PyTrilinos::IFPACK::IC Class Reference

Inheritance diagram for PyTrilinos::IFPACK::IC:

Inheritance graph
[legend]
Collaboration diagram for PyTrilinos::IFPACK::IC:

Collaboration graph
[legend]

List of all members.

Public Member Functions

def __init__
def SetAbsoluteThreshold
def SetRelativeThreshold
def SetParameters
def SetParameter
def Matrix
def IsInitialized
def Initialize
def Compute
def ComputeSetup
def IsComputed
def ApplyInverse
def Apply
def Condest
def GetAbsoluteThreshold
def GetRelativeThreshold
def NumGlobalNonzeros
def NumMyNonzeros
def D
def U
def SetUseTranspose
def NormInf
def HasNormInf
def UseTranspose
def OperatorDomainMap
def OperatorRangeMap
def Comm
def Label
def SetLabel
def NumInitialize
def NumCompute
def NumApplyInverse
def InitializeTime
def ComputeTime
def ApplyInverseTime
def InitializeFlops
def ComputeFlops
def ApplyInverseFlops
def __init__
def SetAbsoluteThreshold
def SetRelativeThreshold
def SetParameters
def SetParameter
def Matrix
def IsInitialized
def Initialize
def Compute
def ComputeSetup
def IsComputed
def ApplyInverse
def Apply
def Condest
def GetAbsoluteThreshold
def GetRelativeThreshold
def NumGlobalNonzeros
def NumMyNonzeros
def D
def U
def SetUseTranspose
def NormInf
def HasNormInf
def UseTranspose
def OperatorDomainMap
def OperatorRangeMap
def Comm
def Label
def SetLabel
def NumInitialize
def NumCompute
def NumApplyInverse
def InitializeTime
def ComputeTime
def ApplyInverseTime
def InitializeFlops
def ComputeFlops
def ApplyInverseFlops

Public Attributes

 this


Detailed Description

Proxy of C++ Ifpack_IC class

Member Function Documentation

def PyTrilinos::IFPACK::IC::__init__ (   self,
  args 
)

__init__(self, RowMatrix A) -> IC

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::__init__ (   self,
  args 
)

__init__(self, RowMatrix A) -> IC

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::Apply (   self,
  args 
)

Apply(self, MultiVector x, MultiVector y) -> int

In C++, the Apply() method is pure virtual, thus intended to be
overridden by derived classes.  In python, cross-language polymorphism
is supported, and you are expected to derive classes from this base
class and redefine the Apply() method.  C++ code (e.g., AztecOO
solvers) can call back to your Apply() method as needed.  You must
support two arguments, labeled here MultiVector x and MultiVector y.
These will be converted from Epetra_MultiVector C++ objects to
numpy-hybrid Epetra.MultiVector objects before they are passed to you.
Thus, it is legal to use slice indexing and other numpy features to
compute y from x.

If application of your operator is successful, return 0; else return
some non-zero error code.

It is strongly suggested that you prevent Apply() from raising any
exceptions.  Accidental errors can be prevented by wrapping your code
in a try block:

    try:
# Your code goes here...
    except Exception, e:
print 'A python exception was raised by method Apply:'
print e
return -1

By returning a -1, you inform the calling routine that Apply() was
unsuccessful.


virtual int
Epetra_Operator::Apply(const Epetra_MultiVector &X, Epetra_MultiVector
&Y) const =0

Returns the result of a Epetra_Operator applied to a
Epetra_MultiVector X in Y.

Parameters:
-----------

In:  X - A Epetra_MultiVector of dimension NumVectors to multiply with
matrix.

Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
result.

Integer error code, set to 0 if successful. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::Apply (   self,
  args 
)

Apply(self, MultiVector x, MultiVector y) -> int

In C++, the Apply() method is pure virtual, thus intended to be
overridden by derived classes.  In python, cross-language polymorphism
is supported, and you are expected to derive classes from this base
class and redefine the Apply() method.  C++ code (e.g., AztecOO
solvers) can call back to your Apply() method as needed.  You must
support two arguments, labeled here MultiVector x and MultiVector y.
These will be converted from Epetra_MultiVector C++ objects to
numpy-hybrid Epetra.MultiVector objects before they are passed to you.
Thus, it is legal to use slice indexing and other numpy features to
compute y from x.

If application of your operator is successful, return 0; else return
some non-zero error code.

It is strongly suggested that you prevent Apply() from raising any
exceptions.  Accidental errors can be prevented by wrapping your code
in a try block:

    try:
# Your code goes here...
    except Exception, e:
print 'A python exception was raised by method Apply:'
print e
return -1

By returning a -1, you inform the calling routine that Apply() was
unsuccessful.


virtual int
Epetra_Operator::Apply(const Epetra_MultiVector &X, Epetra_MultiVector
&Y) const =0

Returns the result of a Epetra_Operator applied to a
Epetra_MultiVector X in Y.

Parameters:
-----------

In:  X - A Epetra_MultiVector of dimension NumVectors to multiply with
matrix.

Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
result.

Integer error code, set to 0 if successful. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::ApplyInverse (   self,
  args 
)

ApplyInverse(self, MultiVector x, MultiVector y) -> int

In C++, the ApplyInverse() method is pure virtual, thus intended to be
overridden by derived classes.  In python, cross-language polymorphism
is supported, and you are expected to derive classes from this base
class and redefine the ApplyInverse() method.  C++ code (e.g., AztecOO
solvers) can call back to your ApplyInverse() method as needed.  You
must support two arguments, labeled here MultiVector x and MultiVector
y.  These will be converted from Epetra_MultiVector C++ objects to
numpy-hybrid Epetra.MultiVector objects before they are passed to you.
Thus, it is legal to use slice indexing and other numpy features to
compute y from x.

If application of your operator is successful, return 0; else return
some non-zero error code.

It is strongly suggested that you prevent ApplyInverse() from raising
any exceptions.  Accidental errors can be prevented by wrapping your
code in a try block:

    try:
# Your code goes here...
    except Exception, e:
print 'A python exception was raised by method ApplyInverse:'
print e
return -1

By returning a -1, you inform the calling routine that ApplyInverse()
was unsuccessful.


virtual int
Epetra_Operator::ApplyInverse(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const =0

Returns the result of a Epetra_Operator inverse applied to an
Epetra_MultiVector X in Y.

Parameters:
-----------

In:  X - A Epetra_MultiVector of dimension NumVectors to solve for.

Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
result.

Integer error code, set to 0 if successful.

WARNING:  In order to work with AztecOO, any implementation of this
method must support the case where X and Y are the same object. 

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ApplyInverse (   self,
  args 
)

ApplyInverse(self, MultiVector x, MultiVector y) -> int

In C++, the ApplyInverse() method is pure virtual, thus intended to be
overridden by derived classes.  In python, cross-language polymorphism
is supported, and you are expected to derive classes from this base
class and redefine the ApplyInverse() method.  C++ code (e.g., AztecOO
solvers) can call back to your ApplyInverse() method as needed.  You
must support two arguments, labeled here MultiVector x and MultiVector
y.  These will be converted from Epetra_MultiVector C++ objects to
numpy-hybrid Epetra.MultiVector objects before they are passed to you.
Thus, it is legal to use slice indexing and other numpy features to
compute y from x.

If application of your operator is successful, return 0; else return
some non-zero error code.

It is strongly suggested that you prevent ApplyInverse() from raising
any exceptions.  Accidental errors can be prevented by wrapping your
code in a try block:

    try:
# Your code goes here...
    except Exception, e:
print 'A python exception was raised by method ApplyInverse:'
print e
return -1

By returning a -1, you inform the calling routine that ApplyInverse()
was unsuccessful.


virtual int
Epetra_Operator::ApplyInverse(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const =0

Returns the result of a Epetra_Operator inverse applied to an
Epetra_MultiVector X in Y.

Parameters:
-----------

In:  X - A Epetra_MultiVector of dimension NumVectors to solve for.

Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
result.

Integer error code, set to 0 if successful.

WARNING:  In order to work with AztecOO, any implementation of this
method must support the case where X and Y are the same object. 

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ApplyInverseFlops (   self,
  args 
)

ApplyInverseFlops(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ApplyInverseFlops (   self,
  args 
)

ApplyInverseFlops(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ApplyInverseTime (   self,
  args 
)

ApplyInverseTime(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ApplyInverseTime (   self,
  args 
)

ApplyInverseTime(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::Comm (   self,
  args 
)

Comm(self) -> Comm

virtual const
Epetra_Comm& Epetra_Operator::Comm() const =0

Returns a pointer to the Epetra_Comm communicator associated with this
operator. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::Comm (   self,
  args 
)

Comm(self) -> Comm

virtual const
Epetra_Comm& Epetra_Operator::Comm() const =0

Returns a pointer to the Epetra_Comm communicator associated with this
operator. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::Compute (   self,
  args 
)

Compute(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::Compute (   self,
  args 
)

Compute(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ComputeFlops (   self,
  args 
)

ComputeFlops(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ComputeFlops (   self,
  args 
)

ComputeFlops(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ComputeSetup (   self,
  args 
)

ComputeSetup(self) -> int

def PyTrilinos::IFPACK::IC::ComputeSetup (   self,
  args 
)

ComputeSetup(self) -> int

def PyTrilinos::IFPACK::IC::ComputeTime (   self,
  args 
)

ComputeTime(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::ComputeTime (   self,
  args 
)

ComputeTime(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::Condest (   self,
  args 
)

Condest(self, Ifpack_CondestType CT = Ifpack_Cheap, int MaxIters = 1550, 
    double Tol = 1e-9, RowMatrix Matrix_in = None) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::Condest (   self,
  args 
)

Condest(self, Ifpack_CondestType CT = Ifpack_Cheap, int MaxIters = 1550, 
    double Tol = 1e-9, RowMatrix Matrix_in = None) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::D (   self,
  args 
)

D(self) -> Epetra_Vector

def PyTrilinos::IFPACK::IC::D (   self,
  args 
)

D(self) -> Epetra_Vector

def PyTrilinos::IFPACK::IC::GetAbsoluteThreshold (   self,
  args 
)

GetAbsoluteThreshold(self) -> double

def PyTrilinos::IFPACK::IC::GetAbsoluteThreshold (   self,
  args 
)

GetAbsoluteThreshold(self) -> double

def PyTrilinos::IFPACK::IC::GetRelativeThreshold (   self,
  args 
)

GetRelativeThreshold(self) -> double

def PyTrilinos::IFPACK::IC::GetRelativeThreshold (   self,
  args 
)

GetRelativeThreshold(self) -> double

def PyTrilinos::IFPACK::IC::HasNormInf (   self,
  args 
)

HasNormInf(self) -> bool

virtual bool
Epetra_Operator::HasNormInf() const =0

Returns true if the this object can provide an approximate Inf-norm,
false otherwise. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::HasNormInf (   self,
  args 
)

HasNormInf(self) -> bool

virtual bool
Epetra_Operator::HasNormInf() const =0

Returns true if the this object can provide an approximate Inf-norm,
false otherwise. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::Initialize (   self,
  args 
)

Initialize(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::Initialize (   self,
  args 
)

Initialize(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::InitializeFlops (   self,
  args 
)

InitializeFlops(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::InitializeFlops (   self,
  args 
)

InitializeFlops(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::InitializeTime (   self,
  args 
)

InitializeTime(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::InitializeTime (   self,
  args 
)

InitializeTime(self) -> double

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::IsComputed (   self,
  args 
)

IsComputed(self) -> bool

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::IsComputed (   self,
  args 
)

IsComputed(self) -> bool

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::IsInitialized (   self,
  args 
)

IsInitialized(self) -> bool

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::IsInitialized (   self,
  args 
)

IsInitialized(self) -> bool

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::Label (   self,
  args 
)

Label(self) -> char

virtual const char*
Epetra_Operator::Label() const =0

Returns a character string describing the operator. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::Label (   self,
  args 
)

Label(self) -> char

virtual const char*
Epetra_Operator::Label() const =0

Returns a character string describing the operator. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::Matrix (   self,
  args 
)

Matrix(self) -> RowMatrix
Matrix(self) -> RowMatrix

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::Matrix (   self,
  args 
)

Matrix(self) -> RowMatrix
Matrix(self) -> RowMatrix

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::NormInf (   self,
  args 
)

NormInf(self) -> double

virtual double
Epetra_Operator::NormInf() const =0

Returns the infinity norm of the global matrix. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::NormInf (   self,
  args 
)

NormInf(self) -> double

virtual double
Epetra_Operator::NormInf() const =0

Returns the infinity norm of the global matrix. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::NumApplyInverse (   self,
  args 
)

NumApplyInverse(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::NumApplyInverse (   self,
  args 
)

NumApplyInverse(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::NumCompute (   self,
  args 
)

NumCompute(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::NumCompute (   self,
  args 
)

NumCompute(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::NumGlobalNonzeros (   self,
  args 
)

NumGlobalNonzeros(self) -> int

def PyTrilinos::IFPACK::IC::NumGlobalNonzeros (   self,
  args 
)

NumGlobalNonzeros(self) -> int

def PyTrilinos::IFPACK::IC::NumInitialize (   self,
  args 
)

NumInitialize(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::NumInitialize (   self,
  args 
)

NumInitialize(self) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::NumMyNonzeros (   self,
  args 
)

NumMyNonzeros(self) -> int

def PyTrilinos::IFPACK::IC::NumMyNonzeros (   self,
  args 
)

NumMyNonzeros(self) -> int

def PyTrilinos::IFPACK::IC::OperatorDomainMap (   self,
  args 
)

OperatorDomainMap(self) -> Map

virtual
const Epetra_Map& Epetra_Operator::OperatorDomainMap() const =0

Returns the Epetra_Map object associated with the domain of this
operator. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::OperatorDomainMap (   self,
  args 
)

OperatorDomainMap(self) -> Map

virtual
const Epetra_Map& Epetra_Operator::OperatorDomainMap() const =0

Returns the Epetra_Map object associated with the domain of this
operator. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::OperatorRangeMap (   self,
  args 
)

OperatorRangeMap(self) -> Map

virtual
const Epetra_Map& Epetra_Operator::OperatorRangeMap() const =0

Returns the Epetra_Map object associated with the range of this
operator. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::OperatorRangeMap (   self,
  args 
)

OperatorRangeMap(self) -> Map

virtual
const Epetra_Map& Epetra_Operator::OperatorRangeMap() const =0

Returns the Epetra_Map object associated with the range of this
operator. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::SetAbsoluteThreshold (   self,
  args 
)

SetAbsoluteThreshold(self, double Athresh)

def PyTrilinos::IFPACK::IC::SetAbsoluteThreshold (   self,
  args 
)

SetAbsoluteThreshold(self, double Athresh)

def PyTrilinos::IFPACK::IC::SetLabel (   self,
  args 
)

SetLabel(self, char Label_in) -> int

def PyTrilinos::IFPACK::IC::SetLabel (   self,
  args 
)

SetLabel(self, char Label_in) -> int

def PyTrilinos::IFPACK::IC::SetParameter (   self,
  args 
)

SetParameter(self, string Name, int Value) -> int
SetParameter(self, string Name, double Value) -> int

def PyTrilinos::IFPACK::IC::SetParameter (   self,
  args 
)

SetParameter(self, string Name, int Value) -> int
SetParameter(self, string Name, double Value) -> int

def PyTrilinos::IFPACK::IC::SetParameters (   self,
  args 
)

SetParameters(self, ParameterList parameterlis) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::SetParameters (   self,
  args 
)

SetParameters(self, ParameterList parameterlis) -> int

Reimplemented from PyTrilinos::IFPACK::Preconditioner.

def PyTrilinos::IFPACK::IC::SetRelativeThreshold (   self,
  args 
)

SetRelativeThreshold(self, double Rthresh)

def PyTrilinos::IFPACK::IC::SetRelativeThreshold (   self,
  args 
)

SetRelativeThreshold(self, double Rthresh)

def PyTrilinos::IFPACK::IC::SetUseTranspose (   self,
  args 
)

SetUseTranspose(self, bool UseTranspose_in) -> int

virtual int
Epetra_Operator::SetUseTranspose(bool UseTranspose)=0

If set true, transpose of this operator will be applied.

This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.

Parameters:
-----------

In:  UseTranspose -If true, multiply by the transpose of operator,
otherwise just use operator.

Integer error code, set to 0 if successful. Set to -1 if this
implementation does not support transpose. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::SetUseTranspose (   self,
  args 
)

SetUseTranspose(self, bool UseTranspose_in) -> int

virtual int
Epetra_Operator::SetUseTranspose(bool UseTranspose)=0

If set true, transpose of this operator will be applied.

This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.

Parameters:
-----------

In:  UseTranspose -If true, multiply by the transpose of operator,
otherwise just use operator.

Integer error code, set to 0 if successful. Set to -1 if this
implementation does not support transpose. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::U (   self,
  args 
)

U(self) -> CrsMatrix

def PyTrilinos::IFPACK::IC::U (   self,
  args 
)

U(self) -> CrsMatrix

def PyTrilinos::IFPACK::IC::UseTranspose (   self,
  args 
)

UseTranspose(self) -> bool

virtual bool
Epetra_Operator::UseTranspose() const =0

Returns the current UseTranspose setting. 

Reimplemented from PyTrilinos::Epetra::Operator.

def PyTrilinos::IFPACK::IC::UseTranspose (   self,
  args 
)

UseTranspose(self) -> bool

virtual bool
Epetra_Operator::UseTranspose() const =0

Returns the current UseTranspose setting. 

Reimplemented from PyTrilinos::Epetra::Operator.


The documentation for this class was generated from the following files:

Generated on Thu Dec 17 11:00:21 2009 for PyTrilinos by  doxygen 1.5.9