|
__init__(self,
input_dim=None,
dtype=None)
If the input dimension and the output dimension are
unspecified, they will be set when the 'train' or 'execute'
method is called for the first time. |
|
|
|
|
|
_gaussian_prob(self,
x,
lbl_idx)
Return the probability of the data points x with respect to a
gaussian. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
classify(self,
x)
Classify the input data using Maximum A-Posteriori. |
|
|
|
is_invertible(self)
Return True if the node can be inverted, False otherwise. |
|
|
|
train(self,
x,
cl)
Additional input arguments:
cl -- Can be a list, tuple or array of labels (one for each data point)
or a single label, in which case all input data is assigned to
the same class. |
|
|
Inherited from object :
__delattr__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__
|
|
|
|
__call__(self,
x,
*args,
**kargs)
Calling an instance of Node is equivalent to call
its 'execute' method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
copy(self,
protocol=-1)
Return a deep copy of the node. |
|
|
|
execute(self,
x,
*args,
**kargs)
Process the data contained in 'x'. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kargs)
Invert 'y'. |
|
|
|
is_trainable(self)
Return True if the node can be trained, False otherwise. |
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to 'filename'. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|
|
|