Public Member Functions | |
def | __init__ |
def | sort |
def | __init__ |
def | sort |
Anasazi's templated pure virtual class for managing the sorting of approximate eigenvalues computed by the eigensolver. A concrete implementation of this class is necessary. Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist C++ includes: AnasaziSortManager.hpp
def PyTrilinos::Anasazi::SortManagerEpetra::sort | ( | self, | ||
args | ||||
) |
sort(self, std::vector<(double,std::allocator<(double)>)> evals, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> perm = Teuchos::null, int n = -1) sort(self, std::vector<(double,std::allocator<(double)>)> r_evals, std::vector<(double,std::allocator<(double)>)> i_evals, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> perm = Teuchos::null, int n = -1) virtual void Anasazi::SortManager< MagnitudeType >::sort(std::vector< MagnitudeType > &r_evals, std::vector< MagnitudeType > &i_evals, Teuchos::RCP< std::vector< int > > perm=Teuchos::null, int n=-1) const =0 Sort complex eigenvalues, optionally returning the permutation vector. This routine takes two vectors, one for each part of a complex eigenvalue. This is helpful for solving real, non-symmetric eigenvalue problems. Parameters: ----------- r_evals: [in/out] Vector of length at least n containing the real part of the eigenvalues to be sorted. On output, the first n eigenvalues will be sorted. The rest will be unchanged. i_evals: [in/out] Vector of length at least n containing the imaginary part of the eigenvalues to be sorted. On output, the first n eigenvalues will be sorted. The rest will be unchanged. perm: [out] Vector of length at least n to store the permutation index (optional). If specified, on output the first n eigenvalues will contain the permutation indices, in the range [0,n-1], such that r_evals_out[i] = r_evals_in[perm[i]] and similarly for i_evals. n: [in] Number of values in r_evals, i_evals to be sorted. If n == -1, all values will be sorted.
Reimplemented in PyTrilinos::Anasazi::BasicSortEpetra, and PyTrilinos::Anasazi::BasicSortEpetra.
def PyTrilinos::Anasazi::SortManagerEpetra::sort | ( | self, | ||
args | ||||
) |
sort(self, std::vector<(double,std::allocator<(double)>)> evals, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> perm = Teuchos::null, int n = -1) sort(self, std::vector<(double,std::allocator<(double)>)> r_evals, std::vector<(double,std::allocator<(double)>)> i_evals, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> perm = Teuchos::null, int n = -1) virtual void Anasazi::SortManager< MagnitudeType >::sort(std::vector< MagnitudeType > &r_evals, std::vector< MagnitudeType > &i_evals, Teuchos::RCP< std::vector< int > > perm=Teuchos::null, int n=-1) const =0 Sort complex eigenvalues, optionally returning the permutation vector. This routine takes two vectors, one for each part of a complex eigenvalue. This is helpful for solving real, non-symmetric eigenvalue problems. Parameters: ----------- r_evals: [in/out] Vector of length at least n containing the real part of the eigenvalues to be sorted. On output, the first n eigenvalues will be sorted. The rest will be unchanged. i_evals: [in/out] Vector of length at least n containing the imaginary part of the eigenvalues to be sorted. On output, the first n eigenvalues will be sorted. The rest will be unchanged. perm: [out] Vector of length at least n to store the permutation index (optional). If specified, on output the first n eigenvalues will contain the permutation indices, in the range [0,n-1], such that r_evals_out[i] = r_evals_in[perm[i]] and similarly for i_evals. n: [in] Number of values in r_evals, i_evals to be sorted. If n == -1, all values will be sorted.
Reimplemented in PyTrilinos::Anasazi::BasicSortEpetra, and PyTrilinos::Anasazi::BasicSortEpetra.