SAMBA Developers Guide

Jelmer R. Vernooij

11th April 2012

Abstract
Last Update : Fri Oct 10 00:59:58 CEST 2003

This book is a collection of documents that might be useful for people de-
veloping samba or those interested in doing so. It’s nothing more than a
collection of documents written by samba developers about the internals of
various parts of samba and the SMB protocol. It’s still (and will always
be) incomplete. The most recent version of this document can be found at
<http://devel.samba.org/>.

This documentation is distributed under the GNU General Public License
(GPL) version 2. A copy of the license is included with the Samba source dis-
tribution. A copy can be found on-line at <http://wuw.fsf.org/licenses/
gpl.txt>

WARNING

This document is incomplete and unmaintained. It is
merely a collection of development-related notes.

http://devel.samba.org/
http://www.fsf.org/licenses/gpl.txt
http://www.fsf.org/licenses/gpl.txt

ATTRIBUTION

Chapter 1, “NetBIOS in a Unix World”
e Andrew Tridgell
Chapter 2, “NT Domain RPC’s”
e Luke Leighton<mailto:1lkcl@switchboard.net>
e Paul Ashton<mailto:paul®@argo.demon.co.uk>
e Duncan Stansfield<mailto:duncans@sco.com>
Chapter 3, “Samba Architecture”
e Dan Shearer
Chapter 4, “The samba DEBUG system”
e Chris Hertel
Chapter 5, “Samba Internals”
e David Chappell<mailto:David.Chappell®@mail.trincoll.edu>
Chapter 6, “Coding Suggestions”
e Steve French
e Simo Sorce
e Andrew Bartlett
o Tim Potter
e Martin Pool
Chapter 7, “Contributing code”
e Jelmer R. Vernooij<mailto:jelmer@samba.org>
Chapter 8, “Modules”
e Jelmer Vernooij<mailto:jelmer@samba.org>

Chapter 9, “RPC Pluggable Modules”

ii

mailto:lkcl@switchboard.net
mailto:paul@argo.demon.co.uk
mailto:duncans@sco.com
mailto:David.Chappell@mail.trincoll.edu
mailto:jelmer@samba.org
mailto:jelmer@samba.org

Attribution iii

e Anthony Liguori<mailto:aliguor@us.ibm.com>
e Jelmer Vernooij<mailto:jelmer@samba.org>
Chapter 10, “VFS Modules”
e Alexander Bokovoy<mailto:ab@samba.org>
e Stefan Metzmacher<mailto:metze@samba.org>
Chapter 11, “The smb.conf file”
e Chris Hertel
Chapter 12, “Samba WINS Internals”
e Gerald Carter
Chapter 13, “LanMan and NT Password Encryption”
e Jeremy Allison<mailto:samba@samba.org>
Chapter 14, “Tracing samba system calls”
e Andrew Tridgell
Chapter 15, “Samba Printing Internals”
e Gerald Carter
Chapter 16, “Notes to packagers”

e Jelmer Vernooij

mailto:aliguor@us.ibm.com
mailto:jelmer@samba.org
mailto:ab@samba.org
mailto:metze@samba.org
mailto:samba@samba.org

CONTENTS

Contents

ATTRIBUTION

Part I The protocol

Chapter 1 NETBIOS IN A UNIX WORLD

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction
Usernames

File Ownership
Passwords

Locking

Deny Modes
Trapdoor UIDs

Port numbers
Protocol Complexity

Chapter 2 NT DOMAIN RPC’S

2.1

2.2

Introduction
2.1.1 Sources
2.1.2 Credits
Notes and Structures
2.2.1 Notes
2.2.2 Enumerations
2.2.2.1 MSRPC Header type
2.2.2.2 MSRPC Packet info
2.2.3 Structures
2.2.3.1 VOID *
2.2.3.2 char
2.2.3.3 UTIME
2.2.3.4 NTTIME

2.2.3.5 DOM_SID (domain SID structure)

2.2.3.6 STR (string)

2.2.3.7 UNIHDR (unicode string header)

ii

p—

N O OO U R W W W

11
11
11
11
12
12
12
13
13
13
13
13
13
14
14

vi Contents
2.2.3.8 UNIHDR2 (unicode string header plus buffer
pointer) 14
2.2.3.9 UNISTR (unicode string) 14
2.2.3.10 NAME (length-indicated unicode string) 14
2.2.3.11 UNISTR2 (aligned unicode string) 15
2.2.3.12 OBJ_ATTR (object attributes) 15
2.2.3.13 POL_HND (LSA policy handle) 16
2.2.3.14 DOM_SID2 (domain SID structure, SIDS stored
in unicode) 16
2.2.3.15 DOM_RID (domain RID structure) 16
2.2.3.16 LOG_INFO (server, account, client structure) 16
2.2.3.17 CLNT_SRV (server, client names structure) 17
2.2.3.18 CREDS (credentials + time stamp) 17
2.2.3.19 CLNT_INFO2 (server, client structure, client
credentials) 18
2.2.3.20 CLNT_INFO (server, account, client struc-
ture, client credentials) 18
2.2.3.21 ID_INFO_1 (id info structure, auth level 1) 18
2.2.3.22 SAM_INFO (sam logon/logoff id info struc-
ture) 19
2.2.3.23 GID (group id info) 20
2.2.3.24 DOM_REF (domain reference info) 20
2.2.3.25 DOM_INFO (domain info, levels 3 and 5 are
the same)) 21
2.2.3.26 USER_INFO (user logon info) 21
2.2.3.27 SH_INFO_1_PTR (pointers to level 1 share
info strings) 24
2.2.3.28 SH_INFO_1_STR (level 1 share info strings) 24
2.2.3.29 SHARE_INFO_1_.CTR 24
2.2.3.30 SERVER_INFO_101 25
2.3 MSRPC over Transact Named Pipe 27
2.3.1 MSRPC Pipes 27
2.3.2 Header 29
2.3.2.1 RPC_Packet for request, response, bind and
bind acknowledgement 29
2.3.2.2 Interface identification 30
2.3.2.3 RPC_Iface RW 30
2.3.24 RPC_RegBind RW 30
2.3.2.5 RPC_Address RW 31
2.3.2.6 RPC_ResBind RW 31

Contents vii

2.3.2.7 RPC_ReqNorm RW 32

2.3.2.8 RPC_ResNorm RW 33

2.3.3 Tail 33
2.3.4 RPC Bind / Bind Ack 33
2.3.5 NTLSA Transact Named Pipe 34
2.3.6 LSA Open Policy 35
2.3.6.1 Request 35

2.3.6.2 Response 36

2.3.7 LSA Query Info Policy 36
2.3.7.1 Request 36

2.3.7.2 Response 36

2.3.8 LSA Enumerate Trusted Domains 37
2.3.8.1 Request 37

2.3.8.2 Response 37

2.3.9 LSA Open Secret 37
2.3.9.1 Request 37

2.3.9.2 Response 37

2.3.10 LSA Close 38
2.3.10.1 Request 38
2.3.10.2 Response 38

2.3.11 LSA Lookup SIDS 38
2.3.11.1 Request 38
2.3.11.2 Response 39

2.3.12 LSA Lookup Names 39
2.3.12.1 Request 39
2.3.12.2 Response 40

2.4 NETLOGON rpc Transact Named Pipe 40
2.4.1 LSA Request Challenge 41
2.4.1.1 Request 42

2.4.1.2 Response 42

2.4.2 LSA Authenticate 2 42
2.4.2.1 Request 42

2.4.2.2 Response 43

2.4.3 LSA Server Password Set 43
2.4.3.1 Request 43

2.4.3.2 Response 43

2.4.4 LSA SAM Logon 44
2.44.1 Request 44

2.4.4.2 Response 44

2.4.5 LSA SAM Logoff 45

viii

Contents

2.5

2.6

2.7

2.8

2.4.5.1 Request
2.4.5.2 Response
\\MAILSLOT\NET\NTLOGON
2.5.1 Query for PDC
2.5.1.1 Request
2.5.1.2 Response
2.5.2 SAM Logon
2.5.2.1 Request
2.5.2.2 Response
SRVSVC Transact Named Pipe
2.6.1 Net Share Enum
2.6.1.1 Request
2.6.1.2 Response
2.6.2 Net Server Get Info
2.6.2.1 Request
2.6.2.2 Response

Cryptographic side of NT Domain Authentication

2.7.1 Definitions

2.7.2 Protocol

2.7.3 Comments

SIDs and RIDs

2.8.1 Well-known SIDs

2.8.1.1 Universal well-known SIDs
2.8.1.2 NT well-known SIDs

2.8.2 Well-known RIDS

2.8.2.1 Well-known RID users
2.8.2.2 Well-known RID groups
2.8.2.3 Well-known RID aliases

Part II Samba Basics

Chapter 3 SAMBA ARCHITECTURE

3.1
3.2
3.3
3.4
3.5

Chapter 4 THE SAMBA DEBUG SYSTEM

Introduction
Multithreading and Samba
Threading smbd
Threading nmbd

nbmd Design

45
45
45
45
45
46
47
47
48
48
49
49
49
50
50
50
50
50
o1
52
53
53
53
54
55
95
55
55

55

57
o7
o7
58
58
59

60

Contents

ix

4.1
4.2
4.3
4.4
4.5

New Output Syntax

The DEBUG() Macro

The DEBUGADD() Macro
The DEBUGLVL() Macro
New Functions

4.5.1 dbgtext()

4.5.2 dbghdr()

4.5.3 format_debug_text()

Chapter 5 SAMBA INTERNALS

5.1
5.2
9.3

5.4

9.5

Character Handling

The new functions

Macros in byteorder.h

5.3.1 CVAL(buf,pos)
5.3.2 PVAL(buf,pos)
5.3.3 SCVAL(buf,pos,val)
5.3.4 SVAL(buf,pos)
5.3.5 IVAL(buf,pos)

5.3.6 SVALS(buf,pos)
5.3.7 IVALS(buf,pos)
5.3.8 SSVAL(buf,pos,val)
5.3.9 SIVAL(buf,pos,val)
5.3.10 SSVALS(buf,pos,val)
5.3.11 SIVALS(buf,pos,val)
5.3.12 RSVAL(buf,pos)
5.3.13 RIVAL(buf,pos)
5.3.14 RSSVAL(buf,pos,val)
5.3.15 RSIVAL(buf,pos,val)
LAN Manager Samba API
5.4.1 Parameters

5.4.2 Return value

Code character table

Chapter 6 CODING SUGGESTIONS

Chapter 7 CONTRIBUTING CODE

Chapter 8 MODULES

8.1
8.2

Advantages
Loading modules

60
61
63
63
64
64
65
65

66
66
66
68
68
68
68
68
68
68
69
69
69
69
69
69
69
70
70
70
70
71
72

74

78

80
80
80

Contents

8.3

8.2.1 Static modules

8.2.2 Shared modules

Writing modules

8.3.1 Static/Shared selection in configure.in

Part III Samba Subsystems

Chapter 9 RPC PLUGGABLE MODULES

9.1
9.2

About

General Overview

Chapter 10 VFS MODULES

10.1

10.2

10.3

10.4

The Samba (Posix) VF'S layer

10.1.1 The general interface

10.1.2 Possible VFS operation layers

The Interaction between the Samba VFS subsystem and the
modules

10.2.1 Initialization and registration

10.2.2 How the Modules handle per connection data
Upgrading to the New VF'S Interface

10.3.1 Upgrading from 2.2.* and 3.0aplha modules
Some Notes

10.4.1 Implement TRANSPARENT functions

10.4.2 Implement OPAQUE functions

Chapter 11 THE SMB.CONF FILE

11.1

11.2

Lexical Analysis

11.1.1 Handling of Whitespace

11.1.2 Handling of Line Continuation
11.1.3 Line Continuation Quirks
Syntax

11.2.1 About params.c

Chapter 12 SAMBA WINS INTERNALS
12.1 WINS Failover

80
81
81
82

83

85
85
85

87
87
88
92

93
93
94
98
98
104
104
105

106
106
107
107
108
109
109

110
110

Chapter 13 LANMAN AND NT PASSWORD ENCRYPTION112
13.1 Introduction
13.2 How does it work?
13.3 The smbpasswd file

112
112
113

Contents

Part IV Debugging and tracing
Chapter 14 TRACING SAMBA SYSTEM CALLS

Chapter 15 SAMBA PRINTING INTERNALS
15.1 Abstract
15.2 Printing Interface to Various Back ends
15.3 Print Queue TDB’s
15.4 ChangelD and Client Caching of Printer Information
15.5 Windows NT /2K Printer Change Notify

Part V Appendices

Chapter 16 NOTES TO PACKAGERS
16.1 Versioning
16.2 Modules

115
117

120
120
120
121
123
123

125

127
127
127

Part 1

The protocol

Chapter 1

NETBIOS IN A UNIX WORLD

1.1 Introduction

This is a short document that describes some of the issues that confront a
SMB implementation on unix, and how Samba copes with them. They may
help people who are looking at unix<->PC interoperability.

It was written to help out a person who was writing a paper on unix to PC
connectivity.

1.2 Usernames

The SMB protocol has only a loose username concept. Early SMB pro-
tocols (such as CORE and COREPLUS) have no username concept at all.
Even in later protocols clients often attempt operations (particularly printer
operations) without first validating a username on the server.

Unix security is based around username/password pairs. A unix box should
not allow clients to do any substantive operation without some sort of vali-
dation.

The problem mostly manifests itself when the unix server is in ”share level”
security mode. This is the default mode as the alternative "user level”
security mode usually forces a client to connect to the server as the same
user for each connected share, which is inconvenient in many sites.

In ”share level” security the client normally gives a username in the ”session
setup” protocol, but does not supply an accompanying password. The client
then connects to resources using the ”tree connect” protocol, and supplies a
password. The problem is that the user on the PC types the username and

4 NetBIOS in a Unix World Chapter 1

the password in different contexts, unaware that they need to go together to
give access to the server. The username is normally the one the user typed in
when they ”logged onto” the PC (this assumes Windows for Workgroups).
The password is the one they chose when connecting to the disk or printer.

The user often chooses a totally different username for their login as for the
drive connection. Often they also want to access different drives as different
usernames. The unix server needs some way of divining the correct username
to combine with each password.

Samba tries to avoid this problem using several methods. These succeed in
the vast majority of cases. The methods include username maps, the ser-
vice%user syntax, the saving of session setup usernames for later validation
and the derivation of the username from the service name (either directly
or via the user= option).

1.3 File Ownership

The commonly used SMB protocols have no way of saying ”you can’t do
that because you don’t own the file”. They have, in fact, no concept of file
ownership at all.

This brings up all sorts of interesting problems. For example, when you copy
a file to a unix drive, and the file is world writeable but owned by another
user the file will transfer correctly but will receive the wrong date. This is
because the utime() call under unix only succeeds for the owner of the file,
or root, even if the file is world writeable. For security reasons Samba does
all file operations as the validated user, not root, so the utime() fails. This
can stuff up shared development diectories as programs like "make” will not
get file time comparisons right.

There are several possible solutions to this problem, including username
mapping, and forcing a specific username for particular shares.

1.4 Passwords

Many SMB clients uppercase passwords before sending them. I have no idea
why they do this. Interestingly WfWg uppercases the password only if the
server is running a protocol greater than COREPLUS, so obviously it isn’t
just the data entry routines that are to blame.

Section 1.5. Locking 5

Unix passwords are case sensitive. So if users use mixed case passwords they
are in trouble.

Samba can try to cope with this by either using the ”password level” option
which causes Samba to try the offered password with up to the specified
number of case changes, or by using the ”password server” option which
allows Samba to do its validation via another machine (typically a WinNT
server).

Samba supports the password encryption method used by SMB clients. Note
that the use of password encryption in Microsoft networking leads to pass-
word hashes that are ”plain text equivalent”. This means that it is *VERY™*
important to ensure that the Samba smbpasswd file containing these pass-
word hashes is only readable by the root user. See the documentation EN-
CRYPTION.txt for more details.

1.5 Locking

Since samba, 2.2, samba supports other types of locking as well. This section
is outdated.

The locking calls available under a DOS/Windows environment are much
richer than those available in unix. This means a unix server (like Samba)
choosing to use the standard fentl() based unix locking calls to implement
SMB locking has to improvise a bit.

One major problem is that dos locks can be in a 32 bit (unsigned) range.
Unix locking calls are 32 bits, but are signed, giving only a 31 bit range.
Unfortunately OLE2 clients use the top bit to select a locking range used
for OLE semaphores.

To work around this problem Samba compresses the 32 bit range into 31 bits
by appropriate bit shifting. This seems to work but is not ideal. In a future
version a separate SMB lockd may be added to cope with the problem.

It also doesn’t help that many unix lockd daemons are very buggy and
crash at the slightest provocation. They normally go mostly unused in a
unix environment because few unix programs use byte range locking. The
stress of huge numbers of lock requests from dos/windows clients can kill
the daemon on some systems.

6 NetBIOS in a Unix World Chapter 1

The second major problem is the ” opportunistic locking” requested by some
clients. If a client requests opportunistic locking then it is asking the server
to notify it if anyone else tries to do something on the same file, at which
time the client will say if it is willing to give up its lock. Unix has no simple
way of implementing opportunistic locking, and currently Samba has no
support for it.

1.6 Deny Modes

When a SMB client opens a file it asks for a particular ”deny mode” to be
placed on the file. These modes (DENY_NONE, DENY _READ, DENY_WRITE,
DENY_ALL, DENY_FCB and DENY_DOS) specify what actions should

be allowed by anyone else who tries to use the file at the same time. If
DENY_READ is placed on the file, for example, then any attempt to open
the file for reading should fail.

Unix has no equivalent notion. To implement this Samba uses either lock
files based on the files inode and placed in a separate lock directory or a
shared memory implementation. The lock file method is clumsy and con-
sumes processing and file resources, the shared memory implementation is
vastly prefered and is turned on by default for those systems that support
it.

1.7 Trapdoor UIDs

A SMB session can run with several uids on the one socket. This happens
when a user connects to two shares with different usernames. To cope with
this the unix server needs to switch uids within the one process. On some
unixes (such as SCO) this is not possible. This means that on those unixes
the client is restricted to a single uid.

Note that you can also get the "trapdoor uid” message for other reasons.
Please see the FAQ for details.

1.8 Port numbers

There is a convention that clients on sockets use high ”unprivileged” port
numbers (>1000) and connect to servers on low ”privilegedg” port numbers.

Section 1.9. Protocol Complexity 7

This is enforced in Unix as non-root users can’t open a socket for listening
on port numbers less than 1000.

Most PC based SMB clients (such as WfWg and WinNT) don’t follow this
convention completely. The main culprit is the netbios nameserving on udp
port 137. Name query requests come from a source port of 137. This is
a problem when you combine it with the common firewalling technique of
not allowing incoming packets on low port numbers. This means that these
clients can’t query a netbios nameserver on the other side of a low port
based firewall.

The problem is more severe with netbios node status queries. I’ve found that
WitWg, Win95 and WinN'T3.5 all respond to netbios node status queries on
port 137 no matter what the source port was in the request. This works
between machines that are both using port 137, but it means it’s not possible
for a unix user to do a node status request to any of these OSes unless they
are running as root. The answer comes back, but it goes to port 137 which
the unix user can’t listen on. Interestingly WinNT3.1 got this right - it
sends node status responses back to the source port in the request.

1.9 Protocol Complexity

There are many ”protocol levels” in the SMB protocol. It seems that each
time new functionality was added to a Microsoft operating system, they
added the equivalent functions in a new protocol level of the SMB protocol
to "externalise” the new capabilities.

This means the protocol is very ”rich”, offering many ways of doing each
file operation. This means SMB servers need to be complex and large. It
also means it is very difficult to make them bug free. It is not just Samba
that suffers from this problem, other servers such as WinNT don’t support
every variation of every call and it has almost certainly been a headache for
MS developers to support the myriad of SMB calls that are available.

There are about 65 "top level” operations in the SMB protocol (things like
SMBread and SMBwrite). Some of these include hundreds of sub-functions
(SMBtrans has at least 120 sub-functions, like DosPrintQ Add and NetSes-
sionEnum). All of them take several options that can change the way they
work. Many take dozens of possible ”information levels” that change the
structures that need to be returned. Samba supports all but 2 of the ”top

8 NetBIOS in a Unix World Chapter 1

level” functions. It supports only 8 (so far) of the SMBtrans sub-functions.
Even NT doesn’t support them all.

Samba currently supports up to the "NT LM 0.12” protocol, which is the
one preferred by Win95 and WinNT3.5. Luckily this protocol level has a
”capabilities” field which specifies which super-duper new-fangled options
the server suports. This helps to make the implementation of this protocol
level much easier.

There is also a problem with the SMB specications. SMB is a X/Open spec,
but the X/Open book is far from ideal, and fails to cover many important
issues, leaving much to the imagination. Microsoft recently renamed the
SMB protocol CIFS (Common Internet File System) and have published
new specifications. These are far superior to the old X/Open documents but
there are still undocumented calls and features. This specification is actively
being worked on by a CIFS developers mailing list hosted by Microsft.

Chapter 2

NT DOMAIN RPC’S

2.1 Introduction

This document contains information to provide an NT workstation with
login services, without the need for an NT server. It is the sgml version
of <http://mailhost.cbl.com/~1kcl/cifsntdomain.txt>, controlled by
Luke.

It should be possible to select a domain instead of a workgroup (in the
NT workstation’s TCP/IP settings) and after the obligatory reboot, type
in a username, password, select a domain and successfully log in. I would
appreciate any feedback on your experiences with this process, and any
comments, corrections and additions to this document.

The packets described here can be easily derived from (and are probably
better understood using) Netmon.exe. You will need to use the version of
Netmon that matches your system, in order to correctly decode the NETLO-
GON, Isarpc and srvsve Transact pipes. This document is derived from NT
Service Pack 1 and its corresponding version of Netmon. It is intended that
an annotated packet trace be produced, which will likely be more instructive
than this document.

Also needed, to fully implement NT Domain Login Services, is the document
describing the cryptographic part of the NT authentication. This document
is available from comp.protocols.smb; from the ntsecurity.net digest and
from the samba digest, amongst other sources.

A copy is available from:

<http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;
0=A;P=2935>

http://mailhost.cb1.com/~lkcl/cifsntdomain.txt
http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;P=2935
http://ntbugtraq.rc.on.ca/SCRIPTS/WA.EXE?A2=ind9708;L=ntbugtraq;O=A;P=2935

10 NT Domain RPC's Chapter 2

<http://mailhost.cbl.com/"1kcl/crypt.html>

A c-code implementation, provided by Linus Nordberg! of this protocol is
available from:

<http://samba.org/cgi-bin/mfs/01/digest/1997/97aug/0391.html>
<http://mailhost.cbl.com/~1lkcl/crypt.txt>

Also used to provide debugging information is the Check Build version of NT
workstation, and enabling full debugging in NETLOGON. This is achieved
by setting the following REG_SZ registry key to Ox1{fftff:

HKLM\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters

Incorrect direct editing of the registry can cause your machine to fail. Then
again, so can incorrect implementation of this protocol. See ”Liability:”
above.

Bear in mind that each packet over-the-wire will have its origin in an API
call. Therefore, there are likely to be structures, enumerations and defines
that are usefully documented elsewhere.

This document is by no means complete or authoritative. Missing sections
include, but are not limited to:

1. Mappings of RIDs to usernames (and vice-versa).
2. What a User ID is and what a Group ID is.

3. The exact meaning/definition of various magic constants or enumera-
tions.

4. The reply error code and use of that error code when a workstation
becomes a member of a domain (to be described later). Failure to re-
turn this error code will make the workstation report that it is already
a member of the domain.

5. the cryptographic side of the NetrServerPasswordSet command, which
would allow the workstation to change its password. This password is
used to generate the long-term session key. [It is possible to reject this
command, and keep the default workstation password).

l<mailto:linus@incolumitas.se>

http://mailhost.cb1.com/~lkcl/crypt.html
http://samba.org/cgi-bin/mfs/01/digest/1997/97aug/0391.html
http://mailhost.cb1.com/~lkcl/crypt.txt
mailto:linus@incolumitas.se

Section 2.2. Notes and Structures 11

2.1.1 Sources

cket Traces from Netmonitor (Service Pack 1 and above)
ul Ashton and Luke Leighton’s other ”NT Domain” doc.
FS documentation - cifs6.txt

FS documentation - cifsrap2.txt

2.1.2 Credits

Paul Ashton: loads of work with Net Monitor; understanding the N'T authentication system; reference im
Duncan Stansfield: low-level analysis of MSRPC Pipes.

Linus Nordberg: producing c-code from Paul’s crypto spec.

Windows Sourcer development team

2.2 Notes and Structures

2.2.1 Notes

1. In the SMB Transact pipes, some ”Structures”, described here, ap-
pear to be 4-byte aligned with the SMB header, at their start. Ex-
actly which ”Structures” need aligning is not precisely known or doc-
umented.

2. In the UDP NTLOGON Mailslots, some ”Structures”, described here,
appear to be 2-byte aligned with the start of the mailslot, at their
start.

3. Domain SID is of the format S-revision-version-authl-auth2...authN.
e.g S-1-5-123-456-789-123-456. the 5 could be a sub-revision.

4. any undocumented buffer pointers must be non-zero if the string buffer
it refers to contains characters. exactly what value they should be is
unknown. 0x0000 0002 seems to do the trick to indicate that the
buffer exists. a NULL buffer pointer indicates that the string buffer is
of zero length. If the buffer pointer is NULL, then it is suspected that
the structure it refers to is NOT put into (or taken out of) the SMB
data stream. This is empirically derived from, for example, the LSA
SAM Logon response packet, where if the buffer pointer is NULL, the
user information is not inserted into the data stream. Exactly what
happens with an array of buffer pointers is not known, although an
educated guess can be made.

12 NT Domain RPC’s Chapter 2

5. an array of structures (a container) appears to have a count and a
pointer. if the count is zero, the pointer is also zero. no further data is
put into or taken out of the SMB data stream. if the count is non-zero,
then the pointer is also non-zero. immediately following the pointer is
the count again, followed by an array of container sub-structures. the
count appears a third time after the last sub-structure.

2.2.2 Enumerations
2.2.2.1 MSRPC Header type

command number in the msrpc packet header

MSRPC _Request: 0x00

MSRPC_Response: 0x02

MSRPC_Bind: 0x0B

MSRPC_BindAck: 0x0C

2.2.2.2 MSRPC Packet info

The meaning of these flags is undocumented

FirstFrag: 0x01

LastFrag: 0x02

NotaFrag: 0x04

RecRespond: 0x08

NoMultiplex: 0x10

Section 2.2. Notes and Structures

13

NotForldemp: 0x20

NotforBcast: 0x40

NoUuid: 0x80

2.2.3 Structures
2.2.3.1 VOID *

sizeof VOID* is 32 bits.

2.2.3.2 char

sizeof char is 8 bits.

2.2.3.3 UTIME

UTIME is 32 bits, indicating time in seconds since 01jan1970. documented

in cifs6.txt (section 3.5 page, page 30).

2.2.3.4 NTTIME

NTTIME is 64 bits. documented in cifs6.txt (section 3.5 page, page 30).

2.2.3.5 DOM.SID (domain SID structure)

UINT32 num of sub-authorities in domain SID

UINTS8 SID revision number

UINTS8 num of sub-authorities in domain SID

14 NT Domain RPC’s Chapter 2

UINTS8[6] 6 bytes for domain SID - Identifier Authority.

UINT16[n_subauths] domain SID sub-authorities

Note: the domain SID is documented elsewhere.

2.2.3.6 STR (string)

STR (string) is a char[] : a null-terminated string of ascii characters.

2.2.3.7 UNIHDR (unicode string header)

UINT16 length of unicode string

UINT16 max length of unicode string

UINT32 4 - undocumented.

2.2.3.8 UNIHDR2 (unicode string header plus buffer pointer)

UNIHDR . unicode string header

VOID* undocumented buffer pointer

2.2.3.9 UNISTR (unicode string)

UINT16[] null-terminated string of unicode characters.

2.2.3.10 NAME (length-indicated unicode string)

UINT32 length of unicode string

Section 2.2. Notes and Structures 15

UINT16[] null-terminated string of unicode characters.

2.2.3.11 UNISTR2 (aligned unicode string)

UINTS[] padding to get unicode string 4-byte aligned with the start of the
SMB header.

UINT32 max length of unicode string

UINT32 0 - undocumented

UINT32 length of unicode string

UINT16][] string of uncode characters

2.2.3.12 OBJ_ATTR (object attributes)

UINT32 0x18 - length (in bytes) including the length field.

VOID* 0 - root directory (pointer)

VOID* 0 - object name (pointer)

UINT32 0 - attributes (undocumented)

VOID* 0 - security descriptior (pointer)

UINT32 0 - security quality of service

16 NT Domain RPC’s Chapter 2

2.2.3.13 POL_HND (LSA policy handle)

char[20] policy handle

2.2.3.14 DOM._SID2 (domain SID structure, SIDS stored in unicode)

UINT32 5 - SID type

UINT32 0 - undocumented

UNIHDRZ2 domain SID unicode string header

UNISTR domain SID unicode string

Note: there is a conflict between the unicode string header and the unicode

string itself as to which to use to indicate string length. this will need to be
resolved.

Note: the SID type indicates, for example, an alias; a well-known group etc.
this is documented somewhere.

2.2.3.15 DOM_RID (domain RID structure)

UINT32 5 - well-known SID. 1 - user SID (see ShowACLs)
UINT32 5 - undocumented

UINT32 domain RID

UINT32 0 - domain index out of above reference domains

2.2.3.16 LOG_INFO (server, account, client structure)

Note: logon server name starts with two '\’ characters and is upper case.

Section 2.2. Notes and Structures 17

Note: account name is the logon client name from the LSA Request Chal-
lenge, with a $ on the end of it, in upper case.

VOID* undocumented buffer pointer

UNISTR2 logon server unicode string

UNISTR2 account name unicode string

UINT16 sec_chan - security channel type

UNISTR2 logon client machine unicode string

2.2.3.17 CLNT_SRV (server, client names structure)

Note: logon server name starts with two '\’ characters and is upper case.

VOID* undocumented buffer pointer

UNISTR2 logon server unicode string

VOID* undocumented buffer pointer

UNISTR2 logon client machine unicode string

2.2.3.18 CREDS (credentials + time stamp)

char[8] credentials

UTIME time stamp

18 NT Domain RPC’s Chapter 2

2.2.3.19 CLNT_INFO2 (server, client structure, client credentials)

Note: whenever this structure appears in a request, you must take a copy of
the client-calculated credentials received, because they will beused in subse-
quent credential checks. the presumed intention is to maintain an authenti-
cated request/response trail.

CLNT_SRV client and server names

UINTS8[] 777? padding, for 4-byte alignment with SMB header.

VOID* pointer to client credentials.

CREDS client-calculated credentials + client time

2.2.3.20 CLNT_INFO (server, account, client structure, client creden-
tials)

Note: whenever this structure appears in a request, you must take a copy of
the client-calculated credentials received, because they will be used in subse-
quent credential checks. the presumed intention is to maintain an authenti-
cated request/response trail.

LOG_INFO logon account info

CREDS client-calculated credentials + client time

2.2.3.21 ID_INFO_1 (id info structure, auth level 1)

VOID* ptr_d_info_1

UNIHDR domain name unicode header

UINT32 param control

Section 2.2. Notes and Structures 19

UINT®64 logon ID

UNIHDR user name unicode header

UNIHDR workgroup name unicode header

char[16] arc4 LM OWF Password

char[16] arc4 NT OWF Password

UNISTR2 domain name unicode string

UNISTR2 user name unicode string

UNISTR?2 workstation name unicode string

2.2.3.22 SAML_INFO (sam logon/logoff id info structure)

Note: presumably, the return credentials is supposedly for the server to verify
that the credential chain hasn’t been compromised.

CLNT_INFO2 client identification/authentication info

VOID* pointer to return credentials.

CRED return credentials - ignored.

UINT16 logon level

UINT16 switch value

20 NT Domain RPC’s Chapter 2

switch (switch_value)

case 1:
{

ID_INFO_1 id_info_1;
}

2.2.3.23 GID (group id info)

UINT32 group id

UINT32 user attributes (only used by NT 3.1 and 3.51)

2.2.3.24 DOM_REF (domain reference info)

VOID* undocumented buffer pointer.

UINT32 num referenced domains?

VOID* undocumented domain name buffer pointer.

UINT32 32 - max number of entries

UINT32 4 - num referenced domains?

UNIHDR?2 domain name unicode string header

UNIHDR2[num_ref doms-1] referenced domain unicode string headers

UNISTR domain name unicode string

Section 2.2. Notes and Structures 21

DOM_SID[num _ref_doms] referenced domain SIDs

2.2.3.25 DOML_INFO (domain info, levels 3 and 5 are the same))

UINTS8[] 77?7 padding to get 4-byte alignment with start of SMB header

UINT16 domain name string length * 2

UINT16 domain name string length * 2

VOID* undocumented domain name string buffer pointer

VOID* undocumented domain SID string buffer pointer

UNISTR?2 domain name (unicode string)

DOM_SID domain SID

2.2.3.26 USER_INFO (user logon info)

Note: it would be nice to know what the 16 byte user session key is for.

NTTIME logon time

NTTIME logoff time

NTTIME kickoff time

NTTIME password last set time

NTTIME password can change time

22 NT Domain RPC's

Chapter 2

NTTIME password must change time

UNIHDR username unicode string header

UNIHDR . user’s full name unicode string header

UNIHDR logon script unicode string header

UNIHDR . profile path unicode string header

UNIHDR home directory unicode string header

UNIHDR home directory drive unicode string header

UINT16 logon count

UINT16 bad password count

UINT32 User ID

UINT32 Group ID

UINT32 num groups

VOID* undocumented buffer pointer to groups.

UINT32 user flags

char[16] user session key

UNIHDR logon server unicode string header

Section 2.2. Notes and Structures

UNIHDR . logon domain unicode string header

VOID* undocumented logon domain id pointer

char[40] 40 undocumented padding bytes. future expansion?

UINT32 0 - num_other_sids?

VOID* NULL - undocumented pointer to other domain SIDs.

UNISTR?2 username unicode string

UNISTR2 user’s full name unicode string

UNISTR2 logon script unicode string

UNISTR2 profile path unicode string

UNISTR2 home directory unicode string

UNISTR?2 home directory drive unicode string

UINT32 num groups

GID[num_groups| group info

UNISTR2 logon server unicode string

UNISTR2 logon domain unicode string

DOM_SID domain SID

24 NT Domain RPC’s Chapter 2

DOM_SID[num sids| other domain SIDs?

2.2.3.27 SH_INFO_1_PTR (pointers to level 1 share info strings)

Note: see cifsrap2.txt sectiond, page 10.

0 for shil_type indicates a Disk.

1 for shil_type indicates a Print Queue.

2 for shil_type indicates a Device.

3 for shil_type indicates an IPC pipe.

0x8000 0000 (top bit set in shil_type) indicates a hidden share.

VOID* shil_netname - pointer to net name

UINT32 shil_type - type of share. 0 - undocumented.

VOID* shil _remark - pointer to comment.

2.2.3.28 SH_INFO_1_STR (level 1 share info strings)

UNISTR2 shil netname - unicode string of net name

UNISTR2 shil_remark - unicode string of comment.

2.2.3.29 SHARE_INFO_1_CTR

share container with 0 entries:

UINT32 0 - EntriesRead

UINT32 0 - Buffer

share container with > 0 entries:

Section 2.2. Notes and Structures 25

UINT32 EntriesRead

UINT32 non-zero - Buffer

UINT32 EntriesRead

SH INFO_1 PTR|[EntriesRead] share entry pointers

SH_INFO_1_STR[EntriesRead] share entry strings

UINTS[] padding to get unicode string 4-byte aligned with start of the
SMB header.

UINT32 EntriesRead

UINT32 0 - padding

2.2.3.30 SERVERL.INFO_101

Note: see cifs6.txt section 6.4 - the fields described therein will be of assis-
tance here. for example, the type listed below is the same as fServerType,
which is described in 6.4.1.

SV_TYPE_WORKSTATION 0x00000001 All workstations

SV_TYPE_SERVER 0x00000002 All servers

SV_TYPE_SQLSERVER 0x00000004 Any server running with SQL server

SV_TYPE DOMAIN_CTRL 0x00000008 Primary domain controller

SV_TYPE_ DOMAIN_BAKCTRL 0x00000010 Backup domain controller

26 NT Domain RPC’s Chapter 2

SV_TYPE_TIME_SOURCE 0x00000020 Server running the timesource

service

SV_TYPE_AFP 0x00000040 Apple File Protocol servers

SV_TYPE_NOVELL 0x00000080 Novell servers

SV_TYPE_DOMAIN_MEMBER 0x00000100 Domain Member

SV_TYPE_PRINTQ_SERVER 0x00000200 Server sharing print queue

SV_TYPE_DIALIN_SERVER. 0x00000400 Server running dialin service.

SV_TYPE_XENIX_SERVER 0x00000800 Xenix server

SV_TYPE_NT 0x00001000 NT server

SV_TYPE_WFW 0x00002000 Server running Windows for

SV_TYPE_SERVER_NT 0x00008000 Windows NT non DC server

SV_TYPE_POTENTIAL_BROWSER 0x00010000 Server that can run
the browser service

SV_TYPE_ BACKUP_BROWSER 0x00020000 Backup browser server

SV_TYPE_MASTER_BROWSER 0x00040000 Master browser server

SV_TYPE_DOMAIN_MASTER 0x00080000 Domain Master Browser
server

Section 2.3. MSRPC over Transact Named Pipe 27

SV_TYPE_LOCAL_LIST_ONLY 0x40000000 Enumerate only entries marked
”local”

SV_TYPE_DOMAIN_ENUM 0x80000000 Enumerate Domains. The
pszServer and pszDomain parameters must be NULL.

UINT32 500 - platform_id

VOID* pointer to name

UINT32 5 - major version

UINT32 4 - minor version

UINT32 type (SV_.TYPE_... bit field)

VOID* pointer to comment

UNISTR2 sv101_name - unicode string of server name
UNISTR2 sv_101_comment - unicode string of server comment.

UINTS8[] padding to get unicode string 4-byte aligned with start of the
SMB header.

2.3 MSRPC over Transact Named Pipe
For details on the SMB Transact Named Pipe, see cifs6.txt

2.3.1 MSRPC Pipes

The MSRPC is conducted over an SMB Transact Pipe with a name of
\PIPE\. You must first obtain a 16 bit file handle, by sending a SMBopenX

28 NT Domain RPC's Chapter 2

with the pipe name \PIPE\srvsvc for example. You can then perform an
SMB Trans, and must carry out an SMBclose on the file handle once you
are finished.

Trans Requests must be sent with two setup UINT16s, no UINT16 params
(none known about), and UINTS8 data parameters sufficient to contain the
MSRPC header, and MSRPC data. The first UINT16 setup parameter must
be either 0x0026 to indicate an RPC, or 0x0001 to indicate Set Named Pipe
Handle state. The second UINT16 parameter must be the file handle for
the pipe, obtained above.

The Data section for an API Command of 0x0026 (RPC pipe) in the Trans
Request is the RPC Header, followed by the RPC Data. The Data section
for an API Command of 0x0001 (Set Named Pipe Handle state) is two bytes.
The only value seen for these two bytes is 0x00 0x43.

MSRPC Responses are sent as response data inside standard SMB Trans
responses, with the MSRPC Header, MSRPC Data and MSRPC tail.

It is suspected that the Trans Requests will need to be at least 2-byte aligned
(probably 4-byte). This is standard practice for SMBs. It is also independent
of the observed 4-byte alignments with the start of the MSRPC header,
including the 4-byte alignment between the MSRPC header and the MSRPC
data.

First, an SMBtconX connection is made to the IPC$ share. The connection
must be made using encrypted passwords, not clear-text. Then, an SM-
BopenX is made on the pipe. Then, a Set Named Pipe Handle State must
be sent, after which the pipe is ready to accept API commands. Lastly, and
SMBclose is sent.

To be resolved:

lkel/01nov97 there appear to be two additional bytes after the null-terminated
\PIPE\ name for the RPC pipe. Values seen so far are listed below:

initial SMBopenX request: RPC API command 0x26 params:
"\\PIPE\\1lsarpc" 0x65 0x63; 0x72 0x70; 0x44 0x65;
"\\PIPE\\srvsvc" 0x73 0x76; O0x4E 0x00; 0x5C 0x43;

Section 2.3. MSRPC over Transact Named Pipe 29

2.3.2 Header

[section to be rewritten, following receipt of work by Duncan Stansfield]

Interesting note: if you set packed data representation to 0x0100 0000 then
all 4-byte and 2-byte word ordering is turned around!

The start of each of the NTLSA and NETLOGON named pipes begins with:
offset: 00 Variable type: UINTS8 Variable data: 5 - RPC major version
offset: 01 Variable type: UINTS8 Variable data: 0 - RPC minor version
offset: 02 Variable type: UINTS8 Variable data: 2 - RPC response packet
offset: 03 Variable type: UINT8 Variable data: 3 - (FirstFrag bit-wise or
with LastFrag)

offset: 04 Variable type: UINT32 Variable data: 0x1000 0000 - packed data
representation

offset: 08 Variable type: UINT16 Variable data: fragment length - data size
(bytes) inc header and tail.

offset: 0A Variable type: UINT16 Variable data: 0 - authentication length
offset: 0C Variable type: UINT32 Variable data: call identifier. matches
12th UINT32 of incoming RPC data.

offset: 10 Variable type: UINT32 Variable data: allocation hint - data size
(bytes) minus header and tail.

offset: 14 Variable type: UINT16 Variable data: 0 - presentation context
identifier

offset: 16 Variable type: UINTS8 Variable data: 0 - cancel count

offset: 17 Variable type: UINT8 Variable data: in replies: 0 - reserved; in
requests: opnum - see F#defines.

offset: 18 Variable type: Variable data: start of data (goes on for
allocation_hint bytes)

2.3.2.1 RPC_Packet for request, response, bind and bind acknowledge-
ment

UINTS8 versionmaj reply same as request (0x05)

UINTS8 versionmin reply same as request (0x00)

UINTS8 type one of the MSRPC_Type enums

30 NT Domain RPC’s Chapter 2

UINTS flags reply same as request (0x00 for Bind, 0x03 for Request)

UINT32 representation reply same as request (0x00000010)

UINT16 fraglength the length of the data section of the SMB trans
packet

UINT16 authlength

UINT32 callid call identifier. (e.g. 0x00149594)

* stub USE TvPacket the remainder of the packet depending on the
77type77

2.3.2.2 Interface identification

the interfaces are numbered. as yet I haven’t seen more than one interface
used on the same pipe name srvsvce

abstract (0x4B324FC8, 0x01D31670, 0x475A7812, 0x88E16EBF, 0x00000003)
transfer (0x8A885D04, 0x11C91CEB, 0x0008E89F, 0x6048102B, 0x00000002)

2.3.2.3 RPC._Iface RW

UINTS byte[16] 16 bytes of number

UINT32 version the interface number

2.3.2.4 RPC_ReqBind RW

the remainder of the packet after the header if ”"type” was Bind in the
response header, "type” should be BindAck

Section 2.3. MSRPC over Transact Named Pipe 31

UINT16 maxtsize maximum transmission fragment size (0x1630)

UINT16 maxrsize max receive fragment size (0x1630)

UINT32 assocgid associated group id (0x0)

UINT32 numelements the number of elements (0x1)

UINT16 contextid presentation context identifier (0x0)

UINTS8 numsyntaxes the number of syntaxes (has always been 17)(0x1)

UINTS|[] 4-byte alignment padding, against SMB header

* abstractint USE RPC _Iface num and vers. of interface client is using

* transferint USE RPC _Iface num and vers. of interface to use for
replies

2.3.2.5 RPC_Address RW

UINT16 length length of the string including null terminator

* port USE string the string above in single byte, null terminated form

2.3.2.6 RPC_ResBind RW

the response to place after the header in the reply packet

UINT16 maxtsize same as request

32 NT Domain RPC’s Chapter 2

UINT16 maxrsize same as request

UINT32 assocgid zero

* secondaddr USE RPC_Address the address string, as described ear-
lier

UINTS|[] 4-byte alignment padding, against SMB header

UINTS8 numresults the number of results (0x01)

UINTS|[] 4-byte alignment padding, against SMB header

UINT16 result result (0x00 = accept)

UINT16 reason reason (0x00 = no reason specified)

* transfersyntax USE RPC _Iface the transfer syntax from the request

2.3.2.7 RPC_RegNorm RW

the remainder of the packet after the header for every other other request

UINT32 allochint the size of the stub data in bytes

UINT16 prescontext presentation context identifier (0x0)

UINT16 opnum operation number (0x15)

* stub USE TvPacket a packet dependent on the pipe name (probably
the interface) and the op number)

Section 2.3. MSRPC over Transact Named Pipe 33

2.3.2.8 RPC_ResNorm RW

UINT32 allochint # size of the stub data in bytes

UINT16 prescontext # presentation context identifier (same as request)

UINTS8 cancelcount # cancel count? (0x0)

UINTS8 reserved # 0 - one byte padding

* stub USE TvPacket # the remainder of the reply

2.3.3 Tail

The end of each of the NTLSA and NETLOGON named pipes ends with:

...... end of data

UINT32 return code

2.3.4 RPC Bind / Bind Ack

RPC Binds are the process of associating an RPC pipe (e.g \PIPE\Isarpc)
with a ”transfer syntax” (see RPC _Iface structure). The purpose for doing
this is unknown.

Note: The RPC_ResBind SMB Transact request is sent with two wint16
setup parameters. The first is 0x0026; the second is the file handle returned
by the SMBopenX Transact response.

Note: The RPC_ResBind members maaxtsize, maxrsize and assocgid are the
same in the response as the same members in the RPC_ReqBind. The
RPC_ResBind member transfersyntaz is the same in the response as the

34 NT Domain RPC’s Chapter 2

Note: The RPC_ResBind response member secondaddr contains the name
of what is presumed to be the service behind the RPC pipe. The mapping
identified so far is:

initial SMBopenX request: RPC_ResBind response:

"\\PIPE\\srvsvc” ”\\PIPE\\ntsvcs”

"\\PIPE\\samr” ”\\PIPE\\lsass”

"\\PIPE\\Isarpc” ”\\PIPE\\lsass”

"\\PIPE\\wkssvc” ”\\PIPE\\wksvcs”

»\\PIPE\\NETLOGON” ”\\PIPE\\NETLOGON"

Note: The RPC_Packet fraglength member in both the Bind Request and
Bind Acknowledgment must contain the length of the entire RPC data, in-
cluding the RPC_Packet header.

Request:

RPC_Packet
RPC_ReqgBind

Response:

RPC_Packet
RPC_ResBind

2.3.5 NTLSA Transact Named Pipe

The sequence of actions taken on this pipe are:

Section 2.3. MSRPC over Transact Named Pipe 35

Establish a connection to the IPC$ share (SMBtconX). use encrypted passwords.
Open an RPC Pipe with the name ”\\PIPE\\lsarpc”. Store the file handle.
Using the file handle, send a Set Named Pipe Handle state to 0x4300.
Send an LSA Open Policy request. Store the Policy Handle.
Using the Policy Handle, send LSA Query Info Policy requests, etc.
Using the Policy Handle, send an LSA Close.
Close the IPC$ share.
Defines for this pipe, identifying the query are:
LSA Open Policy: 0x2c
LSA Query Info Policy: 0x07
LSA Enumerate Trusted Domains: 0x0d
LSA Open Secret: 0xff
LSA Lookup SIDs: 0Oxfe

LSA Lookup Names: 0xfd

LSA Close: 0x00

2.3.6 LSA Open Policy

Note: The policy handle can be anything you like.

2.3.6.1 Request

VOID* buffer pointer

UNISTR2 server name - unicode string starting with two ’\’s

36 NT Domain RPC’s Chapter 2

OBJ_ATTR object attributes

UINT32 1 - desired access

2.3.6.2 Response

POL_HND LSA policy handle

return 0 - indicates success

2.3.7 LSA Query Info Policy

Note: The info class in response must be the same as that in the request.

2.3.7.1 Request

POL_HND LSA policy handle

UINT16 info class (also a policy handle?)

2.3.7.2 Response

VOID* undocumented buffer pointer

UINT16 info class (same as info class in request).

switch (info class)

case 3:

case b:

{

DOM_INFO domain info, levels 3 and 5 (are the same).

Section 2.3. MSRPC over Transact Named Pipe

37

return 0 - indicates success

2.3.8 LSA Enumerate Trusted Domains
2.3.8.1 Request

no extra data

2.3.8.2 Response

UINT32 0 - enumeration context

UINT32 0 - entries read

UINT32 0 - trust information

return 0x8000 00la - "no trusted domains” success code

2.3.9 LSA Open Secret
2.3.9.1 Request

no extra data

2.3.9.2 Response

UINT32 0 - undocumented

UINT32 0 - undocumented

UINT32 0 - undocumented

38 NT Domain RPC’s Chapter 2

UINT32 0 - undocumented

UINT32 0 - undocumented

return 0x0C00 0034 - "no such secret” success code

2.3.10 LSA Close

2.3.10.1 Request

POL_HND policy handle to be closed

2.3.10.2 Response

POL_HND O0s - closed policy handle (all zeros)

return 0 - indicates success

2.3.11 LSA Lookup SIDS

Note: num_entries in response must be same as num_entries in request.

2.3.11.1 Request

POL_HND LSA policy handle

UINT32 num._entries

VOID* undocumented domain SID buffer pointer

VOID* undocumented domain name buffer pointer

Section 2.3. MSRPC over Transact Named Pipe 39

VOID*[num_entries] undocumented domain SID pointers to be looked up.
DOM_SID[num_entries| domain SIDs to be looked up.

char[16] completely undocumented 16 bytes.

2.3.11.2 Response

DOM_REF domain reference response

UINT32 num_entries (listed above)

VOID* undocumented buffer pointer

UINT32 num entries (listed above)

DOM_SID2[num _entries| domain SIDs (from Request, listed above).

UINT32 num _entries (listed above)

return O - indicates success

2.3.12 LSA Lookup Names

Note: num_entries in response must be same as num_entries in request.

2.3.12.1 Request

POL_HND LSA policy handle

UINT32 num_entries

UINT32 num-_entries

40 NT Domain RPC's

Chapter 2

VOID* undocumented domain SID buffer pointer

VOID* undocumented domain name buffer pointer

NAME[num_entries| names to be looked up.

char[] undocumented bytes - falsely translated SID structure?

2.3.12.2 Response

DOM_REF domain reference response

UINT32 num entries (listed above)

VOID* undocumented buffer pointer

UINT32 num_entries (listed above)

DOM_RID[num_entries] domain SIDs (from Request, listed above).

UINT32 num_entries (listed above)

return 0 - indicates success

2.4 NETLOGON rpc Transact Named Pipe

The sequence of actions taken on this pipe are:

Section 2.4. NETLOGON rpc Transact Named Pipe 41

tablish a connection to the IPC$ share (SMBtconX). use encrypted passwords.
en an RPC Pipe with the name ”\\PIPE\\NETLOGON”. Store the file handle.
ing the file handle, send a Set Named Pipe Handle state to 0x4300.

eate Client Challenge. Send LSA Request Challenge. Store Server Challenge.
lculate Session Key. Send an LSA Auth 2 Challenge. Store Auth2 Challenge.
lc/Verify Client Creds. Send LSA Srv PW Set. Calc/Verify Server Creds.
lc/Verify Client Creds. Send LSA SAM Logon . Calc/Verify Server Creds.
lc/Verify Client Creds. Send LSA SAM Logoff. Calc/Verify Server Creds.

ose the IPC$ share.

Defines for this pipe, identifying the query are

LSA Request Challenge: 0x04

LSA Server Password Set: 0x06

LSA SAM Logon: 0x02

LSA SAM Logoff: 0x03

LSA Auth 2: 0x0f

LSA Logon Control: 0x0e

2.4.1 LSA Request Challenge

Note: logon server name starts with two '\’ characters and is upper case.
Note: logon client is the machine, not the user.

Note: the initial LanManager password hash, against which the challenge
is issued, is the machine name itself (lower case). there will becalls issued
(LSA Server Password Set) which will change this, later. refusing these
calls allows you to always deal with the same password (i.e the LM# of the
machine name in lower case).

42 NT Domain RPC's

Chapter 2

2.4.1.1 Request

VOID* undocumented buffer pointer

UNISTR2 logon server unicode string

UNISTR2 logon client unicode string

char([8] client challenge

2.4.1.2 Response

char([8] server challenge

return 0 - indicates success

2.4.2 LSA Authenticate 2

Note: in between request and response, calculate the client credentials, and
check them against the client-calculated credentials (this process uses the

previously received client credentials).

Note: neg_flags in the response is the same as that in the request.

Note: you must take a copy of the client-calculated credentials received here,

because they will be used in subsequent authentication packets.

2.4.2.1 Request

LOG_INFO client identification info

char([8] client-calculated credentials

UINTS[] padding to 4-byte align with start of SMB header.

Section 2.4. NETLOGON rpc Transact Named Pipe 43

UINT32 neg_flags - negotiated flags (usual value is 0x0000 01fF)

2.4.2.2 Response

char[8] server credentials.

UINT32 neg_flags - same as neg_flags in request.

return 0 - indicates success. failure value unknown.

2.4.3 LSA Server Password Set

Note: the new password is suspected to be a DES encryption using the old
password to generate the key.

Note: in between request and response, calculate the client credentials, and
check them against the client-calculated credentials (this process uses the
previously received client credentials).

Note: the server credentials are constructed from the client-calculated cre-
dentials and the client time + 1 second.

Note: you must take a copy of the client-calculated credentials received here,

because they will be used in subsequent authentication packets.

2.43.1 Request

CLNT_INFO client identification/authentication info

char[] new password - undocumented.

2.4.3.2 Response

CREDS server credentials. server time stamp appears to be ignored.

44 NT Domain RPC’s Chapter 2

return 0 - indicates success; 0xC000 006a indicates failure

2.4.4 LSA SAM Logon

Note: wvalid_user is True iff the username and password hash are valid for
the requested domain.

2.4.4.1 Request

SAM_INFO sam_id structure

2.4.4.2 Response

VOID* undocumented buffer pointer

CREDS server credentials. server time stamp appears to be ignored.

if (valid_user)

{

UINT16 3 - switch value indicating USER_INFO structure.
VOID=* non-zero - pointer to USER_INFO structure
USER_INFO user logon information
UINT32 1 - Authoritative response; O - Non-Auth?
return 0 - indicates success

b
else
{

UINT16 0 - switch value. value to indicate no user presumed.

VOID=* 0x0000 0000 - indicates no USER_INFO structure.

UINT32 1 - Authoritative response; O - Non-Auth?

return 0xCO000 0064 - NT_STATUS_NO_SUCH_USER.

Section 2.5. \\MAILSLOT\NET\NTLOGON 45

2.4.5 LSA SAM Logoff

Note: presumably, the SAM_INFO structure is validated, and a (currently
undocumented) error code returned if the Logoff is invalid.

2.4.5.1 Request

SAM_INFO sam_id structure

2.45.2 Response

VOID* undocumented buffer pointer

CREDS server credentials. server time stamp appears to be ignored.

return 0 - indicates success. undocumented failure indication.

2.5 \\MAILSLOT\NET\NTLOGON

Note: mailslots will contain a response mailslot, to which the response should
be sent. the target NetBIOS name is REQUEST_-NAME<20>, where RE-
QUEST_NAME is the name of the machine that sent the request.

2.5.1 Query for PDC

Note: NTwversion, LMNTtoken, LMZ20token in response are the same as
those given in the request.

2.5.1.1 Request

UINT16 0x0007 - Query for PDC

46 NT Domain RPC’s Chapter 2

STR machine name

STR response mailslot

UINTS[] padding to 2-byte align with start of mailslot.

UNISTR machine name

UINT32 NTversion

UINT16 LMNTtoken

UINT16 LM20token

2.5.1.2 Response

UINT16 0x000A - Respose to Query for PDC

STR machine name (in uppercase)

UINTS8[] padding to 2-byte align with start of mailslot.

UNISTR machine name

UNISTR domain name

UINT32 NTversion (same as received in request)

UINT16 LMNTtoken (same as received in request)

Section 2.5. \\MAILSLOT\NET\NTLOGON 47

UINT16 LM20token (same as received in request)

2.5.2 SAM Logon

Note: machine name in response is preceded by two \’ characters.

Note: NTwversion, LMNTtoken, LM20token in response are the same as
those given in the request.

Note: wuser name in the response is presumably the same as that in the
request.

2.5.2.1 Request

UINT16 0x0012 - SAM Logon

UINT16 request count

UNISTR machine name

UNISTR user name

STR response mailslot

UINT32 alloweable account

UINT32 domain SID size

char([sid_size] domain SID, of sid_size bytes.

UINTS[] 7777 padding to 4?7 27 -byte align with start of mailslot.

UINT32 NTversion

48 NT Domain RPC's

Chapter 2

UINT16 LMNTtoken

UINT16 LM20token

2.56.2.2 Response

UINT16 0x0013 - Response to SAM Logon

UNISTR machine name

UNISTR user name - workstation trust account

UNISTR domain name

UINT32 NTversion

UINT16 LMNTtoken

UINT16 LM20token

2.6 SRVSVC Transact Named Pipe

Defines for this pipe, identifying the query are:

Net Share Enum 0x0f

Net Server Get Info 0x15

Section 2.6. SRVSVC Transact Named Pipe 49

2.6.1 Net Share Enum

Note: share level and switch value in the response are presumably the same
as those in the request.

Note: cifsrap2.tzt (section 5) may be of limited assistance here.

2.6.1.1 Request

VOID#* pointer (to server name?)

UNISTR?2 server name

UINTS[] padding to get unicode string 4-byte aligned with the start of the
SMB header.

UINT32 share level

UINT32 switch value

VOID* pointer to SHARE INFO_1_CTR

SHARE_INFO_1_CTR share info with 0 entries

UINT32 preferred maximum length (Oxffff ffff)

2.6.1.2 Response

UINT32 share level

UINT32 switch value

VOID* pointer to SHARE_INFO_1_.CTR

50 NT Domain RPC’s Chapter 2

SHARE_INFO_1_CTR share info (only added if share info ptr is non-

7€ero)

return 0 - indicates success

2.6.2 Net Server Get Info

Note: level is the same value as in the request.

2.6.2.1 Request

UNISTR?2 server name

UINT32 switch level

2.6.2.2 Response

UINT32 switch level
VOID* pointer to SERVER_INFO_101

SERVER_INFO_101 server info (only added if server info ptr is non-zero)

return 0 - indicates success

2.7 Cryptographic side of NT Domain Authentication

2.7.1 Definitions

Add(A1,A2) Intel byte ordered addition of corresponding 4 byte words in
arrays Al and A2

Section 2.7. Cryptographic side of NT Domain Authentication 51

E(K,D) DES ECB encryption of 8 byte data D using 7 byte key K

Imowf() Lan man hash

ntowf() NT hash

PW md4(machine_password) == md4(lsadump $machine.acc) == pwdump(machine$)
(initially) == md4(Ilmowf(unicode(machine)))

ARC4(K,Lk,D,Ld) ARC4 encryption of data D of length Ld with key K
of length Lk

v[m..n(,1)] subset of v from bytes m to n, optionally padded with zeroes
to length 1

Cred(K,D) E(K][7..7,7],E(K[0..6],D)) computes a credential

Time() 4 byte current time

Cc,Cs 8 byte client and server challenges Rc,Rs: 8 byte client and server
credentials

2.7.2 Protocol

C->S ReqChal,Cc
S->C Cs

C & S compute session key Ks = E(PW[9..15] ,E(PW[O0..6],Add(Cc,Cs)))

C: Rc = Cred(Ks,Cc)

52 NT Domain RPC’s Chapter 2

C->S Authenticate,Rc

S: Rs = Cred(Ks,Cs), assert(Rc == Cred(Xs,Cc))
S->C Rs

C: assert(Rs == Cred(Ks,Cs))

On joining the domain the client will optionally attempt to change its pass-
word and the domain controller may refuse to update it depending on reg-
istry settings. This will also occur weekly afterwards.

C: Tc = Time(), Rc’ = Cred(Ks,Rc+Tc)
C->S ServerPasswordSet,Rc’,Tc,arc4(Ks[0..7,16] ,1lmowf (randompassword())
C: Rc = Cred(Ks,Rc+Tc+1)

S: assert(Rc’ == Cred(Ks,Rc+Tc)), Ts = Time()
S: Rs’ = Cred(Ks,Rs+Tc+1)

S->C Rs’,Ts

C: assert(Rs’ == Cred(Ks,Rs+Tc+1))

S: Rs = Rs’

User: U with password P wishes to login to the domain (incidental data
such as workstation and domain omitted)

C: Tc = Time(), Rc’ = Cred(¥Xs,Rc+Tc)

C->S NetLogonSamLogon,Rc’,Tc,U,arc4(Ks[0..7,16],16,ntowf (P),16), arc4(Ks[O.

S: assert(Rc’ == Cred(Ks,Rc+Tc)) assert(passwords match those in SAM)
S: Ts = Time()

S->C Cred(Ks,Cred(Ks,Rc+Tc+1)) ,userinfo(logon script,UID,SIDs,etc)
C: assert(Rs == Cred(¥Ks,Cred(Rc+Tc+1))
C: Rc = Cred(Ks,Rc+Tc+1)

2.7.3 Comments

On first joining the domain the session key could be computed by anyone
listening in on the network as the machine password has a well known value.
Until the machine is rebooted it will use this session key to encrypt NT

.7,16.

Section 2.8. SIDs and RIDs 53

and LM one way functions of passwords which are password equivalents.
Any user who logs in before the machine has been rebooted a second time
will have their password equivalent exposed. Of course the new machine
password is exposed at this time anyway.

None of the returned user info such as logon script, profile path and SIDs
*appear™® to be protected by anything other than the TCP checksum.

The server time stamps appear to be ignored.

The client sends a ReturnAuthenticator in the SamLogon request which I
can’t find a use for. However its time is used as the timestamp returned by
the server.

The password OWFs should NOT be sent over the network reversibly en-
crypted. They should be sent using ARC4(Ks,md4(owf)) with the server
computing the same function using the owf values in the SAM.

2.8 SIDs and RIDs

SIDs and RIDs are well documented elsewhere.

A SID is an NT Security ID (see DOM_SID structure). They are of the
form:

revision-NN-SubAuth1l-SubAuth2-SubAuth3...
revision-OxXNNNNNNNNNNNN-SubAuth1l-SubAuth2-SubAuth3...

currently, the SID revision is 1. The Sub-Authorities are known as Relative

IDs (RIDs).

2.8.1 Well-known SIDs

2.8.1.1 Universal well-known SIDs

Null SID S-1-0-0

World S-1-1-0

Local S-1-2-0

54 NT Domain RPC's

Chapter 2

Creator Owner ID S-1-3-0

Creator Group ID S-1-3-1

Creator Owner Server ID S-1-3-2

Creator Group Server ID S-1-3-3

(Non-unique IDs) S-1-4

2.8.1.2 NT well-known SIDs

NT Authority S-1-5

Dialup S-1-5-1

Network S-1-5-2

Batch S-1-5-3

Interactive S-1-5-4

Service S-1-5-6

AnonymousLogon(aka null logon session) S-1-5-7

Proxy S-1-5-8

ServerLogon(aka domain controller account) S-1-5-8

Section 2.8. SIDs and RIDs 55

(Logon IDs) S-1-5-5-X-Y

(NT non-unique IDs) S-1-5-0x15-...

(Built-in domain) s-1-5-0x20

2.8.2 Well-known RIDS

A RID is a sub-authority value, as part of either a SID, or in the case
of Group RIDs, part of the DOM_GID structure, in the USER_INFO_1
structure, in the LSA SAM Logon response.

2.8.2.1 Well-known RID users

Groupname:
Groupname:

DOMAIN_USER_RID_ADMIN ?2¢2%: 0x0000 RID: 01F4
DOMAIN_USER _RID_GUEST ?22¢%: 0x0000 RID: 01F5

2.8.2.2 Well-known RID groups

Groupname:
Groupname:
Groupname:

DOMAIN_GROUP_RID_ADMINS #¢227: 0x0000 RID: 0200
DOMAIN_GROUP_RID_USERS ?2¢%: 0x0000 RID: 0201
DOMAIN_GROUP_RID_GUESTS ?22¢2: 0x0000 RID: 0202

2.8.2.3 Well-known RID aliases

Groupname:
Groupname:
Groupname:
Groupname:

0223

Groupname:

0224

Groupname:
Groupname:
Groupname:
Groupname:

DOMAIN_ALIAS_RID_ADMINS ¢2¢2: 0x0000 RID: 0220
DOMAIN_ALIAS RID_USERS ??¢7: 0x0000 RID: 0221
DOMAIN_ALIAS_RID_GUESTS ?¢227: 0x0000 RID: 0222
DOMAIN_ALIAS_RID_POWER_USERS ?¢27: 0x0000 RID:

DOMAIN_ALIAS_RID_ACCOUNT_OPS ?¢2¢%: 0x0000 RID:

DOMAIN_ALIAS_RID_SYSTEM_OPS ?¢7?: 0x0000 RID: 0225
DOMAIN_ALIAS RID_PRINT_OPS #72¢: 0x0000 RID: 0226

DOMAIN_ALIAS_RID_BACKUP_OPS ?7¢77: 0x0000 RID: 0227
DOMAIN_ALIAS RID_REPLICATOR ?2¢7: 0x0000 RID: 0228

Part 11

Samba Basics

Chapter 3

SAMBA ARCHITECTURE

3.1 Introduction

This document gives a general overview of how Samba works internally.
The Samba Team has tried to come up with a model which is the best pos-
sible compromise between elegance, portability, security and the constraints
imposed by the very messy SMB and CIFS protocol.

It also tries to answer some of the frequently asked questions such as:

1. Is Samba secure when running on Unix? The xyz platform? What
about the root priveliges issue?

2. Pros and cons of multithreading in various parts of Samba

3. Why not have a separate process for name resolution, WINS, and
browsing?

3.2 Multithreading and Samba

People sometimes tout threads as a uniformly good thing. They are very
nice in their place but are quite inappropriate for smbd. nmbd is another
matter, and multi-threading it would be very nice.

The short version is that smbd is not multithreaded, and alternative servers
that take this approach under Unix (such as Syntax, at the time of writing)
suffer tremendous performance penalties and are less robust. nmbd is not
threaded either, but this is because it is not possible to do it while keeping
code consistent and portable across 35 or more platforms. (This drawback
also applies to threading smbd.)

57

58 Samba Architecture Chapter 3

The longer versions is that there are very good reasons for not making smbd
multi-threaded. Multi-threading would actually make Samba much slower,
less scalable, less portable and much less robust. The fact that we use a
separate process for each connection is one of Samba’s biggest advantages.

3.3 Threading smbd

A few problems that would arise from a threaded smbd are:

1. It’s not only to create threads instead of processes, but you must care
about all variables if they have to be thread specific (currently they
would be global).

2. if one thread dies (eg. a seg fault) then all threads die. We can
immediately throw robustness out the window.

3. many of the system calls we make are blocking. Non-blocking equiva-
lents of many calls are either not available or are awkward (and slow)
to use. So while we block in one thread all clients are waiting. Imagine
if one share is a slow NF'S filesystem and the others are fast, we will
end up slowing all clients to the speed of NFS.

4. you can’t run as a different uid in different threads. This means we
would have to switch uid/gid on _every. SMB packet. It would be
horrendously slow.

5. the per process file descriptor limit would mean that we could only
support a limited number of clients.

6. we couldn’t use the system locking calls as the locking context of fentl()
is a process, not a thread.

3.4 Threading nmbd

This would be ideal, but gets sunk by portability requirements.

Andrew tried to write a test threads library for nmbd that used only ansi-C
constructs (using setjmp and longjmp). Unfortun