
 Library-1

NCDaudio March 13, 1993

The NCDaudio Programming Library

Applications may communicate with the NCDaudio server using a
library of C-language routines. The functions in this library generate
network protocol packets and provide a number of convenience util-
ities to simplify operations performed by most applications.

Using the NCDaudio API
Programs that wish to use the NCDaudio service should include the
following file:

#include <audio/audiolib.h>

and install the audio directory where it can be found by the C pre-
processor (e.g., in /usr/include or use -I/other/directory on
the compiler command line).

This header file provides a number of symbolic constants and func-
tion prototypes for both the low-level routines and the higher level
utilities used to communicate with the NCDaudio server.

The NCDaudio library is called libaudio.a and should be refer-
enced on the link line before any X Window System libraries, e.g.:

cc -o myprog myprog.o libaudio.a \
-lXm -lXt -lXext -lX11

If you have installed libaudio.a in one of the directories known
by the linker, you can refer to it as -laudio instead. If you are not
using X within your audio program, you must link with the library
libXau.a after libaudio.a.

Sample Application Use
The NCDaudio service is designed to support a wide range of appli-
cations. However, many applications may find the high-level utility
routines in the library to be sufficient. In particular, programs that
simply wish to play pre-recorded sound data require only a few lines
of code.

For example, a program that uses the X Window System to manage
its graphical user interface would use the audio library to perform
the following operations:

1. In the initialization portion of the program, open a connec-
tion to the audio server (after having opened the X display).

2. If the X toolkit is handling the program’s main loop, add an
input handler to deal with any events from the audio
server.

NCDaudio

Library-2

March 13, 1993

3. When a sound is to be played, call one of the utility routines
to read in the file, send the data to the server, and direct the
data to a speaker.

More sophisticated applications can use the lower level routines to
construct their own audio buckets and audio data flows.

Major Data Types
The NCDaudio application programming interface makes heavy use
of the following data types:

AuID – This is a generic resource identifier, used to refer to
objects in the audio server. The special value
AuNone indicates no object.

AuDeviceID – This is an identifier referring to a physical
or virtual device.

AuBucketID – This is a kind of device identifier that
refers to a bucket object in the server. Buckets are
used to store audio data in the server, typically for
small sounds that are played many times.

AuFlowID – This is an identifier referring to a flow object
in the server. Flows contain the instructions for
moving audio data from one or more sources to one
or more destinations.

AuTime – This is the server time in milliseconds.

AuMask – This is a set of bits that are ORed together.

AuBool – This is a simple boolean whose values are
AuFalse and AuTrue.

AuStatus – This is a number representing a status code.

String data is manipulated using the following structure:

struct _AuString {
int type;
int len;
char *data;

} AuString;

The type field specifies the format in which string data is encoded.
Currently, the only defined value is:

AuStringLatin1 – 8-bit characters encoded in ISO8859/1;
for convenience, the library also null-terminates the
data field in any AuString objects it creates or fills in.

The len field specifies the number of bytes in the data field, which
specifies the actual description text.

➭ Many applications
can ignore the
details of the
different data types
and object attributes
and just skip to the
next chapter.

 Library-3

NCDaudio March 13, 1993

Non-integer values (used to represent data constants and device gain
percentages) are expressed using fixed-point numbers:

AuFixedPoint – This is a signed long whose contents are
in increments of 65536.

which can be created using the following macros:

AuFixedPoint AuFixedPointFromSum (
short integralpart,
unsigned short fractionalpart)

or

AuFixedPoint AuFixedPointFromFraction (
short numerator,
unsigned short denominator)

The integer value of a fixed point number can be obtained using:

int AuFixedPointRoundDown (
AuFixedPoint fp)

int AuFixedPointRoundUp (
AuFixedPoint fp)

The following macros can be used to obtain the signed integral and
unsigned fractional portions of the sum that could be used to recre-
ate the value:

int AuFixedPointIntegralAddend (
AuFixedPoint fp)

unsigned int AuFixedPointFractionalAddend (
AuFixedPoint fp)

Most applications will only need to use the two creator macros.

Status Codes

The following status codes are used in NCDaudio:

AuSuccess – No problems were encountered.

AuBadRequest – An invalid request was received.

AuBadValue – An invalid numeric value was used.

AuBadDevice – An invalid AuDeviceID was given.

AuBadBucket – An invalid AuBucketID was given.

AuBadFlow – An invalid AuFlowID was given.

AuBadElement – An invalid flow element number was
used.

AuBadMatch – Elements with differing numbers of tracks
were hooked together.

NCDaudio

Library-4

March 13, 1993

AuBadAccess – An attempt was made to perform an
operation that is not permitted.

AuBadAlloc – Insufficient resources available.

AuBadConnection – The operating system reported an
unrecoverable error on the connection to the server.

AuBadIDChoice – An invalid identifier value was given
in a Create request.

AuBadName – An invalid name or description text was
given.

AuBadLength – A request packet was received with the
wrong amount of data.

AuBadImplementation – A requested operation is not
implemented in this version.

Other constants are explained in the various sections where they are
used below.

Audio Data Formats

Audio data consists of a sequence of numbers ranging in value from -
1.0 to +1.0, encoded in a variety of ways. The following audio data
formats are supported by the NCDaudio service:

AuFormatULAW8 – 8 bits per value, encoded as the sign
and logarithm of each sample.

AuFormatLinearUnsigned8 – 8 bits per value, encoded
as [0..255].

AuFormatLinearSigned8 – 8 bits per value, encoded as
[-127..+127]. It is less commonly used than the
unsigned version.

AuFormatLinearSigned16MSB – 16 bits per value,
stored most-significant byte first, encoded as
[-32767..+32767].

AuFormatLinearUnsigned16MSB – 16 bits per value,
stored most-significant byte first, encoded as
[0..65535].

AuFormatLinearSigned16LSB – 16 bits per value,
stored least-significant byte first, encoded as
[-32767..+32767].

AuFormatLinearUnsigned16LSB – 16 bits per value,
stored least-significant byte first, encoded as
[0..65535].

Of the 16 bits per sample formats, the MSB versions are typically
used on computers sold by Sun, NeXT, and Apple. The LSB versions
are usually used on Intel-based personal computers and computers
sold by DEC.

 Library-5

NCDaudio March 13, 1993

Flow Elements

The following element types may be used in a flow of audio data:

AuElementTypeImportClient – Data sent from the
client over the network becomes an input source in
the flow.

AuElementTypeImportDevice – Data from a device
becomes an input source in the flow.

AuElementTypeImportBucket – Data that has been
stored in the server becomes an input source in the
flow.

AuElementTypeImportWaveForm – Data of a given
wave form becomes an input source in the flow.

AuElementTypeImportRadio – Data from a “station”
being broadcast over the local area network
becomes an input source in the flow.

AuElementTypeBundle – Tracks of data from one or
more branches in the flow are bundled together to
form a new branch.

AuElementTypeMultiplyConstant – Values flowing
along a given branch are multiplied by a given con-
stant.

AuElementTypeAddConstant – Values flowing along a
given branch are added to a given constant.

AuElementTypeSum – Values flowing along two or more
branches in the flow are summed together.

AuElementTypeExportClient – Data from the flow is
made available to the client for fetching over the
network.

AuElementTypeExportDevice – Data from the flow is
sent to a device attached to the server.

AuElementTypeExportMonitor – Data from the flow
is periodically summarized to the client via a Moni-
torNotify event.

AuElementTypeBucket – Data from the flow is stored in
a bucket object in the server.

AuElementTypeRadio – Data from the flow is directed
to a given local area network audio broadcaster.

Wave Form Generators

Several virtual input sources are provided by the audio server:

AuWaveFormSquare – A square wave from -1.0 to +1.0.

AuWaveFormSine – A sine wave from -1.0 to +1.0.

AuWaveFormSaw – A saw wave from -1.0 to +1.0.

AuWaveFormConstant – A constant value of 1.0.

NCDaudio

Library-6

March 13, 1993

The amplitude of a wave form can easily be changed by multiplying
the output of the wave form generator by a constant.

Input and Output Components

The NCDaudio service supports a variety of input sources (including
physical hardware such as microphones and CD players) and output
destinations (such as speakers). Some components, particularly the
buckets used to store audio data in the server, can be used as both
inputs and outputs.

These components are broken into three classes of objects: devices,
buckets, and radios, all of which share a common set of base
attributes:

typedef struct _AuCommonPart {
AuMask value_mask;
AuMask changable_mask;
AuID id;
unsigned int kind;
AuMask use;
int format;
int num_tracks;
AuMask access;
AuString description;

} AuCommonPart;

The value_mask field specifies which fields are set for this object. The
fields not listed in this mask are set to zero. The changable_mask field
specifies which fields may be set by the application. Both fields
consist of the union of the following mask values:

AuCompCommonIDMask
AuCompCommonKindMask
AuCompCommonUseMask
AuCompCommonFormatMask
AuCompCommonNumTracksMask
AuCompCommonAccessMask
AuCompCommonDescriptionMask

The id field specifies the resource identifier associated with this
device. This value is used in any flow elements or events.

The kind field specifies what type of device this object represents:

AuComponentKindPhysicalInput
AuComponentKindPhysicalOutput
AuComponentKindBucket
AuComponentKindRadio

 Library-7

NCDaudio March 13, 1993

The use field is a mask representing the types of elements in which
this device may be used:

AuComponentUseImportMask
AuComponentUseExportMask

The format field specifies the format currently in use by this device.

The num_tracks field specifies the number of sequences of audio data
used by this device. Mono devices use 1 track; stereo devices use 2
(of which the left channel is usually listed first). The number of tracks
is implementation dependent.

The access field specifies what clients other than the creator of the
device are permitted to do with it:

AuAccessImportMask
AuAccessExportMask
AuAccessDestroyMask
AuAccessListMask

The description field specifies a text string that describes this device

Devices

Physical devices that are attached to the X terminal or PC are
described using the common part listed above as well as the follow-
ing:

typedef struct _AuDevicePart {
unsigned int min_sample_rate;
unsigned int max_sample_rate;
AuMask location;
AuFixedPoint gain;
int line_mode;
int num_children;
AuDeviceID *children;

} AuDevicePart;

typedef struct _AuDeviceAttributes {
AuCommonPart common;
AuDevicePart device;

} AuDeviceAttributes;

The following masks are used in the common value_mask and
changable_mask fields:

AuCompDeviceMinSampleRateMask
AuCompDeviceMaxSampleRateMask
AuCompDeviceLocationMask
AuCompDeviceGainMask

NCDaudio

Library-8

March 13, 1993

AuCompDeviceLineModeMask
AuCompDeviceChildrenMask

The min_sample_rate and max_sample_rate fields specify the range of
sample rates that this device can handle.

The location field is a mask of the following values specifying a hint
as to the physical location of the device relative to the user:

AuDeviceLocationLeftMask
AuDeviceLocationCenterMask
AuDeviceLocationRightMask
AuDeviceLocationTopMask
AuDeviceLocationMiddleMask
AuDeviceLocationBottomMask
AuDeviceLocationBackMask
AuDeviceLocationFrontMask
AuDeviceLocationInternalMask
AuDeviceLocationExternalMask

The gain field specifies a hardware volume control.

The line_mode field specifies which type of amplification circuit
should be used for input devices. CD players and microphones are
typically attached to a higher level circuit than are record players.

AuDeviceLineModeNone
AuDeviceLineModeLow
AuDeviceLineModeHigh

The num_children and children fields are used by aggregate devices to
specify the subdevices that are actually used.

Buckets

Audio data can be stored in the server in objects called buckets,
which are described using the common part listed above as well as
the following:

typedef struct _AuBucketPart {
unsigned short sample_rate;
unsigned long num_samples;

} AuBucketPart;

typedef struct _AuBucketAttributes {
AuCommonPart common;
AuBucketPart bucket;

} AuBucketAttributes;

The following masks are used in the common value_mask and
changable_mask fields:

 Library-9

NCDaudio March 13, 1993

AuCompBucketSampleRateMask
AuCompBucketNumSamplesMask

The sample_rate field specifies the granularity of the audio samples
stored in the bucket.

The num_samples field specifies the number of samples stored in the
bucket.

Radios

Audio data that is broadcast on a local area network using UDP/IP
datagrams can be captured using special objects called a radios,
which are described using the common part listed above as well as
the following:

typedef struct _AuRadioPart {
int station;

} AuRadioPart;

typedef struct _AuRadioAttributes {
AuCommonPart common;
AuRadioPart radio;

} AuRadioAttributes;

The following masks are used in the common value_mask and
changable_mask field:

AuCompRadioStationMask

The station field describes which of the various broadcast streams
should be used.

NCDaudio

Library-10

March 13, 1993

Connecting to the Audio Server

Like the X Window System, NCDaudio requires applications to open
a connection to the server before any operations can be performed.

Opening a Connection to the Audio Server
Before an application can send or manipulate sound data, it must
create a network connection to the audio server using:

AuServer *
AuOpenServer (

const char *name,
int num_authproto,
const char *authproto,
int *num_authdata,
const char *authdata,
char **server_message)

This routine attempts to open a connection to the audio server speci-
fied by name. If this parameter is not NULL, its format depends upon
the network to be used:

❏ TCP/IP – the string should be “tcp/hostname:portnum”;
where hostname is the name or numeric IP address of the
machine on which the audio server is running, and portnum
is the TCP/IP port number on which the server is listening.
If the “tcp/” prefix is not given (making the name have the
same style as an X server name), 8000 is added to portnum.

❏ DECnet – the string should be “decnet/nodename::num”;
where nodename is the name or numeric DECnet address of
the machine on which the audio server is running, and num
is the DECnet task listening on AUDIO$num. If the
“decnet” prefix is not given, it is added automatically.

If name is NULL, this routine looks at the contents of the
AUDIOSERVER environment variable and uses that if it is set. If that
variable is not set, the routine looks at the contents of the DISPLAY
environment variable.

When used with X applications, name is typically set to either the
value passed to XOpenDisplay or the results of calling
DisplayString(dpy).

The strings authproto and authdata specify the authorization protocol
and data to use in making a connection to the server. If they are both
NULL, the routine will look for the data that an X application would
use were it connecting to the X server.

 Library-11

NCDaudio March 13, 1993

If a connection can be made, a pointer to an AuServer object
describing the connection is returned and *server_message is set to
NULL.

Otherwise, *server_message is set to a string if an error was returned
by the server or NULL if the routine was unable to open a connection
or allocate enough memory. The returned string may be freed using
AuFree().

Closing a Connection

When an application no longer wishes to use the audio server, it can
close its connection and release any associated memory using:

void
AuCloseServer (AuServer *audio)

This routine deallocates the memory pointed to by audio.

Registering the Audio Connection with an Xt Input Handler

Audio can most easily be added to X Window System applications
written with X toolkits such Motif, OLIT, or MoOLIT by letting the X
toolkit continue to control the main dispatching loop. The routine
described below sets up an input handler that will call into the
NCDaudio library whenever an audio event is received.

To use this routine, the application should include the following
header files:

/* somewhere after <audio/audiolib.h> */
#include <audio/Xtutil.h>

The latter file provides a function prototype for the following
routine:

XtInputID
AuXtAddAudioHandler (

XtAppContext app_context,
AuServer *audio)

This routine should be called after AuOpenServer(). It arranges for
the audio library to be called whenever events are received from the
audio server. It also sets up an Xt work procedure that flushes the
audio library’s network buffers before Xt attempts to block waiting
for data from X or NCDaudio.

Information Returned from AuOpenServer()
The AuServer object describes all of the information pertaining to a
given connection to the audio server. Its contents should not be refer-
enced explicitly by applications; instead the following macros should

➭ Many applications
can ignore these
fields and skip to the
next chapter.

NCDaudio

Library-12

March 13, 1993

be used. Many applications can ignore this information and simply
use the convenience routines.

int
AuServerConnectionNumber (

AuServer *audio)

This macro returns the file descriptor used to communicate with the
audio server.

const char *
AuServerString (AuServer *audio)

This macro returns a string giving the name of the audio server, suit-
able for passing to AuOpenServer().

const char *
AuServerVendor (AuServer *audio)

This macro returns a string giving the name of the organization that
implemented the audio server.

int
AuServerProtocolMajorVersion (

AuServer *audio)

This macro returns the major version of the protocol expected by the
server. This number is incremented whenever incompatible changes
are made in the underlying NCDaudio protocol.

int
AuServerProtocolMinorVersion (

AuServer *audio)

This macro returns the minor version of the protocol expected by the
server. This number is incremented whenever compatible changes
are made in the underlying NCDaudio protocol.

int
AuServerMinSampleRate (AuServer *audio)

int
AuServerMaxSampleRate (AuServer *audio)

These two macros return the minimum and maximum sample rates
supported by the server.

 Library-13

NCDaudio March 13, 1993

Tracks

The following macro returns the maximum number of tracks per
device or flow element supported by the server:

int AuServerNumTracks (AuServer *audio)

NCD Network Display Stations initially support up to 32 tracks.

Formats

The following macros return information about the formats sup-
ported by the server:

int AuServerNumFormats (AuServer *audio)

This macro returns the number of formats available.

int
AuServerFormat (

AuServer *audio,
int num)

This macro returns the numth format supported by the server (begin-
ning with 0).

int AuSizeofFormat (int format)

This macro returns the size in bytes of a sample encoded in the spec-
ified format.

Device Attributes

The following macros return information about the physical devices
provided by the server:

int
AuServerNumDevices (AuServer *audio)

This macro returns the number of devices available.

AuDeviceAttributes *
AuServerDevice (

AuServer *audio,
int num)

This macro returns a pointer to a structure describing the numth
device (beginning with 0).

Bucket Attributes

The following macros return information about the buckets that are
built into the server:

NCDaudio

Library-14

March 13, 1993

int AuServerNumBuckets (AuServer *audio)

This macro returns the number of built-in buckets.

AuBucketAttributes *
AuServerBucket (

AuServer *audio,
int num)

This macro returns a pointer to a structure describing the numth
built-in bucket (beginning with 0).

Radio Attributes

The following macros return information about the radio objects pro-
vided by the server:

int AuServerNumRadios (AuServer *audio)

This macro returns the number of radios available.

AuRadioAttributes *
AuServerRadio (

AuServer *audio,
int num)

This macro returns a pointer to a structure describing the numth
radio (beginning with 0).

Wave Forms

The following macros return information about the wave form gen-
erators that are provided by the server:

int
AuServerNumWaveForms (

AuServer *audio)

This macro returns the number of wave forms available.

int
AuServerWaveForm (

AuServer *audio,
int num)

This macro returns the numth (beginning with 0) wave form value.

Element Types

The following macros return information about the element types
that may be used in a flow object:

 Library-15

NCDaudio March 13, 1993

int AuServerNumElements (AuServer *audio)

This macro returns the number of types of elements supported.

int
AuServerElement (

AuServer *audio,
int num)

This macro returns the numth supported element type (beginning
with 0).

Action Types

The following macros return information about the actions that may
be attached to flow elements in this server:

int AuServerNumActions (AuServer *audio)

This macro returns the number of actions that are supported.

int
AuServerAction (

AuServer *audio,
int num)

This macro return the numth supported action type (beginning with
0).

NCDaudio

Library-16

March 13, 1993

Manipulating Audio Data Files

Several utility routines are provided for applications that simply
wish to play from or record to a file.

How to Use
Programs that wish to use the utilities described in this chapter
should include the following header file:

/* somewhere after <audio/audiolib.h> */
#include <audio/soundlib.h>

This file provides function prototypes for routines that read and
write audio data files in a variety of formats.

Playing Audio Files
Several routines are provided for directly playing from and record-
ing to audio files that use the .SND, .WAV, or .VOC formats:

AuEventHandlerRec *
AuSoundPlayFromFile (

AuServer *audio,
const char *filename,
AuDeviceID device,
AuFixedPoint volume,
void (*done_callback)(),
AuPointer callback_data,
AuFlowID *ret_flow,
int *ret_mult_elem,
int *ret_monitor_elem,
AuStatus *ret_status)

This routine loads audio data from the specified filename and plays it
to the specified device. If device is AuNone, the routine will select an
output device that matches the number of tracks in the data.

An initial volume at which the data can be specified. To play the data
at the level at which it was recorded, this parameter should be set to
AuFixedPointFromSum(1,0).

Applications that do not wish to find out when the sound has fin-
ished playing or change its volume may specify NULL for the last
three parameters to this routine.

If done_callback is not NULL, that routine will be called when the data
has finished playing:

 Library-17

NCDaudio March 13, 1993

void
done_callback (

AuServer *audio,
AuEventHandlerRec *which,
AuEvent *event,
AuPointer callback_data)

If ret_flow, ret_mult_elem, ret_monitor_elem are not NULL, they are set
to contain the id of the flow being used to play the sound, the
element number of a multiplier that can be adjusted to dynamically
change the volume using AuSetElementParameters(), and the
element number of a monitor that can be used to keep track of data
as it is played. The playing can be aborted using AuSetElement-
States().

The following utility routine is provided for those times when the
application doesn’t care being able to do other things while it is
playing audio data:

AuBool
AuSoundPlaySynchronousFromFile (

AuServer *audio,
const char *filename,
int volume_percent)

This routine takes a filename and a volume expressed as a percentage
(i.e., from 0 to 100) and returns AuTrue if was able to play the data
stored in the file; otherwise it returns AuFalse.

Recording Audio Files
The following routine is provided for recording data directly from an
input device:

AuEventHandlerRec *
AuSoundRecordToFile (

AuServer *audio,
const char *filename,
AuDeviceID device,
AuFixedPoint gain,
void (*done_callback)(),
AuPointer callback_data,
int line_mode,
unsigned long file_type,
const char *comment,
unsigned long sample_rate,
int sample_format,
AuFlowID *ret_flow,
int *ret_volume_mult,
AuStatus *ret_status)

NCDaudio

Library-18

March 13, 1993

This routine records audio data from the specified device and stores it
into the specified filename. The file_type specifies the kind of data file
that should be written out:

SND_MAGIC
WAVE_MAGIC
VOC_MAGIC

The sample_rate and sample_format specify the rate and format of the
data retrieved from the audio server.

Storing Sound Data in Memory
An alternate set of routines are provided for applications that wish to
keep the audio data stored in client memory. The following structure
is used to store the header information describing how the data is
formatted:

typedef struct _SoundHeader {
unsigned long sound_type;
unsigned long format;
unsigned long dataOffset;
unsigned long dataSize;
unsigned long sampleRate;
unsigned short tracks;
unsigned short bitsPerSample;
char swapped;
char is_file;

} SoundHeader;

The sound_type field specifies one of the file types SND_MAGIC,
WAVE_MAGIC, or VOC_MAGIC. The format field specified the AuFor-
mat that should be used.

The dataOffset field specifies where the data should be located rela-
tive to the beginning of the file in which it is stored. The dataSize field
specifies the total length in bytes of the audio data.

The sampleRate field specifies the number of samples per second at
which the data was recorded.

The tracks field specifies the number of tracks of samples in the data.
The bitsPerSample field specifies size in bits of each sample (8, 16, or
32).

The swapped field indicates whether or not the data has been byte-
swapped. The is_file field indicates whether or not the data came
from a file or other random access source.

The number of bytes required per sample can be determined using:

int SoundSizeofFormat (int format)

This returns the number of bytes in a given AuFormat datum.

 Library-19

NCDaudio March 13, 1993

Reading Sound Files

The following routine can be used to read audio files:

FILE *
SoundOpenFileForReading (

const char *filename,
SoundHeader *get_header,
char **ret_comment)

This routine opens the specified filename for reading. If get_header is
not NULL, the header information is copied into *get_header. If
get_comment is not NULL, then *ret_comment is set to a malloced copy
of the comment string in the sound file. If successful, the open file
handle is returned; otherwise NULL is returned.

The audio data is located at byte position header.dataOffset in the file.
Applications can directly use fread() to obtain the data, and
fseek() to move around in the file. When the application is fin-
ished with the file, it can call:

void SoundCloseFile (FILE *fp)

to close the file descriptor.

Writing Sound Files

The following routine can be used to write audio files:

FILE *
SoundOpenFileForWriting (

const char *filename,
SoundHeader *header,
const char *comment)

This routine opens the specified filename and writes the specified
header and optional comment. Applications can then use fwrite() to
write the data to the file descriptor. When the application is finished
with the file, it can call SoundCloseFile() to close the file descrip-
tor.

NCDaudio

Library-20

March 13, 1993

Storing Sounds in the Server

Several routines are provided for storing sound data in the audio
server in objects called buckets which can later be used as a source
for playing or a destination for recording.

Creating Buckets
The following utility routines can be used to create a bucket from
audio data stored in a file or application memory:

AuBucketID
AuSoundCreateBucketFromFile (

AuServer *audio,
const char *filename,
unsigned long access,
AuBucketAttributes **ret_attr,
AuStatus *ret_status)

This routine reads data from the specified filename and creates a
bucket for it in the server. The access mask specifies which operations
(import, export, destroy, and list) may be performed by other clients.
If ret_attr is non-NULL, it is set to point to a description of the
attributes of the created bucket. The bucket, if successfully created, is
returned. Otherwise, AuNone is returned.

AuBucketID
AuSoundCreateBucketFromData (

AuServer *audio,
SoundHeader *header,
AuPointer data,
const char *description,
unsigned long access,
AuBucketAttributes **ret_attr,
AuStatus *ret_status)

This routine is similar to the previous one except that it uses the
header, data, and description provided by the caller instead of reading
them from a file.

Destroying a Bucket

When a bucket is no longer needed, the following routine should be
called:

void AuDestroyBucket (
AuServer *audio,
AuBucketID bucket,
AuStatus *ret_status)

 Library-21

NCDaudio March 13, 1993

Using Buckets
Buckets are used as both sources and destinations in flows.

Playing from Buckets

The following convenience routine can be used to play a sound that
has been stored in a bucket:

AuEventHandlerRec *
AuSoundPlayFromBucket (

AuServer *audio,
AuBucketID bucket,
AuDeviceID device,
AuFixedPoint volume,
void (*callback)(),
AuPointer callback_data,
int count,
AuFlowID *ret_flow,
int *ret_mult_elem,
int *ret_monitor_elem,
AuStatus *ret_status)

This routine is similar to AuSoundPlayFromFile except that it
plays the data from the specified bucket the number of times specified
by count (it will always be played at least once).

Recording to Buckets

The following convenience routine can be used to record a sound
into a bucket:

AuEventHandlerRec *
AuSoundRecordToBucket (

AuServer *audio,
AuBucketID bucket,
AuDeviceID device,
AuFixedPoint gain,
void (*callback)(),
AuPointer callback_data,
int line_mode,
AuFlowID *ret_flow,
int *ret_mult_elem,
AuStatus *ret_status)

This routine is similar to AuSoundRecordToFile except that it
records the data to the specified bucket.

NCDaudio

Library-22

March 13, 1993

Reading Data From Buckets

The following routines can be used to read sound data from a bucket
back to the application program:

AuBool
AuSoundCreateFileFromBucket (

AuServer *audio,
const char *filename,
int sound_format,
AuBucketID bucket,
AuStatus *ret_status)

This routine creates the specified filename, retrieves the contents of
the indicated bucket, and stores it in the given sound_format. If an
error is encountered, AuFalse is returned and ret_status is set to an
audio error code. Otherwise, AuTrue is returned.

AuPointer
AuSoundCreateDataFromBucket (

AuServer *audio,
AuBucketID bucket,
SoundHeader *header,
char **ret_comment,
AuStatus *ret_status)

This routine retrieves the contents of the specified bucket, sets the
contents of header, sets ret_comment to point to a string that can be
released using AuFree(), and returns the data. If an error is encoun-
tered, NULL is returned.

Listing Buckets

The following routine can be used to list buckets that have already
been stored in the server:

AuBucketAttributes *
AuListBuckets (

AuServer *audio,
AuMask mask,
AuBucketAttributes *match_attr,
int *ret_num_buckets,
AuStatus *ret_status)

This routine looks for all buckets which match the attributes indi-
cated by mask stored in match_attr. A list of bucket attributes is
returned, the count of which is stored in ret_num_buckets. If an error
is encountered, NULL is returned and ret_status is set to an audio
error code. The list of bucket attributes can be freed using the routine
AuFreeBucketAttributes().

 Library-23

NCDaudio March 13, 1993

Freeing Bucket Attributes

The following routine can be used to free a bucket attributes block:

void
AuFreeBucketAttributes (

AuServer *audio,
int num_bucket_attrs,
AuBucketAttributes *bucket_attrs)

This routine releases the memory used by the list of bucket attributes
stored in bucket_attrs.

NCDaudio

Library-24

March 13, 1993

