Package mdp :: Class Cumulator
[hide private]
[frames] | no frames]

Class Cumulator


A Cumulator is a Node whose training phase simply collects
all input data. In this way it is possible to easily implement
batch-mode learning.

The data is accessible in the attribute 'self.data' after
the beginning of the '_stop_training' phase. 'self.tlen' contains
the number of data points collected.

Nested Classes [hide private]
    Inherited from Node
  __metaclass__
This Metaclass is meant to overwrite doc strings of methods like execute, stop_training, inverse with the ones defined in the corresponding private methods _execute, _stop_training, _inverse, etc...
Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None)
If the input dimension and the output dimension are unspecified, they will be set when the 'train' or 'execute' method is called for the first time.
 
_stop_training(self, *args, **kwargs)
Transform the data list to an array object and reshape it.
 
_train(self, x)
Cumulate all input data in a one dimensional list.
 
stop_training(self, *args, **kwargs)
Transform the data list to an array object and reshape it.
 
train(self, x, *args, **kwargs)
Cumulate all input data in a one dimensional list.

Inherited from object: __delattr__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__

    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kargs)
Calling an instance of Node is equivalent to call its 'execute' method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=-1)
Return a deep copy of the node.
 
execute(self, x, *args, **kargs)
Process the data contained in 'x'.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
inverse(self, y, *args, **kargs)
Invert 'y'.
 
is_invertible(self)
Return True if the node can be inverted, False otherwise.
 
is_trainable(self)
Return True if the node can be trained, False otherwise.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to 'filename'.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples: [(training-phase1, stop-training-phase1), (training-phase2, stop_training-phase2), ...
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None)
(Constructor)

 
If the input dimension and the output dimension are
unspecified, they will be set when the 'train' or 'execute'
method is called for the first time.
If dtype is unspecified, it will be inherited from the data
it receives at the first call of 'train' or 'execute'.

Every subclass must take care of up- or down-casting the internal
structures to match this argument (use _refcast private
method when possible).

Overrides: object.__init__
(inherited documentation)

_stop_training(self, *args, **kwargs)

 
Transform the data list to an array object and reshape it.

Overrides: Node._stop_training

_train(self, x)

 
Cumulate all input data in a one dimensional list.

Overrides: Node._train

stop_training(self, *args, **kwargs)

 
Transform the data list to an array object and reshape it.

Overrides: Node.stop_training

train(self, x, *args, **kwargs)

 
Cumulate all input data in a one dimensional list.

Overrides: Node.train