Public Member Functions | |
def | __init__ |
def | orthonormErrorMat |
def | orthogErrorMat |
def | setKappa |
def | getKappa |
def | __init__ |
def | orthonormErrorMat |
def | orthogErrorMat |
def | setKappa |
def | getKappa |
Public Attributes | |
this |
An implementation of the Anasazi::MatOrthoManager that performs orthogonalization using (potentially) multiple steps of classical Gram-Schmidt. Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist C++ includes: AnasaziBasicOrthoManager.hpp
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::__init__ | ( | self, | ||
args | ||||
) |
__init__(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op = Teuchos::null, magnitudeType kappa = 1.41421356, magnitudeType eps = 0.0, magnitudeType tol = 0.20) -> BasicOrthoManagerEpetra Anasazi::BasicOrthoManager< ScalarType, MV, OP >::BasicOrthoManager(Teuchos::RCP< const OP > Op=Teuchos::null, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType kappa=1.41421356, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType eps=0.0, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType tol=0.20) Constructor specifying re-orthogonalization tolerance.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::__init__ | ( | self, | ||
args | ||||
) |
__init__(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op = Teuchos::null, magnitudeType kappa = 1.41421356, magnitudeType eps = 0.0, magnitudeType tol = 0.20) -> BasicOrthoManagerEpetra Anasazi::BasicOrthoManager< ScalarType, MV, OP >::BasicOrthoManager(Teuchos::RCP< const OP > Op=Teuchos::null, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType kappa=1.41421356, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType eps=0.0, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType tol=0.20) Constructor specifying re-orthogonalization tolerance.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::getKappa | ( | self, | ||
args | ||||
) |
getKappa(self) -> magnitudeType Teuchos::ScalarTraits<ScalarType>::magnitudeType Anasazi::BasicOrthoManager< ScalarType, MV, OP >::getKappa() const Return parameter for re-orthogonalization threshold.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::getKappa | ( | self, | ||
args | ||||
) |
getKappa(self) -> magnitudeType Teuchos::ScalarTraits<ScalarType>::magnitudeType Anasazi::BasicOrthoManager< ScalarType, MV, OP >::getKappa() const Return parameter for re-orthogonalization threshold.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::orthogErrorMat | ( | self, | ||
args | ||||
) |
orthogErrorMat(self, Epetra_MultiVector X1, Epetra_MultiVector X2, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX1, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX2) -> magnitudeType Teuchos::ScalarTraits< ScalarType >::magnitudeType Anasazi::BasicOrthoManager< ScalarType, MV, OP >::orthogErrorMat(const MV &X1, const MV &X2, Teuchos::RCP< const MV > MX1, Teuchos::RCP< const MV > MX2) const This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y). The method has the option of exploiting a caller-provided MX.
Reimplemented from PyTrilinos::Anasazi::MatOrthoManagerEpetra.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::orthogErrorMat | ( | self, | ||
args | ||||
) |
orthogErrorMat(self, Epetra_MultiVector X1, Epetra_MultiVector X2, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX1, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX2) -> magnitudeType Teuchos::ScalarTraits< ScalarType >::magnitudeType Anasazi::BasicOrthoManager< ScalarType, MV, OP >::orthogErrorMat(const MV &X1, const MV &X2, Teuchos::RCP< const MV > MX1, Teuchos::RCP< const MV > MX2) const This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y). The method has the option of exploiting a caller-provided MX.
Reimplemented from PyTrilinos::Anasazi::MatOrthoManagerEpetra.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::orthonormErrorMat | ( | self, | ||
args | ||||
) |
orthonormErrorMat(self, Epetra_MultiVector X, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null) -> magnitudeType Teuchos::ScalarTraits< ScalarType >::magnitudeType Anasazi::BasicOrthoManager< ScalarType, MV, OP >::orthonormErrorMat(const MV &X, Teuchos::RCP< const MV > MX=Teuchos::null) const This method computes the error in orthonormality of a multivector, measured as the Frobenius norm of the difference innerProd(X,Y) - I. The method has the option of exploiting a caller-provided MX.
Reimplemented from PyTrilinos::Anasazi::MatOrthoManagerEpetra.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::orthonormErrorMat | ( | self, | ||
args | ||||
) |
orthonormErrorMat(self, Epetra_MultiVector X, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null) -> magnitudeType Teuchos::ScalarTraits< ScalarType >::magnitudeType Anasazi::BasicOrthoManager< ScalarType, MV, OP >::orthonormErrorMat(const MV &X, Teuchos::RCP< const MV > MX=Teuchos::null) const This method computes the error in orthonormality of a multivector, measured as the Frobenius norm of the difference innerProd(X,Y) - I. The method has the option of exploiting a caller-provided MX.
Reimplemented from PyTrilinos::Anasazi::MatOrthoManagerEpetra.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::setKappa | ( | self, | ||
args | ||||
) |
setKappa(self, magnitudeType kappa) void Anasazi::BasicOrthoManager< ScalarType, MV, OP >::setKappa(typename Teuchos::ScalarTraits< ScalarType >::magnitudeType kappa) Set parameter for re-orthogonalization threshold.
def PyTrilinos::Anasazi::BasicOrthoManagerEpetra::setKappa | ( | self, | ||
args | ||||
) |
setKappa(self, magnitudeType kappa) void Anasazi::BasicOrthoManager< ScalarType, MV, OP >::setKappa(typename Teuchos::ScalarTraits< ScalarType >::magnitudeType kappa) Set parameter for re-orthogonalization threshold.