Public Member Functions | |
def | __init__ |
def | SymbolicFactorization |
def | NumericFactorization |
def | Solve |
def | GetProblem |
def | MatrixShapeOK |
def | SetUseTranspose |
def | UseTranspose |
def | Comm |
def | setParameterList |
def | SetParameters |
def | GEEV |
def | NumSymbolicFact |
def | NumNumericFact |
def | NumSolve |
def | PrintTiming |
def | PrintStatus |
def | GetTiming |
def | __init__ |
def | SymbolicFactorization |
def | NumericFactorization |
def | Solve |
def | GetProblem |
def | MatrixShapeOK |
def | SetUseTranspose |
def | UseTranspose |
def | Comm |
def | setParameterList |
def | SetParameters |
def | GEEV |
def | NumSymbolicFact |
def | NumNumericFact |
def | NumSolve |
def | PrintTiming |
def | PrintStatus |
def | GetTiming |
Public Attributes | |
this |
Amesos_Lapack: an interface to LAPACK. Class Amesos_Lapack enables the solution of the distributed linear system, defined by an Epetra_LinearProblem, using LAPACK. Amesos_Lapack stores the lineaar system matrix as an Epetra_SerialDensMatrix. The linear problem is an Epetra_SerialDenseProblem. Amesos_Lapack factorizes the matrix using DGETRF(). Marzio Sala, 9214. C++ includes: Amesos_Lapack.h
def PyTrilinos::Amesos::Lapack::__init__ | ( | self, | ||
args | ||||
) |
__init__(self, LinearProblem LinearProblem) -> Lapack Amesos_Lapack::Amesos_Lapack(const Epetra_LinearProblem &LinearProblem) Amesos_Lapack Constructor. Creates an Amesos_Lapack instance, using an Epetra_LinearProblem, passing in an already- defined Epetra_LinearProblem object. Note: The operator in LinearProblem must be an Epetra_RowMatrix.
def PyTrilinos::Amesos::Lapack::__init__ | ( | self, | ||
args | ||||
) |
__init__(self, LinearProblem LinearProblem) -> Lapack Amesos_Lapack::Amesos_Lapack(const Epetra_LinearProblem &LinearProblem) Amesos_Lapack Constructor. Creates an Amesos_Lapack instance, using an Epetra_LinearProblem, passing in an already- defined Epetra_LinearProblem object. Note: The operator in LinearProblem must be an Epetra_RowMatrix.
def PyTrilinos::Amesos::Lapack::Comm | ( | self, | ||
args | ||||
) |
Comm(self) -> Comm const Epetra_Comm& Amesos_Lapack::Comm() const Returns a pointer to the Epetra_Comm communicator associated with this operator.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::Comm | ( | self, | ||
args | ||||
) |
Comm(self) -> Comm const Epetra_Comm& Amesos_Lapack::Comm() const Returns a pointer to the Epetra_Comm communicator associated with this operator.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::GEEV | ( | self, | ||
args | ||||
) |
GEEV(self, Epetra_Vector Er, Epetra_Vector Ei) -> int int Amesos_Lapack::GEEV(Epetra_Vector &Er, Epetra_Vector &Ei) Computes the eigenvalues of the linear system matrix using DGEEV. Parameters: ----------- Er: - (Out) On processor zero only, it will contain the real component of the eigenvalues. Ei: - (Out) On processor zero only, it will contain the imaginary component of the eigenvalues. Er and Ei must have been allocated so that the local length on processor 0 equals the global size of the matrix.
def PyTrilinos::Amesos::Lapack::GEEV | ( | self, | ||
args | ||||
) |
GEEV(self, Epetra_Vector Er, Epetra_Vector Ei) -> int int Amesos_Lapack::GEEV(Epetra_Vector &Er, Epetra_Vector &Ei) Computes the eigenvalues of the linear system matrix using DGEEV. Parameters: ----------- Er: - (Out) On processor zero only, it will contain the real component of the eigenvalues. Ei: - (Out) On processor zero only, it will contain the imaginary component of the eigenvalues. Er and Ei must have been allocated so that the local length on processor 0 equals the global size of the matrix.
def PyTrilinos::Amesos::Lapack::GetProblem | ( | self, | ||
args | ||||
) |
GetProblem(self) -> LinearProblem const Epetra_LinearProblem* Amesos_Lapack::GetProblem() const Returns the Epetra_LinearProblem. Warning! Do not call return->SetOperator(...) to attempt to change the Epetra_Operator object (even if the new matrix has the same structure). This new operator matrix will be ignored!
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::GetProblem | ( | self, | ||
args | ||||
) |
GetProblem(self) -> LinearProblem const Epetra_LinearProblem* Amesos_Lapack::GetProblem() const Returns the Epetra_LinearProblem. Warning! Do not call return->SetOperator(...) to attempt to change the Epetra_Operator object (even if the new matrix has the same structure). This new operator matrix will be ignored!
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::GetTiming | ( | self, | ||
args | ||||
) |
GetTiming(self, ParameterList TimingParameterList) void Amesos_Lapack::GetTiming(Teuchos::ParameterList &TimingParameterList) const Extracts timing information from the current solver and places it in the parameter list.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::GetTiming | ( | self, | ||
args | ||||
) |
GetTiming(self, ParameterList TimingParameterList) void Amesos_Lapack::GetTiming(Teuchos::ParameterList &TimingParameterList) const Extracts timing information from the current solver and places it in the parameter list.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::MatrixShapeOK | ( | self, | ||
args | ||||
) |
MatrixShapeOK(self) -> bool bool Amesos_Lapack::MatrixShapeOK() const Returns true if the solver can handle this matrix shape. Returns true if the matrix shape is one that the underlying sparse direct solver can handle. Classes that work only on square matrices should return false for rectangular matrices. Classes that work only on symmetric matrices whould return false for non-symmetric matrices.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::MatrixShapeOK | ( | self, | ||
args | ||||
) |
MatrixShapeOK(self) -> bool bool Amesos_Lapack::MatrixShapeOK() const Returns true if the solver can handle this matrix shape. Returns true if the matrix shape is one that the underlying sparse direct solver can handle. Classes that work only on square matrices should return false for rectangular matrices. Classes that work only on symmetric matrices whould return false for non-symmetric matrices.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::NumericFactorization | ( | self, | ||
args | ||||
) |
NumericFactorization(self) -> int int Amesos_Lapack::NumericFactorization() Performs NumericFactorization on the matrix A. In addition to performing numeric factorization on the matrix A, the call to NumericFactorization() implies that no change will be made to the underlying matrix without a subsequent call to NumericFactorization(). <br >Preconditions: GetProblem().GetOperator() != 0 (return -1) MatrixShapeOk( GetProblem().GetOperator()) == true (return -6) The non-zero structure of the matrix should not have changed since the last call to SymbolicFactorization(). (return -2 if the number of non- zeros changes) Other changes can have arbitrary consequences. The distribution of the matrix should not have changed since the last call to SymbolicFactorization() The matrix should be indexed from 0 to n-1, unless the parameter "Reindex" was set to "true" prior to the call to SymbolicFactorization(). (return -3 - if caught) The paremeter "Reindex" should not be set to "true" except on CrsMatrices. (return -4) The paremeter "Reindex" should not be set to "true" unless Amesos was built with EpetraExt, i.e. with --enable-epetraext on the configure line. (return -4) Internal errors retur -5. <br >Postconditions: Numeric Factorization will be performed (or marked to be performed) allowing Solve() to be performed correctly despite a potential change in in the matrix values (though not in the non-zero structure). Integer error code, set to 0 if successful.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::NumericFactorization | ( | self, | ||
args | ||||
) |
NumericFactorization(self) -> int int Amesos_Lapack::NumericFactorization() Performs NumericFactorization on the matrix A. In addition to performing numeric factorization on the matrix A, the call to NumericFactorization() implies that no change will be made to the underlying matrix without a subsequent call to NumericFactorization(). <br >Preconditions: GetProblem().GetOperator() != 0 (return -1) MatrixShapeOk( GetProblem().GetOperator()) == true (return -6) The non-zero structure of the matrix should not have changed since the last call to SymbolicFactorization(). (return -2 if the number of non- zeros changes) Other changes can have arbitrary consequences. The distribution of the matrix should not have changed since the last call to SymbolicFactorization() The matrix should be indexed from 0 to n-1, unless the parameter "Reindex" was set to "true" prior to the call to SymbolicFactorization(). (return -3 - if caught) The paremeter "Reindex" should not be set to "true" except on CrsMatrices. (return -4) The paremeter "Reindex" should not be set to "true" unless Amesos was built with EpetraExt, i.e. with --enable-epetraext on the configure line. (return -4) Internal errors retur -5. <br >Postconditions: Numeric Factorization will be performed (or marked to be performed) allowing Solve() to be performed correctly despite a potential change in in the matrix values (though not in the non-zero structure). Integer error code, set to 0 if successful.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::NumNumericFact | ( | self, | ||
args | ||||
) |
NumNumericFact(self) -> int int Amesos_Lapack::NumNumericFact() const Returns the number of numeric factorizations performed by this object.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::NumNumericFact | ( | self, | ||
args | ||||
) |
NumNumericFact(self) -> int int Amesos_Lapack::NumNumericFact() const Returns the number of numeric factorizations performed by this object.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::NumSolve | ( | self, | ||
args | ||||
) |
NumSolve(self) -> int int Amesos_Lapack::NumSolve() const Returns the number of solves performed by this object.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::NumSolve | ( | self, | ||
args | ||||
) |
NumSolve(self) -> int int Amesos_Lapack::NumSolve() const Returns the number of solves performed by this object.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::NumSymbolicFact | ( | self, | ||
args | ||||
) |
NumSymbolicFact(self) -> int int Amesos_Lapack::NumSymbolicFact() const Returns the number of symbolic factorizations performed by this object.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::NumSymbolicFact | ( | self, | ||
args | ||||
) |
NumSymbolicFact(self) -> int int Amesos_Lapack::NumSymbolicFact() const Returns the number of symbolic factorizations performed by this object.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::PrintStatus | ( | self, | ||
args | ||||
) |
PrintStatus(self) void Amesos_Lapack::PrintStatus() const Print information about the factorization and solution phases.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::PrintStatus | ( | self, | ||
args | ||||
) |
PrintStatus(self) void Amesos_Lapack::PrintStatus() const Print information about the factorization and solution phases.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::PrintTiming | ( | self, | ||
args | ||||
) |
PrintTiming(self) void Amesos_Lapack::PrintTiming() const Print timing information.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::PrintTiming | ( | self, | ||
args | ||||
) |
PrintTiming(self) void Amesos_Lapack::PrintTiming() const Print timing information.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::setParameterList | ( | self, | ||
args | ||||
) |
setParameterList(self, Teuchos::RCP<(Teuchos::ParameterList)> paramList) void Amesos_Lapack::setParameterList(Teuchos::RCP< Teuchos::ParameterList > const ¶mList) Use this parameter list to read values from. Redefined from Teuchos::ParameterListAcceptor
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::setParameterList | ( | self, | ||
args | ||||
) |
setParameterList(self, Teuchos::RCP<(Teuchos::ParameterList)> paramList) void Amesos_Lapack::setParameterList(Teuchos::RCP< Teuchos::ParameterList > const ¶mList) Use this parameter list to read values from. Redefined from Teuchos::ParameterListAcceptor
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::SetParameters | ( | self, | ||
args | ||||
) |
SetParameters(self, ParameterList ParameterList) -> int int Amesos_Lapack::SetParameters(Teuchos::ParameterList &ParameterList) Deprecated - Sets parameters.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::SetParameters | ( | self, | ||
args | ||||
) |
SetParameters(self, ParameterList ParameterList) -> int int Amesos_Lapack::SetParameters(Teuchos::ParameterList &ParameterList) Deprecated - Sets parameters.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::SetUseTranspose | ( | self, | ||
args | ||||
) |
SetUseTranspose(self, bool UseTranspose_in) -> int int Amesos_Lapack::SetUseTranspose(bool UseTranspose_in) If set true, X will be set to the solution of AT X = B (not A X = B). If the implementation of this interface does not support transpose use, this method should return a value of -1. <br >Preconditions: SetUseTranspose() should be called prior to the call to SymbolicFactorization() If NumericFactorization() or Solve() is called after SetUseTranspose() without an intervening call to SymbolicFactorization() the result is implementation dependent. <br >Postconditions: The next factorization and solve will be performed with the new value of UseTranspose. Parameters: ----------- UseTranspose: -- (In) If true, solve AT X = B, otherwise solve A X = B. Integer error code, set to 0 if successful. Set to -1 if this implementation does not support transpose.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::SetUseTranspose | ( | self, | ||
args | ||||
) |
SetUseTranspose(self, bool UseTranspose_in) -> int int Amesos_Lapack::SetUseTranspose(bool UseTranspose_in) If set true, X will be set to the solution of AT X = B (not A X = B). If the implementation of this interface does not support transpose use, this method should return a value of -1. <br >Preconditions: SetUseTranspose() should be called prior to the call to SymbolicFactorization() If NumericFactorization() or Solve() is called after SetUseTranspose() without an intervening call to SymbolicFactorization() the result is implementation dependent. <br >Postconditions: The next factorization and solve will be performed with the new value of UseTranspose. Parameters: ----------- UseTranspose: -- (In) If true, solve AT X = B, otherwise solve A X = B. Integer error code, set to 0 if successful. Set to -1 if this implementation does not support transpose.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::Solve | ( | self, | ||
args | ||||
) |
Solve(self) -> int int Amesos_Lapack::Solve() Solves A X = B (or AT x = B). <br >Preconditions: GetProblem().GetOperator() != 0 (return -1) MatrixShapeOk( GetProblem().GetOperator()) == true (return -6) GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for return values) The non-zero structure of the matrix should not have changed since the last call to SymbolicFactorization(). The distribution of the matrix should not have changed since the last call to SymbolicFactorization() The matrix should not have changed since the last call to NumericFactorization(). <br >Postconditions: X will be set such that A X = B (or AT X = B), within the limits of the accuracy of the underlying solver. Integer error code, set to 0 if successful.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::Solve | ( | self, | ||
args | ||||
) |
Solve(self) -> int int Amesos_Lapack::Solve() Solves A X = B (or AT x = B). <br >Preconditions: GetProblem().GetOperator() != 0 (return -1) MatrixShapeOk( GetProblem().GetOperator()) == true (return -6) GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for return values) The non-zero structure of the matrix should not have changed since the last call to SymbolicFactorization(). The distribution of the matrix should not have changed since the last call to SymbolicFactorization() The matrix should not have changed since the last call to NumericFactorization(). <br >Postconditions: X will be set such that A X = B (or AT X = B), within the limits of the accuracy of the underlying solver. Integer error code, set to 0 if successful.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::SymbolicFactorization | ( | self, | ||
args | ||||
) |
SymbolicFactorization(self) -> int int Amesos_Lapack::SymbolicFactorization() Performs SymbolicFactorization on the matrix A. In addition to performing symbolic factorization on the matrix A, the call to SymbolicFactorization() implies that no change will be made to the non-zero structure of the underlying matrix without a subsequent call to SymbolicFactorization(). <br >Preconditions: GetProblem().GetOperator() != 0 (return -1) MatrixShapeOk( GetProblem().GetOperator()) == true (return -6) <br >Postconditions: Symbolic Factorization will be performed (or marked to be performed) allowing NumericFactorization() and Solve() to be called. Integer error code, set to 0 if successful.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::SymbolicFactorization | ( | self, | ||
args | ||||
) |
SymbolicFactorization(self) -> int int Amesos_Lapack::SymbolicFactorization() Performs SymbolicFactorization on the matrix A. In addition to performing symbolic factorization on the matrix A, the call to SymbolicFactorization() implies that no change will be made to the non-zero structure of the underlying matrix without a subsequent call to SymbolicFactorization(). <br >Preconditions: GetProblem().GetOperator() != 0 (return -1) MatrixShapeOk( GetProblem().GetOperator()) == true (return -6) <br >Postconditions: Symbolic Factorization will be performed (or marked to be performed) allowing NumericFactorization() and Solve() to be called. Integer error code, set to 0 if successful.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::UseTranspose | ( | self, | ||
args | ||||
) |
UseTranspose(self) -> bool bool Amesos_Lapack::UseTranspose() const Returns the current UseTranspose setting.
Reimplemented from PyTrilinos::Amesos::BaseSolver.
def PyTrilinos::Amesos::Lapack::UseTranspose | ( | self, | ||
args | ||||
) |
UseTranspose(self) -> bool bool Amesos_Lapack::UseTranspose() const Returns the current UseTranspose setting.
Reimplemented from PyTrilinos::Amesos::BaseSolver.