
Garbage Collection in Ruby
Extensions

Tobias Peters

Universität Oldenburg

Garbage Collection in Ruby Extensions – p.1/22

Content

� Extensions

Garbage Collection in Ruby

Strategies for Garbage Collection in
extensions

Using Swig

Common misconceptions?

Garbage Collection in Ruby Extensions – p.2/22

Content

� Extensions

� Garbage Collection in Ruby

Strategies for Garbage Collection in
extensions

Using Swig

Common misconceptions?

Garbage Collection in Ruby Extensions – p.2/22

Content

� Extensions

� Garbage Collection in Ruby

� Strategies for Garbage Collection in
extensions

Using Swig

Common misconceptions?

Garbage Collection in Ruby Extensions – p.2/22

Content

� Extensions

� Garbage Collection in Ruby

� Strategies for Garbage Collection in
extensions

� Using Swig

Common misconceptions?

Garbage Collection in Ruby Extensions – p.2/22

Content

� Extensions

� Garbage Collection in Ruby

� Strategies for Garbage Collection in
extensions

� Using Swig

� Common misconceptions?

Garbage Collection in Ruby Extensions – p.2/22

Ruby Extensions

make code written in C(++) accessible from Ruby

code

Garbage Collection in Ruby Extensions – p.3/22

Ruby Extensions

Reasons for using extensions:

� Execution speed

� Large existing code base

� Mandatory implementation language

Considerations:

Security risk

Stability risk

Resource management

Garbage Collection in Ruby Extensions – p.4/22

Ruby Extensions

Reasons for using extensions:

� Execution speed

� Large existing code base

� Mandatory implementation language

Considerations:

� Security risk

� Stability risk

� Resource management

Garbage Collection in Ruby Extensions – p.4/22

Garbage Collection

� frees the programmer from tracking object
lifetimes

� inaccessible objects get deleted

x = Object.new
possibly do something with x
x = nil
the new object is inaccessible here

Garbage Collection in Ruby Extensions – p.5/22

Object accessibility
"root set": Objects referenced by

� global variables

� local variables currently on the stack

"reachable set":

Root set

All objects referenced another obj. in this set

Reference paths: An object references

its class

its data members (via instance variables)

specific references

Garbage Collection in Ruby Extensions – p.6/22

Object accessibility
"root set": Objects referenced by

� global variables

� local variables currently on the stack

"reachable set":

� Root set

� All objects referenced another obj. in this set

Reference paths: An object references

its class

its data members (via instance variables)

specific references

Garbage Collection in Ruby Extensions – p.6/22

Object accessibility
"root set": Objects referenced by

� global variables

� local variables currently on the stack

"reachable set":

� Root set

� All objects referenced another obj. in this set

Reference paths: An object references

� its class

� its data members (via instance variables)

� specific references Garbage Collection in Ruby Extensions – p.6/22

Object accessibility

Garbage Collection in Ruby Extensions – p.7/22

Object accessibility

root set

Garbage Collection in Ruby Extensions – p.8/22

Object accessibility

root set

Garbage Collection in Ruby Extensions – p.9/22

Object accessibility

root set

Garbage Collection in Ruby Extensions – p.10/22

Objects and references implementation

Regular object:

� struct

�

long flags;...
�

Reference:

A pointer to a regular object, stored in a
VALUE

Direct Object:

special VALUE

Garbage Collection in Ruby Extensions – p.11/22

Objects and references implementation

Regular object:

� struct

�

long flags;...
�

Reference:

� A pointer to a regular object, stored in a
VALUE

Direct Object:

special VALUE

Garbage Collection in Ruby Extensions – p.11/22

Objects and references implementation

Regular object:

� struct

�

long flags;...
�

Reference:

� A pointer to a regular object, stored in a
VALUE

Direct Object:

� special VALUE

Garbage Collection in Ruby Extensions – p.11/22

Mark and Sweep Garbage Collector

Mark phase

� Ruby iterates over all references defining the
root set and calls rb gc mark on these
references

� Objects receive marks and recursively call
rb gc mark on all object references they
know of

Sweep phase

Ruby iterates over all objects

Objects that have not received a mark are
deleted

Garbage Collection in Ruby Extensions – p.12/22

Mark and Sweep Garbage Collector

Mark phase

� Ruby iterates over all references defining the
root set and calls rb gc mark on these
references

� Objects receive marks and recursively call
rb gc mark on all object references they
know of

Sweep phase

� Ruby iterates over all objects

� Objects that have not received a mark are
deleted

Garbage Collection in Ruby Extensions – p.12/22

Strategies for GC in Extensions

1. Do nothing

2. At least release the memory

3. Consider object relations

4. Revert to explicit resource management

Garbage Collection in Ruby Extensions – p.13/22

Strategies for GC in Extensions

1. Do nothing

2. At least release the memory

3. Consider object relations

4. Revert to explicit resource management

C struct

Garbage Collection in Ruby Extensions – p.13/22

Strategies for GC in Extensions

1. Do nothing

2. At least release the memory

3. Consider object relations

4. Revert to explicit resource management

Ruby data object

data

mark

free

C struct

Garbage Collection in Ruby Extensions – p.13/22

GC-strategy 1: Do nothing

� Register NULL as the object’s "mark" and
"free" functions

The right strategy if you don’t care for
memory leaks

Applicable for small programs

Not applicable for libraries

Garbage Collection in Ruby Extensions – p.14/22

GC-strategy 1: Do nothing

� Register NULL as the object’s "mark" and
"free" functions

� The right strategy if you don’t care for
memory leaks

Applicable for small programs

Not applicable for libraries

Garbage Collection in Ruby Extensions – p.14/22

GC-strategy 1: Do nothing

� Register NULL as the object’s "mark" and
"free" functions

� The right strategy if you don’t care for
memory leaks

� Applicable for small programs

Not applicable for libraries

Garbage Collection in Ruby Extensions – p.14/22

GC-strategy 1: Do nothing

� Register NULL as the object’s "mark" and
"free" functions

� The right strategy if you don’t care for
memory leaks

� Applicable for small programs

� Not applicable for libraries

Garbage Collection in Ruby Extensions – p.14/22

GC-strategy 2: Release memory

� Register NULL as the object’s "mark" function
and free as the object’s "free" function

Garbage Collection in Ruby Extensions – p.15/22

GC-strategy 2: Release memory

� Register NULL as the object’s "mark" function
and free as the object’s "free" function

� But watch out for

� multiple ruby objects wrapping the same C
object

� inter object relations

Garbage Collection in Ruby Extensions – p.15/22

GC-strategy 2: Release memory

multiple objects wrapping the same C object

� use reference counting for C object if
available

or use some "user data" field in the C struct to
point back to ruby object if available

or have a hash-table that maps C pointers to
ruby objects

Garbage Collection in Ruby Extensions – p.16/22

GC-strategy 2: Release memory

multiple objects wrapping the same C object

� use reference counting for C object if
available

� or use some "user data" field in the C struct to
point back to ruby object if available

or have a hash-table that maps C pointers to
ruby objects

Garbage Collection in Ruby Extensions – p.16/22

GC-strategy 2: Release memory

multiple objects wrapping the same C object

� use reference counting for C object if
available

� or use some "user data" field in the C struct to
point back to ruby object if available

� or have a hash-table that maps C pointers to
ruby objects

Garbage Collection in Ruby Extensions – p.16/22

GC-strategy 3: Object relations

x = Ext Class 1.new(...)
x.learn about(Ext Class 2.new(...))

Garbage Collection in Ruby Extensions – p.17/22

GC-strategy 3: Object relations

x = Ext Class 1.new(...)
x.learn about(Ext Class 2.new(...))

� use reference counting if available

� no need to provide a mark function then

Garbage Collection in Ruby Extensions – p.17/22

GC-strategy 3: Object relations

x = Ext Class 1.new(...)
x.learn about(Ext Class 2.new(...))

� otherwise unique mapping from C pointers to
ruby wrapper objects is necessary

� class-specific mark functions have to be
provided

Garbage Collection in Ruby Extensions – p.17/22

GC-strategy 4: Explicit management

Sometimes garbage collection alone cannot
determine the C object’s lifetime.

Logo

Garbage Collection in Ruby Extensions – p.18/22

GC-strategy 4: Explicit management

Sometimes garbage collection alone cannot
determine the C object’s lifetime.

Logo

Garbage Collection in Ruby Extensions – p.18/22

Using SWIG

1. Do nothing

2. Use %newobject

3. Use %typemaps, %markfunc and
%freefunc

� Tip: Call the same
ruby wrapper for klass(klass,
bool create) from within the
%typemaps and the %markfunctions

Garbage Collection in Ruby Extensions – p.19/22

Common Misconceptions

� Not trusting the Garbage Collector, desire to
register objects as globals.

Misunderstandings of the purpose of the
mark and sweep phases and functions.

Garbage Collection in Ruby Extensions – p.20/22

Common Misconceptions

� Not trusting the Garbage Collector, desire to
register objects as globals.

� Misunderstandings of the purpose of the
mark and sweep phases and functions.

Garbage Collection in Ruby Extensions – p.20/22

Summary

� Quick and dirty programs do not require any
GC support from an extension

� Correct GC support in extensions requires
either a reference counting framework inside
the C library or a reverse mapping of C
pointers to ruby objects

Garbage Collection in Ruby Extensions – p.21/22

Thank you

Garbage Collection in Ruby Extensions – p.22/22

	Content
	Ruby Extensions
	Ruby Extensions
	Garbage Collection
	Object accessibility
	Object accessibility
	Object accessibility
	Object accessibility
	Object accessibility
	Objects and references implementation
	Mark and Sweep Garbage Collector
	Strategies for GC in Extensions
	GC-strategy 1: Do nothing
	GC-strategy 2: Release memory
	GC-strategy 2: Release memory
	GC-strategy 3: Object relations
	GC-strategy 4: Explicit management
	Using SWIG
	Common Misconceptions
	Summary
	Thank you

