goxy:

Manual for version 1.5.5

Written by Dimitri van Heesch

(©1997-2007

CONTENTS

Contents

10

11

12

13

14

15

16

17

18

19

20

21

User Manual

Compiling from source on Unix
Installing the binaries on Unix

Known compilation problems for Unix
Compiling from source on Windows
Installing the binaries on Windows
Tools used to develop doxygen

Step 1: Creating a configuration file
Step 2: Running doxygen

Step 3: Documenting the sources
Special documentation blocks
Putting documentation after members

Documentation at other places

Special documentation blocks in Python

Special documentation blocks in VHDL

Modules
Member Groups

Subpaging

Links to web pages and mail addresses

Links to classes.

Links to files.

Links to functions.

10

11

12

14

15

19

20

23

24

26

29

30

37

37

37

38

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

CONTENTS

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Links to variables, typedefs, enum types, enum values and defines.

typedefs.

Output Formats

Reference Manual
Format
Project related options

Build related options

Options related to warning and progress messages

Input related options

Source browsing related options
Alphabetical index options
HTML related options

LaTeX related options

RTF related options

Man page related options

XML related options
AUTOGEN_DEF related options
PERLMOD related options
Preprocessor related options
External reference options

Dot options

Search engine options

Introduction

38

40

41

48

57

60

63

65

65

67

68

68

71

72

72

73

73

73

74

74

75

77

78

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

CONTENTS

44 \addtogroup <name> [(title)]

45 \callgraph

46 \callergraph

47 \category <name> [<header-file>] [<header-name>]
48 \class<name> [<header-file>] [<header-name>]

49 \def <name>

50 \defgroup <name> (group title)

51 \dir [<path fragment>]

52 \enum <name>

53 \example <file-name>

54 \file [<name>]

55 \fn (function declaration)

56 \headerfile <header-file> [<header-name>]

57 \hideinitializer

58 \ingroup (<groupname> [<groupname> <groupname>])
59 \interface <name> [<header-file>] [<header-name>]
60 \internal

61 \mainpage [(title)]

62 \name (header)

63 \namespace<name>

64 \nosubgrouping

65 \overload [(function declaration)]

66 \package<name>

81

81

81

82

82

82

83

83

83

84

84

85

85

86

86

86

86

86

87

87

87

87

88

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

CONTENTS

67 \page<name> (title)

68 \property (qualified property name)

69 \protocol <name> [<header-file>] [<header-name>]

70 \relates <name>
71 \relatesalso<name>

72 \showinitializer

73 \struct <name> [<header-file>] [<header-name>]
74 \typedef (typedef declaration)

75 \union <name> [<header-file>] [<header-name>]

76 \var (variable declaration)
77 \weakgroup <name> [(title)]
78 \attention { attention text }
79 \author { list of authors }
80 \brief {brief description}

81 \bug { bug description }

82 \cond [<section-label>]

83 \date { date description }

84 \deprecated{ description }
85 \details {detailed decription}
86 \else

87 \elseif <section-label>

88 \endcond

89 \endif

88

89

89

89

90

90

90

90

90

91

91

91

91

92

92

92

93

93

93

93

94

94

94

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

CONTENTS

90 \exception<exception-object> { exception description} 94
91 \if <section-labe}> 94
92 \ifnot <section-labe}> 95
93 \invariant { description of invariant } 95
94 \note{ text } 96
95 \par [(paragraph title)] { paragraph } 96
96 \param <parameter-name> { parameter description } 96
97 \post{ description of the postcondition} 97
98 \pre { description of the precondition } 97
99 \remarks { remark text } 97
100\return { description of the return value } 97
101\retval <return value> { description } 98
102\sa{ references} 98
103\see{ references} 98
104\since{ text } 98
105\test { paragraph describing a test case 98
106\throw <exception-object> { exception description} 98
107\todo { paragraph describing what is to be done} 99
108\version { version number } 99
109\warning { warning message} 99
110\xrefitem <key> "(heading)” "(list title)” {text} 99
111\addindex (text) 100
112\anchor <word > 100

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

CONTENTS

113\endlink

114\link <link-object>

115\ref <name> ["(text)"]

116\subpage<name> ["(text)"]
117\section<section-name> (section title)
118\subsection<subsection-name- (subsection title)
119\subsubsection<subsubsection-namg (subsubsection title)
120\paragraph <paragraph-name> (paragraph title)
121\dontinclude <file-name>

122\include <file-name>

123\includelineno <file-name>

124\line (pattern)

125\skip (pattern)

126\skipline (pattern)

127\ until (pattern)

128\verbinclude <file-name>

129\htmlinclude <file-name>

130\a <word >

131\arg { item-description }

132\b <word>

133\c <word>

134\code

135\copydoc<link-object >

100

100

100

101

101

101

102

102

102

103

103

104

104

104

104

105

105

105

105

106

106

106

106

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

CONTENTS

136\dot

137\msc

138\dotfile <file> ["caption”]
139\e <word>
140\em <word >
141\endcode
142\enddot
143\endmsc

144\ endhtmlonly
145\ endlatexonly
146\endmanonly
147\ endverbatim
148\endxmlonly
149\f$

150\f[

151\f]
152\f{environment}{
153\f}

154\ htmlonly

155\image <format > <file> ["caption”] [<sizeindication>=<size>]

156\ latexonly
157\manonly

158\li { item-description }

107

107

108

108

109

109

109

109

109

109

110

110

110

110

110

110

111

111

111

111

112

112

112

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

CONTENTS

159\n

160\p <word>
161\verbatim
162\xmlonly
163\

164\@
165\~[Languageld]
166\&

1671\$

168\#

169<

170>

171\%

172PHP only commands

Il Developers Manual
173Using the Perl Module output format.
174Using the Perl Module-based LaTeX generator.

175Perl Module documentation format.

176Data structure describing the Perl Module documentation tree.

113

113

113

113

114

114

114

114

114

114

114

115

115

115

120

125

125

126

127

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

CONTENTS

Introduction

Doxygen is a documentation system for C++, C, Java, Objective-C, Python, IDL (Corba and Microsoft
flavors), Fortran, VHDL, PHP, C#, and to some extend D.

It can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line reference manual
(in IATEX) from a set of documented source files. There is also support for generating output in RTF
(MS-Word), PostScript, hyperlinked PDF, compressed HTML, and Unix man pages. The documen-
tation is extracted directly from the sources, which makes it much easier to keep the documentation
consistent with the source code.

2. You canconfiguredoxygen to extract the code structure from undocumented source files. This is very
useful to quickly find your way in large source distributions. You can also visualize the relations
between the various elements by means of include dependency graphs, inheritance diagrams, and
collaboration diagrams, which are all generated automatically.

3. You can even ‘abuse’ doxygen for creating normal documentation (as | did for this manual).

Doxygen is developed undemux and Mac OS X, but is set-up to be highly portable. As a result, it runs
on most other Unix flavors as well. Furthermore, executables for Windows are available.

This manual is divided into three parts, each of which is divided into several sections.

The first part forms a user manual:

e Sectioninstallationdiscusses how tdownload , compile and install doxygen for your platform.
e SectionGetting startedells you how to generate your first piece of documentation quickly.

e SectionDocumenting the codéemonstrates the various ways that code can be documented.
e SectionLists show various ways to create lists.

e SectionGroupingshows how to group things together.

e Sectionincluding formulasshows how to insert formulas in the documentation.

e SectionGraphs and diagrantescribes the diagrams and graphs that doxygen can generate.
e SectionPreprocessingxplains how doxygen deals with macro definitions.

e SectionAutomatic link generatiorshows how to put links to files, classes, and members in the
documentation.

e SectionOutput Formatshows how to generate the various output formats supported by doxygen.
e SectionCustom Commandshow how to define and use custom commands in your comments.

e SectionLinking to external documentatioexplains how to let doxygen create links to externally
generated documentation.

e SectionFrequently Asked Questiomgves answers to frequently asked questions.

e SectionTroubleshootingdells you what to do when you have problems.

The second part forms a reference manual:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.linux.org
http://www.doxygen.org/download.html

CONTENTS

e SectionFeaturepresents an overview of what doxygen can do.

e SectionDoxygen Historyshows what has changed during the development of doxygen and what still
has to be done.

e SectionDoxygen usagshows how to use thdoxygen program.
e SectionDoxytag usagshows how to use thdoxytag program.
e SectionDoxywizard usagshows how to use th@oxywizard program.

e Sectioninstalldox usagshows how to use thiastalldox script that is generated by doxygen if
you use tag files.

e SectionConfigurationrshows how to fine-tune doxygen, so it generates the documentation you want.

e SectionSpecial Commandshows an overview of the special commands that can be used within the
documentation.

e SectionHTML Commandsshows an overview of the HTML commands that can be used within the
documentation.

e SectionXML Commandsshows an overview of the C# style XML commands that can be used within
the documentation.

The third part provides information for developers:

e SectionDoxygen'’s Internalgiives a global overview of how doxygen is internally structured.
e SectionPerl Module output format documentatishows how to use the PerIMod output.

e Sectioninternationalizatiorexplains how to add support for new output languages.

Doxygen license

Copyright(©1997-2008 byDimitri van Heesch

Permission to use, copy, modify, and distribute this software and its documentation under the terms of
the GNU General Public License is hereby granted. No representations are made about the suitability of
this software for any purpose. It is provided "as is” without express or implied warranty. Sé&g\tble
General Public License for more details.

Documents produced by doxygen are derivative works derived from the input used in their production; they
are not affected by this license.

User examples

Doxygen supports a number ofitput formatsvhere HTML is the most popular one. I've gathered some
nice examples (settp://www.doxygen.org/results.html) of real-life projects using doxy-
gen.

These are part of a larger list of projects that use doxygen (see
http://www.doxygen.org/projects.html). If you know other projects, let me know
and I'll add them.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

mailto:dimitri@stack.nl
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

CONTENTS

Future work

Although doxygen is used successfully by a lot of people already, there is always room for improvement.
Therefore, | have compiled a todo/wish list ($&tp://www.doxygen.org/todo.html) of possi-
ble and/or requested enhancements.

Acknowledgements
Thanks go to:

e Malte Zockler and Roland Wunderling, authors of DOC++. The first version of doxygen borrowed
some code of an old version of DOC++. Although | have rewritten practically all code since then,
DOC++ has still given me a good start in writing doxygen.

e All people at Troll Tech, for creating a beautiful GUI Toolkit (which is very useful as a Win-
dows/Unix platform abstraction layer :-)

e Kevin McBride for maintaining the subversion reporsitory for doxygen.

e My brother Frank for rendering the logos.

e Harm van der Heijden for adding HTML help support.

e Wouter Slegers of our Creative Solutions for registering the www.doxygen.org domain.
e Parker Waechter for adding the RTF output generator.

e Joerg Baumann, for adding conditional documentation blocks, PDF links, and the configuration
generator.

¢ Matthias Andree for providing a .spec script for building rpms from the sources.
e Tim Mensch for adding the todo command.

e Christian Hammond for redesigning the web-site.

e Ken Wong for providing the HTML tree view code.

e Talin for adding support for C# style comments with XML markup.

e Petr Prikryl for coordinating the internationalisation support. All language maintainers for providing
translations into many languages.

e The band”orcupine Tree for providing hours of great music to listen to while coding.

e many, many others for suggestions, patches and bug reports.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.yourcreativesolutions.nl
http://www.porcupinetree.com

Part |
User Manual

First go to thedownload page bttp://www.doxygen.org/download.html) to get the latest
distribution, if you did not have it already.

This section is divided into the following sections:

Compiling from source on Unix
Installing the binaries on Unix

Known compilation problems for Unix
Compiling from source on Windows
Installing the binaries on Windows

Tools used to develop doxygen

1 Compiling from source on Unix

If you downloaded the source distribution, you need at least the following to build the executable:

The GNUools flex, bison and GNU make, and strip

In order to generate a Makefile for your platform, you neegerl (see
http://www.perl.com/).

The configure script assume the availibility of standard Unix tools such as sed, date, find, uname,
mv, cp, cat, echo, tr, cd, and rm.

To take full advantage of doxygen'’s features the following additional tools should be installed.

Troll Tech’s GUI toolkitQt (seehttp://www.trolltech.com/products/qt.html) ver-
sion 3.3 or higher. This is needed to build the GUI front-end doxywizard.

A IATEX distribution: for instanceéeTeX 1.0
par (seenttp://lwww.tug.org/interest.html#free). This is needed for generating La-
TeX, Postscript, and PDF output.

the Graph visualization toolkit version 1.8.10 or higher

par (seéttp://www.graphviz.org/). Needed for the include dependency graphs, the graph-
ical inheritance graphs, and the collaboration graphs. If you compile graphviz yourself, make sure
you do include freetype support (which requires the freetype library and header files), otherwise the
graphs will not render proper text labels.

For formulas or if you do not wish to use pdflatex, the ghostscript interpreter is needed. You can find
it at www.ghostscript.com

In order to generate doxygen’s own documentation, Python is needed, you can find it at
www.python.org

Compilation is now done by performing the following steps:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.doxygen.org/download.html
ftp://prep.ai.mit.edu/pub/gnu/
http://www.perl.com/
http://www.trolltech.com/products/qt.html
http://www.tug.org/interest.html#free
http://www.graphviz.org/
http://www.ghostscript.com/
http://www.python.org

1. Unpack the archive, unless you already have done that:

gunzip doxygen-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

2. Run the configure script:

sh ./configure

The script tries to determine the platform you use, the make tool (whigstbe GNU make) and
the perl interpreter. It will report what it finds.

To override the auto detected platform and compiler you can run configure as follows:

configure --platform platform-type

See thd®’LATFORMSile for a list of possible platform options.

If you have Qt-3.3.x installed and want to build the GUI front-end, you should run the configure
script with the--with-doxywizard option:

configure --with-doxywizard

For an overview of other configuration options use

configure --help

3. Compile the program by running make:

make

The program should compile without problems and three binadi@s/gen anddoxytag) should
be available in the bin directory of the distribution.

4. Optional: Generate the user manual.

make docs

To let doxygen generate the HTML documentation.

The HTML directory of the distribution will now contain the html documentation (just pointa HTML
browser to the filendex.html in the html directory). You will need thpython interpreter for
this.

5. Optional: Generate a PDF version of the manual (you will neéfatex , makeindex , and
egrep for this).

make pdf

The PDF manualloxygen _manual.pdf will be located in the latex directory of the distribution.
Just view and print it via the acrobat reader.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

2 Installing the binaries on Unix

After the compilation of the source code donake install to install doxygen. If you downloaded the
binary distribution for Unix, type:

Jconfigure

make install
Binaries are installed into the directoggprefix >/bin . Usemake install _docs to install the
documentation and examples int@locdir >/doxygen .
<prefix > defaults to/usr/local but can be changed with theprefix option of the configure
script. The defaulkdocdir > directory is<prefix >/share/doc/packages and can be changed

with the--docdir option of the configure script.

Alternatively, you can also copy the binaries from thie directory manually to sombin directory in
your search path. This is sufficient to use doxygen.

Note:
You need the GNU install tool for this to work (it is part of the coreutils package). Other install tools
may put the binaries in the wrong directory!

If you have a RPM or DEP package, then please follow the standard installation procedure that is required
for these packages.

3 Known compilation problems for Unix

Qt problems

The Qt include files and libraries are not a subdirectory of the directory pointed to by QTDIR on some
systems (for instance on Red Hat 6.0 includes are in /ust/include/qt and libs are in /usr/lib).

The solution: go to the root of the doxygen distribution and do:
mkdir gt
cd gt
In -s your-gt-include-dir-here include

In -s your-qt-lib-dir-here lib
export QTDIR=$PWD

If you have a csh-like shell you should usetenv QTDIR $PWD instead of theexport command
above.

Now install doxygen as described above.

Bison problems

Versions 1.31 to 1.34 of bison contain a "bug” that results in a compiler errors like this:
ceparse.cpp:348: member ‘class CPPValue yyalloc::yyvs’ with constructor not allowed in union
This problem has been solved in version 1.35 (versions before 1.31 will also work).

Latex problems

The file adwide.sty is not available for all distributions. If your distribution does not have it please
select another paper type in the config file (seeRRBEERTYPEtag in the config file).

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

HP-UX & Digital Unix problems
If you are compiling for HP-UX with aCC and you get this error:

/opt/aCCl/lbin/ld: Unsatisfied symbols:
alloca (code)

then you should (according to Anke Selig) echit_parse.cpp and replace

extern "C" {
void *alloca (unsigned int);

I
with
#include <alloca.h>

If that does not help, try removinge _parse.cpp and let bison rebuild it (this worked for me).

If you are compiling for Digital Unix, the same problem can be solved (according to Barnard Schmallhof)
by replacing the following in cgparse.cpp:

#else /* not GNU C. */

#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi)

#include <alloca.h>

with

#else /* not GNU C. */

#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi) || defined (__osf)

#include <alloca.h>

Alternatively, one could fix the problem at the bison side. Here is patch for bison.simple (provided by
Andre Johansen):

--- bison.simple” Tue Nov 18 11:45:53 1997
+++ bison.simple Mon Jan 26 15:10:26 1998
@@ -27,7 +27,7 @@

#ifdef _ GNUC__

#define alloca __builtin_alloca

#else /* not GNU C. */

-#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi)

+#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc_) \
|| defined (__sparc) || defined (__sgi) || defined (__alpha)

#include <alloca.h>

#else /[* not sparc */

#if defined (MSDOS) && !defined (__ TURBOC_)

The generated scanner.cpp that comes with doxygen is build with this patch applied.

Sun compiler problems

It appears that doxygen doesn’'t work properly if it is compiled with Sun’s C++ WorkShop Compiler. |
cannot verify this myself as | do not have access to a Solaris machine with this compiler. With GNU
compiler it does work.

when configuring with-static | got:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

Undefined first referenced

symbol in file
diclose lusr/lib/libc.a(nss_deffinder.o)
disym Just/lib/libc.a(nss_deffinder.o)
dlopen lust/lib/libc.a(nss_deffinder.o)

Manually addingBdynamic after the target rule iMakefile.doxygen andMakefile.doxytag
will fix this:

$(TARGET): $(OBJECTS) $(OBJMOC)
$(LINK) $(LFLAGS) -0 $(TARGET) $(OBJECTS) $(OBIMOC) $(LIBS) -Bdynamic
GCC compiler problems

Older versions of the GNU compiler have problems with constant strings containing characters with char-
acter codes larger than 127. Therefore the compiler will fail to compile some of the transtdidiles.

A workaround, if you are planning to use the English translation only, is to configure doxygen with the
--english-only option.

On some platforms (such as OpenBSD) using some versions of gcc with -O2 can lead to eating all memory
during the compilation of files such as config.cpp. As a workaround use —debug as a configure option or
omit the -O2 for the particular files in the Makefile.

Gcc versions before 2.95 may produce broken binaries due to bugs in these compilers.
Dot problems

Due to a change in the way image maps are generated, older versions of doxyden.{7) will not work
correctly with newer versions of graphviz£1.8.8). The effect of this incompatibility is that generated
graphs in HTML are not properly clickable. For doxygen 1.3 it is recommended to use at least graphviz
1.8.10 or higher. For doxygen 1.4.7 or higher it is recommended to use GraphViz 2.8 or higher to avoid
font issues.

Red Hat 9.0 problems

If you get the following error after running make

tmake error: qgtools.pro:70: Syntax error

then first type

export LANG=

before running make.

4 Compiling from source on Windows

From version 1.5.0 onwards, build files are provided for Visual Studio 2005. Also the free (as in beer)
"Express” version of Developer Studio can be used to compile doxygen. Alternatively, you can compile
doxygenthe Unix wayusingCygwin or MinGW

Before you can compile doxygen you need to download and install the C++ compiler of Visual Studio.
Since Microsoft apparently wants to lure everyone into using their .NET stuff, they made things somewhat
difficult when you use the Express version. You needdosome manual steps in order to setup a
proper working environment for building native win32 applications such as Doxygen.

The next step is to install unxutils (seép://sourceforge.net/projects/unxutils). This
packages contains the todlex andbison which are needed during the compilation process if you use

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://en.wikipedia.org/wiki/Cygwin
http://www.mingw.org/
http://msdn2.microsoft.com/en-gb/express/aa700755.aspx
http://sourceforge.net/projects/unxutils

a CVS snapshot of doxygen (the official source releases come with pre-generated sources). Download the
zip extract it to e.gc: \tools \unxutils

Now you need to add/adjust the following environment variables (via Control
Panel/System/Advanced/Environment Variables):

e addc: \tools \unxutils \usr \local \wbin; to the start oPATH

e setBISON_SIMPLEtoc: \tools \unxutils \usr \share \bison.simple

Download doxygen’s source tarball and put it somewhere (e.g:usmols)
Now start a new command shell and type
cd c:\tools

gunzip doxygen-X.y.z.src.tar.gz
tar xvf doxygen-x.y.z.src.tar

to unpack the sources.
Now your environment is setup to buittbxygen anddoxytag .

Inside thedoxygen-x.y.z directory you will find awinbuild directory containing &oxygen.sin
file. Open this file in Visual Studio. You can now build the Release or Debug flavor of Doxygen and
Doxytag by right-clicking the project in the solutions explorer, and selecting Build.

Note that compiling Doxywizard currently requires Qt version 3 (see

http://www.trolltech.com/products/qt/qt3). If you do not have a
commercial license, you can build Doxywizard with the open source version (see
http://gtwin.sourceforge.net/qt3-win32/compile-msvc-2005.php), but I have not

tried this myself.

Also read the next section for additional tools you may need to install to run doxygen with certain features
enabled.

5 Installing the binaries on Windows

Doxygen comes as a self-installing archive, so installation is extremely simple. Just follow the dialogs.

After installation it is recommended to also download and install GraphViz (version 2.8 or better is highly
recommended). Doxygen can use tla¢ tool of the GraphViz package to render nicer diagrams, see the
HAVE DOT option in the configuration file.

If you want to produce compressed HTML files (S8ENERATEHTMLHELP) in the config file, then
you need the Microsoft HTML help workshop. You can download it frgiarosoft

In order to generate PDF output or use scientific formulas you will also need to ihsfBdlX and
Ghostscript

For LaTeX a number of distributions exists. Popular onces that should work with doxygéfilarex
andXemTex.

Ghostscript can béownloaded from Sourceforge.

After installing LaTeX and Ghostscript you'll need to make sure the tools latex.exe, pdflatex.exe, and
gswin32c.exe are present in the search path of a command box. Rbkew instructions if you are
unsure and run the commands from a command box to verify it works.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.trolltech.com/products/qt/qt3
http://qtwin.sourceforge.net/qt3-win32/compile-msvc-2005.php
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp
http://en.wikipedia.org/wiki/LaTeX
http://en.wikipedia.org/wiki/Ghostscript
http://www.miktex.org
http://www.xemtex.org
http://sourceforge.net/projects/ghostscript/
http://www.computerhope.com/issues/ch000549.htm

10

6 Tools used to develop doxygen

Doxygen was developed and tested under Linux & MacOSX using the following open-source tools:

e GCC version 3.3.6 (Linux) and 4.0.1 (MacOSX)

e GNU flex version 2.5.33 (Linux) and 2.5.4 (MacOSX)

e GNU bison version 1.75

e GNU make version 3.80

e Perlversion 5.8.1

¢ VIM version 6.2

e Firefox 1.5

e Troll Tech’s tmake version 1.3 (included in the distribution)
e teTeX version 2.0.2

e CVS1.12.12

The executableloxygen is the main program that parses the sources and generates the documentation.
See sectiooxygen usagéor more detailed usage information.

The executableloxytag is only needed if you want to generate references to external documentation
(i.e. documentation that was generated by doxygen) for which you do not have the sources. See section
Doxytag usagéor more detailed usage information.

Optionally, the executabléoxywizard can be used, which isgraphical front-endor editing the con-
figuration file that is used by doxygen and for running doxygen in a graphical environment. For Mac OS X
doxywizard will be started by clicking on the Doxygen application icon.

The following figure shows the relation between the tools and the flow of information between them (it
looks complex but that's only because it tries to be complete):

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

Doxywizard % Your application custom

d output
rea i
; doxmlparser lib
generate/edit XML files P ——
Config file
Doxyfle %
make ps postscript
. | E—
Latex files latex
read generate/update ™ + ——
Makefile make pdf PDF

read L

Sources

Doxygen

| read %

read generate

— Man pages
EC pag

ustom
- headers| I8
- footers Tag file(s) e ‘
- images |H / ! Windows only !
import; doc |
refman.rtf T MS-Word = I
| |
I I
I I
generate | i
HTML read chm
Doxytag pages ’ HTML Help Workshop— |
parse | |
I I

Figure 1: Doxygen information flow

7 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should get its own configura-
tion file. A project can consist of a single source file, but can also be an entire source tree that is recursively
scanned.

To simplify the creation of a configuration file, doxygen can create a template configuration file for you.
To do this calldoxygen from the command line with they option:

doxygen -g <config-file>

where <config-file> is the name of the configuration file. If you omit the file name, a file named
Doxyfile will be created. If a file with the nameconfig-file> already exists, doxygen will rename

it to <config-file>.bak before generating the configuration template. If you-u§ee. the minus sign) as
the file name then doxygen will try to read the configuration file from standard isfih(), which can

be useful for scripting.

The configuration file has a format that is similar to that of a (simple) Makefile. It consists of a number of
assignments (tags) of the form:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

12

TAGNAME = VALU&
TAGNAME = VALUE1l VALUE2 ...

You can probably leave the values of most tags in a generated template configuration file to their default
value. See sectio@onfigurationfor more details about the configuration file.

If you do not wish to edit the config file with a text editor, you should have a lodlgywizard which is a
GUI front-end that can create, read and write doxygen configuration files, and allows setting configuration
options by entering them via dialogs.

For a small project consisting of a few C and/or C++ source and header files, you catNE&aVE tag
empty and doxygen will search for sources in the current directory.

If you have a larger project consisting of a source directory or tree you should assign the root directory or
directories to theNPUT tag, and add one or more file patterns to fteE_PATTERNStag (for instance

x.cpp +.h). Only files that match one of the patterns will be parsed (if the patterns are omitted a list
of source extensions is used). For recursive parsing of a source tree you mustRECIHRSIVEtag to

YES To further fine-tune the list of files that is parsed E6CLUDE andEXCLUDE_PATTERNStags

can be used. To omit aiést directories from a source tree for instance, one could use:

EXCLUDE_PATTERNS = */test/*

Doxygen looks at the file’s extension to determine how to parse a file. If a file hadlan or .odI
extension it is treated as an IDL file. If it hasjava extension it is treated as a file written in Java. Files
ending with.cs are treated as C# files and tlpy extension selects the Python parser. Finally, files with
the extensionghp , .php4 ,.inc or.phtml are treated as PHP sources. Any other extension is parsed
asifitis a C/C++ file, where files that end witin are treated as Objective-C source files.

If you start using doxygen for an existing project (thus without any documentation that doxygen is aware
of), you can still get an idea of what the structure is and how the documented result would look like. To
do so, you must set tHEXTRACT_ALL tag in the configuration file t ES Then, doxygen will pretend

everything in your sources is documented. Please note that as a consequence warnings about undocumented

members will not be generated as long26TRACT_ALL is set toYES

To analyse an existing piece of software it is useful to cross-reference a (documented) entity with its defini-
tion in the source files. Doxygen will generate such cross-references if you ssOthRCEBROWSER

tag toYES It can also include the sources directly into the documentation by sétldlE_SOURCES

to YES(this can be handy for code reviews for instance).

8 Step 2: Running doxygen

To generate the documentation you can now enter:

doxygen <config-file>

Depending on your settings doxygen will createnl |, rtf , latex , xml and/orman directories inside
the output directory. As the names suggest these directories contain the generated documentation in HTML,
RTF, BTpX, XML and Unix-Man page format.

The default output directory is the directory in whidbxygen is started. The root directory to which
the output is written can be changed using @ETPUT.DIRECTORY. The format specific directory
within the output directory can be selected usingtiidViL _OUTPUT, RTF.OUTPUT, LATEX _OUTPUT,
XML _OUTPUT, andMAN _OUTPUTtags of the configuration file. If the output directory does not exist,
doxygen will try to create it for you (but it willnot try to create a whole path recursively, likekdir

-p does).

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

8.1 HTML output 13

8.1 HTML output

The generated HTML documentation can be viewed by pointing a HTML browser tade&.html
file in thehtml directory. For the best results a browser that supports cascading style sheets (CSS) should
be used (I'm using Mozilla, Safari, Konqueror, and sometimes IE6 to test the generated output).

Some of the features the HTML section (suclc&SNERATE TREEVIEW) require a browser that supports
DHTML and Javascript.

If you plan to use the search engine (&2ARCHENGINB, you should view the HTML output via a
PHP-enabled web server (e.g. apache with the PHP module installed).

8.2 LaTeX output

The generatedTX documentation must first be compiled bydEX compiler (1 use a recent teTeX distri-
bution). To simplify the process of compiling the generated documentaliorygen writes aMakefile
into thelatex directory.

The contents and targets in thakefile depend on the setting &fSE PDFLATEX. If it is disabled (set
to NQ, then typingmake in thelatex directory a dvi file calledefman.dvi will be generated. This
file can then be viewed usinglvi or converted into a PostScript fitefman.ps by typingmake ps
(this requiregivips).

To put 2 pages on one physical page oeke ps_2onl instead. The resulting PostScript file can be send
to a PostScript printer. If you do not have a PostScript printer, you can try to use ghostscript to convert
PostScript into something your printer understands.

Conversion to PDF is also possible if you have installed the ghostscript interpreter; justayee pdf
(ormake pdf 2on1).

To get the best results for PDF output you should sePthé& HYPERLINKS andUSE PDFLATEX tags
to YES In this case thdakefile will only contain a target to buildefman.pdf directly.

8.3 RTF output

Doxygen combines the RTF output to a single file called refman.rtf. This file is optimized for importing
into the Microsoft Word. Certain information is encoded using field. To show the actual value you need
to select all (Edit - select all) and then toggle fields (right click and select the option from the drop down
menu).

8.4 XML output

The XML output consists of a structured "dump” of the information gathered by doxygen. Each compound
(class/namespaceffile/...) has its own XML file and there is also an index file called index.xml.

A file called combine.xslt XSLT script is also generated and can be used to combine all XML files into a
single file.

Doxygen also generates two XML schema files index.xsd (for the index file) and compound.xsd (for the
compound files). This schema file describes the possible elements, their attributes and how they are struc-
tured, i.e. it the describes the grammar of the XML files and can be used for validation or to steer XSLT
scripts.

In the addon/doxmlparser directory you can find a parser library for reading the XML output produced by
doxygen in an incremental way (see addon/doxmlparser/include/doxmlintf.h for the interface of the library)

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

8.5 Man page output 14

8.5 Man page output

The generated man pages can be viewed usingnidue program. You do need to make sure the man
directory is in the man path (see tNANPATNnvironment variable). Note that there are some limitations

to the capabilities of the man page format, so some information (like class diagrams, cross references and
formulas) will be lost.

9 Step 3: Documenting the sources

Although documenting the sources is presented as step 3, in a new project this should of course be step 1.
Here | assume you already have some code and you want doxygen to generate a nice document describing
the APl and maybe the internals as well.

If the EXTRACT_ALL option is set taNOin the configuration file (the default), then doxygen will only
generate documentation fdocumentednembers, files, classes and namespaces. So how do you document
these? For members, classes and namespaces there are basically two options:

1. Place aspecialdocumentation block in front of the declaration or definition of the member, class
or namespace. For file, class and namespace members it is also allowed to place the documention
directly after the member. See sectiSpecial documentation blocke learn more about special
documentation blocks.

2. Place a special documentation block somewhere else (another file or another loaatignjt a
structural commandh the documentation block. A structural command links a documentation block
to a certain entity that can be documented (e.g. a member, class, namespace or file). See section
Documentation at other plac&slearn more about structural commands.

Files can only be documented using the second option, since there is no way to put a documentation
block before a file. Of course, file members (functions, variable, typedefs, defines) do not need an explicit
structural command; just putting a special documentation block in front or behind them will do.

The text inside a special documentation block is parsed before it is written to the HTML afiigidér L
output files.

During parsing the following steps take place:
e The special commands inside the documentation are executed. See Spettdsl Commandfor
an overview of all commands.

¢ If a line starts with some whitespace followed by one or more asteridkan then optionally more
whitespace, then all whitespace and asterisks are removed.

e All resulting blank lines are treated as a paragraph separators. This saves you from placing new-
paragraph commands yourself in order to make the generated documentation readable.

e Links are created for words corresponding to documented classes (unless the word is preceded by a
%; then the word will not be linked and the % sign is removed).

e Links to members are created when certain patterns are found in the text. SeeAetdioatic link
generatiorfor more information on how the automatic link generation works.

e HTML tags that are in the documentation are interpreted and convertéfEtodquivalents for the
IATEX output. See sectioHTML Commanddor an overview of all supported HTML tags.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

15

10 Special documentation blocks

A special documentation block is a C or C++ style comment block with some additional markings, so
doxygen knows it is a piece of documentation that needs to end up in the generated documentation. For
Python and VHDL code there are a different comment conventions, which can be found in Sgetzal
documentation blocks in Pyth@ndSpecial documentation blocks in VHDEespectively.

For each code item there are two (or in some cases three) types of descriptions, which together form the
documentation: drief description andletailed description, both are optional. For methods and func-
tions there is also a third type of description, the so called "in body” description, which consists of the
concatenation of all comment blocks found within the body of the method or function.

Having more than one brief or detailed description is allowed (but not recommended, as the order in which
the descriptions will appear is not specified).

As the name suggest, a brief description is a short one-liner, whereas the detailed description provides
longer, more detailed documentation. An "in body” description can also act as a detailed description or
can describe a collection of implementation details. For the HTML output brief descriptions are also use
to provide tooltips at places where an item is referenced.

There are several ways to mark a comment block as a detailed description:

1. You can use the JavaDoc style, which consist of a C-style comment block starting wit'suike
this:

/**
* ... text ...
*/

2. or you can use the Qt style and add an exclamation mark (!) after the opening of a C-style comment
block, as shown in this example:

[*!
* ... text ...
*/

In both cases the intermediatis are optional, so

*
R () (.
*

is also valid.

3. A third alternative is to use a block of at least two C++ comment lines, where each line starts with
an additional slash or an exclamation mark. Here are examples of the two cases:

1
i ... text ...
n

or

i
... text ...
i

4. Some people like to make their comment blocks more visible in the documentation. For this purpose
you can use the following:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

16

/ /[**
* ... text

(note the 2 slashes to end the normal comment block and start a special comment block).
or
I]

... text ...
M

For the brief description there are also several posibilities:

1. One could use thgbrief command with one of the above comment blocks. This command ends at
the end of a paragraph, so the detailed description follows after an empty line.

Here is an example:

/*! \brief Brief description.

* Brief description continued.
*

* Detailed description starts here.
*/

2. If JAVADOC_AUTOBRIEFis set toYESin the configuration file, then using JavaDoc style comment
blocks will automatically start a brief description which ends at the first dot followed by a space or
new line. Here is an example:

/** Brief description which ends at this dot. Details follow
* here.
*

The option has the same effect for multi-line special C++ comments:

/Il Brief description which ends at this dot. Details follow
/Il here.

3. A third option is to use a special C++ style comment which does not span more than one line. Here
are two examples:

/Il Brief description.
/** Detailed description. */

or

/' Brief descripion.

/I' Detailed description
/I' starts here.

Note the blank line in the last example, which is required to separate the brief description from the
block containing the detailed description. TH&/ADOC_AUTOBRIEF should also be set t§Ofor
this case.

As you can see doxygen is quite flexible. The following however is not legal

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

17

/I' Brief description, which is

/I' really a detailed description since it spans multiple lines.
/*1 Oops, another detailed description!

*/

because doxygen only allows one brief and one detailed description.

Furthermore, if there is one brief description before a declaration and one before a definition of a code item,
only the one before theéeclarationwill be used. If the same situation occurs for a detailed description, the
one before theefinitionis preferred and the one before the declaration will be ignored.

Here is an example of a documented piece of C++ code using the Qt style:

/I' A test class.
¥

A more elaborate class description.
*/

class Test
public:

/I' An enum.

/*! More detailed enum description. */

enum TEnum {
TVvall, /*I< Enum value TVall. */
TVal2, /*I< Enum value TVal2. */
TVal3 /*I< Enum value TVal3. */

/I' Enum pointer.
/*! Details. */
*enumPtr,

/I' Enum variable.
/*! Details. */
enumVar,

/I' A constructor.
/*1
A more elaborate description of the constructor.
*/
Test();

/I' A destructor.
[*!
A more elaborate description of the destructor.
*
"Test();

/I' A normal member taking two arguments and returning an integer value.
/!
\param a an integer argument.
\param s a constant character pointer.
\return The test results
\sa Test(), "Test(), testMeToo() and publicVar()
*
int testMe(int a,const char *s);

/I' A pure virtual member.
/*!
\sa testMe()
\param c1 the first argument.
\param c2 the second argument.
*
/
virtual void testMeToo(char cl,char c2) = 0;

/I' A public variable.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

[*!
Details.
*/
int publicVar;

/I' A function variable.
[*!
Details.
*/
int (*handler)(int a,int b);

The one-line comments contain a brief description, whereas the multi-line comment blocks contain a more
detailed description.

The brief descriptions are included in the member overview of a class, namespace or file and are printed
using a small italic font (this description can be hidden by sefiR§EF MEMBER_DESCto NOin the

config file). By default the brief descriptions become the first sentence of the detailed descriptions (but this
can be changed by setting tREPEAT BRIEF tag toNQ. Both the brief and the detailed descriptions are
optional for the Qt style.

By default a JavaDoc style documentation block behaves the same way as a Qt style documentation block.
This is not according the JavaDoc specification however, where the first sentence of the documentation
block is automatically treated as a brief description. To enable this behaviour you shold¥yABOC -
AUTOBRIEFto YES in the configuration file. If you enable this option and want to put a dot in the middle

of a sentence without ending it, you should put a backslash and a space after it. Here is an example:

/** Brief description (e.g.\ using only a few words). Details follow. */

Here is the same piece of code as shown above, this time documented using the JavaDoc style and
JAVADOC_AUTOBRIEF set to YES:

/**
* A test class. A more elaborate class description.
*/

class Test

public:

/**

* An enum.

* More detailed enum description.
*

enum TEnum {
TVvall, /**< enum value TVall. */
TVal2, /**< enum value TVal2. */
Tval3 /**< enum value TVal3. */
}
*enumPtr, /**< enum pointer. Details. */
enumVar; /**< enum variable. Details. */

/**

* A constructor.

* A more elaborate description of the constructor.
*/

Test();

/**

* A destructor.
* A more elaborate description of the destructor.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

19

*
“Test();
/**
* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.
* @param s a constant character pointer.
* @see Test()
* @see “Test()
* @see testMeToo()
* @see publicvar()
* @return The test results

*

int testMe(int a,const char *s);
/**

* A pure virtual member.

* @see testMe()

* @param cl the first argument.

* @param c2 the second argument.

*

virtual void testMeToo(char cl,char c2) = O;
/**

* a public variable.

* Details.

*/

int publicVvar;
/**

* a function variable.

* Details.

*

int (*handler)(int a,int b);

Similarly, if one wishes the first sentence of a Qt style documentation block to automatically be treated as
a brief description, one may seff_ AUTOBRIEFto YES in the configuration file.

Unlike most other documentation systems, doxygen also allows you to put the documentation of members
(including global functions) in front of thdefinition This way the documentation can be placed in the
source file instead of the header file. This keeps the header file compact, and allows the implementer of the
members more direct access to the documentation. As a compromise the brief description could be placed
before the declaration and the detailed description before the member definition.

11 Putting documentation after members

If you want to document the members of a file, struct, union, class, or enum, and you want to put the
documentation for these members inside the compound, it is sometimes desired to place the documentation
block after the member instead of before. For this purpose you have to put an additioreker in the
comment block. Note that this also works for the parameters of a function.

Here are some examples:

int var; /*I< Detailed description after the member */

This block can be used to put a Qt style detailed documentation blibeka member. Other ways to do
the same are:

int var; /**< Detailed description after the member */

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

or

int var; //'< Detailed description after the member
<

or

int var; ///< Detailed description after the member
i<

Most often one only wants to put a brief description after a member. This is done as follows:

int var; //'< Brief description after the member

or

int var; ///< Brief description after the member

Note that these blocks have the same structure and meaning as the special comment blocks in the previous
section only the< indicates that the member is located in front of the block instead of after the block.

Here is an example of the use of these comment blocks:

/*1 A test class */

class Test

{
public:
/** An enum type.
* The documentation block cannot be put after the enum!
*
enum EnumType

int EVall, /**< enum value 1 */
int EVal2 [**< enum value 2 */

I

void member(); /'< a member function.

protected:
int value; [*I< an integer value */
h

Warning:
These blocks can only be used to docunmmeimbersand parameters They cannot be used to doc-
ument files, classes, unions, structs, groups, namespaces and enums themselves. Furthermore, the
structural commands mentioned in the next section ({idass) are ignored inside these comment
blocks.

12 Documentation at other places

So far we have assumed that the documentation blocks are always lotdtect of the declaration or
definition of a file, class or namespace or in front or after one of its members. Although this is often
comfortable, there may sometimes be reasons to put the documentation somewhere else. For documenting
a file this is even required since there is no such thing as "in front of a file”.

Doxygen allows you to put your documentation blocks practically anywhere (the exception is inside the
body of a function or inside a normal C style comment block).

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

21

The price you pay for not putting the documentation block directly before (or after) an item is the need to
put a structural command inside the documentation block, which leads to some duplication of information.
So in practice you shoulavoid the use of structural commandslessother requirements force you to do

Sso.

Structural commands (like all other commands) start with a backslgsbr(an at-sign @ if you prefer
JavaDoc style, followed by a command name and one or more parameters. For instance, if you want to
document the clas§est in the example above, you could have also put the following documentation
block somewhere in the input that is read by doxygen:

/*1 \class Test
\brief A test class.

A more detailed class description.

*/

Here the special commanglass is used to indicate that the comment block contains documentation for
the classTest . Other structural commands are:

e \struct todocumenta C-struct.

e \union to document a union.

e \enumto document an enumeration type.

e \fn to document a function.

e \var todocument a variable or typedef or enum value.
e \def to document a #define.

e \typedef to document a type definition.

e \file todocument afile.

e \namespace to document a namespace.

¢ \package to document a Java package.

e \interface to document an IDL interface.

See sectiospecial Command®r detailed information about these and many other commands.

To document a member of a C++ class, you must also document the class itself. The same holds for
namespaces. To document a global C function, typedef, enum or preprocessor definition you must first
document the file that contains it (usually this will be a header file, because that file contains the information
that is exported to other source files).

Let's repeat that, because it is often overlooked: to document global objects (functions, typedefs, enum,
macros, etc), yomustdocument the file in which they are defined. In other words, therstat least be a

/*1 \file */
ora
* @file */

line in this file.

Here is an example of a C header namstdctcmd.h that is documented using structural commands:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

22

/*

\file structcmd.h
\brief A Documented file.

Details.
*/

/*

\def MAX(a,b)
\brief A macro that returns the maximum of \a a and \a b.

Details.
*/

/*! \var typedef unsigned int UINT32

\brief A type definition for a .

Details.
*/

/*1 \var int errno

\brief Contains the last error code.

\warning Not thread safe!
*/

/*I \fn int open(const char *pathname,int flags)

\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.
*/

/*1 \fn int close(int fd)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*

/*1 \fn size_t write(int fd,const char *buf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.
\param buf The data buffer to write.
\param count The number of bytes to write.

*

/*1 \fn int read(int fd,char *buf,size_t count)
\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.
\param count The number of bytes to read.

*

#define MAX(a,b) (((a)>(b))?(a):(b))
typedef unsigned int UINT32;

int errno;

int open(const char *,int);

int close(int);

size_t write(int,const char *, size_t);
int read(int,char *size_t);

Because each comment block in the example above contains a structural command, all the comment blocks
could be moved to another location or input file (the source file for instance), without affecting the generated
documentation. The disadvantage of this approach is that prototypes are duplicated, so all changes have
to be made twice! Because of this you should first consider if this is really needed, and avoid structural
commands if possible. | often receive examples that con@command in comment blocks which are

place in front of a function. This is clearly a case where\tftrecommand is redundant and will only lead

to problems.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

23

13 Special documentation blocks in Python

For Python there is a standard way of documenting the code using so called documentation strings. Such
strings are stored indoc __ and can be retrieved at runtime. Doxygen will extract such comments and
assume they have to be represented in a preformatted way.

@package docstring
Documentation for this module.

More details.

def func():
""" Documentation for a function.

More details.

class PyClass:
""" Documentation for a class.

More details.

def __init_ (self):
"""The constructor."™
self._memVar = 0;

def PyMethod(self):
"""Documentation for a method."™"
pass

Note that in this case none of doxygesjsecial commandsre supported.

There is also another way to document Python code using comments that start with "##". These type
of comment blocks are more in line with the way documentation blocks work for the other languages
supported by doxygen and this also allows the use of special commands.

Here is the same example again but now using doxygen style comments:
@package pyexample

Documentation for this module.

#

More details.

Documentation for a function.

#
More details.
def func():

pass

Documentation for a class.
#

More details.

class PyClass:

The constructor.
def __init__(self):
self._memVar = 0;

Documentation for a method.
@param self The object pointer.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

24

def PyMethod(self):
pass

A class variable.
classvar = 0;

@var _memVar
a member variable

Since python looks more like Java than like C or C++, you shoul®©&fMIZE OUTPUT_JAVA to YES
in the config file.

14 Special documentation blocks in VHDL

For VHDL a comment normally start with "-". Doxygen will extract comments starting with "-!". There
are only two types of comment blocks in VHDL; a one line —! comment representing a brief descrip-
tion, and a multiline —! comment (where the —! prefix is repeated for each line) representing a detailed
description.

Comments are always located in front of the item that is being documented with one exception: for ports
the comment can also be after the item and is then treated as a brief description for the port.

Here is an example VHDL file with doxygen comments:

-1 @file
-l @brief 2:1 Mux using with-select

--1 Use standard library
library ieee;
--1 Use logic elements
use ieee.std_logic_1164.all;

--l Mux entity brief description
--I Detailed description of this

--I mux design element.
entity mux_using_with is

port (
din_0 :in std_logic; --! Mux first input
din_1 :in std_logic; --! Mux Second input
sel :in std_logic; --! Select input
mux_out : out std_logic --! Mux output
)i
end entity;

--1 @brief Architure definition of the MUX
--l @details More details about this mux element.
architecture behavior of mux_using_with is
begin

with (sel) select

mux_out <= din_0 when '0’,

din_1 when others;

end architecture;

To get proper looking output you need to SRTIMIZE_ OUTPUT.VHDL to YESin the config file. This

will also affect a number of other settings. When they were not already set correctly doxygen will produce
a warning telling which settings where overruled. Doxygen provides a humber of ways to create lists of
items.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

25

Using dashes

By putting a number of column-aligned minus signs at the start of a line, a bullet list will automatically be
generated. Numbered lists can also be generated by using a minus followed by a hash. Nesting of lists is
allowed and is based on indentation of the items.

Here is an example:

* A list of events:

* - mouse events

* -# mouse move event
* -# mouse click event\n
* More info about the click event.
* -# mouse double click event
* - keyboard events

* -# key down event

* -# key up event

*

*

More text here.

The result will be:

A list of events:

e Mmouse events

1. mouse move event

2. mouse click event
More info about the click event.

3. mouse double click event
e keyboard events

1. key down event
2. key up event

More text here.

If you use tabs for indentation within lists, please make sureThBt SIZE in the configuration file is set
to the correct tab size.

You can end a list by starting a new paragraph or by putting a dot (.) on an empty line at the same indent
level as the list you would like to end.

Here is an example that speaks for itself:

/**

* Text before the list

* - list item 1

* - sub item 1

* - sub sub item 1

* - sub sub item 2

*

* The dot above ends the sub sub item list.
* More text for the first sub item

*

* The dot above ends the first sub item.
* More text for the first list item

*

- sub item 2

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

26

- sub item 3
- list item 2

More text in the same paragraph.

*
*
*
*
*
*

More text in a new paragraph.
*/

Using HTML commands

If you like you can also use HTML commands inside the documentation blocks. Using these commands
has the advantage that it is more natural for list items that consist of multiple paragraphs.

Here is the above example with HTML commands:

* A list of events:

*

* mouse events

*

* mouse move event

* mouse click event\n

* More info about the click event.
* mouse double click event
*

* keyboard events

*

* key down event

* key up event

*

*

* More text here.

Note:
In this case the indentation is not important.

Using \arg or @li

For compatibility with the Troll Tech’s internal documentation tool and with KDoc, doxygen has two
commands that can be used to create simple unnested lists.

See\argand\|i for more info.

Doxygen has three mechanisms to group things together. One mechanism works at a global level, creating a
new page for each group. These groups are cattedules’in the documentation. The second mechanism
works within a member list of some compound entity, and is refered tomsmber groups’ For pages

there is a third grouping mechanism referred teaspaging

15 Modules

Modules are a way to group things together on a separate page. You can document a group as a whole, as
well as all individual members. Members of a group can be files, namespaces, classes, functions, variables,
enums, typedefs, and defines, but also other groups.

To define a group, you should put théefgroupcommand in a special comment block. The first argument
of the command is a label that should uniquely identify the group. The second argument is the name or
title of the group as it should appear in the documentation.

You can make an entity a member of a specific group by puttiiggroupcommand inside its documen-
tation block.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

27

To avoid putting\ingroupcommands in the documentation for each member you can also group members
together by the open mark&] before the group and the closing marl@rafter the group. The markers
can be put in the documentation of the group definition or in a separate documentation block.

Groups themselves can also be nested using these grouping markers.

You will get an error message when you use the same group label more than once. If you don't want
doxygen to enforce unique labels, then you can \e#dtogroupinstead of\defgroup It can be used
exactly like\defgroup but when the group has been defined already, then it silently merges the existing
documentation with the new one. The title of the group is optional for this command, so you can use

/** \addtogroup <label> */
ma{/
M@y

to add additional members to a group that is defined in more detail elsewhere.

Note that compound entities (like classes, files and namespaces) can be put into multiple groups, but mem-
bers (like variable, functions, typedefs and enums) can only be a member of one group (this restriction is

in place to avoid ambiguous linking targets in case a member is not documented in the context of its class,

namespace or file, but only visible as part of a group).

Doxygen will put members into the group whose definition has the highest "priority”: e.g. An explicit
\ingroupoverrides an implicit grouping definition vig& @ . Conflicting grouping definitions with the
same priority trigger a warning, unless one definition was for a member without any explicit documentation.

The following example puts VarlnA into group A and silently resolves the conflict for IntegerVariable by
putting it into group IntVariables, because the second instance of IntegerVariable is undocumented:

/**
* \ingroup A
*/
extern int VarlnA,
/**
* \defgroup IntVariables Global integer variables
*
/
rra{*/
/** an integer variable */
extern int IntegerVariable;

@y

/**

* \defgroup Variables Global variables
*/
rFa{*/

/** a variable in group A */
int VarlnA;

int IntegerVariable;
r@y/
The \ref command can be used to refer to a group. The first argument dfréfiecommand should be

group’s label. To use a custom link name, you can put the name of the links in double quotes after the
label, as shown by the following example

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

28

This is the \ref group_label "link" to this group.

The priorities of grouping definitions are (from highest to lowesghgroup \defgroup \addtogroup
\weakgroup The last command is exactly lik@ddtogroupwith a lower priority. It was added to allow
"lazy” grouping definitions: you can use commands with a higher priority in your .h files to define the
hierarchy andweakgroupgn .c files without having to duplicate the hierarchy exactly.

Example:

/** @defgroup groupl The First Group
* This is the first group

* @{

*

/** @brief class C1 in group 1 */
class C1 {};

/** @brief class C2 in group 1 */
class C2 {};

/** function in group 1 */
void func() {}

¥ @} * /I end of groupl

/**
* @defgroup group2 The Second Group

* This is the second group
*/

/** @defgroup group3 The Third Group
* This is the third group
*

/** @defgroup group4 The Fourth Group
* @ingroup group3

* Group 4 is a subgroup of group 3
*

/**

* @ingroup group2

* @brief class C3 in group 2

*

class C3 {};

[** @ingroup group2

* @brief class C4 in group 2
*

class C4 {};

[** @ingroup group3

* @brief class C5 in @link group3 the third group@endlink.
*/

class C5 {};

/** @ingroup groupl group2 group3 group4

* namespace N1 is in four groups

* @sa @link groupl The first group@endlink, group2, group3, group4
*

* Also see @ref mypage2

*

namespace N1 {};

= @file
* @ingroup group3
* @brief this file in group 3

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

29

*/

/** @defgroup group5 The Fifth Group

* This is the fifth group

* @{

*/

/** @page mypagel This is a section in group 5
* Text of the first section

*/

/** @page mypage2 This is another section in group 5
* Text of the second section

*/

¥ @} */ /I end of group5

/** @addtogroup groupl

*

* More documentation for the first group.

* @{

*/

/** another function in group 1 */
void func2() {}

/** yet another function in group 1 */
void func3() {}

¥ @} */ /I end of groupl

16 Member Groups

If a compound (e.g. a class or file) has many members, it is often desired to group them together. Doxygen
already automatically groups things together on type and protection level, but maybe you feel that this is
not enough or that that default grouping is wrong. For instance, because you feel that members of different
(syntactic) types belong to the same (semantic) group.

A member group is defined by a

a{

1@y

block or a

@

r@

block if you prefer C style comments. Note that the members of the group should be physcially inside the

member group’s body.

Before the opening marker of a block a separate comment block may be placed. This block should contain
the @name(or \namg command and is used to specify the header of the group. Optionally, the comment
block may also contain more detailed information about the group.

Nesting of member groups is not allowed.

If all members of a member group inside a class have the same type and protection level (for instance all
are static public members), then the whole member group is displayed as a subgroup of the type/protection

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

30

level group (the group is displayed as a subsection of the "Static Public Members” section for instance).

If two or more members have different types, then the group is put at the same level as the automatically
generated groups. If you want to force all member-groups of a class to be at the top level, you should put a
\nosubgroupingommand inside the documentation of the class.

Example:
/** A class. Details */
class Test

{
public:
el
/** Same documentation for both members. Details */
void funclIinGroupl();
void func2IinGroupl();
a}

/** Function without group. Details. */
void ungroupedFunction();
void funclinGroup2();
protected:
void func2IinGroup2();

h#

void Test::funclinGroupl() {}
void Test::func2InGroupl() {}

/** @name Group2

* Description of group 2.

*

nay

/** Function 2 in group 2. Details. */
void Test::func2InGroup2() {}

/** Function 1 in group 2. Details. */
void Test:funclinGroup2() {}

@}

[*! file
* docs for this file
*/

n@f

/I' one description for all members of this group

/I' (because DISTRIBUTE_GROUP_DOC is YES in the config file)
#define A 1

#define B 2

void glob_func();

Ia}

Here Groupl is displayed as a subsection of the "Public Members”. And Group?2 is a separate section
because it contains members with different protection levels (i.e. public and protected).

17 Subpaging

Information can be grouped into pages using'thageand\mainpagecommands. Normally, this results
in a flat list of pages, where the "main” page is the first in the list.

Instead of adding structure using the approach decribed in settichilesit is often more natural and
convienent to add additional structure to the pages usingshlepageommand.

For a page A thgsubpage command adds a link to another page B and at the same time makes page B a
subpage of A. This has the effect of making two groups GA and GB, where GB is part of GA, page A is
put in group GA, and page B is putin group GB.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

31

Doxygen allows you to putIeX formulas in the output (this works only for the HTML amfiEX output,
not for the RTF nor for the man page output). To be able to include formulas (as images) in the HTML
documentation, you will also need to have the following tools installed

e latex: the BIpX compiler, needed to parse the formulas. To test | have used the teTeX 1.0 distri-
bution.

e dvips: atool to convert DVI files to PostScript files | have used version 5.92b from Radical Eye
software for testing.

e gs: the GhostScript interpreter for converting PostScript files to bitmaps. | have used Aladdin
GhostScript 8.0 for testing.

There are three ways to include formulas in the documentation.

1. Using in-text formulas that appear in the running text. These formulas should be put between a pair
of \f$ commands, so

The distance between \f$(x_1,y_1)\f$ and \f$(x_2,y_2)\f$ is
\f$\sqrt{(x_2-x_1)"2+(y_2-y_1)"2}\f$.

results in:
The distance betweg, y1) and(za, y2) is /(22 — 21)2 + (y2 — y1)%

2. Unnumbered displayed formulas that are centered on a separate line. These formulas should be put
between\f[and \f] commands. An example:

\f[
|I_2|=\left] \int_{O}'T \psi(t)
\left\{
u(a,b)-
\int_{\gamma(t)}'a
\frac{d\theta}{k(\theta,t)}
\int_{a}"\theta c(\xi)u_t(\xi,t)\,d\xi
\right\} dt
\right|
\]

results in:

o] =

T © do[°
/0 P (t) {u(a,t) —[y(t) m/ﬂ c(§ue(§, 1) df}dt

3. Formulas or other latex elements that are not in a math environment can be specified using
\f{environmen}, whereenvironment is the name of theAIeX environment, the corresponding
end command i§f}. Here is an example for an equation array

\f{legnarray*}{
g &=& \frac{Gm_2}r"2} \\
&=& \frac{(6.673 \times 107{-11}\,\mbox{m} 3\,\\mbox{kg}{-1}\,
\mbox{s}{-2})(5.9736 \times 10°{24}\\mbox{kg})}{(6371.01\,\mbox{km})"2} \\
&=& 9.82066032\,\mbox{m/s}"2

\f}

which results in:
Gmg

T2
(6.673 x 10~"'m3 kg™ s72)(5.9736 x 10**kg)
(6371.01 km)2

9.82066032 m/s®

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

32

For the first two commands one should make sure formulas contain valid commafigXis nath-mode.
For the third command the section should contain valid command for the specific environment.

Warning:
Currently, doxygen is not very fault tolerant in recovering from typos in formulas. It may be necessary
to remove the filformula.repository that is written to the html directory to get rid of an

incorrect formula.

Doxygen has built-in support to generate inheritance diagrams for C++ classes.

Doxygen can use the "dot” tool from graphviz 1.5 to generate more advanced diagrams and
graphs. Graphviz is an "open-sourced”, cross-platform graph drawing toolkit and can be found at
http://www.graphviz.org/

If you have the "dot” tool available in the path, you can &VE _DOT to YESin the configuration file to
let doxygen use it.

Doxygen uses the "dot” tool to generate the following graphs:

e if GRAPHICAL HIERARCHY is set toYES a graphical representation of the class hierarchy will
be drawn, along with the textual one. Currently this feature is supported for HTML only.

Warning: When you have a very large class hierarchy where many classes derive from a common
base class, the resulting image may become too big to handle for some browsers.

e if CLASS. GRAPHiIs set toYES a graph will be generated for each documented class showing the
direct and indirect inheritance relations. This disables the generation of the built-in class inheritance
diagrams.

o if INCLUDE _GRAPHis set toYES an include dependency graph is generated for each documented
file that includes at least one other file. This feature is currently supported for HTML and RTF only.

e if COLLABORATION_GRAPHis setto YES, a graph is drawn for each documented class and struct
that shows:

— the inheritance relations with base classes.

— the usage relations with other structs and classes (e.g. Alaas a member variablaa of
type clas$B, thenA has an arrow t@ with ma as label).

e if CALL_GRAPH s set to YES, a graphical call graph is drawn for each function showing the
functions that the function directly or indirectly calls.

e if CALLER_GRAPHIs set to YES, a graphical caller graph is drawn for each function showing the
functions that the function is directly or indirectly called by.

The elements in the class diagrams in HTML and RTF have the following meaning:

¢ A yellow box indicates a class. A box can have a little marker in the lower right corner to indicate

that the class contains base classes that are hidden. For the class diagrams the maximum tree width

is currently 8 elements. If a tree is wider some nodes will be hidden. If the box is filled with a dashed
pattern the inheritance relation is virtual.

A white box indicates that the documentation of the class is currently shown.

A grey box indicates an undocumented class.

A solid dark blue arrow indicates public inheritance.

A dashed dark greenarrow indicates protected inheritance.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.graphviz.org/

33

¢ A dotted dark green arrow indicates private inheritance.

The elements in the class diagramARgX have the following meaning:

A white box indicates a class. farker in the lower right corner of the box indicates that the class
has base classes that are hidden. If the box liashedborder this indicates virtual inheritance.

A solid arrow indicates public inheritance.

A dashedarrow indicates protected inheritance.

A dotted arrow indicates private inheritance.
The elements in the graphs generated by the dot tool have the following meaning:

e A white box indicates a class or struct or file.

¢ A box with ared border indicates a node that hasrearrows than are shown! In other words: the
graph istruncatedwith respect to this node. The reason why a graph is sometimes truncated is to
prevent images from becoming too large. For the graphs generated with dot doxygen tries to limit
the width of the resulting image to 1024 pixels.

A black box indicates that the class’ documentation is currently shown.

A dark blue arrow indicates an include relation (for the include dependency graph) or public inher-
itance (for the other graphs).

A dark green arrow indicates protected inheritance.

A dark red arrow indicates private inheritance.

A purple dashedarrow indicated a "usage” relation, the edge of the arrow is labled with the vari-
able(s) responsible for the relation. Clasases clas8, if classA has a member variablaof type
C, where B is a subtype of C (e.g. C couldBeBx, Tx*).

Here are a couple of header files that together show the various diagrams that doxygen can generate:

diagrams _a.h

#ifndef _DIAGRAMS_A_H
#define _DIAGRAMS_A_H
class A { public: A *m_self; };
#endif

diagrams _b.h

#ifndef _DIAGRAMS_B_H
#define _DIAGRAMS_B_H
class A;

class B { public: A *m_a; };
#endif

diagrams _c.h

#ifndef _DIAGRAMS_C_H

#define _DIAGRAMS_C_H

#include "diagrams_c.h"

class D;

class C : public A { public: D *m_d; };
#endif

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

34

diagrams _d.h

#ifndef _DIAGRAM_D_H

#define _DIAGRAM_D_H

#include "diagrams_a.h"

#include "diagrams_b.h"

class C;

class D : virtual protected A, private B { public: C m_c; };
#endif

diagrams _e.h

#ifndef _DIAGRAM_E_H
#define _DIAGRAM_E_H
#include "diagrams_d.h"
class E : public D {};
#endif

Source files that are used as input to doxygen can be parsed by doxygen'’s built-in C-preprocessor.

By default doxygen does only partial preprocessing. That s, it evaluates conditional compilation statements
(like #if) and evaluates macro definitions, but it does not perform macro expansion.

So if you have the following code fragment

#define VERSION 200
#define CONST_STRING const char *

#if VERSION >= 200

static CONST_STRING version = "2.xx";
#else

static CONST_STRING version = "1.xx";
#endif

Then by default doxygen will feed the following to its parser:

#define VERSION
#define CONST_STRING

static CONST_STRING version = "2.xx";

You can disable all preprocessing by settElJABLE_PREPROCESSINGo NOin the configuation file.
In the case above doxygen will then read both statements, i.e:

static CONST_STRING version
static CONST_STRING version

"2.xx",;
"1.xx";

In case you want to expand tONSTSTRING macro, you should set tHdACRO_EXPANSIONtag in
the config file toYES Then the result after preprocessing becomes:

#define VERSION
#define CONST_STRING

static const char * version = "1.xx";

Note that doxygen will now exparall macro definitions (recursively if needed). This is often too much.
Therefore, doxygen also allows you to expand only those defines that you explicitly specify. For this
you have to set th&€XPAND_ONLY _PREDEFtag to YES and specify the macro definitions after the
PREDEFINEDor EXPAND_AS_DEFINED tag.

A typically example where some help from the preprocessor is needed is when dealing with Microsoft’s
__declspec language extension. Here is an example function.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

35

extern "C" void __declspec(dllexport) ErrorMsg(String aMessage,...);

When nothing is done, doxygen will be confused and sdeclspec as some sort of function. To help
doxygen one typically uses the following preprocessor settings:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = __declspec(x)=

This will make sure the_declspec(dllexport) is removed before doxygen parses the source code.

For a more complex example, suppose you have the following obfuscated code fragment of an abstract
base class calleddnknown:

/*! A reference to an IID */
#ifdef __ cplusplus

#define REFIID const IID &
#else

#define REFIID const IID *
#endif

/*1 The IUnknown interface */
DECLARE_INTERFACE(IUnknown)

STDMETHOD(HRESULT,Queryinterface) (THIS_ REFIID iid, void **ppv) PURE;
STDMETHOD(ULONG,AddRef) (THIS) PURE;
STDMETHOD(ULONG,Release) (THIS) PURE;

b

without macro expansion doxygen will get confused, but we may not want to expand the REFIID macro,
because it is documented and the user that reads the documentation should use it when implementing the
interface.

By setting the following in the config file:

ENABLE_PREPROCESSING = YES

MACRO_EXPANSION = YES

EXPAND_ONLY_PREDEF = YES

PREDEFINED = "DECLARE_INTERFACE(name)=class name" \
"STDMETHOD(result,name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \

__cplusplus

we can make sure that the proper result is fed to doxygen’s parser:

/*1 A reference to an IID */
#define REFIID

/*! The IUnknown interface */

class 1Unknown

{
virtual HRESULT Queryinterface (REFIID iid, void **ppv) = 0;
virtual ULONG AddRef () = 0;
virtual ULONG Release () = O;

h

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

36

Note that thePREDEFINEDtag accepts function like macro definitions (liIkECLARBNTERFACE),
normal macro substitutions (likRUREandTHIS) and plain defines (like_cplusplus).

Note also that preprocessor definitions that are normally defined automatically by the preprocessor (like
_cplusplus), have to be defined by hand with doxygen’s parser (this is done because these defines are
often platform/compiler specific).

In some cases you may want to substitute a macro name or function by something else without exposing
the result to further macro substitution. You can do this but usingtheperator instead of

As an example suppose we have the following piece of code:

#define QList QListT
class QListT

{

h

Then the only way to get doxygen interpret this as a class definition for class QList is to define:

PREDEFINED = QListT:=QList

Here is an example provided by Valter Minute and Reyes Ponce that helps doxygen to wade through the
boilerplate code in Microsoft's ATL & MFC libraries:

PREDEFINED = "DECLARE_INTERFACE(name)=class name" \
"STDMETHOD(result,name)=virtual result name" \
"PURE= = 0" \

THIS_= \

THIS= \
DECLARE_REGISTRY_RESOURCEID=// \
DECLARE_PROTECT_FINAL_CONSTRUCT=// \
"DECLARE_AGGREGATABLE(Class)= " \
"DECLARE_REGISTRY_RESOURCEID(Id)= " \
DECLARE_MESSAGE_MAP= \
BEGIN_MESSAGE_MAP=/* \
END_MESSAGE_MAP=*/// \
BEGIN_COM_MAP=/* \

END_COM_MAP=*/// \

BEGIN_PROP_MAP=/* \
END_PROP_MAP=%// \

BEGIN_MSG_MAP=/* \

END_MSG_MAP=*/// \
BEGIN_PROPERTY_MAP=/* \
END_PROPERTY_MAP=*/// \
BEGIN_OBJECT_MAP=/* \
END_OBJECT_MAP()=*/// \
DECLARE_VIEW_STATUS=// \
"STDMETHOD(a)=HRESULT a" \
"ATL_NO_VTABLE= " \

" _declspec(a)= " \
BEGIN_CONNECTION_POINT_MAP=/* \
END_CONNECTION_POINT_MAP=*/// \
"DECLARE_DYNAMIC(class)= " \
"IMPLEMENT_DYNAMIC(classl1, class2)= " \
"DECLARE_DYNCREATE(class)= " \
"IMPLEMENT_DYNCREATE(class1, class2)= " \
"IMPLEMENT_SERIAL(classl, class2, class3)= " \
"DECLARE_MESSAGE_MAP()= " \

TRY=try \

"CATCH_ALL(e)= catch(...)" \
END_CATCH_ALL= \

"THROW_LAST()= throw"\
"RUNTIME_CLASS(class)=class" \

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

37

"MAKEINTRESOURCE(nlId)=nld" \
"IMPLEMENT_REGISTER(v, w, X, y, z)= "\
"ASSERT(x)=assert(x)" \

"ASSERT_VALID(x)=assert(x)" \

"TRACEO(X)=printf(x)" \

"OS_ERR(A,B)={ #A, B }" \

__cplusplus \

"DECLARE_OLECREATE(class)= " \
"BEGIN_DISPATCH_MAP(classl, class2)= " \
"BEGIN_INTERFACE_MAP(classl, class2)= " \
"INTERFACE_PART(class, id, name)= " \
"END_INTERFACE_MAP()=" \

"DISP_FUNCTION(class, name, function, result, id)=" \
"END_DISPATCH_MAP()=" \
"IMPLEMENT_OLECREATEZ2(class, name, id1, id2, id3, id4,\
id5, id6, id7, id8, id9, id10, id11)="

As you can see doxygen’s preprocessor is quite powerful, but if you want even more flexibility you can
always write an input filter and specify it after tiéPUT_FILTER tag.

If you are unsure what the effect of doxygen’s preprocessing will be you can run doxygen as follows:

doxygen -d Preprocessor

This will instruct doxygen to dump the input sources to standard output after preprocessing has been done
(Hint: setQUIET = YESandWARNINGS = N the configuration file to disable any other output).

Most documentation systems have special ‘see also’ sections where links to other pieces of documentation
can be inserted. Although doxygen also has a command to start such a section (See sgc¢fiotoes

allow you to put these kind of links anywhere in the documentation. AAgKldocumentation a reference

to the page number is written instead of a link. Furthermore, the index at the end of the document can be
used to quickly find the documentation of a member, class, namespace or file. For man pages no reference
information is generated.

The next sections show how to generate links to the various documented entities in a source file.

18 Links to web pages and mail addresses

Doxygen will automatically replace any URLs and mail addresses found in the documentation by links (in
HTML).

19 Links to classes.

All words in the documentation that correspond to a documented class and contain at least one upper case
character will automatically be replaced by a link to the page containing the documentation of the class. If
you want to prevent that a word that corresponds to a documented class is replaced by a link you should
put a % in front of the word.

20 Links to files.

All words that contain a dot. () that is not the last character in the word are considered to be file names.
If the word is indeed the name of a documented input file, a link will automatically be created to the
documentation of that file.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

38

21 Links to functions.

Links to functions are created if one of the following patterns is encountered:

1. <functionName >"(" <argument-list >")"
2. <functionName >"()"
3. ":" <functionName >
4. (<className >":") N <functionName >"(" <argument-list >")"
5. (<className >":") M <functionName >"(" <argument-list >")" <modifiers >
6. (<className >":") M <functionName >"()"
7. (<className >":") " <functionName >
where 1>0.
Note 1:

Function arguments should be specified with correct types, i.e. 'fun(const std::string&,bool)’ or ’()’ to
match any prototype.

Note 2:
Member function modifiers (like 'const’ and 'volatile’) are required to identify the target, i.e. "func(int)
const’ and 'fun(int)’ target different member functions.

Note 3:
For JavaDoc compatibility a # may be used instead of a :: in the patterns above.

Note 4:
In the documentation of a class containing a member foo, a reference to a global variable is made using
foo, whereas #foo will link to the member.

For non overloaded members the argument list may be omitted.

If a function is overloaded and no matching argument list is specified (i.e. pattern 2 or 6 is used), a link
will be created to the documentation of one of the overloaded members.

For member functions the class scope (as used in patterns 4 to 7) may be omitted, if:
1. The pattern points to a documented member that belongs to the same class as the documentation

block that contains the pattern.

2. The class that corresponds to the documentation blocks that contains the pattern has a base class that
contains a documented member that matches the pattern.

22 Links to variables, typedefs, enum types, enum values and de-
fines.

All of these entities can be linked to in the same way as described in the previous section. For sake of
clarity it is advised to only use patterns 3 and 7 in this case.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

Example:

/*! \file autolink.cpp
Testing automatic link generation.

A link to a member of the Test class: Test::member,

More specific links to the each of the overloaded members:
Test::member(int) and Test#member(int,int)

A link to a protected member variable of Test: Test#var,
A link to the global enumeration type #GlobEnum.

A link to the define #ABS(x).

A link to the destructor of the Test class: Test: Test,

A link to the typedef ::B.

A link to the enumeration type Test:EType

A link to some enumeration values Test::Vall and :GVal2
*/

I
Since this documentation block belongs to the class Test no link to
Test is generated.
Two ways to link to a constructor are: #Test and Test().
Links to the destructor are: #Test and “Test().

A link to a member in this class: member().

More specific links to the each of the overloaded members:
member(int) and member(int,int).

A link to the variable #var.

A link to the global typedef ::B.

A link to the global enumeration type #GlobEnum.
A link to the define ABS(X).

A link to a variable \link #var using another text\endlink as a link.

>

link to the enumeration type #EType.
A link to some enumeration values: \link Test::Vall Vall \endlink and ::GVall.
And last but not least a link to a file: autolink.cpp.

\sa Inside a see also section any word is checked, so EType,
Vall, GVall, "Test and member will be replaced by links in HTML.

*/
class Test
{
public:
Test(); //I< constructor
“Test(); II'< destructor
void member(int); **< A member function. Details. */

void member(int,int); /**< An overloaded member function. Details */

/** An enum type. More details */
enum EType {
Vall, /**< enum value 1 */

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

40

Val2 [**< enum value 2 */
j
protected:
int var,; [**< A member variable */
h#
[*! details. */

Test:Test() { }

/*! details. */
Test::"Test() { }

/*I' A global variable. */
int globVar;

/¥ A global enum. */
enum GlobEnum {

GValil, /*I< global enum value 1 */
GVal2 /*I< global enum value 2 */
k
I
* A macro definition.
*
/

#define ABS(x) (((x)>0)?(x):-(x))
typedef Test B;

/*I \fn typedef Test B
* A type definition.
*/

23 typedefs.

Typedefs that involve classes, structs and unions, like

typedef struct StructName TypeName

create an alias for StructName, so links will be generated to StructName, when either StructName itself or
TypeName is encountered.

Example:

/*! \file restypedef.cpp
* An example of resolving typedefs.
*/

/*1 \struct CoordStruct
* A coordinate pair.
*/

struct CoordStruct

/¥ The x coordinate */
float x;
/*I The y coordinate */
float y;

h

/*! Creates a type name for CoordStruct */
typedef CoordStruct Coord;

[*!

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

41

* This function returns the addition of \a cl1 and \a c2, i.e:
* (cl.x+c2.x,cl.y+c2.y)

*/

Coord add(Coord c1,Coord c2)

{
}

24 Output Formats

The following output formats aréirectly supported by doxygen:

HTML Generated iIGENERATEHTMLIs set toYESin the configuration file.
IATEX Generated iGENERATHATEXis set toYESin the configuration file.
Man pages Generated iSENERATEVANS set toYESin the configuration file.

RTF Generated iIGENERATERTFis set toYESin the configuration file.

Note that the RTF output probably only looks nice with Microsoft's Word 97. If you have success
with other programs, please let me know.

XML Generated iSENERATEXMLIis set toYESin the configuration file.
Note that the XML output is still under development.

The following output formats an@directly supported by doxygen:

Compiled HTML Help (a.k.a. Windows 98 help) Generated by Microsofts HTML Help workshop
from the HTML output fGENERATEHTMLHELRSs set toYES

PostScript Generated from the’IeX output by runningmake ps in the output directory. For the best
resultsPDF-HYPERLINKSshould be set thiQ

PDF Generated from the’IgX output by runningmake pdf in the output directory. To improve the
PDF output, you typically would want to enable the uspdfilatex by settingUSE PDFLATEX
to YESin the configuration file. In order to get hyperlinks in the PDF file you also need to enable
PDF.HYPERLINKS.

If your project depends on external libraries or tools, there are several reasons to not include all sources for
these with every run of doxygen:

Disk space: Some documentation may be available outside of the output directory of doxygen already,
for instance somewhere on the web. You may want to link to these pages instead of generating the
documentation in your local output directory.

Compilation speed: External projects typically have a different update frequency from your own project.
It does not make much sense to let doxygen parse the sources for these external project over and over
again, even if nothing has changed.

Memory: For very large source trees, letting doxygen parse all sources may simply take too much of your
system’s memory. By dividing the sources into several "packages”, the sources of one package can
be parsed by doxygen, while all other packages that this package depends on, are linked in externally.
This saves a lot of memory.

Availability: For some projects that are documented with doxygen, the sources may just not be available.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

42

Copyright issues: If the external package and its documentation are copyright someone else, it may be
better - or even necessary - to reference it rather than include a copy of it with your project’s doc-
umentation. When the author forbids redistribution, this is necessary. If the author requires com-
pliance with some license condition as a precondition of redistribution, and you do not want to be
bound by those conditions, referring to their copy of their documentation is preferable to including a
copy.

If any of the above apply, you can use doxygen'’s tag file mechanism. A tag file is basically a compact
representation of the entities found in the external sources. Doxygen can both generate and read tag files.

To generate a tag file for your project, simply put the name of the tag file aft SENERATE TAGFILE
option in the configuration file.

To combine the output of one or more external projects with your own project you should specify the name
of the tag files after th€AGFILES option in the configuration file.

A tag file does not contain information about where the external documentation is located. This could be a
directory or an URL. So when you include a tag file you have to specify where the external documentation
is located. There are two ways to do this:

At configuration time: just assign the location of the output to the tag files specified aftéfAGEILES
configuration option. If you use a relative path it should be relative with respect to the directory
where the HTML output of your project is generated.

After compile time: if you do not assign a location to a tag file, doxygen will generate dummy links for all
external HTML references. It will also generate a perl script catstalldoxin the HTML output
directory. This script should be run to replace the dummy links with real links for all generated
HTML files.

Example:

Suppose you have a projgnbj that uses two external projects calledl andext2 . The directory
structure looks as follows:

<root>
+- proj
[+- html HTML output directory for proj
| +- src sources for proj
| |- proj.cpp
+- extl
| +- html HTML output directory for extl
| |- extl.tag tag file for extl
+- ext2
| +- html HTML output directory for ext2
| |- ext2.tag tag file for ext2
|- proj.cfg doxygen configuration file for proj
|- extl.cfg doxygen configuration file for extl
|- ext2.cfg doxygen configuration file for ext2

Then the relevant parts of the configuration files look as follows:

proj.cfg:

OUTPUT_DIRECTORY = proj

INPUT = proj/src

TAGFILES = extl/extl.tag=../..lextl/html \
ext2/ext2.tag=../../ext2/html

extl.cfg:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

OUTPUT_DIRECTORY = extl
GENERATE_TAGFILE = extl/extl.tag

ext2.cfg:

OUTPUT_DIRECTORY = ext2
GENERATE_TAGFILE = ext2/ext2.tag

In some (hopefully exceptional) cases you may have the documentation generated by doxygen, but not the
sources nor a tag file. In this case you can usedihyy/tagtool to extract a tag file from the generated
HTML sources. Another case where you should use doxytag is if you want to create a tag file for the Qt
documentation.

The tooldoxytag depends on the particular structure of the generated output and on some special markers
that are generated by doxygen. Since this type of extraction is brittle and error-prone | suggest you only
use this approach if there is no alternative. The doxytag tool may even become obsolete in the future.

1. How to get information on the index page in HTML?
You should use thgmainpage command inside a comment block like this:
/*I \mainpage My Personal Index Page

\section intro_sec Introduction

This is the introduction.

\section install_sec Installation

\subsection stepl Step 1: Opening the box

E I S

etc...

*
-~

2. Help, some/all of the members of my class / file / namespace are not documented?
Check the following:
(a) Is your class / file / namespace documented? If not, it will not be extracted from the sources
unlessEXTRACTALL is set toYESin the config file.

(b) Are the members private? If so, you must EXTRACTPRIVATE to YESto make them
appear in the documentation.

(c) Is there a function macro in your class that does not end with a semicolon (e.g.- MY
MACRO())? If so then you have to instruct doxygen’s preprocessor to remove it.
This typically boils down to the following settings in the config file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = MY_MACRO()=

Please read thereprocessingection of the manual for more information.

3. When | set EXTRACT _ALL to NO none of my functions are shown in the documentation.

In order for global functions, variables, enums, typedefs, and defines to be documented you should
document the file in which these commands are located using a comment block contajfile ¢oa
@file) command.

Alternatively, you can put all members in a group (or module) using ithgroup command and then
document the group using a comment block containing, tiefgroup command.

For member functions or functions that are part of a namespace you should document either the class
or namespace.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

4. How can | make doxygen ignore some code fragment?

The new and easiest way is to add one comment block wigtpadcommand at the start and one
comment block with & endcondcommand at the end of the piece of code that should be ignored.
This should be within the same file of course.

But you can also use Doxygen'’s preprocessor for this: If you put

#ifndef DOXYGEN_SHOULD_SKIP_THIS
/* code that must be skipped by Doxygen */

#endif /* DOXYGEN_SHOULD_SKIP_THIS */

around the blocks that should be hidden and put:

PREDEFINED = DOXYGEN_SHOULD_SKIP_THIS

in the config file then all blocks should be skipped by Doxygen as lomgREPROCESSING =
YES
5. How can | change what is after the#include in the class documentation?
In most cases you can use STREFROM_INC_PATH to strip a user defined part of a path.
You can also document your class as follows

/*I \class MyClassName include.h path/include.h
*

* Docs for MyClassName
*/
To make doxygen put

#include <path/include.h >

in the documentation of the class MyClassName regardless of the name of the actual header file in
which the definition of MyClassName is contained.

If you want doxygen to show that the include file should be included using quotes instead of angle
brackets you should type:

/¥ \class MyClassName myhdr.h "path/myhdr.h"
* Docs for MyClassName
*
6. How can | use tag files in combination with compressed HTML?

If you want to refer from one compressed HTML fidechm to another compressed HTML file
calledb.chm , the link ina.chm must have the following format:

Unfortunately this only works if both compressed HTML files are in the same directory.

As a result you must rename the generateléx.chm files for all projects into something unique
and put all.chm files in one directory.

Suppose you have a projexteferring to a projecb using tag fileb.tag , then you could rename
theindex.chm for projecta into a.chm and theindex.chm for projectb into b.chm . In the
configuration file for projech you write:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

45

TAGFILES = b.tag=b.chm::

or you can usénstalldox to set the links as follows:

installdox -lb.tag@b.chm::

7. I don't like the quick index that is put above each HTML page, what do | do?
You can disable the index by setting DISABLNDEX to YES. Then you can put in your own
header file by writing your own header and feed that to HTMEADER.

8. The overall HTML output looks different, while | only wanted to use my own html header file

You probably forgot to include the styleshedixygen.css that doxygen generates. You can
include this by putting

<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">

in the HEAD section of the HTML page.

9. Why does doxygen use Qt?

The most important reason is to have a platform abstraction for most Unices and Windows by means
of the QFile, QFilelnfo, QDir, QDate, QTime and QIODevice classes. Another reason is for the nice
and bug free utility classes, like QList, QDict, QString, QArray, QTextStream, QRegExp, QXML
etc.

The GUI front-end doxywizard uses Qt for... well... the GUI!

10. How can | exclude all test directories from my directory tree?
Simply put an exclude pattern like this in the configuration file:

EXCLUDE_PATTERNS = */test/*

11. Doxygen automatically generates a link to the class MyClass somewhere in the running text.
How do | prevent that at a certain place?

Put a % in front of the class name. Like this: %MyClass. Doxygen will then remove the % and keep
the word unlinked.

12. My favourite programming language is X. Can | still use doxygen?

No, not as such; doxygen needs to understand the structure of what it reads. If you don’t mind
spending some time on it, there are several options:

o If the grammar of X is close to C or C++, then it is probably not too hard to tweak src/scanner.|
a bit so the language is supported. This is done for all other languages directly supported by
doxygen (i.e. Java, IDL, C#, PHP).

e If the grammar of X is somewhat different than you can write an input fil-
ter that translates X into something similar enough to C/C++ for doxygen to
understand (this approach is taken for VB, Object Pascal, and Javascript, see
http://www.stack.nl/ ~dimitri/doxygen/download.html#helpers).

o If the grammar is completely different one could write a parser for X and write a backend that
produces a similar syntax tree as is done by src/scanner.| (and also by src/tagreader.cpp while
reading tag files).

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.stack.nl/~dimitri/doxygen/download.html#helpers

46

13. Help! | get the cryptic message "input buffer overflow, can’t enlarge buffer because scanner
uses REJECT”

This error happens when doxygen’s lexical scanner has a rule that matches more than 256K of input
characters in one go. I've seen this happening on a very large generated?fiéK lines), where

the built-in preprocessor converted it into an empty file (wiB56K of newlines). Another case
where this might happen is if you have lines in your code with more than 256K characters.

If you have run into such a case and want me to fix it, you should send me a code fragment that
triggers the message. To work around the problem, put some line-breaks into your file, split it up
into smaller parts, or exclude it from the input using EXCLUDE.

14. When running make in the latex dir | get "TeX capacity exceeded”. Now what?
You can edit the texmf.cfg file to increase the default values of the various buffers and then run
"texconfig init”.

15. Why are dependencies via STL classes not shown in the dot graphs?
Doxygen is unware of the STL classes, unless the option BUILSTN._SUPPORT is turned on.

16. | have problems getting the search engine to work with PHP5 and/or windows
Please reathis for hints on where to look.

17. Can | configure doxygen from the command line?

Not via command line options, but doxygen can read fstdin , so you can pipe things through it.
Here’s an example how to override an option in a configuration file from the command line (assuming
a unix environment):

(cat Doxyfile ; echo "PROJECT_NUMBER=1.0") | doxygen -

If multiple options with the same name are specified then doxygen will use the last one. To append
to an existing option you can use the += operator.

18. How did doxygen get its name?
Doxygen got its name from playing with the words documentation and generator.

documentation -> docs -> dox
generator -> gen

At the time | was looking into lex and yacc, where a lot of things start with "yy”, so the "y” slipped
in and made things pronounceable (the proper pronouncement is Docs-ee-gen, so with a long "e”).

19. What was the reason to develop doxygen?

| once wrote a GUI widget based on the Qt library (it is still available at
http://qdbttabular.sourceforge.net/ and maintained by Sven Meyer). Qt had
nicely generated documentation (using an internal tool which they didn't want to release) and |
wrote similar docs by hand. This was a nightmare to maintain, so | wanted a similar tool. | looked
at Doc++ but that just wasn’t good enough (it didn’t support signals and slots and did not have the
Qt look and feel | had grown to like), so | started to write my own tool...

Known problems:

¢ If you have problems building doxygen from sources, pleasetteadectiorfirst.

e Doxygen isnota real compiler, it is only a lexical scanner. This means that it can and will not detect
errors in your source code.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

file:searchengine.html
http://qdbttabular.sourceforge.net/

47

e Since it is impossible to test all possible code fragments, it is very well possible, that some valid
piece of C/C++ code is not handled properly. If you find such a piece, please send it to me, so | can
improve doxygen’s parsing capabilities. Try to make the piece of code you send as small as possible,
to help me narrow down the search.

e Doxygen does not work properly if there are multiple classes, structs or unions with the same name
in your code. It should not crash however, rather it should ignore all of the classes with the same
name except one.

e Some commands do not work inside the arguments of other commands. Inside a HTML link (i.e
href="...">...<a>) for instance other commands (including other HTML commands) do not work!
The sectioning commands are an important exception.

e Redundant braces can confuse doxygen in some cases. For example:
void f (int);
is properly parsed as a function declaration, but

const int (a);

is also seen as a function declaration with nante, because only the syntax is analysed, not the
semantics. If the redundant braces can be detected, as in

int *(a[20]);

then doxygen will remove the braces and correctly parse the resuilt.

¢ Not all names in code fragments that are included in the documentation are replaced by links (for
instance when usinOURCEBBROWSERYES) and links to overloaded members may point to the
wrong member. This also holds for the "Referenced by” list that is generated for each function.

For a part this is because the code parser isn't smart enough at the moment. I'll try to improve this
in the future. But even with these improvements not everything can be properly linked to the corre-
sponding documentation, because of possible ambiguities or lack of information about the context in
which the code fragment is found.

e It is not possible to insert a non-member function f in a class A using,tblates or\relatesalso
command, if class A already has a member with name f and the same argument list.

e There is only very limited support for member specialization at the moment. It only works if there is
a specialized template class as well.

e Not all special commands are properly translated to RTF.

e Version 1.8.6 of dot (and maybe earlier versions too) do not generate proper map files, causing the
graphs that doxygen generates not to be properly clickable.

e PHP only: Doxygen requires that all PHP statements (i.e. code) is wrapped in a functions/methods,
otherwise you may run into parse problems.

How to help

The development of Doxygen highly depends on your input!

If you are trying Doxygen let me know what you think of it (do you miss certain features?). Even if you
decide not to use it, please let me know why.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

48

How to report a bug

Bugs are tracked in GNOME’sugzilla database. Before submittingreew bug, first search
through the database if the same bug has already been submitted by others (the doxygen product will
be preselected). If you believe you have found a new bug, plteaset it

If you are unsure whether or not something is a bug, please ask help osdiee mailing list first
(subscription is required).

If you send only a (vague) description of a bug, you are usually not very helpful and it will cost me much
more time to figure out what you mean. In the worst-case your bug report may even be completely ignored
by me, so always try to include the following information in your bug report:

e The version of doxygen you are using (for instance 1.5.3,dasggen --version if you are
not sure).

e The name and version number of your operating system (for instance SuSE Linux 6.4)

e Itis usually a good idea to send along the configuation file as well, but please use doxygen with the
-s flag while generating it to keep it small (udexygen -s -u [configName] to strip the
comments from an existing config file).

e The easiest (and often the only) way for me to fix bugs is if you can attach a small example demon-
strating the problem you have to the bug report, so | can reproduce it on my machine. Please make
sure the example is valid source code (could potentially compile) and that the problem is really cap-
tured by the example (I often get examples that do not trigger the actual bug!). If you intend to send
more than one file please zip or tar the files together into a single file for easier processing. Note that
when reporting a new bug you'll get a chance to attach a file to it after submitting the initial bug
description.

You can (and are encouraged to) add a patch for a bug. If you do so please use PATCH as a keyword in the
bug entry form.

If you have ideas how to fix existing bugs and limitations please discuss them atetletopers
mailing list (subscription required). Patches can also be sent directynidri@stack.nl
if you prefer not to send them via the bug tracker or mailing list.

For patches please use "diff -uN” or include the files you modified. If you send more than one file please
tar or zip everything, so | only have to save and download one file.

Part Il
Reference Manual

e Requires very little overhead from the writer of the documentation. Plain text will do, but for more
fancy or structured output HTML tags and/or some of doxygen’s special commands can be used.

e Supports C/C++, Java, (Corba and Microsoft) Java, Python, IDL, C#, Objective-C and to some extent
D and PHP sources.

e Supports documentation of files, namespaces, packages, classes, structs, unions, templates, variables,
functions, typedefs, enums and defines.

e JavaDoc (1.1), Qt-Doc, and ECMA-334 (C# spec.) compatible.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://bugzilla.gnome.org
http://bugzilla.gnome.org/enter_bug.cgi?product=doxygen
http://bugzilla.gnome.org/query.cgi?format=advanced&product=doxygen
http://bugzilla.gnome.org/enter_bug.cgi?product=doxygen
http://sourceforge.net/mail/?group_id=5971
http://sourceforge.net/mail/?group_id=5971
http://sourceforge.net/mail/?group_id=5971
mailto:dimitri@stack.nl

49

e Automatically generates class and collaboration diagrams in HTML (as clickable image maps) and
IATEX (as Encapsulated PostScript images).

e Uses the dot tool of the Graphviz tool kit to generate include dependency graphs, collaboration
diagrams, call graphs, directory structure graphs, and graphical class hierarchy graphs.

e Flexible comment placement: Allows you to put documentation in the header file (before the decla-
ration of an entity), source file (before the definition of an entity) or in a separate file.

e Generates a list of all members of a class (including any inherited members) along with their protec-
tion level.

e Outputs documentation in on-line format (HTML and UNIX man page) and off-line forrAgt{L
and RTF) simultaneously (any of these can be disabled if desired). All formats are optimized for
ease of reading.

Furthermore, compressed HTML can be generated from HTML output using Microsoft's HTML
Help Workshop (Windows only) and PDF can be generated fromTX butput.

e Includes a full C preprocessor to allow proper parsing of conditional code fragments and to allow
expansion of all or part of macros definitions.

e Automatically detects public, protected and private sections, as well as the Qt specific signal and
slots sections. Extraction of private class members is optional.

e Automatically generates references to documented classes, files, namespaces and members. Doc-
umentation of global functions, globals variables, typedefs, defines and enumerations is also sup-
ported.

e References to base/super classes and inherited/overridden members are generated automatically.

e Includes a fast, rank based search engine to search for strings or words in the class and member
documentation.

e You can type normal HTML tags in your documentation. Doxygen will convert them to their equiv-
alent ETeX, RTF, and man-page counterparts automatically.

e Allows references to documentation generated for other projects (or another part of the same project)
in a location independent way.

¢ Allows inclusion of source code examples that are automatically cross-referenced with the documen-
tation.

¢ Inclusion of undocumented classes is also supported, allowing to quickly learn the structure and
interfaces of a (large) piece of code without looking into the implementation details.

¢ Allows automatic cross-referencing of (documented) entities with their definition in the source code.
¢ All source code fragments are syntax highlighted for ease of reading.

¢ Allows inclusion of function/member/class definitions in the documentation.

¢ All options are read from an easy to edit and (optionally) annotated configuration file.

e Documentation and search engine can be transferred to another location or machine without regen-
erating the documentation.

e Can cope with large projects easily.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

50

Although doxygen can now be used in any project written in a language that is supported by doxygen,
initially it was specifically designed to be used for projects that make use of Troll T€thtsolkit

| have tried to make doxygen ‘Qt-compatible’. That is: Doxygen can read the documentation contained
in the Qt source code and create a class browser that looks quite similar to the one that is generated by
Troll Tech. Doxygen understands the C++ extensions used by Qt such as signals and slots and many of the
markup commands used in the Qt sources.

Doxygen can also automatically generate links to existing documentation that was generated with Doxygen
or with Qt's non-public class browser generator. For a Qt based project this means that whenever you refer
to members or classes belonging to the Qt toolkit, a link will be generated to the Qt documentation. This
is done independent of where this documentation is located!

Version 1.2.0

Major new features:

e Support for RTF output.

e Using the dot tool of the AT&T’s GraphViz package, doxygen can now generate inheritance dia-
grams, collaboration diagrams, include dependency graphs, included by graphs and graphical inher-
itance overviews.

e Function arguments can now be documented with separate comment blocks.

e Initializers and macro definitions are now included in the documentation.

¢ Variables and typedefs are now put in their own section.

¢ OId configuration files can be upgraded using the -u option without loosing any changes.

e Using the\if and \ endif commands, doxygen can conditionally include documentation blocks.
e Added Doc++ like support for member grouping.

e Doxygen now has a GUI front-end called doxywizard (based on Qt-2.1)

¢ All info about configuration options is now concentrated in a new tool called configgen. This tool
can generate the configuration parser and GUI front-end from source templates.

e Better support for the using keyword.

e New transparent mini logo that is put in the footer of all HTML pages.

¢ Internationalization support for the Polish, Portuguese and Croatian language.
e Todo list support.

¢ If the source browser is enabled, for a function, a list of function whose implementation calls that
function, is generated.

e All source code fragments are now syntax highlighted in the HTML output. The colors can be
changed using cascading style sheets.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.trolltech.com/products/qt.html

51

Version 1.0.0

Major new features:

Support for templates and namespaces.

Internationalization support. Currently supported languages are: English, Czech, German, Spanish,
Finnish, French, Italian, Japanese, Dutch, and Swedish.

Automatic generation of inheritance diagrams for sub and super classes.
Support for man page, compressed HTML help, and hyperlinked PDF output.
Cross-referencing documentation with source code and source inlining.
LaTeX formulas can be included in the documentation.

Support for parsing Corba and Microsoft IDL.

Images can be included in the documentation.

Improved parsing and preprocessing.

Version 0.4

Major new features:

LaTeX output generation.
Full JavaDoc support.
Build-in C-preprocessor for correct conditional parsing of source code that is read by Doxygen.

Build-in HTML to LaTeX converter. This allows you to use HTML tags in your documentation,
while doxygen still generates proper LaTeX output.

Many new commands (there are now more than 60!) to document more entities, to make the docu-
mentation look nicer, and to include examples or pieces of examples.

Enum types, enum values, typedefs, #defines, and files can now be documented.
Completely new documentation, that is now generated by Doxygen.

A lot of small examples are now included.

Version 0.3

Major new features:

A PHP based search engine that allows you to search through the generated documentation.

A configuration file instead of command-line options. A default configuration file can be generated
by doxygen .

Added an option to generate output for undocumented classes.

Added an option to generate output for private members.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

file:doxygen_usage.html

52

e Every page now contains a condensed index page, allowing much faster navigation through the
documentation.

e Global and member variables can now be documented.

e A project name can now given, which will be included in the documentation.

Version 0.2

Major new features:

¢ Blocks of code are now parsed. Function calls and variables are replaced by links to their documen-
tation if possible.

e Special example documentation block added. This can be used to provide cross references between
the documentation and some example code.

e Documentation blocks can now be placed inside the body of a class.

e Documentation blocks with line range may now be created using sgécialC++ line comments.

e Unrelated members can now be documented. A page containing a list of these members is generated.
e Added an\include command to insert blocks of source code into the documentation.

e Warnings are generated for members that are undocumented.

e You can now specify your own HTML headers and footers for the generated pages.

e Option added to generated indices containing all external classes instead of only the used ones.

Version 0.1

Initial version. Doxygen is a command line based utility. Calldaxygen with the--help option at
the command line will give you a brief description of the usage of the program.

All options consist of a leading characterfollowed by one character and one or more arguments depend-
ing on the option.

To generate a manual for your project you typically need to follow these steps:

1. You document your source code with special documentation blocks (see sggéoial documenta-
tion blocks.

2. You generate a configuration file (see sect@tmfiguration by calling doxygen with theg option:
doxygen -g <config_file>

3. You edit the configuration file so it matches your project. In the configuration file you can specify
the input files and a lot of optional information.

4. You let doxygen generate the documentation, based on the settings in the configuration file:

doxygen <config_file>

If you have a configuration file generated with an older version of doxygen, you can upgrade it to the
current version by running doxygen with the -u option.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

53

doxygen -u <config_file>

All configuration settings in the orginal configuration file will be copied to the new configuration file. Any
new options will have their default value. Note that comments that you may have added in the original
configuration file will be lost.

If you want to fine-tune the way the output looks, doxygen allows you generate default style sheet, header,
and footer files that you can edit afterwards:

e For HTML output, you can generate the default header fileSédL _HEADER), the default footer
(seeHTML _FOOTER), and the default style sheet (d¢€ML _STYLESHEET), using the following
command:

doxygen -w html header.html footer.html stylesheet.css

e For LaTeX output, you can generate the first pamsffnan.tex (seeLATEX_HEADER) and the
style sheet included by that header (normalibxygen.sty), using:

doxygen -w latex header.tex doxygen.sty

If you need non-default options (for instance to use pdflatex) you need to make a config file with
those options set correctly and then specify that config file as the forth argument.

e For RTF output, you can generate the default style sheet fileREEESTYLESHEETFILE) using:

doxygen -w rtf rtfstyle.cfg
Note:

¢ If you do not want documentation for each item inside the configuration file then you can use the
optional-s option. This can use be used in combination with-theoption, to add or strip the docu-
mentation from an existing configuration file. Please usegheption if you send me a configuration
file as part of a bug report!

e To make doxygen read/write to standard input/output instead of from/to a file,fas¢he file name.

Doxytag is a small command line based utility. It can genetagefiles These tag files can be used with
doxygen to generate references to external documentation (i.e. documentation not contained in the input
files that are used by doxygen).

A tag file contains information about files, classes and members documented in external documentation.
Doxytag extracts this information directly from the HTML files. This has the advantage that you do not
need to have the sources from which the documentation was extracted.

If you do have the sources it is better to ixygen generate the tag file by putting the name of the tag
file after GENERATE.TAGFILE in the configuration file.

The input of doxytag consists of a set of HTML files.

Important:
If you use tag files, the links that are generated by doxygen will combainmylinks. You have to
run theinstalldox script to change these dummy links into real links. Sestalldox usagdor
more information. The use of dummy links may seem redundant, but it is really useful, if you want
to move the external documentation to another location. Then the documentation does not need to be
regenerated bgloxygen , only installdox has to be run.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

file:doxygen_usage.html

54

Note:
Because the HTML files are expected to have a certain structure, only HTML files generated with
doxygen or with Qt’s class browser generator can be used. Doxytageadgthe HTML files, they
are not altered in any way.

Doxytag expects a list of all HTML files that form the documentation or a directory that contains all HTML
files. If neither is present doxytag will read all files withraml extension from the current directory. If
doxytag is used with the flag it generates a tag file.

Example 1:
Suppose the filexample.cpp from theexamples directory that is listed below is included in
some package for which you do not have the sources. Fortunately, the distributor of the packages
included the HTML documentation that was generated by doxygen in the package.

/** A Test class.
* More details about this class.
*/

class Test

{
public:
/** An example member function.
* More details about this function.
*
void example();

I
void Test::example() {}

/** \example example_test.cpp

* This is an example of how to use the Test class.
* More details about this example.

*

Now you can create a tag file from the HTML files in the package by typing:

doxytag -t example.tag example/html

from the examples directory. Finally you can use this tag file with your own piece of code, such as
done in the following example:

/*1 A class that is inherited from the external class Test.
*/

class Tag : public Test

{
public:
/*! an overloaded member. */
void example();

j

Doxygen will now include links to the external package in your own documentation. Because the tag
file does not specify where the documentation is located, you will have to specify that by running the
installdox script that doxygen generates (See sedtistalldox usagéor more information).

Note that this is actually a feature because if you (or someone else) moves the external documentation to
a different directory or URL you can simply run the script again and all links in the HTML files will be
updated.

Example 2:
To generate a tag file of the Qt documentation you can do the following:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

55

doxytag -t qttag $QTDIR/doc/html

Doxywizard is a GUI front-end for configuring and running doxygen.
When you start doxywizard it will display the main window (the actual look depends on the OS used).

The windows shows the steps to take to configure and run doxygen. The first step is to choose one of the
ways to configure doxygen.

Wizard Click this button to quickly configure the most important settings and leave the rest of the options
to their defaults.

Expert Click this button to to gain access to thal range of configuration options

Load Click this button to load an existing configuration file from disk.

Note that you can select multiple buttons in a row, for instance to first configure doxygen using the Wizard
and then fine tune the settings via the Expert.

After doxygen is configured you need to save the configuration as a file to disk. This second step allows
doxygen to use the configuration and has the additional advantage that the configuration can be reused to
run doxygen with the same settings at a later point in time.

Since some configuration options may use relative paths, the next step is to select a directory from which
to run doxygen. This is typically the root of the source tree and will most of the time already be filled in
correctly.

Once the configuration file is saved and the working directory is set, you can run doxygen based on the
selected settings. Do this by pressing the "Start” button. Once doxygen runs you can cancel it by clicking
the same button again. The output produced by doxygen is captured and shown in a log window. Once
doxygen finishes, the log can be saved as a text file.

The Wizard Dialog

If you select the Wizard button in step 1, then a dialog with a number of tabs will appear.

The fields in the project tab speak for themselves. Once doxygen has finished the Destination directory is
where to look for the results. Doxygen will put each output format in a separate sub-directory.

The mode tab allows you to select how doxygen will look at your sources. The default is to only look for
things that have been documented.

You can also select how doxygen should present the results. The latter does not affect the way doxygen
parses your source code.

You can select one or more of the output formats that doxygen should produce. For HTML and LaTeX
there are additional options.

Doxygen can produce a number of diagrams. Using the diagrams tab you can select which ones to generate.
For most diagrams the dot tool of tl&raphViz package is needed (if you use the binary packages for
Mac or Windows this tool is already included).

Expert dialog

The Expert dialog has a number of tab fields, one for each section in the configuration file. Each tab-field
contains a number of lines, one for each configuration option in that section.

The kind of input widget depends on the type of the configuration option.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.graphviz.org

e For each boolean option (those options that are answered with YES or NO in the configuration file)
there is a check-box.

e For items taking one of a fixed set of values (IR&JTPUT_LANGUAGE) a combo box is used.
e For items taking an integer value from a range, a spinbox is used.
e For free form string-type options there is a one line edit field

e For options taking a lists of strings, a one line edit field is available, with a ‘+’ button to add this
string to the list and a ‘-’ button to remove the selected string from the list. There is alsbutton
that, when pressed, replaces the selected item in the list with the string entered in the edit field.

e For file and folder entries, there are special buttons that start a file selection dialog.

The get additional information about the meaning of an option, click on the "Help” button at the bottom
right of the dialog and then on the item. A tooltip with additional information will appear.

Menu options

The GUI front-end has a menu with a couple of useful items

Open... This is the same as the "Load” button in the main window and allows to open a configuration file
from disk.

Save as..This is the same as the "Save” button in the main window and can be used to save the current
configuration settings to disk.

Recent configurations Allow to quickly load a recently saved configuration.

Set as default... Stores the current configuration settings as the default to use next time the GUI is started.
You will be asked to confirm the action.

Reset... Restores the factory defaults as the default settings to use. You will be asked to confirm the action.

Installdox is a perl script that is generated by doxygen whenever tag files are usetdAGEEES in
sectionExternal reference optioher the search engine is enabled (SE8ARCHENGINE sectionSearch
engine options The script is located in the same directory where the HTML files are located.

Its purpose is to set the location of the external documentation for each tag file and to set the correct links
to the search engine at install time.

Callinginstalldox with option-h at the command line will give you a brief description of the usage of
the program.

The following options are available:

-l <tagfile >@xlocation > Each tag file contains information about the files, classes and members
documented in a set of HTML files. A user can install these HTML files anywhere on his/her hard
disk or web site. Therefore installdogquiresthe location of the documentation for each tag file
<tagfile > that is used by doxygen. The locatieriocation > can be an absolute path or a
URL.

Note:
Each<tadfile> must be unique and should only be the name of the file, not including the path.

-q When this option is specified, installdox will generate no output other than fatal errors.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

57

Optionally a list of HTML files may be given. These files are scanned and modified if needed. If this list is
omitted all files in the current directory that end with .html are used.

Theinstalldox script is unique for each generated class browser in the sense that it ‘knows’ what tag
files are used. It will generate an error if tHeoption is missing for a tag file or if an invalid tag file is
given.

25 Format

A configuration file is a free-form ASCII text file with a structure that is similar to that of a Makefile,

with the default nam®oxyfile . It is parsed bydoxygen . The file may contain tabs and newlines for
formatting purposes. The statements in the file are case-sensitive. Comments may be placed anywhere
within the file (except within quotes). Comments begin with the # character and end at the end of the line.

The file essentially consists of a list of assignment statements. Each statement consiBcdXAME

written in capitals, followed by the character and one or more values. If the same tag is assigned more
than once, the last assignment overwrites any earlier assignment. For options that take a list as their
argument, the-= operator can be used instead=otfo append new values to the list. Values are sequences

of non-blanks. If the value should contain one or more blanks it must be surrounded by quotes (”...").
Multiple lines can be concatenated by inserting a backslgshs(the last character of a line. Environment
variables can be expanded using the pat#ENV_VARIABLE_NAME)

You can also include part of a configuration file from another configuration file us@¢NCLUDEag as
follows:

@INCLUDE = config_file_name

The include file is searched in the current working directory. You can also specify a list of directories that
should be searched before looking in the current working directory. Do this by put@i&€LUDBPATH
tag with these paths before tt@INCLUDEag, e.g:

@INCLUDE_PATH = my_config_dir

The configuration options can be divided into several categories. Below is an alphabetical index of the tags
that are recognized followed by the descriptions of the tags grouped by category.

ABBREVIATE BRIEF 26 CLASS_DIAGRAMS 41
ALIASES 26 CLASS.GRAPH 41
ALLEXTERNALS 40 COLLABORATION _GRAPH 41
ALPHABETICAL _INDEX 31 COLS.IN_ALPHA INDEX a1
ALWAYS _DETAILED _SEC 26

COMPACT _LATEX 33
BINARY _TOC 32

COMPACT _RTF 34
BUILTIN _STL_SUPPORT 26

CPP.CLI _SUPPORT 26
BRIEF _MEMBER _DESC 26
CALL GRAPH " CREATE _SUBDIRS 26
CALLER .GRAPH al DETAILS _AT TOP 26
CASE_SENSENAMES 26 DIRECTORY _GRAPH 41
CHM _FILE 32 DISABLE _INDEX 32

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

58

DISTRIBUTE _.GROUP_DOC

DOCSET_-BUNDLE _ID

DOCSET_.FEEDNAME

DOT_GRAPH_MAX NODES

DOT_IMAGE _FORMAT

DOT_MULTI _-TARGETS

DOT_PATH

DOT_TRANSPARENT

DOTFILE _DIRS

DOXYFILE _ENCODING

ENABLE _PREPROCESSING

ENUM _VALUES _PER_LINE

ENABLED _SECTIONS

EXAMPLE _PATH

EXAMPLE _PATTERNS

EXAMPLE _RECURSIVE

EXCLUDE

EXCLUDE _PATTERNS

EXCLUDE _SYMLINKS

EXPAND_AS_DEFINED

EXPAND_ONLY _PREDEF

EXTERNAL _GROUPS

EXTRA _PACKAGES

EXTRACT _ALL

EXTRACT _ANON_NSPACES

EXTRACT _LOCAL _CLASSES

EXTRACT _LOCAL _-METHODS

EXTRACT _PRIVATE

EXTRACT _STATIC

FILE _PATTERNS

FILE -VERSION_FILTER

FILTER _PATTERNS

FILTER _.SOURCEFILES

FULL _-PATH _NAMES

GENERATE _AUTOGEN _DEF

GENERATE _BUGLIST

GENERATE _CHI

26

32

32

41

41

41

41

41

41

26

39

32

27

29

29

29

29

29

29

39

39

40

33

27

27

27

27

27

27

29

29

29

29

26

37

27

32

GENERATE _DEPRECIATEDLIST

GENERATE _DOCSET

GENERATE _HTML

GENERATE _HTMLHELP

GENERATE _LATEX

GENERATE _LEGEND

GENERATE _MAN

GENERATE _PERLMOD

GENERATE _RTF

GENERATE _TAGFILE

GENERATE _TESTLIST

GENERATE _TODOLIST

GENERATE _TREEVIEW

GENERATE XML

GRAPHICAL _HIERARCHY

GROUP_GRAPHS

HAVE -DOT

HHC_LOCATION

HIDE _FRIEND .COMPOUNDS

HIDE _IN_BODY _DOCS

HIDE _SCOPE.NAMES

HIDE _.UNDOC_CLASSES

HIDE _UNDOC_MEMBERS

HIDE _UNDOC_RELATIONS

HTML _ALIGN _.MEMBERS

HTML _DYNAMIC _SECTIONS

HTML _-FOOTER

HTML _HEADER

HTML _OUTPUT

HTML _STYLESHEET

IGNORE _PREFIX

IMAGE _PATH

INCLUDE _GRAPH

INCLUDE _PATH

INHERIT _DOCS

INLINE _INFO

INLINE _INHERITED _.MEMB

27

32

32

32

33

41

35

38

34

40

27

27

32

36

41

41

41

32

27

27

27

27

27

41

32

32

32

32

32

32

31

29

41

39

26

27

26

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

59

INLINE _SOURCES

INPUT

INPUT _ENCODING

INPUT _FILTER

INTERNAL _DOCS
JAVADOC _AUTOBRIEF
LATEX -BATCHMODE
LATEX _-CMD _NAME

LATEX HEADER

LATEX _HIDE _INDICES
LATEX _OUTPUT

MACRO _.EXPANSION
MAKEINDEX _CMD _NAME
MAN _EXTENSION

MAN _LINKS

MAN _OUTPUT

MAX _-DOT_GRAPH_DEPTH
MAX _INITIALIZER _LINES
MSCGEN_PATH

MULTILINE _CPP.IS_BRIEF
OPTIMIZE _FOR_FORTRAN
OPTIMIZE _.OUTPUT_FOR_C
OPTIMIZE _OUTPUT_JAVA
OPTIMIZE _OUTPUT_VHDL
OUTPUT_DIRECTORY
OUTPUT_LANGUAGE
PAPER_TYPE
PDF_-HYPERLINKS
PERL_PATH

PERLMOD _LATEX
PERLMOD _PRETTY
PERLMOD _-MAKEVAR _PREFIX
PREDEFINED
PROJECT_NAME
PROJECT_NUMBER
QT_AUTOBRIEF

QUIET

30

29

29

29

27

26

33

33

33

33

33

39

33

35

35

35

41

27

41

26

26

26

26

26

26

26

33

33

40

38

38

38

39

26

26

26

28

RECURSIVE

REFERENCED_BY _RELATION

REFERENCES_RELATION

REFERENCES_LINK _SOURCE

REPEAT _BRIEF

RTF_EXTENSIONS_FILE

RTF_HYPERLINKS

RTF_OUTPUT

RTF_STYLESHEET _FILE

SEARCH_INCLUDES

SEARCHENGINE

SEPARATE_MEMBER _PAGES

SHORT_NAMES

SHOW_DIRECTORIES

SHOW_INCLUDE _FILES

SHOW_USED_FILES

SIP_SUPPORT

SKIP_FUNCTION _-MACROS

SORT_BRIEF_DOCS

SORT_BY_SCOPE.NAME

SORT_GROUP_NAMES

SORT_-MEMBER _DOCS

SOURCE.BROWSER

STRIP_.CODE_.COMMENTS

STRIP_.FROM _INC _PATH

STRIP_.FROM _PATH

SUBGROUPING

TAB _SIZE

TAGFILES

TEMPLATE _RELATIONS

TOC_EXPAND

TREEVIEW WIDTH

TYPEDEF_HIDES_STRUCT

UML _LOOK

USE HTAGS

USE_PDFLATEX

USE.WINDOWS _.ENCODING

29

30

30

30

26

34

34

34

34

39

42

26

26

27

27

27

26

39

27

27

27

27

30

30

26

26

26

26

40

41

32

32

26

41

30

33

26

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

60

VERBATIM _HEADERS 30 WARNINGS 28
WARN _FORMAT 28 XML _DTD 36
WARN _IF_DOC_ERROR 28

XML _OUTPUT 36
WARN _IF_UNDOCUMENTED 28
WARN LOGFILE o8 XML _PROGRAMLISTING 36
WARN _NO_PARAMDOC 28 XML _SCHEMA 36

26 Project related options

DOXYFILE.EENCODING This tag specifies the encoding used for all characters in the config file that
follow. The default is UTF-8 which is also the encoding used for all text before the first occur-
rence of this tag. Doxygen uses libiconv (or the iconv built into libc) for the transcoding. See
http://www.gnu.org/software/libiconv for the list of possible encodings.

PROJECTNAME The PROJECTNAMEtag is a single word (or a sequence of words surrounded by
double-quotes) that should identify the project for which the documentation is generated. This name
is used in the title of most generated pages and in a few other places.

PROJECTNUMBERThe PROJECTNUMBERag can be used to enter a project or revision number. This
could be handy for archiving the generated documentation or if some version control system is used.

OUTPUTIDIRECTORY The OUTPUTDIRECTORMag is used to specify the (relative or absolute) path
into which the generated documentation will be written. If a relative path is entered, it will be relative
to the location where doxygen was started. If left blank the current directory will be used.

CREATESUBDIRS If the CREATESUBDIRStag is set toYES then doxygen will create 4096 sub-
directories (in 2 levels) under the output directory of each output format and will distribute the
generated files over these directories. Enabling this option can be useful when feeding doxygen a
huge amount of source files, where putting all generated files in the same directory would otherwise
causes performance problems for the file system.

OUTPUTLANGUAGEThe OUTPUTLANGUAGHag is used to specify the language in which all docu-
mentation generated by doxygen is written. Doxygen will use this information to generate all con-
stant output in the proper language. The default language is English, other supported languages are:
Afrikaans, Arabic, Brazilian, Catalan, Chinese, Croatian, Czech, Danish, Dutch, Finnish, French,
German, Greek, Hungarian, Italian, Japanese, Korean, Lithuanian, Norwegian, Persian, Polish, Por-
tuguese, Romanian, Russian, Serbian, Slovak, Slovene, Spanish, Swedish, and Ukrainian.

USEWINDOWENCODING This tag can be used to specify the encoding used in the generated output.
The encoding is not always determined by the language that is chosen, but also whether or not the
output is meant for Windows or non-Windows users. In case there is a difference, settifgEhe
WINDOWENCODINGag toYESforces the Windows encoding, (this is the default for the Windows
binary), whereas setting the taghi®uses a Unix-style encoding (the default for all platforms other
than Windows).

BRIEF_MEMBERBESC If the BRIEF_.MEMBERESCtag is set toYES (the default) doxygen will in-
clude brief member descriptions after the members that are listed in the file and class documentation
(similar to JavaDoc). Set to NO to disable this.

REPEATBRIEF If the REPEATBRIEF tag is set toYES (the default) doxygen will prepend the brief
description of a member or function before the detailed description

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.gnu.org/software/libiconv

61

Note:
If both HIDE_UNDOMMEMBERSNdBRIEF _MEMBERBESCare set td\NQ the brief descrip-
tions will be completely suppressed.

ABBREVIATEBRIEF This tag implements a quasi-intelligent brief description abbreviator that is used
to form the text in various listings. Each string in this list, if found as the leading text of the brief
description, will be stripped from the text and the result after processing the whole list, is used as
the annotated text. Otherwise, the brief description is used as-is. If left blank, the following values
are used ({$name” is automatically replaced with the name of the entity): "The $name class” "The
$name widget” "The $name file” "is” "provides” "specifies” "contains” "represents” "a” "an” "the”.

ALWAYSDETAILED_SEC If the ALWAYSDETAILED_SECand REPEATBRIEF tags are both set to
YESthen doxygen will generate a detailed section even if there is only a brief description.

INLINE _INHERITED_MEMB If the INLINE _INHERITED_MEMBag is set to*ES doxygen will show
all inherited members of a class in the documentation of that class as if those members were ordinary
class members. Constructors, destructors and assignment operators of the base classes will not be
shown.

FULL_PATHNAMES If the FULL_.PATHNAMESag is set toYES doxygen will prepend the full path
before files name in the file list and in the header files. If set to NO the shortest path that makes the
file name unique will be used

STRIP _FROMPATH If the FULL_.PATHNAMESag is set tovESthen theSTRIP_FROMPATHtag can
be used to strip a user-defined part of the path. Stripping is only done if one of the specified strings
matches the left-hand part of the path. The tag can be used to show relative paths in the file list. If
left blank the directory from which doxygen is run is used as the path to strip.

STRIP_FROMNC PATH The STRIP_FROMNC _PATHtag can be used to strip a user-defined part of
the path mentioned in the documentation of a class, which tells the reader which header file to include
in order to use a class. If left blank only the name of the header file containing the class definition is
used. Otherwise one should specify the include paths that are normally passed to the compiler using
the -I flag.

CASESENSENAMES If the CASESENSENAMESag is set td\Othen doxygen will only generate file
names in lower-case letters. If setX&Supper-case letters are also allowed. This is useful if you
have classes or files whose names only differ in case and if your file system supports case sensitive
file names. Windows users are advised to set this option to NO.

SHORTINAMES If the SHORTNAMESag is set toYES doxygen will generate much shorter (but less
readable) file names. This can be useful is your file systems doesn’t support long names like on
DOS, Mac, or CD-ROM.

JAVADOCAUTOBRIEF If the JAVADOCAUTOBRIEFis set toY ESthen doxygen will interpret the first
line (until the first dot) of a JavaDoc-style comment as the brief description. If setto NO (the default),
the Javadoc-style will behave just like regular Qt-style comments (thus requiring an explicit @brief
command for a brief description.)

QT AUTOBRIEF If the QT AUTOBRIEFis set toYESthen doxygen will interpret the first line (until the
first dot) of a Qt-style comment as the brief description. If set to NO (the default), the Qt-style will
behave just like regular Qt-style comments (thus requiring an explicief command for a brief
description.)

BUILTIN _STL_.SUPPORTIf you use STL classes (i.e. std::string, std::vector, etc.) but do not want
to include (a tag file for) the STL sources as input, then you should set this tdg3on order
to let doxygen match functions declarations and definitions whose arguments contain STL classes
(e.g. func(std::string); v.s. func(std::string)). This also make the inheritance and collaboration
diagrams that involve STL classes more complete and accurate.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

62

CPPCLI _SUPPORTIf you use Microsoft's C++/CLI language, you should set this option to YES to
enable parsing support.

SIP _SUPPORT Set the SIPSUPPORT tag to YES if your project consistssgi sources only. Doxygen
will parse them like normal C++ but will assume all classes use public instead of private inheritance
when no explicit protection keyword is present.

DISTRIBUTE_GROUMDOC If member grouping is used in the documentation and the DISTRIBUTE
GROUPDOC tag is set to YES, then doxygen will reuse the documentation of the first member in
the group (if any) for the other members of the group. By default all members of a group must be
documented explicitly.

MULTILINE _CPPIS BRIEF The MULTILINE_CPPIS_BRIEF tag can be set to YES to make Doxy-
gen treat a multi-line C++ special comment block (i.e. a block of /! or /// comments) as a brief
description. This used to be the default behaviour. The new default is to treat a multi-line C++ com-
ment block as a detailed description. Set this tag to YES if you prefer the old behaviour instead. Note
that setting this tag to YES also means that rational rose comments are not recognized any more.

DETAILS_AT_TOP If the DETAILS_AT _TOP tag is set to YES then Doxygen will output the detailed
description near the top, like JavaDoc. If set to NO, the detailed description appears after the member
documentation.

INHERIT _DOCS If the INHERIT _-DOCSag is set toYES (the default) then an undocumented member
inherits the documentation from any documented member that it re-implements.

SEPARATEMEMBERPAGES If the SEPARATEMEMBERPAGEStag is set toYES then doxygen will
produce a new page for each member. If sefl@ the documentation of a member will be part of
the file/class/namespace that contains it.

TAB.SIZE theTAB.SIZE tag can be used to set the number of spaces in a tab. Doxygen uses this value
to replace tabs by spaces in code fragments.

ALIASES Thistag can be used to specify a number of aliases that acts as commands in the documentation.
An alias has the form

name=value

For example adding

"sideeffect=\par Side Effects:\n"

will allow you to put the commandsideeffect (or @sideeffect) in the documentation, which will
result in a user-defined paragraph with heading "Side Effects:”. You caxnfaiin the value part of
an alias to insert newlines.

OPTIMIZE _OUTPUTFORC Set theOPTIMIZE _OUTPUTFORC tag toYESif your project consists of
C sources only. Doxygen will then generate output that is more tailored for C. For instance, some of
the names that are used will be different. The list of all members will be omitted, etc.

OPTIMIZE _OUTPUTIAVA Set the OPTIMIZEOUTPUT_JAVA tag to YES if your project consists of
Java or Python sources only. Doxygen will then generate output that is more tailored for that lan-
guage. For instance, namespaces will be presented as packages, qualified scopes will look different,
etc.

OPTIMIZE _FORFORTRAN Set theOPTIMIZE _FORFORTRANag to YESif your project consists of
Fortran sources. Doxygen will then generate output that is tailored for Fortran.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.riverbankcomputing.co.uk/sip/

63

OPTIMIZE _OUTPUTVHDL Set theOPTIMIZE_OUTPUTVHDLtag to YESif your project consists of
VHDL sources. Doxygen will then generate output that is tailored for VHDL.

SUBGROUPINGSet theSUBGROUPING@ag to YES (the default) to allow class member groups of the
same type (for instance a group of public functions) to be put as a subgroup of that type (e.g. under
the Public Functions section). Set itDto prevent subgrouping. Alternatively, this can be done
per class using thenosubgroupingommand.

TYPEDEEHIDES_STRUCT WhenTYPEDEFEHIDES_STRUCTis enabled, a typedef of a struct, union,
or enum is documented as struct, union, or enum with the name of the typedefpedtef
struct TypeS {} TypeT, will appear in the documentation as a struct with nafypeT .
When disabled the typedef will appear as a member of a file, namespace, or class. And the struct
will be namedTypeS. This can typically be useful for C code in case the coding convention dictates
that all compound types are typedef'ed and only the typedef is referenced, never the tag name.

27 Build related options

EXTRACTALL If the EXTRACTALL tag is set torESdoxygen will assume all entities in documenta-
tion are documented, even if no documentation was available. Private class members and static file
members will be hidden unless tEXTRACTPRIVATE and EXTRACTSTATIC tags are set to
YES

Note:
This will also disable the warnings about undocumented members that are normally produced
whenWARNING$ set toYES

EXTRACTPRIVATE If the EXTRACTPRIVATE tag is set torESall private members of a class will be
included in the documentation.

EXTRACTSTATIC If the EXTRACTSTATIC tag is set toYESall static members of a file will be in-
cluded in the documentation.

EXTRACTLOCALCLASSES If the EXTRACTLOCALCLASSESag is set tovESclasses (and structs)
defined locally in source files will be included in the documentation. If setto NO only classes defined
in header files are included. Does not have any effect for Java sources.

EXTRACTANONNSPACES If this flag is set to YES, the members of anonymous namespaces will be
extracted and appear in the documentation as a namespace called 'anomamaspacgile}’,
where file will be replaced with the base name of the file that contains the anonymous namespace.
By default anonymous namespace are hidden.

EXTRACTLOCALMETHODSThis flag is only useful for Objective-C code. When seY#Slocal meth-
ods, which are defined in the implementation section but not in the interface are included in the
documentation. If set tblO(the default) only methods in the interface are included.

HIDE_UNDOQVIEMBERSIf the HIDE_UNDOMMEMBER#&g is set torES doxygen will hide all undoc-
umented members inside documented classes or files. If 88Dfthe default) these members will
be included in the various overviews, but no documentation section is generated. This option has no
effect if EXTRACTALL is enabled.

HIDE_UNDOGCCLASSES If the HIDE_UNDOCCLASSESSag is set to’ES doxygen will hide all un-
documented classes. If seti®(the default) these classes will be included in the various overviews.
This option has no effect EXTRACTALL is enabled.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

64

HIDE_FRIEND.COMPOUND¥ the HIDE_FRIEND_.COMPOUNDO&g is set toYES Doxygen will hide
all friend (classstructunion) declarations. If set tNO(the default) these declarations will be in-
cluded in the documentation.

HIDE_IN _BODYDOCS If the HIDE_IN .-BODYDOCSag is set torES Doxygen will hide any documen-
tation blocks found inside the body of a function. If setN@(the default) these blocks will be
appended to the function’s detailed documentation block.

INTERNAL.DOCS TheINTERNAL DOCSag determines if documentation that is typed afteinternal
command is included. If the tag is setN®(the default) then the documentation will be excluded.
Set it toYESto include the internal documentation.

HIDE_SCOPENAMES If the HIDE_.SCOPENAMESag is set taNO(the default) then doxygen will show
members with their full class and namespace scopes in the documentation. li¥&S tioe scope
will be hidden.

SHOWNCLUDEFILES If the SHOW.INCLUDE_FILES tag is set to YES (the default) then doxygen
will put a list of the files that are included by a file in the documentation of that file.

INLINE _INFO If the INLINE _INFO tag is set torES(the default) then a tag [inline] is inserted in the
documentation for inline members.

SORTMEMBEBOCS If the SORTMEMBEBROCSag is set torES(the default) then doxygen will sort
the (detailed) documentation of file and class members alphabetically by member name. INGet to
the members will appear in declaration order.

SORTBRIEF_DOCS If the SORTBRIEF_DOCSag is set toYESthen doxygen will sort the brief de-
scriptions of file, namespace and class members alphabetically by member name. NG&éthe
default) the members will appear in declaration order.

SORTGROURNAMES If the SORTGROURBAMESag is set tor ESthen doxygen will sort the hierarchy
of group names into alphabetical order. If seN©(the default) the group names will appear in their
defined order.

SORTBY_SCOPENAME If the SORTBY_SCOPENAMEag is set toYES the class list will be sorted by
fully-qualified names, including namespaces. If set to NO (the default), the class list will be sorted
only by class name, not including the namespace part.

Note:
This option is not very useful HHIDE_SCOPENAMESs set toYES
This option applies only to the class list, not to the alphabetical list.

GENERATHDEPRECATEDLIST The GENERATEDEPRECATEDLIST tag can be used to enable
(YES) or disable (NO) the deprecated list. This list is created by pultiteprecatedommands
in the documentation.

GENERATHODOLIST The GENERATETODOLIST tag can be used to enable (YES) or disable (NO)
the todo list. This list is created by puttingpdocommands in the documentation.

GENERATHESTLIST The GENERATETESTLIST tag can be used to enable (YES) or disable (NO)
the test list. This list is created by puttingestcommands in the documentation.

GENERATBBUGLIST The GENERATEBUGLIST tag can be used to enable (YES) or disable (NO) the
bug list. This list is created by puttingougcommands in the documentation.

ENABLEDSECTIONS TheENABLEDSECTIONStag can be used to enable conditional documentation
sections, marked byif <section-labe} ... \endifand\cond<section-labe} ... \endcondlocks.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

65

MAXINITIALIZER _LINES The MAXINITIALIZER _LINES tag determines the maximum number
of lines that the initial value of a variable or define can be. If the initializer consists of more lines than
specified here it will be hidden. Use a value of O to hide initializers completely. The appearance of the
value of individual variables and defines can be controlled usiigwinitializeror \ hideinitializer
command in the documentation.

SHOWJSEDFILES Set theSHOWJSEDFILES tag toNOto disable the list of files generated at the
bottom of the documentation of classes and structs. If s€EBthe list will mention the files that
were used to generate the documentation.

SHOWDIRECTORIES If the sources in your project are distributed over multiple directories then setting
the SHOWDIRECTORIES tag to YES will show the directory hierarchy in the documentation.

28 Options related to warning and progress messages

QUIET TheQUIET tag can be used to turn on/off the messages that are generated to standard output by
doxygen. Possible values a¥&SandNQ whereYESimplies that the messages are off. If left blank
NOis used.

WARNINGSThe WARNINGSag can be used to turn on/off the warning messages that are generated to
standard error by doxygen. Possible valuesYdES andNQ whereYESimplies that the warnings
are on. If left blankNOis used.

Tip: Turn warnings on while writing the documentation.

WARNF _UNDOCUMENTED WARNF _UNDOCUMENTE®set toYES then doxygen will generate
warnings for undocumented membersEXTRACTALL is set toYESthen this flag will automati-
cally be disabled.

WARNF _DOCERROR If WARNF DOCERRORSs set toYES doxygen will generate warnings for po-
tential errors in the documentation, such as not documenting some parameters in a documented
function, or documenting parameters that don’t exist or using markup commands wrongly.

WARNNQOQPARAMDOCThis WARNNOPARAMDOGption can be abled to get warnings for functions that
are documented, but have no documentation for their parameters or return value. INSHthe
default) doxygen will only warn about wrong or incomplete parameter documentation, but not about
the absence of documentation.

WARN-ORMAT The WARN-ORMATag determines the format of the warning messages that doxygen can
produce. The string should contain thidle , $line , and$text tags, which will be replaced by
the file and line number from which the warning originated and the warning text.

WARNOGFILE The WARN.OGFILE tag can be used to specify a file to which warning and error
messages should be written. If left blank the output is written to stderr.

29 Input related options

INPUT The INPUT tag is used to specify the files and/or directories that contain documented source
files. You may enter file names likayfile.cpp or directories likefusr/src/myproject
Separate the files or directories with spaces.

Note: If this tag is empty the current directory is searched.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

66

INPUT_ENCODING This tag can be used to specify the character encoding of the source files that doxy-
gen parses. Internally doxygen uses the UTF-8 encoding, which is also the default input encod-
ing. Doxygen uses libiconv (or the iconv built into libc) for the transcoding. t8eelibiconv
documentation for the list of possible encodings.

FILE _PATTERNS If the value of thdNPUT tag contains directories, you can use fieE _PATTERNS
tag to specify one or more wildcard patterns (likepp and«.h) to filter out the source-files in
the directories. If left blank the following patterns are tested: x.cc *.CXX *.Cpp *.C++
xjava kil oxixxX xdpp xit+ xinl xh xhh x.hxx «x.hpp .h++ x.idl
x.0dl x.cs x.php *php3 =x.inc *.m x.mm

FILE VERSIONFILTER The FILE VERSIONFILTER tag can be used to specify a program or
script that doxygen should invoke to get the current version for each file (typically from the ver-
sion control system). Doxygen will invoke the program by executing (via popen()) the command
command input-file , wherecommandis the value of thé-ILE "VERSIONFILTER tag, and
input-file is the name of an input file provided by doxygen. Whatever the program writes to
standard output is used as the file version.

Example of using a shell script as a filter for Unix:

FILE_VERSION_FILTER = "/bin/sh versionfilter.sh"

Example shell script for CVS:

#!/bin/sh
cvs status $1 | sed -n ’'s/7[\][*Working revision:[\t]*\([0-9][0-9\.]*).*\1/p’

Example shell script for Subversion:

#!/bin/sh
svn stat -v $1 | sed -n 's/T A-Z2*['1{1,15\}/r/;s/ \{1,15\\irl;sl *lip’

Example filter for ClearCase:

FILE_VERSION_INFO = "cleartool desc -fmt \%Vn"

RECURSIVE The RECURSIVEtag can be used to specify whether or not subdirectories should be
searched for input files as well. Possible valuesyd&&andNQ If left blank NOis used.

EXCLUDE The EXCLUDRag can be used to specify files and/or directories that should excluded from
theINPUT source files. This way you can easily exclude a subdirectory from a directory tree whose
root is specified with th&NPUT tag.

EXCLUDESYMLINKS TheEXCLUDESYMLINKStag can be used select whether or not files or directo-
ries that are symbolic links (a Unix filesystem feature) are excluded from the input.

EXCLUDEPATTERNS If the value of the NPUT tag contains directories, you can use ECLUDE
PATTERNSag to specify one or more wildcard patterns to exclude certain files from those directo-
ries.

Note that the wildcards are matched against the file with absolute path, so to exclude all test directo-
ries use the patterstest/

EXAMPLEPATH The EXAMPLEPATHtag can be used to specify one or more files or directories that
contain example code fragments that are included (sednibkide command in sectiognclude).

EXAMPLERECURSIVE If the EXAMPLERECURSIVEtag is set toYES then subdirectories will be
searched for input files to be used with ttiaclude or\dontinclude commands irrespective of the
value of theRECURSIVEag. Possible values aESandNQ If left blank NOis used.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.gnu.org/software/libiconv
http://www.gnu.org/software/libiconv

67

EXAMPLEPATTERNS If the value of theEXAMPLEPATHtag contains directories, you can use the
EXAMPLEPATTERNSAag to specify one or more wildcard pattern (likepp andx.h) to filter out
the source-files in the directories. If left blank all files are included.

IMAGEPATH The IMAGEPATHtag can be used to specify one or more files or directories that contain
images that are to be included in the documentation (sedittegecommand).

INPUT_FILTER ThelNPUT_FILTER tag can be used to specify a program that doxygen should invoke
to filter for each input file. Doxygen will invoke the filter program by executing (via popen()) the
command:

<filter> <input-file>

where <filter> is the value of théNPUT_FILTER tag, and<input-file> is the name of an input
file. Doxygen will then use the output that the filter program writes to standard output.

FILTER _PATTERNS The FILTER _PATTERNSag can be used to specify filters on a per file pattern
basis. Doxygen will compare the file name with each pattern and apply the filter if there is a match.
The filters are a list of the form: pattern=filter (likecpp=my _cpp filter). SeelNPUT_-
FILTER for further info on how filters are used. FILTER _PATTERNSs empty,INPUT_FILTER
is applied to all files.

FILTER _SOURCH-ILES Ifthe FILTER _SOURCH-ILES tag is set torES the input filter (if set using
INPUT_FILTER) will also be used to filter the input files that are used for producing the source files
to browse (i.e. when SOURCBROWSER is set to YES).

30 Source browsing related options

SOURCBROWSER(f the SOURCEHBROWSER(is set torESthen a list of source files will
" be generated. Documented entities will be cross-referenced with these sources.
" Note: To get rid of all source code in the generated output, make sure also
" VERBATIMHEADERSs set to NO.

INLINE _SOURCESSetting theINLINE _SOURCESag to YES will include the body of functions,
classes and enums directly into the documentation.

STRIP_CODECOMMENTSSetting theSTRIP_CODECOMMENTg to YES (the default) will instruct
doxygen to hide any special comment blocks from generated source code fragments. Normal C and
C++ comments will always remain visible.

REFERENCEBY_RELATION If the REFERENCEBY_RELATIONtag is set to¥ES(the default) then
for each documented function all documented functions referencing it will be listed.

REFERENCERELATION Ifthe REFERENCERELATIONTtag is set tor ES(the default) then for each
documented function all documented entities called/used by that function will be listed.

REFERENCESINK _SOURCEIf the REFERENCESINK _SOURCHag is set toY ES (the default) and
SOURCEBROWSER tag is set t&¥ES then the hyperlinks from functions in REFERENCES
RELATION and REFERENCEIBY _RELATION lists will link to the source code. Otherwise they
will link to the documentstion.

VERBATIMHEADERS If the VERBATIMHEADERSag is set therES (the default) then doxygen will
generate a verbatim copy of the header file for each class for which an include is specified. Set to
NO to disable this.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

68

See also:
Section\class

USEHTAGS If the USEHTAGS tag is set to YES then the references to source code
will point to the HTML generated by the htags(l) tool instead of doxygen built-in
source browser. The htags tool is part of GNU's global source tagging system (see
http://www.gnu.org/software/global/global.html). The use it do the following:

1. Install the latest version of global (i.e. 4.8.6 or better)

2. Enable SOURCBBROWSER and USEHHTAGS in the config file
3. Make sure the INPUT points to the root of the source tree

4. Run doxygen as normal

Doxygen will invoke htags (and that will in turn invoke gtags), so these tools must be available from
the command line (i.e. in the search path).

The result: instead of the source browser generated by doxygen, the links to source code will now
point to the output of htags.

31 Alphabetical index options

ALPHABETICALINDEX If the ALPHABETICALINDEX tag is set torES an alphabetical index of all
compounds will be generated. Enable this if the project contains a lot of classes, structs, unions or
interfaces.

COLSIN _ALPHAINDEX If the alphabetical index is enabled (saePHABETICALINDEX) then the
COLSIN _ALPHAINDEX tag can be used to specify the number of columns in which this list will
be split (can be a number in the range [1..20])

IGNOREPREFIX In case all classes in a project start with a common prefix, all classes will be put under
the same header in the alphabetical index. [B¥OREPREFIX tag can be used to specify a prefix
(or a list of prefixes) that should be ignored while generating the index headers.

32 HTML related options

GENERATHHTML If the GENERATHEHTMLtag is set torES(the default) doxygen will generate HTML
output

HTMLOUTPUT TheHTMLOUTPUTag is used to specify where the HTML docs will be put. If a relative
path is entered the value UTPUIDIRECTORYill be put in front of it. If left blank ‘html’” will
be used as the default path.

HTMLFILE _ EXTENSION The HTMLFILE _.EXTENSIONtag can be used to specify the file extension
for each generated HTML page (for example: .htm, .php, .asp). If it is left blank doxygen will
generate files with .html extension.

HTMLHEADER TheHTMLHEADERag can be used to specify a user-defined HTML header file for each
generated HTML page. To get valid HTML the header file should contain at leastTaJL> and
a <BODY- tag, but it is good idea to include the style sheet that is generated by doxygen as well.
Minimal example:

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.gnu.org/software/global/global.html

69

<HTML>
<HEAD>
<TITLE>My title</TITLE>
<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">
</HEAD>
<BODY BGCOLOR="#FFFFFF">

If the tag is left blank doxygen will generate a standard header.

The following commands have a special meaning inside the hedbtdte , $datetime

$date , $doxygenversion , $projectname , and$projectnumber . Doxygen will replace

them by respectively the title of the page, the current date and time, only the current date, the
version number of doxygen, the project name (BE&OJECTINAME, or the project number (see
PROJECINUMBER

If CREATESUBDIRSIs enabled, the commarilelpath$ can be used to produce a relative path
to the root of the HTML output directory, e.g. use $relpath$doxygen.css, to refer to the standard
style sheet.

See also sectioDoxygen usagéor information on how to generate the default header that doxygen
normally uses.

HTMLFOOTER The HTMLFOOTERag can be used to specify a user-defined HTML footer for each
generated HTML page. To get valid HTML the footer file should contain at leagB®DY> and a
</HTML> tag. A minimal example:

</BODY>
</HTML>

If the tag is left blank doxygen will generate a standard footer.

The following commands have a special meaning inside the fotide , $datetime , $date ,
$doxygenversion , $projectname , $projectnumber . Doxygen will replace them by re-
spectively the title of the page, the current date and time, only the current date, the version number of
doxygen, the project name (sBROJECTNAME, or the project number (sé€ROJECTNUMBER

See also sectioboxygen usagéor information on how to generate the default footer that doxygen
normally uses.

HTMLSTYLESHEET TheHTMLSTYLESHEETag can be used to specify a user-defined cascading style
sheet that is used by each HTML page. It can be used to fine-tune the look of the HTML output. If
the tag is left blank doxygen will generate a default style sheet.

See also sectioBoxygen usagdor information on how to generate the style sheet that doxygen
normally uses.

HTMLALIGN_MEMBERSIf the HTMLALIGN_MEMBERS£g is set torES the members of classes, files
or namespaces will be aligned in HTML using tables. If séti@a bullet list will be used.

Note: Setting this tag ttNOwill become obsolete in the future, since | only intent to support and test
the aligned representation.

GENERATEHHTMLHELP If the GENERATEHHTMLHELRag is set to’ESthen doxygen generates three
additional HTML index filesiindex.hhp , index.hhc , andindex.hhk . Theindex.hhp s
a project file that can be read bjicrosoft's HTML Help Workshop on Windows.

The HTML Help Workshop contains a compiler that can convert all HTML output generated by
doxygen into a single compiled HTML file (.chm). Compiled HTML files are now used as the Win-
dows 98 help format, and will replace the old Windows help format (.hlp) on all Windows platforms

in the future. Compressed HTML files also contain an index, a table of contents, and you can search
for words in the documentation. The HTML workshop also contains a viewer for compressed HTML
files.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp

70

GENERATHEDOCSET If the GENERATEDOCSETtag is set toYES additional index files will be
generated that can be used as input Agple’s Xcode 3 integrated development
environment , introduced with OSX 10.5 (Leopard). To create a documentation set, doxy-
gen will generate a Makefile in the HTML output directory. Runningake will pro-

duce the docset in that directory and runnintgpke install will install the docset in
~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find it
at startup.

DOCSETFEEDNAMEWhenGENERATEDOCSETag is set toYES this tag determines the name of the
feed. A documentation feed provides an umbrella under which multiple documentation sets from a
single provider (such as a company or product suite) can be grouped.

DOCSEIBUNDLEID WhenGENERATHEDOCSETag is set torES this tag specifies a string that should
uniquely identify the documentation set bundle. This should be a reverse domain-name style string,
e.g.com.mycompany.MyDocSet . Doxygen will appenddocset to the name.

HTMLDYNAMICSECTIONS If the HTMLDYNAMICSECTIONStag is set toYESthen the generated
HTML documentation will contain sections that can be hidden and shown after the page has loaded.
For this to work a browser that supports JavaScript and DHTML is required (for instance Mozilla
1.0+, Firefox Netscape 6.0+, Internet explorer 5.0+, Konqueror, or Safari).

CHMFILE If the GENERATEHHTMLHELRag is set toYES the CHMFILE tag can be used to specify
the file name of the resulting .chm file. You can add a path in front of the file if the result should not
be written to the html output directory.

HHCLOCATION If the GENERATEHTMLHELRag is set to’ES the HHCLOCATIONtag can be used
to specify the location (absolute path including file name) of the HTML help compiler (hhc.exe). If
non empty doxygen will try to run the HTML help compiler on the generated index.hhp.

GENERATECHI If the GENERATEHTMLHELRag is set torES the GENERATECHI flag controls if a
separate .chi index file is generat&tEQ) or that it should be included in the master .chm &),

BINARY_TOC If the GENERATEHTMLHELRag is set toYES the BINARY_TOCflag controls whether
a binary table of contents is generat&@EQ or a normal table of contentdlQ) in the .chm file.

TOCEXPAND The TOCEXPANDflag can be set to YES to add extra items for group members to the
table of contents of the HTML help documentation and to the tree view.

DISABLE_INDEX If you want full control over the layout of the generated HTML pages it might be
necessary to disable the index and replace it with your own DIBABLE_INDEX tag can be used
to turn on/off the condensed index at top of each page. A value of NO (the default) enables the index
and the value YES disables it.

ENUMVALUESPERLINE This tag can be used to set the number of enum values (range [1..20]) that
doxygen will group on one line in the generated HTML documentation.

GENERATHREEVIEW If the GENERATHREEVIEWag is set to YES, a side panel will be generated
containing a tree-like index structure (just like the one that is generated for HTML Help). For this to
work a browser that supports JavaScript and frames is required (for instance Mozilla 1.0+, Netscape
6.0+ or Internet explorer 5.0+ or Konqueror).

TREEVIEWWIDTH If the treeview is enabled (s€BENERATH REEVIEW then this tag can be used to
set the initial width (in pixels) of the frame in which the tree is shown.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://developer.apple.com/tools/xcode/
http://developer.apple.com/tools/xcode/

71

33 LaTeX related options

GENERATHRATEX Ifthe GENERATHATEXtag is set tor ES(the default) doxygen will generattTEX
output.

LATEX OUTPUT The LATEXOUTPUTag is used to specify where th&TiX docs will be put. If a
relative path is entered the value ©JTPUTDIRECTORWWiIll be put in front of it. If left blank
‘latex’ will be used as the default path.

LATEX CMDNAME The LATEX CMDNAMEag can be used to specify the LaTeX command name to be
invoked. If left blank ‘latex’ will be used as the default command name.

MAKEINDEXCMDNAME The MAKEINDEX_CMD_NAME tag can be used to specify the command
name to generate index for LaTeX. If left blank ‘makeindex’ will be used as the default command
name.

COMPACTATEX If the COMPACTATEXtag is set toYES doxygen generates more compadEK
documents. This may be useful for small projects and may help to save some trees in general.

PAPERTYPE ThePAPERTYPEtag can be used to set the paper type that is used by the printer. Possible
values are:
e a4 (210 x 297 mm).
adwide (same as a4, but including the adwide package).
letter (8.5 x 11 inches).
legal (8.5 x 14 inches).
e executive (7.25 x 10.5 inches)

If left blank a4wide will be used.

EXTRAPACKAGESThe EXTRAPACKAGESag can be used to specify one or mof&§X package
names that should be included in th&X output. To get the times font for instance you can specify

EXTRA_PACKAGES = times

If left blank no extra packages will be included.
LATEXHEADER The LATEXHEADERag can be used to specify a persoAgEX header for the gener-
ated RTpX document. The header should contain everything until the first chapter.

If itis left blank doxygen will generate a standard header. See sdatigpgen usagéor information
on how to let doxygen write the default header to a separate file.

Note:

Only use a user-defined header if you know what you are doing!
The following commands have a special meaning inside the heaftdte , $datetime
$date , $doxygenversion , $projectname , $projectnumber . Doxygen will replace

them by respectively the title of the page, the current date and time, only the current date, the
version number of doxygen, the project name (BE&OJECTINAME, or the project number (see
PROJECTNUMBER

PDEHYPERLINKS If the PDEHYPERLINKStag is set toYES the BTeX that is generated is prepared
for conversion to PDF (using ps2pdf or pdflatex). The PDF file will contain links (just like the HTML
output) instead of page references. This makes the output suitable for online browsing using a PDF
viewer.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

72

USEPDFLATEX If the LATEXPDFLATEXtag is set to'ES doxygen will use pdflatex to generate the
PDF file directly from theATEX files.

LATEX BATCHMODHf the LATEXBATCHMOD#ag is set toYES doxygen will add the batchmode.
command to the generateédiX files. This will instruct TpX to keep running if errors occur, instead
of asking the user for help. This option is also used when generating formulas in HTML.

LATEXHIDE_INDICES If LATEXHIDE_INDICES is set toYESthen doxygen will not include the
index chapters (such as File Index, Compound Index, etc.) in the output.

34 RTF related options

GENERATERTF If the GENERATERTFtag is set tovESdoxygen will generate RTF output. The RTF
output is optimized for Word 97 and may not look too pretty with other readers/editors.

RTF.OUTPUT TheRTF.OUTPUTag is used to specify where the RTF docs will be put. If a relative path
is entered the value @UTPUTDIRECTORvill be put in front of it. If left blankrtf will be used
as the default path.

COMPACTRTF Ifthe COMPACRTFtag is set tor ESdoxygen generates more compact RTF documents.
This may be useful for small projects and may help to save some trees in general.

RTFHYPERLINKS If the RTFEHYPERLINKStag is set toYES the RTF that is generated will con-
tain hyperlink fields. The RTF file will contain links (just like the HTML output) instead of page
references. This makes the output suitable for online browsing using Word or some other Word
compatible reader that support those fields.

note:
WordPad (write) and others do not support links.

RTF.STYLESHEETFILE Load stylesheet definitions from file. Syntax is similar to doxygen’s config
file, i.e. a series of assignments. You only have to provide replacements, missing definitions are set
to their default value.

See also sectioboxygen usagédor information on how to generate the default style sheet that
doxygen normally uses.

RTF.EXTENSIONSFILE Set optional variables used in the generation of an RTF document. Syntax is
similar to doxygen’s config file. A template extensions file can be generated dskygen -e
rtf extensionFile

35 Man page related options

GENERATEMAN If the GENERATEVIANag is set to¥ ES(the default) doxygen will generate man pages
for classes and files.

MANOUTPUT The MANOUTPUTtag is used to specify where the man pages will be put. If a relative
path is entered the value @UTPUTIDIRECTORYwill be put in front of it. If left blank ‘man’
will be used as the default path. A directory man3 will be created inside the directory specified by
MANOUTPUT

MANEXTENSION The MANEXTENSIONtag determines the extension that is added to the generated
man pages (default is the subroutine’s section .3)

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

73

MANLINKS If the MANLINKS tag is set tor ESand doxygen generates man output, then it will generate
one additional man file for each entity documented in the real man page(s). These additional files
only source the real man page, but without them the man command would be unable to find the
correct page. The default4Q

36 XML related options

GENERATEXML If the GENERATEXMLtag is set torESDoxygen will generate an XML file that cap-
tures the structure of the code including all documentation.

XMLOUTPUT The XMLOUTPUTtag is used to specify where the XML pages will be put. If a relative
path is entered the value GflUTPUTDIRECTORYWill be put in front of it. If left blankxml will
be used as the default path.

XMLSCHEMAThe XMLSCHEMAag can be used to specify an XML schema, which can be used by a
validating XML parser to check the syntax of the XML files.

XMLDTD The XMLDTDtag can be used to specify an XML DTD, which can be used by a validating
XML parser to check the syntax of the XML files.

XMLPROGRAMLISTING If the XMLPROGRAMLISTINGag is set tory ESDoxygen will dump the pro-
gram listings (including syntax highlighting and cross-referencing information) to the XML output.
Note that enabling this will significantly increase the size of the XML output.

37 AUTOGEN_DEF related options

GENERATEAUTOGENDEF If the GENERATEAUTOGENDEFtag is set torESDoxygen will generate

an AutoGen Definitions (seettp://autogen.sf.net) file that captures the structure of the
code including all documentation. Note that this feature is still experimental and incomplete at the
moment.

38 PERLMOD related options

GENERATEPERLMODIfthe GENERATEPERLMOIRAg is set tory ESDoxygen will generate a Perl mod-
ule file that captures the structure of the code including all documentation. Note that this feature is
still experimental and incomplete at the moment.

PERLMOLRATEX Ifthe PERLMOILATEXtag is set tor ESDoxygen will generate the necessary Make-
file rules, Perl scripts and LaTeX code to be able to generate PDF and DVI output from the Perl
module output.

PERLMODPRETTY If the PERLMODPRETTYtag is set toYESthe Perl module output will be nicely
formatted so it can be parsed by a human reader. This is useful if you want to understand what is
going on. On the other hand, if this tag is setNOthe size of the Perl module output will be much
smaller and Perl will parse it just the same.

PERLMOMMAKEVARPREFIX The names of the make variables in the generated doxyrules.make file
are prefixed with the string contained RERLMOIMAKEVARPREFIX. This is useful so different
doxyrules.make files included by the same Makefile don’t overwrite each other’s variables.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://autogen.sf.net

74

39 Preprocessor related options

ENABLEPREPROCESSINGf the ENABLEPREPROCESSINGg is set torES(the default) doxygen
will evaluate all C-preprocessor directives found in the sources and include files.

MACRCEXPANSION If the MACRGEXPANSIONag is set tor ESdoxygen will expand all macro names
in the source code. If set tdO(the default) only conditional compilation will be performed. Macro
expansion can be done in a controlled way by seiXe ANDONLYPREDERo YES

EXPANDONLYPREDEF If the EXPANDONLYPREDEFand MACREXPANSIONtags are both set
to YES then the macro expansion is limited to the macros specified witRREDEFINEDand
EXPANDAS DEFINEDtags.

SEARCHNCLUDES If the SEARCHNCLUDEStag is set to’ES (the default) the includes files in the
INCLUDE PATH(see below) will be searched if a #include is found.

INCLUDEPATH The INCLUDE PATHtag can be used to specify one or more directories that contain
include files that are not input files but should be processed by the preprocessor.

PREDEFINED The PREDEFINEDtag can be used to specify one or more macro names that are defined
before the preprocessor is started (similar to the -D option of gcc). The argument of the tag is a list
of macros of the formname or name=definition (no spaces). If the definition and the "="
are omitted, "=1" is assumed. To prevent a macro definition from being undefined via #undef or
recursively expanded use the := operator instead of the = operator.

EXPANDAS DEFINED If the MACRGEXPANSIONand EXPANDONLYPREDERags are set t&YES
then this tag can be used to specify a list of macro names that should be expanded. The macro
definition that is found in the sources will be used. UseRREDEFINEDtag if you want to use a
different macro definition.

SKIP _FUNCTIONMACROSIf the SKIP _FUNCTIONMACRO#Sg is set tor ES(the default) then doxy-
gen’s preprocessor will remove all function-like macros that are alone on a line, have an all uppercase
name, and do not end with a semicolon. Such function macros are typically used for boiler-plate
code, and will confuse the parser if not removed.

40 External reference options

TAGFILES TheTAGFILES tag can be used to specify one or more tagfiles.
See sectiooxytag usagéor more information about the usage of tag files.

Optionally an initial location of the external documentation can be added for each tagfile. The format
of a tag file without this location is as follows:

TAGFILES = filel file2 ...
Adding location for the tag files is done as follows:
TAGFILES = filel=locl "“file2 = loc2" ...

wherelocl andloc2 can be relative or absolute paths or URLS, If a location is present for each
tag, the installdox tool (see sectitrstalldox usagéor more information) does not have to be run to
correct the links.

Note:
Each tag file must have a unique name (where the namentdoaxlude the path) If a tag file is
not located in the directory in which doxygen is run, you must also specify the path to the tagfile
here.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

75

GENERATHAGFILE When a file name is specified aff6ENERATHAGFILE, doxygen will create
a tag file that is based on the input files it reads. See seblintytag usagdor more information
about the usage of tag files.

ALLEXTERNALS If the ALLEXTERNALSag is set toYES all external class will be listed in the class
index. If set toNOonly the inherited external classes will be listed.

EXTERNALGROUPSIf the EXTERNALGROUPSag is set toYESall external groups will be listed in
the modules index. If set tdQ only the current project’s groups will be listed.

PERLPATH ThePERLPATHshould be the absolute path and name of the perl script interpreter (i.e. the
result of which perl 7).

41 Dot options

CLASSDIAGRAMS If the CLASSDIAGRAMSag is set toYES (the default) doxygen will generate a
class diagram (in HTML and’TpX) for classes with base or super classes. Setting the t&tto
turns the diagrams off. Note that this option is superseded by the HA@E option below. This is
only a fallback. It is recommended to install and use dot, since it yields more powerful graphs.

MSCGENPATH You can define message sequence charts within doxygen comments usjngstteem-
mand. Doxygen will then run theisgen tool) to produce the chart and insert it in the documen-
tation. TheMSCGENPATHtag allows you to specify the directory where the mscgen tool resides. If
left empty the tool is assumed to be found in the default search path.

HAVEDOT If you set theHAVEDOTtag toYESthen doxygen will assume the dot tool is available from
the path. This tool is part dbraphviz , a graph visualization toolkit from AT&T and Lucent Bell
Labs. The other options in this section have no effect if this option is $¢Diphe default)

CLASSGRAPH If the CLASSGRAPHaindHAVEDOTtags are set tfy ESthen doxygen will generate a
graph for each documented class showing the direct and indirect inheritance relations. Setting this
tag toYESwill force the theCLASSDIAGRAMSag to NO.

COLLABORATIONMNGRAPH If the COLLABORATIONGRAPHandHAVEDOTtags are set t0ESthen
doxygen will generate a graph for each documented class showing the direct and indirect implemen-
tation dependencies (inheritance, containment, and class references variables) of the class with other
documented classes.

GROURGRAPHS If the GROUPGRAPHS and HAVEDOT tags are set to YES then doxygen will gen-
erate a graph for groups, showing the direct groups dependencies.

UMLLOOK If the UML_LOOK tag is set to YES doxygen will generate inheritance and collaboration
diagrams in a style similar to the OMG'’s Unified Modeling Language.

TEMPLATERELATIONS Ifthe TEMPLATERELATIONSandHAVEDOTtags are set tyESthen doxy-
gen will show the relations between templates and their instances.

HIDE_UNDOMRELATIONS If set to YES, the inheritance and collaboration graphs will hide inheritance
and usage relations if the target is undocumented or is not a class.

INCLUDE.GRAPH If the ENABLEPREPROCESSINGSEARCHNCLUDES INCLUDE.GRAPHand
HAVEDOTtags are set t¥ESthen doxygen will generate a graph for each documented file showing
the direct and indirect include dependencies of the file with other documented files.

INCLUDEDBY_GRAPH If the ENABLEPREPROCESSINGSEARCHNCLUDES INCLUDEDBY- -
GRAPHandHAVEDOTtags are set t¥ ESthen doxygen will generate a graph for each documented
header file showing the documented files that directly or indirectly include this file.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.mcternan.me.uk/mscgen/
http://www.research.att.com/sw/tools/graphviz/

76

CALL_GRAPH If the CALL GRAPHandHAVEDOTtags are set tfyESthen doxygen will generate a call
dependency graph for every global function or class method. Note that enabling this option will
significantly increase the time of a run. So in most cases it will be better to enable call graphs for
selected functions only using theallgraph command.

CALLERGRAPH If the CALLERGRAPHINdHAVEDOTtags are set t¥ ESthen doxygen will generate
a caller dependency graph for every global function or class method. Note that enabling this option
will significantly increase the time of a run. So in most cases it will be better to enable caller graphs
for selected functions only using theallergraph command.

GRAPHICALHIERARCHY If the GRAPHICALHIERARCHYandHAVEDOTtags are set t0YESthen
doxygen will graphical hierarchy of all classes instead of a textual one.

DIRECTORYGRAPH If the DIRECTORYGRAPHSHOWIRECTORIES and HAVEDOT options are
settoYESthen doxygen will show the dependencies a directory has on other directories in a graphical
way. The dependency relations are determined by the #include relations between the files in the
directories.

DOTGRAPHVMAXNODES TheMAXDOTGRAPHVAXNODESag can be used to set the maximum num-
ber of nodes that will be shown in the graph. If the number of nodes in a graph becomes larger than
this value, doxygen will truncate the graph, which is visualized by representing a node as a red box.
Note that doxygen if the number of direct children of the root node in a graph is already larger than
DOTGRAPHVAXNODEShen the graph will not be shown at all. Also note that the size of a graph
can be further restricted tMAXDOTGRAPHDEPTH

MAXDOTGRAPHDEPTH The MAXDOTGRAPHDEPTHtag can be used to set the maximum depth of
the graphs generated by dot. A depth value of 3 means that only nodes reachable from the root by
following a path via at most 3 edges will be shown. Nodes that lay further from the root node will be
omitted. Note that setting this option to 1 or 2 may greatly reduce the computation time needed for
large code bases. Also note that the size of a graph can be further restri@&IMyRAPHVIAX-
NODESUsing a depth of 0 means no depth restriction (the default).

DOTIMAGEFORMAT The DOTIMAGEFORMATag can be used to set the image format of the images
generated by dot. Possible values are gif, jpg, and png. If left blank png will be used.

DOTPATH This tag can be used to specify the path where the dot tool can be found. If left blank, it is
assumed the dot tool can be found on the path.

DOTFILE_DIRS This tag can be used to specify one or more directories that contain dot files that are
included in the documentation (see t{dotfile command).

DOTTRANSPARENTSet theDOTTRANSPARENTag to YESto generate images with a transparent
background. This is enabled by default, which results in a transparent background. Warning: De-
pending on the platform used, enabling this option may lead to badly anti-aliased labels on the edges
of a graph (i.e. they become hard to read).

DOTMULTI_TARGETS Set theDOTMULTI_TARGETSag toYESallow dot to generate multiple output
files in one run (i.e. multiple -o and -T options on the command line). This makes dot run faster, but
since only newer versions of dat(.8.10) support this, this feature is disabled by default.

GENERATHEGEND If the GENERATH.EGENDag is set torES(the default) doxygen will generate a
legend page explaining the meaning of the various boxes and arrows in the dot generated graphs.

DOTCLEANUP Ifthe DOTCLEANURag is set tof ES(the default) doxygen will remove the intermediate
dot files that are used to generate the various graphs.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

77

42 Search engine options

SEARCHENGINEThe SEARCHENGINEag specifies whether or not the HTML output should con-
tain a search facility. Possible values ar&S and NQ If set to YES, doxygen will pro-
duce a search index and a PHP script to search through the index. For this to work the doc-
umentation should be viewed via a web-server running PHP version 4.1.0 or higher. (See
http://www.php.net/manual/en/installation.php for installation instructions).

Examples

Suppose you have a simple project consisting of two files: a sourcex@illmple.cc and a header file
example.h . Then a minimal configuration file is as simple as:

INPUT = example.cc example.h

Assuming the example makes use of Qt classes and perl is locdtestinin ~ , a more realistic config-
uration file would be:

PROJECT_NAME = Example

INPUT = example.cc example.h
WARNINGS = YES

TAGFILES = qgt.tag

PERL_PATH = Jusr/bin/perl
SEARCHENGINE = NO

To generate the documentation for tQelbtTabular package | have used the following configuration
file:

PROJECT_NAME = QdbtTabular
OUTPUT_DIRECTORY = html

WARNINGS = YES

INPUT = examples/examples.doc src
FILE_PATTERNS = *cc *.h

INCLUDE_PATH = examples

TAGFILES = qt.tag

PERL_PATH = /usr/local/bin/perl
SEARCHENGINE = YES

To regenerate the Qt-1.44 documentation from the sources, you could use the following config file:

PROJECT_NAME Qt
OUTPUT_DIRECTORY gt_docs
HIDE_UNDOC_MEMBERS = YES

HIDE_UNDOC_CLASSES = YES
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY PREDEF = YES
SEARCH_INCLUDES = YES
FULL_PATH_NAMES = YES
STRIP_FROM_PATH = $(QTDIR)/

PREDEFINED USE_TEMPLATECLASS Q_EXPORT= \
QArrayT:=QArray \

QListT:=QList \

QDictT:=QDict \

QQueueT:=QQueue \
QVectorT:=QVector \
QPtrDictT:=QPtrDict \

QIntDictT:=QIntDict \

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.php.net/manual/en/installation.php
http://www.stack.nl/~dimitri/qdbttabular/index.html

78

QStackT:=QStack \

QDictlteratorT:=QDictlterator \
QListlteratorT:=QListlterator \
QCacheT:=QCache \
QCachelteratorT:=QCachelterator \
QIntCacheT:=QIntCache \
QIntCachelteratorT:=QIntCachelterator \
QIntDictlteratorT:=QIntDictlterator \
QPtrDictlteratorT:=QPtrDictlterator

INPUT = $(QTDIR)/doc \

$(QTDIR)/src/widgets \

$(QTDIR)/src/kernel \

$(QTDIR)/src/dialogs \

$(QTDIR)/srcltools

*.cpp *.h g*.doc

$(QTDIR)/include

YES

FILE_PATTERNS
INCLUDE_PATH
RECURSIVE

For the Qt-2.1 sources | recommend to use the following settings:

PROJECT_NAME = Qt
PROJECT_NUMBER =21
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
SOURCE_BROWSER = YES

INPUT = $(QTDIR)/src
FILE_PATTERNS = *.cpp *h g*.doc
RECURSIVE = YES
EXCLUDE_PATTERNS = *codec.cpp moc_* */compat/* */3rdparty/*
ALPHABETICAL_INDEX = YES
COLS_IN_ALPHA_INDEX = 3
IGNORE_PREFIX =Q
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES

INCLUDE_PATH
PREDEFINED

$(QTDIR)/include

Q_PROPERTY(x)= \
Q_OVERRIDE(x)= \

Q_EXPORT= \

Q_ENUMS(x)=\
"QT_STATIC_CONST=static const " \
_WS_X11_ \
INCLUDE_MENUITEM_DEF
EXPAND_ONLY_PREDEF = YES

EXPAND_AS_DEFINED = Q_OBJECT_FAKE Q_OBJECT ACTIVATE_SIGNAL_WITH_PARAM \
Q_VARIANT_AS

Here doxygen’s preprocessor is used to substitute some macro names that are normally substituted by the
C preprocessor, but without doing full macro expansion.

43 Introduction

All commands in the documentation start with a backslaghof an at-sign @). If you prefer you can
replace all commands starting with a backslash below by their counterparts that start with an at-sign.

Some commands have one or more arguments. Each argument has a certain range:
e If <sharp> braces are used the argument is a single word.

e If (round) braces are used the argument extends until the end of the line on which the command was
found.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

o If {curly} braces are used the argument extends until the next paragraph. Paragraphs are delimited
by a blank line or by a section indicator.

If [square] brackets are used the argument is optional.
Here is an alphabetically sorted list of all commands with references to their documentation:

\a 130 \endcond 88
\addindex 111 \enddot 142
\addtogroup 44 \endhtmlonly 144
\anchor 112 \endif 89
\arg 131 \endlatexonly 145
\attention 78 \endlink 113
\author 79 \endmanonly 146
\b 132 \endmsc 143
\brief 80 \endverbatim 147
\bug 81 \endxmlonly 148
\c 133 \enum 52
\callgraph 45 \example 53
\callergraph 46 \exception 90
\category 47 \f$ 149
\class 48 \f[150
\code 134 \f] 151
\cond 82 \f{ 152
\copydoc 135 \f} 153
\date 83 \file 54
\def 49 \fn 55
\defgroup 50 \headerfile 56
\deprecated 84 \ hideinitializer 57
\details 85 \htmlinclude 129
\dir 51 \htmlonly 154
\dontinclude 121 \if 91
\dot 136 \ifnot 92
\dotfile 138 \image 155
\e 139 \include 122
\else 86 \includelineno 123
\elseif 87 \ingroup 58
\em 140 \internal 60
\endcode 141 \invariant 93

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

\interface 59 \retval 101

\latexonly 156 \sa 102
\li 158 \section 117
\line 124 \see 103
\link 114 \showinitializer 72
\mainpage 61 \since 104
\manonly 157 \skip 125
\msc 137 \skipline 126
\n 159 \struct 73
\name 62 \subpage 116
\namespace 63 \subsection 118
\nosubgrouping 64 \subsubsection 119
\note 94 \test 105
\overload 65 \throw 106
\p 160 \todo 107
\package 66 \typedef 74
\page 67 \union 75
\par 95 \until 127
\paragraph 120 \var 76
\param 96 \verbatim 161
\post 97 \verbinclude 128
\pre 98 \version 108
\private (PHP only) 172 \warning 109
\privatesection (PHP only) 172 \weakgroup 7
\property 68 \xmlonly 162
\protected (PHP only) 172 \xrefitem 110
\ protectedsection (PHP only) 172 \$ 167
\protocol 69 \@ 164
\ public (PHP only) 172 \\ 163
\ publicsection (PHP only) 172 \& 166
\ref 115 \~ 165
\relates 70 \< 169
\relatesalso 71 \> 170
\remarks 99 \# 168
\return 100 \% 171

The following subsections provide a list of all commands that are recognized by doxygen. Unrecognized
commands are treated as normal text.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

81

Structural indicators

44 \addtogroup <name> [(title)]

Defines a group just likedefgroup but in contrast to that command using the saamame> more than
once will not resultin a warning, but rather one group with a merged documentation and the first title found
in any of the commands.

The title is optional, so this command can also be used to add a humber of entities to an existing group
using @ and @ like this:

/*! \addtogroup mygrp

* Additional documentation for group ‘mygrp’
* @

*

/*!

* A function

*

void funcl()

{

}

/*!' Another function */
void func2()

{
}

M@}

See also:
pageGrouping sections\defgroup \ingroupand\weakgroup

45 \callgraph

When this command is put in a comment block of a function or method-s#wE _DOT is set to YES,

then doxygen will generate a call graph for that function (provided the implementation of the function
or method calls other documented functions). The call graph will generated regardless of the value of
CALL _GRAPH

Note:

The completeness (and correctness) of the call graph depends on the doxygen code parser which is not
perfect.

46 \callergraph

When this command is put in a comment block of a function or method-s8\E _DOT is set to YES,

then doxygen will generate a caller graph for that function (provided the implementation of the function
or method calls other documented functions). The caller graph will generated regardless of the value of
CALLER_GRAPH

Note:

The completeness (and correctness) of the caller graph depends on the doxygen code parser which is
not perfect.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

82

47 \category <name> [<header-file>] [<header-name>]

For Objective-C only: Indicates that a comment block contains documentation for a class category with
name<name>. The arguments are equal to thelass command.

See also:
section\class

48 \class<name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a class with raa@®e>. Optionally a

header file and a header name can be specified. If the header-file is specified, a link to a verbatim copy of
the header will be included in the HTML documentation. Kieeader-nante argument can be used to
overwrite the name of the link that is used in the class documentation to something otherhtaaer-

file>. This can be useful if the include name is not located on the default include patk:fliké/X.h>).

With the <header-nante argument you can also specify how the include statement should look like, by
adding either quotes or sharp brackets around the name. Sharp brackets are used if just the name is given.
Note that the last two arguments can also specified usingtthaderfilecommand.

Example:
/* A dummy class */

class Test

/*I \class Test class.h "inc/class.h"
\brief This is a test class.

* Some details about the Test class
*/

49 \def <name>

Indicates that a comment block contains documentation fisledine macro.

Example:

[*! Yfile define.h
\brief testing defines

This is to test the documentation of defines.
*/

!

\def MAX(X,y)

Computes the maximum of \a x and \a .
*

[*!
Computes the absolute value of its argument \a x.
*
/
#define ABS(x) (((x)>0)?(x):-(x))
#define MAX(X,y) ((X)>(y)?(X):(y))
#define MIN(x,y) ((})>(y)?(y):(x))
/*I< Computes the minimum of \a x and \a y. */

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

50 \defgroup <name> (group title)

Indicates that a comment block contains documentation fpoapof classes, files or namespaces. This
can be used to categorize classes, files or namespaces, and document those categories. You can also use
groups as members of other groups, thus building a hierarchy of groups.

The <name> argument should be a single-word identifier.

See also:
pageGrouping sections\ingroup \addtogroup\weakgroup

51 \dir [<path fragment>]

Indicates that a comment block contains documentation for a directory. The "path fragment” argument
should include the directory name and enough of the path to be unique w.r.t. the other directories in the
project. TheSHOW_DIRECTORIESoption determines whether or not the directory information is shown
and theSTRIP.FROM_PATH option determines what is stripped from the full path before it appears in the
output.

52 \enum <name>

Indicates that a comment block contains documentation for an enumeration, with<nzamee>. If the

enum is a member of a class and the documentation block is located outside the class definition, the scope of
the class should be specified as well. If acomment block is located directly in front of an enum declaration,
the\enum comment may be omitted.

Note:
The type of an anonymous enum cannot be documented, but the values of an anonymous enum can.

Example:
class Test

{
public:
enum TEnum { Vall, Val2 };

/*! Another enum, with inline docs */
enum AnotherEnum

V1, /*I< value 1 */

V2 [*I< value 2 */
I
I

/*! \class Test
* The class description.
*

/*I \enum Test::TEnum
* A description of the enum type.
*/

/*1 \var Test:TEnum Test::Vall
* The description of the first enum value.
*/

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

84

53 \example<file-name>

Indicates that a comment block contains documentation for a source code example. The name of the
source file is<file-name>. The text of this file will be included in the documentation, just after the
documentation contained in the comment block. All examples are placed in a list. The source code is
scanned for documented members and classes. If any are found, the names are cross-referenced with the
documentation. Source files or directories can be specified usirgXA&PLE_PATH tag of doxygen’s
configuration file.

If <file-name> itself is not unique for the set of example files specified byEX&LE_PATH tag, you
can include part of the absolute path to disambiguate it.

If more that one source file is needed for the example) ithelude command can be used.

Example:

/** A Test class.
* More details about this class.
*/

class Test

{
public:
/** An example member function.
* More details about this function.
*/
void example();

h#
void Test::example() {}

/** \example example_test.cpp

* This is an example of how to use the Test class.

* More details about this example.

*

Where the example filexample _test.cpp looks as follows:

void main()

{
Test t;

t.example();

See also:
section\include

54 \file [<name>]

Indicates that a comment block contains documentation for a source or header file withkkname>.

The file name may include (part of) the path if the file-name alone is not unique. If the file name is omitted
(i.e. the line aftenfile is left blank) then the documentation block that contains\tile command will
belong to the file it is located in.

Important:
The documentation of global functions, variables, typedefs, and enums will only be included in the
output if the file they are in is documented as well.

Example:
+* \ile file.h

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

85

* A brief file description.

* A more elaborated file description.
*/

/**

* A global integer value.

* More details about this value.
*/

extern int globalValue;

Note:
In the above exampl@AVADOC_AUTOBRIEF has been set to YES in the configuration file.

55 \fn (function declaration)

Indicates that a comment block contains documentation for a function (either global or as a member of a
class). This command isnly needed if a comment block ot placed in front (or behind) the function
declaration or definition.

If your comment blocks in front of the function declaration or definition this command can (and to avoid
redundancy should) be omitted.

A full function declaration including arguments should be specified aftéfftheommand on aingleline,
since the argument ends at the end of the line!

Warning:
Do not use this command if it is not absolutely needed, since it will lead to duplication of information
and thus to errors.

Example:
class Test

{
public:
const char *member(char,int) throw(std::out_of _range);

h
const char *Test::member(char c,int n) throw(std::out_of range) {}

/*! \class Test
* \brief Test class.

Details about Test.

X * ok

/

*

/*I \fn const char *Test:member(char c,int n)

\brief A member function.

\param c¢ a character.

\param n an integer.

\exception std::out_of range parameter is out of range.

\return a character pointer.

L

*/

See also:
section\varand\typedef

56 \headerfile <header-file> [<header-name>]

Intended to be used for class, struct, or union documentation, where the documentation is in front of the
definition. The arguments of this command are the same as the second and third argumemiaiéss

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

86

The header-file name refers to the file that should by included by the application to obtain the definition of
the class, struct, or union. Theheader-nane argument can be used to overwrite the name of the link that

is used in the class documentation to something other4freader-file-. This can be useful if the include

name is not located on the default include path (kK€11/X.h>). With the <header-nante argument

you can also specify how the include statement should look like, by adding either quotes or sharp brackets
around the name. Sharp brackets are used if just the name is given.

57 \hideinitializer

By default the value of a define and the initializer of a variable are displayed unless they are longer than 30
lines. By putting this command in a comment block of a define or variable, the initializer is always hidden.

See also:

section\showinitializet

58 \ingroup (<groupname> [<groupname> <groupname>])

If the \ingroup command is placed in a comment block of a class, file or namespace, then it will be added
to the group or groups identified bygroupname-.

See also:
pageGrouping sections\defgroup \addtogroumnd\weakgroup

59 \interface <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for an interface with qnaaree-. The argu-
ments are equal to thglass command.

See also:
section\class

60 \internal

This command writes the message ‘For internal use only’ to the output and adiftexan \internal
command until the end of the comment block or the end of the section (whichever comes first) is marked
as "internal”.

If the \internal command is put inside a section (see for exagsetior) all subsection after the command
are considered to be internal as well. Only a new section at the same level will be visible again.

You can useNTERNAL _DOCSin the config file to show or hide the internal documentation.

61 \mainpage [(title)]

If the \mainpage command is placed in a comment block the block is used to customize the index page (in
HTML) or the first chapter (inAIEX).

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

87

The title argument is optional and replaces the default title that doxygen normally generates. If you do not
want any title you can specifyotite as the argument dfmainpage.

Here is an example:

/*I \mainpage My Personal Index Page
\section intro_sec Introduction

This is the introduction.

\section install_sec Installation

\subsection stepl Step 1: Opening the box

%k %k Xk ok Ok Ok 3k

etc...

*
=

You can refer to the main page usifief index (if the treeview is disabled, otherwise you should\usé
main).

See also:
section\section section\subsectiorand section page

62 \name (header)

This command turns a comment block into a header definition of a member group. The comment block
should be followed by #@ { ... //@ } block containing the members of the group.

See sectiodember Groupgor an example.

63 \namespace<name>

Indicates that a comment block contains documentation for a namespace witkaname>.

64 \nosubgrouping

This command can be put in the documentation of a class. It can be used in combination with member
grouping to avoid that doxygen puts a member group as a subgroup of a Public/Protected/Private/... section.

65 \overload [(function declaration)]

This command can be used to generate the following standard text for an overloaded member function:

‘This is an overloaded member function, provided for convenience. It differs from the above function only
in what argument(s) it accepts.’

If the documentation for the overloaded member function is not located in front of the function declaration
or definition, the optional argument should be used to specify the correct function.

Any other documentation that is inside the documentation block will by appended after the generated
message.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

88

Note 1:
You are responsible that there is indeed an earlier documented member that is overloaded by this one.
To prevent that document reorders the documentation you shoukDsT MEMBER_DOCSto NO
in this case.

Note 2:
The\overload command does not work inside a one-line comment.

Example:
class Test

public:
void drawRect(int,int,int,int);
void drawRect(const Rect &r);

h#

void Test::drawRect(int x,int y,int w,int h) {}
void Test::drawRect(const Rect &r) {}

/*! \class Test

* \brief A short description.
*

* More text.

*

/*I \fn void Test::drawRect(int x,int y,int w,int h)

* This command draws a rectangle with a left upper corner at (\a x , \a y),
* width \a w and height \a h.

*

/*!
* \overload void Test::drawRect(const Rect &r)
*/

66 \package<name>

Indicates that a comment block contains documentation for a Java package witkchame>.

67 \page<name> (title)

Indicates that a comment block contains a piece of documentation that is not directly related to one specific
class, file or member. The HTML generator creates a page containing the documentatio®TgXhe L
generator starts a new section in the chapter ‘Page documentation’.

Example:

/*! \page pagel A documentation page
Leading text.
\section sec An example section
This page contains the subsections \ref subsectionl and \ref subsection2.
For more info see page \ref page2.
\subsection subsectionl The first subsection
Text.
\subsection subsection2 The second subsection
More text.

*/

/*! \page page2 Another page

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

89

Even more info.
*/

Note:
The <name> argument consists of a combination of letters and number digits. If you wish to use upper
case letters (e.gMYPAGEJ}, or mixed case letters (e.dMlyPagel) in the <name> argument, you
should seCASESENSENAMESo YES However, this is advisable only if your file system is case
sensitive. Otherwise (and for better portability) you should use all lower case lettermigggel)
for <name> in all references to the page.

See also:
section\section section\subsectionand sectionref.

68 \property (qualified property name)

Indicates that a comment block contains documentation for a property (either global or as a member of a
class). This command is equivalent\tear and\fn.

See also:
section\fn and\var.

69 \protocol <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a protocol in Objective-C with<rzamee>.
The arguments are equal to thelass command.

See also:
section\class

70 \relates <name>

This command can be used in the documentation of a non-member furctame>. It puts the function

inside the ‘related function’ section of the class documentation. This command is useful for documenting
non-friend functions that are nevertheless strongly coupled to a certain class. It prevents the need of having
to document a file, but only works for functions.

Example:
[*!
* A String class.
*/

class String

friend int strcmp(const String &,const String &);
h

/%1
* Compares two strings.
*/

int strcmp(const String &sl1,const String &s2)
{

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

90

}

/*I \relates String

* A string debug function.
*

void stringDebug()

{
}

71 \relatesalso<name>

This command can be used in the documentation of a non-member furgieome-. It puts the function

both inside the ‘related function’ section of the class documentation as well as leaving its normal file doc-
umentation location. This command is useful for documenting non-friend functions that are nevertheless
strongly coupled to a certain class. It only works for functions.

72 \showinitializer

By default the value of a define and the initializer of a variable are only displayed if they are less than 30
lines long. By putting this command in a comment block of a define or variable, the initializer is shown
unconditionally.

See also:
section\ hideinitializer

73 \struct <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a struct with rarame-. The arguments
are equal to th&class command.

See also:
section\class

74 \typedef (typedef declaration)

Indicates that a comment block contains documentation for a typedef (either global or as a member of a
class). This command is equivalent\tear and\fn.

See also:
section\fn and\var.

75 \union <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a union with rarame-. The arguments
are equal to th&class command.

See also:
section\class

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

91

76 \var (variable declaration)

Indicates that a comment block contains documentation for a variable or enum value (either global or as a
member of a class). This command is equivalentypedef and\fn.

See also:
section\fn and\typedef

77 \weakgroup <name> [(title)]

Can be used exactly likeaddtogroup but has a lower priority when it comes to resolving conflicting
grouping definitions.

See also:
pageGroupingand\addtogroup

Section indicators

78 \attention { attention text }

Starts a paragraph where a message that needs attention may be entered. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacetttention commands will be joined into a single paragraph. The
\attention command ends when a blank line or some other sectioning command is encountered.

79 \author { list of authors }

Starts a paragraph where one or more author names may be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacey@uthor commands will be joined into a single paragraph. Each
author description will start a new line. Alternatively, oreuthor command may mention several authors.
The\author command ends when a blank line or some other sectioning command is encountered.

Example:

/*! \class WindowsNT

* \brief Windows Nice Try.

\author Bill Gates

\author Several species of small furry animals gathered together
in a cave and grooving with a pict.

\version 4.0

\date 1996-1998

\bug It crashes a lot and requires huge amounts of memory.

\bug The class introduces the more bugs, the longer it is used.

\warning This class may explode in your face.

\warning If you inherit anything from this class, you're doomed.

EE I R

*
-~

class WindowsNT {};

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

92

80 \brief {brief description}

Starts a paragraph that serves as a brief description. For classes and files the brief description will be used
in lists and at the start of the documentation page. For class and file members, the brief description will be
placed at the declaration of the member and prepended to the detailed description. A brief description may
span several lines (although it is advised to keep it brief!). A brief description ends when a blank line or
another sectioning command is encountered. If multipleef commands are present they will be joined.

See sectiofauthorfor an example.

Synonymous tdshort.

81 \bug { bug description }

Starts a paragraph where one or more bugs may be reported. The paragraph will be indented. The text of
the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacehbug commands will be joined into a single paragraph. Each bug description

will start on a new line. Alternatively, ondbug command may mention several bugs. Theg command

ends when a blank line or some other sectioning command is encountered. See ‘sadtionfor an
example.

82 \cond [<section-label>]

Starts a conditional section that ends with a correspongémgicondcommand, which is typically found

in another comment block. The main purpose of this pair of commands is to (conditionally) exclude part
of a file from processing (in older version of doxygen this could only be achieved using C preprocessor
commands).

The section betweekcond and\endcond commands can be included by adding its section label to the
ENABLED_SECTIONSconfiguration option. If the section label is omitted, the section will be excluded
from processing unconditionally.

For conditional sections within a comment block one should ugé .a \endif block.

Conditional sections can be nested. In this case a nested section will only be shown if it and its containing
section are included.

Here is an example showing the commands in action:

/** An interface */
class Intf

{
public:
/** A method */
virtual void func() = 0;

/Il @cond TEST

/** A method used for testing */
virtual void test() = O;

/Il @endcond
5

/Il @cond DEV
/*
* The implementation of the interface

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

93

*/
class Implementation : public Intf

{
public:
void func();

/Il @cond TEST
void test();
/Il @endcond

/Il @cond
/** This method is obsolete and does
* not show up in the documentation.
*/
void obsolete();
/Il @endcond

5

/Il @endcond

The output will be different depending on whether or BBIABLEDSECTIONScontainsTEST, or DEV

83 \date { date description}

Starts a paragraph where one or more dates may be entered. The paragraph will be indented. The text of
the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjaceitlate commands will be joined into a single paragraph. Each date description
will start on a new line. Alternatively, ongdate command may mention several dates. \[dete command

ends when a blank line or some other sectioning command is encountered. See ‘sadtionfor an
example.

84 \deprecated{ description }

Starts a paragraph indicating that this documentation block belongs to a deprecated entity. Can be used to
describe alternatives, expected life span, etc.

85 \details {detailed decription}

Just like\ brief starts a brief description,details starts the detailed description. You can also start a new
paragraph (blank line) then theletails command is not needed.

86 \else

Starts a conditional section if the previous conditional section was not enabled. The previous section should
have been started with\@f , \ifnot , or\elseif command.

See also:
\if, \ifnot, \ elseif \ endif.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

94

87 \elseif<section-label>

Starts a conditional documentation section if the previous section was not enabled. A conditional section
is disabled by default. To enable it you must put the section-label afté&tNASBLED_SECTIONStag in

the configuration file. Conditional blocks can be nested. A nested section is only enabled if all enclosing
sections are enabled as well.

See also:
sections\endif, \ifnot, \else and\elseif

88 \endcond

Ends a conditional section that was started bgnd

See also:
\cond

89 \endif

Ends a conditional section that was started by or \ifnot For each\if or\ifnot one and only one
matching\endif must follow.

See also:
\if, and\ifnot.

90 \exception<exception-object- { exception description}

Starts an exception description for an exception object with naesaeption-object. Followed by a
description of the exception. The existence of the exception object is not checked. The text of the paragraph
has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent exception commands will be joined into a single paragraph. Each parameter description
will start on a new line. Theéexception description ends when a blank line or some other sectioning
command is encountered. See sectjimfor an example.

Note:
the tag\exceptions is a synonym for this tag.

91 \if <section-label>

Starts a conditional documentation section. The section ends with a mat@mdg command. A
conditional section is disabled by default. To enable it you must put the section-label afidtAlBd ED _-
SECTIONStag in the configuration file. Conditional blocks can be nested. A nested section is only enabled
if all enclosing sections are enabled as well.

Example:

/*I Unconditionally shown documentation.
* \if Condl

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

Only included if Condl is set.
\endif
\if Cond2
Only included if Cond2 is set.
\if Cond3
Only included if Cond2 and Cond3 are set.
\endif
More text.
\endif
Unconditional text.

*
*
*
*
*
*
*
*
*
*

*/

You can also use conditional commands inside aliases. To document a class in two languages you could
for instance use:

Example 2:

/*I \english

* This is English.
\endenglish
\dutch
Dit is Nederlands.
\enddutch

* %k X %

*
class Example
{
h

Where the following aliases are defined in the configuration file:

ALIASES = "english=\if english" \
"endenglish=\endif" \
"dutch=\if dutch" \
"enddutch=\endif"

andENABLEDSECTIONScan be used to enable eitterglish or dutch .

See also:
sections\endif, \ifnot, \else and\elseif

92 \ifnot <section-labet-

Starts a conditional documentation section. The section ends with a mat@ndg command. This
conditional section is enabled by default. To disable it you must put the section-label afidtAiB ED _-
SECTIONStag in the configuration file.

See also:
sections\endif, \if, \else and\elseif

93 \invariant { description of invariant }

Starts a paragraph where the invariant of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacg@nvariant commands will be joined into a single paragraph.
Each invariant description will start on a new line. Alternatively, givezariant command may mention
several invariants. Theinvariant command ends when a blank line or some other sectioning command is
encountered.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

96

94 \note{ text }

Starts a paragraph where a note can be entered. The paragraph will be indented. The text of the paragraph
has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent\note commands will be joined into a single paragraph. Each note description will start

on a new line. Alternatively, ongnote command may mention several notes. Tinete command ends

when a blank line or some other sectioning command is encountered. See §patifum an example.

95 \par [(paragraph title)] { paragraph }

If a paragraph title is given this command starts a paragraph with a user defined heading. The heading
extends until the end of the line. The paragraph following the command will be indented.

If no paragraph title is given this command will start a new paragraph. This will also work inside other
paragraph commands (likgparam or\warning) without ending the that command.

The text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Thgar command ends when a blank line or some other sectioning command is
encountered.

Example:

\class Test
Normal text.

~
£

L I S T I N N

\par User defined paragraph:
Contents of the paragraph.

\par
New paragraph under the same heading.

\note
This note consists of two paragraphs.
This is the first paragraph.

\par
And this is the second paragraph.

More normal text.

*
~

class Test {};

96 \param <parameter-name> { parameter description }

Starts a parameter description for a function parameter with napsgameter-name. Followed by a
description of the parameter. The existence of the parameter is checked and a warning is given if the
documentation of this (or any other) parameter is missing or not present in the function declaration or
definition.

The\param command has an optional attribute specifying the direction of the attribute. Possible values are
"in” and "out”. Here is an example for the function memcpy:

!

Copies bytes from a source memory area to a destination memory area,
where both areas may not overlap.

@param[out] dest The memory area to copy to.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

97

@param[in] src The memory area to copy from.
@param[in] n The number of bytes to copy

*

void memcpy(void *dest, const void *src, size_t n);

If a parameter is both input and output, use [in,out] as an attribute.

The parameter description is a paragraph with no special internal structure. All visual enhancement com-
mands may be used inside the paragraph.

Multiple adjacent\param commands will be joined into a single paragraph. Each parameter description
will start on a new line. Thgparam description ends when a blank line or some other sectioning command
is encountered. See sectigim for an example.

97 \post{ description of the postcondition}

Starts a paragraph where the postcondition of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacepiost commands will be joined into a single paragraph. Each post-
condition will start on a new line. Alternatively, ong@ost command may mention several postconditions.
The\post command ends when a blank line or some other sectioning command is encountered.

98 \pre { description of the precondition }

Starts a paragraph where the precondition of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacgmte commands will be joined into a single paragraph. Each
precondition will start on a new line. Alternatively, olpre command may mention several preconditions.
The\pre command ends when a blank line or some other sectioning command is encountered.

99 \remarks { remark text }

Starts a paragraph where one or more remarks may be entered. The paragraph will be indented. The text
of the paragraph has no special internal structure. All visual enhancement commands may be used inside
the paragraph. Multiple adjacextemark commands will be joined into a single paragraph. Each remark

will start on a new line. Alternatively, onglemark command may mention several remarks. \feenark
command ends when a blank line or some other sectioning command is encountered.

100 \return { description of the return value }

Starts a return value description for a function. The text of the paragraph has no special internal structure.
All visual enhancement commands may be used inside the paragraph. Multiple atjat@mtcommands

will be joined into a single paragraph. Theeturn description ends when a blank line or some other
sectioning command is encountered. See segfiofior an example.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

98

101 \retval <return value> { description }

Starts a return value description for a function with naareturn value-. Followed by a description of

the return value. The text of the paragraph that forms the description has no special internal structure. All
visual enhancement commands may be used inside the paragraph. Multiple agjabeitcommands

will be joined into a single paragraph. Each return value description will start on a new liné,r@tel
description ends when a blank line or some other sectioning command is encountered.

102 \saf{ references}

Starts a paragraph where one or more cross-references to classes, functions, methods, variables, files or
URL may be specified. Two names joined by either or # are understood as referring to a class and

one of its members. One of several overloaded methods or constructors may be selected by including a
parenthesized list of argument types after the method name.

Synonymous tosee.

See also:
sectionautolinkfor information on how to create links to objects.

103 \seef{ references}

Equivalent to\sa Introduced for compatibility with Javadoc.

104 \since{ text }

This tag can be used to specify since when (version or time) an entity is available. The paragraph that
follows \since does not have any special internal structure. All visual enhancement commands may be used
inside the paragraph. Thaince description ends when a blank line or some other sectioning command is
encountered.

105 \test{ paragraph describing a test case

Starts a paragraph where a test case can be described. The description will also add the test case to a
separate test list. The two instances of the description will be cross-referenced. Each test case in the test
list will be preceded by a header that indicates the origin of the test case.

106 \throw <exception-object- { exception description}
Synonymous toexception (see sectiofexception.

Note:
the tag\throws is a synonym for this tag.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

99

107 \todo { paragraph describing what is to be done}

Starts a paragraph where a TODO item is described. The description will also add an item to a separate
TODO list. The two instances of the description will be cross-referenced. Each item in the TODO list will
be preceded by a header that indicates the origin of the item.

108 \version { version number }

Starts a paragraph where one or more version strings may be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacénersion commands will be joined into a single paragraph. Each
version description will start on a new line. Alternatively, opersion command may mention several
version strings. Theaversion command ends when a blank line or some other sectioning command is
encountered. See sectigauthorfor an example.

109 \warning { warning message}

Starts a paragraph where one or more warning messages may be entered. The paragraph will be indented.

The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacewtrning commands will be joined into a single paragraph.
Each warning description will start on a new line. Alternatively, m&arning command may mention
several warnings. Thegwarning command ends when a blank line or some other sectioning command is
encountered. See sectigauthorfor an example.

110 \xrefitem <key> "(heading)” "(list title)” {text}

This command is a generalization of commands suchtedo and\bug It can be used to create user-
defined text sections which are automatically cross-referenced between the place of occurrence and a re-
lated page, which will be generated. On the related page all sections of the same type will be collected.

The first argumenkkey> is a identifier uniquely representing the type of the section. The second argument

is a quoted string representing the heading of the section under which text passed as the forth argument is
put. The third argument (list title) is used as the title for the related page containing all items with the same
key. The keys "todo”, "test”, "bug”, and "deprecated” are predefined.

To get an idea on how to use thegrefitem command and what its effect is, consider the todo list, which
(for English output) can be seen an alias for the command

\xrefitem todo "Todo" "Todo List"

Since itis very tedious and error-prone to repeat the first three parameters of the command for each section,
the command is meant to be used in combination withAhEASES option in the configuration file. To
define a new commangeminder, for instance, one should add the following line to the configuration file:

ALIASES += "reminder=\xrefitem reminders \"Reminder\" \"Reminders\""

Note the use of escaped quotes for the second and third argument\aféfiem command.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

100

Commands to create links

111 \addindex (text)

This command adds (text) to thFEX index.

112 \anchor <word>

This command places an invisible, named anchor into the documentation to which you can refer with the
\ref command.

Note:
Anchors can currently only be put into a comment block that is marked as a page (psigg) or
mainpage (mainpagg

See also:
section\ref.

113 \endlink

This command ends a link that is started with tiak command.

See also:
section\link.

114 \link <link-object>

The links that are automatically generated by doxygen always have the name of the object they point to as
link-text.

The\link command can be used to create a link to an object (a file, class, or member) with a user specified
link-text. The link command should end with aendlink command. All text between thdink and
\endlink commands serves as text for a link to #k-object> specified as the first argument'gink.

See sectiomautolinkfor more information on automatically generated links and valid link-objects.

115 \ref <name> ["(text)"]

Creates a reference to a named section, subsection, page or anchor. For HTML documentation the reference
command will generate a link to the section. For a sections or subsections the title of the section will be
used as the text of the link. For anchor the optional text between quotes will be usedmie> if no text

is specified. ForAIEX documentation the reference command will generate a section number for sections

or the text followed by a page number<dhame> refers to an anchor.

See also:
Section\pagefor an example of theref command.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

101

116 \subpage<name> ["(text)”]

This command can be used to create a hierarchy of pages. The same structure can be made using the
\defgroupand\ingroupcommands, but for pages thsubpage command is often more convenient. The
main page (seemainpaggis typically the root of hierarchy.

This command behaves similar a®f in the sense that it creates a reference to a page lakelathe-
with the optional link text as specified in the second argument.

It differs from the\ref command in that it only works for pages, and creates a parent-child relation between
pages, where the child page (or sub page) is identified by labaine-.

See the\sectionand\subsectiocommands if you want to add structure without creating multiple pages.
Note:

Each page can be the sub page of only one other page and no cyclic relations are allowed, i.e. the page
hierarchy must have a tree structure.

Here is an example:

/*! \mainpage A simple manual

Some general info.

This manual is divided in the following sections:
- \subpage intro

- \subpage advanced "Advanced usage"

*

1

/*I \page intro Introduction

This page introduces the user to the topic.

Now you can proceed to the \ref advanced "advanced section".
*

1

/*! \page advanced Advanced Usage

This page is for advanced users.

Make sure you have first read \ref intro "the introduction”.
*

117 \section<section-name- (section title)

Creates a section with namesection-name. The title of the section should be specified as the second
argument of thg section command.

Warning:
This command only works inside related page documentatiomatid other documentation blocks!

118 \subsection<subsection-name- (subsection title)

Creates a subsection with nameubsection-name. The title of the subsection should be specified as the
second argument of thgubsection command.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

102

Warning:
This command only works inside a section of a related page documentation blocioindother
documentation blocks!

See also:
Section\pagefor an example of th&subsectiocommand.

119 \subsubsection<subsubsection-namg (subsubsection title)

Creates a subsubsection with namesubsubsection-name The title of the subsubsection should be
specified as the second argument of\tkebsubsection command.

Warning:
This command only works inside a subsection of a related page documentation blaust andther
documentation blocks!

See also:
Section\pagefor an example of thesubsubsectionommand.

120 \paragraph <paragraph-name> (paragraph title)

Creates a named paragraph with nanparagraph-name. The title of the paragraph should be specified
as the second argument of thygaragraph command.

Warning:
This command only works inside a subsubsection of a related page documentation bloak end
other documentation blocks!

See also:
Section\pagefor an example of theparagraplcommand.

Commands for displaying examples

121 \dontinclude <file-name>

This command can be used to parse a source file without actually verbatim including it in the documentation
(as the\include command does). This is useful if you want to divide the source file into smaller pieces and
add documentation between the pieces. Source files or directories can be specified USKNIRLE -

PATH tag of doxygen’s configuration file.

The class and member declarations and definitions inside the code fragment are ‘remembered’ during the
parsing of the comment block that contained tdentinclude command.

For line by line descriptions of source files, one or more lines of the example can be displayed using
the \line, \skip, \skipline, and\until commands. An internal pointer is used for these commands. The
\dontinclude command sets the pointer to the first line of the example.

Example:
/*I A test class. */

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

103

class Test
{
public:
/Il a member function
void example();

h#

/*! \page example

* \dontinclude example_test.cpp

Our main function starts like this:

\skip main

\until {

First we create a object \c t of the Test class.
\skipline Test

Then we call the example member function
\line example

After that our little test routine ends.

\line }

EE A S R

*/
Where the example filexample _test.cpp looks as follows:

void main()

{
Test t;
t.example();

See also:
sections\line, \skip, \skipline and\until.

122 \include <file-name>

This command can be used to include a source file as a block of code. The command takes the name of an

include file as an argument. Source files or directories can be specified usiBEgANSPLE_PATH tag of
doxygen’s configuration file.

If <file-name> itself is not unique for the set of example files specified byEXAMPLE_PATH tag, you
can include part of the absolute path to disambiguate it.

Using the\include command is equivalent to inserting the file into the documentation block and surround-
ing it with \ codeand\endcodecommands.

The main purpose of theinclude command is to avoid code duplication in case of example blocks that
consist of multiple source and header files.

For a line by line description of a source files use'tientincludecommand in combination with thgine,
\skip, \skipline, and\until commands.

Note:
Doxygen’s special commands do not work inside blocks of code. It is allowed to nest C-style com-
ments inside a code block though.

See also:
section\example \dontinclude and section verbatim

123 \includelineno <file-name>

This command works the same way\@sclude, but will add line numbers to the included file.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

104

See also:
section\include

124 \line (pattern)

This command searches line by line through the example that was last included\usthgle or
\dontinclude until it finds a non-blank line. If that line contains the specified pattern, it is written to
the output.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following the non-blank line that was found (or to the end of the example if no such line could be found).

See sectiondontincludefor an example.

125 \skip (pattern)

This command searches line by line through the example that was last included\usthgle or
\dontinclude until it finds a line that contains the specified pattern.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
that contains the specified pattern (or to the end of the example if the pattern could not be found).

See sectiofdontincludefor an example.

126 \skipline (pattern)

This command searches line by line through the example that was last included\usthgle or
\dontinclude until it finds a line that contains the specified pattern. It then writes the line to the output.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following the line that is written (or to the end of the example if the pattern could not be found).

Note:
The command:
\skipline pattern
is equivalent to:
\skip pattern

\line pattern

See sectiondontincludefor an example.

127 \until (pattern)

This command writes all lines of the example that was last included ygietude or\dontinclude to the
output, until it finds a line containing the specified pattern. The line containing the pattern will be written
as well.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following last written line (or to the end of the example if the pattern could not be found).

See sectiofdontincludefor an example.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

105

128 \verbinclude <file-name>

This command includes the filefile-name> verbatim in the documentation. The command is equivalent
to pasting the file in the documentation and placimgrbatim and endverbatim commands around it.

Files or directories that doxygen should look for can be specified usirngXaé/1PLE_PATH tag of doxy-
gen'’s configuration file.

129 \htmlinclude <file-name>

This command includes the filefile-name> as is in the HTML documentation. The command is equiv-
alent to pasting the file in the documentation and plagimgnlonly and\endhtmlonly commands around
it.

Files or directories that doxygen should look for can be specified usirgXié/1PLE_PATH tag of doxy-
gen’s configuration file.

Commands for visual enhancements

130 \a<word>

Displays the argumentword> using a special font. Use this command to refer to member arguments in
the running text.

Example:
.. the \a x and \a y coordinates are used to ...

This will result in the following text:
... thex andy coordinates are used to ...

131 \arg { item-description }

This command has one argument that continues until the first blank line or until ahatés encountered.
The command can be used to generate a simple, not nested list of arguments. Each argument should start
with a\arg command.

Example:
Typing:

\arg \c AlignLeft left alignment.
\arg \c AlignCenter center alignment.
\arg \c AlignRight right alignment

No other types of alignment are supported.

will result in the following text:
e AlignLeft left alignment.
e AlignCenter center alignment.
e AlignRight right alignment

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

106

No other types of alignment are supported.

Note:
For nested lists, HTML commands should be used.

Equivalent to\|i

132 \b <word>

Displays the argumentword> using a bold font. Equivalent tab>word. To put multiple words
in bold usemultiple words.

133 \c <word>

Displays the argumentword> using a typewriter font. Use this to refer to a word of code. Equivalent to
<tt>word</tt>.

Example:
Typing:

.. This function returns \c void and not \c int ...

will result in the following text:
... This function returnsoid and notint

Equivalent to\p To have multiple words in typewriter font usett>multiple words</tt>.

134 \code

Starts a block of code. A code block is treated differently from ordinary text. It is interpreted as C/C++
code. The names of the classes and members that are documented are automatically replaced by links to
the documentation.

See also:
section\endcodesection\verbatim

135 \copydoc<link-object>

Copies a documentation block from the object specifiedbgk-object> and pastes it at the location of
the command. This command can be useful to avoid cases where a documentation block would otherwise
have to be duplicated or it can be used to extend the documentation of an inherited member.

The link object can point to a member (of a class, file or group), a class, a namespace, a group, a page, or a
file (checked in that order). Note that if the object pointed to is a member (function, variable, typedef, etc),
the compound (class, file, or group) containing it should also be documented for the copying to work.

To copy the documentation for a member of a class for instance one can put the following in the documen-
tation

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

107

/*I @copydoc MyClass::myfunction()
* More documentation.
*

if the member is overloaded, you should specify the argument types explicitly (without spaces!), like in the
following:

/*I @copydoc MyClass::myfunction(typel,type2) */

Qualified names are only needed if the context in which the documentation block is found requires them.

The copydoc command can be used recursively, but cycles in the copydoc relation will be broken and
flagged as an error.

136 \dot

Starts a text fragment which should contain a valid description of a dot graph. The text fragment ends with
\enddot Doxygen will pass the text on to dot and include the resulting image (and image map) into the
output. The nodes of a graph can be made clickable by using the URL attribute. By using the command
\ref inside the URL value you can conveniently link to an item inside doxygen. Here is an example:

/*! class B */
class B {};

/*1 class C */
class C {};

/*! \mainpage

Class relations expressed via an inline dot graph:
\dot
digraph example {
node [shape=record, fontname=Helvetica, fontsize=10];
b [label="class B" URL="\ref B"];
¢ [label="class C" URL="\ref C'T;
b -> ¢ [arrowhead="open", style="dashed"];

\enddot

Note that the classes in the above graph are clickable
(in the HTML output).

*

137 \msc
Starts a text fragment which should contain a valid description of a message sequence chart. See
http://www.mcternan.me.uk/mscgen/ for examples. The text fragment ends wigndmsc
Note:
The text fragment should only include the part of the message sequence chart that is withgt the
{... } block.

You need to install thenscgen tool, if you want to use this command.

Here is an example of the use of thesc command.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.mcternan.me.uk/mscgen/

108

/** Sender class. Can be used to send a command to the server.
The receiver will acknowlegde the command by calling Ack().
\msc
Sender,Receiver;
Sender->Receiver [label="Command()", URL="\ref Receiver::Command()'];
Sender<-Receiver [label="Ack()", URL="\ref Ack()", ID="1";
\endmsc
*/
class Sender

{
public:
/** Acknowledgement from server */
void Ack(bool ok);
h

/** Receiver class. Can be used to receive and execute commands.
After execution of a command, the receiver will send an acknowledgement
\msc
Receiver,Sender;
Receiver<-Sender [label="Command()", URL="\ref Command()"];
Receiver->Sender [label="Ack()", URL="\ref Sender::Ack()", ID="1"];
\endmsc
*/
class Receiver

public:
/** Executable a command on the server */
void Command(int commandld);

138 \dotfile <file> ["caption”]

Inserts an image generated by dot frerfile> into the documentation.

The first argument specifies the file name of the image. doxygen will look for files in the paths (or files)
that you specified after theOTFILE_DIRS tag. If the dot file is found it will be used as an input file to
the dot tool. The resulting image will be put into the correct output directory. If the dot file name contains
spaces you'll have to put quotes (") around it.

The second argument is optional and can be used to specify the caption that is displayed below the image.
This argument has to be specified between quotes even if it does not contain any spaces. The quotes are
stripped before the caption is displayed.

139 \e<word>

Displays the argumentword> in italics. Use this command to emphasize words.

Example:
Typing:

. this is a \e really good example ...

will result in the following text:
... this is areally good example ...

Equivalent to\em To emphasis multiple words useen>multiple words.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

109

140 \em <word>

Displays the argumentword> in italics. Use this command to emphasize words.

Example:
Typing:

.. this is a \em really good example ...

will result in the following text:
... this is areally good example ...

Equivalent to\e

141 \endcode

Ends a block of code.

See also:
section\code

142 \enddot

Ends a blocks that was started wittiot

143 \endmsc

Ends a blocks that was started wigmsc

144 \endhtmlonly

Ends a block of text that was started withl@mlonly command.

See also:
section\htmlonly.

145 \endlatexonly

Ends a block of text that was started withlatexonly command.

See also:
section\ latexonly.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

110

146 \endmanonly

Ends a block of text that was started withrmanonly command.

See also:
section\manonly

147 \endverbatim

Ends a block of text that was started with\aerbatim command.

See also:
section\endcodesection\verbatim

148 \endxmlonly

Ends a block of text that was started withanlonly command.

See also:
section\xmlonly.

149 \f$

Marks the start and end of an in-text formula.

See also:
sectionformulasfor an example.

150 \f[

Marks the start of a long formula that is displayed centered on a separate line.

See also:
section\f] and sectiorformulas

151 \f]

Marks the end of a long formula that is displayed centered on a separate line.

See also:
section\f[and sectiofformulas

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

111

152 \f{environment}{

Marks the start of a formula that is in a specific environment.

Note:
The second is optional and is only to help editors (such as Vim) to do proper syntax highlighting by
making the number of opening and closing braces the same.

153 \f}

Marks the end of a formula that is in a specific environment.

154 \htmlonly

Starts a block of text that will be verbatim included in the generated HTML documentation only. The block
ends with a endhtmlonly command.

This command can be used to include HTML code that is too complex for doxygen (i.e. applets, java-
scripts, and HTML tags that require attributes). You can use\taexonly and\endlatexonly pair to
provide a properIgX alternative.

Note: environment variables (like $(HOME)) are resolved inside a HTML-only block.

See also:
section\manonlyand section latexonly.

155 \image<format> <file> ["caption”] [<sizeindication>=<size>]

Inserts an image into the documentation. This command is format specific, so if you want to insert an
image for more than one format you'll have to repeat this command for each format.

The first argument specifies the output format. Currently, the following values are suppgartéd:and
latex

The second argument specifies the file name of the image. doxygen will look for files in the paths (or files)
that you specified after tH&IAGE _PATH tag. If the image is found it will be copied to the correct output
directory. If the image name contains spaces you'll have to put quotes (") around it. You can also specify
an absolute URL instead of a file name, but then doxygen does not copy the image nor check its existance.

The third argument is optional and can be used to specify the caption that is displayed below the image.
This argument has to be specified on a single line and between quotes even if it does not contain any spaces.
The quotes are stripped before the caption is displayed.

The fourth argument is also optional and can be used to specify the width or height of the image. This
is only useful for ATeX output (i.e. formatfatex). Thesizeindication can be eithewidth or

height . The size should be a valid size specifieAfEX (for examplelOcm or 6in or a symbolic width

like \textwidth).

Here is example of a comment block:

/*! Here is a snapshot of my new application:
* \image html application.jpg

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

112

* \image latex application.eps "My application" width=10cm
*/

And this is an example of how the relevant part of the configuration file may look:
IMAGE_PATH = my_image_dir

Warning:
The image format for HTML is limited to what your browser supports. Pg{, the image format
must be Encapsulated PostScript (eps).
Doxygen does not check if the image is in the correct formaty@ohave to make sure this is the

case!

156 \latexonly

Starts a block of text that will be verbatim included in the generaffgKldocumentation only. The block
ends with a endlatexonly command.

This command can be used to includ&X code that is too complex for doxygen (i.e. images, formu-
las, special characters). You can use thémlonly and\endhtmlonly pair to provide a proper HTML
alternative.

Note: environment variables (like $(HOME)) are resolved insidérgX-only block.

See also:
section\ latexonlyand section htmlonly.

157 \manonly

Starts a block of text that will be verbatim included in the generated MAN documentation only. The block
ends with a endmanonly command.

This command can be used to include groff code directly into MAN pages. You can ugettienly and
\latexonly and\endhtmlonly and endlatexonly pairs to provide proper HTML ardgX alternatives.

See also:
section\htmlonly and section latexonly.

158 \li { item-description }

This command has one argument that continues until the first blank line or until ahbikemcountered.
The command can be used to generate a simple, not nested list of arguments. Each argument should start
with a\li command.

Example:
Typing:

\li \c AlignLeft left alignment.
\li \c AlignCenter center alignment.
\li \c AlignRight right alignment

No other types of alignment are supported.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

113

will result in the following text:

e AlignLeft left alignment.
e AlignCenter center alignment.
e AlignRight right alignment

No other types of alignment are supported.

Note:
For nested lists, HTML commands should be used.

Equivalent to\arg

159 \n

Forces a new line. Equivalent tobr> and inspired by the printf function.

160 \p <word>
Displays the parameterword> using a typewriter font. You can use this command to refer to member
function parameters in the running text.

Example:
.. the \p x and \p y coordinates are used to ...

This will result in the following text:
... thex andy coordinates are used to ...

Equivalent to\c

161 \verbatim

Starts a block of text that will be verbatim included in both the HTML and Afigd.documentation. The
block should end with §endverbatim block. All commands are disabled in a verbatim block.

Warning:
Make sure you include gendverbatim command for eagkerbatim command or the parser will get
confused!

See also:
section\code and sectionverbinclude

162 \xmlonly

Starts a block of text that will be verbatim included in the generated XML output only. The block ends
with a endxmlonly command.

This command can be used to include custom XML tags.

See also:
section\htmlonly and section latexonly.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

114

163 \\

This command writes a backslash charactgntg the HTML and ATgX output. The backslash has to be
escaped in some cases because doxygen uses it to detect commands.

164 \@

This command writes an at-sign (@) to the HTML afifEX output. The at-sign has to be escaped in some
cases because doxygen uses it to detect JavaDoc commands.

165 \~[Languageld]

This command enables/disables a language specific filter. This can be used to put documentation for
different language into one comment block and usexbl@ PUTLANGUAGIR&g to filter out only a specific
language. Us&~languaged to enable output for a specific language only ardto enable output for all
languages (this is also the default mode).

Example:

/*! \"english This is english \"dutch Dit is Nederlands \"german Dieses ist
deutsch. \” output for all languages.
*

166 \&

This command writes the & character to output. This character has to be escaped because it has a special
meaning in HTML.

167 \$

This command writes the $ character to the output. This character has to be escaped in some cases, because
it is used to expand environment variables.

168 \#

This command writes the # character to the output. This character has to be escaped in some cases, because
it is used to refer to documented entities.

169 <

This command writes the: character to the output. This character has to be escaped because it has a
special meaning in HTML.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

115

170 >

This command writes the- character to the output. This character has to be escaped because it has a
special meaning in HTML.

171 \%

This command writes the % character to the output. This character has to be escaped in some cases, because
it is used to prevent auto-linking to word that is also a documented class or struct.

172 PHP only commands

For PHP files there are a number of additional commands, that can be used inside classes to make members
public, private, or protected even though the language itself doesn’t support this notion.

To mark a single item use one gbrivate,\protected, public. For starting a section with a certain protec-
tion level use one of)\privatesection) protectedsection\publicsection. The latter commands are similar
to "private:”, "protected:”, and "public:” in C++.

Commands included for Qt compatibility

The following commands are supported to remain compatible to the Qt class browser generatot. Do
use these commands in your own documentation.

¢ \annotatedclasslist
e \classhierarchy

e \define

¢ \functionindex

e \header

¢ \headerfilelist

e \inherit

o\l

e \postheader

Here is a list of all HTML commands that may be used inside the documentation. Note that although these
HTML tags are translated to the proper commands for outer formats other than HTML, all attributes of a
HTML tag are passed on to the HTML output only (the HREF and NAME attributes for the A tag are the
only exception).

e Starts a HTML hyper-link (HTML only).

e Starts an named anchor (HTML only).

e Ends alink or anchor (HTML only).

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

116

e Starts a piece of text displayed in a bold font.

e Ends a section.

e <BODY> Does not generate any output.

e </BODY> Does not generate any output.

e
 Forces a line break.

e <CENTER- starts a section of centered text.

e </CENTER> ends a section of centered text.

e <CAPTION> Starts a caption. Use within a table only.
e </CAPTION> Ends a caption. Use within a table only.

e <CODE Starts a piece of text displayed in a typewriter font. Note that for C# code, this command
is equivalent td,code

e </CODE> End a<CODE- section. Note that for C# code, this command is equivaleh¢talcode
e <DD> Starts an item description.

e <DFN> Starts a piece of text displayed in a typewriter font.
e </DFN> Ends a<DFN> section.

e <DIV > Starts a section with a specific style (HTML only)
e </DIV > Ends a section with a specific style (HTML only)
e <DL> Starts a description list.

e </DL > Ends a description list.

e <DT> Starts an item title.

e </DT > Ends an item title.

e Starts a piece of text displayed in an italic font.

e Ends a section.

e <FORM Does not generate any output.

e </FORM> Does not generate any output.

e <HR> Writes a horizontal ruler.

e <H1> Starts an unnumbered section.

e </H1 > Ends an unnumberd section.

e <H2> Starts an unnumbered subsection.

e </H2 > Ends an unnumbered subsection.

e <H3> Starts an unnumbered subsubsection.

e </H3 > Ends an unnumbered subsubsection.

e <| > Starts a piece of text displayed in an italic font.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

117

e <INPUT> Does not generate any output.

e </l > Ends a<I > section.

e This command is written with attributes to the HTML output only.
e Starts a new list item.

e Ends a list item.

e <META> Does not generate any output.

e <MULTICOL> ignored by doxygen.

e </MUTLICOL> ignored by doxygen.

e Starts a numbered item list.

e Ends a numbered item list.

e <P> Starts a new paragraph.

e </P > Ends a paragraph.

e <PRE> Starts a preformatted fragment.

e </PRE> Ends a preformatted fragment.

e <SMALL> Starts a section of text displayed in a smaller font.
o </SMALL> Ends a<SMALL> section.

e Starts an inline text fragment with a specific style (HTML only)
e Ends an inline text fragment with a specific style (HTML only)
e <STRONG Starts a section of bold text.

e Ends a section of bold text.

e <SUB> Starts a piece of text displayed in subscript.

e </SUB> Ends a<SUB> section.

e <SUP> Starts a piece of text displayed in superscript.

e </SUP> Ends a</SUP > section.

o <TABLE> starts a table.

e </TABLE > ends a table.

e <TD> Starts a new table data element.

e </TD > Ends a table data element.

e <TR> Starts a new table row.

e </TR > Ends a table row.

e <TT> Starts a piece of text displayed in a typewriter font.

o </TT > Ends a<TT> section.

e <KBD> Starts a piece of text displayed in a typewriter font.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

118

</KBD> Ends a<KBD> section.

 Starts an unnumbered item list.

 Ends an unnumbered item list.

<VAR> Starts a piece of text displayed in an italic font.

</VAR> Ends a</VAR > section.

The special HTML character entities that are recognized by Doxygen:

© the copyright symbol

&tm; the trade mark symbol

® the registered trade mark symbol
< less-than symbol

> greater-than symbol

& ampersand

' single quotation mark (straight)
" double quotation mark (straight)
‘ left single quotation mark
’ right single quotation mark
“ left double quotation mark
” right double quotation mark
– n-dash (for numeric ranges, eg. 2-8)

— m-dash (for parenthetical punctuation — like this)

&?uml; where ? is one ofA,E,l,0,U,Y,a,e,i,0,u,y, writes a character with a diaeresis accent (like

a).

&?acute; where ? is one ofAE,1,0,U,Y,a,e,i,o,u,y, writes a character with a acute accent (like

a).

&?grave; where ? is one ofA,E,|,0,U,a,e,i,o,u.y, writes a character with a grave accent (like

3).

&?circ; where ? is one ofA,E,l,0,U,a,e,i,o,u,y, writes a character with a circumflex accent

(like 3).

&?tilde; where ? is one of A|N,0,a,n,d, writes a character with a tilde accent (li&g

ß write a sharp s (i.e.) to the output.
&?cedil; where ? is one ofc,C}, writes a c-cedille (like ¢).
&?ring; where ? is one ofa,A}, writes ana with a ring (likea).

 a non breakable space.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

119

Finally, to put invisible comments inside comment blocks, HTML style comments can be used:

/¥ <l-- This is a comment with a comment block --> Visible text */

Doxygen supports most of the XML commands that are typically used in C# code comments. The XML
tags are defined in Appendix E of tB&€MA-334 standard, which defines the C# language. Unfortunately,
the specification is not very precise and a number of the examples given are of poor quality.

Here is the list of tags supported by doxygen:
e <Cc> ldentifies inline text that should be rendered as a piece of code. Similar to using
<tt >text</tt >.

e <code > Set one or more lines of source code or program output. Note that this command
behaves like\code ... \endcode for C# code, but it behaves like the HTML equivalent
<code >... </code > for other languages.

e <description > Part of a<list > command, describes an item.
e <example > Marks a block of text as an example, ignored by doxygen.
e <exception cref="member" > |dentifies the exception a method can throw.

e <include > Can be used to import a piece of XML from an external file. Ignored by doxygen at
the moment.

e <item > Listitem. Can only be used insidedist > context.

o <list type="type" > Starts a list, supported types drellet or number andtable . A
list consists of a number ofitem > tags. A list of type table, is a two column table which can have
a header.

e <listheader > Starts the header of a list of type "table”.
e <para > ldentifies a paragraph of text.

e <param name="paramName" > Marks a piece of text as the documentation for parameter
"paramName”. Similar to usingparam

e <paramref name="paramName" > Refers to a parameter with name "paramName”. Similar
to using\a

e <permission > ldentifies the security accessibility of a member. Ignored by doygen.
e <remarks > Identifies the detailed description.

e <returns > Marks a piece of text as the return value of a function or method. Similar to using
\return

e <see cref="member" > Refersto a member. Similar tgef.

e <seealso cref="member" > Starts a "See also” section referring to "member”. Similar to
using\samember.

e <summary > ldentifies the brief description. Similar to usihgrief.
e <term > Part of a<list > command.

e <typeparam name="paramName" > Marks a piece of text as the documentation for type pa-
rameter "paramName”. Similar to usingaram

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

http://www.ecma-international.org/publications/standards/Ecma-334.htm

120

o <typeparamref name="paramName" > Refers to a parameter with name "paramName”.

Similar to using\a

e <value > ldentifies a property. Ignored by doxygen.

Here is an example of a typical piece of code using some of the above commands:

/Il <summary>
/Il A search engine.
/Il </[summary>
class Engine
{
/Il <summary>
/Il The Search method takes a series of parameters to specify the search criterion
/Il and returns a dataset containing the result set.
/Il </[summary>
/Il <param name="connectionString">the connection string to connect to the
/Il database holding the content to search</param>
/Il <param name="maxRows">The maximum number of rows to
/Il return in the result set</param>
/Il <param name="searchString">The text that we are searching for</param>
/Il <returns>A DataSet instance containing the matching rows. It contains a maximum
/Il number of rows specified by the maxRows parameter</returns>
public DataSet Search(string connectionString, int maxRows, int searchString)
{
DataSet ds = new DataSet();
return ds;
}
}

Part IlI

Developers Manual

Doxygen'’s internals

Note that this section is still under construction!

The following picture shows how source files are processed by doxygen.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

121

config file

Config parser

XML

/ HTML

LaTeX

|
| get settings

input files

drives

C Preprocessor Language parser Data organiser Output generators

drive7’

Doc Parser

input
string

drives

tag file parser

drives

Source Parser -
drives

Figure 2: Data flow overview

The following sections explain the steps above in more detalil.

Config parser

The configuration file that controls the settings of a project is parsed and the settings are stored in the
singleton clas€onfig in src/config.h . The parser itself is written usirftex and can be found in
src/config.| . This parser is also used directly dgxywizard , soitis putin a separate library.

Each configuration option has one of 5 possible tyjg#sng , List , Enum Int , orBool . The values

of these options are available through the global functosfig _getXXX() , whereXXXis the type of

the option. The argument of these function is a string naming the option as it appears in the configuration
file. For instanceConfig _getBool ("GENERATE.TESTLIST") returns a reference to a boolean value
that isSTRUEIf the test list was enabled in the config file.

The functionreadConfiguration() in src/doxygen.cpp reads the command line options and
then calls the configuration parser.

C Preprocessor

The input files mentioned in the config file are (by default) fed to the C Preprocessor (after being piped
through a user defined filter if available).

The way the preprocessor works differs somewhat from a standard C Preprocessor. By default it does not
do macro expansion, although it can be configured to expand all macros. Typical usage is to only expand a
user specified set of macros. This is to allow macro names to appear in the type of function parameters for
instance.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

122

Another difference is that the preprocessor parses, but not actually includes code when it encounters a
#include (with the exception of #include found insifle.. } blocks). The reasons behind this deviation

from the standard is to prevent feeding multiple definitions of the same functions/classes to doxygen’s
parser. If all source files would include a common header file for instance, the class and type definitions
(and their documentation) would be present in each translation unit.

The preprocessor is written usifigx and can be found isrc/pre.l . For condition blocks (#if)
evaluation of constant expressions is needed. For thésa based parser is used, which can be found in
src/constexp.y andsrc/constexp.|

The preprocessor is invoked for each file using treprocessFile() function declared in
src/pre.h, and will append the preprocessed result to a character buffer. The format of the charac-
ter buffer is

0x06 file name 1
0x06 preprocessed contents of file 1

0x06 file name n
0x06 preprocessed contents of file n

Language parser

The preprocessed input buffer is fed to the language parser, which is implemented as a big state ma-
chine usingflex . It can be found in the filsrc/scanner.| . There is one parser for all languages
(C/C++/Java/IDL). The state variablessidelDL andinsideJava are uses at some places for lan-
guage specific choices.

The task of the parser is to convert the input buffer into a tree of entries (basically an abstract syntax tree).
An entry is defined irsrc/entry.h and is a blob of loosely structured information. The most important
field issection which specifies the kind of information contained in the entry.

Possible improvements for future versions:

e Use one scanner/parser per language instead of one big scanner.
e Move the first pass parsing of documentation blocks to a separate module.

e Parse defines (these are currently gathered by the preprocessor, and ignored by the language parser).

Data organizer

This step consists of many smaller steps, that build dictionaries of the extracted classes, files, namespaces,
variables, functions, packages, pages, and groups. Besides building dictionaries, during this step relations
(such as inheritance relations), between the extracted entities are computed.

Each step has a function definedsrc/doxygen.cpp , which operates on the tree of entries, built
during language parsing. Look at the "Gathering information” pagasselnput() for details.

The result of this step is a number of dictionaries, which can be found in the Doxygen "namespace” defined
in src/doxygen.h . Most elements of these dictionaries are derived from the Elafigition ; The
classMemberDef, for instance, holds all information for a member. An instance of such a class can be
part of a file (class-ileDef), a class (clas€lassDef), a namespace (clabamespaceDef), a

group (classGroupDef), or a Java package (claBackageDef).

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

123

Tag file parser

If tag files are specified in the configuration file, these are parsed by a SAX based XML parser, which can
be found insrc/tagreader.cpp . The result of parsing a tag file is the insertiorEaftry objects in

the entry tree. The fiel@ntry::taginfo is used to mark the entry as external, and holds information
about the tag file.

Documentation parser

Special comment blocks are stored as strings in the entities that they document. There is a string for the

brief description and a string for the detailed description. The documentation parser reads these strings and
executes the commands it finds in it (this is the second pass in parsing the documentation). It writes the

result directly to the output generators.

The parser is written in C++ and can be found in src/docparser.cpp. The tokens that are eaten by the parser
come from src/doctokenizer.l. Code fragments found in the comment blocks are passed on to the source
parser.

The main entry point for the documentation parser vaidatingParseDoc() declared in
src/docparser.h . For simple texts with special commandsidatingParseText() is used.

Source parser

If source browsing is enabled or if code fragments are encountered in the documentation, the source parser
is invoked.

The code parser tries to cross-reference to source code it parses with documented entities. It also does
syntax highlighting of the sources. The output is directly written to the output generators.

The main entry point for the code parseperseCode() declared irsrc/code.h

Output generators

After data is gathered and cross-referenced, doxygen generates output in various formats. For this it uses
the methods provided by the abstract cl@sgputGenerator . In order to generate output for multiple
formats at once, the methods ©fitputList are called instead. This class maintains a list of concrete
output generators, where each method called is delegated to all generators in the list.

To allow small deviations in what is written to the output for each concrete output generator, it is pos-
sible to temporarily disable certain generators. The OutputList class contains vdisalde()

and enable() methods for this. The methodSutputList::pushGeneratorState() and
OutputList::popGeneratorState() are used to temporarily save the set of enabled/disabled out-
put generators on a stack.

The XML is generated directly from the gathered data structures. In the future XML will be used as
an intermediate language (IL). The output generators will then use this IL as a starting point to generate
the specific output formats. The advantage of having an IL is that various independently developed tools
written in various languages, could extract information from the XML output. Possible tools could be:

e an interactive source browser
e aclass diagram generator

e computing code metrics.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

124

Debugging

Since doxygen uses a lotfdx code it is important to understand hdl@x works (for this one should

read the man page) and to understand what it is doing Wen is parsing some input. Fortunately, when
flex is used with the -d option it outputs what rules matched. This makes it quite easy to follow what is
going on for a particular input fragment.

To make it easier to toggle debug information for a given flex file | wrote the following perl script, which
automatically adds or removes -d from the correct line in the Makefile:

#!/usr/local/bin/perl

$file = shift @ARGV;
print "Toggle debugging mode for $file\n";

add or remove the -d flex flag in the makefile

unless (rename "Makefile.libdoxygen","Makefile.libdoxygen.old") {
print STDERR "Error: cannot rename Makefile.libdoxygen\n";
exit 1;

}
if (open(F,"<Makefile.libdoxygen.old")) {

unless (open(G,">Makefile.libdoxygen")) {
print STDERR "Error: opening file Makefile.libdoxygen for writing\n";
exit 1;

}

print "Processing Makefile.libdoxygen...\n";
while (<F>) {
if (S\(LEX\) -P([a-zA-Z]+)YY -t $file/(LEX) -d -P\1YY -t $file/lg) {
print "Enabling debug info for $file\n";

}
elsif (sS\(LEX\) -d -P([a-zA-Z]+)YY -t $file/(LEX) -P\1YY -t $file/lg) {
print "Disabling debug info for $file\n";

}
print G "$_";
}
close F;
unlink "Makefile.libdoxygen.old";

else {
print STDERR "Warning file Makefile.libdoxygen.old does not exist\n";
}

touch the file
$now = time;
utime $now, $now, $file

Since version 1.2.18, Doxygen can generate a new output format we have called the "Perl Module output
format”. It has been designed as an intermediate format that can be used to generate new and customized
output without having to modify the Doxygen source. Therefore, its purpose is similar to the XML output
format that can be also generated by Doxygen. The XML output format is more standard, but the Perl
Module output format is possibly simpler and easier to use.

The Perl Module output format is still experimental at the moment and could be changed in incompatible
ways in future versions, although this should not be very probable. It is also lacking some features of
other Doxygen backends. However, it can be already used to generate useful output, as shown by the Perl
Module-based LaTeX generator.

Please report any bugs or problems you find in the Perl Module backend or the Perl Module-based LaTeX
generator to the doxygen-develop mailing list. Suggestions are welcome as well.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

125

173 Using the Perl Module output format.

When theGENERATE _PERLMOD tag is enabled in the Doxyfile, running Doxygen generates a number
of files in theperlmod/ subdirectory of your output directory. These files are the following:

e DoxyDocs.pm This is the Perl module that actually contains the documentation, in the Perl Module
format describedbelow.

e DoxyModel.pm. This Perl module describes the structurébaixyDocs.pm independently of the
actual documentation. Séelowfor details.

e doxyrules.make This file contains the make rules to build and clean the files that are generated
from the Doxyfile. Also contains the paths to those files and other relevant information. This file is
intended to be included by your own Makefile.

e Makefile. This is a simple Makefile includingoxyrules.make

To make use of the documentation stored in DoxyDocs.pm you can use one of the default Perl Module-
based generators provided by Doxygen (at the moment this includes the Perl Module-based LaTeX gen-
erator, sedelow) or write your own customized generator. This should not be too hard if you have some
knowledge of Perl and it's the main purpose of including the Perl Module backend in DoxygepelSee

for details on how to do this.

174 Using the Perl Module-based LaTeX generator.

The Perl Module-based LaTeX generator is pretty experimental and incomplete at the moment, but you
could find it useful nevertheless. It can generate documentation for functions, typedefs and variables within
files and classes and can be customized quite a lot by redefining TeX macros. However, there is still no
documentation on how to do this.

Setting thePERLMOD _LATEX tag toYES in the Doxyfile enables the creation of some additional files

in the perlmod/ subdirectory of your output directory. These files contain the Perl scripts and LaTeX code
necessary to generate PDF and DVI output from the Perl Module output, using PDFLaTeX and LaTeX
respectively. Rules to automate the use of these files are also addi@dytales.makeand theMakefile.

The additional generated files are the following:

e doxylatex.pl. This Perl script uses DoxyDocs.pm and DoxyModel.pm to genel@tgdocs.tex a
TeX file containing the documentation in a format that can be accessed by LaTeX code. This file is
not directly LaTeXable.

e doxyformat.tex. This file contains the LaTeX code that transforms the documentation from doxy-
docs.tex into LaTeX text suitable to be LaTeX'ed and presented to the user.

o doxylatex-template.pl This Perl script uses DoxyModel.pm to generddxytemplate.tex a TeX
file defining default values for some macros. doxytemplate.tex is included by doxyformat.tex to
avoid the need of explicitly defining some macros.

e doxylatex.tex This is a very simple LaTeX document that loads some packages and includes doxy-
format.tex and doxydocs.tex. This document is LaTeX'ed to produce the PDF and DVI documenta-
tion by the rules added toxyrules.make

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

174.1 Simple creation of PDF and DVI output using the Perl Module-based LaTeX generator.

126

174.1 Simple creation of PDF and DVI output using the Perl Module-based LaTeX
generator.

To try this you need to have installed LaTeX, PDFLaTeX and the packages uskexyigtex.tex

1. Update your Doxyfile to the latest version using:
doxygen -u Doxyfile

2. Set bothGENERATE _PERLMOD andPERLMOD _LATEX tags to YES in your Doxyfile.

3. Run Doxygen on your Doxyfile:
doxygen Doxyfile

4. A perlmod/ subdirectory should have appeared in your output directory. Entgrettheod/ subdi-
rectory and run:

make pdf

This should generatedoxylatex.pdf with the documentation in PDF format.

5. Run:

make dvi

This should generatedoxylatex.dviwith the documentation in DVI format.

175 Perl Module documentation format.

The Perl Module documentation generated by Doxygen is storBaxyDocs.pm This is a very simple
Perl module that contains only two statements: an assigment to the vaiiXgdocsand the customary
1; statement which usually ends Perl modules. The documentation is stored in the vdiekyelocs
which can then be accessed by a Perl script uBiogyDocs.pm

$doxydocscontains a tree-like structure composed of three types of nodes: strings, hashes and lists.

e Strings. These are normal Perl strings. They can be of any length can contain any character. Their
semantics depends on their location within the tree. This type of node has no children.

e Hashes These are references to anonymous Perl hashes. A hash can have multiple fields, each with
a different key. The value of a hash field can be a string, a hash or a list, and its semantics depends
on the key of the hash field and the location of the hash within the tree. The values of the hash fields
are the children of the node.

e Lists. These are references to anonymous Perl lists. A list has an undefined number of elements,
which are the children of the node. Each element has the same type (string, hash or list) and the same
semantics, depending on the location of the list within the tree.

As you can see, the documentation containefidoxydocsdoes not present any special impediment to

be processed by a simple Perl script. To be able to generate meaningful output using the documentation
contained insdoxydocsyou'll probably need to know the semantics of the nodes of the documentation
tree, which we present ithis page

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

127

176 Data structure describing the Perl Module documentation tree.

You might be interested in processing the documentation containBiiyDocs.pmwithout needing

to take into account the semantics of each node of the documentation tree. For this purpose, Doxygen
generates ®oxyModel.pm file which contains a data structure describing the type and children of each
node in the documentation tree.

The rest of this section is to be written yet, but in the meantime you can look at the Perl scripts generated by
Doxygen (such adoxylatex.pl or doxytemplate-latex.p) to get an idea on how to ugdoxyModel.pm.

Support for multiple languages

Doxygen has built-in support for multiple languages. This means that the text fragments, generated by
doxygen, can be produced in languages other than English (the default). The output language is chosen
through the configuration file (with default name and known as Doxyfile).

Currently (version 1.5.4), 34 languages are supported (sorted alphabetically): Afrikaans, Arabic, Brazil-
ian Portuguese, Catalan, Chinese, Chinese Traditional, Croatian, Czech, Danish, Dutch, English, Finnish,
French, German, Greek, Hungarian, Indonesian, Italian, Japanese (+En), Korean (+En), Lithuanian, Mace-
donian, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovene, Spanish,
Swedish, and Ukrainian..

The table of information related to the supported languages follows. It is sorted by language alphabeti-
cally. TheStatuscolumn was generated from sources and shows approximately the last version when the
translator was updated.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

128

Language Maintainer Contact address Status
Afrikaans Johan Prinsloo johan@zippysnoek.com 1.4.6
Arabic Moaz Reyad moazreyad@yahoo.com 1.4.6
Brazilian Portuguese Fabio "FITC” Jun Takada Ching jun-chino@uol.com.br 154
Catalan Maximiliano Pin mopin@enmtesistemas.com 154
Albert Mora amora@iua.upf.es
Chinese Li Daobing lidaobing@gmail.com 154
Wei Liu liuwei@asiainfo.com
Chinese Traditional | Daniel YC Lin din@taifex.com tw 1.4.6
Gary Lee garywlee@gmail.com
Croatian Boris Bralo boris bralo@zg htnet up-to-date
Czech Petr Fikryl prikrylp@skil.cz up-to-date
Danish Erik Sge Sgrensen eriksoe-+doxygen@daimi.au.dk 154
Dutch Dimitri van Heesch dimitri@stack.nl up-to-date
English Dimitri van Heesch dimiti@stack.nl up-to-date
Finnish Olli Korhonen oli.korhonen lost@cyberspace obsolete
French Xavier Outhier xouthier@yahoo fr 154
German Jens Seidel jensseidel@users.sf.net 154
Greek Paul Gessos hickreserved@yahoo.com 154
Hungarian Akos Kiss akiss@users.sourceforge.net 1.4.6
Foldvari Gyorgy foldvari lost@cyberspace
Indonesian Hendy Irawan ceefour@gauidong net 1.4.6
Italian Alessandro Falappa alessandro@falappa.net up-to-date
Ahmed Aldo Faisal aaf23@cam.ac.uk
Japanese Ryunosuke Satoh sun594@hotmail com 154
Kenji Nagamatsu haga@ioyful.club.ne.jp
Iwasa Kazmi iwasa@cosmo-systemjp
JapaneseEn see the Japanese language English based
Korean Kim Taedong fiy1004@gmail.com up-to-date
SooYoung Jung jung5000@gmail. com
Richard Kim ryk@dspwiz.com
KoreanEn see the Korean language English based
Lithuanian Tomas Simonaitis haden@homelanit 1.4.6
Mindaugas Radzius mindaugasradzius@takas It
Aidas Berukstis aidasber@takas It
Macedonian Slave Jovanovski slavejovanovski@yahoo.com 1.5.04
Norwegian Lars Erik Jordet lejordet@gmail.com 1.4.6
Persian A|| Nadalizadeh nadalisoft@yahoo.com 146
Polish Piotr Kaminski Piotr Kaminski@ctm.gdynia.pl 1.4.6
Grzegorz Kowal g-kowal@poczta.onetpl
Portuguese Rui Godinho Lopes riiglopes@yahoo.com 1.3.3
Romanian Alexandru losup aiosup@yahoo.com 14.1
Russian Alexandr Chelpanov cav@cryptopro.ru 154
Serbian Dejan Milosavljevic dmilos@email.com 14.1
Slovak Stanislav Kudi¢ skudlac@pobox.sk 1.2.18
Slovene Matjaz Ostrovesnik matjaz.ostroversnik@osti org 1.4.6
Spanish Bartomeu bartomeu@loteriadcornela.com 154
Francisco Oltra Thennet foltra@puc.cl
Swedish Mikael Hallin mikaelhallin@yahoo.se 1.4.6
Ukrainian Olexij Tkatchenko olexijtkatchenko@parcs.de 141

Most people on the list have indicated that they were also busy doing other things, so if you want to help

to speed things up please let them (or me) know.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

129

If you want to add support for a language that is not yet listed please read the next section.

Adding a new language to doxygen

This short HOWTO explains how to add support for the new language to Doxygen:

Just follow these steps:

1.

Tell me for which language you want to add support. If no one else is already working on support
for that language, you will be assigned as the maintainer for the language.

. Create a copy of translat@n.h and name it translateryour_2_letter.country.code>.h I'll use xx

in the rest of this document.

. Add definition of the symbol for your language into laofg.h:

#define LANG_xx

Use capital letters for yourx (to be consistent). Thiang _cfg.h defines which language trans-
lators will be compiled into doxygen executable. It is a kind of configuration file. If you are sure that
you do not need some of the languages, you can remove (comment out) definitions of symbols for
the languages, or you can séyndef instead of¢define for them.

. Edit language.cpp: Add a

#ifdef LANG_xx
#include<translator_xx.h>
#endif

Remember to use the same symbol LANGthat you added ttang _cfg.h . l.e., thexx should
be capital letters that identify your language. On the other handxtheside yourtranslator -
xx.h should use lower case.

Now, in setTranslator() add

#ifdef LANG_xx
else if (L_EQUAL("your_language_name"))

theTranslator = new TranslatorYourLanguage;

}

#endif
after theif { ... }. lLe., it must be placed after the code for creating the English translator
at the beginning, and before tleése { ... } part that creates the translator for the default

language (English again).

. Edit libdoxygen.pro.in and admanslator xx.h totheHEADERSine.

. Edit translator xx.h :

e RenameTRANSLATOEENH to TRANSLATORXH twice (i.e. in the#ifndef and
#define preprocessor commands at the beginning of the file).

e Rename TranslatorEnglish to TranslatorYourLanguage

e Inthe memberdLanguage() change "english” into the name of your language (use lower
case characters only). Depending on the language you may also wish to change the member
functions latexLanguageSupportCommand(), idLanguageCharset() and others (you will recog-
nize them when you start the work).

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

130

e Edit all the strings that are returned by the member functions that start with tr. Try to match
punctuation and capitals! To enter special characters (with accents) you can:

— Enter them directly if your keyboard supports that and you are using a Latin-1 font. Doxy-
gen will translate the characters to propdEK and leave the HTML and man output for
what it is (which is fine, if idLanguageCharset() is set correctly).

— Use html codes like ä for an a with an umlaut (8. See the HTML specification
for the codes.

7. Run configure and make again from the root of the distribution, in order to regenerated the Makefiles.

8. Now you can us®©UTPUTLANGUAGE = yourlanguage _name in the config file to generate
output in your language.

9. Sendtranslator xx.h tome solcanadd itto doxygen. Send also your name and e-mail address
to be included in thenaintainers.txt list.

Maintaining a language

New versions of doxygen may use new translated sentences. In such situatibranbmtor class

requires implementation of new methods — its interface changes. Of course, the English sentences need to
be translated to the other languages. At least, new methods have to be implemented by the language-related
translator class; otherwise, doxygen wouldn’t even compile. Waiting until all language maintainers have
translated the new sentences and sent the results would not be very practical. The following text describes
the usage of translator adapters to solve the problem.

The role of Translator Adapters. Whenever th@ranslator class interface changes in the new release,
the new clas3ranslatorAdapter _X_y_z is added to théranslator _adapter.h file (here x, y,

and z are numbers that correspond to the current official version of doxygen). All translators that previously
derived from theTranslator class now derive from this adapter class.

The TranslatorAdapter X_y_z class implements the new, required methods. If the new method
replaces some similar but obsolete method(s) (e.g. if the number of arguments changed and/or the func-
tionality of the older method was changed or enriched)TitaaslatorAdapter _X_y_z class may use

the obsolete method to get the result which is as close as possible to the older result in the target language.
If it is not possible, the result (the default translation) is obtained using the English translator, which is (by
definition) always up-to-date.

For example, when the newrFile() method with parameters (to determine the capitalization of the
first letter and the singular/plural form) was introduced to replace the older metFites() without
arguments, the following code appeared in one of the translator adapter classes:

/*! This is the default implementation of the obsolete method
* used in the documentation of a group before the list of
* links to documented files. This is possibly localized.

*

/
virtual QCString trFiles()
{ return "Files"; }

/*I This is the localized implementation of newer equivalent
* using the obsolete method trFiles().

*

virtual QCString trFile(bool first_capital, bool singular)

if (first_capital && !singular)

return trFiles(); // possibly localized, obsolete method
else

return english.trFile(first_capital, singular);

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

131

ThetrFiles() is not present in th&ranslatorEnglish class, because it was removed as obsolete.
However, it was used until now and its call was replaced by

trFile(true, false)

in the doxygen source files. Probably, many language translators implemented the obsolete method,
so it perfectly makes sense to use the same language dependent result in those cases. The
TranslatorEnglish does not implement the old method. It derives from the absinastslator

class. On the other hand, the old translator for a different language does not implement ttigla@w

method. Because of that it is derived from another base cldgsnrslatorAdapter Xy.z. The
TranslatorAdapter _X_y _z class have to implement the new, requinddle() method. However,

the translator adapter would not be compiled if tHeles() method was not implemented. This is

the reason for implementing the old method in the translator adapter class (using the same code, that was
removed from the TranslatorEnglish).

The simplest way would be to pass the arguments to the English translator and to return its result. Instead,
the adapter uses the didriles() in one special case — when the newile(true, false) is

called. This is the mostly used case at the time of introducing the new method — see above. While this
may look too complicated, the technique allows the developers of the core sources to change the Translator
interface, while the users may not even notice the change. Of course, when tié=iefy is used

with different arguments, the English result is returned and it will be noticed by non English users. Here
the maintainer of the language translator should implement at least that one particular method.

What says the base class of a language translatorff the language translator class inherits from any
adapter class the maintenance is needed. In such case, the language translator is not considered up-to-date.
On the other hand, if the language translator derives directly from the abstraci chastator |, the

language translator is up-to-date.

The translator adapter classes are chained so that the older translator adapter class uses the one-step-newer
translator adapter as the base class. The newer adapter doaddptisgwork than the older one. The

oldest adapter class derives (indirectly) from all of the adapter classes. The name of the adapter class

is chosen so that its suffix is derived from the previous official version of doxygen that did not need the
adapter. This way, one can say approximately, when the language translator class was last updated — see
details below.

The newest translator adapter derives from the abstiaetslatorAdapterBase class that derives
directly from the abstracranslator ~ class. It adds only the private English-translator member for easy
implementation of the default translation inside the adapter classes, and it also enforces implementation
of one method for noticing the user that the language translation is not up-to-date (because of that some
sentences in the generated files may appear in English).

Once the oldest adapter class is not used by any of the language translators, it can be removed from the
doxygen project. The maintainers should try to reach the state with the minimal number of translator
adapter classes.

To simplify the maintenance of the language translator classefor the supported languages, the
translator.py Python script was developed (locateddaxygen/doc directory). It extracts the
important information about obsolete and new methods from the source files for each of the languages.
The information is stored in theanslator reportASCII file (translatorreport.txt).

Looking at the base class of the language translator, the script guesses also the status of the translator — see
the last column of the table with languages above. fraeslator.py is called automatically when

the doxygen documentation is generated. You can also run the script manualy whenever you feel that it can
help you. Of course, you are not forced to use the results of the script. You can find the same information
by looking at the adapter class and its base classes.

How should | update my language translator? Firstly, you should be the language maintainer, or you
should let him/her know about the changes. The following text was written for the language maintainers as

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

132

the primary audience.

There are several approaches to be taken when updating your language. If you are not extremely busy,
you should always chose the most radical one. When the update takes much more time than you expected,
you can always decide use some suitable translator adapter to finish the changes later and still make your
translator working.

The most radical way of updating the language translatoiis to make your translator class derive directly

from the abstract classranslator and provide translations for the methods that are required to be
implemented — the compiler will tell you if you forgot to implement some of them. If you are in doubt, have
alook at theTranslatorEnglish class to recognize the purpose of the implemented method. Looking

at the previously used adapter class may help you sometimes, but it can also be misleading because the
adapter classes do implement also the obsolete methods (see the pirdiies§ example).

In other words, the up-to-date language translators do not ned@dahslatorAdapter X_y_z classes
at all, and you do not need to implement anything else than the methods required by the Translator class
(i.e. the pure virtual methods of tAganslator —they end with=0;).

If everything compiles fine, try to rutranslator.py , and have a look at the translator report (ASCII

file) at thedoxygen/doc directory. Even if your translator is marked as up-to-date, there still may be
some remarks related to your souce code. Namely, the obsolete methods—that are not used at all-may be
listed in the section for your language. Simply, remove their code (and ruratigator.py again).

Also, you will be informed when you forgot to change the base class of your translator class to some newer
adapter class or directly to the Translator class.

If you do not have time to finish all the updatesyou should still start witlthe most radical approachs
described above. You can always change the base class to the translator adapter class that implements all
of the not-yet-implemented methods.

If you prefer to update your translator gradually , have a look atTranslatorEnglish (the

translator ~ _en.h file). Inside, you will find the comments likeew since 1.2.4 that separate

always a number of methods that were implemented in the stated version. Do implement the group of
methods that are placed below the comment that uses the same version numbers as your translator adapter
class. (For example, your translator class have to usé dueslatorAdapter 1.2 4, if it does not
implement the methods below the commeetv since 1.2.4 . When you implement them, your class

should use newer translator adapter.

Run thetranslator.py script occasionaly and give it youx identification (fromtranslator -

xx.h) to create the translator report shorter (also produced faster) — it will contain only the information
related to your translator. Once you reach the state when the base class should be changed to some newer
adapter, you will see the note in the translator report.

Warning: Don't forget to compile Doxygen to discover, whether it is compilable. tfdreslator.py
does not check if everything is correct with respect to the compiler. Because of that, it may lie sometimes
about the necessary base class.

The most obsolete language translatorg/ould lead to implementation of too complicated adapters. Be-
cause of that, doxygen developers may decide to derive such translators frorarikatorEnglish
class, which is by definition always up-to-date.

When doing so, all the missing methods will be replaced by the English translation. This means that
not-implemented methods will always return the English result. Such translators are marked using word
obsolete . You should read iteally obsolete No guess about the last update can be done.

Often, it is possible to construct better result from the obsolete methods. Because of that, the translator
adapter classes should be used if possible. On the other hand, implementation of adapters for really obsolete
translators brings too much maintenance and run-time overhead.

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

Index

\#,114

\$, 114

\&, 114

\<, 114

\>, 115

\\, 114

\%, 115

\a,105
\addindex,100
\addtogroup81, 91
\anchor,100
\arg,105
\attention,91
\author,91

\b, 106

\brief, 92
\bug,92

\c, 106
\callergraph81
\callgraph 81
\category 82
\class,82
\code,106
\cond,92
\copydoc,106
\date,93

\def, 82
\defgroup,83
\deprecated3
\details,93

\dir, 83
\dontinclude 102
\dot, 107
\dotfile, 108
\e,108
\else,93
\elseif,94
\em,109
\endcode 109
\endcond94
\enddot,109
\endhtmlonly,109
\endif, 94
\endlatexonly;109
\endlink ,100
\endmanonly110
\endmsc;109
\endverbatim110
\endxmlonly,110
\enum,83
\example 84

\exception94
\f$, 110

\f[, 110

\f], 110

\file, 84

\fn, 85
\headerfile85
\hideinitializer,86
\htmlinclude,105
\htmlonly, 111
\if, 94

\ifnot, 95
\image, 111
\include,103
\includelineno,103
\ingroup,86
\interface,86
\internal,86
\invariant,95
\latexonly,112
\li, 112

\line, 104
\link, 100
\mainpage86
\manonly,112
\msc,107

\n, 113
\namespace37
\nosubgroupingd7
\note,96
\overload 87
\p, 113
\package88
\page 88
\par,96
\paragraph102
\param 96
\post,97
\pre,97
\property,89
\protocol,89
\ref, 100
\relates 89
\relatesalso90
\remarks97
\return,97
\retval, 98
\sa,98
\section,101
\see98
\showinitializer,90

INDEX

134

\since,98
\skip,104
\skipline,104
\struct,90
\subpagel101
\subsection101
\subsubsectior,02
\test,98

\throw, 98
\todo, 99
\typedef,90
\union,90
\until, 104
\var,91
\verbatim,113
\verbinclude 105
\version,99
\warning,99
\xmlonly, 113
\xrefitem,99
\~, 114

ABBREVIATE BRIEF,61
acknowledgement§
ALIASES, 62
ALLEXTERNALS, 75
ALPHABETICAL _INDEX, 68
ALWAYS DETAILED_SEC,61

BINARY _TOC, 70

bison,4
BRIEF.MEMBER_DESC,60
browser,13

BUILTIN _STL_.SUPPORT61

CALL_GRAPH, 76
CALLER_GRAPH, 76

CASE. SENSENAMES, 61
CHM_FILE, 70
CLASSDIAGRAMS, 75
CLASS GRAPH, 75
COLLABORATION_GRAPH, 75
COLSIN_ALPHA_INDEX, 68
COMPACTLATEX, 71
COMPACTRTF, 72
CPPCLI_SUPPORT G2
CREATE.SUBDIRS,60

DETAILS_AT _TOP,62
DIRECTORY_GRAPH ,76
DISABLE_INDEX, 70
DISTRIBUTE.GROUPDOC, 62
Doc++,3
DOCSET.FEEDNAME, 70

DOT_.CLEANUP, 76
DOT_GRAPHMAX _NODES,76
DOT_IMAGE _FORMAT, 76
DOT_MULTI _TARGET, 76
DOT_PATH, 76
DOT_TRANSPARENT,76
DOTFILE_DIRS, 76
DOXYFILE_ENCODING, 60

ENABLE_PREPROCESSING4
ENABLED_SECTIONS 64
ENUM_VALUES_PERLINE, 70
EXAMPLE_PATH, 66
EXAMPLE_PATTERNS,67
EXAMPLE_RECURSIVE,66
EXCLUDE, 66
EXCLUDE_PATTERNS,66
EXCLUDE_SYMLINKS, 66
EXPAND_AS_DEFINED, 74
EXPAND_ONLY _PREDEF,74
EXTERNAL_GROUPS75
EXTRA_PACKAGES,71
EXTRACT_ALL, 63
EXTRACT_ANON_NSPACES63
EXTRACT_LOCAL_CLASSES 63
EXTRACT_LOCAL_METHODS, 63
EXTRACT_PRIVATE, 63
EXTRACT_STATIC, 63

features48
FILE_.PATTERNS,66
FILE.VERSIONFILTER, 66
FILTER_PATTERNS,67
FILTER_.SOURCEFILES, 67
flex, 4

FULL _PATH_NAMES, 61

GENERATEAUTOGEN.DEF, 73
GENERATEBUGLIST, 64
GENERATECHI, 70
GENERATEDEPRECATEDLIST 64
GENERATEDOCSET,70
GENERATEHTML, 68
GENERATEHTMLHELP, 69
GENERATELATEX, 71
GENERATELEGEND, 76
GENERATEMAN, 72
GENERATEPERLMOD, 73
GENERATERTF, 72
GENERATETAGFILE, 75
GENERATETESTLIST,64
GENERATETODOLIST, 64
GENERATETREEVIEW, 70
GENERATEXML, 73

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

INDEX 135

GPL,2 MULTILINE _CPRPIS_BRIEF, 62

GRAPHICAL_HIERARCHY, 76

GROUPGRAPHS,75 OPTIMIZE.FORFORTRAN, 62
OPTIMIZE_.OUTPUT.FORC, 62

HAVE _DOT, 75 OPTIMIZE_.OUTPUT.JAVA, 62

HHC_LOCATION, 70
HIDE_FRIEND_.COMPOUNDS 64
HIDE_IN_BODY_DOCS,64
HIDE_SCOPENAMES, 64
HIDE_UNDOC_CLASSES 63
HIDE_UNDOC_MEMBERS, 63
HIDE_UNDOC_RELATIONS, 75
HTML _ALIGN _MEMBERS, 69
HTML _DYNAMIC _SECTIONS,70
HTML _FILE_EXTENSION, 68
HTML _FOOTER,69

HTML _HEADER, 68

HTML _OUTPUT, 68

HTML _STYLESHEET,69

IGNORE_PREFIX, 68

IMAGE _PATH, 67
INCLUDE_GRAPH ,75
INCLUDE_PATH, 74
INCLUDED_BY _GRAPH ,75
INHERIT_DOCS,62

INLINE _INFO , 64

INLINE _INHERITED_MEMB, 61
INLINE _SOURCES§H7
INPUT, 65
INPUT_ENCODING, 66
INPUT_FILTER, 67
installation,4
INTERNAL_DOCS,64

JAVADOC_AUTOBRIEF, 61

LaTeX, 13

LATEX _BATCHMODE, 72
LATEX_CMD_NAME, 71
LATEX_ _HEADER, 71
LATEX _HIDE_INDICES, 72
LATEX _OUTPUT,71
LATEX _PDFLATEX, 72
license,2

MACRO_EXPANSION, 74
make,4

MAKEINDEX _CMD_NAME, 71
MAN _LINKS, 73

MAN _OUTPUT,72

MAX _DOT_-GRAPH.DEPTH, 76
MAX _EXTENSION, 72

MAX _INITIALIZER _LINES, 65
MSCGENPATH, 75

OPTIMIZE_.OUTPUT.SIP,62
OPTIMIZE_.OUTPUT.VHDL, 63
output formats41
OUTPUT.DIRECTORY, 60
OUTPUT.LANGUAGE, 60

PAPERTYPE, 71
parsing,14
PDFHYPERLINKS, 71
perl, 4

PERLPATH, 75
perimod,124
PERLMOD.LATEX, 73
PERLMOD.MAKEVAR _PREFIX,73
PERLMOD.PRETTY,73
PREDEFINED,74
PROJECTNAME, 60
PROJECTNUMBER, 60

Qt, 4
QT_AUTOBRIEF, 61
QUIET, 65

RECURSIVE,66
REFERENCEDBY _RELATION, 67
REFERENCES.INK _SOURCE 67
REFERENCESRELATION, 67
REPEATBRIEF, 60

RTF, 13

RTF.HYPERLINKS, 72
RTF.OUTPUT,72
RTF.STYLESHEETFILE, 72

SEARCHINCLUDES ,74
SEARCHENGINE,77
SEPARATEMEMBER_PAGES,62
SHORTNAMES, 61
SHOW.DIRECTORIES 65
SHOW.INCLUDE _FILES, 64
SHOW.USEDFILES, 65
SKIP_FUNCTION.MACROS, 74
SORTBRIEF.DOCS,64
SORT.BY_SCOPENAME, 64
SORT.GROUPNAMES, 64
SORT.MEMBER_DOCS,64
SOURCEBROWSER 67

strip, 4

STRIP.CODE COMMENTS,67
STRIP.FROM.INC_PATH, 61
STRIP.FROM_PATH, 61

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

INDEX

136

SUBGROUPING 63

TAB_SIZE, 62

TAGFILES, 74
TEMPLATE_RELATIONS, 75
TOC_EXPAND, 70
TREEVIEW.WIDTH, 70
TYPEDEFRHIDES_STRUCT,63

UML_LOOK, 75
USEHTAGS, 68
USEWINDOWS_ENCODING, 60

VERBATIM _HEADERS,67

WARN_FORMAT, 65
WARN_IF_DOC_ERROR,65
WARN_IF_UNDOCUMENTED, 65
WARN_LOGFILE, 65
WARN_NO_PARAMDOC, 65
WARNINGS, 65

XML, 13

XML _DTD, 73

XML _OUTPUT, 73

XML _PROGRAMLISTING,73
XML _SCHEMA, 73

User Manual for Doxygen 1.5.5, written by Dimitri van Heesch(©1997-2006

	I User Manual
	Compiling from source on Unix
	Installing the binaries on Unix
	Known compilation problems for Unix
	Compiling from source on Windows
	Installing the binaries on Windows
	Tools used to develop doxygen
	Step 1: Creating a configuration file
	Step 2: Running doxygen
	Step 3: Documenting the sources
	Special documentation blocks
	Putting documentation after members
	Documentation at other places
	Special documentation blocks in Python
	Special documentation blocks in VHDL
	Modules
	Member Groups
	Subpaging
	Links to web pages and mail addresses
	Links to classes.
	Links to files.
	Links to functions.
	Links to variables, typedefs, enum types, enum values and defines.
	typedefs.
	Output Formats

	II Reference Manual
	Format
	Project related options
	Build related options
	Options related to warning and progress messages
	Input related options
	Source browsing related options
	Alphabetical index options
	HTML related options
	LaTeX related options
	RTF related options
	Man page related options
	XML related options
	AUTOGEN_DEF related options
	PERLMOD related options
	Preprocessor related options
	External reference options
	Dot options
	Search engine options
	Introduction
	"026E30F addtogroup <name> [(title)]
	"026E30F callgraph
	"026E30F callergraph
	"026E30F category <name> [<header-file>] [<header-name>]
	"026E30F class <name> [<header-file>] [<header-name>]
	"026E30F def <name>
	"026E30F defgroup <name> (group title)
	"026E30F dir [<path fragment>]
	"026E30F enum <name>
	"026E30F example <file-name>
	"026E30F file [<name>]
	"026E30F fn (function declaration)
	"026E30F headerfile <header-file> [<header-name>]
	"026E30F hideinitializer
	"026E30F ingroup (<groupname> [<groupname> <groupname>])
	"026E30F interface <name> [<header-file>] [<header-name>]
	"026E30F internal
	"026E30F mainpage [(title)]
	"026E30F name (header)
	"026E30F namespace <name>
	"026E30F nosubgrouping
	"026E30F overload [(function declaration)]
	"026E30F package <name>
	"026E30F page <name> (title)
	"026E30F property (qualified property name)
	"026E30F protocol <name> [<header-file>] [<header-name>]
	"026E30F relates <name>
	"026E30F relatesalso <name>
	"026E30F showinitializer
	"026E30F struct <name> [<header-file>] [<header-name>]
	"026E30F typedef (typedef declaration)
	"026E30F union <name> [<header-file>] [<header-name>]
	"026E30F var (variable declaration)
	"026E30F weakgroup <name> [(title)]
	"026E30F attention { attention text }
	"026E30F author { list of authors }
	"026E30F brief {brief description}
	"026E30F bug { bug description }
	"026E30F cond [<section-label>]
	"026E30F date { date description }
	"026E30F deprecated { description }
	"026E30F details {detailed decription}
	"026E30F else
	"026E30F elseif <section-label>
	"026E30F endcond
	"026E30F endif
	"026E30F exception <exception-object> { exception description }
	"026E30F if <section-label>
	"026E30F ifnot <section-label>
	"026E30F invariant { description of invariant }
	"026E30F note { text }
	"026E30F par [(paragraph title)] { paragraph }
	"026E30F param <parameter-name> { parameter description }
	"026E30F post { description of the postcondition }
	"026E30F pre { description of the precondition }
	"026E30F remarks { remark text }
	"026E30F return { description of the return value }
	"026E30F retval <return value> { description }
	"026E30F sa { references }
	"026E30F see { references }
	"026E30F since { text }
	"026E30F test { paragraph describing a test case }
	"026E30F throw <exception-object> { exception description }
	"026E30F todo { paragraph describing what is to be done }
	"026E30F version { version number }
	"026E30F warning { warning message }
	"026E30F xrefitem <key> `¨(heading)`¨ `¨(list title)`¨ {text}
	"026E30F addindex (text)
	"026E30F anchor <word>
	"026E30F endlink
	"026E30F link <link-object>
	"026E30F ref <name> [`¨(text)`¨]
	"026E30F subpage <name> [`¨(text)`¨]
	"026E30F section <section-name> (section title)
	"026E30F subsection <subsection-name> (subsection title)
	"026E30F subsubsection <subsubsection-name> (subsubsection title)
	"026E30F paragraph <paragraph-name> (paragraph title)
	"026E30F dontinclude <file-name>
	"026E30F include <file-name>
	"026E30F includelineno <file-name>
	"026E30F line (pattern)
	"026E30F skip (pattern)
	"026E30F skipline (pattern)
	"026E30F until (pattern)
	"026E30F verbinclude <file-name>
	"026E30F htmlinclude <file-name>
	"026E30F a <word>
	"026E30F arg { item-description }
	"026E30F b <word>
	"026E30F c <word>
	"026E30F code
	"026E30F copydoc <link-object>
	"026E30F dot
	"026E30F msc
	"026E30F dotfile <file> [`¨caption`¨]
	"026E30F e <word>
	"026E30F em <word>
	"026E30F endcode
	"026E30F enddot
	"026E30F endmsc
	"026E30F endhtmlonly
	"026E30F endlatexonly
	"026E30F endmanonly
	"026E30F endverbatim
	"026E30F endxmlonly
	"026E30F f$
	"026E30F f[
	"026E30F f]
	"026E30F f{environment}{
	"026E30F f}
	"026E30F htmlonly
	"026E30F image <format> <file> [`¨caption`¨] [<sizeindication>=<size>]
	"026E30F latexonly
	"026E30F manonly
	"026E30F li { item-description }
	"026E30F n
	"026E30F p <word>
	"026E30F verbatim
	"026E30F xmlonly
	"026E30F "026E30F
	"026E30F @
	"026E30F [LanguageId]
	"026E30F &
	"026E30F $
	"026E30F #
	<
	>
	"026E30F %
	PHP only commands

	III Developers Manual
	Using the Perl Module output format.
	Using the Perl Module-based LaTeX generator.
	Perl Module documentation format.
	Data structure describing the Perl Module documentation tree.

