¢ HIBERNATE

Hibernate Reference Documentation

Version: 3.2 cr2

Table of Contents

1=, =0 2SRRI viii
1. Introduction tO HIDEINALEeeeiiieeeee e e e e e eree e e e e e e e 1
I < o PP PP P 1

1.2. Part 1 - Thefirst Hibernate APPlICaiONcoooiiiiiiiiiiieeiiee e 1
I T I =B T S o = LSRR RP 1

1.2.2. The Mapping fIlE ..ot 3

1.2.3. Hibernate configurationccoooiiiiiiiiiiiicc et e e 4

1.2.4. BUIAING WITN AN ..ottt e e e 6

1.2.5. Startup anNd QEIPEFSuneii e nnnnnnnana 6

1.2.6. Loading and StOriNg ODJECLSeiiveeii i e e 8

1.3. Part 2 - Mapping @SSOCIGIONScccuvrreeriirieeeaitreeeeasteeeesasee e e e s ssne e e s sasreeeesasneeeeaanneeeeeennes 10
1.3.1. Mapping the PErSON ClaSSuuueiiieiiiiiiiiiiiiee ettt s e e e e e st raeeea s 10

1.3.2. A unidirectional Set-based aSSOCIALiONccvieeeiiiiciiiiiiier e e e e errreeeee s 11

1.3.3. WOrking the @SSOCISLION ... eannnnnnnnnnnnnnnnnns 12

1.3.4. COllECHioN Of VAIUEScceiiiiiieiei ettt e e e e e e s e nanaeeaeas 13

1.3.5. Bi-directional 8SSOCIatiONScceiieeeiiiiiiiiiereee e e et e e e e e e e s eeeeee e e e e e e s e aeneeaeeeeeens 14

1.3.6. Working bi-directional liNKSccoiiiiiiiiiiiic e 15

1.4. Part 3 - The EventManager Web appliCationcocueieeiiiiiieeiiiiiee e 16
141 Writing the basiC SErVIELovveeiiie e 16

1.4.2. Processing and reNTENTNGcooeiiueieeeiiieiee ettt e e e e 17

1.4.3. Deploying and tESHINGccceeiiiiiiiiiiiiii i nnn s nnnannnnnnnnnnnnnnnnns 18

L5, SUMIMEIY ittt ettt e e e e e e bbb ettt e e e e s e ab b e e e e e e e e e e e nbbbbeeeeeeeessannnnnes 19

P N o T (o U =R 20
2.1, OVEIVIBW ittt ettt e et e e e b bt e e o e skttt e e e st e e e e e a b et e e e sttt et e e e nbbe e e e e nnbreeeeans 20

2.2 INSLANCE SALES ... 22

RGN Y D QL 0\ = (] o [USSP 22

2.8, JCA SUPPOIT ettt ettt e e et e e e e e s e s e e et e e e e s s e e e e e e e e e e e e b r e e e aeeeaan 23

2.5, CONEXLUBl SESSIONSeeeeieieeeii ittt et e e e e e e ettt e e e e e e e e ettt e e eeeesaaannteaeeeeaeeeeaaanssnneeeeaaeeaaans 23

R Of0 g1 1o [N = 14T o] o OO PP PPP T PPPRPROPPPRPN 25
3.1, ProgrammatiC CONFIQUIELIONooieiiiiiieeee et e e e e e et e e e e e e e s e eneeeeeens 25

3.2. Obtaining @ SESSIONFACIONYcciiiiiiiiiie e e e e e e e e e s e e e e e e e s et e e e e e e e s s ennrraaeeeaeas 25

IO C TN] =T O oo = o) 1 26

3.4. Optional configuration PrOPEITIESueeeiiieeiiiiiiiiieeee e e e e e e s e e rreeeeaeas 27
S O I B 1 - 1= ot £ SR OPPRRPRTRRI 33

I N7 @ 1 | (= g o1 gl [o o 34

3.4.3. BINAY SITEAIMSuviiiiiiiie e ittt e e e s s st e e e e e s e et e e e e e e e s s s e e e e e aeeesanntrraeeeeans 34

3.4.4. Second-level and qUENY CACNEocuiiiiiiiiiee et 34

3.4.5. Query Language SUDSHITULIONueviiiieiiiiiiiiiier e e e e e e e 34

3.4.6. HIDErNEALE SEAiSHICSuvvveiiiiiee it e e e e e e e e e e e e e nneees 34

G 3T T o] o To [UR R 34

3.6. Implementing @ NamMiNGSITELEgYvveeeeiiureieeiiiiiee e st e s e e e e e snreeeeans 35

I Y T lo g Ko 011 o] o 1 1 1 = 36

3.8. J2EE Application Server iNtegrationcccuveeieeeeeiiiiiiiieeee e e e e s essirree e e e e e e s ssnraaeeeaaaeeeans 36
3.8.1. Transaction strategy CONFIQUIALIONcocurreiiriiiiee et 37

3.8.2. INDI-bound SESSIONFACLONYc.evviiiiieeeeeiciiiiiee e e e e e e e e e e e e e eannes 38

3.8.3. Current Session context management With JTA ... 38

3.8.4. IMX AEPIOYMENLeeeiiiiiiiee e e e e s e e e e e e s et e e e e e e e e e e aneeees 39
S TS = L O TSSO SERRR 41

Hibernate 3.2 cr2

HIBERNATE - Relational Persistence for |diomatic Java

4.1. A SMPIE POJO EXAMPIE ...ttt e e e e 41
4.1.1. Implement ano-argument CONSITUCTONccuvvvieieeeeee it e e e e e e e e sirrrre e e e e e e e e e annees 42
4.1.2. Provide an identifier property (Optional)cocoueereiiiiiieeiiiiiee e 42
4.1.3. Prefer non-final ¢classes (OPtioNal)oovvveviviiiiiiiiceeeeeeeeeeeeeeeeeeeeeee e 42
4.1.4. Declare accessors and mutators for persistent fields (optional)cccoovevvveeiiiiineennne 43

4.2. Implementing INNEMTANCEooi i e e e eeeens 43

4.3. Implementing equals() and hashCoE()cooocuiiiiiiiiee e 43

4.4. DYNAMIC MOUEIS ...ttt et e e et e e s e e e s e e e e e e annneeeeans 44

T WU o] 1= £ SRR 46

5. BASIC O/R M@PPING -.eeteeiiiiiieeiiiiie ettt e e sttt e et e e ettt e e e et e e e e e e s bb et e e e sbe e e e e anb et e e e annb e e e e aanbereeeans 48

5.1. Mapping deClarationcoooeiiiiii i, 48
.. DOCLYPE .o 49
5.1.2. NiDErNEIE-MEBPIPING -..ereeeieieeeiiiiieiie e e e et e e e e e e e e ettt e e e aeeesaaannteeeeeeaeeesaanenneeeeeens 49
ST R o PP PRP PR 50
ST 0 T PRSP 52

.14 L GENEIALOLN ... 53

5.1.4.2. HI/IO @QOMtNM ...ooiiiiiiiie it 54

51.4.3. UUID algorithm ... 54

5.1.4.4. Identity columns and SEQUENCESccoiiiiuriiiieeeeeeeiesiirier e e e e e s s ssnirrnneeeaee e e 54

5.1.4.5. ASSIgNE IAENtITIENSooeiiiiiie e 55

5.1.4.6. Primary keys assigned by triggerscoccvieieiie e 55
5.1.5. COMPOSITE-TT ...neeieieeeitie ettt et e e et e e e e e e e e e e e e 55
5.1.6. QiSCrIMINGLOLveeieeiiieiee e ettt e ettt e et e e e st e e e st e e e s abe e e e e snbeeeeeannneeeeannneeeeenees 56
5.1.7. VErSioN (OPLIONAL) ...oeeiiiieiieiiiiiie ettt e et s e e e e 57
5.1.8. timestamp (OptionNal)coooeeiiiii i, 58
B, PIO Y e 58
5.1.10. MANY-TO-0NE ...t e e e e s s e e e e e e e s s s e e e e e e s s s nrnrneeeeeas 60
S.L.1L. ONELO-0NE ... 61
oINSt R o = (1 = T o PRSP 63
5.1.13. component, dynamiC-COMPONENLcccuiiereeeeeeeiiiiiireeeeee e e e s eenrrrrr e e e e e e s e sarrreeeeeeas 63
5.1 1A, PIOPEITIES ...eeeeiiiteie e ettt ettt ettt e et e et e e sttt e e e e b b et e e e s b e e e e e e e e e e e b e e e nnes 64
B5.1.15. SUBCIBSS ..coiiiieiiiie et e e e e e e eeaens 65
5.1.16. JOINEA-SUDCIASSvvviiiiiie ittt e e e e e e s e et raeeeaeas 65
5.1.27. UNION-SUDCIBSSevveiiiiiie e ettt s sttt e e e et e e e e e e e s st ae e e e e e e s s ennenaeeeeeens 66
ST 0 = o T o PRSP 67
ST R T T PSPPSR 68
5.1.20. column and formula @ @mMeNntScooiiiiiiiiiiiee e 68
ST 2 B T 000 AP PP PPPPR 69
ST 2 R SPRR 69

5.2, HIDEINGALE TYPES ...ttt ettt e e e e e e e e e e e e e s e st e e e e eaeeeeaesntbbaaeeaaaeeaaans 70
5.2, ENGTIES @NA VBIUESeeiiiieeeiiiiiiiie et e ettt e e et e e e e e e s st an e e e e e e e s e nnenaaeeeeeas 70
5.2.2. BASIC VAIUBLYPESvvveiiiiie e e ittt ettt e et e e e e e s st e e e e e e e s s e ntbraeeeaeas 71
5.2.3. CUSIOM VBIUE TYPES ...ttt ettt e e e e 72

5.3. Mappingaclassmorethan Once ..., 73

5.4. SQL QUOLEA THENTITIEIS ...ttt e e e e e e e e an 73

5.5. Metadata lterNELIVESooiiiiieiieiii et e e ettt e e e e e e s e e e e e e e e e e entnreeeeeaaeeaan 74
5.5.1. USING XDOCIEE MAIKUP ..oeeeeiiiiiiiee ettt e e e s e e e e e s e e nnnnraeeeaeas 74
5.5.2. USING IDK 5.0 ANNOLELIONSeeiiiiiiieiiiiiiee ettt e e 75

5.6. GENErated PrOPEITIES ...vvveiiii ittt e e e e e e s e e e e e e e s e et b ba e e e eaaeeean 76

5.7. Auxiliary Database ODJECEScoiiiiiiiiieiiiei et e e 76

6. ColleCtioN MaAPPING ..cccoeeeeeeeee e 78

6.1, PerSiStent COHECIONSveeiiieeeii it e e s e e e e e e e e et aaaeeaaaeeeans 78

Hibernate 3.2 cr2

HIBERNATE - Relational Persistence for |diomatic Java

6.2. COlIECLION MEBPIPINGS ..ttt ettt e e e e e e st e e e e e asa e e e e e bne e e e e anbeeeeean 78
6.2.1. ColleCtion FOr@IgN KEYSccoiiiiieieieee et e e e et e e as 80
6.2.2. COllECION ElOMENES ...eiiiiie e i r e e e e s e e e e e e e e e e nnesraeeeeens 80
6.2.3. INdeXed COECLIONScoiiiiiiiiiiiei e e e e e eeeens 80
6.2.4. Collections of values and many-to-many assoCIalionsccoruveeeeinueeeesnieeeeennnnns 81
6.2.5. ONE-t0-MaNY 8SSOCIALIONSeeveiiieieeei e ittt e e e e e e ettt ee e e e e e s e snnteeeeeeaeeeseaneneeeeeeens 83

6.3. Advanced Coll€CtioN MEPPINGSvvrriiiieee ittt e e e s e eer e e e e e e s s st e e eaeeesssnatrraaeraaaeeaaans 83
6.3.1. SOrted COIECLIONSeeiiiiieeeiieeiee e e e s e e e e e e e reeeeeeas 83
6.3.2. Bidirectional aSSOCIBLIONSccieiiiiiieiiiiiie e iiiiee e e e et e e s e e e e e e nees 84
6.3.3. Bidirectional associationswith indexed coOllectionsccccccovvciiiiieieee e 85
6.3.4. Ternary aSSOCIALIONSccceeeieeie e 86
6.3.5. USING @N <IADAG>ccovviiie ittt e e a e 87

6.4. COllECLION EXAMPIESeeeeiiie ettt e e e e e e et e e e e e e e e st teeeeaeeeeaannsnnneeeaaaeeaans 87

7. ASSOCIALION MAPPINGS ©vveeiieieiiieiiiitee s s st bt a e e e eeeeessaasntaaaeeeeaeessannsrrnneeeeas 90

80 TR 1 1o L o1 o o SRS 90

7.2. UNidirectional @SSOCIBLIONSceieiiieiieeiiiiieeeeiieee e s st ee e s sieee e e s nnbee e e s sseeeeessnaeeeeeanneeeeeans 90
7.2.1. MANY L0 ONE .ttt e e e e e e st e et e e e e e s s r e e e e e e e e b e eeeeas 90
T.2.2. 0NETO ONE ..o 90
T.2.3. ONETO MANY oooiiiiie i 91

7.3. Unidirectional associations With JoiNtablesoooiiiiiiiiiiiiiee e 92
80 B o 0T o 1= 0 | YOS 92
7.3. 2. MANY L0 ONE .ttt r e e e e e et r et e e e e s e s n e e e e e e e e e e nrnrnreeeeas 92
T.3.3.0NETO ONE ..o 93
7.3.4. MANY TO MEBNY ..ttt e e e e e e e e e s bbb r e et e e e s s s s nnrr e e e eaeeeesannrnreeeeeeas 93

7.4. Bidirectional @SSOCIBLIONScuuuieiiiiiee et e e et e e e e e e e s st e e e e e e e e e sentneeeeeaaaeeaans 93
7.4.1.0neto many / MaNY tO ONEuuveiiiieeeiiiciiiiee e e e e e e eer e e e e e e s s s st r e e e e e s s e natrraeeeaeas 94
TA2. 0NETO ONE ... 94

7.5. Bidirectional associationswith joiNtablescooooiiiiiiiiiiiie e 95
7.5.1. oneto Many / MaNY 10 ONEccoiiurrieeiiiiiee et e e e e e e st e e s s e e e e r e e e nees 95
T5.2.0NETO 0ONE ..o 96
7.5.3. MANY TO MEBNY ..ot e e e e e e e et e et e e e e s s e snnb b e e e e e e e e s aanebbeeeeeeas 97

7.6. More complex assoCiation MapPPiNgScccevveveeeieiie e 97

SR @dolaqToTo = 0 A1V F=To] o] o o RN PRSP 99

8.1. DEPENTENE ODJECESeeiiiiieiee ittt ettt ettt e e e et e e e s e e e s e e e e e e e ea 99

8.2. Collections of dependent ODJECEScccieiiiiiieeec e 100

8.3. CompOoNENtS @S MaP INTICESoiiiiiiiie et e et e e 101

8.4. Components as composite identifiersccccco oo 101

8.5. DYNAMIC COMPONENTSvveieiiiiieeiaiiteee e ettt e e e sttt e e e e e e st e e e s sabb e e e e aasba e e e e annbeeeesanbaeeeeans 103

S N oL L= =T g Tt Y IF=T o] o 1 o SR 104

0.1, ThE THIEE SLIALEUIES ...vveeeiie e e e ittt e e ettt e e e e e e e e e e e s e et e e e e e e e e s s antnraaeeaaaeeaaaas 104
9.1.1. Table per class hierarChy ..o 104
0.1.2. TADIE PEF SUDCISS ...vvvveiiieeeii ittt e e e e s e et e e e e e e e e e e anneees 105
9.1.3. Table per subclass, using 8 diSCIHIMINGLOTveieiiiiieiee e 105
9.1.4. Mixing table per class hierarchy with table per subclasscccccl. 106
9.1.5. TAhIE PEr CONCIELE ClESSoiuiveieeeiiieie ettt e st e e 106
9.1.6. Table per concrete class, using implicit polymorphiSmcccccooviiiiiieniee e, 107
9.1.7. Mixing implicit polymorphism with other inheritance mappingscccccveeeevevenneee. 108

S I 1 0 1] = (L PP SUPPPRSRR 108

10. WOrKing With ODJECESccoiiiiiiiiiice et e e e e e s e st e e e e e e e e s s ennrrraaeeaeas 110

10.1. HiDErNate ODJECE STALEScoiuvreieeiiiiiiee ettt e s e e e e e e 110

10.2. MaKing ODjECtS PEISISLENTuuueiiii s nnnsnnnsnnnnnnnnnnns 110

10.3. LOBAING @M ODJECT ...cciueeiiieiiiiie ettt et e st e e e e b e e e e e nnbneeeean 111

Hibernate 3.2 cr2 iv

HIBERNATE - Relational Persistence for |diomatic Java

L0 @ N 1= o oo TP PP PP P PP PPPRPPPPPPRPN 112
10.4.1. EXECULING QUENTES .eiiieeeiiieiiiiee e e e e e e ettt e e e e e s et te e e e e e e s e e st e e e e e e e e e s s ennntrreaeeeeas 112
10.4.1.1. ILErAiNG FESUITSveeeeiiiiiee e ettt e e 113

10.4.1.2. Queriesthat return tUPIES ... annnnees 113

10.4.1.3. SCAlAr FESUILS ...veveiieee ittt e e e e e e e e e e e e e e e e e nnenees 113

O I T ol 0= = 0 (= SRS 113

10.4.1.5. PaQINGONvviiiiiiiiee ettt e et e e s e e e e e e e e 114

10.4.1.6. SCrollabDl@ iterationc..ueeeiiieeeiiiciiei e e e 114

10.4.1.7. Externalizing Named QUETTESccuviieiiee et 115

10.4.2. FIItEriNg COECTIONSceiiuiiiiieiiiiie ettt 115
O I O] = = W0 1= 1 - 116
10.4.4. QUENESTN NALIVE SQL ...t e et a e e e e e r e e e e e s e e raeeeeeas 116

10.5. Modifying PersiStent ODJECEScouiiiiiiiiiieie et e e e e e e e e e e e e e e eneees 116
10.6. Modifying detaChed ObJECLSccceiiiiiiiiiieiiee e e e e neees 117
O IAANG (o 0> (1ol = (=0 L= = o1 o o RSP 117
10.8. Deleting PersiStent ObJECLSciiieiiiiiiiiiiei e e e e e e e e e e e e st re e e e e e e e e e nanerees 118
10.9. Replicating object between two different datastorescccceeviieveeiiiiiee e 119
10.10. FIUSNING thE SESSIONuuuuiiiiii e nna s annsasnssnnsnsnsnsnsnsnnnnnnnnnnns 119
10.11. TranSitiVE PEISISLENCEccuvvrrieeieeeeiiiittiie e e e e e e s s sttt e e e e e e e e s s esab e eraaeeesssnsntaaereeaeessannnnnees 120
10.12. USING MELAOBLA ...ttt e e e e s s e e e s ann e e e e s anrneeeens 121
11. TransactioNS AN CONCUITENCY ..ooeiieiiiiciiieieeeee e e e s et e et e e e e s e et e e e e e e e s s stnbaaereaaeeesasntbreeeeaeas 123
11.1. Session and tranSACtION SCOPESvvveeeiiurrreeeairreeesatereeesainreeeeasnbeeeesasereeesanrreeesanrneeeeans 123
0 0 O T) LY 4 PRSP 123
11.1.2. LONQ CONVEISALIONSeeeeiuveieeeiiireeeestteeeessnteeeeeassseeessssneeeesanbaeeesassneeessnnneeeeennnes 124
11.1.3. Considering ObJECt IdENTITYcccciiiiiiiiiiii e nnanannnes 125

11. 1.4, COMIMON ISSUES ...euvveieesiuiieeeeasttteeesasbeeeesssbeeeeeaabeeeeesssbe e e e s anbneeesansbneeeaannbeeeeennes 126
11.2. Database transaction demarCalionceeieeeiiiiiiiiiieee e e e e e e e e e neees 126
11.2.1. Non-managed ENVIFONMENEceeiiiiiiiiiieiee e e s ettt e e e e e e e s s sarrrre e e e e e s e e snrrreaeeeeas 127
2 U £ g To N 1 I PRSP 128
11.2.3. EXCEPtioN handlingcoooiiiiiiiieice et 129
11.2.4. TranSaCtioN tIMEOULc..uvviiireeeeeieiiiitiee e e e e s e et e e e e e e s et e e e e e e s e e nnrrraeeeaeas 129

11.3. OptimistiC CONCUITENCY CONEIOuueiiii e nnaannnnnnnns 130
11.3.1. Application version Checkingcccciiiiiii e 130
11.3.2. Extended session and automatiCc VErSIONINGcvvveeerirreeenniieeessiieeeessineee e 131
11.3.3. Detached objects and automatic VErSIONINGccccvveeeeeeeeiiiiciiiieeeee e 131
11.3.4. Customizing autOMatiC VErSIONINGvvveeriirrieeiiiieeeesiieee et ee s s e e e snee e e eees 132

11.4. PeSSIMISHIC LOCKING ...uuuiiiii s snnnsnnnnnnnnnnns 132
11.5. Connection REIEESE MOUEScoiieiiiiiiiiieiice et e e e e e e e e e nnenees 133
12, INterCePLOrS AN EVENTS ... e e e e e e et e e e e e e e e e ettt e e e e e e e e e e nnerreeeeeeas 135
0 g 0= o (0 £ 135
12,2, EVENE SYSIBIM ..ot e e e e e e e e e e e e e e e e 136
12.3. Hibernate deClaratiVe SECUNLYccoiiiciiiiieiiee ettt e e e e e e e e e annnes 137
13, BALCN PrOCESSINGeeieiitiiieeiit ettt ettt e ettt e e ettt e e e e bt et e e e st e e e s et e e e e annbe e e e e anbneeeeans 139
G T ot g W 1S o £ P USTPPR 139
13.2. BACH UPOALES ...ttt e e e e e nnbneeeean 139
13.3. The Statel @SSSeSSION INEEITACEoceeei i e e e 140
13.4. DML-SLYI€ OPEIAtiONScceeiiiiieiiee e e e ettt e e e s e et e e e e e e s et e e e e e e e e s snnbaa e e e e e e e e s annnnnees 140
14. HQL: TheHibernate QUEry LAnQUAGJEcocuurieiiiiiiieeiiiiee ettt e e 143
14,1, CASE SENSIIVITY .vvvieeiiiiiiee ettt et e e et e e e e bbe e e e s sbr e e e e e ansbeaeeennbaeeeeans 143
14.2. TRETIOM ClAUSEvveiiiie ettt e e e e e e e e e e e e e e e s ssntaaneeeeeeesannnnnees 143
14.3. ASSOCIAtIONS @NA JOINSuuuuuiiiii e s e a s e s asnsnnnsasnsnnnnnsnsnsnnnsnnnnnnnnnnnn 143
14.4. FOIMS OF JOIN SYNMEBX ..uvveiieiiiiiieeeiieie e e sttt ettt et e e et e e e s stb e e e e snbbe e e e e nnbaeeeaan 145

Hibernate 3.2 cr2

HIBERNATE - Relational Persistence for |diomatic Java

14.5. THE SEIECE ClAUSE ...eeiiiiiei ittt e e e e e e r e e e e e e s st e e e e e e e e s annnneees 145
14.6. AQQregate fUNCLIONScccuiiiiiiei e et e e e e e e e e e e e e s s st re e e e e e e e e enanenees 146
14.7. POlYMOIPNIC QUEITES ...ttt e s e e e e e e nnbneeeean 146
14.8. THEWREIE ClAUSEeeiiieii ittt e e e e e e e e e e e e e e e st ee e e e e e e e e ennneees 147
T4.9. EXPIESSIONS ..ceueteiee ettt e ettt e e sttt e e e sttt e e e e sttt e e e e st e et e e e mbb e e e e e st e e e e e anbb et e e e annbe e e e e anraeeeean 148
14.10. The Order DY ClAUSEcooeeeeeee et e e e e e et e e e e e e e e e nnnneees 151
14.11. The group DY ClAUSE ...t e e e e e s e e nnnrees 151
TA.12. SUDQUENTES ...ttt ettt e e e e e e s e e e e e s e e e e e anbneeeen 152
14.13. HQL EXAIMPIES ..ovviiiiiiei ittt e e et e e e e e e e et e e e e e e e s s snnbrreeeeaeeesenannrees 152
14.14. Bulk update and EIELEoooiiiiiiiiiie e 154
1415, TIPS & TTICKS ..uuuuiiiiiiiiiiiii s a s a s n s a s nnnnnsnnnnnsnsnsnnnsnnnnnnnnnnnn 154
15, CriterTaQUENTES ..uuiiiiiiiie e i i ittt e e e e ettt e e e e e s s et e e et e e e e s aa e b eeeeaaeee s s s sstaaneaeaeessaanssrneneaens 156
15.1. Creating @ CriteriaiNSIANCEcoiiiee it e e e e e e e e e e e e e e e e nnneeees 156
15.2. Narrowing the rESUIT SELuvviiiiiie e e e e e e s s e e e e e e e e e nnnreees 156
15.3. Ordering tNETESUILSeeiiiiiiie ettt e e e nree e e 157
15,4, ASSOCIBLIONS ...ueveieeeiieieeeeetee e e e sttt e e e ettt e e e et e e e e snte e e e e aanaeeeeeasbeeeeeasseeeeaansseeeesansneeeeans 157
15.5. DynamicC assoCiation FEICHINGvereiiiiiiiie e 158
15.6. EXAMPIE QUEKTESueiii s nnnnnnnnnsnnnsnnnsnnnnnnnnnnns 158
15.7. Projections, aggregation and QroUPINGgeeeeeeeeoiecirierereeessiiiiniseereeeessssssssnneseseessssnnssens 159
15.8. Detached queries and SUDQUENTEScoiiuiiiieiiiiiiee et 160
15.9. Queries by natural TdENTITIErooiiiiiiie e e 160
A P L= S O SRR 162
16.1. USING @ SQLQUENY .ooiieeiiiiiiiee ettt e et e e e e e e e et e e e e e e e e s sbnbe e e e eeeeeeeennnerens 162
16.1. 1. SCAIA QUENTESeeieiniieiee et e ettt e ettt e et e e e e st e e e st e e e e e e e e s e nnae e e e e e 162
16.1.2. ENLILY QUENTESuuuuiiiiii s s sn s nnnsnnnsnsnsnnnnnnnnnnnnnnns 163
16.1.3. Handling associations and COlIECHIONSccoviiiiiiiiiieiie e 163
16.1.4. Returning MUItipl@ @NtItIESevviiiiiiiee e 163
16.1.4.1. Alias and property referenCeScccvvieeeee e 164

16.1.5. Returning NoN-managed ENtItIESc.vevieiiiiiiee e 165
16.1.6. Handling iNNENTANCEc.uvviiiieiie et e e 165
16.1.7. PAIaMELENS ... nnnnnnnnnnnns 165
16.2. NaMEd SOQL QUENESuuuuuuiuiiiiii s s n s asnsasasasasnsnsnsnsnnnsnnsnnsnsnsnnnsnnnnnnnsnnns 166
16.2.1. Using return-property to explicitly specify column/aliasnames...............ccccvvveeee... 167
16.2.2. Using stored procedureS for QUEIYINGcoocvurreeirrereaniieeeessiieeeesineee e s e 168
16.2.2.1. Ruleg/limitations for using stored procedurescccoeevevireeeeeeeeseecnnnne, 168

16.3. Custom SQL for create, update and eleteooceivieiiieie e 169
16.4. Custom SQL fOr [0B0INGuuuuuii s sannnnnnnnnnnnnn 170
A 110] g To o F= = PP P P PUPRPTOTPRPN 171
T 1] o= g 0 (o SRR 171
18, XIML MAPPING .eiuitiiiiiieee e i ettt e e e ettt e e e e e s e s e e e e e e e s sa bbb e e et e aeesssssstsaeeeeaeessaanssranneaens 173
18.1. WOrking With XIML &tceeiiiiiieeeiiiiiee ettt e e 173
18.1.1. Specifying XML and class mapping togethercccvevveeeiiiiiiiiieeeeeee e, 173
18.1.2. Specifying only an XML MEPPING ..covvreeeriiirieeiiiiee et e et e e 173

18.2. XML Mapping MELAOELAcieiiiiiiiiiiiiii s annnannsnnnsnnnsnnnnnnnnnnns 174
18.3. Manipulating XML TaLaeeeeiiiiiieeiiiiiee ettt e e e e 175
19. IMProving PEFFOIMANCEeiiiiiiie et e et e e e e e e e s et e e e e e e e s s s nneateeeeaeeeeaannsneeeeeens 177
RS R s (o o Lo S (= = L= PERPRR 177
19.1.1. Working With 18zy 8SSOCIBLIONSc.cuvveieiiiiiieeiiiie et 178
19.1.2. Tuning fELCh SErALEQIESevviiiiiiee e e e e 178
19.1.3. Single-ended assOCi atiON PIrOXIEScuvereeririreeeiiiieee et ee et e s s e e e s anee e e eees 179
19.1.4. Initializing collections and ProXi€Sccccceeiiieiiiiununninnnnnnnnnnnnnnnnnnnnnrnnnennnnnaannaa—.s 180
19.1.5. UsSing batCh FELChINGccoiueeiieeiieiie e 181

Hibernate 3.2 cr2

HIBERNATE - Relational Persistence for |diomatic Java

19.1.6. Using SUBSEIECt FEICHINGeeeiiiiiiiiiiie e 182

19.1.7. Using lazy property FEChiNgccooiiiiiiieecc e 182

19.2. The Second Level CaChieooviiie it 183
19.2.1. CaChe MAPPINGS ...uuuuuuiiii e nanasarasnsnsnsnsnnnsnsnsnnnnnnnnnnnnnnns 183

19.2.2. Strategy: r€80 ONIYeoiiiiiiee et 184

19.2.3. Strategy: rEBA/WIITEceei e e e e e e ee s 184

19.2.4. Strategy: NONSLICL FEAUMIITEcc.eeiiiiiiiiiee e e 184

19.2.5. Strategy: tranSaCtioNalcooueiiiiiiiiiee e 185

19.3. Managing the CaChESc.cuiiiieiii e e e e e e e e e s e nnerees 185

19.4. TRE QUENY CACNE ...ttt e e et e e e e e anbee e e e 186

19.5. Understanding Collection perfOrmanCecccccccoiiciiiiiiiiiinennnnnnnnnennnnnnnnnnnnnne 187
1950, TAXONOITIY ...ttt e e ettt e ettt e e e e e e st e e e e e e e e e e e s bbb e b e e e e e e e s e annrbbeeeeeeas 187

19.5.2. Lists, maps, idbags and sets are the most efficient collections to update 188

19.5.3. Bags and lists are the most efficient inverse collectionsccccceeveeeiiiiiiiineennn. 188

19.5.4. ONE SNOL AEIELEeeeiieee e e e e e st e e e e e e e e aeeeeeeas 188

19.6. MONItOring PEfOIMANCEuuiiiiiie et e e e e e e e e e e s e sanerees 189
19.6.1. MONItOring & SESSIONFACLONYccciiiuriieeiiiiiie et e e e et 189

19.6.2. IMIEITICS .vveeeeiiiiie e ettt ettt e e et e e e et e e e ettt e e e e na e e e e ansae e e e e anteeeeeanseeeeennneeeeeennees 189

20. TOOISEL GUITE ..eeiiiiiiie ettt ettt ettt e e sttt e e e et e e e m b et e e e aabb e e e e e nbb e e e s ansbeeeesanbneeeeans 191
20.1. AUtOMALIC SChEMA GENEIATIONooiiiiiie et 191
20.1.1. Customizing the SCNEMALuuiiiiiie e 191

20.1.2. RUNNING TNETOO0I ...t 193

P G T = (0] 0 (=PSRN 194

20.1.4. USING AN eeeieeitite ettt et e e s et e e e st n e e s st e e e e e e nb e e e e e antnreeean 194

20.1.5. Incremental sChemaupdatescoooveeiiiiiii 195

20.1.6. Using Ant for incremental SChema Updatesccoovcviiieiiieeei e 195

20.1.7. SChemMaVvalidationcooiiiiiiiei e e e e e e e 195

20.1.8. Using Ant for schemavalidationccccvieiiieiiiiicice e 196

21. Example: Par@nt/CRIldocueeioiiiiie et 197
21.1. A NOte aDOUL CONECLIONS ... e e e snraeee e 197
21.2. Bidirectional ONE-tO-MANYccciiuriieeiiiiieeeiiiiee st e e s e e s sbe e e e ssbe e e s anbaeeeeans 197

21.3. Cascading lifeCYCle ..o 198

21.4. Cascades and UNSAVEA-VEIUEc..ueiiiiiiiiieeiiiiiie ettt ree e e e nnbaee e 199

pZ L T o o 1L o PR SOPPPRSRR 200

22. Example: WebIog APPICALIONueiiiiie it e e 201
22.1. PErSIStENE ClASSES ...uttviiiiiieeiiiiiitiiitteee et s iatiteeereaeeesasseterereeaeessaanserarereaesssaasssnsereaaeesaans 201

22.2. Hibernate Mappingsccooovieieiie e, 202

22.3. HIDEMNELE COUEuvviiieiiiee i ittt ettt e e e e e e e e e e s s et a e e e aaeessssnssrnneeaaaeesaaas 203

23. EXample: VarioUS M aPPiNgScueeeeeiiiaeeiaiiiieiieeae e e s astiteeeeeaeeessaannteaeeeeaaessaaansnneeeeeaeeessaanneees 207
23. 1. EMPIOYEITEMPIOYEE ...ooeiiieeiiicieeee ettt et e e e e e e et e e e e e e s e s etnta e e e aaeeeaan 207

PG T 11 07 A4 o] PR SUSPPPRRRR 208
23.3. CUStOMES/OrAEr/PrOTUCEeveeieiiiiiie ettt e e e s e e e s b e e e snbaeeeeans 210
23.4. Miscellaneous example MEPPINGScoeiiirrrieeiiiiee et e e e e sbaeeeeans 212
23.4.1. "Typed" one-t0-0Ne @SSOCIALIONccceeeeeeeeee e, 212

23.4.2. ComMpPOSIte KEY BXAMPIE ...t 212

23.4.3. Many-to-many with shared composite key attributeccccooiiciiiiiiieeeiiieee 214

23.4.4. Content based diSCriMINGLIONcoiiiiiiiiiiiiie e 215

23.4.5. ASSOCIations ON AltErNAE KEYSvveiiiiiiie et 215

P T o Vot A o= PP PRRPRTPRR 217

Hibernate 3.2 cr2 Vii

Preface

Working with object-oriented software and a relational database can be cumbersome and time consuming in
today's enterprise environments. Hibernate is an object/rel ational mapping tool for Java environments. The term
object/relational mapping (ORM) refers to the technique of mapping a data representation from an object model
to arelational data model with a SQL-based schema.

Hibernate not only takes care of the mapping from Java classes to database tables (and from Java data types to
SQL data types), but also provides data query and retrieval facilities and can significantly reduce development
time otherwise spent with manual data handling in SQL and JDBC.

Hibernates goal is to relieve the developer from 95 percent of common data persistence related programming
tasks. Hibernate may not be the best solution for data-centric applications that only use stored-procedures to
implement the business logic in the database, it is most useful with object-oriented domain models and business
logic in the Java-based middle-tier. However, Hibernate can certainly help you to remove or encapsulate
vendor-specific SQL code and will help with the common task of result set translation from a tabular represent-
ation to agraph of objects.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these steps:

1. Read Chapter 1, Introduction to Hibernate for a tutorial with step-by-step instructions. The source code
for the tutorial isincluded in the distribution in the doc/ r ef erence/ t ut ori al / directory.

2. Read Chapter 2, Architecture to understand the environments where Hibernate can be used.

3. Havealook at the eg/ directory in the Hibernate distribution, it contains a simple standal one application.
Copy your JDBC driver to the! i b/ directory and edit et ¢/ hi ber nat e. properti es, Specifying correct val-
ues for your database. From a command prompt in the distribution directory, type ant eg (using Ant), or
under Windows, typebui | d eg.

4. Use this reference documentation as your primary source of information. Consider reading Hibernate in
Action (http://www.manning.com/bauer) if you need more help with application design or if you prefer a
step-by-step tutorial. Also visit http://caveatemptor.hibernate.org and download the example application
for Hibernate in Action.

5. FAQsare answered on the Hibernate website.
6. Third party demos, examples, and tutorials are linked on the Hibernate website.

7. The Community Area on the Hibernate website is a good resource for design patterns and various integra-
tion solutions (Tomcat, JBoss AS, Struts, EJB, etc.).

If you have questions, use the user forum linked on the Hibernate website. We also provide a JIRA issue track-
ings system for bug reports and feature requests. If you are interested in the development of Hibernate, join the
developer mailing list. If you are interested in trandating this documentation into your language, contact us on
the developer mailing list.

Commercia development support, production support, and training for Hibernate is available through JBoss
Inc. (see http://www.hibernate.org/SupportTraining/). Hibernate is a Professional Open Source project and a
critical component of the JBoss Enterprise Middleware System (JEMS) suite of products.

Hibernate 3.2 cr2 Viii

Chapter 1. Introduction to Hibernate

1.1. Preface

This chapter is an introductory tutorial for new users of Hibernate. We start with a simple command line applic-
ation using an in-memory database and develop it in easy to understand steps.

This tutorial is intended for new users of Hibernate but requires Java and SQL knowledge. It is based on a tu-
torial by Michael Gloegl, the third-party libraries we name are for JDK 1.4 and 5.0. Y ou might need others for
JOK 1.3.

The source code for the tutorial isincluded in the distribution in the doc/ r ef erence/ t ut ori al / directory.

1.2. Part 1 - The first Hibernate Application

First, we'll create a simple console-based Hibernate application. We use an Java database (HSQL DB), so we
do not have to install any database server.

Let's assume we heed a small database application that can store events we want to attend, and information
about the hosts of these events.

The first thing we do, is set up our development directory and put all the Java libraries we need into it. Down-
load the Hibernate distribution from the Hibernate website. Extract the package and place all required libraries
foundin/libintointothe/!i b directory of your new development working directory. It should look like this:

Hib

antlr.jar
cglib.jar
asm j ar

asmattrs.jars
conmons- col | ections. jar
commons- | oggi ng. j ar

hi ber nat e3.j ar

jta.jar
dondj . j ar
| og4j .jar

This is the minimum set of required libraries (note that we also copied hibernate3.jar, the main archive) for Hi-
bernate at the time of writing. The Hibernate release you are using might require more or less libraries. See the
README. t xt fileintheli b/ directory of the Hibernate distribution for more information about required and op-
tional third-party libraries. (Actually, Log4j is not required but preferred by many developers.)

Next we create a class that represents the event we want to store in database.

1.2.1. The first class

Our first persistent class is a simple JavaBean class with some properties:

package events;
i mport java.util.Date;

public class Event {

Hibernate 3.2 cr2 1

Introduction to Hibernate

private Long id;

private String title;
private Date date;

public Event() {}

public Long getld() {
return id;
}

private void setld(Long id) {
this.id =id;
}

public Date getDate() {
return date;
}

public void setDate(Date date) ({
this.date = date;
}

public String getTitle() {
return title;
}

public void setTitle(String title) {
this.title =title;
}

Y ou can see that this class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. This is a recommended design - but not required. Hibernate can also
access fields directly, the benefit of accessor methods is robustness for refactoring. The no-argument construct-
or isrequired to instantiate an object of this class through reflection.

Thei d property holds a unique identifier value for a particular event. All persistent entity classes (there are less
important dependent classes as well) will need such an identifier property if we want to use the full feature set
of Hibernate. In fact, most applications (esp. web applications) need to distinguish objects by identifier, so you
should consider this a feature rather than a limitation. However, we usually don't manipulate the identity of an
object, hence the setter method should be private. Only Hibernate will assign identifiers when an object is
saved. You can see that Hibernate can access public, private, and protected accessor methods, as well as
(public, private, protected) fields directly. The choice is up to you and you can match it to fit your application
design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create objects for you,
using Java Reflection. The constructor can be private, however, package visibility is required for runtime proxy
generation and efficient data retrieval without bytecode instrumentation.

Place this Java source file in a directory called sr ¢ in the development folder, and in its correct package. The
directory should now look like this:

+lib
<Hi bernate and third-party libraries>
+src
+event s
Event.j ava

In the next step, we tell Hibernate about this persistent class.

Hibernate 3.2 cr2 2

Introduction to Hibernate

1.2.2. The mapping file

Hibernate needs to know how to load and store objects of the persistent class. Thisis where the Hibernate map-
ping file comes into play. The mapping file tells Hibernate what table in the database it has to access, and what
columnsin that table it should use.

The basic structure of a mapping file looks like this:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng>
[...]

</ hi ber nat e- mappi ng>

Note that the Hibernate DTD is very sophisticated. You can use it for auto-completion of XML mapping ele-
ments and attributes in your editor or IDE. You also should open up the DTD file in your text editor - it's the
easiest way to get an overview of all elements and attributes and to see the defaults, as well as some comments.
Note that Hibernate will not load the DTD file from the web, but first look it up from the classpath of the ap-
plication. The DTD fileisincluded in hi ber nat e3. j ar aswell asinthesrc/ directory of the Hibernate distri-
bution.

We will omit the DTD declaration in future examples to shorten the code. It is of course not optional.

Between the two hi ber nat e- mappi ng tags, include a cl ass element. All persistent entity classes (again, there
might be dependent classes later on, which are not first-class entities) need such a mapping, to a table in the
SQL database:

<hi ber nat e- mappi ng>
<cl ass nane="events. Event" tabl e="EVENTS">
</ cl ass>

</ hi ber nat e- mappi ng>

So far we told Hibernate how to persist and load object of class Event to the table EVENTS, each instance repres-
ented by arow in that table. Now we continue with a mapping of the unique identifier property to the tables
primary key. In addition, as we don't want to care about handling this identifier, we configure Hibernate's iden-
tifier generation strategy for a surrogate primary key column;

<hi ber nat e- mappi ng>

<cl ass nane="events. Event" tabl e="EVENTS">
<id name="id" col um="EVENT_| D">
<generator class="native"/>
</id>
</cl ass>

</ hi ber nat e- mappi ng>

Thei d element is the declaration of the identifer property, name="i d" declares the name of the Java property -
Hibernate will use the getter and setter methods to access the property. The column attribute tells Hibernate
which column of the EVENTS table we use for this primary key. The nested gener at or element specifies the
identifier generation strategy, in this case we used nat i ve, which picks the best strategy depending on the con-
figured database (dialect). Hibernate supports database generated, globally unique, as well as application as-
signed identifiers (or any strategy you have written an extension for).

Hibernate 3.2 cr2 3

Introduction to Hibernate

Finally we include declarations for the persistent properties of the class in the mapping file. By default, no
properties of the class are considered persi stent:

<hi ber nat e- mappi ng>

<cl ass nane="events. Event" tabl e="EVENTS">
<id name="id" col um="EVENT_| D">
<generator class="native"/>
</id>
<property nane="date" type="tinestanp" col um="EVENT_DATE"/ >
<property nane="title"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Just as with the i d element, the nane attribute of the property element tells Hibernate which getter and setter
methods to use. So, in this case, Hibernate will look for getDate()/setDate(), as wel as get-
Title()/setTitle().

Why does the dat e property mapping include the col umn attribute, but the ti t 1 e doesn't? Without the col um
attribute Hibernate by default uses the property name as the column name. Thisworksfinefortitl e. However,
dat e isareserved keyword in most database, so we better map it to a different name.

The next interesting thing isthat theti t1 e mapping also lacks at ype attribute. The types we declare and usein
the mapping files are not, as you might expect, Java data types. They are aso not SQL database types. These
types are so called Hibernate mapping types, converters which can translate from Java to SQL data types and
vice versa. Again, Hibernate will try to determine the correct conversion and mapping type itself if thetype at-
tribute is not present in the mapping. 1n some cases this automatic detection (using Reflection on the Java class)
might not have the default you expect or need. This is the case with the dat e property. Hibernate can't know if
the property (which is of j ava. util . Dat e) should map to a SQL dat e, ti mestanp, or ti me column. We pre-
serve full date and time information by mapping the property with ati nest anp converter.

This mapping file should be saved as Event . hbm xni , right in the directory next to the Event Java class source
file. The naming of mapping files can be arbitrary, however the hom xm suffix is a convention in the Hibernate
developer community. The directory structure should now look like this:

+lib
<Hi bernate and third-party |ibraries>
+src
+event s
Event.j ava
Event . hbm xni

We continue with the main configuration of Hibernate.

1.2.3. Hibernate configuration

We now have a persistent class and its mapping file in place. It is time to configure Hibernate. Before we do
this, we will need a database. HSQL DB, a java-based SQL DBMS, can be downloaded from the HSQL DB
website. Actualy, you only need the hsql db. j ar from this download. Place thisfileintheli b/ directory of the
development folder.

Create a directory called dat a in the root of the development directory - this is where HSQL DB will store its
data files. Now start the database by running j ava -classpath ../lib/hsqldb.jar org.hsgl db. Server in
this data directory. You can see it start up and bind to a TCP/IP socket, this is where our application will con-

Hibernate 3.2 cr2 4

Introduction to Hibernate

nect later. If you want to start with a fresh database during this tutorial, shutdown HSQL DB (pressCTRL + Cin
the window), delete all filesin thedat a/ directory, and start HSQL DB again.

Hibernate is the layer in your application which connects to this database, so it needs connection information.
The connections are made through a JDBC connection pool, which we also have to configure. The Hibernate
distribution contains several open source JDBC connection pooling tools, but will use the Hibernate built-in
connection pool for thistutorial. Note that you have to copy the required library into your classpath and use dif-
ferent connection pooling settings if you want to use a production-quality third party JDBC pooling software.

For Hibernate's configuration, we can use a simple hi ber nat e. properti es file, a sightly more sophisticated
hi ber nat e. cf g. xn file, or even complete programmatic setup. Most users prefer the XML configuration file:

<?xm version='"1.0" encodi ng='utf-8" ?>

<! DOCTYPE hi ber nat e-confi gurati on PUBLIC
"-//Hi bernate/ H bernate Configuration DITD 3.0//EN'
"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gurati on>
<sessi on-factory>

<l -- Database connection settings -->

<property name="connection. driver_class">org. hsql db. jdbcDri ver</property>
<property nane="connection.url">jdbc: hsql db: hsql ://I ocal host </ property>
<property nane="connecti on. usernane" >sa</ property>

<property nane="connecti on. password"></property>

<l-- JDBC connection pool (use the built-in) -->
<property nane="connecti on. pool _si ze">1</property>

<l-- SQ dialect -->
<property nane="di al ect " >or g. hi bernat e. di al ect. HSQLDi al ect </ property>

<l-- Enable H bernate's automatic sessi on context managenment -->
<property nanme="current_sessi on_cont ext _cl ass">t hread</ property>

<!-- Disable the second-|evel cache -->
<property nanme="cache. provi der_cl ass">org. hi ber nat e. cache. NoCachePr ovi der </ property>

<l-- Echo all executed SQ. to stdout -->
<property nane="show sql ">t rue</property>

<lI-- Drop and re-create the database schema on startup -->
<property nanme="hbnRddl . aut 0" >cr eat e</ pr operty>

<mappi ng resource="events/Event. hbm xm "/ >
</ sessi on-factory>

</ hi ber nat e-confi gurati on>

Note that this XML configuration uses a different DTD. We configure Hibernate's Sessi onFact ory - a global
factory responsible for a particular database. If you have severa databases, use several <session-factory>
configurations, usually in severa configuration files (for easier startup).

The first four property elements contain the necessary configuration for the JDBC connection. The dialect
property element specifies the particular SQL variant Hibernate generates. Hibernate's automatic session man-
agement for persistence contexts will come in handy as you will soon see. The hbn2dd! . aut o option turns on
automatic generation of database schemas - directly into the database. This can of course also be turned off (by
removing the config option) or redirected to afile with the help of the SchemaExport Ant task. Finally, we add
the mapping file(s) for persistent classes to the configuration.

Copy this file into the source directory, so it will end up in the root of the classpath. Hibernate automatically

Hibernate 3.2 cr2 5

Introduction to Hibernate

looks for afile called hi ber nat e. cf g. xm in the root of the classpath, on startup.

1.2.4. Building with Ant

WEe'll now build the tutorial with Ant. You will need to have Ant installed - get it from the Ant download page
[http://ant.apache.org/bindownload.cgi]. How to install Ant will not be covered here. Please refer to the Ant
manual [http://ant.apache.org/manual/index.html]. After you have installed Ant, we can start to create the build-
file. It will be called bui | d. xm and placed directly in the development directory.

A basic build file looks like this:

<proj ect name="hi bernate-tutorial" default="conpile">

<property nanme="sourcedir" val ue="${basedir}/src"/>
<property name="targetdir" val ue="${basedir}/bin"/>
<property name="librarydir" value="${basedir}/lib"/>

<path id="libraries">
<fileset dir="${librarydir}">
<i nclude name="*.jar"/>
</fileset>
</ pat h>

<target nanme="cl ean">
<delete dir="${targetdir}"/>
<nkdir dir="${targetdir}"/>
</target>

<target name="conpile" depends="cl ean, copy-resources">
<javac srcdir="${sourcedir}"
destdir="${targetdir}"
cl asspathref="libraries"/>
</target>

<t arget nane="copy-resources">
<copy todir="${targetdir}">
<fileset dir="$%${sourcedir}">
<excl ude nane="**/* java"/>
</fileset>
</ copy>
</target>

</ proj ect >
This will tell Ant to add al files in the lib directory ending with . j ar to the classpath used for compilation. It

will also copy all non-Java source files to the target directory, e.g. configuration and Hibernate mapping files. If
you now run Ant, you should get this outpult:

C:\ hi bernat eTut ori al \ >ant
Bui l dfile: build.xn

COpy- r esour ces
[copy] Copying 2 files to C:\hibernateTutorial\bin

conpi | e:
[javac] Conpiling 1 source file to C \hibernateTutorial\bin

BU LD SUCCESSFUL
Total tinme: 1 second

1.2.5. Startup and helpers

Hibernate 3.2 cr2 6

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/index.html

Introduction to Hibernate

It's time to load and store some Event objects, but first we have to complete the setup with some infrastructure
code. We have to startup Hibernate. This startup includes building a global Sessi onFact ory object and to store
it somewhere for easy access in application code. A Sessi onFactory Can Open up New Sessi on'S. A Sessi on
represents a single-threaded unit of work, the Sessi onFact ory is athread-safe global object, instantiated once.

Well create aHi bernateuti| helper class which takes care of startup and makes accessing a Sessi onFact ory
convenient. Let's have alook at the implementation:

package util;

i mport org. hi bernate. *;
i mport org. hibernate.cfg.*;

public class H bernateUtil {
private static final SessionFactory sessionFactory;

static {

try {
/1 Create the SessionFactory from hi bernate.cfg.xm

sessionFactory = new Configuration().configure().buil dSessi onFactory();
} catch (Throwabl e ex) ({

/'l Make sure you | og the exception, as it mght be swall owed

Systemerr.printiln("Initial SessionFactory creation failed." + ex);

throw new ExceptionlnlnitializerError(ex);

}

public static SessionFactory get SessionFactory() {
return sessi onFactory;

}

This class does not only produce the global Sessi onFact ory in its static initializer (called once by the VM
when the class is loaded), but also hides the fact that it uses a static singleton. It might as well lookup the Ses-
si onFact ory from JNDI in an application server.

If you give the Sessi onFact ory a name in your configuration file, Hibernate will in fact try to bind it to JNDI
after it has been built. To avoid this code completely you could also use IMX deployment and let the IMX-
capable container instantiate and bind a Hi ber nat eSer vi ce to INDI. These advanced options are discussed in
the Hibernate reference documentation.

Place Hi bernatelti | . j ava in the development source directory, in a package next to event s:

+lib
<Hi bernate and third-party libraries>
+src
+event s
Event.j ava
Event . hbm xm
+uti |
H bernateltil.java
hi ber nat e. cf g. xm
+dat a
buil d. xm

This should again compile without problems. We finally need to configure a logging system - Hibernate uses
commons logging and leaves you the choice between Log4j and JDK 1.4 logging. Most developers prefer
Logdj: copy | og4j . properties from the Hibernate distribution (it's in the et ¢/ directory) to your src direct-
ory, next to hi ber nat e. cf g. xnl . Have alook at the example configuration and change the settings if you like

Hibernate 3.2 cr2 7

Introduction to Hibernate

to have more verbose output. By default, only Hibernate startup message are shown on stdout.

Thetutorial infrastructure is complete - and we are ready to do some real work with Hibernate.

1.2.6. Loading and storing objects

Finally, we can use Hibernate to load and store objects. We write an Event Manager class with ami n() meth-
od:

package events;
i mport org. hi bernate. Sessi on;

i mport java.util.Date;
import util.Hibernateltil;
public class Event Manager {

public static void main(String[] args) {
Event Manager ngr = new Event Manager () ;

if (args[0].equal s("store")) {
ngr. creat eAndSt oreEvent ("My Event", new Date());
}

Hi bernateUtil . get Sessi onFactory().cl ose();

}

private void createAndStoreEvent (String title, Date theDate) {
Sessi on session = HibernateUtil.get Sessi onFactory().getCurrentSession();
sessi on. begi nTransacti on();

Event theEvent = new Event ();
theEvent.setTitle(title);
t heEvent . set Dat e(t heDat e) ;

sessi on. save(theEvent);

sessi on. get Transaction().commt();

We create a new Event object, and hand it over to Hibernate. Hibernate now takes care of the SQL and ex-
ecutes | NSERTS on the database. Let's have alook at the Sessi on and Tr ansact i on-handling code before we run
this.

A Ssession is a single unit of work. For now we'll keep things simple and assume a one-to-one granularity
between a Hibernate Sessi on and a database transaction. To shield our code from the actual underlying transac-
tion system (in this case plain JDBC, but it could also run with JTA) we use the Transacti on API that is avail-
able on the Hibernate Sessi on.

What does sessi onFact ory. get Current Sessi on() do? First, you can call it as many times and anywhere you
like, once you get hold of your Sessi onFact ory (€asy thanks to Hi bernateUtil). The get Current Sessi on()
method always returns the "current” unit of work. Remember that we switched the configuration option for this
mechanism to "thread" in hi ber nat e. cf g. xnl ? Hence, the scope of the current unit of work is the current Java
thread that executes our application. However, this is not the full truth. A Sessi on begins when it is first
needed, when the first call to get Current Sessi on() is made. It is then bound by Hibernate to the current
thread. When the transaction ends, either committed or rolled back, Hibernate also unbinds the Sessi on from
the thread and closes it for you. If you call get Curr ent Sessi on() again, you get anew Sessi on and can start a

Hibernate 3.2 cr2 8

Introduction to Hibernate

new unit of work. This thread-bound programming model is the most popular way of using Hibernate.

Have alook at Chapter 11, Transactions And Concurrency for more information about transaction handling and
demarcation. We also skipped any error handling and rollback in the previous example.

To run thisfirst routine we have to add a callable target to the Ant build file:

<target name="run" depends="conpile">
<java fork="true" classnane="events. Event Manager" cl asspathref="libraries">
<cl asspath path="${targetdir}"/>
<arg val ue="${action}"/>
</java>
</target>

The value of the act i on argument is set on the command line when calling the target:

C:\ hi bernat eTutori al\>ant run -Daction=store

Y ou should see, after compilation, Hibernate starting up and, depending on your configuration, lots of log out-
put. At the end you will find the following line:

[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)

Thisisthe I NSERT executed by Hibernate, the question marks represent JDBC bind parameters. To see the val-
ues bound as arguments, or to reduce the verbosity of the log, check your | og4j . properti es.

Now we'd liketo list stored events as well, so we add an option to the main method:

if (args[0].equal s("store")) {
ngr . cr eat eAndSt or eEvent ("My Event", new Date());

else if (args[0].equals("list")) {
Li st events = ngr.listEvents();

for (int i =0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
Systemout.println("Event: " + theEvent.getTitle() +

" Time: " + theEvent.getDate());

Weadsoaddanew |istEvents() nethod:

private List |listEvents() {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransacti on();
List result = session.createQuery("fromEvent").list();
sessi on. get Transaction().conmm t();

return result;

What we do hereis use an HQL (Hibernate Query Language) query to load all existing Event objects from the
database. Hibernate will generate the appropriate SQL, send it to the database and populate Event objects with
the data. Y ou can create more complex queries with HQL, of course.

Now, to execute and test all of this, follow these steps:

Hibernate 3.2 cr2 9

Introduction to Hibernate

e Runant run -Daction=store to store something into the database and, of course, to generate the database
schema before through hbm2ddl.

¢ Now disable hbm2ddl by commenting out the property in your hi ber nat e. cf g. xn file. Usually you only
leave it turned on in continous unit testing, but another run of hbm2ddl would drop everything you have
stored - the creat e configuration setting actually translates into "drop all tables from the schema, then re-
create al tables, when the SessionFactory is build".

If you now call Ant with - Dacti on=Ii st, you should see the events you have stored so far. You can of course
aso call the st or e action afew times more.

Note: Most new Hibernate users fail at this point and we see questions about Table not found error messages
regularly. However, if you follow the steps outlined above you will not have this problem, as hbm2ddl creates
the database schema on the first run, and subsequent application restarts will use this schema. If you change the
mapping and/or database schema, you have to re-enable hbm2ddl once again.

1.3. Part 2 - Mapping associations

We mapped a persistent entity class to a table. Let's build on this and add some class associations. First well
add peopleto our application, and store alist of eventsthey participate in.

1.3.1. Mapping the Person class

Thefirst cut of the Per son classissimple:

package events;
public class Person {
private Long id;
private int age;
private String firstname;
private String |astnaneg;

public Person() {}

/1l Accessor nmethods for all properties, private setter for 'id

Create anew mapping file called Per son. hom xmi (don't forget the DTD reference at the top):

<hi ber nat e- mappi ng>

<cl ass nanme="events. Person" tabl e=" PERSON" >
<id name="id" col um="PERSON | D'>
<generator class="native"/>
</id>
<property nane="age"/>
<property nane="firstnane"/>
<property nanme="| ast name"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Finally, add the new mapping to Hibernate's configuration:

<mappi ng resource="events/Event. hbm xm "/ >

Hibernate 3.2 cr2 10

Introduction to Hibernate

<mappi ng resour ce="events/ Person. hbm xm "/ >

WEe'l now create an association between these two entities. Obviously, persons can participate in events, and
events have participants. The design questions we have to deal with are: directionality, multiplicity, and collec-
tion behavior.

1.3.2. A unidirectional Set-based association

WEe'll add a collection of eventsto the Per son class. That way we can easily navigate to the events for a particu-
lar person, without executing an explicit query - by calling aPer son. get Event s() . We use a Java collection, a
Set , because the collection will not contain duplicate elements and the ordering is not relevant for us.

We need a unidirectional, many-valued associations, implemented with a Set . Let's write the code for thisin
the Java classes and then map it:

public class Person {
private Set events = new HashSet ();

public Set getEvents() {
return events;
}

public void setEvents(Set events) {
this.events = events;
}

Before we map this association, think about the other side. Clearly, we could just keep this unidirectional. Or,
we could create another collection on the Event, if we want to be able to navigate it bi-directiond, i.e. an-

Event . get Parti ci pant s() . Thisis not necessary, from afunctional perspective. You could always execute an
explicit query to retrieve the participants for a particular event. This is a design choice left to you, but what is
clear from this discussion is the multiplicity of the association: "many" valued on both sides, we call this a
many-to-many association. Hence, we use Hibernate's many-to-many mapping:

<cl ass name="events. Person" tabl e=" PERSON" >
<id name="id" col um="PERSON_| D" >
<generator class="native"/>
</id>
<property nane="age"/>
<property nanme="firstname"/>
<property nane="| ast nane"/>

<set nanme="events" tabl e="PERSON_EVENT" >

<key col um="PERSON | D'/ >

<many-t o- many col um="EVENT_I D' cl ass="events. Event"/>
</set>

</ cl ass>

Hibernate supports all kinds of collection mappings, a<set > being most common. For a many-to-many associ-
ation (or n:m entity relationship), an association table is needed. Each row in this table represents a link
between a person and an event. The table name is configured with the t abl e attribute of the set element. The
identifier column name in the association, for the person's side, is defined with the <key> element, the column
name for the event's side with the col umm attribute of the <many-t o- many>. You also have to tell Hibernate the
class of the objectsin your collection (correct: the class on the other side of the collection of references).

The database schema for this mapping is therefore:

Hibernate 3.2 cr2 11

Introduction to Hibernate

I I I I
| EVENTS | | PERSON_EVENT | | |
I I I I I PERSON |
I I I I I I
*EVENT_ID	<-->	*EVENT_ID		
EVENT_DATE		*PERSON_I D	<-->	*PERSONID
TITLE				AGE
		FIRSTNAME		
LASTNAME				
I I

1.3.3. Working the association

Let's bring some people and events together in a new method in Event Manager :

private voi d addPersonToEvent (Long personld, Long eventld) {

Sessi on session = H bernateUtil . get Sessi onFactory().getCurrent Session();
sessi on. begi nTransacti on();

Person aPerson = (Person) session.| oad(Person.class, personld);
Event anEvent = (Event) session.|oad(Event.class, eventld);

aPer son. get Event s() . add(anEvent);

sessi on. get Transaction().conmmt();

After loading a Person and an Event, sSimply modify the collection using the normal collection methods. As
you can see, there is no explicit call to updat e() or save(), Hibernate automatically detects that the collection
has been modified and needs to be updated. This is called automatic dirty checking, and you can also try it by
modifying the name or the date property of any of your objects. As long as they are in persistent state, that is,
bound to a particular Hibernate Sessi on (i.e. they have been just loaded or saved in a unit of work), Hibernate
monitors any changes and executes SQL in a write-behind fashion. The process of synchronizing the memory
state with the database, usually only at the end of a unit of work, is called flushing. In our code, the unit of work
ends with a commit (or rollback) of the database transaction - as defined by thet hr ead configuration option for
the Cur r ent Sessi onCont ext Class.

You might of course load person and event in different units of work. Or you modify an object outside of a
Sessi on, When it isnot in persistent state (if it was persistent before, we call this state detached). Y ou can even
modify a collection when it is detached:

private voi d addPer sonToEvent (Long personld, Long eventld) {

Session session = HibernateUtil.getSessionFactory().getCurrentSession();
sessi on. begi nTransacti on();

Person aPerson = (Person) session
.createQuery("select p fromPerson p left join fetch p.events where p.id = :pid")
.set Paraneter ("pid*, personld)
.uniqueResul t(); // Eager fetch the collection so we can use it detached

Event anEvent = (Event) session.load(Event.class, eventld);

sessi on. get Transaction().commt();

/!l End of first unit of work

aPer son. get Event s() . add(anEvent); // aPerson (and its collection) is detached

Hibernate 3.2 cr2 12

Introduction to Hibernate

/1 Begin second unit of work

Sessi on session2 = HibernateUtil.get Sessi onFactory().getCurrentSession();
sessi on2. begi nTransacti on();

sessi on2. updat e(aPerson); // Reattachment of aPerson

sessi on2. get Transaction().commit();

The call to updat e makes a detached object persistent again, you could say it binds it to a new unit of work, so
any modifications you made to it while detached can be saved to the database. This includes any modifications
(additiong/del etions) you made to a collection of that entity object.

WEell, this is not much use in our current situation, but it's an important concept you can design into your own
application. For now, complete this exercise by adding a new action to the Event Manager 's main method and
call it from the command line. If you need the identifiers of a person and an event - the save() method returns
it (you might have to modify some of the previous methods to return that identifier):

else if (args[O0].equal s("addpersontoevent")) {
Long eventld = ngr.createAndStoreEvent ("My Event", new Date());
Long personld = ngr. creat eAndSt or ePer son(" Foo", "Bar");
ngr . addPer sonToEvent (personl d, eventld);
Systemout. printl n("Added person " + personld + " to event " + eventld);

This was an example of an association between two equally important classes, two entities. As mentioned earli-
er, there are other classes and types in a typical model, usually "less important”. Some you have aready seen,
likeanint orastring. We call these classes value types, and their instances depend on a particular entity. In-
stances of these types don't have their own identity, nor are they shared between entities (two persons don't ref-
erence the samefi r st nane object, even if they have the same first name). Of course, value types can not only
be found in the JIDK (in fact, in a Hibernate application al JDK classes are considered value types), but you can
also write dependent classes yourself, Addr ess Of Monet ar yAnount , for example.

You can aso design a collection of value types. This is conceptually very different from a collection of refer-
ences to other entities, but looks almost the samein Java.

1.3.4. Collection of values

We add a collection of value typed objects to the Per son entity. We want to store email addresses, so the type
we useisstring, and the collection isagain a Set :

private Set enumil Addresses = new HashSet ();

public Set getEmail Addresses() {
return email Addr esses;
}

public void setEmail Addresses(Set emai |l Addresses) {
this. emai | Addresses = enmi | Addr esses;
}

The mapping of this Set :

<set nanme="enuni | Addresses" tabl e="PERSON EMAI L_ADDR" >
<key col um="PERSON_| D'/ >
<el ement type="string" col um="EMAI L_ADDR'/ >
</set>

Hibernate 3.2 cr2 13

Introduction to Hibernate

The difference compared with the earlier mapping isthe el ement part, which tells Hibernate that the collection
does not contain references to ancther entity, but a collection of elements of type stri ng (the lowercase name
tells you it's a Hibernate mapping type/converter). Once again, the t abl e attribute of the set element determ-
ines the table name for the collection. The key element defines the foreign-key column name in the collection
table. The col um attribute in the el enent element defines the column name where the st ri ng values will actu-
aly be stored.

Have alook at the updated schema:

I I I I
| EVENTS | | PERSON_EVENT | | |
I I I I I PERSON | I
						PERSON_EMAI L_ADDR
*EVENT_ID	<-->	*EVENT_ID				
EVENT_DATE		*PERSON_I D	<-->	*PERSONLID	<-->	*PERSON_ID
TITLE				AGE		*EMAIL_ADDR
		FIRSTNAME				
LASTNAME						
I I

You can see that the primary key of the collection table is in fact a composite key, using both columns. This
also implies that there can't be duplicate email addresses per person, which is exactly the semantics we need for
asetin Java

Y ou can now try and add elements to this collection, just like we did before by linking persons and events. It's
the same code in Java:

private voi d addEmai | ToPer son(Long personld, String enmil Address) {

Sessi on session = H bernateUtil.get Sessi onFactory().getCurrent Session();
sessi on. begi nTransacti on();

Person aPerson = (Person) session. | oad(Person.class, personld);

/1l The get Enai | Addresses() mght trigger a |azy |oad of the collection
aPer son. get Enai | Addr esses() . add(enai | Addr ess) ;

sessi on. get Transaction().commt();

Thistime we didnt' use a fetch query to initialize the collection. Hence, the call to its getter method will trigger
an additional select to initialize it, so we can add an element to it. Monitor the SQL log and try to optimize this
with an eager fetch.

1.3.5. Bi-directional associations

Next we are going to map a bi-directional association - making the association between person and event work
from both sides in Java. Of course, the database schema doesn't change, we still have many-to-many multipli-
city. A relational database is more flexible than a network programming language, so it doesn't need anything
like anavigation direction - data can be viewed and retrieved in any possible way.

First, add a collection of participantsto the Event Event class:

private Set participants = new HashSet ();

public Set getParticipants() {
return partici pants;

Hibernate 3.2 cr2 14

Introduction to Hibernate

}

public void setParticipants(Set participants) {
this.participants = partici pants;
}

Now map this side of the association too, in Event . hbm xm .

<set nanme="participants" tabl e="PERSON EVENT" inverse="true">
<key col um="EVENT_I D'/ >
<many-t o- many col um="PERSON | D' cl ass="events. Person"/>
</ set>

As you see, these are normal set mappings in both mapping documents. Notice that the column names in key
and many-to-many are swapped in both mapping documents. The most important addition here is the i n-
verse="true" attributeintheset element of the Event 's collection mapping.

What this means is that Hibernate should take the other side - the Per son class - when it needs to find out in-
formation about the link between the two. This will be a lot easier to understand once you see how the bi-
directional link between our two entitiesis created .

1.3.6. Working bi-directional links

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create a link between a
Per son and an Event in the unidirectional example? We added an instance of Event to the collection of event
references, of an instance of pPerson. S0, obvioudly, if we want to make this link working bi-directional, we
have to do the same on the other side - adding a Per son reference to the collection in an Event . This"setting the
link on both sides" is absolutely necessary and you should never forget doing it.

Many developers program defensive and create a link management methods to correctly set both sides, e.g. in
Per son:

protected Set getEvents() {
return events;
}

protected void set Events(Set events) {
this.events = events;
}

public void addToEvent (Event event) {
this. get Events().add(event);
event . get Parti ci pants().add(this);
}

public void renoveFronEvent (Event event) {
this.get Events().renmove(event);
event . get Parti ci pants().renove(this);

Notice that the get and set methods for the collection are now protected - this allows classes in the same pack-
age and subclasses to still access the methods, but prevents everybody else from messing with the collections
directly (well, ailmost). Y ou should probably do the same with the collection on the other side.

What about the i nver se mapping attribute? For you, and for Java, a bi-directional link is simply a matter of set-
ting the references on both sides correctly. Hibernate however doesn't have enough information to correctly ar-
range SQL | NSERT and UPDATE statements (to avoid constraint violations), and needs some help to handle bi-
directional associations properly. Making one side of the association i nver se tells Hibernate to basically ignore

Hibernate 3.2 cr2 15

Introduction to Hibernate

it, to consider it amirror of the other side. That's al that is necessary for Hibernate to work out all of the issues
when transformation a directional navigation model to a SQL database schema. The rules you have to remem-
ber are straightforward: All bi-directional associations need one side asi nver se. In a one-to-many association
it has to be the many-side, in many-to-many association you can pick either side, there is no difference.

Let'sturn thisinto a small web application.

1.4. Part 3 - The EventManager web application

A Hibernate web application uses Sessi on and Transacti on aimost like a standalone application. However,
some common patterns are useful. We now write an Event Manager Ser vl et . This servlet can list al events
stored in the database, and it provides an HTML form to enter new events.

1.4.1. Writing the basic servlet

Create anew class in your source directory, in the event s package:

package events;
/1 Inports
public class Event Manager Servl et extends HttpServl et {

private final SinpleDateFornmat dateFormatter =
new Si npl eDat eFor mat ("dd. MM yyyy");

/1 Servlet code

The dat eFor mat t er isatool we'll need later to convert Dat e objects from and to strings. It makes sense to only
have one formatter as a member of the servlet.

The servlet handles HTTP GeT requests only, hence, the method we implement isdoGet () :

protected void doGet (HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, |OException {

try {
/1 Begin unit of work
Hi bernateUtil . get Sessi onFactory()
. get Current Sessi on() . begi nTransacti on();

/'l Process request and render page...

/1 End unit of work
Hi ber nateUti | . get Sessi onFactory()
. get Current Sessi on().get Transaction().commt();

} catch (Exception ex) {
Hi bernateUtil . get Sessi onFactory()
. get Current Sessi on().get Transaction().rol |l back();
t hrow new Servl et Excepti on(ex);

The pattern we are applying hereis called session-per-request. When arequest hits the servlet, a new Hibernate
Sessi on is opened through the first call to get Current Sessi on() on the Sessi onFact ory. Then a database
transaction is started—all data access as to occur inside a transaction, no matter if data is read or written (we

Hibernate 3.2 cr2 16

Introduction to Hibernate

don't use the auto-commit mode in applications).

Next, the possible actions of the request are processed and the response HTML is rendered. We'll get to that
part soon.

Finally, the unit of work ends when processing and rendering is complete. If any problem occured during pro-
cessing or rendering, an exception will be thrown and the database transaction rolled back. This completes the
sessi on- per - request pattern. Instead of the transaction demarcation code in every servlet you could aso
write a servlet filter. See the Hibernate website and Wiki for more information about this pattern, called Open
Session in View—you'll need it as soon as you consider rendering your view in JSP, not in aservlet.

1.4.2. Processing and rendering

Let'simplement the processing of the request and rendering of the page.

/1l Wite HTM. header
PrintWiter out = response.getWiter();
out. println("<htm ><head><titl e>Event Manager</titl e></head><body>");

/1 Handl e actions
if ("store".equal s(request.getParanmeter("action"))) {

String eventTitle = request.getParaneter("eventTitle");
String eventDate = request. getParaneter("eventDate");

if ("".equals(eventTitle) || "".equal s(eventDate)) {
out. println("<i >Pl ease enter event title and date.</i>");
} else {
creat eAndSt or eEvent (event Titl e, dateFormatter. parse(eventDate));
out. println("<i >Added event. </i>");

}

/1 Print page
print Event For n{out) ;
li st Event s(out);

/[l Wite HTM. footer
out.println("</body></htm >");
out. flush();

out. cl ose();

Granted, this coding style with amix of Javaand HTML would not scale in a more complex application—keep
in mind that we are only illustrating basic Hibernate concepts in this tutorial. The code prints an HTML header
and afooter. Inside this page, an HTML form for event entry and alist of al eventsin the database are printed.
The first method istrivial and only outputs HTML.:

private void printEventForm(PrintWiter out) ({
out.println("<h2>Add new event:</h2>");
out.println("<form");
out.println("Title: <input name='eventTitle' |ength="50"/>
");
out.printin("Date (e.g. 24.12.2009): <input nanme='eventDate' |ength="10"/>
");
out.println("<input type='submit' name='action' value='store'/>");
out.println("</forne");

Theli st Event s() method uses the Hibernate Sessi on bound to the current thread to execute a query:

private void listEvents(PrintWiter out) {
List result = HibernateUtil.getSessionFactory()
.getCurrent Session().createCriteria(Event.class).list();
if (result.size() > 0) {
out.println("<h2>Events in database: </ h2>");

Hibernate 3.2 cr2 17

Introduction to Hibernate

out.println("<table border="1">");

out.println("<tr>");

out.println("<th>Event title</th>");

out.println("<th>Event date</th>");

out.println("</tr>");

for (lterator it = result.iterator(); it.hasNext();) {
Event event = (Event) it.next();
out.println("<tr>");
out.println("<td>" + event.getTitle() + "</td>");
out.println("<td>" + dateFormatter.fornat(event.getDate()) + "</td>");
out.println("</tr>");

out.println("</table>");

Finally, the st or e action is dispatched to the cr eat eAndSt or eEvent () method, which also uses the Sessi on of
the current thread:

protected void createAndStoreEvent (String title, Date theDate) {
Event theEvent = new Event();
theEvent.setTitle(title);
t heEvent . set Dat e(t heDat e) ;

Hi bernateUtil . get Sessi onFactory()
. get Current Sessi on().save(theEvent);

That's it, the servlet is complete. A request to the servlet will be processed in a single Sessi on and Transac-
tion. As earlier in the standalone application, Hibernate can automatically bind these ojects to the current
thread of execution. This gives you the freedom to layer your code and access the Sessi onFact ory in any way
you like. Usually you'd use a more sophisticated design and move the data access code into data access objects
(the DAO pattern). See the Hibernate Wiki for more examples.

1.4.3. Deploying and testing

To deploy this application you have to create a web archive, a WAR. Add the following Ant target to your
build.xm:

<target nanme="war" depends="conpile">
<war destfile="hibernate-tutorial.war" webxm ="web. xm ">
<lib dir="${librarydir}">
<excl ude nane="jsdk*.jar"/>
</lib>

<cl asses dir="${targetdir}"/>
</ war >
</target>

This target creates afile called hi bernat e-tut ori al . war inyour project directory. It packages al libraries and
theweb. xm descriptor, which is expected in the base directory of your project:

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app version="2.4"
xm ns="http://java. sun. conl xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
XsSi : schenalLocati on="http://java.sun.com xm /ns/j2ee http://java.sun.com xm /ns/j 2ee/ web-app_2_4. x:

<servl et >

<servl et - name>Event Manager </ servl et - name>

<servl et - cl ass>event s. Event Manager Ser vl et </ servl et - cl ass>
</servl et>

Hibernate 3.2 cr2 18

Introduction to Hibernate

<servl et - mappi ng>
<servl et - name>Event Manager </ servl et - name>
<url - pattern>/ event manager </ ur| - pattern>
</ servl et - mappi ng>
</ web- app>

Before you compile and deploy the web application, note that an additional library is required: j sdk. j ar. This
isthe Java servlet development kit, if you don't have thislibrary already, get it from the Sun website and copy it
to your library directory. However, it will be only used for compliation and excluded from the WAR package.

To build and deploy call ant war in your project directory and copy the hi bernate-tutorial . war file into
your Tomcat webapp directory. If you don't have Tomcat installed, download it and follow the installation in-
structions. Y ou don't have to change any Tomcat configuration to deploy this application though.

Once deployed and Tomcat is running, access the application at ht -
tp:/ /1 ocal host: 8080/ hi ber nat e-tut ori al / event manager . Make sure you watch the Tomcat log to see Hi-
bernate initialize when the first request hits your servlet (the static initializer in Hi bernat euti | iscalled) and to
get the detailed output if any exceptions occurs.

1.5. Summary

This tutorial covered the basics of writing a simple standalone Hibernate application and a small web applica-
tion.

If you already feel confident with Hibernate, continue browsing through the reference documentation table of
contents for topics you find interesting - most asked are transactional processing (Chapter 11, Transactions And
Concurrency), fetch performance (Chapter 19, Improving performance), or the usage of the API (Chapter 10,
Working with objects) and the query features (Section 10.4, “ Querying”).

Don't forget to check the Hibernate website for more (specialized) tutorials.

Hibernate 3.2 cr2 19

Chapter 2. Architecture

2.1. Overview

A (very) high-level view of the Hibernate architecture:

Application

Persistent Objects

HIBERNATE

st i

Database

This diagram shows Hibernate using the database and configuration data to provide persistence services (and
persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, Hibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own JDBC connections and manage its own transactions. This approach uses a minimal subset of
Hibernate's APIs:

Transient Objects Application

Persistent
Objects

SessionFactory Session | JDBC| JNDI JTA

Database

The "full cream" architecture abstracts the application away from the underlying JDBC/JTA APls and lets Hi-

Hibernate 3.2 cr2 20

Architecture

bernate take care of the details.

Transient Objects Application

Persistent
Objects

SessionFactory

Session | Transaction

TransactionFactory ConnectionProvider

JNDI JDBC JTA

Database

Heres some definitions of the objectsin the diagrams:

SessionFactory (or g. hi ber nat e. Sessi onFact ory)
A threadsafe (immutable) cache of compiled mappings for a single database. A factory for Sessi on and a
client of ConnectionProvider. Might hold an optional (second-level) cache of data that is reusable

between transactions, at a process- or cluster-level.

Session (or g. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the application and the persistent
store. Wraps a JDBC connection. Factory for Transacti on. Holds a mandatory (first-level) cache of per-
sistent objects, used when navigating the object graph or looking up objects by identifier.

Persistent objects and collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordin-
ary JavaBeans/POJOs, the only special thing about them is that they are currently associated with (exactly
one) Sessi on. As soon as the sessi on is closed, they will be detached and free to use in any application
layer (e.g. directly as datatransfer objectsto and from presentation).

Transient and detached objects and collections
Instances of persistent classes that are not currently associated with a Sessi on. They may have been instan-
tiated by the application and not (yet) persisted or they may have been instantiated by a closed Sessi on.

Transaction (or g. hi ber nat e. Transact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying JDBC, JTA or CORBA transaction. A Sessi on might span several
Transact i onSin some cases. However, transaction demarcation, either using the underlying APl or Tr ans-
acti on, ishever optional!

Hibernate 3.2 cr2 21

Architecture

ConnectionProvider (or g. hi ber nat e. connect i on. Connect i onPr ovi der)
(Optional) A factory for (and pool of) JDBC connections. Abstracts application from underlying Dat a-
sour ce Or Dri ver Manager . Not exposed to application, but can be extended/implemented by the developer.

TransactionFactory (or g. hi ber nat e. Transact i onFact ory)
(Optional) A factory for Transaction instances. Not exposed to the application, but can be extended/
implemented by the devel oper.

Extension Interfaces
Hibernate offers many optional extension interfaces you can implement to customize the behavior of your
persistence layer. See the APl documentation for details.

Given a "lite" architecture, the application bypasses the Transacti on/Transacti onFact ory and/or Connec-
tionProvi der APIstotalk to JTA or JDBC directly.

2.2. Instance states

An instance of a persistent classes may be in one of three different states, which are defined with respect to a
persistence context. The Hibernate Sessi on object is the persistence context:

transient
The instance is not, and has never been associated with any persistence context. It has no persistent identity
(primary key value).

persistent
The instance is currently associated with a persistence context. It has a persistent identity (primary key
value) and, perhaps, a corresponding row in the database. For a particular persistence context, Hibernate
guarantees that persistent identity is equivalent to Java identity (in-memory location of the object).

detached
The instance was once associated with a persistence context, but that context was closed, or the instance
was serialized to another process. It has a persistent identity and, perhaps, a corrsponding row in the data-
base. For detached instances, Hibernate makes no guarantees about the relationship between persistent
identity and Javaidentity.

2.3. IMX Integration

JMX isthe J2EE standard for management of Java components. Hibernate may be managed viaa IMX stand-
ard service. We provide an MBean implementation in the distribution,
org. hi bernat e. j nx. Hi bernat eServi ce.

For an example how to deploy Hibernate as a IMX service on the JBoss Application Server, please see the
JBoss User Guide. On JBoss AS, you also get these benefitsif you deploy using IMX:

* Session Management: The Hibernate sessi on's lifecycle can be automatically bound to the scope of a JTA
transaction. This means you no longer have to manually open and close the Sessi on, this becomes the job
of a JBoss EJB interceptor. You also don't have to worry about transaction demarcation in your code any-
more (unless you'd like to write a portable persistence layer of course, use the optional Hibernate Tr ansac-
ti on API for this). You call the H ber nat eCont ext t0 access a Sessi on.

Hibernate 3.2 cr2 22

Architecture

* HAR deployment: Usually you deploy the Hibernate JIMX service using a JBoss service deployment
descriptor (in an EAR and/or SAR file), it supports all the usual configuration options of a Hibernate Ses-
si onFact ory. However, you still have to name all your mapping files in the deployment descriptor. If you
decide to use the optional HAR deployment, JBoss will automatically detect all mapping filesin your HAR
file.

Consult the JBoss AS user guide for more information about these options.

Another feature available as a IMX service are runtime Hibernate statistics. See Section 3.4.6, “Hibernate stat-
istics’.

2.4. JCA Support

Hibernate may also be configured as a JCA connector. Please see the website for more details. Please note that
Hibernate JCA support is still considered experimental.

2.5. Contextual Sessions

Most applications using Hibernate need some form of "contextual" sessions, where a given session is in effect
throughout the scope of a given context. However, across applications the definition of what constitutes a con-
text is typicaly different; and different contexts define different scopes to the notion of current. Applications
using Hibernate prior to version 3.0 tended to utilize either home-grown Thr eadLocal -based contextual ses-
sions, helper classes such as Hi bernateUti |, or utilized third-party frameworks (such as Spring or Pico) which
provided proxy/interception-based contextual sessions.

Starting with version 3.0.1, Hibernate added the Sessi onFact ory. get Curr ent Sessi on() method. Initialy, this
assumed usage of JTA transactions, where the JTA transaction defined both the scope and context of a current
session. The Hibernate team maintains that, given the maturity of the numerous stand-alone JTA Transacti on-
Manager implementations out there, most (if not al) applications should be using JTA transaction management
whether or not they are deployed into a J2EE container. Based on that, the JTA-based contextual sessionsis all
you should ever need to use.

However, as of version 3.1, the processing behind Sessi onFact ory. get Current Sessi on() iS now pluggable.
To that end, a new extension interface (or g. hi ber nat e. cont ext . Cur r ent Sessi onCont ext) and a new config-
uration parameter (hi ber nat e. current _sessi on_cont ext _cl ass) have been added to allow pluggahility of the
scope and context of defining current sessions.

See the Javadocs for the or g. hi ber nat e. cont ext . Cur r ent Sessi onCont ext interface for a detailed discussion
of its contract. It defines a single method, current Sessi on(), by which the implementation is responsible for
tracking the current contextual session. Out-of-the-box, Hibernate comes with three implementations of thisin-
terface.

e org. hi bernate. cont ext. JTASessi onCont ext - current sessions are tracked and scoped by a JTA transac-
tion. The processing here is exactly the same as in the older JTA-only approach. See the Javadocs for de-
tails.

e org. hi bernate. cont ext. ThreadLocal Sessi onCont ext - current sessions are tracked by thread of execu-
tion. Again, see the Javadocs for details.

e org. hi bernat e. cont ext . ManagedSessi onCont ext - current sessions are tracked by thread of execution.
However, you are responsible to bind and unbind a Sessi on instance with static methods on this class, it

Hibernate 3.2 cr2 23

Architecture

does never open, flush, or close a Sessi on.

The first two implementations provide a "one session - one database transaction” programming model, also
known and used as session-per-request. The beginning and end of a Hibernate session is defined by the dura-
tion of a database transaction. If you use programatic transaction demarcation in plain JSE without JTA, you
are adviced to use the Hibernate Tr ansact i on API to hide the underlying transaction system from your code. If
you use JTA, use the JTA interfaces to demarcate transactions. If you execute in an EJB container that supports
CMT, transaction boundaries are defined declaratively and you don't need any transaction or session demarca-
tion operations in your code. Refer to Chapter 11, Transactions And Concurrency for more information and
code examples.

The hi ber nat e. current _sessi on_cont ext _cl ass configuration parameter defines which
org. hi bernat e. cont ext . Cur r ent Sessi onCont ext implementation should be used. Note that for backwards
compatibility, if this config param is not set but a or g. hi ber nat e. t ransacti on. Transact i onManager Lookup
is configured, Hibernate will use the or g. hi ber nat e. cont ext . JTASessi onCont ext . Typicaly, the value of this
parameter would just name the implementation class to use; for the three out-of-the-box implementations,
however, there are two corresponding short names, "jta", "thread", and "managed”.

Hibernate 3.2 cr2 24

Chapter 3. Configuration

Because Hibernate is designed to operate in many different environments, there are alarge number of configur-
ation parameters. Fortunately, most have sensible default values and Hibernate is distributed with an example
hi ber nat e. properties fileinetc/ that shows the various options. Just put the example file in your classpath
and customizeit.

3.1. Programmatic configuration

An instance of org. hi bernate. cfg. Configuration represents an entire set of mappings of an application's
Javatypesto an SQL database. The Confi gurati on isused to build an (immutable) Sessi onFact ory. The map-
pings are compiled from various XML mapping files.

You may obtain a Configuration instance by instantiating it directly and specifying XML mapping docu-
ments. If the mapping files are in the classpath, use addResour ce() :

Configuration cfg = new Configuration()
.addResource("Item hbm xm ")
. addResour ce("Bi d. hbm xm ") ;

An alternative (sometimes better) way is to specify the mapped class, and let Hibernate find the mapping docu-
ment for you:

Configuration cfg = new Configuration()
.addd ass(org. hi bernate. auction.ltem cl ass)
.addC ass(org. hi bernate. aucti on. Bi d. cl ass);

Then Hibernate will look for mapping files named /org/ hi bernate/auction/Itemhbmxm and /
or g/ hi ber nat e/ auct i on/ Bi d. hbm xni in the classpath. This approach eliminates any hardcoded filenames.

A Confi guration aso allowsyou to specify configuration properties:

Configuration cfg = new Configuration()
.addd ass(org. hi bernate. auction.ltem cl ass)
.addd ass(org. hi bernate. aucti on. Bi d. cl ass)

.set Property("hibernate.dialect”, "org.hibernate.dial ect. MySQ.I nnoDBDi al ect")
. set Property("hi bernate. connection. datasource", "java:conp/env/jdbc/test")
.set Property("hibernate.order_updates", "true");

Thisis not the only way to pass configuration properties to Hibernate. The various options include:

Pass an instance of j ava. uti| . Properties to Confi guration. set Properties().
Place hi ber nat e. properti es inaroot directory of the classpath.

Set syst empropertiesusing j ava - Dpropert y=val ue.

Include <pr oper t y> elementsin hi ber nat e. cf g. xn (discussed later).

~pwbdhpE

hi ber nat e. properti es iSthe easiest approach if you want to get started quickly.

The Confi gur at i on isintended as a startup-time object, to be discarded once a Sessi onFact ory is created.

3.2. Obtaining a SessionFactory

When all mappings have been parsed by the Confi gur at i on, the application must obtain a factory for Sessi on

Hibernate 3.2 cr2 25

Configuration

instances. Thisfactory isintended to be shared by all application threads:

Sessi onFactory sessions = cfg. buil dSessi onFactory();

Hibernate does alow your application to instantiate more than one Sessi onFact ory. Thisis useful if you are
using more than one database.

3.3. JDBC connections

Usually, you want to have the Sessi onFact ory create and pool JDBC connections for you. If you take this ap-
proach, opening a Sessi on isassimple as:

Sessi on session = sessions.openSession(); // open a new Session

As soon as you do something that requires access to the database, a JDBC connection will be obtained from the
pool.

For thisto work, we need to pass some JDBC connection properties to Hibernate. All Hibernate property names
and semantics are defined on the class or g. hi ber nat e. cf g. Envi ronnment . We will now describe the most im-
portant settings for JIDBC connection configuration.

Hibernate will obtain (and pool) connections using j ava. sql . Dri ver Manager if you set the following proper-
ties:

Table 3.1. Hibernate JDBC Properties

Property name Purpose

hi ber nat e. connecti on. driver_cl ass jdbc driver class

hi ber nat e. connecti on. ur| jdbc URL

hi ber nat e. connect i on. user nane database user

hi ber nat e. connect i on. passwor d database user password

hi ber nat e. connect i on. pool _si ze maxi mum number of pooled connections

Hibernate's own connection pooling algorithm is however quite rudimentary. It is intended to help you get star-
ted and is not intended for use in a production system or even for performance testing. Y ou should use athird
party pool for best performance and stability. Just replace the hi ber nat e. connecti on. pool _si ze property with
connection pool specific settings. This will turn off Hibernate's internal pool. For example, you might like to
use C3PO0.

C3P0 is an open source JDBC connection pool distributed along with Hibernate in the1'i b directory. Hibernate
will use its c3PoConnect i onProvi der for connection pooling if you set hi ber nat e. ¢3p0. * properties. If you'd
like to use Proxool refer to the packaged hi ber nat e. properti es and the Hibernate web site for more informa-
tion.

Hereis an example hi ber nat e. properti es file for C3PO:

hi ber nat e. connecti on. dri ver_cl ass = org. postgresql.Driver

hi ber nat e. connection.url = jdbc: postgresql://|ocal host/nydat abase
hi ber nat e. connecti on. usernane = myuser

hi ber nat e. connecti on. passwor d secret

Hibernate 3.2 cr2 26

Configuration

hi ber nat e. ¢3p0. m n_si ze=5

hi ber nat e. c3p0. max_si ze=20

hi ber nat e. ¢c3p0. ti meout =1800

hi ber nat e. ¢c3p0. max_st at emrent s=50

hi bernat e. di al ect = org. hi bernat e. di al ect. Post greSQLDi al ect

For use inside an application server, you should almost always configure Hibernate to obtain connections from
an application server Dat asour ce registered in JINDI. You'll need to set at |east one of the following properties:

Table 3.2. Hiber nate Datasour ce Properties

Propery name Purpose

hi ber nat e. connect i on. dat asour ce datasource JNDI name

hi bernate. j ndi . url URL of the JNDI provider (optional)

hi bernate. j ndi . cl ass class of the JNDI 1 ni ti al Cont ext Fact ory (optional)
hi ber nat e. connect i on. user nane database user (optional)

hi ber nat e. connect i on. passwor d database user password (optional)

Here's an example hi ber nat e. proper ti es file for an application server provided INDI datasource:

hi ber nat e. connecti on. dat asource = java:/conp/env/jdbc/test
hi bernate.transaction.factory_class =\

org. hi bernate. transacti on. JTATr ansacti onFactory
hi ber nat e. t ransacti on. manager _| ookup_cl ass =\

org. hi bernate. transacti on. JBossTransact i onManager Lookup
hi bernat e. di al ect = org. hi bernat e. di al ect. Post greSQLDi al ect

JDBC connections obtained from a JNDI datasource will automatically participate in the container-managed
transactions of the application server.

Arbitrary connection properties may be given by prepending "hi ber nat e. connnecti on" to the property name.
For example, you may specify achar Set using hi ber nat e. connect i on. char Set .

You may define your own plugin strategy for obtaining JDBC connections by implementing the interface
or g. hi ber nat e. connect i on. Connect i onProvi der. YOU may select a custom implementation by setting hi -
ber nat e. connecti on. provi der _cl ass.

3.4. Optional configuration properties

There are a number of other properties that control the behaviour of Hibernate at runtime. All are optional and
have reasonable default values.

Warning: some of these properties are "system-level” only. System-level properties can be set only viaj ava -
Dpr oper t y=val ue OF hi ber nat e. properti es. They may not be set by the other techniques described above.
Table 3.3. Hibernate Configuration Properties

Property name Purpose

hi ber nat e. di al ect The classname of a Hibernate bi al ect which allows

Hibernate 3.2 cr2 27

Configuration

Property name

Purpose

Hibernate to generate SQL optimized for a particular
relational database.

€d.full.classnane. of. Di al ect

hi ber nat e. show_sql

hi ber nat e. f or mat _sql

hi ber nat e. def aul t _schena

hi ber nat e. def aul t _cat al og

hi ber nat e. sessi on_f act ory_nane

hi ber nat e. max_f et ch_depth

hi ber nat e. def aul t _batch_fetch_si ze

hi bernat e. default _entity_node

Write all SQL statements to console. This is an a-
ternative to setting the log category
or g. hi bernat e. SQL t0 debug.

€g.true |fal se

Pretty print the SQL in the log and console.

€g.true |fal se

Qualify unqualified tablenames with the given
schema/tablespace in generated SQL.

€g. SCHEMA_NAVE

Qualify unqualified tablenames with the given cata-
log in generated SQL.

€g. CATALOG_NAMVE

The Sessi onFact ory will be automatically bound to
thisnamein JNDI after it has been created.

€g. j ndi / conposi t e/ nane

Set a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-
to-one). A o disables default outer join fetching.

eg. recommended values between 0 and 3

Set a default size for Hibernate batch fetching of as-
sociations.

€g. recommended values 4, 8, 16

Set a default mode for entity representation for all
sessions opened from this Sessi onFact ory

dynami c- map, don¥j , poj o

hi ber nat e. order _updat es

hi ber nat e. generate_statistics

Force Hibernate to order SQL updates by the primary
key value of the items being updated. This will result
in fewer transaction deadlocks in highly concurrent
systems.

€g.true |fal se

If enabled, Hibernate will collect statistics useful for
performance tuning.

€g.true |fal se

Hibernate 3.2 cr2

28

Configuration

Property name

hi bernat e. use_i dentifer_rol | back

Purpose

If enabled, generated identifier properties will be re-
set to default values when objects are del eted.

€g.true |fal se

hi ber nat e. use_sqgl _coment s

If turned on, Hibernate will generate comments inside
the SQL, for easier debugging, defaultsto f al se.

€g.true |fal se

Table 3.4. Hibernate JDBC and Connection Properties

Property name

hi ber nat e. j dbc

.fetch_size

Purpose

A non-zero value determines the JDBC fetch size
(calls st at enent . set Fet chSi ze()).

hi ber nat e. j dbc.

hi ber nat e. j dbc.

hi ber nat e. j dbc.

hi ber nat e. j dbc.

hi ber nat e. j dbc.

hi ber nat e. j dbc.

bat ch_si ze

bat ch_versi oned _dat a

factory_cl ass

use_scrol |l abl e_resul t set

use_streans_for_binary

use_get _gener at ed_keys

A non-zero value enables use of JDBC2 batch up-
dates by Hibernate.

eg. recommended values between 5 and 30

Set this property to true if your JDBC driver returns
correct row counts from execut eBat ch() (it is usu-
aly safe to turn this option on). Hibernate will then
use batched DML for automatically versioned data
Defaultstof al se.

€g.true |fal se

Select a custom Bat cher . Most applications will not
need this configuration property.

€g. cl assnane. of . Bat cher

Enables use of JDBC2 scrollable resultsets by Hi-
bernate. This property is only necessary when using
user supplied JDBC connections, Hibernate uses con-
nection metadata otherwise.

€g.true |fal se

Use streams when writing/reading bi nary or seri al -
i zabl e typesto/from JDBC (system-level property).

€g.true |fal se

Enable use of JDBC3 Pr epar edSt at e-
ment . get Gener at edKeys() to retrieve natively gener-
ated keys after insert. Requires JDBC3+ driver and
JRE1.4+, set to false if your driver has problems with
the Hibernate identifier generators. By default, triesto
determine the driver capabilites using connection
metadata.

Hibernate 3.2 cr2

29

Configuration

Property name

Purpose

€g.true| fal se

hi ber nat e. connecti on. provi der _cl ass

hi ber nat e. connection. i sol ation

hi ber nat e. connecti on. aut ocomni t

hi ber nat e. connecti on. rel ease_node

hi ber nat e. connect i on. <pr opert yNanme>

The classname of a custom Connecti onProvi der
which provides JDBC connections to Hibernate.

€J. cl assnane. of . Connect i onProvi der

Set the JDBC transaction isolation level. Check
j ava. sql . Connecti on for meaningful values but note
that most databases do not support all isolation levels.

eg.1, 2, 4, 8

Enables autocommit for JDBC pooled connections
(not recommended).

€g.true |fal se

Specify when Hibernate should release JDBC con-
nections. By default, a JIDBC connection is held until
the session is explicitly closed or disconnected. For
an application server JTA datasource, you should use
after_statement to aggressively release connections
after every JDBC call. For a non-JTA connection, it
often makes sense to release the connection at the end
of each transaction, by using after_transacti on.
aut o Will choose after_statement for the JTA and
CMT transaction strategies and after _transaction
for the JDBC transaction strategy.

€g. aut o (default) | on_cl ose | after_transaction |
af t er _st at enent

Note that this setting only affects Sessi ons returned
from Sessi onFact ory. openSessi on. FOr Sessions
obtained through Sessi onFact -
ory. get Current Sessi on, the cCurrent Sessi onCon-
text implementation configured for use controls the
connection release mode for those Sessi ons. See Sec-
tion 2.5, “ Contextua Sessions”

Pass the JDBC property pr oper t yNane t0 Dri ver Man-
ager . get Connection().

hi ber nat e. j ndi . <pr opert yNane>

Table 3.5. Hibernate Cache Properties

Property name

hi ber nat e. cache. provi der_cl ass

Pass the property propertyName to the JNDI I ni -
tial Cont ext Factory.

Pur pose

The classname of a custom CachePr ovi der .

Hibernate 3.2 cr2

30

Configuration

Property name

Purpose

€d. cl assnane. of . CacheProvi der

hi ber nat e. cache. use_mi ni nal _puts

hi ber nat e. cache. use_query_cache

hi ber nat e. cache. use_second_| evel _cache

hi ber nat e. cache. query_cache_factory

hi ber nat e. cache. regi on_prefix

hi ber nat e. cache. use_structured_entries

Table 3.6. Hibernate Transaction Properties

Property name

hi bernat e. transacti on.factory_cl ass

jta.UserTransaction

Optimize second-level cache operation to minimize
writes, at the cost of more frequent reads. This setting
is most useful for clustered caches and, in Hibernate3,
is enabled by default for clustered cache implementa-
tions.

€g.true| fal se

Enable the query cache, individual queries still have
to be set cachable.

€g.true| fal se

May be used to completely disable the second level
cache, which is enabled by default for classes which
specify a<cache> mapping.

€g.true| fal se

The classname of a custom Quer yCache interface, de-
faults to the built-in St andar dQuer yCache.

€g. cl assnare. of . QueryCache
A prefix to use for second-level cache region names.

€g. prefix

Forces Hibernate to store data in the second-level
cache in amore human-friendly format.

€g.true| fal se

Purpose

The classname of a Tr ansacti onFact ory to use with
Hibernate Tr ansacti on APl (defaults to JDBCTr ans-
acti onFactory).

€g. cl assnane. of . Transacti onFact ory

A INDI name used by JTATransactionFactory to
obtain the JTA User Transaction from the applica-
tion server.

€g. j ndi / conposi t e/ nane

hi ber nat e. t ransacti on. manager _| ookup_cl ass

The classname of a Tr ansact i onManager Lookup - re-
quired when JVM-level caching is enabled or when
using hilo generator in a JTA environment.

Hibernate 3.2 cr2

31

Configuration

Property name

Purpose

€J. cl assnane. of . Tr ansact i onManager Lookup

hi bernat e. t ransacti on. fl ush_bef ore_conpl eti on

If enabled, the session will be automatically flushed
during the before compl etion phase of the transaction.
Built-in and automatic session context management is
preferred, see Section 2.5, “Contextual Sessions”.

€g.true |fal se

hi bernat e. t ransacti on. aut o_cl ose_sessi on

If enabled, the session will be automatically closed
during the after completion phase of the transaction.
Built-in and utomatic session context management is
preferred, see Section 2.5, “Contextual Sessions”.

€g.true |fal se

Table 3.7. Miscellaneous Properties

Property name

hi ber nat e. current _sessi on_cont ext _cl ass

hi bernat e. query. factory_cl ass

Purpose

Supply a (custom) strategy for the scoping of the "cur-
rent" Session. See Section 2.5, “Contextua Ses-
sions’ for more information about the built-in
strategies.

€0.jta|thread | managed | cust om O ass

Chooses the HQL parser implementation.

€g.
org. hi bernate. hql . ast. ASTQuer yTr ansl at or Fact o
ry or

org. hi bernate. hgl . cl assic. d assi cQueryTransl a
torFactory

hi ber nat e. query. substitutions

Mapping from tokens in Hibernate queries to SQL
tokens (tokens might be function or literal names, for
example).

€g. hgl Li t eral =SQL_LI TERAL,
ti on=SQLFUNC

hgl Func-

hi ber nat e. hbn2ddl . aut o

hi bernate. cglib.use_reflection_optin zer

Automatically validate or export schema DDL to the
database when the Sessi onFactory is created. With
creat e- drop, the database schema will be dropped
when the Sessi onFact ory is closed explicitly.

€g.val i date |updat e |create | create-drop

Enables use of CGLIB instead of runtime reflection
(System-level property). Reflection can sometimes be
useful when troubleshooting, note that Hibernate al-
ways requires CGLIB even if you turn off the optim-

Hibernate 3.2 cr2

32

Configuration

Property name

Purpose

izer. You can not set this property in hibern-
ate.cfg. xnl.

€g.true |fal se

3.4.1. SQL Dialects

Y ou should always set the hi ber nat e. di al ect property to the correct or g. hi ber nat e. di al ect . bi al ect Sub-
class for your database. If you specify a dialect, Hibernate will use sensible defaults for some of the other prop-
erties listed above, saving you the effort of specifying them manually.

Table 3.8. Hibernate SQL Dialects (hi ber nat e. di al ect)
RDBMS Dialect
DB2 org. hi bernate. di al ect. DB2Di al ect
DB2 AS/400 org. hi bernat e. di al ect. DB2400Di al ect
DB2 OS390 org. hi bernate. di al ect. DB2390Di al ect
PostgreSQL or g. hi ber nat e. di al ect . Post gr eSQLDi al ect
MySQL or g. hi ber nat e. di al ect. MySQLDi al ect
MySQL with InnoDB or g. hi ber nat e. di al ect. MySQLI nnoDBDi al ect
MySQL with MyISAM or g. hi ber nat e. di al ect . M\ySQLMyl SAMDI al ect
Oracle (any version) org. hi bernat e. di al ect. Oracl eDi al ect
Oracle 9i/10g org. hi bernat e. di al ect. Oracl e9Di al ect
Sybase org. hi bernate. di al ect. SybaseDi al ect
Sybase Anywhere org. hi bernat e. di al ect. SybaseAnywher eDi al ect
Microsoft SQL Server org. hi bernate. di al ect. SQLSer ver Di al ect
SAPDB or g. hi ber nat e. di al ect. SAPDBDI al ect
Informix org. hi bernat e. di al ect. I nform xDi al ect
HypersonicSQL org. hi bernat e. di al ect. HSQLDi al ect
Ingres org. hi bernate. di al ect. | ngreshDi al ect
Progress org. hi bernate. di al ect. ProgressDi al ect
Mckoi SQL org. hi bernat e. di al ect. Mckoi Di al ect
Interbase org. hi bernate. di al ect. | nterbaseD al ect
Pointbase or g. hi ber nat e. di al ect . Poi nt baseDi al ect
FrontBase org. hi bernat e. di al ect. Front baseDi al ect
Firebird org. hi bernate. di al ect. Fi rebi rdDi al ect

Hibernate 3.2 cr2

33

Configuration

3.4.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often increase per-
formance by limiting the number of round trips to and from the database (at the cost of possibly more work per-
formed by the database itself). Outer join fetching allows a whole graph of objects connected by many-to-one,
one-to-many, many-to-many and one-to-one associations to be retrieved in asingle SQL SELECT.

Outer join fetching may be disabled globally by setting the property hi ber nat e. max_f et ch_dept h t0 0. A set-
ting of 1 or higher enables outer join fetching for one-to-one and many-to-one associations which have been
mapped with f et ch="j oi n".

See Section 19.1, “Fetching strategies’ for more information.

3.4.3. Binary Streams
Oracle limits the size of byt e arrays that may be passed to/from its JIDBC driver. If you wish to use large in-

stances of bi nary Or seri al i zabl e type, you should enable hi ber nat e. j dbc. use_st reans_f or _bi nary. This
is a system-level setting only.

3.4.4. Second-level and query cache

The properties prefixed by hi ber nat e. cache allow you to use a process or cluster scoped second-level cache
system with Hibernate. See the Section 19.2, “The Second Level Cache” for more details.

3.4.5. Query Language Substitution
Y ou may define new Hibernate query tokens using hi ber nat e. query. subst i t uti ons. For example:

hi ber nat e. query. substitutions true=1, fal se=0

would cause the tokenst rue and f al se to be trandated to integer literalsin the generated SQL.

hi ber nat e. query. substitutions tolLowercase=LOAER

would allow you to rename the SQL LOWER function.

3.4.6. Hibernate statistics

If you enable hi bernat e. generate_stati stics, Hibernate will expose a number of metrics that are useful
when tuning arunning system via Sessi onFact ory. get St at i sti cs() . Hibernate can even be configured to ex-
pose these statistics via IMX. Read the Javadoc of the interfaces in or g. hi ber nat e. st at s for more informa-
tion.

3.5. Logging

Hibernate logs various events using Apache commons-logging.

The commons-logging service will direct output to either Apache Log4j (if you include | og4j . j ar in your
classpath) or JDK1.4 logging (if running under JDK1.4 or above). You may download Log4j from ht -
tp://jakarta. apache. org. To use Log4j you will need to place al og4j . properti es filein your classpath, an

Hibernate 3.2 cr2 34

Configuration

example propertiesfile is distributed with Hibernate in the src/ directory.

We strongly recommend that you familiarize yourself with Hibernate's log messages. A lot of work has been
put into making the Hibernate log as detailed as possible, without making it unreadable. It is an essential
troubleshooting device. The most interesting log categories are the following:

Table 3.9. Hibernate L og Categories

Category Function
org. hi bernat e. SQL Log al SQL DML statements as they are executed
org. hi bernate. type Log al JDBC parameters

org. hi bernate. tool . hbn2dd Log all SQL DDL statements as they are executed
|

org. hibernate. pretty Log the state of al entities (max 20 entities) associated with the session at
flush time
or g. hi ber nat e. cache Log all second-level cache activity

org. hi bernate. transaction Log transaction related activity

org. hi bernate. j dbc Log al JDBC resource acquisition

org. hi bernate. hgl . ast. AST LogHQL and SQL ASTsduring query parsing

org. hi bernat e. secure Log al JAAS authorization requests

org. hi bernate Log everything (alot of information, but very useful for troubleshooting)

When developing applications with Hibernate, you should almost always work with debug enabled for the cat-
egory or g. hi ber nat e. SQL, or, alternatively, the property hi ber nat e. show_sql enabled.

3.6. Implementing a Nani ngSt r at egy

Theinterface or g. hi ber nat e. cf g. Nani ngSt r at egy alows you to specify a"naming standard” for database ob-
jects and schema elements.

Y ou may provide rules for automatically generating database identifiers from Java identifiers or for processing
"logical" column and table names given in the mapping file into "physical” table and column names. This fea-
ture helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_ prefixes, for ex-
ample). The default strategy used by Hibernate is quite minimal.

You may specify a different strategy by calling Confi gurati on. set Nami ngStrat egy() before adding map-
pings:

Sessi onFactory sf = new Configuration()
. set Nami ngSt r at egy (| mpr ovedNani ngSt r at egy. | NSTANCE)
.addFile("Item hbm xm ")
.addFi | e("Bi d. hbm xni ")
. bui | dSessi onFactory();

org. hi bernat e. cf g. | nprovedNami ngSt r at egy iS a built-in strategy that might be a useful starting point for
some applications.

Hibernate 3.2 cr2 35

Configuration

3.7. XML configuration file

An aternative approach to configuration is to specify a full configuration in afile named hi ber nat e. cf g. xm .
This file can be used as a replacement for the hi ber nat e. properti es file or, if both are present, to override
properties.

The XML configuration file is by default expected to be in the root 0 your CLASSPATH. Hereis an example:

<?xm version='"1.0" encodi ng='utf-8" ?>

<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-// Hi bernate/ H bernate Configuration DTD//EN'
"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gurati on>

<l-- a SessionFactory instance listed as /jndi/nanme -->
<session-factory
nane="j ava: hi ber nat e/ Sessi onFact ory" >

<l-- properties -->
<property nane="connecti on. dat asource">j ava:/conp/ env/jdbc/ MyDB</ pr operty>
<property nane="di al ect">org. hi bernate. di al ect. MySQLDi al ect </ property>
<property name="show sql ">fal se</property>
<property nane="transaction.factory_class">
org. hi bernate. transacti on. JTATr ansacti onFact ory
</ property>
<property nane="jta. UserTransacti on">j ava: conp/ User Tr ansact i on</ property>

<!-- mapping files -->

<mappi ng resour ce="or g/ hi bernat e/ auction/ltem hbm xm "/>

<mappi ng resour ce="or g/ hi ber nat e/ aucti on/ Bi d. hbm xm "/ >

<l-- cache settings -->

<cl ass-cache cl ass="org. hi bernate. auction.|ten usage="read-wite"/>

<cl ass-cache cl ass="org. hi bernate. aucti on. Bi d" usage="read-only"/>

<col | ecti on-cache col |l ecti on="org. hi bernate. auction.|tem bids" usage="read-wite"/>
</ sessi on-factory>

</ hi ber nat e- confi gurati on>

As you can see, the advantage of this approach is the externalization of the mapping file names to configura-
tion. The hi bernat e. cf g. xnl IS aso more convenient once you have to tune the Hibernate cache. Note that is
your choice to use either hi ber nat e. properti es Or hi bernate. cfg. xm , both are equivalent, except for the
above mentioned benefits of using the XML syntax.

With the XML configuration, starting Hibernate isthen as ssimple as
SessionFactory sf = new Configuration().configure().buildSessionFactory();

You can pick adifferent XML configuration file using

Sessi onFactory sf = new Configuration()
.configure("catdb.cfg.xm")
. bui | dSessi onFactory();

3.8. J2EE Application Server integration

Hibernate has the following integration points for J2EE infrastructure:

Hibernate 3.2 cr2 36

Configuration

e Container-managed datasources. Hibernate can use JDBC connections managed by the container and
provided through JNDI. Usually, a JTA compatible Tr ansact i onManager and a Resour ceManager take care
of transaction management (CMT), esp. distributed transaction handling across several datasources. Y ou
may of course also demarcate transaction boundaries programatically (BMT) or you might want to use the
optional Hibernate Tr ansact i on API for thisto keep your code portable.

e Automatic JNDI binding: Hibernate can bind its Sessi onFact ory to JNDI after startup.

e JTA Session binding: The Hibernate Sessi on may be automatically bound to the scope of JTA transactions.
Simply lookup the Sessi onFact ory from JNDI and get the current Sessi on. Let Hibernate take care of
flushing and closing the sessi on when your JTA transaction completes. Transaction demarcation is either
declarative (CMT) or programmatic (BMT/UserTransaction).

e JMX deployment: If you have a IMX capable application server (e.g. JBoss AS), you can chose to deploy
Hibernate as a managed MBean. This saves you the one line startup code to build your Sessi onFact ory
from a Confi guration. The container will startup your H ber nat eSer vi ce, and ideally aso take care of
service dependencies (Datasource has to be available before Hibernate starts, etc).

Depending on your environment, you might have to set the configuration option hibern-
at e. connect i on. aggr essi ve_rel ease to true if your application server shows "connection containment" ex-
ceptions.

3.8.1. Transaction strategy configuration

The Hibernate Sessi on API is independent of any transaction demarcation system in your architecture. If you
let Hibernate use JDBC directly, through a connection pool, you may begin and end your transactions by call-
ing the JDBC API. If you run in a J2EE application server, you might want to use bean-managed transactions
and call the JTA APl and User Tr ansact i on when needed.

To keep your code portable between these two (and other) environments we recommend the optional Hibernate
Transaction API, which wraps and hides the underlying system. You have to specify a factory class for
Transaction instances by setting the Hibernate configuration property hi bern-
ate.transaction.factory_cl ass.

There are three standard (built-in) choices:
org. hi bernate. transacti on. JDBCTr ansacti onFactory

delegates to database (JDBC) transactions (default)

org. hi bernate. transacti on. JTATr ansacti onFactory
delegates to container-managed transaction if an existing transaction is underway in this context (e.g. EJB
session bean method), otherwise a new transaction is started and bean-managed transaction are used.

org. hi bernate.transacti on. CMI'Tr ansact i onFact ory
delegates to container-managed JTA transactions

Y ou may also define your own transaction strategies (for a CORBA transaction service, for example).

Some features in Hibernate (i.e. the second level cache, Contextual Sessions with JTA, €etc.) require access to
the JTA Transact i onManager in a managed environment. In an application server you have to specify how Hi-
bernate should obtain a reference to the Tr ansact i onManager, since J2EE does not standardize a single mech-

Hibernate 3.2 cr2 37

Configuration

Table 3.10. JTA TransactionM anager s

Transaction Factory Application Server
org. hi bernate. transacti on. JBossTransact i onManager Lookup JBoss
org. hi bernate. transacti on. Webl ogi cTransact i onManager Lookup Weblogic
org. hi bernate.transacti on. WebSpher eTr ansact i onManager Lookup WebSphere
org. hi bernate. transacti on. WebSpher eExt endedJTATr ansact i onLookup WebSphere6
org. hi bernate. transacti on. OionTransacti onManager Lookup Orion
org. hi bernate. transacti on. Resi nTransacti onManager Lookup Resin
org. hi bernate. transacti on. JOTMIT ansact i onManager Lookup JOTM
org. hi bernate. transacti on. JOnASTr ansact i onManager Lookup JOnAS
org. hi bernate. transacti on. JRun4Tr ansact i onManager Lookup JRun4
org. hi bernate. transacti on. BESTransact i onManager Lookup Borland ES

3.8.2. INDI-bound sessi onFactory

A INDI bound Hibernate sessi onFact ory can simplify the lookup of the factory and the creation of new Ses-
si ons. Note that thisis not related to a INDI bound Dat asour ce, both simply use the same registry!

If you wish to have the SessionFactory bound to a JNDI namespace, specify a name (eg.
j ava: hi ber nat e/ Sessi onFact ory) using the property hi ber nat e. sessi on_fact ory_nane. If this property is
omitted, the Sessi onFact ory will not be bound to JNDI. (Thisis especially useful in environments with a read-
only INDI default implementation, e.g. Tomcat.)

When binding the Sessi onFact ory to JNDI, Hibernate will use the values of hi bernate. jndi.url, hibern-
ate.jndi.class to instantiate an initial context. If they are not specified, the default 1 ni ti al Cont ext will be
used.

Hibernate will automatically place the Sessi onFact ory in JNDI after you call cf g. bui | dSessi onFact ory() .
This means you will at least have this call in some startup code (or utility class) in your application, unless you
use IMX deployment with the Hi ber nat eSer vi ce (discussed |ater).

If you use a JNDI Sessi onFact ory, an EJB or any other class may obtain the Sessi onFact ory using a JNDI
lookup.

We recommend that you bind the Sessi onFact ory to JNDI in a managend environment and use a static
singleton otherwise. To shield your application code from these details, we also recommend to hide the actual
lookup code for a Sessi onFact ory in a helper class, such as Hi ber nat eUt i | . get Sessi onFact ory() . Note that
such aclassis also a convenient way to startup Hibernate—see chapter 1.

3.8.3. Current Session context management with JTA

The easiest way to handle Sessi ons and transactions is Hibernates automatic "current” Sessi on management.
See the discussion of Section 2.5, “Contextual Sessions’. Using the "j ta" session context, if there is no Hi-

Hibernate 3.2 cr2 38

Configuration

bernate Sessi on associated with the current JTA transaction, one will be started and associated with that JTA
transaction the first time you call sessi onFact ory. get Current Sessi on() . The Sessi onsretrieved via get Cur -
rent Sessi on() in"jta" context will be set to automatically flush before the transaction completes, close after
the transaction completes, and aggressively release JDBC connections after each statement. This alows the
Sessi ons to be managed by the lifecycle of the JTA transaction to which it is associated, keeping user code
clean of such management concerns. Your code can either use JTA programmatically through User Tr ansac-
ti on, or (recommended for portable code) use the Hibernate Tr ansacti on API to set transaction boundaries. If
you run in an EJB container, declarative transaction demarcation with CMT is preferred.

3.8.4. IMX deployment

Theline cf g. bui | dSessi onFact ory() still has to be executed somewhere to get a Sessi onFact ory into JNDI.
You can do this either in ast ati c initializer block (like the onein Hi ber nat et i |) or you deploy Hibernate as
amanaged service.

Hibernate is distributed with or g. hi ber nat e. j mx. Hi ber nat eSer vi ce for deployment on an application server
with IMX capabilities, such as JBoss AS. The actual deployment and configuration is vendor specific. Here is
an examplej boss- servi ce. xn for JBoss 4.0.x:

<?xm version="1.0"?>
<server >

<nbean code="org. hi bernate.jnx. H ber nat eServi ce"
nanme="j boss. j ca: servi ce=H ber nat eFact ory, nane=H ber nat eFact ory" >

<!-- Required services -->
<depends>j boss. j ca: servi ce=RARDepl oyer </ depends>
<depends>j boss. j ca: servi ce=Local TxCM nane=Hsql DS</ depends>

<I-- Bind the Hi bernate service to JNDI -->
<attribute name="Jndi Name">j ava: / hi ber nat e/ Sessi onFact ory</attri bute>

<l-- Datasource settings -->
<attribute name="Dat asource">j ava: Hsql DS</ attri but e>
<attribute name="D al ect">org. hi bernate. di al ect. HSQLD al ect </ attri but e>

<l-- Transaction integration -->
<attribute name="Transacti onStrategy">

org. hi bernate. transacti on. JTATransacti onFactory</attri but e>
<attribute name="Transacti onManager LookupStr at egy" >

org. hi bernate. transacti on. JBossTransact i onManager Lookup</ attri but e>
<attribute name="Fl ushBef or eConpl eti onEnabl ed" >true</attri bute>
<attribute name="Aut oCl oseSessi onEnabl ed">true</attri bute>

<l-- Fetching options -->
<attribute name="Maxi muntet chDept h" >5</attri bute>

<l-- Second-|evel caching -->

<attri bute name="SecondLevel CacheEnabl ed">true</attri bute>

<attribute name="CacheProvi der C ass">or g. hi ber nat e. cache. EhCacheProvi der</attri but e>
<attribute name="QueryCacheEnabl ed">true</attri bute>

<l-- Logging -->
<attribute name="ShowSql Enabl ed">true</attri bute>

<I-- Mapping files -->
<attri bute name="MapResources">auction/Item hbm xm , aucti on/ Cat egory. hbm xm </ attri but e>

</ nbean>

</ server>

Thisfileis deployed in adirectory called META- | NF and packaged in a JAR file with the extension . sar (service

Hibernate 3.2 cr2 39

Configuration

archive). You aso need to package Hibernate, its required third-party libraries, your compiled persistent
classes, as well as your mapping files in the same archive. Your enterprise beans (usually session beans) may
be kept in their own JAR file, but you may include this EJB JAR file in the main service archive to get asingle
(hot-)deployable unit. Consult the JBoss AS documentation for more information about IMX service and EJB

deployment.

Hibernate 3.2 cr2 40

Chapter 4. Persistent Classes

Persistent classes are classes in an application that implement the entities of the business problem (e.g. Custom-
er and Order in an E-commerce application). Not all instances of a persistent class are considered to be in the
persistent state - an instance may instead be transient or detached.

Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java Object
(POJO) programming model. However, none of these rules are hard requirements. Indeed, Hibernate3 assumes
very little about the nature of your persistent objects. You may express a domain model in other ways: using
trees of Map instances, for example.

4.1. A simple POJO example

Most Java applications require a persistent class representing felines.

package eg;
import java.util. Set;
i mport java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Col or col or;
private char sex;
private float weight;
private int litterld;

private Cat nother;
private Set kittens = new HashSet();

private void setld(Long id) {
this.id=id;

public Long getld() {
return id;
}

voi d setBirthdate(Date date) {
bi rt hdate = date;
}

public Date getBirthdate() {
return birthdate;
}

voi d set Wi ght (fl oat weight) {
this.weight = weight;

}

public float getWight() {
return weight;

}

public Col or getColor() {
return col or;
}

voi d set Col or (Col or color) {
this.color = color;

}

voi d set Sex(char sex) {

t hi s. sex=sex;
}

public char getSex() {
return sex;

Hibernate 3.2 cr2 41

Persistent Classes

}

void setLitterld(int id) {
this.litterld = id;
}

public int getLitterld() {
return litterld,
}

voi d set Mot her (Cat not her) {
t hi s. not her = not her;
}

public Cat getMther() {
return nother;
}

voi d setKittens(Set kittens) {
this.kittens = kittens;
}

public Set getKittens() {
return kittens;
}

/1 addKi tten not needed by Hi bernate
public void addKitten(Cat kitten) ({
ki tten.set Mother(this);
kitten.setLitterld(kittens.size());
kittens. add(kitten);

There are four main rulesto follow here:

4.1.1. Implement a no-argument constructor

Cat has a no-argument constructor. All persistent classes must have a default constructor (which may be non-
public) so that Hibernate can instantiate them using Const ruct or. newl nst ance() . We strongly recommend
having a default constructor with at least package visibility for runtime proxy generation in Hibernate.

4.1.2. Provide an identifier property (optional)

cat has a property caled i d. This property maps to the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, any primitive "wrapper"
type, j ava. l ang. String Or j ava. util . Date. (If your legacy database table has composite keys, you can even
use a user-defined class with properties of these types - see the section on composite identifiers later.)

The identifier property is strictly optional. Y ou can leave them off and let Hibernate keep track of object identi-
fiersinternally. We do not recommend this, however.

In fact, some functionality is available only to classes which declare an identifier property:

e Transitive reattachment for detached objects (cascade update or cascade merge) - see Section 10.11,
“Transitive persistence”

®* Session.saveO Updat e()

* Session. nmerge()

We recommend you declare consistently-named identifier properties on persistent classes. We further recom-
mend that you use a nullable (ie. non-primitive) type.

4.1.3. Prefer non-final classes (optional)

Hibernate 3.2 cr2 42

Persistent Classes

A central feature of Hibernate, proxies, depends upon the persistent class being either non-final, or the imple-
mentation of an interface that declares all public methods.

You can persist final classes that do not implement an interface with Hibernate, but you won't be able to use
proxies for lazy association fetching - which will limit your options for performance tuning.

You should also avoid declaring public final methods on the non-final classes. If you want to use a class
with apublic final method, you must explicitly disable proying by setting | azy="f al se".

4.1.4. Declare accessors and mutators for persistent fields (optional)

cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist instance vari-
ables. We believeit is better to provide an indirection between the relational schema and internal data structures
of the class. By default, Hibernate persists JavaBeans style properties, and recognizes method names of the
form get Foo, i sFoo and set Foo. You may switch to direct field access for particular properties, if needed.

Properties need not be declared public - Hibernate can persist a property with a default, prot ected or private
get / set pair.

4.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from the superclass,
Cat .

package eg;

public class DonesticCat extends Cat {
private String nane;

public String getName() {
return nane;
}

protected void setNane(String nane) {
t hi s. name=narne;
}

4.3. Implementing equal s() and hashCode()

Y ou have to override the equal s() and hashCode() methodsif you

« intend to put instances of persistent classesin a Set (the recommended way to represent many-val ued asso-
ciations) and
* intend to use reattachment of detached instances

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only inside a particular
Session scope. So as soon as we mix instances retrieved in different sessions, we must implement equal s() and
hashCode() if we wish to have meaningful semanticsfor Set s.

The most obvious way isto implement equal s() /hashCode() by comparing the identifier value of both objects.
If the value is the same, both must be the same database row, they are therefore equal (if both are added to a
Set , we will only have one element in the set). Unfortunately, we can't use that approach with generated iden-
tifiersl Hibernate will only assign identifier values to objects that are persistent, a newly created instance will

Hibernate 3.2 cr2 43

Persistent Classes

not have any identifier value! Furthermore, if an instance is unsaved and currently in a Set , saving it will assign
an identifier value to the object. If equal s() and hashCode() are based on the identifier value, the hash code
would change, breaking the contract of the set . See the Hibernate website for a full discussion of this problem.
Note that thisis not a Hibernate issue, but normal Java semantics of object identity and equality.

We recommend implementing equal s() and hashCode() using Business key equality. Business key equality
means that the equal s() method compares only the properties that form the business key, a key that would
identify our instance in the real world (anatural candidate key):

public class Cat {

publ i ¢ bool ean equal s(bj ect other) {
if (this == other) return true;
if (!(other instanceof Cat)) return fal se;

final Cat cat = (Cat) other

if (!cat.getLitterld().equals(getLitterld())) return false;
if (!cat.getMther().equals(getMther())) return false;

return true

}

public int hashCode() {
int result;
result = getMther().hashCode();
result = 29 * result + getLitterld();
return result;

Note that a business key does not have to be as solid as a database primary key candidate (see Section 11.1.3,
“Considering object identity”). Immutable or unique properties are usually good candidates for a business key.

4.4. Dynamic models

Note that the following features are currently considered experimental and may change in the near future.

Persistent entities don't necessarily have to be represented as POJO classes or as JavaBean objects at runtime.
Hibernate also supports dynamic models (using mvaps of Maps at runtime) and the representation of entities as
DOMA4J trees. With this approach, you don't write persistent classes, only mapping files.

By default, Hibernate works in normal POJO mode. Y ou may set a default entity representation mode for a par-
ticular Sessi onFact ory using the def aul t _enti ty_nmode configuration option (see Table 3.3, “Hibernate Con-
figuration Properties’.

The following examples demonstrates the representation using Maps. First, in the mapping file, an enti t y- name
has to be declared instead of (or in addition to) a class name:

<hi ber nat e- mappi ng>
<cl ass entity-nane="Custoner" >

<id nanme="id"

type="1 ong"

colum="1D">

<gener ator cl ass="sequence"/>
</id>

<property nane="nanme"

Hibernate 3.2 cr2 44

Persistent Classes

col umm=" NAME"
type="string"/>

<property nanme="address"
col um=" ADDRESS"
type="string"/>

<many-t o- one nane="organi zati on"
col um=" ORGANI ZATI ON_I D"
cl ass="Organi zation"/ >

<bag nanme="orders"
i nverse="true"
| azy="fal se"
cascade="al | ">
<key col um="CUSTOMER | D'/ >
<one-to-many class="Order"/>
</ bag>

</ cl ass>

</ hi ber nat e- mappi ng>

Note that even though associations are declared using target class hames, the target type of an associations may

also be a dynamic entity instead of a POJO.

After setting the default entity mode to dynami c- map for the Sessi onFact ory, we can at runtime work with

Maps of Maps:

Session s = openSession();
Transaction tx = s.begi nTransaction();
Session s = openSession();

/1 Create a custoner
Map david = new HashMap();
davi d. put ("name", "David");

/'l Create an organization
Map foobar = new HashMap();
f oobar. put ("nane", "Foobar Inc.");

[/ Link both
davi d. put (" organi zati on", foobar);

/'l Save both
s. save("Custoner", david);
s.save("Organi zati on", foobar);

tx.commt();
s.cl ose();

The advantages of a dynamic mapping are quick turnaround time for prototyping without the need for entity
class implementation. However, you lose compile-time type checking and will very likely deal with many ex-
ceptions at runtime. Thanks to the Hibernate mapping, the database schema can easily be normalized and

sound, allowing to add a proper domain model implementation on top later on.
Entity representation modes can also be set on a per Sessi on basis:

Sessi on dynami cSessi on = poj oSessi on. get Sessi on(Entit yMode. MAP) ;

/1 Create a custoner

Map david = new HashMap();

davi d. put (" nanme", "David");

dynami cSessi on. save(" Custoner", david);

dynami cSessi on. fl ush();

Hibernate 3.2 cr2

45

Persistent Classes

dynami cSessi on. cl ose()

/1 Continue on poj oSession

Please note that the call to get Sessi on() using an Enti t yMbde iS 0N the Sessi on API, not the Sessi onFactory.
That way, the new Sessi on shares the underlying JDBC connection, transaction, and other context information.
This means you don't have tocall f1 ush() and cl ose() on the secondary Sessi on, and also leave the transac-
tion and connection handling to the primary unit of work.

More information about the XML representation capabilities can be found in Chapter 18, XML Mapping.

4.5. Tuplizers

org. hi bernate. tupl e. Tupl i zer, and its sub-interfaces, are responsible for managing a particular representa-
tion of a piece of data, given that representation's or g. hi ber nat e. Enti t yMbde. If a given piece of data is
thought of as a data structure, then a tuplizer is the thing which knows how to create such a data structure and
how to extract values from and inject values into such a data structure. For example, for the POJO entity mode,
the correpsonding tuplizer knows how create the POJO through its constructor and how to access the POJO
properties using the defined property accessors. There are two high-level types of Tuplizers, represented by the
org. hibernate.tuple. EntityTuplizer and org.hibernate.tuple. Conponent Tuplizer interfaces. En-
tityTuplizers are responsible for managing the above mentioned contracts in regards to entities, while com
ponent Tupl i zer S do the same for components.

Users may aso plug in their own tuplizers. Perhaps you require that aj ava. util. Map implementation other
than j ava. uti| . Hashvap be used while in the dynamic-map entity-mode; or perhaps you need to define a dif-
ferent proxy generation strategy than the one used by default. Both would be achieved by defining a custom
tuplizer implementation. Tuplizers definitions are attached to the entity or component mapping they are meant
to manage. Going back to the example of our customer entity:

<hi ber nat e- mappi ng>
<cl ass entity-nane="Custoner" >

<l--
Override the dynam c-map entity-node
tuplizer for the custoner entity

-->

<tuplizer entity-node="dynani c-map"

cl ass="Cust onivapTupl i zer |l npl "/ >

<id name="id" type="long" colum="1D"'>
<generator class="sequence"/>
</id>

<l-- other properties -->
</ cl ass>
</ hi ber nat e- mappi ng>

public class CustomvapTuplizerl npl
ext ends org. hi bernate. tupl e. Dynam cMapEntityTuplizer {
/1 override the buildlnstantiator() nethod to plug in our custom nap...
protected final Instantiator buildlnstantiator(
or g. hi ber nat e. mappi ng. Per si st ent ass mappi ngl nfo) {
return new Cust omMvapl nstanti ator(mappi nglnfo);

}

private static final class Customvaplnstanti ator
extends org. hi bernate. tupl e. Dynanm cMapl nstantitor {
/1 override the generateMap() nethod to return our custom nap...
protected final Map generateMap() {

Hibernate 3.2 cr2 46

Persistent Classes

return new Customvap();

}

TODO: Document user-extension framework in the property and proxy packages

Hibernate 3.2 cr2

47

Chapter 5. Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings are usually defined in an XML document. The mapping document is designed to be
readable and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed
around persistent class declarations, not table declarations.

Note that, even though many Hibernate users choose to write the XML by hand, a number of tools exist to gen-
erate the mapping document, including XDaoclet, Middlegen and AndroMDA.

Letskick off with an example mapping:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass nane="Cat"
t abl e="cat s"
di scri m nat or-val ue="C"'>

<id name="id">
<generator class="native"/>
</id>

<di scri m nat or col unm="subcl ass"
type="character"/>

<property name="wei ght"/>

<property name="birt hdate"
type="dat e"
not - nul I ="true"
updat e="f al se"/ >

<property nane="col or"
type="eg. types. Col or User Type"
not-nul | ="true"
updat e="f al se"/ >

<property nanme="sex"
not-nul | ="true"
updat e="f al se"/ >

<property nane="litterld"
colum="litterld"
updat e="f al se"/ >

<many-t o- one nane="not her"
col um="not her _i d"
updat e="f al se"/ >

<set name="kittens"
i nverse="true"
order-by="litter_id">
<key col um="not her _i d"/>
<one-to-nmany class="Cat"/>
</ set>

<subcl ass nanme="Donesti cCat"
di scri m nator-val ue="D"'>

Hibernate 3.2 cr2 48

Basic O/R Mapping

<property nanme="nane"
type="string"/>

</ subcl ass>
</ cl ass>

<cl ass nane="Dog" >
<l-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional at-
tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not - nul | attribute.)

5.1.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD may be found at the URL above, in the
directory hi ber nat e- x. x. x/ src/ org/ hi bernate Of in hi bernat e3. j ar. Hibernate will aways look for the
DTD inits classpath first. If you experience lookups of the DTD using an Internet connection, check your DTD
declaration against the contents of your claspath.

5.1.2. hibernate-mapping

This element has several optional attributes. The schema and cat al og attributes specify that tables referred to in
this mapping belong to the named schema and/or catalog. If specified, tablenames will be qualified by the given
schema and catalog names. If missing, tablenames will be unqualified. The def aul t - cascade attribute specifies
what cascade style should be assumed for properties and collections which do not specify acascade attribute.
The aut o-i nport attribute lets us use unqualified class names in the query language, by default.

<hi ber nat e- mappi ng

schema="schenaNane" (1)
cat al og="cat al ogNane" (2)
def aul t - cascade="cascade_styl e" (3)
defaul t-access="fi el d| property| C assNane" (4)
default-lazy="true|fal se" (5)
aut o-i nport="true| fal se" (6)
package="package. nane" (7)

/>

(1) schema (optional): The name of a database schema.

(2) catal og (optional): The name of a database catal og.

(3) defaul t-cascade (optional - defaultsto none): A default cascade style.

(4) defaul t-access (optional - defaults to property): The strategy Hibernate should use for accessing all
properties. Can be a custom implementation of Propert yAccessor.

(5) defaul t-1azy (optiona - defaults to t rue): The default value for unspecifed | azy attributes of class and
collection mappings.

(6) auto-inport (optional - defaults to true): Specifies whether we can use unqualified class names (of
classes in this mapping) in the query language.

(7) package (optional): Specifies a package prefix to assume for unqualified class names in the mapping doc-
ument.

Hibernate 3.2 cr2 49

Basic O/R Mapping

If you have two persistent classes with the same (unqualified) name, you should set aut o- i nport ="f al se". Hi-
bernate will throw an exception if you attempt to assign two classes to the same "imported" name.

Note that the hi ber nat e- mappi ng element allows you to nest several persistent <cl ass> mappings, as shown
above. It is however good practice (and expected by some tools) to map only a single persistent class (or a
single class hierarchy) in one mapping file and name it after the persistent superclass, e.g. Cat.hbm xni ,
Dog. hbm xmi , or if using inheritance, Ani mal . hbm xn .

5.1.3. class

Y ou may declare a persistent class using the cl ass element:

<cl ass
nane="Cl assNane" (1)
t abl e="t abl eNang" (2)
di scri m nat or-val ue="di scri m nat or _val ue" (3)
mut abl e="true| f al se" (4)
schema="owner" (5)
cat al og="cat al og" (6)
proxy="Proxyl nterface" (7)
dynam c- updat e="true| f al se" (8)
dynami c-insert="true|fal se" (9)
sel ect - bef ore- updat e="true| f al se" (10)
pol ynor phi sn¥"inplicit]|explicit" (11)
where="arbitrary sql where condition" (12)
persi st er ="Persi sterd ass" (13)
bat ch-si ze="N" (14)
optimstic-lock="none|version|dirty|all" (15)
| azy="true|fal se" (16)
entity-nane="EntityNane" (17)
check="arbitrary sql check condition" (18)
row d="row d" (19)
subsel ect =" SQ. expressi on” (20)
abstract ="true|fal se" (21)
node="el enent - nane"
/>

(D

(2)
(3)

(4
(5)
(6)
(7
(8)
(9)

(10)

(11)

(12)

name (optional): The fully qualified Java class name of the persistent class (or interface). If this attribute is
missing, it is assumed that the mapping is for a non-POJO entity.

tabl e (optional - defaults to the unqualified class name): The name of its database table.

di scri mi nat or - val ue (optional - defaults to the class name): A value that distiguishes individual sub-
classes, used for polymorphic behaviour. Acceptable valuesinclude nul I and not nul I .

nut abl e (optional, defaultsto t r ue): Specifies that instances of the class are (not) mutable.

schema (optional): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

cat al og (optional): Override the catalog name specified by the root <hi ber nat e- mappi ng> €lement.

proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of
the classitsalf.

dynani c- updat e (optional, defaults to f al se): Specifies that uPDATE SQL should be generated at runtime
and contain only those columns whose values have changed.

dynani c-i nsert (optional, defaultsto f al se): Specifies that | NSERT SQL should be generated at runtime
and contain only the columns whose values are not null.

sel ect - bef or e- updat e (optional, defaults to f al se): Specifies that Hibernate should never perform an
SQL UPDATE unlessit is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using updat e()), this means that Hibernate will
perform an extra SQL SELECT to determine if an UPDATE is actually required.

pol yror phi sm(optional, defaultsto i npl i ci t): Determines whether implicit or explicit query polymorph-
ismisused.

wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class

Hibernate 3.2 cr2 50

Basic O/R Mapping

(13) persister (optional): Specifies acustom d assPersi ster.

(14) bat ch-si ze (optional, defaultsto 1) specify a"batch size" for fetching instances of this class by identifier.

(15) optimistic-Iock (optional, defaultsto ver si on): Determines the optimistic locking strategy.

(16) | azy (optional): Lazy fetching may be completely disabled by setting | azy="f al se".

(17) entity-name (optional, defaults to the class name): Hibernate3 allows a class to be mapped multiple times
(to different tables, potentially), and allows entity mappings that are represented by Maps or XML at the
Java level. In these cases, you should provide an explicit arbitrary name for the entity. See Section 4.4,
“Dynamic models’ and Chapter 18, XML Mapping for more information.

(18) check (optional): A SQL expression used to generate a multi-row check constraint for automatic schema
generation.

(19) rowid (optional): Hibernate can use so called ROWIDs on databases which support. E.g. on Oracle, Hi-
bernate can use the r owi d extra column for fast updates if you set this option to rowi d. A ROWID is an
implementation detail and represents the physical location of a stored tuple.

(20) subsel ect (optional): Maps an immutable and read-only entity to a database subselect. Useful if you want
to have aview instead of a base table, but don't. See below for more information.

(21) abstract (optional): Used to mark abstract superclassesin <uni on- subcl ass> hierarchies.

It is perfectly acceptable for the named persistent class to be an interface. Y ou would then declare implement-
ing classes of that interface using the <subcl ass> element. You may persist any static inner class. Y ou should
specify the class name using the standard form ie. eg. Foo$Bar .

Immutable classes, nut abl e="f al se", may not be updated or deleted by the application. This allows Hibernate
to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. Hibernate will ini-
tially return CGLIB proxies which implement the named interface. The actual persistent object will be loaded
when a method of the proxy isinvoked. See "Proxies for Lazy Initialization" below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only by queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <cl ass> declaration as a <subcl ass> Or <j oi ned- subcl ass>. FOr most purposes the defaullt,
pol yrmor phi sme"inplicit", iS appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this allows a "lightweight" class that contains a subset of the table columns).

The persi st er attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of or g. hi ber nat e. persi ster. Enti tyPersi ster or you might even provide a com-
pletely new implementation of the interface or g. hi ber nat e. per si st er. d assPer si st er that implements per-
sistence via, for example, stored procedure calls, seridization to flat files or LDAP. See
org. hi bernat e. t est . Cust onPer si st er for asimple example (of "persistence" to a Hasht abl e).

Note that the dynani c- updat e and dynami c-i nsert Settings are not inherited by subclasses and so may aso be
specified on the <subcl ass> Or <j oi ned-subcl ass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judicioudly.

Use of sel ect - bef or e- updat e Will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily if you reattach a graph of detached instances to a Sessi on.

If you enable dynani c- updat e, you will have a choice of optimistic locking strategies:

» versi on check the version/timestamp columns

e all check al columns

Hibernate 3.2 cr2 51

Basic O/R Mapping

e dirty check the changed columns, alowing some concurrent updates
* none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with Hibernate.
Thisisthe optimal strategy with respect to performance and is the only strategy that correctly handles modific-
ations made to detached instances (ie. when Sessi on. ner ge() isused).

There is no difference between a view and a base table for a Hibernate mapping, as expected this is transparent
at the database level (note that some DBMS don't support views properly, especially with updates). Sometimes
you want to use a view, but can't create one in the database (ie. with a legacy schema). In this case, you can
map an immutable and read-only entity to a given SQL subselect expression:

<cl ass nane="Sumary" >

<subsel ect >
sel ect item name, max(bi d.anmount), count(*)
fromitem
join bid on bid.itemid =itemid
group by item nane

</ subsel ect >

<synchroni ze table="itenl'/>

<synchroni ze tabl e="bid"/>

<i d name="nane"/>

</c|é§§>
Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly, and that queries

againgt the derived entity do not return stale data. The <subsel ect > is available as both as an attribute and a
nested mapping element.

514.id

Mapped classes must declare the primary key column of the database table. Most classes will also have a Java-
Beans-style property holding the unique identifier of an instance. The <i d> element defines the mapping from
that property to the primary key column.

<id
nane="pr opert yNane" (1)
type="t ypenane" (2)
col um="col unm_nane" (3)
unsaved- val ue="nul | | any| none| undef i ned| i d_val ue" (4)
access="fiel d| property| Cl assNanme" > (5)
node="el enent - nane| @ttri bute-nanme| el enent/ @ttribute|."
<generator cl ass="generatorC ass"/>

</id>

(1) name (optional): The name of the identifier property.

(2) type (optional): A name that indicates the Hibernate type.

(3) col um (optional - defaults to the property name): The name of the primary key column.

(4) unsaved-val ue (optional - defaults to a "sensible”" value): An identifier property value that indicates that
an instance is newly instantiated (unsaved), distinguishing it from detached instances that were saved or
loaded in a previous session.

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

If the nane attribute is missing, it is assumed that the class has no identifier property.

Hibernate 3.2 cr2 52

Basic O/R Mapping

The unsaved- val ue attribute is aimost never needed in Hibernate3.

There is an alternative <conposi t e-i d> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

Generator

The optional <gener at or > child element names a Java class used to generate unique identifiers for instances of
the persistent class. If any parameters are required to configure or initialize the generator instance, they are
passed using the <par an»> €lement.

<id name="id" type="long" colum="cat_id">
<generator class="org. hi bernate.id. Tabl eH LoGener at or">
<par am nane="t abl e" >ui d_t abl e</ par an>
<par am nane="col utm" >next _hi _val ue_col utm</ par an»
</ gener at or >
</id>

All generators implement the interface or g. hi bernate. i d. I denti fi er Generator. Thisis avery simple inter-
face; some applications may choose to provide their own specialized implementations. However, Hibernate
provides arange of built-in implementations. There are shortcut names for the built-in generators:

i ncrenment
generates identifiers of type| ong, short orint that are unique only when no other processis inserting data
into the same table. Do not use in a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The returned
identifier is of typel ong, short oOrint.

sequence
uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi or a generator in Interbase. The returned
identifier isof typel ong, short Orint

hilo
uses a hi/lo algorithm to efficiently generate identifiers of type 1 ong, short or int, given a table and
column (by default hi ber nat e_uni que_key and next _hi respectively) as a source of hi values. The hi/lo al-
gorithm generates identifiers that are unique only for a particular database.

seqghilo
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short ori nt, given a named database
sequence.

uui d
uses a 128-bit UUID agorithm to generate identifiers of type string, unique within a network (the IP ad-
dressisused). The UUID is encoded as astring of hexadecimal digits of length 32.

gui d
uses a database-generated GUID string on MS SQL Server and MySQL.

native
picksi dentity, sequence Or hi | o depending upon the capabilities of the underlying database.

assi gned
lets the application to assign an identifier to the object before save() iscalled. Thisisthe default strategy if

Hibernate 3.2 cr2 53

Basic O/R Mapping

No <gener at or > element is specified.

sel ect
retrieves a primary key assigned by a database trigger by selecting the row by some unique key and retriev-
ing the primary key value.

foreign
uses the identifier of another associated object. Usually used in conjunction with a <one- t o- one> primary
key association.

sequence-identity
a specialized sequence generation strategy which utilizes a database sequence for the actual value genera-
tion, but combines this with JDBC3 getGeneratedK eys to actually return the generated identifier value as
part of the insert statement execution. This strategy is only known to be supported on Oracle 10g drivers
targetted for JDK 1.4. Note comments on these insert statements are disabled due to a bug in the Oracle
drivers.

Hi/lo algorithm

The hi | o and seghi | o generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-
proach to identifier generation. The first implementation requires a "specia" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="id" type="long" colum="cat_id">
<generator class="hilo">
<param nane="t abl " >hi _val ue</ par an»
<par am nane="col utm" >next _val ue</ par an>
<par am nane="max_| 0" >100</ par an»
</ gener at or >
</id>

<id name="id" type="long" colum="cat_id">
<generator class="seqghil o">
<par am nanme="sequence" >hi _val ue</ par an»
<par am nane="nmax_| 0" >100</ par an>
</ gener at or >
</id>

Unfortunately, you can't use hi | o when supplying your own Connect i on to Hibernate. When Hibernate is using
an application server datasource to obtain connections enlisted with JTA, you must properly configure the hi -
bernat e. transacti on. nanager _| ookup_cl ass.

UUID algorithm

The UUID contains: |P address, startup time of the VM (accurate to a quarter second), system time and a
counter value (unique within the JVM). It's not possible to obtain a MAC address or memory address from Java
code, so thisisthe best we can do without using JNI.

Identity columns and sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may usei dentity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence style key generation. Both these strategies require two SQL queries to insert a new object.

<id name="id" type="long" columm="person_id">
<gener at or cl ass="sequence">
<par am nane="sequence" >per son_i d_sequence</ par anr
</ gener at or >

Hibernate 3.2 cr2 54

Basic O/R Mapping

</id>

<id name="id" type="long" columm="person_id" unsaved-val ue="0">
<generator class="identity"/>
</id>

For cross-platform development, the native strategy will choose from the identity, sequence and hilo
strategies, dependant upon the capabilities of the underlying database.

Assigned identifiers

If you want the application to assign identifiers (as opposed to having Hibernate generate them), you may use
the assi gned generator. This specia generator will use the identifier value already assigned to the object's iden-
tifier property. This generator is used when the primary key is a natural key instead of a surrogate key. Thisis
the default behavior if you do no specify a<gener at or > el ement.

Choosing the assi gned generator makes Hibernate use unsaved- val ue="undef i ned", forcing Hibernate to go
to the database to determine if an instance is transient or detached, unless there is a version or timestamp prop-
erty, or you define | nt er cept or . i sUnsaved() .

Primary keys assigned by triggers
For legacy schemas only (Hibernate does not generate DDL with triggers).

<id name="id" type="long" col um="person_id">
<generator class="select">
<par am nane="key" >soci al Securi t yNunber </ par an»
</ gener at or >
</id>

In the above example, there is a unique valued property named soci al Securi t yNunber defined by the class, as
anatural key, and a surrogate key named per son_i d whose value is generated by atrigger.

5.1.5. composite-id

<conposite-id
name="pr opert yNanme"
cl ass="Cl assNane"
mapped="true| f al se"
access="fi el d| property| d assNane" >
node="el enent - nang| . "

<key- property nanme="propertyNane" type="typenane" col um="col um_nane"/>
<key- many-t o- one nane="propertyNane cl ass="C assNane" col utm="col utm_nane"/ >

</ conposi te-id>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<conposi t e-i d> element accepts <key- property> property mappings and <key- many- t o- one> mappings as
child elements.

<conposi te-id>
<key- property nanme="medi car eNunber" />
<key- property nane="dependent"/>

</ conposite-id>

Your persistent class must override equal s() and hashCode() to implement composite identifier equality. It

Hibernate 3.2 cr2 55

Basic O/R Mapping

must also implements Seri al i zabl e.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. Y ou must instantiate an instance of the persistent class it-
self and populate its identifier properties before you can | oad() the persistent state associated with a composite
key. We call this approach an embedded composite identifier, and discourage it for serious applications.

A second approach is what we call a mapped composite identifier, where the identifier properties named inside
the <conposi t e- i d> element are duplicated on both the persistent class and a separate identifier class.

<conposite-id class="Medicareld" napped="true">
<key- property name="nmnedi car eNunmber"/ >
<key- property name="dependent"/>

</ conposite-id>

In this example, both the composite identifier class, Medi carel d, and the entity class itself have properties
named medi car eNurber and dependent . The identifier class must override equal s() and hashCode() and im-
plement. Seri al i zabl e. The disadvantage of this approach is quite obvious—code duplication.

The following attributes are used to specify a mapped composite identifier:

e mapped (optional, defaults to f al se): indicates that a mapped composite identifier is used, and that the con-
tained property mappings refer to both the entity class and the composite identifier class.
* class (optional, but required for a mapped composite identifier): The class used as a composite identifier.

We will describe a third, even more convenient approach where the composite identifier is implemented as a
component class in Section 8.4, “Components as composite identifiers’. The attributes described below apply
only to this alternative approach:

» name (optional, required for this approach): A property of component type that holds the composite identifi-
er (see chapter 9).

e access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

* class (optiona - defaults to the property type determined by reflection): The component class used as a
composite identifier (see next section).

This third approach, an identifier component is the one we recommend for almost all applications.

5.1.6. discriminator

The <di scri mi nat or > element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
beused: stri ng, character,integer, byte, short, bool ean, yes_no, true_f al se.

<di scri m nat or

col um="di scri m nat or _col um" (1)
type="di scrim nat or _type" (2)
force="true|fal se" (3)
insert="true|fal se" (4)
formul a="arbitrary sql expression" (5)

/>

(1) col um (optional - defaultsto cl ass) the name of the discriminator column.
(2) type (optional - defaultsto st ri ng) aname that indicates the Hibernate type
(3) force (optional - defaultsto f al se) "force" Hibernate to specify allowed discriminator values even when

Hibernate 3.2 cr2 56

Basic O/R Mapping

retrieving all instances of the root class.

(4) insert (optiona - defaultstotrue) setthistofal se if your discriminator column is also part of a mapped
composite identifier. (Tells Hibernate to not include the column in SQL | NSERTS.)

(5) fornul a (optional) an arbitrary SQL expression that is executed when atype has to be evaluated. Allows
content-based discrimination.

Actual values of the discriminator column are specified by the di scri ni nat or - val ue attribute of the <cl ass>
and <subcl ass> elements.

The force attribute is (only) useful if the table contains rows with "extra" discriminator values that are not
mapped to a persistent class. Thiswill not usually be the case.

Using the f or mul a attribute you can declare an arbitrary SQL expression that will be used to evaluate the type
of arow:

<di scri m nat or
formul a="case when CLASS TYPE in ('a', 'b', 'c') then 0 else 1 end"
type="integer"/>

5.1.7. version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. Thisis particularly use-
ful if you plan to use long transactions (see below).

<versi on
col um="ver si on_col um" (1)
name="pr opert yNanme" (2)
type="t ypenane" (3)
access="fiel d| property| Cl assNane" (4)
unsaved- val ue="nul | | negati ve| undef i ned" (5)
gener at ed="never | al ways" (6)
insert="true|fal se" (7)

node="el enent - nane| @ttri but e- nanme| el ement/ @ttribute|."
/>

(1) col um (optional - defaults to the property name): The name of the column holding the version number.

(2) nane: The name of a property of the persistent class.

(3) type (optional - defaultstoi nt eger): The type of the version number.

(4) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(5) unsaved-val ue (optional - defaultsto undefi ned): A version property value that indicates that an instance
is newly instantiated (unsaved), distinguishing it from detached instances that were saved or loaded in a
previous session. (undef i ned specifies that the identifier property value should be used.)

(6) generated (optional - defaults to never): Specifies that this version property value is actually generated
by the database. See the discussion of Section 5.6, “Generated Properties’.

(7) insert (optional - defaultsto true): Specifies whether the version column should be included in SQL in-
sert statements. May be set to f al se if and only if the database column is defined with a default value of
0.

Version numbers may be of Hibernate typel ong, i nt eger, short, ti mest anp Or cal endar.

A version or timestamp property should never be null for a detached instance, so Hibernate will detact any in-
stance with a null version or timestamp as transient, no matter what other unsaved- val ue Strategies are spe-
cified. Declaring a nullable version or timestamp property is an easy way to avoid any problems with transitive
reattachment in Hibernate, especially useful for people using assigned identifiers or composite keys!

Hibernate 3.2 cr2 57

Basic O/R Mapping

5.1.8. timestamp (optional)

The optional <t i nest anp> element indicates that the table contains timestamped data. Thisisintended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,
sometimes the application might use the timestampsin other ways.

<ti nest anp

/>
(1)
(2)
(3)

(4

(5)

(6)

col um="ti mest anp_col um" (1)
nanme="pr opert yNane" (2)
access="fi el d| property| Cl assNane" (3)
unsaved- val ue="nul | | undefi ned" (4)
sour ce="vn| db" (5)
gener at ed="never | al ways" (6)

node="el enent - nane| @ttri but e- nane| el ement/ @ttribute|."

col umm (optional - defaults to the property name): The name of a column holding the timestamp.

name: The name of a JavaBeans style property of Javatype Dat e or Ti nest anp of the persistent class.
access (optiona - defaults to property): The strategy Hibernate should use for accessing the property
value.

unsaved- val ue (optiona - defaults to nul I): A version property value that indicates that an instance is
newly instantiated (unsaved), distinguishing it from detached instances that were saved or loaded in a pre-
vious session. (undef i ned specifies that the identifier property value should be used.)

sour ce (optional - defaults to vm): From where should Hibernate retrieve the timestamp value? From the
database, or from the current JVM? Database-based timestamps incur an overhead because Hibernate
must hit the database in order to determine the "next value", but will be safer for use in clustered environ-
ments. Note also, that not al Dialects are known to support retrieving of the database's current
timestamp, while others might be unsafe for usage in locking due to lack of precision (Oracle 8 for ex-
ample).

gener at ed (optional - defaults to never): Specifies that this timestamp property value is actually gener-
ated by the database. See the discussion of Section 5.6, “Generated Properties’.

Note that <ti mestanp> is equivalent to <version type="tinestanp">. And <timestanp source="db"> iS
equivalent to <ver si on type="dbt i mest anp" >

5.1.9. property

The <pr oper t y> element declares a persistent, JavaBean style property of the class.

<property
name="pr opert yNanme" (1)
col um="col umm_nange" (2)
type="t ypenane" (3)
updat e="true| fal se" (4)
insert="true|fal se" (4)
formul a="arbitrary SQL expression" (5)
access="fi el d| property| Cl assNane" (6)
| azy="true| fal se" (7)
uni que="true| fal se" (8)
not - nul | ="true| f al se" (9)
optimstic-lock="true|fal se" (10)
gener at ed="never | i nsert| al ways" (12)

/>

node="el enent - nane| @ttri but e-nanme| el ement/ @ttribute|."
i ndex="i ndex_nane"

uni que_key="uni que_key_i d"

| engt h="1L"

preci si on="P"

scal e="S"

Hibernate 3.2 cr2 58

Basic O/R Mapping

(1) nane: the name of the property, with aninitial lowercase |etter.

(2) col um (optional - defaults to the property name): the name of the mapped database table column. This
may also be specified by nested <col urm> element(s).

(3) type (optional): a name that indicates the Hibernate type.

(4) update, insert (optiona - defaultsto true) : specifies that the mapped columns should be included in
SQL uPDATE and/or | NSERT statements. Setting both to f al se allows a pure "derived" property whose
value is initialized from some other property that maps to the same colum(s) or by atrigger or other ap-
plication.

(5) formula (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

(6) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(7) lazy (optional - defaultsto f al se): Specifies that this property should be fetched lazily when the instance
variableisfirst accessed (reguires build-time bytecode instrumentation).

(8) uni que (optional): Enable the DDL generation of a unique constraint for the columns. Also, alow this to
be the target of aproperty-ref.

(9) not-nul |l (optional): Enable the DDL generation of a nullability constraint for the columns.

(10) optinistic-1ock (optiona - defaultsto true): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, determines if a version increment should occur when
this property is dirty.

(11) generated (optiona - defaults to never): Specifies that this property value is actually generated by the
database. See the discussion of Section 5.6, “ Generated Properties”.

typename could be:

1. The name of a Hibernate basic type (eg. i nteger, string, character, date, tinestanp, float,
bi nary, serializable, object, blob).

2. The name of a Java class with a default basic type (eg. int, float, char, java.lang.String,
java.util.Date, java.lang.|Integer, java.sql.d ob).

3. Thename of aserializable Javaclass.

4. The class name of acustom type (eg. comi |l fl ow. t ype. MyCust onlype).

If you do not specify atype, Hibernate will use reflection upon the named property to take a guess at the correct
Hibernate type. Hibernate will try to interpret the name of the return class of the property getter using rules 2, 3,
4 in that order. However, this is not always enough. In certain cases you will still need the t ype attribute. (For
example, to distinguish between Hi ber nat e. DATE and Hi ber nat e. TI MESTAMP, Or t0 specify a custom type.)

The access attribute lets you control how Hibernate will access the property at runtime. By default, Hibernate
will call the property get/set pair. If you specify access="fi el d", Hibernate will bypass the get/set pair and ac-
cess the field directly, using reflection. Y ou may specify your own strategy for property access by naming a
class that implements the interface or g. hi ber nat e. property. PropertyAccessor .

An especially powerful feature are derived properties. These properties are by definition read-only, the property
value is computed at load time. Y ou declare the computation as a SQL expression, this translates to a SELECT
clause subquery in the SQL query that loads an instance:

<property nane="total Price"
formul a="(SELECT SUM (li.quantity*p.price) FROM Lineltem!|i, Product p
WHERE |i.productld = p.productld
AND |i.custonerld = custonerld
AND [i . order Nunber = orderNunber)"/>

Note that you can reference the entities own table by not declaring an alias on a particular column (cust orer I d
in the given example). Also note that you can use the nested <f or mul a> mapping element if you don't like to

Hibernate 3.2 cr2 59

Basic O/R Mapping

use the attribute.

5.1.

10. many-to-one

An ordinary association to another persistent class is declared using a many-t o- one element. The relational
model is a many-to-one association: a foreign key in one table is referencing the primary key column(s) of the
target table.

<many- t 0- one
name="pr oper t yNane" (1)
col um="col utm_nane" (2)
cl ass="C assName" (3)
cascade="cascade_styl e" (4)
fetch="j oi n| sel ect " (5)
updat e="true| f al se" (6)
insert="true|fal se" (6)
property-ref="propertyNaneFromAssoci at edd ass" (7)
access="fi el d| property| assNane" (8)
uni que="true| fal se" (9)
not-nul | ="true| fal se" (10)
optimistic-lock="true|fal se" (11)
| azy="pr oxy| no- proxy| f al se" (12)
not - f ound="1i gnor e| excepti on" (13)
entity-name="EntityNane" (14)
fornmul a="arbitrary SQL expression" (15)

/>

(1
(2)

(3)

(4

(5)
(6)

(7

(8)

(9)

(10)

(11)

(12)

node="el enent - nane| @ttri but e- nane| el enent/ @ttribute|."
enbed- xm ="true| f al se"

i ndex="i ndex_nane"

uni que_key="uni que_key_i d"

f or ei gn- key="f or ei gn_key_nane"

nane: The name of the property.

col um (optional): The name of the foreign key column. This may aso be specified by nested <col um>
element(s).

cl ass (optiona - defaults to the property type determined by reflection): The name of the associated
class.

cascade (optional): Specifies which operations should be cascaded from the parent object to the associ-
ated object.

fet ch (optional - defaultsto sel ect): Chooses between outer-join fetching or sequential select fetching.
update, insert (optiona - defaults to t rue) specifies that the mapped columns should be included in
SQL UPDATE and/or | NSERT statements. Setting both to f al se alows a pure "derived" association whose
value is initialized from some other property that maps to the same colum(s) or by atrigger or other ap-
plication.

property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated classis used.

access (optiona - defaults to property): The strategy Hibernate should use for accessing the property
value.

uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column. Also, al-
low thisto be the target of aproperty-ref. This makes the association multiplicity effectively oneto one.
not - nul | (optional): Enable the DDL generation of anullability constraint for the foreign key columns.
optimistic-1ock (optional - defaultsto true): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, dertermines if a version increment should occur when
this property isdirty.

I azy (optiona - defaults to proxy): By default, single point associations are proxied. | azy="no- pr oxy"
specifies that the property should be fetched lazily when the instance variable is first accessed (requires
build-time bytecode instrumentation). | azy="f al se" specifies that the association will always be eagerly
fetched.

Hibernate 3.2 cr2 60

Basic O/R Mapping

(13) not - found (optional - defaultsto except i on): Specifies how foreign keys that reference missing rows will
be handled: i gnor e will treat a missing row as a null association.
(14) entity-nane (optional): The entity name of the associated class.

Setting a value of the cascade attribute to any meaningful value other than none will propagate certain opera-
tions to the associated object. The meaningful values are the names of Hibernate's basic operations, per si st,
merge, delete, save-update, evict, replicate, lock, refresh, aswell asthe specia values del et e-
orphan and all and commaseparated combinations of operation names, for example, cas-
cade="per si st, nerge, evi ct" Or cascade="al | , del et e- or phan" . See Section 10.11, “ Transitive persistence”
for a full explanation. Note that single valued associations (many-to-one and one-to-one associations) do not
support orphan delete.

A typical many- t o- one declaration looks as simple as this:

<many-t o- one nane="product" class="Product" col um="PRODUCT_ | D"'/>

Theproperty-ref attribute should only be used for mapping legacy data where aforeign key refersto a unique
key of the associated table other than the primary key. Thisis an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key. (The uni que attribute controls Hi-
bernate's DDL generation with the SchemaExport toal.)

<property nanme="seri al Nunber" uni que="true" type="string" col um="SERI AL_NUMBER'/ >

Then the mapping for o der | t emmight use:

<many-t o-one nane="product" property-ref="serial Nunber" col um="PRODUCT_SERI AL_NUMBER'/ >

Thisis certainly not encouraged, however.

If the referenced unique key comprises multiple properties of the associated entity, you should map the refer-
enced propertiesinside a named <pr opert i es> element.

If the referenced unique key is the property of a component, you may specify a property path:

<many-t o-one nane="owner" property-ref="identity.ssn" col um="0OMNMER_SSN'/ >

5.1.11. one-to-one

A one-to-one association to another persistent classis declared using a one- t o- one element.

<one-t 0-one

nane="pr opert yNane" (1)
cl ass="C assNane" (2)
cascade="cascade_styl e" (3)
constrai ned="true|fal se" (4)
fetch="j oi n| sel ect" (5)
property-ref="propertyNaneFromAssoci at edCl ass" (6)
access="fi el d| property| assNane" (7)
formul a="any SQL expression" (8)
| azy="pr oxy| no- proxy| f al se" (9)
entity-name="EntityNanme" (10)

node="el enent - nane| @ttri but e- nane| el enent/ @ttribute|."
enbed- xm ="true| f al se"
f or ei gn- key="f or ei gn_key_nane"

/>

(1) nane: The name of the property.

Hibernate 3.2 cr2 61

Basic O/R Mapping

(2)

(3)

(5)
(6)

(8)

(9)

cl ass (optional - defaults to the property type determined by reflection): The name of the associated
class.

cascade (optional) specifies which operations should be cascaded from the parent object to the associated
object.

constrai ned (optional) specifies that a foreign key constraint on the primary key of the mapped table ref-
erences the table of the associated class. This option affects the order in which save() and del ete() are
cascaded, and determines whether the association may be proxied (it is also used by the schema export
tool).

fet ch (optional - defaultsto sel ect): Chooses between outer-join fetching or sequential select fetching.
property-ref: (optional) The name of a property of the associated class that is joined to the primary key
of thisclass. If not specified, the primary key of the associated class is used.

access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

forul a (optional): Almost al one to one associations map to the primary key of the owning entity. In the
rare case that thisis not the case, you may specify a some other column, columns or expression to join on
using an SQL formula. (See or g. hi ber nat e. t est . onet oonef or nul a for an example.)

| azy (optiona - defaults to proxy): By default, single point associations are proxied. | azy="no- pr oxy"
specifies that the property should be fetched lazily when the instance variable is first accessed (requires
build-time bytecode instrumentation). | azy="f al se" specifies that the association will always be eagerly
fetched. Note that if const rai ned="f al se", proxying is impossible and Hibernate will eager fetch the as-
sociation!

(10) entity-name (optional): The entity name of the associated class.

There are two varieties of one-to-one association:

primary key associations

unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For aprimary key association, add the following mappings to Enpl oyee and Per son, respectively.

<one-t o-one name="person" class="Person"/>

<one-t o- one nanme="enpl oyee" cl ass="Enpl oyee" constrai ned="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOY EE tables are equal.
We use a special Hibernate identifier generation strategy called f or ei gn:

<cl ass nane="person" tabl e="PERSON'>

<id name="id" col um="PERSON | D'>
<generator class="foreign">
<par am nane="pr operty" >enpl oyee</ par anp
</ gener at or >
</id>

<one-t o- one name="enpl oyee"
cl ass="Enpl oyee"
constrai ned="true"/>

</ cl ass>

A newly saved instance of Per son isthen assigned the same primary key value as the Enpl oyee instance refered
with the enpl oyee property of that Per son.

Hibernate 3.2 cr2 62

Basic O/R Mapping

Alternatively, aforeign key with a unique constraint, from Enpl oyee to Per son, may be expressed as.

<many-t o- one name="person" class="Person" col um="PERSON | D' uni que="true"/>

And this association may be made bidirectional by adding the following to the Per son mapping:

<one-t o-one nane"enpl oyee" cl ass="Enpl oyee" property-ref="person"/>

5.1.12. natural-id

<natural -id nmutabl e="true|fal se"/>
<property ... [>
<many-to-one ... />

</natural -id>

Even though we recommend the use of surrogate keys as primary keys, you should still try to identify natural
keysfor all entities. A natural key is a property or combination of properties that is unique and non-null. If itis
also immutable, even better. Map the properties of the natural key inside the <nat ur al -i d> element. Hibernate
will generate the necessary unique key and nullability constraints, and your mapping will be more self-
documenting.

We strongly recommend that you implement equal s() and hashCode() to compare the natural key properties
of the entity.

This mapping is not intended for use with entities with natural primary keys.

e nutabl e (optional, defaults to f al se): By default, natural identifier properties as assumed to be immutable
(constant).

5.1.13. component, dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent class. Compon-
ents may, in turn, declare their own properties, components or collections. See "Components" below.

<conponent
nane="pr opert yNane" (1)
cl ass="cl assNane" (2)
insert="true|fal se" (3)
updat e="true| f al se" (4)
access="fi el d| property| assNane" (5)
| azy="true|fal se" (6)
optimstic-lock="true|fal se" (7)
uni que="true| fal se" (8)

node="el enent - nang| . "

<property />
<many-to-one />

</ conponent >

(1) nane: The name of the property.

(2) class (optional - defaults to the property type determined by reflection): The name of the component
(child) class.

(3) insert: Do the mapped columns appear in SQL | NSERTS?

(4) updat e: Do the mapped columns appear in SQL UPDATES?

Hibernate 3.2 cr2 63

Basic O/R Mapping

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(6) lazy (optiona - defaults to f al se): Specifies that this component should be fetched lazily when the in-
stance variableis first accessed (requires build-time bytecode instrumentation).

(7) optinistic-1ock (optional - defaults to t rue): Specifies that updates to this component do or do not re-
quire acquisition of the optimistic lock. In other words, determines if a version increment should occur
when this property isdirty.

(8) unique (optional - defaults to f al se): Specifies that a unique constraint exists upon all mapped columns
of the component.

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element allows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynani c- conponent > element allows a Map to be mapped as a component, where the property names refer

to keys of the map, see Section 8.5, “Dynamic components”.

5.1.14. properties

The <properti es> element allows the definition of a named, logical grouping of properties of a class. The most
important use of the construct is that it allows a combination of propertiesto be the target of aproperty-ref. It
is also aconvenient way to define a multi-column unique constraint.

<properties

name="| ogi cal Nane" (1)
insert="true|fal se" (2)
updat e="true| fal se" (3)
optimstic-lock="true|fal se" (4)
uni que="true| fal se" (5)
>
<property />
<many-to-one />

</ properties>

(1) nane: Thelogical name of the grouping - not an actual property name.

(2) insert: Do the mapped columns appear in SQL | NSERTS?

(3) updat e: Do the mapped columns appear in SQL UPDATES?

(4) optinistic-1ock (optional - defaultsto t rue): Specifies that updates to these properties do or do not re-
quire acquisition of the optimistic lock. In other words, determines if a version increment should occur
when these properties are dirty.

(5) uni que (optional - defaults to f al se): Specifies that a unique constraint exists upon all mapped columns
of the component.

For example, if we have the following <pr oper t i es> mapping:

<cl ass name="Per son" >
<i d name="per sonNunber"/ >

<properties name="nane"
uni que="true" update="fal se">
<property nane="firstNane"/>
<property nane="initial"/>
<property nanme="| ast Nane"/>
</ properties>
</ cl ass>

Hibernate 3.2 cr2 64

Basic O/R Mapping

Then we might have some legacy data association which refers to this unique key of the per son table, instead
of to the primary key:

<many-t o- one name="person"
cl ass="Person" property-ref="nane">
<col um nane="fir st Name"/ >
<col um nane="initial"/>
<col um nane="1| ast Nanme"/ >
</ many-t o- one>

We don't recommend the use of this kind of thing outside the context of mapping legacy data.

5.1.15. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used.

<subcl ass
nane="C assNane" (1)
di scri m nator-val ue="di scri m nat or _val ue" (2)
proxy="Proxyl nterface" (3)
| azy="true|fal se" (4)

dynam c- updat e="true| f al se"
dynami c-insert="true|fal se"
entity-nane="EntityNanme"
node="el enent - nane"

ext ends=" Super cl assNane" >

<property />

</ subcl ass>

(1) nane: Thefully qualified class name of the subclass.

(2) discrininator-val ue (optional - defaults to the class name): A value that distiguishes individual sub-
classes.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) 1azy (optional, defaultstot rue): Setting | azy="f al se" disablesthe use of lazy fetching.

Each subclass should declare its own persistent properties and subclasses. <ver si on> and <i d> properties are
assumed to be inherited from the root class. Each subclass in a heirarchy must define a unique di scri ni nat or -
val ue. If noneis specified, the fully qualified Java class nameis used.

For information about inheritance mappings, see Chapter 9, Inheritance Mapping.

5.1.16. joined-subclass

Alternatively, each subclass may be mapped to its own table (table-per-subclass mapping strategy). Inherited
state isretrieved by joining with the table of the superclass. We use the <j oi ned- subcl ass> element.

<j oi ned- subcl ass

nanme="C assNane" (1)
tabl e="t abl enane" (2)
pr oxy="Proxyl nterface" (3)
| azy="true|fal se" (4)

dynam c- updat e="true| f al se"
dynami c-insert="true|fal se"
schema="schem"

cat al og="cat al og"

ext ends=" Super cl assNane"
per si st er="C assNane"

Hibernate 3.2 cr2 65

Basic O/R Mapping

subsel ect =" SQ. expressi on"
entity-nane="EntityNanme"
node="el enent - nane" >

<key >

<property [>

</ j oi ned- subcl ass>

(1) nane: Thefully qualified class name of the subclass.

(2) tabl e: The name of the subclass table.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) 1azy (optional, defaultstot rue): Setting | azy="f al se" disablesthe use of lazy fetching.

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID// EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">
<cl ass nane="Cat" tabl e="CATS">

<id name="id" col um="uid" type="long">
<generator class="hilo"/>

</id>

<property nane="birthdate" type="date"/>
<property name="col or" not-null="true"/>
<property nane="sex" not-null="true"/>

<property nanme="wei ght"/>
<many-t o- one nane="nate"/>
<set nanme="kittens">
<key col um="MOTHER"/ >
<one-to-many class="Cat"/>
</set>
<j oi ned- subcl ass nanme="Donesti cCat" tabl e="DOVESTI C_CATS" >
<key col um="CAT"/ >
<property nanme="nane" type="string"/>
</ j oi ned- subcl ass>
</ cl ass>

<cl ass name="eg. Dog" >
<!'-- mapping for Dog could go here -->
</cl ass>

</ hi ber nat e- mappi ng>

For information about inheritance mappings, see Chapter 9, Inheritance Mapping.

5.1.17. union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables, (the table-
per-concrete-class strategy) where each table defines all persistent state of the class, including inherited state. In
Hibernate, it is not absolutely necessary to explicitly map such inheritance hierarchies. You can simply map
each class with a separate <cl ass> declaration. However, if you wish use polymorphic associations (e.g. an as-
sociation to the superclass of your hierarchy), you need to use the <uni on- subcl ass> mapping.

<uni on- subcl ass
nanme="C assNane" (1)

Hibernate 3.2 cr2 66

Basic O/R Mapping

t abl e="t abl enane" (2)
proxy="Proxyl nterface" (3)
| azy="true|fal se" (4)

dynam c- updat e="true| f al se"
dynami c-insert="true|fal se"
schema="schema"

cat al og="cat al og"

ext ends=" Super cl assNange"
abstract="true|fal se"
persi st er="C assNange"
subsel ect =" SQ. expr essi on"
entity-nane="EntityNanme"
node="el enent - nane" >

<property [>

</ uni on- subcl ass>

(D
(2)
(3)
(4

name: The fully qualified class name of the subclass.

t abl e: The name of the subclasstable.

proxy (optional): Specifies a class or interface to use for lazy initializing proxies.

| azy (optional, defaultstotrue): Setting | azy="f al se" disablesthe use of lazy fetching.

No discriminator column or key column is required for this mapping strategy.

For information about inheritance mappings, see Chapter 9, Inheritance Mapping.

5.1.18. join

Using the <j oi n> element, it is possible to map properties of one classto several tables.

<join
t abl e="t abl enane" (1)
schema="owner" (2)
cat al og="cat al og" (3)
fetch="j oi n| sel ect" (4)
i nverse="true| fal se" (5)
optional ="true| fal se"> (6)
<key ... />
<property ... [>

</join>

(1
(2)
(3)
(4

(5)

(6)

t abl e: The name of the joined table.

schema (optional): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

cat al og (optional): Override the catalog name specified by the root <hi ber nat e- mappi ng> €lement.
fetch (optional - defaultsto j oi n): If set toj oi n, the default, Hibernate will use an inner join to retrieve a
<j oi n> defined by a class or its superclasses and an outer join for a <j oi n> defined by a subclass. If set to
sel ect then Hibernate will use a sequentia select for a <j oi n> defined on a subclass, which will be is-
sued only if arow turns out to represent an instance of the subclass. Inner joins will still be used to re-
trieve a <j oi n> defined by the class and its superclasses.

i nverse (optional - defaultsto f al se): If enabled, Hibernate will not try to insert or update the properties
defined by thisjoin.

optional (optional - defaults to fal se): If enabled, Hibernate will insert a row only if the properties
defined by thisjoin are non-null and will always use an outer join to retrieve the properties.

For example, the address information for a person can be mapped to a separate table (while preserving value
type semantics for al properties):

Hibernate 3.2 cr2 67

Basic O/R Mapping

<cl ass nane="Per son"
t abl e=" PERSON" >

<id name="id" colum="PERSON |D'>...</id>

<j oi n tabl e=" ADDRESS" >
<key col um="ADDRESS | D'/ >
<property nane="address"/>
<property name="zip"/>
<property nane="country"/>
</j oi n>

This feature is often only useful for legacy data models, we recommend fewer tables than classes and a fine-
grained domain model. However, it is useful for switching between inheritance mapping strategies in a single
hierarchy, as explained later.

5.1.19. key

We've seen the <key> element crop up a few times now. It appears anywhere the parent mapping element
defines ajoin to a new table, and defines the foreign key in the joined table, that references the primary key of
the original table.

<key
col um="col umnane" (1)
on- del et e="noacti on| cascade" (2)
property-ref="propertyNane" (3)
not - nul | ="true| f al se" (4)
updat e="true| f al se" (5)
uni que="true| fal se" (6)

/>

(1) col um (optional): The name of the foreign key column. This may aso be specified by nested <col um>
element(s).

(2) on-del ete (optional, defaults to noacti on): Specifies whether the foreign key constraint has database-
level cascade delete enabled.

(3) property-ref (optiona): Specifies that the foreign key refers to columns that are not the primary key of
the orginal table. (Provided for legacy data.)

(4) not-nul | (optional): Specifies that the foreign key columns are not nullable (this is implied whenever the
foreign key is also part of the primary key).

(5) update (optional): Specifies that the foreign key should never be updated (this is implied whenever the
foreign key is also part of the primary key).

(6) uni que (optional): Specifies that the foreign key should have a unique constraint (thisisimplied whenever
the foreign key is also the primary key).

We recommend that for systems where delete performance is important, all keys should be defined on- de-
| et e="cascade", and Hibernate will use a database-level ON CASCADE DELETE constraint, instead of many indi-
vidual DELETE statements. Be aware that this feature bypasses Hibernate's usual optimistic locking strategy for
versioned data.

The not - nul I and updat e attributes are useful when mapping a unidirectional one to many association. If you
map a unidirectional one to many to a non-nullable foreign key, you must declare the key column using <key
not - nul I ="true">.

5.1.20. column and formula elements

Hibernate 3.2 cr2 68

Basic O/R Mapping

Any mapping element which accepts a col umm attribute will alternatively accept a <col um> subelement. Like-
wise, <f or mul a> is an aternative to the f or nul a attribute.

<col um
nanme="col unm_nange"
| engt h="N'
preci si on="N'
scal e="N'
not - nul | ="true| f al se"
uni que="true| fal se"
uni que- key="mul ti col utm_uni que_key_nane"
i ndex="i ndex_nane"
sql -type="sql _type_nane"
check="SQL expression"
defaul t ="SQL expression"/>

<f or mul a>SQL expr essi on</ f or mul a>

col umm and f or mul a attributes may even be combined within the same property or association mapping to ex-
press, for example, exotic join conditions.

<many-t o- one nane="honmeAddr ess" cl ass="Address"
insert="fal se" update="fal se">
<col um nane="person_i d" not-null="true" |ength="10"/>
<f or mul a>' MAI LI NG </ f or mul a>
</ many-t o- one>

5.1.21. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified (package) name in Hibernate queries. Classes may be "imported” explicitly, rather than relying upon
aut o-i mport ="t rue". YOU may even import classes and interfaces that are not explicitly mapped.

<i nport cl ass="java.l ang. Obj ect" rename="Uni verse"/>

<i nport
cl ass="d assNane" (1)
r ename=" Shor t Nanme" (2)
/>

(1) class: Thefully qualified class name of of any Javaclass.
(2) renanme (optional - defaults to the unqualified class name): A name that may be used in the query lan-

guage.

5.1.22. any

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping always requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It isimpossible to specify a
foreign key constraint for this kind of association, so thisis most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very special cases (eg. audit logs, user session
data, etc).

The net a- t ype attribute lets the application specify a custom type that maps database column values to persist-
ent classes which have identifier properties of the type specified by i d-t ype. You must specify the mapping
from values of the meta-type to class names.

Hibernate 3.2 cr2 69

Basic O/R Mapping

<any nanme="bei ng" id-type="long" neta-type="string">
<nmet a- val ue val ue="TBL_ANI MAL" cl ass="Ani mal "/ >
<net a- val ue val ue="TBL_HUMAN' cl ass="Human"/>
<net a-val ue val ue="TBL_ALI EN' cl ass="Alien"/>
<col um nane="t abl e_nane"/>
<col um nane="id"/>

</ any>
<any
nanme="pr opert yNane" (1)
i d-type="idtypenane" (2)
net a- t ype="net at ypenane" (3)
cascade="cascade_styl e" (4)
access="fi el d| property| d assNane" (5)
optimstic-lock="true|fal se" (6)
>
<meta-value ... />
<meta-value ... />
<colum />
<colum />
</ any>

(1) nane: the property name.

(2) id-type: theidentifier type.

(3) nmeta-type (optional - defaultsto st ri ng): Any typethat is allowed for a discriminator mapping.

(4) cascade (optional- defaultsto none): the cascade style.

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(6) optinistic-1ock (optional - defaultsto t rue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, define if a version increment should occur if this prop-
erty isdirty.

5.2. Hibernate Types

5.2.1. Entities and values

To understand the behaviour of various Java language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual
Java model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). Thisis different from the
ODMG model of object persistence by reachablity - and corresponds more closely to how application objects
are usually used in large systems. Entities support circular and shared references. They may a so be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Values are prim-
itives, collections (not what's inside a collection), components and certain immutable objects. Unlike entities,
values (in particular collections and components) are persisted and deleted by reachability. Since value objects
(and primitives) are persisted and deleted along with their containing entity they may not be independently ver-
sioned. Values have no independent identity, so they cannot be shared by two entities or collections.

Up until now, we've been using the term "persistent class' to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics. A Java property of typej ava. | ang. St ri ng also has value semantics. Given

Hibernate 3.2 cr2 70

Basic O/R Mapping

this definition, we can say that all types (classes) provided by the JDK have value type semantics in Java, while
user-defined types may be mapped with entity or value type semantics. This decision is up to the application
developer. A good hint for an entity class in a domain model are shared references to a single instance of that
class, while composition or aggregation usually translates to a value type.

Wel'll revisit both concepts throughout the documentation.

The challenge is to map the Java type system (and the developers' definition of entities and value types) to the
SQL /database type system. The bridge between both systems is provided by Hibernate: for entities we use
<cl ass>, <subcl ass> and so on. For value types we use <pr oper t y>, <conponent >, etc, usually with atype at-
tribute. The value of this attribute is the name of a Hibernate mapping type. Hibernate provides many mappings
(for standard JDK value types) out of the box. Y ou can write your own mapping types and implement your cus-
tom conversion strategies as well, as you'll see later.

All built-in Hibernate types except collections support null semantics.

5.2.2. Basic value types

The built-in basic mapping types may be roughly categorized into

i nteger, long, short, float, double, character, byte, bool ean, yes_no, true_false
Type mappings from Java primitives or wrapper classes to appropriate (vendor-specific) SQL column
types. boolean, yes_no and true_false are al aternative encodings for a Java bool ean or
j ava. |l ang. Bool ean.

string
A type mapping fromj ava. | ang. St ri ng t0 VARCHAR (or Oracle VARCHAR?).

date, tine, tinmestanp
Type mappings from j ava. uti | . Dat e and its subclasses to SQL types DATE, TI ME and TI MESTAMP (Or equi-
valent).

cal endar, cal endar_date
Type mappingsfromj ava. util . Cal endar to SQL types TI MESTAMP and DATE (or equivalent).

bi g_deci mal , bi g_i nteger
Type mappings fromj ava. mat h. Bi gDeci mal andj ava. mat h. Bi gl nt eger t0 NUVERI C (or Oracle NUVBER).

| ocal e, timezone, currency
Type mappings from j ava. util. Local e, java. util. Ti meZone and j ava. util. Currency t0 VARCHAR (Or
Oracle VARCHAR2). Instances of Local e and cur r ency are mapped to their ISO codes. Instances of Ti mezone
are mapped to their 1 D.

cl ass
A type mapping from j ava. | ang. O ass t0 VARCHAR (or Oracle VARCHAR2). A d ass is mapped to its fully
qualified name.

bi nary

Maps byte arrays to an appropriate SQL hinary type.

t ext
Maps long Java strings to a SQL CLOB or TEXT type.

serializabl e

Hibernate 3.2 cr2 71

Basic O/R Mapping

Maps serializable Java types to an appropriate SQL binary type. You may aso indicate the Hibernate type
seri al i zabl e with the name of a serializable Java class or interface that does not default to a basic type.

cl ob, bl ob
Type mappings for the JDBC classesj ava. sql . G ob and j ava. sql . Bl ob. These types may be inconveni-
ent for some applications, since the blob or clob object may not be reused outside of a transaction.
(Furthermore, driver support is patchy and inconsistent.)

i mm dat e, immtine, i mm_tinestanp, i mm _cal endar, i mm_cal endar _dat e, imm serializable,
i mm_bi nary
Type mappings for what are usually considered mutable Java types, where Hibernate makes certain optim-
izations appropriate only for immutable Java types, and the application treats the object as immutable. For
example, you should not call Date. set Ti me() for an instance mapped as i nm ti nest anp. TO change the
value of the property, and have that change made persistent, the application must assign a new
(nonidentical) object to the property.

Unique identifiers of entities and collections may be of any basic type except binary, blob and cl ob.
(Composite identifiers are also allowed, see below.)

The basic value types have corresponding Type constants defined on or g. hi ber nat e. Hi ber nat e. For example,
Hi ber nat e. STRI NG representsthe st ri ng type.

5.2.3. Custom value types

Itisrelatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of type j ava. | ang. Bi gl nt eger t0 VARCHAR columns. Hibernate does not provide a built-in type for this.
But custom types are not limited to mapping a property (or collection element) to a single table column. So, for
example, you might have a Java property get Nane() /set Name() Of typej ava. | ang. String that is persisted to
the columns FI RST_NAME, | NI TI AL, SURNAME.

To implement a custom type, implement either or g. hi ber nat e. User Type or
or g. hi ber nat e. Conposi t eUser Type and declare properties using the fully qualified classname of the type.
Check out or g. hi ber nat e. t est . Doubl eSt ri ngType to see the kind of things that are possible.

<property nane="twoStrings" type="org.hi bernate.test.Doubl eStringType">
<col um nane="first_string"/>
<col um nanme="second_string"/>

</ property>

Notice the use of <col um> tags to map a property to multiple columns.

The Conposi t eUser Type, EnhancedUser Type, User Col | ecti onType, and User Ver si onType interfaces provide
support for more specialized uses.

Y ou may even supply parametersto a User Type in the mapping file. To do this, your User Type must implement
the or g. hi ber nat e. user t ype. Par amet eri zedType interface. To supply parameters to your custom type, you
can use the <t ype> element in your mapping files.

<property name="priority">
<type nane="com nmyconpany. usertypes. Def aul t Val uel nt eger Type" >
<par am nane="def aul t " >0</ par an>
</type>
</ property>

The User Type can now retrieve the value for the parameter named def aul t from the Properti es object passed
toit.

Hibernate 3.2 cr2 72

Basic O/R Mapping

If you use a certain User Type very often, it may be useful to define a shorter name for it. Y ou can do this using
the <t ypedef > element. Typedefs assign a name to a custom type, and may also contain a list of default para-
meter values if the type is parameterized.

<t ypedef cl ass="com nmyconpany. usertypes. Def aul t Val uel nt eger Type" nane="default_zero">
<par am nane="def aul t " >0</ par an»
</ typedef >

<property nane="priority" type="default_zero"/>

It is also possible to override the parameters supplied in a typedef on a case-by-case basis by using type para
meters on the property mapping.

Even though Hibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a Monet ar yAnount class is a good candidate for a com

posi t eUser Type, even though it could easily be mapped as a component. One mativation for thisis abstraction.
With a custom type, your mapping documents would be future-proofed against possible changesin your way of
representing monetary values.

5.3. Mapping a class more than once

It is possible to provide more than one mapping for a particular persistent class. In this case you must specify
an entity name do disambiguate between instances of the two mapped entities. (By default, the entity name is
the same as the class name.) Hibernate lets you specify the entity name when working with persistent objects,
when writing queries, or when mapping associations to the named entity.

<cl ass nanme="Contract" tabl e="Contracts"
entity-name="Current Contract">

<set nanme="history" inverse="true"
order-by="effectiveEndDat e desc">
<key col um="current Contract!|d"/>
<one-to-nmany entity-nane="Hi storical Contract"/>
</set>
</ cl ass>

<cl ass nane="Contract" tabl e="ContractH story"
entity-name="Historical Contract">

<many-t o- one nanme="current Contract"
col um="current Contract|d"
entity-name="Current Contract"/>
</ cl ass>

Notice how associations are now specified using ent i t y- nane instead of cl ass.

5.4. SQL quoted identifiers

Y ou may force Hibernate to quote an identifier in the generated SQL by enclosing the table or column name in
backticks in the mapping document. Hibernate will use the correct quotation style for the SQL bi al ect (usually
double quotes, but brackets for SQL Server and backticks for MySQL).

<cl ass name="Lineltent table=""Line Item">
<id name="id" colum=""Item |d "/><generator class="assigned"/></id>
<property nane="itenNunber" colum=""Item# "/>

Hibernate 3.2 cr2 73

Basic O/R Mapping

</ cl ass>

5.5. Metadata alternatives

XML isn't for everyone, and so there are some alternative ways to define O/R mapping metadata in Hibernate.

5.5.1. Using XDoclet markup

Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@i bernat e. t ags. We will not cover this approach in this document, since strictly it is considered part of
XDaclet. However, we include the following example of the cat class with XDoclet mappings.

package eg;
import java.util. Set;
i mport java.util.Date;

/**

* @i bernate.class

* tabl e="CATS"

*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat nother;
private Set kittens
private Col or col or;
private char sex;
private float weight;

/*
* @i bernate.id
* generator-class="native"
* col um="CAT_I D"

=]

public Long getld() {
return id;

}

private void setld(Long id) {
this.id=id;

}

/**

* @i bernat e. many-t o- one
* col um="PARENT I D'
*/
public Cat getMdther() {
return not her;
}

voi d set Mot her (Cat nother) {
t hi s. not her = not her;

}

/**
* @i bernate. property
* col um="Bl RTH_DATE"
*/
public Date getBirthdate() {
return birthdate;
}

voi d setBirthdate(Date date) {
bi rt hdate = date;
}

/**

Hibernate 3.2 cr2 74

Basic O/R Mapping

* @i bernate. property
* col um="\WEl GHT"
*/
public float getWeight() {
return wei ght;
}

voi d set Wi ght (fl oat wei ght) {
this.weight = weight;
}

/**

* @i bernate. property

* col um="COLOR"

* not-null="true"

*/

public Col or getColor() {
return col or;

}

voi d set Col or (Col or color) {
this.color = color;

}
/**
* @i ber nat e. set
* inverse="true"
* order-by="BI RTH _DATE"
*

@i ber nat e. col | ecti on-key
* col um="PARENT I D'
* @i bernate. col |l ecti on-one-to-many
=]
public Set getKittens() {
return kittens;
}
void setKittens(Set kittens) {
this. kittens = kittens;

/1 addKitten not needed by Hi bernate
public void addKitten(Cat kitten) {
kittens.add(kitten);

}

/**

* @i bernate. property
* col um=" SEX"

* not-null="true"
* update="fal se"
*/

public char getSex() {
return sex;

voi d set Sex(char sex) {
t hi s. sex=sex;
}

See the Hibernate web site for more examples of XDoclet and Hibernate.

5.5.2. Using JDK 5.0 Annotations

JDK 5.0 introduced XDoclet-style annotations at the language level, type-safe and checked at compile time.
This mechnism is more powerful than XDoclet annotations and better supported by tools and IDEs. IntelliJ
IDEA, for example, supports auto-completion and syntax highlighting of JDK 5.0 annotations. The new revi-
sion of the EJB specification (JSR-220) uses JDK 5.0 annotations as the primary metadata mechanism for en-
tity beans. Hibernate3 implements the Ent i t yManager of JSR-220 (the persistence API), support for mapping
metadata is available via the Hibernate Annotations package, as a separate download. Both EJB3 (JSR-220)
and Hibernate3 metadata is supported.

Hibernate 3.2 cr2 75

Basic O/R Mapping

Thisis an example of a POJO class annotated as an EJB entity bean:

@ntity(access = AccessType. FlI ELD)
public class Custoner inplenents Serializable {

@d,
Long id;

String firstNaneg;
String | ast Name;
Dat e birthday;

@r ansi ent
I nt eger age;

@nbedded
private Address honeAddress;

@neToMany(cascade=CascadeType. ALL)
@oi nCol um(nane="CUSTOVER_| D")
Set <Order > orders;

/|l Getter/setter and busi ness nethods

}

Note that support for JDK 5.0 Annotations (and JSR-220) is still work in progress and not completed. Please
refer to the Hibernate Annotations module for more details.

5.6. Generated Properties

Generated properties are properties which have their values generated by the database. Typically, Hibernate ap-
plications needed to r ef r esh objects which contain any properties for which the database was generating val-
ues. Marking properties as generated, however, |ets the application delegate this responsibility to Hibernate. Es-
sentialy, whenever Hibernate issues an SQL INSERT or UPDATE for an entity which has defined generated
properties, it immediately issues a select afterwards to retrieve the generated values.

Properties marked as generated must additionally be non-insertable and non-updateable. Only Section 5.1.7,
“version (optional)”, Section 5.1.8, “timestamp (optional)”, and Section 5.1.9, “property” can be marked as
generated.

never (the default) - means that the given property value is not generated within the database.

insert - states that the given property value is generated on insert, but is not regenerated on subsequent up-
dates. Things like created-date would fall into this category. Note that even thought Section 5.1.7, “version
(optional)” and Section 5.1.8, “timestamp (optional)” properties can be marked as generated, this option is not
availablethere...

al ways - states that the property value is generated both on insert and on update.

5.7. Auxiliary Database Objects

Allows CREATE and DROP of arbitrary database objects, in conjunction with Hibernate's schema evolution
tools, to provide the ability to fully define a user schema within the Hibernate mapping files. Although de-
signed specifically for creating and dropping things like triggers or stored procedures, really any SQL com-
mand that can be run via aj ava. sql . St at ement . execut e() method is valid here (ALTERS, INSERTS, etc).
There are essentially two modes for defining auxiliary database objects...

Hibernate 3.2 cr2 76

Basic O/R Mapping

Thefirst mode isto explicitly list the CREATE and DROP commands out in the mapping file:

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<creat e>CREATE TRI GGER ny_trigger ...</create>
<dr op>DROP TRI GGER ny_tri gger </ dr op>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

The second mode is to supply a custom class which knows how to construct the CREATE and DROP com-
mands. This custom class must implement the or g. hi ber nat e. mappi ng. Auxi | i ar yDat abaseQbj ect interface.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MWTriggerDefinition"/>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

Additionally, these database aobjects can be optionally scoped such that they only apply when certain dialects
are used.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition"/>
<di al ect - scope nane="org. hi bernate. di al ect. Oracl e9Di al ect"/ >
<di al ect - scope nane="org. hi bernate. di al ect. O acl ebi al ect"/ >
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

Hibernate 3.2 cr2 77

Chapter 6. Collection Mapping

6.1. Persistent collections

Hibernate requires that persistent collection-valued fields be declared as an interface type, for example:

public class Product {
private String serial Nunber;
private Set parts = new HashSet ();

public Set getParts() { return parts; }

voi d setParts(Set parts) { this.parts = parts; }

public String getSerial Nunber() { return serial Nunber; }
voi d setSerial Nunber(String sn) { serial Nunber = sn; }

The actual interface might be java.util.Set, java.util.Collection, java.util.List, java.util.Map,
java.util.SortedSet,java.util.SortedMap Or ... anything you like! (Where "anything you like" means you
will have to write an implementation of or g. hi ber nat e. usert ype. User Col | ecti onType.)

Notice how we initialized the instance variable with an instance of Hashset . This is the best way to initialize
collection valued properties of newly instantiated (non-persistent) instances. When you make the instance per-
sistent - by calling persi st (), for example - Hibernate will actually replace the HashSet with an instance of
Hibernate's own implementation of set . Watch out for errorslike this:

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

Set kittens = new HashSet ();

kittens. add(kitten);

cat.setKittens(kittens);

sessi on. persi st(cat);

kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!

The persistent collections injected by Hibernate behave like HashMap, HashSet, TreeMap, TreeSet Of
ArrayLi st , depending upon the interface type.

Callections instances have the usual behavior of value types. They are automatically persisted when referenced
by a persistent object and automatically deleted when unreferenced. If a collection is passed from one persistent
object to another, its elements might be moved from one table to another. Two entities may not share a refer-
ence to the same collection instance. Due to the underlying relational model, collection-valued properties do
not support null value semantics; Hibernate does not distinguish between a null collection reference and an
empty collection.

Y ou shouldn't have to worry much about any of this. Use persistent collections the same way you use ordinary
Java collections. Just make sure you understand the semantics of bidirectional associations (discussed |ater).

6.2. Collection mappings

The Hibernate mapping element used for mapping a collection depends upon the type of the interface. For ex-
ample, a<set > element is used for mapping properties of type Set .

<cl ass nane="Product" >
<id name="seri al Nunber" col um="product Seri al Nunber"/ >

Hibernate 3.2 cr2 78

Collection Mapping

<set nane="parts">

<key col um="product Seri al Nunber" not-nul | ="true"/>
<one-to-nmany class="Part"/>
</ set>
</ cl ass>

Apart from <set >, there is also <l i st >, <map>, <bag>, <array> and <prini tive-array> mapping elements.
The <map> element is representative:

<map
nane="pr opert yNane" (1)
tabl e="t abl e_nane" (2)
schema="schena_nange" (3)
| azy="true| extra|fal se" (4)
i nverse="true| fal se" (5)
cascade="al | | none| save- updat e| del et e| al | - del et e- or phan| del et (6) e- or phan"
sort="unsort ed| nat ural | conpar at or d ass" (7)
or der - by="col utm_nane asc| desc" (8)
where="arbitrary sql where condition" (9)
fetch="j oi n| sel ect| subsel ect" (10)
bat ch-si ze="N" (12)
access="fi el d| property| Cl assNane" (12)
optimstic-lock="true|fal se" (13)
mut abl e="true| fal se" (14)

node="el enent - nang| . "
enbed- xm ="true| fal se"

<key [>

<map-key [>

<elenment />
</ map>

(1
(2)

(3)

(4)

(5)

(6)

(7

(8)

(9)

(10)

(11)
(12)

(13)

(14)

name the collection property name

tabl e (optional - defaults to property name) the name of the collection table (not used for one-to-many
associ ations)

schema (optional) the name of atable schema to override the schema declared on the root element

| azy (optional - defaults to t rue) may be used to disable lazy fetching and specify that the association is
always eagerly fetched, or to enable "extra-lazy" fetching where most operations do not initialize the col-
lection (suitable for very large collections)

i nverse (optiona - defaults to f al se) mark this collection as the "inverse" end of a bidirectional associ-
ation

cascade (optional - defaultsto none) enable operations to cascade to child entities

sort (optional) specify a sorted collection with nat ur al sort order, or a given comparator class

order - by (optional, JDK1.4 only) specify a table column (or columns) that define the iteration order of
the vap, Set or bag, together with an optional asc or desc

wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the
collection (useful if the collection should contain only a subset of the available data)

fetch (optional, defaults to sel ect) Choose between outer-join fetching, fetching by sequential select,
and fetching by sequential subselect.

bat ch- si ze (optional, defaultsto 1) specify a"batch size" for lazily fetching instances of this collection.
access (optional - defaults to property): The strategy Hibernate should use for accessing the collection
property vaue.

optimistic-1ock (optional - defaultstot rue): Speciesthat changes to the state of the collection resultsin
increment of the owning entity's version. (For one to many associations, it is often reasonable to disable
this setting.)

nut abl e (optional - defaultsto t rue): A value of f al se specifies that the elements of the collection never
change (aminor performance optimization in some cases).

Hibernate 3.2 cr2 79

Collection Mapping

6.2.1. Collection foreign keys

Collection instances are distinguished in the database by the foreign key of the entity that owns the collection.
This foreign key is referred to as the collection key column (or columns) of the collection table. The collection
key column is mapped by the <key> element.

There may be a nullability constraint on the foreign key column. For most collections, thisisimplied. For uni-
directional one to many associations, the foreign key column is nullable by default, so you might need to spe-
Cify not-null ="true".

<key col umm="product Seri al Nunmber" not-null="true"/>

The foreign key constraint may use ON DELETE CASCADE.

<key col um="product Seri al Nunmber" on-del et e="cascade"/>

See the previous chapter for afull definition of the <key> element.

6.2.2. Collection elements

Coallections may contain amost any other Hibernate type, including al basic types, custom types, components,
and of course, references to other entities. This is an important distinction: an object in a collection might be
handled with "value" semantics (its lifecycle fully depends on the collection owner) or it might be a reference
to another entity, with its own lifecycle. In the latter case, only the "link" between the two objects is considered
to be state held by the collection.

The contained type is referred to as the collection element type. Collection elements are mapped by <el enent >
Or <conposi t e- el enent >, or in the case of entity references, with <one- t o- many> or <many- t o- many>. The first
two map elements with value semantics, the next two are used to map entity associations.

6.2.3. Indexed collections

All collection mappings, except those with set and bag semantics, heed an index column in the collection table -
a column that maps to an array index, or Li st index, or Map key. The index of a Map may be of any basic type,
mapped with <map- key>, it may be an entity reference mapped with <map- key- many-t o- many>, Or it may be a
composite type, mapped with <conposi t e- map- key>. The index of an array or list is aways of type i nt eger
and is mapped using the <l i st -i ndex> element. The mapped column contains sequential integers (numbered
from zero, by default).

<list-index
col um="col unmm_nane" (1)
base="0|1|..."/>

(1) col umm_nane (required): The name of the column holding the collection index values.
(1) base (optional, defaults to 0): The value of the index column that corresponds to the first element of the

list or array.
<map- key
col um="col unm_nane" (1)
formul a="any SQL expression" (2)
type="t ype_nane" (3)
node="@t t ri but e- nane"
| engt h="N"/ >

Hibernate 3.2 cr2 80

Collection Mapping

(1) col um (optional): The name of the column holding the collection index values.
(2) formula (optional): A SQL formula used to evaluate the key of the map.
(3) type (reguired): The type of the map keys.

<map- key- many-t o- many
col um="col unm_nane" (1)
formul a="any SQL expression" (2)(3)
cl ass="dC assNane"

/>

(1) col um (optional): The name of the foreign key column for the collection index values.
(2) formula (optional): A SQL formula used to evaluate the foreign key of the map key.
(3) class (required): The entity class used as the map key.

If your table doesn't have an index column, and you still wish to use Li st as the property type, you should map
the property as a Hibernate <bag>. A bag does not retain its order when it is retrieved from the database, but it
may be optionally sorted or ordered.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations translate to database tables.

6.2.4. Collections of values and many-to-many associations

Any collection of values or many-to-many association requires a dedicated collection table with a foreign key
column or columns, collection element column or columns and possibly an index column or columns.

For a collection of values, we use the <el enent > tag.

<el enent
col um="col unm_nane" (1)
formul a="any SQL expression"” (2)
type="t ypenane" (3)
| engt h="1L"
preci si on="P"
scal e="S"
not - nul | ="true| f al se"
uni que="true| fal se"
node="el enent - nane"

/>

(1) col um (optional): The name of the column holding the collection element values.
(2) formula (optional): An SQL formula used to evaluate the element.
(3) type (required): The type of the collection element.

A many-to-many association is specified using the <many- t o- many> element.

<many-t o- many

col um="col umm_nane" (1)
formul a="any SQL expression" (2)
cl ass="dC assNane" (3)
fetch="sel ect|j oi n" (4)
uni que="true| fal se" (5)
not - f ound="i gnor e| excepti on" (6)
entity-nane="EntityNanme" (7)
property-ref="propertyNaneFromAssoci at edd ass" (8)

node="el enent - nane"
enbed- xm ="true| fal se"
/>

Hibernate 3.2 cr2 81

Collection Mapping

(1
(2)
(3)
(4

(5)

(6)

(7
(8)

col umm (optional): The name of the element foreign key column.

formul a (optional): An SQL formula used to evaluate the element foreign key value.

cl ass (required): The name of the associated class.

fetch (optional - defaults to j oi n): enables outer-join or sequential select fetching for this association.
Thisis a specia case; for full eager fetching (in a single SELECT) of an entity and its many-to-many rela-
tionships to other entities, you would enable j oi n fetching not only of the collection itself, but also with
this attribute on the <many- t o- many> nested element.

uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column. This
makes the association multiplicity effectively one to many.

not - f ound (optional - defaultsto except i on): Specifies how foreign keys that reference missing rows will
be handled: i gnor e will treat amissing row as a null association.

enti ty-nanme (optional): The entity name of the associated class, as an alternativeto cl ass.
property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated classis used.

Some examples, first, a set of strings:

<set nanme="nanes" tabl e="person_nanes">

<key col um="person_i d"/>
<el enent col um="person_nane" type="string"/>

</ set >

A bag containing integers (with an iteration order determined by the or der - by attribute):

<bag nane="si zes"

tabl e="item sizes"
order-by="size asc">
<key colum="item.id"/>
<el enent col um="si ze" type="integer"/>

</ bag>

An array of entities - in this case, a many to many association:

<array name="addresses"

t abl e=" Per sonAddr ess"
cascade="persist">
<key col umm="personld"/>
<list-index colum="sort Order"/>
<many-t o- many col um="addressl d" cl ass="Address"/>

</ array>

A map from string indices to dates.

<map nanme="hol i days"

t abl e="hol i days"

schenma="dbo"

order - by="hol _nane asc">
<key col um="id"/>
<map- key col um="hol _nane" type="string"/>
<el enent col um="hol _date" type="date"/>

</ map>

A list of components (discussed in the next chapter):

<l i st name="car Conponent s"

t abl e=" Car Conponent s" >
<key col um="carld"/>
<list-index colum="sortCOrder"/>
<conposite-el ement cl ass="Car Conponent ">
<property nane="price"/>
<property name="type"/>
<property nane="serial Nunber" col um="seri al Num'/ >

Hibernate 3.2 cr2 82

Collection Mapping

</ conposi te-el enent >
</list>

6.2.5. One-to-many associations

A one to many association links the tables of two classes viaaforeign key, with no intervening collection table.
This mapping loses certain semantics of normal Java collections:

« Aninstance of the contained entity class may not belong to more than one instance of the collection
* Aninstance of the contained entity class may not appear at more than one value of the collection index

An association from Product to Part requires existence of aforeign key column and possibly an index column
tothePart table. A <one-t o- many> tag indicates that thisis a one to many association.

<one-t o- many

cl ass="dC assNane" (1)
not - f ound="i gnor e| excepti on" (2)
entity-nane="EntityNane" (3)

node="el enent - nane"
enbed- xm ="true| f al se"
/>

(1) class (required): The name of the associated class.

(2) not-found (optional - defaults to exception): Specifies how cached identifiers that reference missing
rows will be handled: i gnor e will treat a missing row as a null association.

(3) entity-nane (optional): The entity name of the associated class, as an alternativeto cl ass.

Notice that the <one-t o- many> element does not need to declare any columns. Nor isit necessary to specify the
t abl e name anywhere.

Very important note: If the foreign key column of a <one- t o- many> association is declared NOT NULL, you must
declare the <key> mapping not - nul | ="true" or use a hidirectional association with the collection mapping
marked i nver se="t rue". See the discussion of bidirectional associations later in this chapter.

This example shows a map of part entities by name (where par t Nane is a persistent property of Part). Notice
the use of aformula-based index.

<map nanme="parts"
cascade="al | ">
<key col um="product!ld" not-null="true"/>
<map- key fornul a="part Nanme"/>
<one-to-nmany class="Part"/>
</ map>

6.3. Advanced collection mappings

6.3.1. Sorted collections

Hibernate supports collections implementing j ava. uti | . Sort edvap andj ava. uti |l . Sort edSet . You must spe-
cify acomparator in the mapping file:

<set nane="al i ases"
t abl e="person_al i ases”
sort="natural ">
<key col um="person"/>

Hibernate 3.2 cr2 83

Collection Mapping

<el enent col um="nane" type="string"/>
</set>

<map nanme="hol i days" sort="nmny. custom Hol i dayConpar at or " >
<key columm="year id"/>
<map- key col um="hol _name" type="string"/>
<el ement col um="hol _date" type="date"/>

</ map>

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing
java.util . Conparator.

Sorted collections actually behave likej ava. util. TreeSet Orf java. util. TreeMap.

If you want the database itself to order the collection elements use the or der - by attribute of set, bag or map
mappings. This solution is only available under JDK 1.4 or higher (it is implemented using Li nkedHashSet or
Li nkedHashMap). This performs the ordering in the SQL query, not in memory.

<set nane="al i ases" tabl e="person_aliases" order-by="I| ower(nane) asc">
<key col umm="person"/>
<el ement col um="nanme" type="string"/>

</ set>

<map nanme="hol i days" order-by="hol _date, hol nane">
<key col um="year _id"/>
<map- key col um="hol _nane" type="string"/>

<el enent col um="hol _date type="date"/>
</ map>

Note that the value of the or der - by attributeis an SQL ordering, not aHQL ordering!
Associations may even be sorted by some arbitrary criteria at runtime using acollectionfilter().

sortedUsers = s.createFilter(group.getUsers(), "order by this.nanme").list();

6.3.2. Bidirectional associations

A bidirectional association allows navigation from both "ends' of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

Y ou may specify abidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse (which one is your choice, but it can not be an in-
dexed collection).

Here's an example of a bidirectional many-to-many association; each category can have many items and each
item can be in many categories:

<cl ass nane="Cat egory" >
<id name="id" col um="CATEGORY | D'/ >

<bag nane="itens" tabl e="CATEGORY_| TEM >
<key col um="CATEGORY_I| D'/ >

Hibernate 3.2 cr2 84

Collection Mapping

<many-to- many class="Iten' colum="ITEM |ID"'/>
</ bag>
</ cl ass>

<cl ass nane="Iteni>
<id name="id" col um="CATEGORY_ | D'/ >

<l-- inverse end -->
<bag nanme="cat egori es" tabl e=" CATEGORY_| TEM' i nverse="true">
<key colum="I1TEM I D"/ >
<many-t o- many cl ass="Cat egory" col um="CATEGORY_| D'/ >
</ bag>
</ cl ass>

Changes made only to the inverse end of the association are not persisted. This means that Hibernate has two
representations in memory for every bidirectional association, one link from A to B and another link from B to
A. Thisis easier to understand if you think about the Java object model and how we create a many-to-many re-
lationship in Java:

category.getltens().add(itemn; /1l The category now "knows" about the rel ationship
i tem get Cat egori es().add(category); /1 The item now "knows" about the relationship
session. persist(item; /1 The relationship won't be saved!

sessi on. persi st (category); /1 The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database.

Y ou may define a bidirectional one-to-many association by mapping a one-to-many association to the same ta-
ble column(s) as a many-to-one association and declaring the many-valued end i nver se="t r ue".

<cl ass nane="Parent">
<id name="id" colum="parent _id"/>

<set nanme="children" inverse="true">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>
</set>
</ cl ass>

<cl ass nane="Chil d">
<id name="id" colum="child_id"/>

<many-t o- one name="parent"
cl ass="Parent"
col um="parent _i d"
not-null ="true"/>
</ cl ass>

Mapping one end of an association with i nver se="true" doesn't affect the operation of cascades, these are or-
thogonal concepts!

6.3.3. Bidirectional associations with indexed collections

A bidirectional association where one end is represented asa<l i st > or <map> requires special consideration. If
there is a property of the child class which maps to the index column, no problem, we can continue using i n-
verse="true" on the collection mapping:

<cl ass nanme="Parent">
<id name="id" colum="parent_id"/>

Hibernate 3.2 cr2 85

Collection Mapping

<map nanme="children" inverse="true">
<key col um="parent _id"/>
<map- key col um="nane"
type="string"/>
<one-to-many class="Child"/>
</ map>
</ cl ass>

<cl ass name="Chil d">
<id name="id" colum="child_id"/>

<property nane="nane"
not-null="true"/>
<many-t o- one name="parent"
cl ass="Parent"
col um="parent _i d"
not-null ="true"/>
</ cl ass>

But, if there is no such property on the child class, we can't think of the association as truly bidirectiona (there
isinformation available at one end of the association that is not available at the other end). In this case, we can't
map the collectioni nverse="true". Instead, we could use the following mapping:

<cl ass nane="Parent">
<id name="id" col um="parent_id"/>

<map nanme="chil dren">
<key col umm="parent _i d"
not - nul | ="true"/>
<map- key col um="nane"
type="string"/>
<one-to-many class="Child"/>
</ map>
</ cl ass>

<cl ass name="Chil d">
<id name="id" colum="child_id"/>

<many-t o- one name="parent"
cl ass="Parent"
col um="parent _id"
insert="fal se"
updat e="f al se"
not-null="true"/>
</ cl ass>

Note that in this mapping, the collection-valued end of the association is responsible for updates to the foreign
key. TODO: Does thisrealy result in some unnecessary update statements?

6.3.4. Ternary associations

There are three possible approaches to mapping aternary association. One isto use a vap With an association as
itsindex:

<map nane="contracts">
<key col um="enpl oyer _i d" not-nul | ="true"/>
<map- key- many-t o- many col um="enpl oyee i d" cl ass="Enpl oyee"/ >
<one-to-many class="Contract"/>

</ map>

<map nanme="connections">
<key col umm="i ncom ng_node_i d"/ >
<map- key- many-t o- many col umm="out goi ng_node_i d" cl ass="Node"/ >
<many-t o- many col utm="connection_id" cl ass="Connection"/>

Hibernate 3.2 cr2 86

Collection Mapping

</ map>

A second approach is to simply remodel the association as an entity class. This is the approach we use most
commonly.

A final alternative isto use composite elements, which we will discuss later.

6.3.5. Usi ng an <i dbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections
of values that we've shown so far al map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, Hibernate provides a feature that allows you to map many to many associations and
collections of values to atable with a surrogate key.

The <i dbag> element letsyou map aLi st (or Col | ecti on) with bag semantics.

<i dbag nane="I| overs" tabl e="LOVERS">
<col l ection-id colum="ID" type="long">
<generator cl ass="sequence"/>
</col |l ection-id>
<key col unm="PERSONL"/ >
<many-t o- many col umm="PERSON2" cl ass="Person" fetch="join"/>
</i dbag>

As you can see, an <i dbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. Hibernate does not provide any mechanism to discover the surrogate key value
of a particular row, however.

Note that the update performance of an <i dbag> is much better than a regular <bag>! Hibernate can locate indi-
vidua rows efficiently and update or delete them individually, just like alist, map or set.

In the current implementation, the nat i ve identifier generation strategy is not supported for <i dbag> collection
identifiers.

6.4. Collection examples

The previous sections are pretty confusing. So letslook at an example. This class:

package eg;
import java.util. Set;

public class Parent {
private long id;
private Set children

public long getld() { return id; }
private void setld(long id) { this.id=id; }

private Set getChildren() { return children; }
private void setChildren(Set children) { this.children=children; }

Hibernate 3.2 cr2 87

Collection Mapping

has a collection of c¢hi | d instances. If each child has at most one parent, the most natural mapping is a one-
to-many association:

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="chil dren">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>
</ cl ass>

<cl ass nane="Chil d">
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<property nanme="nane"/>
</cl ass>

</ hi ber nat e- mappi ng>

This maps to the following table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primry key, name varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hi ber nat e- mappi ng>

<cl ass nanme="Parent" >
<id name="id">
<generat or cl ass="sequence"/>
</id>
<set nane="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</ set >
</ cl ass>

<cl ass nane="Chil d">
<id name="id">
<generator cl ass="sequence"/>

</id>

<property nane="nane"/>

<many-t o-one nane="parent" class="Parent" colum="parent_id" not-null="true"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Noticethe NOT NULL constraint:

create table parent (id bigint not null primary key)
create table child (id bigint not nul
primry key,
nanme var char (255),
parent _id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

Alternatively, if you absolutely insist that this association should be unidirectional, you can declare the Nor
NULL constraint on the <key> mapping:

Hibernate 3.2 cr2 88

Collection Mapping

<hi ber nat e- mappi ng>

<cl ass name="Parent">
<id name="id">
<gener ator cl ass="sequence"/>

</id>
<set name="chil dren">
<key colum="parent id" not-null="true"/>
<one-to-many class="Child"/>
</set>
</ cl ass>

<cl ass nanme="Chi | d">
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<property nanme="nane"/>
</cl ass>

</ hi ber nat e- mappi ng>

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<set name="children" tabl e="chil dset">
<key col um="parent _id"/>
<many-to- many class="Child" colum="child_id"/>
</set>
</cl ass>

<cl ass nane="Chi | d">
<id name="id">
<gener ator class="sequence"/>
</id>
<property name="nanme"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Table definitions;

create table parent (id bigint not null primary key)
create table child (id bigint not null primry key, name varchar(255))
create table childset (parent_id bigint not null

child_id bigint not null,

primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent _id) references parent
alter table childset add constraint childsetfkl (child_id) references child

For more examples and a complete walk-through a parent/child relationship mapping, see Chapter 21, Ex-
ample: Parent/Child.

Even more exotic association mappings are possible, we will catalog all possibilitiesin the next chapter.

Hibernate 3.2 cr2 89

Chapter 7. Association Mappings

7.1. Introduction

Association mappings are the often most difficult thing to get right. In this section we'll go through the canonic-
al cases one by one, starting with unidirectional mappings, and then considering the bidirectional cases. Welll
use Per son and Addr ess in al the examples.

Well classify associations by whether or not they map to an intervening join table, and by multiplicity.

Nullable foreign keys are not considered good practice in traditional data modelling, so al our examples use
not null foreign keys. This is not a requirement of Hibernate, and the mappings will al work if you drop the
nullability constraints.

7.2. Unidirectional associations

7.2.1. many to one

A unidirectional many-to-one association is the most common kind of unidirectional association.

<cl ass nanme="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nane="addr ess"
col um="addr essl d"
not - nul | ="true"/>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key, addressld bigint not null)
create table Address (addressld bigint not null primry key)

7.2.2. 0neto one

A unidirectional one-to-one association on a foreign key is amost identical. The only difference is the column
unique constraint.

<cl ass nanme="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nanme="addr ess"
col um="addr essl d"
uni que="true"
not - nul | ="true"/>
</cl ass>

Hibernate 3.2 cr2 90

Association Mappings

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key, addressld bigint not null unique)
create table Address (addressld bigint not null primry key)

A unidirectional one-to-one association on a primary key usually uses a special id generator. (Notice that we've
reversed the direction of the association in this example.)

<cl ass name="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
</ cl ass>

<cl ass nane="Addr ess" >
<id name="id" col um="personld">
<generator class="foreign">
<par am nane="property" >per son</ par an»
</ gener at or >
</id>
<one-t o-one nanme="person" constrained="true"/>
</ cl ass>

create table Person (personld bigint not null primry key)
create table Address (personld bigint not null primry key)

7.2.3. one to many

A unidirectional one-to-many association on a foreign key is a very unusual case, and is not really recommen-
ded.

<cl ass name="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses">
<key col um="personl d"
not-nul | ="true"/>
<one-to-many cl ass="Address"/>
</set>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create table Address (addressld bigint not null primary key, personld bigint not null)

We think it's better to use ajoin table for this kind of association.

Hibernate 3.2 cr2 91

Association Mappings

7.3. Unidirectional associations with join tables

7.3.1. one to many

A unidirectional one-to-many association on a join table is much preferred. Notice that by specifying
uni que="t r ue" , we have changed the multiplicity from many-to-many to one-to-many.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses" tabl e="PersonAddress">
<key col umm="personld"/>
<many-t o- many col um="addr essl d"
uni que="true"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create table PersonAddress (personld not null, addressld bigint not null primry key)
create table Address (addressld bigint not null primry key)

7.3.2. many to one

A unidirectional many-to-one association on ajoin table is quite common when the association is optional.

<cl ass nanme="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
optional ="true">
<key col umm="personl d" uni que="true"/>
<many-t o- one nane="address"
col um="addr essl d"
not-null="true"/>
</joi n>
</ cl ass>

<cl ass nanme="Addr ess" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null primary key, addressld bigint not null)
create table Address (addressld bigint not null primry key)

Hibernate 3.2 cr2 92

Association Mappings

7.3.3. one to one

A unidirectional one-to-one association on a join table is extremely unusual, but possible.

<cl ass nanme="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
optional ="true">
<key col umm="personl d"
uni que="true"/>
<many-t o- one nane="address"
col um="addr essl d"
not - nul I ="true"
uni que="true"/>
</joi n>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null primry key, addresslid bigint not null unique)
create table Address (addressld bigint not null primry key)

7.3.4. many to many

Finally, we have a unidirectional many-to-many association.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nane="addresses" tabl e="PersonAddress" >
<key col um="personld"/>
<many-t o- many col utm="addr essl d"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null, addresslid bigint not null, primry key (person
create table Address (addressld bigint not null prinmary key)

7.4. Bidirectional associations

Hibernate 3.2 cr2 93

Association Mappings

7.4.1. one to many / many to one

A bidirectional many-to-one association is the most common kind of association. (This is the standard parent/
child relationship.)

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nane="address"
col um="addr essl d"
not-null="true"/>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressl d">
<generator class="native"/>
</id>
<set nanme="peopl e" inverse="true">
<key col um="addressl d"/>
<one-to-many cl ass="Person"/>
</set>
</ cl ass>

create table Person (personld bigint not null primry key, addresslid bigint not null)
create table Address (addressld bigint not null prinary key)

If you use aList (or other indexed collection) you need to set the key column of the foreign key to not nul I,
and let Hibernate manage the association from the collections side to maintain the index of each element
(making the other side virtually inverse by setting updat e="f al se" andi nsert="fal se"):

<cl ass nane="Person">
<id name="id"/>

<many-t o- one nane="address"
col um="addr essl d"
not-nul | ="true"
insert="fal se"
updat e="f al se"/ >
</ cl ass>

<cl ass nane="Addr ess" >
<id name="id"/>

<l i st nane="peopl e">
<key col um="addressld" not-null="true"/>
<list-index colum="peopl el dx"/>
<one-to-many cl ass="Person"/>
</list>
</ cl ass>

It isimportant that you define not - nul | ="t rue" on the <key> element of the collection mapping if the underly-
ing foreign key column is NOT NULL. Don't only declare not - nul | ="t rue" on a possible nested <col um> ele-
ment, but on the <key> element.

7.4.2. one to one

A bidirectional one-to-one association on a foreign key is quite common.

<cl ass nanme="Person">
<id name="id" col um="personld">

Hibernate 3.2 cr2 94

Association Mappings

<generator class="native"/>
</id>
<many-t o- one nane="address"
col um="addr essl d"
uni que="true"
not - nul | ="true"/>
</ cl ass>

<cl ass nanme="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<one-t o0- one nane="person"
property-ref="address"/>
</ cl ass>

create table Person (personld bigint not null primry key, addressld bigint not null unique)
create table Address (addressld bigint not null primry key)

A bidirectional one-to-one association on a primary key uses the special id generator.

<cl ass nanme="Per son" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<one-to-one nane="address"/>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="personld">
<generator class="foreign">
<par am nane="property" >per son</ par an»
</ gener at or >
</id>
<one-t 0- one nane="person"
constrai ned="true"/>
</ cl ass>

create table Person (personld bigint not null primry key)
create table Address (personld bigint not null primary key)

7.5. Bidirectional associations with join tables

7.5.1. one to many / many to one

A bidirectional one-to-many association on a join table. Note that the i nver se="true" can go on either end of
the association, on the collection, or on the join.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses"
t abl e=" Per sonAddr ess" >
<key col umm="personld"/>
<many-t o- many col um="addr essl d"
uni que="true"
cl ass="Address"/ >

Hibernate 3.2 cr2 95

Association Mappings

</ set >
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
i nverse="true"
optional ="true">
<key col um="addressl d"/>
<many-t o- one name="person"
col um="per sonl d"
not - nul | ="true"/>
</j oi n>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null, addressid bigint not null primry key)
create table Address (addressld bigint not null primry key)

7.5.2. one to one

A bidirectional one-to-one association on a join table is extremely unusual, but possible.

<cl ass name="Person" >
<id name="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
optional ="true">
<key col um="personl d"
uni que="true"/>
<many-t o- one nane="address"
col um="addr essl d"
not-nul | ="true"
uni que="true"/>
</j oi n>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressl d">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
optional ="true"
i nverse="true">
<key col um="addr essl d"
uni que="true"/>
<many-t o- one name="person"
col um="per sonl d"
not - nul I ="true"
uni que="true"/>
</j oi n>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null primry key, addressld bigint not null unique)
create table Address (addressld bigint not null primry key)

Hibernate 3.2 cr2 96

Association Mappings

7.5.3. many to many

Finaly, we have abidirectional many-to-many association.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<set nane="addresses" tabl e="PersonAddress" >
<key col um="personld"/>
<many-t o- many col um="addressl d"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressl d">
<generator class="native"/>
</id>
<set nanme="people" inverse="true" tabl e="PersonAddress">
<key col um="addressl d"/>
<many-t o- many col um="personl d"
cl ass="Person"/ >
</ set>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null, addressld bigint not null, primry key (person
create table Address (addressld bigint not null primry key)

7.6. More complex association mappings

More complex association joins are extremely rare. Hibernate makes it possible to handle more complex situ-
ations using SQL fragments embedded in the mapping document. For example, if a table with historical ac-
count information data defines account Nunber , ef f ect i veEndDat e and ef f ect i veSt ar t Dat ecolumns, mapped
asfollows:

<properties nanme="current Account Key" >
<property nane="account Nunber" type="string" not-null="true"/>
<property nanme="current Account" type="bool ean">
<f or nul a>case when effectiveEndDate is null then 1 else 0 end</fornmula>
</ pr operty>
</ properties>
<property nane="effecti veEndDate" type="date"/>
<property nane="effectiveStateDate" type="date" not-null="true"/>

Then we can map an association to the current instance (the one with null ef f ect i veEndDat e) using:

<many-t o- one name="current Account I nf 0"
property-ref="current Account Key"
cl ass="Account | nf 0" >

<col um nane="account Nunber"/ >
<formul a>' 1' </ f or mul a>

</ many-t o- one>

In amore complex example, imagine that the association between Enpl oyee and O gani zat i on ismaintained in
an Enpl oyment table full of historical employment data. Then an association to the employee's most recent em-
ployer (the one with the most recent st ar t Dat e) might be mapped this way:

Hibernate 3.2 cr2 97

Association Mappings

<j oi n>
<key col um="enpl oyeel d"/ >
<subsel ect >
sel ect enpl oyeeld, orgld
from Enpl oynment s
group by orgld
havi ng startDate = max(start Date)
</ subsel ect >
<many-t o- one nane="nost Recent Enpl oyer"
cl ass="(Organi zati on"
col um="orgld"/>
</joi n>

Y ou can get quite creative with this functionality, but it is usually more practical to handle these kinds of cases

using HQL or acriteria query.

Hibernate 3.2 cr2

98

Chapter 8. Component Mapping

The notion of a component isre-used in several different contexts, for different purposes, throughout Hibernate.

8.1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity reference. The term "compon-
ent” refers to the object-oriented notion of composition (not to architecture-level components). For example,
you might model a person like this:

public class Person {
private java.util.Date birthday;
private Name name;
private String key;
public String getKey() {
return key;
}

private void setKey(String key) {
t hi s. key=key;
}

public java.util.Date getBirthday() {
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

public Name get Nanme() ({
return nane;

}

public void set Nane(Nanme nane) ({
thi s. nane = nane;

public class Name {
char initial;
String first;
String |ast;
public String getFirst() {
return first;
}

void setFirst(String first) {
this.first = first;

}

public String getlLast() {
return | ast;

}

voi d setlLast(String last) {
this.last = | ast;

public char getlnitial () {
return initial;

}

void setlnitial (char initial) {
this.initial = initial;

}

Now Name may be persisted as a component of Per son. Notice that Nane defines getter and setter methods for
its persistent properties, but doesn't need to declare any interfaces or identifier properties.

Hibernate 3.2 cr2 99

Component Mapping

Our Hibernate mapping would look like:

<cl ass nane="eg. Person" tabl e="person">
<i d name="Key" col um="pid" type="string">
<generator class="uuid"/>

</id>
<property nane="birthday" type="date"/>
<conmponent name="Nane" cl ass="eg. Name"> <!-- class attribute optional -->

<property nane="initial"/>
<property nanme="first"/>
<property nane="last"/>
</ conponent >
</ cl ass>

The person table would have the columns pi d, bi rt hday, initial,first andl ast.

Like all value types, components do not support shared references. In other words, two persons could have the
same hame, but the two person objects would contain two independent name ojects, only "the same" by value.
The null value semantics of a component are ad hoc. When reloading the containing object, Hibernate will as-
sume that if al component columns are null, then the entire component is null. This should be okay for most
purposes.

The properties of a component may be of any Hibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. Hibernate is intended to sup-
port avery fine-grained object model.

The <conponent > element alows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

<cl ass nane="eg. Person" tabl e="person">
<i d name="Key" col um="pid" type="string">
<generator class="uuid"/>
</id>
<property nane="birthday" type="date"/>
<conponent nanme="Nane" cl ass="eg. Nane" uni que="true">
<par ent nanme="nanedPerson"/> <!-- reference back to the Person -->
<property nane="initial"/>
<property nane="first"/>
<property nanme="|ast"/>
</ conponent >
</ cl ass>

8.2. Collections of dependent objects

Coallections of components are supported (eg. an array of type Nane). Declare your component collection by re-
placing the <el ement > tag with a<conposi t e- el enent > tag.

<set nane="soneNanes" tabl e="sone_nanes" |azy="true">
<key col um="id"/>
<conposite-el enent cl ass="eg. Nane"> <!-- class attribute required -->
<property nane="initial"/>
<property nane="first"/>
<property nane="last"/>
</ conposi t e- el emrent >
</ set>

Note: if you define a set of composite elements, it is very important to implement equal s() and hashCode()
correctly.

Hibernate 3.2 cr2 100

Component Mapping

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nest ed- conposi t e- el ement > tag. Thisis a pretty exotic case - a collection of compon-
ents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
Javamodel is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set >. Hi-
bernate has to use each columns value to identify a record when deleting objects (there is no separate primary
key column in the composite element table), which is not possible with null values. Y ou have to either use only
not-null propertiesin a composite-element or choose a<l i st >, <map>, <bag> Or <i dbag>.

A special case of a composite element is a composite element with a nested <many- t o- one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from order to Item where purchasebDate, price and
quant ity are properties of the association:

<cl ass name="eg. Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. Purchase" >
<property name="purchaseDate"/>
<property nane="price"/>
<property name="quantity"/>
<many-to-one nane="iten'' class="eg.lten/> <!-- class attribute is optional -->
</ conposi t e- el enent >
</set>
</ cl ass>

Of course, there can't be a reference to the purchae on the other side, for bidirectional association navigation.
Remember that components are value types and don't allow shared references. A single Pur chase can bein the
set of an Or der, but it can't be referenced by the 1 t emat the same time.

Even ternary (or quaternary, etc) associations are possible:

<cl ass name="eg. Order" >

<set nane="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col umm="order _id">
<conposite-el enent cl ass="eg. O derLi ne">
<many-t o- one nane="purchaseDetails cl ass="eg. Purchase"/>
<many-to- one name="iten' class="eg.lteni/>
</ conposi t e-el enent >
</set>
</ cl ass>

Composite elements may appear in queries using the same syntax as associations to other entities.

8.3. Components as Map indices

The <conposi t e- map- key> element lets you map a component class as the key of a vap. Make sure you over-
ride hashCode() and equal s() correctly on the component class.

8.4. Components as composite identifiers

Y ou may use a component as an identifier of an entity class. Y our component class must satisfy certain require-

Hibernate 3.2 cr2 101

Component Mapping

ments:

e It mustimplementjava.io. Serial i zabl e.
e |t must re-implement equal s() and hashCode() , consistently with the database's notion of composite key
equality.

Note: in Hibernate3, the second requirement is not an absolutely hard requirement of Hibernate. But do it any-
way.

You can't usean I dentifierGenerator togenerate composite keys. Instead the application must assign its own
identifiers.

Use the <conposi t e-i d> tag (with nested <key- pr oper t y> elements) in place of the usual <i d> declaration. For
example, the o der Li ne class has a primary key that depends upon the (composite) primary key of o der .

<cl ass nanme="Order Li ne" >

<conposite-id nane="id" class="OderLineld" >
<key- property name="1lineld"/>
<key- property nane="order|d"/>
<key- property nane="custonerld"/>

</ conposi te-id>

<property nane="nane"/>

<many-t o-one nane="order" class="Order"
insert="fal se" update="fal se">
<col umm nane="order|d"/>
<col um nane="custoner|d"/>
</ many-t o- one>

</ cl ass>

Now, any foreign keys referencing the o der Li ne table are also composite. Y ou must declare this in your map-
pings for other classes. An association to Or der Li ne would be mapped like this:

<many-t o- one nane="orderLi ne" class="OderLine">
<l-- the "class" attribute is optional, as usual -->
<col um nane="linel d"/>
<col um nane="orderld"/>
<col um nane="custonerld"/>
</ many-t o- one>

(Note that the <col um> tag is an alternative to the col um attribute everywhere.)
A many-t o- many association to O der Li ne aso uses the composite foreign key:

<set nane="undel i ver edOr der Li nes" >
<key col umm nanme="war ehousel d"/ >
<many-t o- many cl ass="COrderLi ne">
<col um nane="li nel d"/>
<col um nane="orderld"/>
<col um nane="custonerld"/>
</ many-t o- many>
</set>

The collection of o der Li nesin o der would use:

<set nane="orderLines" inverse="true">
<key>
<col um nane="orderld"/>
<col um nane="custonerld"/>

Hibernate 3.2 cr2 102

Component Mapping

</ key>
<one-to-many cl ass="OrderLine"/>
</ set>

(The <one- t o- many> element, as usual, declares no columns.)
If o der Li ne itself owns acollection, it also has a composite foreign key.

<cl ass nanme="Or der Li ne" >

<list name="deliveryAttenpts">

<key> <I-- a collection inherits the conposite key type -->
<col um nane="linel d"/>
<col um nane="orderld"/>
<col umm nane="custoner|d"/>

</ key>

<list-index colum="attenptld" base="1"/>

<conposi te-el emrent class="DeliveryAttenpt">

</ conposi t e-el enent >
</set>
</cl ass>

8.5. Dynamic components

Y ou may even map a property of type Map:

<dynami c- conponent nanme="userAttri butes">
<property nanme="foo" colum="FOO" type="string"/>
<property nane="bar" col um="BAR' type="integer"/>
<many-t o- one name="baz" cl ass="Baz" col um="BAZ_|D'/>
</ dynam c- conponent >

The semantics of a <dynani c- conponent > mapping are identical to <conponent >. The advantage of this kind of
mapping is the ability to determine the actual properties of the bean at deployment time, just by editing the
mapping document. Runtime manipulation of the mapping document is also possible, using a DOM parser.
Even better, you can access (and change) Hibernate's configuration-time metamodel viathe Confi gur ati on ob-
ject.

Hibernate 3.2 cr2 103

Chapter 9. Inheritance Mapping

9.1. The Three Strategies

Hibernate supports the three basic inheritance mapping strategies.

* table per class hierarchy
e table per subclass
» table per concrete class

In addition, Hibernate supports afourth, slightly different kind of polymorphism:

e implicit polymorphism

It is possible to use different mapping strategies for different branches of the same inheritance hierarchy, and
then make use of implicit polymorphism to achieve polymorphism across the whole hierarchy. However, Hi-
bernate does not support mixing <subcl ass>, and <j oi ned- subcl ass> and <uni on- subcl ass> Mappings under
the same root <cl ass> element. It is possible to mix together the table per hierarchy and table per subclass
strategies, under the the same <cl ass> element, by combining the <subcl ass> and <j oi n> elements (see be-
low).

It is possible to define subcl ass, uni on- subcl ass, and j oi ned- subcl ass mappings in separate mapping docu-
ments, directly beneath hi ber nat e- mappi ng. This allows you to extend a class hierachy just by adding a new
mapping file. Y ou must specify an ext ends attribute in the subclass mapping, naming a previously mapped su-
perclass. Note: Previously this feature made the ordering of the mapping documents important. Since Hibern-
ate3, the ordering of mapping files does not matter when using the extends keyword. The ordering inside a
single mapping file still needs to be defined as superclasses before subclasses.

<hi ber nat e- mappi ng>
<subcl ass nane="Donesti cCat" extends="Cat" discrim nator-val ue="D"'>
<property nanme="nane" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

9.1.1. Table per class hierarchy

Suppose we have an interface Payment , with implementors Cr edi t Car dPaynent , CashPayment , ChequePaynent .
The table per hierarchy mapping would look like:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<di scri m nator col um="PAYMENT_TYPE" type="string"/>
<property nanme="anount" col utm="AMOUNT"/ >

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >
<property nane="creditCardType" col um="CCTYPE"/>

</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"' >

Hibernate 3.2 cr2 104

Inheritance Mapping

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nat or - val ue=" CHEQUE" >

</ subcl ass>
</ cl ass>

Exactly onetableisrequired. Thereisone big limitation of this mapping strategy: columns declared by the sub-
classes, such as CCTYPE, may not have NOT NULL constraints.

9.1.2. Table per subclass

A table per subclass mapping would look like:

<cl ass nanme="Payment" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT_| D" >
<generator class="native"/>
</id>
<property name="anount" col utm="AMOUNT"/ >

<j oi ned- subcl ass nane="Credi t Car dPaynent" tabl e=" CREDI T_PAYMENT" >
<key col um="PAYMENT_I D'/ >
<property nane="creditCardType" col um="CCTYPE"/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYNMENT" >
<key col umm="PAYMENT | D'/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="ChequePaynent" t abl e=" CHEQUE_PAYMENT" >
<key col umm="PAYMENT | D'/ >

</ j oi ned- subcl ass>
</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

9.1.3. Table per subclass, using a discriminator

Note that Hibernate's implementation of table per subclass requires no discriminator column. Other abject/
relational mappers use a different implementation of table per subclass which requires a type discriminator
column in the superclass table. The approach taken by Hibernate is much more difficult to implement but argu-
ably more correct from arelational point of view. If you would like to use a discriminator column with the table
per subclass strategy, you may combine the use of <subcl ass> and <j oi n>, asfollow:

<cl ass nanme="Payment" tabl e=" PAYMENT" >
<id name="id" type="long" colum="PAYMENT | D"'>
<generator class="native"/>
</id>
<di scri m nat or col um="PAYMENT_TYPE" type="string"/>
<property nane="anmount" col utm="AMOUNT"/>

<subcl ass nane="Credit Car dPaynent" di scri m nator-val ue="CREDI T" >
<join tabl e="CREDI T_PAYMENT" >
<key col um="PAYMENT_I D"/ >
<property nane="creditCardType" col um="CCTYPE"/ >

</joi n>
</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"' >
<j oi n tabl e=" CASH_PAYMENT" >
<key col um="PAYMENT_| D'/ >

Hibernate 3.2 cr2 105

Inheritance Mapping

</j oi n>
</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nat or - val ue=" CHEQUE" >
<joi n tabl e="CHEQUE_PAYMENT" fetch="sel ect">
<key col um="PAYMENT_| D'/ >

</joi n>
</ subcl ass>
</ cl ass>

The optional f et ch="sel ect " declaration tells Hibernate not to fetch the chequePaynent subclass data using an
outer join when querying the superclass.

9.1.4. Mixing table per class hierarchy with table per subclass

Y ou may even mix the table per hierarchy and table per subclass strategies using this approach:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col umm="PAYMENT | D"'>
<generator class="native"/>
</id>
<di scri m nator col um="PAYMENT_TYPE" type="string"/>
<property nane="anmount" col um="AMOUNT"/ >

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >
<joi n tabl e="CRED T_PAYMENT" >
<property nane="creditCardType" col um="CCTYPE"/>

</joi n>
</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"' >

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nat or - val ue=" CHEQUE" >

</ subcl ass>

</ cl ass>

For any of these mapping strategies, a polymorphic association to the root Paynent class is mapped using
<many-to-one>.

<many-t o- one nane="paynent" col um="PAYMENT I D' cl ass="Paynent"/>

9.1.5. Table per concrete class

There are two ways we could go about mapping the table per concrete class strategy. The first is to use
<uni on- subcl ass>.

<cl ass nane="Paynent" >
<id name="id" type="long" colum="PAYMENT | D"'>
<gener ator class="sequence"/>
</id>
<property nanme="anount" col utm="AMOUNT"/ >

<uni on- subcl ass nane="Credit Car dPaynment" t abl e=" CREDI T_PAYMENT" >
<property nane="creditCardType" col um="CCTYPE"/>

</ uni on- subcl ass>
<uni on- subcl ass nanme="CashPaynent" tabl e=" CASH PAYMENT" >

</ uni on- subcl ass>

Hibernate 3.2 cr2 106

Inheritance Mapping

<uni on- subcl ass nanme="ChequePaynment" t abl e=" CHEQUE_PAYNMENT" >

</ uni on- subcl ass>
</ cl ass>

Three tables are involved for the subclasses. Each table defines columns for all properties of the class, includ-
ing inherited properties.

The limitation of this approach is that if a property is mapped on the superclass, the column name must be the
same on all subclass tables. (We might relax this in a future release of Hibernate.)) The identity generator
strategy is not alowed in union subclass inheritance, indeed the primary key seed has to be shared accross all
unioned subclasses of a hierarchy.

If your superclass is abstract, map it with abst ract="true". Of course, if it is not abstract, an additional table
(defaults to PAYMENT in the example above) is needed to hold instances of the superclass.

9.1.6. Table per concrete class, using implicit polymorphism

An dternative approach isto make use of implicit polymorphism:

<cl ass nanme="Credit CardPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="id" type="long" col um="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<property nane="anmount" col um="CREDI T_AMOUNT"/ >

</ cl ass>
<cl ass nanme="CashPayment" tabl e=" CASH_PAYMENT" >
<id name="id" type="long" col um="CASH PAYMENT | D'>
<generator class="native"/>

</id>
<property nane="anount" col utm="CASH_AMOUNT"/ >

</ cl ass>
<cl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<id name="id" type="long" col um="CHEQUE PAYMENT | D"'>
<generator class="native"/>

</id>
<property nanme="anmount" col utm="CHEQUE AMOUNT"/ >

</ cl ass>

Notice that nowhere do we mention the Paynent interface explicitly. Also notice that properties of Payment are
mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities (e.g. [

<IENTITY al |l properties SYSTEM "al | properties.xm ">] inthe DOCTYPE declartion and &al | properti es;

in the mapping).

The disadvantage of this approach is that Hibernate does not generate SQL UNI ans when performing poly-
morphic queries.

For this mapping strategy, a polymorphic association to Payrent is usually mapped using <any>.

<any nanme="paynent" meta-type="string" id-type="|ong">
<net a-val ue val ue="CREDI T" cl ass="Credit CardPaynent"/>
<met a- val ue val ue="CASH' cl ass="CashPaynent"/>
<net a- val ue val ue="CHEQUE" cl ass="ChequePaynent"/>
<col um nane="PAYMENT CLASS"/ >
<col um name="PAYMENT_|I D'/ >

</ any>

Hibernate 3.2 cr2 107

Inheritance Mapping

9.1.7. Mixing implicit polymorphism with other inheritance mappings

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<cl ass> element (and since Paynent isjust an interface), each of the subclasses could easily be part of another
inheritance hierarchy! (And you can still use polymorphic queries against the Payrent interface.)

<cl ass nanme="Credit CardPaynent" tabl e="CREDI T_PAYMENT" >
<id name="id" type="long" colum="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<di scri m nator col um="CREDI T_CARD' type="string"/>
<property nane="anmount" col utm="CREDI T_AMOUNT"/ >

<subcl ass nane="Mast er Car dPaynent " di scri m nat or - val ue="MDC'/ >
<subcl ass nane="Vi saPayment" di scri m nator-val ue="VI SA"/ >
</ cl ass>

<cl ass nanme="Nonel ectroni cTransacti on” tabl e=" NONELECTRONI C_TXN'>
<id name="id" type="long" colum="TXN | D'>
<generator class="native"/>
</id>

<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYNMENT" >
<key col um="PAYMENT_I D"/ >
<property nane="anount" col utm="CASH_AMOUNT"/ >

</ j oi ned- subcl ass>

<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<key col umm="PAYMENT | D'/ >
<property nane="anount" col um="CHEQUE AMOUNT"/ >

</'j oi ned- subcl ass>
</ cl ass>

Once again, we don't mention Paynent explicitly. If we execute a query against the Paynent interface - for ex-
ample, from Paynent - Hibernate automatically returns instances of < edi t Car dPayment (and its subclasses,
since they also implement Paynent), CashPayment and ChequePayment but not instances of Nonel ect roni c-
Transacti on.

9.2. Limitations

There are certain limitations to the "implicit polymorphism" approach to the table per concrete-class mapping
strategy. There are somewhat less restrictive limitations to <uni on- subcl ass> mappings.

The following table shows the limitations of table per concrete-class mappings, and of implicit polymorphism,
in Hibernate.

Table 9.1. Features of inheritance mappings

Inherit- Poly- Poly- Poly- Poly- Poly- Poly- Poly-

ance mor phic mor phic mor phic mor phic mor phic mor phic mor phic

strategy many- one-to-one one- many- | oad()/get queries joins
to-one to-many to-many 0

table per <nmany-to-o0 | <one-to-on <one-to-ma <many-to-m s.get(Paym from Pay- from O der

class- ne> e> ny> any> ent.class, nent p o join

hierarchy i d) 0. payment

p

Hibernate 3.2 cr2 108

Inheritance Mapping

Inherit- Poly- Poly- Poly- Poly- Poly- Poly- Poly-
ance mor phic mor phic mor phic mor phic mor phic mor phic mor phic
strategy many- one-to-one one- many- | oad()/get queries joins
to-one to-many to-many 0

table per <many-to-o <one-to-on <one-to-ma <many-to-m s.get(Paym from Pay- | from Order
subclass ne> e> ny> any> ent.class, nent p o join

i d) 0. paynent

p

table per <many-to-o <one-to0-on | <one-to-ma <many-to-m s.get(Paym from Pay- from O der
concrete- ne> e> ny> (for any> ent.class, nent p o0 join
class in- i d) 0. payment
(union-subc verse="tru p
|ass) e" only)
table per <any> not suppor- not suppor- <many-to-a s.createCr from Pay- | NOt SUppoOr-
concrete ted ted ny> iter- ment p ted
class i a(Paynent
(implicit .class). ad
polymorph- d(Re-
ism) stric-

tions.idEq

(id)

) . uni queRe

sult()

Hibernate 3.2 cr2

109

Chapter 10. Working with objects

Hibernate is a full object/relational mapping solution that not only shields the developer from the details of the
underlying database management system, but also offers state management of objects. This s, contrary to the
management of SQL statenents in common JDBC/SQL persistence layers, a very natural object-oriented
view of persistence in Java applications.

In other words, Hibernate application developers should always think about the state of their objects, and not
necessarily about the execution of SQL statements. This part is taken care of by Hibernate and is only relevant
for the application devel oper when tuning the performance of the system.

10.1. Hibernate object states

Hibernate defines and supports the following object states:

e Transient - an object istransient if it has just been instantiated using the new operator, and it is not associ-
ated with a Hibernate Sessi on. It has no persistent representation in the database and no identifier value has
been assigned. Transient instances will be destroyed by the garbage collector if the application doesn't hold
areference anymore. Use the Hibernate Sessi on to make an object persistent (and let Hibernate take care of
the SQL statements that heed to be executed for this transition).

« Persistent - a persistent instance has a representation in the database and an identifier value. It might just
have been saved or loaded, however, it is by definition in the scope of a Sessi on. Hibernate will detect any
changes made to an object in persistent state and synchronize the state with the database when the unit of
work completes. Developers don't execute manual UPDATE statements, or DELETE statements when an object
should be made transient.

« Detached - a detached instance is an object that has been persistent, but its Sessi on has been closed. The
reference to the object is still valid, of course, and the detached instance might even be modified in this
state. A detached instance can be reattached to a new Sessi on at alater point in time, making it (and all the
modifications) persistent again. This feature enables a programming model for long running units of work
that require user think-time. We call them application transactions, i.e. a unit of work from the point of
view of the user.

WEell now discuss the states and state transitions (and the Hibernate methods that trigger a transition) in more
detail.

10.2. Making objects persistent

Newly instantiated instances of a a persistent class are considered transient by Hibernate. We can make a tran-
sient instance persistent by associating it with a session:

DonmesticCat fritz = new DomesticCat();
fritz.setCol or(Col or. d NGER) ;
fritz.setSex('M);

fritz.setNane("Fritz");

Long generatedld = (Long) sess.save(fritz);

If cat has a generated identifier, the identifier is generated and assigned to the cat when save() is caled. If
cat has an assi gned identifier, or a composite key, the identifier should be assigned to the cat instance before
calling save() . You may also use persi st () instead of save(), with the semantics defined in the EJB3 early

Hibernate 3.2 cr2 110

Working with objects

draft.
Alternatively, you may assign the identifier using an overloaded version of save() .

Donesti cCat pk = new DonesticCat();
pk. set Col or (Col or. TABBY) ;

pk. set Sex(' F');

pk. set Name(" PK") ;

pk. setKittens(new HashSet());
pk.addKitten(fritz);

sess. save(pk, new Long(1234));

If the object you make persistent has associated objects (e.g. the ki t t ens collection in the previous example),
these objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a for-
eign key column. There is never arisk of violating foreign key constraints. However, you might violate a NOT
NULL constraint if you save() the objectsin the wrong order.

Usually you don't bother with this detail, as you'll very likely use Hibernate's transitive persistence feature to
save the associated objects automatically. Then, even NOT NULL constraint violations don't occur - Hibernate
will take care of everything. Transitive persistence is discussed later in this chapter.

10.3. Loading an object

Thel oad() methods of sessi on gives you away to retrieve a persistent instance if you already know itsidenti-
fier. | oad() takesaclass object and will load the state into a newly instantiated instance of that class, in persist-
ent state.

Cat fritz = (Cat) sess.load(Cat.class, generatedld);

/1 you need to wap primtive identifiers
long id = 1234;
DonesticCat pk = (DomesticCat) sess.|oad(DonesticCat.class, new Long(id));

Alternatively, you can load state into a given instance:

Cat cat = new DonesticCat();

/1 load pk's state into cat
sess. | oad(cat, new Long(pkld));
Set kittens = cat.getKittens();

Note that 1 oad() will throw an unrecoverable exception if there is no matching database row. If the classis
mapped with aproxy, | oad() just returns an uninitialized proxy and does not actually hit the database until you
invoke a method of the proxy. This behaviour is very useful if you wish to create an association to an object
without actually loading it from the database. It also alows multiple instances to be loaded as a batch if bat ch-
si ze isdefined for the class mapping.

If you are not certain that a matching row exists, you should use the get () method, which hits the database im-
mediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat();

sess. save(cat, id);

}

return cat;

You may even load an object using an SQL SELECT ... FOR UPDATE, using a LockMde. See the API docu-

Hibernate 3.2 cr2 111

Working with objects

mentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockMde. UPGRADE)

Note that any associated instances or contained collections are not selected FOR UPDATE, unless you decide to
specify | ock or al | as acascade style for the association.

It is possible to re-load an object and all its collections at any time, using the ref resh() method. Thisis useful
when database triggers are used to initialize some of the properties of the object.

sess. save(cat);
sess. flush(); //force the SQ. | NSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

An important question usually appears at this point: How much does Hibernate load from the database and how
many SQL seLecTs will it use? This depends on the fetching strategy and is explained in Section 19.1,
“Fetching strategies’.

10.4. Querying

If you don't know the identifiers of the objects you are looking for, you need a query. Hibernate supports an
easy-to-use but powerful object oriented query language (HQL). For programmatic query creation, Hibernate
supports a sophisticated Criteria and Example query feature (QBC and QBE). Y ou may also express your query
in the native SQL of your database, with optional support from Hibernate for result set conversion into objects.

10.4.1. Executing queries

HQL and native SQL queries are represented with an instance of or g. hi ber nat e. Query. This interface offers
methods for parameter binding, result set handling, and for the execution of the actual query. You aways ob-
tain aQuery using the current Sessi on:

Li st cats = session. createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
dist();

Li st nmothers = session. createQuery(
"select nother fromCat as cat join cat.nother as nother where cat.nane = ?")
.setString(0, nane)
dist();

Li st kittens = session. createQuery(
"from Cat as cat where cat.nother = ?")
.setEntity(0, pk)
dist();

Cat nother = (Cat) session.createQuery(
"sel ect cat.nother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uni queResul t();]]

Query mothersWthKittens = (Cat) session.createQuery(
"sel ect nother fromCat as nother left join fetch nother.kittens");
Set uni queMdt hers = new HashSet (not hersWthKittens.list());

A query isusually executed by invoking I i st (), the result of the query will be loaded completely into a collec-
tion in memory. Entity instances retrieved by a query are in persistent state. The uni queResul t () method offers
a shortcut if you know your query will only return a single object. Note that queries that make use of eager

Hibernate 3.2 cr2 112

Working with objects

fetching of collections usually return duplicates of the root objects (but with their collections initialized). Y ou
can filter these duplicates simply through a set .

Iterating results

Occasionally, you might be able to achieve better performance by executing the query using the i ter at e()
method. This will only usually be the case if you expect that the actual entity instances returned by the query
will aready be in the session or second-level cache. If they are not already cached, i terate() will be slower
than1i st () and might require many database hits for a simple query, usually 1 for the initial select which only
returns identifiers, and n additional selectsto initialize the actual instances.

/1 fetch ids
Iterator iter = sess.createQuery("fromeg. Qx q order by g.likeliness").iterate();
while (iter.hasNext()) {
Qux qux = (Qux) iter.next(); // fetch the object
/1 something we coul dnt express in the query
i f (qux.cal cul ateConplicatedAl gorithnm()) {
/1 delete the current instance
iter.renove();
/1 dont need to process the rest
br eak;

Queries that return tuples

Hibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

Iterator kittensAndMothers = sess. creat eQuery(
"select kitten, nother fromCat kitten join kitten.nother nother")
list()
.iterator();

while (kittensAndMWot hers. hasNext ()) {
bject[] tuple = (Object[]) kittensAndMot hers. next();
Cat kitten = tuple[O0];
Cat nother = tuple[l];

Scalar results

Queries may specify a property of aclassin the sel ect clause. They may even call SQL aggregate functions.
Properties or aggregates are considered "scalar” results (and not entitiesin persistent state).

Iterator results = sess.createQery(
"select cat.color, mn(cat.birthdate), count(cat) fromCat cat " +
"group by cat.color")
ist()
.iterator();

while (results.hasNext()) {
bject[] row = (Object[]) results.next();
Col or type = (Color) row0];
Date ol dest = (Date) row 1];
Integer count = (Integer) row 2];

Bind parameters

Hibernate 3.2 cr2 113

Working with objects

Methods on Query are provided for binding values to named parameters or JDBC-style ? parameters. Contrary
to JDBC, Hibernate numbers parameters from zero. Named parameters are identifiers of the form : nane in the
query string. The advantages of named parameters are:

* named parameters are insensitive to the order they occur in the query string
e they may occur multiple timesin the same query
e they are self-documenting

/I named paraneter (preferred)
Query g = sess.createQuery("from DonesticCat cat where cat.nane = :nanme");
g.setString("name", "Fritz");
Iterator cats = g.iterate();

// posi tional paraneter

Query g = sess.createQuery("from Donmesti cCat cat where cat.nane = ?");
g.setString(0, "lzi");

Iterator cats = qg.iterate();

/I naned paranmeter |i st

Li st nanes = new ArraylList();

nanes. add("1zi");

nanmes. add("Fritz");

Query g = sess.createQuery("from DonmesticCat cat where cat.nane in (:nanmesList)");
g. set Par anet er Li st ("nanesLi st", nanes);

List cats = qg.list();

Pagination

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should use methods of the Query interface:

Query g = sess.createQuery("from DonesticCat cat");
g. set Fi rst Resul t (20);

g. set MaxResul t s(10) ;

List cats = qg.list();

Hibernate knows how to trandlate this limit query into the native SQL of your DBMS.

Scrollable iteration

If your JDBC driver supports scrollable Resul t Set s, the Query interface may be used to obtain a Scrol | a-
bl eResul t s object, which alows flexible navigation of the query results.

Query g = sess.createQuery("select cat.name, cat from DonesticCat cat " +
"order by cat.nane");

Scrol | abl eResults cats = g.scroll();

if (cats.first()) {

/1 find the first name on each page of an al phabetical |ist of cats by nane
firstNanesCOf Pages = new Arraylist();
do {

String nane = cats.getString(0);
firstNanesOf Pages. add(nane) ;

}
while (cats.scroll (PAGE_SIZE));

/1 Now get the first page of cats

pageOf Cats = new Arraylist();

cats. beforeFirst();

int i=0;

while((PAGE SIZE > i++) && cats.next()) pageOf Cats.add(cats.get(1l));

Hibernate 3.2 cr2 114

Working with objects

cats.close()

Note that an open database connection (and cursor) is required for this functionality, use set MaxResul t () /set -
FirstResul t () if you need offline pagination functionality.

Externalizing named queries

Y ou may also define named queries in the mapping document. (Remember to use a CDATA section if your query
contains characters that could be interpreted as markup.)

<query nane="eg. Donmesti cCat. by. nane. and. m ni num wei ght " ><! [CDATA[
from eg. Donesti cCat as cat
where cat.name = ?
and cat.weight > ?
] 1></query>

Parameter binding and executing is done programatically:

Query g = sess. get NamedQuery("eg. Donesti cCat . by. nane. and. m ni nrum wei ght ") ;
g.setString(0, nane);

g.setlnt(1, mnWight);

List cats = g.list();

Note that the actual program code is independent of the query language that is used, you may also define native
SQL queriesin metadata, or migrate existing queries to Hibernate by placing them in mapping files.

10.4.2. Filtering collections

A collection filter is a specia type of query that may be applied to a persistent collection or array. The query
string may refer to t hi s, meaning the current collection element.

Col | ection bl ackKittens = session.createFilter(
pk.getKittens(),
"where this.color = ?")
. set Paramet er (Col or. BLACK, Hi bernate. custon(Col orUser Type. cl ass))
list()

The returned collection is considered a bag, and it's a copy of the given collection. The original collection is not
modified (thisis contrary to the implication of the name "filter", but consistent with expected behavior).

Observe that filters do not require af r omclause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

Col I ection bl ackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg. Col or. BLACK. i nt Val ue")
dist();

Even an empty filter query is useful, e.g. to load a subset of elementsin a huge collection:

Col l ection tenKittens = session.createFilter(

nmot her. getKittens(), "")
.setFirstResult (0).set MaxResul t s(10)
dist();

Hibernate 3.2 cr2 115

Working with objects

10.4.3. Criteria queries

HQL is extremely powerful but some developers prefer to build queries dynamically, using an object-oriented
AP, rather than building query strings. Hibernate provides an intuitive cri t eri a query APl for these cases:

Criteria crit = session.createCriteria(Cat.class);
crit.add(Expression.eq("color", eg.Color.BLACK));
crit.set MaxResul ts(10);

List cats = crit.list();

Thecriteri a and the associated Exanpl e API are discussed in more detail in Chapter 15, Criteria Queries.

10.4.4. Queries in native SQL

You may express a query in SQL, using creat eSQLQuery() and let Hibernate take care of the mapping from
result setsto objects. Note that you may at any time call sessi on. connecti on() and use the JDBC Connecti on
directly. If you chose to use the Hibernate API, you must enclose SQL aliases in braces:

Li st cats = session. createSQ.Query(
"SELECT {cat.*} FROM CAT {cat} WHERE ROMNUM<10",
"cat”,
Cat . cl ass

). list();

Li st cats = session. createSQ.Query(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}. MATE AS {cat.mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROANUM<10",
"cat",
Cat . cl ass

). list()

SQL gueries may contain named and positional parameters, just like Hibernate queries. More information about
native SQL queriesin Hibernate can be found in Chapter 16, Native SQL.

10.5. Modifying persistent objects

Transactional persistent instances (ie. objects |oaded, saved, created or queried by the Sessi on) may be manip-
ulated by the application and any changes to persistent state will be persisted when the Sessi on is flushed
(discussed later in this chapter). There is no need to call a particular method (like updat e() , which has a differ-
ent purpose) to make your modifications persistent. So the most straightforward way to update the state of an
object isto | oad() it, and then manipulate it directly, while the Sessi on is open:

DonesticCat cat = (DonesticCat) sess.load(Cat.class, new Long(69));
cat.set Name(" PK");
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming modéd is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore Hibernate offers an atern-
ate approach, using detached instances.

Note that Hibernate does not offer its own API for direct execution of UPDATE or DELETE statements. Hibernate
is a state management service, you don't have to think in statements to use it. JDBC is a perfect API for execut-
ing QL statements, you can get a JDBC Connect i on at any time by calling sessi on. connecti on() . Further-
more, the notion of mass operations conflicts with object/relational mapping for online transaction processing-

Hibernate 3.2 cr2 116

Working with objects

oriented applications. Future versions of Hibernate may however provide special mass operation functions. See
Chapter 13, Batch processing for some possible batch operation tricks.

10.6. Modifying detached objects

Many applications need to retrieve an object in one transaction, send it to the Ul layer for manipulation, then
save the changes in a new transaction. Applications that use this kind of approach in a high-concurrency envir-
onment usually use versioned data to ensure isolation for the "long" unit of work.

Hibernate supports this model by providing for reattachment of detached instances using the Ses-
si on. updat e() Or Sessi on. ner ge() methods:

/1 in the first session

Cat cat = (Cat) firstSession.|load(Cat.class, catld);
Cat potential Mate = new Cat ();
firstSession.save(potential Mate);

/1 in a higher layer of the application
cat.set Mate(potential Mate);

// later, in a new session
secondSessi on. update(cat); // update cat
secondSessi on. update(mate); // update mate

If the cat with identifier cat |1 d had already been loaded by secondSessi on when the application tried to reat-
tach it, an exception would have been thrown.

Use updat e() if you are sure that the session does not contain an already persistent instance with the same
identifier, and mer ge() if you want to merge your modifications at any time without consideration of the state
of the session. In other words, updat e() is usually the first method you would call in a fresh session, ensuring
that reattachment of your detached instances is the first operation that is executed.

The application should individually updat e() detached instances reachable from the given detached instance if
and only if it wants their state al'so updated. This can be automated of course, using transitive persistence, see
Section 10.11, “Transitive persistence”.

The 1 ock() method also allows an application to reassociate an object with a new session. However, the de-
tached instance has to be unmodified!

/ljust reassoci ate:

sess. lock(fritz, LockMbde. NONE);

//do a version check, then reassociate:

sess. |l ock(izi, LockMbde. READ);

/1do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. | ock(pk, LockMbde. UPGRADE) ;

Note that | ock() can be used with various LockMdes, see the APl documentation and the chapter on transac-
tion handling for more information. Reattachment is not the only usecase for | ock() .

Other models for long units of work are discussed in Section 11.3, * Optimistic concurrency control”.

10.7. Automatic state detection

Hibernate users have requested a general purpose method that either saves a transient instance by generating a
new identifier or updates/reattaches the detached instances associated with its current identifier. The saveOr Up-
dat e() method implements this functionality.

Hibernate 3.2 cr2 117

Working with objects

/1 in the first session
Cat cat = (Cat) firstSession.|oad(Cat.class, catlD);

/1 in a higher tier of the application
Cat mate = new Cat ();
cat.setMate(mate);

// later, in a new session
secondSessi on. saveOr Updat e(cat) ; /] update existing state (cat has a non-null id)
secondSessi on. saveOr Update(mate); // save the new instance (mate has a null id)

The usage and semantics of saveOr Updat e() seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use updat e() , sa-
veOr Updat e(), Or mer ge() . Some whole applications will never use either of these methods.

Usually updat e() or saveOr Updat e() are used in the following scenario:

» theapplication loads an object in the first session

* theobject is passed up to the Ul tier

« some modifications are made to the object

« theobject is passed back down to the businesslogic tier

» the application persists these modifications by calling updat e() in asecond session

save(Or Updat e() doesthe following:

e if the object isaready persistent in this session, do nothing

« if another object associated with the session has the same identifier, throw an exception

» if the object has no identifier property, save() it

» if the object's identifier has the value assigned to a newly instantiated object, save() it

e if the object is versioned (by a <versi on> or <ti mest anp>), and the version property value is the same
value assigned to a newly instantiated object, save() it

e otherwise updat e() the object

and rrer ge() isvery different:

« if thereis a persistent instance with the same identifier currently associated with the session, copy the state
of the given object onto the persistent instance

» if there is no persistent instance currently associated with the session, try to load it from the database, or
create anew persistent instance

e thepersistent instance is returned

e the given instance does not become associated with the session, it remains detached

10.8. Deleting persistent objects

Sessi on. del et e() will remove an object's state from the database. Of course, your application might still hold
areference to adeleted object. It's best to think of del et e() as making a persistent instance transient.

sess. del ete(cat);

You may delete objects in any order you like, without risk of foreign key constraint violations. It is till pos-
sible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong order, e.g. if
you delete the parent, but forget to delete the children.

Hibernate 3.2 cr2 118

Working with objects

10.9. Replicating object between two different datastores

It is occasionally useful to be able to take a graph of persistent instances and make them persistent in a different
datastore, without regenerating identifier values.

[lretrieve a cat from one database

Session sessionl = factoryl. openSession();
Transaction tx1 = sessionl. begi nTransaction();
Cat cat = sessionl.get(Cat.class, catld);
tx1.commit();

sessi onl. cl ose();

/lreconcile with a second dat abase

Session session2 = factory2. openSession();

Transaction tx2 = session2. begi nTransaction();
session2.replicate(cat, ReplicationMde. LATEST VERSI ON);
tx2.commit();

sessi on2. cl ose();

TheRepl i cati onMbde determines how repl i cat e() will deal with conflicts with existing rows in the database.

e ReplicationMde. | GNORE - ignore the object when there is an existing database row with the same identifi-
er

* ReplicationMbde. OVERWRI TE - overwrite any existing database row with the same identifier

* ReplicationMde. EXCEPTI ON - throw an exception if there is an existing database row with the same identi-
fier

* ReplicationMde. LATEST_VERSI ON - overwrite the row if its version number is earlier than the version
number of the object, or ignore the object otherwise

Usecases for this feature include reconciling data entered into different database instances, upgrading system
configuration information during product upgrades, rolling back changes made during non-ACID transactions
and more.

10.10. Flushing the Session

From time to time the Sessi on will execute the SQL statements needed to synchronize the JDBC connection's
state with the state of objects held in memory. This process, flush, occurs by default at the following points

* before some query executions
e fromorg. hi bernate. Transacti on. commi t ()
* from Session. fl ush()

The SQL statements are issued in the following order

al entity insertions, in the same order the corresponding objects were saved using Sessi on. save()

al entity updates

al collection deletions

all collection element deletions, updates and insertions

al collection insertions

al entity deletions, in the same order the corresponding objects were deleted using Sessi on. del et e()

Sk wbdhrE

(An exception isthat objectsusing nat i ve |D generation are inserted when they are saved.)

Except when you explicity f1 ush(), there are absolutely no guarantees about when the Sessi on executes the
JDBC cdlls, only the order in which they are executed. However, Hibernate does guarantee that the

Hibernate 3.2 cr2 119

Working with objects

Query. list(..) will never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The Fl ushMde class defines
three different modes: only flush at commit time (and only when the Hibernate Tr ansact i on APl is used), flush
automatically using the explained routine, or never flush unless f1 ush() is caled explicitly. The last mode is
useful for long running units of work, where a Sessi on is kept open and disconnected for a long time (see Sec-
tion 11.3.2, “Extended session and automatic versioning”).

sess = sf.openSession();
Transaction tx = sess. begi nTransaction();
sess. set Fl ushMode(Fl ushMode. COM T); // allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);
i zi.set Name(iznizi);

[/l mght return stale data
sess.find("fromCat as cat left outer join cat.kittens kitten");

/1 change to izi is not flushed!

tx.comit(); // flush occurs
sess. cl ose();

During flush, an exception might occur (e.g. if a DML operation violates a constraint). Since handling excep-
tions involves some understanding of Hibernate's transactional behavior, we discuss it in Chapter 11, Transac-
tions And Concurrency.

10.11. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especially if you dea with a graph of as-
sociated objects. A common case is a parent/child relationship. Consider the following example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses or strings),
their lifecycle would depend on the parent and no further action would be required for convenient "cascading"
of state changes. When the parent is saved, the value-typed child objects are saved as well, when the parent is
deleted, the children will be deleted, etc. This even works for operations such as the removal of a child from the
collection; Hibernate will detect this and, since value-typed objects can't have shared references, delete the
child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g. categories
and items, or parent and child cats). Entities have their own lifecycle, support shared references (so removing
an entity from the collection does not mean it can be deleted), and there is by default no cascading of state from
one entity to any other associated entities. Hibernate does not implement persistence by reachability by default.

For each basic operation of the Hibernate session - including persist(), nerge(), saveO Update(), de-
lete(), lock(), refresh(), evict(), replicate() -thereisa corresponding cascade style. Respectively,
the cascade styles are named create, merge, save-update, delete, |ock, refresh, evict, replicate.
If you want an operation to be cascaded along an association, you must indicate that in the mapping document.
For example:

<one-t o- one nane="person" cascade="persist"/>

Cascade styles my be combined:

<one-to- one name="person" cascade="persist, del ete, | ock"/>

Hibernate 3.2 cr2 120

Working with objects

You may even use cascade="al | " to specify that all operations should be cascaded along the association. The
default cascade="none" specifiesthat no operations are to be cascaded.

A special cascade style, del et e- or phan, applies only to one-to-many associations, and indicates that the de-
I et e() operation should be applied to any child object that is removed from the association.

Recommendations;

e It doesn't usually make sense to enable cascade on a <many- t o- one> Or <many-t o- many> association. Cas-
cadeis often useful for <one-t 0- one> and <one- t o- many> associations.

« If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="al | , del et e- or phan".

e Otherwise, you might not need cascade at all. But if you think that you will often be working with the par-
ent and children together in the same transaction, and you want to save yourself some typing, consider us-
ing cascade="persi st, nmerge, save- updat e".

Mapping an association (either a single valued association, or a collection) with cascade="al | * marks the as-
sociation as a parent/child style relationship where save/update/del ete of the parent results in save/update/del ete
of the child or children.

Futhermore, a mere reference to a child from a persistent parent will result in save/update of the child. This
metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automatically de-
leted, except in the case of a <one- t o- many> association mapped with cascade="del et e- or phan". The precise
semantics of cascading operations for a parent/child relationship are as follows:

e If aparentispassedto persist (), al children are passed to per si st ()

e |f aparentispassedtonerge(), al children are passed to mer ge()

e |If aparentispassedtosave(), update() Of saveOr Updat e(), al children are passed to saveOr Updat e()

e If atransient or detached child becomes referenced by a persistent parent, it is passed to saveOr Updat e()

e |If aparentisdeleted, al children are passed to del et e()

« If achild is dereferenced by a persistent parent, nothing special happens - the application should explicitly
delete the child if necessary - unless cascade="del et e- or phan", in which case the "orphaned" child is de-
leted.

Finally, note that cascading of operations can be applied to an object graph at call time or at flush time. All op-
erations, if enabled, are cascaded to associated entities reachable when the operation is executed. However,
save- upat e and del et e- or phan aretransitive for all associated entities reachable during flush of the Sessi on.

10.12. Using metadata

Hibernate requires a very rich meta-level model of all entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use Hibernate's metadata to implement
a"smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value types) and
which should not (eg. immutable value types and, possibly, associated entities).

Hibernate exposes metadata via the d assMet adat a and Col | ect i onMet adat a interfaces and the Type hier-
archy. Instances of the metadata interfaces may be obtained from the Sessi onFact ory.

Cat fritz = ;
Cl assMet adat a cat Meta = sessionfactory. get 0 assMet adat a(Cat . cl ass) ;

Cbj ect[] propertyVal ues = cat Meta. get PropertyVal ues(fritz);
String[] propertyNanes = cat Met a. get PropertyNanes();
Type[] propertyTypes = cat Meta. get PropertyTypes();

Hibernate 3.2 cr2 121

Working with objects

/1l get a Map of all properties which are not collections or associations
Map nanedVal ues = new HashMap();
for (int i=0; i<propertyNanmes.length; i++) {
if (!propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType()) {
nanmedVal ues. put (propertyNanes[i], propertyValues[i]);
}

Hibernate 3.2 cr2 122

Chapter 11. Transactions And Concurrency

The most important point about Hibernate and concurrency control isthat it is very easy to understand. Hibern-
ate directly uses JDBC connections and JTA resources without adding any additional locking behavior. We
highly recommend you spend some time with the JDBC, ANSI, and transaction isolation specification of your
database management system.

Hibernate does not lock objects in memory. Your application can expect the behavior as defined by the isola-
tion level of your database transactions. Note that thanks to the Sessi on, which is aso a transaction-scoped
cache, Hibernate provides repeatable reads for lookup by identifier and entity queries (not reporting queries that
return scalar values).

In addition to versioning for automatic optimistic concurrency control, Hibernate also offers a (minor) API for
pessimistic locking of rows, using the SELECT FOR UPDATE Syntax. Optimistic concurrency control and this AP
are discussed later in this chapter.

We dtart the discussion of concurrency control in Hibernate with the granularity of Confi gurati on, Sessi on-
Fact ory, and Sessi on, aswell as database transactions and long conversations.

11.1. Session and transaction scopes

A Sessi onFact ory iS an expensive-to-create, threadsafe object intended to be shared by all application threads.
It is created once, usually on application startup, from a Conf i gur at i on instance.

A Sessi on is an inexpensive, non-threadsafe object that should be used once, for a single request, a conversa
tion, single unit of work, and then discarded. A Sessi on will not obtain a JDBC Connect i on (Or a Dat asour ce)
unlessit is needed, hence consume no resources until used.

To complete this picture you also have to think about database transactions. A database transaction has to be as
short as possible, to reduce lock contention in the database. Long database transactions will prevent your ap-
plication from scaling to highly concurrent load. Hence, it is almost never good design to hold a database trans-
action open during user think time, until the unit of work is complete.

What is the scope of a unit of work? Can a single Hibernate Sessi on span severa database transactions or is
this a one-to-one relationship of scopes? When should you open and close a Sessi on and how do you demarc-
ate the database transaction boundaries?

11.1.1. Unit of work

First, don't use the session-per-operation antipattern, that is, don't open and close a Sessi on for every simple
database call in a single thread! Of course, the same is true for database transactions. Database callsin an ap-
plication are made using a planned sequence, they are grouped into atomic units of work. (Note that this also
means that auto-commit after every single SQL statement is useless in an application, this mode is intended for
ad-hoc SQL console work. Hibernate disables, or expects the application server to do so, auto-commit mode
immediately.) Database transactions are never optional, all communication with a database has to occur inside a
transaction, no matter if you read or write data. As explained, auto-commit behavior for reading data should be
avoided, as many small transactions are unlikely to perform better than one clearly defined unit of work. The
latter is also much more maintainable and extensible.

The most common pattern in a multi-user client/server application is session-per-regquest. In this model, a re-
quest from the client is send to the server (where the Hibernate persistence layer runs), a new Hibernate Ses-

Hibernate 3.2 cr2 123

Transactions And Concurrency

si on is opened, and all database operations are executed in this unit of work. Once the work has been com-
pleted (and the response for the client has been prepared), the session is flushed and closed. Y ou would also use
a single database transaction to serve the clients request, starting and committing it when you open and close
the sessi on. The relationship between the two is one-to-one and this model is a perfect fit for many applica-
tions.

The challenge lies in the implementation. Hibernate provides built-in management of the "current session” to
simplify this pattern. All you have to do is start a transaction when a server request has to be processed, and end
the transaction before the response is send to the client. Y ou can do thisin any way you like, common solutions
are Servl et Fi | ter, AOP interceptor with a pointcut on the service methods, or a proxy/interception container.
An EJB container is a standardized way to implement cross-cutting aspects such as transaction demarcation on
EJB session beans, declaratively with CMT. If you decide to use programmatic transaction demarcation, prefer
the Hibernate Tr ansact i on APl shown later in this chapter, for ease of use and code portability.

Your application code can access a "current session” to process the request by simply calling sessi onFact -
ory. get Current Sessi on() anywhere and as often as needed. Y ou will always get a Sessi on scoped to the cur-
rent database transaction. This has to be configured for either resource-local or JTA environments, see Sec-
tion 2.5, “ Contextual Sessions’.

Sometimes it is convenient to extend the scope of a Sessi on and database transaction until the "view has been
rendered”. This is especially useful in serviet applications that utilize a separate rendering phase after the re-
quest has been processed. Extending the database transaction until view rendering is complete is easy to do if
you implement your own interceptor. However, it is not easily doable if you rely on EJBs with container-man-
aged transactions, as a transaction will be completed when an EJB method returns, before rendering of any
view can start. See the Hibernate website and forum for tips and examples around this Open Session in View
pattern.

11.1.2. Long conversations

The session-per-request pattern is not the only useful concept you can use to design units of work. Many busi-
ness processes require a whole series of interactions with the user interleaved with database accesses. In web
and enterprise applications it is not acceptable for a database transaction to span a user interaction. Consider the
following example:

» The first screen of a dialog opens, the data seen by the user has been loaded in a particular Sessi on and
database transaction. The user is free to modify the objects.

e The user clicks "Save" after 5 minutes and expects his modifications to be made persistent; he also expects
that he was the only person editing this information and that no conflicting modification can occur.

We call this unit of work, from the point of view of the user, along running conversation (or application trans-
action). There are many ways how you can implement thisin your application.

A first naive implementation might keep the Sessi on and database transaction open during user think time,
with locks held in the database to prevent concurrent modification, and to guarantee isolation and atomicity.
Thisis of course an anti-pattern, since lock contention would not allow the application to scale with the number
of concurrent users.

Clearly, we have to use several database transactions to implement the converastion. In this case, maintaining
isolation of business processes becomes the partial responsibility of the application tier. A single conversation
usually spans several database transactions. It will be atomic if only one of these database transactions (the last
one) stores the updated data, all others simply read data (e.g. in a wizard-style dialog spanning several request/
response cycles). Thisis easier to implement than it might sound, especially if you use Hibernate's features:

Hibernate 3.2 cr2 124

Transactions And Concurrency

e Automatic Versioning - Hibernate can do automatic optimistic concurrency control for you, it can automat-
icaly detect if a concurrent modification occured during user think time. Usually we only check at the end
of the conversation.

e Detached Objects - If you decide to use the already discussed session-per-request pattern, all loaded in-
stances will be in detached state during user think time. Hibernate allows you to reattach the objects and
persist the modifications, the pattern is called session-per-request-with-detached-objects. Automatic ver-
sioning is used to isolate concurrent modifications.

« Extended (or Long) Session - The Hibernate Sessi on may be disconnected from the underlying JDBC con-
nection after the database transaction has been committed, and reconnected when a new client request oc-
curs. This pattern is known as session-per-conversation and makes even reattachment unnecessary. Auto-
matic versioning is used to isolate concurrent modifications and the Sessi on is usually not allowed to be
flushed automatically, but explicitely.

Both session-per-request-with-detached-objects and session-per-conversation have advantages and disadvant-
ages, we discuss them later in this chapter in the context of optimistic concurrency control.

11.1.3. Considering object identity

An application may concurrently access the same persistent state in two different Sessi ons. However, an in-
stance of a persistent class is never shared between two Sessi on instances. Hence there are two different no-
tions of identity:

Database Identity
foo.getld().equal s(bar.getld())

VM Identity

f oo==bar

Then for objects attached to a particular Sessi on (i.e. in the scope of a Sessi on) the two notions are equival-
ent, and JVM identity for database identity is guaranteed by Hibernate. However, while the application might
concurrently access the "same" (persistent identity) business object in two different sessions, the two instances
will actually be "different” (JVM identity). Conflicts are resolved using (automatic versioning) at flush/commit
time, using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides the best scal abil-
ity, since guaranteeing identity in single-threaded units of work only doesn't need expensive locking or other
means of synchronization. The application never needs to synchronize on any business object, as long as it
sticksto asingle thread per Sessi on. Within a Sessi on the application may safely use == to compare objects.

However, an application that uses == outside of a Sessi on, might see unexpected results. This might occur even
in some unexpected places, for example, if you put two detached instances into the same set . Both might have
the same database identity (i.e. they represent the same row), but VM identity is by definition not guaranteed
for instances in detached state. The developer has to override the equal s() and hashCode() methodsin persist-
ent classes and implement his own notion of object equality. There is one caveat: Never use the database identi-
fier to implement equality, use a business key, a combination of unique, usually immutable, attributes. The
database identifier will change if atransient object is made persistent. If the transient instance (usually together
with detached instances) is held in a set, changing the hashcode breaks the contract of the set . Attributes for
business keys don't have to be as stable as database primary keys, you only have to guarantee stability as long
as the objects are in the same set . See the Hibernate website for a more thorough discussion of thisissue. Also
note that thisis not a Hibernate issue, but ssmply how Java object identity and equality has to be implemented.

Hibernate 3.2 cr2 125

Transactions And Concurrency

11.1.4. Common issues

Never use the anti-patterns session-per-user-session or session-per-application (of course, there are rare excep-
tions to this rule). Note that some of the following issues might also appear with the recommended patterns,
make sure you understand the implications before making a design decision:

¢ A session isnot thread-safe. Things which are supposed to work concurrently, like HTTP requests, session
beans, or Swing workers, will cause race conditions if a Sessi on instance would be shared. If you keep
your Hibernate Sessi on in your H: t pSessi on (discussed later), you should consider synchronizing access
to your Http session. Otherwise, a user that clicks reload fast enough may use the same Sessi on in two con-
currently running threads.

¢ An exception thrown by Hibernate means you have to rollback your database transaction and close the Ses-
si on immediately (discussed later in more detail). If your Sessi on is bound to the application, you have to
stop the application. Rolling back the database transaction doesn't put your business abjects back into the
state they were at the start of the transaction. This means the database state and the business objects do get
out of sync. Usually thisis not a problem, because exceptions are not recoverable and you have to start over
after rollback anyway.

¢ The sessi on caches every object that isin persistent state (watched and checked for dirty state by Hibern-
ate). Thismeans it grows endlessly until you get an OutOfMemoryException, if you keep it open for along
time or simply load too much data. One solution for thisisto call cl ear () and evi ct () to manage the Ses-
si on cache, but you most likely should consider a Stored Procedure if you need mass data operations. Some
solutions are shown in Chapter 13, Batch processing. Keeping a Sessi on open for the duration of a user
session also means a high probability of stale data.

11.2. Database transaction demarcation

Datatabase (or system) transaction boundaries are always necessary. No communication with the database can
occur outside of a database transaction (this seems to confuse many developers who are used to the auto-
commit mode). Always use clear transaction boundaries, even for read-only operations. Depending on your
isolation level and database capabilities this might not be required but there is no downside if you always de-
marcate transactions explicitly. Certainly, a single database transaction is going to perform better than many
small transactions, even for reading data.

A Hibernate application can run in non-managed (i.e. standalone, simple Web- or Swing applications) and man-
aged J2EE environments. In a non-managed environment, Hibernate is usually responsible for its own database
connection pool. The application developer has to manually set transaction boundaries, in other words, begin,
commit, or rollback database transactions himself. A managed environment usually provides container-man-
aged transactions (CMT), with the transaction assembly defined declaratively in deployment descriptors of EJB
session beans, for example. Programmatic transaction demarcation is then no longer necessary.

However, it is often desirable to keep your persistence layer portable between non-managed resource-local en-
vironments, and systems that can rely on JTA but use BMT instead of CMT. In both cases you'd use program-
matic transaction demaracation. Hibernate offers awrapper API called Tr ansact i on that tranglates into the nat-
ive transaction system of your deployment environment. This API is actually optional, but we strongly encour-
ageitsuseunlessyou arein aCMT session bean.

Usually, ending a Sessi on involves four distinct phases:

* flush the session
« commit the transaction

Hibernate 3.2 cr2 126

Transactions And Concurrency

e closethesession
» handle exceptions

Flushing the session has been discussed earlier, we'll now have a closer look at transaction demarcation and ex-
ception handling in both managed- and non-managed environments.

11.2.1. Non-managed environment

If a Hibernate persistence layer runs in a non-managed environment, database connections are usualy handled
by ssmple (i.e. non-DataSource) connection pools from which Hibernate obtains connections as needed. The
session/transaction handling idiom looks like this:

/1 Non- managed environnent idiom
Session sess = factory. openSession();
Transaction tx = null;

try {
tXx = sess. begi nTransaction();

/1 do sone work

tx.commt();

}

catch (RuntineException e) {
if (tx !'= null) tx.rollback();
throw e; // or display error message

}
finally {

sess. cl ose();
}

You don't haveto f1 ush() the Sessi on explicitly - the call to commi t () automatically triggers the synchroniza-
tion (depending upon the Section 10.10, “Flushing the Session” for the session. A call to cl ose() marks the
end of asession. The main implication of cl ose() isthat the JDBC connection will be relinquished by the ses-
sion. This Java code is portable and runs in both non-managed and JTA environments.

A much more flexible solution is Hibernate's built-in "current session” context management, as described earli-
er:

[/ Non-managed environnent idiomw th getCurrent Session()

try {
factory. get Current Sessi on() . begi nTransacti on();

/1 do sonme work

factory. get Current Sessi on().get Transaction().conmmt();

catch (Runti neException e) {
factory. get Current Sessi on().get Transacti on().roll back();
throw e; // or display error nessage

You will very likely never see these code snippets in aregular application; fatal (system) exceptions should al-
ways be caught at the "top". In other words, the code that executes Hibernate calls (in the persistence layer) and
the code that handles Runt i meExcepti on (and usually can only clean up and exit) are in different layers. The
current context management by Hibernate can significantly simplify this design, as all you need is access to a
Sessi onFact ory. Exception handling is discussed later in this chapter.

Note that you should select or g. hi ber nat e. t ransact i on. JDBCTr ansact i onFact ory (which is the default),
and for the second example “t hr ead" @S your hi ber nat e. current _sessi on_cont ext _cl ass.

Hibernate 3.2 cr2 127

Transactions And Concurrency

11.2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind EJB session beans), every datasource con-
nection obtained by Hibernate will automatically be part of the global JTA transaction. You can also install a
standalone JTA implementation and use it without EJB. Hibernate offers two strategies for JTA integration.

If you use bean-managed transactions (BMT) Hibernate will tell the application server to start and end aBMT
transaction if you use the Transaction API. So, the transaction management code is identical to the non-
managed environment.

[/ BMI idiom
Session sess = factory. openSession();
Transaction tx = null;

try {
tXx = sess. begi nTransaction();

/1 do sone work

tx.commt();
}
catch (RuntineException e) {
if (tx !'= null) tx.rollback();
throw e; // or display error message

}

finally {
sess. cl ose();

}

If you want to use a transaction-bound Sessi on, that is, the get Current Sessi on() functionality for easy con-
text propagation, you will have to usethe JTA User Transacti on API directly:

/1 BMI idiomw th getCurrentSession()

try {
User Transaction tx = (UserTransaction)new Initial Context()

.l ookup("java: conp/ User Transacti on");
tx. begin();

/1 Do sone work on Session bound to transaction
factory. getCurrent Session().load(...);
factory. get Current Session().persist(...);

tx.commt();

}

catch (Runti neException e) {
tx. roll back();
throw e; // or display error nessage

With CMT, transaction demarcation is done in session bean deployment descriptors, not programatically,
hence, the code is reduced to:

[/ CMI idiom
Sessi on sess = factory. get Current Session();

/1l do sone work

In a CMT/EJB even rollback happens automatically, since an unhandled Runt i neExcept i on thrown by a ses-
sion bean method tells the container to set the global transaction to rollback. This means you do not need to use
the Hibernate Tr ansacti on API at all with BMT or CMT, and you get automatic propagation of the "current”

Hibernate 3.2 cr2 128

Transactions And Concurrency

Session bound to the transaction.

Note that you should choose or g. hi bernat e. transact i on. JTATr ansact i onFact ory if you use JTA directly
(BMT), and or g. hi ber nat e. t ransact i on. CMI'Tr ansact i onFact ory in a CMT session bean, when you config-
ure Hibernate's transaction factory. Remember to also set hi bernat e. t ransact i on. manager _| ookup_cl ass.
Furthermore, make sure that your hi ber nat e. current _sessi on_cont ext _cl ass is either unset (backwards
compatiblity), or setto"jta".

The get Current Sessi on() operation has one downsidein a JTA environment. There is one caveat to the use of
af ter _st at ement connection release mode, which is then used by default. Due to a silly limitation of the JTA
spec, it is not possible for Hibernate to automatically clean up any unclosed Scrol | abl eResul ts OF | t er at or
instances returned by scrol I () oriterate(). You must release the underlying database cursor by calling
Scrol | abl eResul ts. cl ose() Of Hibernate.close(lterator) explicity from a finally block. (Of course,
most applications can easily avoid using scrol | () oriterate() at al fromtheJTA or CMT code.)

11.2.3. Exception handling

If the Sessi on throws an exception (including any SQLExcept i on), you should immediately rollback the data-
base transaction, call Sessi on. cl ose() and discard the Sessi on instance. Certain methods of Sessi on will not
leave the session in a consistent state. No exception thrown by Hibernate can be treated as recoverable. Ensure
that the Sessi on will be closed by calling cl ose() inafinal l'y block.

The Hi ber nat eExcept i on, which wraps most of the errors that can occur in a Hibernate persistence layer, is an
unchecked exception (it wasn't in older versions of Hibernate). In our opinion, we shouldn't force the applica-
tion devel oper to catch an unrecoverable exception at alow layer. In most systems, unchecked and fatal excep-
tions are handled in one of the first frames of the method call stack (i.e. in higher layers) and an error message
is presented to the application user (or some other appropriate action is taken). Note that Hibernate might also
throw other unchecked exceptions which are not a Hi ber nat eExcept i on. These are, again, not recoverable and
appropriate action should be taken.

Hibernate wraps sQLExcept i ons thrown while interacting with the database in a JDBCExcept i on. In fact, Hi-
bernate will attempt to convert the eexception into a more meningful subclass of JDBCExcept i on. The underly-
ing SQLExcepti on is always available via JDBCExcept i on. get Cause() . Hibernate converts the SQLExcepti on
into an appropriate JDBCExcept i on subclass using the SQLExcept i onConvert er attached to the Sessi onFact -
ory. By default, the sQLExcepti onConverter is defined by the configured dialect; however, it is al'so possible
to plug in a custom implementation (see the javadocs for the SQLExcepti onConverter Factory class for de-
tails). The standard JDBCExcept i on subtypes are:

* JDBCConnect i onExcept i on - indicates an error with the underlying JDBC communication.

* SQLG anmar Except i on - indicates agrammar or syntax problem with the issued SQL.

* ConstraintViol ati onExcepti on - indicates some form of integrity constraint violation.

* LockAcqui sitionException - indicates an error acquiring a lock level necessary to perform the requested
operation.

e Generi cJDBCExcepti on - ageneric exception which did not fall into any of the other categories.

11.2.4. Transaction timeout

One extremely important feature provided by a managed environment like EJB that is never provided for non-
managed code is transaction timeout. Transaction timeouts ensure that no misbehaving transaction can indefin-
itely tie up resources while returning no response to the user. Outside a managed (JTA) environment, Hibernate
cannot fully provide this functionality. However, Hibernate can at least control data access operations, ensuring
that database level deadlocks and queries with huge result sets are limited by a defined timeout. In a managed
environment, Hibernate can delegate transaction timeout to JTA. This functioanlity is abstracted by the Hibern-

Hibernate 3.2 cr2 129

Transactions And Concurrency

ate Tr ansact i on object.

Sessi on sess = factory. openSession();

try {
//set transaction tineout to 3 seconds
sess. get Transaction(). set Ti meout (3);
sess. get Transacti on() . begi n();

/1 do sonme work

sess. get Transaction().commt ()

catch (Runti neException e) {
sess. get Transaction().rol | back();
throw e; // or display error nessage

}
finally {

sess. cl ose();
}

Note that set Ti mreout () may not be called in a CMT bean, where transaction timeouts must be defined declar-
atively.

11.3. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. Version checking uses version numbers, or timestamps, to detect conflicting updates (and
to prevent lost updates). Hibernate provides for three possible approaches to writing application code that uses
optimistic concurrency. The use cases we show are in the context of long conversations, but version checking
also has the benefit of preventing lost updates in single database transactions.

11.3.1. Application version checking

In an implementation without much help from Hibernate, each interaction with the database occurs in a new
Sessi on and the developer is responsible for reloading all persistent instances from the database before manip-
ulating them. This approach forces the application to carry out its own version checking to ensure conversation
transaction isolation. This approach is the least efficient in terms of database access. It is the approach most
similar to entity EJBs.

/1 foo is an instance | oaded by a previous Session
session = factory.openSession();
Transaction t = session. begi nTransaction();

int ol dVersion = foo.getVersion();

session. | oad(foo, foo.getKey()); // load the current state

if (oldVersion!=foo.getVersion) throw new Stal eQbj ect St at eException();
f 0o. set Property("bar");

t.commit();
session. cl ose();

Thever si on property is mapped using <ver si on>, and Hibernate will automatically increment it during flush if
the entity isdirty.

Of course, if you are operating in alow-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check. In that case, last commit wins will be the default strategy

Hibernate 3.2 cr2 130

Transactions And Concurrency

for your long conversations. Keep in mind that this might confuse the users of the application, as they might ex-
perience lost updates without error messages or a chance to merge conflicting changes.

Clearly, manua version checking is only feasible in very trivial circumstances and not practical for most ap-
plications. Often not only single instances, but complete graphs of modified ojects have to be checked. Hibern-
ate offers automatic version checking with either an extended Sessi on or detached instances as the design
paradigm.

11.3.2. Extended session and automatic versioning

A single sessi on instance and its persistent instances are used for the whole conversation, known as session-
per-conversation. Hibernate checks instance versions at flush time, throwing an exception if concurrent modi-
fication is detected. It's up to the developer to catch and handle this exception (common options are the oppor-
tunity for the user to merge changes or to restart the business conversation with non-stale data).

The Sessi on is disconnected from any underlying JDBC connection when waiting for user interaction. This ap-
proach is the most efficient in terms of database access. The application need not concern itself with version
checking or with reattaching detached instances, nor does it have to reload instances in every database transac-
tion.

/1l foo is an instance | oaded earlier by the old session
Transaction t = session. begi nTransaction(); // Obtain a new JDBC connection, start transaction

f 0o. set Property("bar");

session. flush(); /1l Only for last transaction in conversation
t.commt(); /1 Al'so return JDBC connection
session. cl ose(); /1l Only for last transaction in conversation

Thef oo object still knows which sessi on it was loaded in. Beginning a new database transaction on an old ses-
sion obtains a new connection and resumes the session. Committing a database transaction disconnects a ses-
sion from the JDBC connection and returns the connection to the pool. After reconnection, to force a version
check on data you aren't updating, you may call Session.lock() With LockMbde. READ on any objects that
might have been updated by another transaction. Y ou don't need to lock any data that you are updating. Usually
you would set Fl ushMbde. NEVER 0n an extended Sessi on, so that only the last database transaction cycle is al-
lowed to actualy persist al modifications made in this conversation. Hence, only this last database transaction
would include thef | ush() operation, and then also cl ose() the session to end the conversation.

This pattern is problematic if the Sessi on is too big to be stored during user think time, e.g. an Ht t pSessi on
should be kept as small as possible. As the Sessi on is aso the (mandatory) first-level cache and contains all
loaded objects, we can probably use this strategy only for afew request/response cycles. You should use a Ses-
si on only for asingle conversation, asit will soon aso have stale data.

(Note that earlier Hibernate versions required explicit disconnection and reconnection of a Sessi on. These
methods are deprecated, as beginning and ending a transaction has the same effect.)

Also note that you should keep the disconnected sessi on close to the persistence layer. In other words, use an
EJB stateful session bean to hold the Sessi on in a three-tier environment, and don't transfer it to the web layer
(or even serialize it to a separate tier) to store it in the Ht t pSessi on.

The extended session pattern, or session-per-conversation, is more difficult to implement with automatic cur-
rent session context management. You need to supply your own implementation of the Current Sessi onCon-
text for this, see the Hibernate Wiki for examples.

11.3.3. Detached objects and automatic versioning

Hibernate 3.2 cr2 131

Transactions And Concurrency

Each interaction with the persistent store occurs in a new Sessi on. However, the same persistent instances are
reused for each interaction with the database. The application manipulates the state of detached instances ori-
ginaly loaded in another sSession and then resattaches them wusing Session.update(), Ses-
si on. saveOr Updat e(), Or Sessi on. nerge() .

/1l foo is an instance | oaded by a previ ous Session

f oo. set Property("bar");

session = factory. openSession();

Transaction t = session. begi nTransaction();

sessi on. saveOr Updat e(foo); // Use nmerge() if "foo" might have been | oaded al ready
t.commt();

session. cl ose();

Again, Hibernate will check instance versions during flush, throwing an exception if conflicting updates oc-
cured.

You may also call | ock() instead of updat e() and use LockMbde. READ (performing a version check, bypassing
all caches) if you are sure that the object has not been modified.

11.3.4. Customizing automatic versioning

Y ou may disable Hibernate's automatic version increment for particular properties and collections by setting the
opti mistic-1ock mapping attribute to f al se. Hibernate will then no longer increment versions if the property
isdirty.

Legacy database schemas are often static and can't be modified. Or, other applications might also access the
same database and don't know how to handle version numbers or even timestamps. In both cases, versioning
can't rely on a particular column in atable. To force a version check without a version or timestamp property
mapping, with a comparison of the state of all fieldsin arow, turn on opti mistic-1ock="al I " inthe <cl ass>
mapping. Note that this concepetually only works if Hibernate can compare the old and new state, i.e. if you
use asingle long sessi on and not session-per-request-with-detached-objects.

Sometimes concurrent modification can be permitted as long as the changes that have been made don't overlap.
If you set optimistic-lock="dirty" when mapping the <cl ass>, Hibernate will only compare dirty fields dur-
ing flush.

In both cases, with dedicated version/timestamp columns or with full/dirty field comparison, Hibernate uses a
single UPDATE statement (with an appropriate WHERE clause) per entity to execute the version check and update
the information. If you use transitive persistence to cascade reattachment to associated entities, Hibernate might
execute uneccessary updates. Thisis usually not a problem, but on update triggers in the database might be ex-
ecuted even when no changes have been made to detached instances. Y ou can customize this behavior by set-
ting sel ect - bef or e- updat e="true" in the <cl ass> mapping, forcing Hibernate to SELECT the instance to en-
sure that changes did actually occur, before updating the row.

11.4. Pessimistic Locking

It is not intended that users spend much time worring about locking strategies. Its usually enough to specify an
isolation level for the JDBC connections and then simply let the database do al the work. However, advanced
users may sometimes wish to obtain exclusive pessimistic locks, or re-obtain locks at the start of a new transac-
tion.

Hibernate will always use the locking mechanism of the database, never lock objects in memory!

Hibernate 3.2 cr2 132

Transactions And Concurrency

The LockMde class defines the different lock levels that may be acquired by Hibernate. A lock is obtained by
the following mechanisms:

* LockMde. WRI TE is acquired automatically when Hibernate updates or inserts arow.

* LockMde. UPGRADE may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases
which support that syntax.
e LockMde. UPGRADE_NOMI T may be acquired upon explicit user request using a SELECT ... FOR UPDATE

Nowal T under Oracle.

* LockMde. READ is acquired automatically when Hibernate reads data under Repeatable Read or Serializable
isolation level. May be re-acquired by explicit user request.

* LockMode. NONE represents the absence of alock. All objects switch to thislock mode at the end of a Tr ans-
acti on. Objects associated with the session via a call to updat e() Ofr saveOr Updat e() also start out in this
lock mode.

The "explicit user request” is expressed in one of the following ways:

e A cal toSession. | oad(), specifying aLockMde.
* A call to Session. | ock().
* A cal toQuery. set LockMbde() .

If Session. | oad() is called with UPGRADE or UPGRADE_NOwWAI T, and the requested object was not yet loaded by
the session, the object isloaded using SELECT ... FOR UPDATE. If | oad() iscalled for an object that is already
loaded with aless restrictive lock than the one requested, Hibernate calls1 ock() for that object.

Sessi on. l ock() performs a version number check if the specified lock mode is READ, UPGRADE Or UP-
GRADE_NOMI T. (In the case of UPGRADE Or UPGRADE_NOWAI T, SELECT ... FOR UPDATE isused.)

If the database does not support the requested lock mode, Hibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

11.5. Connection Release Modes

The legacy (2.x) behavior of Hibernate in regards to JDBC connection management was that a Sessi on would
obtain a connection when it was first needed and then hold unto that connection until the session was closed.
Hibernate 3.x introduced the notion of connection release modes to tell a session how to handle its JDBC con-
nections. Note that the following discussion is pertinent only to connections provided through a configured
Connect i onPr ovi der ; user-supplied connections are outside the breadth of this discussion. The different re-
lease modes are identified by the enumerated values of or g. hi ber nat e. Connect i onRel easeMde:

e ON_CLCSE - is essentially the legacy behavior described above. The Hibernate session obatins a connection
when it first needs to perform some JDBC access and holds unto that connection until the session is closed.

e AFTER _TRANSACTI ON - says to release connections after aor g. hi ber nat e. Transact i on has completed.

e AFTER _STATEMENT (also referred to as aggressive release) - says to release connections after each and every
statement execution. This aggressive releasing is skipped if that statement leaves open resources associated
with the given session; currently the only situation where this occurs is through the use of
org. hi bernate. Scrol | abl eResul ts.

The configuration parameter hi ber nat e. connecti on. r el ease_node is used to specify which release mode to
use. The possible values:

e auto (the default) - this choice delegates to the release mode returned by the
org. hi bernate. transaction. Transacti onFact ory. get Def aul t Rel easeMbde() method. For JTATransac-
tionFactory, this returns ConnectionReleaseMode AFTER_STATEMENT; for JDBCTransactionFactory,

Hibernate 3.2 cr2 133

Transactions And Concurrency

this returns ConnectionReleaseMode AFTER_TRANSACTION. It is rarely a good idea to change this de-
fault behavior as failures due to the value of this setting tend to indicate bugs and/or invalid assumptions in
user code.

e on_cl ose - saysto use ConnectionReleaseMode.ON_CLOSE. This setting is |eft for backwards compatibil-
ity, but its use is highly discouraged.

e after_transaction - says to use ConnectionReleaseMode. AFTER_TRANSACTION. This setting should
not be used in JTA environments. Also note that with ConnectionReleaseMode AFTER_TRANSACTION,
if a session is considered to be in auto-commit mode connections will be released as if the release mode
were AFTER_STATEMENT.

e after_statement - says to use ConnectionReleaseMode AFTER_STATEMENT. Additionally, the con-
figured Connecti onProvi der is consulted to see if it supports this setting
(supportsAggressiveRel ease()). If not, the release mode is reset to ConnectionRelease-
Mode AFTER_TRANSACTION. This setting is only safe in environments where we can either re-acquire
the same underlying JDBC connection each time we make a cal into ConnectionPro-
vi der . get Connect i on() Or in auto-commit environments where it does not matter whether we get back the
same connection.

Hibernate 3.2 cr2 134

Chapter 12. Interceptors and events

It is often useful for the application to react to certain events that occur inside Hibernate. This alows imple-
mentation of certain kinds of generic functionality, and extension of Hibernate functionality.

12.1. Interceptors

Thel ntercept or interface provides callbacks from the session to the application alowing the application to in-
spect and/or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One pos-
sible use for thisis to track auditing information. For example, the following I nt er cept or automatically sets
the creat eTi nest anp When an Audi t abl e is created and updates the | ast Updat eTi mest anp property when an
Audi t abl e is updated.

Y ou may either implement I nt er cept or directly or (better) extend Enpt y!I nt er cept or.

package org. hi bernate.test;

i mport java.io.Serializable;
i mport java.util.Date;
import java.util.lterator;

i mport org. hi bernate. Enptyl nterceptor;
i mport org. hi bernate. Transacti on;
i mport org. hi bernate.type. Type;

public class Auditlnterceptor extends Enptylnterceptor {

private int updates;
private int creates;
private int |oads;

public void onDel et e(Obj ect entity,
Serializable id,
Cbj ect[] state,
String[] propertyNanes,
Type[] types) {
/1 do not hi ng
}

publ i c bool ean onFl ushDirty(Object entity,
Serializable id,
oj ect[] currentState,
Cbj ect[] previousState,
String[] propertyNanes,

Type[] types) {

if (entity instanceof Auditable) {
updat es++;
for (int i=0; i < propertyNanes.length; i++) {
if ("lastUpdateTi nestanp”. equal s(propertyNames[i])) {
currentState[i] = new Date();
return true;

}
}
return false;

}

publ i ¢ bool ean onLoad(Chject entity,
Serializable id,
Cbj ect[] state,
String[] propertyNanes,
Type[] types) {
if (entity instanceof Auditable) {

Hibernate 3.2 cr2 135

Interceptors and events

| oads++;

}

return fal se;

}

publ i c bool ean onSave((Obj ect entity,
Serializable id,
bj ect[] state,
String[] propertyNanes,
Type[] types) {

if (entity instanceof Auditable) {
creat es++;
for (int i=0; i<propertyNanmes.length; i++) {
if ("createTimestanp". equal s(propertyNanes[i])) {
state[i] = new Date();
return true;

}
}

return fal se;

}

public void afterTransacti onConpl eti on(Transaction tx) {
if (tx.wasCommitted()) {
Systemout.println("Creations: " + creates + ", Updates: " + updates, "Loads: "
}

updat es=0;
creat es=0;
| oads=0;

Interceptors come in two flavors: Sessi on-scoped and Sessi onFact or y-scoped.

A sessi on-scoped interceptor is specified when a session is opened using one of the overloaded SessionFact-
ory.openSession() methods accepting an | nt er cept or .

Sessi on session = sf.openSession(new Auditlnterceptor());

A Sessi onFact or y-scoped interceptor is registered with the Confi gurati on object prior to building the Ses-
si onFact ory. In this case, the supplied interceptor will be applied to all sessions opened from that Sessi on-
Fact ory; this is true unless a session is opened explicitly specifying the interceptor to use. Sessi onFact ory-
scoped interceptors must be thread safe, taking care to not store session-specific state since multiple sessions
will use this interceptor (potentially) concurrently.

new Configuration().setlnterceptor(new Auditlnterceptor());

12.2. Event system

If you have to react to particular events in your persistence layer, you may also use the Hibernate3 event archi-
tecture. The event system can be used in addition or as a replacement for interceptors.

Essentially al of the methods of the Session interface correlate to an event. You have a LoadEvent, a
Fl ushEvent , etc (consult the XML configuration-file DTD or the or g. hi ber nat e. event package for the full
list of defined event types). When a request is made of one of these methods, the Hibernate Sessi on generates
an appropriate event and passes it to the configured event listeners for that type. Out-of-the-box, these listeners
implement the same processing in which those methods always resulted. However, you are free to implement a
customization of one of the listener interfaces (i.e., the LoadEvent is processed by the registered implemenation

Hibernate 3.2 cr2 136

+ | oads);

Interceptors and events

of the LoadEvent Li st ener interface), in which case their implementation would be responsible for processing
any | oad() requests made of the sessi on.

The listeners should be considered effectively singletons, meaning, they are shared between requests, and thus
should not save any state as instance variables.

A custom listener should implement the appropriate interface for the event it wants to process and/or extend
one of the convenience base classes (or even the default event listeners used by Hibernate out-of-the-box as
these are declared non-fina for this purpose). Custom listeners can either be registered programmatically
through the confi gur at i on object, or specified in the Hibernate configuration XML (declarative configuration
through the propertiesfileis not supported). Here's an example of a custom load event listener:

public class MyLoadLi stener inplenments LoadEventLi stener {
/1 this is the single nethod defined by the LoadEventLi stener interface
public void onLoad(LoadEvent event, LoadEventlListener.LoadType | oadType)
t hrows Hi ber nat eException {
if (!'MySecurity.isAuthorized(event.getEntityC assNanme(), event.getEntityld())) {
throw MySecurityException("Unaut horized access");

}

Y ou also need a configuration entry telling Hibernate to use the listener in addition to the default listener:

<hi ber nat e- confi gurati on>
<sessi on-factory>

<event type="I|oad">
<l istener class="com eg. M/LoadLi stener"/>
<l istener class="org. hibernate.event.def.DefaultLoadEventListener"/>
</ event >
</ sessi on-factory>
</ hi ber nat e- conf i gurati on>

Instead, you may register it programmatically:

Configuration cfg = new Configuration();
LoadEvent Li stener[] stack = { new MyLoadLi stener(), new Defaul t LoadEventListener() };
cfg. Event Li steners() . set LoadEvent Li st ener s(st ack) ;

Listeners registered declaratively cannot share instances. If the same class name is used in multiple
<li st ener/ > elements, each reference will result in a separate instance of that class. If you need the capability
to share listener instances between listener types you must use the programmatic registration approach.

Why implement an interface and define the specific type during configuration? Well, a listener implementation
could implement multiple event listener interfaces. Having the type additionally defined during registration
makesit easier to turn custom listeners on or off during configuration.

12.3. Hibernate declarative security

Usually, declarative security in Hibernate applications is managed in a session facade layer. Now, Hibernate3
allows certain actions to be permissioned via JACC, and authorized via JAAS. This is optional functionality
built on top of the event architecture.

First, you must configure the appropriate event listeners, to enable the use of JAAS authorization.

<listener type="pre-del ete" class="org. hi bernate.secure. JACCPreDel et eEvent Li st ener"/ >
<listener type="pre-update" class="org. hi bernate. secure. JACCPreUpdat eEvent Li stener"/>
<listener type="pre-insert" class="org. hibernate.secure. JACCPrel nsert EventLi stener"/>

Hibernate 3.2 cr2 137

Interceptors and events

<listener type="pre-|load" class="org.hibernate.secure.JACCPreLoadEvent Li stener"/>

Note that <listener type="..." class="..."/> is just a shorthand for <event type="..."><listener

class="..."/></event > when there is exactly one listener for a particular event type.
Next, still in hi ber nat e. ¢f g. xn , bind the permissionsto roles:

<grant role="adm n" entity-nane="User" actions="insert, update, read"/>
<grant role="su" entity-nane="User" actions="*"/>

The role names are the roles understood by your JACC provider.

Hibernate 3.2 cr2

138

Chapter 13. Batch processing

A naive approach to inserting 100 000 rows in the database using Hibernate might look like this:

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransaction();
for (int i=0; i<100000; i++) {
Cust oner customer = new Custoner(.....)
sessi on. save(custoner);

}

tx.commt();
session. cl ose();

This would fall over with an cut O Menor yExcept i on somewhere around the 50 000th row. That's because Hi-
bernate caches all the newly inserted cust orer instances in the session-level cache.

In this chapter we'll show you how to avoid this problem. First, however, if you are doing batch processing, itis
absolutely critical that you enable the use of JDBC batching, if you intend to achieve reasonable performance.
Set the IDBC batch size to areasonable number (say, 10-50):

hi ber nat e. j dbc. bat ch_si ze 20

Y ou also might like to do this kind of work in a process where interaction with the second-level cache is com-
pletely disabled:

hi ber nat e. cache. use_second_| evel _cache fal se

However, thisis not absolutely necessary, since we can explicitly set the cacheMbde to disable interaction with
the second-level cache.

13.1. Batch inserts

When making new objects persistent, you must f |1 ush() and then cl ear () the session regularly, to control the
size of the first-level cache.

Sessi on sessi on = sessi onFact ory. openSessi on();
Transaction tx = session. begi nTransaction();

for (int i=0; i<100000; i++) {
Cust oner customer = new Custoner(.....);
sessi on. save(custoner);
if (1 %20 ==0) { //20, same as the JDBC batch size
[/ flush a batch of inserts and rel ease nenory:
session. flush();
session. clear();

}

tx.commt();
session. cl ose();

13.2. Batch updates

For retrieving and updating data the same ideas apply. In addition, you need to use scrol | () to take advantage
of server-side cursors for queries that return many rows of data.

Hibernate 3.2 cr2 139

Batch processing

Sessi on session = sessionFactory. openSession();
Transaction tx = session. begi nTransaction();

Scrol | abl eResul ts custonmers = sessi on. get NamedQuer y(" Get Cust oners")
. set CacheMbde(CacheMode. | GNORE)
.scrol | (Scroll Mode. FORWARD_ONLY) ;
i nt count =0;
while (custoners.next()) {
Cust oner customer = (Custoner) custoners.get(0);
custoner. updateStuff(...);
if (+tcount %20 == 0) {
//flush a batch of updates and rel ease nenory:
session. flush();
session. clear();

}

tx.commt();
session. cl ose();

13.3. The StatelessSession interface

Alternatively, Hibernate provides a command-oriented API that may be used for streaming data to and from the
database in the form of detached objects. A St at el essSessi on has no persistence context associated with it
and does not provide many of the higher-level lifecycle semantics. In particular, a statel ess session does not im-
plement afirst-level cache nor interact with any second-level or query cache. It does not implement transaction-
al write-behind or automatic dirty checking. Operations performed using a stateless session do not ever cascade
to associated instances. Collections are ignored by a stateless session. Operations performed via a stateless ses-
sion bypass Hibernate's event model and interceptors. Stateless sessions are vulnerable to data aliasing effects,
dueto the lack of afirst-level cache. A stateless session is alower-level abstraction, much closer to the underly-
ing JDBC.

St at el essSessi on sessi on = sessi onFactory. openSt at el essSessi on() ;
Transaction tx = session. begi nTransaction();

Scrol | abl eResul ts custoners = session. get NamedQuer y(" Get Cust oner s")
.scrol | (Scroll Mode. FORWARD_ONLY) ;

while (custoners.next()) {
Cust oner customer = (Custoner) custoners.get(0);
custoner.updateStuff(...);
sessi on. updat e(cust oner) ;

}

tx.commit();
sessi on. cl ose();

Note that in this code example, the cust oner instances returned by the query are immediately detached. They
are never associated with any persistence context.

Theinsert(), update() anddel et e() operations defined by the st at el essSessi on interface are considered
to be direct database row-level operations, which result in immediate execution of a SQL | NSERT, UPDATE oOf
DELETE respectively. Thus, they have very different semantics to the save(), saveO Update() and del et e()
operations defined by the Sessi on interface.

13.4. DML-style operations

As already discussed, automatic and transparent object/relational mapping is concerned with the management
of object state. This implies that the object state is available in memory, hence manipulating (using the SQL

Hibernate 3.2 cr2 140

Batch processing

Data Mani pul ati on Language (DML) statements: | NSERT, UPDATE, DELETE) data directly in the database will
not affect in-memory state. However, Hibernate provides methods for bulk SQL-style DML statement execu-
tion which are performed through the Hibernate Query Language (Chapter 14, HQL: The Hibernate Query
Language).

The pseudo-syntax for UPDATE and DELETE statementsis. (UPDATE | DELETE) FROMP EntityName (WHERE
wher e_condi ti ons) ?. Some points to note:

¢ Inthefrom-clause, the FROM keyword is optiona

» There can only be asingle entity named in the from-clause; it can optionally be aliased. If the entity nameis
dliased, then any property references must be qualified using that alias; if the entity name is not aliased,
thenitisillegal for any property references to be qualified.

* No Section 14.4, “Forms of join syntax” (either implicit or explicit) can be specified in a bulk HQL query.
Sub-queries may be used in the where-clause; the subqueries, themselves, may contain joins.

e Thewhere-clauseis also optional.

As an example, to execute an HQL UPDATE, use the Query. execut eUpdat e() method (the method is named for
those familiar with JDBC's Pr epar edSt at enent . execut eUpdat e()):

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransaction();

: ol dNane";
: ol dNanme" ;

String hgl Update = "update Customer c set c.name = :newNanme where c.nane
/1 or String hqgl Update = "update Custoner set name = :newNane where nane
int updatedEntities = s.createQuery(hqgl Update)

.setString("newNane", newNane)

.setString("ol dNane", ol dNane)

. execut eUpdat e() ;
tx.commt();
sessi on. cl ose();

HQL uPDATE statements, by default do not effect the Section 5.1.7, “version (optional)” or the Section 5.1.8,
“timestamp (optional)” property values for the affected entities; thisis in keeping with the EJB3 specification.
However, you can force Hibernate to properly reset the ver si on or ti mest anp property values through the use
of aversi oned updat e. Thisis achieved by adding the VERSI ONeD keyword after the UPDATE keyword.

Sessi on session = sessi onFactory. openSession();
Transaction tx = session. begi nTransaction();
String hqgl Versi onedUpdate = "update versioned Custoner set nane = :newNane where nane = :ol dNanme";
int updatedEntities = s.createQuery(hgl Update)
.setString("newNane", newNane)
.setString("ol dNane", ol dNane)
. execut eUpdat e() ;
tx.commt();
session. cl ose();

Note that custom version types (or g. hi ber nat e. usert ype. User Ver si onType) are not allowed in conjunction
with aupdat e versi oned Statement.

To execute an HQL DELETE, use the same Query. execut eUpdat e() method:

Sessi on session = sessionFactory. openSession();
Transaction tx = session. begi nTransaction();

String hqgl Del ete = "del ete Custoner c where c.name = : ol dNane";
/1 or String hql Delete = "del ete Custoner where name = : ol dNane";
int deletedEntities = s.createQuery(hql Delete)

.setString("ol dNane", ol dNane)

. execut eUpdat e() ;
tx.commt();
session. cl ose();

Hibernate 3.2 cr2 141

Batch processing

Theint value returned by the Query. execut eUpdat e() method indicate the number of entities effected by the
operation. Consider this may or may not correlate to the number of rows effected in the database. An HQL bulk
operation might result in multiple actual SQL statements being executed, for joined-subclass, for example. The
returned number indicates the number of actual entities affected by the statement. Going back to the example of
joined-subclass, a delete against one of the subclasses may actually result in deletes against not just the table to
which that subclass is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritence hierarchy.

The pseudo-syntax for | NSERT statementsis. | NSERT | NTO EntityNanme properties_|list select_statenent.
Some points to note:

e Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES ... form.

The properties list is analogous to the col umm spefi ci ati on in the SQL | NSERT statement. For entities in-
volved in mapped inheritence, only properties directly defined on that given class-level can be used in the
properties list. Superclass properties are not allowed; and subclass properties do not make sense. In other
words, | NSERT statements are inherently non-polymorphic.

e select_statement can be any valid HQL select query, with the caveat that the return types must match the
types expected by the insert. Currently, this is checked during query compilation rather than alowing the
check to relegate to the database. Note however that this might cause problems between Hibernate Types
which are equivalent as opposed to equal. This might cause issues with mismatches between a property
defined a8 a org.hibernate.type. DateType and a property defined as a
or g. hi ber nat e. t ype. Ti nest anpType, even though the database might not make a distinction or might be
able to handle the conversion.

« For theid property, the insert statement gives you two options. Y ou can either explicitly specify the id prop-
erty in the properties_list (in which case its value is taken from the corresponding select expression) or omit
it from the properties_list (in which case a generated value is used). This later option is only available when
using id generators that operate in the database; attempting to use this option with any "in memory" type
generators will cause an exception during parsing. Note that for the purposes of this discussion, in-database
generators are considered to be or g. hi ber nat e. i d. SequenceGener at or (and its subclasses) and any imple-
mentors of org. hibernate.id.PostlnsertldentifierGenerator. The most notable exception here is
org. hi bernate. i d. Tabl eHi LoGener at or, Which cannot be used because it does not expose a selectable
way to get its values.

» For properties mapped as either ver si on or ti mest anp, the insert statement gives you two options. Y ou can
either specify the property in the properties list (in which case its value is taken from the corresponding se-
lect expressions) or omit it from the properties list (in which case the seed val ue defined by the
or g. hi ber nat e. t ype. Ver si onType iS used).

An example HQL | NSERT statement execution:

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransaction();

String hgllnsert = "insert into DelinquentAccount (id, nanme) select c.id, c.name from Custoner c wher«
int createdEntities = s.createQuery(hqgllnsert)
. execut eUpdat e() ;
tx.commt();
session. cl ose();

Hibernate 3.2 cr2 142

Chapter 14. HQL: The Hibernate Query Language

Hibernate is equipped with an extremely powerful query language that (quite intentionally) looks very much
like SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inherit-
ence, polymorphism and association.

14.1. Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same as sELEct
is the same as SELECT but org. hi bernate. eg. FOO iS Not org. hi bernat e. eg. Foo and f oo. bar Set iS not
f 00. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in Java code.

14.2. The from clause
The simplest possible Hibernate query is of the form:

from eg. Cat

which simply returns all instances of the class eg. cat . We don't usually need to qualify the class name, since
aut o-i mport isthe default. So we almost always just write:

from Cat

Most of the time, you will need to assign an alias, since you will want to refer to the cat in other parts of the
query.

from Cat as cat

This query assignsthe alias cat to cat instances, so we could use that alias later in the query. The as keyword
is optional; we could also write:

from Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross' join.

from Fornmul a, Paraneter

fromFornmula as form Paranmeter as param
It is considered good practice to name query aliases using an initial lowercase, consistent with Java naming
standards for local variables (eg. donest i cCat).

14.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using aj oi n.

Hibernate 3.2 cr2 143

HQL: The Hibernate Query Language

from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

fromCat as cat left join cat.mate.kittens as kittens
fromFormula formfull join form paraneter param

The supported join types are borrowed from ANSI SQL

® inner join

e |eft outer join

* right outer join

e full join (notusualy useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

from Cat as cat
join cat.mate as nate
left join cat.kittens as kitten

Y ou may supply extrajoin conditions using the HQL wi t h keyword.

from Cat as cat
left join cat.kittens as kitten
with kitten. bodyWight > 10.0

In addition, a "fetch" join alows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
outer join and lazy declarations of the mapping file for associations and collections. See Section 19.1,
“Fetching strategies’ for more information.

from Cat as cat
inner join fetch cat.mte
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
wher e clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed via the parent object. The only reason we might need an alias is if we are recurs-
ively join fetching a further collection:

from Cat as cat
inner join fetch cat. mate
left join fetch cat.kittens child
left join fetch child.kittens

Note that the f et ch construct may not be used in queries called using iterate() (though scroll () can be
used). Nor should f et ch be used together with set MaxResul t s() Or set Fi rst Resul t () asthese operations are
based on the result rows, which usually contain duplicates for eager collection fetching, hence, the number of
rows is not what you'd expect. Nor may f et ch be used together with an ad hoc wi t h condition. It is possible to
create a cartesian product by join fetching more than one collection in a query, so take care in this case. Join
fetching multiple collection roles also sometimes gives unexpected results for bag mappings, so be careful
about how you formulate your queriesin this case. Finally, notethat ful | join fetchandright join fetch
are not meaningful.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force Hibernate to

Hibernate 3.2 cr2 144

HQL: The Hibernate Query Language

fetch the lazy properties immediately (in thefirst query) usingfetch al | properti es.

from Docunent fetch all properties order by nane

from Docunent doc fetch all properties where | ower(doc. nane) |ike '9%ats%

14.4. Forms of join syntax

HQL supports two forms of association joining: i nplicit andexplicit.

The queries shown in the previous section al use the expl i ci t form where the join keyword is explicitly used
in the from clause. Thisis the recommended form.

The inplicit form does not use the join keyword. Instead, the associations are "dereferenced” using dot-
notation. i npl i ci t joins can appear in any of the HQL clauses. i nplicit joinresult ininner joinsin the result-
ing SQL statement.

fromCat as cat where cat.mate.nane like ' %%

14.5. The select clause

Thesel ect clause picks which objects and properties to return in the query result set. Consider:

sel ect mate
from Cat as cat
inner join cat.mate as mate

The query will select mat es of other cat s. Actually, you may express this query more compactly as:

sel ect cat.mate from Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.nanme from DonesticCat cat
where cat.nanme like '"fri%

sel ect cust.nanme.firstName from Custoner as cust

Queries may return multiple objects and/or properties as an array of type j ect[],

sel ect nother, offspr, mate.nane
from Donmesti cCat as not her
inner join nother.mate as mate
left outer join nother.kittens as offspr

or asalist,

sel ect new |ist(nmother, offspr, nate.nane)
from Domesti cCat as not her

inner join nother.mate as mate

| eft outer join nother.kittens as offspr

or as an actual typesafe Java object,

Hibernate 3.2 cr2 145

HQL: The Hibernate Query Language

sel ect new Fami | y(nother, mate, offspr)
from Donmesti cCat as not her

join nother.mate as mate

left join nmother.kittens as offspr

assuming that the class Fani | y has an appropriate constructor.
Y ou may assign aliases to selected expressions using as:

sel ect max(bodyWei ght) as max, mi n(bodyWight) as mn, count(*) as n
from Cat cat

Thisis most useful when used together with sel ect new map:

sel ect new map(max(bodyWei ght) as max, m n(bodyWight) as mn, count(*) as n)
from Cat cat

This query returns a vap from aliases to selected values.

14.6. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

sel ect avg(cat.weight), sun{cat.weight), max(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are

* avg(...), sun(...), mn(...), max(...)

e count(*)

e count(...), count(distinct ...), count(all...)

Y ou may use arithmetic operators, concatenation, and recognized SQL functions in the select clause:

sel ect cat.weight + sum(Kkitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||' "||initial||" "]|]|upper(lastNanme) from Person

Thedi stinct andal | keywords may be used and have the same semantics asin SQL.

sel ect distinct cat.nanme from Cat cat

sel ect count (distinct cat.nane), count(cat) from Cat cat

14.7. Polymorphic queries

A query like:

from Cat as cat

returns instances not only of cat, but also of subclasses like Donest i cCat . Hibernate queries may name any

Hibernate 3.2 cr2 146

HQL: The Hibernate Query Language

Java class or interface in the f r om clause. The query will return instances of al persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

fromjava.l ang. Obj ect o

The interface Named might be implemented by various persistent classes:

from Naned n, Naned m where n.nane = m nane

Note that these last two queries will require more than one SQL SELECT. This means that the or der by clause
does not correctly order the whole result set. (It also means you can't call these queries using Query. scrol | () .)

14.8. The where clause

The wher e clause allows you to narrow the list of instances returned. If no alias exists, you may refer to proper-
ties by name:

from Cat where nane='Fritz'

If thereisan alias, use aqualified property name:

from Cat as cat where cat.name='Fritz'

returns instances of cat named 'Fritz'.

sel ect foo
from Foo foo, Bar bar
where foo.startDate = bar.date

will return all instances of Foo for which there exists an instance of bar with a dat e property equal to the
start Dat e property of the Foo. Compound path expressions make the wher e clause extremely powerful. Con-
sider:

from Cat cat where cat.nmate.nane is not null

This query tranglates to an SQL query with atable (inner) join. If you were to write something like

from Foo foo
wher e foo. bar.baz. custoner. address.city is not null

you would end up with aquery that would require four table joinsin SQL.
The = operator may be used to compare not only properties, but also instances:

fromCat cat, Cat rival where cat.mate = rival.mate

sel ect cat, nmate
fromCat cat, Cat mate
where cat.mate = nate

The special property (lowercase) i d may be used to reference the unique identifier of an object. (Y ou may also
use its property name.)

fromCat as cat where cat.id = 123

Hibernate 3.2 cr2 147

HQL: The Hibernate Query Language

fromCat as cat where cat.mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite identifier consisting of
count ry and medi car eNunber .

from bank. Person person
where person.id.country = "'AU
and person.id. medi careNunber = 123456

f rom bank. Account account
where account.owner.id.country = "'AU
and account. owner.id. nedi careNunber = 123456

Once again, the second query requires no tablejain.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be translated to its discriminator value.

from Cat cat where cat.class = DonesticCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that endsin a property of component type (as opposed to a property of a
component). For example, if st or e. owner isan entity with a component addr ess

store. owner. address.city /1 okay
st or e. owner . addr ess /1 error!

An "any" type has the specia properties i d and cl ass, alowing us to express a join in the following way
(where Audi t Log. i t emisa property mapped with <any>).

from AuditLog | og, Paynent paynent
where log.itemclass = 'Paynent' and log.itemid = paynment.id

Notice that |1 og.item cl ass and payment . cl ass would refer to the values of completely different database
columns in the above query.

14.9. Expressions

Expressions alowed in the wher e clause include most of the kind of things you could writein SQL.:

e mathematical operators+, -, *, /

e binary comparison operators=, >=, <=, <> =, like
* logical operationsand, or, not

e Parentheses(), indicating grouping

* in,not in,between,is null,is not null,is enpty,is not enpty, menber of andnot nenber of

e "Simple" case, case ... when ... then ... else ... end, and "searched" case, case when ... then
else ... end

e string concatenation...||... Ofconcat(...,...)

e current_date(),current_time(),current _tinmestanp()

e second(...),mnute(...),hour(...),day(...),month(...),year(...),

e Any function or operator defined by EJB-QL 3.0: substring(), trin(), lower(), upper(), length(),
| ocate(), abs(), sqrt(), bit_length(), nod()

Hibernate 3.2 cr2 148

HQL: The Hibernate Query Language

e coalesce() andnul i f()
» str() for converting numeric or temporal values to areadable string

e cast(... as ...), where the second argument is the name of a Hibernate type, and extract (... from

...) if ANSI cast () andextract () issupported by the underlying database

« theHQL i ndex() function, that appliesto aliases of ajoined indexed collection

« HQL functions that take collection-valued path expressions. size(), minelenment(), maxel enent(),
m ni ndex(), maxi ndex(), aong with the special el ement s() andi ndi ces functions which may be quanti-
fiedusingsome, all, exists, any, in.

» Any database-supported SQL scalar function likesi gn(), trunc(),rtrin(),sin()

« JDBC-style positional parameters 2

¢ named parameters: nane, : start_date, : x1

e SQL literals' foo' , 69, 6. 66E+2, ' 1970-01-01 10: 00: 01. O’

e Javapublic static final constantseg. Col or. TABBY

i n and bet ween may be used as follows:

from Domesti cCat cat where cat.nanme between 'A'" and 'B

from DonesticCat cat where cat.name in ('Foo', 'Bar', 'Baz')
and the negated forms may be written

from Donmesti cCat cat where cat.nanme not between 'A" and 'B

from DonesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Likewise,is null andis not null may beused to test for null values.
Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate configuration:

<property nane="hi bernate. query. substitutions">true 1, fal se 0</property>

Thiswill replace the keywordst rue and f al se with theliterals 1 and o in the trandated SQL from thisHQL :

from Cat cat where cat.alive = true

Y ou may test the size of a collection with the special property si ze, or the special si ze() function.
from Cat cat where cat.kittens.size >0
fromCat cat where size(cat.kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using mi ni ndex and maxi ndex

functions. Similarly, you may refer to the minimum and maximum elements of a collection of basic type using
the mi nel enent and maxel enent functions.

from Cal endar cal where nmaxel enent (cal . holidays) > current_date
from Order order where maxi ndex(order.itens) > 100
from Order order where m nel enent (order.itens) > 10000

The SQL functionsany, sone, all, exists, in aresupportedwhen passed the element or index set of acol-
lection (el enent s and i ndi ces functions) or the result of a subquery (see below).

Hibernate 3.2 cr2 149

HQL: The Hibernate Query Language

sel ect nother from Cat as nother, Cat as kit
where kit in el enents(foo.kittens)

sel ect p from NanmeList |ist, Person p
where p.nane = sone el enments(list.nanes)

from Cat cat where exists el ements(cat.kittens)
fromPlayer p where 3 > all el enents(p.scores)
from Show show where 'fizard' in indices(show acts)

Note that these constructs - si ze, el enent s, i ndi ces, ni ni ndex, maxi ndex, mi nel enent, maxel enent - may
only be used in the where clause in Hibernate3.

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in awhere clause only):

from Order order where order.items[0].id = 1234

sel ect person from Person person, Cal endar cal endar
wher e cal endar. hol i days[' nati onal day'] = person. birthDay
and person. nationality.cal endar = cal endar

select itemfromltemitem Order order
where order.itens[order.deliveredltem ndices[0]] = itemand order.id = 11

select itemfromltemitem Order order
where order.itens[maxindex(order.itens)] = itemand order.id = 11

The expressioninside[] may even be an arithmetic expression.

select itemfromltemitem Order order
where order.itens[size(order.itenms) - 1] =item

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or collection of
values.

select item index(item) from Order order
join order.itens item
where index(iten) < 5

Scalar SQL functions supported by the underlying database may be used

from DonesticCat cat where upper(cat.nane) |like 'FRl %

If you are not yet convinced by al this, think how much longer and less readable the following query would be

in SQL:

sel ect cust
from Product prod,
Store store
inner join store.custonmers cust
where prod. namre = 'w dget'
and store.location.name in (' Ml bourne', 'Sydney')
and prod = all elenments(cust.currentOrder.lineltens)

Hint: something like

Hibernate 3.2 cr2 150

HQL: The Hibernate Query Language

SELECT cust.nanme, cust.address, cust.phone, cust.id, cust.current_order
FROM cust oners cust,
stores store,
| ocations |oc,
store_custoners sc
product prod
VWHERE prod. nanme = 'w dget
AND store.loc_id = loc.id
IN (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust _id = cust.id
AND prod.id = ALL(
SELECT item prod_id
FROM line_itens item orders o
WHERE itemorder_id = o.id
AND cust.current_order = o.id

AND | oc. nane

14.10. The order by clause

Thelist returned by a query may be ordered by any property of areturned class or components:

from Donesti cCat cat
order by cat.name asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

14.11. The group by clause

A query that returns aggregate values may be grouped by any property of areturned class or components:

sel ect cat.color, sun(cat.weight), count(cat)
from Cat cat
group by cat.col or

sel ect foo.id, avg(nane), max(nane)
from Foo foo join foo.nanes nane
group by foo.id

A havi ng clauseisalso allowed.

sel ect cat.color, sum(cat.weight), count(cat)

from Cat cat

group by cat.col or

havi ng cat.color in (eg.Col or. TABBY, eg. Col or. BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses, if supported by the un-
derlying database (eg. not in MySQL).

sel ect cat
from Cat cat
join cat.kittens kitten
group by cat
havi ng avg(kitten.weight) > 100
order by count(kitten) asc, sun(kitten.weight) desc

Note that neither the gr oup by clause nor the or der by clause may contain arithmetic expressions.

Hibernate 3.2 cr2 151

HQL: The Hibernate Query Language

14.12. Subqueries

For databases that support subselects, Hibernate supports subqueries within queries. A subquery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subqueries (subqueries that
refer to an aiasin the outer query) are allowed.

from Cat as fatcat
where fatcat.weight > (

sel ect avg(cat.weight) from DonesticCat cat
)

from Donesti cCat as cat
where cat.name = sone (
sel ect nane. ni ckNane from Nane as nane

)

from Cat as cat
where not exists (

fromCat as nate where nate. rate = cat
)

from Donesti cCat as cat
where cat.name not in (

sel ect nane. ni ckNanme from Nane as nane
)

select cat.id, (select max(kit.weight) fromcat.kitten kit)
from Cat as cat

Note that HQL subqgueries may occur only in the select or where clauses.
For subqueries with more than one expression in the select list, you can use a tuple constructor:

from Cat as cat
where not (cat.name, cat.color) in (

sel ect cat.nane, cat.color from DonesticCat cat
)

Note that on some databases (but not Oracle or HSQL), you can use tuple constructors in other contexts, for ex-
ample when guerying components or composite user types:

from Person where nane = (' Gavin', 'A, 'King')
Which is equivalent to the more verbose:

from Person where nanme.first = 'Gavin' and nane.initial ='A and nane.last = 'King')

There are two good reasons you might not want to do this kind of thing: first, it is not completely portable
between database platforms; second, the query is now dependent upon the ordering of properties in the map-
ping document.

14.13. HQL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of Hi-
bernate's main selling points. Here are some example queries very similar to queries that | used on a recent

Hibernate 3.2 cr2 152

HQL: The Hibernate Query Language

project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for al unpaid ordersfor a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LI NE, PRODUCT, CATALOG
and PRI CE tables has four inner joins and an (uncorrel ated) subselect.

sel ect order.id, sun(price.amunt), count(item
from Order as order
join order.lineltens as item
join item product as product,
Cat al og as catal og
join catal og.prices as price
where order.paid = fal se
and order.custoner = :custoner
and price. product = product
and catal og. effecti veDate < sysdate
and catal og. effectiveDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sum(price. amount) > :m nAmount
order by sun(price.anmunt) desc

What amonster! Actually, inreal life, I'm not very keen on subqueries, so my query was really more like this:

sel ect order.id, sun(price.anmunt), count(item
from O der as order

join order.lineltens as item

join item product as product,

Cat al og as catal og

join catal og.prices as price
where order.paid = fal se

and order.custoner = :custoner
and price. product = product
and catal og = :current Catal og

group by order
havi ng sum(price. amount) > :m nAnmount
order by sum(price.anmunt) desc

The next query counts the number of payments in each status, excluding all payments in the Awal T-
| NG_APPROVAL status where the most recent status change was made by the current user. It translates to an SQL
query with two inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAY-
MENT_STATUS_CHANGE tables.

sel ect count (paynent), status.nane
from Paynent as paymnent
join payment.currentStatus as status
join paynent. st atusChanges as st at usChange
wher e paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or (
statusChange. ti meStanp = (
sel ect max(change. ti meSt anp)
f rom Paynent St at usChange change
wher e change. paynent = paynent
)
and st atusChange. user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortOrder

If | would have mapped the st at usChanges collection as a list, instead of a set, the query would have been

Hibernate 3.2 cr2 153

HQL: The Hibernate Query Language

much simpler to write.

sel ect count (paynent), status.nane
from Payment as payment
join paynent.currentStatus as status
wher e paynent. st at us. name <> Paynent St at us. AWAI TI NG_APPROVAL
or paymnent. st atusChanges[naxl ndex(paynent. statusChanges)].user <> :currentUser
group by status.nane, status.sortOrder
order by status.sortOrder

The next query usesthe MS SQL Server i sNul | () function to return al the accounts and unpaid payments for
the organization to which the current user belongs. It trandlates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANI ZATI ON and
ORG_USER tables.

sel ect account, paynent
from Account as account
left outer join account.paynents as payment
where :currentUser in el enents(account. hol der. users)
and Payment St at us. UNPAI D = i sNul | (paynent . current St at us. nane, Paynent St at us. UNPAI D)
order by account.type.sortOrder, account.account Nunber, paynent. dueDate

For some databases, we would need to do away with the (correlated) subselect.

sel ect account, paynent
from Account as account
join account. hol der.users as user
I eft outer join account.paynents as payment
where :currentUser = user
and Paynent St at us. UNPAI D = i sNul | (paynment . current St at us. name, Payment St at us. UNPAI D)
order by account.type.sort O der, account.account Nunber, paynent. dueDate

14.14. Bulk update and delete

HQL now supportsupdat e, del ete andinsert ... select ... Statements. See Section 13.4, “DML-style op-
erations’ for details.

14.15. Tips & Tricks

Y ou can count the number of query results without actually returning them:

((Integer) session.iterate("select count(*) from....").next()).intValue()

To order aresult by the size of a collection, use the following query:

sel ect usr.id, usr.name
from User as usr
| eft join usr.nmessages as nsg
group by usr.id, usr.nanme
order by count (nsg)

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.nessages) >= 1

If your database doesn't support subselects, use the following query:

Hibernate 3.2 cr2 154

HQL: The Hibernate Query Language

sel ect usr.id, usr.nane
from User usr.nane

join usr.nmessages nsg
group by usr.id, usr.nanme
havi ng count(nsg) >= 1

Asthis solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

sel ect usr.id, usr.name
from User as usr
| eft join usr.nmessages as nsg
group by usr.id, usr.nanme
havi ng count(nsg) = 0

Properties of a JavaBean can be bound to named query parameters:

Query g = s.createQuery("fromfoo Foo as foo where foo.nane=:nanme and f oo. si ze=: si ze");
g. set Properties(fooBean); // fooBean has get Nane() and getSize()
List foos = qg.list();

Collections are pageable by using the Quer y interface with afilter:

Query q = s.createFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PAGE_SI ZE) ;

g. set Fi rst Resul t (PAGE_SI ZE * pageNunber) ;

Li st page = qg.list();

Collection elements may be ordered or grouped using a query filter:

Col I ection orderedCol l ection = s.filter(collection, "order by this.amunt");
Col l ection counts = s.filter(collection, "select this.type, count(this) group by this.type");

Y ou can find the size of a collection without initializing it:

((Integer) session.iterate("select count(*) from....").next()).intValue();

Hibernate 3.2 cr2 155

Chapter 15. Criteria Queries

Hibernate features an intuitive, extensible criteria query API.

15.1. Creating aCriteriainstance

The interface or g. hi bernate. Cri teri a represents a query against a particular persistent class. The Sessi on is
afactory for Cri teri a instances.

Criteria crit = sess.createCriteria(Cat.class);
crit.set MaxResul t s(50);
List cats = crit.list();

15.2. Narrowing the result set

An individual query criterion is an instance of the interface or g. hi bernate. criterion. Criterion. The class
org. hibernate.criterion. Restrictions defines factory methods for obtaining certain built-in Criterion

types.

Li st cats = sess.createCriteria(Cat.class)

.add(Restrictions.like("name", "Fritz%))
.add(Restrictions. between("weight", m nWight, maxWeight))
dist();

Restrictions may be grouped logically.

Li st cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%))
.add(Restrictions. or(
Restrictions.eq("age", new Integer(0)),
Restrictions.isNull ("age")

))
dist();

List cats = sess.createCriteria(Cat.cl ass)
.add(Restrictions.in("nanme", new String[] { "Fritz", "lzi", "Pk" }))
.add(Restrictions.disjunction()
.add(Restrictions.isNull("age"))

.add(Restrictions.eq("age", new Integer(0)))
.add(Restrictions.eq("age", new Integer(1)))
.add(Restrictions.eq("age", new Integer(2)))
))
dist();

There are quite a range of built-in criterion types (Restri cti ons subclasses), but one that is especialy useful
lets you specify SQL directly.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.sqlRestriction("lower({alias}.nanme) like lower(?)", "Fritz%,6 Hi bernate.STRI NG
dist();

The{al i as} placeholder with be replaced by the row alias of the queried entity.

An aternative approach to obtaining a criterion is to get it from a Property instance. You can create a Pr op-
erty by calling Property. f or Nanme() .

Hibernate 3.2 cr2 156

Criteria Queries

Property age = Property.forNane("age");
Li st cats = sess.createCriteria(Cat.class)
.add(Restrictions.disjunction()
.add(age.isNull ())
.add(age.eq(new Integer(0)))
.add(age.eq(new Integer(1)))
.add(age.eq(new Integer(2)))
))
.add(Property.forName("nanme").in(new String[] { "Fritz", "lzi", "Pk" }))
dist();

15.3. Ordering the results

Y ou may order the results using or g. hi bernate. criterion. Order.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.!like("nanme", "F%)
.addOrder(Order.asc("nane"))
.addOrder(Order.desc("age"))

. set MaxResul t s(50)
ist();

List cats = sess.createCriteria(Cat.class)
.add(Property.forName("nanme").like("F%))
.addOrder (Property. forNanme("nane").asc())
.addOrder (Property. forNanme("age").desc())
. set MaxResul t s(50)
dist();

15.4. Associations

Y ou may easily specify constraints upon related entities by navigating associationsusing creat eCriteri a() .

List cats = sess.createCriteria(Cat.class)

.add(Restrictions.like("name", "F%))
.createCriteria("kittens")

.add(Restrictions.like("name", "F%))
dist();

note that the second creat eCriteri a() returnsanew instance of Cri t eri a, which refers to the elements of the
ki tt ens collection.

Thefollowing, aternate form isuseful in certain circumstances.

List cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("nmate", "nt")
.add(Restrictions.eqProperty("kt.nanme", "nt.name"))
dist();

(createAl i as() doesnot create anew instance of Criteri a.)

Note that the kittens collections held by the cat instances returned by the previous two queries are not pre-
filtered by the criterial If you wish to retrieve just the kittens that match the criteria, you must use a Resul t -

Tr ansf or mer.

Li st cats = sess.createCriteria(Cat.cl ass)

Hibernate 3.2 cr2 157

Criteria Queries

Iter
whi |

.createCriteria("kittens", "kt")

.add(Restrictions.eq("nanme", "F%))
.setResul t Transformer(Criteria. ALI AS_ TO ENTI TY_MAP)
dist();

ator iter = cats.iterator();

e (iter.hasNext()) {

Map map = (Map) iter.next();

Cat cat = (Cat) map.get(Criteria. ROOT_ALI AS);
Cat kitten = (Cat) map.get("kt");

15.5. Dynamic association fetching

Y ou may specify association fetching semantics at runtime using set Fet chMode() .

Li st

cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nane", "Fritz%))
. set Fet chMbde(" mat e", Fet chMbde. EAGER)
. set Fet chMbde("ki ttens", FetchMde. EAGER)
ist();

This query will fetch both nmat e and ki t t ens by outer join. See Section 19.1, “Fetching strategies’ for more in-
formation.

15.6. Example queries

Theclassorg. hi bernate. criterion. Exanpl e alowsyou to construct a query criterion from a given instance.

Cat

cat.
cat.
Li st

cat = new Cat();
set Sex('F');
set Col or (Col or. BLACK) ;
results = session.createCriteria(Cat.class)
.add(Exanpl e.create(cat))
list();

Version properties, identifiers and associations are ignored. By default, null valued properties are excluded.

Y ou can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. create(cat)

Li st

. excl udeZer oes() /I excl ude zero val ued properties
.excludeProperty("color") [//exclude the property naned "col or"

. i gnoreCase() /I perform case insensitive string conparisons
. enabl eLi ke() ; [luse like for string conparisons

results = session.createCriteria(Cat.class)
. add(exanpl e)
dist();

Y ou can even use examples to place criteria upon associated objects.

Li st

results = session.createCriteria(Cat.class)
.add(Exanple.create(cat))
.CcreateCriteria("mte")
.add(Exanple.create(cat.gethMate()))
dist();

Hibernate 3.2 cr2 158

Criteria Queries

15.7. Projections, aggregation and grouping

The class org. hi bernate. criterion. Proj ections isafactory for Proj ecti on instances. We apply a projec-
tion to aquery by calling set Proj ecti on() .

List results = session.createCriteria(Cat.class)
.setProjection(Projections.rowCount())
.add(Restrictions.eq("color", Color.BLACK))
dist();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections. rowCount())
.add(Projections.avg("weight"))
.add(Projections. max("weight"))
.add(Projections.groupProperty("color"))

)
dist();

Thereisno explicit "group by" necessary in acriteria query. Certain projection types are defined to be grouping
projections, which also appear in the SQL gr oup by clause.

An aias may optionaly be assigned to a projection, so that the projected value may be referred to in restrictions
or orderings. Here are two different waysto do this:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.alias(Projections.groupProperty(“color"), "colr"))
.addOrder(Order.asc("colr"))
dist();

List results = session.createCriteria(Cat.cl ass)
.setProjection(Projections.groupProperty("color").as("colr"))
.addOrder(Order.asc("colr"))
dist();

Thealias() and as() methods simply wrap a projection instance in another, aliased, instance of proj ecti on.
As a shortcut, you can assign an alias when you add the projection to a projection list:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections.rowCount (), "catCountByColor")
.add(Projections.avg("weight"), "avgWight")
.add(Projections. max("weight"), "maxWight")
.add(Projections.groupProperty(“color"), "color")

)

.addOrder (Order. desc("cat Count ByCol or"))
.addOrder (Order.desc("avgWight"))
dist();

List results = session.createCriteri a(Donestic.class, "cat")
.createAlias("kittens", "kit")
.setProjection(Projections.projectionList()
.add(Projections.property("cat.nane"), "catName")
.add(Projections.property("kit.name"), "kitNanme")

)
.addOrder (Order. asc("cat Name"))

.addOrder (Order.asc("kitName"))
dist();

You can also use Property. f or Name() tO express projections:

Hibernate 3.2 cr2 159

Criteria Queries

List results = session.createCriteria(Cat.class)
.setProjection(Property.forNane("nane"))
.add(Property.forNanme("col or"). eq(Col or. BLACK))
dist();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections.rowCount().as("cat CountByColor"))
.add(Property.forNanme("wei ght").avg().as("avgWeight"))
.add(Property.forNanme("weight"). max().as("mxWeight"))
.add(Property.forNane("color").group().as("color")

)

.addOrder (Order. desc("cat Count ByCol or"))
.addOrder (Order.desc("avgWight"))
dist();

15.8. Detached queries and subqueries

The Det achedCri teri a class lets you create a query outside the scope of a session, and then later execute it us-
ing some arhitrary Sessi on.

Det achedCriteria query = DetachedCriteria.ford ass(Cat. cl ass)
.add(Property.forNane("sex").eq('F));

Sessi on session =;

Transaction txn = session. begi nTransaction();

List results = query. get Executabl eCriteria(session).set MaxResults(100).list();
txn.commit();

session. cl ose();

A Det achedCri teri a may also be used to express a subquery. Criterion instances involving subqueries may be
obtained via Subqueri es Or Property.

Det achedCriteria avgWi ght = DetachedCriteria.forC ass(Cat.cl ass)
.setProjection(Property.forNanme("wei ght").avg());
session.createCriteri a(Cat.cl ass)
.add(Property.forName("wei ght).gt(avgWight))
dist();

Det achedCriteria weights = DetachedCriteria.ford ass(Cat.cl ass)
.setProjection(Property.forNane("weight"));
session.createCriteria(Cat.cl ass)
.add(Subqueries.geAl ("weight", weights))
dist();

Even correlated subqueries are possible:

Det achedCriteria avgWi ght For Sex = DetachedCriteria.forC ass(Cat.class, "cat2")
.setProjection(Property.forName("wei ght").avg())
.add(Property.forNane("cat2.sex").eqgProperty("cat.sex"));
session.createCriteria(Cat.class, "cat")
.add(Property.forName("wei ght).gt(avgWei ght For Sex))
dist();

15.9. Queries by natural identifier

For most queries, including criteria queries, the query cache is not very efficient, because query cache invalida-
tion occurs too frequently. However, there is one special kind of query where we can optimize the cache inval-

Hibernate 3.2 cr2 160

Criteria Queries

idation algorithm: lookups by a constant natural key. In some applications, this kind of query occurs frequently.
The criteria API provides special provision for this use case.

First, you should map the natural key of your entity using <nat ural -i d>, and enable use of the second-level
cache.

<cl ass name="User">
<cache usage="read-write"/>
<id name="id">
<generator class="increnment"/>
</id>
<natural -id>
<property nane="nane"/>
<property name="org"/>
</ natural -id>
<property nane="password"/>
</ cl ass>

Note that this functionality is not intended for use with entities with mutable natural keys.
Next, enable the Hibernate query cache.
Now, Restrictions. natural 1 d() alows usto make use of the more efficient cache algorithm.

session.createCriteria(User. cl ass)
.add(Restrictions.naturalld()
.set ("name", "gavin")
.set("org", "hb")
). set Cacheabl e(true)
.uni queResul t () ;

Hibernate 3.2 cr2 161

Chapter 16. Native SQL

You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as query hints or the coNNECT keyword in Oracle. It also provides a clean migra-
tion path from adirect SQL/JDBC based application to Hibernate.

Hibernate3 allows you to specify handwritten SQL (including stored procedures) for all create, update, delete,
and load operations.

16.1. Using a sQ.Query

Execution of native SQL queries is controlled via the sQLQuery interface, which is obtained by calling Ses-
si on. creat eSQLQuer y() . The following describes how to use this API for querying.

16.1.1. Scalar queries

The most basic SQL query isto get alist of scalars (values).

sess. creat eSQLQuery(" SELECT * FROM CATS").list();
sess. creat eSQLQuery("SELECT | D, NAME, BI RTHDATE FROM CATS").list();

These will both return a List of Object arrays (Object[]) with scalar values for each column in the CATS table.
Hibernate will use ResultSetM etadata to deduce the actual order and types of the returned scalar values.

To avoid the overhead of using Resul t Set Met adat a or sSimply to be more explicit in what is returned one can
use addScal ar () .

sess. creat eSQLQuer y(" SELECT * FROM CATS")
.addScal ar ("I D', Hi bernate. LONG
.addScal ar ("NAME", Hi bernat e. STRI NG
. addScal ar (" Bl RTHDATE", Hi ber nat e. DATE)

This query specified:

» the SQL query string
» the columns and typesto return

Thiswill still return Object arrays, but now it will not use Resul t Set Met dat a but will instead explicitly get the
ID, NAME and BIRTHDATE column as respectively a Long, String and a Short from the underlying resultset.
This also means that only these three columns will be returned, even though the query is using * and could re-
turn more than the three listed columns.

It is possible to leave out the type information for all or some of the scalars.

sess. creat eSQLQuery(" SELECT * FROM CATS")
.addScal ar ("I D', Hi bernate. LONG
. addScal ar (" NAME")
. addScal ar (" Bl RTHDATE")

Thisis essentially the same query as before, but now Resul t Set Met aDat a IS used to decide the type of NAME
and BIRTHDATE where asthe type of ID is explicitly specified.

Hibernate 3.2 cr2 162

Native SQL

How the java.sgl.Types returned from ResultSetMetaData is mapped to Hibernate types is controlled by the
Dialect. If a specific type is not mapped or does not result in the expected type it is possible to customize it via
callstoregi st er Hi ber nat eType in the Dialect.

16.1.2. Entity queries

The above queries were al about returning scalar values, basically returning the "raw" values from the result-
set. The following shows how to get entity objects from a native sgl query viaaddEntity().

sess. creat eSQLQuery(" SELECT * FROM CATS"). addEntity(Cat. cl ass);
sess. creat eSQLQuery(" SELECT | D, NAME, BI RTHDATE FROM CATS'). addEntity(Cat.cl ass);

This query specified:

» the SQL query string
« theentity returned by the query

Assuming that Cat is mapped as a class with the columns ID, NAME and BIRTHDATE the above queries will
both return a List where each element is a Cat entity.

If the entity is mapped with a many- t o- one to another entity it is required to also return this when performing
the native query, otherwise a database specific "column not found" error will occur. The additional columns
will automatically be returned when using the * notation, but we prefer to be explicit as in the following ex-
ample for amany- t 0- one t0 aDog:

sess. creat eSQLQuery(" SELECT | D, NAME, BI RTHDATE, DOG | D FROM CATS"). addEntity(Cat.cl ass);

Thiswill alow cat.getDog() to function properly.

16.1.3. Handling associations and collections

It is possible to eagerly join in the Dog to avoid the possible extra roundtrip for initializing the proxy. Thisis
doneviathe addJoi n() method, which allows you to join in an association or collection.

sess. creat eSQLQuery("SELECT c. | D, NAVE, Bl RTHDATE, DOG ID, D |ID, D NAME FROM CATS c¢, DOGS d WHERE c. D
.addEntity("cat", Cat.class)
.addJoi n("cat . dog");

In this example the returned cat 's will have their dog property fully initialized without any extra roundtrip to
the database. Notice that we added a alias name ("cat") to be able to specify the target property path of the join.
It is possible to do the same eager joining for collections, e.g. if the cat had a one-to-many to Dog instead.

sess. creat eSQLQuery("SELECT |1 D, NAME, BI RTHDATE, D ID, D NAME, CAT_ID FROM CATS ¢, DOGS d WHERE c.ID :
.addEntity("cat", Cat.class)
.addJoi n("cat. dogs");
<p>At this stage we are reaching the limits of what is possible with native queries without starting to enhance
the sgl queries to make them usable in Hibernate; the problems starts to arise when returning multiple entities
of the same type or when the default alias/column names are not enough.</p>

16.1.4. Returning multiple entities

Hibernate 3.2 cr2 163

Native SQL

Until now the result set column names are assumed to be the same as the column names specified in the map-
ping document. This can be problematic for SQL queries which join multiple tables, since the same column
names may appear in more than one table.

Column aliasinjection is needed in the following query (which most likely will fail):

sess. createSQ.Query("SELECT c.*, m* FROM CATS ¢, CATS m WHERE c. MOTHER_ID = c. | D")
.addEntity("cat", Cat.class)
.addEntity("nother", Cat.class)

The intention for this query isto return two Cat instances per row, a cat and its mother. Thiswill fail since there
is a conflict of names since they are mapped to the same column names and on some databases the returned
column aiases will most likely be on the form "c.ID", "c.NAME", etc. which are not equal to the columns spe-
cificed in the mappings ("ID" and "NAME").

The following form is not vulnerable to column name duplication:

sess. creat eSQLQuery(" SELECT {cat.*}, {nother.*} FROM CATS ¢, CATS m WHERE c. MOTHER ID = c.|D")
.addEntity("cat", Cat.class)
.addEntity("nother", Cat.class)

This query specified:

» the SQL query string, with placeholders for Hibernate to inject column aliases
e theentities returned by the query

The{cat.*} and { mother.*} notation used above is a shorthand for "all properties’. Alternatively, you may list
the columns explicity, but even in this case we let Hibernate inject the SQL column aliases for each property.
The placeholder for a column alias is just the property name qualified by the table aias. In the following ex-
ample, we retrieve Cats and their mothers from a different table (cat_log) to the one declared in the mapping
metadata. Notice that we may even use the property aliases in the where clause if we like.

String sql = "SELECT ID as {c.id}, NAME as {c.nane}, " +
"Bl RTHDATE as {c.birthDate}, MOTHER ID as {c.other}, {nother.*} " +
"FROM CAT_LOG ¢, CAT_LOG m WHERE {c.nother} = c.|D";

Li st | oggedCats = sess. createSQ.Query(sql)

.addEntity("cat", Cat.class)
.addEntity("nmother", Cat.class).list()

Alias and property references

For most cases the above alias injection is needed, but for queries relating to more complex mappings like com-
posite properties, inheritance discriminators, collections etc. there are some specific aliases to use to alow Hi-
bernate to inject the proper aliases.

The following table shows the different possibilities of using the alias injection. Note: the alias names in the
result are examples, each alias will have a unique and probably different name when used.

Table 16.1. Aliasinjection names

Description Syntax Example
A simple property {[aliasname].[prope A NAME as {item nane}
rtynane]

Hibernate 3.2 cr2 164

Native SQL

Description Syntax Example

A composite property | {[aliasnane].[compo CURRENCY as {item anount.currency}, VALUE as
nent - {item anmount . val ue}
nane] . [propertyname

1}
Discriminator of an {[aliasname].class} DISC as {item class}
entity
All properties of an {[aliasnane].*} {item *}
entity
A collection key {[al i asnane] . key} ORGA D as {col|.key}
Theid of an collection {[aliasnane].id} EMPI D as {coll.id}

The element of an col- {[aliasnane].elemen XID as {coll.elenent}
lection t}

roperty of the element {[aliasnane].el emen NAME as {col | .el enent. nane}
in the collection t.[propertyname] }

All properties of the {[aliasnane].elemen {coll.elenent.*}
element in the collec- t.*}
tion

All properties of the {[aliasnane].*} {col | .*}
the collection

16.1.5. Returning non-managed entities

It is possible to apply a ResultTransformer to native sgl queries. Allowing it to e.g. return non-managed entit-
ies.

sess. creat eSQLQuer y(" SELECT NAME, BI RTHDATE FROM CATS")
. set Resul t Tr ansf or mer (Tr ansf or mer s. al i asToBean(Cat DTO. cl ass))

This query specified:
« the SQL query string
* aresult transformer

The above query will return alist of cat browhich has been instantiated and injected the values of NAME and
BIRTHNAME into its corresponding properties or fields.

16.1.6. Handling inheritance

Native sgl queries which query for entities that is mapped as part of an inheritance must include all properties
for the baseclass and al it subclasses.

16.1.7. Parameters

Hibernate 3.2 cr2 165

Native SQL

Native sgl queries support positional as well as named parameters.

Query query = sess.createSQQuery("SELECT * FROM CATS WHERE NAME | i ke ?").addEntity(Cat.cl ass);
Li st pusList = query.setString(0, "Pus%).list();

query = sess.createSQ Query("SELECT * FROM CATS WHERE NAME |i ke :nane").addEntity(Cat.class);
Li st pusList = query.setString("nane", "Pus%).list();

16.2. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query. In this case, we do not need to call addEntity().

<sgl - query name="persons" >
<return alias="person" class="eg.Person"/>
SELECT person. NAME AS { per son. nane},
per son. AGE AS {person. age},
per son. SEX AS {person. sex}
FROM PERSON per son
WHERE per son. NAME LI KE : nanmePattern
</ sql - query>

Li st peopl e = sess. get NanedQuery("persons")
.setString("nanePattern”, nanePattern)
. set MaxResul t s(50)
dist();

The <return-j oi n> and <l oad- col | ecti on> elements are used to join associations and define queries which
initialize collections, respectively.

<sqgl - query name="personsWth">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person. mailingAddress"/>
SELECT person. NAME AS { person. nane},
person. AGE AS {person. age},
per son. SEX AS {person. sex},
adddr ess. STREET AS {address.street},
adddress. CI TY AS {address.city},
adddr ess. STATE AS {address. st ate},
adddress. ZI P AS {address. zi p}
FROM PERSON per son
JO N ADDRESS adddr ess
ON person. | D = address. PERSON | D AND addr ess. TYPE=" MAI LI NG
WHERE per son. NAME LI KE : nanePattern
</ sql - query>

A named SQL query may return a scalar value. Y ou must declare the column alias and Hibernate type using the
<return-scal ar > element:

<sql - query name="nySql Query">
<return-scal ar col um="nane" type="string"/>
<return-scal ar col um="age" type="1ong"/>
SELECT p. NAME AS nane,
p. ACE AS age,
FROM PERSON p WHERE p. NAME LI KE ' Hi ber %
</ sql - query>

Y ou can externalize the resultset mapping informations in a <r esul t set > element to either reuse them accross
several named queries or through the set Resul t Set Mappi ng() API.

<resul tset name="per sonAddr ess" >

Hibernate 3.2 cr2 166

Native SQL

<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person. nailingAddress"/>
</resul tset>

<sql - query name="personsWth" resultset-ref="personAddress">
SELECT person. NAME AS { per son. nane},
per son. AGE AS {person. age},
person. SEX AS {person. sex},
adddr ess. STREET AS {address.street},
adddress. CI TY AS {address.city},
adddr ess. STATE AS {address. st ate},
adddress. ZI P AS {address. zi p}
FROM PERSON per son
JO N ADDRESS adddr ess
ON person. | D = address. PERSON | D AND addr ess. TYPE=" MAI LI NG
WHERE per son. NAME LI KE : nanePattern
</ sql - query>

Y ou can alternatively use the resultset mapping information in your hbm files directly in java code.

Li st cats = sess.createSQQuery(
"select {cat.*}, {kitten.*} fromcats cat, cats kitten where kitten.nother = cat.id"
)

. set Resul t Set Mappi ng("cat AndKi tten")
dist();

16.2.1. Using return-property to explicitly specify column/alias names

With <r et ur n- proper t y> you can explicitly tell Hibernate what column aliases to use, instead of using the {} -
syntax to let Hibernate inject its own aliases.

<sgl - query name="nmnySqgl Query" >
<return alias="person" class="eg. Person">
<return-property nanme="nane" col um="nyName"/>
<return-property nane="age" col um="nyAge"/>
<return-property nane="sex" col um="mySex"/>
</return>
SELECT person. NAME AS nyNane,
per son. AGE AS nyAge,
per son. SEX AS nySex,
FROM PERSON person WHERE person. NAME LI KE : nane
</ sql - query>

<r et ur n- propert y> also works with multiple columns. This solves a limitation with the {} -syntax which can
not allow fine grained control of multi-column properties.

<sgl - query name="organi zati onCurr ent Enpl oynent s" >
<return alias="enp" class="Enpl oynent">
<return-property name="sal ary">
<return-col um nanme="VALUE"/ >
<return-col um nane=" CURRENCY"/ >
</return-property>
<return-property nane="endDate" col um="nyEndDate"/>
</return>
SELECT EMPLOYEE AS {enp. enpl oyee}, EMPLOYER AS {enp. enpl oyer},
STARTDATE AS {enp. startDate}, ENDDATE AS {enp. endDat e},
REG ONCODE as {enp.regionCode}, EID AS {enp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
VWHERE EMPLOYER = :id AND ENDDATE | S NULL
ORDER BY STARTDATE ASC
</ sql - query>

Notice that in this example we used <r et ur n- proper t y> in combination with the {} -syntax for injection. Al-

Hibernate 3.2 cr2 167

Native SQL

lowing users to choose how they want to refer column and properties.

If your mapping has a discriminator you must use <return-discrininator> to specify the discriminator
column.

16.2.2. Using stored procedures for querying

Hibernate 3 introduces support for queries via stored procedures and functions. Most of the following docu-
mentation is equivaent for both. The stored procedure/function must return a resultset as the first out-parameter
to be able to work with Hibernate. An example of such a stored function in Oracle 9 and higher is as follows:

CREATE OR REPLACE FUNCTI ON sel ect Al | Enpl oynent s
RETURN SYS REFCURSOR
AS
st _cursor SYS REFCURSOR;
BEG N
OPEN st _cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REG ONCODE, EI D, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st _cursor;
END;

To use this query in Hibernate you need to map it via a named query.

<sqgl - query name="sel ect Al | Enpl oyees_SP" cal | abl e="true">
<return alias="enp" class="Enpl oynent">
<return-property nane="enpl oyee" col unmm="EMPLOYEE"/ >
<return-property nane="enpl oyer" col um="EMPLOYER'/ >
<return-property nane="startDate" col utm="STARTDATE"/ >
<return-property nane="endDate" col utm="ENDDATE"/ >
<return-property nane="regi onCode" col utm="REG ONCODE"/ >
<return-property nane="id" colum="EID'/>
<return-property nane="sal ary">
<return-col um nanme="VALUE"/ >
<return-col um nane=" CURRENCY"/ >
</return-property>
</return>
{ ? = call selectAllEnploynents() }
</ sql - query>

Notice stored procedures currently only return scalars and entities. <r et ur n-j oi n> and <l oad- col | ecti on> are
not supported.

Rules/limitations for using stored procedures

To use stored procedures with Hibernate the procedures/functions have to follow some rules. If they do not fol-
low those rules they are not usable with Hibernate. If you still want to use these procedures you have to execute
them viasessi on. connecti on() . Therules are different for each database, since database vendors have differ-
ent stored procedure semantics/syntax.

Stored procedure queries can't be paged with set Fi r st Resul t () / set MaxResul t s() .

Recommended call form is standard SQL92: { ? = call functionNane(<paraneters>) } or { ? = call
pr ocedur eNane(<par anet er s>} . Native call syntax is not supported.

For Oracle the following rules apply:

¢ A function must return a result set. The first parameter of a procedure must be an out that returns a result

Hibernate 3.2 cr2 168

Native SQL

set. This is done by using a sys_REFCURSCR type in Oracle 9 or 10. In Oracle you need to define a REF
CURSOR type, see Oracle literature.

For Sybase or MS SQL server the following rules apply:

e The procedure must return a result set. Note that since these servers can/will return multiple result sets and
update counts, Hibernate will iterate the results and take the first result that is a result set asits return value.
Everything else will be discarded.

e |f you can enable SET NOCOUNT ONin your procedure it will probably be more efficient, but thisis not are-
quirement.

16.3. Custom SQL for create, update and delete

Hibernate3 can use custom SQL statements for create, update, and delete operations. The class and collection
persisters in Hibernate already contain a set of configuration time generated strings (insertsgl, deletesql, updat-
esql etc.). The mapping tags <sql -i nsert >, <sql - del et e>, and <sql - updat e> override these strings:

<cl ass nanme="Person" >
<id name="id">
<generator class="increnment"/>
</id>
<property nanme="nane" not-null="true"/>
<sqgl -insert>I NSERT | NTO PERSON (NAME, |ID) VALUES (UPPER(?), ?)</sql-insert>
<sql - updat e>UPDATE PERSON SET NAME=UPPER(?) WHERE | D=?</sql - updat e>
<sql - del et e>DELETE FROM PERSON WHERE | D=?</ sql - del et e>
</cl ass>

The SQL is directly executed in your database, so you are free to use any diaect you like. This will of course
reduce the portability of your mapping if you use database specific SQL.

Stored procedures are supported if the cal | abl e attribute is set:

<cl ass name="Person">

<id name="id">

<generator class="increnent"/>

</id>

<property nane="nane" not-null="true"/>

<sql-insert callable="true">{call createPerson (?, ?)}</sql-insert>

<sql -del ete callabl e="true">{? = call del etePerson (?)}</sql-delete>

<sql -update call abl e="true">{? = call updatePerson (?, ?)}</sql-update>
</ cl ass>

The order of the positional parameters are currently vital, as they must be in the same sequence as Hibernate
expects them.

You can see the expected order by enabling debug logging for the or g. hi ber nate. persi ster.entity level.
With this level enabled Hibernate will print out the static SQL that is used to create, update, delete etc. entities.
(To see the expected sequence, remember to not include your custom SQL in the mapping files as that will
override the Hibernate generated static sqgl.)

The stored procedures are in most cases (read: better do it than not) required to return the number of rows inser-
ted/updated/deleted, as Hibernate has some runtime checks for the success of the statement. Hibernate always
registers the first statement parameter as a numeric output parameter for the CUD operations:

CREATE OR REPLACE FUNCTI ON updat ePerson (uid | N NUMBER, unane | N VARCHAR2)
RETURN NUMBER | S
BEG N

updat e PERSON

Hibernate 3.2 cr2 169

Native SQL

set

NAMVE = unane,
wher e

ID = uid;

return SQLYROWCOUNT;

END updat ePer son;

16.4. Custom SQL for loading

Y ou may also declare your own SQL (or HQL) queries for entity loading:

<sqgl - query name="person">
<return alias="pers" class="Person" | ock-npde="upgrade"/>
SELECT NAME AS {pers.nane}, |ID AS {pers.id}
FROM PERSON
VWHERE | D=7
FOR UPDATE
</ sql - query>

This is just a named query declaration, as discussed earlier. You may reference this named query in a class
mapping:

<cl ass nane="Person">
<id name="id">
<generator class="increnent"/>

</id>
<property nane="nane" not-null="true"/>
<l oader query-ref="person"/>

</ cl ass>

This even works with stored procedures.
Y ou may even define aquery for collection loading:

<set nanme="enpl oynents" inverse="true">
<key/ >
<one-to-many cl ass="Enpl oynent"/>
<l oader query-ref="enpl oynents"/>
</set>

<sql - query nanme="enpl oynment s" >
<l oad-col | ection alias="enmp" rol e="Person. enpl oynents"/>
SELECT {enp. *}
FROM EMPLOYMENT enp
WHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC
</ sql - query>

Y ou could even define an entity loader that |oads a collection by join fetching:

<sqgl - query name="person">
<return alias="pers" class="Person"/>
<return-join alias="enp" property="pers.enploynents"/>
SELECT NAME AS {pers.*}, {enp.*}
FROM PERSON per s
LEFT OQUTER JO N EMPLOYMENT enp
ON pers.|D = enp. PERSON | D
WHERE | D=?
</ sql - query>

Hibernate 3.2 cr2 170

Chapter 17. Filtering data

Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A Hibernate filter isa
global, named, parameterized filter that may be enabled or disabled for a particular Hibernate session.

17.1. Hibernate filters

Hibernate3 adds the ahility to pre-define filter criteria and attach those filters at both a class and a collection
level. A filter criteria is the ability to define a restriction clause very similiar to the existing "where" attribute
available on the class and various collection elements. Except these filter conditions can be parameterized. The
application can then make the decision at runtime whether given filters should be enabled and what their para-
meter values should be. Filters can be used like database views, but parameterized inside the application.

In order to use filters, they must first be defined and then attached to the appropriate mapping elements. To
define afilter, usethe<fil t er- def/ > element within a<hi ber nat e- mappi ng/ > element:

<filter-def name="nyFilter">
<filter-param nanme="nyFilterParam' type="string"/>
</filter-def>

Then, thisfilter can be attached to a class:

<cl ass nanme="nyd ass" ...>
<filter name="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >

</ cl ass>

or, to acollection:

<set ...>
<filter nane="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >
</ set>

or, even to both (or multiples of each) at the sametime.

The methods on Sessi on are: enabl eFil ter(String filterNane), get Enabl edFilter(String filterNane),
and di sabl eFilter(String filterName). By default, filters are not enabled for a given session; they must be
explcitly enabled through use of the Sessi on. enabl edFi | ter () method, which returns an instance of the Fi | -
ter interface. Using the simple filter defined above, thiswould look like:

session.enableFilter("nyFilter").setParaneter("nyFilterParant, "sone-value");

Note that methods on the org.hibernate.Filter interface do allow the method-chaining common to much of Hi-
bernate.

A full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param name="asOf Date" type="date"/>
</filter-def>

<cl ass nane="Enpl oyee" ...>
<many-t o-one nane="departnment"” col um="dept _id" cl ass="Departnent"/>

<property nane="effectiveStartDate" type="date" colum="eff_start_dt"/>
<property nane="effectiveEndDate" type="date" colum="eff_end_dt"/>

Hibernate 3.2 cr2 171

Filtering data

<l--
Note that this assumes non-term nal records have an eff_end_dt set to
a max db date for sinplicity-sake
-->
<filter nane="effectiveDate"
condi ti on=":asCf Date BETWEEN eff_start_dt and eff_end_dt"/>
</ cl ass>

<cl ass nane="Departnent" ...>

<set nanme="enpl oyees" |azy="true">
<key col um="dept _id"/>
<one-to- many cl ass="Enpl oyee"/>
<filter nanme="effectiveDate"
condi ti on=":asCf Dat e BETWEEN eff_start_dt and eff_end_dt"/>
</ set>
</ cl ass>

Then, in order to ensure that you always get back currently effective records, simply enable the filter on the ses-
sion prior to retrieving employee data:

Session session = ...;

sessi on. enabl edFi l ter("effectiveDate"). setParaneter("asO Date", new Date());

List results = session.createQuery("from Enpl oyee as e where e.salary > :targetSal ary")
.setLong("target Sal ary", new Long(1000000))
dist();

In the HQL above, even though we only explicitly mentioned a salary constraint on the results, because of the
enabled filter the query will return only currently active employees who have a salary greater than a million
dollars.

Note: if you plan on using filters with outer joining (either through HQL or load fetching) be careful of the dir-
ection of the condition expression. Its safest to set this up for left outer joining; in general, place the parameter
first followed by the column name(s) after the operator.

Hibernate 3.2 cr2 172

Chapter 18. XML Mapping

Note that thisis an experimental feature in Hibernate 3.0 and is under extremely active devel opment.

18.1. Working with XML data

Hibernate lets you work with persistent XML data in much the same way you work with persistent POJOs. A
parsed XML tree can be thought of as just another way to represent the relational data at the object level, in-
stead of POJOs.

Hibernate supports domd4j as API for manipulating XML trees. You can write queries that retrieve domd4j trees
from the database and have any modification you make to the tree automatically synchronized to the database.
Y ou can even take an XML document, parse it using dom4j, and write it to the database with any of Hibernate's
basic operations: persist(), saveOrUpdate(), nerge(), delete(), replicate() (mergingis not yet sup-
ported).

This feature has many applications including data import/export, externalization of entity data via JMS or
SOAP and X SLT-based reporting.

A single mapping may be used to simultaneously map properties of a class and nodes of an XML document to
the database, or, if thereis no classto map, it may be used to map just the XML.

18.1.1. Specifying XML and class mapping together

Here is an example of mapping a POJO and XML simultaneousdly:

<cl ass nanme="Account"
t abl e=" ACCOUNTS"
node="account " >

<id name="account | d"
col um=" ACCOUNT_I D"
node="@d"/ >

<many-t o- one nane="cust oner"
col um="CUSTOVER | D"
node="cust oner/ @d"
enbed- xm ="f al se"/ >

<property nane="bal ance"

col um=" BALANCE"
node="bal ance"/ >

</ cl ass>

18.1.2. Specifying only an XML mapping

Here is an example where thereis no POJO class:

<cl ass entity-name="Account"
t abl e=" ACCOUNTS"
node="account ">

<id name="id"
col um="ACCOUNT_I D"

Hibernate 3.2 cr2 173

XML Mapping

node="@ d"
type="string"/>

<many-t o- one nane="cust oner|d"
col um=" CUSTOVER_| D"
node="cust oner/ @d"
enbed- xm ="f al se"
entity-nanme="Custoner"/>

<property nane="bal ance"
col utm=" BALANCE"
node="bal ance"
type="bi g_deci mal "/ >

</ cl ass>

This mapping allows you to access the data as a dom4j tree, or as a graph of property name/value pairs (java
vaps). The property names are purely logical constructs that may be referred to in HQL queries.

18.2. XML mapping metadata

Many Hibernate mapping elements accept the node attribute. This let's you specify the name of an XML attrib-
ute or element that holds the property or entity data. The format of the node attribute must be one of the follow-

ing:

e el ement - name" - Mmap to the named XML element

e "@ttribute-nanme" - map to the named XML attribute

e . -map to the parent element

e "elenent-nanme/ @ttribute-name" - map to the named attribute of the named element

For collections and single valued associations, there is an additional enbed- xni attribute. If enbed- xm ="t r ue",
the default, the XML tree for the associated entity (or collection of value type) will be embedded directly in the
XML tree for the entity that owns the association. Otherwise, if enbed- xm ="f al se", then only the referenced
identifier value will appear in the XML for single point associations and collections will simply not appear at
all.

Y ou should be careful not to leave enbed- xm ="t rue" for too many associations, since XML does not deal well
with circularity!

<cl ass nanme="Cust oner"
t abl e=" CUSTOVER"
node="cust oner" >

<id nane="id"
col um="CUST_I D"
node="@d"/ >

<map nane="accounts"
node="."
enbed- xm ="true">
<key col um="CUSTOMER | D"
not-null ="true"/>
<map- key col utm="SHORT_DESC"'
node="@hort - desc"
type="string"/>
<one-to-many entity-nanme="Account"
enbed- xm ="f al se"
node="account"/ >
</ map>

Hibernate 3.2 cr2 174

XML Mapping

<conponent name="nane"
node="nane" >
<property nane="firstNanme"
node="first-nane"/ >
<property name="initial"
node="initial"/>
<property nane="I| ast Nane"
node="I ast - nane"/ >
</ conponent >

</ cl ass>

in this case, we have decided to embed the collection of account ids, but not the actual account data. The fol-
lowing HQL query:

fromCustoner c left join fetch c.accounts where c.lastNane |ike :|astNane

Would return datasets such as this;

<custoner id="123456789">
<account short-desc="Savi ngs">987632567</ account >
<account short-desc="Credit Card">985612323</account >
<nane>
<first-name>Gvi n</first-name>
<initial >A</initial>
<l| ast - nane>Ki ng</ | ast - nanme>
</ name>

</cu§i6ner>
If you set enbed- xm ="t rue" on the <one- t o- many> mapping, the data might look more like this:

<customer id="123456789">
<account id="987632567" short-desc="Savi ngs">
<custonmer id="123456789"/>
<bal ance>100. 29</ bal ance>

</ account >
<account id="985612323" short-desc="Credit Card">

<customer id="123456789"/>
<bal ance>- 2370. 34</ bal ance>

</ account >

<nane>
<first-name>Gvi n</first-name>
<initial >A</initial>
<| ast - nane>Ki ng</ | ast - name>

</ nanme>

</ cust oner >

18.3. Manipulating XML data
Let'srearead and update XML documentsin the application. We do this by obtaining a dom4j session:

Docunment doc =;

Session session = factory. openSession();
Sessi on don¥j Sessi on = sessi on. get Sessi on(EntityMode. DOWAJ) ;
Transaction tx = session. begi nTransaction();

List results = domdj Sessi on
.createQuery("from Custoner c left join fetch c.accounts where c.lastNanme |ike :|astNanme")

Hibernate 3.2 cr2 175

XML Mapping

dist();

for (int i=0; i<results.size(); i++) {
//add the custoner data to the XM. document
El ement custonmer = (Elenent) results.get(i);
doc. add(cust oner) ;

}

tx.commt();
session. cl ose();

Sessi on session = factory. openSession();
Sessi on dom¥j Sessi on = sessi on. get Sessi on(Enti t yMbde. DOWAJ) ;
Transaction tx = session. begi nTransaction();

El enent cust = (El enment) dom4j Session. get("Custoner", custonerld);
for (int i=0; i<results.size(); i++) {

El enent custonmer = (Elenment) results.get(i);

[/ change the customer nane in the XML and dat abase

El enent nane = custoner. el enent (" nane");

nane. el ement ("first-name"). set Text (firstNane);

nane. el ement ("initial").setText(initial);

nane. el ement ("I ast - nane") . set Text (| ast Nane) ;

}

tx.commit();
sessi on. cl ose();

It is extremely useful to combine this feature with Hibernate's repli cate() operation to implement XML-
based data import/export.

Hibernate 3.2 cr2 176

Chapter 19. Improving performance

19.1. Fetching strategies

A fetching strategy is the strategy Hibernate will use for retrieving associated objects if the application needs to
navigate the association. Fetch strategies may be declared in the O/R mapping metadata, or over-ridden by a
particular HQL or Cri teri a query.

Hibernate3 defines the following fetching strategies:

Join fetching - Hibernate retrieves the associated instance or collection in the same SELECT, using an OUTER
JON.

Select fetching - a second SELECT is used to retrieve the associated entity or collection. Unless you explicitly
disable lazy fetching by specifying | azy="f al se", this second select will only be executed when you actu-
ally access the association.

Subselect fetching - a second SELECT is used to retrieve the associated collections for all entities retrieved in
a previous query or fetch. Unless you explicitly disable lazy fetching by specifying | azy="f al se", this
second select will only be executed when you actually access the association.

Batch fetching - an optimization strategy for select fetching - Hibernate retrieves a batch of entity instances
or collectionsin asingle SELECT, by specifying alist of primary keys or foreign keys.

Hibernate also distinguishes between:

Immediate fetching - an association, collection or attribute is fetched immediately, when the owner is
loaded.

Lazy collection fetching - a collection is fetched when the application invokes an operation upon that collec-
tion. (Thisisthe default for collections.)

"Extra-lazy" collection fetching - individual elements of the collection are accessed from the database as
needed. Hibernate tries not to fetch the whole collection into memory unless absolutely needed (suitable for
very large collections)

Proxy fetching - a single-valued association is fetched when a method other than the identifier getter isin-
voked upon the associated object.

"No-proxy" fetching - a single-valued association is fetched when the instance variable is accessed. Com-
pared to proxy fetching, this approach isless lazy (the association is fetched even when only the identifier is
accessed) but more transparent, since no proxy is visible to the application. This approach requires build-
time bytecode instrumentation and is rarely necessary.

Lazy attribute fetching - an attribute or single valued association is fetched when the instance variable is ac-
cessed. This approach requires buildtime bytecode instrumentation and is rarely necessary.

We have two orthogonal notions here: when is the association fetched, and how is it fetched (what SQL is
used). Don't confuse them! We usef et ch to tune performance. We may use | azy to define a contract for what
datais aways available in any detached instance of a particular class.

Hibernate 3.2 cr2 177

Improving performance

19.1.1. Working with lazy associations

By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for single-valued asso-
ciations. These defaults make sense for almost all associationsin almost all applications.

Note: if you set hi bernat e. def aul t _bat ch_f et ch_si ze, Hibernate will use the batch fetch optimization for
lazy fetching (this optimization may also be enabled at a more granular level).

However, lazy fetching poses one problem that you must be aware of. Access to a lazy association outside of
the context of an open Hibernate session will result in an exception. For example:

S = sessions. openSession();
Transaction tx = s.begi nTransaction();

User u = (User) s.createQuery("from User u where u.nane=:user Nane")
.setString("userName", userNane). uni queResult();
Map perm ssions = u. getPerm ssions();

tx.commt();
s.cl ose();

I nt eger accessLevel = (Integer) perm ssions.get("accounts"); [/ Error

Since the permissions collection was not initialized when the Sessi on was closed, the collection will not be
able to load its state. Hibernate does not support lazy initialization for detached objects. The fix is to move the
code that reads from the collection to just before the transaction is committed.

Alternatively, we could use a non-lazy collection or association, by specifying | azy="f al se" for the associ-
ation mapping. However, it is intended that lazy initialization be used for aimost all collections and associ-
ations. If you define too many non-lazy associations in your object model, Hibernate will end up needing to
fetch the entire database into memory in every transaction!

On the other hand, we often want to choose join fetching (which is non-lazy by nature) instead of select fetch-
ing in a particular transaction. We'll now see how to customize the fetching strategy. In Hibernate3, the mech-
anisms for choosing a fetch strategy are identical for single-valued associations and collections.

19.1.2. Tuning fetch strategies

Select fetching (the default) is extremely vulnerable to N+1 selects problems, so we might want to enable join
fetching in the mapping document:

<set name="perm ssi ons"
fetch="join">
<key col um="userl d"/>
<one-to-many cl ass="Perm ssion"/>
</ set

<many-t o- one name="not her" class="Cat" fetch="join"/>
Thef et ch strategy defined in the mapping document affects:
* retrieval viaget () orl oad()

» retrieval that happensimplicitly when an association is navigated

e Criteriaqueries

Hibernate 3.2 cr2 178

Improving performance

¢ HQL queriesif subsel ect fetchingisused

No matter what fetching strategy you use, the defined non-lazy graph is guaranteed to be loaded into memory.
Note that this might result in several immediate selects being used to execute a particular HQL query.

Usually, we don't use the mapping document to customize fetching. Instead, we keep the default behavior, and
overrideit for a particular transaction, using I eft join fetch in HQL. Thistells Hibernate to fetch the associ-
ation eagerly in the first select, using an outer join. In the criteria query API, you would use set Fet ch-
Mode(Fet chMbde. JO N) .

If you ever feel like you wish you could change the fetching strategy used by get () or | oad(), Smply use a
Criteria query, for example:

User user = (User) session.createCriteria(User.class)
. set Fet chMbde(" per m ssi ons", FetchMde.JOA N)
.add(Restrictions.idEg(userld))
. uni queResul t ();

(Thisis Hibernate's equivalent of what some ORM solutions call a "fetch plan®.)

A completely different way to avoid problems with N+1 selectsis to use the second-level cache.

19.1.3. Single-ended association proxies

Lazy fetching for collections is implemented using Hibernate's own implementation of persistent collections.
However, a different mechanism is needed for lazy behavior in single-ended associations. The target entity of
the association must be proxied. Hibernate implements lazy initializing proxies for persistent objects using
runtime bytecode enhancement (viathe excellent CGLIB library).

By default, Hibernate3 generates proxies (at startup) for all persistent classes and uses them to enable lazy
fetching of many- t o- one and one- t 0- one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with the pr oxy attribute.
By default, Hibernate uses a subclass of the class. Note that the proxied class must implement a default con-
structor with at least package visibility. We recommend this constructor for all persistent classes!

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<cl ass nane="Cat" proxy="Cat">

</ subcl ass>
</ cl ass>

Firstly, instances of cat will never be castable to Donest i cCat , even if the underlying instance is an instance of
Donesti cCat :

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDonesticCat()) { /1 hit the db to initialize the proxy
DonesticCat dc = (DonesticCat) cat; /1 Error!

Secondly, it is possible to break proxy ==.

Cat cat = (Cat) session.load(Cat.class, id); /] instantiate a Cat proxy

Hibernate 3.2 cr2 179

Improving performance

Donesti cCat dc =
(Domesti cCat) session.|oad(DonesticCat.class, id); // acquire new DonesticCat proxy!
System out . printl n(cat==dc); Il fal se

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

cat.setWight(11.0); // hit the db to initialize the proxy
Systemout.println(dc.getWight()); // 11.0

Third, you may not use a CGLIB proxy for afi nal classor aclasswith any fi nal methods.

Finaly, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy classis an actua subclass of the
persistent class.

These problems are al due to fundamental limitations in Java's single inheritance model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
Y ou should specify these interfaces in the mapping file. eg.

<cl ass name="Cat| npl" proxy="Cat">

</ subcl ass>
</ cl ass>

where Cat I npl implements the interface Cat and Donesti cCat | npl implements the interface Domesti cCat .
Then proxies for instances of cat and DonmesticCat may be returned by | oad() or iterate(). (Note that
l'i st() doesnot usualy return proxies.)

Cat cat = (Cat) session.load(Catlnpl.class, catid);
Iterator iter = session.iterate("from Catlnpl as cat where cat.name="fritz'");
Cat fritz = (Cat) iter.next();

Relationships are also lazily initialized. This means you must declare any properties to be of type Cat, not
Cat | npl .

Certain operations do not require proxy initialization

e equal s(), if the persistent class does not override equal s()
e hashCode(), if the persistent class does not override hashCode()
e Theidentifier getter method

Hibernate will detect persistent classes that override equal s() Of hashCode() .

By choosing | azy="no- proxy" instead of the default | azy="pr oxy", we can avoid the problems associated with
typecasting. However, we will require buildtime bytecode instrumentation, and all operations will result in im-
mediate proxy initialization.

19.1.4. Initializing collections and proxies

A LazylnitializationException Will be thrown by Hibernate if an uninitialized collection or proxy is ac-
cessed outside of the scope of the sessi on, ie. when the entity owning the collection or having the reference to
the proxy isin the detached state.

Hibernate 3.2 cr2 180

Improving performance

Sometimes we need to ensure that a proxy or collection isinitialized before closing the Sessi on. Of course, we
can alway force initialization by calling cat . get Sex() Of cat. getKittens().size(), for example. But that is
confusing to readers of the code and is not convenient for generic code.

The static methods Hi bernate.initialize() andH bernate.islnitialized() provide the application with a
convenient way of working with lazily initialized collections or proxies. Hi bernate.initialize(cat) will
force the initialization of a proxy, cat, as long as its Session is still open. Hibernate.initialize(
cat.getKittens()) hasasimilar effect for the collection of kittens.

Another option is to keep the Sessi on open until all needed collections and proxies have been loaded. In some
application architectures, particularly where the code that accesses data using Hibernate, and the code that uses
it are in different application layers or different physical processes, it can be a problem to ensure that the Ses-
si on isopen when acollection isinitialized. There are two basic ways to deal with thisissue:

* In aweb-based application, a servlet filter can be used to close the Sessi on only at the very end of a user
request, once the rendering of the view is complete (the Open Session in View pattern). Of course, this
places heavy demands on the correctness of the exception handling of your application infrastructure. It is
vitally important that the Sessi on is closed and the transaction ended before returning to the user, even
when an exception occurs during rendering of the view. See the Hibernate Wiki for examples of this "Open
Session in View" pattern.

* Inan application with a separate business tier, the business logic must "prepare” al collections that will be
needed by the web tier before returning. This means that the businesstier should load all the data and return
al the data already initialized to the presentation/web tier that is required for a particular use case. Usually,
the application calls Hi bernate. i nitialize() for each collection that will be needed in the web tier (this
call must occur before the session is closed) or retrieves the collection eagerly using a Hibernate query with
a FETCH clause or aFet chMode. JONiNn Criteria. Thisisusualy easier if you adopt the Command pattern
instead of a Session Facade.

e You may also attach a previously loaded object to a new Sessi on with merge() or I ock() before accessing
uninitialized collections (or other proxies). No, Hibernate does not, and certainly should not do this auto-
matically, since it would introduce ad hoc transaction semantics!

Sometimes you don't want to initialize a large collection, but still need some information about it (like its size)
or asubset of the data.

Y ou can use acollection filter to get the size of a collection without initializing it:

((Integer) s.createFilter(collection, "select count(*)").list().get(0)).intValue()

ThecreateFilter() method is aso used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection:

s.createFilter(lazyCollection, "").setFirstResult(0).setMaxResults(10).list();

19.1.5. Using batch fetching

Hibernate can make efficient use of batch fetching, that is, Hibernate can load several uninitialized proxies if
one proxy is accessed (or collections. Batch fetching is an optimization of the lazy select fetching strategy.
There are two ways you can tune batch fetching: on the class and the collection level.

Batch fetching for classes/entities is easier to understand. Imagine you have the following situation at runtime:

Hibernate 3.2 cr2 181

Improving performance

You have 25 cat instances loaded in a Sessi on, each cat has a reference to its owner, a Per son. The Per son
class is mapped with a proxy, 1 azy="true". If you now iterate through al cats and call get omer () on each,
Hibernate will by default execute 25 SELECT statements, to retrieve the proxied owners. Y ou can tune this beha-
vior by specifying abat ch- si ze in the mapping of Per son:

<cl ass nanme="Person" batch-size="10">...</cl ass>

Hibernate will now execute only three queries, the patternis 10, 10, 5.

You may also enable batch fetching of collections. For example, if each Per son has a lazy collection of cat s,
and 10 persons are currently loaded in the Sesssi on, iterating through all persons will generate 10 SELECTS, one
for every call to get Cat s() . If you enable batch fetching for the cat s collection in the mapping of Per son, Hi-
bernate can pre-fetch collections:

<cl ass nane="Person" >
<set nane="cats" batch-size="3">

</ set >
</ cl ass>

With abat ch- si ze of 8, Hibernate will load 3, 3, 3, 1 collections in four SELECTS. Again, the value of the at-
tribute depends on the expected number of uninitialized collectionsin a particular Sessi on.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the typica hill-
of-materials pattern. (Although a nested set or a materialized path might be a better option for read-mostly
trees.)

19.1.6. Using subselect fetching

If one lazy collection or single-valued proxy has to be fetched, Hibernate loads all of them, re-running the ori-
ginal query in asubselect. Thisworks in the same way as batch-fetching, without the piecemeal loading.

19.1.7. Using lazy property fetching

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is also known as
fetch groups. Please note that this is mostly a marketing feature, as in practice, optimizing row reads is much
more important than optimization of column reads. However, only loading some properties of a class might be
useful in extreme cases, when legacy tables have hundreds of columns and the data model can not be improved.

To enable lazy property loading, set thel azy attribute on your particular property mappings:

<cl ass nanme="Docunent" >
<id name="id">
<generator class="native"/>

</id>

<property nane="nanme" not-null="true" |ength="50"/>

<property nanme="summary" not-nul | ="true" |ength="200" |azy="true"/>

<property nane="text" not-null="true" |ength="2000" |azy="true"/>
</ cl ass>

Lazy property loading requires buildtime bytecode instrumentation! If your persistent classes are not enhanced,
Hibernate will silently ignore lazy property settings and fall back to immediate fetching.

For bytecode instrumentation, use the following Ant task:

<target name="instrunment" depends="conpile">

Hibernate 3.2 cr2 182

Improving performance

<t askdef name="instrument" classname="org. hi bernate.tool.instrunment.|nstrunmentTask">
<cl asspath path="${jar.path}"/>
<cl asspath path="${cl asses.dir}"/>
<cl asspath refid="Ilib. cl ass. path"/>

</ taskdef >

<i nstrument verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/nodel">
<i ncl ude nane="*.cl ass"/>
</fileset>
</i nstrunent >
</target>

A different (better?) way to avoid unnecessary column reads, at least for read-only transactions is to use the
projection features of HQL or Criteria queries. This avoids the need for buildtime bytecode processing and is
certainly a prefered solution.

Y ou may force the usual eager fetching of propertiesusingfetch all properties in HQL.

19.2. The Second Level Cache

A Hibernate Sessi on is atransaction-level cache of persistent data. It is possible to configure a cluster or VM-
level (sessi onFact or y-level) cache on a class-by-class and collection-by-collection basis. Y ou may even plug
in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by another ap-
plication (though they may be configured to regularly expire cached data).

By default, Hibernate uses EHCache for WM-level caching. (JCS support is how deprecated and will be re-
moved in afuture version of Hibernate.) Y ou may choose a different implementation by specifying the name of
a class that implements org. hibernate.cache. CacheProvider using the property hibern-
at e. cache. provi der _cl ass.

Table 19.1. Cache Providers

Cache Provider class Type Cluster Safe | Query Cache
Supported

Hashtable or g. hi ber nat e. cache. Hasht abl eCacheProv = memory yes

(not intended | i der

for produc-

tion use)

EHCache or g. hi ber nat e. cache. EhCachePr ovi der memory, disk yes

OSCache or g. hi ber nat e. cache. OSCachePr ovi der memory, disk yes

SwarmCache | or g. hi ber nat e. cache. Swar nCacheProvi der | clustered (ip yes(clustered

multicast) invalidation)
JBoss or g. hi ber nat e. cache. TreeCacheProvider clustered (ip yes yes (clock
TreeCache multicast), (replication) syncreq.)
transactional

19.2.1. Cache mappings

Hibernate 3.2 cr2 183

Improving performance

The <cache> element of aclass or collection mapping has the following form:

<cache
usage="transactional |[read-wite| nonstrict-read-wite|read-only" (1)
regi on="Regi onNang" (2)
i ncl ude="al | | non-1 azy" (3)
/>

(1) usage (required) specifies the caching strategy: transactional , read-write, nonstrict-read-wite Of
read-only

(2) region (optional, defaults to the class or collection role name) specifies the name of the second level
cacheregion

(3) include (optional, defaults to all) non-1azy specifies that properties of the entity mapped with
I azy="true" may not be cached when attribute-level lazy fetching is enabled

Alternatively (preferrably?), you may specify <cl ass- cache> and <col | ecti on- cache> elements in hi ber n-
ate.cfg. xnm .

The usage attribute specifies a cache concurrency strategy.

19.2.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, aread- onl y cache may be
used. Thisisthe simplest and best performing strategy. It's even perfectly safe for use in a cluster.

<cl ass nane="eg. | nmut abl e" nut abl e="f al se">
<cache usage="read-only"/>

</ cl ass>

19.2.3. Strategy: read/write

If the application needs to update data, aread-wite cache might be appropriate. This cache strategy should
never be used if serializable transaction isolation level is required. If the cache is used in a JTA environment,
you must specify the property hi ber nat e. t ransacti on. manager _| ookup_cl ass, haming a strategy for obtain-
ing the JTA Transact i onManager . In other environments, you should ensure that the transaction is completed
when Sessi on. cl ose() Or Sessi on. di sconnect () is called. If you wish to use this strategy in a cluster, you
should ensure that the underlying cache implementation supports locking. The built-in cache providers do not.

<cl ass nane="eg.Cat" >
<cache usage="read-write"/>

<set name="kittens" ... >
<cache usage="read-write"/>

</ set >
</ cl ass>

19.2.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremely unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, anonstri ct -
read-wr it e cache might be appropriate. If the cache isused in a JTA environment, you must specify hi ber n-
ate.transacti on. manager _| ookup_cl ass. In other environments, you should ensure that the transaction is

Hibernate 3.2 cr2 184

Improving performance

completed when Sessi on. cl ose() Or Sessi on. di sconnect () iscalled.

19.2.5. Strategy: transactional

The transactional cache strategy provides support for fully transactional cache providers such as JBoss
TreeCache. Such a cache may only be used in a JTA environment and you must specify hibern-
ate. transacti on. manager _| ookup_cl ass.

None of the cache providers support all of the cache concurrency strategies. The following table shows which
providers are compatible with which concurrency strategies.

Table 19.2. Cache Concurrency Strategy Support

Cache read-only nonstrict- read-write transactional
read-write

Hashtable (notin- | yes yes yes

tended for produc-

tion use)

EHCache yes yes yes

OSCache yes yes yes

SwarmCache yes yes

JBoss TreeCache yes yes

19.3. Managing the caches

Whenever you pass an object to save(), updat e() Or saveQr Updat e() and whenever you retrieve an object us-
ing ! oad(),get(),list(),iterate() Orscroll (), that object isadded to theinterna cache of the Sessi on.

When 1 ush() is subsequently called, the state of that object will be synchronized with the database. If you do
not want this synchronization to occur or if you are processing a huge number of objects and need to manage
memory efficiently, the evi ct () method may be used to remove the object and its collections from the first-
level cache.

Scrol | abl eResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set
while (cats.next()) {

Cat cat = (Cat) cats.get(0);

doSonet hi ngW t hACat (cat) ;

sess. evict(cat);

The sessi on also provides acont ai ns() method to determine if an instance belongs to the session cache.

To completely evict all objects from the session cache, call Sessi on. ¢l ear ()

For the second-level cache, there are methods defined on Sessi onFact ory for evicting the cached state of an
instance, entire class, collection instance or entire collection role.

sessionFactory. evict(Cat.class, catld); //evict a particular Cat

sessionFactory.evict(Cat.class); //evict all Cats

sessionFactory. evictCol | ection("Cat.kittens", catld); //evict a particular collection of kittens
sessi onFactory. evictColl ection("Cat.kittens"); //evict all kitten collections

Hibernate 3.2 cr2 185

Improving performance

The cacheMbde controls how a particular session interacts with the second-level cache.

e CacheMode. NORMAL - read items from and write items to the second-level cache

e CacheMde. GET - read items from the second-level cache, but don't write to the second-level cache except
when updating data

* cacheMde. PUT - write items to the second-level cache, but don't read from the second-level cache

e CacheMvde. REFRESH - write items to the second-level cache, but don't read from the second-level cache, by-
pass the effect of hi ber nat e. cache. use_ni ni mal _put s, forcing a refresh of the second-level cache for al
items read from the database

To browse the contents of a second-level or query cacheregion, usethe stati stics API:

Map cacheEntries = sessionFactory.getStatistics()
. get SecondLevel CacheSt ati sti cs(regi onNane)
.getEntries();

You'll need to enable statistics, and, optionally, force Hibernate to keep the cache entries in a more human-
understandable format:

hi ber nat e. generate_statistics true
hi ber nat e. cache. use_structured_entries true

19.4. The Query Cache

Query result sets may also be cached. Thisisonly useful for queries that are run frequently with the same para-
meters. To use the query cache you must first enable it:

hi ber nat e. cache. use_query_cache true

This setting causes the creation of two new cache regions - one holding cached query result sets
(or g. hi ber nat e. cache. St andar dQuer yCache), the other holding timestamps of the most recent updates to
queryable tables (or g. hi ber nat e. cache. Updat eTi mest anpsCache). Note that the query cache does not cache
the state of the actua entities in the result set; it caches only identifier values and results of value type. So the
query cache should always be used in conjunction with the second-level cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
Query. set Cacheabl e(true). This call allows the query to look for existing cache results or add its results to
the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for aparticular query by calling Query. set CacheRegi on() .

Li st bl ogs = sess.createQuery("from Bl og bl og where bl og. bl ogger = : bl ogger")
.setEntity("bl ogger", bl ogger)
. set MaxResul t s(15)
. set Cacheabl e(true)
. set CacheRegi on("front pages")
dist();

If the query should force a refresh of its query cache region, you should cdll
Query. set CacheMbde(CacheMode. REFRESH) . This is particularly useful in cases where underlying data may

Hibernate 3.2 cr2 186

Improving performance

have been updated via a separate process (i.e., not modified through Hibernate) and allows the application to
selectively refresh particular query result sets. This is a more efficient aternative to eviction of a query cache
region via Sessi onFact ory. evi ct Queri es() .

19.5. Understanding Collection performance

We've aready spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

19.5.1. Taxonomy

Hibernate defines three basic kinds of collections:

e collections of values
e Oneto many associations
* many to many associations

This classification distinguishes the various table and foreign key relationships but does not tell us quite
everything we need to know about the relational model. To fully understand the relational structure and per-
formance characteristics, we must also consider the structure of the primary key that is used by Hibernate to up-
date or delete collection rows. This suggests the following classification:

¢ indexed collections
e sets
e bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <i ndex> columns.
In this case collection updates are usualy extremely efficient - the primary key may be efficiently indexed and
aparticular row may be efficiently located when Hibernate tries to update or delete it.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficently. On the other hand, for one to many or many to many associ-
ations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare al columns as not -
nul | ="true".)

<i dbag> mappings define a surrogate key, so they are always very efficient to update. In fact, they are the best
case.

Bags are the worst case. Since a bag permits duplicate el ement values and has no index column, no primary key
may be defined. Hibernate has no way of distinguishing between duplicate rows. Hibernate resolves this prob-
lem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This might
be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It still reflects how Hibernate "locates" indi-
vidual rows of the collection.)

Hibernate 3.2 cr2 187

Improving performance

19.5.2. Lists, maps, idbags and sets are the most efficient collections to up-
date

From the discussion above, it should be clear that indexed collections and (usually) sets alow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of a Set, Hibernate doesn't ever UPDATE a row when an ele-
ment is "changed”. Changesto a set alwayswork via | NSERT and DELETE (of individual rows). Once again, this
consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and idbags are the most perform-
ant (non-inverse) collection types, with sets not far behind. Sets are expected to be the most common kind of
collection in Hibernate applications. This is because the "set" semantics are most natural in the relational mod-
el.

However, in well-designed Hibernate domain models, we usually see that most collections are in fact one-
to-many associations with i nver se="t rue" . For these associations, the update is handled by the many-to-one
end of the association, and so considerations of collection update performance simply do not apply.

19.5.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and aso lists) are much more per-
formant than sets. For a collection with i nver se="true" (the standard bidirectiona one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
Thisis because Col | ecti on. add() Or Col | ecti on. addAl | () must always return true for abag or Li st (unlike
a Set). This can make the following common code much faster.

Parent p = (Parent) sess.load(Parent.class, id);

Child ¢ = new Child();

c.setParent (p);

p.get Children().add(c); //no need to fetch the collection!
sess. flush();

19.5.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. Hibernate isn't completely
stupid, so it knows not to do that in the case of an newly-empty collection (if you called | i st . cl ear (), for ex-
ample). In this case, Hibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. Hibernate will
iSsue one | NSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed

¢ delete eighteen rows one by one and then insert three rows
« remove the whole collection (in one SQL DELETE) and insert all five current elements (one by one)

Hibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for Hibernate to be that smart; such behaviour might confuse database triggers, etc.)

Hibernate 3.2 cr2 188

Improving performance

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)
the original collection and returning a newly instantiated collection with all the current elements. This can be
very useful and powerful from timeto time.

Of course, one-shot-del ete does not apply to collections mapped i nver se="t r ue".

19.6. Monitoring performance

Optimization is not much use without monitoring and access to performance numbers. Hibernate provides a full
range of figures about itsinternal operations. Statistics in Hibernate are available per Sessi onFact ory.

19.6.1. Monitoring a SessionFactory

You can access SessionFactory Mmetrics in two ways. Your first option is to call sessionFact-
ory.getStatistics() andread or display the st ati sti cs yourself.

Hibernate can also use IMX to publish metrics if you enable the st ati sti csServi ce MBean. You may enable
asingle MBean for all your Sessi onFactory or one per factory. See the following code for minimalistic con-
figuration examples:

/1 MBean service registration for a specific SessionFactory

Hasht abl e tb = new Hasht abl e();

tbh. put("type", "statistics");

tb. put ("sessi onFactory", "nyFi nanci al App");

Cbj ect Nane on = new Obj ect Narme(" hi bernate", tb); // MBean object nane

StatisticsService stats = new StatisticsService(); // Mean inplenentation
stats. set Sessi onFact ory(sessionFactory); // Bind the stats to a SessionFactory
server.regi sterMBean(stats, on); // Register the Mean on the server

/1l MBean service registration for all SessionFactory's

Hasht abl e tb = new Hashtabl e();

th. put("type", "statistics");

tb. put ("sessi onFactory", "all");

bj ect Nane on = new Obj ect Narme(" hi bernate", thb); // MBean object nane

StatisticsService stats = new StatisticsService(); // Mean inplenentation
server.regi sterMBean(stats, on); // Register the MBean on the server

TODO: This doesn't make sense: In the first case, we retrieve and use the MBean directly. In the second one,
we must give the JNDI name in which the session factory is held before using it. Use hi ber nat eSt at s-
Bean. set Sessi onFact or yJNDI Narme(" my/ JNDI / Nanme")

Y ou can (de)activate the monitoring for a Sessi onFact ory
e at configuration time, set hi ber nat e. generate_statistics tofal se

e at runtime: sf.getStatistics().setStatisticsEnabl ed(true) or hi ber nat eSt at s-
Bean. set Stati sti csEnabl ed(true)

Statistics can be reset programatically using the cl ear () method. A summary can be sent to a logger (info
level) using the | ogSummar y() method.

19.6.2. Metrics

Hibernate 3.2 cr2 189

Improving performance

Hibernate provides a number of metrics, from very basic to the specialized information only relevant in certain
scenarios. All available counters are described in the st at i sti cs interface API, in three categories:

e Metrics related to the general Sessi on usage, such as number of open sessions, retrieved JDBC connec-
tions, etc.

« Metricsrelated to he entities, collections, queries, and caches as awhole (aka global metrics),
« Detailed metrics related to a particular entity, collection, query or cache region.

For exampl,e you can check the cache hit, miss, and put ratio of entities, collections and queries, and the aver-
age time a query needs. Beware that the number of milliseconds is subject to approximation in Java. Hibernate
istied to the VM precision, on some platforms this might even only be accurate to 10 seconds.

Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection, cache region,
efc.). You can access the metrics of a particular entity, collection or cache region through its name, and through
its HQL or SQL representation for queries. Please refer to the Stati stics, EntityStatistics, Col | ectionS-
tatistics, SecondLevel CacheStatistics, and QueryStatistics APl Javadoc for more information. The fol-
lowing code shows a simple example:

Statistics stats = HibernateUtil.sessionFactory.getStatistics();

doubl e queryCacheH t Count = stats.getQueryCacheHi t Count();
doubl e queryCacheM ssCount = stats. get QueryCacheM ssCount () ;
doubl e queryCacheH tRatio =
queryCacheH t Count / (queryCacheHit Count + queryCacheM ssCount);

log.info("Query Hit ratio:" + queryCacheHi tRatio);

EntityStatistics entityStats =
stats.getEntityStatistics(Cat.class.getName());
| ong changes =
entityStats. getlnsert Count ()
+ entityStats. get Updat eCount ()
+ entityStats. get Del et eCount () ;
| og.info(Cat.class.getNane() + " changed " + changes + "times");

To work on al entities, collections, queries and region caches, you can retrieve the list of names of entities, col-
lections, queries and region caches with the following methods. get Queri es(), get Enti t yNames(), get Col -
| ecti onRol eNarres(), and get SecondLevel CacheRegi onNames() .

Hibernate 3.2 cr2 190

Chapter 20. Toolset Guide

Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline tools, as well as
Ant tasks.

The Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse engineering
of existing databases:

» Mapping Editor: An editor for Hibernate XML mapping files, supporting auto-completion and syntax high-
lighting. It also supports semantic auto-completion for class names and property/field names, making it
much more versatile than anormal XML editor.

» Console: The console is a new view in Eclipse. In addition to a tree overview of your console configura-
tions, you also get an interactive view of your persistent classes and their relationships. The console allows
you to execute HQL queries against your database and browse the result directly in Eclipse.

« Development Wizards. Severa wizards are provided with the Hibernate Eclipse tools; you can use awizard
to quickly generate Hibernate configuration (cfg.xml) files, or you may even completely reverse engineer
an existing database schema into POJO source files and Hibernate mapping files. The reverse engineering
wizard supports customizable templates.

* Ant Tasks:
Please refer to the Hibernate Tools package and it's documentation for more information.

However, the Hibernate main package comes bundled with an integrated tool (it can even be used from "inside"
Hibernate on-the-fly): SchemaExport aka hbn2ddl .

20.1. Automatic schema generation

DDL may be generated from your mapping files by a Hibernate utility. The generated schema includes referen-
tial integrity constraints (primary and foreign keys) for entity and collection tables. Tables and sequences are
also created for mapped identifier generators.

You must specify a SQL Di al ect viathe hi ber nat e. di al ect property when using thistool, as DDL is highly
vendor specific.

First, customize your mapping files to improve the generated schema.

20.1.1. Customizing the schema

Many Hibernate mapping elements define optional attributes named | engt h, preci si on and scal e. You may
set the length, precision and scale of a column with this attribute.

<property nanme="zip" |ength="5"/>
<property nane="bal ance" precision="12" scal e="2"/>

Some tags also accept a not-nul | attribute (for generating a NOT NULL constraint on table columns) and a
uni que attribute (for generating UNI QUE constraint on table columns).

<many-t o- one name="bar" col um="barld" not-null="true"/>

Hibernate 3.2 cr2 191

Toolset Guide

<el ement col um="seri al Nunber" type="long" not-null="true" unique="true"/>

A uni que- key attribute may be used to group columns in a single unique key constraint. Currently, the spe-
cified value of the uni que- key attribute is not used to name the constraint in the generated DDL, only to group
the columnsin the mapping file.

<many-t o-one nane="org" colum="orgld" uni que-key="0O gEnpl oyeel d"/ >
<property nane="enpl oyeel d* uni que- key="0CO gEnpl oyee"/ >

An i ndex attribute specifies the name of an index that will be created using the mapped column or columns.
Multiple columns may be grouped into the same index, simply by specifying the same index name.

<property nanme="| ast Name" i ndex="Cust Nane"/>
<property nane="firstNane" index="Cust Nane"/>

A forei gn- key attribute may be used to override the name of any generated foreign key constraint.

<many-t o- one name="bar" col utm="bar|d" foreign-key="FKFooBar"/>

Many mapping elements also accept a child <col um> element. This is particularly useful for mapping multi-
column types:

<property nane="nanme" type="my.custontypes. Nane"/>
<col um nane="last" not-null="true" index="bar_idx" |ength="30"/>
<col um nanme="first" not-null="true" index="bar_idx" |ength="20"/>
<col um nane="initial"/>

</ property>

The def aul t attribute lets you specify a default value for a column (you should assign the same value to the
mapped property before saving a new instance of the mapped class).

<property nane="credits" type="integer" insert="false">
<col um nane="credits" defaul t="10"/>
</ property>

<versi on name="version" type="integer" insert="false">
<col um name="versi on" defaul t="0"/>
</ property>

Thesql -t ype attribute allows the user to override the default mapping of a Hibernate type to SQL datatype.

<property nane="bal ance" type="float">
<col um nane="bal ance" sql -type="deci nal (13,3)"/>
</ property>

The check attribute allows you to specify a check constraint.

<property nane="foo" type="integer">
<col um nane="foo" check="foo > 10"/>
</ property>

<cl ass nanme="Foo" tabl e="foos" check="bar < 100.0">

<property nane="bar" type="float"/>
</ cl ass>

Table 20.1. Summary

Hibernate 3.2 cr2 192

Toolset Guide

Attribute Values Interpretation

l ength number column length

preci si on number column decimal precision

scal e number column decimal scale

not - nul | true| fal se specfies that the column should be non-nullable

uni que true| fal se specifies that the column should have a unique constraint
i ndex i ndex_name specifies the name of a (multi-column) index

uni que- key uni que_key_nane specifies the name of a multi-column unique constraint

forei gn-key

sql -type

defaul t

check

forei gn_key_nane

SQL colum type

SQL expression

SQL expression

specifies the name of the foreign key constraint generated
for an association, for a <one-to-one>, <many-to-one>,
<key>, Or <many-t o- many> mapping element. Note that i n-
verse="true" sides will not be considered by SchemaEx-
port.

overrides the default column type (attribute of <col urm>
element only)

specify a default value for the column

create an SQL check constraint on either column or table

The <conmment > element allows you to specify comments for the generated schema.

<cl ass nanme="Cust oner"

t abl e=" Cur Cust " >

<comment >Current customers onl y</comrent >

</ cl ass>

<property nane="bal ance">
<col um nane="bal ">
<conment >Bal ance i n USD</ corment >

</ col um>
</ property>

Thisresultsin acomment on tabl e Or comrent on col um statement in the generated DDL (where supported).

20.1.2. Running the tool

The schemaExpor t tool writesa DDL script to standard out and/or executes the DDL statements.

java -cp hibernate classpathsor g. hi bernat e. t ool . hbn2ddl . SchemaExport options mapping_files

Table 20.2. schemaExport Command Line Options

Option Description

--qui et don't output the script to stdout
--drop only drop the tables

--create only create the tables

Hibernate 3.2 cr2

193

Toolset Guide

Option Description

--text don't export to the database

- - out put =ny_schema. ddl output the ddl script to afile

- - nam ng=eg. MyNani ngSt r at egy select aNani ngSt r at egy

--confi g=hi bernate. cf g. xni read Hibernate configuration from an XML file
--properties=hi bernate. properties read database properties from afile

--f or mat format the generated SQL nicely in the script
--delinmters; set an end of line delimiter for the script

Y ou may even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport (cfg).create(false, true);

20.1.3. Properties

Database properties may be specified

e assystem properties with - D<property>
* inhibernate. properties
e inanamed propertiesfile with - - properti es

The needed properties are:

Table 20.3. SchemaExport Connection Properties

Property Name Description

hi ber nat e. connecti on. dri ver_cl ass jdbc driver class
hi ber nat e. connecti on. ur| jdbc url

hi ber nat e. connect i on. user nane database user

hi ber nat e. connecti on. password user password
hi ber nat e. di al ect dialect

20.1.4. Using Ant

You can call schemaExport from your Ant build script:

<target nanme="schemaexport">
<t askdef nane="schenaexport"

cl assnanme="or g. hi ber nat e. t ool . hbn2dd| . SchemaExport Task"

cl asspat href ="cl ass. path"/>

<schenmaexport
properties="hi bernate. properties"
qui et =" no"
t ext="no"

Hibernate 3.2 cr2

194

Toolset Guide

dr op="no"
delimter=";"
out put =" schema- export.sql ">
<fileset dir="src">
<i ncl ude name="**/*_hbm xm "/ >

</fil eset>

</ schemaexport >

</target>

20.1.5. Incremental schema updates

The schemaUpdat e tool will update an existing schema with "incremental” changes. Note that SchemaUpdat e
depends heavily upon the JIDBC metadata API, so it will not work with all JDBC drivers.

java -cp hibernate_classpathsor g. hi ber nat e. t ool . hbnddl . SchermaUpdat e options mapping_files

Table 20.4. schemauUpdat e Command L ine Options

Option Description

--qui et don't output the script to stdout
--text don't export the script to the database
- - nam ng=eg. MyNani ngSt r at egy select aNami ngSt r at egy
--properties=hi bernate. properties read database properties from afile
--confi g=hi bernate. cf g. xni specify a. cfg. xni file

Y ou may embed SchemaUpdat e in your application:

Configuration cfg =;
new SchermaUpdat e(cf g) . execut e(fal se);

20.1.6. Using Ant for incremental schema updates

You can call schemaUpdat e from the Ant script:

<t arget nane="schenmaupdate" >
<t askdef nane="schenmaupdate"
cl assnanme="or g. hi ber nat e. t ool . hbn2dd| . SchemaUpdat eTask"
cl asspat href ="cl ass. path"/>

<schenaupdat e
properti es="hi bernate. properties"
qui et ="no" >
<fileset dir="src">

<i ncl ude nane="**/*_hbm xm "/ >

</fileset>

</ schemaupdat e>

</target>

20.1.7. Schema validation

The schemaval i dat or tool will validate that the existing database schema "matches" your mapping documents.
Note that SchemaVval i dat or depends heavily upon the JIDBC metadata API, so it will not work with all JDBC

Hibernate 3.2 cr2 195

Toolset Guide

drivers. Thistool is extremely useful for testing.

java -cp hibernate classpathsor g. hi ber nat e. t ool . hbnddl . SchermaVal i dat or options mapping_files

Table 20.5. schermaval i dat or Command Line Options

Option Description

- - nam ng=eg. MyNani ngSt r at egy select aNami ngSt r at egy
--properties=hi bernate. properties read database properties from afile
--confi g=hi bernate. cf g. xni specify a. cfg. xni file

Y ou may embed SchemaVval i dat or in your application:

Configuration cfg =;
new SchemaVal i dat or (cfg).validate();

20.1.8. Using Ant for schema validation

You can call schemaval i dat or from the Ant script:

<t arget nane="schenaval i dat e">
<t askdef nanme="schenaval i dator"
cl assnanme="or g. hi bernat e. t ool . hbnRddl . SchenaVal i dat or Task"
cl asspat href ="cl ass. pat h"/>

<schenaval i dat or
properti es="hi bernate. properties">
<fileset dir="src">
<i ncl ude nanme="**/*_ hbm xm "/ >

</fileset>
</ schemaupdat e>
</target>

Hibernate 3.2 cr2

196

Chapter 21. Example: Parent/Child

One of the very first things that new users try to do with Hibernate isto model a parent / child type relationship.
There are two different approaches to this. For various reasons the most convenient approach, especially for
new users, isto model both Par ent and chi | d as entity classes with a <one- t o- many> association from Par ent

to ¢hi | d. (The alternative approach is to declare the chi | d as a <conposi t e- el enent >.) Now, it turns out that
default semantics of a one to many association (in Hibernate) are much less close to the usual semantics of a
parent / child relationship than those of a composite element mapping. We will explain how to use a bidirec-
tional one to many association with cascades to model a parent / child relationship efficiently and elegantly. It's
not at all difficult!

21.1. A note about collections

Hibernate collections are considered to be alogical part of their owning entity; never of the contained entities.
Thisisacrucia distinction! It has the following consequences.

¢ When we remove / add an object from / to a collection, the version number of the collection owner isincre-
mented.

« If an object that was removed from a collection is an instance of a value type (eg, a composite el ement), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

e On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behaviour is completely consistent - a change to the internal state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behaviour is that adding an entity to a collection merely creates a link between the two en-
tities, while removing it removes the link. This is very appropriate for al sorts of cases. Where it is not appro-
priate at all is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

21.2. Bidirectional one-to-many

Suppose we start with asimple <one- t o- many> association from Par ent to Chi | d.

<set nanme="children">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>

If we were to execute the following code

Parent p = ;

Child ¢ = new Child();
p. get Chi l dren().add(c);
sessi on. save(c);
session. flush();

Hibernate would issue two SQL statements:

Hibernate 3.2 cr2 197

Example: Parent/Child

e an| NSERT to create the record for ¢
* an UPDATE to create thelink fromp toc

Thisis not only inefficient, but also violates any NOT NULL constraint on the par ent _i d column. We can fix the
nullability constraint violation by specifying not - nul | ="t r ue" in the collection mapping:

<set nane="chil dren">

<key col um="parent _id" not-null="true"/>
<one-to-many class="Child"/>
</set>

However, thisis not the recommended solution.

The underlying cause of this behaviour isthat the link (the foreign key par ent _i d) from p to ¢ is hot considered
part of the state of the chi | d object and is therefore not created in the | NSERT. So the solution is to make the
link part of the ¢chi | d mapping.

<many-t o-one nane="parent" col um="parent _id" not-null="true"/>

(We aso need to add the par ent property to the chi | d class.)

Now that the chi | d entity is managing the state of the link, we tell the collection not to update the link. We use
thei nver se attribute.

<set name="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>

The following code would be used to add anew chi 1 d

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

c.setParent (p);

p. get Chi Il dren() . add(c);

sessi on. save(c);

session. flush();

And now, only one SQL 1 NSERT would be issued!
To tighten things up a bit, we could create an addchi | d() method of Par ent .

public void addChild(Child c) {
c.setParent (this);
chil dren. add(c);

Now, the code to add achi | d looks like

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi | d(c);

sessi on. save(c);

session. flush();

21.3. Cascading lifecycle

Hibernate 3.2 cr2 198

Example: Parent/Child

The explicit call tosave() isstill annoying. We will address this by using cascades.

<set nane="children" inverse="true" cascade="all">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set >

This simplifies the code above to

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi I d(c);

session. flush();

Similarly, we don't need to iterate over the children when saving or deleting a Par ent . The following removes p
and al its children from the database.

Parent p = (Parent) session.|oad(Parent.class, pid);
sessi on. del et e(p);
session. flush();

However, this code

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renove(c);

c.setParent (null);

session. flush();

will not remove ¢ from the database; it will ony remove the link to p (and cause a NOT NULL constraint viola
tion, in this case). Y ou need to explicitly del et e() the chi | d.

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renmove(c);

sessi on. del ete(c);

session. flush();

Now, in our case, achi |l d can't really exist without its parent. So if we remove a chi | d from the collection, we
really do want it to be deleted. For this, we must use cascade="al | - del et e- or phan" .

<set nanme="children" inverse="true" cascade="all -del ete-orphan">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

Note: even though the collection mapping specifies i nver se="true", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply call set Parent () .

21.4. Cascades and unsaved- val ue

Suppose we loaded up a Par ent in one Sessi on, Made some changes in a Ul action and wish to persist these
changes in a new session by calling updat e() . The Parent will contain a collection of childen and, since cas-
cading update is enabled, Hibernate needs to know which children are newly instantiated and which represent
existing rows in the database. L ets assume that both Par ent and chi | d have genenerated identifier properties of
type Long. Hibernate will use the identifier and version/timestamp property value to determine which of the

Hibernate 3.2 cr2 199

Example: Parent/Child

children are new. (See Section 10.7, “Automatic state detection”.) In Hibernate3, it is no longer necessary to
specify an unsaved- val ue explicitly.

The following code will update par ent and chi | d and insert newchi | d.

[/ parent and child were both | oaded in a previous session
parent. addChi I d(chil d);

Child newChild = new Child();

par ent . addChi | d(newChi | d) ;

sessi on. updat e(parent) ;

session. flush();

Well, that's all very well for the case of a generated identifier, but what about assigned identifiers and compos-
ite identifiers? This is more difficult, since Hibernate can't use the identifier property to distinguish between a
newly instantiated object (with an identifier assigned by the user) and an object loaded in a previous session. In
this case, Hibernate will either use the timestamp or version property, or will actualy query the second-level
cache or, worst case, the database, to seeif the row exists.

21.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out very nicely. Most Hibernate applications use the parent / child pattern in many places.

We mentioned an dternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > Mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes. composite elements may not own collections,
and they should not be the child of any entity other than the unique parent.

Hibernate 3.2 cr2 200

Chapter 22. Example: Weblog Application

22.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stand-
ard parent/child relationship, but we will use an ordered bag, instead of a set.

package eg;
import java.util.List;

public class Blog {
private Long _id;
private String _namne;
private List _itens;

public Long getld() {
return _id,

}

public List getltems() {
return _itens;

public String getName() {
return _nane;

}

public void setld(Long Iongl) {
_id = 1longl;

}

public void setltens(List list) {
_items = list;

}

public void setName(String string) {
_nane = string;
}

package eg;

i mport java.text.DateFornat;
i mport java.util.Cal endar;

public class Blogltem {
private Long _id;
private Cal endar _dateti ne;
private String _text;
private String _title;
private Blog _bl og;

public Blog getBlog() {
return _bl og;

}

public Cal endar getDatetine() {
return _datetine;

}

public Long getld() {
return _id;

public String getText() {
return _text;
}

public String getTitle() {
return _title;

}

public void setBl og(Blog blog) {
_blog = bl og;

Hibernate 3.2 cr2 201

Example: Weblog Application

}

public void setDatetine(Cal endar cal endar) {

_datetine = cal endar

}

public void setld(Long | ongl) {
_id = longl;

}

public void setText(String string) {

_text = string;

}

public void setTitle(String string) {

_title = string;

}

22.2. Hibernate Mappings

The XML mappings should now be quite straightforward.

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C

"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass
nane=" Bl og"
t abl e=" BLOGS" >

<id
name="id"
col um="BLOG_| D' >

<generator class="native"/>
</id>

<property
nanme="nanme"
col um=" NAME"
not -nul | ="true"
uni que="true"/>

<bag
name="itens"
i nverse="true"
or der - by="DATE_TI ME"
cascade="al | ">

<key col um="BLOG_ | D'/ >

<one-to-many cl ass="Bl ogltent/>

</ bag>
</ cl ass>

</ hi ber nat e- mappi ng>

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C

"-//H bernat e/ H bernat e Mappi ng DID 3. 0/ / EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg" >

Hibernate 3.2 cr2

202

Example: Weblog Application

<cl ass
nanme="Bl ogl t ent
tabl e="BLOG_| TEMS"
dynam c- updat e="true" >

<id

name="id"

col um="BLOG | TEM | D' >

<generator class="native"/>
</id>
<property

name="titl e"

col um="TI TLE"

not-null ="true"/>
<property

name="t ext"

col um="TEXT"

not-null ="true"/>
<property

nane="dat eti me"
col um="DATE_TI ME"
not-null ="true"/>

<nmany-to-one
nanme="bl og"
col um="BLOG | D"
not-null="true"/>

</ cl ass>

</ hi ber nat e- mappi ng>

22.3. Hibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using Hibernate.

package eg;

import java.util.Arraylist;
i mport java.util.Cal endar;
import java.util.lterator;
import java.util.List;

i mport org. hi bernate. H bernat eExcepti on

i mport org. hi bernate. Query;

i mport org. hi bernate. Sessi on;

i mport org. hi bernate. Sessi onFact ory;

i mport org. hi bernate. Transacti on

i mport org. hi bernate.cfg. Configuration

i mport org. hi bernate.tool.hbnRddl . SchemaExport;

public class Bl oghhin {
private SessionFactory _sessions;

public void configure() throws H bernateException {
_sessions = new Configuration()
. addd ass(Bl og. cl ass)
. addCl ass(Bl ogltem cl ass)
. bui | dSessi onFactory();

Hibernate 3.2 cr2 203

Example: Weblog Application

public void exportTabl es() throws Hi bernateException {
Configuration cfg = new Configuration()
. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass);
new SchemaExport(cfg).create(true, true);

}

public Blog createBl og(String nane) throws Hi bernateException {

Bl og bl og = new Bl og();
bl og. set Nanme(nane) ;
bl og. setltens(new ArrayList());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. persi st (bl og);
tx.commt();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return bl og;

}

public BlogltemcreateBloglten(Blog blog, String title, String text)
throws Hi ber nat eException {

Blogltemitem = new Blogltenm();
itemsetTitle(title);

item set Text (text);

i tem set Bl og(bl og);

item setDateti me(Cal endar. getlnstance());
bl og. getltens().add(iten);

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. updat e(bl og) ;
tx.commt();

catch (Hi bernateExcepti on he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return item

}

public Blogltem createBl oglten(Long blogid, String title, String text)
t hrows Hi bernat eException {

Blogltemitem = new Blogltenm();
itemsetTitle(title);

item set Text (text);

item set Dateti ne(Cal endar. getlnstance());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
Bl og bl og = (Bl og) session.|oad(Bl og.class, blogid);
i tem set Bl og(bl og);

Hibernate 3.2 cr2 204

Example: Weblog Application

bl og. getltens().add(iten);
tx.commt();

catch (H bernateExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return item

}

public void updateBl ogltenmBlogltemitem String text)
throws Hi ber nat eException {

item set Text (text);

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
session. update(itenm;
tx.commit();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

}

public void updateBl ogltemLong itemd, String text)
throws Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();

Blogltemitem = (Bloglten) session.|load(Blogltemclass, itemd);
item set Text (text);

tx.commt();

catch (H bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

}

public List |istAllBlIogNamesAndltenCounts(int max)
t hrows Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
List result = null;
try {
tXx = session. begi nTransacti on();
Query g = session. createQuery(
"sel ect blog.id, blog.nane, count(blogltem) " +
"fromBlog as blog " +
"left outer join blog.itens as blogltem" +
"group by blog.nane, blog.id " +
"order by max(blogltem datetine)"
)
g. set MaxResul t s(max) ;
result = qg.list();

Hibernate 3.2 cr2 205

Example: Weblog Application

tx.commt();

catch (H bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

session. cl ose();
}

return result;

public Bl og getBl ogAndAl I | t ems(Long bl ogi d)
t hrows Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
Bl og blog = null;
try {
tXx = session. begi nTransaction();
Query g = session. creat eQuery(
"fromBlog as blog " +
"left outer join fetch blog.itens " +
"where blog.id = :blogid"
I
g. set Paranet er (" bl ogi d", bl ogi d);
blog = (Blog) g.uniqueResult();
tx.commt();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return bl og;

public List |istBlogsAndRecentltens() throws Hi bernateException {

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query g = session. createQuery(
"fromBlog as blog " +
"inner join blog.itenms as blogltem" +
"where blogltemdatetime > : mnDate"

)

Cal endar cal = Cal endar. getlnstance();
cal .rol | (Cal endar. MONTH, fal se);
g. set Cal endar ("m nDate", cal);

result = q.list();
tx.commt();

catch (H bernat eExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return result;

Hibernate 3.2 cr2 206

Chapter 23. Example: Various Mappings

This chapters shows off some more complex association mappings.

23.1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee Uses an actual entity class (Enpl oy-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetary values and employee names.

Employer Employment Employee Name
ploy +employer 0.% kit 0.+ Py

-id : long -startDate : Date = -id : long ~firstWame : 5tring
—hame : 5tring -endDate : Date +employee| taxfileMumber ; String +namel initial : char
+getldd : long -id : lang +gethamen : Hame ~lastName : String
+zetld_id:long +getstartDated : Date +setNameiname: Namel +getFirstNamen : 5tring
+getHamed ; String +setitartDate_startDate:Date) +getldi : long +3etFirstName_firstNameString
+setName_name:String) +getEndDated : Date +setldi_id:longs +ygetlnitiald : char

+setEndDatei_endDate:Datel +getTaxfileMumberd : String +setlnitialCinitial:chan

+getHourlyRated : MonetorgAmount +setTaxfileNumber_taxfileMumberString +getlastMamen ; String

+setHourlyRatelrate: Monetorydmount) +setlasthame_lastName:String

+getldd : long

+set|;(_|tl:l:lonil Emol +hourlyRatd Monetorydmount

+aget :

+gEtEmD| oyeri mEp 05;er " -amount : Bighecimal

setEmployeriemp:Employe
poy pEmpley —currency © Currency
+getEmployvesd : Employes . -
+getAmountd : Bighecimal
+setEmployveelemp Employves) X .
+setAmounti_amount:BigDecimal

+getCurrencyl @ Currency
+ et CUrrency_Currency Currencyl

Heres a possible mapping document:

<hi ber nat e- mappi ng>

<cl ass nanme="Enpl oyer" tabl e="enpl oyers">
<id name="id">
<generator class="sequence">
<par am nane="sequence" >enpl oyer _i d_seq</ par an>
</ gener at or >
</id>
<property nanme="nane"/>
</ cl ass>

<cl ass nanme="Enpl oynent" tabl e="enpl oynent peri ods" >

<id name="id">
<generator class="sequence">
<par am nanme="sequence" >enpl oynent _i d_seq</ par an»
</ gener at or >
</id>
<property nane="startDate" colum="start_date"/>
<property nanme="endDate" col utm="end_date"/>

<conponent name="hour | yRate" cl ass="Monet aryAmount" >
<property nane="anount">
<col um nane="hourly_rate" sql-type="NUMERI C(12, 2)"/>
</ property>
<property name="currency" |ength="12"/>
</ conponent >

<many-t o- one nane="enpl oyer" col um="enpl oyer _i d" not-nul |l ="true"/>
<many-t o- one nane="enpl oyee" col um="enpl oyee i d" not-null="true"/>
</ cl ass>

<cl ass nanme="Enpl oyee" tabl e="enpl oyees" >
<id name="id">

Hibernate 3.2 cr2 207

Example: Various Mappings

<gener at or cl ass="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an»

</ gener at or >

</id>

<property nane="taxfil eNunber"/>

<conponent nanme="nane" cl ass="Nane">
<property nane="firstNane"/>
<property nane="initial"/>
<property nane="| ast Nane"/>

</ conponent >

</ cl ass>

</ hi ber nat e- mappi ng>

And heres the table schema generated by SchemaExport .

create table enployers (
id BIG NT not null,
name VARCHAR(255),
primary key (id)

)

create tabl e enpl oynent _periods (
id BIG@ NT not null,
hourly rate NUMERI C(12, 2),
currency VARCHAR(12),
enpl oyee_id BI G NT not null,
enpl oyer _id BI G NT not null,
end_date TI MESTAVP
start_date TI MESTAMP
primary key (id)

)

create tabl e enpl oyees (
id BIA NT not null,
firstNane VARCHAR(255),
initial CHAR(1),
| ast Name VARCHAR(255),
taxfil eNunmber VARCHAR(255),
primary key (id)

)

alter table enpl oynment _peri ods

add constraint enpl oyment _peri odsFKO foreign key (enployer_id) references enpl oyers
alter table enpl oynment _peri ods

add constraint enpl oyment _peri odsFK1 foreign key (enployee_id) references enpl oyees
create sequence enpl oyee_id_seq
create sequence enpl oynent _id_seq
create sequence enployer _id_seq

23.2. Author/Work

Consider the following model of the relationships between wr k, Aut hor and Per son. We represent the relation-
ship between wor k and Aut hor as a many-to-many association. We choose to represent the relationship between
Aut hor and Per son as one-to-one association. Another possibility would be to have Aut hor extend Per son.

Hibernate 3.2 cr2 208

Example: Various Mappings

Whark: Author Persan

-id : long -id : long -id : long
~title : String 0..* 0% | _alias : String -hame : String
+qgetldd : long oo rhes +authord+oetidd : lang +persoh |HOetldd :long
+ietldi_id:long +zetldi_id:long +zetldiid:long
+gethuthorsi : Set +getWarksn : Set +getamen : 5tring
+setfAuthorsiemployees:Set) +setWarkslemployers:Set) +setName_namesString
+getTitled : 5tring +getPersond ; Person
+setTitle_title:String) +setPersanipersan:Person)

+gethliaso : 5tring

+setfliasi_alias:String

song Book
~tempao : float ~text :int
-genre : 5tring

+getTextd:int

+gethenred - String +setText_textiint
+ietGenre_genre:String)

+getTempob ; float
+ietTempai_tempo:floar

The following mapping document correctly represents these relationships:

<hi ber nat e- mappi ng>
<cl ass nanme="Work" tabl e="works" discrim nator-val ue="W >

<id name="id" col um="id">
<generator class="native"/>
</id>
<di scri m nator colum="type" type="character"/>

<property nane="title"/>
<set nanme="aut hors" tabl e="aut hor_ work">

<key col umm nanme="wor k_i d"/>

<many-to- many cl ass="Author" col um nane="aut hor _id"/>
</set>

<subcl ass nane="Book" di scri m nator-val ue="B">
<property nanme="text"/>

</ subcl ass>

<subcl ass nane="Song" di scri m nator-val ue="S">
<property nane="tenpo"/>
<property nane="genre"/>

</ subcl ass>

</ cl ass>

<cl ass nanme="Aut hor" tabl e="aut hors">

<id name="id" colum="id">

<l-- The Author nust have the sane identifier as the Person -->
<generator class="assigned"/>
</id>

<property nane="alias"/>
<one-t o-one nane="person" constrained="true"/>

<set nanme="wor ks" tabl e="aut hor_work" inverse="true">
<key col um="aut hor _i d"/>
<many-t o- many cl ass="Wrk" col um="work_id"/>
</set>

</ cl ass>

Hibernate 3.2 cr2 209

Example: Various Mappings

<cl ass nane="Person" tabl e="persons">
<id name="id" col um="id">
<generator class="native"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

There are four tables in this mapping. wor ks, aut hor s and per sons hold work, author and person data respect-
ively. aut hor _work is an association table linking authors to works. Heres the table schema, as generated by
SchemaExport .

create table works (
id BIA NT not null generated by default as identity,
tenpo FLQAT,
genre VARCHAR(255),
text | NTEGER
titl e VARCHAR(255),
type CHAR(1) not null,
primary key (id)
)

create table author_work (
author _id BIANT not null,
work_id BIG NT not null,
primary key (work_id, author_id)
)

create table authors (
id BIA NT not null generated by default as identity,
al i as VARCHAR(255) ,
primary key (id)

)

create table persons (
id BIGA NT not null generated by default as identity,
nanme VARCHAR(255),
primary key (id)

)

alter table authors

add constraint authorsFKO foreign key (id) references persons
al ter table author_work

add constrai nt author_workFKO foreign key (author_id) references authors
al ter tabl e author_work

add constraint author_workFK1 foreign key (work_id) references works

23.3. Customer/Order/Product

Now consider a model of the relationships between cust omer, O der and Li nel temand Product . There is a
one-to-many association between custormer and o der, but how should we represent order / Lineltem/
Product ? I've chosen to map Li nel tem as an association class representing the many-to-many association
between o der and Pr oduct . In Hibernate, thisis called a composite element.

Hibernate 3.2 cr2 210

Example: Various Mappings

Customer Order Lineltem Product
- 0. = 1.2 — [-

-id : long -id : long —quantity :int -id : long
-hame : 5tring +customer +orders |-date : Date +Iine|ter1€ +getCuantityl : int +|Jr0dlﬁt/ -setialNumber : String
+getldd : long +aetldd : lang +setluantityl_quantity:int) +getldo: long
+setldizid:lang +setldi_id:long +getProductd ; Product +setldi_id:long
+getNamed : String +getlineltemso : List +setProductiproduct:Product) +getserialMumberd : String
+setNamei_name:>5tring +setlineltemsilineltems:List) +setSerialNumber_serialNumber:String
+getOrdersd : Set +getCustamerd : Customer
+setOrdersiordersSet) +ietCustomericustomer:Customen

+getDated : Date

+setDatei_date:Date)

The mapping document:

<hi ber nat e- mappi ng>

<cl ass nane="Custoner" tabl e="custoners">
<id name="id">
<generator class="native"/>
</id>
<property name="name"/>
<set nanme="orders" inverse="true">
<key col um="custoner_id"/>
<one-to-many class="Order"/>
</set>
</cl ass>

<cl ass nane="Order" tabl e="orders">
<id name="id">
<generator class="native"/>
</id>
<property nane="date"/>
<many-t o- one nane="custoner" colum="custoner _id"/>

<list nane="lineltens" table="line_itens">
<key col umm="order_id"/>
<list-index colum="1ine_nunber"/>

<conposi te-el emrent class="Linelteni>
<property nanme="quantity"/>
<many-t o- one nane="product" col um="product _id"/>
</ conposi te-el enent >
</list>
</cl ass>

<cl ass name="Product" tabl e="products">
<id name="id">
<generator class="native"/>
</id>
<property nane="seri al Nunber"/>
</cl ass>

</ hi ber nat e- mappi ng>

custoners, orders, line_i tems and product s hold customer, order, order line item and product data respect-
ively. line_i t ens also acts as an association table linking orders with products.

create table custoners (
id BIA NT not null generated by default as identity
nane VARCHAR(255),
primary key (id)

)

create table orders (
id BIA NT not null generated by default as identity
custoner_id Bl G NT,
date TI MESTAMP
primary key (id)
)

create table line_itens (
i ne_nunber | NTEGER not nul |,

Hibernate 3.2 cr2 211

Example: Various Mappings

order_id BIG NT not null,

product _id BI G NT,

quantity | NTEGER,

primary key (order_id, |ine_nunber)

)

create table products (
id BIANT not null generated by default as identity
seri al Nunber VARCHAR(255),
primary key (id)

)

alter table orders

add constraint ordersFKO foreign key (custoner_id) references custoners
alter table line_itens

add constraint line_itensFKO foreign key (product_id) references products
alter table line_itens

add constraint line_itensFKL foreign key (order_id) references orders

23.4. Miscellaneous example mappings

These examples are all taken from the Hibernate test suite. You will find many other useful example mappings

there. Look in thet est folder of the Hibernate distribution.

TODO: put words around this stuff

23.4.1. "Typed" one-to-one association

<cl ass nanme="Per son" >
<id nanme="nane"/>
<one-t o-one nanme="address"
cascade="al | ">
<f or mul a>nane</ f or mul a>
<f or mul a>' HOVE' </ f or mul a>
</ one-t o- one>
<one-to-one name="nail i ngAddr ess”
cascade="al | ">
<f or mul a>nane</ f or nul a>
<f ormul a>' MAI LI NG </ f or mul a>
</ one-t 0- one>
</ cl ass>

<cl ass nane="Address" batch-size="2"
check="addressType in (' MAILING, 'HOVE , 'BUSINESS)">
<conposite-id>
<key- many-t o- one nanme="person"
col um="per sonNane"/ >
<key- property name="type"
col um="addr essType"/ >
</ conposite-id>
<property nanme="street" type="text"/>
<property name="state"/>
<property nane="zip"/>
</ cl ass>

23.4.2. Composite key example

<cl ass nane="Cust oner" >

<i d name="custonerld"
| engt h="10">
<generator class="assi gned"/>

Hibernate 3.2 cr2

212

Example: Various Mappings

</id>
<property nane="nanme" not-null="true" |ength="100"/>
<property nane="address" not-null="true" |ength="200"/>

<list nane="orders"
i nverse="true"
cascade="save- updat e" >
<key col um="custoner|d"/>
<i ndex col um="or der Nunber"/ >
<one-to-many class="Order"/>
</list>

</ cl ass>

<cl ass nane="Order" tabl e="CustonerOder" |azy="true">
<synchroni ze tabl e="Linelteni/>
<synchroni ze tabl e="Product"/>

<conposite-id nane="id"
class="Order$l d">
<key-property name="custonerld" |ength="10"/>
<key- property nane="or der Nunber"/>
</ conposite-id>

<property nane="order Date"
type="cal endar _dat e"
not - nul | ="true"/>

<property nane="total ">
<f or mul a>
(select sun(li.quantity*p.price)
fromLineltemli, Product p
where |i.productld = p.productld
and |i.custonerld = custonerld
and |i.order Nunmber = order Nunber)
</ forml a>
</ property>

<many-t o- one nanme="cust oner"
col um="cust oner | d"
insert="fal se"
updat e="f al se"
not-null="true"/>

<bag nanme="lineltens"
fetch="joi n"
i nverse="true"
cascade="save- updat e" >
<key>
<col um nane="custonerl|d"/>
<col um nane="or der Nunber"/ >
</ key>
<one-to-many cl ass="Linelteni/>
</ bag>

</cl ass>
<cl ass nane="Linelten>

<conposite-id nane="id"
cl ass="Linel t ensl d">
<key-property name="custonerld" |ength="10"/>
<key-property nane="order Nunber"/>
<key- property nanme="productld" |ength="10"/>
</ conposi te-id>

<property name="quantity"/>

<many-t o- one nane="order"
insert="fal se"

Hibernate 3.2 cr2 213

Example: Various Mappings

updat e="f al se"
not-nul |l ="true">
<col um nane="custonerld"/>
<col um nane="or der Nunber"/ >
</ many-t o- one>

<many-t o- one nane="product"
i nsert="fal se"
updat e="f al se"
not - nul I ="true"
col um="product|d"/>

</ cl ass>

<cl ass nane="Product ">
<synchroni ze tabl e="Li neltent/>

<id name="productl|d"

| engt h="10">

<generator class="assigned"/>
</id>

<property nane="descri pti on"

not - nul I ="true"

| engt h="200"/ >
<property nane="price" |ength="3"/>
<property nanme="nunber Avail abl e"/ >

<property nane="nunber Or der ed" >
<f ormul a>
(select sum(li.quantity)
fromLineltemli

where |i.productld = productld)

</ for mul a>
</ property>

</ cl ass>

23.4.3. Many-to-many with shared composite key attribute

<cl ass nane="User" tabl e=""User ">
<conposite-id>
<key-property nane="nanme"/>
<key- property name="org"/>
</ conposi te-id>

<set name="groups" tabl e="User G oup">

<key>
<col um nane="user Nanme"/ >
<col um name="org"/>

</ key>

<many-to- many cl ass="G oup">
<col um nane="gr oupNane"/ >
<f or mul a>or g</ f or mul a>

</ many-t o- many>

</set>
</ cl ass>

<cl ass name="G oup" table=" G oup ">
<conposi te-id>
<key- property nanme="nane"/>
<key- property name="org"/>
</ conposite-id>
<property nane="description"/>
<set nanme="users" tabl e="User G oup"
<key>
<col umm nane="gr oupNane"/ >
<col um nane="org"/>
</ key>

i nverse="true">

Hibernate 3.2 cr2

214

Example: Various Mappings

<many-t o- many cl ass="User">
<col um nane="user Nanme"/ >
<f or mul a>or g</ f or nul a>
</ many-t o- many>
</set>
</ cl ass>

23.4.4. Content based discrimination

<cl ass nanme="Per son"
di scri m nat or -val ue="pP">

<id name="id"
col um="person_i d"
unsaved- val ue="0">
<generator class="native"/>
</id>

<di scri m nat or
type="character">
<f or mul a>
case
when title is not null then 'E
when sal esperson is not null then
el se 'P
end
</ fornmul a>
</ di scri m nat or >

<property name="nanme"
not - nul I ="true"
| engt h="80"/>

<property nanme="sex"
not - nul | ="true"
updat e="f al se"/ >

<conponent nane="address">
<property nane="address"/>
<property name="zip"/>
<property nane="country"/>
</ conponent >

<subcl ass nane="Enpl oyee"
di scri m nat or - val ue="E">
<property nanme="title"
| engt h="20"/>
<property name="sal ary"/>
<many-t o- one nanme="nmanager"/>
</ subcl ass>

<subcl ass nane="Cust oner"
di scrim nat or-val ue="C'>
<property nane="comments"/>
<many-t o- one nanme="sal esperson”/>
</ subcl ass>

</ cl ass>

23.4.5. Associations on alternate keys

<cl ass nanme="Per son" >

<id name="id">
<generator class="hilo"/>

Hibernate 3.2 cr2

215

Example: Various Mappings

</id>
<property nanme="nane" |ength="100"/>

<one-t o-one nane="address"
property-ref="person"
cascade="al | "
fetch="join"/>

<set nane="accounts"
i nverse="true">
<key col um="user| d"
property-ref="userl d"/>
<one-to-many cl ass="Account"/>
</set>

<property nane="userld" |ength="8"/>
</ cl ass>
<cl ass nanme="Address" >
<id name="id">
<generator class="hilo"/>
</id>
<property nanme="address" |ength="300"/>
<property nane="zip" |ength="5"/>
<property nane="country" |ength="25"/>
<many-t o- one nane="person" uni que="true" not-null="true"/>
</ cl ass>
<cl ass nane="Account" >
<i d name="account|d" |ength="32">
<generator class="uuid"/>
</id>
<many-t o- one nane="user"
col um="user|d"
property-ref="userl d"/>

<property nane="type" not-null="true"/>

</ cl ass>

Hibernate 3.2 cr2 216

Chapter 24. Best Practices

Write fine-grained classes and map them using <conponent >.
Use an Addr ess class to encapsulate street, suburb, state, post code. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
Hibernate makes identifier properties optional. There are all sorts of reasons why you should use them. We
recommend that identifiers be 'synthetic' (generated, with no business meaning).

Identify natural keys.
Identify natural keys for al entities, and map them using <nat ur al -i d>. Implement equal s() and hash-
Code() to compare the properties that make up the natural key.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map com eg. Foo in the file cont eg/ Foo. hbm xni . This
makes particularly good sense in ateam environment.

L oad mappings as resources.
Deploy the mappings along with the classes they map.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings to mapping files will make the application more portable.

Use bind variables.
As in JDBC, aways replace non-constant values by "?'. Never use string manipulation to bind a non-
constant value in aquery! Even better, consider using named parametersin queries.

Don't manage your own JDBC connections.
Hibernate lets the application manage JDBC connections. This approach should be considered a last-resort.
If you can't use the built-in connections providers, consider providing your own implementation of
or g. hi bernat e. connecti on. Connecti onProvi der.

Consider using a custom type.
Suppose you have a Java type, say from some library, that needs to be persisted but doesn't provide the ac-
cessors needed to map it as a component. You should consider implementing or g. hi ber nat e. User Type.
This approach frees the application code from implementing transformations to / from a Hibernate type.

Use hand-coded JDBC in bottlenecks.
In performance-critical areas of the system, some kinds of operations might benefit from direct JDBC. But
please, wait until you know something is a bottleneck. And don't assume that direct JDBC is hecessarily
faster. If you need to use direct JDBC, it might be worth opening a Hibernate Sessi on and using that JDBC
connection. That way you can still use the same transaction strategy and underlying connection provider.

Understand Sessi on flushing.
From time to time the Session synchronizes its persistent state with the database. Performance will be af -
fected if this process occurs too often. You may sometimes minimize unnecessary flushing by disabling
automatic flushing or even by changing the order of queries and other operations within a particular trans-
action.

In athree tiered architecture, consider using detached objects.
When using a servlet / session bean architecture, you could pass persistent objects loaded in the session

Hibernate 3.2 cr2 217

Best Practices

bean to and from the servlet / JSP layer. Use a new session to service each request. Use Sessi on. ner ge()
Or Sessi on. saveOr Updat e() to Synchronize objects with the database.

In atwo tiered architecture, consider using long persistence contexts.

Database Transactions have to be as short as possible for best scalability. However, it is often neccessary to
implement long running application transactions, a single unit-of-work from the point of view of a user.
An application transaction might span severa client request/response cycles. It is common to use detached
objects to implement application transactions. An aternative, extremely appropriate in two tiered architec-
ture, is to maintain a single open persistence contact (session) for the whole lifecycle of the application
transaction and simply disconnect from the JDBC connection at the end of each request and reconnect at
the beginning of the subsequent request. Never share a single session across more than one application
transaction, or you will be working with stale data.

Don't treat exceptions as recoverable.
Thisis more of a necessary practice than a"best" practice. When an exception occurs, roll back the Tr ans-
acti on and close the sessi on. If you don't, Hibernate can't guarantee that in-memory state accurately rep-
resents persistent state. As a special case of this, do not use Sessi on. | oad() to determine if an instance
with the given identifier exists on the database; use Sessi on. get () or aquery instead.

Prefer lazy fetching for associations.
Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes that are not
likely to be completely held in the second-level cache. For associations to cached classes, where there is an
a extremely high probability of a cache hit, explicitly disable eager fetching using | azy="f al se". When an
join fetching is appropriate to a particular use case, use aquery withaleft join fetch.

Use the open session in view pattern, or a disciplined assembly phase to avoid problems with unfetched data.
Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a traditional EJB ar-
chitecture, DTOs serve dual purposes: first, they work around the problem that entity beans are not serializ-
able; second, they implicitly define an assembly phase where all data to be used by the view is fetched and
marshalled into the DTOs before returning control to the presentation tier. Hibernate eliminates the first
purpose. However, you will still need an assembly phase (think of your business methods as having a strict
contract with the presentation tier about what data is available in the detached objects) unless you are pre-
pared to hold the persistence context (the session) open across the view rendering process. Thisisnot alim-
itation of Hibernate! It isafundamental requirement of safe transactional data access.

Consider abstracting your business logic from Hibernate.
Hide (Hibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. You can even have some classes persisted by handcoded JDBC, associated to Hibernate via a User -
Type. (This advice is intended for "sufficiently large" applications; it is not appropriate for an application
with five tables!)

Don't use exotic association mappings.
Good usecases for areal many-to-many associations are rare. Most of the time you need additiona inform-
ation stored in the "link table". In this case, it is much better to use two one-to-many associations to an in-
termediate link class. In fact, we think that most associations are one-to-many and many-to-one, you should
be careful when using any other association style and ask yourself if it isreally neccessary.

Prefer bidirectional associations.
Unidirectional associations are more difficult to query. In alarge application, amost all associations must
be navigable in both directionsin queries.

Hibernate 3.2 cr2 218

	HIBERNATE - Relational Persistence for Idiomatic Java
	Table of Contents
	Preface
	Chapter 1. Introduction to Hibernate
	1.1. Preface
	1.2. Part 1 - The first Hibernate Application
	1.2.1. The first class
	1.2.2. The mapping file
	1.2.3. Hibernate configuration
	1.2.4. Building with Ant
	1.2.5. Startup and helpers
	1.2.6. Loading and storing objects

	1.3. Part 2 - Mapping associations
	1.3.1. Mapping the Person class
	1.3.2. A unidirectional Set-based association
	1.3.3. Working the association
	1.3.4. Collection of values
	1.3.5. Bi-directional associations
	1.3.6. Working bi-directional links

	1.4. Part 3 - The EventManager web application
	1.4.1. Writing the basic servlet
	1.4.2. Processing and rendering
	1.4.3. Deploying and testing

	1.5. Summary

	Chapter 2. Architecture
	2.1. Overview
	2.2. Instance states
	2.3. JMX Integration
	2.4. JCA Support
	2.5. Contextual Sessions

	Chapter 3. Configuration
	3.1. Programmatic configuration
	3.2. Obtaining a SessionFactory
	3.3. JDBC connections
	3.4. Optional configuration properties
	3.4.1. SQL Dialects
	3.4.2. Outer Join Fetching
	3.4.3. Binary Streams
	3.4.4. Second-level and query cache
	3.4.5. Query Language Substitution
	3.4.6. Hibernate statistics

	3.5. Logging
	3.6. Implementing a NamingStrategy
	3.7. XML configuration file
	3.8. J2EE Application Server integration
	3.8.1. Transaction strategy configuration
	3.8.2. JNDI-bound SessionFactory
	3.8.3. Current Session context management with JTA
	3.8.4. JMX deployment

	Chapter 4. Persistent Classes
	4.1. A simple POJO example
	4.1.1. Implement a no-argument constructor
	4.1.2. Provide an identifier property (optional)
	4.1.3. Prefer non-final classes (optional)
	4.1.4. Declare accessors and mutators for persistent fields (optional)

	4.2. Implementing inheritance
	4.3. Implementing equals() and hashCode()
	4.4. Dynamic models
	4.5. Tuplizers

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. Doctype
	5.1.2. hibernate-mapping
	5.1.3. class
	5.1.4. id
	Generator
	Hi/lo algorithm
	UUID algorithm
	Identity columns and sequences
	Assigned identifiers
	Primary keys assigned by triggers

	5.1.5. composite-id
	5.1.6. discriminator
	5.1.7. version (optional)
	5.1.8. timestamp (optional)
	5.1.9. property
	5.1.10. many-to-one
	5.1.11. one-to-one
	5.1.12. natural-id
	5.1.13. component, dynamic-component
	5.1.14. properties
	5.1.15. subclass
	5.1.16. joined-subclass
	5.1.17. union-subclass
	5.1.18. join
	5.1.19. key
	5.1.20. column and formula elements
	5.1.21. import
	5.1.22. any

	5.2. Hibernate Types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Custom value types

	5.3. Mapping a class more than once
	5.4. SQL quoted identifiers
	5.5. Metadata alternatives
	5.5.1. Using XDoclet markup
	5.5.2. Using JDK 5.0 Annotations

	5.6. Generated Properties
	5.7. Auxiliary Database Objects

	Chapter 6. Collection Mapping
	6.1. Persistent collections
	6.2. Collection mappings
	6.2.1. Collection foreign keys
	6.2.2. Collection elements
	6.2.3. Indexed collections
	6.2.4. Collections of values and many-to-many associations
	6.2.5. One-to-many associations

	6.3. Advanced collection mappings
	6.3.1. Sorted collections
	6.3.2. Bidirectional associations
	6.3.3. Bidirectional associations with indexed collections
	6.3.4. Ternary associations
	6.3.5. Using an <idbag>

	6.4. Collection examples

	Chapter 7. Association Mappings
	7.1. Introduction
	7.2. Unidirectional associations
	7.2.1. many to one
	7.2.2. one to one
	7.2.3. one to many

	7.3. Unidirectional associations with join tables
	7.3.1. one to many
	7.3.2. many to one
	7.3.3. one to one
	7.3.4. many to many

	7.4. Bidirectional associations
	7.4.1. one to many / many to one
	7.4.2. one to one

	7.5. Bidirectional associations with join tables
	7.5.1. one to many / many to one
	7.5.2. one to one
	7.5.3. many to many

	7.6. More complex association mappings

	Chapter 8. Component Mapping
	8.1. Dependent objects
	8.2. Collections of dependent objects
	8.3. Components as Map indices
	8.4. Components as composite identifiers
	8.5. Dynamic components

	Chapter 9. Inheritance Mapping
	9.1. The Three Strategies
	9.1.1. Table per class hierarchy
	9.1.2. Table per subclass
	9.1.3. Table per subclass, using a discriminator
	9.1.4. Mixing table per class hierarchy with table per subclass
	9.1.5. Table per concrete class
	9.1.6. Table per concrete class, using implicit polymorphism
	9.1.7. Mixing implicit polymorphism with other inheritance mappings

	9.2. Limitations

	Chapter 10. Working with objects
	10.1. Hibernate object states
	10.2. Making objects persistent
	10.3. Loading an object
	10.4. Querying
	10.4.1. Executing queries
	Iterating results
	Queries that return tuples
	Scalar results
	Bind parameters
	Pagination
	Scrollable iteration
	Externalizing named queries

	10.4.2. Filtering collections
	10.4.3. Criteria queries
	10.4.4. Queries in native SQL

	10.5. Modifying persistent objects
	10.6. Modifying detached objects
	10.7. Automatic state detection
	10.8. Deleting persistent objects
	10.9. Replicating object between two different datastores
	10.10. Flushing the Session
	10.11. Transitive persistence
	10.12. Using metadata

	Chapter 11. Transactions And Concurrency
	11.1. Session and transaction scopes
	11.1.1. Unit of work
	11.1.2. Long conversations
	11.1.3. Considering object identity
	11.1.4. Common issues

	11.2. Database transaction demarcation
	11.2.1. Non-managed environment
	11.2.2. Using JTA
	11.2.3. Exception handling
	11.2.4. Transaction timeout

	11.3. Optimistic concurrency control
	11.3.1. Application version checking
	11.3.2. Extended session and automatic versioning
	11.3.3. Detached objects and automatic versioning
	11.3.4. Customizing automatic versioning

	11.4. Pessimistic Locking
	11.5. Connection Release Modes

	Chapter 12. Interceptors and events
	12.1. Interceptors
	12.2. Event system
	12.3. Hibernate declarative security

	Chapter 13. Batch processing
	13.1. Batch inserts
	13.2. Batch updates
	13.3. The StatelessSession interface
	13.4. DML-style operations

	Chapter 14. HQL: The Hibernate Query Language
	14.1. Case Sensitivity
	14.2. The from clause
	14.3. Associations and joins
	14.4. Forms of join syntax
	14.5. The select clause
	14.6. Aggregate functions
	14.7. Polymorphic queries
	14.8. The where clause
	14.9. Expressions
	14.10. The order by clause
	14.11. The group by clause
	14.12. Subqueries
	14.13. HQL examples
	14.14. Bulk update and delete
	14.15. Tips & Tricks

	Chapter 15. Criteria Queries
	15.1. Creating a Criteria instance
	15.2. Narrowing the result set
	15.3. Ordering the results
	15.4. Associations
	15.5. Dynamic association fetching
	15.6. Example queries
	15.7. Projections, aggregation and grouping
	15.8. Detached queries and subqueries
	15.9. Queries by natural identifier

	Chapter 16. Native SQL
	16.1. Using a SQLQuery
	16.1.1. Scalar queries
	16.1.2. Entity queries
	16.1.3. Handling associations and collections
	16.1.4. Returning multiple entities
	Alias and property references

	16.1.5. Returning non-managed entities
	16.1.6. Handling inheritance
	16.1.7. Parameters

	16.2. Named SQL queries
	16.2.1. Using return-property to explicitly specify column/alias names
	16.2.2. Using stored procedures for querying
	Rules/limitations for using stored procedures

	16.3. Custom SQL for create, update and delete
	16.4. Custom SQL for loading

	Chapter 17. Filtering data
	17.1. Hibernate filters

	Chapter 18. XML Mapping
	18.1. Working with XML data
	18.1.1. Specifying XML and class mapping together
	18.1.2. Specifying only an XML mapping

	18.2. XML mapping metadata
	18.3. Manipulating XML data

	Chapter 19. Improving performance
	19.1. Fetching strategies
	19.1.1. Working with lazy associations
	19.1.2. Tuning fetch strategies
	19.1.3. Single-ended association proxies
	19.1.4. Initializing collections and proxies
	19.1.5. Using batch fetching
	19.1.6. Using subselect fetching
	19.1.7. Using lazy property fetching

	19.2. The Second Level Cache
	19.2.1. Cache mappings
	19.2.2. Strategy: read only
	19.2.3. Strategy: read/write
	19.2.4. Strategy: nonstrict read/write
	19.2.5. Strategy: transactional

	19.3. Managing the caches
	19.4. The Query Cache
	19.5. Understanding Collection performance
	19.5.1. Taxonomy
	19.5.2. Lists, maps, idbags and sets are the most efficient collections to update
	19.5.3. Bags and lists are the most efficient inverse collections
	19.5.4. One shot delete

	19.6. Monitoring performance
	19.6.1. Monitoring a SessionFactory
	19.6.2. Metrics

	Chapter 20. Toolset Guide
	20.1. Automatic schema generation
	20.1.1. Customizing the schema
	20.1.2. Running the tool
	20.1.3. Properties
	20.1.4. Using Ant
	20.1.5. Incremental schema updates
	20.1.6. Using Ant for incremental schema updates
	20.1.7. Schema validation
	20.1.8. Using Ant for schema validation

	Chapter 21. Example: Parent/Child
	21.1. A note about collections
	21.2. Bidirectional one-to-many
	21.3. Cascading lifecycle
	21.4. Cascades and unsaved-value
	21.5. Conclusion

	Chapter 22. Example: Weblog Application
	22.1. Persistent Classes
	22.2. Hibernate Mappings
	22.3. Hibernate Code

	Chapter 23. Example: Various Mappings
	23.1. Employer/Employee
	23.2. Author/Work
	23.3. Customer/Order/Product
	23.4. Miscellaneous example mappings
	23.4.1. "Typed" one-to-one association
	23.4.2. Composite key example
	23.4.3. Many-to-many with shared composite key attribute
	23.4.4. Content based discrimination
	23.4.5. Associations on alternate keys

	Chapter 24. Best Practices

