs@csl.sri.com

Hi,

I am experiencing a segmentation fault from Yices. I have attached
a small test case that causes the crash. I am using Yices 1.0.36 on
x86_64 statically linked against GMP on Ubuntu 12.04.
...

Figure 1.1: Good Bug Report

1.5 Getting Help and Reporting Bugs

The Yices website provides the latest release and information about Yices. For bug reports
and questions about Yices, please contact us via the Yices mailing lists:

• Send e-mail to yices-help@csl.sri.com if you have questions about Yices
usage or installation.

This mailing list is moderated, but you do not need to register to post to it. You can
register to this mailing list if you are interested in helping others.

• To report a bug, send e-mail to yices-bugs@csl.sri.com.

Please include enough information in your bug report to enable us to reproduce and
fix the problem. Figure 1.1 shows what a good bug report looks like. This example is
an edited version of real bug report that we actually received (with private information
removed). Figure 1.2 shows an example of poor bug report. This example is fictitious
but representative of what we sometimes receive on our mailing list.

Please try to use Figure 1.1 as a template and include answers to the following ques-
tions:

– Which version of Yices are you using?

– On which hardware and OS?

– How can we reproduce the bug? If at all possible send an input file or program
fragment.

5

From: ...
Subject: Segmentation fault
To: yices-bugs@csl.sri.com

I have just downloaded Yices. After I compile my code and link it
with Yices, there is a segmentation fault when I run the executable.

Can you help?

Thanks,
...

Figure 1.2: Poor Bug Report

From: ...
Subject: Invitation to Connect on LinkedIn
To: yices-bugs@csl.sri.com

I’d like to add you to my professional network on LinkedIn.

...

Figure 1.3: Terrible Bug Report

6

Chapter 2

Yices 2 Logic

Yices 2 specifications are written in a typed logic. The language is intended to be simple
enough for efficient processing by the tool and expressive enough for most applications.
The Yices 2 language is similar to the logic supported by Yices 1, but the most complex
type constructs have been removed.

2.1 Type System

Yices 2 has a few built-in types for primitive objects:

• the arithmetic types int and real

• the Boolean type bool

• the type (bitvector k) of bitvectors of size k, where k is a positive integer.

All these built-in types are atomic. The set of atomic types can be extended by declaring
new uninterpreted types and scalar types. An uninterpreted type denotes a nonempty col-
lection of objects with no cardinality constraint. A scalar type denotes a nonempty, finite
set of objects. The cardinality of a scalar type is defined when the type is created.

In addition to the atomic types, Yices 2 provides constructors for tuple and function types.
The set of all Yices 2 types can be defined inductively as follows:

• Any atomic type τ is a type.

• If n > 0 and σ1, . . . , σn are n types, then σ = (σ1 × . . .× σn) is a type. Objects of
type σ are tuples (x1, . . . , xn) where xi is an object of type σi.

• If n > 0 and σ1, . . . , σn and τ are types, then σ = (σ1 × . . . × σn → τ) is a type.
Objects of type σ are functions of domain σ1 × . . .× σn and range τ .

7

By construction, all the types are nonempty. Yices does not have a specific type constructor
for arrays since the logic does not distinguish between arrays and functions. For example,
an array indexed by integers is simply a function of domain int.

Yices 2 uses a simple form of subtyping. Given two types σ and τ , let σ < τ denote that σ
is a subtype of τ . Then the subtype relation is defined by the following rules:

• τ < τ (any type is a subtype of itself)

• int < real (the integers form a subtype of the reals)

• If σ1 < τ1, . . . , σn < τn then (σ1 × . . .× σn) < (τ1 × . . .× τn).

• If τ < τ ′ then (σ1 × . . .× σn → τ) < (σ1 × . . .× σn → τ ′).

For example, the type (int× int) (pairs of integers) is a subtype of (real× real) (pairs
of reals).

Two types, τ and τ ′, are said to be compatible if they have a common supertype, that is,
if there exists a type σ such that τ < σ and τ ′ < σ. If that is the case, then there exists
a unique minimal supertype among all the common supertypes. We denote the minimal
supertype of τ and τ ′ by τ t τ ′. By definition, we then have

τ < σ and τ ′ < σ ⇒ τ t τ ′ < σ.

For example, the tuple types τ = (int × real × int) and τ = (int × int × real)
are compatible. Their minimal supertype is τ t τ ′ = (int × real × real). The type
(real× real× real) is also a common supertype of τ and τ ′ but it is not minimal.

2.2 Terms and Formulas

In Yices 2, the atomic terms include the Boolean constants (true and false) as well as
arithmetic and bitvector constants.

When a scalar type τ of cardinality n is declared, n distinct constant c1, . . . , cn of type τ
are also implicitly defined. In the Yices 2 syntax, this is done via a declaration of the form:

(define-type tau (scalar c1 ... cn))

An equivalent functionality is provided by the Yices API. The API allows one to create a
new scalar type and to access n constants of that type indexed by integers between 0 and
n− 1 (check file include/yices.h for explanations).

The user can also declare uninterpreted constants of arbitrary types. Informally, uninter-
preted constants of type τ can be considered like global variables, but Yices (in particular
the Yices API) makes a distinction between variables of type τ and uninterpreted constants

8

of type τ . In the Yices API, variables are used to build quantified expressions and to support
term substitutions. Free variables are not allowed to occur in assertions.

The term constructors include the common Boolean operators (conjunction, disjunction,
negation, implication, etc.), an if-then-else constructor, equality, function application, and
tuple constructor and projection. In addition, Yices provides an update operator that can
be applied to arbitrary functions. The type-checking rules for these primitive operators are
described in Figure 2.1, where the notation t :: τ means “term t has type τ”.

There are no separate syntax or constructors for formulas. In Yices 2, a formula is simply a
term of Boolean type.

The semantics of most of these operators is standard. The update operator for functions is
characterized by the following axioms1:

((update f t1 . . . tn v) t1 . . . tn) = v

u1 6= t1 ∨ . . . ∨ un 6= tn ⇒ ((update f t1 . . . tn v) u1 . . . un) = (f u1 . . . un)

In other words, (update f t1 . . . tn v) is the function equal to f at all points except
(t1, . . . , tn). Informally, if f is interpreted as an array then the update corresponds to “stor-
ing” v at position t1, . . . , tn in the array. Reading the content of the array is nothing other
than function application: (f i1 . . . in) is the content of the array at position i1, . . . , in.

The full Yices 2 language has a few more operators not described here, and it includes exis-
tential and universal quantifiers. We do not describe the type-checking rules for quantifiers
here since Yices 2 has limited support for quantified formulas at this point.

2.3 Theories

In addition to the generic operators presented previously, the Yices language includes the
standard arithmetic operators and a rich set of bitvector operators.

2.3.1 Arithmetic

Arithmetic constants are arbitrary precision integers and rationals. Although Yices uses
exact arithmetic, rational constants can be written in floating-point notation. Internally,
Yices converts floating-point input to rationals. For example, the floating-point expression
3.04e-1 is converted to 38/125.

The Yices language supports the traditional arithmetic operators (i.e., addition, subtraction,
multiplication) with the exception that it does not allow division by a non constant, to avoid
issues related to division by zero. For example, the expression (x + 4y)/3 is allowed, but

1These are the main axioms of the McCarthy theory of arrays.

9

Boolean Operators

t :: bool

(not t) :: bool

t1 :: bool t2 :: bool

(implies t1 t2) :: bool

t1 :: bool . . . tn :: bool

(or t1 . . . tn) :: bool

t1 :: bool . . . tn :: bool

(and t1 . . . tn) :: bool

Equality

t1 :: τ1 t2 :: τ2
(t1 = t2) :: bool

provided τ1 and τ2 are compatible

If-then-else

c :: bool t1 :: τ1 t2 :: τ2
(ite c t1 t2) :: τ1 t τ2

provided τ1 and τ2 are compatible

Tuple Constructor and Projection

t1 :: τ1 . . . tn :: τn
(tuple t1 . . . tn) :: (τ1 × . . .× τn)

t :: (τ1 × . . .× τn)
(selecti t) :: τi

Function Application

f :: (τ1 × . . .× τn → τ) t1 :: σ1 . . . tn :: σn σ1 < τ1 . . . σn < τn
(f t1 . . . tn) :: τ

Function Update

f :: (τ1 × . . .× τn → τ) t1 :: σ1 . . . tn :: σn v :: σ σi < τi σ < τ

(update f t1 . . . tn v) :: (τ1 × . . .× τn → τ)

Figure 2.1: Primitive Operators and Type Checking

10

3/(x+ 4y) is not. The arithmetic predicates are the usual comparison operators, including
both strict and nonstrict inequalities.

The language allows nonlinear polynomials but this is not fully supported by the tool at this
time. Yices 2 can solve problems involving real and integer linear arithmetic, but it does
not yet include a solver for nonlinear arithmetic.

2.3.2 Bitvectors

Yices supports all the bitvector operators defined in the SMT-LIB standards [RT06,BST12].
The most commonly used operators are listed in Table 2.1. They include bitvector arith-
metic (where bitvectors are interpreted either as unsigned integers or as signed integers
in two’s complement representation), logical operators such as bitwise OR or AND, logi-
cal and arithmetic shifts, concatenation, and extraction of subvectors. Other operators are
defined in the theory QF BV of SMT-LIB (cf. http://www.smtlib.org); Yices 2
supports all of them.

The semantics of all the bitvector operators is defined in the SMT-LIB standard. Yices 2
follows the standard except for the case of division by zero. In SMT-LIB, the result of a
division by zero is an unspecified value, but one must ensure that the division operators are
functional. In other words, SMT-LIB does not specify the result of (bvudiv a b) if b is the
zero vector, but (bvudiv a b) and (bvudiv c b) must be equal whenever a = c, even if b is
the zero vector. Yices 2 uses a simpler semantics (inspired by the BTOR format [BBL08]):

Unsigned Division: If b is the zero bitvector of n bits then

(bvudiv a b) = 0b111...1

(bvurem a b) = a

In general, the quotient (bvudiv a b) is the largest unsigned integer that can be rep-
resented on n bits, and is smaller than a/b, and the following identity holds for all
bitvectors a and b

a = (bvadd (bvmul (bvudiv a b) b) (bvurem a b)).

Signed Division If b is the zero bitvector of n bits then

(bvsdiv a b) = 0b000..01 if a is negative

(bvsdiv a b) = 0b111...1 if a is non-negative

(bvsrem a b) = a

(bvsmod a b) = a

11

http://www.smtlib.org

Operator and Type Meaning
bvadd :: ((bv n)× (bv n)→ (bv n)) addition
bvsub :: ((bv n)× (bv n)→ (bv n)) subtraction
bvmul :: ((bv n)× (bv n)→ (bv n)) multiplication
bvneg :: ((bv n)→ (bv n)) 2’s complement opposite
bvudiv :: ((bv n)× (bv n)→ (bv n)) quotient in unsigned division
bvudiv :: ((bv n)× (bv n)→ (bv n)) remainder in unsigned division
bvsdiv :: ((bv n)× (bv n)→ (bv n)) quotient in signed division

with rounding toward zero
bvsrem :: ((bv n)× (bv n)→ (bv n)) remainder in signed division

with rounding toward zero
bvsmod :: ((bv n)× (bv n)→ (bv n)) remainder in signed division

with rounding toward −∞
bvule :: ((bv n)× (bv n)→ bool unsigned less than or equal
bvuge :: ((bv n)× (bv n)→ bool unsigned greater than or equal
bvult :: ((bv n)× (bv n)→ bool unsigned less than
bvugt :: ((bv n)× (bv n)→ bool unsigned greater than
bvsle :: ((bv n)× (bv n)→ bool signed less than or equal
bvsge :: ((bv n)× (bv n)→ bool signed greater than or equal
bvslt :: ((bv n)× (bv n)→ bool signed less than
bvsgt :: ((bv n)× (bv n)→ bool signed greater than
bvand :: ((bv n)× (bv n)→ (bv n)) bitwise and
bvor :: ((bv n)× (bv n)→ (bv n)) bitwise or
bvnot :: ((bv n)→ (bv n)) bitwise negation
bvxor :: ((bv n)× (bv n)→ (bv n)) bitwise exclusive or
bvshl :: ((bv n)× (bv n)→ (bv n)) shift left
bvlshr :: ((bv n)× (bv n)→ (bv n)) logical shift right
bvashr :: ((bv n)× (bv n)→ (bv n)) arithmetic shift right
bvconcat :: ((bv n)× (bvm)→ (bv n+m)) concatenation
bvextracti,j((bv n)→ (bvm)) extract bits i down to j

form a bitvector of size n

Table 2.1: Bitvector Operators

12

Beside the SMT-LIB operations, Yices includes two operators to convert between arrays of
Booleans and bitvectors. These operators were introduced in Yices 2.2.2.

• (bool-to-bv b1 . . . bn) is the bitvector obtained by concatenating n Boolean terms
b1, . . . , bn. The high-order bit is b1 and the low-order bit is bn. For example, the
expression

(bool-to-bv true false false false)

is the same as the bitvector constant 0b1000.

• (bit a i) extracts the i-th bit of bitvector a as a Boolean term. If a has n bits, then
i must be an index between 0 and n − 1. The low-order bit has index 0, and the
high-order bit has index n− 1. For example, we have

(bit (bool-to-bv false b true true) 2) = b,

where b is a Boolean term.

13

14

Chapter 3

Yices 2 Architecture

Yices 2 has a modular architecture. You can select a specific combination of theory solvers
for your needs using the API or the yices executable. With the API, you can maintain
several independent contexts in parallel, possibly each using different solvers and settings.

3.1 Main Components

The Yices 2 software can be conceptually decomposed into three main modules:

Term Database Yices 2 maintains a global database in which all terms and types are
stored. Yices 2 provides an API for constructing terms, formulas, and types in this
database.

Context Management A context is a central data structure that stores asserted formulas.
Each context contains a set of assertions to be checked for satisfiability. The context-
management API supports operations for creating and initializing contexts, for as-
serting formulas into a context, and for checking the satisfiability of the asserted
formulas. Optionally, a context can support operations for retracting assertions us-
ing a push/pop mechanism. Several contexts can be constructed and manipulated
independently.

Contexts are highly customizable. Each context can be configured to support a spe-
cific theory, and to use a specific solver or combination of solvers.

Model Management If the set of formulas asserted in a context is satisfiable, then one
can construct a model of the formulas. The model maps symbols of the formulas
to concrete values (e.g., integer or rational values, or bitvector constants). The API
provides functions to build and query models.

Figure 3.1 shows the top-level architecture of Yices 2, divided into the three main mod-
ules. Each context consists of two separate components: The solver employs a Boolean

15

Terms Contexts Models

Terms
and
types

Simplifier
Internalizer

Solver

Simplifier
Internalizer

Solver

Figure 3.1: Top-level Yices 2 Architecture

satisfiability solver and decision procedures for determining whether the formulas asserted
in the context are satisfiable. The simplifier/internalizer component converts the format
used by the term database into the internal format used by the solver. In particular, the
internalizer rewrites all formulas in conjunctive normal form, which is used by the internal
SAT solver.

3.2 Solvers

In Yices 2, it is possible to select a different solver (or combination of solvers) for the
problem of interest. Each context can thus be configured for a specific class of formulas. For
example, you can use a solver specialized for linear arithmetic, or a solver that supports the
full Yices 2 language. Figure 3.2 shows the architecture of the most general solver available
in Yices 2. A major component of all solvers is a SAT solver based on the Conflict-Driven
Clause Learning (CDCL) procedure. The SAT solver is coupled with one or more so-called
theory solvers. Each theory solver implements a decision procedure for a particular theory.
Currently, Yices 2 includes four main theory solvers:

• The UF Solver deals with the theory of uninterpreted functions with equality1. It
implements a decision procedure based on computing congruence closures, similar
to the Simplify system [DNS05], with other ideas borrowed from [NO07].

1UF stands for uninterpreted functions.

16

CDCL
SAT

Solver

UF
Solver

Array
Solver

Arithmetic
Solver

Bitvector
Solver

Figure 3.2: Solver Components

• The Arithmetic Solver deals with linear integer and real arithmetic. It implements a
decision procedure based on the Simplex algorithm [DdM06a, DdM06b].

• The Bitvector Solver deals with the theory of bitvectors.

• The Array Solver implements a decision procedure for McCarthy’s theory of arrays.

Two arithmetic solvers can be used in place of the Simplex-based solver for integer or
real difference logic. These solvers implement a decision procedure based on the Floyd-
Warshall algorithm. These solvers are more specialized and limited than the Simplex-based
solver. They must be used standalone; they cannot be combined with the UF solver.

It is possible to remove some of the components of Figure 3.2 to build simpler and more
efficient solvers that are specialized for classes of formulas. For example, a solver for pure
arithmetic can be built by directly attaching the arithmetic solver to the CDCL SAT solver.
Similarly, Yices 2 can be specialized for pure bitvector problems, or for problems combin-
ing uninterpreted functions, arrays, and bitvectors (by removing the arithmetic solver).

Yices 2 combines several theory solvers using the Nelson-Oppen method [NO79]. The
UF solver is essential for this purpose; it coordinates the different theory solvers and ensures
global consistency. The other solvers (for arithmetic, arrays, and bitvectors) communicate
only with the central UF solver and never directly with each other. This property con-
siderably simplifies the design and implementation of theory solvers. More details on the
theory-combination method implemented by Yices are given in a tool paper [Dut14].

17

3.3 Context Configurations

A context can be configured to use different solvers and to support different usage scenarios.
The basic operations on a context include:

• asserting one or more formulas

• checking satisfiability of the set of assertions

• building a model if the assertions are satisfiable

Optionally, a context can support addition and removal of assertions using a push/pop mech-
anism. In this case, the context maintains a stack of assertions organized in successive lev-
els. The push operation starts a new level, and the pop operation removes all assertions at
the top level. Thus, push can be thought as setting a backtracking point and pop restores the
context state to a previous backtracking point.

Support for push and pop induces some overhead and may disable some preprocessing
and simplification of assertions. In some cases, it is then desirable to use a context without
support for push and pop, in order to get higher performance. Yices 2 allows users to control
the set of features supported by a context by selecting a specific operating mode.

• The simplest mode is one-shot. In this mode, one can assert formulas then make a
one call to the check operation. Assertions are not allowed after the call to check.
This mode is the most efficient as Yices may apply powerful preprocessing and sim-
plification (such as symmetry breaking [DFMWP11]).

• The next mode is multi-checks. In this mode, several calls to the check operation are
allowed. One can assert formulas, call check, assert more formulas and call check
again. This can be done as long as the context is satisfiable. Once check returns
unsat, then no assertions can be added. This mode avoids the overhead of main-
taining a stack of assertions.

• The default mode is push-pop. In this mode, a context supports the push and pop
operations. Assertions are organized in a stack as explained previously.

• The last mode is interactive. This mode provides the same functionalities as push-
pop but the context is configured to recover gracefully when a check operation times
out or is interrupted.

18

Chapter 4

Yices Tool

The Yices 2 distribution includes a tool for processing input written in the Yices 2 lan-
guage. This tool is called yices (or yices.exe in the Windows and Cygwin distribu-
tions). The syntax and the set of commands supported by yices are explained in the file
doc/YICES-LANGUAGE included in the distribution. Several example specifications are
also included in the examples directory.

(define-type BV (bitvector 32))

(define a::BV)
(define b::BV)
(define c::BV (mk-bv 32 1008832))
(define d::BV)

(assert (= a (bv-or (bv-and (mk-bv 32 255)
(bv-not (bv-or b (bv-not c))))

(bv-and c (bv-xor d (mk-bv 32 1023))))))

(check)

(show-model)
(eval a)
(eval b)
(eval c)
(eval d)

Figure 4.1: Example Yices Script

19

4.1 Example

To illustrate the tool usage, consider file examples/bv test2.ys shown in Figure 4.1.
The first line defines a type called BV. In this case, BV is a synonym for bitvectors of size 32.
Then four terms are declared of type BV. The three constants a, b, and d are uninterpreted,
while c is defined as the bitvector representation of the integer 1008832. The next line of the
file is an assertion expressing a constraint between a, b, c, and d. The command (check)
checks whether the assertion is satisfiable. Since it is, command (show-model) asks for
a satisfying model to be displayed. The next commands ask for the value of four terms in
the model.

To run yices on this input file, just type

yices examples/bv_test2.ys

The tool will output something like this:

sat
(= d 0b00000000000000000000000000000000)
(= b 0b00000000000000000000000000000000)
(= a 0b00000000000000000000000011000000)

0b00000000000000000000000011000000
0b00000000000000000000000000000000
0b00000000000011110110010011000000
0b00000000000000000000000000000000

The result of the (check) command is shown on the first line (i.e., sat for satisfiable).
The next three lines show the model as an assignment to the three uninterpreted terms a,
b, and d. Then, the tool displays one bitvector constant for each of the (eval ...)
command.

Since this example contains only terms and constructs from the bitvector theory, we could
specify logic QF BV on the command line as follows:

yices --logic=QF_BV examples/bv_test2.ys

Since the file does not use push and pop, and it contains only one call to (check), we
can select the mode one-shot:

yices --logic=QF_BV --mode=one-shot examples/bv_test2.ys

‘To get a more detailed output, we can give option --verbose:

yices --verbose examples/bv_test2.ys

20

(define x::real)

(assert
(forall (y::real)

(=> (and (< (* -1 y) 0) (< (+ -10 y) 0))
(< (+ -7 (* -2 x) y) 0))))

(ef-solve)
(show-model)

Figure 4.2: Example Exists/Forall Problem

4.2 Exists/Forall Problems

Yices can solve a restricted class of quantified problems, known as exists/forall problems.
As the name indicates, such problems are of the following general form:

∃x1, . . . , xn : ∀y1, . . . , ym : P (x1, . . . , xn, y1, . . . , ym).

In many applications, the goal to find values a1, . . . , an for the existentially quantified vari-
ables x1, . . . , xn such that the following formula

∀y1, . . . , ym : P (a1, . . . , an, y1 . . . , ym)

is valid.

Yices can solve such problems when the quantified variables x1, . . . , xn and y1, . . . , ym
either have finite type or are real variables. The algorithm implemented in Yices and an
example application are described in [GSD+14].

Figure 4.2 shows how exists/forall problems are specified in the Yices language. Global
declarations, such as the uninterpreted constant x in the figure, correspond to the existential
variables. Constraints are then stated as assertions be of the form (forall (y ...)
P) where y ... are universal variables. It is allowed to have several assertions of this
form, as well as quantifier-free constraints on the global variables.

The command (ef-solve) invokes the exists/forall solver. This commands is similar to
(check). It reports sat if the problem is satisfiable, unsat if it is not, or unknown
if the solver does not terminate within a fixed number of iterations. If (ef-solve) re-
turns sat, then we can display the solution it has found using (show-model). This is
illustrated in Figure 4.2.

To run yices on this example, we must give option --mode=ef on the command line:

yices --mode=ef test.ys

This will produce the following output:

21

sat
(= x 2)

The first line is the result of (ef-solve). The second line is the model, which just shows
the value of the global variable x.

As previously, we can get more detailed output by using option --verbose:

yices --mode=ef --verbose test.ys

It is also possible to specify a logic on the command-line.

4.3 Tool Invocation

Yices is invoked on an input file by typing

yices [option] <filename>

If no <filename> is given, yiceswill run in interactive mode and will read the standard
input. The following options are supported.

--logic=<name> Select an SMT-LIB logic.

The <name> must either be an SMT-LIB logic name such as QF UFLIA or the special
name NONE.

Yices recognizes the logics defined at http://www.smtlib.org (as of July 2014).
Option --logic=NONE configures yices for propositional logic.

By default—that is, if no logic is given—yices includes all the theory solvers de-
scribed in Section 3.2. In this default configuration, yices supports linear arithmetic,
bitvectors, uninterpreted functions, and arrays. If a logic is specified, yices uses a spe-
cialized solver or combination of solvers that is appropriate for the given logic. Some
of the search parameters will also be set to values that seem to work well for this logic
(based on extensive benchmarking). All the search parameters can also be modified
individually using the command (set-param ...).

If option --logic=NONE is given, then yices includes no theory solvers at all. All
assertions must be purely propositional (i.e., involve only Boolean terms).

--arith-solver=<solver> Select one of the possible arithmetic solvers.
<solver> must be one of simplex, floyd-warshall, or auto.

If the logic is QF IDL (integer difference logic) or QF RDL (real difference logic), then
this option can be used to select the arithmetic solver: either the generic Simplex-
based solver or a specialized solver based on the Floyd-Warshall algorithm. If option
--arith-solver=auto is given, then the arithmetic solver is determined automati-
cally; the default is auto.

This option has no effect for logics other than QF IDL or QF RDL.

22

http://www.smtlib.org

--mode=<mode> Select solver features.
<mode> can be one-shot, multi-checks, push-pop, interactive, or ef.

The mode ef enables the exists/forall solver. In this mode, Yices can solve problems
with universally quantified variables. The command (ef-solve) can be used for a
single block of assertions. No assertions are allowed after the call to (ef-solve).

The other four modes select the set of functionalities supported by the solver as follows:

• one-shot: no assertions are allowed after the (check) command. In this mode,
yices can check satisfiability of a single block of assertions and possibly build a
model if the assertions are satisfiable.

• multi-checks: several calls to (assert) and (check) are allowed.

• push-pop: like multi-checks but with support for adding and retracting as-
sertions via the commands (push) and (pop).

• interactive: supports the same features as the push-pop mode, but with a
different behavior when (check) is interrupted.

In the first two modes, yices employs more aggressive simplifications when processing
assertions; this can lead to better performance on some problems.

In interactive mode, the solver context is saved before every call to (check) and it is
restored if (check) is interrupted. This introduces some overhead, but the solver re-
covers gracefully if (check) is interrupted or times out. In the non-interactive modes,
the solver exits after the first interruption or timeout.

The default mode is push-pop if a file name is given on the command line. If not input
file is given, then the default mode is interactive and the solver reads standard
input.

Mode one-shot is required to use the Floyd-Warshall solvers.

--version, -V Display version information then exit.
This displays the Yices version number, the version of the GMP library linked with
Yices, and information about build date and platform. For example, here is the output
for Yices 2.2.0 built on MacOS X

Yices 2.2.0
Copyright SRI International.
Linked with GMP 5.1.3
Copyright Free Software Foundation, Inc.
Build date: 2013-12-21
Platform: x86_64-apple-darwin13.0.2 (release)

If you ever have to report a bug, please include this version information in your bug
report.

23

--help, -h Print a summary of options

--verbose, -v Run in verbose mode

As indicated in this list, some options can be given either in a long form (like --verbose)
or in an equivalent short from (like -v). In all cases the long and short forms are equivalent.

4.4 Input Language

The syntax of the Yices input language is summarized in Figures 4.3, 4.4, and 4.5.

4.4.1 Lexical Elements

Comments

Input files may contain comments, which start with a semi-colon ‘;’ and extend to the end
of the line.

Strings

Strings are similar to strings in C. They are delimited by double quotes " and may contain
escaped characters:

• The characters \n and \t are replaced by newline and tab, respectively.

• The character \ followed by at most three octal digits (i.e., from 0 to 7) is replaced
by the character whose ASCII code is the octal number.

• In all other cases, \<char> is replaced by <char> (including if <char> is a new-
line or \).

• A newline cannot occur inside the string, unless preceded by \.

Numerical Constants

Numerical constants can be written as decimal integers (e.g., 44 or -3), rational (e.g.,
-1/3), or using a floating-point notation (e.g., 0.07 or -1.2e+2). Positive constants can
start with an optional + sign. For example +4 and 4 denote the same number.

Bitvector Constants

Bitvector constants can be written in a binary format using the prefix 0b or in hexadecimal
using the prefix 0x. For example, the expressions 0b01010101 and 0x55 denote the
same bitvector constant of eight bits.

24

<command> ::=
(define-type <symbol>)

| (define-type <symbol> <typedef>)
| (define <symbol> :: <type>)
| (define <symbol> :: <type> <expression>)
| (assert <expression>)
| (exit)
| (check)
| (push)
| (pop)
| (reset)
| (show-model)
| (eval <expression>)
| (echo <string>)
| (include <string>)
| (set-param <symbol> <immediate-value>)
| (show-param <symbol>)
| (show-params)
| (show-stats)
| (reset-stats)
| (set-timeout <number>)
| (show-timeout)
| (dump-context)
| (help)
| (help <symbol>)
| (help <string>)
| (ef-solve)
| (export-to-dimacs <string>)
| (show-implicant)
| EOS

<immediate-value> ::=
true

| false
| <number>
| <symbol>

<number> ::=
<rational>

| <float>

Figure 4.3: Yices Syntax: Commands

25

<typedef> ::=
<type>

| (scalar <symbol> ... <symbol>)

<type> ::=
<symbol>

| (tuple <type> ... <type>)
| (-> <type> ... <type> <type>)
| (bitvector <rational>)
| int
| bool
| real

Figure 4.4: Yices Syntax: Types

<expr> ::=
true

| false
| <symbol>
| <rational>
| <float>
| <binary bv>
| <hexa bv>
| (forall (<var_decl> ... <var_decl>) <expr>)
| (exists (<var_decl> ... <var_decl>) <expr>)
| (lambda (<var_decl> ... <var_decl>) <expr>)
| (let (<binding> ... <binding>) <expr>)
| (update <expr> (<expr> ... <expr>) <expr>)
| (<function> <expr> ... <expr>)

<function> ::=
<function-keyword>

| <expr>

<var_decl> ::= <symbol> :: <type>

<binding> ::= (<symbol> <expr>)

Figure 4.5: Yices Syntax: Expressions

26

Symbols

A symbol is any character string that’s not a keyword (see Table 4.1) and doesn’t start with
a digit, a space, or one of the characters (,), ;, :, and ". If the first character is + or -,
then it must not be followed by a digit. Symbols end by a space, or by any of the characters
(,), ;, :, or ". Here are some examples:

a_symbol __another_one X123 &&& +z203 t\12

All the predefined keywords and symbols are listed in Table 4.1.

4.4.2 Declarations

A declaration either introduces a new type or term or gives a name to an existing type or
term. Yices uses different name spaces for types and terms. It is then permitted to use the
same name for a type and for a term.

Type Declaration

A type declaration is a command of the following two forms.

(define-type name)
(define-type name type)

The fist form creates a new uninterpreted type called name. The second form gives a name
to an existing type. After this definition, every occurrence of name refers to type. A
variant of this second form is used to define scalar types. In these two commands, name
must be a symbol that’s not already used as a type name.

Term Declaration

A term is declared using one for the following two commands.

(define name :: type)
(define name :: type term)

The first form declares a new uninterpreted term of the given type. The second form
assigns a name to the given term, which must be of type type. The name must be a
symbol that’s not already used as a term name.

4.4.3 Types

Yices includes a few predefined types for arithmetic and bitvectors. One can extend the
set of atomic types by creating uninterpreted and scalar types. In addition to the atomic
types, Yices provides constructors for tuple and function types. More details about types
and subtyping are given in Section 2.1.

27

* + -
-> / /=
< <= <=>
= => >
>= ˆ and
assert bit bitvector
bool bool-to-bv bv-add
bv-and bv-ashift-right bv-ashr
bv-comp bv-concat bv-div
bv-extract bv-ge bv-gt
bv-le bv-lshr bv-lt
bv-mul bv-nand bv-neg
bv-nor bv-not bv-or
bv-pow bv-redand bv-redor
bv-rem bv-repeat bv-rotate-left
bv-rotate-right bv-sdiv bv-sge
bv-sgt bv-shift-left0 bv-shift-left1
bv-shift-right0 bv-shift-right1 bv-shl
bv-sign-extend bv-sle bv-slt
bv-smod bv-srem bv-sub
bv-xnor bv-xor bv-zero-extend
check define define-type
distinct dump-context echo
ef-solve eval exists
exit export-to-dimacs false
forall help if
include int ite
lambda let mk-bv
mk-tuple not or
pop push real
reset reset-stats scalar
select set-param set-timeout
show-implicant show-model show-param
show-params show-stats true
tuple tuple-update update
xor

Table 4.1: Keywords and predefined symbols

28

Predefined Types

The predefined types are bool, int, real, and (bitvector k) where k is a positive
integer. For example a bit-vector variable b of 32 bits is declared using the command

(define b::(bitvector 32))

The number of bits must be positive so (bitvector 0) is not a valid type. There is also
a hard-coded limit on the size of bitvectors (namely, 228−1). Of course, this is a theoretical
limit; the solver will most likely run out of memory if you attempt to use bitvectors that are
that large.

Uninterpreted Types

A new uninterpreted type T can be introduced using the command

(define-type T)

This command will succeed provided T is a fresh type name, that is, if there is no exist-
ing type called T. As explained in Section 2.1, an uninterpreted type denotes a nonempty
collection of objects. There is no cardinality constraint on T, except that T is not empty.

Scalar Type

A scalar type is defined by enumerating its elements. For example, the following declaration

(define-type P (scalar A B C))

defines a new scalar type called P that contains the three distinct constants A, B, and C.
Such a declaration is valid provided P is a fresh type name and A, B, and C are all fresh
term names.

The enumeration must include at least one element, but singleton types are allowed. For
example, the following declaration is valid.

(define-type Unit (scalar One))

It introduces a new type Unit of cardinality one, and which contains One as its unique
element. Thus, any term of type Unit is known to be equal to One.

Tuple Types

A tuple type is written (tuple tau 1 ... tau n) where tau i is a type. For ex-
ample, the type of pairs of integer can be declared as follows:

(define-type Pairs (tuple int int))

Then one can declare an uninterpreted constant x of this type as follows

29

(define x::Pairs)

This is equivalent to the declaration

(define x::(tuple int int))

Tuple types with a single component are allowed. For example, the following declaration
is legal.

(define-type T (tuple bool))

Function Types

A function type is written (-> tau 1 ... tau n sigma), where n is positive, and
the tau is and sigma are types. The types tau 1, . . ., tau n define the domain of the
function type, and sigma is the range. For example, a function defined over the integers
and that returns a Boolean can be declared as follows:

(define f::(-> int bool))

Yices does not have a distinct type construct for arrays. In Yices, arrays are the same as
functions.

4.4.4 Terms
Yices uses a Lisp-like syntax. For example, the polynomial x+ 3y + z is written

(+ x (* 3 y) z)

In general, all associative operations can take one, two, or more arguments. For example,
one can write

(or A) (or A B) (or A B C D)

since or is associative.

If-Then-Else

Yices provides an if-then-else construct that applies to any type. An if-then-else term can
be written using either one of the two following forms

(ite c t1 t2) (if c t1 t2)

Both forms are equivalent and just mean “if c then t1 else t2.” The condition c must
be a Boolean term, and the two terms t1 and t2 must have compatible types. If t1 and
t2 have the same type τ then (ite c t1 t2) also has type τ . Otherwise, as explained
in Section 2.1, the type of (if c t1 t2) is the minimal supertype of t1 and t2. For
example, if t1 has type int and t2 has type real, then (ite c t1 t2) has type
real.

30

Equalities and Disequalities

Equalities and disequalities are written as follows

(= t1 t2) (/= t1 t2)

where t1 and t2 are two terms of compatible types. These operators are binary. Unlike
SMT-LIB 2, Yices does not support constraints such as (= x y z t u). On the other
hand, Yices includes an n-ary distinct operator that generalizes disequality.

31

The Boolean term

(distinct t_1 t_n)

is true if t 1, . . . , t n are all different from each other. The terms t 1 to t n must all have
compatible types. There must be at least two arguments. The expression (distinct a
b) means the same thing as (/= a b).

Boolean Operators

true false
and or
not xor
<=> =>

Table 4.2: Boolean Constants and Operators

The usual Boolean constants and functions are available. They are listed in Table 4.2. The
associative and commutative operators or, and, and xor can take any number of argu-
ments. The equivalence (<=>) and implication (=>) operators take exactly two arguments.

One can also use the equality and disequality operators with Boolean terms. If t1 and t2
are Boolean then (= t1 t2) is the same as (<=> t1 t2), and (/= t1 t2) is the
same as (xor t1 t2).

Arithmetic

Arithmetic constants can be written in decimal, as rationals, or using floating point notation.
Internally, Yices uses exact rational arithmetic and it represents all arithmetic constants as
rationals.

The usual arithmetic operations and comparison operators are summarized in Table 4.3.
One can freely mix terms of real and integer types in all operations. The exponent k in
(ˆ a k) must be a non-negative integer constant. The divisor c in (/ a c) must be a
non-zero constant.

The Yices language includes more than linear arithmetic, but this is for future extensions.
Currently, Yices does not include solvers for non-linear arithmetic (cf. Section 3.2).

Bitvectors Constants

A bitvector constant can be written in binary or hexadecimal notation, as follows

0b0 0b1 0xFFFF 0xaaaa 0xC0C0D0D0

32

Syntax Meaning
(+ a1 ... a n) sum a1 + . . .+ an
(* a1 ... a n) product a1 × . . .× an
(- a) opposite −a
(- a1 a2 ... a n) difference a1 − a2 − . . .− an
(ˆ a k) exponentiation ak

(/ a c) division a/c
(<= a1 a2) inequality a1 ≤ a2
(>= a1 a2) inequality a1 ≥ a2
(< a1 a2) strict inequality a1 < a2
(> a1 a2) strict inequality a1 > a2

Table 4.3: Arithmetic Operations

In the binary notation, the number of bits in the constant is equal to be number of binary
digits. For example, the three terms

0b1 0b0001 0b00001

denote distinct bitvector constants, of one, four, and five bits, respectively. In the hexadeci-
mal notation, the number of bits is equal to four times the number of hexadecimal digit.

One can also construct a bitvector constant using the expression:

(mk-bv size value)

In this expression, both size and value must be integer constants; size is the number
of bits in the bitvector constant and value is the decimal value of the constant interpreted
as a non-negative integer. The size must then be positive, and the value must be non-
negative. If value is more than 2size, only the residue of value modulo 2size is taken
into account. For example, the expressions

(mk-bv 3 6) (mk-bv 3 22)

construct the same bitvector constant (whose binary representation is 0b110).

Bitvector Arithmetic

Table 4.4 lists all the arithmetic and bitwise operators. All operators in this table take
arguments that have the same size and return a result of that size. As usual, the associative
operators can take one, two, or more arguments. The bv-sub operator takes at least two
arguments. In (bv-pow u k), the power k must be a non-negative integer constant.

The expression (bv-xnor u1 ... u n) is the same as (bv-not (bv-xor u1
... u n)).

33

Syntax Meaning
(bv-add u1 ... u n) sum
(bv-mul u1 ... u n) product
(bv-sub u1 ... u n) subtraction
(bv-neg u) 2s-complement
(bv-pow u k) exponentiation
(bv-not u) bitwise complement
(bv-and u1 ... u n) bitwise and
(bv-or u1 ... u n) bitwise or
(bv-xor u1 ... u n) bitwise xor
(bv-nand u1 ... u n) bitwise nand
(bv-nor u1 ... u n) bitwise nor
(bv-xnor u1 ... u n) bitwise xnor

Table 4.4: Bitvector Operations (Arithmetic and Bitwise Logic)

Syntax Meaning
(bv-shift-left0 u k) left shift, padding with 0
(bv-shift-left1 u k) left shift, padding with 1
(bv-shift-right0 u k) right shift, padding with 0
(bv-shift-right1 u k) right shift, padding with 1
(bv-ashift-right x k) arithmetic shift by k bits
(bv-rotate-left x k) rotate by k bits to the left
(bv-rotate-right x k) rotate by k bits to the right
(bv-shl u v) left shift (padding with 0)
(bv-lshr u v) logical right shift (padding with 0)
(bv-ashr u v) arithmetic shift (padding with the sign bit)

Table 4.5: Bitvector Operations (Shift and Rotate)

34

Syntax Meaning
(bv-extract i j u) subvector extraction
(bv-concat u1 ... u n) concatenation
(bv-repeat u k) repeated concatenation
(bv-sign-extend u k) sign extension
(bv-zero-extend u k) zero extension
(bv-redor u) or-reduction
(bv-redand u) and-reduction
(bv-redcomp u v) equality reduction

Table 4.6: Bitvector Operations (Structural Operators)

Bitvector Shift and Rotate

Table 4.5 lists the shift and rotate operations. The operations in the first seven rows shift
a bitvector u by a fixed number of bits k. If u is a bitvector of n bits, then k must be an
integer constant such that 0 ≤ k ≤ n. The bv-shl, bv-lshr, and bv-ashr operators
(last three rows of Table 4.5) take two bitvector arguments u and v, which must be bitvectors
of the same size n. The shift operation is applied to u and the value of v, interpreted as an
unsigned integer in the range [0, 2n − 1], defines the shift amount. The semantics follows
the SMT-LIB standards: if v’s value is more than n then the padding bit is copied n times.

Bitvector Structural Operations

The operators in Table 4.6 perform extraction, concatenation, and other structural opera-
tions. The expression (bv-extract i j u) is the segment of bitvector u formed by
taking bits j, j+1, . . . , i. If u is a bitvector of n bits then the constants i and j must satisfy
0 ≤ j ≤ i ≤ n− 1, and the result is a bitvector of (i− j + 1) bits. For example, we have

(bv-extract 7 2 0b110110100) = 0b101101.

In (bv-repeat u k), bitvector u is concatenated with itself k times. The integer con-
stant k must be positive. In the sign and zero extension operators, vector u is extended by
adding k bits (either zero or u’s sign bit copied k times). In these two operations, k must be
non-negative.

The bv-redor, bv-redand, and bv-redcomp operators produce a one-bit vector. The
term (bv-redor u) is the or of u’s bits; it is equal to 0b0 if all bits of u are zero, and
to 0b1 otherwise. Similarly, (bv-redand u) is the and of u’s bit; it is equal to 0b1 if
all bits of u are one and to 0b0 otherwise. In (bv-redcomp u v), the arguments u and
v must be two bitvectors of the same size. The operator performs a one-to-one comparison
of the bits of u and v and returns either 0b1, if u and v are equal, or 0b0, if u and v are
distinct.

35

Syntax Meaning
(bv-div u v) quotient in unsigned division
(bv-rem u v) remainder in unsigned division
(bv-sdiv u v) quotient in signed division
(bv-srem u v) remainder in signed division
(bv-smod u v) remainder in signed division (rounding to −∞)

Table 4.7: Bitvector Operations (Divisions)

Bitvector Division

Table 4.7 lists the division and remainder operators. In this table, u and v must be two
bitvectors of the same size n.

In the unsigned division and quotient operations, u and v are interpreted as integers in the
interval [0, 2n − 1]. As explained in section 2.3.2, (bv-div u v) is the largest integer
that can be represented using n bits and is smaller than or equal to u/v. The unsigned
remainder (bv-rem u v) satisfies the identity

u = (bv-add (bv-mul (bv-div u v) v) (bv-rem u v)).

In the signed division and quotient, u and v are interpreted as integers in the interval
[−2n−1, 2n−1− 1] (in 2s-complement representation), and the division is done with round-
ing to zero.

• If u/v is non-negative, then (bv-sdiv u v) is the largest integer q in [0, 2n−1−1]
such that 0 ≤ q ≤ u/v.

• If u/v is negative then (bv-sdiv u v) is the smallest integer q in [−2n−1, 0] such
that u/v ≤ q ≤ 0.

The signed remainder operation satisfies the identity

u = (bv-add (bv-mul (bv-sdiv u v) v) (bv-srem u v)).

The last operator in Table 4.7 is the remainder in the signed division of u by v with round-
ing to −∞. In this operation, u and v are interpreted as signed integers in the interval
[−2n−1, 2n−1 − 1]; the quotient is bu/vc (i.e., the largest integer q such that q ≤ u/v); and
the remainder is u− qv. The special case v = 0 is explained in Section 2.3.2.

Bitvector Inequalities

Table 4.8 lists the inequality comparison operators for bitvectors. In the table, u and v must
be two bitvector terms of the same size. Depending on the operation, both are interpreted as
unsigned integers or as signed integers (using 2s-complement representation). All operators
return a Boolean. As usual, one can also apply the equality and disequality operators to two
bitvectors of the same size.

36

Syntax Meaning
(bv-ge u v) u ≥ v unsigned
(bv-gt u v) u > v unsigned
(bv-le u v) u ≤ v unsigned
(bv-lt u v) u < v unsigned
(bv-sge u v) u ≥ v signed
(bv-sgt u v) u > v signed
(bv-sle u v) u ≤ v signed
(bv-slt u v) u < v signed

Table 4.8: Bitvector Operations (Comparison)

Conversions Between Booleans and Bitvectors

Two operations, listed in Table 4.9, convert Booleans to bitvectors and conversely.

Syntax Meaning
(bool-to-bv b1 ... bn) Booleans to bitvector
(bit u i) Bit extraction

Table 4.9: Bitvector Operators (Conversions)

Operator bool-to-bv builds a bitvector from n Boolean terms b1, . . . , bn. The result is
a bitvector of n bits equal to the concatenation of b1, . . . , bn. The high-order bit is b1 and
the low-order bit is bn. For example,

(bool-to-bv true true false false)

is equal to the bitvector constant 0b1100.

Expression (bit u i) is the i-th bit of bitvector u as a Boolean. If u is a bitvector of n
bits then the index i must be an integer constant between 0 and n− 1. The lower-order bit
has index 0 and the high-order bit has index n− 1. For example, we have

(bit 0b1100 3) = true
(bit 0b1100 2) = true
(bit 0b1100 1) = false
(bit 0b1100 0) = false

Tuples

A tuple term can be constructed using (mk-tuple t1 ... t n) where n ≥ 1 and
t1, . . . , t n are arbitrary terms. For example, a pair of integers can be constructed using

(mk-tuple -1 1)

37

The projection operation extracts the i-th component of a tuple. It is denoted by (select
t i) where t is a term of tuple type and i is an integer constant. If the tuple has n
components, then i must be between 1 and n. The components are indexed from 1 to n
starting from the left. For example, we have

(select (mk-tuple -1 1) 1) = -1
(select (mk-tuple -1 1) 2) = 1

Yices includes a tuple-update operator. The expression (tuple-update t i v) is
equal to tuple t with its i-th component replaced by v. The type of v must be a subtype of
the i-th component of t.

Function Updates

Array or function update is written (update a (i 1 ... i n) v). In this expres-
sion, amust be a term with a function type and n is the arity of a. The expression constructs
a function b that is equal to a, except that it maps i 1,. . . ,i n to v. The semantics and
typechecking rules of this operator are explained in Section 2.2.

4.4.5 Commands

The Yices commands allow one to declare types and terms, build a set of assertions, check
their satisfiability, and query models. Other commands set parameters that control prepro-
cessing and heuristics used by the different solvers.

Declarations

As presented in Section 4.4.2, a type declaration has one of the following forms

(define-type name)
(define-type name type)

A term declaration is similar:

(define name :: type)
(define name :: type term)

To define a function, one can use the lambda notation. Here is an example:

(define max::(-> real real real)
(lambda (x::real y::real) (if (< x y) y x)))

This defines the function max that computes the maximum of two real numbers. Note that
such a function definition acts like a macro. A term of the form (max a b) is eagerly
replaced by the “function body”, that is, by the term (if (< a b) b a). The ability
to define function is useful to abbreviate specifications, but it must be used with care. Since

38

the substitution is performed eagerly, the expanded terms may grow quickly, especially if
they contain nested function applications.

All declarations have global scope and are permanent. They are not affected by commands
such as push, pop, or reset. Also, as discussed previously, Yices uses separate name spaces
for terms and for types.

Assertions

The following command adds an assertion to the current context.

(assert formula)

In this command, the formula must be a Boolean term.

In the mode one-shot, assertions are stored internally and are not processed immediately.
Processing of assertions is delayed, and all assertions are processed and simplified on the
first call to (check).

In all other modes, the assertions are processed and simplified immediately and are added
to the context. As a result, yices may detect and report that the current set of assertions
is inconsistent after an assert command. This happens when the context is seen to be
unsatisfiable by simplification only. The most trivial example is:

(assert false)

Once the context is unsatisfiable, any new assertion is treated as an error.

Check

The command

(check)

checks whether the current set of assertions is satisfiable.

If the context’s current status is already known, then the command returns immediately
and prints the status as either sat or unsat. This happens, for example, in the following
situation:

(assert ...)
(check)
(check)

The context status is known after the first (check) command (provided this command
does not timeout or otherwise fails). Then the second (check) does nothing and just
prints the current status.

If the context’s status is unknown, then (check) invokes the SMT solver to establish
whether the assertions are satisfiable. As discussed previously, the actual solver or solver

39

combination is dependent on command-line options given to the yices tool. In particular,
the --logic option allows one to select a solver architecture that is specialized for a
particular logic. For best performance, it is usually better to specify the logic if it is known
in advance.

Several parameters also control the heuristics employed by the solver. Yices uses default
settings based on the specified logic (or global defaults if no logic is given). All these param-
eters can be examined and modified, using the command show-params and set-param
described in a subsequent section.

One can also provide a timeout before calling (check). If the timeout is reached or the
search is interrupted (by CTRL-C), then the result will be displayed as interrupted.

Push, Pop, Reset

Command (push), (pop), and (reset) allows one to manipulate the set of assertions.

The command (reset) clears all assertions. The current context is then returned to its
initial state, where the set of assertions is empty. This command can be used in all modes.

The push and pop commands are supported by yices if it is run in mode push-pop or
interactive. In these modes, the context maintains a stack of assertions organized in
successive levels. The (push) command starts a new assertion level in this stack, and
(pop) removes all assertions at the current level. The command (assert f) adds an
assertion f to the current level. This assertion will be part of the context until this current
level is exited by either a call to (pop) or a call to (reset). Thus, a call to (pop) re-
tracts all assertions entered since the matching (push). The initial assertion level includes
all formulas that are asserted before the first (push) command. Such assertions cannot be
retracted by (pop). They remain in the context until (reset) is called.

The commands (reset) and (pop) modify the set of assertions in the context, but they
do not affect term and type declarations. For example, the following sequence of commands
is valid.

(push)
(define A::bool)
(assert A)
(check)
(pop)
(assert (not A))
(check)

The term A is declared after the (push) command. The (pop) command removes the first
assertion but its does not remove the declaration. Thus, A remains declared as a Boolean
term after the (pop) command. The second assertion is then valid. Both calls to (check)
return sat.

40

Input Model

(define a::(-> int bool))
(define b::(-> int bool))
(define c::(-> int bool))
(define x::int)
(define y::int)
(assert (and (a x) (b y)))
(assert (/= x y))
(assert (distinct a b c))
(check)
(show-model)

(= y 0)
(= x -579)
(function c
(type (-> int bool))
(default true))

(function a
(type (-> int bool))
(= (a 1) false)
(default true))

(function b
(type (-> int bool))
(= (b 0) true)
(= (b 1) true)
(default false))

Figure 4.6: Model Display Format

Model

If a call to (check) returns sat, then the set of assertions in the context is satisfiable.
One can request yices to construct and display a model for the assertions. One can also
evaluate the value of arbitrary terms in this model.

The command

(show-model)

displays the current model (and constructs it if necessary). An error is reported if the con-
text’s status is unknown or if the context is not satisfiable. Otherwise, the model is displayed
in the format illustrated in Figure 4.6. The model is displayed as a list of assignments, pos-
sibly followed by a list of function definitions. An assignment has the form

(= name value)

where name is an uninterpreted constant and value is a constant, that is, the value mapped
to name in the model. This format is used for all terms of atomic types (Boolean, integer
and real, bitvector, scalar, and uninterpreted types). It is also used to display the value of
terms that have tuple type. The value of an uninterpreted functions f is displayed as shown
on the right column of Figure 4.6. For each uninterpreted function, yices displays the type
of the function, a finite list of assignments, and the function’s default value. For example,
in Figure 4.6, one can see that yices has constructed a model where (b 0) and (b 1)
are true, and the default value for b is false. This means that (b x) is false for any
x different from 0 and 1.

41

Input Implicant
(define x::int)
(define y::int)
(define z::int)
(assert (distinct x y z))
(assert (or (> x (+ z (* 2 y)))

(< x (- z (* 2 y)))))
(check)
(show-implicant)

(< (+ (* -1 y) z) 0)
(< (+ (* -1 x) (* 2 y) z) 0)
(< (+ (* -1 x) y) 0)

Figure 4.7: Implicant

Command

(eval term)

computes the value assigned to term in the current model, and displays this value. For
example, assuming the model shown in Figure 4.6, one can type

(eval (a y))

and the result will be true. It is also possible to ask for the value of a function term, as in

(eval (update a (y) false))

The result is displayed as a function specification such as:

(function fun!17
(type (-> int bool))
(= (fun!17 1) false)
(= (fun!17 0) false)
(default true))

Yices creates an internal name of the form fun!<number> to display the function value.

Implicants

If a set of assertions is satisfiable, one can construct an implicant for them. The implicant is
a set of literals l1, . . . , ln (i.e., atoms or negations of atoms) such that the conjunct l1∧. . .∧ln
is satisfiable and implies the assertions. To compute such an implicant, Yices first constructs
a model M of the assertions then builds the implicant from the model: all the literals li are
true in M .

The command to display an implicant is (show-implicant). It can be used only when
Yices is executed in mode one-shot. Like (show-model), it can be used after a call
to (check) that returns sat. The implicant is displayed as a list of literals, one per
line. Figure 4.7 shows an example. The assertion (distinct x y z) is not considered
atomic in this case. The implicant includes two literals equivalent to z < y ∧ y < x, which
implies that x, y, and z are distinct.

42

Exists/Forall Solver

The command

(ef-solve)

checks satisfiability of an exists/forall problem. This command is available when yices is
run with option --mode=ef.

Parameters

A number of parameters controls the preprocessing and simplifications applied by Yices,
and the heuristics used by the CDCL SAT solver and the theory solvers. Several commands
allow one to examine and modify these parameters.

To see the list of all available parameters, and their current values, type

(show-params)

If you want to see the value of a specific parameter, type

(show-param name)

where name is the parameter name. To set a parameter value, use

(set-param name value)

For example, the CDCL solver can use different branching heuristics. This is controlled by
the branching parameter. To see its current value, type the command

(show-param branching)

To select a branching heuristic, use a command like

(set-param branching negative)

There are many search and preprocessing parameters. The full list is described in the file
doc/YICES-LANGUAGE included in the distribution. You can also get on-line help on
the parameter using

(help params)

You can also get on-line help on a specific parameter. For example, the command

(help branching)

will print a short description of the parameter branching and list its possible values.

43

Input Result

(define a::(bitvector 4))
(define b::(bitvector 4))
(assert (bv-ge a b))
(export-to-dimacs "test.cnf")
(exit)

c Autogenerated by Yices
c
c a --> [6 7 8]
c b --> [3 4 5]
c
p cnf 10 14
1 0
-2 0
-3 9 0
-5 8 0
-5 -10 0
6 9 0
8 -10 0
-9 -6 3 0
-10 -7 4 0
-4 7 10 0
-10 9 4 0
-4 -9 10 0
-7 9 -10 0
7 10 -9 0

Figure 4.8: Export to DIMACS

Conversion to DIMACS

Command

(export-to-dimacs file)

converts Boolean and bitvector problems to the DIMACS format. This command is sup-
ported if yices is run with option --logic=NONE or --logic=QF BV.

The argument must be the name of a file to store the result. It must be given as a string. The
command collects all the assertions and converts them to CNF, then it writes the result into
file. A mapping from Yices terms to the DIMACS literals is included.

Figure 4.8 shows a small example. The left-hand side is a small bitvector problem. The
right-hand side shows the DIMACS file produced by yices. The comments shows how
the two bitvector variables a and b are converted to arrays of DIMACS literals. To produce
this file, yices must be run with option --logic=QF BV.

Timeout

By default, yices does not use a timeout. So a call to (check) may take a very long
time to terminate. To limit the runtime of (check), one can give a timeout is seconds. For
example, to limit the runtime to 2 minutes:

(set-timeout 120)

44

(define a::bool)
(define b::bool)
(define c::bool)
(define d::bool)
(define e::bool)

(assert (= a (or b c)))
(assert (= d (and b c)))
(assert (= a d))
(echo "First check: should be sat\n")
(check)
(show-model)

(assert (= e (xor b c)))
(assert (= e d))
(echo "\nSecond check: should be sat\n")
(check)
(show-model)

(assert d)
(echo "\nThird check: should be unsat\n")
(check)

Figure 4.9: Example Use of the echo Command

This timeout will apply to the next call to (check), but not to the one after that. After
every call to (check), the timeout is reset to 0 (which means no timeout). One can also
clear the timeout explicitly by setting it to 0:

(set-timeout 0)

To see the current value of the timeout, one can use the command

(show-timeout)

Echo

The echo command can be use to print a string on the standard output. It can be useful in
Yices scripts to help display results. An example in Figure 4.9 illustrates its use.

Include

It is possible to include a Yices script using the following command:

(include filename)

where filename is the name of an input file given as a string. For example, to include the
file example.ys, type

45

(include "example.ys")

This command will read and execute all commands contained in the given file.

Help

The yices tool has on-line help, which can be obtained using one of the following com-
mands:

(help)
(help topic)

Without argument, (help) prints a summary of the main Yices commands. With an ar-
gument, (help topic) gives help on the specified topic. The argument can be a
command name, one of the built-in type or term constructor, or the name of a parameter.
The argument can be given as a string or as a symbol. For example, to get some information
on the search parameter var-elim, you can type either

(help "var-elim")

or just

(help var-elim).

On-line help is available for other topics such as the syntax. To get a list of all topics, type

(help index)

Statistics

The solver keeps track of various statistics concerning the search algorithms (e.g., the num-
ber of decisions and conflicts in the CDCL solver). The following command prints all the
internal statistics

(show-stats)

As part of these statistics, yices keeps track of the cumulative CPU time spent in calls to
the check command. To get time measurement for a specific call to (check) (rather than
the total amount of time spent in all calls to (check) so far), one can reset the global time
counter to zero using command (reset-stats). To get the runtime and other statistics
about a specific (check), type the following commands:

(reset-stats)
(check)
(show-stats)

Exit

At any time, one can exit the solver using the command

(exit)

If this command is part of a Yices script file, then yices exits immediately after this
command, without parsing or processing the rest of the file.

46

Chapter 5

Support for SMT-LIB

The yices tool described in the previous chapter processes input given in the Yices 2
language. The distribution includes two other tools that can process input in the SMT-
LIB 2.0 and the older SMT-LIB 1.2 notations.

5.1 SMT-LIB 2.0

To process SMT-LIB 2.0 input, use the yices-smt2 solver instead of yices. This tool
is included in the bin directory in the distribution. In the Windows or Cygwin distribution,
it is called yices-smt2.exe.

The SMT-LIB 2.0 language is defined in [BST12]. More information about the various
logics defined in SMT-LIB 2.0 is available at the SMT-LIB website: http://www.
smtlib.org. David Cok’s tutorial covers all aspects of the language in detail [Cok13].

5.1.1 Tool Invocation
To run yices-smt2 on an input file, type

yices-smt2 <input-file>

Since yices-smt2 runs in mode one-shot by default, this will work fine as long as
the <input-file> does not use the commands push and pop of SMT-LIB 2.0 (cf.
Section 3.3).

To enable support for push and pop, give the command-line option --incremental.
This option configures yices-smt2 to work in the mode push-pop. This flag is also
required if the input files contains several blocks of assertions and multiple calls to the
command (check-sat).

If no <input-file> is given, yices-smt2 will read commands from the standard
input. Optionally, one can also run the solver with the following option:

47

http://www.smtlib.org
http://www.smtlib.org

yices-smt2 --interactive

When invoked in this manner, yices-smt2 will print a prompt before accepting com-
mands from standard input. In addition, option :print-success is set to true. This
causes yices-smt2 to report success after various commands that would otherwise be
executed silently (as required by [BST12]).

Here is the full list of command-line options supported by yices-smt2.

--verbosity=<level>, -v <level> Set the initial verbosity level.

By default, yices-smt2 runs with verbosity level 0. This can be changed by using the
SMT command (set-option :verbosity <level>). Calling yices-smt2
--verbosity=<level> has the same effect.

--incremental Enable support for push, pop, and multiple calls to check-sat.

--interactive Run in interactive mode.

This flag has no effect if yices-smt2 is called with an input-file. Otherwise,
this flag sets the :print-success option to true.

--stats, -s Display statistics on exit.

If this option is given, yices-smt2 will print statistics after all commands have been
executed (i.e., after reaching the command (exit) or the end of the input file).

--version, -V Print version and exit.

--help, -h Show a summary of command-line options and exit.

5.1.2 SMT-LIB 2.0 Compliance

Yices follows the SMT-LIB 2.0 specifications as much as possible. In this section, we list
the few special cases where Yices may not adhere to the standard.

Arithmetic

Because Yices uses a more liberal type system than SMT-LIB 2.0, it will accept input that
is not strictly compliant with SMT-LIB 2.0. The difference occurs in arithmetic problems.
Yices allows formulas to freely mix real and integer terms. In SMT-LIB 2.0, the types Int
and Real are disjoint and cannot be mixed in arithmetic expression. This should not be a
problem, as any properly typed SMT-LIB 2.0 arithmetic expression is also type-correct for
Yices.

Yices does not yet support the operators div, mod, and abs defined in the SMT-LIB theory
Ints. This will be added in future releases.

48

Bitvectors

As mentioned previously, Yices follows the SMT-LIB standard definition for all bit-vector
operators except division by zero. The conventions used by Yices are explained in Sec-
tion 2.3.2.

Unsupported Commands

Some commands defined in SMT-LIB 2.0 are optional. This version of Yices supports the
basic commands for declaration and definition of sorts and terms, assertions, and satisfia-
bility checking. It also implements the commands push and pop, and the optional com-
mands get-value and get-assignment. Yices does not support the other optional
commands: get-assertions, get-proof, and get-unsat-core.

The standard requires option :produce-assignments to be set to true before the
command get-assignment can be issued. It also requires option :produce-models
to be set to true before using the command get-value. Yices does not enforce these
rules. It supports both commands get-assignment and get-value even if the corre-
sponding option is false.

In-line Definitions

In SMT-LIB 2.0, one can attach annotations to any term. In particular, one can give a name
to a term using the syntax

(! <term> :named <symbol>)

The <symbol> is a label attached to <term> and marks it as important for the command
get-assignment and get-unsat-core. The standard also requires such an anno-
tation to be treated as an in-line definition. When an annotated subterm (! <term>
:named <name>) is encountered while parsing a larger term t0, then the annotation
must be treated as if one had written

(define-fun <name> () <sort> <term>)

before the term t0. This unfortunate decision breaks well-established, common-sense rules
about the scope of identifiers. It also means that removing annotations can turn a syntacti-
cally correct formula into an incorrect one. It forces SMT-LIB solver to process annotations
even if they do not support the commands get-unsat-core and get-assignment,
which were the reason for attaching labels to terms in the first place. Other undesirable
consequences include the fact that simple syntactic transformations, for example, rewriting
(or a b) to (or b a), may be incorrect if a contains named annotations. In short,
this decision complicates implementation while providing little, if any, benefit.

Still, Yices supports in-line definitions, provided the <name> occurring in the annotation
is globally fresh. That is, the <name> must not be assigned via a previous global definition
or by a local let. For example, the following monstrosity will cause Yices to complain

49

(assert (let ((x (+ y 1))) (! (P (* 2 x))) :named x)))

because the symbol x is bound by the enclosing let when the annotated term is processed.

Miscellaneous Issues

The SMT-LIB 2.0 document states that option :print-success should be true by
default. This setting requires SMT solvers to report success after any command in a script.
This is fine for interactive use, but impractical when reading large input files (such as the
SMT-LIB benchmarks at http://www.smtlib.org). These input files typically con-
tain long sequences of declarations and definitions, and printing success after each of
them is not useful or informative, and can generate hundreds of thousands even millions of
lines of output. Like other solvers, Yices avoids these issues by setting :print-success
to false by default, unless command-line option --interactive is given.

SMT-LIB 2.0 includes two options for directing output and diagnostic information to other
channels than the default stdout and stderr. To send output to a file, you can use the
command

(set-option :regular-output-channel <filename>)

SMT-LIB 2.0 states that <filename> should follow the POSIX standard. Yices does not
check or enforce this requirement. You can use any character string that can be interpreted
as a file name by the underlying operating system.

Non-standard Extensions

Yices provides a few commands that are not defined in SMT-LIB 2.0 but should be useful.
Similar commands are available in other solvers such as MathSAT 51 and Z32.

The primary command to examine models in SMT-LIB 2.0 is get-value, which prints
the value of a list of terms in the current model. It is often more convenient to just display
the whole model. Yices provides command (get-model) for this purpose. It displays
the model in a format similar to the one illustrated in Figure 4.6, except that constants are
printed with the SMT-LIB 2.0 syntax.

When Yices is run in incremental mode, a (reset) command is available to remove all
assertions, declarations, and definitions from the context. This command cannot be used
before set-logic (cf. [BST12]). It resets the solver to its initial state, but it keeps the
logic and all options unchanged.

Yices provides the non-standard command (echo <string>) that just prints the given
<string> on the output channel.

1http://mathsat.fbk.eu/smt2examples.html
2http://rise4fun.com/z3/tutorial/guide

50

http://www.smtlib.org
http://mathsat.fbk.eu/smt2examples.html
http://rise4fun.com/z3/tutorial/guide

Global Declarations

Yices supports the option :global-decls introduced by MathSAT to control the re-
moval of declarations in incremental mode. By default, :global-decls is false and
Yices follows the SMT-LIB 2.0 conventions. In this mode, the command (pop ..) re-
moves all the terms and sorts declared since the matching (push ...). Here is a small
example of this default behavior

(set-logic QF_UF)
(declare-sort U 0)
(declare-fun a () U)
(push 1)
(declare-fun b () U)
(assert (not (= a b)))
(check-sat)
(pop 1)
(declare-fun f (U) U)
(assert (= a (f b))) ;; error: b is not in scope here
(check-sat)

In this small script, the command (pop 1) retracts the first assertion and removes the
declaration of constant b. The second assertion is then incorrect as b is now undefined.

Setting :global-decls to true makes all declarations global and unaffected by push
and pop. A small change to the previous scripts shows the difference:

(set-option :global-decls true)
(set-logic QF_UF)
(declare-sort U 0)
(declare-fun a () U)
(push 1)
(declare-fun b () U)
(assert (not (= a b)))
(check-sat)
(pop 1)
(declare-fun f (U) U)
(assert (= a (f b))) ;; correct: b is still in scope here
(check-sat)

The second assertion is now correct as the command (pop 1) just retracts the first asser-
tion but it does not remove the declaration of b. Like other options in SMT-LIB 2.0, the
:global-decls must be set before set-logic.

5.2 SMT-LIB 1.2

Another tool included in the distribution can process input written in the SMT-LIB 1.2 no-
tation. This tool is called yices-smt (or yices-smt.exe on Windows or Cygwin). It

51

is included in the bin directory. This tool can process SMT problems written in version 1.2
of SMT-LIB, which is documented in [RT06]. This version of SMT-LIB was used in the
SMT competitions before 2010. Since 2010, the competitions have used SMT-LIB 2.0.

5.2.1 Tool Usage
To execute this solver on an input file in the SMT-LIB 1.2 format, just type:

yices-smt <input-file>

The solver will check satisfiability of the constraints in input-file and report either
sat or unsat. The input file must contain a specification in the SMT-LIB benchmark
language (cf. [RT06]). The standard also defines a theory language that is not supported by
yices-smt. If no input file is given, yices-smt will read standard input.

5.2.2 Command-Line Options

The following command-line options can be given to yices-smt.

--model, -m If this option is given, and the benchmark is satisfiable, yices-smt
will display a model.

This model may be partial. Some variables of the input benchmark may be eliminated by
preprocessing and formula simplification. The value of these variables is not displayed
in the model.

--full-model, -f Print a full model.

This causes yices-smt to display a model if the benchmark is satisfiable. Unlike
option --model, this option forces Yices to display a complete model. The value of
all variables declared in the input benchmark is displayed, even for variables that are
eliminated during preprocessing.

--verbose, -v Run in verbose mode.

The tool will print various statistics during the search.

--stats, -s Show statistics.

This causes yices-smt to display statistics about the search, including search time,
number of decisions and conflicts, and so forth.

--timeout=<int>, -t <int> Give a timeout in seconds.
For example, to run yices-smt with a 20 s timeout, use:

yices-smt --timeout=20 ...

--version, -V Display the version and exit.

--help, -h Show a summary of all options and exit.

52

Chapter 6

Yices API

As sketched in Figure 3.1, the API provides three main classes of functions:

• Type and term constructors

• Operations on contexts

• Operations on models

The API also includes functions related to error reporting and diagnosis, global initialization
and cleanup, and garbage collection.

In the API, types and terms are identified by 32bit signed integers (the types type t
and term t are aliases for int32 t, as defined in file yices types.h). Other data
structures internal to Yices are accessed via opaque pointers. For example, a context is an
object of the following type

typedef struct context_s context_t;

and all functions that operate on contexts take an argument of type context t *.
When an API function fails, it returns a special code. Term constructors return the

constant NULL TERM; type constructors return NULL TYPE. Other functions either return
a negative integer or the NULL pointer. In addition, diagnostic information is stored in
a global data structure of type error report t (defined in yices types.h). The
API provides functions to help diagnosis by printing error messages or consulting the error
report structure.

6.1 A Minimal Example

The distribution includes four header files:

• yices types.h defines all types that are part of the API, including a data structure
used for error reporting and a set of error codes.

53

#include <stdio.h>
#include <yices.h>

int main(void) {
printf("Testing Yices %s (%s, %s)\n", yices_version,

yices_build_arch, yices_build_mode);
return 0;

}

Figure 6.1: Minimal Example

• yices limits.h defines a few constants that set hard limits on the sizes of various
constructs. For example, this file defined the maximal arity of functions and the
maximal size of bitvector types supported by Yices.

• yices.h contains the declaration of all the API functions.

• yices exit codes.h lists the exit codes that can be returned by the Yices exe-
cutables (via an exit system call).

To use the library, it is enough to include yices.h in your code. This will also in-
clude yices types.h and yices limits.h. A minimal example is shown in Fig-
ure 6.1. Assuming the Yices library and header files are in standard directories such as
/usr/local/lib and /usr/local/include, this code should compile with the
following command

gcc minimal.c -o minimal -lyices

(other compilers than GCC can be used). If Yices is installed in a non-standard location,
then give appropriate flags to the compilation command. For example, if Yices is installed
in your home directory:

gcc minimal.c -o minimal -I${HOME}/yices-2.2.0/include \
-L${HOME}/yices-2.2.0/lib -lyices

Running the program should print something like this:

Testing Yices 2.2.0 (x86_64-unknown-linux-gnu, release)

If you have build a version of Yices that’s dynamically linked against GMP, make sure to
install GMP on your system. If the Yices library is installed in a non-standard location, you
may also need to set environment variable LD LIBRARY PATH (or DYLD LIBRARY PATH
on Mac OS X).

6.2 Basic API Usage

The distribution includes a few simple examples that illustrate basic use of the Yices library.
The code fragments shown in this section come from file examples/example1.c in-
cluded in the distribution.

54

// Create two uninterpreted terms of type int.
type_t int_type = yices_int_type();
term_t x = yices_new_uninterpreted_term(int_type);
term_t y = yices_new_uninterpreted_term(int_type);

// Assign names "x" and "y" to these terms.
// This is optional, but we need the names in yices_parse_term
// and it makes pretty printing nicer.
yices_set_term_name(x, "x");
yices_set_term_name(y, "y");

// Build the formula (and (>= x 0) (>= y 0) (= (+ x y) 100))
term_t f = yices_and3(yices_arith_geq0_atom(x),

yices_arith_geq0_atom(y),
yices_arith_eq_atom(yices_add(x, y),

yices_int32(100)));

// Another way to do it
term_t f_var =
yices_parse_term("(and (>= x 0) (>= y 0) (= (+ x y) 100))");

Figure 6.2: Term Construction using the API

Global Initialization

Before doing anything with Yices, make sure to initialize all internal data structures by
calling function yices init. To avoid memory leaks, you should also call yices exit
at the end of your code to free all the memory that Yices has allocated internally.

Term Construction
Figure 6.2 shows code that builds two uninterpreted terms x and y of type int, then con-
structs the formula

(and (>= x 0) (>= y 0) (= (+ x y) 100))

This code fragment comes from file example1.c that is included in the distribution.

Pretty Printing

Once a term is constructed, we can print it as shown in Figure 6.3. This uses the pretty-
printing function yices pp term. The first argument to this function is the output file
to use (in this case, stdout). The second argument is the term to print. The other three
arguments define the pretty-printing area (in this case, a rectangle of 80 columns and 70
lines). The figure also shows how one checks for errors and prints an error message.

55

static void print_term(term_t term) {
int32_t code;

code = yices_pp_term(stdout, term, 80, 20, 0);
if (code < 0) {
// An error occurred
fprintf(stderr, "Error in print_term: ");
yices_print_error(stderr);
exit(1);

}
}

...

// print f and f_var: they should be identical
printf("Formula f\n");
print_term(f);
printf("Formula f_var\n");
print_term(f_var);

Figure 6.3: Pretty Printing a Term

Building a Context and Checking Satisfiability

To check whether formula f constructed previously is satisfiable, we create a fresh context,
assert formula f in this context, then call function yices check context. This is
illustrated in Figure 6.4.

Building and Querying a Model

If yices check context returns STATUS SAT (or STATUS UNKNOWN), then we can
construct a model of the asserted formulas as shown in Figure 6.5. The code also shows
how to print the model and how to evaluate the value of terms in a model.

6.3 Full API

The main header file yices.h includes documentation about all API functions. We will
provide more documentation on the Yices website: http://yices.csl.sri.com/.

56

context_t *ctx = yices_new_context(NULL);
code = yices_assert_formula(ctx, f);
if (code < 0) {
fprintf(stderr, "Assert failed: code = %"PRId32", error = %"PRId32"\n",

code, yices_error_code());
yices_print_error(stderr);

}

switch (yices_check_context(ctx, NULL)) {
case STATUS_SAT:
printf("The formula is satisfiable\n");
...
break;

case STATUS_UNSAT:
printf("The formula is not satisfiable\n");
break;

case STATUS_UNKNOWN:
printf("The status is unknown\n");
break;

case STATUS_IDLE:
case STATUS_SEARCHING:
case STATUS_INTERRUPTED:
case STATUS_ERROR:

fprintf(stderr, "Error in check_context\n");
yices_print_error(stderr);
break;

}
yices_free_context(ctx);

Figure 6.4: Checking Satisfiability

57

model_t* model = yices_get_model(ctx, true); // get the model
if (model == NULL) {

fprintf(stderr, "Error in get_model\n");
yices_print_error(stderr);

} else {
printf("Model\n");
code = yices_pp_model(stdout, model, 80, 4, 0); // print the model

int32_t v;
// get the value of x, we know it fits int32
code = yices_get_int32_value(model, x, &v);
if (code < 0) {
printf(stderr, "Error in get_int32_value for ’x’\n");
yices_print_error(stderr);

} else {
printf("Value of x = %"PRId32"\n", v);

}

// get the value of y
code = yices_get_int32_value(model, y, &v);
if (code < 0) {
fprintf(stderr, "Error in get_int32_value for ’y’\n");
yices_print_error(stderr);

} else {
printf("Value of y = %"PRId32"\n", v);

}

yices_free_model(model); // clean up: delete the model
}

Figure 6.5: Building and Querying a Model

58

Bibliography

[BBL08] R. Brummayer, A. Biere, and F. Lonsing. BTOR: Bit-Precise Modelling of
Word-Level Problems for Model Checking. In First International Workshop
on Bit-Precise Reasoning, pages 53–64, 2008. Available at http://fmv.
jku.at/BrummayerBiereLonsing-BPR08.pdf.

[BST12] Clark Barrett, Aaron Sump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, SMT-LIB Initiative, 2012. Available at http:
//www.smtlib.org.

[Cok13] David R. Cok. The SMT-LIBv2 Language and Tools: A Tutorial. Techni-
cal report, GrammaTech, Inc., March 2013. Available at http://www.
grammatech.com/resource/smt/SMTLIBTutorial.pdf.

[DdM06a] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Computer-Aided Verification (CAV’2006), volume 4144 of Lec-
ture Notes in Computer Science, pages 81–94. Springer Verlag, August 2006.

[DdM06b] Bruno Dutertre and Leonardo de Moura. Integrating Simplex with DPLL(T).
Technical Report SRI-CSL-06-01, Computer Science Laboratory, SRI In-
ternational, May 2006. Available at http://yices.csl.sri.com/
sri-csl-06-01.pdf.

[DFMWP11] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlo-
gel Paelo. Expoiting symmetry in SMT problems. In Automated Deduc-
tion – CADE 23, volume 6803 of Lecture Notes in Computer Science, pages
222–236. Springer, 2011.

[DNS05] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a Theorem Prover for
Program Checking. Journal of the ACM, 52(3):365–473, May 2005.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes in
Computer Science, pages 737–744. Springer, July 2014.

59

http://fmv.jku.at/BrummayerBiereLonsing-BPR08.pdf
http://fmv.jku.at/BrummayerBiereLonsing-BPR08.pdf
http://www.smtlib.org
http://www.smtlib.org
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
http://yices.csl.sri.com/sri-csl-06-01.pdf
http://yices.csl.sri.com/sri-csl-06-01.pdf

[GSD+14] Adrià Gascón, Pramod Subramanyan, Bruno Dutertre, Ashish Tiwari, De-
jan Jovanović, and Sharad Malik. Template-based circuit understand-
ing. In Koen Claessen and Viktor Kuncak, editors, Formal Methods
in Computer-Aided Design (FMCAD 2014), pages 83–90, October 2014.
Available at http://www.cs.utexas.edu/users/hunt/FMCAD/
FMCAD14/proceedings/17_gascon.pdf.

[NO79] G. Nelson and D. C. Oppen. Simplification by Cooperating Decision Pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[NO07] Robert Neuwenhuis and Albert Oliveras. Fast Congruence Closure and Ex-
tensions. Information and Computation, 205(4):557–580, April 2007.

[RT06] Silvio Ranise and Cesare Tinelli. The SMT-LIB Standard: Version 1.2.
Technical report, SMT-LIB Initiative, 2006. Available at http://www.
smtlib.org.

60

http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14/proceedings/17_gascon.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14/proceedings/17_gascon.pdf
http://www.smtlib.org
http://www.smtlib.org

Appendix A

License Terms

Before downloading and using Yices, you will be asked to agree to the End-User Li-
cense Agreement (EULA) reproduced below. SRI is open to distributing Yices under other
agreements. Contact us at fm-licensing@csl.sri.com to discuss alternative license
terms.

NONCOMMERCIAL END USER LICENSE AGREEMENT
IMPORTANT - READ CAREFULLY. This EULA permits use of the software only for
projects that do not receive external funding other than government research grants and contracts.
Any other use requires a commercial license.

Be sure to carefully read and understand all of the rights and restrictions described in this End-
User License Agreement (“EULA”). You will be asked to review and either accept or not accept
the terms of the EULA. You will not be permitted to access or use the Software unless or until
you accept the terms of the EULA. Alternative license terms may be available to you by contacting
fm-licensing@csl.sri.com.

Your affirmative response to the “Do you accept the terms of the EULA?” prompt is a symbol
of your signature that you accept the terms of the EULA.

This EULA is a legal agreement between you (either an individual or a single entity) and SRI
International (“SRI”) for the software referred to by SRI as “YICES,” which includes the computer
software accessible via this web browser interface, and may include associated media, printed ma-
terials and any ”online” or electronic documentation (“Software”). By utilizing the Software, you
agree to be bound by the terms of this EULA. If you do not agree to the terms of this EULA, you
may not access or use the Software.

GRANT OF LIMITED LICENSE. SRI hereby grants to you a personal, non-exclusive, non-
transferable, royalty-free license to access, use and modify the Software for your own internal,
non-commercial purposes. You may also share or distribute copies of the Software or of derivative
works you make of the Software, but solely if restricted to non-commercial use and subject to all
terms of this EULA. Teaching and academic research are typical examples of non-commercial use.

The Software is licensed to you, and such license does not constitute a sale of the Software.
SRI reserves the right to release the Software under different license terms or to stop distributing or

61

providing access to the Software at any time.

RESTRICTIONS. You may not use or distribute this Software, or any derivative works of this
Software, for commercial purposes. Examples of commercial purposes include running business
operations; licensing, leasing, or selling the Software; distributing the Software for use with com-
mercial products; using the Software in the creation or use of commercial products; or any other
activity whose purpose is to procure a commercial gain to you or others.

You may not: (i) distribute, sublicense, rent or lease the Software, except as expressly permitted
under the limited license above; or (ii) sell professional services or commercial products based on
the use of this software or the interpretation of its results.

OWNERSHIP. SRI is the sole owner of the Software and the intellectual property rights therein.
You agree that SRI retains title to and ownership of the Software and that you will keep confidential
and use your best efforts to prevent and protect the Software from unauthorized access, use or
disclosure. All trademarks, service marks, and trade names are proprietary to SRI. All rights not
expressly granted herein are hereby reserved.

TERMINATION. The EULA is effective upon the date you first use the Software and shall
continue until terminated as specified below.

You may terminate the EULA at any time prior to the natural expiration date by destroying
the Software and any and all related documentation and copies and installations thereof, whether
made under the terms of these terms or otherwise. SRI may terminate the EULA if you fail to
comply with any condition of the EULA or at SRI’s discretion for good cause.If you sue anyone
over patents that you think may apply to or read on the software or anyone’s use of the software, this
EULA (and your license and rights obtained herein) terminate automatically. Upon termination, you
must destroy the Software in your possession, if any, and any and all copies thereof. In the event of
termination for any reason, the provisions set forth under the paragraphs entitled DISCLAIMER OF
ALL WARRANTIES, EXCLUSION OF ALL DAMAGES, and LIMITATION AND RELEASE OF
LIABILITY shall survive.

U.S. GOVERNMENT RESTRICTED RIGHTS. The Software is deemed to be “com-
mercial software” and “commercial computer software documentation,” respectively, pursuant to
DFARS §227.7202 and FAR 12.212, as applicable. Any use, modification, reproduction, release,
performance, display, or disclosure of the Software by the U.S. Government or any of its agencies or
by a U.S. Government prime contractor or subcontractor (at any tier) shall be governed solely by the
terms of this EULA, and shall be prohibited except to the extent expressly permitted by the terms of
this EULA.

DISCLAIMER OF ALL WARRANTIES. SRI PROVIDES THE SOFTWARE “AS IS”
AND WITH ALL FAULTS, AND HEREBY DISCLAIMS ALL OTHER WARRANTIES AND
CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIM-
ITED TO ANY (IF ANY) IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABIL-
ITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF LACK OF VIRUSES AND OF LACK
OF NEGLIGENCE OR LACK OF WORKMANLIKE EFFORT. ALSO, THERE IS NO WAR-
RANTY OR CONDITION OF TITLE, OF QUIET ENJOYMENT OR OF NON-INFRINGEMENT.

62

THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE SOFTWARE
IS WITH YOU.

EXCLUSION OF ALL DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, IN NO EVENT SHALL SRI BE LIABLE FOR ANY CONSEQUENTIAL,
INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE OR OTHER DAMAGES WHATSO-
EVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR ANY INJURY TO PERSON
OR PROPERTY, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, FOR LOSS OF PRIVACY FOR FAILURE TO MEET ANY DUTY
INCLUDING OF GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE AND FOR
ANY PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF OR IN ANY WAY
RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF SRI HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS EXCLUSION OF DAM-
AGES SHALL BE EFFECTIVE EVEN IF ANY REMEDY FAILS OF ITS ESSENTIAL PUR-
POSE.

LIMITATION AND RELEASE OF LIABILITY. SRI has included in this EULA terms
that disclaim all warranties and liability for the Software. To the full extent allowed by law, YOU
HEREBY RELEASE SRI FROM ANY AND ALL LIABILITY ARISING FROM OR RELATED
TO ALL CLAIMS CONCERNING THE SOFTWARE OR ITS USE. If you do not wish to accept
access to the Software under the terms of this EULA, do not access or use the Software. No refund
will be made, because the Software was provided to you at no charge. Independent of, severable
from, and to be enforced independently of any other provision of this EULA, UNDER NO CIR-
CUMSTANCE SHALL SRI’S AGGREGATE LIABILITY TO YOU (INCLUDING LIABILITY
TO ANY THIRD PERSON OR PERSONS WHOSE CLAIM OR CLAIMS ARE BASED ON OR
DERIVED FROM A RIGHT OR RIGHTS CLAIMED BY YOU), WITH RESPECT TO ANY AND
ALL CLAIMS AT ANY AND ALL TIMES ARISING FROM OR RELATED TO THE SUBJECT
MATTER OF THIS EULA, IN CONTRACT, TORT, OR OTHERWISE, EXCEED THE TOTAL
AMOUNT, IF ANY, ACTUALLY PAID BY YOU TO SRI PURSUANT TO THIS EULA.

JURISDICTIONAL ISSUES. This Software is controlled by SRI from its offices within the
State of California. SRI makes no representation that the Software is appropriate or available for
use in other locations. Those who choose to access this Software from other locations do so at their
own initiative and are responsible for compliance with local laws, if and to the extent local laws
are applicable. You hereby acknowledge that the rights and obligations of the EULA are subject
to the laws and regulations of the United States relating to the export of products and technical
information. Without limitation, you shall comply with all such laws and regulations, including the
restriction that the Software may not be accessed from, used or otherwise exported or reexported
(i) into (or to a national or resident of) any country to which the U.S. has embargoed goods; or
(ii) to anyone on the U.S. Treasury Department’s list of Specialty Designated Nationals or the U.S.
Commerce Department’s Table of Deny Orders. By accessing or using the Software, you represent
and warrant that you are not located in, under the control of, or a national or resident of any such
country on any such list.

NOTICE AND PROCEDURE FOR MAKING CLAIMS OF COPYRIGHT INFRINGE-
MENT. Pursuant to Title 17, United States Code, Section 512(c)(2), notifications of claimed

63

copyright infringement should be sent to SRI International, Office of the General Counsel, 333
Ravenswood Ave., Menlo Park, CA 94025.

SUPPORT, UPDATES AND NEW RELEASES. The EULA does not grant you any rights
to any software support, enhancements or updates. Any updates or new releases of the Software
which SRI chooses at its own discretion to distribute or provide access to shall be subject to the
terms hereof.

GENERAL INFORMATION. The EULA constitutes the entire agreement between you and
SRI and governs your access to and use of the Software. The EULA shall not be modified except in
writing by both parties.

The EULA shall be governed by and construed in accordance with the laws of the State of
California, without regard to the conflicts of law principles thereof. Any litigation arising out of or
relating to this EULA or the Software, shall be brought in the United States District Court for the
Northern District of California, if in federal court, or in the San Mateo County Superior Court, if in
state court, and the parties hereby waive any objections to personal jurisdiction and/or venue in such
courts for the purpose of such action.

If any provision of the EULA shall be deemed unlawful, void, or for any reason unenforceable,
then that provision shall be deemed severable from these terms and shall not affect the validity and
enforceability of any remaining provisions.

In consideration of your use of the Software, you represent that you are of legal age to form a
binding contract and are not a person barred from receiving services under the laws of the United
States or other applicable jurisdiction.

The failure of SRI to exercise or enforce any right or provision of the EULA shall not constitute
a waiver of such right or provision.

64

Appendix B

GMP License Terms

Yices depends on the GNU Multiple Precision library (GMP), available from http://
www.gmplib.org. The following terms apply to GMP.

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU
Lesser General Public License, and the "GNU GPL" refers to
version 3 of the GNU General Public License.

"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface
provided by the Library, but which is not otherwise based on the
Library. Defining a subclass of a class defined by the Library is
deemed a mode of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the

65

http://www.gmplib.org
http://www.gmplib.org

Library with which the Combined Work was made is also called
the "Linked Version".

The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source
code for portions of the Combined Work that, considered in
isolation, are based on the Application, and not on the Linked
Version.

The "Corresponding Application Code" for a Combined Work means
the object code and/or source code for the Application, including
any data and utility programs needed for reproducing the Combined
Work from the Application, but excluding the System Libraries of
the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this
License without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications,
a facility refers to a function or data to be supplied by an
Application that uses the facility (other than as an argument
passed when the facility is invoked), then you may convey a copy
of the modified version:

a) under this License, provided that you make a good faith
effort to ensure that, in the event an Application does not
supply the function or data, the facility still operates, and
performs whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions
of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material
from a header file that is part of the Library. You may convey
such object code under terms of your choice, provided that, if the
incorporated material is not limited to numerical parameters, data
structure layouts and accessors, or small macros, inline functions
and templates (ten or fewer lines in length), you do both of the
following:

66

a) Give prominent notice with each copy of the object code that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and
this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each
of the following:

a) Give prominent notice with each copy of the Combined Work
that the Library is used in it and that the Library and its use
are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and
this license document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms
of this License, and the Corresponding Application Code in
a form suitable for, and under terms that permit, the user
to recombine or relink the Application with a modified
version of the Linked Version to produce a modified
Combined Work, in the manner specified by section 6 of the
GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with
the Library. A suitable mechanism is one that (a) uses at
run time a copy of the Library already present on the
user’s computer system, and (b) will operate properly
with a modified version of the Library that is
interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would
otherwise be required to provide such information under

67

section 6 of the GNU GPL, and only to the extent that such
information is necessary to install and execute a modified
version of the Combined Work produced by recombining or
relinking the Application with a modified version of the
Linked Version. (If you use option 4d0, the Installation
Information must accompany the Minimal Corresponding Source
and Corresponding Application Code. If you use option 4d1,
you must provide the Installation Information in the manner
specified by section 6 of the GNU GPL for conveying
Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other
library facilities that are not Applications and are not covered
by this License, and convey such a combined library under terms
of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part
of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new
versions of the GNU Lesser General Public License from time to
time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered
version of the GNU Lesser General Public License "or any later
version" applies to it, you have the option of following the terms
and conditions either of that published version or of any later
version published by the Free Software Foundation. If the Library
as you received it does not specify a version number of the GNU
Lesser General Public License, you may choose any version of the
GNU Lesser General Public License ever published by the Free
Software Foundation.

68

If the Library as you received it specifies that a proxy can
decide whether future versions of the GNU Lesser General Public
License shall apply, that proxy’s public statement of acceptance
of any version is permanent authorization for you to choose that
version for the Library.

69

	Introduction
	Download and Installation
	Binary Distributions
	Source Distribution

	Content of the Distributions
	Library Dependencies
	Supported Logics
	Getting Help and Reporting Bugs

	Yices 2 Logic
	Type System
	Terms and Formulas
	Theories
	Arithmetic
	Bitvectors

	Yices 2 Architecture
	Main Components
	Solvers
	Context Configurations

	Yices Tool
	Example
	Exists/Forall Problems
	Tool Invocation
	Input Language
	Lexical Elements
	Declarations
	Types
	Terms
	Commands

	Support for SMT-LIB
	SMT-LIB 2.0
	Tool Invocation
	SMT-LIB 2.0 Compliance

	SMT-LIB 1.2
	Tool Usage
	Command-Line Options

	Yices API
	A Minimal Example
	Basic API Usage
	Full API

	License Terms
	GMP License Terms

