Comedi

The Control and Measurement Device Interface
handbook

David Schleef
ds@schleef.org

Frank Hess

fmhess@users.sourceforge.net

Herman Bruyninckx

Herman.Bruyninckx@mech.kuleuven.ac.be

Abstract

Comedi is a free software project to interfatigital acquisition(DAQ) cards. It is the combination of
three complementary software items: (i) a generic, device-independent API, (ii) a collection of Linux
kernel modules that implement this API for a wide range of cards, and (iii) a Linux user space library
with a developer-oriented programming interface to configure and use the cards.

1. Overview

Comedi is dree softwargoroject that develops drivers, tools, and libraries for various fornatd acquisition
reading and writing of analog signals; reading and writing of digital inputs/outputs; pulse and frequency
counting; pulse generation; reading encoders; etc. The project’s source code is distributed in two packages,
comedi (http://www.comedi.org/download.php) andcomedilib

Comedi

(http://iwww.comedi.org/download.php) , and provides several Linkernel moduleand auser space
library:

- Comediis a collection of drivers for a variety of common data acquisition plug-in boards (which are called
“devices” in Comedi terminology). The drivers are implemented as the combination of (i) one single core
Linux kernel module (calleddomedi) providing common functionality, and (ii) individual low-level driver
modules for each device.

- Comedilib is a separately distributed package containing a user-space library that provides a
developer-friendly interface to the Comedi devices. Included irCithimedilibpackage are documentation,
configuration and calibration utilities, and demonstration programs.

« Kcomedilib is a Linux kernel module (distributed with tltemedi package) that provides the same interface
ascomedilibin kernel space, and suitable f@al-timetasks. It is effectively a “kernel library” for using
Comedi from real-time tasks.

Comedi works with standard Linux kernels, but also with its real-time extensions RTAI (http://www.rtai.org) and
RTLinux/Free (http://www.fsmlabs.com/products/openrtlinux/).

This section gives a high-level introduction to which functionality you can expect from the software. More
technical details and programming examples are given in the following sections of this document.

1.1. What is a “device driver”?

A device driver is a piece of software that interfaces a particular piece of hardware: a printer, a sound card, a
motor drive, etc. It translates the primitive, device-dependent commands with which the hardware manufacturer
allows you to configure, read and write the electronics of the hardware interface into more abstract and generic
function calls and data structures for the application programmer.

David Schleef started the Comedi project to put a generic interface on top of lots of different cards for
measurement and control purposes. This type of cards are often datieedcquisition(or DAQ) cards.

Analog input and outputards were the first goal of the project, but now Comedi also provides a device
independent interface to digitaput and outputards, anatounter and timecards (including encoders, pulse
generators, frequency and pulse timers, etc.).

Schleef designed a structure which is a balance betwastularityandcomplexity it’s fairly easy to integrate a

new card because most of the infrastructure part of other, similar drivers can be reused, and learning the generic
and hence somewhat “heavier” Comedi API doesn't scare away new contributors from integrating their drivers
into the Comedi framework.

1.2. Policy vs. mechanism

Device drivers are often written by application programmers, that have only their particular application in mind,;
especially in real-time applications. For example, one writes a driver for the parallel port, because one wants to
use it to generate pulses that drive a stepper motor. This approach often leads to device drivers that depend too

Comedi

much on that particular application, and are not general enough to be re-used for other applications. One golden
rule for the device driver writer is to separate mechanism and policy:

« Mechanism.The mechanism part of the device interface is a faithful representation of the bare functionality
of the device, independent of what part of the functionality an application will use.

- Policy. Once a device driver offers a software interface to the mechanism of the device, an application writer
can use this mechanism interface to use the device in one particular fashion. That is, some of the data stuctures
offered by the mechanism are interpreted in specific physical units, or some of them are taken together
because this composition is relevant for the application. For example, a analog output card can be used to
generate voltages that are the inputs for the electronic drivers of the motors of a robot; these voltages can be
interpreted as setpoints for the desired velocity of these motors, and six of them are taken together to steer one
particular robot with six-degrees of freedom. Some of the other outputs of the same physical device can be
used by another application program, for example to generate a sine wave that drives a vibration shaker.

So, Comedi focuses only on tiheechanisnpart of DAQ interfacing. The project does not provide the policy
parts, such as Graphical User Interfaces to program and display acquisitions, signal processing libraries, or
control algorithms.

1.3. A general DAQ device driver package

From the point of view of application developers, there are many reasons to welcome the standardization of the
API and the architectural structure of DAQ software:

- API: devices that offer similar functionalities, should have the same software interface, and their differences
should be coped with by parameterizing the interfaces, not by changing the interface for each new device in
the family. However, the DAQ manufacturers have never been able (or willing) to come up with such a
standardization effort themselves.

« Architectural structure : many electronic interfaces have more than one layer of functionality between the
hardware and the operating system, and the device driver code should reflect this fact. For example, many
different interface cards use the same PCI driver chips, or use the parallel port as an intermediate means to
connect to the hardware device. Hence, “lower-level” device drivers for these PCI chips and parallel ports
allow for an increased modularity and re-useability of the software. Finding the generic similarities and
structure among different cards helps in developing device drivers faster and with better documentation.

In the case of Linux as the host operating system, device driver writers must keep the following Linux-specific
issues in mind:

« Kernel space vs. User spac&.he Linux operating system has two levels that require basically different
programming approaches. Only privileged processes can run in the kernel, where they have access to all
hardware and to all kernel data structures. Normal application programs can run their processes only in user
space, where these processes are shielded from each other, and from direct access to hardware and to critical
data of the operating system; these user space programs execute much of the operating system'’s functionality
throughsystem calls

Device drivers typically must access specific addresses on the bus, and hence must (at least partially) run in
kernel space. Normal users program against the ARlashedj while Comedi device driver writers use the

API offered byKcomedilib Typical examples of the latter are the registration of interrupt handler routines,
and the handling of events.

Comedi

Device files or device file systenUsers who write an application for a particular device, must link their
application to that device’s device driver. Part of this device driver, however, runs in kernel space, and the user
application in user space. So, the operating system provides an interface between both. In Linux or Unix, these
interfaces are in the form of “files” in theev directory (2.2.x kernels or earlier) étevfs directory (2.4.x

kernels and later). Each device supported in the kernel has a representative as such a user space device file,
and its functionality can be accessed by classical Unix file dffén, close , read , write , andioctl

Iproc interface. Linux (and some other UNIX operating systems) offer a file-like interface to attached
devices (and other OS-related information) viadvec directories. These “files” do not really exist, but it
gives a familiar interface to users, with which they can inspect the current status of each device.

Direct Memory Access (DMA) vs. Programmed Input/Output (P10). Almost all devices can be interfaced

in PIO mode: the processor is responsible for directly accessing the bus addresses allocated to the device
whenever it needs to read or write data. Some devices also allow DMA: the device and the memory “talk” to
each other directly, without needing the processor. DMA is a feature of the bus, not of the operating system
(which, of course, has to support its processes to use the feature).

Real-time vs. non real-time.If the device is to be used in a RTLinux/Free
(http://Iwww.fsmlabs.com/products/openrtlinux/) or RTAI (http://www.rtai.org) application, there are a few
extra requirements, because not all system calls are available in the kernel of the real-time operating systems
RTLinux/Free (http://www.fsmlabs.com/products/openrtlinux/) or RTAI (http://www.rtai.org). The APIs of

RTAI and RTLinux/Free differ in different ways, so the Comedi developers have spent a lot of efforts to make
generic wrappers to the required RTOS primitives: timers, memory allocation, registration of interrupt
handlers, etc.

1.4. DAQ signals

The cards supported in Comedi have one or more of the follogigugals analog input, analog output, digital
input, digital output, counter input, counter output, pulse input, pulse output:

Digital signals are conceptually quite simple, and don’t need much configuration: the number of channels,
their addresses on the bus, and their input or output direction.

Analog signals are a bit more complicated. Typically, an analog acquisition channel can be programmed to
generate or read a voltage between a lower and an upper thresholei(®/gand+10V); the card’s

electronics can be programmed to automatically sample a set of channels, in a prescribed louffer, to
sequences of data on the board; or to use DMA or an interrupt routine to dump the data in a prescribed part of
memory.

Pulsebased signals (counters, timers, encoders, etc.) are conceptually only a bit more complex than digital
inputs and outputs, in that they only add satinging specificationso the signal. Comedi has still only a

limited number of drivers for this kind of signals, although most of the necessary API and support
functionality is available.

In addition to these “real” DAQ functions, Comedi also offers basic timer access.

Comedi

1.5. Device hierarchy

Comedi organizes all hardware according to the following generic hierarchy:

Channel: the lowest-level hardware component, that represents the properties of one single data channel; for
example, an analog input, or a digital output. Each channel has several parameters, such as: the voltage range;
the reference voltage; the channel polarity (unipolar, bipolar); a conversion factor between voltages and
physical units; the binary values “0” and “1”; etc.

Sub-device a set of functionally identical channels that are physically implemented on the same (chip on an)
interface card. For example, a set of 16 identical analog outputs. Each sub-device has parameters for: the
number of channel and the type of the channels.

Device a set of sub-devices that are physically implemented on the same interface card; in other words, the
interface card itself. For example, tNational Instruments 6024E device has a sub-device with 16

analog input channels, another sub-device with two analog output channels, and a third sub-device with eight
digital inputs/outputs. Each device has parameters for: the device identification tag from the manufacturer, the
identification tag given by the operating system (in order to discriminate between multiple interface cards of
the same type), the number of sub-devices, etc.

Some interface cards have extra components that don't fit in the above-mentioned classification, such as an

EEPROM to store configuration and board parameters, or calibration inputs. These special components are also

classified as “sub-devices” in Comedi.

1.6. Acquisition terminology

This Section introduces the terminology that this document uses when talking about “acquisitigns"1
depicts a typical acquisitiosequence

« The sequence hasstart and arend. At both sides, the software and the hardware need some finite

initialization or settling time .

The sequence consists of a number of identically repestads This is where the actual data acquisitions
are taking place: data is read from the card, or written to it. Each scan alsdkgiaanend, and a finite
setup time Possibly, there is also a settling tims¢an delay) at the end of a scan.

So, the hardware puts a lower boundary @ban interval) on the minimum time needed to complete a full
scan.

Each scan contains one or motcenversionson particular channels, i.e., the AD/DA converter is activated on
each of the programmed channels, and produces a sample, again in eofiniéesion time starting from the
moment in time called theample timein Figure 1(sometimes also called the “timestamp”), and caused by a
triggering event, calledonvert. In addition, each hardware has limits on the minimeonversion interval it

can achieve, i.e., the minimum time it needs betwa#rsequentonversions.

Some hardware mustultiplexthe conversions onto one single AD/DA hardware, such that the conversions
are done serially in time (as shown on figure); other cards have the hardware to do two or more

acquisitions in parallel. The begin of each conversion is “triggered” by some internally or externally generated
pulse, e.g., a timer.

Comedi

In general, not only the begin of@nversions triggered, but also the begin osaanand of asequence
Comedi provides the API to configure whetyjgering sourc@ne wants to use in each case. The API also allows
to specify thechannel list, i.e., the sequence of channels that needs to be acquired during each scan.

Figure 1. Acquisition sequence. (Figure courtesy of Kurt Mueller (mailto:Kurt.Mueller@sfwte.ch).)

1.7. DAQ functions

The basic data acquisition functionalities that Comedi offers work on channels, or sets of channels:

- Single acquisition Comedi has function calls to synchronously perfamne singledata acquisition on a

specified channetomedi_data_read() , comedi_data_write() , comedi_dio_read() ,
comedi_dio_write() . “Synchronous” means that the calling process blocks until the data acquisition has
finished.

- Instruction: acomedi_do_insn() instruction performs (possibly multiple) data acquisitions on a specified
channel, in aynchronousway. So, the function call blocks until the whole acquisition has finished.

In addition,comedi_do_insnlist() executes dist of instructions (on different channels) in one single
(blocking, synchronous) call, such that the overhead involved in configuring each individual acquisition is
reduced.

« Scan a scan is an acquisition on a set of different channels, wihegified sequence and timing

Scans are not directly available as stand-alone function calls in the Comedi API. They are the internal building
blocks of a Comedtommandsee below).

. Command: a command isequencef scans for which conditions have been specified that determine when
the acquisition will start and stop. fomedi_command() function call generatesmynchronousdata
acquisition: as soon as the command information has been filled inptiedi_command() function call
returns, the hardware of the card takes care of the sequencing and the timing of the data acquisition, and
makes sure that the acquired data is delivered in a software buffer provided by the calling process.
Asynchronous operation requires some form of “callback” functionality to prevent buffer overflow: after the
calling process has launched the acquisition command, it goes off doing other things, but not after it has
configured the “handler” that the interface card can use when it needs to put data in the calling process’s
buffer. Interrupt routines or DMA are typical techniques to allow such asynchronous operation. Their handlers
are configured at driver load time, and can typically not be altered from user space.

Buffer management is not the only asynchronous activity: a running acquisition must eventually be stopped
too, or it must be started after thkemedi_command() function call has prepared (but not started) the

hardware for the acquisition. The command functionality is very configurable with respect to choosing which
eventswill signal the starting or stopping of the programmed acquisition: external triggers, internal triggers,
end of scan interrupts, timers, etc. The user of the driver can execute a Gastagitionthat sends a trigger
signal to the device driver. What the driver does exactly with this trigger signal is determined in the specific

Comedi

driver. For example, it starts or stops the ongoing acquisition. The execution of the event associated with this
trigger instruction isynchronouswith the execution of the trigger instruction in the device driver, but it is
asynchronouswith respect to the instruction or command that initiated the current acquisition.

Typically, there is one synchronous triggering instruction for eadidevice

Note that software triggering is only relevant for commands, and not for instructions: instructions are executed
synchronouslyn the sense that the instruction call blocks until the whole instruction has finished. The command
call, on the other hand, activates an acquisition and returns before this acquisition has finished. So, the software
trigger works asynchronously for the ongoing acquisition.

1.8. Supporting functionality

The full command functionality cannot be offered by DAQ cards that lack the hardware to autonomously
sequence a series of scans, and/or to support interrupt or DMA callback functionality. For these cards, the
command functionality must be provided in software. And because of the quite strict real-time requirements for

a command acquisition, a real-time operating system should be used to translate the command specification into
a correctly timed sequence of instructions. Such a correct translation is the responsibility of the device driver
developer for the card. However, Comedi providesdiveedi_rt_timer kernel module to support such a

virtual command executionunder RTAI or RTLinux/Free.

Comedi not only offers the ARb accesghe functionality of the cards, but also query the capabilities of the
installed devices. That is, a user process can findodinewhat channels are available, and what their physical
parameters are (range, direction of input/output, etc.).

Buffering is another important aspect of device drivers: the acquired data has to be stored in such buffers,
because, in general, the application program cannot guarantee to always be ready to provide or accept data as
soon as the interface board wants to do a read or write operation. Therefore, Comedi offers all functionality to
configure and manage data buffers, abstracting away the intricacies of buffer management at the bare operating
system level.

As already mentioned before, Comedi contains more than just procedural function calls, since it also offers
event-driven (“asynchronous”) functionality: the data acquisition can signal its completion by means of an
interrupt or acallbackfunction call. Callbacks are also used to signal errors during the data acquisition or when
writing to buffers, or at the end of a scan or acquisition that has been launched previously to take place
asynchronously (i.e., the card fills up som shared memory buffer autonomously, and only warns the user program
after it has finished). The mechanisms for synchronization and interrupt handling are a bit different when used in
real-time (RTAI or RTLinux/Free) or non real-time, but both contexts are encapsulated wihting the same Comedi
calls.

Because multiple devices can all be active at the same time, Comedi prindéesy primitives to ensure
atomic operations on critical sections of the code or data structures.

Finally, Comedi offers the previously mentioned “high-level” interaction, i.e., at the level of user space device
drivers, through file operations on entries in thev directory (for access to the device’s functionality), or

Comedi

interactively from the command line through the “files” in theoc directory (which allow to inspect the status
of a Comedi device).

2. Configuration

This section assumes that you have successfully compiled and installed the Comedi software, that your hardware
device is in your computer, and that you know the relevant details about it, i.e., what kind of card it is, the 1/0
base, the IRQ, jumper settings related to input ranges, etc.

2.1. Configuration

Before being able to get information from a DAQ card, you first have to tell the Comedi core kernel module
which device you have, which driver you want to attach to the card, and which run-time options you want to give
to the driver. This configuration is done by running twemedi_configcommand. (As root of course.) Here is an
example of how to use the command (perhaps you should reamhitpage now):

PATH=/sbin:/usr/sbin:/ust/local/sbin:$PATH
comedi_config /dev/comediO labpc-1200 0x260,3

This command says that the “filédevicomedi0 can be used to access the Comedi device that uses the
labpc-1200 board, and that you give it two run-time paramet@<60 and3). More parameters are
possible, for example to discriminate between two or more identical cards in your system.

If you want to have the board configured in this way every time you boot, put the lines above into a start-up
script file of your Linux system (for example, thetc/rc.d/rc.local file), or for PCMCIA boards the
appropriate place is the /etc/pcmcia/comedi script. For non-PCMCIA boards, you can also arrange to have your
driver loaded and comedi_config run with by adding a few lines to /etc/modules.conf (see the INSTALL file for
the comedi kernel modules). You can, of course, also run comedi_config at a command prompt.

This tutorial goes through the process of configuring Comedi for two devidéstjaal Instruments
AT-MIO-16E-10 , and aData Translation DT2821-F-8DlI

The NI board is plug-and-play. The current ni_atmio driver has kernel-level ISAPNP support, which is used by
default if you do not specify a base address. So you could simply run comedi_config as

comedi_config /dev/comediO ni_atmio

For theData Translation board, you need to have a list of the jumper settings; these are given in the Comedi
manual section about this card. (Check first to see whether they are still correct!) The card discussed her is a
DT2821-f-8di . Theman page ofcomedi_configtells you that you need to know the 1/O base, IRQ, DMA 1,

DMA 2. However, the Comedi driver also recognizes the differential/single-ended and unipolar/bipolar jumpers.
As always, the source is the final authority, and lookinghlule/dt282x.c tells us that the options list is
interpreted as:

Comedi

(.. TOBEFILLEDIN ...)

So, the appropriate options list is:

0x200,4,1,1,1

and the full configuration command is:

comedi_config /dev/comedil dt2821-f-8di 0x200,4,1,1,1

The differential/single-ended number is left blank, since the driver already knowns (from the board name), that it
is differential. Also the DMA numbers are left blank, since we don’t want the driver to use DMA. (Which could
interfere with the sound card...) Keep in mind that things commented in the source, but not in the documentation
are about as likely to change as the weather, so put good comments next to the following line when you put it in
a start-up file.

So now you have your boards configured correctly. Since data acquisition boards are not typically
well-engineered, Comedi sometimes can't figure out if the board is actually there. If it can't, it assumes you are
right. Both of these boards are well-made, so Comedi will give an error message if it can’t find them. The
Comedi kernel module, since it is a part of the kernel, prints messages to the kernel logs, which you can access
through the commandmesgor the file/var/log/messages . Here is a configuration failure (fromimesg:

comediO: ni_atmio: 0x0200 can't find board

When it does work, you get:

comediO: ni_atmio: 0x0260 at-mio-16e-10 (irq = 3)

Note that it also correctly identified the board.

2.2. Getting information about a card

So now that you have Comedi talking to the hardware, try to talk to Comedi. Here’s some pretty low-level
information, which can sometimes be useful for debugging:

cat /proc/comedi

On the particular system this demonstration was carried out, this command gives:

comedi version 0.6.4

format string

0: ni_atmio at-mio-16e-10
1: dt282x dt2821-f-8di 4

~

This documentation feature is not well-developed yet. Basically, it currently returns the driver name, the device
name, and the number of subdevices.

In thedemo/ directory, there is a command calledo, which provides information about each subdevice on the
board. Its output can be rather long, if the board has several subdevices. Here’s part of the output of the

Comedi

National Instruments board (which is oridev/comedi0), as a result of the commangmo/info
/dev/icomediO

overall info:
version code: 0x000604
driver name: ni_atmio
board name: at-mio-16e-10
number of subdevices: 7
subdevice O:
type: 1 (analog input)
number of channels: 16
max data value: 4095

The overall info gives information about the device; basically the same informatiproagomedi

This board has seven subdevices. Devices are separated into subdevices that each have a distinct purpose; e.g.,
analog input, analog output, digital input/output. This board also has an EEPROM and calibration DACs that are
also subdevices.

Comedi has more information about the device than what is displayed abowerbatinfo doesn’t currently
display this.

3. Writing Comedi programs

This Section describes how a well-installed and configured Comedi package can be used in an application, to
communicate data with a set of Comedi devicasction 4gives more details about the various acquisition
functions with which the application programmer can perform data acquisition in Comedi.

Also don't forget to take a good look at tidemo directory of the Comedilib source code. It contains lots of
examples for the basic functionalities of Comedi.

3.1. Your first Comedi program

This example requires a card that has analog or digital input. This progam opens the device, gets the data, and
prints it out:

#include <stdio.h> /* for printf() */
#include < comedilib.h >

int subdev = O; /* change this to your input subdevice */
int chan = 0O; /* change this to your channel */

int range = 0; [* more on this later */

int aref = AREF_GROUND* more on this later */

int main(int argc,char *argv(])

{

10

Comedi

comedi_t *it;
Isampl_t data;

it="comedi_open ("/dev/icomedi0");
comedi_data_read (it,subdev,chan,range,aref, & data);
printf("%d\n",data);

return O;

}

The comedi_open() can only be successful if thwmedio device file is configured to point to a valid
Comedi driverSection 2.lexplains how this driver is linked to the “device file”.

The code above is basically the gutsdefno/inp.c , without error checking or fancy options. Compile the
program using

cc tutl.c -lcomedi -o tutl
(Replacecc by your favourite C compiler command.)

Therange variable tells Comedi which gain to use when measuring an analog voltage. Since we don't know
(yet) which numbers are valid, or what each means, we’'llydeecause it won't cause errors. Likewise with
aref , which determines the analog reference used.

3.2. Converting samples to voltages

If you selected an analog input subdevice, you probably noticed that the outpit @ a number betweeh

and4095, or 0 and65535 , depending on the number of bits in the A/D converter. Comedi sampledveags

unsigned, withd representing the lowest voltage of the ADC, a&085 the highest. Comedi compensates for
anything else the manual for your device says. However, you probably prefer to have this number translated to a
voltage. Naturally, as a good programmer, your first question is: “How do | do this in a device-independent
manner?”

Most devices give you a choice of gain and unipolar/bipolar input, and Comedi allows you to select which of
these to use. This parameter is called the “range parameter,” since it specifies the “input range” for analog input
(or “output range” for analog output.) The range parameter represents both the gain and the unipolar/bipolar
aspects.

Comedi keeps the number of available ranges and the largest sample value for each subdevice/channel
combination. (Some devices allow different input/output ranges for different channels in a subdevice.)

The largest sample value can be found using the function
Isampl_t comedi_get maxdata (comedi_t * device, unsigned int subdevice, unsigned int channel))

The number of available ranges can be found using the function:

11

Comedi

int comedi_get n_ranges (comedi_t * device, unsigned int subdevice, unsigned int channel);

For each value of the range parameter for a particular subdevice/channel, you can get range information using:

comedi_range * comedi_get range (comedi_t * device,
unsigned int subdevice, unsigned int channel, unsigned int range);

which returns a pointer toeomedi_rangstructure, which has the following contents:
typedef struct{

double min;

double max;

unsigned int unit;
}comedi_range;

The structure elememtin represents the voltage correspondingdmedi_data_read(gturningd, andmax
representsomedi_data_read(gturningmaxdata , (i.e.,4095 for 12 bit A/C convertersg5535 for 16 bit, or,
1 for digital input; more on this in a bit.) Thenit entry tells you ifmin andmax refer to voltage, current, or
are dimensionless (e.qg., for digital 1/0).

“Could it get easier?” you say. Well, yes. Use the functiomedi_to_phys() = comedi_to_phys(which
converts data values to physical units. Call it using something like

volts= comedi_to_phys (it,data,range,maxdata);

and the opposite

data= comedi_from_phy s(it,volts,range,maxdata);

3.3. Using the file interface

In addition to providing low level routines for data access, the Comedi library provides higher-level access, much
like the standard C library providéspen() , etc. as a high-level (and portable) alternative to the direct UNIX
system callspen() , etc. Similarily tofopen() , we havecomedi_open()

file= comedi_open ("/dev/comedi0");

wherefile is of type(comedi_t *) . This function callopen() , as done explicitly in a previous section,
but also fills thecomedi_tstructure with lots of goodies; this information will be useful soon.

Specifically, you need to knomaxdata for a specific subdevice/channel. How about:

maxdata= comedi_get_maxdata (file,subdevice,channel);

Wow! How easy. And the range information?

comedi_range * comedi_get range(comedi_t comedi_t *it,unsigned int subdevice,unsigned int chan,unsigned int ran

12

Comedi

3.4. Your second Comedi program: simple acquisition

Actually, this is the first Comedi program again, just that we've added what we've learned.

#include <stdio.h > [* for printf() */
#include < comedilib.h >

int subdev = 0; /* change this to your input subdevice */
int chan = 0; /* change this to your channel */

int range = 0; /* more on this later */

int aref = 0; /* more on this later */

int main(int argc,char *argv(])

{
comedi_t *cf;
int chan=0;
Isampl_t data;
int maxdata,rangetype;
double volts;
cf= comedi_open ("/dev/comedi0");
maxdata= comedi_get_maxdata (cf,subdev,chan);
rangetype=comedi_get_rangetype(cf,subdev,chan);
comedi_data_read (cf->fd,subdev,chan,range,aref,&data);
volts= comedi_to_phys (data,rangetype,range,maxdata);
printf("%d %g\n",data,volts);
return O;
}

3.5. Your third Comedi program: instructions

This program (taken from the set of demonstration examples that come with Comedi) shows how to use a
somewhat more flexible acquisition function, the so-caitestiruction

#include <stdio.h>

#include < comedilib.h >
#include <fentl.h>

#include <unistd.h>
#include <errno.h>

#include <sys/time.h>
#include <unistd.h>
#include "examples.h"

/*

13

Comedi

* This example does 3 instructions in one system call. It does
* a gettimeofday() call, then reads N_SAMPLES samples from an
* analog input, and the another gettimeofday() call.

*/

#define MAX_SAMPLES 128
comedi_t *device;

int main(int argc, char *argvl])
{
int ret,i;
comedi_insn insn[3];
comedi_insnlist il;
struct timeval t1,t2;
Isampl_t data]lMAX_SAMPLES];

parse_options(argc,argv);

device= comedi_open (filename);
if(!device){
comedi_perror (filename);
exit(0);
}

if(verbose){
printf("measuring device=%s subdevice=%d channel=%d range=%d analog reference=%d\n",
filename,subdevice,channel,range,aref);

}

/* Set up a the "instruction list", which is just a pointer

* to the array of instructions and the number of instructions.
*/

il.n_insns=3;

il.insns=insn;

/* Instruction 0: perform a gettimeofday() */
insn[0].insn= INSN_GTOD

insn[0].n=2;

insn[0].data=(void *)&t1;

/* Instruction 1: do 10 analog input reads */
insn[1].insn= INSN_READ

insn[1].n=n_scan;

insn[1].data=data;

insn[1].subdev=subdevice;

insn[1].chanspec= CR_PACIHKchannel,range,aref);

/* Instruction 2: perform a gettimeofday() */
insn[2].insn= INSN_GTOD

insn[2].n=2;

insn[2].data=(void *)&t2;

ret= comedi_do_insnlist (device,&il);

if(ret<0){
comedi_perror (filename);

14

Comedi

exit(0);
}

printf("initial time: %Ild.%06ld\n",t1.tv_sec,tl.tv_usec);
for(i=0;i<n_scan;i++){
printf("%d\n",datali]);

}
printf("final time: %ld.%06ld\n",t2.tv_sec,t2.tv_usec);

printf("difference (us): %ld\n",(t2.tv_sec-t1.tv_sec)*1000000+
(t2.tv_usec-tl.tv_usec));

return O;

3.6. Your fourth Comedi program: commands

This example programs an analog output subdevice with Comedi’'s most powerful acquisition function, the
asynchronousommangto generate a waveform.

The waveform in this example is a sine wave, but this can be easily changed to make a generic function generator.

The function generation algorithm is the same as what is typically used in digital function generators. A 32-bit
accumulator is incremented by a phase factor, which is the amount (in radians) that the generator advances each
time step. The accumulator is then shifted right by 20 bits, to get a 12 bit offset into a lookup table. The value in
the lookup table at that offset is then put into a buffer for output to the DAC.

Once you have issued the command, Comedi expects you to keep the buffer full of data to output to the
acquisition card. This is done bwyite() . Since there may be a delay betweendbmedi_command@nd a
subsequentrite() , you should fill the buffer usingrite() before you calcomedi_command(ps is done
here.

#include <stdio.h>

#include < comedilib.h >
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>
#include <errno.h>

#include <getopt.h>
#include <ctype.h>

#include <math.h>

#include "examples.h"

double waveform_frequency = 10.0; /* frequency of the sine wave to output */
double amplitude = 4000; /* peak-to-peak amplitude, in DAC units (i.e., 0-4095) */
double offset = 2048; /* offset, in DAC units */

/* This is the size of chunks we deal with when creating and

outputting data. This *could* be 1, but that would be
inefficient */

15

Comedi
#define BUF_LEN 4096

int subdevice;
int external_trigger_number = 0;

sampl_t data[BUF_LEN];

void dds_output (sampl_t *buf,int n);
void dds_init (void);

/* This define determines which waveform to use. */
#define dds_init_function dds_init_sine

void dds_init_sine (void);
void dds_init_pseudocycloid (void);
void dds_init_sawtooth (void);

int comedi_internal_trigger(comedi_t *dev, unsigned int subd, unsigned int trignum)
{

comedi_insn insn;

Isampl_t data[1];

memset(&insn, 0, sizeof(comedi_insn));
insn.insn = INSN_INTTRIG ;

insn.subdev = subd;

insn.data = data;

insn.n = 1;

data[0] = trignum;

return comedi_do_insn (dev, &insn);

int main(int argc, char *argvl])
{
comedi_cmd cmd;
int err;
int n,m;
int total=0;
comedi_t *dev;
unsigned int chanlist[16];
unsigned int maxdata;
comedi_range *rng;
int ret;
Isampl_t insn_data = O;

parse_options(argc,argv);

/* Force n_chan to be 1 */
n_chan = 2;

if(value){ waveform_frequency = value; }
dev = comedi_open (filename);

if(dev == NULL){
fprintf(stderr, "error opening %s\n", filename);

16

return -1,
}
subdevice = comedi_find_subdevice_by_type (dev,COMEDI_SUBD_AO,0);
maxdata = comedi_get maxdata (dev,subdevice,0);
rng = comedi_get _range (dev,subdevice,0,0);
offset = (double) comedi_from_phys (0.0,rng,maxdata);

amplitude = (double) comedi_from_phys (1.0,rng,maxdata) - offset;

memset(&cmd,0,sizeof(cmd));

[* fill in the command data structure L
cmd.subdev = subdevice;

cmd.flags = 0;

cmd.start_src = TRIG_INT;
cmd.start_arg = 0;

cmd.scan_begin_src = TRIG_TIMER;
cmd.scan_begin_arg = 1e9/freq;
cmd.convert_src = TRIG_NOW
cmd.convert_arg = 0;

cmd.scan_end_src = TRIG_COUNT
cmd.scan_end_arg = n_chan;

cmd.stop_src = TRIG_NONE
cmd.stop_arg = 0;

cmd.chanlist = chanlist;

cmd.chanlist_len = n_chan;

chanlist[0] = CR_PACKchannel,range,aref);
chanlist[1] = CR_PACKchannel+1,range,aref);
dds_init ();

dds_output (data,BUF_LEN);
dds_output (data,BUF_LEN);

dump_cmd(stdout,&cmd);

if ((err = comedi_command (dev, &md)) < 0) {
comedi_perror ("comedi_command");
exit(1);

}

m=write(comedi_fileno(dev),data,BUF_LEN*sizeof(sampl_t));
if(m<0){
perror(“write");
exit(1);
}
printf("m=%d\n",m);

ret = comedi_internal_trigger (dev, subdevice, 0);
if(ret<0){

perror("comedi_internal_trigger\n");

exit(1);
}

while(1){
dds_output (data,BUF_LEN);

Comedi

17

Comedi

n=BUF_LEN*sizeof(sampl_t);
while(n>0){
m=write(comedi_fileno(dev),(void *)data+(BUF_LEN*sizeof(sampl_t)-n),n);
if(m<0){
perror("write");
exit(0);
}
printf("m=%d\n",m);
n-=m;
}
total+=BUF_LEN;

}

return O;

}

#define WAVEFORM_SHIFT 16
#define WAVEFORM_LEN (1<<WAVEFORM_SHIFT)
#define WAVEFORM_MASK (WAVEFORM_LEN-1)

sampl_t waveform[WAVEFORM_LEN];

unsigned int acc;
unsigned int adder;

void dds_init(void)

{
adder=waveform_frequency/freq*(1<<16)*(1<<WAVEFORM_SHIFT);

dds_init_function 0;

}

void dds_output(sampl_t *buf,int n)
{

int i

sampl_t *p=buf;

for(i=0;i<n;i++){
*p=waveform[(acc>>16)&WAVEFORM_MASK];

p++;
acc+=adder;

}

void dds_init_sine(void)

{

int i;

for(i=0;i<WAVEFORM_LEN;i++){
waveform[i]=rint(offset+0.5*amplitude*cos(i*2*M_PI/WAVEFORM_LEN));

}
}

18

Comedi

/* Yes, | know this is not the proper equation for a cycloid. Fix it. */
void dds_init_pseudocycloid(void)
{

int i;

double t;

for(i=0;i<WAVEFORM_LEN/2;i++){
t=2*((double)i)/ WAVEFORM_LEN;
waveform[i]=rint(offset+amplitude*sqrt(1-4*t*t));

}
for(i=WAVEFORM_LEN/2;i<WAVEFORM_LEN;i++){

t=2*(1-((double)i)/WAVEFORM_LEN);
waveform[i]=rint(offset+amplitude*sqrt(1-t*t));

}
}

void dds_init_sawtooth(void)
{

int i;

for(i=0;i<WAVEFORM_LEN;i++){
waveform[i]=rint(offset+amplitude*((double)i)) WAVEFORM_LEN);

}
}

4. Acquisition and configuration functions

This Section gives an overview of all Comedi functions with which application programmers can implement
their data acquisition. (With “acquisition” we mean all possible kinds of interfacing with the cards: input, output,
configuration, streaming, etcSection 7explains the function calls in full detail.

4.1. Functions for single acquisition

The simplest form of using Comedi is to get one single sample to or from an interface card. This sections
explains how to do such simpthkgital andanalogacquisitions.

4.1.1. Single digital acquisition

Many boards supported by Comedi have digital input and output channels; i.e., channels that can only produce a
0 or al. Some boards allow thdirection(input or output) of each channel to be specified independently in
software.

19

Comedi

Comedi groups digital channels intssabdevicewhich is a group of digital channels that have the same
characteristics. For example, digital output lines will be grouped into a digital output subdevice, bidirectional
digital lines will be grouped into a digital I/O subdevice. Thus, there can be multiple digital subdevices on a
particular board.

Individual bits on a digital I/O device can be read and written using the functions

int comedi_dio_read (device,subdevice,channel,unsigned int *bit);
int comedi_dio_write (device,subdevice,channel,unsigned int bit);

Thedevice parameter is @ointerto a successfully opened Comedi device. Shbdevice andchannel
parameters are positive integers that indicate which subdevice and channel is used in the acquisition. The integer
bit contains the value of the acquired bit.

The direction of bidirectional lines can be configured using the function
comedi_dio_config (device,subdevice,channel,unsigned int dir);

The parametedir should be eithe€OMEDI_INPUTor COMEDI_OUTPUTMany digital I/O subdevices group
channels into blocks for configuring direction. Changing one channel in a block changes the entire block.

Multiple channels can be read and written simultaneously using the function

comedi_dio_bitfield (device,subdevice,unsigned int write_mask,unsigned int *bits);

Each channel is assigned to a bit in thiite_mask andbits bitfield. If a bit inwrite_mask is set, the
corresponding bit ifibits will be written to the corresponding digital output line. Each digital line is then read
and placed intdbits . The value of bits irtbits corresponding to digital output lines is undefined and
device-specific. Channélis the least significant bit in the bitfield; chanral is the most significant bit.

Channels higher thasi cannot be accessed using this method.

The digital acquisition functions seem to be very simple, but, behind the implementation screens of the Comedi
kernel module, they are executed as special cases of the gerstnattioncommand.

4.1.2. Single analog acquisition

Analog Comedi channels can produce data values thazanglesrom continuous analog signals. These
samples are integers with a significant content in the range of, typigallp, 12, or 16 bits.

The

int comedi_data_read (comedi_t * device, unsigned int subdevice, unsigned int channel,
unsigned int range, unsigned int aref, Isampl_t * data);

function reads one such data value from a Comedi channel, and puts it in the user-sgatifidaliffer. The

int comedi_data_write (comedi_t * device, unsigned int subdevice, unsigned int channel,
unsigned int range, unsigned int aref, Isampl_t data);

works in the opposite direction. Data values returned by this function are unsigned integers less than, or equal to,
the maximum sample value of the channel, which can be determined using the function

20

Comedi
Isampl_t comedi_get maxdata (comedi_t * device, unsigned int subdevice, unsigned int channel);
Conversion of data values to physical units can be performed by the function
double comedi_to_phys (Isampl_t data, comedi_range * range, Isampl_t maxdata);

There are two data structures in these commands that are not fully self-explanatory:

- comedi_tthis data structure contains all information that a user program has to know abopg@omedi
device. The programmer doesn’t have to fill in this data structure manually: it gets filled in by opening the
device.

- Isampl_t this “data structure” represents one single sample. On most architectures, it's nothing more than a 32
bits value. Internally, Comedi does some conversion from raw sample data to “correct” integers. This is called
“data munging”.

Each single acquisition by, for examplesomedi_data_read() requires quite some overhead, because all the
arguments of the function call are checked. If multiple acquisitions must be done on the same channel, this
overhead can be avoided by using a function that can read more than one sample:

int comedi_data_read_n (comedi_t *it, unsigned int subdev, unsigned int chan, unsigned int range,
unsigned int aref, Isampl_t *data, unsigned int n)

The number of samplen, is limited by the Comedi implementation (to a maximum of 100 samples), because
the call is blocking.
The start of the data acquisition can also be delayed by a specified number of nano-seconds:

int comedi_data_read_delayed (comedi_t *it, unsigned int subdev, unsigned int chan, unsigned int range,
unsigned int aref, Isampl_t *data, unsigned int nano_sec)

All these read and write acquisition functions are implemented on top of the gémsriectioncommand.

4.2. Instructions for multiple acquisitions

Theinstructionis one of the most generic, overloaden and flexible functions in the Comedi API. It is used to
execute a multiple of identical acquisitions on the same channel, but also to perforfigurationof a channel.

An instruction listis a list of instructions, possibly on different channels. Both instructions and instructions lists
are executedynchronouslyi.e., whileblocking the calling process. This is one of the limitations of instructions;
the other one is that they cannot code an acquisition involving timers or external events. These limits are
eliminated by theommandacquisition primitive.

4.2.1. The instruction data structure

All the information needed to execute an instruction is stored irctimeedi_insrdata structure:

struct comedi_insn_struct{

21

Comedi

unsigned int insn; /I integer encoding the type of acquisition
/I (or configuration)

unsigned int n; /I number of samples

Isampl_t *data; /I pointer to data buffer

unsigned int subdev; /I subdevice

unsigned int chanspec ; /I encoded channel specification
unsigned int unused[3];
} comedi_insn;

Because of the large flexibility of the instruction function, many types of instruction do not need to fill in all
fields, or attach different meanings to the same field. But the current implementation of Comedi requdeda the
field to be at least one byte long.

Theinsnflag of theinstruction data structurdetermines the type of acquisition executed in the corresponding
instruction:

« INSN_READ: the instruction executes a read on an analog channel.

« INSN_WRITE: the instruction executes a write on an analog channel.

- INSN_BITS: indicates that the instruction must read or write values on multiple digital I/O channels.
« INSN_GTOD: the instruction performs a “Get Time Of Day” acquisition.

- INSN_WAIT: the instruction blocks for a specified number of nanoseconds.

4.2.2. Instruction execution

Once an instruction data structure has been filled in, the corresponding instruction is executed as follows:
int comedi_do_insn (comedi_t *it, comedi_insn * instruction);
Many Comedi instructions are shortcuts that relieve the programmer from explicitly filling in the data structure
and calling thecomedi_do_insifunction.
The
int comedi_do_insnlist comedi_t *it, comedi_insnlist * list)

instruction allows to perform a list of instructions in one function call. The number of instructions in the list is
limited in the implementation, because instructions are exe@ytechronouslyi.e., the call blocks until the
whole instruction (list) has finished.

4.3. Instructions for configuration

Section 4.2Z2xplains how instructions are used toamuisitionon channels. This section explains how they are
used toconfigurea device. There are various sorts of configurations, and the specific information for each
different configuration possibility is to be specified via tteabuffer of theinstruction data structuréSo, the
pointer to dsampl_tis misused as a pointer to an array with board-specific information.)

22

Comedi

Using INSN_CONFIG as thimsnflag in aninstruction data structuriedicates that the instruction witlot
perform acquisitioron a channel, but wikkonfigurethat channel. For example, the configuration of digital I/O
channels is done as follows. Thihanspefdield in thecomedi_insrdata structure, contains the channel to be
configured. Anddatd0] contains either COMEDI_INPUT or COMEDI_OUTPUT, depending on the desired
direction of the digital I/O lines. On typical devices, multiple channels are grouped together in blocks for
determining their direction. And configuring one channel in a block configures the entire block.

Another example of an INSN_CONFIG instruction is the configuration offtRE&G_ OTHERevent source.

4.4. Instruction for internal triggering

This special instruction has INSN_INTTRIG as thenflag in itsinstruction data structuréts execution causes
aninternal triggering eventThis event can, for example, cause the device driver to start a conversion, or to stop
an ongoing acquisition. The exact meaning of the triggering depends on the card and its particular driver.

Thedatd0] field of the INSN_INTTRIG instruction is reserved for future use, and should be set to “0”".

4.5. Commands for streaming acquisition

The most powerful Comedi acquisition primitive is tbemmandIt's powerful because, with one single
command, the programmer launches:

« apossibly infinitesequence of acquisitions

- accompanied with variousallbackfunctionalities (DMA, interrupts, driver-specific callback functions),
. for any number of channels

- with anarbitrary order of channels in each scan (possibly even with repeated channels per scan),

- and with various scatriggering sourcesexternal (i.e., hardware pulses) as well as internal (i.e., pulses
generated on the DAQ card itself, or generated bgftware trigger instruction

This command functionality exists in the Comedi API, because various data acquisition devices have the
capability to perform this kind of complex acquisition, driven by either on-board or off-board timers and triggers.

A command specifies a particular datequisition sequencghich consists of a number s€ansand each scan

is comprised of a number @bnversionswhich usually corresponds to a single A/D or D/A conversion. So, for
example, a scan could consist of sampling channels 1, 2 and 3 of a particular device, and this scan should be
repeated 1000 times, at intervals of 1 millisecond apart.

The command function is complementary to temfiguration instructiofunction: each channel in the
command'schanlistshould first be configured by an appropriate instruction.

23

Comedi

4.5.1. Executing a command

A commands is executed by the following Comedi function:
int comedi_command (comedi_t * device, comedi_cmd * command);

The following sections explain the meaning of temedi_cmdiata structure. Filling in this structure can be

guite complicated, and requires good knowledge about the exact functionalities of the DAQ card. So, before
launching a command, the application programmer is adviced to check whether this complex command data
structure can be successfully parsed. So, the typical sequence for executing a command is to first send the
command througlsomedi_command_testfhnce or twice. The test will check that the command is valid for the
particular device, and often makes some adjustments to the command arguments, which can then be read back by
the user to see the actual values used.

A Comedi program can find out on-line what the command capabilities of a specific device are, by means of the
comedi_get_cmd_src_maskgnction.

4.5.2. The command data structure

The command executes according to the information about the requested acquisition, which is stored in the
comedi_cmdlata structure:

typedef struct comedi_cmd_struct comedi_cmd;

struct comedi_cmd_struct{
unsigned int subdev; /I which subdevice to sample
unsigned int flags; /I encode some configuration possibilities
/I of the command execution; e.g.,
/I whether a callback routine is to be
/I called at the end of the command

unsigned int start_src; /I event to make the acquisition start
unsigned int start_arg; /I parameters that influence this start

unsigned int scan_begin_src; // event to make a particular scan start
unsigned int scan_begin_arg; // parameters that influence this start’

unsigned int convert_src; /I event to make a particular conversion start
unsigned int convert_arg; /I parameters that influence this start

unsigned int scan_end_src; /I event to make a particular scan terminate
unsigned int scan_end_arg; // parameters that influence this termination

unsigned int stop_src; /I what make the acquisition terminate
unsigned int stop_arg; /I parameters that influence this termination
unsigned int *chanlist; /I pointer to list of channels to be sampled

unsigned int chanlist_len; /I number of channels to be sampled

sampl_t *data; /I address of buffer
unsigned int data_len; /I number of samples to acquire

24

Comedi

The start and end of the whole command acquisition sequence, and the start and end of each scan and of each
conversion, is triggered by a so-calledent More on these irSection 4.5.3

Thesubdev member of theomedi_cmdstructure is the index of the subdevice the command is intended for.
Thecomedi_find_subdevice_by_typdé@nction can be useful in discovering the index of your desired subdevice.

Thechanlistmember of theeomedi_cmdiata structure should point to an array whose number of elements is
specificed bychanlist_len(this will generally be the same as thean_end_a)gThechanlistspecifies the
sequence of channels and gains (and analog references) that should be stepped through for each scan. The
elements of thehanlistarray should be initialized by “packing” the channel, range and reference information
together with the CR_PACK() macro.

Thedataanddata_lemmembers can be safely ignored when issueing commands from a user-space program.
They only have meaning when a command is sent frd@rael module using th&comedilib interface, in
which case they specify the buffer where the driver should write/read its data to/from.

The final member of theomedi_cmdstructure is thélagsfield, i.e., bits in a word that can be bitwise-ord
together. The meaning of these bits are explainedatea section

4.5.3. The command trigger events

A command is a very versatile acquisition instruction, in the sense that it offers lots of possibilities to let

different hardware and software sources determine when acquisitions are started, performed, and stopped. More
specifically, the commandata structurdasfivetypes of events: start trecquisition start ascan start a

conversionstop a scan, and stop the acquisition. Each event can be given itsoomge(the* _src members

in thecomedi_cmdlata structure). And each event source can have a corresponding argumé&naighe

members of theomedi_cmdiata structure) whose meaning depends on the type of source trigger. For example,
to specify an external digital line “3” as a source (in genaaay;of the five event sources), you would use

src =TRIG_EXT andarg =3.

The following paragraphs discuss in somewhat more detail the trigger event susoesj], and the
corresponding arguments @rg).

The start of an acquisition is controlled by thiart_srcevents. The available options are:

- TRIG_NOW: thestart_sreevent occurstart_arghanoseconds after tibemedi_cmds called. Currently, only
start_arg0 is supported.

« TRIG_FOLLOW: (For an output device.) Thetart_srcevent occurs when data is written to the buffer.

« TRIG_EXT: the start event occurs when an external trigger signal occurs; e.g., a rising edge of a digital line.
start_argchooses the particular digital line.

« TRIG_INT: the start event occurs on a Comedi internal signal, which is typically caused by an
INSN_INTTRIG instruction

The start of the beginning of easkanis controlled by thescan_begirvents. The available options are:

- TRIG_TIMER:scan_begimvents occur periodically. The time betwesran_begimrvents isconvert_arg
nanoseconds.

25

Comedi

« TRIG_FOLLOW: Thescan_begimvent occurs immediately afteisaan_enevent occurs.

« TRIG_EXT: thescan_begirvent occurs when an external trigger signal occurs; e.g., a rising edge of a
digital line.scan_begin_arghooses the particular digital line.

Thescan_begin_argsed here may not be supported exactly by the device, but it will be adjusted to the nearest
supported value byomedi_command_test()

The timing between each sample is@anis controlled by theeonvert _*fields:

« TRIG_TIMER: the conversion events occur periodically. The time between convert eventwiest_arg
nanoseconds.

« TRIG_EXT: the conversion events occur when an external trigger signal occurs, e.g., a rising edge of a
digital line.convert_arghooses the particular digital line.

+ TRIG_NOW: All conversion events inscanoccur simultaneously.

Theendof each scan is almost always specified udiRIG_ COUNT, with the argument being the same as the
number of channels in thehanlist You could probably find a device that allows something else, but it would be
strange.

The end of aracquisitionis controlled bystop_srandstop_arg

« TRIG_COUNT: stop the acquisition aftstop_argscans.

« TRIG_NONE: perform continuous acquisition, until stopped usiomedi_cancel()

Its argument is reserved and should be set to 0. (“Reserved” means that unspecified things could happen if it is
set to something else but 0.)

There are a couple of less usual or not yet implemented events:

- TRIG_TIME: cause an event to occur at a particular time.

(This event source is reserved for future use.)

« TRIG_OTHER: driver specific event trigger.

This event can be useful as any of the trigger sources. Its exact meaning is driver specific, because it
implements a feature that otherwise does not fit into the generic Comedi command interface. Configuration of
TRIG_OTHER features are done BySN_CONFIGinstructions.

The argument is reserved and should be set to 0.

Not all event sources are applicable to all events. Supported trigger sources for specific events depend
significantly on your particular device, and even more on the current state of its device driver. The
comedi_get_cmd_src_maskinction is useful for determining what trigger sources a subdevice supports.

26

Comedi

4.5.4. The command flags

Theflagsfield in thecommand data structuige used to specify some “behaviour” of the acquisitions in a
command. The meaning of the field is as follows:

« TRIG_RT: ask the driver to usehard real-time interrupt handler. This will reduce latency in handling
interrupts from your data aquisition hardware. It can be useful if you are sampling at high frequency, or if your
hardware has a small onboard data buffer. You must have a real-time kernel (RTAI (http://www.rtai.org) or
RTLinux/Free (http://fsmlabs.com/community/)) and must compile Comedi with real-time support, or this flag
will do nothing.

+ TRIG_WAKE_EOS: where “EOS” stands for “End of Scan”. Some drivers will change their behaviour when
this flag is set, trying to transfer data at the end of every scan (instead of, for example, passing data in chunks
whenever the board’s hardware data buffer is half full). This flag may degrade a driver’s performance at high
frequencies, because the end of a scan is, in general, a much more frequent event than the filling up of the data
buffer.

« TRIG_ROUND_NEAREST: round to nearest supported timing period, the default. This flag (as well as the
following three), indicates how timing arguments should be rounded if the hardware cannot achieve the exact
timing requested.

« TRIG_ROUND_DOWN: round period down.

« TRIG_ROUND_UP: round period up.

« TRIG_ROUND_UP_NEXT: this one doesn’t do anything, and | don’t know what it was intended to do...?

- TRIG_DITHER: enable dithering? Dithering is a software technique to smooth the influence of discretization
“noise”.

. TRIG_DEGLITCH: enable deglitching? Another “noise” smoothing technique.

- TRIG_WRITE: write to bidirectional devices. Could be useful, in principle, if someone wrote a driver that
supported commands for a digital I/O device that could do either input or output.

- TRIG_BOGUS: do the motions?

- TRIG_CONFIG: perform configuration, not triggering. This is a legacy of the deprecataddi_trig_struct
data structure, and has no function at present.

4.5.5. Anti-aliasing

If you wish to aquire accurate waveforms, it is vital that you use an anti-alias filter. An anti-alias filter is a
low-pass filter used to remove all frequencies higher than the Nyquist frequency (half your sampling rate) from
your analog input signal before you convert it to digital. If you fail to filter your input signal, any high frequency
components in the original analog signal will create artifacts in your recorded digital waveform that cannot be
corrected.

For example, suppose you are sampling an analog input channel at a rate of 1000 Hz. If you were to apply a 900
Hz sine wave to the input, you would find that your sampling rate is not high enough to faithfully record the 900
Hz input, since it is above your Nyquist frequency of 500 Hz. Instead, what you will see in your recorded digital
waveform is a 100 Hz sine wave! If you don’t use an anti-alias filter, it is impossible to tell whether the 100 Hz
sine wave you see in your digital signal was really produced by a 100 Hz input signal, or a 900 Hz signal aliased
to 100 Hz, or a 1100 Hz signal, etc.

27

Comedi

In practice, the cutoff frequency for the anti-alias filter is usually set 10% to 20% below the Nyquist frequency
due to fact that real filters do not have infinitely sharp cutoffs.

4.6. Slowly-varying inputs

Sometimes, your input channels change slowly enough that you are able to average many successive input values
to get a more accurate measurement of the actual value. In general, the more samples you average, the better
your estimate gets, roughly by a factor of sqrt(humber_of _samples). Obviously, there are limitations to this:

« you are ultimately limited by “Spurious Free Dynamic Range”. This SFDR is one of the popular measures to
quantify how much noise a signal carries. If you take a Fourier transform of your signal, you will see several
“peaks” in the transform: one or more of the fundamental harmonics of the measured signal, and lots of little
“peaks” (called “spurs”) caused by noise. The SFDR is then the difference between the amplitude of the
fundamental harmonic and of the largest spur (at frequencies below half of the Nyquist frequency of the DAQ
sampler!).

- you need to haveomenoise on the input channel, otherwise you will be averaging the same nixtibess.
(Of course, this only holds if the noise is large enough to cause at least a one-bit discretization.)

- the more noise you have, the greater your SFDR, but it takes many more samples to compensate for the
increased noise.

. if you feel the need to average samples for, for example, two seconds, your signal will neacety be
slowly-varying, i.e., not varying more than your target uncertainty for the entire two seconds.

As you might have guessed, the Comedi library has functions to help you in your quest to accurately measure
slowly varying inputs:

int comedi_sv_init (comedi_sv_t * sv, comedi_t * device, unsigned int subdevice, unsigned int channel);
This function initializes theomedi_sv_tata structure, used to do the averaging acquisition:
struct comedi_sv_struct{

comedi_t *dev;

unsigned int subdevice;
unsigned int chan;

/* range policy */
int range;

int aref;

/* number of measurements to average (for analog inputs) */
int n;

Isampl_t maxdata;

h
The actual acquisition is done with:

int comedi_sv_measure (comedi_sv_t * sv, double * data);

The number of samples over which ttwmedi_sv_measure() averages is limited by the implementation
(currently the limit is 100 samples).

28

Comedi

One typical use for this function is the measurement of thermocouple voltages. And the Comedi self-calibration
utility also uses these functions. On some hardware, it is possible to tell it to measure an internal stable voltage
reference, which is typically going to be very slowly varying; on the kilosecond time scale or more. So, it is
reasonable to measure millions of samples, to get a very accurate measurement of the A/D converter output value
that corresponds to the voltage reference. Sometimes, however, this is overkill, since there is no need to perform
a part-per-million calibration to a standard that is only accurate to a part-per-thousand.

4.7. Experimental functionality

The following subsections document functionality that has not yet matured. Most of this functionality has even
not been implemented yet in any single device driver. This information is included here, in order to stimulate
discussion about their API, and to encourage pioneering implementations.

4.7.1. Digital input combining machines
(Status: experimental (i.e., no driver implements this yef)

When one or several digital inputs are used to modify an output value, either an accumulator or a single digital
line or bit, a bitfield structure is typically used in the Comedi interface. The digital inputs have two properties,
“sensitive” inputs and “modifier” inputs. Edge transitions on sensitive inputs cause changes in the output signal,
whereas modifier inputs change the effect of edge transitions on sensitive inputs. Note that inputs can be both
modifier inputs and sensitive inputs.

For simplification purposes, it is assumed that multiple digital inputs do not change simultaneously.

The combined state of the modifier inputs determine a modifier state. For each combination of modifier state and
sensitive input, there is a set of bits that determine the effect on the output value due to positive or negative
transitions of the sensitive input. For each transition direction, there are two bits defined as follows:

00: transition is ignored.

01: accumulator is incremented, or output is set.

10: accumulator is decremented, or output is cleared.
11: reserved.

For example, a simple digital follower is specified by the bit pattern 01 10, because it sets the output on positive
transitions of the input, and clears the output on negative transitions. A digital inverter is similarily 10 01. These
systems have only one sensitive input.

As another example, a simple up counter, which increments on positive transitions of one input, is specified by
01 00. This system has only one sensitive input.

When multiple digital inputs are used, the inputs are divided into two types, inputs which cause changes in the
accumulator, and those that only modify the meaning of transitions on other inputs. Modifier inputs do not
require bitfields, but there needs to be a bitfield of length 4*(2*(N-1)) for each edge sensitive input, where N is
the total number of inputs. Since N is usually 2 or 3, with only one edge sensitive input, the scaling issues are not
significant.

29

Comedi

4.7.2. Analog filtering configuration

(Status: design (i.e., no driver implements this yet).)

Theinsnfield of theinstruction data structurtgas not been assigned yet.
Thechanspefdield of theinstruction data structurie ignored.

Some devices have the capability to add white noise (dithering) to analog input measurement. This additional
noise can then be averaged out, to get a more accurate measurement of the input signal. It should not be assumed
that channels can be separately configured. A simple design can use 1 bit to turn this feature on/off.

Some devices have the capability of changing the glitch characteristics of analog output subsytems. The default
(off) case should be where the average settling time is lowest. A simple design can use 1 bit to turn this feature
on/off.

Some devices have a configurable analog filters as part of the analog input stage. A simple design can use 1 bit to
enable/disable the filter. Default is disabled, i.e., the filter being bypassed, or if the choice is between two filters,
the filter with the largest bandwidth.

4.7.3. Analog Output Waveform Generation

(Status: design (i.e., no driver implements this yet).)

Theinsnfield of theinstruction data structuttgas not been assigned yet.
Thechanspedield of theinstruction data structutie ignored.

Some devices have the ability to cyclicly loop through samples kept in an on-board analog output FIFO. This
config should allow the user to enable/disable this mode.

This config should allow the user to configure the number of samples to loop through. It may be necessary to
configure the channels used.

4.7.4. Extended Triggering
(Status: alpha.)
Theinsnfield of theinstruction data structurtgas not been assigned yet.

Thechanspedield of theinstruction data structuris ignored.

30

Comedi

This section covers common information for all extended triggering configuration, and doesn’t describe a
particular type of extended trigger.

Extended triggering is used to configure triggering engines that do not fit into commands. In a typical
programming sequence, the application will asafiguration instructiont configure an extended trigger, and a
commangspecifyingTRIG_OTHERas one of the trigger sources.

Extended trigger configuration should be designed in such a way that the user can probe for valid parameters,
similar to how command testing works. An extended trigger configuration instruction should not configure the
hardware directly, rather, the configuration should be saved until the subsequent command is issued. This allows
more flexibility for future interface changes.

It has not been decided whether the configuration stage should return a token that is then used as the trigger
argument in the command. Using tokens is one method to satisfy the problem that extended trigger
configurations may have subtle compatiblity issues with other trigger sources/arguments that can only be
determined at command test time. Passing all stages of a command test should only be allowed with a properly
configured extended trigger.

Extended triggers must usiata[1]as flags. The upper 16 bits are reserved and used only for flags that are
common to all extended triggers. The lower 16 bits may be defined by the particular type of extended trigger.

Various types of extended triggers must ds¢a[1]to know which event the extended trigger will be assigned to
in the command structure. The possible values are an OR’d mask of the following:

. COMEDI_EV_START
. COMEDI_EV_SCAN_BEGIN
. COMEDI_EV_CONVERT

. COMEDI_EV_SCAN_END
. COMEDI_EV_STOP

4.7.5. Analog Triggering

(Status: alpha. Theni_mio_common.c driver implements this feature.)
Theinsnfield of theinstruction data structurteas not been assigned yet.
Thechanspedield of theinstruction data structutie ignored.

Thedatafield of theinstruction data structuris used as follows:

data[1]: trigger and combining machine configuration.
data[2]: analog triggering signal chanspec.

data[3]: primary analog level.

data[4]: secondary analog level.

31

Comedi

Analog triggering is described by a digital combining machine that has two sensitive digital inputs. The sensitive
digital inputs are generated by configurable analog comparators. The analog comparators generate a digital 1
when the analog triggering signal is greater than the comparator level. The digital inputs are not modifier inputs.
Note, however, there is an effective modifier due to the restriction that the primary analog comparator level must
be less than the secondary analog comparator level.

If only one analog comparator signal is used, the combining machine for the secondary input should be set to
ignored, and the secondary analog level should be set to 0.

The interpretation of the chanspec and voltage levels is device dependent, but should correspond to similar
values of the analog input subdevice, if possible.

Notes: Reading range information is not addressed. This makes it difficult to convert comparator voltages to data
values.

Possible extensions: A parameter that specifies the necessary time that the set condition has to be true before the
trigger is generated. A parameter that specifies the necessary time that the reset condition has to be true before
the state machine is reset.

4.7.6. Bitfield Pattern Matching Extended Trigger

(Status: design. No driver implements this feature yet.)

Theinsnfield of theinstruction data structurtgas not been assigned yet.
Thechanspedield of theinstruction data structuris ignored.

Thedatafield of theinstruction data structurie used as follows:

data[1]: trigger flags.
data[2]: mask.
data[3]: pattern.

The pattern matching trigger issues a trigger when all of a specifed set of input lines match a specified pattern. If
the device allows, the input lines should correspond to the input lines of a digital input subdevice, however, this
will necessarily be device dependent. Each possible digital line that can be matched is assigned a bit in the mask
and pattern. A bit set in the mask indicates that the input line must match the corresponding bit in the pattern. A
bit cleared in the mask indicates that the input line is ignored.

Notes: This only allows 32 bits in the pattern/mask, which may be too few. Devices may support selecting
different sets of lines from which to match a pattern.

Discovery: The number of bits can be discovered by setting the mask to all 1's. The driver must modify this
value and return -EAGAIN.

32

Comedi

4.7.7. Counter configuration
(Status: design. No driver implements this feature yet.)
Theinsnfield of theinstruction data structurtgas not been assigned yet.

Thechanspedield of theinstruction data structuiis used to specify which counter to use. (l.e., the counter is a
Comedi channel.)

Thedatafield of theinstruction data structuiis used as follows:
data[1]: trigger configuration.

data[2]: primary input chanspec.

data[3]: primary combining machine configuration.

data[4]: secondary input chanspec.

data[5]: secondary combining machine configuration.
data[6]: latch configuration.

Note that this configuration is only useful if the counting has to be doseftware Many cards offer
configurable counters in hardware; e.g., general purpose timer cards can be configured to act as pulse generators,
frequency counters, timers, encoders, etc.

Counters can be operated either in synchronous mode (l81g_READ) or asynchronous mode (using
commandy similar to analog input subdevices. The input signal for both modes is the accumulator. Commands
on counter subdevices are almost always specified ssiaig_begin_sre TRIG_OTHER with the counter
configuration also serving as the extended configuration for the scan begin source.

Counters are made up of an accumulator and a combining machine that determines when the accumulator should
be incremented or decremented based on the values of the input signals. The combining machine optionally
determines when the accumulator should be latched and put into a buffer. This feature is used in asynchronous
mode.

Note: How to access multiple pieces of data acquired at each event?

4.7.8. One source plus auxiliary counter configuration
(Status: design. No driver implements this feature yet.)

Theinsnfield of theinstruction data structuttgas not been assigned yet.
Thechanspefdield of theinstruction data structuris used to ...

Thedatafield of theinstruction data structurie used as follows:

data[1]: is flags, including the flags for the command triggering configuration. If a command is not subsequently issued ¢

33

Comedi

data[2]: determines the mode of operation. The mode of operation is actually a bitfield that encodes what to do for variot
data[3], data[4]: determine the primary source for the counter, similar tosteand the argfields used in theommand data st

Notes: How to specify which events cause a latch and push, and what should get latched?

5. Writing a Comedi driver

This Section explains the most important implementations aspects of the Comedi device drivers. It tries to give
the interested device driver writer an overview of the different steps required to write a new device driver.

This Section doerot explain all implementation details of the Comedi software itself: Comedi has once and for
all solved lots of boring but indispensable infrastructural things, such as: timers, management of which drivers
are active, memory management for drivers and buffers, wrapping of RTOS-specific interfaces, interrupt handler
management, general error handling, Mrec interface, etc. So, the device driver writers can concentrate on

the interesting stuff: implementing their specific interface card’s DAQ functionalities.

In order to make a decent Comedi device driver, you must know the answers to the following questions:

- How does theommunicatiorbetween user space and kernel space work?

- What functionality is provided by thgenerickernel-space Comedi functions, and what must be provided for
eachspecific new drive?

« How to useDMA and interrupt®

- What are the addresses and meanings of all the card’s registers?

This information is to be found in the so-called “register level manual” of the card. Without it, coding a device
driver is close to hopeless. It is also something that Comedi (and hence also this handbook) cannot give any
support or information for: board manufacturers all use their own design and nomenclature.

5.1. Communication user space-kernel space

In user space, you interact with the functions implemented irurésrc/comedilib directory. Most of the
device driver core of the Comedilib library is foundlim subdirectory.

All user-space Comedinstructionsandcommandsre transmitted to kernel space through a traditiaual

system call. (Segusr/src/comedilib/lib/ioctl.c .) The user space information commaneifsodeds

a number in théoctl call, and decoded in the kernel space library. There, they are executed by their
kernel-space counterparts. This is done in/the'src/comedi/comedi/comedi_fops.c file: the
comedi_ioctl() function processes the results of thetl system call, interprets its contents, and then calls
the corresponding kernel spade ... _ioctl function(s). For example, a Comaddstructionis further

34

Comedi

processed by theo_insn_ioctl() function. (Which, in turn, usesarse_insn() for further detailed
processing.)

The data corresponding to instructions and commands is transmitted witbptherom_user() system call;
acquisition data captured by the interface card passes the kernel-user space boundary with the help of a
copy_to_user() system call.

5.2. Generic functionality

The major include files of the kernel-space part of Comedi are:

« include/linux/comedidev.h : the header file for kernel-only structures (device, subdevice, async (i.e.,
buffer/event/interrupt/callback functionality for asynchronous DAQ in a Comedi command), driver, Irange),
variables, inline functions and constants.

« include/linux/comedi_rt.h : all the real-time stuff, such as management of ISR in RTAI and
RTLinux/Free, and spinlocks for atomic sections.

+ include/linux/comedilib.h : the header file for the kernel library of Comedi.

From all the relevant Comedi device driver code that is found iriufrésrc/comedi/comedi directory (f
the Comedi source has been installed in its noraslsrc/comedi location), thegenericfunctionality is
contained in two parts:

- A couple ofCfiles contain thénfrastructural support . From thesefiles, it's especially the
comedi_fops.c file that implements what makes Comedi into what people want to use it for: a library that
has solved 90% of the DAQ device driver efforts, once and for all.

- Forreal-time applications, the subdirectokgomedilib implements an interface in the kernel that is similar
to the Comedi interface accessible throughuker-space Comedi library

There are some differences in what is possible and/or needed in kernel space and in user space, so the
functionalities offered irkcomedilib are not an exact copy of the user-space library. For example, locking,
interrupt handling, real-time execution, callback handling, etc., are only available in kernel space.

Most drivers don’t make use (yet) of these real-time functionalities.

5.2.1. Data structures

This Section explains the generic data structures that a device driver interacts with:

typedef struct comedi_lrange_struct comedi_lrange ;
typedef struct comedi_subdevice_struct comedi_subdevice ;
typedef struct comedi_device_struct comedi_device
typedef struct comedi_async_struct comedi_async
typedef struct comedi_driver_struct comedi_driver

35

Comedi

They can be found ifusr/src/comedi/include/linux/comedidev.h . Most of the fields are filled in by
the Comedi infrastructure, but there are still quite a handful that your driver must provide or use. As for the
user-level Comedi, each of the hierarchical layers has its own data structures: chamesdl_(range),
subdevice, and device.

Note that these kernel-space data structures have similar names aséneipace equivalentsut they have a
different (kernel-side) view on the DAQ problem and a different meaning: they encode the interaction with the
hardware not with theuser.

However, thecomedi_insrandcomedi_cmdlata structures are shared between user space and kernel space: this
should come as no surprise, since these data structures contain all information that the user-space program must
transfer to the kernel-space driver for each acquisition.

In addition to these data entities that are also known at the user level (device, sub-device, channel), the device
driver level provides two more data structures which the application programmer doesn’t get in touch with: the
data structureomedi_drivetthat stores the device driver information that is relevant at the operating system
level, and the data structucemedi_asynthat stores the information about adynchronousictivities

(interrupts, callbacks and events).

5.2.1.1.comedi_lrange

The channel information is simple, since it contains only the signal range information:

struct comedi_lrange_struct{
int length;
comedi_krange range[GCC_ZERO_LENGTH_ARRAY];

}

5.2.1.2.comedi_subdevice

The subdevice is the smallest Comedi entity that can be used for “stand-alone” DAQ, so it is no surprise that it is
quite big:
struct comedi_subdevice_struct{
int type;
int n_chan;
int subdev_flags;
int len_chanlist; /* maximum length of channel/gain list */
void *private;
comedi_async *async;
void *lock;
void *husy;

unsigned int runflags;

int io_bits;

36

Comedi

Isampl_t maxdata; /* if maxdata==0, use list */
Isampl_t *maxdata_list; /* list is channel specific */

unsigned int flags;
unsigned int *flaglist;

comedi_lrange *range_table;
comedi_lrange **range_table_list;

unsigned int *chanlist; /* driver-owned chanlist (not used) */

int (*insn_read)(comedi_device *, comedi_subdevice *, comedi_insn *, Isampl_t *);
int (*insn_write)(comedi_device *, comedi_subdevice * comedi_insn *, Isampl_t *);
int (*insn_bits)(comedi_device *, comedi_subdevice * comedi_insn *, Isampl_t *);
int (*insn_config)(comedi_device *, comedi_subdevice * comedi_insn *, Isampl_t *);

int (*do_cmd)(comedi_device *, comedi_subdevice *);

int (*do_cmdtest)(comedi_device *, comedi_subdevice * comedi_cmd *);

int (*poll)(comedi_device *, comedi_subdevice *);

int (*cancel)(comedi_device *, comedi_subdevice *);

int (*buf_change)(comedi_device *, comedi_subdevice *s,unsigned long new_size);

void (*munge)(comedi_device *, comedi_subdevice *s, void *data, unsigned int num_bytes, unsigned int start

unsigned int state;

h

The function pointergtinsn_read) ...(*cancel) . offer (pointers to) the standardizeder-visible APlthat

every subdevice should offer; every device driver has to fill in these functions with their board-specific
implementations. (Functionality for which Comedi provides generic functions will, by definition, not show up in
the device driver data structures.)

Thebuf change() andmunge() functions offer functionality that is not visible to the user and for which the
device driver writer must provide a board-specific implementatiafi.change() is called when a change in
the data buffer requires handlingunge() transforms different bit-representations of DAQ values, for example
from unsignedo 2's complement

5.2.1.3.comedi_device

The last data structure stores the information adncelevel:

struct comedi_device_struct{

int use_count;
comedi_driver *driver;

void *private;

kdev_t minor;

char *board_name;
const void *board_ptr;

int attached;

int rt;

spinlock_t spinlock;

int in_request_module;
int n_subdevices;

37

Comedi

comedi_subdevice *subdevices;
int options[COMEDI_NDEVCONFOPTS];

/* dumb */
int iobase;
int irq;

comedi_subdevice *read_subdev;
wait_queue_head_t read_wait;

comedi_subdevice *write_subdev;
wait_queue_head_t write_wait;

struct fasync_struct *async_queue;

void (*open)(comedi_device *dev);
void (*close)(comedi_device *dev);

5.2.1.4. comedi_async

The following data structure contains all relevant information: addresses and sizes of buffers, pointers to the
actual data, and the information neededdeent handling

struct comedi_async_struct{
void *prealloc_buf; /* pre-allocated buffer */
unsigned int prealloc_bufsz; /* buffer size, in bytes */
unsigned long *buf_page_list; /* physical address of each page */
unsigned int max_bufsize; /* maximum buffer size, bytes */
unsigned int mmap_count; /* current number of mmaps of prealloc_buf */

volatile unsigned int buf_write_count; /* byte count for writer (write completed) */
volatile unsigned int buf write_alloc_count; /* byte count for writer (allocated for writing) */
volatile unsigned int buf read_count; /* byte count for reader (read completed)*/

unsigned int buf write_ptr; /* buffer marker for writer */
unsigned int buf_read_ptr; /* buffer marker for reader */

unsigned int cur_chan; /* useless channel marker for interrupt */
/* number of bytes that have been received for current scan */
unsigned int scan_progress;

/* keeps track of where we are in chanlist as for munging */
unsigned int munge_chan;

unsigned int events; /* events that have occurred */
comedi_cmd cmd;

/I callback stuff

unsigned int cb_mask;

int (*cb_func)(unsigned int flags,void *);

void *cb_arg;

int (*inttrig)(comedi_device *dev, comedi_subdevice *s,unsigned int x);

38

Comedi

5.2.1.5.comedi_driver

struct comedi_driver_struct{
struct comedi_driver_struct *next;

char *driver_name;

struct module *module;

int (*attach)(comedi_device *,comedi_devconfig *);
int (*detach)(comedi_device *);

/* number of elements in board_name and board_id arrays */
unsigned int num_names;

void *board_name;

/* offset in bytes from one board name pointer to the next */
int offset;

h

5.2.2. Generic driver support functions

The directorycomedi contains a large set of support functions. Some of the most important ones are given
below.

Fromcomedi/comedi_fops.c , functions to handle the hardware events (which also runs the registered
callback function), to get data in and out of the software data buffer, and to parse the incoming functional
requests:

void comedi_event(comedi_device *dev, comedi_subdevice *s,unsigned int mask);

int comedi_buf_put(comedi_async *async, sampl_t Xx);

int comedi_buf_get(comedi_async *async, sampl_t *x);
static int parse_insn(comedi_device *dev, comedi_insn *insn, Isampl_t *data,void *file);
The file comedi/kcomedilib/kcomedilib_main.c provides functions to register a callback, to poll an

ongoing data acquisition, and to print an error message:

int comedi_register_callback(comedi_t *d,unsigned int subdevice, unsigned int mask,int (*cb)(unsigned int,void
int comedi_poll(comedi_t *d, unsigned int subdevice);
void comedi_perror(const char *message);

The filecomedi/rt.c ~ provides interrupt handling for real-time tasks (one interruptiesice):

int comedi_request_irg(unsigned irq,void (*handler)(int, void *struct pt_regs *), unsigned long flags,const char *device,

39

Comedi

void comedi_free_irg(unsigned int irq, comedi_device *dev_id)

5.3. Board-specific functionality

The/usr/src/comedi/comedi/drivers subdirectory contains tHwsoard-specificdevice driver code. Each
new card must get an entry in this directo®y. extend the functionality of an already existing driver file if the
new card is quite similar to that implemented in an already existing driver. For example, many of the National
Instruments DAQ cards use the same driver files.

To help device driver writers, Comedi provides the “skeleton” of a new device driver, in the
comedi/drivers/skel.c file. Before starting to write a new driver, make sure you understand this file, and
compare it to what you find in the other already available board-specific files in the same directory.

The first thing you notice iskel.c is the documentation section: the Comedi documentation is partially
generated automatically, from the information that is given in this section. So, please comply with the structure
and the keywords provided as Comedi standards.

The second part of the device driver contains board-specific static data structure and defines: addresses of
hardware registers; defines and function prototypes for functionality that is only used inside of the device driver
for this board; the encoding of the types and number of available channels; PCI information; etc.

Each driver has to register two functions which are called when you load and unload your board’s device driver
(typically via a kernel module):

mydriver_attach();
mydriver_detach();

In the “attach” function, memory is allocated for the necessiata structuresall properties of a device and its
subdevices are defined, and filled in in the generic Comedi data structures. As part of this, pointers to the low
level instructions being supported by the subdevice have to be set, which define the basic functionality. In
somewhat more detail, theydriver_attach() function must:

- check and request the 1/O port region, IRQ, DMA, and other hardware resources. It is convenient here if you
verify the existence of the hardware and the correctness of the other information given. Sometimes,
unfortunately, this cannot be done.

- allocate memory for the private data structures.
- initialize the board registers and possible subdevices (timer, DMA, PCI, hardware FIFO, etc.).

. return 1, indicating success. If there were any errors along the way, you should return the appropriate error
number. If an error is returned, theydriver_detach() function is called. Thenydriver_detach()

function should check any resources that may have been allocated and release them as necessary. The Comedi

core freeslev->subdevices anddev->private , so this does not need to be donelétach .

- If the driver has the possibility to offer asynchronous data acquisition, you have to code an interrupt service
routine, event handling routines, and/or callback routines.

40

Comedi

Typically, you will be able to implement most of the above-mentioned functionalityutyand-pastérom

already existing drivers. Thaydriver_attach() function needs most of your attention, because it must

correctly define and allocate the (private and generic) data structures that are needed for this device. That is, each
sub-device and each channel must get appropriate data fields, and an appropriate initialization. The good news,
of course, is that Comedi provides the data structures and the defines that fit very well with almost all DAQ
functionalities found on interface cards. These can be found ihghder file®f the

{usr/src/comedif/include/linux/ directory.

Drivers for digital 10s should implement the following functions:

+ insn_bits() : drivers set this if they have a function that supports reading and writing multiple bits in a
digital /0 subdevice at the same time. Most (if not all) of the drivers use this interface instead of insn_read
and insn_write for DIO subdevices.

« insn_config() : implements INSN_CONFIG instructions. Currently used for configuring the direction of
digital I/O lines, although will eventually be used for generic configuration of drivers that is outside the scope
of the currently defined Comedi interface.

Finally, the device driver writer must implement tlead andwrite functions for the analog channels on the
card:

- insn_read() :acquire the inputs on the board and transfer them to the software buffer of the driver.

« insn_write() : transfer data from the software buffer to the card, and execute the appropriate output
conversions.

In some drivers, you want to catch interrupts, and/or want to useNtBE_INTTRIG instruction. In this case,
you must provide and register thesalbackfunctions.

Implementation of all of the above-mentioned functions requires perfect knowledge about the hardware registers
and addresses of the interface card. In general, you casdiméinspiration in the already available device
drivers, but don’t trust that blindut-and-pastevill bring you far...

5.4. Callbacks, events and interrupts

Continuous acquisition is tyically aasynchronousctivity: the function call that has set the acquisition in

motion has returned before the acquisition has finished (or even started). So, not only the acquired data must be
sent back to the user’s buffer “in the background”, but various types of asynchrewemntshandlingan be

needed during the acquisition:

- Thehardwarecan generate some error or warning events.

- Normal functional interrupts are generated by the hardware, e.g., signalling the filling-up of the card’s
hardware buffer, or the end of an acquisitsran etc.

- The device driver writer can register a driver-supplied “callback” function, that is called at the end of each
hardware interrupt routine.

- Another driver-supplied callback function is executed when the user program laundiNSNIINTTRIG
instruction. This event handling is executgghchronouslyvith the execution of the triggering instruction.

41

Comedi

The interrupt handlers are registered through the functions mentimeferteThe event handling is done in the
existing Comedi drivers in statements such as this one:

s->async->events |= COMEDI_CB_EOA | COMEDI_CB_ERROR

It fills in the bits corresponding to particular events in tenedi_asyndata structure. The possible event bits
are:

.- COMEDI_CB_EOG#execute the callback at the “End Of-Acquisition”.
- COMEDI_CB_EOSexecute the callback at the “End-Of-Scan”.
. COMEDI_CB_OVERFLOWkecute the callback when a buffer overflow has occurred.

- COMEDI_CB_ERRORXxecute the callback at the occurrence of an (undetermined) error.

5.5. Device driver caveats

A few things to strive for when writing a new driver:

« Some DAQ cards consist of different “layers” of hardware, which can each be given their own device driver.
Examples are: some of the National Instruments cards, that all share thd/s@| driver chip; the
ubiquitous parallel port, that can be used for simple digital IO acquisitions. If your new card has such a
multi-layer design too, please take the effort to provide drivers for each layer separately.

- Your hardware driver should be functional appropriate to the resources allocated. l.e., if the driver is fully
functional when configured with an IRQ and DMA, it should still function moderately well with just an IRQ,
or still do minor tasks without IRQ or DMA. Does your driver really require an IRQ to do digital I/O? Maybe
someone will want to use your drivggrstto do digital I/O and has no interrupts available.

- Drivers are to have absolutehy global variables, mainly because the existence of global variables
immediately negates any possibility of using the driver for two devices. The paditerprivate should be
used to point to a structure containing any additional variables needed by a driver/device combination.

- Drivers should report errors and warnings via thenedi_error() function. (This isnotthe same function
as the user-spac@mmedi_perror(junction.)

5.6. Integrating the driver in the Comedi library

For integrating new drivers in the Comedi’s source tree the following things have to be done:

« Choose a senseful name for the source code file. Let's assume here that you call it “mydriver.c”
« Put your new driver into “comedi/drivers/mydriver.c”.

- Edit “comedi/Config.in” and add a new “dep_tristate” line (look at the other examples). Invent a senseful
name for the driver’s variable. For example:

dep_tristate '"MYDRIVER’ CONFIG_COMEDI_MYDRIVER $CONFIG_COMEDI

42

Comedi

« Add a line to “comedi/drivers/Makefile.in”, using your freshly defined variable, i.e.,
CONFIG_COMEDI_MYDRIVER.

- Now make distclean reconfigure Comedi with a nemake, rebuild and be happy.

If you want to have your driver included in the Comedi distribution (gedinitelywant to :-)) send it to
David Schleef

<ds@schleef.org >

for review and integration.

6. Low-level drivers

6.1. Low-level drivers

6.1.1. 8255.0 -- generic 8255 support
Author: ds

Status: works

Manufacturer Device Name
standard 8255 8255

The classic in digital I/O. The 8255 appears in Comedi as a single
digital /0 subdevice with 24 channels. The channel 0 corresponds

to the 8255's port A, bit 0; channel 23 corresponds to port C, bit

7. Direction configuration is done in blocks, with channels 0-7,

8-15, 16-19, and 20-23 making up the 4 blocks. The only 8255 mode
supported is mode O.

You should enable compilation this driver if you plan to use a board
that has an 8255 chip. For multifunction boards, the main driver will
configure the 8255 subdevice automatically.

This driver also works independently with ISA and PCI cards that
directly map the 8255 registers to I/O ports, including cards with

multiple 8255 chips. To configure the driver for such a card, the
option list should be a list of the I/O port bases for each of the
8255 chips. For example,

comedi_config /dev/comedi0 8255 0x200,0x204,0x208,0x20c
Note that most PCl 8255 boards do NOT work with this driver, and

need a separate driver as a wrapper. For those that do work, the
I/O port base address can be found in the output of ’Ispci -v'.

43

6.1.2. adl_pci9111.0 -- Driver for the Adlink PCI-9111HR card.
Author: Emmanuel Pacaudemmanuel.pacaud@freesfr

Status: experimental

Comedi

Manufacturer Device Name

ADLink PCI-9111HR adl_pci9111

- ai_insn read

- ao_insn read/write

- di_insn read

- do_insn read/write

- ai_do_cmd mode with the following sources:

- start_src TRIG_NOW

- scan_begin_src TRIG_FOLLOW TRIG_TIMER TRIG_EXT
- convert_src TRIG_TIMER TRIG_EXT

- scan_end_src TRIG_COUNT

- stop_src TRIG_COUNT TRIG_NONE

The scanned channels must be consecutive and start from 0. They must
all have the same range and aref.

Configuration options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

6.1.3. adl_pci9118.0 -- Adlink PCI-9118DG, PCI-9118HG, PCI-9118HR
Author: Michal Dobes<majkl@tesnet.cz

Status: works

44

Comedi

Manufacturer Device Name

ADLink PCI-9118DG pci9118dg
ADLink PCI-9118HG pci9118hg
IADLink PCI-9118HR pci9118hr

This driver supports Al, AO, DI and DO subdevices.

Al subdevice supports cmd and insn interface,

other subdevices support only insn interface.

For Al:

- If cmd- >scan_begin_src=TRIG_EXT then trigger input is TGIN (pin 46).

- If cmd- >convert_src=TRIG_EXT then trigger input is EXTTRG (pin 44).

- If cmd- >start_src/stop_src=TRIG_EXT then trigger input is TGIN (pin 46).

- It is not neccessary to have cmd.scan_end_arg=cmd.chanlist_len but
cmd.scan_end_arg modulo cmd.chanlist_len must by 0.

- If return value of cmdtest is 5 then you've bad channel list
(it isn't possible mixture S.E. and DIFF inputs or bipolar and unipolar
ranges).

There are some hardware limitations:

a) You cann’t use mixture of unipolar/bipoar ranges or differencial/single
ended inputs.

b) DMA transfers must have the length aligned to two samples (32 bit),
so there is some problems if cmd- >chanlist_len is odd. This driver tries
bypass this with adding one sample to the end of the every scan and discard
it on output but this cann't be used if cmd- >scan_begin_src=TRIG_FOLLOW
and is used flag TRIG_WAKE_EQOS, then driver switch to interrupt driven mode
with interrupt after every sample.

c) If isn't used DMA then you can use only mode where
cmd- >scan_begin_src=TRIG_FOLLOW.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, then first available PCI
card will be used.
[2] - O= standard 8 DIFF/16 SE channels configuration
n= external multiplexer connected, 1 <=n<=256
O=autoselect DMA or EOC interrupts operation
1=disable DMA mode
3=disable DMA and INT, only insn interface will work
sample&hold signal - card can generate signal for external S&H board
O=use SSHO (pin 45) signal is generated in onboard hardware S&H logic
O!'=use ADCHN?7 (pin 23) signal is generated from driver, number
say how long delay is requested in ns and sign polarity of the hold
(in this case external multiplexor can serve only 128 channels)
[5] - O=stop measure on all hardware errors
2|=ignore ADOR - A/D Overrun status
8|=ignore Bover - A/D Burst Mode Overrun status
256|=ignore nFull - A/D FIFO Full status

(3]

(4]

45

Comedi

6.1.4. adv_pcil710.0 -- Advantech PCI-1710, PCI-1710HG, PCI-1711, PCI-1713,
Advantech PCI-1720, PCI-1731

Author: Michal Dobescmajkl@tesnet.cz

Status: works

Manufacturer Device Name
Advantech PCI-1710 pcil710
Advantech PCI-1710HG pcil710hg
Advantech PCI-1711 pcil711
Advantech PCI-1713 pcil713
Advantech PCI-1720 pcil720
Advantech PCI-1731 pcil731

This driver supports Al, AO, DI and DO subdevices.

Al subdevice supports cmd and insn interface,
other subdevices support only insn interface.

The PCI-1710 and PCI-1710HG have the same PCIl device ID, so the

driver cannot distinguish between them, as would be normal for a

PCI driver.

Configuration options:

[0] - PCI bus of device (optional)

[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI
device will be used.

6.1.5. amplc_pc236.0 -- Driver for Amplicon PC36AT and PCI236 DIO boards
Author: lan Abbott<abbotti@mev.co.uk

Status: works

Manufacturer Device Name
Amplicon PC36AT pc36at
Amplicon PCI236 pci236

Configuration options - PC36AT:
[0] - I/O port base address
[1] - IRQ (optional)

46

Comedi

Configuration options - PCI236:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will be
used.

The PC36AT ISA board and PCI236 PCIl board have a single 8255 appearing
as subdevice 0.

Subdevice 1 pretends to be a digital input device, but it always returns

0 when read. However, if you run a command with scan_begin_src=TRIG_EXT,
a rising edge on port C bit 7 acts as an external trigger, which can be

used to wake up tasks. This is like the comedi_parport device, but the

only way to physically disable the interrupt on the PC36AT is to remove

the IRQ jumper. If no interrupt is connected, then subdevice 1 is

unused.

6.1.6. amplc_pc263.0 -- Driver for Amplicon PC263 and PCI263 Relay boards
Author: lan Abbott<abbotti@mev.co.uk

Status: works

Manufacturer Device Name
Amplicon PC263 pc263
Amplicon PCI263 pCi263

Configuration options - PC263:
[0] - I/O port base address

Configuration options - PCI263:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will be
used.

Each board appears as one subdevice, with 16 digital outputs, each

connected to a reed-relay. Relay contacts are closed when output is 1.
The state of the outputs can be read.

47

6.1.7. amplc_pci230.0 -- Driver for Amplicom PCI230 and PCI260 Multifunction I/O

boards

Author: Allan Willcox <allanwillcox@ozemail.com.awl

Status: unknown

Comedi

Manufacturer Device Name
Amplicon PCI230 amplc_pci230
Amplicon PCI260 amplc_pci230

6.1.8. cb_pcidas.o -- Driver for the ComputerBoards/MeasurementComputing cards of
the PCI-DAS series with the AMCC S5933 PCI controller.

Author: lvan Martinez<ivanmr@altavista.com, Frank Mori Hess<fmhess@uiuc.edu

Status: - PCI-DAS1602/16: Analog input is tested, works. Analog output untested. - PCI-DAS1602/16jr: Driver
should work, but untested. Please report usage. - PCI-DAS1602/12: Same as above. - PCI-DAS1200, 1200jr:
Tested, works. - PCI-DAS1000, 1001, 1002: Should work, but untested. Please report usage.

Manufacturer Device Name

Measurement Computing PCI-DAS1602/16 cb_pcidas
Measurement Computing PCI-DAS1602/16jr cb_pcidas
Measurement Computing PCI-DAS1602/12 cb_pcidas
Measurement Computing PCI-DAS1200 cb_pcidas
Measurement Computing PCI-DAS1200jr cb_pcidas
Measurement Computing PCI-DAS1000 cb_pcidas
Measurement Computing PCI-DAS1001 cb_pcidas
Measurement Computing PCI_DAS1002 cb_pcidas

The boards’ autocalibration features are not yet supported.

Configuration options:

[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI

device will be used.

For commands, the scanned channels must be consecutive
(i.e. 4-5-6-7, 2-3-4,...), and must all have the same

range and aref.

48

6.1.9. cb_pcidas64.0 -- Driver for the ComputerBoards/MeasurementComputing
PCI-DAS64xx, 60XX, and 4020 series with the PLX 9080 PCI controller.

Author: Frank Mori Hesscfmhess@users.sourceforge:net

Status: works, but no streaming analog output yet

Comedi

Manufacturer Device Name

Measurement Computing PCI-DAS6402/16 cb_pcidas64
Measurement Computing PCI-DAS6402/12 cb_pcidas64
Measurement Computing PCI-DAS64/M1/16 cb_pcidas64
Measurement Computing PCI-DAS64/M2/16 cb_pcidas64
Measurement Computing PCI-DAS64/M3/16 cb_pcidas64
Measurement Computing PCI-DAS6402/16/JR cb_pcidas64
Measurement Computing PCI-DAS64/M1/16/IR cb_pcidas64
Measurement Computing PCI-DAS64/M2/16/IR cb_pcidas64
Measurement Computing PCI-DAS64/M3/16/IR cb_pcidas64
Measurement Computing PCI-DAS64/M1/14 cb_pcidas64
Measurement Computing PCI-DAS64/M2/14 cb_pcidas64
Measurement Computing PCI-DAS64/M3/14 cb_pcidas64
Measurement Computing PCI-DAS6023E cb_pcidas64
Measurement Computing PCI-DAS6025E cb_pcidas64
Measurement Computing PCI-DAS6034E cb_pcidas64
Measurement Computing PCI-DAS6035E cb_pcidas64
Measurement Computing PCI-DAS4020/12 cb_pcidas64

Configuration options:

[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

Feel free to send and success/failure reports to Frank Hess.

Some devices are not identified because the PCI device IDs are not yet
known. If you have such a board, contact Frank Hess and the ID can be

easily added.

49

Comedi

6.1.10. cb_pcidda.o -- ComputerBoards/MeasurementComputing PCI-DDA series
Author: Ivan Martinez<ivanmr@altavista.com, Frank Mori Hess<fmhess@users.sourceforge net

Status: Supports 08/16, 04/16, 02/16, 08/12, 04/12, and 02/12

Manufacturer Device Name

Measurement Computing PCI-DDA08/12 cb_pcidda
Measurement Computing PCI-DDA04/12 cb_pcidda
Measurement Computing PCI-DDA02/12 cb_pcidda
Measurement Computing PCI-DDA08/16 cb_pcidda
Measurement Computing PCI-DDA04/16 cb_pcidda
Measurement Computing PCI-DDA02/16 cb_pcidda

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI
device will be used.

Only simple analog output writing is supported.
So far it has only been tested with:
- PCI-DDA08/12

Please report sucess/failure with other different cards to
<comedi@comedi.org >.

6.1.11. cb_pcimdda.o -- A driver for this relatively new and uniquely designed board
Author: Calin Culianu<calin@ajvar.org-

Status: works

Manufacturer Device Name
Computer Boards PCIM-DDA06-16 pcimdda06-16

All features of the PCIM-DDAO06-16 board are supported. This board
has 6 16-bit AO channels, and the usual 8255 DIO setup. (24 channels,
configurable in banks of 8 and 4, etc.). This board does not support commands.

The board has a peculiar way of specifying AO gain/range settings -- You have

1 jumper bank on the card, which either makes all 6 AO channels either
5 Volt unipolar, 5V bipolar, 10 Volt unipolar or 10V bipolar.

50

Comedi

Since there is absolutely _no_ way to tell in software how this jumper is set
(well, at least according to the rather thin spec. from Measurement Computing
that comes with the board), the driver assumes the jumper is at its factory
default setting of +/-5V.

Also of note is the fact that this board features another jumper, whose
state is also completely invisible to software. It toggles two possible AO
output modes on the board:

- Update Mode: Writing to an AO channel instantaneously updates the actual
signal output by the DAC on the board (this is the factory default).

- Simultaneous XFER Mode: Writing to an AO channel has no effect until
you read from any one of the AO channels. This is useful for loading
all 6 AO values, and then reading from any one of the AO channels on the
device to instantly update all 6 AO values in unison. Useful for some
control apps, | would assume? If your jumper is in this setting, then you
need to issue your comedi_data_write()s to load all the values you want,
then issue one comedi_data_read() on any channel on the AO subdevice
to initiate the simultaneous XFER.

Configuration Options:
Just tell comedi_config that you want to use the cb_pcimdda driver as so:

comedi_config /dev/icomediO cb_pcimdda

6.1.12. comedi_parport.o -- Standard PC parallel port
Author: ds

Status: works in immediate mode

Manufacturer Device Name
standard parallel port comedi_parport

A cheap and easy way to get a few more digital /O lines. Steal
additional parallel ports from old computers or your neighbors’
computers.

Option list:

0: 1/0 port base for the parallel port.
1: IRQ

Parallel Port Lines:

pin subdev chan aka

1 2 0 strobe

51

2 0 0 data O

3 0 1 data 1

4 0 2 data 2

5 0 3 data 3

6 0 4 data 4

7 0 5 data 5

8 0 6 data 6

9 0 7 data 7

10 1 3 acknowledge
11 1 4 busy

12 1 2 output

13 1 1 printer selected
14 2 1 auto LF

15 1 0 error

16 2 2 init

17 2 3 select printer

18-25 ground

Subdevices 0 is digital I/O, subdevice 1 is digital input, and
subdevice 2 is digital output. Unlike other Comedi devices,
subdevice 0 defaults to output.

Pins 13 and 14 are inverted once by Comedi and once by the
hardware, thus cancelling the effect.

Pin 1 is a strobe, thus acts like one. There’s no way in software
to change this, at least on a standard parallel port.

Subdevice 3 pretends to be a digital input subdevice, but it always
returns 0 when read. However, if you run a command with
scan_begin_src=TRIG_EXT, it uses pin 10 as a external triggering
pin, which can be used to wake up tasks.

6.1.13. comedi_rt_timer.o -- Command emulator using real-time tasks

Author: ds, fmhess

Status: works

This driver requires RTAI or RTLinux to work correctly. It doesn't
actually drive hardware directly, but calls other drivers and uses

a real-time task to emulate commands for drivers and devices that
are incapable of native commands. Thus, you can get accurately
timed I/O on any device.

Since the timing is all done in software, sampling jitter is much
higher than with a device that has an on-board timer, and maximum
sample rate is much lower.

Comedi

52

Comedi

Configuration options:
[0] - minor number of device you wish to emulate commands for
[1] - subdevice number you wish to emulate commands for

6.1.14. comedi_test.o -- generates fake waveforms
Author: Joachim WuttkezJoachim.Wuttke@icn.siemens:deFrank Mori Hess<fmhess@uiuc.edu, ds

Status: works
This driver is mainly for testing purposes, but can also be used to
generate sample waveforms on systems that don’t have data acquisition
hardware.
Configuration options:
[0] - Amplitude in microvolts for fake waveforms (default 1 volt)
[1] - Period in microseconds for fake waveforms (default 0.1 sec)
Generates a sawtooth wave on channel 0, square wave on channel 1, additional

waveforms could be added to other channels (currently they return flatline
zero volts).

6.1.15. contec_pci_dio.o -- Driver for Contec PIO1616L digital io board
Author: Stefano Rivoik s.rivoir@gts.it>

Status: works

Manufacturer Device Name
Contec PIO1616L contec_pci_dio

Configuration Options:
none

53

6.1.16. dagboard2000.0 -- IOTech DAQBoard/2000
Author: Anders Blomdelkanders.blomdell@control.lth.se

Status: works

Comedi

Manufacturer Device Name

I0Tech DAQBoard/2000 dagboard2000

Much of the functionality of this driver was determined from reading
the source code for the Windows driver.

The FPGA on the board requires initialization code, which can either
be compiled into the driver or loaded by comedi_config using the -i
option. The latter is recommended, in order to save a bit of kernel
memory.

Configuration options:
[0] - pointer to FPGA initialization data
The pointer and size options are handled automatically

by comedi_config when you use the -i option.
[1] - size of FPGA data

6.1.17. das08.0 -- DAS-08 compatible boards
Author: Warren Jasper, ds, Frank Hess

Status: works

Manufacturer Device Name
ComputerBoards DAS08 das08
ComputerBoards DAS08-PGM das08-pgm
ComputerBoards DAS08-PGH das08-pgh
ComputerBoards DAS08-PGL das08-pgl
ComputerBoards DAS08-AOH das08-aoh
ComputerBoards DAS08-AOL das08-aol
ComputerBoards DAS08-AOM das08-aom
ComputerBoards DAS08/JR-AO das08/jr-ao
ComputerBoards DAS08/JR-16-A0 das08jr-16-ao
ComputerBoards PCI-DAS08 pci-das08
ComputerBoards PCM-DASO08 pcm-das08
ComputerBoards PC104-DAS08 pcl104-das08

54

Comedi

Manufacturer Device Name

ComputerBoards DASO08/JR/16 das08jr/16

This is a rewrite of the das08 and dasO8jr drivers.

Options (for ISA cards):
[0] - base io address

Options (for pci-das08):
[0] - bus (optional)
[1] = slot (optional)
Use the name ’pci-das08 for the pci-das08, NOT ’'das08'.

Options (for pcm-das08):
NONE

The das08 driver doesn’t support asynchronous commands, since
the cheap das08 hardware doesn’t really support them (except for
pcm-das08). The

comedi_rt_timer driver can be used to emulate commands for this
driver.

6.1.18. dasl16.0 -- DAS16 compatible boards
Author: Sam Moore, Warren Jasper, ds, Chris Baugher, Frank Hess, Roman Fietze

Status: works

Manufacturer Device Name

Keithley Metrabyte DAS-16 das-16

Keithley Metrabyte DAS-16G das-16g
Keithley Metrabyte DAS-16F das-16f
Keithley Metrabyte DAS-1201 das-1201
Keithley Metrabyte DAS-1202 das-1202
Keithley Metrabyte DAS-1401 das-1401
Keithley Metrabyte DAS-1402 das-1402
Keithley Metrabyte DAS-1601 das-1601
Keithley Metrabyte DAS-1602 das-1602
ComputerBoards PC104-DAS16/JR pcl04-dasl6jr
ComputerBoards PC104-DAS16JR/16 pcl04-dasl6jr/16
ComputerBoards CIO-DAS16JR/16 cio-das16jr/16
ComputerBoards CIO-DAS16/JR cio-das16/jr
ComputerBoards CIO-DAS1401/12 cio-das1401/12

55

Comedi

Manufacturer Device Name
ComputerBoards CIO-DAS1402/12 cio-das1402/12
ComputerBoards CIO-DAS1402/16 cio-das1402/16
ComputerBoards CIO-DAS1601/12 cio-das1601/12
ComputerBoards CIO-DAS1602/12 cio-das1602/12
ComputerBoards CIO-DAS1602/16 cio-das1602/16
ComputerBoards CIO-DAS16/330 cio-das16/330

A rewrite of the dasl6 and das1600 drivers.
Passing a zero for an option is the same as leaving it unspecified.

Both a dma channel and an irg (or use of 'timer mode’, option 8) are required
for timed or externally triggered conversions.

6.1.19. das16ml.o -- CIO-DAS16/M1

Author: Frank Mori Hesscfmhess@uiuc.edu

Status: works

Manufacturer Device Name
ClIO-DAS16/M1 cio-das16/m1

MeasurementComputing

This driver supports a single board - the CIO-DAS16/M1.
As far as | know, there are no other boards that have
the same register layout. Even the CIO-DAS16/M1/16 is
significantly different.

| was _barely_ able to reach the full 1 MHz capability

of this board, using a hard real-time interrupt

(set the TRIG_RT flag in your comedi_cmd and use

rtlinux or RTAI). The board can't do dma, so the bottleneck is
pulling the data across the ISA bus. | timed the interrupt
handler, and it took my computer ~470 microseconds to pull 512
samples from the board. So at 1 Mhz sampling rate,

expect your CPU to be spending almost all of its

time in the interrupt handler.

This board has some unusual restrictions for its channel/gain list. If the
list has 2 or more channels in it, then two conditions must be satisfied:

(1) - even/odd channels must appear at even/odd indices in the list
(2) - the list must have an even number of entries.

irg can be omitted, although the cmd interface will not work without it.

56

6.1.20. das1800.0 -- Keithley Metrabyte DAS1800 (& compatibles)

Author: Frank Mori Hess<fmhess@uiuc.edu

Status: works

Comedi

Manufacturer Device Name

Keithley Metrabyte DAS-1701ST das-1701st
Keithley Metrabyte DAS-1701ST-DA das-1701st-da
Keithley Metrabyte DAS-1701/A0 das-170l1ao
Keithley Metrabyte DAS-1702ST das-1702st
Keithley Metrabyte DAS-1702ST-DA das-1702st-da
Keithley Metrabyte DAS-1702HR das-1702hr
Keithley Metrabyte DAS-1702HR-DA das-1702hr-da
Keithley Metrabyte DAS-1702/A0 das-1702a0
Keithley Metrabyte DAS-1801ST das-1801st
Keithley Metrabyte DAS-1801ST-DA das-1801st-da
Keithley Metrabyte DAS-1801HC das-1801hc
Keithley Metrabyte DAS-1801A0 das-1801ao
Keithley Metrabyte DAS-1802ST das-1802st
Keithley Metrabyte DAS-1802ST-DA das-1802st-da
Keithley Metrabyte DAS-1802HR das-1802hr
Keithley Metrabyte DAS-1802HR-DA das-1802hr-da
Keithley Metrabyte DAS-1802HC das-1802hc
Keithley Metrabyte DAS-1802A0 das-1802a0

The waveform analog output on the ’'ao’ cards is not supported.

If you need it, send me (Frank Hess) an email.

Configuration options:
[0] - I/O port base address

[1] - IRQ (optional, required for timed or externally triggered conversions)
[2] - DMAOQ (optional, requires irq)
[3] - DMAL1 (optional, requires irq and dmaO)

57

Comedi

6.1.21. das6402.0 -- Keithley Metrabyte DAS6402 (& compatibles)
Author: Oystein Svendsexasvendsen@pvv.org

Status: bitrotten

Manufacturer Device Name
Keithley Metrabyte DAS6402 das6402

This driver has suffered bitrot.

6.1.22. das800.0 -- Keithley Metrabyte DAS800 (& compatibles)
Author: Frank Mori Hess<fmhess@uiuc.edw

Status: works, cio-das802/16 untested - email me if you have tested it

Manufacturer Device Name
Keithley Metrabyte DAS-800 das-800
Keithley Metrabyte DAS-801 das-801
Keithley Metrabyte DAS-802 das-802
Measurement Computing CIO-DAS800 cio-das800
Measurement Computing CIO-DAS801 cio-das801
Measurement Computing CIO-DAS802 cio-das802
Measurement Computing CIO-DAS802/16 cio-das802/16

Configuration options:
[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)

All entries in the channel/gain list must use the same gain and be
consecutive channels counting upwards in channel number (these are
hardware limitations.)

I've never tested the gain setting stuff since | only have a
DAS-800 board with fixed gain.

The cio-das802/16 does not have a fifo-empty status bit! Therefore
only fifo-half-full transfers are possible with this card.

58

6.1.23. dt2801.0 -- Data Translation DT2801 series and DTO1-EZ

Author: ds

Status: works

Comedi

Manufacturer Device Name
Data Translation DT2801 dt2801
Data Translation DT2801-A dt2801
Data Translation DT2801/5716A dt2801
Data Translation DT2805 dt2801
Data Translation DT2805/5716A dt2801
Data Translation DT2808 dt2801
Data Translation DT2818 dt2801
Data Translation DT2809 dt2801
Data Translation DTO1-EZ dt2801
This driver can autoprobe the type of board.
Configuration options:

[0] - I/O port base address

[1] - unused

[2] - A/D reference O=differential, 1=single-ended

[3] - A/D range

0 = [-10,10]
1 = [0,10]
[4] - D/A 0 range
0 = [-10,10]

1 = [-5,5]

2 = [-2.5,2.5]

3 = [0,10]

4 = [0,5]

[5] - D/A 1 range (same choices)
6.1.24. dt2811.0 -- Data Translation DT2811
Author: ds
Status: works
Manufacturer Device Name
Data Translation DT2811-PGL dt2811-pgl
Data Translation DT2811-PGH dt2811-pgh

59

Configuration options:
[0] - I/O port base address
[1] - IRQ, although this is currently unused
[2] - A/D reference
0 = signle-ended
1 = differential
2 = pseudo-differential (common reference)
[3] - A/D range
0 = [-5,5]
1 = [-2.5,2.5]
2 = [0,5]
[4] - D/A 0 range (same choices)
[4] - D/A 1 range (same choices)

6.1.25. dt2814.0 -- Data Translation DT2814

Author: ds

Status: complete

Comedi

Manufacturer Device Name

Data Translation DT2814 dt2814

Configuration options:
[0] - I/O port base address

(1] - IRQ

This card has 16 analog inputs multiplexed onto a 12 bit ADC. There
is a minimally useful onboard clock. The base frequency for the

clock is selected by jumpers, and the clock divider can be selected
via programmed I/O. Unfortunately, the clock divider can only be

a power of 10, from 1 to 1077, of which only 3 or 4 are useful. In
addition, the clock does not seem to be very accurate.

6.1.26. dt2815.0 -- Data Translation DT2815

Author: ds

Status: mostly complete, untested

60

Comedi

Manufacturer

Device

Name

Data Translation

DT2815

dt2815

I'm not sure anyone has ever tested this board.
contrary, please update.

Configuration options:
[0] - I/O port base base address
[1] - IRQ (unused)
[2] - Voltage unipolar/bipolar configuration

0 == unipolar 5V

1 == bipolar 5V

(OV - +5V)
(-5V -- +5V)

[3] - Current offset configuration

(4] -

(5] -

(6] -
(71 -
8] -
(9 -

[10] - Analog output 5 range configuration (same options)
[11] - Analog output 6 range configuration (same options)
[12] - Analog output 7 range configuration (same options)

0 == disabled
1 == enabled

Firmware program configuration

0 == program
1 == program
2 == program

3 == program

1 (see manual table
2 (see manual table
3 (see manual table
4 (see manual table

Analog output O range configuration

0

== voltage

1 == current

Analog
Analog
Analog
Analog

output 1 range
output 2 range
output 3 range
output 4 range

configuration
configuration
configuration
configuration

(OmA -- +32mAV)
(+4mA -- +20mAV)

(same
(same
(same
(same

If you have information

5-4)
5-4)
5-4)
5-4)

options)
options)
options)
options)

6.1.27. dt2817.0 -- Data Translation DT2817

Author: ds

Status: complete

Manufacturer

Device

Name

Data Translation

DT2817

dt2817

A very simple digital I/O card.

is configurable for input or output.

Four banks of 8 lines, each bank
One wonders why it takes a

50 page manual to describe this thing.

The driver (which, btw, is much less than 50 pages) has 1 subdevice
with 32 channels, configurable in groups of 8.

Configuration options:

61

[0] - I/O port base base address

6.1.28. dt282x.0 -- Data Translation DT2821 series (including DT-EZ)

Author: ds

Status: complete

Comedi

Manufacturer Device Name

Data Translation DT2821 dt2821
Data Translation DT2823 dt2823
Data Translation DT2824-PGH dt2824-pgh
Data Translation DT2824-PGL dt2824-pgl
Data Translation DT2825 dt2825
Data Translation DT2827 dt2827
Data Translation DT2828 dt2828
Data Translation DT21-EZ dt21-ez
Data Translation DT23-EZ dt23-ez
Data Translation DT24-EZ dt24-ez
Data Translation DT24-EZ-PGL dt24-ez-pgl

Configuration options:
[0] - I/O port base address

[1] - IRQ
[2] - DMA 1
[3] - DMA 2

[4] - Al jumpered for O=single ended, l=differential

[5] - Al jumpered for O=straight binary, 1=2's complement

[6] - AO O jumpered for O=straight binary, 1=2's complement

[7] - AO 1 jumpered for O=straight binary, 1=2's complement

[8] - Al jumpered for 0=[-10,10]Vv, 1=[0,10], 2=[-5,5], 3=[0,5]

[9] - AO O jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5],
4=[-2.5,2.5]

[10]- A0 1 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5],
4=[-2.5,2.5]

62

6.1.29. dt3000.0 -- Data Translation DT3000 series

Author: ds

Status: works

Comedi

Manufacturer Device Name
Data Translation DT3001 dt3000
Data Translation DT3001-PGL dt3000
Data Translation DT3002 dt3000
Data Translation DT3003 dt3000
Data Translation DT3003-PGL dt3000
Data Translation DT3004 dt3000
Data Translation DT3005 dt3000
Data Translation DT3004-200 dt3000
There is code to support Al commands, but it may not work.

AO commands are not supported.

6.1.30. fI512.0 -- unknown

Author: unknown

Status: unknown

Manufacturer Device Name
unknown FL512 f512

Digital 1/0 is not supported.

Configuration options:

[0] - I/O port base address

6.1.31. icp_multi.o -- Inova ICP_MULTI

Author: Anne Smorthitkanne.smorthit@sfwte.ch

63

Status: unknown

Comedi

Manufacturer

Device

Name

Inova

ICP_MULTI

icp_multi

6.1.32. ii_pci20kc.o -- Intelligent Instruments PCI-20001C carrier board

Author: Markus Kempkkempf@matsci.uni-sb.de

Status: works

Manufacturer

Device

Name

Intelligent Instrumentation PCI-20001C

ii_pci20kc

Supports the PCI-20001 C-2a Carrier board, and could probably support

the other carrier boards with small modifications.

options for PCI-20006M:

first: Analog output channel O range configuration

second: Analog

0
1
2

bipolar 10 (-10V -- +10V)
unipolar 10 (OV -- +10V)
bipolar 5 (-5V -- 5V)

output channel 1 range configuration

options for PCI-20341M:
first: Analog input gain configuration

0
1
2
3

1
10
100
200

Modules supported

6.1.33. ke_counter.o -- Driver for Kolter Electronic Counter Card

Author: mh

Status: tested

64

Comedi

Manufacturer Device Name

Intelligent Instrumentation PCI Counter Card [ke_counter] |Kolter Electronic

This driver is a simple driver to read the counter values from
Kolter Electronic PCI Counter Card.

6.1.34. me_dag.o -- Driver for the Meilhaus PCI data acquisition cards.
Author: Michael Hillmann<hillmann@syscongroup.de

Status: experimental

Manufacturer Device Name
Meilhaus ME-2600i Kolter Electronic
Meilhaus ME-2000i me_daq

Analog Output
Configuration options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

6.1.35. mpc8260cpm.o -- MPC8260 CPM module generic digital I/O lines
Author: ds

Status: experimental

Manufacturer Device Name

Motorola MPC8260 CPM mpc8260cpm

This driver is specific to the Motorola MPC8260 processor, allowing
you to access the processor's generic digital 1/O lines.

65

It is apparently missing some code.

6.1.36. multig3.0 -- Quanser Consulting MultiQ-3
Author: Anders Blomdelkanders.blomdell@control.lth.se

Status: works

Comedi

Manufacturer Device Name

Quanser Consulting MultiQ-3 multiq3

6.1.37. ni_670x.0 -- National Instruments 670x
Author: Bart Joris<bjoris@advalvas.he

Status: unknown

Manufacturer Device Name
National Instruments PCI-6703 ni_670x
National Instruments PCI-6704 ni_670x

The driver currently does not recognize the 6704, because the PCI
ID is not known.

Commands are not supported.

6.1.38. ni_at_a2150.0 -- National Instruments AT-A2150

Author: Frank Mori Hess

66

Status: works

Comedi

Manufacturer Device Name
National Instruments AT-A2150C at_a2150c
National Instruments AT-2150S at_a2150s
If you want to ac couple the board’s inputs, use AREF_OTHER.
Configuration options:

[0] - I/O port base address

[1] - IRQ (optional, required for timed conversions)

[2] - DMA (optional, required for timed conversions)
6.1.39. ni_at_ao.0 -- National Instruments AT-AO-6/10
Author: ds
Status: untested
Manufacturer Device Name
National Instruments AT-AO-6 at-ao-6
National Instruments AT-AO-10 at-ao-10

This driver has not been tested, but should work.

6.1.40. ni_atmio.o -- National Instruments AT-MIO-E series

Author: ds

Status: works

Manufacturer Device Name

National Instruments AT-MIO-16E-1 ni_atmio
National Instruments AT-MIO-16E-2 ni_atmio
National Instruments AT-MIO-16E-10 ni_atmio
National Instruments AT-MIO-16DE-10 ni_atmio

67

Comedi

Manufacturer Device Name

National Instruments AT-MIO-64E-3 ni_atmio
National Instruments IAT-MIO-16XE-50 ni_atmio
National Instruments AT-MIO-16XE-10 ni_atmio
National Instruments AT-Al-16XE-10 ni_atmio

The isapnptools package is required to use this board. Use isapnp to
configure the I/O base for the board, and then pass the same value as
a parameter in comedi_config. A sample isapnp.conf file is included

in the etc/ directory of Comedilib.

Comedilib includes a utility to autocalibrate these boards. The
boards seem to boot into a state where the all calibration DACs
are at one extreme of their range, thus the default calibration

is terrible. Calibration at boot is strongly encouraged.

To use the extended digital I/O on some of the boards, enable the
8255 driver when configuring the Comedi source tree.

External triggering is supported for some events. The channel index
(scan_begin_arg, etc.) maps to PFIO - PFI9.

Some of the more esoteric triggering possibilities of these boards
are not supported.

6.1.41. ni_atmiol6d.o -- National Instruments AT-MIO-16D
Author: Chris R. Baughet:baugher@enteract.cam

Status: unknown

Manufacturer Device Name
National Instruments AT-MIO-16 atmiol6
National Instruments AT-MI0O-16D atmiol6d

6.1.42. ni_daq_dio24.0 -- National Instruments PCMCIA DAQ-Card DIO-24

Author: Daniel Vecino Castetdvecino@able.es

68

Comedi

Status: ?

Manufacturer Device Name

National Instruments National Instruments PCMCIA atmiol6d
DAQ-Card DIO-24

6.1.43. ni_labpc.o -- National Instruments Lab-PC (& compatibles)
Author: Frank Mori Hess<fmhess@users.sourceforge:net

Status: works

Manufacturer Device Name
National Instruments DAQCard-1200 dagcard-1200
National Instruments Lab-PC-1200 labpc-1200
National Instruments Lab-PC-1200Al labpc-1200ai
National Instruments Lab-PC+ lab-pc+
National Instruments PCI-1200 pci-1200

Tested with lab-pc-1200. For the older Lab-PC+, not all input ranges
and analog references will work, the available ranges/arefs will
depend on how you have configured the jumpers on your board

(see your owner’s manual).

Configuration options - ISA boards:
[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)
[2] - DMA channel (optional)

Configuration options - PCI boards:
[0] - bus (optional)
[1] - slot (optional)

Configuration options - PCMCIA boards:
none

Lab-pc+ has quirky chanlist when scanning multiple channels. Scan
sequence must start at highest channel, then decrement down to
channel 0. 1200 series cards can scan down like lab-pc+ or scan
up from channel zero.

69

6.1.44. ni_mio_cs.o -- National Instruments DAQCard E series

Author: ds

Status: works

Comedi

Manufacturer Device Name

National Instruments DAQCard-Al-16XE-50 ni_mio_cs
National Instruments DAQCard-Al-16E-4 ni_mio_cs
National Instruments DAQCard-6062E ni_mio_cs
National Instruments DAQCard-6024E ni_mio_cs

See the notes in the ni_atmio.o driver.

6.1.45. ni_pcidio.o -- National Instruments PCI-DIO32HS, PCI-DIO96, PCI-6533,

PCI-6503

Author: ds

Status: works

Manufacturer Device Name

National Instruments PCI-DIO-32HS ni_pcidio
National Instruments PXI1-6533 ni_pcidio
National Instruments PCI-DIO-96 ni_pcidio
National Instruments PCI-DIO-96B ni_pcidio
National Instruments PXI1-6508 ni_pcidio
National Instruments PCI-6503 ni_pcidio
National Instruments PCI-6503B ni_pcidio
National Instruments PCI-6503X ni_pcidio
National Instruments PXI-6503 ni_pcidio
National Instruments PCI-6534 ni_pcidio
National Instruments PCI-6533 ni_pcidio

The DIO-96 appears as four 8255 subdevices.

driver notes for details.

The DIO32HS board appears as one subdevice, with 32 channels.
Each channel is individually I/O configurable.
is 0=A0, 1=A1, 2=A2, ...

8=B0, 16=CO0, 24=DO0.

supports simple digital I/O; no handshaking is supported.

See the 8255

The channel order
The driver only

70

DMA mostly works for the PCI-DIO32HS, but only in timed input mode.

This driver could be easily modified to support AT-MIO32HS and

AT-MIO96.

6.1.46. ni_pcimio.o -- National Instruments PCI-MIO-E series (all boards)

Author: ds

Status: works

Comedi

Manufacturer Device Name

National Instruments PCI-MIO-16XE-50 ni_pcimio
National Instruments PCI-MIO-16XE-10 ni_pcimio
National Instruments PX1-6030E ni_pcimio
National Instruments PCI-MIO-16E-1 ni_pcimio
National Instruments PCI-MIO-16E-4 ni_pcimio
National Instruments PCI-6040E ni_pcimio
National Instruments PXI-6040E ni_pcimio
National Instruments PCI-6031E ni_pcimio
National Instruments PCI-6032E ni_pcimio
National Instruments PCI-6033E ni_pcimio
National Instruments PCI-6071E ni_pcimio
National Instruments PCI-6023E ni_pcimio
National Instruments PCI-6024E ni_pcimio
National Instruments PCI-6025E ni_pcimio
National Instruments PXI-6025E ni_pcimio
National Instruments PCI-6034E ni_pcimio
National Instruments PCI-6035E ni_pcimio
National Instruments PCI-6052E ni_pcimio
National Instruments PCI-6110 ni_pcimio
National Instruments PCI-6111 ni_pcimio
National Instruments PCI-6711 ni_pcimio
National Instruments PCI-6713 ni_pcimio
National Instruments PXI-6071E ni_pcimio
National Instruments PXI-6070E ni_pcimio
National Instruments PXI-6052E ni_pcimio
National Instruments PCI-6036E ni_pcimio
National Instruments PCI-6731 ni_pcimio

71

Comedi

Manufacturer Device Name
National Instruments PCI-6733 ni_pcimio

These boards are almost identical to the AT-MIO E series, except that
they use the PCI bus instead of ISA (i.e., AT). See the notes for
the ni_atmio.o driver for additional information about these boards.

Autocalibration is supported on many of the devices, using the
calibration utility in Comedilib.

By default, the driver uses DMA to transfer analog input data to
memory. When DMA is enabled, not all triggering features are
supported.

Streaming analog output is not supported on PCI-671x and PCI-673x.

PCl IDs are not known for PCI-6731 and PCI-6733. Digital /O may not
work on 673x.

Information (number of channels, bits, etc.) for some devices may be
incorrect. Please check this and submit a bug if there are problems
for your device.

6.1.47. pcl711.0 -- Advantech PCL-711 and 711b, ADLink ACL-8112
Author: ds, Janne Jalkanetjalkanen@cs.hutfi, Eric Bunn<ebu@cs.hut.f

Status: mostly complete

Manufacturer Device Name
Advantech PCL-711 pcl711
Advantech PCL-711B pcl711b
AdLink ACL-8112HG acl8112hg
IAdLink ACL-8112DG acl8112dg

Since these boards do not have DMA or FIFOs, only immediate mode is
supported.

72

6.1.48. pcl724.0 -- Advantech PCL-724, PCL-722, PCL-731 ADLink ACL-7122,
ACL-7124, PET-48DIO

Author: Michal Dobescmajkl@tesnet.cz

Status: untested

Comedi

Manufacturer Device Name
Advantech PCL-724 pcl724
Advantech PCL-722 pcl722
Advantech PCL-731 pcl731
ADLink ACL-7122 acl7122
ADLink ACL-7124 acl7124
ADLink PET-48DIO pet48dio

This is driver for digital I/O boards PCL-722/724/731 with 144/24/48 DIO
and for digital 1/0 boards ACL-7122/7124/PET-48DIO with 144/24/48 DIO.
It need 8255.0 for operations and only immediate mode is supported.

See the source for configuration details.

6.1.49. pcl725.0 -- Advantech PCL-725 (& compatibles)

Author: ds

Status: unknown

Manufacturer

Device

Name

IAdvantech

PCL-725

pcl725

6.1.50. pcl726.0 -- Advantech PCL-726 & compatibles

Author: ds

Status: untested

73

Comedi

Manufacturer Device Name
IAdvantech PCL-726 pcl726
Advantech PCL-727 pcl727
)Advantech PCL-728 pcl728
ADLink ACL-6126 acl6126
IADLink ACL-6128 acl6128

Interrupts are not supported.

Options for PCL-726:
[0] - IO Base
[2]...[7] - DI/A output range for channel 1-6:
0: 0-5Vv, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4: 4-20mA, 5: unknown (external reference)

Options for PCL-727:
[0] - IO Base
[2]...[23] - D/A output range for channel 1-12:
0: 0-5v, 1: 0-10V, 2: +/-5V,
3: 4-20mA

Options for PCL-728 and ACL-6128:
[0] - IO Base
[2], [3] - D/IA output range for channel 1 and 2:
0: 0-5Vv, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4. 4-20mA, 5: 0-20mA

Options for ACL-6126:
[0] - IO Base
[1] - IRQ (O=disable, 3, 5, 6, 7, 9, 10, 11, 12, 15) (currently ignored)
[2]...[7] - D/A output range for channel 1-6:
0: 0-5Vv, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4: 4-20mA

6.1.51. pcl812.0 -- Advantech PCL-812/PG, PCL-813/B, ADLink ACL-8112DG/HG/PG,
ACL-8113, ACL-8216, ICP DAS A-821PGH/PGL/PGL-NDA, A-822PGH/PGL,
A-823PGH/PGL, A-826PG, ICP DAS 1SO-813

Author: Michal Dobescmajkl@tesnet.cz

Status: works (I hope. My board fire up under my hands and | cann't test all features.)

Manufacturer Device Name
Advantech PCL-812 pcl812
Advantech PCL-812PG pcl812pg

74

Comedi

Manufacturer Device Name
Advantech PCL-813 pcl813
Advantech PCL-813B pcl813b
ADLink ACL-8112DG acl8112dg
ADLink ACL-8112HG acl8112hg
ADLink ACL-8113 acl-8113
ADLink ACL-8216 acl8216
ICP ISO-813 iso813
ICP A-821PGH a821pgh
ICP A-821PGL a821pgl
ICP A-821PGL-NDA a821pcinda
ICP A-822PGH a822pgh
ICP A-822PGL a822pgl
ICP A-823PGH a823pgh
ICP A-823PGL a823pgl
ICP A-826PG a826pg

This driver supports insn and cmd interfaces. Some boards support only insn
becouse their hardware don't allow more (PCL-813/B, ACL-8113, ISO-813).
Data transfer over DMA is supported only when you measure only one

channel, this is too hardware limitation of these boards.
See the head of the source file pcl812.c for configuration options.

6.1.52. pcl816.0 -- Advantech PCL-816 cards, PCL-814
Author: Juan Grigerajuan@grigera.com.af

Status: works

Manufacturer Device Name
)/Advantech PCL-816 pcl816
)Advantech PCL-814B pcl814b

PCL 816 and 814B have 16 SE/DIFF ADCs, 16 DACs, 16 DI and 16 DO.
Differences are at resolution (16 vs 12 hits).

The driver support Al command mode, other subdevices not written.
Analog output and digital input and output are not supported.
Configuration Options:

[0] - IO Base
[1] - IRQ (O=disable, 2, 3, 4, 5, 6, 7)

75

[2] - DMA (O=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

6.1.53. pcl818.0 -- Advantech PCL-818 cards, PCL-718

1= 1MHz clock for 8254

Author: Michal Dobescmajkl@tesnet.cz

Status: works

Comedi

Manufacturer Device Name
)Advantech PCL-818L pcl818l
IAdvantech PCL-818H pcl818h
)Advantech PCL-818HD pcl818hd
Advantech PCL-818HG pcl818hg
/Advantech PCL-818 pcl818
Advantech PCL-718 pcl718

All cards have 16 SE/8 DIFF ADCs, one or two DACs, 16 DI and 16 DO.
Differences are only at maximal sample speed, range list and FIFO
support.
The driver support Al mode 0, 1, 3 other subdevices (AO, DI, DO) support
only mode 0. If DMA/FIFO/INT are disabled then Al support only mode O.
PCL-818HD and PCL-818HG support 1lkword FIFO. Driver support this FIFO
but this code is untested.
A word or two about DMA. Driver support DMA operations at two ways:
1) DMA uses two buffers and after one is filled then is generated
INT and DMA restart with second buffer. With this mode I'm unable run
more that 80Ksamples/secs without data dropouts on K6/233.
2) DMA uses one buffer and run in autoinit mode and the data are
from DMA buffer moved on the fly with 2kHz interrupts from RTC.
This mode is used if the interrupt 8 is available for allocation.
If not, then first DMA mode is used. With this | can run at
full speed one card (100ksamples/secs) or two cards with
60ksamples/secs each (more is problem on account of ISA limitations).
To use this mode you must have compiled kernel with disabled
"Enhanced Real Time Clock Support".
Maybe you can have problems if you use xntpd or similar.
If you've data dropouts with DMA mode 2 then:
a) disable IDE DMA
b) switch text mode console to fb.

Options for PCL-818L:

[0] - IO Base

[1] - IRQ (O=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (O=disable, 1, 3)

76

2

2

[3] - 0, 10=10MHz clock for 8254
1= 1MHz clock for 8254
[4] - 0, 5=A/D input -5V.. +5V
1, 10=A/D input -10V..+10V
[5] - 0, 5=D/A output 0-5V (internal reference -5V)
1, 10=D/A output 0-10V (internal reference -10V)
=D/A output unknow (external reference)

Options for PCL-818, PCL-818H:
[0] - IO Base
[1] - IRQ (O=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (O=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254
1= 1MHz clock for 8254
[4] - 0, 5=D/A output 0-5V (internal reference -5V)
1, 10=D/A output 0-10V (internal reference -10V)
=D/A output unknow (external reference)

Options for PCL-818HD, PCL-818HG:
[0] - IO Base
[1] - IRQ (O=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA/FIFO (-1=use FIFO, O=disable both FIFO and DMA,
1=use DMA ch 1, 3=use DMA ch 3)

[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254
[4] - 0, 5=D/A output 0-5V (internal reference -5V)

1, 10=D/A output 0-10V (internal reference -10V)
2 =D/A output unknow (external reference)

Options for PCL-718:
[0] - IO Base
[1] - IRQ (O=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (O=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254
1= 1MHz clock for 8254

[4] - 0=A/D Range is +/-10V
1= +/-5V
2= +/-2.5V
3= +/-1V
4= +/-0.5V
5= user defined bipolar
6= 0-10v
7= 0-5Vv
8= 0-2v
9= 0-1v
10= user defined unipolar

[5] - 0, 5=D/A outputs 0-5V (internal reference -5V)
1, 10=D/A outputs 0-10V (internal reference -10V)
2=D/A outputs unknow (external reference)
[6] - 0, 60=max 60kHz A/D sampling

1,100=max 100kHz A/D sampling (PCL-718 with Option 001 installed)

Comedi

77

6.1.54. pcm3730.0 -- PCM3730
Author: Blaine Lee

Status: unknown

Comedi

Manufacturer Device Name

/Advantech PCM-3730 pcm3730

Configuration options:
[0] - I/O port base

6.1.55. pcmad.o -- Winsystems PCM-A/D12, PCM-A/D16
Author: ds

Status: untested

Manufacturer Device Name
Winsystems PCM-A/D12 pcmadl1?2
Winsystems PCM-A/D16 pcmadl6

This driver was written on a bet that | couldn't write a driver
in less than 2 hours. | won the bet, but never got paid. =(

Configuration options:

[0] - I/O port base

[1] - unused

[2] - Analog input reference
0 = single ended
1 = differential

[3] - Analog input encoding (must match jumpers)
0 = straight binary
1 = two’s complement

6.1.56. poc.o -- Generic driver for very simple devices Device names: dac02

Author: ds

78

Status: unknown

Comedi

Manufacturer Device Name
Keithley Metrabyte DAC-02 dac02
Advantech PCL-733 pcl733
Advantech PCL-734 pcl734

This driver is indended to support very simple ISA-based devices,

Configuration options:
[0] - I/O port base

6.1.57. quatech_daqgp_cs.o -- Quatech DAQP PCMCIA data capture cards

Author: Brent Baccalacbaccala@freesoft.org

Status: unkown

Manufacturer Device Name
Quatech DAQP-208 daqgp
Quatech DAQP-308 dagp
6.1.58. rtd520.0 -- Real Time Devices PCl4520/DM7520

Author: Dan Christian

Status: Works. Only tested on DM7520-8. Not SMP safe.

Manufacturer Device Name
Real Time Devices DM7520HR-1 DM7520
Real Time Devices DM7520HR-8 DM7520-8
Real Time Devices PCl14520 PCl14520
Real Time Devices PCl14520-8 PCl14520-8

Configuration options:

[0] - PCI bus of device (optional)
If bus/slot is not specified, the first available PCI

79

device will be used.
[1] - PCI slot of device (optional)

6.1.59. rti800.0 -- Analog Devices RTI-800/815
Author: ds

Status: unknown

Comedi

Manufacturer Device Name
/Analog Devices RTI-800 rti800
Analog Devices RTI-815 rti815

Configuration options:
[0] - I/O port base address

[1] - IRQ
[2] - A/D reference
0 = differential
1 = pseudodifferential (common)
2 = single-ended
[3] - A/D range
0 = [-10,10]
1 = [-5,5]
2 = [0,10]

[4] - A/ID encoding
0 = two’'s complement
1 = straight binary
[5] - DAC 0 range
0 = [-10,10]
1 = [0,10]
[5] - DAC 0 encoding
0 = two’'s complement
1 = straight binary
[6] - DAC 1 range (same as DAC 0)
[7] - DAC 1 encoding (same as DAC 0)

6.1.60. rti802.0 -- Analog Devices RTI-802

Author: Anders Blomdelkanders.blomdell@control.lth.se

80

Comedi

Status: works

Manufacturer Device Name
Analog Devices RTI-802 rti802
Configuration Options:

[0] - ilo base

[1] - unused

[2] - dac#0 O=two’s comp, l=straight
[3] - dac#0 O=bipolar, 1=unipolar
[4] - dac#l ..

[17] - dac#7 ...

6.1.61. serial2002.0 -- Driver for serial connected hardware
Author: Anders Blomdell

Status: in development

6.1.62. skel.o -- Skeleton driver, an example for driver writers
Author: ds
Status: works

This driver is a documented example on how Comedi drivers are
written.

Configuration Options:
none

81

Comedi

6.1.63. ssv_dnp.o -- SSV Embedded Systems DIL/Net-PC
Author: Robert Schwebetrobert@schwebel.de

Status: unknown

Manufacturer Device Name
SSV Embedded Systems DIL/Net-PC 1486 dnp-1486

7. Comedi Reference

Reference foconstants and macrogata types and structureendfunctions

7.1. Headerfiles:comedi.nh and comedilib.h

All application programmust include the header filwmedilib.n . (This file itself includesomedi.h .) They
contain the full interface of Comedi: defines, function prototypes, data structures.

The following Sections give more details.

7.2. Constants and Macros

7.2.1. CR_PACK

CR_PACK is used to initialize the elements of tfeanlist array in thecomedi_cmdlata structure, and the
chanspec member of theeomedi_insrstructure.

#define CR_PACK(chan,rng,aref) ((((aref)&0x3)<<24) | (((rng)&0xff)<<16) | (chan))
Thechan argument is the channel you wish to use, with the channel numbering starting at zero.

The rangeng is an index, starting at zero, whose meaning is device dependentofferli_get_n_ranges()
andcomedi_get_rangeflinctions are useful in discovering information about the available ranges.

Thearef argument indicates what reference you want the device to use. It can be any of the following:

82

Comedi

AREF_GROUND

is for inputs/outputs referenced to ground.

AREF_COMMON

is for a “common” reference (the low inputs of all the channels are tied together, but are isolated from
ground).

AREF_DIFF

is for differential inputs/outputs.

AREF_OTHER
is for any reference that does not fit into the above categories.

Particular drivers may or may not use the AREF flags. If they are not supported, they are silently ignored.

7.2.2. RANGE_LENGTH (deprecated)

Rangetype values are library-internal tokens that represent an array of range information structures. These
numbers are primarily used for communication between the kernel and library.

The RANGE_LENGTH() macro returns the length of the array that is specified by the rangetype token.

The RANGE_LENGTH() macro is deprecated, and should not be used in new applications. It is scheduled to be
removed from the header file at version 1.0. Binary compatibility may be broken for version 1.1.

7.3. Data Types and Structures

This Section explains the data structures that users of the Comedi API are confronted with:

typedef struct subdevice_struct

typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct
typedef struct

comedi_devinfo_struct
comedi_t_struct
sampl_t_struct
Isampl_t_struct
comedi_sv_t_struct
comedi_cmd_struct
comedi_insn_struct
comedi_range_struct
comedi_krange_struct
comedi_insnlist_struct

subdevice_struct
comedi_devinfo
comedi_t ;
sampl_t ;
Isampl_t ;
comedi_sv_t ;
comedi_cmd ;
comedi_insn ;
comedi_range
comedi_krange ;
comedi_insnlist

The data structures used in the implementation of the Comedi drivers are eéssetiere

83

Comedi

7.3.1. subdevice_struct

The data typeubdevice_struct is used to store information about a subdevice. This structure is usually
filled in automatically when the driver is loaded (“attached”), so programmers need not access this data structure
directly.

typedef struct subdevice_struct subdevice;

struct subdevice_struct{
unsigned int type;
unsigned int n_chan;
unsigned int subd_flags;
unsigned int timer_type;
unsigned int len_chanlist;
Isampl_t maxdata;
unsigned int flags;
unsigned int range_type;

Isampl_t *maxdata_list;
unsigned int *range_type_list;
unsigned int *flags_list;

comedi_range *rangeinfo;
ccomedi_range **rangeinfo_list;

unsigned int has_cmd,;
unsigned int has_insn_bits;

int cmd_mask_errno;
comedi_cmd *cmd_mask;

int cmd_timed_errno;
comedi_cmd *cmd_timed;

7.3.2. comedi_devinfo

The data typeomedi_devinfo is used to store information about a device. This structure is usually filled in
automatically when the driver is loaded (“attached”), so programmers need not access this data structure directly.

typedef struct comedi_devinfo_struct comedi_devinfo;

struct comedi_devinfo_struct{

unsigned int version_code; /I version number of the Comedi code
unsigned int n_subdevs; /I number of subdevices on this device
char driver_name[COMEDI_NAMELEN];

char board_name[COMEDI_NAMELEN];

int read_subdevice; // number of read devices

int write_subdevice; // number of write devices

int unused[30];

84

Comedi

7.3.3. comedi_t

The data typeomedi_t is used to represent an open Comedi device:

typedef struct comedi_t_struct comedi_t;

struct comedi_t_struct{
int magic; /I driver-specific magic number, for identification
int fd; /I file descriptor, for open() and close()
int n_subdevices; // number of subdevices on this device
comedi_devinfo devinfo;
subdevice *subdevices; // pointer to subdevice list
/I filled in automatically at load time
unsigned int has_insnlist_ioctl; // can process instruction lists
unsigned int has_insn_ioctl; /I can process instructions

%

Avalid comedi_t pointer is returned by a successful calctamedi_open()and should be used for subsequent
access to the device. It is a transparent type, and pointers tatypedi_t should not be dereferenced by the
application.

7.3.4. sampl_t

typedef unsigned short sampl_t;

The data typesampl_tis one of the generic types used to represent data values in Comedilib. It is used in a few
places where a data type shorter theampl_tis useful. On most architecturesgmpl_tis defined to baint16

Most drivers represent data transferreddsd() andwrite() usingsampl_t Applications should check the
subdevice flag SDF_LSAMPL to determine if the subdevice gae®pl_tor Isampl_t

7.3.5. Isampl_t

typedef unsigned int Isampl_t;

The data typésampl_tis the data type typically used to represent data values in libcomedi. On most
architecturessampl_tis defined to be uint32.

7.3.6. comedi_trig (deprecated)

typedef struct comedi_trig_struct comedi_trig;

struct comedi_trig_struct{
unsigned int subdev; /* subdevice */
unsigned int mode; /* mode */
unsigned int flags;
unsigned int n_chan; /* number of channels */
unsigned int *chanlist; [* channel/range list */
sampl_t *data; /* data list, size depends on subd flags */
unsigned int n; /* number of scans */
unsigned int trigsrc;

85

Comedi

unsigned int trigvar;
unsigned int trigvarl;
unsigned int data_len;
unsigned int unused[3];

The comedi_trig structure is a control structure used by the COMEDI_TRIG ioctl, an older method of
communicating instructions to the driver and hardware. Use of comedi_trig is deprecated, and should not be used
in new applications.

7.3.7. comedi_sv _t

typedef struct comedi_sv_struct comedi_sv_t;
struct comedi_sv_struct{

comedi_t *dev;

unsigned int subdevice;

unsigned int chan;

[* range policy */

int range;

int aref;

/* number of measurements to average (for ai) */
int n;

Isampl_t maxdata;

The comedi_sv_t structure is used by the comedi_sv_*() functions to provide a simple method of accurately
measuring slowly varying inputs. See the relevant section for more details.

7.3.8. comedi_cmd

typedef struct comedi_cmd_struct comedi_cmd;
struct comedi_cmd_struct{
unsigned int subdev;

unsigned int flags;

unsigned int start_src;
unsigned int start_arg;

unsigned int scan_begin_src;
unsigned int scan_begin_arg;

unsigned int convert_src;
unsigned int convert_arg;

unsigned int scan_end_src;
unsigned int scan_end_arg;

unsigned int stop_src;

86

Comedi
unsigned int stop_arg;

unsigned int *chanlist;
unsigned int chanlist_len;

sampl_t *data;
unsigned int data_len;

More information on using commands can be found in the command section.

7.3.9. comedi_insn

typedef struct comedi_insn_struct comedi_insn;

struct comedi_insn_struct{
unsigned int insn;
unsigned int n;
Isampl_t *data;
unsigned int subdev;
unsigned int chanspec;
unsigned int unused[3];

Comedi instructions are described by the comedi_insn structure. Applications send instructions to the driver in
order to perform control and measurement operations that are done immediately or synchronously, i.e., the
operations complete before program control returns to the application. In particular, instructions cannot describe
acquisition that involves timers or external events.

The field insn determines the type of instruction that is sent to the driver. Valid instruction types are:

INSN_READ

read values from an input channel

INSN_WRITE

write values to an output channel

INSN_BITS

read/write values on multiple digital I/O channels

INSN_CONFIG

configure a subdevice

INSN_GTOD

read a timestamp, identical to gettimeofday()

INSN_WAIT

wait a specified number of nanoseconds

87

Comedi

The number of samples to read or write, or the size of the configuration structure is specified by the field n, and
the buffer for those samples by data. The field subdev is the subdevice index that the instruction is sent to. The
field chanspec specifies the channel, range, and analog reference (if applicable).

Instructions can be sent to drivers using comedi_do_insn(). Multiple instructions can be sent to drivers in the
same system call using comedi_do_insnlist().

7.3.10. comedi_range

typedef struct comedi_range_struct comedi_range;

struct comedi_range_struct{
double min;
double max;
unsigned int unit;
}comedi_range;

The comedi_range structure conveys part of the information necessary to translate sample values to physical
units, in particular, the endpoints of the range and the physical unit type. The physical unit type is specified by
the field unit, which may take the values UNIT_volt for volts, UNIT_mA for milliamps, or UNIT_none for
unitless. The endpoints are specified by the fields min and max.

7.3.11. comedi_krange

typedef struct comedi_krange_struct comedi_krange;

struct comedi_krange_struct{
int min;
int max;
unsigned int flags;

}

The comedi_krange structure is used to transfer range information between the driver and Comedilib, and should
not normally be used by applications. The structure conveys the same information as the comedi_range structure,
except the fields min and max are integers, multiplied by a factor of 2000000 compared to the counterparts in
comedi_range.

In addition, kcomedilib uses the comedi_krange structure in place of the comedi_range structure.

7.3.12. comedi_insnlist

typedef struct comedi_insnlist_struct comedi_insnlist;
struct comedi_insnlist_struct{
unsigned int n_insns;

comedi_insn *insns;

b

An instruction list (insnlist) structure is used to communicate a list of instructions.

88

7.4. Comedi Function Reference

comedi_close

Name
comedi_close — close a Comedi device

Synopsis

#include <comedilib.h >
int comedi_close (comedi * device);

Description

Close a device previously opened by comedi_open().

Return value

If sucessful, comedi_close returns 0. On failure, -1 is returned.

comedi_open

Name
comedi_open — open a Comedi device

Synopsis

#include <comedilib.h >

comedi_t * comedi_open (const char * filename);

Comedi

89

Comedi

Description

Open a Comedi device specified by the file filename.

Return value

If sucessful, comedi_open returns a pointer to a valid comedi_t structure. This structure is transparent; the
pointer should not be dereferenced by the application. NULL is returned on failure.

comedi_loglevel

Name
comedi_loglevel — change Comedilib logging properties

Synopsis

#include <comedilib.h >
int comedi_loglevel (int loglevel);

Description

This function affects the output of debugging and error messages from Comedilib. By increasing the loglevel,
additional debugging information will be printed. Error and debugging messages are printed to the stream stderr.

The default loglevel can be set by using the environment variable COMEDI_LOGLEVEL. The default loglevel
is 1.

In order to conserve resources, some debugging information is disabled by default when Comedilib is compiled.
The meaning of the loglevels is as follows:
COMEDI_LOGLEVEL=0 Comedilib prints nothing.

COMEDI_LOGLEVEL=1 (default) Comedilib prints error messages when there is a self-consistency error (i.e.,
an internal bug.)

90

Comedi

COMEDI_LOGLEVEL=2 Comedilib prints an error message when an invalid parameter is passed.

COMEDI_LOGLEVEL=3 Comedilib prints an error message whenever an error is generated in the Comedilib
library or in the C library, when called by Comedilib.

COMEDI_LOGLEVEL=4 Comedilib prints a lot of junk.

Return value

This function returns the previous loglevel.

comedi_perror

Name
comedi_perror — print a Comedilib error message

Synopsis

#include <comedilib.h >
void comedi_perror (const char * s);

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An internal
library variable stores an error number, which can be retrieved with comedi_errno(). This error number can be
converted to a human-readable form by the functions comedi_perror() and comedi_strerror().

These functions are intended to mimic the behavior of the standard C library functions perror(), strerror(), and
errno. In particular, Comedilib functions sometimes return an error that is generated inside the C library; the
comedi error message in this case is the same as the C library.

The function comedi_perror() prints an error message to stderr. The error message consists of the argument
string, a colon, a space, a description of the error condition, and a new line.

91

Comedi

comedi_strerror

Name
comedi_strerror — return string describing Comedilib error code

Synopsis

#include <comedilib.h >
char * comedi_strerror (int errnum);

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An internal
library variable stores an error number, which can be retrieved with comedi_errno(). This error number can be
converted to a human-readable form by the functions comedi_perror() and comedi_strerror().

These functions are intended to mimic the behavior of the standard C library functions perror(), strerror(), and
errno. In particular, Comedilib functions sometimes return an error that is generated inside the C library; the
comedi error message in this case is the same as the C library.

The function comedi_strerror() returns a pointer to a character string describing the Comedilib error errnum. The
persistence of the returned pointer is undefined, and should not be trusted after the next Comedilib call. An
unrecognized error number will return a pointer to the string "undefined error”, or similar.

comedi_errno

Name
comedi_errno — number of last Comedilib error

Synopsis

#include <comedilib.h >
int comedi_errno (void);

92

Comedi

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An internal
library variable stores an error number, which can be retrieved with comedi_errno(). This error number can be
converted to a human-readable form by the functions comedi_perror() and comedi_strerror().

These functions are intended to mimic the behavior of the standard C library functions perror(), strerror(), and
errno. In particular, Comedilib functions sometimes return an error that is generated inside the C library; the
comedi error message in this case is the same as the C library.

The function comedi_errno() returns an integer describing the most recent comedilib error. This integer may be
used as the errnum parameter for comedi_strerror().

Note that comedi_errno() is deliberately different than the variable errno. This is to overcome difficulties in
making errno thread-safe.

comedi_fileno

Name
comedi_fileno — integer descriptor of Comedilib device

Synopsis

#include <comedilib.h >
int comedi_fileno (comedi_t * device);

Description

The function comedi_fileno returns the integer descriptor for the device dev. This descriptor can then be used as
the file descriptor parameter of read(), write(), etc. This function is intended to mimic the standard C library
function fileno(). If dev is an invalid comedi_t pointer, the function returns -1 and sets the appropriate Comedilib
error value.

93

Comedi

comedi_get _n_subdevices

Name
comedi_get_n_subdevices — number of subdevices

Synopsis

#include <comedilib.h >
int comedi_get_n_subdevices (comedi_t * device);

Description

Returns the number of subdevices belonging to the Comedi device referenced by the parameter device.

comedi_get_version_code

Name
comedi_get_version_code — Comedi version code

Synopsis

#include <comedilib.h >
int comedi_get_version_code (comedi_t * device);

Description

Returns the Comedi kernel module version code. A valid Comedi device referenced by the parameter device is
necessary to communicate with the kernel module. On error, -1 is returned.

The version code is encoded as a bitfield of three 8-bit numbers. For example, 0x00073d is the version code for
version 0.7.61.

94

Comedi

This function is of limited usefulness. A typical mis-application of this function is to use it to determine if a
certain feature is supported. If the application needs to know of the existence of a particular feature, an existence
test function should be written and put in the Comedilib source.

comedi_get_driver_name

Name
comedi_get_driver_name — Comedi driver name

Synopsis

#include <comedilib.h >
char * comedi_get_driver_name (comedi_t * device);

Description

The function comedi_get_driver_name returns a pointer to a string containing the name of the driver being used
by comedi for the comedi device represented by device. This pointer is valid until the device is closed. This
function returns NULL if there is an error.

comedi_get _board name

Name
comedi_get board_name — Comedi device name

Synopsis

#include <comedilib.h >
char * comedi_get board_name (comedi_t * device);

95

Comedi

Description

The function comedi_get_board_name returns a pointer to a string containing the name of the device. This
pointer is valid until the comedi descriptor it is closed. This function returns NULL if there is an error.

comedi_get_subdevice_type

Name

comedi_get_subdevice_type — type of subdevice

Synopsis

#include <comedilib.h >

int comedi_get_subdevice_type (comedi_t * device , unsigned int subdevice);
Description

The function comedi_get_subdevice_type() returns an integer describing the type of subdevice that belongs to
the comedi device device and has the index subdevice. The function returns -1 if there is an error. XXX
Subdevice type table

comedi_find_subdevice by type

Name
comedi_find_subdevice_by type — search for subdevice type

Synopsis

#include <comedilib.h >
int comedi_find_subdevice_by_type (comedi_t * device , int type , unsigned int
start_subdevice);

96

Comedi
Description
The function comedi_find_subdevice_by_type() tries to locate a subdevice belonging to comedi device device,
having type type, starting with the subdevice start_subdevice. If it finds a subdevice with the requested type, it

returns its index. If it does not locate the requested subdevice, it returns -1 and sets the Comedilib error number
to XXX "subdevice not found". If there is an error, the function returns -1 and sets the appropriate error.

comedi_get_read_subdevice

Name

comedi_get_read_subdevice — find streaming input subdevice
Synopsis

#include <comedilib.h >

int comedi_get_read_subdevice (comedi_t * device);
Description

The function comedi_get _read_subdevice() returns the subdevice that allows streaming input for device dev. If
no subdevice supports streaming input, -1 is returned and the Comedilib error number is set to XXX "subdevice
not found".

comedi_get write_subdevice

Name
comedi_get_write_subdevice — find streaming output subdevice

Synopsis

#include <comedilib.h >
int comedi_get_write_subdevice (comedi_t * device);

97

Comedi

Description

The function comedi_get_write_subdevice() returns the subdevice that allows streaming output for device dev. If
no subdevice supports streaming output, -1 is returned and the Comedilib error number is set to XXX "subdevice
not found".

comedi_get_subdevice_flags

Name

comedi_get_subdevice_flags — properties of subdevice

Synopsis

#include <comedilib.h >

int comedi_get_subdevice_flags (comedi_t * device , unsigned int subdevice);
Description

This function returns a bitfield describing the capabilities of the specified subdevice. If there is an error, -1 is
returned, and the Comedilib error value is set.

XXX table.

comedi_get_n_channels

Name
comedi_get_n_channels — number of subdevice channels

98

Comedi

Synopsis

#include <comedilib.h >

int comedi_get n_channels (comedi_t * device , unsigned int subdevice);
Description

The function comedi_get_n_channels() returns the number of channels of the subdevice belonging to the comedi
device device and having index subdevice. This function returns -1 on error and the Comedilib error value is set.

comedi_range _is_chan_specific

Name

comedi_range_is_chan_specific — range information depends on channel
Synopsis

#include <comedilib.h >

int comedi_range_is_chan_specific (comedi_t * device , unsigned int subdevice);
Description

If each channel of the specified subdevice has different range information, this function returns 1. Otherwise, this
function returns 0. On error, this function returns -1.

comedi_maxdata_is_chan_specific

Name
comedi_maxdata_is_chan_specific — maximum sample depends on channel

99

Comedi

Synopsis

#include <comedilib.h >

int comedi_maxdata_is_chan_specific (comedi_t * device , unsigned int subdevice);
Description

If each channel of the specified subdevice has different maximum sample values, this function returns 1.
Otherwise, this function returns 0. On error, this function returns -1.

comedi_get _maxdata

Name

comedi_get maxdata — maximum sample of channel

Synopsis

#include <comedilib.h >

Isampl_t comedi_get maxdata (comedi_t * device , unsigned int subdevice , unsigned int
channel);

Description

The function comedi_get_maxdata() returns the maximum valid data value for channel chan of subdevice
subdevice belonging to the comedi device device This function returns 0 on error.

comedi_get n_ranges

Name
comedi_get n_ranges — number of ranges of channel

100

Comedi

Synopsis

#include <comedilib.h >

int comedi_get n_ranges (comedi_t * device , unsigned int subdevice , unsigned int
channel);

Description

The function comedi_get_n_ranges() returns the number of ranges of the channel chan belonging to the
subdevice of the comedi device device. This function returns -1 on error.

comedi_get range

Name

comedi_get range — range information of channel

Synopsis

#include <comedilib.h >

comedi_range * comedi_get range (comedi_t * device , unsigned int subdevice , unsigned
int channel , unsigned int range);

Description

The function comedi_get_range() returns a pointer to a comedi_range structure that contains information that
can be used to convert sample values to or from physical units. The pointer is valid until the Comedi device
device is closed. If there is an error, NULL is returned.

101

Comedi

comedi_find_range

Name

comedi_find_range — search for range

Synopsis

#include <comedilib.h >

int comedi_find_range (comedi_t * device , unsigned int subdevice , unsigned int
channel , unsigned int unit , double min, double max);

Description

The function comedi_find_range() tries to locate the optimal (smallest) range for the channel chan belonging to a
subdevice of the comedi device device, that includes both min and max in units. If a matching range is found, the
index of the matching range is returned. If no matching range is available, the function returns -1.

comedi_get buffer_size

Name
comedi_get_buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h >
int comedi_get_buffer_size (comedi_t * device , unsigned int subdevice);

Description

The function comedi_get_buffer_size() returns the size (in bytes) of the streaming buffer for the subdevice
specified by device and subdevice. On error, -1 is returned.

102

Comedi

comedi_get _max_buffer_size

Name

comedi_get_max_buffer_size — maximum streaming buffer size

Synopsis

#include <comedilib.h >

int comedi_get_max_buffer_size (comedi_t * device , unsigned int subdevice);
Description

The function comedi_get_max_buffer_size() returns the maximum allowable size (in bytes) of the streaming
buffer for the subdevice specified by device and subdevice. Changing the maximum buffer size requires
appropriate privileges. On error, -1 is returned.

comedi_set buffer size

Name
comedi_set buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h >
int comedi_set_buffer_size (comedi_t * device , unsigned int subdevice , unsigned int
size);

Description

The function comedi_set_buffer_size() changes the size of the streaming buffer for the subdevice specified by
device and subdevice. The parameter size must be a multiple of the virtual memory page size.

The virtual memory page size can be determined using sysconf(_ SC_PAGE_SIZE).

103

Comedi

comedi_trigger

Name
comedi_trigger — perform streaming input/output (deprecated)

Synopsis

#include <comedilib.h >
int comedi_trigger (comedi_t * device , comedi_trig * trig);

Status

deprecated

Description

The function comedi_trigger() instructs Comedi to perform the command specified by the trigger structure trig.
The return value depends on the particular trig being issued. If there is an error, -1 is returned.

comedi_do_insnlist

Name
comedi_do_insnlist — perform multiple instructions

Synopsis

#include <comedilib.h >
int comedi_do_insnlist (comedi_t * device , comedi_insnlist * list);

104

Comedi

Description

The function comedi_do_insnlist() performs multiple Comedi instructions as part of one system call. In addition,
Comedi attempts to perform the instructions atomically, that is, on standard Linux kernels, no process
preemption should occur during the instructions. However, the process may be preempted before or after the
group of instructions.

This function can be used to avoid the overhead of multiple system calls, or to ensure that multiple instructions
occur without significant delay between them. Preemption may occur if any of the instructions or the data arrays
of any of the instructions exist in non-resident or copy-on-write pages.

Return value

The function comedi_do_insnlist() returns the number of sucessfully completed instructions. Error information
for the unsucessful instruction is not available. If there is an error before the first instruction can be executed, -1
is returned.

comedi_do_insn

Name

comedi_do_insn — perform instruction

Synopsis

#include <comedilib.h >

int comedi_do_insn (comedi_t * device , comedi_insn * instruction);
Description

The function comedi_do_insn() performs a single instruction. If sucessful, comedi_do_insn() returns the number
of samples measured, which may be less than the number of requested samples. Comedi limits the number of
requested samples in order to enforce fairness among processes. If there is an error, -1 is returned.

105

Comedi

comedi_lock

Name

comedi_lock — subdevice reservation

Synopsis

#include <comedilib.h >

int comedi_lock (comedi_t * device , unsigned int subdevice);
Description

The function comedi_lock() reserves a subdevice for use by the current process. While the lock is held, no other
process is allowed to read, write, or configure that subdevice, although other processes can read information
about the subdevice. The lock is released when comedi_unlock() is called, or the device is closed. If sucessful, 0
is returned. If there is an error, -1 is returned.

comedi_unlock

Name

comedi_unlock — subdevice reservation

Synopsis

#include <comedilib.h >

int comedi_unlock (comedi_t * device , unsigned int subdevice);
Description

The function comedi_unlock() released a subdevice lock acquired by comedi_lock(). If sucessful, O is returned,
otherwise -1.

106

Comedi

comedi_to_phys

Name
comedi_to_phys — convert sample to physical units

Synopsis

#include <comedilib.h >
double comedi_to_phys (Isampl_t data , comedi_range * range , Isampl_t maxdata);

Description

Converts data given in sample values (Isampl_t, between 0 and maxdata) into physical units (double). The
parameter range represents the conversion information to use, and the parameter maxdata represents the
maximum possible data value for the channel that the data was read.

Conversion of endpoint sample values, that is, sample values equal to 0 or maxdata, is affected by the Comedilib
out-of-range behavior. If the out-of-range behavior is set to COMEDI_OOR_NAN, endpoint values are

converted to NAN. If the out-of-range behavior is set to COMEDI_OOR_NUMBER, the endpoint values are
converted similarly to other values.

If there is an error, NAN is returned.

comedi_from_phys

Name
comedi_from_phys — convert physical units to sample

Synopsis

#include <comedilib.h >
Isampl_t comedi_from_phys (double data , comedi_range * range , Isampl_t maxdata);

107

Comedi

Description

Converts data given in physical units (data) into sample values (Isampl_t, between 0 and maxdata). The
parameter rng represents the conversion information to use, and the parameter maxdata represents the maximum
possible data value for the channel that the data will be written to.

Conversion is not affected by out-of-range behavior. Out-of-range data parameters are silently truncated to the
range O to maxdata.

comedi_data_read

Name

comedi_data_read — read single sample from channel

Synopsis

#include <comedilib.h >

int comedi_data read (comedi_t * device , unsigned int subdevice , unsigned int
channel , unsigned int range , unsigned int aref , Isampl_t * data);
Description

Reads a single sample on the channel specified by the Comedi device device, the subdevice subdevice, and the
channel channel. For the A/D conversion (if appropriate), the device is configured to use range specification
range and (if appropriate) analog reference type aref. Analog reference types that are not supported by the device
are silently ignored.

The function comedi_data_read() reads one data value from the specified channel and places the data value in the
location pointed to by data.

WARNING: comedi_data_read() does not do any pausing to allow multiplexed analog inputs to settle before
performing an analog to digital conversion. If you are switching between different channels and need to allow
your analog input to settle for an accurate reading, use comedi_data_read_delayed(), or set the input channel at
an earlier time with comedi_data_read_hint().

On sucess, comedi_data_read() returns 1 (the number of samples read). If there is an error, -1 is returned.

108

Comedi
Data values returned by this function are unsigned integers less than or equal to the maximum sample value of

the channel, which can be determined using the function comedi_get maxdata(). Conversion of data values to
physical units can be performed by the function comedi_to_phys().

comedi_data read_delayed

Name

comedi_data_read_delayed — read single sample from channel after delaying for specified settling time
Synopsis

#include <comedilib.h >

int comedi_data_read_delayed (comedi_t * device , unsigned int subdevice , unsigned

int channel , unsigned int range , unsigned int aref , Isampl_t * data , unsigned int

nanosec);

Description

Similar to comedi_data_read() except it will wait for the specified number of nanoseconds between setting the
input channel and taking a sample. For analog inputs, most boards have a single analog to digital converter
which is multiplexed to be able to read multiple channels. If the input is not allowed to settle after the
multiplexer switches channels, the reading will be inaccurate. This function is useful for allowing a multiplexed
analog input to settle when switching channels.

Although the settling time is specified in nanoseconds, the actual settling time will be rounded up to the nearest
microsecond.

comedi_data_read_hint

Name
comedi_data_read_hint — tell driver which channel/range/aref you are going to read from next

109

Comedi

Synopsis

#include <comedilib.h >

int comedi_data read_hint (comedi_t * device , unsigned int subdevice , unsigned int
channel , unsigned int range , unsigned int aref);

Description

Used to prepare an analog input for a subsequent call to comedi_data_read(). It is not necessary to use this
function, but it can be useful for eliminating inaccuaracies caused by insufficient settling times when switching
the channel or gain on an analog input. This function sets an analog input to the channel, range, and aref
specified but does not perform an actual analog to digital conversion.

Alternatively, one can simply use comedi_data_read_delayed(), which sets up the input, pauses to allow settling,
then performs a conversion.

comedi_data_ write

Name

comedi_data_write — write single sample to channel

Synopsis

#include <comedilib.h >

int comedi_data_write (comedi_t * device , unsigned int subdevice , unsigned int
channel , unsigned int range , unsigned int aref , Isampl_t data);
Description

Writes a single sample on the channel that is specified by the Comedi device device, the subdevice subdevice,
and the channel channel. If appropriate, the device is configured to use range specification range and analog
reference type aref. Analog reference types that are not supported by the device are silently ignored.

The function comedi_data_write() writes the data value specified by the parameter data to the specified channel.

On sucess, comedi_data_write() returns 1 (the number of samples written). If there is an error, -1 is returned.

110

Comedi

comedi_dio_config

Name

comedi_dio_config — change input/output properties of channel

Synopsis

#include <comedilib.h >

int comedi_dio_config (comedi_t * device , unsigned int subdevice , unsigned int
channel , unsigned int direction);

Description

The function comedi_dio_config() configures individual channels in a digital I/O subdevice to be either input or
output, depending on the value of parameter direction. Valid directions are COMEDI_INPUT or
COMEDI_OUTPUT.

Depending on the capabilities of the hardware device, multiple channels may be grouped together to determine
direction. In this case, a single call to comedi_dio_config() for any channel in the group will affect the entire

group.

If sucessful, 1 is returned, otherwise -1.

comedi_dio_read

Name

comedi_dio_read — read single bit from digital channel

Synopsis

#include <comedilib.h >

int comedi_dio_read (comedi_t * device , unsigned int subdevice , unsigned int
channel , unsigned int * bit);

111

Comedi

Description

The function reads the channel channel belonging to the subdevice subdevice of device device. The data value
that is read is stored in the location pointed to by bit. This function is equivalent to
comedi_data_read(device,subdevice,channel,0,0,bit). This function does not require a digital subdevice or a
subdevice with a maximum data value of 1 to work properly.

Return values and errors are the same as comedi_data_read().

comedi_dio_write

Name

comedi_dio_write — write single bit to digital channel

Synopsis

#include <comedilib.h >

int comedi_dio_write (comedi_t * device , unsigned int subdevice , unsigned int
channel , unsigned int bit);

Description

The function writes the value bit to the channel channel belonging to the subdevice subdevice of device device.
This function is equivalent to comedi_data_write(device,subdevice,channel,0,0,bit). This function does not
require a digital subdevice or a subdevice with a maximum data value of 1 to work properly.

Return values and errors are the same as comedi_data_write().

112

Comedi

comedi_dio_bitfield

Name
comedi_dio_bitfield — read/write multiple digital channels
Synopsis

#include <comedilib.h >
int comedi_dio_bhitfield (comedi_t * device , unsigned int subdevice , unsigned int
write_mask , unsigned int * bits);

Description

The function comedi_dio_bhitfield() allows multiple channels to be read simultaneously from a digital input or
digital I/O device. The parameter write_mask and the value pointed to by bits are interpreted as bit fields, with
the least significant bit representing channel 0. For each bit in write_mask that is set to 1, the cooresponding bit
in *bits is written to the digital output channel. After writing all the output channels, each channel is read, and
the result placed in the approprate bits in *bits. The result of reading an output channel is undefined. It is not
possible to access channels greater than 31 using this function.

comedi_sv_init

Name
comedi_sv_init — slowly-varying inputs

Synopsis

#include <comedilib.h >
int comedi_sv_init (comedi_sv_t * sv, comedi_t * device , unsigned int subdevice
unsigned int channel);

Status

deprecated

113

Comedi

Description

The function comedi_sv_init() initializes the slow varying Comedi structure sv to use the device device, the
analog input subdevice subdevice, and the channel channel. The slow varying Comedi structure is used by
comedi_sv_measure() to accurately measure an analog input by averaging over many samples. The default
number of samples is 100. This function returns 0 on success, -1 on error.

comedi_sv_update

Name
comedi_sv_update — slowly-varying inputs

Synopsis

#include <comedilib.h >
int comedi_sv_update (comedi_sv_t * sV);

Status

deprecated

Description

The function comedi_sv_update() updates internal parameters of the slowly varying Comedi structure sv.

comedi_sv_measure

Name
comedi_sv_measure — slowly-varying inputs

114

Comedi
Synopsis

#include <comedilib.h >
int comedi_sv_measure (comedi_sv_t * sv, double * data);

Status

deprecated

Description

The function comedi_sv_measure() uses the slowly varying Comedi structure sv to measure a slowly varying
signal. If sucessful, the result (in physical units) is stored in the location pointed to by data, and the number of
samples is returned. On error, -1 is returned.

comedi_get cmd_src_mask

Name
comedi_get cmd_src_mask — streaming input/output capabilities

Synopsis

#include <comedilib.h >
int comedi_get cmd_src_mask (comedi_t * device , unsigned int subdevice , comedi_cmd *
command);

Description

The command capabilities of the subdevice indicated by the parameters device and subdevice are probed, and the
results placed in the command structure pointed to by the parameter command. The trigger source elements of
the command structure are set to the logical OR value of possible trigger sources. Other elements in the structure
are undefined. If sucessful, O is returned, otherwise -1.

115

Comedi

comedi_get cmd_generic_timed

Name

comedi_get_cmd_generic_timed — streaming input/output capabilities

Synopsis

#include <comedilib.h >

int comedi_get_cmd_generic_timed (comedi_t * device , unsigned int subdevice ,
comedi_cmd * command, unsigned int period_ns);

Description

The command capabilities of the subdevice indicated by the parameters device and subdevice are probed, and the
results placed in the command structure pointed to by the parameter command. The command structure pointed
to by the parameter command is modified to be a valid command that can be used as a parameter to
comedi_command(). The command measures samples at a rate that corresponds to the period period_ns. The
rate is adjusted to a rate that the device can handle. If sucessful, 0 is returned, otherwise -1.

comedi_cancel

Name

comedi_cancel — stop streaming input/output in progress
Synopsis

#include <comedilib.h >

int comedi_cancel (comedi_t * device , unsigned int subdevice);
Description

The function comedi_cancel() can be used to stop a Comedi command previously started by comedi_command()
that is still in progress on the subdevice indicated by the parameters device and subdevice. This may not return
the subdevice to a ready state, since there may be samples in the buffer that need to be read.

116

Comedi

If sucessful, 0 is returned, otherwise -1.

comedi_command

Name
comedi_command — start streaming input/output

Synopsis

#include <comedilib.h >
int comedi_command (comedi_t * device , comedi_cmd * command);

Description

The function comedi_command() starts streaming input or output. The command structure pointed to by the
parameter command specifies the acquisition. The command must be able to pass comedi_command_test() with
a return value of 0, or comedi_command() will fail. For input subdevices, sample values are read using the
function read(). For output subdevices, sample values are written using the function write().

If sucessful, 0 is returned, otherwise -1.

comedi_command_test

Name
comedi_command_test — test streaming input/output configuration

Synopsis

#include <comedilib.h >
int comedi_command_test (comedi_t * device , comedi_cmd * command);

117

Comedi
Description
The function comedi_command_test() tests the command structure pointed to by the parameter command and
returns an integer describing the testing stages that were sucessfully passed. In addition, if elements of the

command structure are invalid, they may be modified. Source elements are modified to remove invalid source
triggers. Argument elements are adjusted or rounded to the nearest valid value.

The meanings of the return value are as follows.
0 indicates a valid command.

1 indicates that one of the *_src members of the command contained an unsupported trigger. The bits
corresponding to the unsupported triggers are zeroed.

2 indicates that the particular combination of *_src settings is not supported by the driver, or that one of the *_src
members has the bit corresponding to multiple trigger sources set at the same time.

3 indicates that one of the *_arg members of the command is set outside the range of allowable values. For
instance, an argument for a TRIG_TIMER source which exceeds the board’s maximum speed. The invalid *_arg
members will be adjusted to valid values.

4 indicates that one of the *_arg members required adjustment. For instance, the argument of a TRIG_TIMER
source may have been rounded to the nearest timing period supported by the board.

5 indicates that some aspect of the command’s chanlist is unsupported by the board. For example, some board’s
require that all channels in the chanlist use the same range.

comedi_poll

Name

comedi_poll — force updating of streaming buffer
Synopsis

#include <comedilib.h >
int comedi_poll (comedi_t * device , unsigned int subdevice);

118

Comedi

Description

The function comedi_poll() is used on a subdevice that has a Comedi command in progress in order to update
the streaming buffer. If supported by the driver, all available samples are copied to the streaming buffer. These
samples may be pending in DMA buffers or device FIFOs. If sucessful, the number of additional bytes available
is returned. If there is an error, -1 is returned.

comedi_set_max_buffer_size

Name
comedi_set_max_buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h >
int comedi_set_max_buffer_size (comedi_t * device , unsigned int subdevice , unsigned
int max_size);

Description

The function comedi_set_max_buffer_size() changes the maximum allowable size (in bytes) of the streaming
buffer for the subdevice specified by device and subdevice. Changing the maximum buffer size requires
appropriate privileges. If sucessful, the old buffer size is returned. On error, -1 is returned.

comedi_get buffer_contents

Name
comedi_get_buffer_contents — streaming buffer status

Synopsis

#include <comedilib.h >
int comedi_get_buffer_contents (comedi_t * device , unsigned int subdevice);

119

Comedi

Description

The function comedi_get_buffer_contents() is used on a subdevice that has a Comedi command in progress. The
number of bytes that are available in the streaming buffer is returned. If there is an error, -1 is returned.

comedi_mark_buffer_ read

Name
comedi_mark_buffer_read — streaming buffer status

Synopsis

#include <comedilib.h >
int comedi_mark_buffer_read (comedi_t * device , unsigned int subdevice , unsigned int
num_bytes);

Description

The function comedi_mark_buffer_read() is used on a subdevice that has a Comedi command in progress. This
function can be used to indicate that the next num_bytes bytes in the buffer are no longer needed and may be
discarded. If there is an error, -1 is returned.

comedi_get buffer_offset

Name
comedi_get_bhuffer_offset — streaming buffer status

120

Comedi

Synopsis

#include <comedilib.h >

int comedi_get_buffer_offset (comedi_t * device , unsigned int subdevice);
Description

The function comedi_get_buffer_offset() is used on a subdevice that has a Comedi command in progress. This
function returns the offset in bytes of the read pointer in the streaming buffer. This offset is only useful for
memory mapped buffers. If there is an error, -1 is returned.

comedi_get_timer

Name
comedi_get_timer — timer information (deprecated)

Synopsis

#include <comedilib.h >
int comedi_get_timer (comedi_t * device , unsigned int subdevice , double frequency
unsigned int * trigvar , double * actual_frequency);

Status

deprecated

Description

The function comedi_get_timer converts the frequency frequency to a number suitable to send to the driver in a
comedi_trig structure. This function remains for compatibility with very old versions of Comedi, that converted
sampling rates to timer values in the libary. This conversion is now done in the kernel, and every device has the
timer type nanosec_timer, indicating that timer values are simply a time specified in nanoseconds.

121

Comedi

comedi_timed_1chan

Name

comedi_timed_1chan — streaming input (deprecated)

Synopsis

#include <comedilib.h >

int comedi_timed_1chan (comedi_t * device , unsigned int subdevice , unsigned int
channel , unsigned int range , unsigned int aref , double frequency , unsigned int

num_samples , double * data);

Status

deprecated

Description

Not documented.

comedi_set global oor_behavior

Name

comedi_set_global_oor_behavior — out-of-range behavior

Synopsis

#include <comedilib.h >

int comedi_set_global_oor_behavior (enum comedi_oor_behavior behavior);
Status

alpha

122

Comedi

Description

This function changes the Comedilib out-of-range behavior. This currently affects the behavior of
comedi_to_phys() when converting endpoint sample values, that is, sample values equal to O or maxdata. If the
out-of-range behavior is set to COMEDI_OOR_NAN, endpoint values are converted to NAN. If the out-of-range
behavior is set to COMEDI_OOR_NUMBER, the endpoint values are converted similarly to other values.

The previous out-of-range behavior is returned.

comedi_apply_calibration

Name
comedi_apply_calibration — set calibration from file

Synopsis

#include <comedilib.h >
int comedi_apply_calibration (comedi_t *device , unsigned int subdevice , unsigned int
channel , unsigned int range , unsigned int aref , const char *file_path);

Status

alpha

Description

This function sets the calibration of the specified subdevice so that it is in proper calibration when using the
specified channel, range and aref. It does so by performing writes to the appropriate channels of the board’s
calibration subdevice(s). Depending on the hardware, the calibration settings used may or may not depend on the
channel, range, or aref. Furthermore, the calibrations for different channels, ranges, or arefs may not be
independent. For example, some boards cannot have their analog inputs calibrated for multiple input ranges
simultaneously. Applying a calibration for range 1 may blow away a previously applied calibration for range 0.
Applying a calibration for analog input channel 0 may cause the same calibration to be applied to all the other
analog input channels as well. Your only guarantee is that calls to comedi_apply_calibration() on different
subdevices will not interfere with each other.

123

Comedi

In practice, their are some rules of thumb on how calibrations behave. No calibrations depend on the aref. A
multiplexed analog input will have calibration settings that do not depend on the channel, and applying a setting
for one channel will affect all channels equally. Analog outputs, and analog inputs with independent a/d
converters for each input channel, will have calibrations settings which do depend on the channel, and the
settings for each channel will be independent of the other channels.

If you wish to investigate exactly what comedi_apply_calibration() is doing, you can perform reads on your
board’s calibration subdevice to see which calibration channels it is changing. You can also try to decipher the
calibration file directly (it's a text file).

The file_path parameter can be used to specify the file which contains the calibration information. If
file_path is NULL, then comedilib will use a default file location. The calibration information used by this
function is generated by the comedi_calibrate program (see its man page).

The functions comedi_parse_calibration_file(), comedi_apply_parsed_calibration(), and
comedi_cleanup_calibration() provide the same functionality at a slightly lower level.

Return value

Zero on success, a hegative number on failure.

comedi_apply parsed_calibration

Name

comedi_apply_parsed_calibration — set calibration from memory

Synopsis

#include <comedilib.h >

int comedi_apply_parsed_calibration (comedi_t * device , unsigned int subdevice
unsigned int channel , unsigned int range , unsigned int aref , const
comedi_calibration_t *calibration);

Status

alpha

124

Comedi

Description

This function is similar to comedi_apply_calibration() except the calibration information is read from memory
instead of a file. This function can be more efficient than comedi_apply_calibration() since the calibration file
does not need to be reparsed with every call. Gddédration is obtained by a call to
comedi_parse_calibration_file().

Return value

Zero on success, a hegative number on failure.

comedi_cleanup_calibration_file

Name

comedi_cleanup_calibration_file — free calibration resources

Synopsis

#include <comedilib.h >

void comedi_cleanup_calibration_file (comedi_calibration_t *calibration);
Status

alpha

Description

This function frees the resources associated withléoration obtained from
comedi_parse_calibration_file@alibration can not be used again after calling this function.

125

Comedi

comedi_get default_calibration_path

Name
comedi_get_default_calibration_path — get default calibration file path

Synopsis

#include <comedilib.h >
char* comedi_get_default_calibration_path (comedi_t *dev);

Status

alpha

Description

This function returns a string containing a default calibration file path appropriateefor Memory for the
string is allocated by the function, and should be freed when the string is no longer needed.

Return value

A string which contains a file path useable by comedi_parse_calibration_file(). On error, NULL is returned.

comedi_parse_calibration_file

Name
comedi_parse_calibration_file — set calibration

Synopsis

#include <comedilib.h >
comedi_calibration_t* comedi_parse_calibration_file (const char *file_path);

126

Comedi

Status

alpha

Description

This function parses a calibration file (produced by the comedi_calibrate program) and returns a pointer to a
comedi_calibration_t which can be passed to the comedi_apply_parsed_calibration() function. When you are
finished using the comedi_calibration_t, you should call comedi_cleanup_calibration() to free the resources
associated with the comedi_calibration_t.

The comedi_get_default_calibration_path() function may be useful in conjunction with this function.

Return value

A pointer to parsed calibration information on success, or NULL on failure.

Glossary

Application Program Interface

The (documented) set of function calls supported by a particular application, by which programmers can
access the functionality available in the application.

buffer

Comedi uses permanently allocated kernel memory for streaming input and output to store data that has
been measured by a device, but has not been read by an application. These buffers can be resized by the
Comedilib functioncomedi_buffer XXX() or thecomedi_config utility.

buffer overflow

This is an error message that indicates that the driver ran out of space in a Comedi buffer to put samples. It
means that the application is not copying data out of the buffer quickly enough. Often, this problem can be
fixed by making the Comedi buffer larger. Seenedi_buffer XXX for more information.

127

Comedi

Differential 10

Direct Memory Access

DMA is a method of transferring data between a device and the main memory of a computer. DMA
operates differently on ISA and PCI cards. ISA DMA is handled by a controller on the motherboard and is
limited to transfers to/from the lowest 16 MB of physical RAM and can only handle a single segment of
memory at a time. These limitations make it almost useless. PCI ("bus mastering”) DMA is handled by a
controller on the device, and can typically address 4 GB of RAM and handle many segments of memory
simultaneously. DMA is usually not the only means to data transfer, and may or may not be the optimal
transfer mechanism for a particular situation.

First In, First Out

Most devices have a limited amount of on-board space to store samples before they are transferred to the
Comedi buffer. This allows the CPU or DMA controller to do other things, and then efficiently process a
large number of samples simultaneously. It also increases the maximum interrupt latency that the system
can handle without interruptions in data.

Comedi command

Comedi commands are the mechanism that applications configure subdevices for streaming input and
output.

command

See:Comedi command

configuration option

instruction

Comedi instructions are the mechanism used by applications to do immediate input from channels, output
to channels, and configuration of subdevices and channels.

instruction list

Instruction lists allow the application to perform multiple Comedi instructions in the same system call.

128

Comedi

option

See Alsooption list.

option list

Option lists are used wittomedi_config to perform driver configuration.
See Alsoconfiguration option option.

overrun

This is an error message that indicates that there was device-level problem, typically with trigger pulses
occurring faster than the board can handle.

poll

The term poll (and polling) is used for several different related concepts in Comedi. Comedi implements the
poll) system call for Comedi devices, which is similarstgect() , and returns information about file
descriptors that can be read or written. Comedilib also has a function cattedli_poll() , which causes

the driver to copy all available data from the device to the Comedi buffer. In addition, some drivers may use
a polling technique in place of interrupts.

129

