PJX

Java Class Library for PDF Software Development

Nassib Nassar Etymon Systems, Inc.

This document describes PJX Version 1.4.0. Updates and information are available from
the Etymon web site at http://www.etymon. com/.

Copyright (© 1998-2006 by Etymon Systems, Inc.

ETYMON is a registered trademark and service mark of Etymon Systems, Inc. All other
trademarks are the property of their respective owners.

Etymon Systems, Inc. disclaims all warranties, either express or implied, including but not
limited to implied warranties of merchantability, fitness for a particular purpose, and non-
infringement of third-party rights, and all other remedies for breach of the above warranty.
Etymon Systems, Inc. assumes no liability with respect to the accuracy, adequacy, quality,
and reliability of this publication.

The PDF data structures, operators, and specification are
Copyright (© 1985-2006 by Adobe Systems Incorporated.

Table of Contents

1 Tutorial,
1.1 Inmtroduction
1.2 Reading adocument..............
1.3 Modifying a document
1.4 Writing adocument
1.5 Appending documents

1.6 Examining objects recursively,

Tutorial 1

1 Tutorial

THIS document serves as an introduction to PJX, a Java class library for PDF software
development. It is designed as a supplement to the API (javadoc) reference documen-
tation for PJX. This document is intended to be used in conjunction with, and assumes
some familiarity with, the PDF specification published by Adobe Systems Incorporated
(PDF Reference, 3rd ed., ISBN 0-201-75839-3). It also assumes familiarity with the Java
programming language. This is a preliminary document and a work in progress.

The purpose of PJX is to enable you to be a PDF programmer. It does not hide the
details of PDF unless you want it to; but it tries to make them much easier and more
pleasant to work with. It provides a set of fundamental tools that can be used to develop
almost any PDF application. On top of these tools are layered classes that encapsulate
common PDF functions. This provides access to PDF documents at multiple levels, from
basic encoding/decoding up to the application layer. You can use PJX as a foundation for
building PDF capabilities into existing Java software or for creating new PDF applications.

1.1 Introduction

This chapter gives an overview of how the PJX classes fit together in order to perform
simple operations on PDF documents.

The core of PJX is the PdfManager class in com.etymon.pjx which coordinates a set of
modifications to a PDF document. PdfManager operates on PDF documents via two other
classes, PdfReader and PdfWriter. Additional utility classes in com.etymon.pjx.util op-
erate on PDF documents via PdfManager; they serve to consolidate common PDF functions
and access to related sets of PDF objects.

1.2 Reading a document

The PdfReader class provides low-level access to an existing PDF document. Its con-
structor accepts a class that implements the PdfInput interface. Two such classes are
provided, PdfInputBuffer and PdfInputFile. Using PdfInputBuffer causes the PDF
document to reside in a buffer in memory for the sake of efficiency; the document can orig-
inate in the file system or it can be already in memory. PdfInputFile accesses a PDF
document in the file system and only reads portions of it into memory if they are needed.

Following are some examples of constructing a PdfReader instance:

PdfReader r = new PdfReader (new PdfInputBuffer(new File("test.pdf")));

ByteBuffer bb = ... ;
PdfReader r = new PdfReader (new PdfInputBuffer(bb, "Test document"));

PdfReader r = new PdfReader(new PdfInputFile(new File("test.pdf")));

Once the PdfReader instance has been constructed, we can associate a PdfManager
instance with it:

2 Tutorial

PdfManager m = new PdfManager(r);

PdfManager keeps track of changes made to the document and allows the resultant document
to be written to a PdfWriter.

It is not necessary to retain a reference to the PdfReader instance, although it is some-
times useful to do so. For example, if an existing document needs to be reused, such as
in order to be modified in different ways by multiple instances of PdfManager, only one
instance of PdfReader should be created for that document.

1.3 Modifying a document

PdfManager provides fundamental methods for accessing and modifying the set of PDF
objects in a document. One possible starting point for examining a PDF document is to
use PdfManager to access the document’s trailer dictionary. The trailer dictionary contains
pointers to useful objects in the document. We can get the trailer dictionary as follows:

PdfDictionary td = m.getTrailerDictionary();

PJX represents a PDF dictionary using a Java Map instance, which can be retrieved via the
PdfDictionary method, getMap():

Map tdMap = td.getMap();

The PDF specification tells us that the trailer dictionary contains several keys including
Info, which is mapped to an indirect reference to the document information dictionary. We
can retrieve the reference from tdMap:

PdfReference infoRef = (PdfReference)tdMap.get(new PdfName("Info"));
PdfManager provides a method to resolve an indirect reference, getObjectIndirect (Pdf0bject):
PdfDictionary info = (PdfDictionary)m.getObjectIndirect(infoRef);

In general it is a good idea to call getObjectIndirect (Pdf0bject) on any retrieved PDF
object, since virtually any PDF object can be referenced indirectly, and this method does
not mind being called with direct objects, which it simply returns unchanged.

An alternative way to resolve an indirect reference is using the PdfManager.getObject (int)
method:

PdfDictionary info = (PdfDictionary)m.getObject(infoRef.get0ObjectNumber());

However, getObjectIndirect(PdfObject) is normally more effective because it follows
multiple levels of indirection and can be called with a generic PdfObject instance.

We now have the document information dictionary which includes document metadata.
(Note: PDF starting with version 1.4 has two different ways of storing document metadata,
and only one is demonstrated in this example.) We could examine the dictionary’s elements
by accessing info.getMap (). However, we would like to go a step further and modify one of
the elements, in this case, the Title element. This requires making a copy of the dictionary
before modifying the element, because PdfDictionary.getMap() returns an unmodifiable
Map instance:

Map newInfo = new HashMap(info.getMap());
newInfo.put(new PdfName("Title"), new PdfString("The New Title"));

Tutorial 3

The old Info dictionary can now be replaced with the new one, using the
PdfManager.setObject (PdfObject, int) method:

m.setObject (new PdfDictionary(newInfo), infoRef.getObjectNumber());

PdfManager does not need to know the object’s generation number because it will auto-
matically replace the latest generation of the object. As a result of this last example, the
PdfManager instance now represents a document that reflects the modified Info dictionary.

1.4 Writing a document

The document being modified, we now want to write the resultant document to a file.
PdfWriter, like PdfReader, will interface to either memory or the file system. It is con-
structed with a File or OutputStream instance, such as in the following examples:

PdfWriter w = new PdfWriter (new File("out.pdf"));

QutputStream os = ... ;
PdfWriter w = new PdfWriter(os);

Once we have a new PdfWriter instance, we can write the modified document using the
PdfManager.writeDocument (PdfWriter) method:

m.writeDocument (w) ;
Finally, the PdfWriter.close() method should be called:
w.close();

This is all that is needed to read a PDF document, make a simple modification to it,
and write the result to a file.

1.5 Appending documents

It is often useful to combine multiple PDF documents during the course of working
with them. The utility class, PdfAppender, performs this function on a list of PdfManager
instances:

List m = new ArrayList();

m.add(new PdfManager (new PdfReader(new PdfInputFile(new File("testl.pdf")))));
m.add(new PdfManager (new PdfReader (new PdfInputFile(new File("test2.pdf")))));
m.add(new PdfManager (new PdfReader (new PdfInputFile(new File("test3.pdf")))));
PdfWriter w = new PdfWriter(new File("out.pdf"));

PdfAppender a = new PdfAppender(m, w);

a.append() ;

w.close();

The PdfManager instances can be modified normally before appending, but sometimes
it is desirable to modify the resultant document after appending without having to go
through the file system. This can be done by making PdfAppender write to a buffer and
then constructing a new instance of PdfManager based on that buffer:

4 Tutorial

List m = ... ;

ByteArrayOutputStream os = new ByteArrayOutputStream();

PdfWriter w = new PdfWriter(os);

PdfAppender a = new PdfAppender(m, w);

a.append();

w.close();

os.close();

ByteBuffer bb = ByteBuffer.wrap(os.toByteArray());

PdfReader r = new PdfReader (new PdfInputBuffer(bb, "Appended Document"));
PdfManager big = new PdfManager(r);

Note that once the appending process has completed and the PdfWriter and
ByteArrayOutputStream instances have been closed, the objects referenced by m, a,
and w can be discarded, because the resultant document is now completely contained
in the stream referenced by os. However, they do not have to be discarded, and the
original PdfManager instances could be kept active to be reused or further modified.
The PdfAppender and PdfWriter instances cannot be reused and therefore should be
discarded.

1.6 Examining objects recursively

PDF objects can be nested arbitrarily within Pdf Array and PdfDictionary instances,
and it is sometimes necessary to examine their contents recursively. One example of this
would be to update all PdfReference instances that reference a specific object so that they
will instead reference some other (probably new) object.

The PdfObject.filter (PdfObjectFilter) method is provided for this purpose and is
available for all subclasses of PdfObject. This method accepts a class that implements
the Pdf0ObjectFilter interface. It makes multiple calls to the PdfObjectFilter methods,
preFilter (PdfObject) and postFilter(PdfObject), passing to them each object as a
parameter, one at a time. The preFilter() and postFilter () methods can examine the
object and optionally modify it by returning a replacement object (or null to discard it).
They are called in the following order for each object:

1. The preFilter() method is called with the object as a parameter.

2. 1If the object is a container (i.e. PAfArray or PdfDictionary), the elements it contains
are examined recursively following steps 1 to 3. Note that at this point, the object is
whatever was returned by preFilter () in step 1.

3. The postFilter () method is called with the object as a parameter.

We can therefore easily implement the example above to update all instances of a specific
indirect reference:

public class ModifyReferences implements PdfObjectFilter {

public ModifyReferences() {
}

Tutorial 5

public PdfObject modify(PdfObject obj, PdfReference find, PdfReference replace)
throws PdfFormatException {
_find = find;
_replace = replace;
return obj.filter(this);

public PdfObject preFilter(PdfObject obj) throws PdfFormatException {
if (obj.equals(_find)) {
return _replace;
} else {
return obj;

}

public PdfObject postFilter (PdfObject obj) throws PdfFormatException {
return obj;

¥

PdfReference _find;
PdfReference _replace;

The PdfRenumberOffset utility class uses this approach to implement a function for
renumbering indirect references.

Tutorial

	Tutorial
	Introduction
	Reading a document
	Modifying a document
	Writing a document
	Appending documents
	Examining objects recursively

