PyTrilinos::NOX::Epetra::Group Class Reference

Inheritance diagram for PyTrilinos::NOX::Epetra::Group:

Inheritance graph
[legend]
Collaboration diagram for PyTrilinos::NOX::Epetra::Group:

Collaboration graph
[legend]

List of all members.

Public Member Functions

def __init__
def setX
def computeX
def computeF
def computeJacobian
def computeGradient
def computeNewton
def applyJacobian
def applyJacobianTranspose
def applyJacobianInverse
def applyRightPreconditioning
def isF
def isJacobian
def isGradient
def isNewton
def isNormNewtonSolveResidual
def isPreconditioner
def isConditionNumber
def getX
def getF
def getNormF
def getGradient
def getNewton
def getNormLastLinearSolveResidual
def clone
def getRequiredInterface
def getLinearSystem
def computeJacobianConditionNumber
def getJacobianConditionNumber
def __init__
def setX
def computeX
def computeF
def computeJacobian
def computeGradient
def computeNewton
def applyJacobian
def applyJacobianTranspose
def applyJacobianInverse
def applyRightPreconditioning
def isF
def isJacobian
def isGradient
def isNewton
def isNormNewtonSolveResidual
def isPreconditioner
def isConditionNumber
def getX
def getF
def getNormF
def getGradient
def getNewton
def getNormLastLinearSolveResidual
def clone
def getRequiredInterface
def getLinearSystem
def computeJacobianConditionNumber
def getJacobianConditionNumber

Public Attributes

 this


Detailed Description

Concrete implementation of NOX::Abstract::Group for Trilinos/Epetra.

This group is set up to use the linear algebra services provided
through the Trilinos/Epetra package with AztecOO for the linear
solver.

C++ includes: NOX_Epetra_Group.H 

Member Function Documentation

def PyTrilinos::NOX::Epetra::Group::__init__ (   self,
  args 
)

__init__(self, ParameterList printingParams, Teuchos::RCP<(NOX::Epetra::Interface::Required)> i, 
    Vector initialGuess) -> Group
__init__(self, ParameterList printingParams, Teuchos::RCP<(NOX::Epetra::Interface::Required)> i, 
    Vector initialGuess, 
    Teuchos::RCP<(NOX::Epetra::LinearSystem)> linSys) -> Group
__init__(self, Group source, CopyType type = DeepCopy) -> Group

Group::Group(const
NOX::Epetra::Group &source, NOX::CopyType type=NOX::DeepCopy)

Copy constructor. If type is DeepCopy, takes ownership of valid shared
linear system. 

def PyTrilinos::NOX::Epetra::Group::__init__ (   self,
  args 
)

__init__(self, ParameterList printingParams, Teuchos::RCP<(NOX::Epetra::Interface::Required)> i, 
    Vector initialGuess) -> Group
__init__(self, ParameterList printingParams, Teuchos::RCP<(NOX::Epetra::Interface::Required)> i, 
    Vector initialGuess, 
    Teuchos::RCP<(NOX::Epetra::LinearSystem)> linSys) -> Group
__init__(self, Group source, CopyType type = DeepCopy) -> Group

Group::Group(const
NOX::Epetra::Group &source, NOX::CopyType type=NOX::DeepCopy)

Copy constructor. If type is DeepCopy, takes ownership of valid shared
linear system. 

def PyTrilinos::NOX::Epetra::Group::applyJacobian (   self,
  args 
)

applyJacobian(self, Vector input, Vector result) -> ReturnType
applyJacobian(self, Vector input, Vector result) -> ReturnType

Abstract::Group::ReturnType Group::applyJacobian(const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

Applies Jacobian to the given input vector and puts the answer in the
result.

Computes \\[ v = J u, \\] where $J$ is the Jacobian, $u$ is the
input vector, and $v$ is the result vector.

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If the Jacobian $J$ has not been
computed

NOX::Abstract::Group::Failed - If the computation fails

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::applyJacobian (   self,
  args 
)

applyJacobian(self, Vector input, Vector result) -> ReturnType
applyJacobian(self, Vector input, Vector result) -> ReturnType

Abstract::Group::ReturnType Group::applyJacobian(const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

Applies Jacobian to the given input vector and puts the answer in the
result.

Computes \\[ v = J u, \\] where $J$ is the Jacobian, $u$ is the
input vector, and $v$ is the result vector.

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If the Jacobian $J$ has not been
computed

NOX::Abstract::Group::Failed - If the computation fails

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::applyJacobianInverse (   self,
  args 
)

applyJacobianInverse(self, ParameterList params, Vector input, Vector result) -> ReturnType
applyJacobianInverse(self, ParameterList params, Vector input, Vector result) -> ReturnType

Abstract::Group::ReturnType
Group::applyJacobianInverse(Teuchos::ParameterList &params, const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

Applies the inverse of the Jacobian matrix to the given input vector
and puts the answer in result.

Computes \\[ v = J^{-1} u, \\] where $J$ is the Jacobian, $u$ is
the input vector, and $v$ is the result vector.

The "Tolerance" parameter specifies that the solution should be such
that \\[ \\frac{\\| J v - u \\|_2}{\\max \\{ 1,
\\|u\\|_2\\} } < \\mbox{Tolerance} \\]

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If $J$ has not been computed

NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params

NOX::Abstract::Group::Failed - If the computation fails

NOX::Abstract::Group::Ok - Otherwise

The parameter "Tolerance" may be added/modified in the list of
parameters - this is the ideal solution tolerance for an iterative
linear solve. 

def PyTrilinos::NOX::Epetra::Group::applyJacobianInverse (   self,
  args 
)

applyJacobianInverse(self, ParameterList params, Vector input, Vector result) -> ReturnType
applyJacobianInverse(self, ParameterList params, Vector input, Vector result) -> ReturnType

Abstract::Group::ReturnType
Group::applyJacobianInverse(Teuchos::ParameterList &params, const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

Applies the inverse of the Jacobian matrix to the given input vector
and puts the answer in result.

Computes \\[ v = J^{-1} u, \\] where $J$ is the Jacobian, $u$ is
the input vector, and $v$ is the result vector.

The "Tolerance" parameter specifies that the solution should be such
that \\[ \\frac{\\| J v - u \\|_2}{\\max \\{ 1,
\\|u\\|_2\\} } < \\mbox{Tolerance} \\]

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If $J$ has not been computed

NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params

NOX::Abstract::Group::Failed - If the computation fails

NOX::Abstract::Group::Ok - Otherwise

The parameter "Tolerance" may be added/modified in the list of
parameters - this is the ideal solution tolerance for an iterative
linear solve. 

def PyTrilinos::NOX::Epetra::Group::applyJacobianTranspose (   self,
  args 
)

applyJacobianTranspose(self, Vector input, Vector result) -> ReturnType
applyJacobianTranspose(self, Vector input, Vector result) -> ReturnType

Abstract::Group::ReturnType Group::applyJacobianTranspose(const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

Applies Jacobian-Transpose to the given input vector and puts the
answer in the result.

Computes \\[ v = J^T u, \\] where $J$ is the Jacobian, $u$ is the
input vector, and $v$ is the result vector.

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If $J$ has not been computed

NOX::Abstract::Group::Failed - If the computation fails

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::applyJacobianTranspose (   self,
  args 
)

applyJacobianTranspose(self, Vector input, Vector result) -> ReturnType
applyJacobianTranspose(self, Vector input, Vector result) -> ReturnType

Abstract::Group::ReturnType Group::applyJacobianTranspose(const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

Applies Jacobian-Transpose to the given input vector and puts the
answer in the result.

Computes \\[ v = J^T u, \\] where $J$ is the Jacobian, $u$ is the
input vector, and $v$ is the result vector.

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If $J$ has not been computed

NOX::Abstract::Group::Failed - If the computation fails

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::applyRightPreconditioning (   self,
  args 
)

applyRightPreconditioning(self, bool useTranspose, ParameterList params, Vector input, 
    Vector result) -> ReturnType
applyRightPreconditioning(self, bool useTranspose, ParameterList params, Vector input, 
    Vector result) -> ReturnType

Abstract::Group::ReturnType Group::applyRightPreconditioning(bool
useTranspose, Teuchos::ParameterList &params, const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

Apply right preconditiong to the given input vector.

Let $M$ be a right preconditioner for the Jacobian $J$; in other
words, $M$ is a matrix such that \\[ JM \\approx I. \\]

Compute \\[ u = M^{-1} v, \\] where $u$ is the input vector and
$v$ is the result vector.

If useTranspose is true, then the transpose of the preconditioner is
applied: \\[ u = {M^{-1}}^T v, \\] The transpose preconditioner is
currently only required for Tensor methods.

The "Tolerance" parameter specifies that the solution should be such
that \\[ \\frac{\\| M v - u \\|_2}{\\max \\{ 1,
\\|u\\|_2\\} } < \\mbox{Tolerance} \\]

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params

NOX::Abstract::Group::Failed - If the computation fails

NOX::Abstract::Group::Ok - Otherwise

The parameters are from the "Linear %Solver" sublist of the
"Direction" sublist that is passed to solver during construction. 

def PyTrilinos::NOX::Epetra::Group::applyRightPreconditioning (   self,
  args 
)

applyRightPreconditioning(self, bool useTranspose, ParameterList params, Vector input, 
    Vector result) -> ReturnType
applyRightPreconditioning(self, bool useTranspose, ParameterList params, Vector input, 
    Vector result) -> ReturnType

Abstract::Group::ReturnType Group::applyRightPreconditioning(bool
useTranspose, Teuchos::ParameterList &params, const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

Apply right preconditiong to the given input vector.

Let $M$ be a right preconditioner for the Jacobian $J$; in other
words, $M$ is a matrix such that \\[ JM \\approx I. \\]

Compute \\[ u = M^{-1} v, \\] where $u$ is the input vector and
$v$ is the result vector.

If useTranspose is true, then the transpose of the preconditioner is
applied: \\[ u = {M^{-1}}^T v, \\] The transpose preconditioner is
currently only required for Tensor methods.

The "Tolerance" parameter specifies that the solution should be such
that \\[ \\frac{\\| M v - u \\|_2}{\\max \\{ 1,
\\|u\\|_2\\} } < \\mbox{Tolerance} \\]

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params

NOX::Abstract::Group::Failed - If the computation fails

NOX::Abstract::Group::Ok - Otherwise

The parameters are from the "Linear %Solver" sublist of the
"Direction" sublist that is passed to solver during construction. 

def PyTrilinos::NOX::Epetra::Group::clone (   self,
  args 
)

clone(self, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::Group)>

Teuchos::RCP<
NOX::Abstract::Group > Group::clone(CopyType type=DeepCopy) const

Create a new Group of the same derived type as this one by cloning
this one, and return a ref count pointer to the new group.

If type is NOX::DeepCopy, then we need to create an exact replica of
"this". Otherwise, if type is NOX::ShapeCopy, we need only replicate
the shape of "this" (only the memory is allocated, the values are
not copied into the vectors and Jacobian). Returns NULL if clone is
not supported.

Any shared data should have its ownership transfered to this group
from the source for a NOX::DeepCopy. 

def PyTrilinos::NOX::Epetra::Group::clone (   self,
  args 
)

clone(self, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::Group)>

Teuchos::RCP<
NOX::Abstract::Group > Group::clone(CopyType type=DeepCopy) const

Create a new Group of the same derived type as this one by cloning
this one, and return a ref count pointer to the new group.

If type is NOX::DeepCopy, then we need to create an exact replica of
"this". Otherwise, if type is NOX::ShapeCopy, we need only replicate
the shape of "this" (only the memory is allocated, the values are
not copied into the vectors and Jacobian). Returns NULL if clone is
not supported.

Any shared data should have its ownership transfered to this group
from the source for a NOX::DeepCopy. 

def PyTrilinos::NOX::Epetra::Group::computeF (   self,
  args 
)

computeF(self) -> ReturnType

Abstract::Group::ReturnType Group::computeF()

Compute and store F(x).

It's generally useful to also compute and store the 2-norm of F(x) at
this point for later access by the getNormF() function.

NOX::Abstract::Group::Failed - If the computation fails in any way

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::computeF (   self,
  args 
)

computeF(self) -> ReturnType

Abstract::Group::ReturnType Group::computeF()

Compute and store F(x).

It's generally useful to also compute and store the 2-norm of F(x) at
this point for later access by the getNormF() function.

NOX::Abstract::Group::Failed - If the computation fails in any way

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::computeGradient (   self,
  args 
)

computeGradient(self) -> ReturnType

Abstract::Group::ReturnType Group::computeGradient()

Compute and store gradient.

We can pose the nonlinear equation problem $F(x) = 0$ as an
optimization problem as follows: \\[ \\min f(x) \\equiv
\\frac{1}{2} \\|F(x)\\|_2^2. \\]

In that case, the gradient (of $f$) is defined as \\[ g \\equiv
J^T F. \\]

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If either $F$ or $J$ has not
been computed

NOX::Abstract::Group::Failed - If the computation fails in any other
way

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::computeGradient (   self,
  args 
)

computeGradient(self) -> ReturnType

Abstract::Group::ReturnType Group::computeGradient()

Compute and store gradient.

We can pose the nonlinear equation problem $F(x) = 0$ as an
optimization problem as follows: \\[ \\min f(x) \\equiv
\\frac{1}{2} \\|F(x)\\|_2^2. \\]

In that case, the gradient (of $f$) is defined as \\[ g \\equiv
J^T F. \\]

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If either $F$ or $J$ has not
been computed

NOX::Abstract::Group::Failed - If the computation fails in any other
way

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::computeJacobian (   self,
  args 
)

computeJacobian(self) -> ReturnType

Abstract::Group::ReturnType Group::computeJacobian()

Compute and store Jacobian.

Recall that \\[ F(x) = \\left[ \\begin{array}{c} F_1(x) \\\\
F_2(x) \\\\ \\vdots \\\\ F_n(x) \\\\ \\end{array}
\\right]. \\]

The Jacobian is denoted by $J$ and defined by \\[ J_{ij} =
\\frac{\\partial F_i}{\\partial x_j} (x). \\]

If this is a shared object, this group should taken ownership of the
Jacobian before it computes it.

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::Failed - If the computation fails in any other
way

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::computeJacobian (   self,
  args 
)

computeJacobian(self) -> ReturnType

Abstract::Group::ReturnType Group::computeJacobian()

Compute and store Jacobian.

Recall that \\[ F(x) = \\left[ \\begin{array}{c} F_1(x) \\\\
F_2(x) \\\\ \\vdots \\\\ F_n(x) \\\\ \\end{array}
\\right]. \\]

The Jacobian is denoted by $J$ and defined by \\[ J_{ij} =
\\frac{\\partial F_i}{\\partial x_j} (x). \\]

If this is a shared object, this group should taken ownership of the
Jacobian before it computes it.

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::Failed - If the computation fails in any other
way

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::computeJacobianConditionNumber (   self,
  args 
)

computeJacobianConditionNumber(self, int maxIters, double tolerance, int krylovSubspaceSize = 100, 
    bool printOutput = False) -> ReturnType

Abstract::Group::ReturnType
NOX::Epetra::Group::computeJacobianConditionNumber(int maxIters,
double tolerance, int krylovSubspaceSize=100, bool printOutput=false)

def PyTrilinos::NOX::Epetra::Group::computeJacobianConditionNumber (   self,
  args 
)

computeJacobianConditionNumber(self, int maxIters, double tolerance, int krylovSubspaceSize = 100, 
    bool printOutput = False) -> ReturnType

Abstract::Group::ReturnType
NOX::Epetra::Group::computeJacobianConditionNumber(int maxIters,
double tolerance, int krylovSubspaceSize=100, bool printOutput=false)

def PyTrilinos::NOX::Epetra::Group::computeNewton (   self,
  args 
)

computeNewton(self, ParameterList params) -> ReturnType

Abstract::Group::ReturnType
Group::computeNewton(Teuchos::ParameterList &params)

Compute the Newton direction, using parameters for the linear solve.

The Newton direction is the solution, s, of \\[ J s = -F. \\]

The parameters are from the "Linear %Solver" sublist of the
"Direction" sublist that is passed to solver during construction.

The "Tolerance" parameter may be added/modified in the sublist of
"Linear Solver" parameters that is passed into this function. The
solution should be such that \\[ \\frac{\\| J s - (-F)
\\|_2}{\\max \\{ 1, \\|F\\|_2\\} } < \\mbox{Tolerance}
\\]

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If either $F$ or $J$ has not
been computed

NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params

NOX::Abstract::Group::Failed - If the computation fails in any other
way

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::computeNewton (   self,
  args 
)

computeNewton(self, ParameterList params) -> ReturnType

Abstract::Group::ReturnType
Group::computeNewton(Teuchos::ParameterList &params)

Compute the Newton direction, using parameters for the linear solve.

The Newton direction is the solution, s, of \\[ J s = -F. \\]

The parameters are from the "Linear %Solver" sublist of the
"Direction" sublist that is passed to solver during construction.

The "Tolerance" parameter may be added/modified in the sublist of
"Linear Solver" parameters that is passed into this function. The
solution should be such that \\[ \\frac{\\| J s - (-F)
\\|_2}{\\max \\{ 1, \\|F\\|_2\\} } < \\mbox{Tolerance}
\\]

NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group

NOX::Abstract::Group::BadDependency - If either $F$ or $J$ has not
been computed

NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params

NOX::Abstract::Group::Failed - If the computation fails in any other
way

NOX::Abstract::Group::Ok - Otherwise 

def PyTrilinos::NOX::Epetra::Group::computeX (   self,
  args 
)

computeX(self, Group grp, Vector d, double step)
computeX(self, Group grp, Vector d, double step)

void
Group::computeX(const NOX::Abstract::Group &grp, const
NOX::Abstract::Vector &d, double step)

Compute x = grp.x + step * d.

Let $x$ denote this group's solution vector. Let $\\hat x$ denote
the result of grp.getX(). Then set \\[ x = \\hat x +
\\mbox{step} \\; d. \\]

This should invalidate the function value, Jacobian, gradient, and
Newton direction.

Throw an error if the copy fails.

Reference to this object 

def PyTrilinos::NOX::Epetra::Group::computeX (   self,
  args 
)

computeX(self, Group grp, Vector d, double step)
computeX(self, Group grp, Vector d, double step)

void
Group::computeX(const NOX::Abstract::Group &grp, const
NOX::Abstract::Vector &d, double step)

Compute x = grp.x + step * d.

Let $x$ denote this group's solution vector. Let $\\hat x$ denote
the result of grp.getX(). Then set \\[ x = \\hat x +
\\mbox{step} \\; d. \\]

This should invalidate the function value, Jacobian, gradient, and
Newton direction.

Throw an error if the copy fails.

Reference to this object 

def PyTrilinos::NOX::Epetra::Group::getF (   self,
  args 
)

getF(self) -> Vector

const
Abstract::Vector & Group::getF() const

Return F(x). 

def PyTrilinos::NOX::Epetra::Group::getF (   self,
  args 
)

getF(self) -> Vector

const
Abstract::Vector & Group::getF() const

Return F(x). 

def PyTrilinos::NOX::Epetra::Group::getGradient (   self,
  args 
)

getGradient(self) -> Vector

const
Abstract::Vector & Group::getGradient() const

Return gradient. 

def PyTrilinos::NOX::Epetra::Group::getGradient (   self,
  args 
)

getGradient(self) -> Vector

const
Abstract::Vector & Group::getGradient() const

Return gradient. 

def PyTrilinos::NOX::Epetra::Group::getJacobianConditionNumber (   self,
  args 
)

getJacobianConditionNumber(self) -> double

double NOX::Epetra::Group::getJacobianConditionNumber() const

Returns the condition number of the Jacobian matrix. 

def PyTrilinos::NOX::Epetra::Group::getJacobianConditionNumber (   self,
  args 
)

getJacobianConditionNumber(self) -> double

double NOX::Epetra::Group::getJacobianConditionNumber() const

Returns the condition number of the Jacobian matrix. 

def PyTrilinos::NOX::Epetra::Group::getLinearSystem (   self,
  args 
)

getLinearSystem(self) -> Teuchos::RCP<(q(const).NOX::Epetra::LinearSystem)>
getLinearSystem(self) -> Teuchos::RCP<(NOX::Epetra::LinearSystem)>

Teuchos::RCP< NOX::Epetra::LinearSystem > Group::getLinearSystem()

Return the Linear System. 

def PyTrilinos::NOX::Epetra::Group::getLinearSystem (   self,
  args 
)

getLinearSystem(self) -> Teuchos::RCP<(q(const).NOX::Epetra::LinearSystem)>
getLinearSystem(self) -> Teuchos::RCP<(NOX::Epetra::LinearSystem)>

Teuchos::RCP< NOX::Epetra::LinearSystem > Group::getLinearSystem()

Return the Linear System. 

def PyTrilinos::NOX::Epetra::Group::getNewton (   self,
  args 
)

getNewton(self) -> Vector

const
Abstract::Vector & Group::getNewton() const

Return Newton direction. 

def PyTrilinos::NOX::Epetra::Group::getNewton (   self,
  args 
)

getNewton(self) -> Vector

const
Abstract::Vector & Group::getNewton() const

Return Newton direction. 

def PyTrilinos::NOX::Epetra::Group::getNormF (   self,
  args 
)

getNormF(self) -> double

double
Group::getNormF() const

Return 2-norm of F(x).

In other words, \\[ \\sqrt{\\sum_{i=1}^n F_i^2} \\] 

def PyTrilinos::NOX::Epetra::Group::getNormF (   self,
  args 
)

getNormF(self) -> double

double
Group::getNormF() const

Return 2-norm of F(x).

In other words, \\[ \\sqrt{\\sum_{i=1}^n F_i^2} \\] 

def PyTrilinos::NOX::Epetra::Group::getNormLastLinearSolveResidual (   self,
  args 
)

getNormLastLinearSolveResidual(self, double residual) -> ReturnType

Abstract::Group::ReturnType
NOX::Epetra::Group::getNormLastLinearSolveResidual(double &residual)
const

Returns the 2-norm of the residual of the linear model used in the
Newton solve computation, ||Js+f||. This does not account for line
search adjustments to the step length! 

def PyTrilinos::NOX::Epetra::Group::getNormLastLinearSolveResidual (   self,
  args 
)

getNormLastLinearSolveResidual(self, double residual) -> ReturnType

Abstract::Group::ReturnType
NOX::Epetra::Group::getNormLastLinearSolveResidual(double &residual)
const

Returns the 2-norm of the residual of the linear model used in the
Newton solve computation, ||Js+f||. This does not account for line
search adjustments to the step length! 

def PyTrilinos::NOX::Epetra::Group::getRequiredInterface (   self,
  args 
)

getRequiredInterface(self) -> Teuchos::RCP<(NOX::Epetra::Interface::Required)>

Teuchos::RCP< NOX::Epetra::Interface::Required >
Group::getRequiredInterface()

Return the userInterface. 

def PyTrilinos::NOX::Epetra::Group::getRequiredInterface (   self,
  args 
)

getRequiredInterface(self) -> Teuchos::RCP<(NOX::Epetra::Interface::Required)>

Teuchos::RCP< NOX::Epetra::Interface::Required >
Group::getRequiredInterface()

Return the userInterface. 

def PyTrilinos::NOX::Epetra::Group::getX (   self,
  args 
)

getX(self) -> Vector

const
Abstract::Vector & Group::getX() const

Return solution vector. 

def PyTrilinos::NOX::Epetra::Group::getX (   self,
  args 
)

getX(self) -> Vector

const
Abstract::Vector & Group::getX() const

Return solution vector. 

def PyTrilinos::NOX::Epetra::Group::isConditionNumber (   self,
  args 
)

isConditionNumber(self) -> bool

bool
Group::isConditionNumber() const

Returns true if the condition number has been computed. 

def PyTrilinos::NOX::Epetra::Group::isConditionNumber (   self,
  args 
)

isConditionNumber(self) -> bool

bool
Group::isConditionNumber() const

Returns true if the condition number has been computed. 

def PyTrilinos::NOX::Epetra::Group::isF (   self,
  args 
)

isF(self) -> bool

bool Group::isF()
const

Return true if F is valid. 

def PyTrilinos::NOX::Epetra::Group::isF (   self,
  args 
)

isF(self) -> bool

bool Group::isF()
const

Return true if F is valid. 

def PyTrilinos::NOX::Epetra::Group::isGradient (   self,
  args 
)

isGradient(self) -> bool

bool
Group::isGradient() const

Return true if the gradient is valid.

Default implementation in NOX::Abstract::Group returns false. 

def PyTrilinos::NOX::Epetra::Group::isGradient (   self,
  args 
)

isGradient(self) -> bool

bool
Group::isGradient() const

Return true if the gradient is valid.

Default implementation in NOX::Abstract::Group returns false. 

def PyTrilinos::NOX::Epetra::Group::isJacobian (   self,
  args 
)

isJacobian(self) -> bool

bool
Group::isJacobian() const

Return true if the Jacobian is valid.

Default implementation in NOX::Abstract::Group returns false. 

def PyTrilinos::NOX::Epetra::Group::isJacobian (   self,
  args 
)

isJacobian(self) -> bool

bool
Group::isJacobian() const

Return true if the Jacobian is valid.

Default implementation in NOX::Abstract::Group returns false. 

def PyTrilinos::NOX::Epetra::Group::isNewton (   self,
  args 
)

isNewton(self) -> bool

bool
Group::isNewton() const

Return true if the Newton direction is valid.

Default implementation in NOX::Abstract::Group returns false. 

def PyTrilinos::NOX::Epetra::Group::isNewton (   self,
  args 
)

isNewton(self) -> bool

bool
Group::isNewton() const

Return true if the Newton direction is valid.

Default implementation in NOX::Abstract::Group returns false. 

def PyTrilinos::NOX::Epetra::Group::isNormNewtonSolveResidual (   self,
  args 
)

isNormNewtonSolveResidual(self) -> bool

bool Group::isNormNewtonSolveResidual() const

Returns true if the value of the Norm of the linear model for a full
Newton step ||Js + f|| is valid with respect to the current solution
vector. 

def PyTrilinos::NOX::Epetra::Group::isNormNewtonSolveResidual (   self,
  args 
)

isNormNewtonSolveResidual(self) -> bool

bool Group::isNormNewtonSolveResidual() const

Returns true if the value of the Norm of the linear model for a full
Newton step ||Js + f|| is valid with respect to the current solution
vector. 

def PyTrilinos::NOX::Epetra::Group::isPreconditioner (   self,
  args 
)

isPreconditioner(self) -> bool

bool
Group::isPreconditioner() const

Returns true if an explicitly constructed preconditioner exists (i.e.
one that is computed and saved for further use in multiple calls to
applyRightPreconditioner). 

def PyTrilinos::NOX::Epetra::Group::isPreconditioner (   self,
  args 
)

isPreconditioner(self) -> bool

bool
Group::isPreconditioner() const

Returns true if an explicitly constructed preconditioner exists (i.e.
one that is computed and saved for further use in multiple calls to
applyRightPreconditioner). 

def PyTrilinos::NOX::Epetra::Group::setX (   self,
  args 
)

setX(self, Vector y)
setX(self, Vector y)

void
Group::setX(const NOX::Abstract::Vector &y)

Set the solution vector x to y.

This should invalidate the function value, Jacobian, gradient, and
Newton direction.

Throw an error if the copy fails.

Reference to this object 

def PyTrilinos::NOX::Epetra::Group::setX (   self,
  args 
)

setX(self, Vector y)
setX(self, Vector y)

void
Group::setX(const NOX::Abstract::Vector &y)

Set the solution vector x to y.

This should invalidate the function value, Jacobian, gradient, and
Newton direction.

Throw an error if the copy fails.

Reference to this object 


The documentation for this class was generated from the following files:

Generated on Thu Dec 17 11:00:22 2009 for PyTrilinos by  doxygen 1.5.9