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Ruby Extensions

make code written in C(++) accessible from Ruby

code

Garbage Collection in Ruby Extensions – p.3/22



Ruby Extensions

Reasons for using extensions:

� Execution speed

� Large existing code base

� Mandatory implementation language

Considerations:

Security risk

Stability risk

Resource management
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Garbage Collection

� frees the programmer from tracking object
lifetimes

� inaccessible objects get deleted

x = Object.new
# possibly do something with x
x = nil
# the new object is inaccessible here
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Object accessibility
"root set": Objects referenced by

� global variables

� local variables currently on the stack

"reachable set":

Root set

All objects referenced another obj. in this set

Reference paths: An object references

its class

its data members (via instance variables)

specific references

Garbage Collection in Ruby Extensions – p.6/22



Object accessibility
"root set": Objects referenced by

� global variables

� local variables currently on the stack

"reachable set":

� Root set

� All objects referenced another obj. in this set

Reference paths: An object references

its class

its data members (via instance variables)

specific references

Garbage Collection in Ruby Extensions – p.6/22



Object accessibility
"root set": Objects referenced by

� global variables

� local variables currently on the stack

"reachable set":

� Root set

� All objects referenced another obj. in this set

Reference paths: An object references

� its class

� its data members (via instance variables)

� specific references Garbage Collection in Ruby Extensions – p.6/22



Object accessibility
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Object accessibility

root set
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Object accessibility

root set
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Object accessibility

root set
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Objects and references implementation

Regular object:

� struct

�

long flags;...
�

Reference:

A pointer to a regular object, stored in a
VALUE

Direct Object:

special VALUE
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Mark and Sweep Garbage Collector

Mark phase

� Ruby iterates over all references defining the
root set and calls rb gc mark on these
references

� Objects receive marks and recursively call
rb gc mark on all object references they
know of

Sweep phase

Ruby iterates over all objects

Objects that have not received a mark are
deleted
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Strategies for GC in Extensions

1. Do nothing

2. At least release the memory

3. Consider object relations

4. Revert to explicit resource management
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Strategies for GC in Extensions

1. Do nothing

2. At least release the memory

3. Consider object relations

4. Revert to explicit resource management

Ruby data object

data

mark

free

C struct
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GC-strategy 1: Do nothing

� Register NULL as the object’s "mark" and
"free" functions

The right strategy if you don’t care for
memory leaks

Applicable for small programs

Not applicable for libraries
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GC-strategy 2: Release memory

� Register NULL as the object’s "mark" function
and free as the object’s "free" function
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GC-strategy 2: Release memory

� Register NULL as the object’s "mark" function
and free as the object’s "free" function

� But watch out for

� multiple ruby objects wrapping the same C
object

� inter object relations
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GC-strategy 2: Release memory

multiple objects wrapping the same C object

� use reference counting for C object if
available

or use some "user data" field in the C struct to
point back to ruby object if available

or have a hash-table that maps C pointers to
ruby objects
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GC-strategy 3: Object relations

x = Ext Class 1.new(...)
x.learn about(Ext Class 2.new(...))
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GC-strategy 3: Object relations

x = Ext Class 1.new(...)
x.learn about(Ext Class 2.new(...))

� use reference counting if available

� no need to provide a mark function then
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GC-strategy 3: Object relations

x = Ext Class 1.new(...)
x.learn about(Ext Class 2.new(...))

� otherwise unique mapping from C pointers to
ruby wrapper objects is necessary

� class-specific mark functions have to be
provided
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GC-strategy 4: Explicit management

Sometimes garbage collection alone cannot
determine the C object’s lifetime.

Logo
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Using SWIG

1. Do nothing

2. Use %newobject

3. Use %typemaps, %markfunc and
%freefunc

� Tip: Call the same
ruby wrapper for klass(klass,
bool create) from within the
%typemaps and the %markfunctions
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Common Misconceptions

� Not trusting the Garbage Collector, desire to
register objects as globals.

Misunderstandings of the purpose of the
mark and sweep phases and functions.
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Summary

� Quick and dirty programs do not require any
GC support from an extension

� Correct GC support in extensions requires
either a reference counting framework inside
the C library or a reverse mapping of C
pointers to ruby objects
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Thank you
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