
avr-libc Reference Manual
1.6.1

Generated by Doxygen 1.5.1

Wed Jan 9 15:18:30 2008



CONTENTS i

Contents

1 AVR Libc 1

1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 General information about this library. . . . . . . . . . . . . . . . . 1

1.3 Supported Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 avr-libc License. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 avr-libc Module Index 8

2.1 avr-libc Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 avr-libc Data Structure Index 9

3.1 avr-libc Data Structures. . . . . . . . . . . . . . . . . . . . . . . . . 9

4 avr-libc File Index 10

4.1 avr-libc File List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 avr-libc Page Index 13

5.1 avr-libc Related Pages. . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 avr-libc Module Documentation 14

6.1 <alloca.h>: Allocate space in the stack. . . . . . . . . . . . . . . . 14

6.1.1 Function Documentation. . . . . . . . . . . . . . . . . . . . 14

6.2 <assert.h>: Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 15

6.2.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 15

6.3 <ctype.h>: Character Operations. . . . . . . . . . . . . . . . . . . 16

6.3.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 16

6.3.2 Function Documentation. . . . . . . . . . . . . . . . . . . . 17

6.4 <errno.h>: System Errors . . . . . . . . . . . . . . . . . . . . . . . 18

6.4.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 18

6.4.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 19

6.5 <inttypes.h>: Integer Type conversions. . . . . . . . . . . . . . . . 19

6.5.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 19

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS ii

6.5.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 22

6.5.3 Typedef Documentation. . . . . . . . . . . . . . . . . . . . 31

6.6 <math.h>: Mathematics . . . . . . . . . . . . . . . . . . . . . . . . 31

6.6.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 31

6.6.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 33

6.6.3 Function Documentation. . . . . . . . . . . . . . . . . . . . 33

6.7 <setjmp.h>: Non-local goto . . . . . . . . . . . . . . . . . . . . . . 38

6.7.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 38

6.7.2 Function Documentation. . . . . . . . . . . . . . . . . . . . 39

6.8 <stdint.h>: Standard Integer Types. . . . . . . . . . . . . . . . . . 40

6.8.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 40

6.8.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 44

6.8.3 Typedef Documentation. . . . . . . . . . . . . . . . . . . . 49

6.9 <stdio.h>: Standard IO facilities. . . . . . . . . . . . . . . . . . . . 52

6.9.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 52

6.9.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 57

6.9.3 Function Documentation. . . . . . . . . . . . . . . . . . . . 60

6.10 <stdlib.h>: General utilities . . . . . . . . . . . . . . . . . . . . . . 71

6.10.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 71

6.10.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 73

6.10.3 Typedef Documentation. . . . . . . . . . . . . . . . . . . . 73

6.10.4 Function Documentation. . . . . . . . . . . . . . . . . . . . 73

6.10.5 Variable Documentation. . . . . . . . . . . . . . . . . . . . 82

6.11 <string.h>: Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.11.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 82

6.11.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 84

6.11.3 Function Documentation. . . . . . . . . . . . . . . . . . . . 84

6.12 <avr/boot.h>: Bootloader Support Utilities. . . . . . . . . . . . . . 93

6.12.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 93

6.12.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 95

6.13 <avr/eeprom.h>: EEPROM handling . . . . . . . . . . . . . . . . . 100

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS iii

6.13.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 100

6.13.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 102

6.13.3 Function Documentation. . . . . . . . . . . . . . . . . . . . 103

6.14 <avr/fuse.h>: Fuse Support . . . . . . . . . . . . . . . . . . . . . . 103

6.15 <avr/interrupt.h>: Interrupts. . . . . . . . . . . . . . . . . . . . . . 106

6.15.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 106

6.15.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 126

6.16 <avr/io.h>: AVR device-specific IO definitions. . . . . . . . . . . . 129

6.17 <avr/lock.h>: Lockbit Support. . . . . . . . . . . . . . . . . . . . . 130

6.18 <avr/pgmspace.h>: Program Space Utilities . . . . . . . . . . . . . 133

6.18.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 133

6.18.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 135

6.18.3 Typedef Documentation. . . . . . . . . . . . . . . . . . . . 137

6.18.4 Function Documentation. . . . . . . . . . . . . . . . . . . . 138

6.19 <avr/power.h>: Power Reduction Management. . . . . . . . . . . . 145

6.20 Additional notes from<avr/sfr_defs.h> . . . . . . . . . . . . . . . . 147

6.21 <avr/sfr_defs.h>: Special function registers. . . . . . . . . . . . . . 149

6.21.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 149

6.21.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 150

6.22 <avr/sleep.h>: Power Management and Sleep Modes. . . . . . . . . 152

6.22.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 152

6.22.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 153

6.22.3 Function Documentation. . . . . . . . . . . . . . . . . . . . 154

6.23 <avr/version.h>: avr-libc version macros. . . . . . . . . . . . . . . 154

6.23.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 154

6.23.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 155

6.24 <avr/wdt.h>: Watchdog timer handling. . . . . . . . . . . . . . . . 156

6.24.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 156

6.24.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 157

6.25 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks159

6.25.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 159

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS iv

6.25.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 161

6.26 <util/crc16.h>: CRC Computations. . . . . . . . . . . . . . . . . . 163

6.26.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 163

6.26.2 Function Documentation. . . . . . . . . . . . . . . . . . . . 164

6.27 <util/delay.h>: Convenience functions for busy-wait delay loops. . . 166

6.27.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 166

6.27.2 Function Documentation. . . . . . . . . . . . . . . . . . . . 167

6.28 <util/delay_basic.h>: Basic busy-wait delay loops. . . . . . . . . . 167

6.28.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 167

6.28.2 Function Documentation. . . . . . . . . . . . . . . . . . . . 168

6.29 <util/parity.h>: Parity bit generation. . . . . . . . . . . . . . . . . . 168

6.29.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 168

6.29.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 169

6.30 <util/setbaud.h>: Helper macros for baud rate calculations. . . . . . 169

6.30.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 169

6.30.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 171

6.31 <util/twi.h>: TWI bit mask definitions . . . . . . . . . . . . . . . . 171

6.31.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 171

6.31.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 173

6.32 <compat/deprecated.h>: Deprecated items. . . . . . . . . . . . . . 176

6.32.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 176

6.32.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 177

6.32.3 Function Documentation. . . . . . . . . . . . . . . . . . . . 179

6.33 <compat/ina90.h>: Compatibility with IAR EWB 3.x . . . . . . . . 179

6.34 Demo projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.34.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 179

6.35 Combining C and assembly source files. . . . . . . . . . . . . . . . 181

6.35.1 Hardware setup. . . . . . . . . . . . . . . . . . . . . . . . . 181

6.35.2 A code walkthrough. . . . . . . . . . . . . . . . . . . . . . 182

6.35.3 The source code. . . . . . . . . . . . . . . . . . . . . . . . 184

6.36 A simple project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS v

6.36.1 The Project. . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.36.2 The Source Code. . . . . . . . . . . . . . . . . . . . . . . . 186

6.36.3 Compiling and Linking. . . . . . . . . . . . . . . . . . . . . 188

6.36.4 Examining the Object File. . . . . . . . . . . . . . . . . . . 189

6.36.5 Linker Map Files. . . . . . . . . . . . . . . . . . . . . . . . 194

6.36.6 Generating Intel Hex Files. . . . . . . . . . . . . . . . . . . 196

6.36.7 Letting Make Build the Project. . . . . . . . . . . . . . . . . 197

6.36.8 Reference to the source code. . . . . . . . . . . . . . . . . . 199

6.37 A more sophisticated project. . . . . . . . . . . . . . . . . . . . . . 199

6.37.1 Hardware setup. . . . . . . . . . . . . . . . . . . . . . . . . 200

6.37.2 Functional overview. . . . . . . . . . . . . . . . . . . . . . 203

6.37.3 A code walkthrough. . . . . . . . . . . . . . . . . . . . . . 203

6.37.4 The source code. . . . . . . . . . . . . . . . . . . . . . . . 206

6.38 Using the standard IO facilities. . . . . . . . . . . . . . . . . . . . . 207

6.38.1 Hardware setup. . . . . . . . . . . . . . . . . . . . . . . . . 207

6.38.2 Functional overview. . . . . . . . . . . . . . . . . . . . . . 208

6.38.3 A code walkthrough. . . . . . . . . . . . . . . . . . . . . . 209

6.38.4 The source code. . . . . . . . . . . . . . . . . . . . . . . . 214

6.39 Example using the two-wire interface (TWI). . . . . . . . . . . . . . 214

6.39.1 Introduction into TWI . . . . . . . . . . . . . . . . . . . . . 214

6.39.2 The TWI example project. . . . . . . . . . . . . . . . . . . 215

6.39.3 The Source Code. . . . . . . . . . . . . . . . . . . . . . . . 215

7 avr-libc Data Structure Documentation 219

7.1 div_t Struct Reference. . . . . . . . . . . . . . . . . . . . . . . . . 219

7.1.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 219

7.1.2 Field Documentation. . . . . . . . . . . . . . . . . . . . . . 219

7.2 ldiv_t Struct Reference. . . . . . . . . . . . . . . . . . . . . . . . . 220

7.2.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 220

7.2.2 Field Documentation. . . . . . . . . . . . . . . . . . . . . . 220

8 avr-libc File Documentation 220

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS vi

8.1 assert.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 220

8.1.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 220

8.2 atoi.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.2.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 221

8.3 atol.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.3.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 221

8.4 atomic.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 221

8.4.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 221

8.5 boot.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.5.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 221

8.5.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 223

8.6 crc16.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 228

8.6.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 228

8.7 ctype.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 228

8.7.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 228

8.8 delay.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 229

8.8.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 229

8.9 delay_basic.h File Reference. . . . . . . . . . . . . . . . . . . . . . 229

8.9.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 229

8.10 eeprom.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . 230

8.10.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 230

8.11 errno.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 231

8.11.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 231

8.12 fdevopen.c File Reference. . . . . . . . . . . . . . . . . . . . . . . 231

8.12.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 231

8.13 ffs.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.13.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 232

8.14 ffsl.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.14.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 232

8.15 ffsll.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.15.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 232

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS vii

8.16 fuse.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.16.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 232

8.17 interrupt.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . 232

8.17.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 232

8.18 inttypes.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . 233

8.18.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 233

8.19 io.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.19.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 235

8.20 lock.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.20.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 235

8.21 math.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.21.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 235

8.22 memccpy.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 238

8.22.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.23 memchr.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 238

8.23.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.24 memchr_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 238

8.24.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.25 memcmp.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 238

8.25.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.26 memcmp_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . 238

8.26.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.27 memcpy.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 238

8.27.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.28 memcpy_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . 238

8.28.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.29 memmem.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 238

8.29.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.30 memmove.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 238

8.30.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.31 memrchr.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 238

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS viii

8.31.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.32 memrchr_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . 238

8.32.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.33 memset.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 238

8.33.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.34 parity.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 238

8.34.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 238

8.35 pgmspace.h File Reference. . . . . . . . . . . . . . . . . . . . . . . 239

8.35.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 239

8.35.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 241

8.36 power.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 245

8.36.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 245

8.36.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 246

8.37 setbaud.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . 246

8.37.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 246

8.38 setjmp.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 246

8.38.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 246

8.39 sleep.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.39.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 247

8.40 stdint.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 247

8.40.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 247

8.41 stdio.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.41.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 250

8.42 stdlib.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 252

8.42.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 252

8.43 strcasecmp.S File Reference. . . . . . . . . . . . . . . . . . . . . . 256

8.43.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.44 strcasecmp_P.S File Reference. . . . . . . . . . . . . . . . . . . . . 256

8.44.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.45 strcasestr.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 256

8.45.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS ix

8.46 strcat.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 256

8.46.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.47 strcat_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 256

8.47.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.48 strchr.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 256

8.48.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.49 strchr_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 256

8.49.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.50 strchrnul.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 256

8.50.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.51 strchrnul_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . 256

8.51.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.52 strcmp.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 256

8.52.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.53 strcmp_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 256

8.53.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.54 strcpy.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 256

8.54.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.55 strcpy_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 256

8.55.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.56 strcspn.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 256

8.56.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.57 strcspn_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 256

8.57.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.58 string.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 256

8.58.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 256

8.59 strlcat.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.59.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.60 strlcat_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.60.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.61 strlcpy.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS x

8.61.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.62 strlcpy_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 259

8.62.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.63 strlen.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.63.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.64 strlen_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.64.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.65 strlwr.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.65.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.66 strncasecmp.S File Reference. . . . . . . . . . . . . . . . . . . . . . 259

8.66.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.67 strncasecmp_P.S File Reference. . . . . . . . . . . . . . . . . . . . 259

8.67.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.68 strncat.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.68.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.69 strncat_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 259

8.69.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.70 strncmp.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.70.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.71 strncmp_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 259

8.71.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.72 strncpy.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.72.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.73 strncpy_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 259

8.73.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.74 strnlen.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.74.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.75 strnlen_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 259

8.75.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.76 strpbrk.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.76.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS xi

8.77 strpbrk_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 259

8.77.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.78 strrchr.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.78.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.79 strrchr_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . 259

8.79.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.80 strrev.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.80.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.81 strsep.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.81.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.82 strsep_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.82.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.83 strspn.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.83.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.84 strspn_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.84.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.85 strstr.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 259

8.85.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.86 strstr_P.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.86.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.87 strtok_r.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . 259

8.87.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.88 strupr.S File Reference. . . . . . . . . . . . . . . . . . . . . . . . . 259

8.88.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.89 twi.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . 259

8.89.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 259

8.90 wdt.h File Reference. . . . . . . . . . . . . . . . . . . . . . . . . . 261

8.90.1 Detailed Description. . . . . . . . . . . . . . . . . . . . . . 261

8.90.2 Define Documentation. . . . . . . . . . . . . . . . . . . . . 261

9 avr-libc Page Documentation 262

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS xii

9.1 Toolchain Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.1.2 FSF and GNU . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.1.3 GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.1.4 GNU Binutils. . . . . . . . . . . . . . . . . . . . . . . . . . 263

9.1.5 avr-libc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

9.1.6 Building Software . . . . . . . . . . . . . . . . . . . . . . . 265

9.1.7 AVRDUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

9.1.8 GDB / Insight / DDD. . . . . . . . . . . . . . . . . . . . . . 265

9.1.9 AVaRICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9.1.10 SimulAVR . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9.1.11 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9.1.12 Toolchain Distributions (Distros). . . . . . . . . . . . . . . . 266

9.1.13 Open Source. . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.2 Memory Areas and Using malloc(). . . . . . . . . . . . . . . . . . . 267

9.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.2.2 Internal vs. external RAM. . . . . . . . . . . . . . . . . . . 268

9.2.3 Tunables for malloc(). . . . . . . . . . . . . . . . . . . . . . 269

9.2.4 Implementation details. . . . . . . . . . . . . . . . . . . . . 270

9.3 Memory Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

9.3.1 The .text Section. . . . . . . . . . . . . . . . . . . . . . . . 272

9.3.2 The .data Section. . . . . . . . . . . . . . . . . . . . . . . . 272

9.3.3 The .bss Section. . . . . . . . . . . . . . . . . . . . . . . . 273

9.3.4 The .eeprom Section. . . . . . . . . . . . . . . . . . . . . . 273

9.3.5 The .noinit Section. . . . . . . . . . . . . . . . . . . . . . . 273

9.3.6 The .initN Sections. . . . . . . . . . . . . . . . . . . . . . . 273

9.3.7 The .finiN Sections. . . . . . . . . . . . . . . . . . . . . . . 275

9.3.8 Using Sections in Assembler Code. . . . . . . . . . . . . . . 275

9.3.9 Using Sections in C Code. . . . . . . . . . . . . . . . . . . 276

9.4 Data in Program Space. . . . . . . . . . . . . . . . . . . . . . . . . 276

9.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS xiii

9.4.2 A Note On const. . . . . . . . . . . . . . . . . . . . . . . . 277

9.4.3 Storing and Retrieving Data in the Program Space. . . . . . 277

9.4.4 Storing and Retrieving Strings in the Program Space. . . . . 279

9.4.5 Caveats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.5 avr-libc and assembler programs. . . . . . . . . . . . . . . . . . . . 281

9.5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.5.2 Invoking the compiler . . . . . . . . . . . . . . . . . . . . . 282

9.5.3 Example program. . . . . . . . . . . . . . . . . . . . . . . . 282

9.5.4 Pseudo-ops and operators. . . . . . . . . . . . . . . . . . . 286

9.6 Inline Assembler Cookbook. . . . . . . . . . . . . . . . . . . . . . 287

9.6.1 GCC asm Statement. . . . . . . . . . . . . . . . . . . . . . 288

9.6.2 Assembler Code. . . . . . . . . . . . . . . . . . . . . . . . 290

9.6.3 Input and Output Operands. . . . . . . . . . . . . . . . . . . 290

9.6.4 Clobbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

9.6.5 Assembler Macros. . . . . . . . . . . . . . . . . . . . . . . 297

9.6.6 C Stub Functions. . . . . . . . . . . . . . . . . . . . . . . . 298

9.6.7 C Names Used in Assembler Code. . . . . . . . . . . . . . . 299

9.6.8 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

9.7 How to Build a Library . . . . . . . . . . . . . . . . . . . . . . . . . 300

9.7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 300

9.7.2 How the Linker Works. . . . . . . . . . . . . . . . . . . . . 300

9.7.3 How to Design a Library. . . . . . . . . . . . . . . . . . . . 300

9.7.4 Creating a Library . . . . . . . . . . . . . . . . . . . . . . . 301

9.7.5 Using a Library. . . . . . . . . . . . . . . . . . . . . . . . . 302

9.8 Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

9.8.1 A few of libc functions. . . . . . . . . . . . . . . . . . . . . 303

9.8.2 Math functions.. . . . . . . . . . . . . . . . . . . . . . . . . 305

9.9 Porting From IAR to AVR GCC . . . . . . . . . . . . . . . . . . . . 305

9.9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 305

9.9.2 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

9.9.3 Interrupt Service Routines (ISRs). . . . . . . . . . . . . . . 307

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS xiv

9.9.4 Intrinsic Routines. . . . . . . . . . . . . . . . . . . . . . . . 307

9.9.5 Flash Variables. . . . . . . . . . . . . . . . . . . . . . . . . 308

9.9.6 Non-Returning main(). . . . . . . . . . . . . . . . . . . . . 309

9.9.7 Locking Registers . . . . . . . . . . . . . . . . . . . . . . . 309

9.10 Frequently Asked Questions. . . . . . . . . . . . . . . . . . . . . . 310

9.10.1 FAQ Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

9.10.2 My program doesn’t recognize a variable updated within an
interrupt routine . . . . . . . . . . . . . . . . . . . . . . . . 311

9.10.3 I get "undefined reference to..." for functions like "sin()". . . 312

9.10.4 How to permanently bind a variable to a register?. . . . . . . 312

9.10.5 How to modify MCUCR or WDTCR early?. . . . . . . . . . 312

9.10.6 What is all this _BV() stuff about?. . . . . . . . . . . . . . . 313

9.10.7 Can I use C++ on the AVR?. . . . . . . . . . . . . . . . . . 314

9.10.8 Shouldn’t I initialize all my variables?. . . . . . . . . . . . . 315

9.10.9 Why do some 16-bit timer registers sometimes get trashed?. 316

9.10.10 How do I use a #define’d constant in an asm statement?. . . . 316

9.10.11 Why does the PC randomly jump around when single-stepping
through my program in avr-gdb?. . . . . . . . . . . . . . . . 317

9.10.12 How do I trace an assembler file in avr-gdb?. . . . . . . . . . 318

9.10.13 How do I pass an IO port as a parameter to a function?. . . . 319

9.10.14 What registers are used by the C compiler?. . . . . . . . . . 321

9.10.15 How do I put an array of strings completely in ROM?. . . . . 322

9.10.16 How to use external RAM?. . . . . . . . . . . . . . . . . . . 324

9.10.17 Which -O flag to use?. . . . . . . . . . . . . . . . . . . . . 325

9.10.18 How do I relocate code to a fixed address?. . . . . . . . . . . 326

9.10.19 My UART is generating nonsense! My ATmega128 keeps
crashing! Port F is completely broken!. . . . . . . . . . . . . 326

9.10.20 Why do all my "foo...bar" strings eat up the SRAM?. . . . . 327

9.10.21 Why does the compiler compile an 8-bit operation that uses
bitwise operators into a 16-bit operation in assembly?. . . . . 328

9.10.22 How to detect RAM memory and variable overlap problems?. 329

9.10.23 Is it really impossible to program the ATtinyXX in C?. . . . 329

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



CONTENTS xv

9.10.24 What is this "clock skew detected" messsage?. . . . . . . . . 329

9.10.25 Why are (many) interrupt flags cleared by writing a logical 1?330

9.10.26 Why have "programmed" fuses the bit value 0?. . . . . . . . 331

9.10.27 Which AVR-specific assembler operators are available?. . . . 331

9.10.28 Why are interrupts re-enabled in the middle of writing the stack
pointer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

9.10.29 Why are there five different linker scripts?. . . . . . . . . . . 332

9.10.30 How to add a raw binary image to linker output?. . . . . . . 332

9.10.31 How do I perform a software reset of the AVR?. . . . . . . . 333

9.11 Building and Installing the GNU Tool Chain. . . . . . . . . . . . . . 334

9.11.1 Building and Installing under Linux, FreeBSD, and Others. . 334

9.11.2 Required Tools. . . . . . . . . . . . . . . . . . . . . . . . . 335

9.11.3 Optional Tools . . . . . . . . . . . . . . . . . . . . . . . . . 335

9.11.4 GNU Binutils for the AVR target. . . . . . . . . . . . . . . . 336

9.11.5 GCC for the AVR target. . . . . . . . . . . . . . . . . . . . 337

9.11.6 AVR Libc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

9.11.7 AVRDUDE . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

9.11.8 GDB for the AVR target. . . . . . . . . . . . . . . . . . . . 339

9.11.9 SimulAVR . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

9.11.10 AVaRICE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

9.11.11 Building and Installing under Windows. . . . . . . . . . . . 340

9.11.12 Tools Required for Building the Toolchain for Windows. . . 340

9.11.13 Building the Toolchain for Windows. . . . . . . . . . . . . . 344

9.12 Using the GNU tools. . . . . . . . . . . . . . . . . . . . . . . . . . 349

9.12.1 Options for the C compiler avr-gcc. . . . . . . . . . . . . . . 349

9.12.2 Options for the assembler avr-as. . . . . . . . . . . . . . . . 357

9.12.3 Controlling the linker avr-ld. . . . . . . . . . . . . . . . . . 358

9.13 Using the avrdude program. . . . . . . . . . . . . . . . . . . . . . . 361

9.14 Release Numbering and Methodology. . . . . . . . . . . . . . . . . 363

9.14.1 Release Version Numbering Scheme. . . . . . . . . . . . . . 363

9.14.2 Releasing AVR Libc. . . . . . . . . . . . . . . . . . . . . . 363

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



1 AVR Libc 1

9.15 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

9.16 Todo List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367

9.17 Deprecated List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

1 AVR Libc

1.1 Introduction

The latest version of this document is always available from
http://savannah.nongnu.org/projects/avr-libc/

The AVR Libc package provides a subset of the standard C library forAtmel AVR
8-bit RISC microcontrollers . In addition, the library provides the basic
startup code needed by most applications.

There is a wealth of information in this document which goes beyond simply describ-
ing the interfaces and routines provided by the library. We hope that this document
provides enough information to get a new AVR developer up to speed quickly using
the freely available development tools: binutils, gcc avr-libc and many others.

If you find yourself stuck on a problem which this document doesn’t quite address, you
may wish to post a message to the avr-gcc mailing list. Most of the developers of the
AVR binutils and gcc ports in addition to the devleopers of avr-libc subscribe to the
list, so you will usually be able to get your problem resolved. You can subscribe to the
list at http://lists.nongnu.org/mailman/listinfo/avr-gcc-list
. Before posting to the list, you might want to try reading theFrequently Asked Ques-
tionschapter of this document.

Note:

If you think you’ve found a bug, or have a suggestion for an improvement, ei-
ther in this documentation or in the library itself, please use the bug tracker at
https://savannah.nongnu.org/bugs/?group=avr-libc to ensure
the issue won’t be forgotten.

1.2 General information about this library

In general, it has been the goal to stick as best as possible to established standards
while implementing this library. Commonly, this refers to the C library as described by
the ANSI X3.159-1989 and ISO/IEC 9899:1990 ("ANSI-C") standard, as well as parts
of their successor ISO/IEC 9899:1999 ("C99"). Some additions have been inspired by
other standards like IEEE Std 1003.1-1988 ("POSIX.1"), while other extensions are
purely AVR-specific (like the entire program-space string interface).

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/
http://www.atmel.com/products/AVR/
http://www.atmel.com/products/AVR/
http://lists.nongnu.org/mailman/listinfo/avr-gcc-list
https://savannah.nongnu.org/bugs/?group=avr-libc


1.3 Supported Devices 2

Unless otherwise noted, functions of this library arenot guaranteed to be reentrant. In
particular, any functions that store local state are known to be non-reentrant, as well
as functions that manipulate IO registers like the EEPROM access routines. If these
functions are used within both standard and interrupt contexts undefined behaviour will
result.

1.3 Supported Devices

The following is a list of AVR devices currently supported by the library. Note that
actual support for some newer devices depends on the ability of the compiler/assembler
to support these devices at library compile-time.

megaAVR Devices:

• atmega103

• atmega128

• atmega1280

• atmega1281

• atmega1284p

• atmega16

• atmega161

• atmega162

• atmega163

• atmega164p

• atmega165

• atmega165p

• atmega168

• atmega168p

• atmega2560

• atmega2561

• atmega32

• atmega323

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



1.3 Supported Devices 3

• atmega324p

• atmega325

• atmega325p

• atmega3250

• atmega3250p

• atmega328p

• atmega48

• atmega48p

• atmega64

• atmega640

• atmega644

• atmega644p

• atmega645

• atmega6450

• atmega8

• atmega88

• atmega88p

• atmega8515

• atmega8535

tinyAVR Devices:

• attiny11[1]

• attiny12[1]

• attiny13

• attiny15[1]

• attiny22

• attiny24

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



1.3 Supported Devices 4

• attiny25

• attiny26

• attiny261

• attiny28[1]

• attiny2313

• attiny43u

• attiny44

• attiny45

• attiny461

• attiny48

• attiny84

• attiny85

• attiny861

• attiny88

CAN AVR Devices:

• at90can32

• at90can64

• at90can128

LCD AVR Devices:

• atmega169

• atmega169p

• atmega329

• atmega329p

• atmega3290

• atmega3290p

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



1.3 Supported Devices 5

• atmega649

• atmega6490

Lighting AVR Devices:

• at90pwm1

• at90pwm2

• at90pwm2b

• at90pwm216

• at90pwm3

• at90pwm3b

• at90pwm316

Smart Battery AVR Devices:

• atmega8hva

• atmega16hva

• atmega32hvb

• atmega406

USB AVR Devices:

• at90usb82

• at90usb162

• at90usb646

• at90usb647

• at90usb1286

• at90usb1287

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



1.3 Supported Devices 6

Miscellaneous Devices:

• at94K[2]

• at76c711[3]

• at43usb320

• at43usb355

• at86rf401

Classic AVR Devices:

• at90s1200[1]

• at90s2313

• at90s2323

• at90s2333

• at90s2343

• at90s4414

• at90s4433

• at90s4434

• at90s8515

• at90c8534

• at90s8535

Note:

[1] Assembly only. There is no direct support for these devices to be programmed
in C since they do not have a RAM based stack. Still, it could be possible to
program them in C, see theFAQ for an option.

Note:

[2] The at94K devices are a combination of FPGA and AVR microcontroller.
[TRoth-2002/11/12: Not sure of the level of support for these. More information
would be welcomed.]

Note:

[3] The at76c711 is a USB to fast serial interface bridge chip using an AVR core.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



1.4 avr-libc License 7

1.4 avr-libc License

avr-libc can be freely used and redistributed, provided the following license conditions
are met.

Portions of avr-libc are Copyright (c) 1999-2007
Keith Gudger,
Bjoern Haase,
Steinar Haugen,
Peter Jansen,
Reinhard Jessich,
Magnus Johansson,
Artur Lipowski,
Marek Michalkiewicz,
Colin O’Flynn,
Bob Paddock,
Reiner Patommel,
Michael Rickman,
Theodore A. Roth,
Juergen Schilling,
Philip Soeberg,
Anatoly Sokolov,
Nils Kristian Strom,
Michael Stumpf,
Stefan Swanepoel,
Eric B. Weddington,
Joerg Wunsch,
Dmitry Xmelkov,
The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



2 avr-libc Module Index 8

POSSIBILITY OF SUCH DAMAGE.

2 avr-libc Module Index

2.1 avr-libc Modules

Here is a list of all modules:

<alloca.h>: Allocate space in the stack 14

<assert.h>: Diagnostics 15

<ctype.h>: Character Operations 16

<errno.h>: System Errors 18

<inttypes.h>: Integer Type conversions 19

<math.h>: Mathematics 31

<setjmp.h>: Non-local goto 38

<stdint.h>: Standard Integer Types 40

<stdio.h>: Standard IO facilities 52

<stdlib.h>: General utilities 71

<string.h>: Strings 82

<avr/boot.h>: Bootloader Support Utilities 93

<avr/eeprom.h>: EEPROM handling 100

<avr/fuse.h>: Fuse Support 103

<avr/interrupt.h >: Interrupts 106

<avr/io.h>: AVR device-specific IO definitions 129

<avr/lock.h>: Lockbit Support 130

<avr/pgmspace.h>: Program Space Utilities 133

<avr/power.h>: Power Reduction Management 145

<avr/sfr_defs.h>: Special function registers 149

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



3 avr-libc Data Structure Index 9

Additional notes from <avr/sfr_defs.h> 147

<avr/sleep.h>: Power Management and Sleep Modes 152

<avr/version.h>: avr-libc version macros 154

<avr/wdt.h>: Watchdog timer handling 156

<util/atomic.h> Atomically and Non-Atomically Executed Code Blocks 159

<util/crc16.h>: CRC Computations 163

<util/delay.h>: Convenience functions for busy-wait delay loops 166

<util/delay_basic.h>: Basic busy-wait delay loops 167

<util/parity.h >: Parity bit generation 168

<util/setbaud.h>: Helper macros for baud rate calculations 169

<util/twi.h >: TWI bit mask definitions 171

<compat/deprecated.h>: Deprecated items 176

<compat/ina90.h>: Compatibility with IAR EWB 3.x 179

Demo projects 179

Combining C and assembly source files 181

A simple project 184

A more sophisticated project 199

Using the standard IO facilities 207

Example using the two-wire interface (TWI) 214

3 avr-libc Data Structure Index

3.1 avr-libc Data Structures

Here are the data structures with brief descriptions:

div_t 219

ldiv_t 220

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



4 avr-libc File Index 10

4 avr-libc File Index

4.1 avr-libc File List

Here is a list of all documented files with brief descriptions:

assert.h 220

atoi.S 221

atol.S 221

atomic.h 221

boot.h 221

crc16.h 228

ctype.h 228

delay.h 229

delay_basic.h 229

eeprom.h 230

errno.h 231

fdevopen.c 231

ffs.S 232

ffsl.S 232

ffsll.S 232

fuse.h 232

interrupt.h 232

inttypes.h 233

io.h 235

lock.h 235

math.h 235

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



4.1 avr-libc File List 11

memccpy.S 238

memchr.S 238

memchr_P.S 238

memcmp.S 238

memcmp_P.S 238

memcpy.S 238

memcpy_P.S 238

memmem.S 238

memmove.S 238

memrchr.S 238

memrchr_P.S 238

memset.S 238

parity.h 238

pgmspace.h 239

power.h 245

setbaud.h 246

setjmp.h 246

sleep.h 247

stdint.h 247

stdio.h 250

stdlib.h 252

strcasecmp.S 256

strcasecmp_P.S 256

strcasestr.S 256

strcat.S 256

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



4.1 avr-libc File List 12

strcat_P.S 256

strchr.S 256

strchr_P.S 256

strchrnul.S 256

strchrnul_P.S 256

strcmp.S 256

strcmp_P.S 256

strcpy.S 256

strcpy_P.S 256

strcspn.S 256

strcspn_P.S 256

string.h 256

strlcat.S 259

strlcat_P.S 259

strlcpy.S 259

strlcpy_P.S 259

strlen.S 259

strlen_P.S 259

strlwr.S 259

strncasecmp.S 259

strncasecmp_P.S 259

strncat.S 259

strncat_P.S 259

strncmp.S 259

strncmp_P.S 259

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



5 avr-libc Page Index 13

strncpy.S 259

strncpy_P.S 259

strnlen.S 259

strnlen_P.S 259

strpbrk.S 259

strpbrk_P.S 259

strrchr.S 259

strrchr_P.S 259

strrev.S 259

strsep.S 259

strsep_P.S 259

strspn.S 259

strspn_P.S 259

strstr.S 259

strstr_P.S 259

strtok_r.S 259

strupr.S 259

util/twi.h 259

wdt.h 261

5 avr-libc Page Index

5.1 avr-libc Related Pages

Here is a list of all related documentation pages:

Toolchain Overview 262

Memory Areas and Using malloc() 267

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6 avr-libc Module Documentation 14

Memory Sections 272

Data in Program Space 276

avr-libc and assembler programs 281

Inline Assembler Cookbook 287

How to Build a Library 300

Benchmarks 302

Porting From IAR to AVR GCC 305

Frequently Asked Questions 310

Building and Installing the GNU Tool Chain 334

Using the GNU tools 349

Using the avrdude program 361

Release Numbering and Methodology 363

Acknowledgments 366

Todo List 367

Deprecated List 367

6 avr-libc Module Documentation

6.1 <alloca.h>: Allocate space in the stack

Functions

• void ∗ alloca(size_t __size)

6.1.1 Function Documentation

6.1.1.1 void∗ alloca (size_t__size)

Allocate__sizebytes of space in the stack frame of the caller.

This temporary space is automatically freed when the function that calledalloca()re-
turns to its caller. Avr-libc defines thealloca()as a macro, which is translated into the
inlined __builtin_alloca() function. The fact that the code is inlined, means

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.2 <assert.h>: Diagnostics 15

that it is impossible to take the address of this function, or to change its behaviour by
linking with a different library.

Returns:

alloca()returns a pointer to the beginning of the allocated space. If the allocation
causes stack overflow, program behaviour is undefined.

Warning:

Avoid usealloca()inside the list of arguments of a function call.

6.2 <assert.h>: Diagnostics

6.2.1 Detailed Description

#include <assert.h>

This header file defines a debugging aid.

As there is no standard error output stream available for many applications using this
library, the generation of a printable error message is not enabled by default. These
messages will only be generated if the application defines the macro

__ASSERT_USE_STDERR

before including the<assert.h > header file. By default, onlyabort()will be called
to halt the application.

Defines

• #defineassert(expression)

6.2.2 Define Documentation

6.2.2.1 #define assert(expression)

Parameters:

expressionExpression to test for.

The assert()macro tests the given expression and if it is false, the calling process is
terminated. A diagnostic message is written to stderr and the functionabort()is called,
effectively terminating the program.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.3 <ctype.h>: Character Operations 16

If expression is true, theassert()macro does nothing.

Theassert()macro may be removed at compile time by defining NDEBUG as a macro
(e.g., by using the compiler option -DNDEBUG).

6.3 <ctype.h>: Character Operations

6.3.1 Detailed Description

These functions perform various operations on characters.

#include <ctype.h>

Character classification routines

These functions perform character classification. They return true or false status de-
pending whether the character passed to the function falls into the function’s classifi-
cation (i.e.isdigit() returns true if its argument is any value ’0’ though ’9’, inclusive).
If the input is not an unsigned char value, all of this function return false.

• int isalnum(int __c)
• int isalpha(int __c)
• int isascii(int __c)
• int isblank(int __c)
• int iscntrl (int __c)
• int isdigit (int __c)
• int isgraph(int __c)
• int islower(int __c)
• int isprint (int __c)
• int ispunct(int __c)
• int isspace(int __c)
• int isupper(int __c)
• int isxdigit (int __c)

Character convertion routines

This realization permits all possible values of integer argument. Thetoascii()function
clears all highest bits. Thetolower()andtoupper()functions return an input argument
as is, if it is not an unsigned char value.

• int toascii(int __c)
• int tolower(int __c)
• int toupper(int __c)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.3 <ctype.h>: Character Operations 17

6.3.2 Function Documentation

6.3.2.1 int isalnum (int__c)

Checks for an alphanumeric character. It is equivalent to(isalpha(c) ||
isdigit(c)) .

6.3.2.2 int isalpha (int__c)

Checks for an alphabetic character. It is equivalent to(isupper(c) ||
islower(c)) .

6.3.2.3 int isascii (int__c)

Checks whetherc is a 7-bit unsigned char value that fits into the ASCII character set.

6.3.2.4 int isblank (int __c)

Checks for a blank character, that is, a space or a tab.

6.3.2.5 int iscntrl (int __c)

Checks for a control character.

6.3.2.6 int isdigit (int __c)

Checks for a digit (0 through 9).

6.3.2.7 int isgraph (int__c)

Checks for any printable character except space.

6.3.2.8 int islower (int__c)

Checks for a lower-case character.

6.3.2.9 int isprint (int __c)

Checks for any printable character including space.

6.3.2.10 int ispunct (int__c)

Checks for any printable character which is not a space or an alphanumeric character.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.4 <errno.h>: System Errors 18

6.3.2.11 int isspace (int__c)

Checks for white-space characters. For the avr-libc library, these are: space, form-
feed (’\f’), newline (’\n’), carriage return (’\r’), horizontal tab (’\t’), and vertical tab
(’\v’).

6.3.2.12 int isupper (int__c)

Checks for an uppercase letter.

6.3.2.13 int isxdigit (int __c)

Checks for a hexadecimal digits, i.e. one of 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F.

6.3.2.14 int toascii (int__c)

Convertsc to a 7-bit unsigned char value that fits into the ASCII character set, by
clearing the high-order bits.

Warning:

Many people will be unhappy if you use this function. This function will convert
accented letters into random characters.

6.3.2.15 int tolower (int__c)

Converts the letterc to lower case, if possible.

6.3.2.16 int toupper (int__c)

Converts the letterc to upper case, if possible.

6.4 <errno.h>: System Errors

6.4.1 Detailed Description

#include <errno.h>

Some functions in the library set the global variableerrno when an error occurs. The
file, <errno.h >, provides symbolic names for various error codes.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 19

Warning:

Theerrno global variable is not safe to use in a threaded or multi-task system. A
race condition can occur if a task is interrupted between the call which setserror
and when the task examineserrno . If another task changeserrno during this
time, the result will be incorrect for the interrupted task.

Defines

• #defineEDOM 33
• #defineERANGE34

6.4.2 Define Documentation

6.4.2.1 #define EDOM 33

Domain error.

6.4.2.2 #define ERANGE 34

Range error.

6.5 <inttypes.h>: Integer Type conversions

6.5.1 Detailed Description

#include <inttypes.h>

This header file includes the exact-width integer definitions from<stdint.h >, and
extends them with additional facilities provided by the implementation.

Currently, the extensions include two additional integer types that could hold a "far"
pointer (i.e. a code pointer that can address more than 64 KB), as well as standard
names for all printf and scanf formatting options that are supported by the<stdio.h>:
Standard IO facilities. As the library does not support the full range of conversion
specifiers from ISO 9899:1999, only those conversions that are actually implemented
will be listed here.

The idea behind these conversion macros is that, for each of the types defined by
<stdint.h>, a macro will be supplied that portably allows formatting an object of that
type inprintf() or scanf()operations. Example:

#include <inttypes.h>

uint8_t smallval;
int32_t longval;

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 20

...
printf("The hexadecimal value of smallval is " PRIx8

", the decimal value of longval is " PRId32 ".\n",
smallval, longval);

Far pointers for memory access>64K

• typedefint32_tint_farptr_t
• typedefuint32_tuint_farptr_t

macros for printf and scanf format specifiers

For C++, these are only included if __STDC_LIMIT_MACROS is defined before in-
cluding<inttypes.h>.

• #definePRId8"d"
• #definePRIdLEAST8"d"
• #definePRIdFAST8"d"
• #definePRIi8 "i"
• #definePRIiLEAST8"i"
• #definePRIiFAST8"i"
• #definePRId16"d"
• #definePRIdLEAST16"d"
• #definePRIdFAST16"d"
• #definePRIi16"i"
• #definePRIiLEAST16"i"
• #definePRIiFAST16"i"
• #definePRId32"ld"
• #definePRIdLEAST32"ld"
• #definePRIdFAST32"ld"
• #definePRIi32"li"
• #definePRIiLEAST32"li"
• #definePRIiFAST32"li"
• #definePRIdPTRPRId16
• #definePRIiPTRPRIi16
• #definePRIo8"o"
• #definePRIoLEAST8"o"
• #definePRIoFAST8"o"
• #definePRIu8"u"
• #definePRIuLEAST8"u"
• #definePRIuFAST8"u"
• #definePRIx8"x"
• #definePRIxLEAST8"x"

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 21

• #definePRIxFAST8"x"
• #definePRIX8 "X"
• #definePRIXLEAST8"X"
• #definePRIXFAST8"X"
• #definePRIo16"o"
• #definePRIoLEAST16"o"
• #definePRIoFAST16"o"
• #definePRIu16"u"
• #definePRIuLEAST16"u"
• #definePRIuFAST16"u"
• #definePRIx16"x"
• #definePRIxLEAST16"x"
• #definePRIxFAST16"x"
• #definePRIX16"X"
• #definePRIXLEAST16"X"
• #definePRIXFAST16"X"
• #definePRIo32"lo"
• #definePRIoLEAST32"lo"
• #definePRIoFAST32"lo"
• #definePRIu32"lu"
• #definePRIuLEAST32"lu"
• #definePRIuFAST32"lu"
• #definePRIx32"lx"
• #definePRIxLEAST32"lx"
• #definePRIxFAST32"lx"
• #definePRIX32"lX"
• #definePRIXLEAST32"lX"
• #definePRIXFAST32"lX"
• #definePRIoPTRPRIo16
• #definePRIuPTRPRIu16
• #definePRIxPTRPRIx16
• #definePRIXPTRPRIX16
• #defineSCNd16"d"
• #defineSCNdLEAST16"d"
• #defineSCNdFAST16"d"
• #defineSCNi16"i"
• #defineSCNiLEAST16"i"
• #defineSCNiFAST16"i"
• #defineSCNd32"ld"
• #defineSCNdLEAST32"ld"
• #defineSCNdFAST32"ld"
• #defineSCNi32"li"
• #defineSCNiLEAST32"li"

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 22

• #defineSCNiFAST32"li"
• #defineSCNdPTRSCNd16
• #defineSCNiPTRSCNi16
• #defineSCNo16"o"
• #defineSCNoLEAST16"o"
• #defineSCNoFAST16"o"
• #defineSCNu16"u"
• #defineSCNuLEAST16"u"
• #defineSCNuFAST16"u"
• #defineSCNx16"x"
• #defineSCNxLEAST16"x"
• #defineSCNxFAST16"x"
• #defineSCNo32"lo"
• #defineSCNoLEAST32"lo"
• #defineSCNoFAST32"lo"
• #defineSCNu32"lu"
• #defineSCNuLEAST32"lu"
• #defineSCNuFAST32"lu"
• #defineSCNx32"lx"
• #defineSCNxLEAST32"lx"
• #defineSCNxFAST32"lx"
• #defineSCNoPTRSCNo16
• #defineSCNuPTRSCNu16
• #defineSCNxPTRSCNx16

6.5.2 Define Documentation

6.5.2.1 #define PRId16 "d"

decimal printf format for int16_t

6.5.2.2 #define PRId32 "ld"

decimal printf format for int32_t

6.5.2.3 #define PRId8 "d"

decimal printf format for int8_t

6.5.2.4 #define PRIdFAST16 "d"

decimal printf format for int_fast16_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 23

6.5.2.5 #define PRIdFAST32 "ld"

decimal printf format for int_fast32_t

6.5.2.6 #define PRIdFAST8 "d"

decimal printf format for int_fast8_t

6.5.2.7 #define PRIdLEAST16 "d"

decimal printf format for int_least16_t

6.5.2.8 #define PRIdLEAST32 "ld"

decimal printf format for int_least32_t

6.5.2.9 #define PRIdLEAST8 "d"

decimal printf format for int_least8_t

6.5.2.10 #define PRIdPTR PRId16

decimal printf format for intptr_t

6.5.2.11 #define PRIi16 "i"

integer printf format for int16_t

6.5.2.12 #define PRIi32 "li"

integer printf format for int32_t

6.5.2.13 #define PRIi8 "i"

integer printf format for int8_t

6.5.2.14 #define PRIiFAST16 "i"

integer printf format for int_fast16_t

6.5.2.15 #define PRIiFAST32 "li"

integer printf format for int_fast32_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 24

6.5.2.16 #define PRIiFAST8 "i"

integer printf format for int_fast8_t

6.5.2.17 #define PRIiLEAST16 "i"

integer printf format for int_least16_t

6.5.2.18 #define PRIiLEAST32 "li"

integer printf format for int_least32_t

6.5.2.19 #define PRIiLEAST8 "i"

integer printf format for int_least8_t

6.5.2.20 #define PRIiPTR PRIi16

integer printf format for intptr_t

6.5.2.21 #define PRIo16 "o"

octal printf format for uint16_t

6.5.2.22 #define PRIo32 "lo"

octal printf format for uint32_t

6.5.2.23 #define PRIo8 "o"

octal printf format for uint8_t

6.5.2.24 #define PRIoFAST16 "o"

octal printf format for uint_fast16_t

6.5.2.25 #define PRIoFAST32 "lo"

octal printf format for uint_fast32_t

6.5.2.26 #define PRIoFAST8 "o"

octal printf format for uint_fast8_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 25

6.5.2.27 #define PRIoLEAST16 "o"

octal printf format for uint_least16_t

6.5.2.28 #define PRIoLEAST32 "lo"

octal printf format for uint_least32_t

6.5.2.29 #define PRIoLEAST8 "o"

octal printf format for uint_least8_t

6.5.2.30 #define PRIoPTR PRIo16

octal printf format for uintptr_t

6.5.2.31 #define PRIu16 "u"

decimal printf format for uint16_t

6.5.2.32 #define PRIu32 "lu"

decimal printf format for uint32_t

6.5.2.33 #define PRIu8 "u"

decimal printf format for uint8_t

6.5.2.34 #define PRIuFAST16 "u"

decimal printf format for uint_fast16_t

6.5.2.35 #define PRIuFAST32 "lu"

decimal printf format for uint_fast32_t

6.5.2.36 #define PRIuFAST8 "u"

decimal printf format for uint_fast8_t

6.5.2.37 #define PRIuLEAST16 "u"

decimal printf format for uint_least16_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 26

6.5.2.38 #define PRIuLEAST32 "lu"

decimal printf format for uint_least32_t

6.5.2.39 #define PRIuLEAST8 "u"

decimal printf format for uint_least8_t

6.5.2.40 #define PRIuPTR PRIu16

decimal printf format for uintptr_t

6.5.2.41 #define PRIX16 "X"

uppercase hexadecimal printf format for uint16_t

6.5.2.42 #define PRIx16 "x"

hexadecimal printf format for uint16_t

6.5.2.43 #define PRIX32 "lX"

uppercase hexadecimal printf format for uint32_t

6.5.2.44 #define PRIx32 "lx"

hexadecimal printf format for uint32_t

6.5.2.45 #define PRIX8 "X"

uppercase hexadecimal printf format for uint8_t

6.5.2.46 #define PRIx8 "x"

hexadecimal printf format for uint8_t

6.5.2.47 #define PRIXFAST16 "X"

uppercase hexadecimal printf format for uint_fast16_t

6.5.2.48 #define PRIxFAST16 "x"

hexadecimal printf format for uint_fast16_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 27

6.5.2.49 #define PRIXFAST32 "lX"

uppercase hexadecimal printf format for uint_fast32_t

6.5.2.50 #define PRIxFAST32 "lx"

hexadecimal printf format for uint_fast32_t

6.5.2.51 #define PRIXFAST8 "X"

uppercase hexadecimal printf format for uint_fast8_t

6.5.2.52 #define PRIxFAST8 "x"

hexadecimal printf format for uint_fast8_t

6.5.2.53 #define PRIXLEAST16 "X"

uppercase hexadecimal printf format for uint_least16_t

6.5.2.54 #define PRIxLEAST16 "x"

hexadecimal printf format for uint_least16_t

6.5.2.55 #define PRIXLEAST32 "lX"

uppercase hexadecimal printf format for uint_least32_t

6.5.2.56 #define PRIxLEAST32 "lx"

hexadecimal printf format for uint_least32_t

6.5.2.57 #define PRIXLEAST8 "X"

uppercase hexadecimal printf format for uint_least8_t

6.5.2.58 #define PRIxLEAST8 "x"

hexadecimal printf format for uint_least8_t

6.5.2.59 #define PRIXPTR PRIX16

uppercase hexadecimal printf format for uintptr_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 28

6.5.2.60 #define PRIxPTR PRIx16

hexadecimal printf format for uintptr_t

6.5.2.61 #define SCNd16 "d"

decimal scanf format for int16_t

6.5.2.62 #define SCNd32 "ld"

decimal scanf format for int32_t

6.5.2.63 #define SCNdFAST16 "d"

decimal scanf format for int_fast16_t

6.5.2.64 #define SCNdFAST32 "ld"

decimal scanf format for int_fast32_t

6.5.2.65 #define SCNdLEAST16 "d"

decimal scanf format for int_least16_t

6.5.2.66 #define SCNdLEAST32 "ld"

decimal scanf format for int_least32_t

6.5.2.67 #define SCNdPTR SCNd16

decimal scanf format for intptr_t

6.5.2.68 #define SCNi16 "i"

generic-integer scanf format for int16_t

6.5.2.69 #define SCNi32 "li"

generic-integer scanf format for int32_t

6.5.2.70 #define SCNiFAST16 "i"

generic-integer scanf format for int_fast16_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 29

6.5.2.71 #define SCNiFAST32 "li"

generic-integer scanf format for int_fast32_t

6.5.2.72 #define SCNiLEAST16 "i"

generic-integer scanf format for int_least16_t

6.5.2.73 #define SCNiLEAST32 "li"

generic-integer scanf format for int_least32_t

6.5.2.74 #define SCNiPTR SCNi16

generic-integer scanf format for intptr_t

6.5.2.75 #define SCNo16 "o"

octal scanf format for uint16_t

6.5.2.76 #define SCNo32 "lo"

octal scanf format for uint32_t

6.5.2.77 #define SCNoFAST16 "o"

octal scanf format for uint_fast16_t

6.5.2.78 #define SCNoFAST32 "lo"

octal scanf format for uint_fast32_t

6.5.2.79 #define SCNoLEAST16 "o"

octal scanf format for uint_least16_t

6.5.2.80 #define SCNoLEAST32 "lo"

octal scanf format for uint_least32_t

6.5.2.81 #define SCNoPTR SCNo16

octal scanf format for uintptr_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.5 <inttypes.h>: Integer Type conversions 30

6.5.2.82 #define SCNu16 "u"

decimal scanf format for uint16_t

6.5.2.83 #define SCNu32 "lu"

decimal scanf format for uint32_t

6.5.2.84 #define SCNuFAST16 "u"

decimal scanf format for uint_fast16_t

6.5.2.85 #define SCNuFAST32 "lu"

decimal scanf format for uint_fast32_t

6.5.2.86 #define SCNuLEAST16 "u"

decimal scanf format for uint_least16_t

6.5.2.87 #define SCNuLEAST32 "lu"

decimal scanf format for uint_least32_t

6.5.2.88 #define SCNuPTR SCNu16

decimal scanf format for uintptr_t

6.5.2.89 #define SCNx16 "x"

hexadecimal scanf format for uint16_t

6.5.2.90 #define SCNx32 "lx"

hexadecimal scanf format for uint32_t

6.5.2.91 #define SCNxFAST16 "x"

hexadecimal scanf format for uint_fast16_t

6.5.2.92 #define SCNxFAST32 "lx"

hexadecimal scanf format for uint_fast32_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.6 <math.h>: Mathematics 31

6.5.2.93 #define SCNxLEAST16 "x"

hexadecimal scanf format for uint_least16_t

6.5.2.94 #define SCNxLEAST32 "lx"

hexadecimal scanf format for uint_least32_t

6.5.2.95 #define SCNxPTR SCNx16

hexadecimal scanf format for uintptr_t

6.5.3 Typedef Documentation

6.5.3.1 typedefint32_t int_farptr_t

signed integer type that can hold a pointer> 64 KB

6.5.3.2 typedefuint32_t uint_farptr_t

unsigned integer type that can hold a pointer> 64 KB

6.6 <math.h>: Mathematics

6.6.1 Detailed Description

#include <math.h>

This header file declares basic mathematics constants and functions.

Notes:

• In order to access the functions delcared herein, it is usually also required to
additionally link against the librarylibm.a . See also the relatedFAQ entry.

• Math functions do not raise exceptions and do not change theerrno vari-
able. Therefore the majority of them are declared with const attribute, for
better optimization by GCC.

Defines

• #defineM_PI 3.141592653589793238462643
• #defineM_SQRT21.4142135623730950488016887
• #defineNAN __builtin_nan("")
• #defineINFINITY __builtin_inf()

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.6 <math.h>: Mathematics 32

Functions

• doublecos(double __x)
• doublefabs(double __x)
• doublefmod (double __x, double __y)
• doublemodf (double __x, double∗__iptr)
• doublesin (double __x)
• doublesqrt(double __x)
• doubletan(double __x)
• doublefloor (double __x)
• doubleceil (double __x)
• doublefrexp (double __x, int∗__pexp)
• doubleldexp(double __x, int __exp)
• doubleexp(double __x)
• doublecosh(double __x)
• doublesinh(double __x)
• doubletanh(double __x)
• doubleacos(double __x)
• doubleasin(double __x)
• doubleatan(double __x)
• doubleatan2(double __y, double __x)
• doublelog (double __x)
• doublelog10(double __x)
• doublepow(double __x, double __y)
• int isnan(double __x)
• int isinf (double __x)
• doublesquare(double __x)
• doublecopysign(double __x, double __y)
• doublefdim (double __x, double __y)
• doublefma (double __x, double __y, double __z)
• doublefmax (double __x, double __y)
• doublefmin (double __x, double __y)
• int signbit(double __x)
• doubletrunc(double __x)
• int isfinite (double __x)
• doublehypot(double __x, double __y)
• doubleround(double __x)
• long lround(double __x)
• long lrint (double __x)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.6 <math.h>: Mathematics 33

6.6.2 Define Documentation

6.6.2.1 #define INFINITY __builtin_inf()

INFINITY constant.

6.6.2.2 #define M_PI 3.141592653589793238462643

The constantpi .

6.6.2.3 #define M_SQRT2 1.4142135623730950488016887

The square root of 2.

6.6.2.4 #define NAN __builtin_nan("")

NAN constant.

6.6.3 Function Documentation

6.6.3.1 double acos (double__x)

Theacos()function computes the principal value of the arc cosine of__x. The returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

6.6.3.2 double asin (double__x)

Theasin()function computes the principal value of the arc sine of__x. The returned
value is in the range [-pi/2, pi/2] radians. A domain error occurs for arguments not in
the range [-1, +1].

6.6.3.3 double atan (double__x)

Theatan()function computes the principal value of the arc tangent of__x. The returned
value is in the range [-pi/2, pi/2] radians.

6.6.3.4 double atan2 (double__y, double__x)

Theatan2()function computes the principal value of the arc tangent of__y / __x, using
the signs of both arguments to determine the quadrant of the return value. The returned
value is in the range [-pi, +pi] radians.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.6 <math.h>: Mathematics 34

6.6.3.5 double ceil (double__x)

The ceil() function returns the smallest integral value greater than or equal to__x,
expressed as a floating-point number.

6.6.3.6 double copysign (double__x, double__y)

Thecopysign()function returns__xbut with the sign of__y. They work even if__xor
__yare NaN or zero.

6.6.3.7 double cos (double__x)

Thecos()function returns the cosine of__x, measured in radians.

6.6.3.8 double cosh (double__x)

Thecosh()function returns the hyperbolic cosine of__x.

6.6.3.9 double exp (double__x)

Theexp()function returns the exponential value of__x.

6.6.3.10 double fabs (double__x)

Thefabs()function computes the absolute value of a floating-point number__x.

6.6.3.11 double fdim (double__x, double__y)

Thefdim() function returnsmax(__x - __y, 0). If __xor __yor both are NaN, NaN is
returned.

6.6.3.12 double floor (double__x)

The floor() function returns the largest integral value less than or equal to__x, ex-
pressed as a floating-point number.

6.6.3.13 double fma (double__x, double__y, double__z)

Thefma() function performs floating-point multiply-add. This is the operation(__x∗
__y) + __z, but the intermediate result is not rounded to the destination type. This can
sometimes improve the precision of a calculation.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.6 <math.h>: Mathematics 35

6.6.3.14 double fmax (double__x, double__y)

Thefmax() function returns the greater of the two values__xand__y. If an argument
is NaN, the other argument is returned. If both arguments are NaN, NaN is returned.

6.6.3.15 double fmin (double__x, double__y)

Thefmin() function returns the lesser of the two values__xand__y. If an argument is
NaN, the other argument is returned. If both arguments are NaN, NaN is returned.

6.6.3.16 double fmod (double__x, double__y)

The functionfmod() returns the floating-point remainder of__x / __y.

6.6.3.17 double frexp (double__x, int ∗ __pexp)

Thefrexp() function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in theint object pointed to by__pexp.

If __xis a normal float point number, thefrexp() function returns the valuev , such that
v has a magnitude in the interval [1/2, 1) or zero, and__xequalsv times 2 raised to
the power__pexp. If __x is zero, both parts of the result are zero. If__x is not a finite
number, thefrexp() returns__xas is and stores 0 by__pexp.

Note:

This implementation permits a zero pointer as a directive to skip a storing the
exponent.

6.6.3.18 double hypot (double__x, double__y)

The hypot() function returnssqrt(__x∗__x + __y∗__y). This is the length of the hy-
potenuse of a right triangle with sides of length__xand__y, or the distance of the point
(__x, __y) from the origin. Using this function instead of the direct formula is wise,
since the error is much smaller. No underflow with small__xand__y. No overflow if
result is in range.

6.6.3.19 int isfinite (double__x)

Theisfinite() function returns a nonzero value if__xis finite: not plus or minus infinity,
and not NaN.

6.6.3.20 int isinf (double__x)

The functionisinf() returns 1 if the argument__xis positive infinity, -1 if__xis negative
infinity, and 0 otherwise.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.6 <math.h>: Mathematics 36

6.6.3.21 int isnan (double__x)

The functionisnan()returns 1 if the argument__x represents a "not-a-number" (NaN)
object, otherwise 0.

6.6.3.22 double ldexp (double__x, int __exp)

Theldexp()function multiplies a floating-point number by an integral power of 2.

Theldexp()function returns the value of__x times 2 raised to the power__exp.

6.6.3.23 double log (double__x)

Thelog() function returns the natural logarithm of argument__x.

6.6.3.24 double log10 (double__x)

Thelog10()function returns the logarithm of argument__x to base 10.

6.6.3.25 long lrint (double__x)

Thelrint() function rounds__xto the nearest integer, rounding the halfway cases to the
even integer direction. (That is both 1.5 and 2.5 values are rounded to 2). This function
is similar to rint() function, but it differs in type of return value and in that an overflow
is possible.

Returns:

The rounded long integer value. If__x is not a finite number or an overflow was,
this realization returns theLONG_MINvalue (0x80000000).

6.6.3.26 long lround (double__x)

Thelround()function rounds__xto the nearest integer, but rounds halfway cases away
from zero (instead of to the nearest even integer). This function is similar toround()
function, but it differs in type of return value and in that an overflow is possible.

Returns:

The rounded long integer value. If__x is not a finite number or an overflow was,
this realization returns theLONG_MINvalue (0x80000000).

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.6 <math.h>: Mathematics 37

6.6.3.27 double modf (double__x, double∗ __iptr)

Themodf() function breaks the argument__x into integral and fractional parts, each of
which has the same sign as the argument. It stores the integral part as a double in the
object pointed to by__iptr.

Themodf() function returns the signed fractional part of__x.

Note:

This implementation skips writing by zero pointer.

6.6.3.28 double pow (double__x, double__y)

The functionpow() returns the value of__x to the exponent__y.

6.6.3.29 double round (double__x)

Theround()function rounds__x to the nearest integer, but rounds halfway cases away
from zero (instead of to the nearest even integer). Overflow is impossible.

Returns:

The rounded value. If__x is an integral or infinite,__x itself is returned. If__x is
NaN, thenNaNis returned.

6.6.3.30 int signbit (double__x)

The signbit() function returns a nonzero value if the value of__x has its sign bit set.
This is not the same as ‘__x< 0.0’, because IEEE 754 floating point allows zero to be
signed. The comparison ‘-0.0< 0.0’ is false, but ‘signbit (-0.0)’ will return a nonzero
value.

Note:

This implementation returns 1 if sign bit is set.

6.6.3.31 double sin (double__x)

Thesin() function returns the sine of__x, measured in radians.

6.6.3.32 double sinh (double__x)

Thesinh()function returns the hyperbolic sine of__x.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.7 <setjmp.h>: Non-local goto 38

6.6.3.33 double sqrt (double__x)

Thesqrt()function returns the non-negative square root of__x.

6.6.3.34 double square (double__x)

The functionsquare()returns__x∗ __x.

Note:

This function does not belong to the C standard definition.

6.6.3.35 double tan (double__x)

Thetan()function returns the tangent of__x, measured in radians.

6.6.3.36 double tanh (double__x)

Thetanh()function returns the hyperbolic tangent of__x.

6.6.3.37 double trunc (double__x)

Thetrunc()function rounds__x to the nearest integer not larger in absolute value.

6.7 <setjmp.h>: Non-local goto

6.7.1 Detailed Description

While the C language has the dreadedgoto statement, it can only be used to jump to
a label in the same (local) function. In order to jump directly to another (non-local)
function, the C library provides thesetjmp()and longjmp() functions. setjmp()and
longjmp()are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Note:

setjmp()andlongjmp()make programs hard to understand and maintain. If possi-
ble, an alternative should be used.
longjmp()can destroy changes made to global register variables (seeHow to per-
manently bind a variable to a register?).

For a very detailed discussion ofsetjmp()/longjmp(), see Chapter 7 ofAdvanced Pro-
gramming in the UNIX Environment, by W. Richard Stevens.

Example:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.7 <setjmp.h>: Non-local goto 39

#include <setjmp.h>

jmp_buf env;

int main (void)
{

if (setjmp (env))
{

... handle error ...
}

while (1)
{

... main processing loop which calls foo() some where ...
}

}

...

void foo (void)
{

... blah, blah, blah ...

if (err)
{

longjmp (env, 1);
}

}

Functions

• int setjmp(jmp_buf __jmpb)
• void longjmp(jmp_buf __jmpb, int __ret) __ATTR_NORETURN__

6.7.2 Function Documentation

6.7.2.1 void longjmp (jmp_buf__jmpb, int __ret)

Non-local jump to a saved stack context.

#include <setjmp.h>

longjmp() restores the environment saved by the last call ofsetjmp()with the corre-
sponding__jmpbargument. Afterlongjmp() is completed, program execution contin-
ues as if the corresponding call ofsetjmp()had just returned the value__ret.

Note:

longjmp() cannot cause 0 to be returned. Iflongjmp() is invoked with a second
argument of 0, 1 will be returned instead.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 40

Parameters:

__jmpb Information saved by a previous call tosetjmp().

__ret Value to return to the caller ofsetjmp().

Returns:

This function never returns.

6.7.2.2 int setjmp (jmp_buf__jmpb)

Save stack context for non-local goto.

#include <setjmp.h>

setjmp()saves the stack context/environment in__jmpbfor later use bylongjmp(). The
stack context will be invalidated if the function which calledsetjmp()returns.

Parameters:

__jmpb Variable of typejmp_buf which holds the stack information such that
the environment can be restored.

Returns:

setjmp() returns 0 if returning directly, and non-zero when returning from
longjmp()using the saved context.

6.8 <stdint.h>: Standard Integer Types

6.8.1 Detailed Description

#include <stdint.h>

Use [u]intN_t if you need exactly N bits.

Since these typedefs are mandated by the C99 standard, they are preferred over rolling
your own typedefs.

Exact-width integer types

Integer types having exactly the specified width

• typedef signed charint8_t
• typedef unsigned charuint8_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 41

• typedef signed intint16_t
• typedef unsigned intuint16_t
• typedef signed long intint32_t
• typedef unsigned long intuint32_t
• typedef signed long long intint64_t
• typedef unsigned long long intuint64_t

Integer types capable of holding object pointers

These allow you to declare variables of the same size as a pointer.

• typedefint16_tintptr_t
• typedefuint16_tuintptr_t

Minimum-width integer types

Integer types having at least the specified width

• typedefint8_t int_least8_t
• typedefuint8_tuint_least8_t
• typedefint16_tint_least16_t
• typedefuint16_tuint_least16_t
• typedefint32_tint_least32_t
• typedefuint32_tuint_least32_t
• typedefint64_tint_least64_t
• typedefuint64_tuint_least64_t

Fastest minimum-width integer types

Integer types being usually fastest having at least the specified width

• typedefint8_t int_fast8_t
• typedefuint8_tuint_fast8_t
• typedefint16_tint_fast16_t
• typedefuint16_tuint_fast16_t
• typedefint32_tint_fast32_t
• typedefuint32_tuint_fast32_t
• typedefint64_tint_fast64_t
• typedefuint64_tuint_fast64_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 42

Greatest-width integer types

Types designating integer data capable of representing any value of any integer type in
the corresponding signed or unsigned category

• typedefint64_tintmax_t
• typedefuint64_tuintmax_t

Limits of specified-width integer types

C++ implementations should define these macros only when __STDC_LIMIT_-
MACROS is defined before<stdint.h> is included

• #defineINT8_MAX 0x7f
• #defineINT8_MIN (-INT8_MAX - 1)
• #defineUINT8_MAX (__CONCAT(INT8_MAX, U)∗ 2U + 1U)
• #defineINT16_MAX 0x7fff
• #defineINT16_MIN (-INT16_MAX - 1)
• #defineUINT16_MAX (__CONCAT(INT16_MAX, U)∗ 2U + 1U)
• #defineINT32_MAX 0x7fffffffL
• #defineINT32_MIN (-INT32_MAX - 1L)
• #defineUINT32_MAX (__CONCAT(INT32_MAX, U)∗ 2UL + 1UL)
• #defineINT64_MAX 0x7fffffffffffffffLL
• #defineINT64_MIN (-INT64_MAX - 1LL)
• #defineUINT64_MAX (__CONCAT(INT64_MAX, U)∗ 2ULL + 1ULL)

Limits of minimum-width integer types

• #defineINT_LEAST8_MAX INT8_MAX
• #defineINT_LEAST8_MIN INT8_MIN
• #defineUINT_LEAST8_MAX UINT8_MAX
• #defineINT_LEAST16_MAX INT16_MAX
• #defineINT_LEAST16_MIN INT16_MIN
• #defineUINT_LEAST16_MAX UINT16_MAX
• #defineINT_LEAST32_MAX INT32_MAX
• #defineINT_LEAST32_MIN INT32_MIN
• #defineUINT_LEAST32_MAX UINT32_MAX
• #defineINT_LEAST64_MAX INT64_MAX
• #defineINT_LEAST64_MIN INT64_MIN
• #defineUINT_LEAST64_MAX UINT64_MAX

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 43

Limits of fastest minimum-width integer types

• #defineINT_FAST8_MAX INT8_MAX
• #defineINT_FAST8_MIN INT8_MIN
• #defineUINT_FAST8_MAX UINT8_MAX
• #defineINT_FAST16_MAXINT16_MAX
• #defineINT_FAST16_MININT16_MIN
• #defineUINT_FAST16_MAXUINT16_MAX
• #defineINT_FAST32_MAXINT32_MAX
• #defineINT_FAST32_MININT32_MIN
• #defineUINT_FAST32_MAXUINT32_MAX
• #defineINT_FAST64_MAXINT64_MAX
• #defineINT_FAST64_MININT64_MIN
• #defineUINT_FAST64_MAXUINT64_MAX

Limits of integer types capable of holding object pointers

• #defineINTPTR_MAX INT16_MAX
• #defineINTPTR_MIN INT16_MIN
• #defineUINTPTR_MAX UINT16_MAX

Limits of greatest-width integer types

• #defineINTMAX_MAX INT64_MAX
• #defineINTMAX_MIN INT64_MIN
• #defineUINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when __STDC_LIMIT_-
MACROS is defined before<stdint.h> is included

• #definePTRDIFF_MAXINT16_MAX
• #definePTRDIFF_MININT16_MIN
• #defineSIG_ATOMIC_MAX INT8_MAX
• #defineSIG_ATOMIC_MIN INT8_MIN
• #defineSIZE_MAX (__CONCAT(INT16_MAX, U))

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 44

Macros for integer constants

C++ implementations should define these macros only when __STDC_CONSTANT_-
MACROS is defined before<stdint.h> is included.

These definitions are valid for integer constants without suffix and for macros defined
as integer constant without suffix

• #defineINT8_C(value) ((int8_t) value)
• #defineUINT8_C(value) ((uint8_t) __CONCAT(value, U))
• #defineINT16_C(value) value
• #defineUINT16_C(value) __CONCAT(value, U)
• #defineINT32_C(value) __CONCAT(value, L)
• #defineUINT32_C(value) __CONCAT(value, UL)
• #defineINT64_C(value) __CONCAT(value, LL)
• #defineUINT64_C(value) __CONCAT(value, ULL)
• #defineINTMAX_C(value) __CONCAT(value, LL)
• #defineUINTMAX_C(value) __CONCAT(value, ULL)

6.8.2 Define Documentation

6.8.2.1 #define INT16_C(value) value

define a constant of type int16_t

6.8.2.2 #define INT16_MAX 0x7fff

largest positive value an int16_t can hold.

6.8.2.3 #define INT16_MIN (-INT16_MAX - 1)

smallest negative value an int16_t can hold.

6.8.2.4 #define INT32_C(value) __CONCAT(value, L)

define a constant of type int32_t

6.8.2.5 #define INT32_MAX 0x7fffffffL

largest positive value an int32_t can hold.

6.8.2.6 #define INT32_MIN (-INT32_MAX - 1L)

smallest negative value an int32_t can hold.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 45

6.8.2.7 #define INT64_C(value) __CONCAT(value, LL)

define a constant of type int64_t

6.8.2.8 #define INT64_MAX 0x7fffffffffffffffLL

largest positive value an int64_t can hold.

6.8.2.9 #define INT64_MIN (-INT64_MAX - 1LL)

smallest negative value an int64_t can hold.

6.8.2.10 #define INT8_C(value) ((int8_t) value)

define a constant of type int8_t

6.8.2.11 #define INT8_MAX 0x7f

largest positive value an int8_t can hold.

6.8.2.12 #define INT8_MIN (-INT8_MAX - 1)

smallest negative value an int8_t can hold.

6.8.2.13 #define INT_FAST16_MAX INT16_MAX

largest positive value an int_fast16_t can hold.

6.8.2.14 #define INT_FAST16_MIN INT16_MIN

smallest negative value an int_fast16_t can hold.

6.8.2.15 #define INT_FAST32_MAX INT32_MAX

largest positive value an int_fast32_t can hold.

6.8.2.16 #define INT_FAST32_MIN INT32_MIN

smallest negative value an int_fast32_t can hold.

6.8.2.17 #define INT_FAST64_MAX INT64_MAX

largest positive value an int_fast64_t can hold.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 46

6.8.2.18 #define INT_FAST64_MIN INT64_MIN

smallest negative value an int_fast64_t can hold.

6.8.2.19 #define INT_FAST8_MAX INT8_MAX

largest positive value an int_fast8_t can hold.

6.8.2.20 #define INT_FAST8_MIN INT8_MIN

smallest negative value an int_fast8_t can hold.

6.8.2.21 #define INT_LEAST16_MAX INT16_MAX

largest positive value an int_least16_t can hold.

6.8.2.22 #define INT_LEAST16_MIN INT16_MIN

smallest negative value an int_least16_t can hold.

6.8.2.23 #define INT_LEAST32_MAX INT32_MAX

largest positive value an int_least32_t can hold.

6.8.2.24 #define INT_LEAST32_MIN INT32_MIN

smallest negative value an int_least32_t can hold.

6.8.2.25 #define INT_LEAST64_MAX INT64_MAX

largest positive value an int_least64_t can hold.

6.8.2.26 #define INT_LEAST64_MIN INT64_MIN

smallest negative value an int_least64_t can hold.

6.8.2.27 #define INT_LEAST8_MAX INT8_MAX

largest positive value an int_least8_t can hold.

6.8.2.28 #define INT_LEAST8_MIN INT8_MIN

smallest negative value an int_least8_t can hold.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 47

6.8.2.29 #define INTMAX_C(value) __CONCAT(value, LL)

define a constant of type intmax_t

6.8.2.30 #define INTMAX_MAX INT64_MAX

largest positive value an intmax_t can hold.

6.8.2.31 #define INTMAX_MIN INT64_MIN

smallest negative value an intmax_t can hold.

6.8.2.32 #define INTPTR_MAX INT16_MAX

largest positive value an intptr_t can hold.

6.8.2.33 #define INTPTR_MIN INT16_MIN

smallest negative value an intptr_t can hold.

6.8.2.34 #define PTRDIFF_MAX INT16_MAX

largest positive value a ptrdiff_t can hold.

6.8.2.35 #define PTRDIFF_MIN INT16_MIN

smallest negative value a ptrdiff_t can hold.

6.8.2.36 #define SIG_ATOMIC_MAX INT8_MAX

largest positive value a sig_atomic_t can hold.

6.8.2.37 #define SIG_ATOMIC_MIN INT8_MIN

smallest negative value a sig_atomic_t can hold.

6.8.2.38 #define SIZE_MAX (__CONCAT(INT16_MAX, U))

largest value a size_t can hold.

6.8.2.39 #define UINT16_C(value) __CONCAT(value, U)

define a constant of type uint16_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 48

6.8.2.40 #define UINT16_MAX (__CONCAT(INT16_MAX, U)∗ 2U + 1U)

largest value an uint16_t can hold.

6.8.2.41 #define UINT32_C(value) __CONCAT(value, UL)

define a constant of type uint32_t

6.8.2.42 #define UINT32_MAX (__CONCAT(INT32_MAX, U)∗ 2UL + 1UL)

largest value an uint32_t can hold.

6.8.2.43 #define UINT64_C(value) __CONCAT(value, ULL)

define a constant of type uint64_t

6.8.2.44 #define UINT64_MAX (__CONCAT(INT64_MAX, U)∗ 2ULL + 1ULL)

largest value an uint64_t can hold.

6.8.2.45 #define UINT8_C(value) ((uint8_t) __CONCAT(value, U))

define a constant of type uint8_t

6.8.2.46 #define UINT8_MAX (__CONCAT(INT8_MAX, U) ∗ 2U + 1U)

largest value an uint8_t can hold.

6.8.2.47 #define UINT_FAST16_MAX UINT16_MAX

largest value an uint_fast16_t can hold.

6.8.2.48 #define UINT_FAST32_MAX UINT32_MAX

largest value an uint_fast32_t can hold.

6.8.2.49 #define UINT_FAST64_MAX UINT64_MAX

largest value an uint_fast64_t can hold.

6.8.2.50 #define UINT_FAST8_MAX UINT8_MAX

largest value an uint_fast8_t can hold.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 49

6.8.2.51 #define UINT_LEAST16_MAX UINT16_MAX

largest value an uint_least16_t can hold.

6.8.2.52 #define UINT_LEAST32_MAX UINT32_MAX

largest value an uint_least32_t can hold.

6.8.2.53 #define UINT_LEAST64_MAX UINT64_MAX

largest value an uint_least64_t can hold.

6.8.2.54 #define UINT_LEAST8_MAX UINT8_MAX

largest value an uint_least8_t can hold.

6.8.2.55 #define UINTMAX_C(value) __CONCAT(value, ULL)

define a constant of type uintmax_t

6.8.2.56 #define UINTMAX_MAX UINT64_MAX

largest value an uintmax_t can hold.

6.8.2.57 #define UINTPTR_MAX UINT16_MAX

largest value an uintptr_t can hold.

6.8.3 Typedef Documentation

6.8.3.1 typedef signed intint16_t

16-bit signed type.

6.8.3.2 typedef signed long intint32_t

32-bit signed type.

6.8.3.3 typedef signed long long intint64_t

64-bit signed type.

Note:

This type is not available when the compiler option -mint8 is in effect.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 50

6.8.3.4 typedef signed charint8_t

8-bit signed type.

6.8.3.5 typedefint16_t int_fast16_t

fastest signed int with at least 16 bits.

6.8.3.6 typedefint32_t int_fast32_t

fastest signed int with at least 32 bits.

6.8.3.7 typedefint64_t int_fast64_t

fastest signed int with at least 64 bits.

Note:

This type is not available when the compiler option -mint8 is in effect.

6.8.3.8 typedefint8_t int_fast8_t

fastest signed int with at least 8 bits.

6.8.3.9 typedefint16_t int_least16_t

signed int with at least 16 bits.

6.8.3.10 typedefint32_t int_least32_t

signed int with at least 32 bits.

6.8.3.11 typedefint64_t int_least64_t

signed int with at least 64 bits.

Note:

This type is not available when the compiler option -mint8 is in effect.

6.8.3.12 typedefint8_t int_least8_t

signed int with at least 8 bits.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.8 <stdint.h>: Standard Integer Types 51

6.8.3.13 typedefint64_t intmax_t

largest signed int available.

6.8.3.14 typedefint16_t intptr_t

Signed pointer compatible type.

6.8.3.15 typedef unsigned intuint16_t

16-bit unsigned type.

6.8.3.16 typedef unsigned long intuint32_t

32-bit unsigned type.

6.8.3.17 typedef unsigned long long intuint64_t

64-bit unsigned type.

Note:

This type is not available when the compiler option -mint8 is in effect.

6.8.3.18 typedef unsigned charuint8_t

8-bit unsigned type.

6.8.3.19 typedefuint16_t uint_fast16_t

fastest unsigned int with at least 16 bits.

6.8.3.20 typedefuint32_t uint_fast32_t

fastest unsigned int with at least 32 bits.

6.8.3.21 typedefuint64_t uint_fast64_t

fastest unsigned int with at least 64 bits.

Note:

This type is not available when the compiler option -mint8 is in effect.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 52

6.8.3.22 typedefuint8_t uint_fast8_t

fastest unsigned int with at least 8 bits.

6.8.3.23 typedefuint16_t uint_least16_t

unsigned int with at least 16 bits.

6.8.3.24 typedefuint32_t uint_least32_t

unsigned int with at least 32 bits.

6.8.3.25 typedefuint64_t uint_least64_t

unsigned int with at least 64 bits.

Note:

This type is not available when the compiler option -mint8 is in effect.

6.8.3.26 typedefuint8_t uint_least8_t

unsigned int with at least 8 bits.

6.8.3.27 typedefuint64_t uintmax_t

largest unsigned int available.

6.8.3.28 typedefuint16_t uintptr_t

Unsigned pointer compatible type.

6.9 <stdio.h>: Standard IO facilities

6.9.1 Detailed Description

#include <stdio.h>

Introduction to the Standard IO facilities This file declares the standard IO facili-
ties that are implemented inavr-libc . Due to the nature of the underlying hardware,
only a limited subset of standard IO is implemented. There is no actual file implementa-
tion available, so only device IO can be performed. Since there’s no operating system,
the application needs to provide enough details about their devices in order to make
them usable by the standard IO facilities.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 53

Due to space constraints, some functionality has not been implemented at all (like some
of the printf conversions that have been left out). Nevertheless, potential users of
this implementation should be warned: theprintf andscanf families of functions,
although usually associated with presumably simple things like the famous "Hello,
world!" program, are actually fairly complex which causes their inclusion to eat up
a fair amount of code space. Also, they are not fast due to the nature of interpreting
the format string at run-time. Whenever possible, resorting to the (sometimes non-
standard) predetermined conversion facilities that are offered by avr-libc will usually
cost much less in terms of speed and code size.

Tunable options for code size vs. feature set In order to allow programmers a code
size vs. functionality tradeoff, the functionvfprintf() which is the heart of the printf
family can be selected in different flavours using linker options. See the documentation
of vfprintf() for a detailed description. The same applies tovfscanf()and thescanf
family of functions.

Outline of the chosen API The standard streamsstdin , stdout , andstderr are
provided, but contrary to the C standard, since avr-libc has no knowledge about appli-
cable devices, these streams are not already pre-initialized at application startup. Also,
since there is no notion of "file" whatsoever to avr-libc, there is no functionfopen()
that could be used to associate a stream to some device. (Seenote 1.) Instead, the
functionfdevopen() is provided to associate a stream to a device, where the device
needs to provide a function to send a character, to receive a character, or both. There
is no differentiation between "text" and "binary" streams inside avr-libc. Character\n
is sent literally down to the device’sput() function. If the device requires a carriage
return (\r ) character to be sent before the linefeed, itsput() routine must implement
this (seenote 2).

As an alternative method tofdevopen(), the macrofdev_setup_stream()might be used
to setup a user-supplied FILE structure.

It should be noted that the automatic conversion of a newline character into a carriage
return - newline sequence breaks binary transfers. If binary transfers are desired, no
automatic conversion should be performed, but instead any string that aims to issue a
CR-LF sequence must use" \r \n" explicitly.

For convenience, the first call tofdevopen() that opens a stream for reading
will cause the resulting stream to be aliased tostdin . Likewise, the first call to
fdevopen() that opens a stream for writing will cause the resulting stream to be
aliased to both,stdout , andstderr . Thus, if the open was done with both, read
and write intent, all three standard streams will be identical. Note that these aliases are
indistinguishable from each other, thus callingfclose() on such a stream will also
effectively close all of its aliases (note 3).

It is possible to tie additional user data to a stream, usingfdev_set_udata(). The back-
end put and get functions can then extract this user data usingfdev_get_udata(), and act

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 54

appropriately. For example, a single put function could be used to talk to two different
UARTs that way, or the put and get functions could keep internal state between calls
there.

Format strings in flash ROM All the printf andscanf family functions come
in two flavours: the standard name, where the format string is expected to be in SRAM,
as well as a version with the suffix "_P" where the format string is expected to reside
in the flash ROM. The macroPSTR(explained in<avr/pgmspace.h>: Program Space
Utilities) becomes very handy for declaring these format strings.

Running stdio without malloc() By default,fdevopen()requiresmalloc(). As this is
often not desired in the limited environment of a microcontroller, an alternative option
is provided to run completely withoutmalloc().

The macrofdev_setup_stream()is provided to prepare a user-supplied FILE buffer for
operation with stdio.

Example

#include <stdio.h>

static int uart_putchar(char c, FILE *stream);

static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
_FDEV_SETUP_WRITE);

static int
uart_putchar(char c, FILE *stream)
{

if (c == ’\n’)
uart_putchar(’\r’, stream);

loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0;

}

int
main(void)
{

init_uart();
stdout = &mystdout;
printf("Hello, world!\n");

return 0;
}

This example uses the initializer formFDEV_SETUP_STREAM()rather than the
function-likefdev_setup_stream(), so all data initialization happens during C start-up.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 55

If streams initialized that way are no longer needed, they can be destroyed by first
calling the macrofdev_close(), and then destroying the object itself. No call tofclose()
should be issued for these streams. While callingfclose()itself is harmless, it will cause
an undefined reference tofree()and thus cause the linker to link the malloc module into
the application.

Notes

Note 1:

It might have been possible to implement a device abstraction that is compatible
with fopen() but since this would have required to parse a string, and to take all
the information needed either out of this string, or out of an additional table that
would need to be provided by the application, this approach was not taken.

Note 2:

This basically follows the Unix approach: if a device such as a terminal needs
special handling, it is in the domain of the terminal device driver to provide this
functionality. Thus, a simple function suitable asput() for fdevopen() that
talks to a UART interface might look like this:

int
uart_putchar(char c, FILE *stream)
{

if (c == ’\n’)
uart_putchar(’\r’);

loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0;

}

Note 3:

This implementation has been chosen because the cost of maintaining an alias
is considerably smaller than the cost of maintaining full copies of each stream.
Yet, providing an implementation that offers the complete set of standard
streams was deemed to be useful. Not only that writingprintf() instead of
fprintf(mystream, ...) saves typing work, but since avr-gcc needs to re-
sort to pass all arguments of variadic functions on the stack (as opposed to passing
them in registers for functions that take a fixed number of parameters), the ability
to pass one parameter less by implyingstdin will also save some execution time.

Defines

• #defineFILE struct __file

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 56

• #definestdin(__iob[0])
• #definestdout(__iob[1])
• #definestderr(__iob[2])
• #defineEOF(-1)
• #definefdev_set_udata(stream, u) do { (stream)→ udata = u; } while(0)
• #definefdev_get_udata(stream) ((stream)→ udata)
• #definefdev_setup_stream(stream, put, get, rwflag)
• #define_FDEV_SETUP_READ__SRD
• #define_FDEV_SETUP_WRITE__SWR
• #define_FDEV_SETUP_RW(__SRD|__SWR)
• #define_FDEV_ERR(-1)
• #define_FDEV_EOF(-2)
• #defineFDEV_SETUP_STREAM(put, get, rwflag)
• #definefdev_close()
• #defineputc(__c, __stream) fputc(__c, __stream)
• #defineputchar(__c) fputc(__c, stdout)
• #definegetc(__stream) fgetc(__stream)
• #definegetchar() fgetc(stdin)

Functions

• int fclose(FILE ∗__stream)
• int vfprintf (FILE ∗__stream, const char∗__fmt, va_list __ap)
• int vfprintf_P (FILE ∗__stream, const char∗__fmt, va_list __ap)
• int fputc (int __c, FILE∗__stream)
• int printf (const char∗__fmt,...)
• int printf_P(const char∗__fmt,...)
• int vprintf (const char∗__fmt, va_list __ap)
• int sprintf (char∗__s, const char∗__fmt,...)
• int sprintf_P(char∗__s, const char∗__fmt,...)
• int snprintf(char∗__s, size_t __n, const char∗__fmt,...)
• int snprintf_P(char∗__s, size_t __n, const char∗__fmt,...)
• int vsprintf (char∗__s, const char∗__fmt, va_list ap)
• int vsprintf_P(char∗__s, const char∗__fmt, va_list ap)
• int vsnprintf(char∗__s, size_t __n, const char∗__fmt, va_list ap)
• int vsnprintf_P(char∗__s, size_t __n, const char∗__fmt, va_list ap)
• int fprintf (FILE ∗__stream, const char∗__fmt,...)
• int fprintf_P (FILE ∗__stream, const char∗__fmt,...)
• int fputs(const char∗__str, FILE∗__stream)
• int fputs_P(const char∗__str, FILE∗__stream)
• int puts(const char∗__str)
• int puts_P(const char∗__str)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 57

• size_t fwrite (const void∗__ptr, size_t __size, size_t __nmemb, FILE∗__-
stream)

• int fgetc(FILE ∗__stream)
• int ungetc(int __c, FILE∗__stream)
• char∗ fgets(char∗__str, int __size, FILE∗__stream)
• char∗ gets(char∗__str)
• size_tfread(void ∗__ptr, size_t __size, size_t __nmemb, FILE∗__stream)
• void clearerr(FILE ∗__stream)
• int feof (FILE ∗__stream)
• int ferror (FILE ∗__stream)
• int vfscanf(FILE ∗__stream, const char∗__fmt, va_list __ap)
• int vfscanf_P(FILE ∗__stream, const char∗__fmt, va_list __ap)
• int fscanf(FILE ∗__stream, const char∗__fmt,...)
• int fscanf_P(FILE ∗__stream, const char∗__fmt,...)
• int scanf(const char∗__fmt,...)
• int scanf_P(const char∗__fmt,...)
• int vscanf(const char∗__fmt, va_list __ap)
• int sscanf(const char∗__buf, const char∗__fmt,...)
• int sscanf_P(const char∗__buf, const char∗__fmt,...)
• int fflush (FILE ∗stream)
• FILE ∗ fdevopen(int(∗put)(char, FILE∗), int(∗get)(FILE∗))

6.9.2 Define Documentation

6.9.2.1 #define _FDEV_EOF (-2)

Return code for an end-of-file condition during device read.

To be used in the get function offdevopen().

6.9.2.2 #define _FDEV_ERR (-1)

Return code for an error condition during device read.

To be used in the get function offdevopen().

6.9.2.3 #define _FDEV_SETUP_READ __SRD

fdev_setup_stream()with read intent

6.9.2.4 #define _FDEV_SETUP_RW (__SRD|__SWR)

fdev_setup_stream()with read/write intent

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 58

6.9.2.5 #define _FDEV_SETUP_WRITE __SWR

fdev_setup_stream()with write intent

6.9.2.6 #define EOF (-1)

EOFdeclares the value that is returned by various standard IO functions in case of an
error. Since the AVR platform (currently) doesn’t contain an abstraction for actual files,
its origin as "end of file" is somewhat meaningless here.

6.9.2.7 #define fdev_close()

This macro frees up any library resources that might be associated withstream . It
should be called ifstream is no longer needed, right before the application is going
to destroy thestream object itself.

(Currently, this macro evaluates to nothing, but this might change in future versions of
the library.)

6.9.2.8 #define fdev_get_udata(stream) ((stream)→ udata)

This macro retrieves a pointer to user defined data from a FILE stream object.

6.9.2.9 #define fdev_set_udata(stream, u) do { (stream)→ udata = u; } while(0)

This macro inserts a pointer to user defined data into a FILE stream object.

The user data can be useful for tracking state in the put and get functions supplied to
thefdevopen()function.

6.9.2.10 #define FDEV_SETUP_STREAM(put, get, rwflag)

Initializer for a user-supplied stdio stream.

This macro acts similar tofdev_setup_stream(), but it is to be used as the initializer of
a variable of type FILE.

The remaining arguments are to be used as explained infdev_setup_stream().

6.9.2.11 #define fdev_setup_stream(stream, put, get, rwflag)

Setup a user-supplied buffer as an stdio stream.

This macro takes a user-supplied bufferstream , and sets it up as a stream that is valid
for stdio operations, similar to one that has been obtained dynamically fromfdevopen().
The buffer to setup must be of type FILE.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 59

The argumentsput andget are identical to those that need to be passed tofdevopen().

Therwflag argument can take one of the values _FDEV_SETUP_READ, _FDEV_-
SETUP_WRITE, or _FDEV_SETUP_RW, for read, write, or read/write intent, respec-
tively.

Note:

No assignments to the standard streams will be performed byfdev_setup_stream().
If standard streams are to be used, these need to be assigned by the user. See also
underRunning stdio without malloc().

6.9.2.12 #define FILE struct __file

FILE is the opaque structure that is passed around between the various standard IO
functions.

6.9.2.13 #define getc(__stream) fgetc(__stream)

The macrogetc used to be a "fast" macro implementation with a functionality iden-
tical to fgetc(). For space constraints, inavr-libc , it is just an alias forfgetc .

6.9.2.14 #define getchar(void) fgetc(stdin)

The macrogetchar reads a character fromstdin . Return values and error handling
is identical tofgetc().

6.9.2.15 #define putc(__c, __stream) fputc(__c, __stream)

The macroputc used to be a "fast" macro implementation with a functionality iden-
tical to fputc(). For space constraints, inavr-libc , it is just an alias forfputc .

6.9.2.16 #define putchar(__c) fputc(__c, stdout)

The macroputchar sends characterc to stdout .

6.9.2.17 #define stderr (__iob[2])

Stream destined for error output. Unless specifically assigned, identical tostdout .

If stderr should point to another stream, the result of anotherfdevopen() must
be explicitly assigned to it without closing the previousstderr (since this would also
closestdout ).

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 60

6.9.2.18 #define stdin (__iob[0])

Stream that will be used as an input stream by the simplified functions that don’t take
astream argument.

The first stream opened with read intent usingfdevopen() will be assigned to
stdin .

6.9.2.19 #define stdout (__iob[1])

Stream that will be used as an output stream by the simplified functions that don’t take
astream argument.

The first stream opened with write intent usingfdevopen() will be assigned to both,
stdin , andstderr .

6.9.3 Function Documentation

6.9.3.1 void clearerr (FILE ∗ __stream)

Clear the error and end-of-file flags ofstream .

6.9.3.2 int fclose (FILE∗ __stream)

This function closesstream , and disallows and further IO to and from it.

When usingfdevopen()to setup the stream, a call tofclose()is needed in order to free
the internal resources allocated.

If the stream has been set up usingfdev_setup_stream()or FDEV_SETUP_-
STREAM(), usefdev_close()instead.

It currently always returns 0 (for success).

6.9.3.3 FILE∗ fdevopen (int(∗)(char, FILE ∗) put, int(∗)(FILE ∗) get)

This function is a replacement forfopen() .

It opens a stream for a device where the actual device implementation needs to be
provided by the application. If successful, a pointer to the structure for the opened
stream is returned. Reasons for a possible failure currently include that neither the
put nor theget argument have been provided, thus attempting to open a stream with
no IO intent at all, or that insufficient dynamic memory is available to establish a new
stream.

If the put function pointer is provided, the stream is opened with write intent. The
function passed asput shall take two arguments, the first a character to write to the
device, and the second a pointer to FILE, and shall return 0 if the output was successful,
and a nonzero value if the character could not be sent to the device.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 61

If the get function pointer is provided, the stream is opened with read intent. The
function passed asget shall take a pointer to FILE as its single argument, and return
one character from the device, passed as anint type. If an error occurs when trying
to read from the device, it shall return_FDEV_ERR. If an end-of-file condition was
reached while reading from the device,_FDEV_EOFshall be returned.

If both functions are provided, the stream is opened with read and write intent.

The first stream opened with read intent is assigned tostdin , and the first one opened
with write intent is assigned to both,stdout andstderr .

fdevopen()usescalloc()(und thusmalloc()) in order to allocate the storage for the new
stream.

Note:

If the macro __STDIO_FDEVOPEN_COMPAT_12 is declared before including
<stdio.h>, a function prototype forfdevopen()will be chosen that is backwards
compatible with avr-libc version 1.2 and before. This is solely intented for pro-
viding a simple migration path without the need to immediately change all source
code. Do not use for new code.

6.9.3.4 int feof (FILE ∗ __stream)

Test the end-of-file flag ofstream . This flag can only be cleared by a call toclearerr().

6.9.3.5 int ferror (FILE ∗ __stream)

Test the error flag ofstream . This flag can only be cleared by a call toclearerr().

6.9.3.6 int fflush (FILE ∗ stream)

Flushstream .

This is a null operation provided for source-code compatibility only, as the standard IO
implementation currently does not perform any buffering.

6.9.3.7 int fgetc (FILE ∗ __stream)

The functionfgetc reads a character fromstream . It returns the character, orEOF
in case end-of-file was encountered or an error occurred. The routinesfeof() or ferror()
must be used to distinguish between both situations.

6.9.3.8 char∗ fgets (char∗ __str, int __size, FILE ∗ __stream)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 62

Read at mostsize - 1 bytes fromstream , until a newline character was encoun-
tered, and store the characters in the buffer pointed to bystr . Unless an error was
encountered while reading, the string will then be terminated with aNULcharacter.

If an error was encountered, the function returns NULL and sets the error flag of
stream , which can be tested usingferror(). Otherwise, a pointer to the string will
be returned.

6.9.3.9 int fprintf (FILE ∗ __stream, const char∗ __fmt, ...)

The functionfprintf performs formatted output tostream . Seevfprintf()
for details.

6.9.3.10 int fprintf_P (FILE ∗ __stream, const char∗ __fmt, ...)

Variant offprintf() that uses afmt string that resides in program memory.

6.9.3.11 int fputc (int __c, FILE ∗ __stream)

The functionfputc sends the characterc (though given as typeint ) to stream . It
returns the character, orEOFin case an error occurred.

6.9.3.12 int fputs (const char∗ __str, FILE ∗ __stream)

Write the string pointed to bystr to streamstream .

Returns 0 on success and EOF on error.

6.9.3.13 int fputs_P (const char∗ __str, FILE ∗ __stream)

Variant offputs()wherestr resides in program memory.

6.9.3.14 size_t fread (void∗ __ptr, size_t __size, size_t __nmemb, FILE ∗ __-
stream)

Readnmembobjects,size bytes each, fromstream , to the buffer pointed to by
ptr .

Returns the number of objects successfully read, i. e.nmembunless an input error
occured or end-of-file was encountered.feof() andferror()must be used to distinguish
between these two conditions.

6.9.3.15 int fscanf (FILE∗ __stream, const char∗ __fmt, ...)

The functionfscanf performs formatted input, reading the input data fromstream .

Seevfscanf()for details.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 63

6.9.3.16 int fscanf_P (FILE∗ __stream, const char∗ __fmt, ...)

Variant offscanf()using afmt string in program memory.

6.9.3.17 size_t fwrite (const void∗ __ptr, size_t__size, size_t__nmemb, FILE ∗
__stream)

Write nmembobjects,size bytes each, tostream . The first byte of the first object
is referenced byptr .

Returns the number of objects successfully written, i. e.nmembunless an output error
occured.

6.9.3.18 char∗ gets (char∗ __str)

Similar tofgets()except that it will operate on streamstdin , and the trailing newline
(if any) will not be stored in the string. It is the caller’s responsibility to provide enough
storage to hold the characters read.

6.9.3.19 int printf (const char∗ __fmt, ...)

The function printf performs formatted output to streamstderr . See
vfprintf() for details.

6.9.3.20 int printf_P (const char∗ __fmt, ...)

Variant ofprintf() that uses afmt string that resides in program memory.

6.9.3.21 int puts (const char∗ __str)

Write the string pointed to bystr , and a trailing newline character, tostdout .

6.9.3.22 int puts_P (const char∗ __str)

Variant ofputs()wherestr resides in program memory.

6.9.3.23 int scanf (const char∗ __fmt, ...)

The functionscanf performs formatted input from streamstdin .

Seevfscanf()for details.

6.9.3.24 int scanf_P (const char∗ __fmt, ...)

Variant ofscanf()wherefmt resides in program memory.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 64

6.9.3.25 int snprintf (char ∗ __s, size_t__n, const char∗ __fmt, ...)

Like sprintf() , but instead of assumings to be of infinite size, no more thann
characters (including the trailing NUL character) will be converted tos .

Returns the number of characters that would have been written tos if there were
enough space.

6.9.3.26 int snprintf_P (char∗ __s, size_t__n, const char∗ __fmt, ...)

Variant ofsnprintf() that uses afmt string that resides in program memory.

6.9.3.27 int sprintf (char ∗ __s, const char∗ __fmt, ...)

Variant ofprintf() that sends the formatted characters to strings .

6.9.3.28 int sprintf_P (char∗ __s, const char∗ __fmt, ...)

Variant ofsprintf() that uses afmt string that resides in program memory.

6.9.3.29 int sscanf (const char∗ __buf, const char∗ __fmt, ...)

The functionsscanf performs formatted input, reading the input data from the buffer
pointed to bybuf .

Seevfscanf()for details.

6.9.3.30 int sscanf_P (const char∗ __buf, const char∗ __fmt, ...)

Variant ofsscanf()using afmt string in program memory.

6.9.3.31 int ungetc (int__c, FILE ∗ __stream)

Theungetc()function pushes the characterc (converted to an unsigned char) back onto
the input stream pointed to bystream . The pushed-back character will be returned
by a subsequent read on the stream.

Currently, only a single character can be pushed back onto the stream.

Theungetc()function returns the character pushed back after the conversion, orEOFif
the operation fails. If the value of the argumentc character equalsEOF, the operation
will fail and the stream will remain unchanged.

6.9.3.32 int vfprintf (FILE ∗ __stream, const char∗ __fmt, va_list __ap)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 65

vfprintf is the central facility of theprintf family of functions. It outputs values
to stream under control of a format string passed infmt . The actual values to print
are passed as a variable argument listap .

vfprintf returns the number of characters written tostream , or EOF in case of
an error. Currently, this will only happen ifstream has not been opened with write
intent.

The format string is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the%character. The arguments must properly correspond
(after type promotion) with the conversion specifier. After the%, the following appear
in sequence:

• Zero or more of the following flags:

– # The value should be converted to an "alternate form". For c, d, i, s, and
u conversions, this option has no effect. For o conversions, the precision of
the number is increased to force the first character of the output string to
a zero (except if a zero value is printed with an explicit precision of zero).
For x and X conversions, a non-zero result has the string ‘0x’ (or ‘0X’ for
X conversions) prepended to it.

– 0 (zero) Zero padding. For all conversions, the converted value is padded
on the left with zeros rather than blanks. If a precision is given with a
numeric conversion (d, i, o, u, i, x, and X), the 0 flag is ignored.

– - A negative field width flag; the converted value is to be left adjusted on
the field boundary. The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A - overrides a 0 if both are
given.

– ’ ’ (space) A blank should be left before a positive number produced by a
signed conversion (d, or i).

– + A sign must always be placed before a number produced by a signed
conversion. A + overrides a space if both are used.

• An optional decimal digit string specifying a minimum field width. If the con-
verted value has fewer characters than the field width, it will be padded with
spaces on the left (or right, if the left-adjustment flag has been given) to fill out
the field width.

• An optional precision, in the form of a period . followed by an optional digit
string. If the digit string is omitted, the precision is taken as zero. This gives the
minimum number of digits to appear for d, i, o, u, x, and X conversions, or the
maximum number of characters to be printed from a string fors conversions.

• An optionall or h length modifier, that specifies that the argument for the d, i,
o, u, x, or X conversion is a"long int" rather thanint . Theh is ignored,
as"short int" is equivalent toint .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 66

• A character that specifies the type of conversion to be applied.

The conversion specifiers and their meanings are:

• diouxX The int (or appropriate variant) argument is converted to signed decimal
(d and i), unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal
(x and X) notation. The letters "abcdef" are used for x conversions; the letters
"ABCDEF" are used for X conversions. The precision, if any, gives the minimum
number of digits that must appear; if the converted value requires fewer digits, it
is padded on the left with zeros.

• p Thevoid ∗ argument is taken as an unsigned integer, and converted similarly
as a%#xcommand would do.

• c The int argument is converted to an"unsigned char" , and the resulting
character is written.

• s The "char ∗" argument is expected to be a pointer to an array of character
type (pointer to a string). Characters from the array are written up to (but not
including) a terminating NUL character; if a precision is specified, no more than
the number specified are written. If a precision is given, no null character need
be present; if the precision is not specified, or is greater than the size of the array,
the array must contain a terminating NUL character.

• %A %is written. No argument is converted. The complete conversion specifica-
tion is "%%".

• eE The double argument is rounded and converted in the format
"[-]d.ddde śdd" where there is one digit before the decimal-point charac-
ter and the number of digits after it is equal to the precision; if the precision
is missing, it is taken as 6; if the precision is zero, no decimal-point character
appears. AnE conversion uses the letter’E’ (rather than’e’ ) to introduce
the exponent. The exponent always contains two digits; if the value is zero, the
exponent is 00.

• fF The double argument is rounded and converted to decimal notation in the
format "[-]ddd.ddd" , where the number of digits after the decimal-point
character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly zero, no decimal-point character appears.
If a decimal point appears, at least one digit appears before it.

• gG The double argument is converted in stylef or e (or F or E for G conver-
sions). The precision specifies the number of significant digits. If the precision
is missing, 6 digits are given; if the precision is zero, it is treated as 1. Stylee is
used if the exponent from its conversion is less than -4 or greater than or equal to
the precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 67

• S Similar to thes format, except the pointer is expected to point to a program-
memory (ROM) string instead of a RAM string.

In no case does a non-existent or small field width cause truncation of a numeric field;
if the result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Since the full implementation of all the mentioned features becomes fairly large, three
different flavours ofvfprintf() can be selected using linker options. The defaultvf-
printf() implements all the mentioned functionality except floating point conversions.
A minimized version ofvfprintf() is available that only implements the very basic in-
teger and string conversion facilities, but only the# additional option can be specified
using conversion flags (these flags are parsed correctly from the format specification,
but then simply ignored). This version can be requested using the followingcompiler
options:

-Wl,-u,vfprintf -lprintf_min

If the full functionality including the floating point conversions is required, the follow-
ing options should be used:

-Wl,-u,vfprintf -lprintf_flt -lm

Limitations:

• The specified width and precision can be at most 255.

Notes:

• For floating-point conversions, if you link default or minimized version of
vfprintf(), the symbol ? will be output and double argument will be skiped.
So you output below will not be crashed. For default version the width field
and the "pad to left" ( symbol minus ) option will work in this case.

• The hh length modifier is ignored (char argument is promouted toint ).
More exactly, this realization does not check the number ofh symbols.

• But the ll length modifier will to abort the output, as this realization does
not operatelong long arguments.

• The variable width or precision field (an asterisk∗ symbol) is not realized
and will to abort the output.

6.9.3.33 int vfprintf_P (FILE ∗ __stream, const char∗ __fmt, va_list __ap)

Variant ofvfprintf() that uses afmt string that resides in program memory.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 68

6.9.3.34 int vfscanf (FILE∗ __stream, const char∗ __fmt, va_list __ap)

Formatted input. This function is the heart of thescanf family of functions.

Characters are read fromstream and processed in a way described byfmt . Conver-
sion results will be assigned to the parameters passed viaap .

The format stringfmt is scanned for conversion specifications. Anything that doesn’t
comprise a conversion specification is taken as text that is matched literally against
the input. White space in the format string will match any white space in the data
(including none), all other characters match only itself. Processing is aborted as soon as
the data and format string no longer match, or there is an error or end-of-file condition
onstream .

Most conversions skip leading white space before starting the actual conversion.

Conversions are introduced with the character% . Possible options can follow the% :

• a ∗ indicating that the conversion should be performed but the conversion result
is to be discarded; no parameters will be processed fromap ,

• the characterh indicating that the argument is a pointer toshort int (rather
thanint ),

• the characterl indicating that the argument is a pointer tolong int (rather
than int , for integer type conversions), or a pointer todouble (for floating
point conversions).

In addition, a maximal field width may be specified as a nonzero positive decimal
integer, which will restrict the conversion to at most this many characters from the
input stream. This field width is limited to at most 127 characters which is also the
default value (except for thec conversion that defaults to 1).

The following conversion flags are supported:

• %Matches a literal%character. This is not a conversion.

• d Matches an optionally signed decimal integer; the next pointer must be a
pointer toint .

• i Matches an optionally signed integer; the next pointer must be a pointer to
int . The integer is read in base 16 if it begins with0x or 0X, in base 8 if it
begins with0, and in base 10 otherwise. Only characters that correspond to the
base are used.

• o Matches an octal integer; the next pointer must be a pointer tounsigned
int .

• u Matches an optionally signed decimal integer; the next pointer must be a
pointer tounsigned int .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 69

• x Matches an optionally signed hexadecimal integer; the next pointer must be a
pointer tounsigned int .

• f Matches an optionally signed floating-point number; the next pointer must be
a pointer tofloat .

• e, g, E, G Equivalent tof .

• s Matches a sequence of non-white-space characters; the next pointer must be a
pointer tochar , and the array must be large enough to accept all the sequence
and the terminatingNULcharacter. The input string stops at white space or at the
maximum field width, whichever occurs first.

• c Matches a sequence of width count characters (default 1); the next pointer must
be a pointer tochar , and there must be enough room for all the characters (no
terminatingNULis added). The usual skip of leading white space is suppressed.
To skip white space first, use an explicit space in the format.

• [ Matches a nonempty sequence of characters from the specified set of accepted
characters; the next pointer must be a pointer tochar , and there must be enough
room for all the characters in the string, plus a terminatingNULcharacter. The
usual skip of leading white space is suppressed. The string is to be made up
of characters in (or not in) a particular set; the set is defined by the characters
between the open bracket [ character and a close bracket ] character. The set
excludes those characters if the first character after the open bracket is a circum-
flex ∧. To include a close bracket in the set, make it the first character after the
open bracket or the circumflex; any other position will end the set. The hyphen
character- is also special; when placed between two other characters, it adds all
intervening characters to the set. To include a hyphen, make it the last character
before the final close bracket. For instance,[ ∧]0-9-] means the set ofevery-
thing except close bracket, zero through nine, and hyphen. The string ends with
the appearance of a character not in the (or, with a circumflex, in) set or when
the field width runs out.

• p Matches a pointer value (as printed byp in printf()); the next pointer must be
a pointer tovoid .

• n Nothing is expected; instead, the number of characters consumed thus far from
the input is stored through the next pointer, which must be a pointer toint . This
is not a conversion, although it can be suppressed with the∗ flag.

These functions return the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of a matching failure. Zero indicates that, while
there was input available, no conversions were assigned; typically this is due to an
invalid input character, such as an alphabetic character for ad conversion. The value
EOFis returned if an input failure occurs before any conversion such as an end-of-file
occurs. If an error or end-of-file occurs after conversion has begun, the number of
conversions which were successfully completed is returned.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.9 <stdio.h>: Standard IO facilities 70

By default, all the conversions described above are available except the floating-point
conversions, and the%[ conversion. These conversions will be available in the ex-
tended version provided by the librarylibscanf_flt.a . Note that these conver-
sions require a 40-byte conversion buffer, so the extended version requires more stack
space than the basic version irrespective of whether the actual call in progress actu-
ally uses this buffer or not. To link a program against the extended version, use the
following compiler flags in the link stage:

-Wl,-u,vfscanf -lscanf_flt -lm

A third version is available for environments that are tight on space. This version is
provided in the librarylibscanf_min.a , and can be requested using the following
options in the link stage:

-Wl,-u,vfscanf -lscanf_min -lm

In addition to the restrictions of the standard version, this version implements no field
width specification, no conversion assignment suppression flag (∗), non specification,
and no general format character matching at all. All characters infmt that do not
comprise a conversion specification will simply be ignored, including white space (that
is normally used to consumeanyamount of white space in the input stream). However,
the usual skip of initial white space in the formats that support it is implemented.

6.9.3.35 int vfscanf_P (FILE∗ __stream, const char∗ __fmt, va_list __ap)

Variant ofvfscanf()using afmt string in program memory.

6.9.3.36 int vprintf (const char∗ __fmt, va_list __ap)

The functionvprintf performs formatted output to streamstdout , taking a vari-
able argument list as invfprintf().

Seevfprintf() for details.

6.9.3.37 int vscanf (const char∗ __fmt, va_list __ap)

The functionvscanf performs formatted input from streamstdin , taking a variable
argument list as invfscanf().

Seevfscanf()for details.

6.9.3.38 int vsnprintf (char ∗ __s, size_t__n, const char∗ __fmt, va_list ap)

Like vsprintf() , but instead of assumings to be of infinite size, no more thann
characters (including the trailing NUL character) will be converted tos .

Returns the number of characters that would have been written tos if there were
enough space.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 71

6.9.3.39 int vsnprintf_P (char∗ __s, size_t__n, const char∗ __fmt, va_list ap)

Variant ofvsnprintf() that uses afmt string that resides in program memory.

6.9.3.40 int vsprintf (char ∗ __s, const char∗ __fmt, va_list ap)

Like sprintf() but takes a variable argument list for the arguments.

6.9.3.41 int vsprintf_P (char∗ __s, const char∗ __fmt, va_list ap)

Variant ofvsprintf() that uses afmt string that resides in program memory.

6.10 <stdlib.h>: General utilities

6.10.1 Detailed Description

#include <stdlib.h>

This file declares some basic C macros and functions as defined by the ISO standard,
plus some AVR-specific extensions.

Data Structures

• structdiv_t
• structldiv_t

Non-standard (i.e. non-ISO C) functions.

• char∗ ltoa (long int __val, char∗__s, int __radix)
• char∗ utoa(unsigned int __val, char∗__s, int __radix)
• char∗ ultoa(unsigned long int __val, char∗__s, int __radix)
• long random(void)
• void srandom(unsigned long __seed)
• long random_r(unsigned long∗__ctx)
• char∗ itoa (int __val, char∗__s, int __radix)
• #defineRANDOM_MAX 0x7FFFFFFF

Conversion functions for double arguments.

Note that these functions are not located in the default library,libc.a , but in the
mathematical library,libm.a . So when linking the application, the-lm option needs
to be specified.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 72

• char∗ dtostre(double __val, char∗__s, unsigned char __prec, unsigned char
__flags)

• char∗ dtostrf (double __val, signed char __width, unsigned char __prec, char
∗__s)

• #defineDTOSTR_ALWAYS_SIGN0x01
• #defineDTOSTR_PLUS_SIGN0x02
• #defineDTOSTR_UPPERCASE0x04

Defines

• #defineRAND_MAX 0x7FFF

Typedefs

• typedef int(∗) __compar_fn_t(const void∗, const void∗)

Functions

• void abort(void) __ATTR_NORETURN__
• int abs(int __i)
• long labs(long __i)
• void ∗ bsearch(const void∗__key, const void∗__base, size_t __nmemb, size_t

__size, int(∗__compar)(const void∗, const void∗))
• div_t div (int __num, int __denom) __asm__("__divmodhi4")
• ldiv_t ldiv (long __num, long __denom) __asm__("__divmodsi4")
• void qsort (void ∗__base, size_t __nmemb, size_t __size,__compar_fn_t__-

compar)
• longstrtol (const char∗__nptr, char∗∗__endptr, int __base)
• unsigned longstrtoul(const char∗__nptr, char∗∗__endptr, int __base)
• longatol (const char∗__s) __ATTR_PURE__
• int atoi (const char∗__s) __ATTR_PURE__
• void exit (int __status) __ATTR_NORETURN__
• void ∗ malloc(size_t __size) __ATTR_MALLOC__
• void free(void ∗__ptr)
• void ∗ calloc(size_t __nele, size_t __size) __ATTR_MALLOC__
• void ∗ realloc(void ∗__ptr, size_t __size) __ATTR_MALLOC__
• doublestrtod(const char∗__nptr, char∗∗__endptr)
• doubleatof (const char∗__nptr)
• int rand(void)
• void srand(unsigned int __seed)
• int rand_r(unsigned long∗__ctx)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 73

Variables

• size_t__malloc_margin
• char∗ __malloc_heap_start
• char∗ __malloc_heap_end

6.10.2 Define Documentation

6.10.2.1 #define DTOSTR_ALWAYS_SIGN 0x01

Bit value that can be passed inflags to dtostre().

6.10.2.2 #define DTOSTR_PLUS_SIGN 0x02

Bit value that can be passed inflags to dtostre().

6.10.2.3 #define DTOSTR_UPPERCASE 0x04

Bit value that can be passed inflags to dtostre().

6.10.2.4 #define RAND_MAX 0x7FFF

Highest number that can be generated byrand().

6.10.2.5 #define RANDOM_MAX 0x7FFFFFFF

Highest number that can be generated byrandom().

6.10.3 Typedef Documentation

6.10.3.1 typedef int(∗) __compar_fn_t(const void∗, const void∗)

Comparision function type forqsort(), just for convenience.

6.10.4 Function Documentation

6.10.4.1 void abort (void)

The abort()function causes abnormal program termination to occur. This realization
disables interrupts and jumps to _exit() function with argument equal to 1. In the
limited AVR environment, execution is effectively halted by entering an infinite loop.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 74

6.10.4.2 int abs (int__i)

Theabs()function computes the absolute value of the integeri .

Note:

Theabs()andlabs()functions are builtins of gcc.

6.10.4.3 double atof (const char∗ __nptr)

The atof() function converts the initial portion of the string pointed to bynptr to
double representation.

It is equivalent to calling

strtod(nptr, (char **)NULL);

6.10.4.4 int atoi (const char∗ s)

Convert a string to an integer.

Theatoi() function converts the initial portion of the string pointed to bys to integer
representation. In contrast to

(int)strtol(s, (char **)NULL, 10);

this function does not detect overflow (errno is not changed and the result value is
not predictable), uses smaller memory (flash and stack) and works more quickly.

6.10.4.5 long atol (const char∗ s)

Convert a string to a long integer.

The atol() function converts the initial portion of the string pointed to bys to long
integer representation. In contrast to

strtol(s, (char **)NULL, 10);

this function does not detect overflow (errno is not changed and the result value is
not predictable), uses smaller memory (flash and stack) and works more quickly.

6.10.4.6 void∗ bsearch (const void∗ __key, const void∗ __base, size_t__nmemb,
size_t__size, int(∗)(const void∗, const void∗) __compar)

The bsearch()function searches an array ofnmembobjects, the initial member of
which is pointed to bybase , for a member that matches the object pointed to by
key . The size of each member of the array is specified bysize .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 75

The contents of the array should be in ascending sorted order according to the compar-
ison function referenced bycompar . Thecompar routine is expected to have two
arguments which point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

Thebsearch()function returns a pointer to a matching member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
matched is unspecified.

6.10.4.7 void∗ calloc (size_t__nele, size_t__size)

Allocatenele elements ofsize each. Identical to callingmalloc() usingnele
∗ size as argument, except the allocated memory will be cleared to zero.

6.10.4.8 div_t div (int __num, int __denom)

The div() function computes the valuenum/denom and returns the quotient and re-
mainder in a structure nameddiv_t that contains two int members namedquot and
rem.

6.10.4.9 char∗ dtostre (double__val, char ∗ __s, unsigned char__prec, unsigned
char __flags)

The dtostre()function converts the double value passed inval into an ASCII repre-
sentation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done in the format"[-]d.ddde śdd" where there is one digit before
the decimal-point character and the number of digits after it is equal to the precision
prec ; if the precision is zero, no decimal-point character appears. Ifflags has the
DTOSTRE_UPPERCASE bit set, the letter’E’ (rather than’e’ ) will be used to
introduce the exponent. The exponent always contains two digits; if the value is zero,
the exponent is"00" .

If flags has the DTOSTRE_ALWAYS_SIGN bit set, a space character will be placed
into the leading position for positive numbers.

If flags has the DTOSTRE_PLUS_SIGN bit set, a plus sign will be used instead of
a space character in this case.

Thedtostre()function returns the pointer to the converted strings .

6.10.4.10 char∗ dtostrf (double __val, signed char__width, unsigned char__-
prec, char ∗ __s)

The dtostrf() function converts the double value passed inval into an ASCII repre-
sentationthat will be stored unders . The caller is responsible for providing sufficient

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 76

storage ins .

Conversion is done in the format"[-]d.ddd" . The minimum field width of the
output string (including the’ .’ and the possible sign for negative values) is given in
width , andprec determines the number of digits after the decimal sign.width is
signed value, negative for left adjustment.

Thedtostrf()function returns the pointer to the converted strings .

6.10.4.11 void exit (int__status)

The exit() function terminates the application. Since there is no environment to re-
turn to,status is ignored, and code execution will eventually reach an infinite loop,
thereby effectively halting all code processing. Before entering the infinite loop, inter-
rupts are globally disabled.

In a C++ context, global destructors will be called before halting execution.

6.10.4.12 void free (void∗ __ptr)

Thefree()function causes the allocated memory referenced byptr to be made avail-
able for future allocations. Ifptr is NULL, no action occurs.

6.10.4.13 char∗ itoa (int __val, char ∗ __s, int __radix)

Convert an integer to a string.

The functionitoa() converts the integer value fromval into an ASCII representation
that will be stored unders . The caller is responsible for providing sufficient storage in
s .

Note:

The minimal size of the buffers depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length of 8∗
sizeof (int) + 1 characters, i.e. one character for each bit plus one for the string
terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:

If the buffer is too small, you risk a buffer overflow.

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter’a’ .

If radix is 10 and val is negative, a minus sign will be prepended.

Theitoa() function returns the pointer passed ass .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 77

6.10.4.14 long labs (long__i)

Thelabs()function computes the absolute value of the long integeri .

Note:

Theabs()andlabs()functions are builtins of gcc.

6.10.4.15 ldiv_t ldiv (long __num, long __denom)

The ldiv() function computes the valuenum/denom and returns the quotient and re-
mainder in a structure namedldiv_t that contains two long integer members named
quot andrem.

6.10.4.16 char∗ ltoa (long int __val, char ∗ __s, int __radix)

Convert a long integer to a string.

The functionltoa() converts the long integer value fromval into an ASCII represen-
tation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Note:

The minimal size of the buffers depends on the choice of radix. For example,
if the radix is 2 (binary), you need to supply a buffer with a minimal length of 8
∗ sizeof (long int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:

If the buffer is too small, you risk a buffer overflow.

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter’a’ .

If radix is 10 and val is negative, a minus sign will be prepended.

Theltoa() function returns the pointer passed ass .

6.10.4.17 void∗ malloc (size_t__size)

The malloc() function allocatessize bytes of memory. Ifmalloc() fails, a NULL
pointer is returned.

Note thatmalloc()doesnot initialize the returned memory to zero bytes.

See the chapter aboutmalloc() usagefor implementation details.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 78

6.10.4.18 void qsort (void∗ __base, size_t__nmemb, size_t__size, __compar_-
fn_t __compar)

Theqsort()function is a modified partition-exchange sort, or quicksort.

The qsort()function sorts an array ofnmembobjects, the initial member of which is
pointed to bybase . The size of each object is specified bysize . The contents of the
array base are sorted in ascending order according to a comparison function pointed to
by compar , which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater than
the second.

6.10.4.19 int rand (void)

Therand()function computes a sequence of pseudo-random integers in the range of 0
to RAND_MAX(as defined by the header file<stdlib.h>).

Thesrand()function sets its argumentseed as the seed for a new sequence of pseudo-
random numbers to be returned byrand(). These sequences are repeatable by calling
srand()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

In compliance with the C standard, these functions operate onint arguments. Since
the underlying algorithm already uses 32-bit calculations, this causes a loss of preci-
sion. Seerandom() for an alternate set of functions that retains full 32-bit precision.

6.10.4.20 int rand_r (unsigned long∗ __ctx)

Variant of rand() that stores the context in the user-supplied variable located atctx
instead of a static library variable so the function becomes re-entrant.

6.10.4.21 long random (void)

Therandom()function computes a sequence of pseudo-random integers in the range of
0 toRANDOM_MAX(as defined by the header file<stdlib.h>).

The srandom()function sets its argumentseed as the seed for a new sequence of
pseudo-random numbers to be returned byrand(). These sequences are repeatable by
callingsrandom()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

6.10.4.22 long random_r (unsigned long∗ __ctx)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 79

Variant ofrandom()that stores the context in the user-supplied variable located atctx
instead of a static library variable so the function becomes re-entrant.

6.10.4.23 void∗ realloc (void ∗ __ptr, size_t__size)

Therealloc()function tries to change the size of the region allocated atptr to the new
size value. It returns a pointer to the new region. The returned pointer might be the
same as the old pointer, or a pointer to a completely different region.

The contents of the returned region up to either the old or the new size value (whatever
is less) will be identical to the contents of the old region, even in case a new region had
to be allocated.

It is acceptable to passptr as NULL, in which caserealloc()will behave identical to
malloc().

If the new memory cannot be allocated,realloc()returns NULL, and the region atptr
will not be changed.

6.10.4.24 void srand (unsigned int__seed)

Pseudo-random number generator seeding; seerand().

6.10.4.25 void srandom (unsigned long__seed)

Pseudo-random number generator seeding; seerandom().

6.10.4.26 double strtod (const char∗ __nptr, char ∗∗ __endptr)

The strtod() function converts the initial portion of the string pointed to bynptr to
double representation.

The expected form of the string is an optional plus (’+’ ) or minus sign (’-’ )
followed by a sequence of digits optionally containing a decimal-point character, op-
tionally followed by an exponent. An exponent consists of an’E’ or ’e’ , followed
by an optional plus or minus sign, followed by a sequence of digits.

Leading white-space characters in the string are skipped.

Thestrtod()function returns the converted value, if any.

If endptr is notNULL, a pointer to the character after the last character used in the
conversion is stored in the location referenced byendptr .

If no conversion is performed, zero is returned and the value ofnptr is stored in the
location referenced byendptr .

If the correct value would cause overflow, plus or minusHUGE_VALis returned (ac-
cording to the sign of the value), andERANGEis stored inerrno . If the correct value
would cause underflow, zero is returned andERANGEis stored inerrno .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 80

FIXME: HUGE_VAL needs to be defined somewhere. The bit pattern is 0x7fffffff, but
what number would this be?

6.10.4.27 long strtol (const char∗ __nptr, char ∗∗ __endptr, int __base)

The strtol() function converts the string innptr to a long value. The conversion is
done according to the given base, which must be between 2 and 36 inclusive, or be the
special value 0.

The string may begin with an arbitrary amount of white space (as determined byiss-
pace()) followed by a single optional’+’ or ’-’ sign. Ifbase is zero or 16, the string
may then include a"0x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is’0’ , in which case it is
taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping
at the first character which is not a valid digit in the given base. (In bases above 10, the
letter ’A’ in either upper or lower case represents 10,’B’ represents 11, and so forth,
with ’Z’ representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in
∗endptr . If there were no digits at all, however,strtol() stores the original value of
nptr in endptr . (Thus, if∗nptr is not’ \0’ but∗∗endptr is ’ \0’ on return, the
entire string was valid.)

Thestrtol() function returns the result of the conversion, unless the value would under-
flow or overflow. If no conversion could be performed, 0 is returned. If an overflow or
underflow occurs,errno is set toERANGEand the function return value is clamped
to LONG_MINor LONG_MAX, respectively.

6.10.4.28 unsigned long strtoul (const char∗ __nptr, char ∗∗ __endptr, int __-
base)

Thestrtoul()function converts the string innptr to an unsigned long value. The con-
version is done according to the given base, which must be between 2 and 36 inclusive,
or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined byiss-
pace()) followed by a single optional’+’ or ’-’ sign. Ifbase is zero or 16, the string
may then include a"0x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is’0’ , in which case it is
taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the first character which is not a valid digit in the given base.
(In bases above 10, the letter’A’ in either upper or lower case represents 10,’B’
represents 11, and so forth, with’Z’ representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.10 <stdlib.h>: General utilities 81

∗endptr . If there were no digits at all, however,strtoul()stores the original value of
nptr in endptr . (Thus, if∗nptr is not’ \0’ but∗∗endptr is ’ \0’ on return, the
entire string was valid.)

Thestrtoul() function return either the result of the conversion or, if there was a lead-
ing minus sign, the negation of the result of the conversion, unless the original (non-
negated) value would overflow; in the latter case,strtoul()returns ULONG_MAX, and
errno is set toERANGE. If no conversion could be performed, 0 is returned.

6.10.4.29 char∗ ultoa (unsigned long int__val, char ∗ __s, int __radix)

Convert an unsigned long integer to a string.

The functionultoa()converts the unsigned long integer value fromval into an ASCII
representation that will be stored unders . The caller is responsible for providing suf-
ficient storage ins .

Note:

The minimal size of the buffers depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length of 8∗
sizeof (unsigned long int) + 1 characters, i.e. one character for each bit plus one
for the string terminator. Using a larger radix will require a smaller minimal buffer
size.

Warning:

If the buffer is too small, you risk a buffer overflow.

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter’a’ .

Theultoa()function returns the pointer passed ass .

6.10.4.30 char∗ utoa (unsigned int__val, char ∗ __s, int __radix)

Convert an unsigned integer to a string.

The functionutoa()converts the unsigned integer value fromval into an ASCII repre-
sentation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Note:

The minimal size of the buffers depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length of 8∗
sizeof (unsigned int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 82

Warning:

If the buffer is too small, you risk a buffer overflow.

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter’a’ .

Theutoa()function returns the pointer passed ass .

6.10.5 Variable Documentation

6.10.5.1 char∗ __malloc_heap_end

malloc() tunable.

6.10.5.2 char∗ __malloc_heap_start

malloc() tunable.

6.10.5.3 size_t__malloc_margin

malloc() tunable.

6.11 <string.h>: Strings

6.11.1 Detailed Description

#include <string.h>

The string functions perform string operations on NULL terminated strings.

Note:

If the strings you are working on resident in program space (flash), you will need to
use the string functions described in<avr/pgmspace.h>: Program Space Utilities.

Defines

• #define_FFS(x)

Functions

• int ffs (int __val)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 83

• int ffsl (long __val)
• int ffsll (long long __val)
• void ∗ memccpy(void ∗, const void∗, int, size_t)
• void ∗ memchr(const void∗, int, size_t) __ATTR_PURE__
• int memcmp(const void∗, const void∗, size_t) __ATTR_PURE__
• void ∗ memcpy(void ∗, const void∗, size_t)
• void ∗ memmem(const void∗, size_t, const void∗, size_t) __ATTR_PURE__
• void ∗ memmove(void ∗, const void∗, size_t)
• void ∗ memrchr(const void∗, int, size_t) __ATTR_PURE__
• void ∗ memset(void ∗, int, size_t)
• int strcasecmp(const char∗, const char∗) __ATTR_PURE__
• char∗ strcasestr(const char∗, const char∗) __ATTR_PURE__
• char∗ strcat(char∗, const char∗)
• char∗ strchr(const char∗, int) __ATTR_PURE__
• char∗ strchrnul(const char∗, int) __ATTR_PURE__
• int strcmp(const char∗, const char∗) __ATTR_PURE__
• char∗ strcpy(char∗, const char∗)
• size_tstrcspn(const char∗__s, const char∗__reject) __ATTR_PURE__
• size_tstrlcat(char∗, const char∗, size_t)
• size_tstrlcpy(char∗, const char∗, size_t)
• size_tstrlen(const char∗) __ATTR_PURE__
• char∗ strlwr (char∗)
• int strncasecmp(const char∗, const char∗, size_t) __ATTR_PURE__
• char∗ strncat(char∗, const char∗, size_t)
• int strncmp(const char∗, const char∗, size_t) __ATTR_PURE__
• char∗ strncpy(char∗, const char∗, size_t)
• size_tstrnlen(const char∗, size_t) __ATTR_PURE__
• char∗ strpbrk(const char∗__s, const char∗__accept) __ATTR_PURE__
• char∗ strrchr(const char∗, int) __ATTR_PURE__
• char∗ strrev(char∗)
• char∗ strsep(char∗∗, const char∗)
• size_tstrspn(const char∗__s, const char∗__accept) __ATTR_PURE__
• char∗ strstr(const char∗, const char∗) __ATTR_PURE__
• char∗ strtok_r(char∗, const char∗, char∗∗)
• char∗ strupr(char∗)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 84

6.11.2 Define Documentation

6.11.2.1 #define _FFS(x)

This macro finds the first (least significant) bit set in the input value.

This macro is very similar to the functionffs() except that it evaluates its argument at
compile-time, so it should only be applied to compile-time constant expressions where
it will reduce to a constant itself. Application of this macro to expressions that are not
constant at compile-time is not recommended, and might result in a huge amount of
code generated.

Returns:

The_FFS()macro returns the position of the first (least significant) bit set in the
word val, or 0 if no bits are set. The least significant bit is position 1.

6.11.3 Function Documentation

6.11.3.1 int ffs (intval)

This function finds the first (least significant) bit set in the input value.

Returns:

The ffs() function returns the position of the first (least significant) bit set in the
word val, or 0 if no bits are set. The least significant bit is position 1.

Note:

For expressions that are constant at compile time, consider using the_FFSmacro
instead.

6.11.3.2 int ffsl (long__val)

Same asffs(), for an argument of type long.

6.11.3.3 int ffsll (long long__val)

Same asffs(), for an argument of type long long.

6.11.3.4 void∗ memccpy (void∗ dest, const void∗ src, int val, size_tlen)

Copy memory area.

Thememccpy()function copies no more than len bytes from memory area src to mem-
ory area dest, stopping when the character val is found.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 85

Returns:

Thememccpy()function returns a pointer to the next character in dest after val, or
NULL if val was not found in the first len characters of src.

6.11.3.5 void∗ memchr (const void∗ src, int val, size_tlen)

Scan memory for a character.

Thememchr()function scans the first len bytes of the memory area pointed to by src
for the character val. The first byte to match val (interpreted as an unsigned character)
stops the operation.

Returns:

The memchr()function returns a pointer to the matching byte or NULL if the
character does not occur in the given memory area.

6.11.3.6 int memcmp (const void∗ s1, const void∗ s2, size_tlen)

Compare memory areas.

The memcmp()function compares the first len bytes of the memory areas s1 and s2.
The comparision is performed using unsigned char operations.

Returns:

Thememcmp()function returns an integer less than, equal to, or greater than zero
if the first len bytes of s1 is found, respectively, to be less than, to match, or be
greater than the first len bytes of s2.

Note:

Be sure to store the result in a 16 bit variable since you may get incorrect results if
you use an unsigned char or char due to truncation.

Warning:

This function is not -mint8 compatible, although if you only care about testing for
equality, this function should be safe to use.

6.11.3.7 void∗ memcpy (void∗ dest, const void∗ src, size_tlen)

Copy a memory area.

Thememcpy()function copies len bytes from memory area src to memory area dest.
The memory areas may not overlap. Usememmove()if the memory areas do overlap.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 86

Returns:

Thememcpy()function returns a pointer to dest.

6.11.3.8 void∗memmem (const void∗ s1, size_tlen1, const void∗ s2, size_tlen2)

The memmem()function finds the start of the first occurrence of the substrings2 of
lengthlen2 in the memory areas1 of lengthlen1 .

Returns:

The memmem()function returns a pointer to the beginning of the substring, or
NULL if the substring is not found. Iflen2 is zero, the function returnss1 .

6.11.3.9 void∗ memmove (void∗ dest, const void∗ src, size_tlen)

Copy memory area.

Thememmove()function copies len bytes from memory area src to memory area dest.
The memory areas may overlap.

Returns:

Thememmove()function returns a pointer to dest.

6.11.3.10 void∗ memrchr (const void∗ src, int val, size_tlen)

The memrchr()function is like thememchr()function, except that it searches back-
wards from the end of thelen bytes pointed to bysrc instead of forwards from the
front. (Glibc, GNU extension.)

Returns:

The memrchr()function returns a pointer to the matching byte orNULL if the
character does not occur in the given memory area.

6.11.3.11 void∗ memset (void∗ dest, int val, size_tlen)

Fill memory with a constant byte.

The memset()function fills the first len bytes of the memory area pointed to by dest
with the constant byte val.

Returns:

Thememset()function returns a pointer to the memory area dest.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 87

6.11.3.12 int strcasecmp (const char∗ s1, const char∗ s2)

Compare two strings ignoring case.

The strcasecmp()function compares the two stringss1 ands2 , ignoring the case of
the characters.

Returns:

The strcasecmp()function returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than
s2 . A consequence of the ordering used bystrcasecmp()is that if s1 is an initial
substring ofs2 , thens1 is considered to be "less than"s2 .

6.11.3.13 char∗ strcasestr (const char∗ s1, const char∗ s2)

Thestrcasestr()function finds the first occurrence of the substrings2 in the strings1 .
This is likestrstr(), except that it ignores case of alphabetic symbols in searching for
the substring. (Glibc, GNU extension.)

Returns:

The strcasestr()function returns a pointer to the beginning of the substring, or
NULL if the substring is not found. Ifs2 points to a string of zero length, the
function returnss1 .

6.11.3.14 char∗ strcat (char ∗ dest, const char∗ src)

Concatenate two strings.

Thestrcat()function appends the src string to the dest string overwriting the ’\0’ char-
acter at the end of dest, and then adds a terminating ’\0’ character. The strings may not
overlap, and the dest string must have enough space for the result.

Returns:

Thestrcat()function returns a pointer to the resulting string dest.

6.11.3.15 char∗ strchr (const char ∗ src, int val)

Locate character in string.

The strchr()function returns a pointer to the first occurrence of the characterval in
the stringsrc .

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 88

Returns:

The strchr() function returns a pointer to the matched character orNULL if the
character is not found.

6.11.3.16 char∗ strchrnul (const char ∗ s, int c)

Thestrchrnul()function is likestrchr()except that ifc is not found ins , then it returns
a pointer to the null byte at the end ofs , rather thanNULL. (Glibc, GNU extension.)

Returns:

Thestrchrnul()function returns a pointer to the matched character, or a pointer to
the null byte at the end ofs (i.e.,s+strlen (s)) if the character is not found.

6.11.3.17 int strcmp (const char∗ s1, const char∗ s2)

Compare two strings.

Thestrcmp()function compares the two stringss1 ands2 .

Returns:

The strcmp()function returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greater thans2 . A
consequence of the ordering used bystrcmp()is that ifs1 is an initial substring of
s2 , thens1 is considered to be "less than"s2 .

6.11.3.18 char∗ strcpy (char ∗ dest, const char∗ src)

Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating
’\0’ character) to the array pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Returns:

Thestrcpy()function returns a pointer to the destination string dest.

Note:

If the destination string of astrcpy()is not large enough (that is, if the programmer
was stupid/lazy, and failed to check the size before copying) then anything might
happen. Overflowing fixed length strings is a favourite cracker technique.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 89

6.11.3.19 size_t strcspn (const char∗ s, const char∗ reject)

Thestrcspn()function calculates the length of the initial segment ofs which consists
entirely of characters not inreject .

Returns:

Thestrcspn()function returns the number of characters in the initial segment ofs
which are not in the stringreject . The terminating zero is not considered as a
part of string.

6.11.3.20 size_t strlcat (char∗ dst, const char∗ src, size_tsiz)

Concatenate two strings.

Appends src to string dst of size siz (unlikestrncat(), siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unless siz<=
strlen(dst)).

Returns:

Thestrlcat()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval>=
siz, truncation occurred.

6.11.3.21 size_t strlcpy (char∗ dst, const char∗ src, size_tsiz)

Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:

Thestrlcpy()function returns strlen(src). If retval>= siz, truncation occurred.

6.11.3.22 size_t strlen (const char∗ src)

Calculate the length of a string.

Thestrlen()function calculates the length of the string src, not including the terminat-
ing ’\0’ character.

Returns:

Thestrlen()function returns the number of characters in src.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 90

6.11.3.23 char∗ strlwr (char ∗ s)

Convert a string to lower case.

Thestrlwr() function will convert a string to lower case. Only the upper case alphabetic
characters [A .. Z] are converted. Non-alphabetic characters will not be changed.

Returns:

Thestrlwr() function returns a pointer to the converted string.

6.11.3.24 int strncasecmp (const char∗ s1, const char∗ s2, size_tlen)

Compare two strings ignoring case.

Thestrncasecmp()function is similar tostrcasecmp(), except it only compares the first
len characters ofs1 .

Returns:

The strncasecmp()function returns an integer less than, equal to, or greater than
zero ifs1 (or the firstlen bytes thereof) is found, respectively, to be less than, to
match, or be greater thans2 . A consequence of the ordering used bystrncasecmp()
is that if s1 is an initial substring ofs2 , thens1 is considered to be "less than"
s2 .

6.11.3.25 char∗ strncat (char ∗ dest, const char∗ src, size_tlen)

Concatenate two strings.

Thestrncat()function is similar tostrcat(), except that only the first n characters of src
are appended to dest.

Returns:

Thestrncat()function returns a pointer to the resulting string dest.

6.11.3.26 int strncmp (const char∗ s1, const char∗ s2, size_tlen)

Compare two strings.

Thestrncmp()function is similar tostrcmp(), except it only compares the first (at most)
n characters of s1 and s2.

Returns:

Thestrncmp()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 91

6.11.3.27 char∗ strncpy (char ∗ dest, const char∗ src, size_tlen)

Copy a string.

The strncpy()function is similar tostrcpy(), except that not more than n bytes of src
are copied. Thus, if there is no null byte among the first n bytes of src, the result will
not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:

Thestrncpy()function returns a pointer to the destination string dest.

6.11.3.28 size_t strnlen (const char∗ src, size_tlen)

Determine the length of a fixed-size string.

The strnlen function returns the number of characters in the string pointed to by src, not
including the terminating ’\0’ character, but at most len. In doing this, strnlen looks
only at the first len characters at src and never beyond src+len.

Returns:

The strnlen function returns strlen(src), if that is less than len, or len if there is no
’\0’ character among the first len characters pointed to by src.

6.11.3.29 char∗ strpbrk (const char ∗ s, const char∗ accept)

Thestrpbrk()function locates the first occurrence in the strings of any of the characters
in the stringaccept .

Returns:

Thestrpbrk()function returns a pointer to the character ins that matches one of
the characters inaccept , or NULL if no such character is found. The terminating
zero is not considered as a part of string: if one or both args are empty, the result
will NULL.

6.11.3.30 char∗ strrchr (const char ∗ src, int val)

Locate character in string.

Thestrrchr()function returns a pointer to the last occurrence of the character val in the
string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.11 <string.h>: Strings 92

Returns:

The strrchr()function returns a pointer to the matched character or NULL if the
character is not found.

6.11.3.31 char∗ strrev (char ∗ s)

Reverse a string.

Thestrrev()function reverses the order of the string.

Returns:

Thestrrev()function returns a pointer to the beginning of the reversed string.

6.11.3.32 char∗ strsep (char∗∗ sp, const char∗ delim)

Parse a string into tokens.

The strsep()function locates, in the string referenced by∗sp , the first occurrence of
any character in the stringdelim (or the terminating ’\0’ character) and replaces it
with a ’\0’. The location of the next character after the delimiter character (orNULL,
if the end of the string was reached) is stored in∗sp . An “empty” field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location
referenced by the pointer returned in∗sp to ’\0’.

Returns:

The strsep()function returns a pointer to the original value of∗sp . If ∗sp is
initially NULL, strsep()returnsNULL.

6.11.3.33 size_t strspn (const char∗ s, const char∗ accept)

The strspn()function calculates the length of the initial segment ofs which consists
entirely of characters inaccept .

Returns:

The strspn()function returns the number of characters in the initial segment of
s which consist only of characters fromaccept . The terminating zero is not
considered as a part of string.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.12 <avr/boot.h>: Bootloader Support Utilities 93

6.11.3.34 char∗ strstr (const char ∗ s1, const char∗ s2)

Locate a substring.

Thestrstr()function finds the first occurrence of the substrings2 in the strings1 . The
terminating ’\0’ characters are not compared.

Returns:

Thestrstr()function returns a pointer to the beginning of the substring, orNULL
if the substring is not found. Ifs2 points to a string of zero length, the function
returnss1 .

6.11.3.35 char∗ strtok_r (char ∗ string, const char∗ delim, char ∗∗ last)

Parses the string s into tokens.

strtok_r parses the string s into tokens. The first call to strtok_r should have string as
its first argument. Subsequent calls should have the first argument set to NULL. If a
token ends with a delimiter, this delimiting character is overwritten with a ’\0’ and a
pointer to the next character is saved for the next call to strtok_r. The delimiter string
delim may be different for each call. last is a user allocated char∗ pointer. It must be
the same while parsing the same string. strtok_r is a reentrant version of strtok().

Returns:

Thestrtok_r()function returns a pointer to the next token or NULL when no more
tokens are found.

6.11.3.36 char∗ strupr (char ∗ s)

Convert a string to upper case.

Thestrupr()function will convert a string to upper case. Only the lower case alphabetic
characters [a .. z] are converted. Non-alphabetic characters will not be changed.

Returns:

Thestrupr()function returns a pointer to the converted string. The pointer is the
same as that passed in since the operation is perform in place.

6.12 <avr/boot.h>: Bootloader Support Utilities

6.12.1 Detailed Description

#include <avr/io.h>
#include <avr/boot.h>

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.12 <avr/boot.h>: Bootloader Support Utilities 94

The macros in this module provide a C language interface to the bootloader support
functionality of certain AVR processors. These macros are designed to work with all
sizes of flash memory.

Global interrupts are not automatically disabled for these macros. It is left up to the
programmer to do this. See the code example below. Also see the processor datasheet
for caveats on having global interrupts enabled during writing of the Flash.

Note:

Not all AVR processors provide bootloader support. See your processor datasheet
to see if it provides bootloader support.

Todo

From email with Marek: On smaller devices (all except ATmega64/128), __SPM_-
REG is in the I/O space, accessible with the shorter "in" and "out" instructions -
since the boot loader has a limited size, this could be an important optimization.

API Usage Example

The following code shows typical usage of the boot API.

#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>

void boot_program_page (uint32_t page, uint8_t *buf)
{

uint16_t i;
uint8_t sreg;

// Disable interrupts.

sreg = SREG;
cli();

eeprom_busy_wait ();

boot_page_erase (page);
boot_spm_busy_wait (); // Wait until the memory is erased.

for (i=0; i<SPM_PAGESIZE; i+=2)
{

// Set up little-endian word.

uint16_t w = *buf++;
w += (*buf++) << 8;

boot_page_fill (page + i, w);
}

boot_page_write (page); // Store buffer in flash page.
boot_spm_busy_wait(); // Wait until the memory is written.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.12 <avr/boot.h>: Bootloader Support Utilities 95

// Reenable RWW-section again. We need this if we want to jump back
// to the application after bootloading.

boot_rww_enable ();

// Re-enable interrupts (if they were ever enabled).

SREG = sreg;
}

Defines

• #defineBOOTLOADER_SECTION__attribute__ ((section (".bootloader")))
• #defineboot_spm_interrupt_enable() (__SPM_REG|= (uint8_t)_BV(SPMIE))
• #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)∼_-

BV(SPMIE))
• #defineboot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))
• #defineboot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))
• #defineboot_spm_busy() (__SPM_REG & (uint8_t)_BV(SPMEN))
• #defineboot_spm_busy_wait() do{}while(boot_spm_busy())
• #defineGET_LOW_FUSE_BITS(0x0000)
• #defineGET_LOCK_BITS(0x0001)
• #defineGET_EXTENDED_FUSE_BITS(0x0002)
• #defineGET_HIGH_FUSE_BITS(0x0003)
• #defineboot_lock_fuse_bits_get(address)
• #defineboot_signature_byte_get(addr)
• #defineboot_page_fill(address, data) __boot_page_fill_normal(address, data)
• #defineboot_page_erase(address) __boot_page_erase_normal(address)
• #defineboot_page_write(address) __boot_page_write_normal(address)
• #defineboot_rww_enable() __boot_rww_enable()
• #defineboot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)
• #defineboot_page_fill_safe(address, data)
• #defineboot_page_erase_safe(address)
• #defineboot_page_write_safe(address)
• #defineboot_rww_enable_safe()
• #defineboot_lock_bits_set_safe(lock_bits)

6.12.2 Define Documentation

6.12.2.1 #define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_-
BV(SPMIE))

Check if the SPM interrupt is enabled.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.12 <avr/boot.h>: Bootloader Support Utilities 96

6.12.2.2 #define boot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)

Set the bootloader lock bits.

Parameters:

lock_bits A mask of which Boot Loader Lock Bits to set.

Note:

In this context, a ’set bit’ will be written to a zero value. Note also that only BLBxx
bits can be programmed by this command.

For example, to disallow the SPM instruction from writing to the Boot Loader memory
section of flash, you would use this macro as such:

boot_lock_bits_set (_BV (BLB11));

Note:

Like any lock bits, the Boot Loader Lock Bits, once set, cannot be cleared again
except by a chip erase which will in turn also erase the boot loader itself.

6.12.2.3 #define boot_lock_bits_set_safe(lock_bits)

Value:

do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_lock_bits_set (lock_bits); \

} while (0)

Same asboot_lock_bits_set()except waits for eeprom and spm operations to complete
before setting the lock bits.

6.12.2.4 #define boot_lock_fuse_bits_get(address)

Value:

(__extension__({ \
uint8_t __result; \
__asm__ __volatile__ \
( \

"ldi r30, %3\n\t" \
"ldi r31, 0\n\t" \
"sts %1, %2\n\t" \

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.12 <avr/boot.h>: Bootloader Support Utilities 97

"lpm %0, Z\n\t" \
: "=r" (__result) \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"M" (address) \

: "r0", "r30", "r31" \
); \
__result; \

}))

Read the lock or fuse bits ataddress .

Parameteraddress can be any of GET_LOW_FUSE_BITS, GET_LOCK_BITS,
GET_EXTENDED_FUSE_BITS, or GET_HIGH_FUSE_BITS.

Note:

The lock and fuse bits returned are the physical values, i.e. a bit returned as 0
means the corresponding fuse or lock bit is programmed.

6.12.2.5 #define boot_page_erase(address) __boot_page_erase_normal(address)

Erase the flash page that contains address.

Note:

address is a byte address in flash, not a word address.

6.12.2.6 #define boot_page_erase_safe(address)

Value:

do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_erase (address); \

} while (0)

Same asboot_page_erase()except it waits for eeprom and spm operations to complete
before erasing the page.

6.12.2.7 #define boot_page_fill(address, data) __boot_page_fill_normal(address,
data)

Fill the bootloader temporary page buffer for flash address with data word.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.12 <avr/boot.h>: Bootloader Support Utilities 98

Note:

The address is a byte address. The data is a word. The AVR writes data to the
buffer a word at a time, but addresses the buffer per byte! So, increment your
address by 2 between calls, and send 2 data bytes in a word format! The LSB of
the data is written to the lower address; the MSB of the data is written to the higher
address.

6.12.2.8 #define boot_page_fill_safe(address, data)

Value:

do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_fill(address, data); \

} while (0)

Same asboot_page_fill()except it waits for eeprom and spm operations to complete
before filling the page.

6.12.2.9 #define boot_page_write(address) __boot_page_write_normal(address)

Write the bootloader temporary page buffer to flash page that contains address.

Note:

address is a byte address in flash, not a word address.

6.12.2.10 #define boot_page_write_safe(address)

Value:

do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_write (address); \

} while (0)

Same asboot_page_write()except it waits for eeprom and spm operations to complete
before writing the page.

6.12.2.11 #define boot_rww_busy() (__SPM_REG & (uint8_t)_BV(__-
COMMON_ASB))

Check if the RWW section is busy.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.12 <avr/boot.h>: Bootloader Support Utilities 99

6.12.2.12 #define boot_rww_enable() __boot_rww_enable()

Enable the Read-While-Write memory section.

6.12.2.13 #define boot_rww_enable_safe()

Value:

do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_rww_enable(); \

} while (0)

Same asboot_rww_enable()except waits for eeprom and spm operations to complete
before enabling the RWW mameory.

6.12.2.14 #define boot_signature_byte_get(addr)

Value:

(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint8_t __result; \
__asm__ __volatile__ \
( \

"sts %1, %2\n\t" \
"lpm %0, Z" "\n\t" \
: "=r" (__result) \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t) __BOOT_SIGROW_READ), \
"z" (__addr16) \

); \
__result; \

}))

Read the Signature Row byte ataddress . For some MCU types, this function can
also retrieve the factory-stored oscillator calibration bytes.

Parameteraddress can be 0-0x1f as documented by the datasheet.

Note:

The values are MCU type dependent.

6.12.2.15 #define boot_spm_busy() (__SPM_REG & (uint8_t)_BV(SPMEN))

Check if the SPM instruction is busy.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.13 <avr/eeprom.h>: EEPROM handling 100

6.12.2.16 #define boot_spm_busy_wait() do{}while(boot_spm_busy())

Wait while the SPM instruction is busy.

6.12.2.17 #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)∼_-
BV(SPMIE))

Disable the SPM interrupt.

6.12.2.18 #define boot_spm_interrupt_enable() (__SPM_REG|= (uint8_t)_-
BV(SPMIE))

Enable the SPM interrupt.

6.12.2.19 #define BOOTLOADER_SECTION __attribute__ ((section (".boot-
loader")))

Used to declare a function or variable to be placed into a new section called .boot-
loader. This section and its contents can then be relocated to any address (such as the
bootloader NRWW area) at link-time.

6.12.2.20 #define GET_EXTENDED_FUSE_BITS (0x0002)

address to read the extended fuse bits, using boot_lock_fuse_bits_get

6.12.2.21 #define GET_HIGH_FUSE_BITS (0x0003)

address to read the high fuse bits, using boot_lock_fuse_bits_get

6.12.2.22 #define GET_LOCK_BITS (0x0001)

address to read the lock bits, using boot_lock_fuse_bits_get

6.12.2.23 #define GET_LOW_FUSE_BITS (0x0000)

address to read the low fuse bits, using boot_lock_fuse_bits_get

6.13 <avr/eeprom.h>: EEPROM handling

6.13.1 Detailed Description

#include <avr/eeprom.h>

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.13 <avr/eeprom.h>: EEPROM handling 101

This header file declares the interface to some simple library routines suitable for han-
dling the data EEPROM contained in the AVR microcontrollers. The implementation
uses a simple polled mode interface. Applications that require interrupt-controlled
EEPROM access to ensure that no time will be wasted in spinloops will have to deploy
their own implementation.

Note:

All of the read/write functions first make sure the EEPROM is ready to be ac-
cessed. Since this may cause long delays if a write operation is still pending, time-
critical applications should first poll the EEPROM e. g. usingeeprom_is_ready()
before attempting any actual I/O.
This header file declares inline functions that call the assembler subroutines di-
rectly. This prevents that the compiler generates push/pops for the call-clobbered
registers. This way also a specific calling convention could be used for the eep-
rom routines e.g. by passing values in __tmp_reg__, eeprom addresses in X and
memory addresses in Z registers. Method is optimized for code size.
Presently supported are two locations of the EEPROM register set:
0x1F,0x20,0x21 and 0x1C,0x1D,0x1E (see__EEPROM_REG_LOCATIONS__).
As these functions modify IO registers, they are known to be non-reentrant. If any
of these functions are used from both, standard and interrupt context, the applica-
tions must ensure proper protection (e.g. by disabling interrupts before accessing
them).

avr-libc declarations

• uint8_teeprom_read_byte(constuint8_t∗addr)
• uint16_teeprom_read_word(constuint16_t∗addr)
• void eeprom_read_block(void ∗pointer_ram, const void∗pointer_eeprom,

size_t n)
• void eeprom_write_byte(uint8_t∗addr,uint8_tvalue)
• void eeprom_write_word(uint16_t∗addr,uint16_tvalue)
• void eeprom_write_block(const void ∗pointer_ram, void∗pointer_eeprom,

size_t n)
• #defineEEMEM __attribute__((section(".eeprom")))
• #defineeeprom_is_ready()
• #defineeeprom_busy_wait() do {} while (!eeprom_is_ready())

IAR C compatibility defines

• #define _EEPUT(addr, val) eeprom_write_byte ((uint8_t ∗)(addr), (uint8_-
t)(val))

• #define_EEGET(var, addr) (var) = eeprom_read_byte ((uint8_t∗)(addr))

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.13 <avr/eeprom.h>: EEPROM handling 102

Defines

• #define__EEPROM_REG_LOCATIONS__1C1D1E

6.13.2 Define Documentation

6.13.2.1 #define __EEPROM_REG_LOCATIONS__ 1C1D1E

In order to be able to work without a requiring a multilib approach for dealing with
controllers having the EEPROM registers at different positions in memory space, the
eeprom functions evaluate __EEPROM_REG_LOCATIONS__: It is assumed to be
defined by the device io header and contains 6 uppercase hex digits encoding the ad-
dresses of EECR,EEDR and EEAR. First two letters: EECR address. Second two
letters: EEDR address. Last two letters: EEAR address. The default 1C1D1E corre-
sponds to the register location that is valid for most controllers. The value of this define
symbol is used for appending it to the base name of the assembler functions.

6.13.2.2 #define _EEGET(var, addr) (var) = eeprom_read_byte ((uint8_t
∗)(addr))

Read a byte from EEPROM. Compatibility define for IAR C.

6.13.2.3 #define _EEPUT(addr, val) eeprom_write_byte ((uint8_t ∗)(addr),
(uint8_t)(val))

Write a byte to EEPROM. Compatibility define for IAR C.

6.13.2.4 #define EEMEM __attribute__((section(".eeprom")))

Attribute expression causing a variable to be allocated within the .eeprom section.

6.13.2.5 #define eeprom_busy_wait() do {} while (!eeprom_is_ready())

Loops until the eeprom is no longer busy.

Returns:

Nothing.

6.13.2.6 #define eeprom_is_ready()

Returns:

1 if EEPROM is ready for a new read/write operation, 0 if not.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.14 <avr/fuse.h>: Fuse Support 103

6.13.3 Function Documentation

6.13.3.1 void eeprom_read_block (void∗ pointer_ram, const void ∗ pointer_-
eeprom, size_tn)

Read a block ofn bytes from EEPROM addresspointer_eeprom to pointer_-
ram. For constant n<= 256 bytes a library function is used. For block sizes unknown
at compile time or block sizes> 256 an inline loop is expanded.

6.13.3.2 uint8_t eeprom_read_byte (constuint8_t ∗ addr)

Read one byte from EEPROM addressaddr .

6.13.3.3 uint16_t eeprom_read_word (constuint16_t ∗ addr)

Read one 16-bit word (little endian) from EEPROM addressaddr .

6.13.3.4 void eeprom_write_block (const void∗ pointer_ram, void ∗ pointer_-
eeprom, size_tn)

Write a block ofn bytes to EEPROM addresspointer_eeprom from pointer_-
ram.

6.13.3.5 void eeprom_write_byte (uint8_t ∗ addr, uint8_t value)

Write a bytevalue to EEPROM addressaddr .

6.13.3.6 void eeprom_write_word (uint16_t ∗ addr, uint16_t value)

Write a wordvalue to EEPROM addressaddr .

6.14 <avr/fuse.h>: Fuse Support

Introduction

The Fuse API allows a user to specify the fuse settings for the specific AVR device they
are compiling for. These fuse settings will be placed in a special section in the ELF
output file, after linking.

Programming tools can take advantage of the fuse information embedded in the ELF
file, by extracting this information and determining if the fuses need to be programmed
before programming the Flash and EEPROM memories. This also allows a single ELF
file to contain all the information needed to program an AVR.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.14 <avr/fuse.h>: Fuse Support 104

To use the Fuse API, include the<avr/io.h> header file, which in turn automatically
includes the individual I/O header file and the<avr/fuse.h> file. These other two files
provides everything necessary to set the AVR fuses.

Fuse API

Each I/O header file must define the FUSE_MEMORY_SIZE macro which is defined
to the number of fuse bytes that exist in the AVR device.

A new type, __fuse_t, is defined as a structure. The number of fields in this structure
are determined by the number of fuse bytes in the FUSE_MEMORY_SIZE macro.

If FUSE_MEMORY_SIZE == 1, there is only a single field: byte, of type unsigned
char.

If FUSE_MEMORY_SIZE == 2, there are two fields: low, and high, of type unsigned
char.

If FUSE_MEMORY_SIZE == 3, there are three fields: low, high, and extended, of
type unsigned char.

If FUSE_MEMORY_SIZE> 3, there is a single field: byte, which is an array of
unsigned char with the size of the array being FUSE_MEMORY_SIZE.

A macro, FUSEMEM, is defined as a GCC attribute for a custom-named section of
".fuse".

Finally, a macro, FUSES, is defined that declares a variable, __fuse, of type __fuse_t
with the attribute defined by FUSEMEM. This variable allows the end user to easily
set the fuse data.

Each AVR device I/O header file has a set of defined macros which specify the actual
fuse bits available on that device. The AVR fuses have inverted values, logical 1 for
an unprogrammed (disabled) bit and logical 0 for a programmed (enabled) bit. The
defined macros for each individual fuse bit represent this in their definition by a bit-
wise inversion of a mask. For example, the EESAVE fuse in the ATmega128 is defined
as:

#define EESAVE ~_BV(3)

Note:

The _BV macro creates a bit mask from a bit number. It is then inverted to repre-
sent logical values for a fuse memory byte.

To combine the fuse bits macros together to represent a whole fuse byte, use the bitwise
AND operator, like so:

(BOOTSZ0 & BOOTSZ1 & EESAVE & SPIEN & JTAGEN)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.14 <avr/fuse.h>: Fuse Support 105

Each device I/O header file also defines macros that provide default values for each fuse
byte that is available. LFUSE_DEFAULT is defined for a Low Fuse byte. HFUSE_-
DEFAULT is defined for a High Fuse byte. EFUSE_DEFAULT is defined for an Ex-
tended Fuse byte.

API Usage Example

Putting all of this together is easy:

#include <avr/io.h>

FUSES =
{

.low = LFUSE_DEFAULT,

.high = (BOOTSZ0 & BOOTSZ1 & EESAVE & SPIEN & JTAGEN),

.extended = EFUSE_DEFAULT,
};

int main(void)
{

return 0;
}

However there are a number of caveats that you need to be aware of to use this API
properly.

Be sure to include<avr/io.h> to get all of the definitions for the API. The FUSES
macro defines a global variable to store the fuse data. This variable is assigned to its
own linker section. Assign the desired fuse values immediately in the variable initial-
ization.

The .fuse section in the ELF file will get its values from the initial variable assignment
ONLY. This means that you can NOT assign values to this variable in functions and the
new values will not be put into the ELF .fuse section.

The global variable is declared in the FUSES macro has two leading underscores,
which means that it is reserved for the "implementation", meaning the library, so it
will not conflict with a user-named variable.

You must initialize ALL fields in the __fuse_t structure. This is because the fuse bits
in all bytes default to a logical 1, meaning unprogrammed. Normal uninitialized data
defaults to all locgial zeros. So it is vital that all fuse bytes are initialized, even with
default data. If they are not, then the fuse bits may not programmed to the desired
settings.

Be sure to have the -mmcu=deviceflag in your compile command line and your linker
command line to have the correct device selected and to have the correct I/O header
file included when you include<avr/io.h>.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 106

You can print out the contents of the .fuse section in the ELF file by using this command
line:

avr-objdump -s -j .fuse <ELF file>

The section contents shows the address on the left, then the data going from lower
address to a higher address, left to right.

6.15 <avr/interrupt.h >: Interrupts

6.15.1 Detailed Description

Note:

This discussion of interrupts was originally taken from Rich Neswold’s document.
SeeAcknowledgments.

Introduction to avr-libc’s interrupt handling It’s nearly impossible to find compil-
ers that agree on how to handle interrupt code. Since the C language tries to stay away
from machine dependent details, each compiler writer is forced to design their method
of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt rou-
tines with predetermined names. By using the appropriate name, your routine will be
called when the corresponding interrupt occurs. The device library provides a set of
default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by
convention, a set of registers when it’s normally executing compiler-generated code.
It’s important that these registers, as well as the status register, get saved and restored.
The extra code needed to do this is enabled by tagging the interrupt function with__-
attribute__((signal)) .

These details seem to make interrupt routines a little messy, but all these details are
handled by the Interrupt API. An interrupt routine is defined withISR(). This macro
register and mark the routine as an interrupt handler for the specified peripheral. The
following is an example definition of a handler for the ADC interrupt.

#include <avr/interrupt.h>

ISR(ADC_vect)
{

// user code here
}

Refer to the chapter explainingassembler programmingfor an explanation about inter-
rupt routines written solely in assembler language.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 107

Catch-all interrupt vector If an unexpected interrupt occurs (interrupt is enabled
and no handler is installed, which usually indicates a bug), then the default action is
to reset the device by jumping to the reset vector. You can override this by supplying
a function namedBADISR_vect which should be defined withISR() as such. (The
name BADISR_vect is actually an alias for __vector_default. The latter must be used
inside assembly code in case<avr/interrupt.h> is not included.)

#include <avr/interrupt.h>

ISR(BADISR_vect)
{

// user code here
}

Nested interrupts The AVR hardware clears the global interrupt flag in SREG be-
fore entering an interrupt vector. Thus, normally interrupts will remain disabled inside
the handler until the handler exits, where the RETI instruction (that is emitted by the
compiler as part of the normal function epilogue for an interrupt handler) will even-
tually re-enable further interrupts. For that reason, interrupt handlers normally do not
nest. For most interrupt handlers, this is the desired behaviour, for some it is even
required in order to prevent infinitely recursive interrupts (like UART interrupts, or
level-triggered external interrupts). In rare circumstances though it might be desired to
re-enable the global interrupt flag as early as possible in the interrupt handler, in order
to not defer any other interrupt more than absolutely needed. This could be done using
ansei() instruction right at the beginning of the interrupt handler, but this still leaves
few instructions inside the compiler-generated function prologue to run with global in-
terrupts disabled. The compiler can be instructed to insert an SEI instruction right at
the beginning of an interrupt handler by declaring the handler the following way:

ISR(XXX_vect, ISR_NOBLOCK)
{

...
}

whereXXX_vect is the name of a valid interrupt vector for the MCU type in question,
as explained below.

Two vectors sharing the same code In some circumstances, the actions to be taken
upon two different interrupts might be completely identical so a single implementa-
tion for the ISR would suffice. For example, pin-change interrupts arriving from two
different ports could logically signal an event that is independent from the actual port
(and thus interrupt vector) where it happened. Sharing interrupt vector code can be
accomplished using theISR_ALIASOF()attribute to the ISR macro:

ISR(PCINT0_vect)
{

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 108

...
// Code to handle the event.

}

ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));

Note:

There is no body to the aliased ISR.

Note that theISR_ALIASOF()feature requires GCC 4.2 or above (or a patched version
of GCC 4.1.x). See the documentation of theISR_ALIAS() macro for an implementa-
tion which is less elegant but could be applied to all compiler versions.

Empty interrupt service routines In rare circumstances, in interrupt vector does not
need any code to be implemented at all. The vector must be declared anyway, so when
the interrupt triggers it won’t execute the BADISR_vect code (which by default restarts
the application).

This could for example be the case for interrupts that are solely enabled for the purpose
of getting the controller out ofsleep_mode().

A handler for such an interrupt vector can be declared using theEMPTY_-
INTERRUPT()macro:

EMPTY_INTERRUPT(ADC_vect);

Note:

There is no body to this macro.

Manually defined ISRs In some circumstances, the compiler-generated prologue
and epilogue of the ISR might not be optimal for the job, and a manually defined ISR
could be considered particularly to speedup the interrupt handling.

One solution to this could be to implement the entire ISR as manual assembly code in
a separate (assembly) file. SeeCombining C and assembly source filesfor an example
of how to implement it that way.

Another solution is to still implement the ISR in C language but take over the com-
piler’s job of generating the prologue and epilogue. This can be done using the ISR_-
NAKED attribute to theISR() macro. Note that the compiler does not generateany-
thing as prologue or epilogue, so the finalreti() must be provided by the actual im-
plementation. SREG must be manually saved if the ISR code modifies it, and the
compiler-implied assumption of__zero_reg__ always being 0 could be wrong (e.
g. when interrupting right after of a MUL instruction).

ISR(TIMER1_OVF_vect, ISR_NAKED)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 109

{
PORTB |= _BV(0); // results in SBI which does not affect SREG
reti();

}

Choosing the vector: Interrupt vector names The interrupt is chosen by supplying
one of the symbols in following table.

There are currently two different styles present for naming the vectors. One form uses
names starting withSIG_ , followed by a relatively verbose but arbitrarily chosen name
describing the interrupt vector. This has been the only available style in avr-libc up to
version 1.2.x.

Starting with avr-libc version 1.4.0, a second style of interrupt vector names has been
added, where a short phrase for the vector description is followed by_vect . The
short phrase matches the vector name as described in the datasheet of the respective
device (and in Atmel’s XML files), with spaces replaced by an underscore and other
non-alphanumeric characters dropped. Using the suffix_vect is intented to improve
portability to other C compilers available for the AVR that use a similar naming con-
vention.

The historical naming style might become deprecated in a future release, so it is not
recommended for new projects.

Note:

TheISR()macro cannot really spell-check the argument passed to them. Thus, by
misspelling one of the names below in a call toISR(), a function will be created
that, while possibly being usable as an interrupt function, is not actually wired into
the interrupt vector table. The compiler will generate a warning if it detects a sus-
piciously looking name of aISR() function (i.e. one that after macro replacement
does not start with "__vector_").

Vector name Old vector
name

Description Applicable for device

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 110

Vector name Old vector
name

Description Applicable for device

ADC_vect SIG_ADC ADC Conversion
Complete

AT90S2333, AT90S4433, AT90S4434,
AT90S8535, AT90PWM216,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CAN64, ATmega103, ATmega128,
ATmega1284P, ATmega16, ATmega163,
ATmega165, ATmega165P, ATmega168P,
ATmega169, ATmega169P, ATmega32,
ATmega323, ATmega325, ATmega3250,
ATmega3250P, ATmega328P, ATmega329,
ATmega3290, ATmega3290P, ATmega48P,
ATmega64, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATmega8,
ATmega8535, ATmega88P, ATmega168,
ATmega48, ATmega88, ATmega640, AT-
mega1280, ATmega1281, ATmega2560,
ATmega2561, ATmega324P, ATmega164P,
ATmega644P, ATmega644, ATtiny13, AT-
tiny15, ATtiny26, ATtiny43U, ATtiny48,
ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85, ATtiny261, ATtiny461,
ATtiny861, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

ANALOG_-
COMP_0_vect

SIG_-
COMPARATOR0

Analog Com-
parator 0

AT90PWM3, AT90PWM2, AT90PWM1

ANALOG_-
COMP_1_vect

SIG_-
COMPARATOR1

Analog Com-
parator 1

AT90PWM3, AT90PWM2, AT90PWM1

ANALOG_-
COMP_2_vect

SIG_-
COMPARATOR2

Analog Com-
parator 2

AT90PWM3, AT90PWM2, AT90PWM1

ANALOG_-
COMP_vect

SIG_-
COMPARATOR

Analog Com-
parator

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, ATmega1284P,
ATmega165, ATmega165P, ATmega168P,
ATmega169, ATmega169P, ATmega325,
ATmega3250, ATmega3250P, ATmega328P,
ATmega329, ATmega3290, ATmega3290P,
ATmega48P, ATmega64, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega88P, ATmega168, ATmega48,
ATmega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 111

Vector name Old vector
name

Description Applicable for device

ANA_-
COMP_vect

SIG_-
COMPARATOR

Analog Com-
parator

AT90S1200, AT90S2313, AT90S2333,
AT90S4414, AT90S4433, AT90S4434,
AT90S8515, AT90S8535, ATmega16,
ATmega161, ATmega162, ATmega163,
ATmega32, ATmega323, ATmega8, AT-
mega8515, ATmega8535, ATtiny11,
ATtiny12, ATtiny13, ATtiny15, ATtiny2313,
ATtiny26, ATtiny28, ATtiny43U, ATtiny48,
ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85, ATtiny261, ATtiny461,
ATtiny861

CANIT_vect SIG_CAN_-
INTERRUPT1

CAN Transfer
Complete or
Error

AT90CAN128, AT90CAN32, AT90CAN64

EEPROM_-
READY_vect

SIG_-
EEPROM_-
READY,
SIG_EE_-
READY

ATtiny2313

EE_RDY_vect SIG_-
EEPROM_-
READY

EEPROM Ready AT90S2333, AT90S4433, AT90S4434,
AT90S8535, ATmega16, ATmega161,
ATmega162, ATmega163, ATmega32,
ATmega323, ATmega8, ATmega8515,
ATmega8535, ATtiny12, ATtiny13, AT-
tiny15, ATtiny26, ATtiny43U, ATtiny48,
ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85, ATtiny261, ATtiny461,
ATtiny861

EE_READY_-
vect

SIG_-
EEPROM_-
READY

EEPROM Ready AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, ATmega1284P,
ATmega165, ATmega165P, ATmega168P,
ATmega169, ATmega169P, ATmega325,
ATmega3250, ATmega3250P, ATmega328P,
ATmega329, ATmega3290, ATmega3290P,
ATmega32HVB, ATmega406, ATmega48P,
ATmega64, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATmega88P,
ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281, AT-
mega2560, ATmega2561, ATmega324P, AT-
mega164P, ATmega644P, ATmega644, AT-
mega16HVA, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

EXT_INT0_-
vect

SIG_-
INTERRUPT0

External Interrupt
Request 0

ATtiny24, ATtiny44, ATtiny84

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 112

Vector name Old vector
name

Description Applicable for device

INT0_vect SIG_-
INTERRUPT0

External Interrupt
0

AT90S1200, AT90S2313, AT90S2323,
AT90S2333, AT90S2343, AT90S4414,
AT90S4433, AT90S4434, AT90S8515,
AT90S8535, AT90PWM216,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CAN64, ATmega103, ATmega128,
ATmega1284P, ATmega16, ATmega161,
ATmega162, ATmega163, ATmega165,
ATmega165P, ATmega168P, ATmega169,
ATmega169P, ATmega32, ATmega323,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, AT-
mega406, ATmega48P, ATmega64, AT-
mega645, ATmega6450, ATmega649,
ATmega6490, ATmega8, ATmega8515,
ATmega8535, ATmega88P, ATmega168,
ATmega48, ATmega88, ATmega640, AT-
mega1280, ATmega1281, ATmega2560,
ATmega2561, ATmega324P, ATmega164P,
ATmega644P, ATmega644, ATmega16HVA,
ATtiny11, ATtiny12, ATtiny13, ATtiny15,
ATtiny22, ATtiny2313, ATtiny26, ATtiny28,
ATtiny43U, ATtiny48, ATtiny45, ATtiny25,
ATtiny85, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

INT1_vect SIG_-
INTERRUPT1

External Interrupt
Request 1

AT90S2313, AT90S2333, AT90S4414,
AT90S4433, AT90S4434, AT90S8515,
AT90S8535, AT90PWM216,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CAN64, ATmega103, ATmega128,
ATmega1284P, ATmega16, ATmega161,
ATmega162, ATmega163, ATmega168P,
ATmega32, ATmega323, ATmega328P,
ATmega32HVB, ATmega406, AT-
mega48P, ATmega64, ATmega8, AT-
mega8515, ATmega8535, ATmega88P,
ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATmega16HVA, ATtiny2313, ATtiny28,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 113

Vector name Old vector
name

Description Applicable for device

INT2_vect SIG_-
INTERRUPT2

External Interrupt
Request 2

AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, ATmega1284P,
ATmega16, ATmega161, ATmega162,
ATmega32, ATmega323, ATmega32HVB,
ATmega406, ATmega64, ATmega8515, AT-
mega8535, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, ATmega324P, ATmega164P,
ATmega644P, ATmega644, AT-
mega16HVA, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

INT3_vect SIG_-
INTERRUPT3

External Interrupt
Request 3

AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, ATmega32HVB,
ATmega406, ATmega64, ATmega640,
ATmega1280, ATmega1281, ATmega2560,
ATmega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

INT4_vect SIG_-
INTERRUPT4

External Interrupt
Request 4

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, AT-
mega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

INT5_vect SIG_-
INTERRUPT5

External Interrupt
Request 5

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, AT-
mega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

INT6_vect SIG_-
INTERRUPT6

External Interrupt
Request 6

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, AT-
mega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

INT7_vect SIG_-
INTERRUPT7

External Interrupt
Request 7

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, AT-
mega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

IO_PINS_vect SIG_PIN,
SIG_PIN_-
CHANGE

External Interrupt
Request 0

ATtiny11, ATtiny12, ATtiny15, ATtiny26

LCD_vect SIG_LCD LCD Start of
Frame

ATmega169, ATmega169P, ATmega329,
ATmega3290, ATmega3290P, ATmega649,
ATmega6490

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 114

Vector name Old vector
name

Description Applicable for device

LOWLEVEL_-
IO_PINS_vect

SIG_PIN Low-level Input
on Port B

ATtiny28

OVRIT_vect SIG_CAN_-
OVERFLOW1

CAN Timer
Overrun

AT90CAN128, AT90CAN32, AT90CAN64

PCINT0_vect SIG_PIN_-
CHANGE0

Pin Change Inter-
rupt Request 0

ATmega162, ATmega165, ATmega165P,
ATmega168P, ATmega169, ATmega169P,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, AT-
mega406, ATmega48P, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega88P, ATmega168, ATmega48,
ATmega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, ATmega324P, ATmega164P,
ATmega644P, ATmega644, ATtiny13,
ATtiny43U, ATtiny48, ATtiny24, AT-
tiny44, ATtiny84, ATtiny45, ATtiny25,
ATtiny85, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

PCINT1_vect SIG_PIN_-
CHANGE1

Pin Change Inter-
rupt Request 1

ATmega162, ATmega165, ATmega165P,
ATmega168P, ATmega169, ATmega169P,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, AT-
mega406, ATmega48P, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega88P, ATmega168, ATmega48,
ATmega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATtiny43U, ATtiny48, AT-
tiny24, ATtiny44, ATtiny84, AT90USB162,
AT90USB82

PCINT2_vect SIG_PIN_-
CHANGE2

Pin Change Inter-
rupt Request 2

ATmega3250, ATmega3250P, ATmega328P,
ATmega3290, ATmega3290P, ATmega48P,
ATmega6450, ATmega6490, ATmega88P,
ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281, AT-
mega2560, ATmega2561, ATmega324P, AT-
mega164P, ATmega644P, ATmega644, AT-
tiny48

PCINT3_vect SIG_PIN_-
CHANGE3

Pin Change Inter-
rupt Request 3

ATmega3250, ATmega3250P, ATmega3290,
ATmega3290P, ATmega6450, ATmega6490,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATtiny48

PCINT_vect SIG_PIN_-
CHANGE,
SIG_PCINT

ATtiny2313, ATtiny261, ATtiny461, AT-
tiny861

PSC0_-
CAPT_vect

SIG_PSC0_-
CAPTURE

PSC0 Capture
Event

AT90PWM3, AT90PWM2, AT90PWM1

PSC0_EC_-
vect

SIG_PSC0_-
END_CYCLE

PSC0 End Cycle AT90PWM3, AT90PWM2, AT90PWM1

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 115

Vector name Old vector
name

Description Applicable for device

PSC1_-
CAPT_vect

SIG_PSC1_-
CAPTURE

PSC1 Capture
Event

AT90PWM3, AT90PWM2, AT90PWM1

PSC1_EC_-
vect

SIG_PSC1_-
END_CYCLE

PSC1 End Cycle AT90PWM3, AT90PWM2, AT90PWM1

PSC2_-
CAPT_vect

SIG_PSC2_-
CAPTURE

PSC2 Capture
Event

AT90PWM3, AT90PWM2, AT90PWM1

PSC2_EC_-
vect

SIG_PSC2_-
END_CYCLE

PSC2 End Cycle AT90PWM3, AT90PWM2, AT90PWM1

SPI_STC_vect SIG_SPI Serial Transfer
Complete

AT90S2333, AT90S4414, AT90S4433,
AT90S4434, AT90S8515, AT90S8535,
AT90PWM216, AT90PWM2B,
AT90PWM316, AT90PWM3B,
AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, ATmega1284P,
ATmega16, ATmega161, ATmega162,
ATmega163, ATmega165, ATmega165P,
ATmega168P, ATmega169, ATmega169P,
ATmega32, ATmega323, ATmega325,
ATmega3250, ATmega3250P, ATmega328P,
ATmega329, ATmega3290, ATmega3290P,
ATmega32HVB, ATmega48P, ATmega64,
ATmega645, ATmega6450, ATmega649,
ATmega6490, ATmega8, ATmega8515,
ATmega8535, ATmega88P, ATmega168,
ATmega48, ATmega88, ATmega640, AT-
mega1280, ATmega1281, ATmega2560,
ATmega2561, ATmega324P, ATmega164P,
ATmega644P, ATmega644, ATmega16HVA,
ATtiny48, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

SPM_RDY_-
vect

SIG_SPM_-
READY

Store Program
Memory Ready

ATmega16, ATmega162, ATmega32, AT-
mega323, ATmega8, ATmega8515, AT-
mega8535

SPM_-
READY_vect

SIG_SPM_-
READY

Store Program
Memory Read

AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega165,
ATmega165P, ATmega168P, ATmega169,
ATmega169P, ATmega325, ATmega3250,
ATmega3250P, ATmega328P, ATmega329,
ATmega3290, ATmega3290P, ATmega406,
ATmega48P, ATmega64, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega88P, ATmega168, ATmega48,
ATmega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIM0_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE0A

Timer/Counter
Compare Match
A

ATtiny13, ATtiny43U, ATtiny24, ATtiny44,
ATtiny84, ATtiny45, ATtiny25, ATtiny85

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 116

Vector name Old vector
name

Description Applicable for device

TIM0_-
COMPB_vect

SIG_-
OUTPUT_-
COMPARE0B

Timer/Counter
Compare Match
B

ATtiny13, ATtiny43U, ATtiny24, ATtiny44,
ATtiny84, ATtiny45, ATtiny25, ATtiny85

TIM0_OVF_-
vect

SIG_-
OVERFLOW0

Timer/Counter0
Overflow

ATtiny13, ATtiny43U, ATtiny24, ATtiny44,
ATtiny84, ATtiny45, ATtiny25, ATtiny85

TIM1_-
CAPT_vect

SIG_INPUT_-
CAPTURE1

Timer/Counter1
Capture Event

ATtiny24, ATtiny44, ATtiny84

TIM1_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE1A

Timer/Counter1
Compare Match
A

ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85

TIM1_-
COMPB_vect

SIG_-
OUTPUT_-
COMPARE1B

Timer/Counter1
Compare Match
B

ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85

TIM1_OVF_-
vect

SIG_-
OVERFLOW1

Timer/Counter1
Overflow

ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85

TIMER0_-
CAPT_vect

SIG_INPUT_-
CAPTURE0

ADC Conversion
Complete

ATtiny261, ATtiny461, ATtiny861

TIMER0_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE0A

TimerCounter0
Compare Match
A

ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, AT-
mega324P, ATmega164P, ATmega644P,
ATmega644, ATmega16HVA, ATtiny2313,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER0_-
COMPB_vect

SIG_-
OUTPUT_-
COMPARE0B,
SIG_-
OUTPUT_-
COMPARE0_-
B

Timer Counter 0
Compare Match
B

AT90PWM3, AT90PWM2, AT90PWM1,
ATmega1284P, ATmega168P, ATmega328P,
ATmega32HVB, ATmega48P, AT-
mega88P, ATmega168, ATmega48, AT-
mega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATmega16HVA, ATtiny2313,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER0_-
COMP_A_-
vect

SIG_-
OUTPUT_-
COMPARE0A,
SIG_-
OUTPUT_-
COMPARE0_-
A

Timer/Counter0
Compare Match
A

AT90PWM3, AT90PWM2, AT90PWM1

TIMER0_-
COMP_vect

SIG_-
OUTPUT_-
COMPARE0

Timer/Counter0
Compare Match

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, ATmega16, AT-
mega161, ATmega162, ATmega165, AT-
mega165P, ATmega169, ATmega169P, AT-
mega32, ATmega323, ATmega325, AT-
mega3250, ATmega3250P, ATmega329, AT-
mega3290, ATmega3290P, ATmega64, AT-
mega645, ATmega6450, ATmega649, AT-
mega6490, ATmega8515, ATmega8535

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 117

Vector name Old vector
name

Description Applicable for device

TIMER0_-
OVF0_vect

SIG_-
OVERFLOW0

Timer/Counter0
Overflow

AT90S2313, AT90S2323, AT90S2343, AT-
tiny22, ATtiny26

TIMER0_-
OVF_vect

SIG_-
OVERFLOW0

Timer/Counter0
Overflow

AT90S1200, AT90S2333, AT90S4414,
AT90S4433, AT90S4434, AT90S8515,
AT90S8535, AT90PWM216,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CAN64, ATmega103, ATmega128,
ATmega1284P, ATmega16, ATmega161,
ATmega162, ATmega163, ATmega165,
ATmega165P, ATmega168P, ATmega169,
ATmega169P, ATmega32, ATmega323,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, AT-
mega48P, ATmega64, ATmega645, AT-
mega6450, ATmega649, ATmega6490,
ATmega8, ATmega8515, ATmega8535,
ATmega88P, ATmega168, ATmega48,
ATmega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATmega16HVA, ATtiny11,
ATtiny12, ATtiny15, ATtiny2313, ATtiny28,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER1_-
CAPT1_vect

SIG_INPUT_-
CAPTURE1

Timer/Counter1
Capture Event

AT90S2313

TIMER1_-
CAPT_vect

SIG_INPUT_-
CAPTURE1

Timer/Counter
Capture Event

AT90S2333, AT90S4414, AT90S4433,
AT90S4434, AT90S8515, AT90S8535,
AT90PWM216, AT90PWM2B,
AT90PWM316, AT90PWM3B,
AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, ATmega1284P,
ATmega16, ATmega161, ATmega162,
ATmega163, ATmega165, ATmega165P,
ATmega168P, ATmega169, ATmega169P,
ATmega32, ATmega323, ATmega325,
ATmega3250, ATmega3250P, AT-
mega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega48P, ATmega64,
ATmega645, ATmega6450, ATmega649,
ATmega6490, ATmega8, ATmega8515,
ATmega8535, ATmega88P, ATmega168,
ATmega48, ATmega88, ATmega640, AT-
mega1280, ATmega1281, ATmega2560,
ATmega2561, ATmega324P, ATmega164P,
ATmega644P, ATmega644, ATtiny2313,
ATtiny48, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 118

Vector name Old vector
name

Description Applicable for device

TIMER1_-
CMPA_vect

SIG_-
OUTPUT_-
COMPARE1A

Timer/Counter1
Compare Match
1A

ATtiny26

TIMER1_-
CMPB_vect

SIG_-
OUTPUT_-
COMPARE1B

Timer/Counter1
Compare Match
1B

ATtiny26

TIMER1_-
COMP1_vect

SIG_-
OUTPUT_-
COMPARE1A

Timer/Counter1
Compare Match

AT90S2313

TIMER1_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE1A

Timer/Counter1
Compare Match
A

AT90S4414, AT90S4434, AT90S8515,
AT90S8535, AT90PWM216,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CAN64, ATmega103, ATmega128,
ATmega1284P, ATmega16, ATmega161,
ATmega162, ATmega163, ATmega165,
ATmega165P, ATmega168P, ATmega169,
ATmega169P, ATmega32, ATmega323,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, AT-
mega48P, ATmega64, ATmega645, AT-
mega6450, ATmega649, ATmega6490,
ATmega8, ATmega8515, ATmega8535,
ATmega88P, ATmega168, ATmega48,
ATmega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATmega16HVA, ATtiny2313,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 119

Vector name Old vector
name

Description Applicable for device

TIMER1_-
COMPB_vect

SIG_-
OUTPUT_-
COMPARE1B

Timer/Counter1
Compare MatchB

AT90S4414, AT90S4434, AT90S8515,
AT90S8535, AT90PWM216,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CAN64, ATmega103, ATmega128,
ATmega1284P, ATmega16, ATmega161,
ATmega162, ATmega163, ATmega165,
ATmega165P, ATmega168P, ATmega169,
ATmega169P, ATmega32, ATmega323,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, AT-
mega48P, ATmega64, ATmega645, AT-
mega6450, ATmega649, ATmega6490,
ATmega8, ATmega8515, ATmega8535,
ATmega88P, ATmega168, ATmega48,
ATmega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATmega16HVA, ATtiny2313,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER1_-
COMPC_vect

SIG_-
OUTPUT_-
COMPARE1C

Timer/Counter1
Compare Match
C

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega64, ATmega640,
ATmega1280, ATmega1281, ATmega2560,
ATmega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER1_-
COMPD_vect

SIG_-
OUTPUT_-
COMPARE0D

Timer/Counter1
Compare Match
D

ATtiny261, ATtiny461, ATtiny861

TIMER1_-
COMP_vect

SIG_-
OUTPUT_-
COMPARE1A

Timer/Counter1
Compare Match

AT90S2333, AT90S4433, ATtiny15

TIMER1_-
OVF1_vect

SIG_-
OVERFLOW1

Timer/Counter1
Overflow

AT90S2313, ATtiny26

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 120

Vector name Old vector
name

Description Applicable for device

TIMER1_-
OVF_vect

SIG_-
OVERFLOW1

Timer/Counter1
Overflow

AT90S2333, AT90S4414, AT90S4433,
AT90S4434, AT90S8515, AT90S8535,
AT90PWM216, AT90PWM2B,
AT90PWM316, AT90PWM3B,
AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CAN64,
ATmega103, ATmega128, ATmega1284P,
ATmega16, ATmega161, ATmega162,
ATmega163, ATmega165, ATmega165P,
ATmega168P, ATmega169, ATmega169P,
ATmega32, ATmega323, ATmega325,
ATmega3250, ATmega3250P, ATmega328P,
ATmega329, ATmega3290, ATmega3290P,
ATmega32HVB, ATmega48P, AT-
mega64, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATmega8,
ATmega8515, ATmega8535, ATmega88P,
ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATmega16HVA, ATtiny15, ATtiny2313,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER2_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE2A

Timer/Counter2
Compare Match
A

ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, AT-
mega324P, ATmega164P, ATmega644P, AT-
mega644, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER2_-
COMPB_vect

SIG_-
OUTPUT_-
COMPARE2B

Timer/Counter2
Compare Match
A

ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, AT-
mega324P, ATmega164P, ATmega644P, AT-
mega644, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER2_-
COMP_vect

SIG_-
OUTPUT_-
COMPARE2

Timer/Counter2
Compare Match

AT90S4434, AT90S8535, AT90CAN128,
AT90CAN32, AT90CAN64, ATmega103,
ATmega128, ATmega16, ATmega161, AT-
mega162, ATmega163, ATmega165, AT-
mega165P, ATmega169, ATmega169P, AT-
mega32, ATmega323, ATmega325, AT-
mega3250, ATmega3250P, ATmega329, AT-
mega3290, ATmega3290P, ATmega64, AT-
mega645, ATmega6450, ATmega649, AT-
mega6490, ATmega8, ATmega8535

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 121

Vector name Old vector
name

Description Applicable for device

TIMER2_-
OVF_vect

SIG_-
OVERFLOW2

Timer/Counter2
Overflow

AT90S4434, AT90S8535, AT90CAN128,
AT90CAN32, AT90CAN64, ATmega103,
ATmega128, ATmega1284P, ATmega16,
ATmega161, ATmega162, ATmega163,
ATmega165, ATmega165P, ATmega168P,
ATmega169, ATmega169P, ATmega32, AT-
mega323, ATmega325, ATmega3250,
ATmega3250P, ATmega328P, AT-
mega329, ATmega3290, ATmega3290P,
ATmega48P, ATmega64, ATmega645,
ATmega6450, ATmega649, ATmega6490,
ATmega8, ATmega8535, ATmega88P,
ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, AT-
mega324P, ATmega164P, ATmega644P, AT-
mega644, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER3_-
CAPT_vect

SIG_INPUT_-
CAPTURE3

Timer/Counter3
Capture Event

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega162,
ATmega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER3_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE3A

Timer/Counter3
Compare Match
A

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega162,
ATmega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER3_-
COMPB_vect

SIG_-
OUTPUT_-
COMPARE3B

Timer/Counter3
Compare Match
B

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega162,
ATmega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER3_-
COMPC_vect

SIG_-
OUTPUT_-
COMPARE3C

Timer/Counter3
Compare Match
C

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega64, ATmega640, AT-
mega1280, ATmega1281, ATmega2560, AT-
mega2561, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER3_-
OVF_vect

SIG_-
OVERFLOW3

Timer/Counter3
Overflow

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega162,
ATmega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, AT-
mega2561, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER4_-
CAPT_vect

SIG_INPUT_-
CAPTURE4

Timer/Counter4
Capture Event

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TIMER4_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE4A

Timer/Counter4
Compare Match
A

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TIMER4_-
COMPB_vect

SIG_-
OUTPUT_-
COMPARE4B

Timer/Counter4
Compare Match
B

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 122

Vector name Old vector
name

Description Applicable for device

TIMER4_-
COMPC_vect

SIG_-
OUTPUT_-
COMPARE4C

Timer/Counter4
Compare Match
C

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TIMER4_-
OVF_vect

SIG_-
OVERFLOW4

Timer/Counter4
Overflow

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TIMER5_-
CAPT_vect

SIG_INPUT_-
CAPTURE5

Timer/Counter5
Capture Event

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TIMER5_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE5A

Timer/Counter5
Compare Match
A

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TIMER5_-
COMPB_vect

SIG_-
OUTPUT_-
COMPARE5B

Timer/Counter5
Compare Match
B

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TIMER5_-
COMPC_vect

SIG_-
OUTPUT_-
COMPARE5C

Timer/Counter5
Compare Match
C

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TIMER5_-
OVF_vect

SIG_-
OVERFLOW5

Timer/Counter5
Overflow

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

TWI_vect SIG_2WIRE_-
SERIAL

2-wire Serial In-
terface

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega16,
ATmega163, ATmega168P, ATmega32, AT-
mega323, ATmega328P, ATmega32HVB,
ATmega406, ATmega48P, ATmega64,
ATmega8, ATmega8535, ATmega88P,
ATmega168, ATmega48, ATmega88, AT-
mega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644,
ATtiny48, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TXDONE_-
vect

SIG_-
TXDONE

Transmission
Done, Bit Timer
Flag 2 Interrupt

AT86RF401

TXEMPTY_-
vect

SIG_TXBE Transmit Buffer
Empty, Bit Itmer
Flag 0 Interrupt

AT86RF401

UART0_RX_-
vect

SIG_-
UART0_-
RECV

UART0, Rx
Complete

ATmega161

UART0_TX_-
vect

SIG_-
UART0_-
TRANS

UART0, Tx
Complete

ATmega161

UART0_-
UDRE_vect

SIG_-
UART0_-
DATA

UART0 Data
Register Empty

ATmega161

UART1_RX_-
vect

SIG_-
UART1_-
RECV

UART1, Rx
Complete

ATmega161

UART1_TX_-
vect

SIG_-
UART1_-
TRANS

UART1, Tx
Complete

ATmega161

UART1_-
UDRE_vect

SIG_-
UART1_-
DATA

UART1 Data
Register Empty

ATmega161

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 123

Vector name Old vector
name

Description Applicable for device

UART_RX_-
vect

SIG_UART_-
RECV

UART, Rx Com-
plete

AT90S2313, AT90S2333, AT90S4414,
AT90S4433, AT90S4434, AT90S8515,
AT90S8535, ATmega103, ATmega163,
ATmega8515

UART_TX_-
vect

SIG_UART_-
TRANS

UART, Tx Com-
plete

AT90S2313, AT90S2333, AT90S4414,
AT90S4433, AT90S4434, AT90S8515,
AT90S8535, ATmega103, ATmega163,
ATmega8515

UART_-
UDRE_vect

SIG_UART_-
DATA

UART Data Reg-
ister Empty

AT90S2313, AT90S2333, AT90S4414,
AT90S4433, AT90S4434, AT90S8515,
AT90S8535, ATmega103, ATmega163,
ATmega8515

USART0_-
RXC_vect

SIG_-
USART0_-
RECV

USART0, Rx
Complete

ATmega162

USART0_-
RX_vect

SIG_-
UART0_-
RECV

USART0, Rx
Complete

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega165,
ATmega165P, ATmega169, ATmega169P,
ATmega325, ATmega329, ATmega64, AT-
mega645, ATmega649, ATmega640, AT-
mega1280, ATmega1281, ATmega2560, AT-
mega2561, ATmega324P, ATmega164P, AT-
mega644P, ATmega644

USART0_-
TXC_vect

SIG_-
USART0_-
TRANS

USART0, Tx
Complete

ATmega162

USART0_-
TX_vect

SIG_-
UART0_-
TRANS

USART0, Tx
Complete

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega165,
ATmega165P, ATmega169, ATmega169P,
ATmega325, ATmega3250, ATmega3250P,
ATmega329, ATmega3290, ATmega3290P,
ATmega64, ATmega645, ATmega6450, AT-
mega649, ATmega6490, ATmega640, AT-
mega1280, ATmega1281, ATmega2560, AT-
mega2561, ATmega324P, ATmega164P, AT-
mega644P, ATmega644

USART0_-
UDRE_vect

SIG_-
UART0_-
DATA

USART0 Data
Register Empty

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega162,
ATmega165, ATmega165P, ATmega169,
ATmega169P, ATmega325, ATmega329,
ATmega64, ATmega645, ATmega649,
ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, ATmega324P,
ATmega164P, ATmega644P, ATmega644

USART1_-
RXC_vect

SIG_-
USART1_-
RECV

USART1, Rx
Complete

ATmega162

USART1_-
RX_vect

SIG_-
UART1_-
RECV

USART1, Rx
Complete

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega64,
ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, AT-
mega324P, ATmega164P, ATmega644P,
ATmega644, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 124

Vector name Old vector
name

Description Applicable for device

USART1_-
TXC_vect

SIG_-
USART1_-
TRANS

USART1, Tx
Complete

ATmega162

USART1_-
TX_vect

SIG_-
UART1_-
TRANS

USART1, Tx
Complete

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega64,
ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561, AT-
mega324P, ATmega164P, ATmega644P,
ATmega644, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

USART1_-
UDRE_vect

SIG_-
UART1_-
DATA

USART1, Data
Register Empty

AT90CAN128, AT90CAN32, AT90CAN64,
ATmega128, ATmega1284P, ATmega162,
ATmega64, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

USART2_-
RX_vect

SIG_-
USART2_-
RECV

USART2, Rx
Complete

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

USART2_-
TX_vect

SIG_-
USART2_-
TRANS

USART2, Tx
Complete

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

USART2_-
UDRE_vect

SIG_-
USART2_-
DATA

USART2 Data
register Empty

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

USART3_-
RX_vect

SIG_-
USART3_-
RECV

USART3, Rx
Complete

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

USART3_-
TX_vect

SIG_-
USART3_-
TRANS

USART3, Tx
Complete

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

USART3_-
UDRE_vect

SIG_-
USART3_-
DATA

USART3 Data
register Empty

ATmega640, ATmega1280, ATmega1281,
ATmega2560, ATmega2561

USART_-
RXC_vect

SIG_-
USART_-
RECV, SIG_-
UART_RECV

USART, Rx
Complete

ATmega16, ATmega32, ATmega323, AT-
mega8

USART_RX_-
vect

SIG_-
USART_-
RECV, SIG_-
UART_RECV

USART, Rx
Complete

AT90PWM3, AT90PWM2, AT90PWM1,
ATmega168P, ATmega3250, ATmega3250P,
ATmega328P, ATmega3290, ATmega3290P,
ATmega48P, ATmega6450, ATmega6490,
ATmega8535, ATmega88P, ATmega168,
ATmega48, ATmega88, ATtiny2313

USART_-
TXC_vect

SIG_-
USART_-
TRANS,
SIG_UART_-
TRANS

USART, Tx
Complete

ATmega16, ATmega32, ATmega323, AT-
mega8

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 125

Vector name Old vector
name

Description Applicable for device

USART_TX_-
vect

SIG_-
USART_-
TRANS,
SIG_UART_-
TRANS

USART, Tx
Complete

AT90PWM3, AT90PWM2, AT90PWM1,
ATmega168P, ATmega328P, ATmega48P,
ATmega8535, ATmega88P, ATmega168,
ATmega48, ATmega88, ATtiny2313

USART_-
UDRE_vect

SIG_-
USART_-
DATA, SIG_-
UART_DATA

USART Data
Register Empty

AT90PWM3, AT90PWM2, AT90PWM1,
ATmega16, ATmega168P, ATmega32, AT-
mega323, ATmega3250, ATmega3250P, AT-
mega328P, ATmega3290, ATmega3290P,
ATmega48P, ATmega6450, ATmega6490,
ATmega8, ATmega8535, ATmega88P, AT-
mega168, ATmega48, ATmega88, AT-
tiny2313

USI_-
OVERFLOW_-
vect

SIG_USI_-
OVERFLOW

USI Overflow ATmega165, ATmega165P, ATmega169,
ATmega169P, ATmega325, ATmega3250,
ATmega3250P, ATmega329, ATmega3290,
ATmega3290P, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATtiny2313

USI_OVF_-
vect

SIG_USI_-
OVERFLOW

USI Overflow ATtiny26, ATtiny43U, ATtiny24, ATtiny44,
ATtiny84, ATtiny45, ATtiny25, ATtiny85,
ATtiny261, ATtiny461, ATtiny861

USI_START_-
vect

SIG_USI_-
START

USI Start Condi-
tion

ATmega165, ATmega165P, ATmega169,
ATmega169P, ATmega325, ATmega3250,
ATmega3250P, ATmega329, ATmega3290,
ATmega3290P, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATtiny2313,
ATtiny43U, ATtiny45, ATtiny25, ATtiny85,
ATtiny261, ATtiny461, ATtiny861

USI_STRT_-
vect

SIG_USI_-
START

USI Start ATtiny26

USI_STR_-
vect

SIG_USI_-
START

USI START ATtiny24, ATtiny44, ATtiny84

WATCHDOG_-
vect

SIG_-
WATCHDOG_-
TIMEOUT

Watchdog Time-
out

ATtiny24, ATtiny44, ATtiny84

WDT_-
OVERFLOW_-
vect

SIG_-
WATCHDOG_-
TIMEOUT,
SIG_WDT_-
OVERFLOW

Watchdog Timer
Overflow

ATtiny2313

WDT_vect SIG_WDT,
SIG_-
WATCHDOG_-
TIMEOUT

Watchdog Time-
out Interrupt

AT90PWM3, AT90PWM2, AT90PWM1,
ATmega1284P, ATmega168P, ATmega328P,
ATmega32HVB, ATmega406, ATmega48P,
ATmega88P, ATmega168, ATmega48,
ATmega88, ATmega640, ATmega1280,
ATmega1281, ATmega2560, ATmega2561,
ATmega324P, ATmega164P, ATmega644P,
ATmega644, ATmega16HVA, ATtiny13,
ATtiny43U, ATtiny48, ATtiny45, ATtiny25,
ATtiny85, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 126

Global manipulation of the interrupt flag

The global interrupt flag is maintained in the I bit of the status register (SREG).

• #definesei()
• #definecli()

Macros for writing interrupt handler functions

• #defineISR(vector, attributes)
• #defineSIGNAL(vector)
• #defineEMPTY_INTERRUPT(vector)
• #defineISR_ALIAS(vector, target_vector)
• #definereti()
• #defineBADISR_vect

ISR attributes

• #defineISR_BLOCK
• #defineISR_NOBLOCK
• #defineISR_NAKED
• #defineISR_ALIASOF(target_vector)

6.15.2 Define Documentation

6.15.2.1 #define BADISR_vect

#include <avr/interrupt.h>

This is a vector which is aliased to __vector_default, the vector executed when an ISR
fires with no accompanying ISR handler. This may be used along with theISR()macro
to create a catch-all for undefined but used ISRs for debugging purposes.

6.15.2.2 #define cli()

#include <avr/interrupt.h>

Disables all interrupts by clearing the global interrupt mask. This function actually
compiles into a single line of assembly, so there is no function call overhead.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 127

6.15.2.3 #define EMPTY_INTERRUPT(vector)

#include <avr/interrupt.h>

Defines an empty interrupt handler function. This will not generate any prolog or
epilog code and will only return from the ISR. Do not define a function body as this
will define it for you. Example:

EMPTY_INTERRUPT(ADC_vect);

6.15.2.4 #define ISR(vector, attributes)

#include <avr/interrupt.h>

Introduces an interrupt handler function (interrupt service routine) that runs with global
interrupts initially disabled by default with no attributes specified.

The attributes are optional and alter the behaviour and resultant generated code of the
interrupt routine. Multiple attributes may be used for a single function, with a space
seperating each attribute.

Valid attributes are ISR_BLOCK, ISR_NOBLOCK, ISR_NAKED andISR_-
ALIASOF(vect).

vector must be one of the interrupt vector names that are valid for the particular
MCU type.

6.15.2.5 #define ISR_ALIAS(vector, target_vector)

#include <avr/interrupt.h>

Aliases a given vector to another one in the same manner as the ISR_ALIASOF at-
tribute for theISR()macro. Unlike the ISR_ALIASOF attribute macro however, this is
compatible for all versions of GCC rather than just GCC version 4.2 onwards.

Note:

This macro creates a trampoline function for the aliased macro. This will result in
a two cycle penalty for the aliased vector compared to the ISR the vector is aliased
to, due to the JMP/RJMP opcode used.

Deprecated

For new code, the use of ISR(..., ISR_ALIASOF(...)) is recommended.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.15 <avr/interrupt.h >: Interrupts 128

Example:

ISR(INT0_vect)
{

PORTB = 42;
}

ISR_ALIAS(INT1_vect, INT0_vect);

6.15.2.6 #define ISR_ALIASOF(target_vector)

#include <avr/interrupt.h>

The ISR is linked to another ISR, specified by the vect parameter. This is compatible
with GCC 4.2 and greater only.

Use this attribute in the attributes parameter of the ISR macro.

6.15.2.7 #define ISR_BLOCK

# include <avr/interrupt.h>

Identical to an ISR with no attributes specified. Global interrupts are initially disabled
by the AVR hardware when entering the ISR, without the compiler modifying this state.

Use this attribute in the attributes parameter of the ISR macro.

6.15.2.8 #define ISR_NAKED

# include <avr/interrupt.h>

ISR is created with no prologue or epilogue code. The user code is responsible for
preservation of the machine state including the SREG register, as well as placing a
reti() at the end of the interrupt routine.

Use this attribute in the attributes parameter of the ISR macro.

6.15.2.9 #define ISR_NOBLOCK

# include <avr/interrupt.h>

ISR runs with global interrupts initially enabled. The interrupt enable flag is activated
by the compiler as early as possible within the ISR to ensure minimal processing delay
for nested interrupts.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.16 <avr/io.h>: AVR device-specific IO definitions 129

This may be used to create nested ISRs, however care should be taken to avoid stack
overflows, or to avoid infinitely entering the ISR for those cases where the AVR hard-
ware does not clear the respective interrupt flag before entering the ISR.

Use this attribute in the attributes parameter of the ISR macro.

6.15.2.10 #define reti()

#include <avr/interrupt.h>

Returns from an interrupt routine, enabling global interrupts. This should be the last
command executed before leaving an ISR defined with the ISR_NAKED attribute.

This macro actually compiles into a single line of assembly, so there is no function call
overhead.

6.15.2.11 #define sei()

#include <avr/interrupt.h>

Enables interrupts by setting the global interrupt mask. This function actually compiles
into a single line of assembly, so there is no function call overhead.

6.15.2.12 #define SIGNAL(vector)

#include <avr/interrupt.h>

Introduces an interrupt handler function that runs with global interrupts initially dis-
abled.

This is the same as the ISR macro without optional attributes.

Deprecated

Do not useSIGNAL() in new code. UseISR() instead.

6.16 <avr/io.h>: AVR device-specific IO definitions

#include <avr/io.h>

This header file includes the apropriate IO definitions for the device that has been
specified by the-mmcu= compiler command-line switch. This is done by divert-
ing to the appropriate file<avr/io XXXX.h > which should never be included di-
rectly. Some register names common to all AVR devices are defined directly within

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.17 <avr/lock.h>: Lockbit Support 130

<avr/common.h >, which is included in<avr/io.h >, but most of the details
come from the respective include file.

Note that this file always includes the following files:

#include <avr/sfr_defs.h>
#include <avr/portpins.h>
#include <avr/common.h>
#include <avr/version.h>

See<avr/sfr_defs.h>: Special function registersfor more details about that header file.

Included are definitions of the IO register set and their respective bit values as specified
in the Atmel documentation. Note that inconsistencies in naming conventions, so even
identical functions sometimes get different names on different devices.

Also included are the specific names useable for interrupt function definitions as docu-
mentedhere.

Finally, the following macros are defined:

• RAMEND

A constant describing the last on-chip RAM location.

• XRAMEND

A constant describing the last possible location in RAM. This is equal to RA-
MEND for devices that do not allow for external RAM.

• E2END

A constant describing the address of the last EEPROM cell.

• FLASHEND

A constant describing the last byte address in flash ROM.

• SPM_PAGESIZE

For devices with bootloader support, the flash pagesize (in bytes) to be used for
theSPMinstruction.

6.17 <avr/lock.h>: Lockbit Support

Introduction

The Lockbit API allows a user to specify the lockbit settings for the specific AVR
device they are compiling for. These lockbit settings will be placed in a special section
in the ELF output file, after linking.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.17 <avr/lock.h>: Lockbit Support 131

Programming tools can take advantage of the lockbit information embedded in the
ELF file, by extracting this information and determining if the lockbits need to be
programmed after programming the Flash and EEPROM memories. This also allows a
single ELF file to contain all the information needed to program an AVR.

To use the Lockbit API, include the<avr/io.h> header file, which in turn automatically
includes the individual I/O header file and the<avr/lock.h> file. These other two files
provides everything necessary to set the AVR lockbits.

Lockbit API

Each I/O header file may define up to 3 macros that controls what kinds of lockbits are
available to the user.

If __LOCK_BITS_EXIST is defined, then two lock bits are available to the user and 3
mode settings are defined for these two bits.

If __BOOT_LOCK_BITS_0_EXIST is defined, then the two BLB0 lock bits are avail-
able to the user and 4 mode settings are defined for these two bits.

If __BOOT_LOCK_BITS_1_EXIST is defined, then the two BLB1 lock bits are avail-
able to the user and 4 mode settings are defined for these two bits.

The AVR lockbit modes have inverted values, logical 1 for an unprogrammed (dis-
abled) bit and logical 0 for a programmed (enabled) bit. The defined macros for each
individual lock bit represent this in their definition by a bit-wise inversion of a mask.
For example, the LB_MODE_3 macro is defined as:

#define LB_MODE_3 (0xFC)
‘

To combine the lockbit mode macros together to represent a whole byte, use the bitwise
AND operator, like so:

(LB_MODE_3 & BLB0_MODE_2)

<avr/lock.h> also defines a macro that provides a default lockbit value: LOCKBITS_-
DEFAULT which is defined to be 0xFF.

See the AVR device specific datasheet for more details about these lock bits and the
available mode settings.

A macro, LOCKMEM, is defined as a GCC attribute for a custom-named section of
".lock".

Finally, a macro, LOCKBITS, is defined that declares a variable, __lock, of type un-
signed char with the attribute defined by LOCKMEM. This variable allows the end
user to easily set the lockbit data.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.17 <avr/lock.h>: Lockbit Support 132

API Usage Example

Putting all of this together is easy:

#include <avr/io.h>

LOCKBITS = (LB_MODE_1 & BLB0_MODE_3 & BLB1_MODE_4);

int main(void)
{

return 0;
}

However there are a number of caveats that you need to be aware of to use this API
properly.

Be sure to include<avr/io.h> to get all of the definitions for the API. The LOCKBITS
macro defines a global variable to store the lockbit data. This variable is assigned to
its own linker section. Assign the desired lockbit values immediately in the variable
initialization.

The .lock section in the ELF file will get its values from the initial variable assignment
ONLY. This means that you can NOT assign values to this variable in functions and the
new values will not be put into the ELF .lock section.

The global variable is declared in the LOCKBITS macro has two leading underscores,
which means that it is reserved for the "implementation", meaning the library, so it will
not conflict with a user-named variable.

You must initialize the lockbit variable to some meaningful value, even if it is the de-
fault value. This is because the lockbits default to a logical 1, meaning unprogrammed.
Normal uninitialized data defaults to all locgial zeros. So it is vital that all lockbits
are initialized, even with default data. If they are not, then the lockbits may not pro-
grammed to the desired settings and can possibly put your device into an unrecoverable
state.

Be sure to have the -mmcu=deviceflag in your compile command line and your linker
command line to have the correct device selected and to have the correct I/O header
file included when you include<avr/io.h>.

You can print out the contents of the .lock section in the ELF file by using this command
line:

avr-objdump -s -j .lock <ELF file>

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 133

6.18 <avr/pgmspace.h>: Program Space Utilities

6.18.1 Detailed Description

#include <avr/io.h>
#include <avr/pgmspace.h>

The functions in this module provide interfaces for a program to access data stored in
program space (flash memory) of the device. In order to use these functions, the target
device must support either theLPMor ELPMinstructions.

Note:

These functions are an attempt to provide some compatibility with header files
that come with IAR C, to make porting applications between different compilers
easier. This is not 100% compatibility though (GCC does not have full support for
multiple address spaces yet).
If you are working with strings which are completely based in ram, use the stan-
dard string functions described in<string.h>: Strings.
If possible, put your constant tables in the lower 64 KB and usepgm_read_byte_-
near()or pgm_read_word_near()instead ofpgm_read_byte_far()or pgm_read_-
word_far()since it is more efficient that way, and you can still use the upper 64K
for executable code. All functions that are suffixed with a_P require their ar-
guments to be in the lower 64 KB of the flash ROM, as they do not use ELPM
instructions. This is normally not a big concern as the linker setup arranges any
program space constants declared using the macros from this header file so they
are placed right after the interrupt vectors, and in front of any executable code.
However, it can become a problem if there are too many of these constants, or for
bootloaders on devices with more than 64 KB of ROM.All these functions will not
work in that situation.

Defines

• #definePROGMEM__ATTR_PROGMEM__
• #definePSTR(s) ((const PROGMEM char∗)(s))
• #definepgm_read_byte_near(address_short) __LPM((uint16_t)(address_short))
• #define pgm_read_word_near(address_short) __LPM_word((uint16_-

t)(address_short))
• #define pgm_read_dword_near(address_short) __LPM_dword((uint16_-

t)(address_short))
• #definepgm_read_byte_far(address_long) __ELPM((uint32_t)(address_long))
• #define pgm_read_word_far(address_long) __ELPM_word((uint32_-

t)(address_long))
• #define pgm_read_dword_far(address_long) __ELPM_dword((uint32_-

t)(address_long))

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 134

• #definepgm_read_byte(address_short) pgm_read_byte_near(address_short)
• #definepgm_read_word(address_short) pgm_read_word_near(address_short)
• #definepgm_read_dword(address_short) pgm_read_dword_near(address_short)
• #definePGM_Pconstprog_char∗
• #definePGM_VOID_Pconstprog_void∗

Typedefs

• typedef void PROGMEMprog_void
• typedef char PROGMEMprog_char
• typedef unsigned char PROGMEMprog_uchar
• typedefint8_tPROGMEMprog_int8_t
• typedefuint8_tPROGMEMprog_uint8_t
• typedefint16_tPROGMEMprog_int16_t
• typedefuint16_tPROGMEMprog_uint16_t
• typedefint32_tPROGMEMprog_int32_t
• typedefuint32_tPROGMEMprog_uint32_t
• typedefint64_tPROGMEMprog_int64_t
• typedefuint64_tPROGMEMprog_uint64_t

Functions

• PGM_VOID_Pmemchr_P(PGM_VOID_P s, int val, size_t len)
• int memcmp_P(const void∗, PGM_VOID_P, size_t) __ATTR_PURE__
• void ∗ memcpy_P(void ∗, PGM_VOID_P, size_t)
• PGM_VOID_Pmemrchr_P(PGM_VOID_P s, int val, size_t len)
• int strcasecmp_P(const char∗, PGM_P) __ATTR_PURE__
• char∗ strcat_P(char∗, PGM_P)
• PGM_Pstrchr_P(PGM_P s, int val)
• PGM_Pstrchrnul_P(PGM_P s, int val)
• int strcmp_P(const char∗, PGM_P) __ATTR_PURE__
• char∗ strcpy_P(char∗, PGM_P)
• size_tstrcspn_P(const char∗s, PGM_P reject) __ATTR_PURE__
• size_tstrlcat_P(char∗, PGM_P, size_t)
• size_tstrlcpy_P(char∗, PGM_P, size_t)
• size_tstrlen_P(PGM_P)
• int strncasecmp_P(const char∗, PGM_P, size_t) __ATTR_PURE__
• char∗ strncat_P(char∗, PGM_P, size_t)
• int strncmp_P(const char∗, PGM_P, size_t) __ATTR_PURE__
• char∗ strncpy_P(char∗, PGM_P, size_t)
• size_tstrnlen_P(PGM_P, size_t)
• char∗ strpbrk_P(const char∗s, PGM_P accept) __ATTR_PURE__

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 135

• PGM_Pstrrchr_P(PGM_P s, int val)
• char∗ strsep_P(char∗∗sp, PGM_P delim)
• size_tstrspn_P(const char∗s, PGM_P accept) __ATTR_PURE__
• char∗ strstr_P(const char∗, PGM_P) __ATTR_PURE__
• void ∗ memmem_P(const void∗, size_t, PGM_VOID_P, size_t) __ATTR_-

PURE__
• char∗ strcasestr_P(const char∗, PGM_P) __ATTR_PURE__

6.18.2 Define Documentation

6.18.2.1 #define PGM_P constprog_char ∗

Used to declare a variable that is a pointer to a string in program space.

6.18.2.2 #define pgm_read_byte(address_short) pgm_read_byte_near(address_-
short)

Read a byte from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

6.18.2.3 #define pgm_read_byte_far(address_long) __ELPM((uint32_-
t)(address_long))

Read a byte from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

6.18.2.4 #define pgm_read_byte_near(address_short) __LPM((uint16_-
t)(address_short))

Read a byte from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 136

6.18.2.5 #define pgm_read_dword(address_short) pgm_read_dword_-
near(address_short)

Read a double word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

6.18.2.6 #define pgm_read_dword_far(address_long) __ELPM_-
dword((uint32_t)(address_long))

Read a double word from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

6.18.2.7 #define pgm_read_dword_near(address_short) __LPM_-
dword((uint16_t)(address_short))

Read a double word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

6.18.2.8 #define pgm_read_word(address_short) pgm_read_word_-
near(address_short)

Read a word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

6.18.2.9 #define pgm_read_word_far(address_long) __ELPM_word((uint32_-
t)(address_long))

Read a word from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 137

6.18.2.10 #define pgm_read_word_near(address_short) __LPM_word((uint16_-
t)(address_short))

Read a word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

6.18.2.11 #define PGM_VOID_P constprog_void ∗

Used to declare a generic pointer to an object in program space.

6.18.2.12 #define PROGMEM __ATTR_PROGMEM__

Attribute to use in order to declare an object being located in flash ROM.

6.18.2.13 #define PSTR(s) ((const PROGMEM char∗)(s))

Used to declare a static pointer to a string in program space.

6.18.3 Typedef Documentation

6.18.3.1 prog_char

Type of a "char" object located in flash ROM.

6.18.3.2 prog_int16_t

Type of an "int16_t" object located in flash ROM.

6.18.3.3 prog_int32_t

Type of an "int32_t" object located in flash ROM.

6.18.3.4 prog_int64_t

Type of an "int64_t" object located in flash ROM.

Note:

This type is not available when the compiler option -mint8 is in effect.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 138

6.18.3.5 prog_int8_t

Type of an "int8_t" object located in flash ROM.

6.18.3.6 prog_uchar

Type of an "unsigned char" object located in flash ROM.

6.18.3.7 prog_uint16_t

Type of an "uint16_t" object located in flash ROM.

6.18.3.8 prog_uint32_t

Type of an "uint32_t" object located in flash ROM.

6.18.3.9 prog_uint64_t

Type of an "uint64_t" object located in flash ROM.

Note:

This type is not available when the compiler option -mint8 is in effect.

6.18.3.10 prog_uint8_t

Type of an "uint8_t" object located in flash ROM.

6.18.3.11 prog_void

Type of a "void" object located in flash ROM. Does not make much sense by itself, but
can be used to declare a "void∗" object in flash ROM.

6.18.4 Function Documentation

6.18.4.1 PGM_VOID_P memchr_P (PGM_VOID_Ps, int val, size_tlen)

Scan flash memory for a character.

Thememchr_P()function scans the firstlen bytes of the flash memory area pointed
to by s for the characterval . The first byte to matchval (interpreted as an unsigned
character) stops the operation.

Returns:

The memchr_P()function returns a pointer to the matching byte orNULL if the
character does not occur in the given memory area.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 139

6.18.4.2 int memcmp_P (const void∗ s1, PGM_VOID_P s2, size_tlen)

Compare memory areas.

Thememcmp_P()function compares the firstlen bytes of the memory areass1 and
flashs2 . The comparision is performed using unsigned char operations.

Returns:

The memcmp_P()function returns an integer less than, equal to, or greater than
zero if the firstlen bytes ofs1 is found, respectively, to be less than, to match, or
be greater than the firstlen bytes ofs2 .

6.18.4.3 void∗ memcpy_P (void∗ dest, PGM_VOID_P src, size_tn)

Thememcpy_P()function is similar tomemcpy(), except the src string resides in pro-
gram space.

Returns:

Thememcpy_P()function returns a pointer to dest.

6.18.4.4 void∗ memmem_P (const void∗ s1, size_t len1, PGM_VOID_P s2,
size_tlen2)

The memmem_P()function is similar tomemmem()except thats2 is pointer to a
string in program space.

6.18.4.5 PGM_VOID_P memrchr_P (PGM_VOID_Psrc, int val, size_tlen)

The memrchr_P()function is like thememchr_P()function, except that it searches
backwards from the end of thelen bytes pointed to bysrc instead of forwards from
the front. (Glibc, GNU extension.)

Returns:

Thememrchr_P()function returns a pointer to the matching byte orNULL if the
character does not occur in the given memory area.

6.18.4.6 int strcasecmp_P (const char∗ s1, PGM_P s2)

Compare two strings ignoring case.

Thestrcasecmp_P()function compares the two stringss1 ands2 , ignoring the case of
the characters.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 140

Parameters:

s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

Returns:

Thestrcasecmp_P()function returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater thans2 .
A consequence of the ordering used bystrcasecmp_P()is that if s1 is an initial
substring ofs2 , thens1 is considered to be "less than"s2 .

6.18.4.7 char∗ strcasestr_P (const char∗ s1, PGM_P s2)

This funtion is similar tostrcasestr()except thats2 is pointer to a string in program
space.

6.18.4.8 char∗ strcat_P (char∗ dest, PGM_P src)

Thestrcat_P()function is similar tostrcat()except that thesrc string must be located
in program space (flash).

Returns:

Thestrcat()function returns a pointer to the resulting stringdest.

6.18.4.9 PGM_P strchr_P (PGM_Ps, int val)

Locate character in program space string.

Thestrchr_P()function locates the first occurrence ofval (converted to a char) in the
string pointed to bys in program space. The terminating null character is considered
to be part of the string.

The strchr_P()function is similar tostrchr() except thats is pointer to a string in
program space.

Returns:

Thestrchr_P()function returns a pointer to the matched character orNULL if the
character is not found.

6.18.4.10 PGM_P strchrnul_P (PGM_Ps, int c)

The strchrnul_P()function is likestrchr_P()except that ifc is not found ins , then
it returns a pointer to the null byte at the end ofs , rather thanNULL. (Glibc, GNU
extension.)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 141

Returns:

Thestrchrnul_P()function returns a pointer to the matched character, or a pointer
to the null byte at the end ofs (i.e.,s+strlen (s)) if the character is not found.

6.18.4.11 int strcmp_P (const char∗ s1, PGM_P s2)

Thestrcmp_P()function is similar tostrcmp()except thats2 is pointer to a string in
program space.

Returns:

Thestrcmp_P()function returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greater thans2 . A
consequence of the ordering used bystrcmp_P()is that ifs1 is an initial substring
of s2 , thens1 is considered to be "less than"s2 .

6.18.4.12 char∗ strcpy_P (char∗ dest, PGM_P src)

Thestrcpy_P()function is similar tostrcpy()except that src is a pointer to a string in
program space.

Returns:

Thestrcpy_P()function returns a pointer to the destination string dest.

6.18.4.13 size_t strcspn_P (const char∗ s, PGM_P reject)

Thestrcspn_P()function calculates the length of the initial segment ofs which consists
entirely of characters not inreject . This function is similar tostrcspn()except that
reject is a pointer to a string in program space.

Returns:

Thestrcspn_P()function returns the number of characters in the initial segment of
s which are not in the stringreject . The terminating zero is not considered as a
part of string.

6.18.4.14 size_t strlcat_P (char∗ dst, PGM_P, size_tsiz)

Concatenate two strings.

Thestrlcat_P()function is similar tostrlcat(), except that thesrcstring must be located
in program space (flash).

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 142

Appends src to string dst of size siz (unlikestrncat(), siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unless siz<=
strlen(dst)).

Returns:

Thestrlcat_P()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval
>= siz, truncation occurred.

6.18.4.15 size_t strlcpy_P (char∗ dst, PGM_P, size_tsiz)

Copy a string from progmem to RAM.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:

Thestrlcpy_P()function returns strlen(src). If retval>= siz, truncation occurred.

6.18.4.16 size_t strlen_P (PGM_Psrc)

Thestrlen_P()function is similar tostrlen(), except that src is a pointer to a string in
program space.

Returns:

Thestrlen()function returns the number of characters in src.

6.18.4.17 int strncasecmp_P (const char∗ s1, PGM_P s2, size_tn)

Compare two strings ignoring case.

Thestrncasecmp_P()function is similar tostrcasecmp_P(), except it only compares the
first n characters ofs1 .

Parameters:

s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

n The maximum number of bytes to compare.

Returns:

The strncasecmp_P()function returns an integer less than, equal to, or greater
than zero ifs1 (or the firstn bytes thereof) is found, respectively, to be less

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 143

than, to match, or be greater thans2 . A consequence of the ordering used by
strncasecmp_P()is that ifs1 is an initial substring ofs2 , thens1 is considered to
be "less than"s2 .

6.18.4.18 char∗ strncat_P (char∗ dest, PGM_P src, size_tlen)

Concatenate two strings.

Thestrncat_P()function is similar tostrncat(), except that thesrcstring must be located
in program space (flash).

Returns:

Thestrncat_P()function returns a pointer to the resulting string dest.

6.18.4.19 int strncmp_P (const char∗ s1, PGM_P s2, size_tn)

Thestrncmp_P()function is similar tostrcmp_P()except it only compares the first (at
most) n characters of s1 and s2.

Returns:

Thestrncmp_P()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

6.18.4.20 char∗ strncpy_P (char∗ dest, PGM_P src, size_tn)

Thestrncpy_P()function is similar tostrcpy_P()except that not more than n bytes of
src are copied. Thus, if there is no null byte among the first n bytes of src, the result
will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:

Thestrncpy_P()function returns a pointer to the destination string dest.

6.18.4.21 size_t strnlen_P (PGM_Psrc, size_tlen)

Determine the length of a fixed-size string.

Thestrnlen_P()function is similar tostrnlen(), except thatsrc is a pointer to a string
in program space.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.18 <avr/pgmspace.h>: Program Space Utilities 144

Returns:

The strnlen_P function returns strlen_P(src), if that is less thanlen , or len if
there is no ’\0’ character among the firstlen characters pointed to bysrc .

6.18.4.22 char∗ strpbrk_P (const char ∗ s, PGM_P accept)

Thestrpbrk_P()function locates the first occurrence in the strings of any of the char-
acters in the flash stringaccept . This function is similar tostrpbrk() except that
accept is a pointer to a string in program space.

Returns:

Thestrpbrk_P()function returns a pointer to the character ins that matches one of
the characters inaccept , or NULL if no such character is found. The terminating
zero is not considered as a part of string: if one or both args are empty, the result
will NULL.

6.18.4.23 PGM_P strrchr_P (PGM_Ps, int val)

Locate character in string.

Thestrrchr_P()function returns a pointer to the last occurrence of the characterval
in the flash strings .

Returns:

Thestrrchr_P()function returns a pointer to the matched character orNULL if the
character is not found.

6.18.4.24 char∗ strsep_P (char∗∗ sp, PGM_P delim)

Parse a string into tokens.

Thestrsep_P()function locates, in the string referenced by∗sp , the first occurrence of
any character in the stringdelim (or the terminating ’\0’ character) and replaces it
with a ’\0’. The location of the next character after the delimiter character (orNULL,
if the end of the string was reached) is stored in∗sp . An “empty” field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location
referenced by the pointer returned in∗sp to ’\0’. This function is similar tostrsep()
except thatdelim is a pointer to a string in program space.

Returns:

The strsep_P()function returns a pointer to the original value of∗sp . If ∗sp is
initially NULL, strsep_P()returnsNULL.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.19 <avr/power.h>: Power Reduction Management 145

6.18.4.25 size_t strspn_P (const char∗ s, PGM_P accept)

The strspn_P()function calculates the length of the initial segment ofs which con-
sists entirely of characters inaccept . This function is similar tostrspn()except that
accept is a pointer to a string in program space.

Returns:

Thestrspn_P()function returns the number of characters in the initial segment of
s which consist only of characters fromaccept . The terminating zero is not
considered as a part of string.

6.18.4.26 char∗ strstr_P (const char∗ s1, PGM_P s2)

Locate a substring.

Thestrstr_P()function finds the first occurrence of the substrings2 in the strings1 .
The terminating ’\0’ characters are not compared. Thestrstr_P()function is similar to
strstr()except thats2 is pointer to a string in program space.

Returns:

Thestrstr_P()function returns a pointer to the beginning of the substring, or NULL
if the substring is not found. Ifs2 points to a string of zero length, the function
returnss1 .

6.19 <avr/power.h>: Power Reduction Management

#include <avr/power.h>

Many AVRs contain a Power Reduction Register (PRR) or Registers (PRRx) that allow
you to reduce power consumption by disabling or enabling various on-board peripher-
als as needed.

There are many macros in this header file that provide an easy interface to enable or
disable on-board peripherals to reduce power. See the table below.

Note:

Not all AVR devices have a Power Reduction Register (for example the AT-
mega128). On those devices without a Power Reduction Register, these macros
are not available.
Not all AVR devices contain the same peripherals (for example, the LCD inter-
face), or they will be named differently (for example, USART and USART0).
Please consult your device’s datasheet, or the header file, to find out which macros
are applicable to your device.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.19 <avr/power.h>: Power Reduction Management 146

Power Macro Description Applicable for device

power_adc_enable() Enable the Analog to Digital
Converter module.

ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmega168, ATtiny24,
ATtiny44, ATtiny84, ATtiny25,
ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_adc_disable() Disable the Analog to Digital
Converter module.

ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmega168, ATtiny24,
ATtiny44, ATtiny84, ATtiny25,
ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_lcd_enable() Enable the LCD module. ATmega169, ATmega169P,
ATmega329, ATmega3290,
ATmega649, ATmega6490

power_lcd_disable(). Disable the LCD module. ATmega169, ATmega169P,
ATmega329, ATmega3290,
ATmega649, ATmega6490

power_psc0_enable() Enable the Power Stage
Controller 0 module.

AT90PWM1, AT90PWM2,
AT90PWM2B, AT90PWM3,
AT90PWM3B

power_psc0_disable() Disable the Power Stage
Controller 0 module.

AT90PWM1, AT90PWM2,
AT90PWM2B, AT90PWM3,
AT90PWM3B

power_psc1_enable() Enable the Power Stage
Controller 1 module.

AT90PWM1, AT90PWM2,
AT90PWM2B, AT90PWM3,
AT90PWM3B

power_psc1_disable() Disable the Power Stage
Controller 1 module.

AT90PWM1, AT90PWM2,
AT90PWM2B, AT90PWM3,
AT90PWM3B

power_psc2_enable() Enable the Power Stage
Controller 2 module.

AT90PWM1, AT90PWM2,
AT90PWM2B, AT90PWM3,
AT90PWM3B

power_psc2_disable() Disable the Power Stage
Controller 2 module.

AT90PWM1, AT90PWM2,
AT90PWM2B, AT90PWM3,
AT90PWM3B

power_spi_enable() Enable the Serial Peripheral
Interface module.

ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmega168

power_spi_disable() Disable the Serial Peripheral
Interface module.

ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmega168

power_timer0_enable() Enable the Timer 0 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM216,
AT90PWM316, AT90PWM2,
AT90PWM2B, AT90PWM3,
AT90PWM3B, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega164P,
ATmega324P, ATmega644,
ATmega406, ATmega48,
ATmega88, ATmega168,
ATtiny24, ATtiny44, ATtiny84,
ATtiny25, ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_timer0_disable() Disable the Timer 0 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega164P,
ATmega324P, ATmega644,
ATmega406, ATmega48,
ATmega88, ATmega168,
ATtiny24, ATtiny44, ATtiny84,
ATtiny25, ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_timer1_enable() Enable the Timer 1 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega406, ATmega48,
ATmega88, ATmega168,
ATtiny24, ATtiny44, ATtiny84,
ATtiny25, ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_timer1_disable() Disable the Timer 1 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega406, ATmega48,
ATmega88, ATmega168,
ATtiny24, ATtiny44, ATtiny84,
ATtiny25, ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_timer2_enable() Enable the Timer 2 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega164P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmega168

power_timer2_disable() Disable the Timer 2 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega164P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmega168

power_timer3_enable() Enable the Timer 3 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287

power_timer3_disable() Disable the Timer 3 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287

power_timer4_enable() Enable the Timer 4 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561

power_timer4_disable() Disable the Timer 4 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561

power_timer5_enable() Enable the Timer 5 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561

power_timer5_disable() Disable the Timer 5 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561

power_twi_enable() Enable the Two Wire Interface
module.

ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega164P,
ATmega324P, ATmega644,
ATmega406, ATmega48,
ATmega88, ATmega168

power_twi_disable() Disable the Two Wire Interface
module.

ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega164P,
ATmega324P, ATmega644,
ATmega406, ATmega48,
ATmega88, ATmega168

power_usart_enable() Enable the USART module. AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B

power_usart_disable() Disable the USART module. AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B

power_usart0_enable() Enable the USART 0 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmega168

power_usart0_disable() Disable the USART 0 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmega168

power_usart1_enable() Enable the USART 1 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega164P,
ATmega324P

power_usart1_disable() Disable the USART 1 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, ATmega164P,
ATmega324P

power_usart2_enable() Enable the USART 2 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561

power_usart2_disable() Disable the USART 2 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561

power_usart3_enable() Enable the USART 3 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561

power_usart3_disable() Disable the USART 3 module. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561

power_usb_enable() Enable the USB module. AT90USB646, AT90USB647,
AT90USB1286,
AT90USB1287

power_usb_disable() Disable the USB module. AT90USB646, AT90USB647,
AT90USB1286,
AT90USB1287

power_usi_enable() Enable the Universal Serial
Interface module.

ATtiny24, ATtiny44, ATtiny84,
ATtiny25, ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_usi_disable() Disable the Universal Serial
Interface module.

ATtiny24, ATtiny44, ATtiny84,
ATtiny25, ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_vadc_enable() Enable the Voltage ADC
module.

ATmega406

power_vadc_disable() Disable the Voltage ADC
module.

ATmega406

power_all_enable() Enable all modules. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega406, ATmega48,
ATmega88, ATmega168,
ATtiny24, ATtiny44, ATtiny84,
ATtiny25, ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_all_disable() Disable all modules. ATmega640, ATmega1280,
ATmega1281, ATmega2560,
ATmega2561, AT90USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmega165,
ATmega165P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmega169,
ATmega169P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmega164P,
ATmega324P, ATmega644,
ATmega406, ATmega48,
ATmega88, ATmega168,
ATtiny24, ATtiny44, ATtiny84,
ATtiny25, ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.20 Additional notes from<avr/sfr_defs.h> 147

Some of the newer AVRs contain a System Clock Prescale Register (CLKPR) that
allows you to decrease the system clock frequency and the power consumption when
the need for processing power is low. Below are two macros and an enumerated type
that can be used to interface to the Clock Prescale Register.

Note:

Not all AVR devices have a Clock Prescale Register. On those devices without a
Clock Prescale Register, these macros are not available.

typedef enum
{

clock_div_1 = 0,
clock_div_2 = 1,
clock_div_4 = 2,
clock_div_8 = 3,
clock_div_16 = 4,
clock_div_32 = 5,
clock_div_64 = 6,
clock_div_128 = 7,
clock_div_256 = 8

} clock_div_t;

Clock prescaler setting enumerations.

clock_prescale_set(x)

Set the clock prescaler register select bits, selecting a system clock division setting.
They type of x is clock_div_t.

clock_prescale_get()

Gets and returns the clock prescaler register setting. The return type is clock_div_t.

6.20 Additional notes from<avr/sfr_defs.h>

The<avr/sfr_defs.h > file is included by all of the<avr/ioXXXX.h > files,
which use macros defined here to make the special function register definitions look
like C variables or simple constants, depending on the_SFR_ASM_COMPATdefine.
Some examples from<avr/iocanxx.h > to show how to define such macros:

#define PORTA _SFR_IO8(0x02)
#define EEAR _SFR_IO16(0x21)
#define UDR0 _SFR_MEM8(0xC6)
#define TCNT3 _SFR_MEM16(0x94)
#define CANIDT _SFR_MEM32(0xF0)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.20 Additional notes from<avr/sfr_defs.h> 148

If _SFR_ASM_COMPATis not defined, C programs can use names likePORTAdirectly
in C expressions (also on the left side of assignment operators) and GCC will do the
right thing (use short I/O instructions if possible). The__SFR_OFFSETdefinition is
not used in any way in this case.

Define_SFR_ASM_COMPATas 1 to make these names work as simple constants (ad-
dresses of the I/O registers). This is necessary when included in preprocessed assem-
bler (∗.S) source files, so it is done automatically if__ASSEMBLER__is defined. By
default, all addresses are defined as if they were memory addresses (used inlds/sts
instructions). To use these addresses inin/out instructions, you must subtract 0x20
from them.

For more backwards compatibility, insert the following at the start of your old assem-
bler source file:

#define __SFR_OFFSET 0

This automatically subtracts 0x20 from I/O space addresses, but it’s a hack, so it is
recommended to change your source: wrap such addresses in macros defined here, as
shown below. After this is done, the__SFR_OFFSETdefinition is no longer necessary
and can be removed.

Real example - this code could be used in a boot loader that is portable between devices
with SPMCRat different addresses.

<avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
<avr/iom128.h>: #define SPMCR _SFR_MEM8(0x68)

#if _SFR_IO_REG_P(SPMCR)
out _SFR_IO_ADDR(SPMCR), r24

#else
sts _SFR_MEM_ADDR(SPMCR), r24

#endif

You can use thein/out/cbi/sbi/sbic/sbis instructions, without the_SFR_-
IO_REG_P test, if you know that the register is in the I/O space (as withSREG, for
example). If it isn’t, the assembler will complain (I/O address out of range 0...0x3f),
so this should be fairly safe.

If you do not define__SFR_OFFSET(so it will be 0x20 by default), all special register
addresses are defined as memory addresses (soSREGis 0x5f), and (if code size and
speed are not important, and you don’t like the ugly #if above) you can always use
lds/sts to access them. But, this will not work if__SFR_OFFSET!= 0x20, so use a
different macro (defined only if__SFR_OFFSET== 0x20) for safety:

sts _SFR_ADDR(SPMCR), r24

In C programs, all 3 combinations of_SFR_ASM_COMPATand__SFR_OFFSETare
supported - the_SFR_ADDR(SPMCR)macro can be used to get the address of the
SPMCRregister (0x57 or 0x68 depending on device).

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.21 <avr/sfr_defs.h>: Special function registers 149

6.21 <avr/sfr_defs.h>: Special function registers

6.21.1 Detailed Description

When working with microcontrollers, many of the tasks usually consist of controlling
the peripherals that are connected to the device, respectively programming the subsys-
tems that are contained in the controller (which by itself communicate with the circuitry
connected to the controller).

The AVR series of microcontrollers offers two different paradigms to perform this task.
There’s a separate IO address space available (as it is known from some high-level
CISC CPUs) that can be addressed with specific IO instructions that are applicable to
some or all of the IO address space (in , out , sbi etc.). The entire IO address space
is also made available asmemory-mapped IO, i. e. it can be accessed using all the
MCU instructions that are applicable to normal data memory. The IO register space is
mapped into the data memory address space with an offset of 0x20 since the bottom
of this space is reserved for direct access to the MCU registers. (Actual SRAM is
available only behind the IO register area, starting at either address 0x60, or 0x100
depending on the device.)

AVR Libc supports both these paradigms. While by default, the implementation uses
memory-mapped IO access, this is hidden from the programmer. So the programmer
can access IO registers either with a special function likeoutb() :

#include <avr/io.h>

outb(PORTA, 0x33);

or they can assign a value directly to the symbolic address:

PORTA = 0x33;

The compiler’s choice of which method to use when actually accessing the IO port is
completely independent of the way the programmer chooses to write the code. So even
if the programmer uses the memory-mapped paradigm and writes

PORTA |= 0x40;

the compiler can optimize this into the use of ansbi instruction (of course, provided
the target address is within the allowable range for this instruction, and the right-hand
side of the expression is a constant value known at compile-time).

The advantage of using the memory-mapped paradigm in C programs is that it makes
the programs more portable to other C compilers for the AVR platform. Some people
might also feel that this is more readable. For example, the following two statements
would be equivalent:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.21 <avr/sfr_defs.h>: Special function registers 150

outb(DDRD, inb(DDRD) & ~LCDBITS);
DDRD &= ~LCDBITS;

The generated code is identical for both. Without optimization, the compiler strictly
generates code following the memory-mapped paradigm, while with optimization
turned on, code is generated using the (faster and smaller)in/out MCU instructions.

Note that special care must be taken when accessing some of the 16-bit timer IO reg-
isters where access from both the main program and within an interrupt context can
happen. SeeWhy do some 16-bit timer registers sometimes get trashed?.

Porting programs that use sbi/cbi

As described above, access to the AVR single bit set and clear instructions are provided
via the standard C bit manipulation commands. The sbi and cbi commands are no
longer directly supported. sbi (sfr,bit) can be replaced by sfr|= _BV(bit) .

ie: sbi(PORTB, PB1); is now PORTB|= _BV(PB1);

This actually is more flexible than having sbi directly, as the optimizer will use a hard-
ware sbi if appropriate, or a read/or/write if not. You do not need to keep track of which
registers sbi/cbi will operate on.

Likewise, cbi (sfr,bit) is now sfr &=∼(_BV(bit));

Modules

• Additional notes from<avr/sfr_defs.h>

Bit manipulation

• #define_BV(bit) (1 << (bit))

IO register bit manipulation

• #definebit_is_set(sfr, bit) (_SFR_BYTE(sfr) & _BV(bit))
• #definebit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))
• #defineloop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sfr, bit))
• #defineloop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))

6.21.2 Define Documentation

6.21.2.1 #define _BV(bit) (1<< (bit))

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.21 <avr/sfr_defs.h>: Special function registers 151

#include <avr/io.h>

Converts a bit number into a byte value.

Note:

The bit shift is performed by the compiler which then inserts the result into the
code. Thus, there is no run-time overhead when using_BV().

6.21.2.2 #define bit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))

#include <avr/io.h>

Test whether bitbit in IO registersfr is clear. This will return non-zero if the bit is
clear, and a 0 if the bit is set.

6.21.2.3 #define bit_is_set(sfr, bit) (_SFR_BYTE(sfr) & _BV(bit))

#include <avr/io.h>

Test whether bitbit in IO registersfr is set. This will return a 0 if the bit is clear,
and non-zero if the bit is set.

6.21.2.4 #define loop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is clear.

6.21.2.5 #define loop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is set.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.22 <avr/sleep.h>: Power Management and Sleep Modes 152

6.22 <avr/sleep.h>: Power Management and Sleep Modes

6.22.1 Detailed Description

#include <avr/sleep.h>

Use of theSLEEPinstruction can allow an application to reduce its power comsump-
tion considerably. AVR devices can be put into different sleep modes. Refer to the
datasheet for the details relating to the device you are using.

There are several macros provided in this header file to actually put the device into
sleep mode. The simplest way is to optionally set the desired sleep mode usingset_-
sleep_mode() (it usually defaults to idle mode where the CPU is put on sleep but
all peripheral clocks are still running), and then callsleep_mode() . Unless it is the
purpose to lock the CPU hard (until a hardware reset), interrupts need to be enabled at
this point. This macro automatically takes care to enable the sleep mode in the CPU
before going to sleep, and disable it again afterwards.

As this combined macro might cause race conditions in some situations, the individual
steps of manipulating the sleep enable (SE) bit, and actually issuing theSLEEP in-
struction are provided in the macrossleep_enable() , sleep_disable() , and
sleep_cpu() . This also allows for test-and-sleep scenarios that take care of not
missing the interrupt that will awake the device from sleep.

Example:

#include <avr/interrupt.h>
#include <avr/sleep.h>

...
cli();
if (some_condition) {

sleep_enable();
sei();
sleep_cpu();
sleep_disable();

}
sei();

This sequence ensures an atomic test ofsome_condition with interrupts being dis-
abled. If the condition is met, sleep mode will be prepared, and theSLEEPinstruction
will be scheduled immediately after anSEI instruction. As the intruction right after
the SEI is guaranteed to be executed before an interrupt could trigger, it is sure the
device will really be put to sleep.

Sleep Functions

• void set_sleep_mode(uint8_tmode)
• void sleep_mode(void)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.22 <avr/sleep.h>: Power Management and Sleep Modes 153

• void sleep_enable(void)
• void sleep_disable(void)
• void sleep_cpu(void)

Sleep Modes

Note:

Some of these modes are not available on all devices. See the datasheet for target
device for the available sleep modes.

• #defineSLEEP_MODE_IDLE0
• #defineSLEEP_MODE_ADC_BV(SM0)
• #defineSLEEP_MODE_PWR_DOWN_BV(SM1)
• #defineSLEEP_MODE_PWR_SAVE(_BV(SM0) | _BV(SM1))
• #defineSLEEP_MODE_STANDBY(_BV(SM1) | _BV(SM2))
• #define SLEEP_MODE_EXT_STANDBY (_BV(SM0) | _BV(SM1) | _-

BV(SM2))

6.22.2 Define Documentation

6.22.2.1 #define SLEEP_MODE_ADC _BV(SM0)

ADC Noise Reduction Mode.

6.22.2.2 #define SLEEP_MODE_EXT_STANDBY (_BV(SM0)| _BV(SM1) | _-
BV(SM2))

Extended Standby Mode.

6.22.2.3 #define SLEEP_MODE_IDLE 0

Idle mode.

6.22.2.4 #define SLEEP_MODE_PWR_DOWN _BV(SM1)

Power Down Mode.

6.22.2.5 #define SLEEP_MODE_PWR_SAVE (_BV(SM0)| _BV(SM1))

Power Save Mode.

6.22.2.6 #define SLEEP_MODE_STANDBY (_BV(SM1)| _BV(SM2))

Standby Mode.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.23 <avr/version.h>: avr-libc version macros 154

6.22.3 Function Documentation

6.22.3.1 void set_sleep_mode (uint8_t mode)

Select a sleep mode.

6.22.3.2 void sleep_cpu (void)

Put the device into sleep mode. The SE bit must be set beforehand, and it is recom-
mended to clear it afterwards.

6.22.3.3 void sleep_disable (void)

Clear the SE (sleep enable) bit.

6.22.3.4 void sleep_enable (void)

Set the SE (sleep enable) bit.

6.22.3.5 void sleep_mode (void)

Put the device in sleep mode. How the device is brought out of sleep mode depends on
the specific mode selected with theset_sleep_mode()function. See the data sheet for
your device for more details.

6.23 <avr/version.h>: avr-libc version macros

6.23.1 Detailed Description

#include <avr/version.h>

This header file defines macros that contain version numbers and strings describing the
current version of avr-libc.

The version number itself basically consists of three pieces that are separated by a
dot: the major number, the minor number, and the revision number. For development
versions (which use an odd minor number), the string representation additionally gets
the date code (YYYYMMDD) appended.

This file will also be included by<avr/io.h >. That way, portable tests can be
implemented using<avr/io.h > that can be used in code that wants to remain
backwards-compatible to library versions prior to the date when the library version
API had been added, as referenced but undefined C preprocessor macros automatically
evaluate to 0.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.23 <avr/version.h>: avr-libc version macros 155

Defines

• #define__AVR_LIBC_VERSION_STRING__"1.6.1"
• #define__AVR_LIBC_VERSION__10601UL
• #define__AVR_LIBC_DATE_STRING__"20071221"
• #define__AVR_LIBC_DATE_20071221UL
• #define__AVR_LIBC_MAJOR__1
• #define__AVR_LIBC_MINOR__6
• #define__AVR_LIBC_REVISION__1

6.23.2 Define Documentation

6.23.2.1 #define __AVR_LIBC_DATE_ 20071221UL

Numerical representation of the release date.

6.23.2.2 #define __AVR_LIBC_DATE_STRING__ "20071221"

String literal representation of the release date.

6.23.2.3 #define __AVR_LIBC_MAJOR__ 1

Library major version number.

6.23.2.4 #define __AVR_LIBC_MINOR__ 6

Library minor version number.

6.23.2.5 #define __AVR_LIBC_REVISION__ 1

Library revision number.

6.23.2.6 #define __AVR_LIBC_VERSION__ 10601UL

Numerical representation of the current library version.

In the numerical representation, the major number is multiplied by 10000, the minor
number by 100, and all three parts are then added. It is intented to provide a monoton-
ically increasing numerical value that can easily be used in numerical checks.

6.23.2.7 #define __AVR_LIBC_VERSION_STRING__ "1.6.1"

String literal representation of the current library version.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.24 <avr/wdt.h>: Watchdog timer handling 156

6.24 <avr/wdt.h>: Watchdog timer handling

6.24.1 Detailed Description

#include <avr/wdt.h>

This header file declares the interface to some inline macros handling the watchdog
timer present in many AVR devices. In order to prevent the watchdog timer configura-
tion from being accidentally altered by a crashing application, a special timed sequence
is required in order to change it. The macros within this header file handle the required
sequence automatically before changing any value. Interrupts will be disabled during
the manipulation.

Note:

Depending on the fuse configuration of the particular device, further restrictions
might apply, in particular it might be disallowed to turn off the watchdog timer.

Note that for newer devices (ATmega88 and newer, effectively any AVR that has the op-
tion to also generate interrupts), the watchdog timer remains active even after a system
reset (except a power-on condition), using the fastest prescaler value (approximately
15 ms). It is therefore required to turn off the watchdog early during program startup,
the datasheet recommends a sequence like the following:

#include <stdint.h>
#include <avr/wdt.h>

uint8_t mcusr_mirror _attribute_ ((section (".noinit")));

void get_mcusr(void) \
__attribute__((naked)) \
__attribute__((section(".init3")));

void get_mcusr(void)
{

mcusr_mirror = MCUSR;
MCUSR = 0;
wdt_disable();

}

Saving the value of MCUSR inmcusr_mirror is only needed if the application
later wants to examine the reset source, but clearing in particular the watchdog reset
flag before disabling the watchdog is required, according to the datasheet.

Defines

• #definewdt_reset() __asm__ __volatile__ ("wdr")
• #definewdt_disable()
• #definewdt_enable(timeout) _wdt_write(timeout)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.24 <avr/wdt.h>: Watchdog timer handling 157

• #defineWDTO_15MS0
• #defineWDTO_30MS1
• #defineWDTO_60MS2
• #defineWDTO_120MS3
• #defineWDTO_250MS4
• #defineWDTO_500MS5
• #defineWDTO_1S6
• #defineWDTO_2S7
• #defineWDTO_4S8
• #defineWDTO_8S9

6.24.2 Define Documentation

6.24.2.1 #define wdt_disable()

Value:

__asm__ __volatile__ ( \
"in __tmp_reg__, __SREG__" "\n\t" \

"cli" "\n\t" \
"out %0, %1" "\n\t" \
"out %0, __zero_reg__" "\n\t" \
"out __SREG__,__tmp_reg__" "\n\t" \
: /* no outputs */ \
: "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)), \
"r" ((uint8_t)(_BV(_WD_CHANGE_BIT) | _BV(WDE))) \
: "r0" \

)

Disable the watchdog timer, if possible. This attempts to turn off the Enable bit in the
watchdog control register. See the datasheet for details.

6.24.2.2 #define wdt_enable(timeout) _wdt_write(timeout)

Enable the watchdog timer, configuring it for expiry aftertimeout (which is a com-
bination of theWDP0throughWDP2bits to write into theWDTCRregister; For those
devices that have aWDTCSRregister, it uses the combination of theWDP0through
WDP3bits).

See also the symbolic constantsWDTO_15MSet al.

6.24.2.3 #define wdt_reset() __asm__ __volatile__ ("wdr")

Reset the watchdog timer. When the watchdog timer is enabled, a call to this instruction
is required before the timer expires, otherwise a watchdog-initiated device reset will
occur.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.24 <avr/wdt.h>: Watchdog timer handling 158

6.24.2.4 #define WDTO_120MS 3

SeeWDT0_15MS

6.24.2.5 #define WDTO_15MS 0

Symbolic constants for the watchdog timeout. Since the watchdog timer is based on
a free-running RC oscillator, the times are approximate only and apply to a supply
voltage of 5 V. At lower supply voltages, the times will increase. For older devices,
the times will be as large as three times when operating at Vcc = 3 V, while the newer
devices (e. g. ATmega128, ATmega8) only experience a negligible change.

Possible timeout values are: 15 ms, 30 ms, 60 ms, 120 ms, 250 ms, 500 ms, 1 s, 2 s.
(Some devices also allow for 4 s and 8 s.) Symbolic constants are formed by the prefix
WDTO_, followed by the time.

Example that would select a watchdog timer expiry of approximately 500 ms:

wdt_enable(WDTO_500MS);

6.24.2.6 #define WDTO_1S 6

SeeWDT0_15MS

6.24.2.7 #define WDTO_250MS 4

SeeWDT0_15MS

6.24.2.8 #define WDTO_2S 7

SeeWDT0_15MS

6.24.2.9 #define WDTO_30MS 1

SeeWDT0_15MS

6.24.2.10 #define WDTO_4S 8

See WDT0_15MSNote: This is only available on the ATtiny2313, ATtiny24,
ATtiny44, ATtiny84, ATtiny25, ATtiny45, ATtiny85, ATtiny261, ATtiny461,
ATtiny861, ATmega48, ATmega88, ATmega168, ATmega48P, ATmega88P, AT-
mega168P, ATmega328P, ATmega164P, ATmega324P, ATmega644P, ATmega644, AT-
mega640, ATmega1280, ATmega1281, ATmega2560, ATmega2561, ATmega8HVA,
ATmega16HVA, ATmega32HVB, ATmega406, ATmega1284P, AT90PWM1,
AT90PWM2, AT90PWM2B, AT90PWM3, AT90PWM3B, AT90PWM216,

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.25 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks159

AT90PWM316 AT90USB82, AT90USB162, AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287, ATtiny48, ATtiny88.

6.24.2.11 #define WDTO_500MS 5

SeeWDT0_15MS

6.24.2.12 #define WDTO_60MS 2

WDT0_15MS

6.24.2.13 #define WDTO_8S 9

See WDT0_15MSNote: This is only available on the ATtiny2313, ATtiny24,
ATtiny44, ATtiny84, ATtiny25, ATtiny45, ATtiny85, ATtiny261, ATtiny461,
ATtiny861, ATmega48, ATmega88, ATmega168, ATmega48P, ATmega88P, AT-
mega168P, ATmega328P, ATmega164P, ATmega324P, ATmega644P, ATmega644, AT-
mega640, ATmega1280, ATmega1281, ATmega2560, ATmega2561, ATmega8HVA,
ATmega16HVA, ATmega32HVB, ATmega406, ATmega1284P, AT90PWM1,
AT90PWM2, AT90PWM2B, AT90PWM3, AT90PWM3B, AT90PWM216,
AT90PWM316 AT90USB82, AT90USB162, AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287, ATtiny48, ATtiny88.

6.25 <util/atomic.h> Atomically and Non-Atomically Executed
Code Blocks

6.25.1 Detailed Description

#include <util/atomic.h>

Note:

The macros in this header file require the ISO/IEC 9899:1999 ("ISO C99") feature
of for loop variables that are declared inside the for loop itself. For that reason, this
header file can only be used if the standard level of the compiler (option –std=) is
set to eitherc99 or gnu99 .

The macros in this header file deal with code blocks that are guaranteed to be excuted
Atomically or Non-Atmomically. The term "Atomic" in this context refers to the un-
ability of the respective code to be interrupted.

These macros operate via automatic manipulation of the Global Interrupt Status (I) bit
of the SREG register. Exit paths from both block types are all managed automatically
without the need for special considerations, i. e. the interrupt status will be restored to
the same value it has been when entering the respective block.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.25 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks160

A typical example that requires atomic access is a 16 (or more) bit variable that is
shared between the main execution path and an ISR. While declaring such a variable
as volatile ensures that the compiler will not optimize accesses to it away, it does not
guarantee atomic access to it. Assuming the following example:

#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/io.h>

volatile uint16_t ctr;

ISR(TIMER1_OVF_vect)
{

ctr--;
}

...
int
main(void)
{

...
ctr = 0x200;
start_timer();
while (ctr != 0)

// wait
;

...
}

There is a chance where the main context will exit its wait loop when the variablectr
just reached the value 0xFF. This happens because the compiler cannot natively access
a 16-bit variable atomically in an 8-bit CPU. So the variable is for example at 0x100,
the compiler then tests the low byte for 0, which succeeds. It then proceeds to test the
high byte, but that moment the ISR triggers, and the main context is interrupted. The
ISR will decrement the variable from 0x100 to 0xFF, and the main context proceeds.
It now tests the high byte of the variable which is (now) also 0, so it concludes the
variable has reached 0, and terminates the loop.

Using the macros from this header file, the above code can be rewritten like:

#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include <util/atomic.h>

volatile uint16_t ctr;

ISR(TIMER1_OVF_vect)
{

ctr--;
}

...

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.25 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks161

int
main(void)
{

...
ctr = 0x200;
start_timer();
sei();
uint16_t ctr_copy;
do
{

ATOMIC_BLOCK(ATOMIC_FORCEON)
{

ctr_copy = ctr;
}

}
while (ctr_copy != 0);
...

}

This will install the appropriate interrupt protection before accessing variablectr ,
so it is guaranteed to be consistently tested. If the global interrupt state were uncer-
tain before entering the ATOMIC_BLOCK, it should be executed with the parameter
ATOMIC_RESTORESTATE rather than ATOMIC_FORCEON.

Defines

• #defineATOMIC_BLOCK(type)
• #defineNONATOMIC_BLOCK(type)
• #defineATOMIC_RESTORESTATE
• #defineATOMIC_FORCEON
• #defineNONATOMIC_RESTORESTATE
• #defineNONATOMIC_FORCEOFF

6.25.2 Define Documentation

6.25.2.1 #define ATOMIC_BLOCK(type)

Creates a block of code that is guaranteed to be executed atomically. Upon entering the
block the Global Interrupt Status flag in SREG is disabled, and re-enabled upon exiting
the block from any exit path.

Two possible macro parameters are permitted, ATOMIC_RESTORESTATE and
ATOMIC_FORCEON.

6.25.2.2 #define ATOMIC_FORCEON

This is a possible parameter for ATOMIC_BLOCK. When used, it will cause the
ATOMIC_BLOCK to force the state of the SREG register on exit, enabling the Global

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.25 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks162

Interrupt Status flag bit. This saves on flash space as the previous value of the SREG
register does not need to be saved at the start of the block.

Care should be taken that ATOMIC_FORCEON is only used when it is known that
interrupts are enabled before the block’s execution or when the side effects of enabling
global interrupts at the block’s completion are known and understood.

6.25.2.3 #define ATOMIC_RESTORESTATE

This is a possible parameter for ATOMIC_BLOCK. When used, it will cause the
ATOMIC_BLOCK to restore the previous state of the SREG register, saved before
the Global Interrupt Status flag bit was disabled. The net effect of this is to make
the ATOMIC_BLOCK’s contents guaranteed atomic, without changing the state of the
Global Interrupt Status flag when execution of the block completes.

6.25.2.4 #define NONATOMIC_BLOCK(type)

Creates a block of code that is executed non-atomically. Upon entering the block the
Global Interrupt Status flag in SREG is enabled, and disabled upon exiting the block
from any exit path. This is useful when nested inside ATOMIC_BLOCK sections, al-
lowing for non-atomic execution of small blocks of code while maintaining the atomic
access of the other sections of the parent ATOMIC_BLOCK.

Two possible macro parameters are permitted, NONATOMIC_RESTORESTATE and
NONATOMIC_FORCEOFF.

6.25.2.5 #define NONATOMIC_FORCEOFF

This is a possible parameter for NONATOMIC_BLOCK. When used, it will cause the
NONATOMIC_BLOCK to force the state of the SREG register on exit, disabling the
Global Interrupt Status flag bit. This saves on flash space as the previous value of the
SREG register does not need to be saved at the start of the block.

Care should be taken that NONATOMIC_FORCEOFF is only used when it is known
that interrupts are disabled before the block’s execution or when the side effects of
disabling global interrupts at the block’s completion are known and understood.

6.25.2.6 #define NONATOMIC_RESTORESTATE

This is a possible parameter for NONATOMIC_BLOCK. When used, it will cause
the NONATOMIC_BLOCK to restore the previous state of the SREG register, saved
before the Global Interrupt Status flag bit was enabled. The net effect of this is to make
the NONATOMIC_BLOCK’s contents guaranteed non-atomic, without changing the
state of the Global Interrupt Status flag when execution of the block completes.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.26 <util/crc16.h>: CRC Computations 163

6.26 <util/crc16.h>: CRC Computations

6.26.1 Detailed Description

#include <util/crc16.h>

This header file provides a optimized inline functions for calculating cyclic redundancy
checks (CRC) using common polynomials.

References:

See the Dallas Semiconductor app note 27 for 8051 assembler example and general
CRC optimization suggestions. The table on the last page of the app note is the key to
understanding these implementations.

Jack Crenshaw’s "Implementing CRCs" article in the January 1992 isue ofEmbedded
Systems Programming. This may be difficult to find, but it explains CRC’s in very clear
and concise terms. Well worth the effort to obtain a copy.

A typical application would look like:

// Dallas iButton test vector.
uint8_t serno[] = { 0x02, 0x1c, 0xb8, 0x01, 0, 0, 0, 0xa2 };

int
checkcrc(void)
{

uint8_t crc = 0, i;

for (i = 0; i < sizeof serno / sizeof serno[0]; i++)
crc = _crc_ibutton_update(crc, serno[i]);

return crc; // must be 0
}

Functions

• static __inline__uint16_t_crc16_update(uint16_t__crc,uint8_t__data)
• static __inline__uint16_t_crc_xmodem_update(uint16_t__crc,uint8_t__data)
• static __inline__uint16_t_crc_ccitt_update(uint16_t__crc,uint8_t__data)
• static __inline__uint8_t_crc_ibutton_update(uint8_t__crc,uint8_t__data)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.26 <util/crc16.h>: CRC Computations 164

6.26.2 Function Documentation

6.26.2.1 static __inline__uint16_t _crc16_update (uint16_t __crc, uint8_t __-
data) [static]

Optimized CRC-16 calculation.

Polynomial: x∧16 + x∧15 + x∧2 + 1 (0xa001)

Initial value: 0xffff

This CRC is normally used in disk-drive controllers.

The following is the equivalent functionality written in C.

uint16_t
crc16_update(uint16_t crc, uint8_t a)
{

int i;

crc ^= a;
for (i = 0; i < 8; ++i)
{

if (crc & 1)
crc = (crc >> 1) ^ 0xA001;

else
crc = (crc >> 1);

}

return crc;
}

6.26.2.2 static __inline__uint16_t _crc_ccitt_update (uint16_t __crc, uint8_t __-
data) [static]

Optimized CRC-CCITT calculation.

Polynomial: x∧16 + x∧12 + x∧5 + 1 (0x8408)

Initial value: 0xffff

This is the CRC used by PPP and IrDA.

See RFC1171 (PPP protocol) and IrDA IrLAP 1.1

Note:

Although the CCITT polynomial is the same as that used by the Xmodem protocol,
they are quite different. The difference is in how the bits are shifted through the
alorgithm. Xmodem shifts the MSB of the CRC and the input first, while CCITT
shifts the LSB of the CRC and the input first.

The following is the equivalent functionality written in C.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.26 <util/crc16.h>: CRC Computations 165

uint16_t
crc_ccitt_update (uint16_t crc, uint8_t data)
{

data ^= lo8 (crc);
data ^= data << 4;

return ((((uint16_t)data << 8) | hi8 (crc)) ^ (uint8_t)(data >> 4)
^ ((uint16_t)data << 3));

}

6.26.2.3 static __inline__uint8_t _crc_ibutton_update (uint8_t __crc, uint8_t _-
_data) [static]

Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.

Polynomial: x∧8 + x∧5 + x∧4 + 1 (0x8C)

Initial value: 0x0

Seehttp://www.maxim-ic.com/appnotes.cfm/appnote_number/27

The following is the equivalent functionality written in C.

uint8_t
_crc_ibutton_update(uint8_t crc, uint8_t data)
{

uint8_t i;

crc = crc ^ data;
for (i = 0; i < 8; i++)
{

if (crc & 0x01)
crc = (crc >> 1) ^ 0x8C;

else
crc >>= 1;

}

return crc;
}

6.26.2.4 static __inline__ uint16_t _crc_xmodem_update (uint16_t __crc,
uint8_t __data) [static]

Optimized CRC-XMODEM calculation.

Polynomial: x∧16 + x∧12 + x∧5 + 1 (0x1021)

Initial value: 0x0

This is the CRC used by the Xmodem-CRC protocol.

The following is the equivalent functionality written in C.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://www.maxim-ic.com/appnotes.cfm/appnote_number/27


6.27 <util/delay.h>: Convenience functions for busy-wait delay loops 166

uint16_t
crc_xmodem_update (uint16_t crc, uint8_t data)
{

int i;

crc = crc ^ ((uint16_t)data << 8);
for (i=0; i<8; i++)
{

if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;

else
crc <<= 1;

}

return crc;
}

6.27 <util/delay.h>: Convenience functions for busy-wait delay
loops

6.27.1 Detailed Description

#define F_CPU 1000000UL // 1 MHz
//#define F_CPU 14.7456E6
#include <util/delay.h>

Note:

As an alternative method, it is possible to pass the F_CPU macro down to the com-
piler from the Makefile. Obviously, in that case, no#define statement should
be used.

The functions in this header file are wrappers around the basic busy-wait functions from
<util/delay_basic.h>. They are meant as convenience functions where actual time
values can be specified rather than a number of cycles to wait for. The idea behind is
that compile-time constant expressions will be eliminated by compiler optimization so
floating-point expressions can be used to calculate the number of delay cycles needed
based on the CPU frequency passed by the macro F_CPU.

Note:

In order for these functions to work as intended, compiler optimizationsmustbe
enabled, and the delay timemustbe an expression that is a known constant at
compile-time. If these requirements are not met, the resulting delay will be much
longer (and basically unpredictable), and applications that otherwise do not use
floating-point calculations will experience severe code bloat by the floating-point
library routines linked into the application.

The functions available allow the specification of microsecond, and millisecond delays

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.28 <util/delay_basic.h>: Basic busy-wait delay loops 167

directly, using the application-supplied macro F_CPU as the CPU clock frequency (in
Hertz).

Functions

• void _delay_us(double __us)
• void _delay_ms(double __ms)

6.27.2 Function Documentation

6.27.2.1 void _delay_ms (double__ms)

Perform a delay of__ms milliseconds, using_delay_loop_2().

The macro F_CPU is supposed to be defined to a constant defining the CPU clock
frequency (in Hertz).

The maximal possible delay is 262.14 ms / F_CPU in MHz.

When the user request delay which exceed the maximum possible one,_delay_ms()
provides a decreased resolution functionality. In this mode_delay_ms()will work with
a resolution of 1/10 ms, providing delays up to 6.5535 seconds (independent from CPU
frequency). The user will not be informed about decreased resolution.

6.27.2.2 void _delay_us (double__us)

Perform a delay of__us microseconds, using_delay_loop_1().

The macro F_CPU is supposed to be defined to a constant defining the CPU clock
frequency (in Hertz).

The maximal possible delay is 768 us / F_CPU in MHz.

If the user requests a delay greater than the maximal possible one,_delay_us()will
automatically call_delay_ms()instead. The user will not be informed about this case.

6.28 <util/delay_basic.h>: Basic busy-wait delay loops

6.28.1 Detailed Description

#include <util/delay_basic.h>

The functions in this header file implement simple delay loops that perform a busy-
waiting. They are typically used to facilitate short delays in the program execution.
They are implemented as count-down loops with a well-known CPU cycle count per

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.29 <util/parity.h >: Parity bit generation 168

loop iteration. As such, no other processing can occur simultaneously. It should be
kept in mind that the functions described here do not disable interrupts.

In general, for long delays, the use of hardware timers is much preferrable, as they
free the CPU, and allow for concurrent processing of other events while the timer is
running. However, in particular for very short delays, the overhead of setting up a
hardware timer is too much compared to the overall delay time.

Two inline functions are provided for the actual delay algorithms.

Functions

• void _delay_loop_1(uint8_t__count)
• void _delay_loop_2(uint16_t__count)

6.28.2 Function Documentation

6.28.2.1 void _delay_loop_1 (uint8_t __count)

Delay loop using an 8-bit counter__count , so up to 256 iterations are possible. (The
value 256 would have to be passed as 0.) The loop executes three CPU cycles per
iteration, not including the overhead the compiler needs to setup the counter register.

Thus, at a CPU speed of 1 MHz, delays of up to 768 microseconds can be achieved.

6.28.2.2 void _delay_loop_2 (uint16_t __count)

Delay loop using a 16-bit counter__count , so up to 65536 iterations are possible.
(The value 65536 would have to be passed as 0.) The loop executes four CPU cycles
per iteration, not including the overhead the compiler requires to setup the counter
register pair.

Thus, at a CPU speed of 1 MHz, delays of up to about 262.1 milliseconds can be
achieved.

6.29 <util/parity.h >: Parity bit generation

6.29.1 Detailed Description

#include <util/parity.h>

This header file contains optimized assembler code to calculate the parity bit for a byte.

Defines

• #defineparity_even_bit(val)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.30 <util/setbaud.h>: Helper macros for baud rate calculations 169

6.29.2 Define Documentation

6.29.2.1 #define parity_even_bit(val)

Value:

(__extension__({ \
unsigned char __t; \
__asm__ ( \

"mov __tmp_reg__,%0" "\n\t" \
"swap %0" "\n\t" \
"eor %0,__tmp_reg__" "\n\t" \
"mov __tmp_reg__,%0" "\n\t" \
"lsr %0" "\n\t" \
"lsr %0" "\n\t" \
"eor %0,__tmp_reg__" \
: "=r" (__t) \
: "0" ((unsigned char)(val)) \
: "r0" \

); \
(((__t + 1) >> 1) & 1); \

}))

Returns:

1 if val has an odd number of bits set.

6.30 <util/setbaud.h>: Helper macros for baud rate calculations

6.30.1 Detailed Description

#define F_CPU 11059200
#define BAUD 38400
#include <util/setbaud.h>

This header file requires that on entry values are already defined for F_CPU and BAUD.
In addition, the macro BAUD_TOL will define the baud rate tolerance (in percent) that
is acceptable during the calculations. The value of BAUD_TOL will default to 2 %.

This header file defines macros suitable to setup the UART baud rate prescaler registers
of an AVR. All calculations are done using the C preprocessor. Including this header
file causes no other side effects so it is possible to include this file more than once
(supposedly, with different values for the BAUD parameter), possibly even within the
same function.

Assuming that the requested BAUD is valid for the given F_CPU then the macro
UBRR_VALUE is set to the required prescaler value. Two additional macros are pro-
vided for the low and high bytes of the prescaler, respectively: UBRRL_VALUE is set
to the lower byte of the UBRR_VALUE and UBRRH_VALUE is set to the upper byte.
An additional macro USE_2X will be defined. Its value is set to 1 if the desired BAUD

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.30 <util/setbaud.h>: Helper macros for baud rate calculations 170

rate within the given tolerance could only be achieved by setting the U2X bit in the
UART configuration. It will be defined to 0 if U2X is not needed.

Example usage:

#include <avr/io.h>

#define F_CPU 4000000

static void
uart_9600(void)
{
#define BAUD 9600
#include <util/setbaud.h>
UBRRH = UBRRH_VALUE;
UBRRL = UBRRL_VALUE;
#if USE_2X
UCSRA |= (1 << U2X);
#else
UCSRA &= ~(1 << U2X);
#endif
}

static void
uart_38400(void)
{
#undef BAUD // avoid compiler warning
#define BAUD 38400
#include <util/setbaud.h>
UBRRH = UBRRH_VALUE;
UBRRL = UBRRL_VALUE;
#if USE_2X
UCSRA |= (1 << U2X);
#else
UCSRA &= ~(1 << U2X);
#endif
}

In this example, two functions are defined to setup the UART to run at 9600 Bd, and
38400 Bd, respectively. Using a CPU clock of 4 MHz, 9600 Bd can be achieved with
an acceptable tolerance without setting U2X (prescaler 25), while 38400 Bd require
U2X to be set (prescaler 12).

Defines

• #defineBAUD_TOL 2
• #defineUBRR_VALUE
• #defineUBRRL_VALUE
• #defineUBRRH_VALUE
• #defineUSE_2X0

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.31 <util/twi.h >: TWI bit mask definitions 171

6.30.2 Define Documentation

6.30.2.1 #define BAUD_TOL 2

Input and output macro for<util/setbaud.h>

Define the acceptable baud rate tolerance in percent. If not set on entry, it will be set to
its default value of 2.

6.30.2.2 #define UBRR_VALUE

Output macro from<util/setbaud.h>

Contains the calculated baud rate prescaler value for the UBRR register.

6.30.2.3 #define UBRRH_VALUE

Output macro from<util/setbaud.h>

Contains the upper byte of the calculated prescaler value (UBRR_VALUE).

6.30.2.4 #define UBRRL_VALUE

Output macro from<util/setbaud.h>

Contains the lower byte of the calculated prescaler value (UBRR_VALUE).

6.30.2.5 #define USE_2X 0

Output bacro from<util/setbaud.h>

Contains the value 1 if the desired baud rate tolerance could only be achieved by setting
the U2X bit in the UART configuration. Contains 0 otherwise.

6.31 <util/twi.h >: TWI bit mask definitions

6.31.1 Detailed Description

#include <util/twi.h>

This header file contains bit mask definitions for use with the AVR TWI interface.

TWSR values

Mnemonics:

TW_MT_xxx - master transmitter

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.31 <util/twi.h >: TWI bit mask definitions 172

TW_MR_xxx - master receiver

TW_ST_xxx - slave transmitter

TW_SR_xxx - slave receiver

• #defineTW_START0x08
• #defineTW_REP_START0x10
• #defineTW_MT_SLA_ACK 0x18
• #defineTW_MT_SLA_NACK 0x20
• #defineTW_MT_DATA_ACK 0x28
• #defineTW_MT_DATA_NACK 0x30
• #defineTW_MT_ARB_LOST0x38
• #defineTW_MR_ARB_LOST0x38
• #defineTW_MR_SLA_ACK0x40
• #defineTW_MR_SLA_NACK0x48
• #defineTW_MR_DATA_ACK 0x50
• #defineTW_MR_DATA_NACK 0x58
• #defineTW_ST_SLA_ACK0xA8
• #defineTW_ST_ARB_LOST_SLA_ACK0xB0
• #defineTW_ST_DATA_ACK0xB8
• #defineTW_ST_DATA_NACK0xC0
• #defineTW_ST_LAST_DATA0xC8
• #defineTW_SR_SLA_ACK0x60
• #defineTW_SR_ARB_LOST_SLA_ACK0x68
• #defineTW_SR_GCALL_ACK0x70
• #defineTW_SR_ARB_LOST_GCALL_ACK0x78
• #defineTW_SR_DATA_ACK0x80
• #defineTW_SR_DATA_NACK0x88
• #defineTW_SR_GCALL_DATA_ACK0x90
• #defineTW_SR_GCALL_DATA_NACK0x98
• #defineTW_SR_STOP0xA0
• #defineTW_NO_INFO0xF8
• #defineTW_BUS_ERROR0x00
• #defineTW_STATUS_MASK
• #defineTW_STATUS(TWSR & TW_STATUS_MASK)

R/∼W bit in SLA+R/W address field.

• #defineTW_READ1
• #defineTW_WRITE0

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.31 <util/twi.h >: TWI bit mask definitions 173

6.31.2 Define Documentation

6.31.2.1 #define TW_BUS_ERROR 0x00

illegal start or stop condition

6.31.2.2 #define TW_MR_ARB_LOST 0x38

arbitration lost in SLA+R or NACK

6.31.2.3 #define TW_MR_DATA_ACK 0x50

data received, ACK returned

6.31.2.4 #define TW_MR_DATA_NACK 0x58

data received, NACK returned

6.31.2.5 #define TW_MR_SLA_ACK 0x40

SLA+R transmitted, ACK received

6.31.2.6 #define TW_MR_SLA_NACK 0x48

SLA+R transmitted, NACK received

6.31.2.7 #define TW_MT_ARB_LOST 0x38

arbitration lost in SLA+W or data

6.31.2.8 #define TW_MT_DATA_ACK 0x28

data transmitted, ACK received

6.31.2.9 #define TW_MT_DATA_NACK 0x30

data transmitted, NACK received

6.31.2.10 #define TW_MT_SLA_ACK 0x18

SLA+W transmitted, ACK received

6.31.2.11 #define TW_MT_SLA_NACK 0x20

SLA+W transmitted, NACK received

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.31 <util/twi.h >: TWI bit mask definitions 174

6.31.2.12 #define TW_NO_INFO 0xF8

no state information available

6.31.2.13 #define TW_READ 1

SLA+R address

6.31.2.14 #define TW_REP_START 0x10

repeated start condition transmitted

6.31.2.15 #define TW_SR_ARB_LOST_GCALL_ACK 0x78

arbitration lost in SLA+RW, general call received, ACK returned

6.31.2.16 #define TW_SR_ARB_LOST_SLA_ACK 0x68

arbitration lost in SLA+RW, SLA+W received, ACK returned

6.31.2.17 #define TW_SR_DATA_ACK 0x80

data received, ACK returned

6.31.2.18 #define TW_SR_DATA_NACK 0x88

data received, NACK returned

6.31.2.19 #define TW_SR_GCALL_ACK 0x70

general call received, ACK returned

6.31.2.20 #define TW_SR_GCALL_DATA_ACK 0x90

general call data received, ACK returned

6.31.2.21 #define TW_SR_GCALL_DATA_NACK 0x98

general call data received, NACK returned

6.31.2.22 #define TW_SR_SLA_ACK 0x60

SLA+W received, ACK returned

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.31 <util/twi.h >: TWI bit mask definitions 175

6.31.2.23 #define TW_SR_STOP 0xA0

stop or repeated start condition received while selected

6.31.2.24 #define TW_ST_ARB_LOST_SLA_ACK 0xB0

arbitration lost in SLA+RW, SLA+R received, ACK returned

6.31.2.25 #define TW_ST_DATA_ACK 0xB8

data transmitted, ACK received

6.31.2.26 #define TW_ST_DATA_NACK 0xC0

data transmitted, NACK received

6.31.2.27 #define TW_ST_LAST_DATA 0xC8

last data byte transmitted, ACK received

6.31.2.28 #define TW_ST_SLA_ACK 0xA8

SLA+R received, ACK returned

6.31.2.29 #define TW_START 0x08

start condition transmitted

6.31.2.30 #define TW_STATUS (TWSR & TW_STATUS_MASK)

TWSR, masked by TW_STATUS_MASK

6.31.2.31 #define TW_STATUS_MASK

Value:

(_BV(TWS7)|_BV(TWS6)|_BV(TWS5)|_BV(TWS4)|\
_BV(TWS3))

The lower 3 bits of TWSR are reserved on the ATmega163. The 2 LSB carry the
prescaler bits on the newer ATmegas.

6.31.2.32 #define TW_WRITE 0

SLA+W address

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.32 <compat/deprecated.h>: Deprecated items 176

6.32 <compat/deprecated.h>: Deprecated items

6.32.1 Detailed Description

This header file contains several items that used to be available in previous versions of
this library, but have eventually been deprecated over time.

#include <compat/deprected.h>

These items are supplied within that header file for backward compatibility reasons
only, so old source code that has been written for previous library versions could easily
be maintained until its end-of-life. Use of any of these items in new code is strongly
discouraged.

Allowing specific system-wide interrupts

In addition to globally enabling interrupts, each device’s particular interrupt needs to
be enabled separately if interrupts for this device are desired. While some devices
maintain their interrupt enable bit inside the device’s register set, external and timer
interrupts have system-wide configuration registers.

Example:

// Enable timer 1 overflow interrupts.
timer_enable_int(_BV(TOIE1));

// Do some work...

// Disable all timer interrupts.
timer_enable_int(0);

Note:

Be careful when you use these functions. If you already have a different interrupt
enabled, you could inadvertantly disable it by enabling another intterupt.

• static __inline__ voidtimer_enable_int(unsigned char ints)
• #defineenable_external_int(mask) (__EICR = mask)
• #defineINTERRUPT(signame)
• #define__INTR_ATTRS used

Obsolete IO macros

Back in a time when AVR-GCC and avr-libc could not handle IO port access in the di-
rect assignment form as they are handled now, all IO port access had to be done through

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.32 <compat/deprecated.h>: Deprecated items 177

specific macros that eventually resulted in inline assembly instructions performing the
desired action.

These macros became obsolete, as reading and writing IO ports can be done by simply
using the IO port name in an expression, and all bit manipulation (including those on
IO ports) can be done using generic C bit manipulation operators.

The macros in this group simulate the historical behaviour. While they are supposed to
be applied to IO ports, the emulation actually uses standard C methods, so they could
be applied to arbitrary memory locations as well.

• #defineinp(port) (port)
• #defineoutp(val, port) (port) = (val)
• #defineinb(port) (port)
• #defineoutb(port, val) (port) = (val)
• #definesbi(port, bit) (port)|= (1 << (bit))
• #definecbi(port, bit) (port) &=∼(1 << (bit))

6.32.2 Define Documentation

6.32.2.1 #define cbi(port, bit) (port) &=∼(1 << (bit))

Deprecated

Clearbit in IO portport .

6.32.2.2 #define enable_external_int(mask) (__EICR = mask)

Deprecated

This macro gives access to theGIMSK register (orEIMSK register if using an AVR
Mega device orGICR register for others). Although this macro is essentially the same
as assigning to the register, it does adapt slightly to the type of device being used. This
macro is unavailable if none of the registers listed above are defined.

6.32.2.3 #define inb(port) (port)

Deprecated

Read a value from an IO portport .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.32 <compat/deprecated.h>: Deprecated items 178

6.32.2.4 #define inp(port) (port)

Deprecated

Read a value from an IO portport .

6.32.2.5 #define INTERRUPT(signame)

Value:

void signame (void) __attribute__ ((interrupt,__INTR_ATTRS)); \
void signame (void)

Deprecated

Introduces an interrupt handler function that runs with global interrupts initially en-
abled. This allows interrupt handlers to be interrupted.

As this macro has been used by too many unsuspecting people in the past, it has been
deprecated, and will be removed in a future version of the library. Users who want to
legitimately re-enable interrupts in their interrupt handlers as quickly as possible are
encouraged to explicitly declare their handlers as describedabove.

6.32.2.6 #define outb(port, val) (port) = (val)

Deprecated

Write val to IO portport .

6.32.2.7 #define outp(val, port) (port) = (val)

Deprecated

Write val to IO portport .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.33 <compat/ina90.h>: Compatibility with IAR EWB 3.x 179

6.32.2.8 #define sbi(port, bit) (port)|= (1 << (bit))

Deprecated

Setbit in IO portport .

6.32.3 Function Documentation

6.32.3.1 static __inline__ void timer_enable_int (unsigned char ints)
[static]

Deprecated

This function modifies thetimsk register. The value you pass viaints is device
specific.

6.33 <compat/ina90.h>: Compatibility with IAR EWB 3.x

#include <compat/ina90.h>

This is an attempt to provide some compatibility with header files that come with IAR
C, to make porting applications between different compilers easier. No 100% compat-
ibility though.

Note:

For actual documentation, please see the IAR manual.

6.34 Demo projects

6.34.1 Detailed Description

Various small demo projects are provided to illustrate several aspects of using the open-
source utilities for the AVR controller series. It should be kept in mind that these de-
mos serve mainly educational purposes, and are normally not directly suitable for use
in any production environment. Usually, they have been kept as simple as sufficient to
demonstrate one particular feature.

The simple projectis somewhat like the "Hello world!" application for a microcon-
troller, about the most simple project that can be done. It is explained in good detail,

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.34 Demo projects 180

to allow the reader to understand the basic concepts behind using the tools on an AVR
microcontroller.

The more sophisticated demo projectbuilds on top of that simple project, and adds
some controls to it. It touches a number of avr-libc’s basic concepts on its way.

A comprehensive example on using the standard IO facilitiesintends to explain that
complex topic, using a practical microcontroller peripheral setup with one RS-232 con-
nection, and an HD44780-compatible industry-standard LCD display.

TheExample using the two-wire interface (TWI)project explains the use of the two-
wire hardware interface (also known as "I2C") that is present on many AVR controllers.

Finally, theCombining C and assembly source filesdemo shows how C and assem-
bly language source files can collaborate within one project. While the overall project
is managed by a C program part for easy maintenance, time-critical parts are written
directly in manually optimized assembly language for shortest execution times possi-
ble. Naturally, this kind of project is very closely tied to the hardware design, thus it is
custom-tailored to a particular controller type and peripheral setup. As an alternative to
the assembly-language solution, this project also offers a C-only implementation (de-
ploying the exact same peripheral setup) based on a more sophisticated (and thus more
expensive) but pin-compatible controller.

While the simple demo is meant to run on about any AVR setup possible where a
LED could be connected to the OCR1[A] output, thelargeandstdiodemos are mainly
targeted to the Atmel STK500 starter kit, and theTWI example requires a controller
where some 24Cxx two-wire EEPPROM can be connected to. For the STK500 demos,
the default CPU (either an AT90S8515 or an ATmega8515) should be removed from
its socket, and the ATmega16 that ships with the kit should be inserted into socket
SCKT3100A3. The ATmega16 offers an on-board ADC that is used in thelargedemo,
and all AVRs with an ADC feature a different pinout than the industry-standard com-
patible devices.

In order to fully utilize thelargedemo, a female 10-pin header with cable, connecting
to a 10 kOhm potentiometer will be useful.

For thestdiodemo, an industry-standard HD44780-compatible LCD display of at least
16x1 characters will be needed. Among other things, theLCD4Linux project page
describes many things around these displays, including common pinouts.

Modules

• Combining C and assembly source files
• A simple project
• A more sophisticated project
• Using the standard IO facilities
• Example using the two-wire interface (TWI)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://ssl.bulix.org/projects/lcd4linux/


6.35 Combining C and assembly source files 181

6.35 Combining C and assembly source files

For time- or space-critical applications, it can often be desirable to combine C code
(for easy maintenance) and assembly code (for maximal speed or minimal code size)
together. This demo provides an example of how to do that.

The objective of the demo is to decode radio-controlled model PWM signals, and con-
trol an output PWM based on the current input signal’s value. The incoming PWM
pulses follow a standard encoding scheme where a pulse width of 920 microseconds
denotes one end of the scale (represented as 0 % pulse width on output), and 2120
microseconds mark the other end (100 % output PWM). Normally, multiple channels
would be encoded that way in subsequent pulses, followed by a larger gap, so the en-
tire frame will repeat each 14 through 20 ms, but this is ignored for the purpose of the
demo, so only a single input PWM channel is assumed.

The basic challenge is to use the cheapest controller available for the task, an ATtiny13
that has only a single timer channel. As this timer channel is required to run the out-
going PWM signal generation, the incoming PWM decoding had to be adjusted to the
constraints set by the outgoing PWM.

As PWM generation toggles the counting direction of timer 0 between up and down
after each 256 timer cycles, the current time cannot be deduced by reading TCNT0
only, but the current counting direction of the timer needs to be considered as well.
This requires servicing interrupts whenever the timer hitsTOP(255) andBOTTOM(0)
to learn about each change of the counting direction. For PWM generation, it is usually
desired to run it at the highest possible speed so filtering the PWM frequency from the
modulated output signal is made easy. Thus, the PWM timer runs at full CPU speed.
This causes the overflow and compare match interrupts to be triggered each 256 CPU
clocks, so they must run with the minimal number of processor cycles possible in order
to not impose a too high CPU load by these interrupt service routines. This is the main
reason to implement the entire interrupt handling in fine-tuned assembly code rather
than in C.

In order to verify parts of the algorithm, and the underlying hardware, the demo has
been set up in a way so the pin-compatible but more expensive ATtiny45 (or its siblings
ATtiny25 and ATtiny85) could be used as well. In that case, no separate assembly code
is required, as two timer channels are avaible.

6.35.1 Hardware setup

The incoming PWM pulse train is fed into PB4. It will generate a pin change interrupt
there on eache edge of the incoming signal.

The outgoing PWM is generated through OC0B of timer channel 0 (PB1). For demon-
stration purposes, a LED should be connected to that pin (like, one of the LEDs of an
STK500).

The controllers run on their internal calibrated RC oscillators, 1.2 MHz on the AT-

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.35 Combining C and assembly source files 182

tiny13, and 1.0 MHz on the ATtiny45.

6.35.2 A code walkthrough

6.35.2.1 asmdemo.c After the usual include files, two variables are defined. The
first one,pwm_incoming is used to communicate the most recent pulse width de-
tected by the incoming PWM decoder up to the main loop.

The second variable actually only constitutes of a single bit,intbits.pwm_-
received . This bit will be set whenever the incoming PWM decoder has updated
pwm_incoming .

Both variables are markedvolatile to ensure their readers will always pick up an up-
dated value, as both variables will be set by interrupt service routines.

The functionioinit() initializes the microcontroller peripheral devices. In partic-
ular, it starts timer 0 to generate the outgoing PWM signal on OC0B. Setting OCR0A
to 255 (which is theTOP value of timer 0) is used to generate a timer 0 overflow A
interrupt on the ATtiny13. This interrupt is used to inform the incoming PWM decoder
that the counting direction of channel 0 is just changing from up to down. Likewise, an
overflow interrupt will be generated whenever the countdown reachedBOTTOM(value
0), where the counter will again alter its counting direction to upwards. This informa-
tion is needed in order to know whether the current counter value ofTCNT0 is to be
evaluated from bottom or top.

Further,ioinit() activates the pin-change interruptPCINT0 on any edge of PB4.
Finally, PB1 (OC0B) will be activated as an output pin, and global interrupts are being
enabled.

In the ATtiny45 setup, the C code contains an ISR forPCINT0. At each pin-change
interrupt, it will first be analyzed whether the interrupt was caused by a rising or a
falling edge. In case of the rising edge, timer 1 will be started with a prescaler of 16
after clearing the current timer value. Then, at the falling edge, the current timer value
will be recorded (and timer 1 stopped), the pin-change interrupt will be suspended, and
the upper layer will be notified that the incoming PWM measurement data is available.

Functionmain() first initializes the hardware by callingioinit() , and then waits
until some incoming PWM value is available. If it is, the output PWM will be adjusted
by computing the relative value of the incoming PWM. Finally, the pin-change interrupt
is re-enabled, and the CPU is put to sleep.

6.35.2.2 project.h In order for the interrupt service routines to be as fast as possi-
ble, some of the CPU registers are set aside completely for use by these routines, so the
compiler would not use them for C code. This is arranged for inproject.h .

The file is divided into one section that will be used by the assembly source code, and
another one to be used by C code. The assembly part is distinguished by the prepro-
cessing macro__ASSEMBLER__(which will be automatically set by the compiler

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.35 Combining C and assembly source files 183

front-end when preprocessing an assembly-language file), and it contains just macros
that give symbolic names to a number of CPU registers. The preprocessor will then
replace the symbolic names by their right-hand side definitions before calling the as-
sembler.

In C code, the compiler needs to see variable declarations for these objects. This is
done by using declarations that bind a variable permanently to a CPU register (see
How to permanently bind a variable to a register?). Even in case the C code never
has a need to access these variables, declaring the register binding that way causes the
compiler to not use these registers in C code at all.

The flags variable needs to be in the range of r16 through r31 as it is the target of a
load immediate(or SER) instruction that is not applicable to the entire register file.

6.35.2.3 isrs.S This file is a preprocessed assembly source file. The C preprocessor
will be run by the compiler front-end first, resolving all#include , #define etc.
directives. The resulting program text will then be passed on to the assembler.

As the C preprocessor strips all C-style comments, preprocessed assembly source files
can have both, C-style (/ ∗ ... ∗/ , // ... ) as well as assembly-style (; ... )
comments.

At the top, the IO register definition fileavr/io.h and the project declaration file
project.h are included. The remainder of the file is conditionally assembled only if
the target MCU type is an ATtiny13, so it will be completely ignored for the ATtiny45
option.

Next are the two interrupt service routines for timer 0 compare A match (timer 0 hits
TOP, as OCR0A is set to 255) and timer 0 overflow (timer 0 hitsBOTTOM). As dis-
cussed above, these are kept as short as possible. They only saveSREG(as the flags
will be modified by theINC instruction), increment thecounter_hi variable which
forms the high part of the current time counter (the low part is formed by querying
TCNT0directly), and clear or set the variableflags , respectively, in order to note
the current counting direction. TheRETI instruction terminates these interrupt service
routines. Total cycle count is 8 CPU cycles, so together with the 4 CPU cycles needed
for interrupt setup, and the 2 cycles for the RJMP from the interrupt vector to the han-
dler, these routines will require 14 out of each 256 CPU cycles, or about 5 % of the
overall CPU time.

The pin-change interruptPCINT0 will be handled in the final part of this file. The
basic algorithm is to quickly evaluate the current system time by fetching the current
timer value ofTCNT0, and combining it with the overflow part incounter_hi . If
the counter is currently counting down rather than up, the value fetched fromTCNT0
must be negated. Finally, if this pin-change interrupt was triggered by a rising edge,
the time computed will be recorded as the start time only. Then, at the falling edge,
this start time will be subracted from the current time to compute the actual pulse width
seen (left inpwm_incoming ), and the upper layers are informed of the new value by
setting bit 0 in theintbits flags. At the same time, this pin-change interrupt will be

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 184

disabled so no new measurement can be performed until the upper layer had a chance
to process the current value.

6.35.3 The source code

The source code is installed under

$prefix/share/doc/avr-libc/examples/asmdemo/ ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
/usr or /usr/local .

6.36 A simple project

At this point, you should have the GNU tools configured, built, and installed on your
system. In this chapter, we present a simple example of using the GNU tools in an AVR
project. After reading this chapter, you should have a better feel as to how the tools are
used and how aMakefile can be configured.

6.36.1 The Project

This project will use the pulse-width modulator (PWM) to ramp an LED on and off every
two seconds. An AT90S2313 processor will be used as the controller. The circuit for
this demonstration is shown in theschematic diagram. If you have a development kit,
you should be able to use it, rather than build the circuit, for this project.

Note:

Meanwhile, the AT90S2313 became obsolete. Either use its successor, the (pin-
compatible) ATtiny2313 for the project, or perhaps the ATmega8 or one of its
successors (ATmega48/88/168) which have become quite popular since the origi-
nal demo project had been established. For all these more modern devices, it is no
longer necessary to use an external crystal for clocking as they ship with the inter-
nal 1 MHz oscillator enabled, so C1, C2, and Q1 can be omitted. Normally, for
this experiment, the external circuitry on /RESET (R1, C3) can be omitted as well,
leaving only the AVR, the LED, the bypass capacitor C4, and perhaps R2. For the
ATmega8/48/88/168, use PB1 (pin 15 at the DIP-28 package) to connect the LED
to. Additionally, this demo has been ported to many different other AVRs. The lo-
cation of the respective OC pin varies between different AVRs, and it is mandated
by the AVR hardware.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 185

IC1

1

10
20

5

4

19
18
17
16
15
14
13
12

11
9
8
7
6
3
2

AT90S2313P
(RXD)PD0
(TXD)PD1
(INT0)PD2
(INT1)PD3
(T0)PD4
(T1)PD5
(ICP)PD6

(AIN0)PB0
(AIN1)PB1

PB2
(OCI)PB3

PB4

(MISO)PB6
(SCK)PB7

RESET

XTAL2

XTAL1

VCC
GND

(MOSI)PB5

Q
1

4
m
h
z

GND

GND

.
1
u
f

C
4

VCC

R1

20K

.
0
1
u
f

C
3

18pf

C2

18pf

C1
*

See note [8]

R2
LED5MM
D1

GND

Figure 1: Schematic of circuit for demo project

The source code is given indemo.c. For the sake of this example, create a file called
demo.c containing this source code. Some of the more important parts of the code
are:

Note [1]:

As the AVR microcontroller series has been developed during the past years,
new features have been added over time. Even though the basic concepts of
the timer/counter1 are still the same as they used to be back in early 2001 when
this simple demo was written initially, the names of registers and bits have been
changed slightly to reflect the new features. Also, the port and pin mapping of
the output compare match 1A (or 1 for older devices) pin which is used to control
the LED varies between different AVRs. The fileiocompat.h tries to abstract
between all this differences using some preprocessor#ifdef statements, so the
actual program itself can operate on a common set of symbolic names. The macros
defined by that file are:

• OCRthe name of the OCR register used to control the PWM (usually either
OCR1 or OCR1A)

• DDROCthe name of the DDR (data direction register) for the OC output

• OC1the pin number of the OC1[A] output within its port

• TIMER1_TOPthe TOP value of the timer used for the PWM (1023 for 10-bit
PWMs, 255 for devices that can only handle an 8-bit PWM)

• TIMER1_PWM_INIT the initialization bits to be set into control register 1A in
order to setup 10-bit (or 8-bit) phase and frequency correct PWM mode

• TIMER1_CLOCKSOURCEthe clock bits to set in the respective control regis-
ter to start the PWM timer; usually the timer runs at full CPU clock for 10-bit
PWMs, while it runs on a prescaled clock for 8-bit PWMs

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 186

Note [2]:

ISR() is a macro that marks the function as an interrupt routine. In this case, the
function will get called when timer 1 overflows. Setting up interrupts is explained
in greater detail in<avr/interrupt.h>: Interrupts.

Note [3]:

ThePWMis being used in 10-bit mode, so we need a 16-bit variable to remember
the current value.

Note [4]:

This section determines the new value of thePWM.

Note [5]:

Here’s where the newly computed value is loaded into thePWMregister. Since
we are in an interrupt routine, it is safe to use a 16-bit assignment to the register.
Outside of an interrupt, the assignment should only be performed with interrupts
disabled if there’s a chance that an interrupt routine could also access this register
(or another register that usesTEMP), see the appropriateFAQ entry.

Note [6]:

This routine gets called after a reset. It initializes thePWMand enables interrupts.

Note [7]:

The main loop of the program does nothing – all the work is done by the interrupt
routine! Thesleep_mode() puts the processor on sleep until the next interrupt,
to conserve power. Of course, that probably won’t be noticable as we are still
driving a LED, it is merely mentioned here to demonstrate the basic principle.

Note [8]:

Early AVR devices saturate their outputs at rather low currents when sourcing cur-
rent, so the LED can be connected directly, the resulting current through the LED
will be about 15 mA. For modern parts (at least for the ATmega 128), however
Atmel has drastically increased the IO source capability, so when operating at 5
V Vcc, R2 is needed. Its value should be about 150 Ohms. When operating the
circuit at 3 V, it can still be omitted though.

6.36.2 The Source Code

/*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 187

* <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
* ----------------------------------------------------------------------------
*
* Simple AVR demonstration. Controls a LED that can be directly
* connected from OC1/OC1A to GND. The brightness of the LED is
* controlled with the PWM. After each period of the PWM, the PWM
* value is either incremented or decremented, that’s all.
*
* $Id: demo.c,v 1.9 2006/01/05 21:30:10 joerg_wunsch Exp $
*/

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>

#include "iocompat.h" /* Note [1] */

enum { UP, DOWN };

ISR (TIMER1_OVF_vect) /* Note [2] */
{

static uint16_t pwm; /* Note [3] */
static uint8_t direction;

switch (direction) /* Note [4] */
{

case UP:
if (++pwm == TIMER1_TOP)

direction = DOWN;
break;

case DOWN:
if (--pwm == 0)

direction = UP;
break;

}

OCR = pwm; /* Note [5] */
}

void
ioinit (void) /* Note [6] */
{

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys). */
TCCR1A = TIMER1_PWM_INIT;
/*

* Start timer 1.
*
* NB: TCCR1A and TCCR1B could actually be the same register, so
* take care to not clobber it.
*/

TCCR1B |= TIMER1_CLOCKSOURCE;
/*

* Run any device-dependent timer 1 setup hook if present.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 188

*/
#if defined(TIMER1_SETUP_HOOK)

TIMER1_SETUP_HOOK();
#endif

/* Set PWM value to 0. */
OCR = 0;

/* Enable OC1 as output. */
DDROC = _BV (OC1);

/* Enable timer 1 overflow interrupt. */
TIMSK = _BV (TOIE1);
sei ();

}

int
main (void)
{

ioinit ();

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [7] */
sleep_mode();

return (0);
}

6.36.3 Compiling and Linking

This first thing that needs to be done is compile the source. When compiling, the
compiler needs to know the processor type so the-mmcu option is specified. The
-Os option will tell the compiler to optimize the code for efficient space usage (at the
possible expense of code execution speed). The-g is used to embed debug info. The
debug info is useful for disassemblies and doesn’t end up in the .hex files, so I usually
specify it. Finally, the-c tells the compiler to compile and stop – don’t link. This
demo is small enough that we could compile and link in one step. However, real-world
projects will have several modules and will typically need to break up the building of
the project into several compiles and one link.

$ avr-gcc -g -Os -mmcu=atmega8 -c demo.c

The compilation will create ademo.o file. Next we link it into a binary called
demo.elf .

$ avr-gcc -g -mmcu=atmega8 -o demo.elf demo.o

It is important to specify the MCU type when linking. The compiler uses the-mmcu
option to choose start-up files and run-time libraries that get linked together. If this

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 189

option isn’t specified, the compiler defaults to the 8515 processor environment, which
is most certainly what you didn’t want.

6.36.4 Examining the Object File

Now we have a binary file. Can we do anything useful with it (besides put it into the
processor?) The GNU Binutils suite is made up of many useful tools for manipulating
object files that get generated. One tool isavr-objdump , which takes information
from the object file and displays it in many useful ways. Typing the command by itself
will cause it to list out its options.

For instance, to get a feel of the application’s size, the-h option can be used. The
output of this option shows how much space is used in each of the sections (the .stab
and .stabstr sections hold the debugging information and won’t make it into the ROM
file).

An even more useful option is-S . This option disassembles the binary file and inter-
sperses the source code in the output! This method is much better, in my opinion, than
using the-S with the compiler because this listing includes routines from the libraries
and the vector table contents. Also, all the "fix-ups" have been satisfied. In other words,
the listing generated by this option reflects the actual code that the processor will run.

$ avr-objdump -h -S demo.elf > demo.lst

Here’s the output as saved in thedemo.lst file:

demo.elf: file format elf32-avr

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 00000116 00000000 00000000 00000074 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .bss 00000003 00800060 00000116 0000018a 2**0
ALLOC

2 .stab 0000081c 00000000 00000000 0000018c 2**2
CONTENTS, READONLY, DEBUGGING

3 .stabstr 000007b1 00000000 00000000 000009a8 2**0
CONTENTS, READONLY, DEBUGGING

Disassembly of section .text:

00000000 <__vectors>:
0: 12 c0 rjmp .+36 ; 0x26 <__ctors_end>
2: 87 c0 rjmp .+270 ; 0x112 <__bad_interrupt>
4: 86 c0 rjmp .+268 ; 0x112 <__bad_interrupt>
6: 85 c0 rjmp .+266 ; 0x112 <__bad_interrupt>
8: 84 c0 rjmp .+264 ; 0x112 <__bad_interrupt>
a: 83 c0 rjmp .+262 ; 0x112 <__bad_interrupt>
c: 82 c0 rjmp .+260 ; 0x112 <__bad_interrupt>
e: 81 c0 rjmp .+258 ; 0x112 <__bad_interrupt>

10: 25 c0 rjmp .+74 ; 0x5c <__vector_8>
12: 7f c0 rjmp .+254 ; 0x112 <__bad_interrupt>

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 190

14: 7e c0 rjmp .+252 ; 0x112 <__bad_interrupt>
16: 7d c0 rjmp .+250 ; 0x112 <__bad_interrupt>
18: 7c c0 rjmp .+248 ; 0x112 <__bad_interrupt>
1a: 7b c0 rjmp .+246 ; 0x112 <__bad_interrupt>
1c: 7a c0 rjmp .+244 ; 0x112 <__bad_interrupt>
1e: 79 c0 rjmp .+242 ; 0x112 <__bad_interrupt>
20: 78 c0 rjmp .+240 ; 0x112 <__bad_interrupt>
22: 77 c0 rjmp .+238 ; 0x112 <__bad_interrupt>
24: 76 c0 rjmp .+236 ; 0x112 <__bad_interrupt>

00000026 <__ctors_end>:
26: 11 24 eor r1, r1
28: 1f be out 0x3f, r1 ; 63
2a: cf e5 ldi r28, 0x5F ; 95
2c: d4 e0 ldi r29, 0x04 ; 4
2e: de bf out 0x3e, r29 ; 62
30: cd bf out 0x3d, r28 ; 61

00000032 <__do_copy_data>:
32: 10 e0 ldi r17, 0x00 ; 0
34: a0 e6 ldi r26, 0x60 ; 96
36: b0 e0 ldi r27, 0x00 ; 0
38: e6 e1 ldi r30, 0x16 ; 22
3a: f1 e0 ldi r31, 0x01 ; 1
3c: 02 c0 rjmp .+4 ; 0x42 <.do_copy_data_start>

0000003e <.do_copy_data_loop>:
3e: 05 90 lpm r0, Z+
40: 0d 92 st X+, r0

00000042 <.do_copy_data_start>:
42: a0 36 cpi r26, 0x60 ; 96
44: b1 07 cpc r27, r17
46: d9 f7 brne .-10 ; 0x3e <__SP_H__>

00000048 <__do_clear_bss>:
48: 10 e0 ldi r17, 0x00 ; 0
4a: a0 e6 ldi r26, 0x60 ; 96
4c: b0 e0 ldi r27, 0x00 ; 0
4e: 01 c0 rjmp .+2 ; 0x52 <.do_clear_bss_start>

00000050 <.do_clear_bss_loop>:
50: 1d 92 st X+, r1

00000052 <.do_clear_bss_start>:
52: a3 36 cpi r26, 0x63 ; 99
54: b1 07 cpc r27, r17
56: e1 f7 brne .-8 ; 0x50 <.do_clear_bss_loop>
58: 4d d0 rcall .+154 ; 0xf4 <main>
5a: 59 c0 rjmp .+178 ; 0x10e <exit>

0000005c <__vector_8>:
#include "iocompat.h" /* Note [1] */

enum { UP, DOWN };

ISR (TIMER1_OVF_vect) /* Note [2] */

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 191

{
5c: 1f 92 push r1
5e: 0f 92 push r0
60: 0f b6 in r0, 0x3f ; 63
62: 0f 92 push r0
64: 11 24 eor r1, r1
66: 2f 93 push r18
68: 3f 93 push r19
6a: 8f 93 push r24

static uint16_t pwm; /* Note [3] */
static uint8_t direction;

switch (direction) /* Note [4] */
6c: 80 91 60 00 lds r24, 0x0060
70: 88 23 and r24, r24
72: 79 f4 brne .+30 ; 0x92 <__vector_8+0x36>

{
case UP:

if (++pwm == TIMER1_TOP)
74: 20 91 61 00 lds r18, 0x0061
78: 30 91 62 00 lds r19, 0x0062
7c: 2f 5f subi r18, 0xFF ; 255
7e: 3f 4f sbci r19, 0xFF ; 255
80: 30 93 62 00 sts 0x0062, r19
84: 20 93 61 00 sts 0x0061, r18
88: 83 e0 ldi r24, 0x03 ; 3
8a: 2f 3f cpi r18, 0xFF ; 255
8c: 38 07 cpc r19, r24
8e: d9 f4 brne .+54 ; 0xc6 <__vector_8+0x6a>
90: 17 c0 rjmp .+46 ; 0xc0 <__vector_8+0x64>

ISR (TIMER1_OVF_vect) /* Note [2] */
{

static uint16_t pwm; /* Note [3] */
static uint8_t direction;

switch (direction) /* Note [4] */
92: 81 30 cpi r24, 0x01 ; 1
94: 29 f0 breq .+10 ; 0xa0 <__vector_8+0x44>
96: 20 91 61 00 lds r18, 0x0061
9a: 30 91 62 00 lds r19, 0x0062
9e: 13 c0 rjmp .+38 ; 0xc6 <__vector_8+0x6a>

if (++pwm == TIMER1_TOP)
direction = DOWN;

break;

case DOWN:
if (--pwm == 0)

a0: 20 91 61 00 lds r18, 0x0061
a4: 30 91 62 00 lds r19, 0x0062
a8: 21 50 subi r18, 0x01 ; 1
aa: 30 40 sbci r19, 0x00 ; 0
ac: 30 93 62 00 sts 0x0062, r19
b0: 20 93 61 00 sts 0x0061, r18
b4: 21 15 cp r18, r1
b6: 31 05 cpc r19, r1
b8: 31 f4 brne .+12 ; 0xc6 <__vector_8+0x6a>

direction = UP;

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 192

ba: 10 92 60 00 sts 0x0060, r1
be: 03 c0 rjmp .+6 ; 0xc6 <__vector_8+0x6a>

switch (direction) /* Note [4] */
{

case UP:
if (++pwm == TIMER1_TOP)

direction = DOWN;
c0: 81 e0 ldi r24, 0x01 ; 1
c2: 80 93 60 00 sts 0x0060, r24

if (--pwm == 0)
direction = UP;

break;
}

OCR = pwm; /* Note [5] */
c6: 3b bd out 0x2b, r19 ; 43
c8: 2a bd out 0x2a, r18 ; 42
ca: 8f 91 pop r24
cc: 3f 91 pop r19
ce: 2f 91 pop r18
d0: 0f 90 pop r0
d2: 0f be out 0x3f, r0 ; 63
d4: 0f 90 pop r0
d6: 1f 90 pop r1
d8: 18 95 reti

000000da <ioinit>:

void
ioinit (void) /* Note [6] */
{

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys). */
TCCR1A = TIMER1_PWM_INIT;

da: 83 e8 ldi r24, 0x83 ; 131
dc: 8f bd out 0x2f, r24 ; 47

* Start timer 1.
*
* NB: TCCR1A and TCCR1B could actually be the same register, so
* take care to not clobber it.
*/

TCCR1B |= TIMER1_CLOCKSOURCE;
de: 8e b5 in r24, 0x2e ; 46
e0: 81 60 ori r24, 0x01 ; 1
e2: 8e bd out 0x2e, r24 ; 46

#if defined(TIMER1_SETUP_HOOK)
TIMER1_SETUP_HOOK();

#endif

/* Set PWM value to 0. */
OCR = 0;

e4: 1b bc out 0x2b, r1 ; 43
e6: 1a bc out 0x2a, r1 ; 42

/* Enable OC1 as output. */
DDROC = _BV (OC1);

e8: 82 e0 ldi r24, 0x02 ; 2

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 193

ea: 87 bb out 0x17, r24 ; 23

/* Enable timer 1 overflow interrupt. */
TIMSK = _BV (TOIE1);

ec: 84 e0 ldi r24, 0x04 ; 4
ee: 89 bf out 0x39, r24 ; 57

sei ();
f0: 78 94 sei
f2: 08 95 ret

000000f4 <main>:
}

int
main (void)
{

f4: cf e5 ldi r28, 0x5F ; 95
f6: d4 e0 ldi r29, 0x04 ; 4
f8: de bf out 0x3e, r29 ; 62
fa: cd bf out 0x3d, r28 ; 61

ioinit ();
fc: ee df rcall .-36 ; 0xda <ioinit>

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [7] */
sleep_mode();

fe: 85 b7 in r24, 0x35 ; 53
100: 80 68 ori r24, 0x80 ; 128
102: 85 bf out 0x35, r24 ; 53
104: 88 95 sleep
106: 85 b7 in r24, 0x35 ; 53
108: 8f 77 andi r24, 0x7F ; 127
10a: 85 bf out 0x35, r24 ; 53
10c: f8 cf rjmp .-16 ; 0xfe <main+0xa>

0000010e <exit>:
.section .text
.global _U(exit)
.type _U(exit), "function"

_U(exit):
cli

10e: f8 94 cli
XJMP _U(_exit)

110: 01 c0 rjmp .+2 ; 0x114 <_exit>

00000112 <__bad_interrupt>:
112: 76 cf rjmp .-276 ; 0x0 <__heap_end>

00000114 <_exit>:
114: ff cf rjmp .-2 ; 0x114 <_exit>

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 194

6.36.5 Linker Map Files

avr-objdump is very useful, but sometimes it’s necessary to see information about
the link that can only be generated by the linker. A map file contains this information.
A map file is useful for monitoring the sizes of your code and data. It also shows where
modules are loaded and which modules were loaded from libraries. It is yet another
view of your application. To get a map file, I usually add-Wl,-Map,demo.map to
my link command. Relink the application using the following command to generate
demo.map (a portion of which is shown below).

$ avr-gcc -g -mmcu=atmega8 -Wl,-Map,demo.map -o demo.elf demo.o

Some points of interest in thedemo.map file are:

.rela.plt
*(.rela.plt)

.text 0x0000000000000000 0x116
*(.vectors)
.vectors 0x0000000000000000 0x26 /usr/src/RPM/BUILD/avr-libc-1.6.1/avr/lib/avr4/atmega8/crtm8.o

0x0000000000000000 __vectors
0x0000000000000000 __vector_default

*(.vectors)
*(.progmem.gcc*)
*(.progmem*)

0x0000000000000026 . = ALIGN (0x2)
0x0000000000000026 __trampolines_start = .

*(.trampolines)
.trampolines 0x0000000000000026 0x0 linker stubs
*(.trampolines*)

0x0000000000000026 __trampolines_end = .
*(.jumptables)
*(.jumptables*)
*(.lowtext)
*(.lowtext*)

0x0000000000000026 __ctors_start = .

The .text segment (where program instructions are stored) starts at location 0x0.

*(.fini2)
*(.fini2)
*(.fini1)
*(.fini1)
*(.fini0)
.fini0 0x0000000000000114 0x2 /usr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_exit.o)
*(.fini0)

0x0000000000000116 _etext = .

.data 0x0000000000800060 0x0 load address 0x0000000000000116
0x0000000000800060 PROVIDE (__data_start, .)

*(.data)
.data 0x0000000000800060 0x0 demo.o

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 195

.data 0x0000000000800060 0x0 /usr/src/RPM/BUILD/avr-libc-1.6.1/avr/lib/avr4/exit.o

.data 0x0000000000800060 0x0 /usr/src/RPM/BUILD/avr-libc-1.6.1/avr/lib/avr4/atmega8/crtm8.o

.data 0x0000000000800060 0x0 /usr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_exit.o)

.data 0x0000000000800060 0x0 /usr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_copy_data.o)

.data 0x0000000000800060 0x0 /usr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_clear_bss.o)
*(.data*)
*(.rodata)
*(.rodata*)
*(.gnu.linkonce.d*)

0x0000000000800060 . = ALIGN (0x2)
0x0000000000800060 _edata = .
0x0000000000800060 PROVIDE (__data_end, .)

.bss 0x0000000000800060 0x3 load address 0x0000000000000116
0x0000000000800060 PROVIDE (__bss_start, .)

*(.bss)
.bss 0x0000000000800060 0x3 demo.o
.bss 0x0000000000800063 0x0 /usr/src/RPM/BUILD/avr-libc-1.6.1/avr/lib/avr4/exit.o
.bss 0x0000000000800063 0x0 /usr/src/RPM/BUILD/avr-libc-1.6.1/avr/lib/avr4/atmega8/crtm8.o
.bss 0x0000000000800063 0x0 /usr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_exit.o)
.bss 0x0000000000800063 0x0 /usr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_copy_data.o)
.bss 0x0000000000800063 0x0 /usr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_clear_bss.o)
*(.bss*)
*(COMMON)

0x0000000000800063 PROVIDE (__bss_end, .)
0x0000000000000116 __data_load_start = LOADADDR (.data)
0x0000000000000116 __data_load_end = (__data_load_start + SIZEOF (.data))

.noinit 0x0000000000800063 0x0
0x0000000000800063 PROVIDE (__noinit_start, .)

*(.noinit*)
0x0000000000800063 PROVIDE (__noinit_end, .)
0x0000000000800063 _end = .
0x0000000000800063 PROVIDE (__heap_start, .)

.eeprom 0x0000000000810000 0x0
*(.eeprom*)

0x0000000000810000 __eeprom_end = .

The last address in the .text segment is location0x114 ( denoted by_etext ), so the
instructions use up 276 bytes of FLASH.

The .data segment (where initialized static variables are stored) starts at location0x60 ,
which is the first address after the register bank on an ATmega8 processor.

The next available address in the .data segment is also location0x60 , so the application
has no initialized data.

The .bss segment (where uninitialized data is stored) starts at location0x60 .

The next available address in the .bss segment is location 0x63, so the application uses
3 bytes of uninitialized data.

The .eeprom segment (where EEPROM variables are stored) starts at location 0x0.

The next available address in the .eeprom segment is also location 0x0, so there aren’t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 196

any EEPROM variables.

6.36.6 Generating Intel Hex Files

We have a binary of the application, but how do we get it into the processor? Most (if
not all) programmers will not accept a GNU executable as an input file, so we need to
do a little more processing. The next step is to extract portions of the binary and save
the information into .hex files. The GNU utility that does this is calledavr-objcopy .

The ROM contents can be pulled from our project’s binary and put into the file
demo.hex using the following command:

$ avr-objcopy -j .text -j .data -O ihex demo.elf demo.hex

The resultingdemo.hex file contains:

:1000000012C087C086C085C084C083C082C081C042
:1000100025C07FC07EC07DC07CC07BC07AC079C057
:1000200078C077C076C011241FBECFE5D4E0DEBF14
:10003000CDBF10E0A0E6B0E0E6E1F1E002C005903F
:100040000D92A036B107D9F710E0A0E6B0E001C0EC
:100050001D92A336B107E1F74DD059C01F920F9200
:100060000FB60F9211242F933F938F9380916000CE
:10007000882379F420916100309162002F5F3F4F17
:10008000309362002093610083E02F3F3807D9F45A
:1000900017C0813029F0209161003091620013C0B7
:1000A0002091610030916200215030403093620015
:1000B000209361002115310531F41092600003C0D6
:1000C00081E0809360003BBD2ABD8F913F912F91CD
:1000D0000F900FBE0F901F90189583E88FBD8EB5BF
:1000E00081608EBD1BBC1ABC82E087BB84E089BFE7
:1000F00078940895CFE5D4E0DEBFCDBFEEDF85B7BD
:10010000806885BF889585B78F7785BFF8CFF894CD
:0601100001C076CFFFCF15
:00000001FF

The-j option indicates that we want the information from the .text and .data segment
extracted. If we specify the EEPROM segment, we can generate a .hex file that can be
used to program the EEPROM:

$ avr-objcopy -j .eeprom --change-section-lma .eeprom=0 -O ihex demo.elf demo_eeprom.hex

There is nodemo_eeprom.hex file written, as that file would be empty.

Starting with version 2.17 of the GNU binutils, theavr-objcopy command that used
to generate the empty EEPROM files now aborts because of the empty input section
.eeprom, so these empty files are not generated. It also signals an error to the Makefile
which will be caught there, and makes it print a message about the empty file not being
generated.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 197

6.36.7 Letting Make Build the Project

Rather than type these commands over and over, they can all be placed in a make file.
To build the demo project usingmake, save the following in a file calledMakefile .

Note:

ThisMakefile can only be used as input for the GNU version ofmake.

PRG = demo
OBJ = demo.o
#MCU_TARGET = at90s2313
#MCU_TARGET = at90s2333
#MCU_TARGET = at90s4414
#MCU_TARGET = at90s4433
#MCU_TARGET = at90s4434
#MCU_TARGET = at90s8515
#MCU_TARGET = at90s8535
#MCU_TARGET = atmega128
#MCU_TARGET = atmega1280
#MCU_TARGET = atmega1281
#MCU_TARGET = atmega16
#MCU_TARGET = atmega163
#MCU_TARGET = atmega164p
#MCU_TARGET = atmega165
#MCU_TARGET = atmega165p
#MCU_TARGET = atmega168
#MCU_TARGET = atmega169
#MCU_TARGET = atmega169p
#MCU_TARGET = atmega32
#MCU_TARGET = atmega324p
#MCU_TARGET = atmega325
#MCU_TARGET = atmega3250
#MCU_TARGET = atmega329
#MCU_TARGET = atmega3290
#MCU_TARGET = atmega48
#MCU_TARGET = atmega64
#MCU_TARGET = atmega640
#MCU_TARGET = atmega644
#MCU_TARGET = atmega644p
#MCU_TARGET = atmega645
#MCU_TARGET = atmega6450
#MCU_TARGET = atmega649
#MCU_TARGET = atmega6490
MCU_TARGET = atmega8
#MCU_TARGET = atmega8515
#MCU_TARGET = atmega8535
#MCU_TARGET = atmega88
#MCU_TARGET = attiny2313
#MCU_TARGET = attiny24
#MCU_TARGET = attiny25
#MCU_TARGET = attiny26
#MCU_TARGET = attiny261
#MCU_TARGET = attiny44
#MCU_TARGET = attiny45
#MCU_TARGET = attiny461

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.36 A simple project 198

#MCU_TARGET = attiny84
#MCU_TARGET = attiny85
#MCU_TARGET = attiny861
OPTIMIZE = -O2

DEFS =
LIBS =

# You should not have to change anything below here.

CC = avr-gcc

# Override is only needed by avr-lib build system.

override CFLAGS = -g -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) $(DEFS)
override LDFLAGS = -Wl,-Map,$(PRG).map

OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump

all: $(PRG).elf lst text eeprom

$(PRG).elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS)

# dependency:
demo.o: demo.c iocompat.h

clean:
rm -rf *.o $(PRG).elf *.eps *.png *.pdf *.bak
rm -rf *.lst *.map $(EXTRA_CLEAN_FILES)

lst: $(PRG).lst

%.lst: %.elf
$(OBJDUMP) -h -S $< > $@

# Rules for building the .text rom images

text: hex bin srec

hex: $(PRG).hex
bin: $(PRG).bin
srec: $(PRG).srec

%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@

%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@

%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@

# Rules for building the .eeprom rom images

eeprom: ehex ebin esrec

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.37 A more sophisticated project 199

ehex: $(PRG)_eeprom.hex
ebin: $(PRG)_eeprom.bin
esrec: $(PRG)_eeprom.srec

%_eeprom.hex: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@ \
|| { echo empty $@ not generated; exit 0; }

%_eeprom.srec: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O srec $< $@ \
|| { echo empty $@ not generated; exit 0; }

%_eeprom.bin: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O binary $< $@ \
|| { echo empty $@ not generated; exit 0; }

# Every thing below here is used by avr-libc’s build system and can be ignored
# by the casual user.

FIG2DEV = fig2dev
EXTRA_CLEAN_FILES = *.hex *.bin *.srec

dox: eps png pdf

eps: $(PRG).eps
png: $(PRG).png
pdf: $(PRG).pdf

%.eps: %.fig
$(FIG2DEV) -L eps $< $@

%.pdf: %.fig
$(FIG2DEV) -L pdf $< $@

%.png: %.fig
$(FIG2DEV) -L png $< $@

6.36.8 Reference to the source code

The source code is installed under

$prefix/share/doc/avr-libc/examples/demo/ ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
/usr or /usr/local .

6.37 A more sophisticated project

This project extends the basic idea of thesimple projectto control a LED with a PWM
output, but adds methods to adjust the LED brightness. It employs a lot of the basic
concepts of avr-libc to achieve that goal.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.37 A more sophisticated project 200

Understanding this project assumes the simple project has been understood in full, as
well as being acquainted with the basic hardware concepts of an AVR microcontroller.

6.37.1 Hardware setup

The demo is set up in a way so it can be run on the ATmega16 that ships with the
STK500 development kit. The only external part needed is a potentiometer attached to
the ADC. It is connected to a 10-pin ribbon cable for port A, both ends of the poten-
tiometer to pins 9 (GND) and 10 (VCC), and the wiper to pin 1 (port A0). A bypass
capacitor from pin 1 to pin 9 (like 47 nF) is recommendable.

Figure 2: Setup of the STK500

The coloured patch cables are used to provide various interconnections. As there are
only four of them in the STK500, there are two options to connect them for this demo.
The second option for the yellow-green cable is shown in parenthesis in the table.
Alternatively, the "squid" cable from the JTAG ICE kit can be used if available.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.37 A more sophisticated project 201

Port Header Color Function Connect to
D0 1 brown RxD RXD of the

RS-232
header

D1 2 grey TxD TXD of the
RS-232
header

D2 3 black button
"down"

SW0 (pin 1
switches
header)

D3 4 red button "up" SW1 (pin 2
switches
header)

D4 5 green button
"ADC"

SW2 (pin 3
switches
header)

D5 6 blue LED LED0 (pin 1
LEDs header)

D6 7 (green) clock out LED1 (pin 2
LEDs header)

D7 8 white 1-second
flash

LED2 (pin 3
LEDs header)

GND 9 unused
VCC 10 unused

Figure 3: Wiring of the STK500

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.37 A more sophisticated project 202

The following picture shows the alternate wiring where LED1 is connected but SW2 is
not:

Figure 4: Wiring option #2 of the STK500

As an alternative, this demo can also be run on the popular ATmega8 controller, or its
successor ATmega88 as well as the ATmega48 and ATmega168 variants of the latter.
These controllers do not have a port named "A", so their ADC inputs are located on
port C instead, thus the potentiometer needs to be attached to port C. Likewise, the
OC1A output is not on port D pin 5 but on port B pin 1 (PB1). Thus, the above
cabling scheme needs to be changed so that PB1 connects to the LED0 pin. (PD6
remains unconnected.) When using the STK500, use one of the jumper cables for this
connection. All other port D pins should be connected the same way as described for
the ATmega16 above.

When not using an STK500 starter kit, attach the LEDs through some resistor to Vcc
(low-active LEDs), and attach pushbuttons from the respective input pins to GND. The
internal pull-up resistors are enabled for the pushbutton pins, so no external resistors
are needed.

Finally, the demo has been ported to the ATtiny2313 as well. As this AVR does not
offer an ADC, everything related to handling the ADC is disabled in the code for that
MCU type. Also, port D of this controller type only features 6 pins, so the 1-second
flash LED had to be moved from PD6 to PD4. (PD4 is used as the ADC control button
on the other MCU types, but that is not needed here.) OC1A is located at PB3 on this
device.

The MCU_TARGETmacro in the Makefile needs to be adjusted appropriately for the
alternative controller types.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.37 A more sophisticated project 203

The flash ROM and RAM consumption of this demo are way below the resources
of even an ATmega48, and still well within the capabilities of an ATtiny2313. The
major advantage of experimenting with the ATmega16 (in addition that it ships together
with an STK500 anyway) is that it can be debugged online via JTAG. Likewise, the
ATmega48/88/168 and ATtiny2313 devices can be debugged through debugWire, using
the Atmel JTAG ICE mkII or the low-cost AVR Dragon.

Note that in the explanation below, all port/pin names are applicable to the ATmega16
setup.

6.37.2 Functional overview

PD6 will be toggled with each internal clock tick (approx. 10 ms). PD7 will flash once
per second.

PD0 and PD1 are configured as UART IO, and can be used to connect the demo kit to
a PC (9600 Bd, 8N1 frame format). The demo application talks to the serial port, and
it can be controlled from the serial port.

PD2 through PD4 are configured as inputs, and control the application unless control
has been taken over by the serial port. Shorting PD2 to GND will decrease the current
PWM value, shorting PD3 to GND will increase it.

While PD4 is shorted to GND, one ADC conversion for channel 0 (ADC input is on
PA0) will be triggered each internal clock tick, and the resulting value will be used as
the PWM value. So the brightness of the LED follows the analog input value on PC0.
VAREF on the STK500 should be set to the same value as VCC.

When running in serial control mode, the function of the watchdog timer can be demon-
strated by typing an ‘r’. This will make the demo application run in a tight loop without
retriggering the watchdog so after some seconds, the watchdog will reset the MCU.
This situation can be figured out on startup by reading the MCUCSR register.

The current value of the PWM is backed up in an EEPROM cell after about 3 seconds
of idle time after the last change. If that EEPROM cell contains a reasonable (i. e.
non-erased) value at startup, it is taken as the initial value for the PWM. This virtually
preserves the last value across power cycles. By not updating the EEPROM immme-
diately but only after a timeout, EEPROM wear is reduced considerably compared to
immediately writing the value at each change.

6.37.3 A code walkthrough

This section explains the ideas behind individual parts of the code. Thesource code
has been divided into numbered parts, and the following subsections explain each of
these parts.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.37 A more sophisticated project 204

6.37.3.1 Part 1: Macro definitions A number of preprocessor macros are defined
to improve readability and/or portability of the application.

The first macros describe the IO pins our LEDs and pushbuttons are connected to. This
provides some kind of mini-HAL (hardware abstraction layer) so should some of the
connections be changed, they don’t need to be changed inside the code but only on
top. Note that the location of the PWM output itself is mandated by the hardware, so it
cannot be easily changed. As the ATmega48/88/168 controllers belong to a more recent
generation of AVRs, a number of register and bit names have been changed there, so
they are mapped back to their ATmega8/16 equivalents to keep the actual program code
portable.

The nameF_CPUis the conventional name to describe the CPU clock frequency of
the controller. This demo project just uses the internal calibrated 1 MHz RC oscillator
that is enabled by default. Note that when using the<util/delay.h > functions,
F_CPUneeds to be defined before including that file.

The remaining macros have their own comments in the source code. The macro
TMR1_SCALEshows how to use the preprocessor and the compiler’s constant expres-
sion computation to calculate the value of timer 1’s post-scaler in a way so it only
depends onF_CPUand the desired software clock frequency. While the formula looks
a bit complicated, using a macro offers the advantage that the application will auto-
matically scale to new target softclock or master CPU frequencies without having to
manually re-calculate hardcoded constants.

6.37.3.2 Part 2: Variable definitions The intflags structure demonstrates a
way to allocate bit variables in memory. Each of the interrupt service routines just sets
one bit within that structure, and the application’s main loop then monitors the bits in
order to act appropriately.

Like all variables that are used to communicate values between an interrupt service
routine and the main application, it is declaredvolatile.

The variableee_pwmis not a variable in the classical C sense that could be used as an
lvalue or within an expression to obtain its value. Instead, the

__attribute__((section(".eeprom")))

marks it as belonging to theEEPROM section. This section is merely used as a place-
holder so the compiler can arrange for each individual variable’s location in EEPROM.
The compiler will also keep track of initial values assigned, and usually the Makefile
is arranged to extract these initial values into a separate load file (largedemo_-
eeprom .∗ in this case) that can be used to initialize the EEPROM.

The actual EEPROM IO must be performed manually.

Similarly, the variablemcucsr is kept in the.noinit section in order to prevent it from
being cleared upon application startup.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.37 A more sophisticated project 205

6.37.3.3 Part 3: Interrupt service routines The ISR to handle timer 1’s overflow
interrupt arranges for the software clock. While timer 1 runs the PWM, it calls its
overflow handler rather frequently, so theTMR1_SCALEvalue is used as a postscaler
to reduce the internal software clock frequency further. If the software clock triggers,
it sets thetmr_int bitfield, and defers all further tasks to the main loop.

The ADC ISR just fetches the value from the ADC conversion, disables the ADC
interrupt again, and announces the presence of the new value in theadc_int bitfield.
The interrupt is kept disabled while not needed, because the ADC will also be triggered
by executing the SLEEP instruction in idle mode (which is the default sleep mode).
Another option would be to turn off the ADC completely here, but that increases the
ADC’s startup time (not that it would matter much for this application).

6.37.3.4 Part 4: Auxiliary functions The functionhandle_mcucsr() uses two
__attribute__ declarators to achieve specific goals. First, it will instruct the com-
piler to place the generated code into the.init3 section of the output. Thus, it will be-
come part of the application initialization sequence. This is done in order to fetch (and
clear) the reason of the last hardware reset fromMCUCSRas early as possible. There
is a short period of time where the next reset could already trigger before the current
reason has been evaluated. This also explains why the variablemcucsr that mirrors
the register’s value needs to be placed into the .noinit section, because otherwise the
default initialization (which happens after .init3) would blank the value again.

As the initialization code is not called using CALL/RET instructions but rather con-
catenated together, the compiler needs to be instructed to omit the entire function pro-
logue and epilogue. This is performed by thenakedattribute. So while syntactically,
handle_mcucsr() is a function to the compiler, the compiler will just emit the in-
structions for it without setting up any stack frame, and not even a RET instruction at
the end.

Functionioinit() centralizes all hardware setup. The very last part of that function
demonstrates the use of the EEPROM variableee_pwmto obtain an EEPROM address
that can in turn be applied as an argument toeeprom_read_word() .

The following functions handle UART character and string output. (UART input
is handled by an ISR.) There are two string output functions,printstr() and
printstr_p() . The latter function fetches the string fromprogram memory. Both
functions translate a newline character into a carriage return/newline sequence, so a
simple\n can be used in the source code.

The functionset_pwm() propagates the new PWM value to the PWM, performing
range checking. When the value has been changed, the new percentage will be an-
nounced on the serial link. The current value is mirrored in the variablepwmso others
can use it in calculations. In order to allow for a simple calculation of a percentage
value without requiring floating-point mathematics, the maximal value of the PWM is
restricted to 1000 rather than 1023, so a simple division by 10 can be used. Due to the
nature of the human eye, the difference in LED brightness between 1000 and 1023 is
not noticable anyway.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.37 A more sophisticated project 206

6.37.3.5 Part 5: main() At the start ofmain() , a variablemode is declared to
keep the current mode of operation. An enumeration is used to improve the readability.
By default, the compiler would allocate a variable of typeint for an enumeration. The
packedattribute declarator instructs the compiler to use the smallest possible integer
type (which would be an 8-bit type here).

After some initialization actions, the application’s main loop follows. In an embedded
application, this is normally an infinite loop as there is nothing an application could
"exit" into anyway.

At the beginning of the loop, the watchdog timer will be retriggered. If that timer is
not triggered for about 2 seconds, it will issue a hardware reset. Care needs to be taken
that no code path blocks longer than this, or it needs to frequently perform watchdog
resets of its own. An example of such a code path would be the string IO functions: for
an overly large string to print (about 2000 characters at 9600 Bd), they might block for
too long.

The loop itself then acts on the interrupt indication bitfields as appropriate, and will
eventually put the CPU on sleep at its end to conserve power.

The first interrupt bit that is handled is the (software) timer, at a frequency of approx-
imately 100 Hz. TheCLOCKOUTpin will be toggled here, so e. g. an oscilloscope
can be used on that pin to measure the accuracy of our software clock. Then, the LED
flasher for LED2 ("We are alive"-LED) is built. It will flash that LED for about 50
ms, and pause it for another 950 ms. Various actions depending on the operation mode
follow. Finally, the 3-second backup timer is implemented that will write the PWM
value back to EEPROM once it is not changing anymore.

The ADC interrupt will just adjust the PWM value only.

Finally, the UART Rx interrupt will dispatch on the last character received from the
UART.

All the string literals that are used as informational messages withinmain() are
placed inprogram memoryso no SRAM needs to be allocated for them. This is done
by using the PSTR macro, and passing the string toprintstr_p() .

6.37.4 The source code

The source code is installed under

$prefix/share/doc/avr-libc/examples/largedemo/largedemo.c ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
/usr or /usr/local .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.38 Using the standard IO facilities 207

6.38 Using the standard IO facilities

This project illustrates how to use the standard IO facilities (stdio) provided by this
library. It assumes a basic knowledge of how the stdio subsystem is used in standard C
applications, and concentrates on the differences in this library’s implementation that
mainly result from the differences of the microcontroller environment, compared to a
hosted environment of a standard computer.

This demo is meant to supplement thedocumentation, not to replace it.

6.38.1 Hardware setup

The demo is set up in a way so it can be run on the ATmega16 that ships with the
STK500 development kit. The UART port needs to be connected to the RS-232 "spare"
port by a jumper cable that connects PD0 to RxD and PD1 to TxD. The RS-232 channel
is set up as standard input (stdin ) and standard output (stdout ), respectively.

In order to have a different device available for a standard error channel (stderr ), an
industry-standard LCD display with an HD44780-compatible LCD controller has been
chosen. This display needs to be connected to port A of the STK500 in the following
way:

Port Header Function
A0 1 LCD D4
A1 2 LCD D5
A2 3 LCD D6
A3 4 LCD D7
A4 5 LCD R/∼W
A5 6 LCD E
A6 7 LCD RS
A7 8 unused
GND 9 GND
VCC 10 Vcc

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.38 Using the standard IO facilities 208

Figure 5: Wiring of the STK500

The LCD controller is used in 4-bit mode, including polling the "busy" flag so the
R/∼W line from the LCD controller needs to be connected. Note that the LCD con-
troller has yet another supply pin that is used to adjust the LCD’s contrast (V5). Typ-
ically, that pin connects to a potentiometer between Vcc and GND. Often, it might
work to just connect that pin to GND, while leaving it unconnected usually yields an
unreadable display.

Port A has been chosen as 7 pins on a single port are needed to connect the LCD, yet all
other ports are already partially in use: port B has the pins for in-system programming
(ISP), port C has the ports for JTAG (can be used for debugging), and port D is used
for the UART connection.

6.38.2 Functional overview

The project consists of the following files:

• stdiodemo.c This is the main example file.

• defines.h Contains some global defines, like the LCD wiring

• hd44780.c Implementation of an HD44780 LCD display driver

• hd44780.h Interface declarations for the HD44780 driver

• lcd.c Implementation of LCD character IO on top of the HD44780 driver

• lcd.h Interface declarations for the LCD driver

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.38 Using the standard IO facilities 209

• uart.c Implementation of a character IO driver for the internal UART

• uart.h Interface declarations for the UART driver

6.38.3 A code walkthrough

6.38.3.1 stdiodemo.c As usual, include files go first. While conventionally, system
header files (those in angular brackets< ... >) go before application-specific header
files (in double quotes),defines.h comes as the first header file here. The main
reason is that this file defines the value ofF_CPUwhich needs to be known before
including<utils/delay.h >.

The functionioinit() summarizes all hardware initialization tasks. As this function
is declared to be module-internal only (static ), the compiler will notice its simplic-
ity, and with a reasonable optimization level in effect, it will inline that function. That
needs to be kept in mind when debugging, because the inlining might cause the debug-
ger to "jump around wildly" at a first glance when single-stepping.

The definitions ofuart_str and lcd_str set up two stdio streams. The initial-
ization is done using theFDEV_SETUP_STREAM()initializer template macro, so a
static object can be constructed that can be used for IO purposes. This initializer macro
takes three arguments, two function macros to connect the corresponding output and
input functions, respectively, the third one describes the intent of the stream (read,
write, or both). Those functions that are not required by the specified intent (like the
input function forlcd_str which is specified to only perform output operations) can
be given asNULL.

The streamuart_str corresponds to input and output operations performed over the
RS-232 connection to a terminal (e.g. from/to a PC running a terminal program), while
the lcd_str stream provides a method to display character data on the LCD text
display.

The functiondelay_1s() suspends program execution for approximately one sec-
ond. This is done using the_delay_ms() function from <util/delay.h >
which in turn needs theF_CPUmacro in order to adjust the cycle counts. As the
_delay_ms() function has a limited range of allowable argument values (depending
on F_CPU), a value of 10 ms has been chosen as the base delay which would be safe
for CPU frequencies of up to about 26 MHz. This function is then called 100 times to
accomodate for the actual one-second delay.

In a practical application, long delays like this one were better be handled by a hardware
timer, so the main CPU would be free for other tasks while waiting, or could be put on
sleep.

At the beginning ofmain() , after initializing the peripheral devices, the default stdio
streamsstdin , stdout , andstderr are set up by using the existing staticFILE
stream objects. While this is not mandatory, the availability ofstdin andstdout
allows to use the shorthand functions (e.g.printf() instead offprintf() ), and
stderr can mnemonically be referred to when sending out diagnostic messages.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.38 Using the standard IO facilities 210

Just for demonstration purposes,stdin andstdout are connected to a stream that
will perform UART IO, while stderr is arranged to output its data to the LCD text
display.

Finally, a main loop follows that accepts simple "commands" entered via the RS-232
connection, and performs a few simple actions based on the commands.

First, a prompt is sent out usingprintf_P() (which takes aprogram space string).
The string is read into an internal buffer as one line of input, usingfgets() . While it
would be also possible to usegets() (which implicitly reads fromstdin ), gets()
has no control that the user’s input does not overflow the input buffer provided so it
should never be used at all.

If fgets() fails to read anything, the main loop is left. Of course, normally the main
loop of a microcontroller application is supposed to never finish, but again, for demon-
strational purposes, this explains the error handling of stdio.fgets() will return
NULL in case of an input error or end-of-file condition on input. Both these condi-
tions are in the domain of the function that is used to establish the stream,uart_-
putchar() in this case. In short, this function returns EOF in case of a serial line
"break" condition (extended start condition) has been recognized on the serial line.
Common PC terminal programs allow to assert this condition as some kind of out-of-
band signalling on an RS-232 connection.

When leaving the main loop, a goodbye message is sent to standard error output (i.e. to
the LCD), followed by three dots in one-second spacing, followed by a sequence that
will clear the LCD. Finally,main() will be terminated, and the library will add an
infinite loop, so only a CPU reset will be able to restart the application.

There are three "commands" recognized, each determined by the first letter of the line
entered (converted to lower case):

• The ’q’ (quit) command has the same effect of leaving the main loop.

• The ’l’ (LCD) command takes its second argument, and sends it to the LCD.

• The ’u’ (UART) command takes its second argument, and sends it back to the
UART connection.

Command recognition is done usingsscanf() where the first format in the format
string just skips over the command itself (as the assignment suppression modifier∗ is
given).

6.38.3.2 defines.h This file just contains a few peripheral definitions.

TheF_CPUmacro defines the CPU clock frequency, to be used in delay loops, as well
as in the UART baud rate calculation.

The macroUART_BAUDdefines the RS-232 baud rate. Depending on the actual CPU
frequency, only a limited range of baud rates can be supported.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.38 Using the standard IO facilities 211

The remaining macros customize the IO port and pins used for the HD44780 LCD
driver.

6.38.3.3 hd44780.h This file describes the public interface of the low-level LCD
driver that interfaces to the HD44780 LCD controller. Public functions are available to
initialize the controller into 4-bit mode, to wait for the controller’s busy bit to be clear,
and to read or write one byte from or to the controller.

As there are two different forms of controller IO, one to send a command or receive
the controller status (RS signal clear), and one to send or receive data to/from the
controller’s SRAM (RS asserted), macros are provided that build on the mentioned
function primitives.

Finally, macros are provided for all the controller commands to allow them to be used
symbolically. The HD44780 datasheet explains these basic functions of the controller
in more detail.

6.38.3.4 hd44780.c This is the implementation of the low-level HD44780 LCD
controller driver.

On top, a few preprocessor glueing tricks are used to establish symbolic access to
the hardware port pins the LCD controller is attached to, based on the application’s
definitions made indefines.h.

The hd44780_pulse_e() function asserts a short pulse to the controller’s E (en-
able) pin. Since reading back the data asserted by the LCD controller needs to be
performed while E is active, this function reads and returns the input data if the param-
eterreadback is true. When called with a compile-time constant parameter that is
false, the compiler will completely eliminate the unused readback operation, as well as
the return value as part of its optimizations.

As the controller is used in 4-bit interface mode, all byte IO to/from the controller
needs to be handled as two nibble IOs. The functionshd44780_outnibble() and
hd44780_innibble() implement this. They do not belong to the public interface,
so they are declared static.

Building upon these, the public functionshd44780_outbyte() andhd44780_-
inbyte() transfer one byte to/from the controller.

The functionhd44780_wait_ready() waits for the controller to become ready,
by continuously polling the controller’s status (which is read by performing a byte read
with the RS signal cleard), and examining the BUSY flag within the status byte. This
function needs to be called before performing any controller IO.

Finally, hd44780_init() initializes the LCD controller into 4-bit mode, based on
the initialization sequence mandated by the datasheet. As the BUSY flag cannot be
examined yet at this point, this is the only part of this code where timed delays are
used. While the controller can perform a power-on reset when certain constraints on

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.38 Using the standard IO facilities 212

the power supply rise time are met, always calling the software initialization routine
at startup ensures the controller will be in a known state. This function also puts the
interface into 4-bit mode (which would not be done automatically after a power-on
reset).

6.38.3.5 lcd.h This function declares the public interface of the higher-level (char-
acter IO) LCD driver.

6.38.3.6 lcd.c The implementation of the higher-level LCD driver. This driver
builds on top of the HD44780 low-level LCD controller driver, and offers a character
IO interface suitable for direct use by the standard IO facilities. Where the low-level
HD44780 driver deals with setting up controller SRAM addresses, writing data to the
controller’s SRAM, and controlling display functions like clearing the display, or mov-
ing the cursor, this high-level driver allows to just write a character to the LCD, in the
assumption this will somehow show up on the display.

Control characters can be handled at this level, and used to perform specific actions
on the LCD. Currently, there is only one control character that is being dealt with: a
newline character (\n) is taken as an indication to clear the display and set the cursor
into its initial position upon reception of the next character, so a "new line" of text
can be displayed. Therefore, a received newline character is remembered until more
characters have been sent by the application, and will only then cause the display to be
cleared before continuing. This provides a convenient abstraction where full lines of
text can be sent to the driver, and will remain visible at the LCD until the next line is
to be displayed.

Further control characters could be implemented, e. g. using a set of escape sequences.
That way, it would be possible to implement self-scrolling display lines etc.

The public functionlcd_init() first calls the initialization entry point of the lower-
level HD44780 driver, and then sets up the LCD in a way we’d like to (display cleared,
non-blinking cursor enabled, SRAM addresses are increasing so characters will be
written left to right).

The public functionlcd_putchar() takes arguments that make it suitable for be-
ing passed as aput() function pointer to the stdio stream initialization functions and
macros (fdevopen() , FDEV_SETUP_STREAM()etc.). Thus, it takes two argu-
ments, the character to display itself, and a reference to the underlying stream object,
and it is expected to return 0 upon success.

This function remembers the last unprocessed newline character seen in the function-
local static variablenl_seen . If a newline character is encountered, it will simply set
this variable to a true value, and return to the caller. As soon as the first non-newline
character is to be displayed withnl_seen still true, the LCD controller is told to clear
the display, put the cursor home, and restart at SRAM address 0. All other characters
are sent to the display.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.38 Using the standard IO facilities 213

The single static function-internal variablenl_seen works for this purpose. If mul-
tiple LCDs should be controlled using the same set of driver functions, that would not
work anymore, as a way is needed to distinguish between the various displays. This is
where the second parameter can be used, the reference to the stream itself: instead of
keeping the state inside a private variable of the function, it can be kept inside a private
object that is attached to the stream itself. A reference to that private object can be at-
tached to the stream (e.g. inside the functionlcd_init() that then also needs to be
passed a reference to the stream) usingfdev_set_udata() , and can be accessed
insidelcd_putchar() usingfdev_get_udata().

6.38.3.7 uart.h Public interface definition for the RS-232 UART driver, much like
in lcd.hexcept there is now also a character input function available.

As the RS-232 input is line-buffered in this example, the macroRX_BUFSIZEdeter-
mines the size of that buffer.

6.38.3.8 uart.c This implements an stdio-compatible RS-232 driver using an
AVR’s standard UART (or USART in asynchronous operation mode). Both, char-
acter output as well as character input operations are implemented. Character output
takes care of converting the internal newline\n into its external representation carriage
return/line feed (\r \n).

Character input is organized as a line-buffered operation that allows to minimally edit
the current line until it is "sent" to the application when either a carriage return (\r )
or newline (\n) character is received from the terminal. The line editing functions
implemented are:

• \b (back space) or\177 (delete) deletes the previous character

• ∧u (control-U, ASCII NAK) deletes the entire input buffer

• ∧w (control-W, ASCII ETB) deletes the previous input word, delimited by white
space

• ∧r (control-R, ASCII DC2) sends a\r , then reprints the buffer (refresh)

• \t (tabulator) will be replaced by a single space

The functionuart_init() takes care of all hardware initialization that is required to
put the UART into a mode with 8 data bits, no parity, one stop bit (commonly referred
to as 8N1) at the baud rate configured indefines.h. At low CPU clock frequencies, the
U2X bit in the UART is set, reducing the oversampling from 16x to 8x, which allows
for a 9600 Bd rate to be achieved with tolerable error using the default 1 MHz RC
oscillator.

The public functionuart_putchar() again has suitable arguments for direct use
by the stdio stream interface. It performs the\n into \r \n translation by recursively

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.39 Example using the two-wire interface (TWI) 214

calling itself when it sees a\n character. Just for demonstration purposes, the\a
(audible bell, ASCII BEL) character is implemented by sending a string tostderr ,
so it will be displayed on the LCD.

The public functionuart_getchar() implements the line editor. If there are char-
acters available in the line buffer (variablerxp is not NULL), the next character will
be returned from the buffer without any UART interaction.

If there are no characters inside the line buffer, the input loop will be entered. Charac-
ters will be read from the UART, and processed accordingly. If the UART signalled a
framing error (FE bit set), typically caused by the terminal sending aline breakcon-
dition (start condition held much longer than one character period), the function will
return an end-of-file condition using_FDEV_EOF. If there was a data overrun condi-
tion on input (DORbit set), an error condition will be returned as_FDEV_ERR.

Line editing characters are handled inside the loop, potentially modifying the buffer
status. If characters are attempted to be entered beyond the size of the line buffer, their
reception is refused, and a\a character is sent to the terminal. If a\r or \n character is
seen, the variablerxp (receive pointer) is set to the beginning of the buffer, the loop is
left, and the first character of the buffer will be returned to the application. (If no other
characters have been entered, this will just be the newline character, and the buffer is
marked as being exhausted immediately again.)

6.38.4 The source code

The source code is installed under

$prefix/share/doc/avr-libc/examples/stdiodemo/ ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
/usr or /usr/local .

6.39 Example using the two-wire interface (TWI)

Some newer devices of the ATmega series contain builtin support for interfacing the
microcontroller to a two-wire bus, called TWI. This is essentially the same called I2C
by Philips, but that term is avoided in Atmel’s documentation due to patenting issues.

For the original Philips documentation, see

http://www.semiconductors.philips.com/buses/i2c/index.html

6.39.1 Introduction into TWI

The two-wire interface consists of two signal lines namedSDA(serial data) andSCL
(serial clock) (plus a ground line, of course). All devices participating in the bus are
connected together, using open-drain driver circuitry, so the wires must be terminated

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://www.semiconductors.philips.com/buses/i2c/index.html


6.39 Example using the two-wire interface (TWI) 215

using appropriate pullup resistors. The pullups must be small enough to recharge
the line capacity in short enough time compared to the desired maximal clock fre-
quency, yet large enough so all drivers will not be overloaded. There are formulas in
the datasheet that help selecting the pullups.

Devices can either act as a master to the bus (i. e., they initiate a transfer), or as a
slave (they only act when being called by a master). The bus is multi-master capable,
and a particular device implementation can act as either master or slave at different
times. Devices are addressed using a 7-bit address (coordinated by Philips) transfered
as the first byte after the so-called start condition. The LSB of that byte is R/∼W, i. e.
it determines whether the request to the slave is to read or write data during the next
cycles. (There is also an option to have devices using 10-bit addresses but that is not
covered by this example.)

6.39.2 The TWI example project

The ATmega TWI hardware supports both, master and slave operation. This example
will only demonstrate how to use an AVR microcontroller as TWI master. The imple-
mentation is kept simple in order to concentrate on the steps that are required to talk to
a TWI slave, so all processing is done in polled-mode, waiting for the TWI interface to
indicate that the next processing step is due (by setting the TWINT interrupt bit). If it
is desired to have the entire TWI communication happen in "background", all this can
be implemented in an interrupt-controlled way, where only the start condition needs to
be triggered from outside the interrupt routine.

There is a variety of slave devices available that can be connected to a TWI bus. For the
purpose of this example, an EEPROM device out of the industry-standard24Cxx series
has been chosen (wherexxcan be one of01, 02, 04, 08, or16) which are available from
various vendors. The choice was almost arbitrary, mainly triggered by the fact that an
EEPROM device is being talked to in both directions, reading and writing the slave
device, so the example will demonstrate the details of both.

Usually, there is probably not much need to add more EEPROM to an ATmega system
that way: the smallest possible AVR device that offers hardware TWI support is the
ATmega8 which comes with 512 bytes of EEPROM, which is equivalent to an 24C04
device. The ATmega128 already comes with twice as much EEPROM as the 24C16
would offer. One exception might be to use an externally connected EEPROM device
that is removable; e. g. SDRAM PC memory comes with an integrated TWI EEPROM
that carries the RAM configuration information.

6.39.3 The Source Code

The source code is installed under

$prefix/share/doc/avr-libc/examples/twitest/twitest.c ,

where$prefix is a configuration option. For Unix systems, it is usually set to either

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.39 Example using the two-wire interface (TWI) 216

/usr or /usr/local .

Note [1]

The header file<util/twi.h > contains some macro definitions for symbolic con-
stants used in the TWI status register. These definitions match the names used in the
Atmel datasheet except that all names have been prefixed withTW_.

Note [2]

The clock is used in timer calculations done by the compiler, for the UART baud rate
and the TWI clock rate.

Note [3]

The address assigned for the 24Cxx EEPROM consists of 1010 in the upper four bits.
The following three bits are normally available as slave sub-addresses, allowing to
operate more than one device of the same type on a single bus, where the actual sub-
address used for each device is configured by hardware strapping. However, since the
next data packet following the device selection only allows for 8 bits that are used as
an EEPROM address, devices that require more than 8 address bits (24C04 and above)
"steal" subaddress bits and use them for the EEPROM cell address bits 9 to 11 as re-
quired. This example simply assumes all subaddress bits are 0 for the smaller devices,
so the E0, E1, and E2 inputs of the 24Cxx must be grounded.

Note [4]

For slow clocks, enable the 2 x U[S]ART clock multiplier, to improve the baud rate
error. This will allow a 9600 Bd communication using the standard 1 MHz calibrated
RC oscillator. See also the Baud rate tables in the datasheets.

Note [5]

The datasheet explains why a minimum TWBR value of 10 should be maintained when
running in master mode. Thus, for system clocks below 3.6 MHz, we cannot run the
bus at the intented clock rate of 100 kHz but have to slow down accordingly.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.39 Example using the two-wire interface (TWI) 217

Note [6]

This function is used by the standard output facilities that are utilized in this example
for debugging and demonstration purposes.

Note [7]

In order to shorten the data to be sent over the TWI bus, the 24Cxx EEPROMs support
multiple data bytes transfered within a single request, maintaining an internal address
counter that is updated after each data byte transfered successfully. When reading
data, one request can read the entire device memory if desired (the counter would wrap
around and start back from 0 when reaching the end of the device).

Note [8]

When reading the EEPROM, a first device selection must be made with write intent
(R/∼W bit set to 0 indicating a write operation) in order to transfer the EEPROM ad-
dress to start reading from. This is calledmaster transmitter mode. Each completion
of a particular step in TWI communication is indicated by an asserted TWINT bit in
TWCR. (An interrupt would be generated if allowed.) After performing any actions
that are needed for the next communication step, the interrupt condition must be man-
ually cleared bysettingthe TWINT bit. Unlike with many other interrupt sources, this
would even be required when using a true interrupt routine, since as soon as TWINT is
re-asserted, the next bus transaction will start.

Note [9]

Since the TWI bus is multi-master capable, there is potential for a bus contention when
one master starts to access the bus. Normally, the TWI bus interface unit will detect this
situation, and will not initiate a start condition while the bus is busy. However, in case
two masters were starting at exactly the same time, the way bus arbitration works, there
is always a chance that one master could lose arbitration of the bus during any transmit
operation. A master that has lost arbitration is required by the protocol to immediately
cease talking on the bus; in particular it must not initiate a stop condition in order to not
corrupt the ongoing transfer from the active master. In this example, upon detecting a
lost arbitration condition, the entire transfer is going to be restarted. This will cause a
new start condition to be initiated, which will normally be delayed until the currently
active master has released the bus.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



6.39 Example using the two-wire interface (TWI) 218

Note [10]

Next, the device slave is going to be reselected (using a so-called repeated start con-
dition which is meant to guarantee that the bus arbitration will remain at the current
master) using the same slave address (SLA), but this time with read intent (R/∼W bit
set to 1) in order to request the device slave to start transfering data from the slave to
the master in the next packet.

Note [11]

If the EEPROM device is still busy writing one or more cells after a previous write
request, it will simply leave its bus interface drivers at high impedance, and does not
respond to a selection in any way at all. The master selecting the device will see the
high level at SDA after transfering the SLA+R/W packet as a NACK to its selection
request. Thus, the select process is simply started over (effectively causing arepeated
start condition), until the device will eventually respond. This polling procedure is
recommended in the 24Cxx datasheet in order to minimize the busy wait time when
writing. Note that in case a device is broken and never responds to a selection (e. g.
since it is no longer present at all), this will cause an infinite loop. Thus the maximal
number of iterations made until the device is declared to be not responding at all, and
an error is returned, will be limited to MAX_ITER.

Note [12]

This is calledmaster receiver mode: the bus master still supplies the SCL clock, but the
device slave drives the SDA line with the appropriate data. After 8 data bits, the master
responds with an ACK bit (SDA driven low) in order to request another data transfer
from the slave, or it can leave the SDA line high (NACK), indicating to the slave that
it is going to stop the transfer now. Assertion of ACK is handled by setting the TWEA
bit in TWCR when starting the current transfer.

Note [13]

The control word sent out in order to initiate the transfer of the next data packet is
initially set up to assert the TWEA bit. During the last loop iteration, TWEA is de-
asserted so the client will get informed that no further transfer is desired.

Note [14]

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



7 avr-libc Data Structure Documentation 219

Except in the case of lost arbitration, all bus transactions must properly be terminated
by the master initiating a stop condition.

Note [15]

Writing to the EEPROM device is simpler than reading, since only a master transmitter
mode transfer is needed. Note that the first packet after the SLA+W selection is always
considered to be the EEPROM address for the next operation. (This packet is exactly
the same as the one above sent before starting to read the device.) In case a master
transmitter mode transfer is going to send more than one data packet, all following
packets will be considered data bytes to write at the indicated address. The internal
address pointer will be incremented after each write operation.

Note [16]

24Cxx devices can become write-protected by strapping their∼WC pin to logic high.
(Leaving it unconnected is explicitly allowed, and constitutes logic low level, i. e. no
write protection.) In case of a write protected device, all data transfer attempts will be
NACKed by the device. Note that some devices might not implement this.

7 avr-libc Data Structure Documentation

7.1 div_t Struct Reference

7.1.1 Detailed Description

Result type for functiondiv().

Data Fields

• int quot
• int rem

7.1.2 Field Documentation

7.1.2.1 intdiv_t::quot

The Quotient.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



7.2 ldiv_t Struct Reference 220

7.1.2.2 intdiv_t::rem

The Remainder.

The documentation for this struct was generated from the following file:

• stdlib.h

7.2 ldiv_t Struct Reference

7.2.1 Detailed Description

Result type for functionldiv().

Data Fields

• longquot
• long rem

7.2.2 Field Documentation

7.2.2.1 longldiv_t::quot

The Quotient.

7.2.2.2 longldiv_t::rem

The Remainder.

The documentation for this struct was generated from the following file:

• stdlib.h

8 avr-libc File Documentation

8.1 assert.h File Reference

8.1.1 Detailed Description

Defines

• #defineassert(expression)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.2 atoi.S File Reference 221

8.2 atoi.S File Reference

8.2.1 Detailed Description

8.3 atol.S File Reference

8.3.1 Detailed Description

8.4 atomic.h File Reference

8.4.1 Detailed Description

Defines

• #define_UTIL_ATOMIC_H_ 1
• #defineATOMIC_BLOCK(type)
• #defineNONATOMIC_BLOCK(type)
• #defineATOMIC_RESTORESTATE
• #defineATOMIC_FORCEON
• #defineNONATOMIC_RESTORESTATE
• #defineNONATOMIC_FORCEOFF

8.5 boot.h File Reference

8.5.1 Detailed Description

Defines

• #define_AVR_BOOT_H_ 1
• #defineBOOTLOADER_SECTION__attribute__ ((section (".bootloader")))
• #define__COMMON_ASB RWWSB
• #define__COMMON_ASRE RWWSRE
• #defineBLB12 5
• #defineBLB11 4
• #defineBLB02 3
• #defineBLB01 2
• #defineboot_spm_interrupt_enable() (__SPM_REG|= (uint8_t)_BV(SPMIE))
• #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)∼_-

BV(SPMIE))
• #defineboot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))
• #defineboot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))
• #defineboot_spm_busy() (__SPM_REG & (uint8_t)_BV(SPMEN))
• #defineboot_spm_busy_wait() do{}while(boot_spm_busy())

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.5 boot.h File Reference 222

• #define__BOOT_PAGE_ERASE(_BV(SPMEN)| _BV(PGERS))
• #define__BOOT_PAGE_WRITE (_BV(SPMEN)| _BV(PGWRT))
• #define__BOOT_PAGE_FILL _BV(SPMEN)
• #define __BOOT_RWW_ENABLE (_BV(SPMEN) | _BV(__COMMON_-

ASRE))
• #define__BOOT_LOCK_BITS_SET (_BV(SPMEN)| _BV(BLBSET))
• #define__boot_page_fill_normal(address, data)
• #define__boot_page_fill_alternate(address, data)
• #define__boot_page_fill_extended(address, data)
• #define__boot_page_erase_normal(address)
• #define__boot_page_erase_alternate(address)
• #define__boot_page_erase_extended(address)
• #define__boot_page_write_normal(address)
• #define__boot_page_write_alternate(address)
• #define__boot_page_write_extended(address)
• #define__boot_rww_enable()
• #define__boot_rww_enable_alternate()
• #define__boot_lock_bits_set(lock_bits)
• #define__boot_lock_bits_set_alternate(lock_bits)
• #defineGET_LOW_FUSE_BITS(0x0000)
• #defineGET_LOCK_BITS(0x0001)
• #defineGET_EXTENDED_FUSE_BITS(0x0002)
• #defineGET_HIGH_FUSE_BITS(0x0003)
• #defineboot_lock_fuse_bits_get(address)
• #define__BOOT_SIGROW_READ (_BV(SPMEN)| _BV(SIGRD))
• #defineboot_signature_byte_get(addr)
• #defineboot_page_fill(address, data) __boot_page_fill_normal(address, data)
• #defineboot_page_erase(address) __boot_page_erase_normal(address)
• #defineboot_page_write(address) __boot_page_write_normal(address)
• #defineboot_rww_enable() __boot_rww_enable()
• #defineboot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)
• #defineboot_page_fill_safe(address, data)
• #defineboot_page_erase_safe(address)
• #defineboot_page_write_safe(address)
• #defineboot_rww_enable_safe()
• #defineboot_lock_bits_set_safe(lock_bits)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.5 boot.h File Reference 223

8.5.2 Define Documentation

8.5.2.1 #define __boot_lock_bits_set(lock_bits)

Value:

({ \
uint8_t value = (uint8_t)(~(lock_bits)); \
__asm__ __volatile__ \
( \

"ldi r30, 1\n\t" \
"ldi r31, 0\n\t" \
"mov r0, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"r" (value) \

: "r0", "r30", "r31" \
); \

})

8.5.2.2 #define __boot_lock_bits_set_alternate(lock_bits)

Value:

({ \
uint8_t value = (uint8_t)(~(lock_bits)); \
__asm__ __volatile__ \
( \

"ldi r30, 1\n\t" \
"ldi r31, 0\n\t" \
"mov r0, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"r" (value) \

: "r0", "r30", "r31" \
); \

})

8.5.2.3 #define __boot_page_erase_alternate(address)

Value:

({ \

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.5 boot.h File Reference 224

__asm__ __volatile__ \
( \

"movw r30, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"r" ((uint16_t)address) \

: "r30", "r31" \
); \

})

8.5.2.4 #define __boot_page_erase_extended(address)

Value:

({ \
__asm__ __volatile__ \
( \

"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"i" (_SFR_MEM_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"r" ((uint32_t)address) \

: "r30", "r31" \
); \

})

8.5.2.5 #define __boot_page_erase_normal(address)

Value:

({ \
__asm__ __volatile__ \
( \

"movw r30, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"r" ((uint16_t)address) \

: "r30", "r31" \
); \

})

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.5 boot.h File Reference 225

8.5.2.6 #define __boot_page_fill_alternate(address, data)

Value:

({ \
__asm__ __volatile__ \
( \

"movw r0, %3\n\t" \
"movw r30, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
"clr r1\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_PAGE_FILL), \
"r" ((uint16_t)address), \
"r" ((uint16_t)data) \

: "r0", "r30", "r31" \
); \

})

8.5.2.7 #define __boot_page_fill_extended(address, data)

Value:

({ \
__asm__ __volatile__ \
( \

"movw r0, %4\n\t" \
"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t" \
"clr r1\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"i" (_SFR_MEM_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_FILL), \
"r" ((uint32_t)address), \
"r" ((uint16_t)data) \

: "r0", "r30", "r31" \
); \

})

8.5.2.8 #define __boot_page_fill_normal(address, data)

Value:

({ \

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.5 boot.h File Reference 226

__asm__ __volatile__ \
( \

"movw r0, %3\n\t" \
"movw r30, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
"clr r1\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_PAGE_FILL), \
"r" ((uint16_t)address), \
"r" ((uint16_t)data) \

: "r0", "r30", "r31" \
); \

})

8.5.2.9 #define __boot_page_write_alternate(address)

Value:

({ \
__asm__ __volatile__ \
( \

"movw r30, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"r" ((uint16_t)address) \

: "r30", "r31" \
); \

})

8.5.2.10 #define __boot_page_write_extended(address)

Value:

({ \
__asm__ __volatile__ \
( \

"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"i" (_SFR_MEM_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"r" ((uint32_t)address) \

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.5 boot.h File Reference 227

: "r30", "r31" \
); \

})

8.5.2.11 #define __boot_page_write_normal(address)

Value:

({ \
__asm__ __volatile__ \
( \

"movw r30, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"r" ((uint16_t)address) \

: "r30", "r31" \
); \

})

8.5.2.12 #define __boot_rww_enable()

Value:

({ \
__asm__ __volatile__ \
( \

"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \

"r" ((uint8_t)__BOOT_RWW_ENABLE) \
); \

})

8.5.2.13 #define __boot_rww_enable_alternate()

Value:

({ \
__asm__ __volatile__ \
( \

"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
: \

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.6 crc16.h File Reference 228

: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_RWW_ENABLE) \

); \
})

8.6 crc16.h File Reference

8.6.1 Detailed Description

Functions

• static __inline__uint16_t_crc16_update(uint16_t__crc,uint8_t__data)
• static __inline__uint16_t_crc_xmodem_update(uint16_t__crc,uint8_t__data)
• static __inline__uint16_t_crc_ccitt_update(uint16_t__crc,uint8_t__data)
• static __inline__uint8_t_crc_ibutton_update(uint8_t__crc,uint8_t__data)

8.7 ctype.h File Reference

8.7.1 Detailed Description

Defines

• #define__CTYPE_H_1

Functions

Character classification routines

These functions perform character classification. They return true or false status
depending whether the character passed to the function falls into the function’s
classification (i.e.isdigit() returns true if its argument is any value ’0’ though ’9’,
inclusive). If the input is not an unsigned char value, all of this function return
false.

• int isalnum(int __c)
• int isalpha(int __c)
• int isascii(int __c)
• int isblank(int __c)
• int iscntrl (int __c)
• int isdigit (int __c)
• int isgraph(int __c)
• int islower(int __c)
• int isprint (int __c)
• int ispunct(int __c)
• int isspace(int __c)
• int isupper(int __c)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.8 delay.h File Reference 229

• int isxdigit (int __c)

Character convertion routines

This realization permits all possible values of integer argument. Thetoascii()func-
tion clears all highest bits. Thetolower()and toupper()functions return an input
argument as is, if it is not an unsigned char value.

• int toascii(int __c)
• int tolower(int __c)
• int toupper(int __c)

8.8 delay.h File Reference

8.8.1 Detailed Description

Defines

• #define_UTIL_DELAY_H_ 1
• #defineF_CPU1000000UL

Functions

• void _delay_us(double __us)
• void _delay_ms(double __ms)

8.9 delay_basic.h File Reference

8.9.1 Detailed Description

Defines

• #define_UTIL_DELAY_BASIC_H_ 1

Functions

• void _delay_loop_1(uint8_t__count)
• void _delay_loop_2(uint16_t__count)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.10 eeprom.h File Reference 230

8.10 eeprom.h File Reference

8.10.1 Detailed Description

avr-libc declarations

• #defineEEMEM __attribute__((section(".eeprom")))
• #defineeeprom_is_ready()
• #defineeeprom_busy_wait() do {} while (!eeprom_is_ready())
• uint8_teeprom_read_byte(constuint8_t∗addr)
• uint16_teeprom_read_word(constuint16_t∗addr)
• void eeprom_read_block(void ∗pointer_ram, const void∗pointer_eeprom,

size_t n)
• void eeprom_write_byte(uint8_t∗addr,uint8_tvalue)
• void eeprom_write_word(uint16_t∗addr,uint16_tvalue)
• void eeprom_write_block(const void ∗pointer_ram, void∗pointer_eeprom,

size_t n)

Defines

• #define_EEPROM_H_ 1
• #define__need_size_t
• #defineXCALL "rcall"
• #define__EEPROM_REG_LOCATIONS__1C1D1E
• #define_STR2(EXP) _STR1(EXP)
• #define_STR1(EXP) #EXP
• #define _REG_LOCATION_SUFFIX _STR2(__EEPROM_REG_-

LOCATIONS__)
• #defineCR_TAB "\n\t"

IAR C compatibility defines

• #define_EEPUT(addr, val) eeprom_write_byte ((uint8_t ∗)(addr), (uint8_-
t)(val))

• #define_EEGET(var, addr) (var) = eeprom_read_byte ((uint8_t∗)(addr))

Functions

• staticuint8_t __attribute__ ((always_inline)) eeprom_read_byte(constuint8_t
∗addr)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.11 errno.h File Reference 231

Variables

• static void const void∗ pointer_eeprom
• static void const void size_tsize
• static voiduint8_tvalue
• static voiduint16_tvalue
• static void void∗ pointer_eeprom
• static void void size_tsize

8.11 errno.h File Reference

8.11.1 Detailed Description

Defines

• #define__ERRNO_H_1
• #defineEDOM 33
• #defineERANGE34

Variables

• int errno

8.12 fdevopen.c File Reference

8.12.1 Detailed Description

Functions

• FILE ∗ fdevopen(int(∗put)(char, FILE∗), int(∗get)(FILE∗))

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.13 ffs.S File Reference 232

8.13 ffs.S File Reference

8.13.1 Detailed Description

8.14 ffsl.S File Reference

8.14.1 Detailed Description

8.15 ffsll.S File Reference

8.15.1 Detailed Description

8.16 fuse.h File Reference

8.16.1 Detailed Description

Defines

• #define_AVR_FUSE_H_1
• #defineFUSEMEM __attribute__((section (".fuse")))
• #defineFUSES__fuse_t __fuse FUSEMEM

8.17 interrupt.h File Reference

8.17.1 Detailed Description

@{

Defines

Global manipulation of the interrupt flag

The global interrupt flag is maintained in the I bit of the status register (SREG).

• #definesei()
• #definecli()

Macros for writing interrupt handler functions

• #defineISR(vector, attributes)
• #defineSIGNAL(vector)
• #defineEMPTY_INTERRUPT(vector)
• #defineISR_ALIAS(vector, target_vector)
• #definereti()
• #defineBADISR_vect

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.18 inttypes.h File Reference 233

ISR attributes

• #defineISR_BLOCK
• #defineISR_NOBLOCK
• #defineISR_NAKED
• #defineISR_ALIASOF(target_vector)

8.18 inttypes.h File Reference

8.18.1 Detailed Description

Defines

macros for printf and scanf format specifiers

For C++, these are only included if __STDC_LIMIT_MACROS is defined before
including<inttypes.h>.

• #definePRId8"d"
• #definePRIdLEAST8"d"
• #definePRIdFAST8"d"
• #definePRIi8 "i"
• #definePRIiLEAST8"i"
• #definePRIiFAST8"i"
• #definePRId16"d"
• #definePRIdLEAST16"d"
• #definePRIdFAST16"d"
• #definePRIi16"i"
• #definePRIiLEAST16"i"
• #definePRIiFAST16"i"
• #definePRId32"ld"
• #definePRIdLEAST32"ld"
• #definePRIdFAST32"ld"
• #definePRIi32"li"
• #definePRIiLEAST32"li"
• #definePRIiFAST32"li"
• #definePRIdPTRPRId16
• #definePRIiPTRPRIi16
• #definePRIo8"o"
• #definePRIoLEAST8"o"
• #definePRIoFAST8"o"
• #definePRIu8"u"
• #definePRIuLEAST8"u"
• #definePRIuFAST8"u"
• #definePRIx8"x"
• #definePRIxLEAST8"x"
• #definePRIxFAST8"x"
• #definePRIX8 "X"
• #definePRIXLEAST8"X"

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.18 inttypes.h File Reference 234

• #definePRIXFAST8"X"
• #definePRIo16"o"
• #definePRIoLEAST16"o"
• #definePRIoFAST16"o"
• #definePRIu16"u"
• #definePRIuLEAST16"u"
• #definePRIuFAST16"u"
• #definePRIx16"x"
• #definePRIxLEAST16"x"
• #definePRIxFAST16"x"
• #definePRIX16"X"
• #definePRIXLEAST16"X"
• #definePRIXFAST16"X"
• #definePRIo32"lo"
• #definePRIoLEAST32"lo"
• #definePRIoFAST32"lo"
• #definePRIu32"lu"
• #definePRIuLEAST32"lu"
• #definePRIuFAST32"lu"
• #definePRIx32"lx"
• #definePRIxLEAST32"lx"
• #definePRIxFAST32"lx"
• #definePRIX32"lX"
• #definePRIXLEAST32"lX"
• #definePRIXFAST32"lX"
• #definePRIoPTRPRIo16
• #definePRIuPTRPRIu16
• #definePRIxPTRPRIx16
• #definePRIXPTRPRIX16
• #defineSCNd16"d"
• #defineSCNdLEAST16"d"
• #defineSCNdFAST16"d"
• #defineSCNi16"i"
• #defineSCNiLEAST16"i"
• #defineSCNiFAST16"i"
• #defineSCNd32"ld"
• #defineSCNdLEAST32"ld"
• #defineSCNdFAST32"ld"
• #defineSCNi32"li"
• #defineSCNiLEAST32"li"
• #defineSCNiFAST32"li"
• #defineSCNdPTRSCNd16
• #defineSCNiPTRSCNi16
• #defineSCNo16"o"
• #defineSCNoLEAST16"o"
• #defineSCNoFAST16"o"
• #defineSCNu16"u"
• #defineSCNuLEAST16"u"
• #defineSCNuFAST16"u"
• #defineSCNx16"x"

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.19 io.h File Reference 235

• #defineSCNxLEAST16"x"
• #defineSCNxFAST16"x"
• #defineSCNo32"lo"
• #defineSCNoLEAST32"lo"
• #defineSCNoFAST32"lo"
• #defineSCNu32"lu"
• #defineSCNuLEAST32"lu"
• #defineSCNuFAST32"lu"
• #defineSCNx32"lx"
• #defineSCNxLEAST32"lx"
• #defineSCNxFAST32"lx"
• #defineSCNoPTRSCNo16
• #defineSCNuPTRSCNu16
• #defineSCNxPTRSCNx16

Typedefs

Far pointers for memory access>64K

• typedefint32_tint_farptr_t
• typedefuint32_tuint_farptr_t

8.19 io.h File Reference

8.19.1 Detailed Description

8.20 lock.h File Reference

8.20.1 Detailed Description

Defines

• #define_AVR_LOCK_H_ 1
• #defineLOCKMEM __attribute__((section (".lock")))
• #defineLOCKBITS unsigned char __lock LOCKMEM
• #defineLOCKBITS_DEFAULT (0xFF)

8.21 math.h File Reference

8.21.1 Detailed Description

Defines

• #defineM_PI 3.141592653589793238462643

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.21 math.h File Reference 236

• #defineM_SQRT21.4142135623730950488016887
• #defineNAN __builtin_nan("")
• #defineINFINITY __builtin_inf()

Functions

• doublecos(double __x)
• doublefabs(double __x)
• doublefmod (double __x, double __y)
• doublemodf (double __x, double∗__iptr)
• doublesin (double __x)
• doublesqrt(double __x)
• doubletan(double __x)
• doublefloor (double __x)
• doubleceil (double __x)
• doublefrexp (double __x, int∗__pexp)
• doubleldexp(double __x, int __exp)
• doubleexp(double __x)
• doublecosh(double __x)
• doublesinh(double __x)
• doubletanh(double __x)
• doubleacos(double __x)
• doubleasin(double __x)
• doubleatan(double __x)
• doubleatan2(double __y, double __x)
• doublelog (double __x)
• doublelog10(double __x)
• doublepow(double __x, double __y)
• int isnan(double __x)
• int isinf (double __x)
• doublesquare(double __x)
• doublecopysign(double __x, double __y)
• doublefdim (double __x, double __y)
• doublefma (double __x, double __y, double __z)
• doublefmax (double __x, double __y)
• doublefmin (double __x, double __y)
• int signbit(double __x)
• doubletrunc(double __x)
• int isfinite (double __x)
• doublehypot(double __x, double __y)
• doubleround(double __x)
• long lround(double __x)
• long lrint (double __x)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.21 math.h File Reference 237

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.22 memccpy.S File Reference 238

8.22 memccpy.S File Reference

8.22.1 Detailed Description

8.23 memchr.S File Reference

8.23.1 Detailed Description

8.24 memchr_P.S File Reference

8.24.1 Detailed Description

8.25 memcmp.S File Reference

8.25.1 Detailed Description

8.26 memcmp_P.S File Reference

8.26.1 Detailed Description

8.27 memcpy.S File Reference

8.27.1 Detailed Description

8.28 memcpy_P.S File Reference

8.28.1 Detailed Description

8.29 memmem.S File Reference

8.29.1 Detailed Description

8.30 memmove.S File Reference

8.30.1 Detailed Description

8.31 memrchr.S File Reference

8.31.1 Detailed Description

8.32 memrchr_P.S File Reference

8.32.1 Detailed Description

8.33 memset.S File Reference

8.33.1 Detailed Description

8.34 parity.h File Reference

8.34.1 Detailed Description

Defines

• #defineparity_even_bit(val)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.35 pgmspace.h File Reference 239

8.35 pgmspace.h File Reference

8.35.1 Detailed Description

Defines

• #define__PGMSPACE_H_1
• #define__need_size_t
• #define__ATTR_PROGMEM__ __attribute__((__progmem__))
• #define__ATTR_PURE____attribute__((__pure__))
• #definePROGMEM__ATTR_PROGMEM__
• #definePSTR(s) ((const PROGMEM char∗)(s))
• #define__LPM_classic__(addr)
• #define__LPM_enhanced__(addr)
• #define__LPM_word_classic__(addr)
• #define__LPM_word_enhanced__(addr)
• #define__LPM_dword_classic__(addr)
• #define__LPM_dword_enhanced__(addr)
• #define__LPM(addr) __LPM_classic__(addr)
• #define__LPM_word(addr) __LPM_word_classic__(addr)
• #define__LPM_dword(addr) __LPM_dword_classic__(addr)
• #definepgm_read_byte_near(address_short) __LPM((uint16_t)(address_short))
• #define pgm_read_word_near(address_short) __LPM_word((uint16_-

t)(address_short))
• #define pgm_read_dword_near(address_short) __LPM_dword((uint16_-

t)(address_short))
• #define__ELPM_classic__(addr)
• #define__ELPM_enhanced__(addr)
• #define__ELPM_word_classic__(addr)
• #define__ELPM_word_enhanced__(addr)
• #define__ELPM_dword_classic__(addr)
• #define__ELPM_dword_enhanced__(addr)
• #define__ELPM(addr) __ELPM_classic__(addr)
• #define__ELPM_word(addr) __ELPM_word_classic__(addr)
• #define__ELPM_dword(addr) __ELPM_dword_classic__(addr)
• #definepgm_read_byte_far(address_long) __ELPM((uint32_t)(address_long))
• #define pgm_read_word_far(address_long) __ELPM_word((uint32_-

t)(address_long))
• #define pgm_read_dword_far(address_long) __ELPM_dword((uint32_-

t)(address_long))
• #definepgm_read_byte(address_short) pgm_read_byte_near(address_short)
• #definepgm_read_word(address_short) pgm_read_word_near(address_short)
• #definepgm_read_dword(address_short) pgm_read_dword_near(address_short)
• #definePGM_Pconstprog_char∗
• #definePGM_VOID_Pconstprog_void∗

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.35 pgmspace.h File Reference 240

Typedefs

• typedef void PROGMEMprog_void
• typedef char PROGMEMprog_char
• typedef unsigned char PROGMEMprog_uchar
• typedefint8_tPROGMEMprog_int8_t
• typedefuint8_tPROGMEMprog_uint8_t
• typedefint16_tPROGMEMprog_int16_t
• typedefuint16_tPROGMEMprog_uint16_t
• typedefint32_tPROGMEMprog_int32_t
• typedefuint32_tPROGMEMprog_uint32_t
• typedefint64_tPROGMEMprog_int64_t
• typedefuint64_tPROGMEMprog_uint64_t

Functions

• PGM_VOID_Pmemchr_P(PGM_VOID_P s, int val, size_t len)
• int memcmp_P(const void∗, PGM_VOID_P, size_t) __ATTR_PURE__
• void ∗ memcpy_P(void ∗, PGM_VOID_P, size_t)
• void ∗ memmem_P(const void∗, size_t, PGM_VOID_P, size_t) __ATTR_-

PURE__
• PGM_VOID_Pmemrchr_P(PGM_VOID_P s, int val, size_t len)
• char∗ strcat_P(char∗, PGM_P)
• PGM_Pstrchr_P(PGM_P s, int val)
• PGM_Pstrchrnul_P(PGM_P s, int val)
• int strcmp_P(const char∗, PGM_P) __ATTR_PURE__
• char∗ strcpy_P(char∗, PGM_P)
• int strcasecmp_P(const char∗, PGM_P) __ATTR_PURE__
• char∗ strcasestr_P(const char∗, PGM_P) __ATTR_PURE__
• size_tstrcspn_P(const char∗s, PGM_P reject) __ATTR_PURE__
• size_tstrlcat_P(char∗, PGM_P, size_t)
• size_tstrlcpy_P(char∗, PGM_P, size_t)
• size_tstrlen_P(PGM_P)
• size_tstrnlen_P(PGM_P, size_t)
• int strncmp_P(const char∗, PGM_P, size_t) __ATTR_PURE__
• int strncasecmp_P(const char∗, PGM_P, size_t) __ATTR_PURE__
• char∗ strncat_P(char∗, PGM_P, size_t)
• char∗ strncpy_P(char∗, PGM_P, size_t)
• char∗ strpbrk_P(const char∗s, PGM_P accept) __ATTR_PURE__
• PGM_Pstrrchr_P(PGM_P s, int val)
• char∗ strsep_P(char∗∗sp, PGM_P delim)
• size_tstrspn_P(const char∗s, PGM_P accept) __ATTR_PURE__
• char∗ strstr_P(const char∗, PGM_P) __ATTR_PURE__

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.35 pgmspace.h File Reference 241

8.35.2 Define Documentation

8.35.2.1 #define __ELPM_classic__(addr)

Value:

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uint8_t __result; \
__asm__ \
( \

"out %2, %C1" "\n\t" \
"mov r31, %B1" "\n\t" \
"mov r30, %A1" "\n\t" \
"elpm" "\n\t" \
"mov %0, r0" "\n\t" \
: "=r" (__result) \
: "r" (__addr32), \

"I" (_SFR_IO_ADDR(RAMPZ)) \
: "r0", "r30", "r31" \

); \
__result; \

}))

8.35.2.2 #define __ELPM_dword_enhanced__(addr)

Value:

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uint32_t __result; \
__asm__ \
( \

"out %2, %C1" "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %A0, Z+" "\n\t" \
"elpm %B0, Z+" "\n\t" \
"elpm %C0, Z+" "\n\t" \
"elpm %D0, Z" "\n\t" \
: "=r" (__result) \
: "r" (__addr32), \

"I" (_SFR_IO_ADDR(RAMPZ)) \
: "r30", "r31" \

); \
__result; \

}))

8.35.2.3 #define __ELPM_enhanced__(addr)

Value:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.35 pgmspace.h File Reference 242

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uint8_t __result; \
__asm__ \
( \

"out %2, %C1" "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %0, Z+" "\n\t" \
: "=r" (__result) \
: "r" (__addr32), \

"I" (_SFR_IO_ADDR(RAMPZ)) \
: "r30", "r31" \

); \
__result; \

}))

8.35.2.4 #define __ELPM_word_classic__(addr)

Value:

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uint16_t __result; \
__asm__ \
( \

"out %2, %C1" "\n\t" \
"mov r31, %B1" "\n\t" \
"mov r30, %A1" "\n\t" \
"elpm" "\n\t" \
"mov %A0, r0" "\n\t" \
"in r0, %2" "\n\t" \
"adiw r30, 1" "\n\t" \
"adc r0, __zero_reg__" "\n\t" \
"out %2, r0" "\n\t" \
"elpm" "\n\t" \
"mov %B0, r0" "\n\t" \
: "=r" (__result) \
: "r" (__addr32), \

"I" (_SFR_IO_ADDR(RAMPZ)) \
: "r0", "r30", "r31" \

); \
__result; \

}))

8.35.2.5 #define __ELPM_word_enhanced__(addr)

Value:

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uint16_t __result; \
__asm__ \

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.35 pgmspace.h File Reference 243

( \
"out %2, %C1" "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %A0, Z+" "\n\t" \
"elpm %B0, Z" "\n\t" \
: "=r" (__result) \
: "r" (__addr32), \

"I" (_SFR_IO_ADDR(RAMPZ)) \
: "r30", "r31" \

); \
__result; \

}))

8.35.2.6 #define __LPM_classic__(addr)

Value:

(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint8_t __result; \
__asm__ \
( \

"lpm" "\n\t" \
"mov %0, r0" "\n\t" \
: "=r" (__result) \
: "z" (__addr16) \
: "r0" \

); \
__result; \

}))

8.35.2.7 #define __LPM_dword_classic__(addr)

Value:

(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint32_t __result; \
__asm__ \
( \

"lpm" "\n\t" \
"mov %A0, r0" "\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t" \
"mov %B0, r0" "\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t" \
"mov %C0, r0" "\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t" \
"mov %D0, r0" "\n\t" \
: "=r" (__result), "=z" (__addr16) \

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.35 pgmspace.h File Reference 244

: "1" (__addr16) \
: "r0" \

); \
__result; \

}))

8.35.2.8 #define __LPM_dword_enhanced__(addr)

Value:

(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint32_t __result; \
__asm__ \
( \

"lpm %A0, Z+" "\n\t" \
"lpm %B0, Z+" "\n\t" \
"lpm %C0, Z+" "\n\t" \
"lpm %D0, Z" "\n\t" \
: "=r" (__result), "=z" (__addr16) \
: "1" (__addr16) \

); \
__result; \

}))

8.35.2.9 #define __LPM_enhanced__(addr)

Value:

(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint8_t __result; \
__asm__ \
( \

"lpm %0, Z" "\n\t" \
: "=r" (__result) \
: "z" (__addr16) \

); \
__result; \

}))

8.35.2.10 #define __LPM_word_classic__(addr)

Value:

(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint16_t __result; \
__asm__ \

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.36 power.h File Reference 245

( \
"lpm" "\n\t" \
"mov %A0, r0" "\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t" \
"mov %B0, r0" "\n\t" \
: "=r" (__result), "=z" (__addr16) \
: "1" (__addr16) \
: "r0" \

); \
__result; \

}))

8.35.2.11 #define __LPM_word_enhanced__(addr)

Value:

(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint16_t __result; \
__asm__ \
( \

"lpm %A0, Z+" "\n\t" \
"lpm %B0, Z" "\n\t" \
: "=r" (__result), "=z" (__addr16) \
: "1" (__addr16) \

); \
__result; \

}))

8.36 power.h File Reference

8.36.1 Detailed Description

Defines

• #define_AVR_POWER_H_ 1
• #defineclock_prescale_set(x)
• #define clock_prescale_get() (clock_div_t)(CLKPR & (uint8_-

t)((1<<CLKPS0)|(1<<CLKPS1)|(1<<CLKPS2)|(1<<CLKPS3)))

Enumerations

• enumclock_div_t {

clock_div_1= 0, clock_div_2= 1, clock_div_4= 2, clock_div_8= 3,

clock_div_16= 4, clock_div_32= 5, clock_div_64= 6, clock_div_128= 7,

clock_div_256= 8 }

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.37 setbaud.h File Reference 246

8.36.2 Define Documentation

8.36.2.1 #define clock_prescale_set(x)

Value:

{ \
uint8_t tmp = _BV(CLKPCE); \
__asm__ __volatile__ ( \

"in __tmp_reg__,__SREG__" "\n\t" \
"cli" "\n\t" \
"sts %1, %0" "\n\t" \
"sts %1, %2" "\n\t" \
"out __SREG__, __tmp_reg__" \
: /* no outputs */ \
: "d" (tmp), \

"M" (_SFR_MEM_ADDR(CLKPR)), \
"d" (x) \

: "r0"); \
}

8.37 setbaud.h File Reference

8.37.1 Detailed Description

Defines

• #defineBAUD_TOL 2
• #defineUBRR_VALUE
• #defineUBRRL_VALUE
• #defineUBRRH_VALUE
• #defineUSE_2X0

8.38 setjmp.h File Reference

8.38.1 Detailed Description

Defines

• #define__SETJMP_H_1
• #define__ATTR_NORETURN__ __attribute__((__noreturn__))

Functions

• int setjmp(jmp_buf __jmpb)
• void longjmp(jmp_buf __jmpb, int __ret) __ATTR_NORETURN__

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.39 sleep.h File Reference 247

8.39 sleep.h File Reference

8.39.1 Detailed Description

Defines

• #define_AVR_SLEEP_H_1
• #define_SLEEP_CONTROL_REG MCUCR

Sleep Modes

Note:

Some of these modes are not available on all devices. See the datasheet for
target device for the available sleep modes.

• #defineSLEEP_MODE_IDLE0
• #defineSLEEP_MODE_ADC_BV(SM0)
• #defineSLEEP_MODE_PWR_DOWN_BV(SM1)
• #defineSLEEP_MODE_PWR_SAVE(_BV(SM0) | _BV(SM1))
• #defineSLEEP_MODE_STANDBY(_BV(SM1) | _BV(SM2))
• #define SLEEP_MODE_EXT_STANDBY(_BV(SM0) | _BV(SM1) | _-

BV(SM2))

Functions

Sleep Functions

• void set_sleep_mode(uint8_tmode)
• void sleep_mode(void)
• void sleep_enable(void)
• void sleep_disable(void)
• void sleep_cpu(void)

8.40 stdint.h File Reference

8.40.1 Detailed Description

Defines

• #define__USING_MINT8 0
• #define__CONCATenate(left, right) left ## right
• #define__CONCAT(left, right) __CONCATenate(left, right)

Limits of specified-width integer types

C++ implementations should define these macros only when __STDC_LIMIT_-
MACROS is defined before<stdint.h> is included

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.40 stdint.h File Reference 248

• #defineINT8_MAX 0x7f
• #defineINT8_MIN (-INT8_MAX - 1)
• #defineUINT8_MAX (__CONCAT(INT8_MAX, U)∗ 2U + 1U)
• #defineINT16_MAX 0x7fff
• #defineINT16_MIN (-INT16_MAX - 1)
• #defineUINT16_MAX (__CONCAT(INT16_MAX, U)∗ 2U + 1U)
• #defineINT32_MAX 0x7fffffffL
• #defineINT32_MIN (-INT32_MAX - 1L)
• #defineUINT32_MAX (__CONCAT(INT32_MAX, U)∗ 2UL + 1UL)
• #defineINT64_MAX 0x7fffffffffffffffLL
• #defineINT64_MIN (-INT64_MAX - 1LL)
• #defineUINT64_MAX (__CONCAT(INT64_MAX, U)∗ 2ULL + 1ULL)

Limits of minimum-width integer types

• #defineINT_LEAST8_MAX INT8_MAX
• #defineINT_LEAST8_MIN INT8_MIN
• #defineUINT_LEAST8_MAX UINT8_MAX
• #defineINT_LEAST16_MAX INT16_MAX
• #defineINT_LEAST16_MIN INT16_MIN
• #defineUINT_LEAST16_MAX UINT16_MAX
• #defineINT_LEAST32_MAX INT32_MAX
• #defineINT_LEAST32_MIN INT32_MIN
• #defineUINT_LEAST32_MAX UINT32_MAX
• #defineINT_LEAST64_MAX INT64_MAX
• #defineINT_LEAST64_MIN INT64_MIN
• #defineUINT_LEAST64_MAX UINT64_MAX

Limits of fastest minimum-width integer types

• #defineINT_FAST8_MAX INT8_MAX
• #defineINT_FAST8_MIN INT8_MIN
• #defineUINT_FAST8_MAX UINT8_MAX
• #defineINT_FAST16_MAXINT16_MAX
• #defineINT_FAST16_MININT16_MIN
• #defineUINT_FAST16_MAXUINT16_MAX
• #defineINT_FAST32_MAXINT32_MAX
• #defineINT_FAST32_MININT32_MIN
• #defineUINT_FAST32_MAXUINT32_MAX
• #defineINT_FAST64_MAXINT64_MAX
• #defineINT_FAST64_MININT64_MIN
• #defineUINT_FAST64_MAXUINT64_MAX

Limits of integer types capable of holding object pointers

• #defineINTPTR_MAX INT16_MAX
• #defineINTPTR_MIN INT16_MIN
• #defineUINTPTR_MAX UINT16_MAX

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.40 stdint.h File Reference 249

Limits of greatest-width integer types

• #defineINTMAX_MAX INT64_MAX
• #defineINTMAX_MIN INT64_MIN
• #defineUINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when __STDC_LIMIT_-
MACROS is defined before<stdint.h> is included

• #definePTRDIFF_MAXINT16_MAX
• #definePTRDIFF_MININT16_MIN
• #defineSIG_ATOMIC_MAX INT8_MAX
• #defineSIG_ATOMIC_MIN INT8_MIN
• #defineSIZE_MAX (__CONCAT(INT16_MAX, U))

Macros for integer constants

C++ implementations should define these macros only when __STDC_-
CONSTANT_MACROS is defined before<stdint.h> is included.

These definitions are valid for integer constants without suffix and for macros de-
fined as integer constant without suffix

• #defineINT8_C(value) ((int8_t) value)
• #defineUINT8_C(value) ((uint8_t) __CONCAT(value, U))
• #defineINT16_C(value) value
• #defineUINT16_C(value) __CONCAT(value, U)
• #defineINT32_C(value) __CONCAT(value, L)
• #defineUINT32_C(value) __CONCAT(value, UL)
• #defineINT64_C(value) __CONCAT(value, LL)
• #defineUINT64_C(value) __CONCAT(value, ULL)
• #defineINTMAX_C(value) __CONCAT(value, LL)
• #defineUINTMAX_C(value) __CONCAT(value, ULL)

Typedefs

Exact-width integer types

Integer types having exactly the specified width

• typedef signed charint8_t
• typedef unsigned charuint8_t
• typedef signed intint16_t
• typedef unsigned intuint16_t
• typedef signed long intint32_t
• typedef unsigned long intuint32_t
• typedef signed long long intint64_t
• typedef unsigned long long intuint64_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.41 stdio.h File Reference 250

Integer types capable of holding object pointers

These allow you to declare variables of the same size as a pointer.

• typedefint16_tintptr_t
• typedefuint16_tuintptr_t

Minimum-width integer types

Integer types having at least the specified width

• typedefint8_t int_least8_t
• typedefuint8_tuint_least8_t
• typedefint16_tint_least16_t
• typedefuint16_tuint_least16_t
• typedefint32_tint_least32_t
• typedefuint32_tuint_least32_t
• typedefint64_tint_least64_t
• typedefuint64_tuint_least64_t

Fastest minimum-width integer types

Integer types being usually fastest having at least the specified width

• typedefint8_t int_fast8_t
• typedefuint8_tuint_fast8_t
• typedefint16_tint_fast16_t
• typedefuint16_tuint_fast16_t
• typedefint32_tint_fast32_t
• typedefuint32_tuint_fast32_t
• typedefint64_tint_fast64_t
• typedefuint64_tuint_fast64_t

Greatest-width integer types

Types designating integer data capable of representing any value of any integer
type in the corresponding signed or unsigned category

• typedefint64_tintmax_t
• typedefuint64_tuintmax_t

8.41 stdio.h File Reference

8.41.1 Detailed Description

Defines

• #define_STDIO_H_ 1
• #define__need_NULL
• #define__need_size_t

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.41 stdio.h File Reference 251

• #defineFILE struct __file
• #definestdin(__iob[0])
• #definestdout(__iob[1])
• #definestderr(__iob[2])
• #defineEOF(-1)
• #definefdev_set_udata(stream, u) do { (stream)→ udata = u; } while(0)
• #definefdev_get_udata(stream) ((stream)→ udata)
• #definefdev_setup_stream(stream, put, get, rwflag)
• #define_FDEV_SETUP_READ__SRD
• #define_FDEV_SETUP_WRITE__SWR
• #define_FDEV_SETUP_RW(__SRD|__SWR)
• #define_FDEV_ERR(-1)
• #define_FDEV_EOF(-2)
• #defineFDEV_SETUP_STREAM(put, get, rwflag)
• #definefdev_close()
• #defineputc(__c, __stream) fputc(__c, __stream)
• #defineputchar(__c) fputc(__c, stdout)
• #definegetc(__stream) fgetc(__stream)
• #definegetchar() fgetc(stdin)
• #defineSEEK_SET0
• #defineSEEK_CUR 1
• #defineSEEK_END 2

Functions

• int fclose(FILE ∗__stream)
• int vfprintf (FILE ∗__stream, const char∗__fmt, va_list __ap)
• int vfprintf_P (FILE ∗__stream, const char∗__fmt, va_list __ap)
• int fputc (int __c, FILE∗__stream)
• int printf (const char∗__fmt,...)
• int printf_P(const char∗__fmt,...)
• int vprintf (const char∗__fmt, va_list __ap)
• int sprintf (char∗__s, const char∗__fmt,...)
• int sprintf_P(char∗__s, const char∗__fmt,...)
• int snprintf(char∗__s, size_t __n, const char∗__fmt,...)
• int snprintf_P(char∗__s, size_t __n, const char∗__fmt,...)
• int vsprintf (char∗__s, const char∗__fmt, va_list ap)
• int vsprintf_P(char∗__s, const char∗__fmt, va_list ap)
• int vsnprintf(char∗__s, size_t __n, const char∗__fmt, va_list ap)
• int vsnprintf_P(char∗__s, size_t __n, const char∗__fmt, va_list ap)
• int fprintf (FILE ∗__stream, const char∗__fmt,...)
• int fprintf_P (FILE ∗__stream, const char∗__fmt,...)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.42 stdlib.h File Reference 252

• int fputs(const char∗__str, FILE∗__stream)
• int fputs_P(const char∗__str, FILE∗__stream)
• int puts(const char∗__str)
• int puts_P(const char∗__str)
• size_t fwrite (const void∗__ptr, size_t __size, size_t __nmemb, FILE∗__-

stream)
• int fgetc(FILE ∗__stream)
• int ungetc(int __c, FILE∗__stream)
• char∗ fgets(char∗__str, int __size, FILE∗__stream)
• char∗ gets(char∗__str)
• size_tfread(void ∗__ptr, size_t __size, size_t __nmemb, FILE∗__stream)
• void clearerr(FILE ∗__stream)
• int feof (FILE ∗__stream)
• int ferror (FILE ∗__stream)
• int vfscanf(FILE ∗__stream, const char∗__fmt, va_list __ap)
• int vfscanf_P(FILE ∗__stream, const char∗__fmt, va_list __ap)
• int fscanf(FILE ∗__stream, const char∗__fmt,...)
• int fscanf_P(FILE ∗__stream, const char∗__fmt,...)
• int scanf(const char∗__fmt,...)
• int scanf_P(const char∗__fmt,...)
• int vscanf(const char∗__fmt, va_list __ap)
• int sscanf(const char∗__buf, const char∗__fmt,...)
• int sscanf_P(const char∗__buf, const char∗__fmt,...)
• int fflush (FILE ∗stream)

8.42 stdlib.h File Reference

8.42.1 Detailed Description

Data Structures

• structdiv_t
• structldiv_t

Non-standard (i.e. non-ISO C) functions.

• #defineRANDOM_MAX 0x7FFFFFFF
• char∗ itoa (int __val, char∗__s, int __radix)
• char∗ ltoa (long int __val, char∗__s, int __radix)
• char∗ utoa(unsigned int __val, char∗__s, int __radix)
• char∗ ultoa(unsigned long int __val, char∗__s, int __radix)
• long random(void)
• void srandom(unsigned long __seed)
• long random_r(unsigned long∗__ctx)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.42 stdlib.h File Reference 253

Conversion functions for double arguments.

Note that these functions are not located in the default library,libc.a , but in the
mathematical library,libm.a . So when linking the application, the-lm option needs
to be specified.

• #defineDTOSTR_ALWAYS_SIGN0x01
• #defineDTOSTR_PLUS_SIGN0x02
• #defineDTOSTR_UPPERCASE0x04
• char∗ dtostre(double __val, char∗__s, unsigned char __prec, unsigned char

__flags)
• char∗ dtostrf (double __val, signed char __width, unsigned char __prec, char
∗__s)

Defines

• #define_STDLIB_H_ 1
• #define__need_NULL
• #define__need_size_t
• #define__need_wchar_t
• #define__ptr_t void ∗
• #defineRAND_MAX 0x7FFF

Typedefs

• typedef int(∗) __compar_fn_t(const void∗, const void∗)

Functions

• void abort(void) __ATTR_NORETURN__
• int abs(int __i)
• long labs(long __i)
• void ∗ bsearch(const void∗__key, const void∗__base, size_t __nmemb, size_t

__size, int(∗__compar)(const void∗, const void∗))
• div_t div (int __num, int __denom) __asm__("__divmodhi4")
• ldiv_t ldiv (long __num, long __denom) __asm__("__divmodsi4")
• void qsort (void ∗__base, size_t __nmemb, size_t __size,__compar_fn_t__-

compar)
• longstrtol (const char∗__nptr, char∗∗__endptr, int __base)
• unsigned longstrtoul(const char∗__nptr, char∗∗__endptr, int __base)
• longatol (const char∗__s) __ATTR_PURE__
• int atoi (const char∗__s) __ATTR_PURE__

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.42 stdlib.h File Reference 254

• void exit (int __status) __ATTR_NORETURN__
• void ∗ malloc(size_t __size) __ATTR_MALLOC__
• void free(void ∗__ptr)
• void ∗ calloc(size_t __nele, size_t __size) __ATTR_MALLOC__
• void ∗ realloc(void ∗__ptr, size_t __size) __ATTR_MALLOC__
• doublestrtod(const char∗__nptr, char∗∗__endptr)
• doubleatof (const char∗__nptr)
• int rand(void)
• void srand(unsigned int __seed)
• int rand_r(unsigned long∗__ctx)

Variables

• size_t__malloc_margin
• char∗ __malloc_heap_start
• char∗ __malloc_heap_end

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.42 stdlib.h File Reference 255

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.43 strcasecmp.S File Reference 256

8.43 strcasecmp.S File Reference

8.43.1 Detailed Description

8.44 strcasecmp_P.S File Reference

8.44.1 Detailed Description

8.45 strcasestr.S File Reference

8.45.1 Detailed Description

8.46 strcat.S File Reference

8.46.1 Detailed Description

8.47 strcat_P.S File Reference

8.47.1 Detailed Description

8.48 strchr.S File Reference

8.48.1 Detailed Description

8.49 strchr_P.S File Reference

8.49.1 Detailed Description

8.50 strchrnul.S File Reference

8.50.1 Detailed Description

8.51 strchrnul_P.S File Reference

8.51.1 Detailed Description

8.52 strcmp.S File Reference

8.52.1 Detailed Description

8.53 strcmp_P.S File Reference

8.53.1 Detailed Description

8.54 strcpy.S File Reference

8.54.1 Detailed Description

8.55 strcpy_P.S File Reference

8.55.1 Detailed Description

8.56 strcspn.S File Reference

8.56.1 Detailed Description

8.57 strcspn_P.S File Reference

8.57.1 Detailed Description

8.58 string.h File Reference

8.58.1 Detailed Description

Defines

• #define_STRING_H_ 1

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.58 string.h File Reference 257

• #define__need_NULL
• #define__need_size_t
• #define__ATTR_PURE____attribute__((__pure__))
• #define_FFS(x)

Functions

• int ffs (int __val)
• int ffsl (long __val)
• int ffsll (long long __val)
• void ∗ memccpy(void ∗, const void∗, int, size_t)
• void ∗ memchr(const void∗, int, size_t) __ATTR_PURE__
• int memcmp(const void∗, const void∗, size_t) __ATTR_PURE__
• void ∗ memcpy(void ∗, const void∗, size_t)
• void ∗ memmem(const void∗, size_t, const void∗, size_t) __ATTR_PURE__
• void ∗ memmove(void ∗, const void∗, size_t)
• void ∗ memrchr(const void∗, int, size_t) __ATTR_PURE__
• void ∗ memset(void ∗, int, size_t)
• char∗ strcat(char∗, const char∗)
• char∗ strchr(const char∗, int) __ATTR_PURE__
• char∗ strchrnul(const char∗, int) __ATTR_PURE__
• int strcmp(const char∗, const char∗) __ATTR_PURE__
• char∗ strcpy(char∗, const char∗)
• int strcasecmp(const char∗, const char∗) __ATTR_PURE__
• char∗ strcasestr(const char∗, const char∗) __ATTR_PURE__
• size_tstrcspn(const char∗__s, const char∗__reject) __ATTR_PURE__
• size_tstrlcat(char∗, const char∗, size_t)
• size_tstrlcpy(char∗, const char∗, size_t)
• size_tstrlen(const char∗) __ATTR_PURE__
• char∗ strlwr (char∗)
• char∗ strncat(char∗, const char∗, size_t)
• int strncmp(const char∗, const char∗, size_t) __ATTR_PURE__
• char∗ strncpy(char∗, const char∗, size_t)
• int strncasecmp(const char∗, const char∗, size_t) __ATTR_PURE__
• size_tstrnlen(const char∗, size_t) __ATTR_PURE__
• char∗ strpbrk(const char∗__s, const char∗__accept) __ATTR_PURE__
• char∗ strrchr(const char∗, int) __ATTR_PURE__
• char∗ strrev(char∗)
• char∗ strsep(char∗∗, const char∗)
• size_tstrspn(const char∗__s, const char∗__accept) __ATTR_PURE__
• char∗ strstr(const char∗, const char∗) __ATTR_PURE__
• char∗ strtok_r(char∗, const char∗, char∗∗)
• char∗ strupr(char∗)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.58 string.h File Reference 258

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.59 strlcat.S File Reference 259

8.59 strlcat.S File Reference

8.59.1 Detailed Description

8.60 strlcat_P.S File Reference

8.60.1 Detailed Description

8.61 strlcpy.S File Reference

8.61.1 Detailed Description

8.62 strlcpy_P.S File Reference

8.62.1 Detailed Description

8.63 strlen.S File Reference

8.63.1 Detailed Description

8.64 strlen_P.S File Reference

8.64.1 Detailed Description

8.65 strlwr.S File Reference

8.65.1 Detailed Description

8.66 strncasecmp.S File Reference

8.66.1 Detailed Description

8.67 strncasecmp_P.S File Reference

8.67.1 Detailed Description

8.68 strncat.S File Reference

8.68.1 Detailed Description

8.69 strncat_P.S File Reference

8.69.1 Detailed Description

8.70 strncmp.S File Reference

8.70.1 Detailed Description

8.71 strncmp_P.S File Reference

8.71.1 Detailed Description

8.72 strncpy.S File Reference

8.72.1 Detailed Description

8.73 strncpy_P.S File Reference

8.73.1 Detailed Description

8.74 strnlen.S File Reference

8.74.1 Detailed Description

8.75 strnlen_P.S File Reference

8.75.1 Detailed Description

8.76 strpbrk.S File Reference

8.76.1 Detailed Description

8.77 strpbrk_P.S File Reference

8.77.1 Detailed Description

8.78 strrchr.S File Reference

8.78.1 Detailed Description

8.79 strrchr_P.S File Reference

8.79.1 Detailed Description

8.80 strrev.S File Reference

8.80.1 Detailed Description

8.81 strsep.S File Reference

8.81.1 Detailed Description

8.82 strsep_P.S File Reference

8.82.1 Detailed Description

8.83 strspn.S File Reference

8.83.1 Detailed Description

8.84 strspn_P.S File Reference

8.84.1 Detailed Description

8.85 strstr.S File Reference

8.85.1 Detailed Description

8.86 strstr_P.S File Reference

8.86.1 Detailed Description

8.87 strtok_r.S File Reference

8.87.1 Detailed Description

8.88 strupr.S File Reference

8.88.1 Detailed Description

8.89 twi.h File Reference

8.89.1 Detailed Description

Defines

• #define_UTIL_TWI_H_ 1

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.89 twi.h File Reference 260

TWSR values

Mnemonics:

TW_MT_xxx - master transmitter

TW_MR_xxx - master receiver

TW_ST_xxx - slave transmitter

TW_SR_xxx - slave receiver

• #defineTW_START0x08
• #defineTW_REP_START0x10
• #defineTW_MT_SLA_ACK 0x18
• #defineTW_MT_SLA_NACK 0x20
• #defineTW_MT_DATA_ACK 0x28
• #defineTW_MT_DATA_NACK 0x30
• #defineTW_MT_ARB_LOST0x38
• #defineTW_MR_ARB_LOST0x38
• #defineTW_MR_SLA_ACK0x40
• #defineTW_MR_SLA_NACK0x48
• #defineTW_MR_DATA_ACK 0x50
• #defineTW_MR_DATA_NACK 0x58
• #defineTW_ST_SLA_ACK0xA8
• #defineTW_ST_ARB_LOST_SLA_ACK0xB0
• #defineTW_ST_DATA_ACK0xB8
• #defineTW_ST_DATA_NACK0xC0
• #defineTW_ST_LAST_DATA0xC8
• #defineTW_SR_SLA_ACK0x60
• #defineTW_SR_ARB_LOST_SLA_ACK0x68
• #defineTW_SR_GCALL_ACK0x70
• #defineTW_SR_ARB_LOST_GCALL_ACK0x78
• #defineTW_SR_DATA_ACK0x80
• #defineTW_SR_DATA_NACK0x88
• #defineTW_SR_GCALL_DATA_ACK0x90
• #defineTW_SR_GCALL_DATA_NACK0x98
• #defineTW_SR_STOP0xA0
• #defineTW_NO_INFO0xF8
• #defineTW_BUS_ERROR0x00
• #defineTW_STATUS_MASK
• #defineTW_STATUS(TWSR & TW_STATUS_MASK)

R/∼W bit in SLA+R/W address field.

• #defineTW_READ1
• #defineTW_WRITE0

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



8.90 wdt.h File Reference 261

8.90 wdt.h File Reference

8.90.1 Detailed Description

Defines

• #definewdt_reset() __asm__ __volatile__ ("wdr")
• #define_WD_PS3_MASK0x00
• #define_WD_CONTROL_REG WDTCR
• #define_WD_CHANGE_BIT WDCE
• #define_wdt_write(value)
• #definewdt_disable()
• #definewdt_enable(timeout) _wdt_write(timeout)
• #defineWDTO_15MS0
• #defineWDTO_30MS1
• #defineWDTO_60MS2
• #defineWDTO_120MS3
• #defineWDTO_250MS4
• #defineWDTO_500MS5
• #defineWDTO_1S6
• #defineWDTO_2S7
• #defineWDTO_4S8
• #defineWDTO_8S9

8.90.2 Define Documentation

8.90.2.1 #define _wdt_write(value)

Value:

__asm__ __volatile__ ( \
"in __tmp_reg__,__SREG__" "\n\t" \
"cli" "\n\t" \
"wdr" "\n\t" \
"out %0,%1" "\n\t" \
"out __SREG__,__tmp_reg__" "\n\t" \
"out %0,%2" \
: /* no outputs */ \
: "I" (_SFR_IO_ADDR(_WD_CONTROL_REG)), \
"r" (_BV(_WD_CHANGE_BIT) | _BV(WDE)), \
"r" ((uint8_t) ((value & 0x08 ? _WD_PS3_MASK : 0x00) | \

_BV(WDE) | (value & 0x07)) ) \
: "r0" \

)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9 avr-libc Page Documentation 262

9 avr-libc Page Documentation

9.1 Toolchain Overview

9.1.1 Introduction

Welcome to the open source software development toolset for the Atmel AVR!

There is not a single tool that provides everything needed to develop software for the
AVR. It takes many tools working together. Collectively, the group of tools are called a
toolset, or commonly a toolchain, as the tools are chained together to produce the final
executable application for the AVR microcontroller.

The following sections provide an overview of all of these tools. You may be used
to cross-compilers that provide everything with a GUI front-end, and not know what
goes on "underneath the hood". You may be coming from a desktop or server computer
background and not used to embedded systems. Or you may be just learning about the
most common software development toolchain available on Unix and Linux systems.
Hopefully the following overview will be helpful in putting everything in perspective.

9.1.2 FSF and GNU

According to its website, "the Free Software Foundation (FSF), established in 1985, is
dedicated to promoting computer users’ rights to use, study, copy, modify, and redis-
tribute computer programs. The FSF promotes the development and use of free soft-
ware, particularly the GNU operating system, used widely in its GNU/Linux variant."
The FSF remains the primary sponsor of the GNU project.

The GNU Project was launched in 1984 to develop a complete Unix-like operating
system which is free software: the GNU system. GNU is a recursive acronym for
żGNU’s Not Unix́n; it is pronounced guh-noo, approximately like canoe.

One of the main projects of the GNU system is the GNU Compiler Collection, or GCC,
and its sister project, GNU Binutils. These two open source projects provide a foun-
dation for a software development toolchain. Note that these projects were designed to
originally run on Unix-like systems.

9.1.3 GCC

GCC stands for GNU Compiler Collection. GCC is highly flexible compiler system. It
has different compiler front-ends for different languages. It has many back-ends that
generate assembly code for many different processors and host operating systems. All
share a common "middle-end", containing the generic parts of the compiler, including
a lot of optimizations.

In GCC, ahost system is the system (processor/OS) that the compiler runs on. A

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.1 Toolchain Overview 263

target system is the system that the compiler compiles code for. And, abuild system
is the system that the compiler is built (from source code) on. If a compiler has the
same system forhostand for target, it is known as anativecompiler. If a compiler
has different systems forhostandtarget, it is known as a cross-compiler. (And if all
three,build, host, and target systems are different, it is known as a Canadian cross
compiler, but we won’t discuss that here.) When GCC is built to execute on ahost
system such as FreeBSD, Linux, or Windows, and it is built to generate code for the
AVR microcontrollertarget, then it is a cross compiler, and this version of GCC is
commonly known as "AVR GCC". In documentation, or discussion, AVR GCC is
used when referring to GCC targeting specifically the AVR, or something that is AVR
specific about GCC. The term "GCC" is usually used to refer to something generic
about GCC, or about GCC as a whole.

GCC is different from most other compilers. GCC focuses on translating a high-level
language to the target assembly only. AVR GCC has three available compilers for the
AVR: C language, C++, and Ada. The compiler itself does not assemble or link the
final code.

GCC is also known as a "driver" program, in that it knows about, and drives other
programs seamlessly to create the final output. The assembler, and the linker are part
of another open source project called GNU Binutils. GCC knows how to drive the
GNU assembler (gas) to assemble the output of the compiler. GCC knows how to drive
the GNU linker (ld) to link all of the object modules into a final executable.

The two projects, GCC and Binutils, are very much interrelated and many of the same
volunteers work on both open source projects.

When GCC is built for the AVR target, the actual program names are prefixed with
"avr-". So the actual executable name for AVR GCC is: avr-gcc. The name "avr-gcc"
is used in documentation and discussion when referring to the program itself and not
just the whole AVR GCC system.

See the GCC Web Site and GCC User Manual for more information about GCC.

9.1.4 GNU Binutils

The name GNU Binutils stands for "Binary Utilities". It contains the GNU assembler
(gas), and the GNU linker (ld), but also contains many other utilities that work with
binary files that are created as part of the software development toolchain.

Again, when these tools are built for the AVR target, the actual program names are
prefixed with "avr-". For example, the assembler program name, for a native assembler
is "as" (even though in documentation the GNU assembler is commonly referred to as
"gas"). But when built for an AVR target, it becomes "avr-as". Below is a list of the
programs that are included in Binutils:

avr-as

The Assembler.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.1 Toolchain Overview 264

avr-ld

The Linker.

avr-ar

Create, modify, and extract from libraries (archives).

avr-ranlib

Generate index to library (archive) contents.

avr-objcopy

Copy and translate object files to different formats.

avr-objdump

Display information from object files including disassembly.

avr-size

List section sizes and total size.

avr-nm

List symbols from object files.

avr-strings

List printable strings from files.

avr-strip

Discard symbols from files.

avr-readelf

Display the contents of ELF format files.

avr-addr2line

Convert addresses to file and line.

avr-c++filt

Filter to demangle encoded C++ symbols.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.1 Toolchain Overview 265

9.1.5 avr-libc

GCC and Binutils provides a lot of the tools to develop software, but there is one critical
component that they do not provide: a Standard C Library.

There are different open source projects that provide a Standard C Library depending
upon your system time, whether for a native compiler (GNU Libc), for some other
embedded system (newlib), or for some versions of Linux (uCLibc). The open source
AVR toolchain has its own Standard C Library project: avr-libc.

AVR-Libc provides many of the same functions found in a regular Standard C Library
and many additional library functions that is specific to an AVR. Some of the Standard
C Library functions that are commonly used on a PC environment have limitations or
additional issues that a user needs to be aware of when used on an embedded system.

AVR-Libc also contains the most documentation about the whole AVR toolchain.

9.1.6 Building Software

Even though GCC, Binutils, and avr-libc are the core projects that are used to build
software for the AVR, there is another piece of software that ties it all together: Make.
GNU Make is a program that makes things, and mainly software. Make interprets and
executes a Makefile that is written for a project. A Makefile contains dependency rules,
showing which output files are dependent upon which input files, and instructions on
how to build output files from input files.

Some distributions of the toolchains, and other AVR tools such as MFile, contain a
Makefile template written for the AVR toolchain and AVR applications that you can
copy and modify for your application.

See the GNU Make User Manual for more information.

9.1.7 AVRDUDE

After creating your software, you’ll want to program your device. You can do this by
using the program AVRDUDE which can interface with various hardware devices to
program your processor.

AVRDUDE is a very flexible package. All the information about AVR processors
and various hardware programmers is stored in a text database. This database can be
modified by any user to add new hardware or to add an AVR processor if it is not
already listed.

9.1.8 GDB / Insight / DDD

The GNU Debugger (GDB) is a command-line debugger that can be used with the rest
of the AVR toolchain. Insight is GDB plus a GUI written in Tcl/Tk. Both GDB and

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.1 Toolchain Overview 266

Insight are configured for the AVR and the main executables are prefixed with the target
name: avr-gdb, and avr-insight. There is also a "text mode" GUI for GDB: avr-gdbtui.
DDD (Data Display Debugger) is another popular GUI front end to GDB, available on
Unix and Linux systems.

9.1.9 AVaRICE

AVaRICE is a back-end program to AVR GDB and interfaces to the Atmel JTAG In-
Circuit Emulator (ICE), to provide emulation capabilities.

9.1.10 SimulAVR

SimulAVR is an AVR simulator used as a back-end with AVR GDB. Unfortunately,
this project is currently unmaintained and could use some help.

9.1.11 Utilities

There are also other optional utilities available that may be useful to add to your toolset.

SRecord is a collection of powerful tools for manipulating EPROM load files. It
reads and writes numerous EPROM file formats, and can perform many different ma-
nipulations.

MFile is a simple Makefile generator is meant as an aid to quickly customize a Make-
file to use for your AVR application.

9.1.12 Toolchain Distributions (Distros)

All of the various open source projects that comprise the entire toolchain are normally
distributed as source code. It is left up to the user to build the tool application from its
source code. This can be a very daunting task to any potential user of these tools.

Luckily there are people who help out in this area. Volunteers take the time to build the
application from source code on particular host platforms and sometimes packaging
the tools for convenient installation by the end user. These packages contain the binary
executables of the tools, pre-made and ready to use. These packages are known as
"distributions" of the AVR toolchain, or by a more shortened name, "distros".

AVR toolchain distros are available on FreeBSD, Windows, Mac OS X, and certain
flavors of Linux.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.2 Memory Areas and Using malloc() 267

9.1.13 Open Source

All of these tools, from the original source code in the multitude of projects, to the
various distros, are put together by many, many volunteers. All of these projects could
always use more help from other people who are willing to volunteer some of their time.
There are many different ways to help, for people with varying skill levels, abilities,
and available time.

You can help to answer questions in mailing lists such as the avr-gcc-list, or on forums
at the AVR Freaks website. This helps many people new to the open source AVR tools.

If you think you found a bug in any of the tools, it is always a big help to submit a good
bug report to the proper project. A good bug report always helps other volunteers to
analyze the problem and to get it fixed for future versions of the software.

You can also help to fix bugs in various software projects, or to add desirable new
features.

Volunteers are always welcome! :-)

9.2 Memory Areas and Using malloc()

9.2.1 Introduction

Many of the devices that are possible targets of avr-libc have a minimal amount of
RAM. The smallest parts supported by the C environment come with 128 bytes of
RAM. This needs to be shared between initialized and uninitialized variables (sections
.data and .bss), the dynamic memory allocator, and the stack that is used for calling
subroutines and storing local (automatic) variables.

Also, unlike larger architectures, there is no hardware-supported memory management
which could help in separating the mentioned RAM regions from being overwritten by
each other.

The standard RAM layout is to place .data variables first, from the beginning of the
internal RAM, followed by .bss. The stack is started from the top of internal RAM,
growing downwards. The so-called "heap" available for the dynamic memory allocator
will be placed beyond the end of .bss. Thus, there’s no risk that dynamic memory will
ever collide with the RAM variables (unless there were bugs in the implementation of
the allocator). There is still a risk that the heap and stack could collide if there are large
requirements for either dynamic memory or stack space. The former can even happen
if the allocations aren’t all that large but dynamic memory allocations get fragmented
over time such that new requests don’t quite fit into the "holes" of previously freed
regions. Large stack space requirements can arise in a C function containing large
and/or numerous local variables or when recursively calling function.

Note:

The pictures shown in this document represent typical situations where the RAM

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.2 Memory Areas and Using malloc() 268

locations refer to an ATmega128. The memory addresses used are not displayed
in a linear scale.

!

__bss_end

__data_end == __bss_start

__data_start

RAMENDSP

*(__malloc_heap_start) == __heap_start

*(__brkval) (<= *SP − *(__malloc_margin))

variables

.data

variables

.bss

0x
10

F
F

0x
01

00

heap stack

on−board RAM external RAM

0x
11

00

0x
F

F
F

F

Figure 6: RAM map of a device with internal RAM

On a simple device like a microcontroller it is a challenge to implement a dynamic
memory allocator that is simple enough so the code size requirements will remain low,
yet powerful enough to avoid unnecessary memory fragmentation and to get it all done
with reasonably few CPU cycles. Microcontrollers are often low on space and also run
at much lower speeds than the typical PC these days.

The memory allocator implemented in avr-libc tries to cope with all of these con-
straints, and offers some tuning options that can be used if there are more resources
available than in the default configuration.

9.2.2 Internal vs. external RAM

Obviously, the constraints are much harder to satisfy in the default configuration where
only internal RAM is available. Extreme care must be taken to avoid a stack-heap
collision, both by making sure functions aren’t nesting too deeply, and don’t require
too much stack space for local variables, as well as by being cautious with allocating
too much dynamic memory.

If external RAM is available, it is strongly recommended to move the heap into the ex-
ternal RAM, regardless of whether or not the variables from the .data and .bss sections
are also going to be located there. The stack should always be kept in internal RAM.
Some devices even require this, and in general, internal RAM can be accessed faster
since no extra wait states are required. When using dynamic memory allocation and
stack and heap are separated in distinct memory areas, this is the safest way to avoid a
stack-heap collision.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.2 Memory Areas and Using malloc() 269

9.2.3 Tunables for malloc()

There are a number of variables that can be tuned to adapt the behavior ofmalloc()
to the expected requirements and constraints of the application. Any changes to these
tunables should be made before the very first call tomalloc(). Note that some library
functions might also use dynamic memory (notably those from the<stdio.h>: Stan-
dard IO facilities), so make sure the changes will be done early enough in the startup
sequence.

The variables__malloc_heap_start and__malloc_heap_end can be used
to restrict themalloc() function to a certain memory region. These variables are stati-
cally initialized to point to__heap_start and__heap_end , respectively, where
__heap_start is filled in by the linker to point just beyond .bss, and__heap_end
is set to 0 which makesmalloc()assume the heap is below the stack.

If the heap is going to be moved to external RAM,__malloc_heap_end mustbe
adjusted accordingly. This can either be done at run-time, by writing directly to this
variable, or it can be done automatically at link-time, by adjusting the value of the
symbol__heap_end .

The following example shows a linker command to relocate the entire .data and .bss
segments, and the heap to location 0x1100 in external RAM. The heap will extend up
to address 0xffff.

avr-gcc ... -Wl,-Tdata=0x801100,--defsym=__heap_end=0x80ffff ...

Note:

Seeexplanationfor offset 0x800000. See the chapter aboutusing gccfor the-Wl
options.

SP

RAMEND

__bss_end

__data_end == __bss_start

__data_start

*(__malloc_heap_end) == __heap_end

*(__malloc_heap_start) == __heap_start

*(__brkval)

variables

.data

variables

.bss

heap

external RAM

0x
10

F
F

0x
01

00

stack

on−board RAM

0x
11

00

0x
F

F
F

F

Figure 7: Internal RAM: stack only, external RAM: variables and heap

If dynamic memory should be placed in external RAM, while keeping the variables in

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.2 Memory Areas and Using malloc() 270

internal RAM, something like the following could be used. Note that for demonstration
purposes, the assignment of the various regions has not been made adjacent in this
example, so there are "holes" below and above the heap in external RAM that remain
completely unaccessible by regular variables or dynamic memory allocations (shown
in light bisque color in the picture below).

avr-gcc ... -Wl,--defsym=__heap_start=0x802000,--defsym=__heap_end=0x803fff ...

SP

RAMEND

__bss_end

__data_end == __bss_start

__data_start

*(__malloc_heap_end) == __heap_end

*(__brkval)

*(__malloc_heap_start) == __heap_start

0x
10

F
F

0x
01

00

stack

on−board RAM

0x
11

00

0x
F

F
F

F

.data

variablesvariables

.bss

heap
0x

20
00

external RAM

0x
3F

F
F

Figure 8: Internal RAM: variables and stack, external RAM: heap

If __malloc_heap_end is 0, the allocator attempts to detect the bottom of stack
in order to prevent a stack-heap collision when extending the actual size of the heap
to gain more space for dynamic memory. It will not try to go beyond the current
stack limit, decreased by__malloc_margin bytes. Thus, all possible stack frames
of interrupt routines that could interrupt the current function, plus all further nested
function calls must not require more stack space, or they will risk colliding with the
data segment.

The default value of__malloc_margin is set to 32.

9.2.4 Implementation details

Dynamic memory allocation requests will be returned with a two-byte header
prepended that records the size of the allocation. This is later used byfree(). The
returned address points just beyond that header. Thus, if the application accidentally
writes before the returned memory region, the internal consistency of the memory al-
locator is compromised.

The implementation maintains a simple freelist that accounts for memory blocks that
have been returned in previous calls tofree(). Note that all of this memory is considered

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.2 Memory Areas and Using malloc() 271

to be successfully added to the heap already, so no further checks against stack-heap
collisions are done when recycling memory from the freelist.

The freelist itself is not maintained as a separate data structure, but rather by modifying
the contents of the freed memory to contain pointers chaining the pieces together. That
way, no additional memory is reqired to maintain this list except for a variable that
keeps track of the lowest memory segment available for reallocation. Since both, a
chain pointer and the size of the chunk need to be recorded in each chunk, the minimum
chunk size on the freelist is four bytes.

When allocating memory, first the freelist is walked to see if it could satisfy the request.
If there’s a chunk available on the freelist that will fit the request exactly, it will be
taken, disconnected from the freelist, and returned to the caller. If no exact match could
be found, the closest match that would just satisfy the request will be used. The chunk
will normally be split up into one to be returned to the caller, and another (smaller)
one that will remain on the freelist. In case this chunk was only up to two bytes larger
than the request, the request will simply be altered internally to also account for these
additional bytes since no separate freelist entry could be split off in that case.

If nothing could be found on the freelist, heap extension is attempted. This is where
__malloc_margin will be considered if the heap is operating below the stack, or
where__malloc_heap_end will be verified otherwise.

If the remaining memory is insufficient to satisfy the request,NULLwill eventually be
returned to the caller.

When callingfree(), a new freelist entry will be prepared. An attempt is then made to
aggregate the new entry with possible adjacent entries, yielding a single larger entry
available for further allocations. That way, the potential for heap fragmentation is
hopefully reduced.

A call to realloc()first determines whether the operation is about to grow or shrink the
current allocation. When shrinking, the case is easy: the existing chunk is split, and the
tail of the region that is no longer to be used is passed to the standardfree()function for
insertion into the freelist. Checks are first made whether the tail chunk is large enough
to hold a chunk of its own at all, otherwiserealloc()will simply do nothing, and return
the original region.

When growing the region, it is first checked whether the existing allocation can be ex-
tended in-place. If so, this is done, and the original pointer is returned without copying
any data contents. As a side-effect, this check will also record the size of the largest
chunk on the freelist.

If the region cannot be extended in-place, but the old chunk is at the top of heap, and
the above freelist walk did not reveal a large enough chunk on the freelist to satisfy
the new request, an attempt is made to quickly extend this topmost chunk (and thus
the heap), so no need arises to copy over the existing data. If there’s no more space
available in the heap (same check is done as inmalloc()), the entire request will fail.

Otherwise,malloc()will be called with the new request size, the existing data will be

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.3 Memory Sections 272

copied over, andfree()will be called on the old region.

9.3 Memory Sections

Remarks:

Need to list all the sections which are available to the avr.

Weak Bindings

FIXME: need to discuss the .weak directive.

The following describes the various sections available.

9.3.1 The .text Section

The .text section contains the actual machine instructions which make up your program.
This section is further subdivided by the .initN and .finiN sections dicussed below.

Note:

The avr-size program (part of binutils), coming from a Unix background,
doesn’t account for the .data initialization space added to the .text section, so in
order to know how much flash the final program will consume, one needs to add
the values for both, .text and .data (but not .bss), while the amount of pre-allocated
SRAM is the sum of .data and .bss.

9.3.2 The .data Section

This section contains static data which was defined in your code. Things like the fol-
lowing would end up in .data:

char err_str[] = "Your program has died a horrible death!";

struct point pt = { 1, 1 };

It is possible to tell the linker the SRAM address of the beginning of the .data section.
This is accomplished by adding-Wl,-Tdata, addr to the avr-gcc command
used to the link your program. Not thataddr must be offset by adding 0x800000
the to real SRAM address so that the linker knows that the address is in the SRAM
memory space. Thus, if you want the .data section to start at 0x1100, pass 0x801100
at the address to the linker. [offsetexplained]

Note:

When usingmalloc() in the application (which could even happen inside library
calls),additional adjustmentsare required.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.3 Memory Sections 273

9.3.3 The .bss Section

Uninitialized global or static variables end up in the .bss section.

9.3.4 The .eeprom Section

This is where eeprom variables are stored.

9.3.5 The .noinit Section

This sections is a part of the .bss section. What makes the .noinit section special is that
variables which are defined as such:

int foo __attribute__ ((section (".noinit")));

will not be initialized to zero during startup as would normal .bss data.

Only uninitialized variables can be placed in the .noinit section. Thus, the following
code will causeavr-gcc to issue an error:

int bar __attribute__ ((section (".noinit"))) = 0xaa;

It is possible to tell the linker explicitly where to place the .noinit section by adding
-Wl,-section-start=.noinit=0x802000 to the avr-gcc command line
at the linking stage. For example, suppose you wish to place the .noinit section at
SRAM address 0x2000:

$ avr-gcc ... -Wl,--section-start=.noinit=0x802000 ...

Note:

Because of the Harvard architecture of the AVR devices, you must manually add
0x800000 to the address you pass to the linker as the start of the section. Oth-
erwise, the linker thinks you want to put the .noinit section into the .text section
instead of .data/.bss and will complain.

Alternatively, you can write your own linker script to automate this. [FIXME: need an
example or ref to dox for writing linker scripts.]

9.3.6 The .initN Sections

These sections are used to define the startup code from reset up through the start of
main(). These all are subparts of the.text section.

The purpose of these sections is to allow for more specific placement of code within
your program.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.3 Memory Sections 274

Note:

Sometimes, it is convenient to think of the .initN and .finiN sections as functions,
but in reality they are just symbolic names which tell the linker where to stick a
chunk of code which isnota function. Notice that the examples forasmandC can
not be called as functions and should not be jumped into.

The.initN sections are executed in order from 0 to 9.

.init0:

Weakly bound to __init(). If user defines __init(), it will be jumped into immedi-
ately after a reset.

.init1:

Unused. User definable.

.init2:

In C programs, weakly bound to initialize the stack, and to clear __zero_reg__
(r1).

.init3:

Unused. User definable.

.init4:

For devices with> 64 KB of ROM, .init4 defines the code which takes care of copying
the contents of .data from the flash to SRAM. For all other devices, this code as well
as the code to zero out the .bss section is loaded from libgcc.a.

.init5:

Unused. User definable.

.init6:

Unused for C programs, but used for constructors in C++ programs.

.init7:

Unused. User definable.

.init8:

Unused. User definable.

.init9:

Jumps into main().

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.3 Memory Sections 275

9.3.7 The .finiN Sections

These sections are used to define the exit code executed after return from main() or a
call toexit(). These all are subparts of the.text section.

The.finiN sections are executed in descending order from 9 to 0.

.finit9:

Unused. User definable. This is effectively where _exit() starts.

.fini8:

Unused. User definable.

.fini7:

Unused. User definable.

.fini6:

Unused for C programs, but used for destructors in C++ programs.

.fini5:

Unused. User definable.

.fini4:

Unused. User definable.

.fini3:

Unused. User definable.

.fini2:

Unused. User definable.

.fini1:

Unused. User definable.

.fini0:

Goes into an infinite loop after program termination and completion of any _exit()
code (execution of code in the .fini9 -> .fini1 sections).

9.3.8 Using Sections in Assembler Code

Example:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.4 Data in Program Space 276

#include <avr/io.h>

.section .init1,"ax",@progbits
ldi r0, 0xff
out _SFR_IO_ADDR(PORTB), r0
out _SFR_IO_ADDR(DDRB), r0

Note:

The ,"ax",@progbits tells the assembler that the section is allocatable ("a"),
executable ("x") and contains data ("@progbits"). For more detailed information
on the .section directive, see the gas user manual.

9.3.9 Using Sections in C Code

Example:

#include <avr/io.h>

void my_init_portb (void) __attribute__ ((naked)) \
__attribute__ ((section (".init3")));

void
my_init_portb (void)
{

PORTB = 0xff;
DDRB = 0xff;

}

Note:

Section .init3 is used in this example, as this ensures the inernal__zero_reg_-
_ has already been set up. The code generated by the compiler might blindly rely
on__zero_reg__ being really 0.

9.4 Data in Program Space

9.4.1 Introduction

So you have some constant data and you’re running out of room to store it? Many
AVRs have limited amount of RAM in which to store data, but may have more Flash
space available. The AVR is a Harvard architecture processor, where Flash is used for
the program, RAM is used for data, and they each have separate address spaces. It is
a challenge to get constant data to be stored in the Program Space, and to retrieve that
data to use it in the AVR application.

The problem is exacerbated by the fact that the C Language was not designed for
Harvard architectures, it was designed for Von Neumann architectures where code and
data exist in the same address space. This means that any compiler for a Harvard

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.4 Data in Program Space 277

architecture processor, like the AVR, has to use other means to operate with separate
address spaces.

Some compilers use non-standard C language keywords, or they extend the standard
syntax in ways that are non-standard. The AVR toolset takes a different approach.

GCC has a special keyword,__attribute__ that is used to attach different at-
tributes to things such as function declarations, variables, and types. This keyword is
followed by an attribute specification in double parentheses. In AVR GCC, there is a
special attribute calledprogmem. This attribute is use on data declarations, and tells
the compiler to place the data in the Program Memory (Flash).

AVR-Libc provides a simple macroPROGMEMthat is defined as the attribute syn-
tax of GCC with theprogmem attribute. This macro was created as a convenience
to the end user, as we will see below. ThePROGMEMmacro is defined in the
<avr/pgmspace.h > system header file.

It is difficult to modify GCC to create new extensions to the C language syntax, so
instead, avr-libc has created macros to retrieve the data from the Program Space. These
macros are also found in the<avr/pgmspace.h > system header file.

9.4.2 A Note On const

Many users bring up the idea of using C’s keywordconst as a means of declaring
data to be in Program Space. Doing this would be an abuse of the intended meaning of
theconst keyword.

const is used to tell the compiler that the data is to be "read-only". It is used to help
make it easier for the compiler to make certain transformations, or to help the compiler
check for incorrect usage of those variables.

For example, the const keyword is commonly used in many functions as a modifier on
the parameter type. This tells the compiler that the function will only use the parameter
as read-only and will not modify the contents of the parameter variable.

const was intended for uses such as this, not as a means to identify where the data
should be stored. If it were used as a means to define data storage, then it loses its
correct meaning (changes its semantics) in other situations such as in the function pa-
rameter example.

9.4.3 Storing and Retrieving Data in the Program Space

Let’s say you have some global data:

unsigned char mydata[11][10] =
{

{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09},
{0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,0x10,0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.4 Data in Program Space 278

{0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
{0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,0x30,0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B},
{0x3C,0x3D,0x3E,0x3F,0x40,0x41,0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F},
{0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59},
{0x5A,0x5B,0x5C,0x5D,0x5E,0x5F,0x60,0x61,0x62,0x63},
{0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D}

};

and later in your code you access this data in a function and store a single byte into a
variable like so:

byte = mydata[i][j];

Now you want to store your data in Program Memory. Use thePROGMEMmacro found
in <avr/pgmspace.h > and put it after the declaration of the variable, but before
the initializer, like so:

#include <avr/pgmspace.h>
.
.
.
unsigned char mydata[11][10] PROGMEM =
{

{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09},
{0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,0x10,0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
{0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
{0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,0x30,0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B},
{0x3C,0x3D,0x3E,0x3F,0x40,0x41,0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F},
{0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59},
{0x5A,0x5B,0x5C,0x5D,0x5E,0x5F,0x60,0x61,0x62,0x63},
{0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D}

};

That’s it! Now your data is in the Program Space. You can compile, link, and check
the map file to verify thatmydata is placed in the correct section.

Now that your data resides in the Program Space, your code to access (read) the data
will no longer work. The code that gets generated will retrieve the data that is located
at the address of themydata array, plus offsets indexed by thei and j variables.
However, the final address that is calculated where to the retrieve the data points to
the Data Space! Not the Program Space where the data is actually located. It is likely
that you will be retrieving some garbage. The problem is that AVR GCC does not
intrinsically know that the data resides in the Program Space.

The solution is fairly simple. The "rule of thumb" for accessing data stored in the
Program Space is to access the data as you normally would (as if the variable is stored
in Data Space), like so:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.4 Data in Program Space 279

byte = mydata[i][j];

then take the address of the data:

byte = &(mydata[i][j]);

then use the appropriatepgm_read_ ∗ macro, and the address of your data becomes
the parameter to that macro:

byte = pgm_read_byte(&(mydata[i][j]));

Thepgm_read_ ∗ macros take an address that points to the Program Space, and re-
trieves the data that is stored at that address. This is why you take the address of the
offset into the array. This address becomes the parameter to the macro so it can gen-
erate the correct code to retrieve the data from the Program Space. There are different
pgm_read_ ∗ macros to read different sizes of data at the address given.

9.4.4 Storing and Retrieving Strings in the Program Space

Now that you can successfully store and retrieve simple data from Program Space you
want to store and retrive strings from Program Space. And specifically you want to
store and array of strings to Program Space. So you start off with your array, like so:

char *string_table[] =
{

"String 1",
"String 2",
"String 3",
"String 4",
"String 5"

};

and then you add your PROGMEM macro to the end of the declaration:

char *string_table[] PROGMEM =
{

"String 1",
"String 2",
"String 3",
"String 4",
"String 5"

};

Right? WRONG!

Unfortunately, with GCC attributes, they affect only the declaration that they are at-
tached to. So in this case, we successfully put thestring_table variable, the array

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.4 Data in Program Space 280

itself, in the Program Space. This DOES NOT put the actual strings themselves into
Program Space. At this point, the strings are still in the Data Space, which is probably
not what you want.

In order to put the strings in Program Space, you have to have explicit declarations for
each string, and put each string in Program Space:

char string_1[] PROGMEM = "String 1";
char string_2[] PROGMEM = "String 2";
char string_3[] PROGMEM = "String 3";
char string_4[] PROGMEM = "String 4";
char string_5[] PROGMEM = "String 5";

Then use the new symbols in your table, like so:

PGM_P string_table[] PROGMEM =
{

string_1,
string_2,
string_3,
string_4,
string_5

};

Now this has the effect of puttingstring_table in Program Space, where
string_table is an array of pointers to characters (strings), where each pointer
is a pointer to the Program Space, where each string is also stored.

ThePGM_Ptype above is also a macro that defined as a pointer to a character in the
Program Space.

Retrieving the strings are a different matter. You probably don’t want to pull the string
out of Program Space, byte by byte, using thepgm_read_byte() macro. There are
other functions declared in the<avr/pgmspace.h> header file that work with strings
that are stored in the Program Space.

For example if you want to copy the string from Program Space to a buffer in RAM
(like an automatic variable inside a function, that is allocated on the stack), you can do
this:

void foo(void)
{

char buffer[10];

for (unsigned char i = 0; i < 5; i++)
{

strcpy_P(buffer, (PGM_P)pgm_read_word(&(string_table[i])));

// Display buffer on LCD.
}
return;

}

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.5 avr-libc and assembler programs 281

Here, thestring_table array is stored in Program Space, so we access it normally,
as if were stored in Data Space, then take the address of the location we want to access,
and use the address as a parameter topgm_read_word . We use thepgm_read_-
word macro to read the string pointer out of thestring_table array. Remember
that a pointer is 16-bits, or word size. Thepgm_read_word macro will return a 16-
bit unsigned integer. We then have to typecast it as a true pointer to program memory,
PGM_P. This pointer is an address in Program Space pointing to the string that we
want to copy. This pointer is then used as a parameter to the functionstrcpy_P . The
functionstrcpy_P is just like the regularstrcpy function, except that it copies a
string from Program Space (the second parameter) to a buffer in the Data Space (the
first parameter).

There are many string functions available that work with strings located in Program
Space. All of these special string functions have a suffix of_P in the function name,
and are declared in the<avr/pgmspace.h> header file.

9.4.5 Caveats

The macros and functions used to retrieve data from the Program Space have to gen-
erate some extra code in order to actually load the data from the Program Space. This
incurs some extra overhead in terms of code space (extra opcodes) and execution time.
Usually, both the space and time overhead is minimal compared to the space savings
of putting data in Program Space. But you should be aware of this so you can mini-
mize the number of calls within a single function that gets the same piece of data from
Program Space. It is always instructive to look at the resulting disassembly from the
compiler.

9.5 avr-libc and assembler programs

9.5.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain
assembler source code. Among them are:

• Code for devices that do not have RAM and are thus not supported by the C
compiler.

• Code for very time-critical applications.

• Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily using theinline assemblerfacility
of the compiler.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.5 avr-libc and assembler programs 282

Although avr-libc is primarily targeted to support programming AVR microcontrollers
using the C (and C++) language, there’s limited support for direct assembler usage as
well. The benefits of it are:

• Use of the C preprocessor and thus the ability to use the same symbolic constants
that are available to C programs, as well as a flexible macro concept that can use
any valid C identifier as a macro (whereas the assembler’s macro concept is
basically targeted to use a macro in place of an assembler instruction).

• Use of the runtime framework like automatically assigning interrupt vectors. For
devices that have RAM,initializing the RAM variablescan also be utilized.

9.5.2 Invoking the compiler

For the purpose described in this document, the assembler and linker are usually not
invoked manually, but rather using the C compiler frontend (avr-gcc ) that in turn
will call the assembler and linker as required.

This approach has the following advantages:

• There is basically only one program to be called directly,avr-gcc , regardless
of the actual source language used.

• The invokation of the C preprocessor will be automatic, and will include the
appropriate options to locate required include files in the filesystem.

• The invokation of the linker will be automatic, and will include the appropri-
ate options to locate additional libraries as well as the application start-up code
(crt XXX.o ) and linker script.

Note that the invokation of the C preprocessor will be automatic when the filename
provided for the assembler file ends in .S (the capital letter "s"). This would even apply
to operating systems that use case-insensitive filesystems since the actual decision is
made based on the case of the filename suffix given on the command-line, not based on
the actual filename from the file system.

Alternatively, the language can explicitly be specified using the-x
assembler-with-cpp option.

9.5.3 Example program

The following annotated example features a simple 100 kHz square wave generator
using an AT90S1200 clocked with a 10.7 MHz crystal. Pin PD6 will be used for the
square wave output.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.5 avr-libc and assembler programs 283

#include <avr/io.h> ; Note [1]

work = 16 ; Note [2]
tmp = 17

inttmp = 19

intsav = 0

SQUARE = PD6 ; Note [3]

; Note [4]:
tmconst= 10700000 / 200000 ; 100 kHz => 200000 edges/s
fuzz= 8 ; # clocks in ISR until TCNT0 is set

.section .text

.global main ; Note [5]
main:

rcall ioinit
1:

rjmp 1b ; Note [6]

.global TIMER0_OVF_vect ; Note [7]
TIMER0_OVF_vect:

ldi inttmp, 256 - tmconst + fuzz
out _SFR_IO_ADDR(TCNT0), inttmp ; Note [8]

in intsav, _SFR_IO_ADDR(SREG) ; Note [9]

sbic _SFR_IO_ADDR(PORTD), SQUARE
rjmp 1f
sbi _SFR_IO_ADDR(PORTD), SQUARE
rjmp 2f

1: cbi _SFR_IO_ADDR(PORTD), SQUARE
2:

out _SFR_IO_ADDR(SREG), intsav
reti

ioinit:
sbi _SFR_IO_ADDR(DDRD), SQUARE

ldi work, _BV(TOIE0)
out _SFR_IO_ADDR(TIMSK), work

ldi work, _BV(CS00) ; tmr0: CK/1
out _SFR_IO_ADDR(TCCR0), work

ldi work, 256 - tmconst
out _SFR_IO_ADDR(TCNT0), work

sei

ret

.global __vector_default ; Note [10]

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.5 avr-libc and assembler programs 284

__vector_default:
reti

.end

Note [1]

As in C programs, this includes the central processor-specific file containing the IO port
definitions for the device. Note that not all include files can be included into assembler
sources.

Note [2]

Assignment of registers to symbolic names used locally. Another option would be to
use a C preprocessor macro instead:

#define work 16

Note [3]

Our bit number for the square wave output. Note that the right-hand side consists of a
CPP macro which will be substituted by its value (6 in this case) before actually being
passed to the assembler.

Note [4]

The assembler uses integer operations in the host-defined integer size (32 bits or longer)
when evaluating expressions. This is in contrast to the C compiler that uses the C type
int by default in order to calculate constant integer expressions.

In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times per
second. Since we use timer 0 without any prescaling options in order to get the de-
sired frequency and accuracy, we already run into serious timing considerations: while
accepting and processing the timer overflow interrupt, the timer already continues to
count. When pre-loading theTCCNT0register, we therefore have to account for the
number of clock cycles required for interrupt acknowledge and for the instructions to
reloadTCCNT0(4 clock cycles for interrupt acknowledge, 2 cycles for the jump from
the interrupt vector, 2 cycles for the 2 instructions that reloadTCCNT0). This is what
the constantfuzz is for.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.5 avr-libc and assembler programs 285

Note [5]

External functions need to be declared to be .global.main is the application entry
point that will be jumped to from the ininitalization routine incrts1200.o .

Note [6]

The main loop is just a single jump back to itself. Square wave generation itself is
completely handled by the timer 0 overflow interrupt service. Asleep instruction
(using idle mode) could be used as well, but probably would not conserve much energy
anyway since the interrupt service is executed quite frequently.

Note [7]

Interrupt functions can get theusual namesthat are also available to C programs. The
linker will then put them into the appropriate interrupt vector slots. Note that they must
be declared .global in order to be acceptable for this purpose. This will only work if
<avr/io.h > has been included. Note that the assembler or linker have no chance
to check the correct spelling of an interrupt function, so it should be double-checked.
(When analyzing the resulting object file usingavr-objdump or avr-nm , a name
like __vector_ N should appear, withN being a small integer number.)

Note [8]

As explained in the section aboutspecial function registers, the actual IO port address
should be obtained using the macro_SFR_IO_ADDR. (The AT90S1200 does not have
RAM thus the memory-mapped approach to access the IO registers is not available. It
would be slower than usingin / out instructions anyway.)

Since the operation to reloadTCCNT0is time-critical, it is even performed before
savingSREG. Obviously, this requires that the instructions involved would not change
any of the flag bits inSREG.

Note [9]

Interrupt routines must not clobber the global CPU state. Thus, it is usually necessary
to save at least the state of the flag bits inSREG. (Note that this serves as an example

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.5 avr-libc and assembler programs 286

here only since actually, all the following instructions would not modifySREGeither,
but that’s not commonly the case.)

Also, it must be made sure that registers used inside the interrupt routine do not conflict
with those used outside. In the case of a RAM-less device like the AT90S1200, this can
only be done by agreeing on a set of registers to be used exclusively inside the interrupt
routine; there would not be any other chance to "save" a register anywhere.

If the interrupt routine is to be linked together with C modules, care must be taken
to follow theregister usage guidelinesimposed by the C compiler. Also, any register
modified inside the interrupt sevice needs to be saved, usually on the stack.

Note [10]

As explained inInterrupts, a global "catch-all" interrupt handler that gets all unassigned
interrupt vectors can be installed using the name__vector_default . This must
be .global, and obviously, should end in areti instruction. (By default, a jump to
location 0 would be implied instead.)

9.5.4 Pseudo-ops and operators

The available pseudo-ops in the assembler are described in the GNU assembler (gas)
manual. The manual can be found online as part of the current binutils release under
http://sources.redhat.com/binutils/.

As gas comes from a Unix origin, its pseudo-op and overall assembler syntax is slightly
different than the one being used by other assemblers. Numeric constants follow the C
notation (prefix0x for hexadecimal constants), expressions use a C-like syntax.

Some common pseudo-ops include:

• .byte allocates single byte constants

• .ascii allocates a non-terminated string of characters

• .asciz allocates a\0-terminated string of characters (C string)

• .data switches to the .data section (initialized RAM variables)

• .text switches to the .text section (code and ROM constants)

• .set declares a symbol as a constant expression (identical to .equ)

• .global (or .globl) declares a public symbol that is visible to the linker (e. g.
function entry point, global variable)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://sources.redhat.com/binutils/.


9.6 Inline Assembler Cookbook 287

• .extern declares a symbol to be externally defined; this is effectively a comment
only, as gas treats all undefined symbols it encounters as globally undefined any-
way

Note that .org is available in gas as well, but is a fairly pointless pseudo-op in an as-
sembler environment that uses relocatable object files, as it is the linker that determines
the final position of some object in ROM or RAM.

Along with the architecture-independent standard operators, there are some AVR-
specific operators available which are unfortunately not yet described in the official
documentation. The most notable operators are:

• lo8 Takes the least significant 8 bits of a 16-bit integer

• hi8 Takes the most significant 8 bits of a 16-bit integer

• pm Takes a program-memory (ROM) address, and converts it into a RAM ad-
dress. This implies a division by 2 as the AVR handles ROM addresses as 16-bit
words (e.g. in anIJMP or ICALL instruction), and can also handle relocatable
symbols on the right-hand side.

Example:

ldi r24, lo8(pm(somefunc))
ldi r25, hi8(pm(somefunc))
call something

This passes the address of functionsomefunc as the first parameter to function
something .

9.6 Inline Assembler Cookbook

AVR-GCC

Inline Assembler Cookbook

About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly
language code into C programs. This cool feature may be used for manually optimizing
time critical parts of the software or to use specific processor instruction, which are not
available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it
may take some time to figure out the implementation details by studying the compiler
and assembler source code. There are also a few sample programs available in the net.
Hopefully this document will help to increase their number.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 288

It’s assumed, that you are familiar with writing AVR assembler programs, because this
is not an AVR assembler programming tutorial. It’s not a C language tutorial either.

Note that this document does not cover file written completely in assembler language,
refer toavr-libc and assembler programsfor this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies. Permis-
sion is granted to copy and distribute modified versions of this manual provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

This document describes version 3.3 of the compiler. There may be some parts, which
hadn’t been completely understood by the author himself and not all samples had been
tested so far. Because the author is German and not familiar with the English language,
there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Any-
way, he decided to offer his little knowledge to the public, in the hope to get enough
response to improve this document. Feel free to contact the author via e-mail. For the
latest release checkhttp://www.ethernut.de/.

Herne, 17th of May 2002 Harald Kipp harald.kipp-at-egnite.de

Note:

As of 26th of July 2002, this document has been merged into the
documentation for avr-libc. The latest version is now available at
http://savannah.nongnu.org/projects/avr-libc/.

9.6.1 GCC asm Statement

Let’s start with a simple example of reading a value from port D:

asm("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)) );

Eachasm statement is devided by colons into (up to) four parts:

1. The assembler instructions, defined as a single string constant:

"in %0, %1"

2. A list of output operands, separated by commas. Our example uses just one:

"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand
only:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://www.ethernut.de/.
http://savannah.nongnu.org/projects/avr-libc/.


9.6 Inline Assembler Cookbook 289

"I" (_SFR_IO_ADDR(PORTD))

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way as you would write assem-
bler programs. However, registers and constants are used in a different way if they refer
to expressions of your C program. The connection between registers and C operands is
specified in the second and third part of theasm instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list [: clobber list]);

In the code section, operands are referenced by a percent sign followed by a single digit.
0 refers to the first1 to the second operand and so forth. From the above example:

0 refers to"=r" (value) and

1 refers to"I" (_SFR_IO_ADDR(PORTD)) .

This may still look a little odd now, but the syntax of an operand list will be explained
soon. Let us first examine the part of a compiler listing which may have been generated
from our example:

lds r24,value
/* #APP */

in r24, 12
/* #NOAPP */

sts value,r24

The comments have been added by the compiler to inform the assembler that the in-
cluded code was not generated by the compilation of C statements, but by inline as-
sembler statements. The compiler selected registerr24 for storage of the value read
from PORTD. The compiler could have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler
code at all. All these decisions are part of the compiler’s optimization strategy. For
example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization.
To avoid this, you can add the volatile attribute to theasm statement:

asm volatile("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));

Alternatively, operands can be given names. The name is prepended in brackets to the
constraints in the operand list, and references to the named operand use the bracketed
name instead of a number after the % sign. Thus, the above example could also be
written as

asm("in %[retval], %[port]" :
[retval] "=r" (value) :
[port] "I" (_SFR_IO_ADDR(PORTD)) );

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 290

The last part of theasm instruction, the clobber list, is mainly used to tell the compiler
about modifications done by the assembler code. This part may be omitted, all other
parts are required, but may be left empty. If your assembler routine won’t use any
input or output operand, two colons must still follow the assembler code string. A
good example is a simple statement to disable interrupts:

asm volatile("cli"::);

9.6.2 Assembler Code

You can use the same assembler instruction mnemonics as you’d use with any other
AVR assembler. And you can write as many assembler statements into one code string
as you like and your flash memory is able to hold.

Note:

The available assembler directives vary from one assembler to another.

To make it more readable, you should put each statement on a seperate line:

asm volatile("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
::);

The linefeed and tab characters will make the assembler listing generated by the com-
piler more readable. It may look a bit odd for the first time, but that’s the way the
compiler creates it’s own assembler code.

You may also make use of some special registers.

Symbol Register
__SREG__ Status register at address 0x3F
__SP_H__ Stack pointer high byte at address 0x3E
__SP_L__ Stack pointer low byte at address 0x3D
__tmp_reg__ Register r0, used for temporary storage
__zero_reg__ Register r1, always zero

Registerr0 may be freely used by your assembler code and need not be restored at
the end of your code. It’s a good idea to use__tmp_reg__ and__zero_reg__
instead ofr0 or r1 , just in case a new compiler version changes the register usage
definitions.

9.6.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C
expression in parantheses.AVR-GCC3.3 knows the following constraint characters:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 291

Note:

The most up-to-date and detailed information on contraints for the avr can be found
in the gcc manual.
The x register isr27:r26 , the y register isr29:r28 , and thez register is
r31:r30

Constraint Used for Range
a Simple upper registers r16 to r23
b Base pointer registers

pairs
y, z

d Upper register r16 to r31
e Pointer register pairs x, y, z
q Stack pointer register SPH:SPL
r Any register r0 to r31
t Temporary register r0
w Special upper register

pairs
r24, r26, r28, r30

x Pointer register pair X x (r27:r26)
y Pointer register pair Y y (r29:r28)
z Pointer register pair Z z (r31:r30)
G Floating point constant 0.0
I 6-bit positive integer

constant
0 to 63

J 6-bit negative integer
constant

-63 to 0

K Integer constant 2
L Integer constant 0
l Lower registers r0 to r15
M 8-bit integer constant 0 to 255
N Integer constant -1
O Integer constant 8, 16, 24
P Integer constant 1
Q (GCC>= 4.2.x) A

memory address based
on Y or Z pointer with
displacement.

R (GCC>= 4.3.x) Integer
constant.

-6 to 5

The selection of the proper contraint depends on the range of the constants or registers,
which must be acceptable to the AVR instruction they are used with. The C compiler
doesn’t check any line of your assembler code. But it is able to check the constraint
against your C expression. However, if you specify the wrong constraints, then the
compiler may silently pass wrong code to the assembler. And, of course, the assembler
will fail with some cryptic output or internal errors. For example, if you specify the

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 292

constraint"r" and you are using this register with an"ori" instruction in your as-
sembler code, then the compiler may select any register. This will fail, if the compiler
choosesr2 to r15 . (It will never chooser0 or r1 , because these are uses for special
purposes.) That’s why the correct constraint in that case is"d" . On the other hand, if
you use the constraint"M" , the compiler will make sure that you don’t pass anything
else but an 8-bit value. Later on we will see how to pass multibyte expression results
to the assembler code.

The following table shows all AVR assembler mnemonics which require operands, and
the related contraints. Because of the improper constraint definitions in version 3.3,
they aren’t strict enough. There is, for example, no constraint, which restricts integer
constants to the range 0 to 7 for bit set and bit clear operations.

Mnemonic Constraints Mnemonic Constraints
adc r,r add r,r
adiw w,I and r,r
andi d,M asr r
bclr I bld r,I
brbc I,label brbs I,label
bset I bst r,I
cbi I,I cbr d,I
com r cp r,r
cpc r,r cpi d,M
cpse r,r dec r
elpm t,z eor r,r
in r,I inc r
ld r,e ldd r,b
ldi d,M lds r,label
lpm t,z lsl r
lsr r mov r,r
movw r,r mul r,r
neg r or r,r
ori d,M out I,r
pop r push r
rol r ror r
sbc r,r sbci d,M
sbi I,I sbic I,I
sbiw w,I sbr d,M
sbrc r,I sbrs r,I
ser d st e,r
std b,r sts label,r
sub r,r subi d,M
swap r

Constraint characters may be prepended by a single constraint modifier. Contraints
without a modifier specify read-only operands. Modifiers are:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 293

Modifier Specifies
= Write-only operand, usually used for all

output operands.
+ Read-write operand
& Register should be used for output only

Output operands must be write-only and the C expression result must be an lvalue,
which means that the operands must be valid on the left side of assignments. Note,
that the compiler will not check if the operands are of reasonable type for the kind of
operation used in the assembler instructions.

Input operands are, you guessed it, read-only. But what if you need the same operand
for input and output? As stated above, read-write operands are not supported in inline
assembler code. But there is another solution. For input operators it is possible to use
a single digit in the constraint string. Using digit n tells the compiler to use the same
register as for the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r" (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constraint"0"
tells the compiler, to use the same input register as for the first operand. Note however,
that this doesn’t automatically imply the reverse case. The compiler may choose the
same registers for input and output, even if not told to do so. This is not a problem in
most cases, but may be fatal if the output operator is modified by the assembler code
before the input operator is used. In the situation where your code depends on different
registers used for input and output operands, you must add the& constraint modifier to
your output operand. The following example demonstrates this problem:

asm volatile("in %0,%1" "\n\t"
"out %1, %2" "\n\t"
: "=&r" (input)
: "I" (_SFR_IO_ADDR(port)), "r" (output)

);

In this example an input value is read from a port and then an output value is written to
the same port. If the compiler would have choosen the same register for input and out-
put, then the output value would have been destroyed on the first assembler instruction.
Fortunately, this example uses the& constraint modifier to instruct the compiler not to
select any register for the output value, which is used for any of the input operands.
Back to swapping. Here is the code to swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %B0" "\n\t"
"mov %B0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 294

First you will notice the usage of register__tmp_reg__ , which we listed among
other special registers in theAssembler Codesection. You can use this register without
saving its contents. Completely new are those lettersA andB in %A0and%B0. In fact
they refer to two different 8-bit registers, both containing a part of value.

Another example to swap bytes of a 32-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %D0" "\n\t"
"mov %D0, __tmp_reg__" "\n\t"
"mov __tmp_reg__, %B0" "\n\t"
"mov %B0, %C0" "\n\t"
"mov %C0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

Instead of listing the same operand as both, input and output operand, it can also be
declared as a read-write operand. This must be applied to an output operand, and the
respective input operand list remains empty:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %D0" "\n\t"
"mov %D0, __tmp_reg__" "\n\t"
"mov __tmp_reg__, %B0" "\n\t"
"mov %B0, %C0" "\n\t"
"mov %C0, __tmp_reg__" "\n\t"
: "+r" (value));

If operands do not fit into a single register, the compiler will automatically assign
enough registers to hold the entire operand. In the assembler code you use%A0to refer
to the lowest byte of the first operand,%A1to the lowest byte of the second operand
and so on. The next byte of the first operand will be%B0, the next byte%C0and so on.

This also implies, that it is often neccessary to cast the type of an input operand to the
desired size.

A final problem may arise while using pointer register pairs. If you define an input
operand

"e" (ptr)

and the compiler selects registerZ (r30:r31), then

%A0refers tor30 and

%B0refers tor31 .

But both versions will fail during the assembly stage of the compiler, if you explicitely
needZ, like in

ld r24,Z

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 295

If you write

ld r24, %a0

with a lower casea following the percent sign, then the compiler will create the proper
assembler line.

9.6.4 Clobbers

As stated previously, the last part of theasm statement, the list of clobbers, may be
omitted, including the colon seperator. However, if you are using registers, which
had not been passed as operands, you need to inform the compiler about this. The
following example will do an atomic increment. It increments an 8-bit value pointed
to by a pointer variable in one go, without being interrupted by an interrupt routine
or another thread in a multithreaded environment. Note, that we must use a pointer,
because the incremented value needs to be stored before interrupts are enabled.

asm volatile(
"cli" "\n\t"
"ld r24, %a0" "\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)
: "r24"

);

The compiler might produce the following code:

cli
ld r24, Z
inc r24
st Z, r24
sei

One easy solution to avoid clobbering registerr24 is, to make use of the special tem-
porary register__tmp_reg__ defined by the compiler.

asm volatile(
"cli" "\n\t"
"ld __tmp_reg__, %a0" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a0, __tmp_reg__" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)

);

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 296

The compiler is prepared to reload this register next time it uses it. Another problem
with the above code is, that it should not be called in code sections, where interrupts
are disabled and should be kept disabled, because it will enable interrupts at the end.
We may store the current status, but then we need another register. Again we can solve
this without clobbering a fixed, but let the compiler select it. This could be done with
the help of a local C variable.

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)

);
}

Now every thing seems correct, but it isn’t really. The assembler code modifies the
variable, thatptr points to. The compiler will not recognize this and may keep its
value in any of the other registers. Not only does the compiler work with the wrong
value, but the assembler code does too. The C program may have modified the value
too, but the compiler didn’t update the memory location for optimization reasons. The
worst thing you can do in this case is:

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)
: "memory"

);
}

The special clobber "memory" informs the compiler that the assembler code may mod-
ify any memory location. It forces the compiler to update all variables for which the
contents are currently held in a register before executing the assembler code. And of
course, everything has to be reloaded again after this code.

In most situations, a much better solution would be to declare the pointer destination
itself volatile:

volatile uint8_t *ptr;

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 297

This way, the compiler expects the value pointed to byptr to be changed and will
load it whenever used and store it whenever modified.

Situations in which you need clobbers are very rare. In most cases there will be better
ways. Clobbered registers will force the compiler to store their values before and reload
them after your assembler code. Avoiding clobbers gives the compiler more freedom
while optimizing your code.

9.6.5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros
and put them into include files. AVR Libc comes with a bunch of them, which could be
found in the directoryavr/include . Using such include files may produce compiler
warnings, if they are used in modules, which are compiled in strict ANSI mode. To
avoid that, you can write__asm__ instead ofasm and__volatile__ instead of
volatile . These are equivalent aliases.

Another problem with reused macros arises if you are using labels. In such
cases you may make use of the special pattern=, which is replaced by a unique
number on eachasm statement. The following code had been taken from
avr/include/iomacros.h :

#define loop_until_bit_is_clear(port,bit) \
__asm__ __volatile__ ( \
"L_%=: " "sbic %0, %1" "\n\t" \

"rjmp L_%=" \
: /* no outputs */ \
: "I" (_SFR_IO_ADDR(port)),

"I" (bit)
)

When used for the first time,L_= may be translated toL_1404 , the next usage might
createL_1405 or whatever. In any case, the labels became unique too.

Another option is to use Unix-assembler style numeric labels. They are explained in
How do I trace an assembler file in avr-gdb?. The above example would then look like:

#define loop_until_bit_is_clear(port,bit)
__asm__ __volatile__ (
"1: " "sbic %0, %1" "\n\t"

"rjmp 1b"
: /* no outputs */
: "I" (_SFR_IO_ADDR(port)),

"I" (bit)
)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 298

9.6.6 C Stub Functions

Macro definitions will include the same assembler code whenever they are referenced.
This may not be acceptable for larger routines. In this case you may define a C stub
function, containing nothing other than your assembler code.

void delay(uint8_t ms)
{

uint16_t cnt;
asm volatile (

"\n"
"L_dl1%=:" "\n\t"
"mov %A0, %A2" "\n\t"
"mov %B0, %B2" "\n"
"L_dl2%=:" "\n\t"
"sbiw %A0, 1" "\n\t"
"brne L_dl2%=" "\n\t"
"dec %1" "\n\t"
"brne L_dl1%=" "\n\t"
: "=&w" (cnt)
: "r" (ms), "r" (delay_count)
);

}

The purpose of this function is to delay the program execution by a specified number
of milliseconds using a counting loop. The global 16 bit variable delay_count must
contain the CPU clock frequency in Hertz divided by 4000 and must have been set
before calling this routine for the first time. As described in theclobbersection, the
routine uses a local variable to hold a temporary value.

Another use for a local variable is a return value. The following function returns a 16
bit value read from two successive port addresses.

uint16_t inw(uint8_t port)
{

uint16_t result;
asm volatile (

"in %A0,%1" "\n\t"
"in %B0,(%1) + 1"
: "=r" (result)
: "I" (_SFR_IO_ADDR(port))
);

return result;
}

Note:

inw() is supplied by avr-libc.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.6 Inline Assembler Cookbook 299

9.6.7 C Names Used in Assembler Code

By defaultAVR-GCCuses the same symbolic names of functions or variables in C and
assembler code. You can specify a different name for the assembler code by using a
special form of theasm statement:

unsigned long value asm("clock") = 3686400;

This statement instructs the compiler to use the symbol name clock rather than value.
This makes sense only for external or static variables, because local variables do not
have symbolic names in the assembler code. However, local variables may be held in
registers.

With AVR-GCCyou can specify the use of a specific register:

void Count(void)
{

register unsigned char counter asm("r3");

... some code...
asm volatile("clr r3");
... more code...

}

The assembler instruction,"clr r3" , will clear the variable counter.AVR-GCCwill
not completely reserve the specified register. If the optimizer recognizes that the vari-
able will not be referenced any longer, the register may be re-used. But the compiler
is not able to check wether this register usage conflicts with any predefined register. If
you reserve too many registers in this way, the compiler may even run out of registers
during code generation.

In order to change the name of a function, you need a prototype declaration, because
the compiler will not accept theasm keyword in the function definition:

extern long Calc(void) asm ("CALCULATE");

Calling the functionCalc() will create assembler instructions to call the function
CALCULATE.

9.6.8 Links

For a more thorough discussion of inline assembly usage, see the gcc user
manual. The latest version of the gcc manual is always available here:
http://gcc.gnu.org/onlinedocs/

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://gcc.gnu.org/onlinedocs/


9.7 How to Build a Library 300

9.7 How to Build a Library

9.7.1 Introduction

So you keep reusing the same functions that you created over and over? Tired of cut and
paste going from one project to the next? Would you like to reduce your maintenance
overhead? Then you’re ready to create your own library! Code reuse is a very laudable
goal. With some upfront investment, you can save time and energy on future projects
by having ready-to-go libraries. This chapter describes some background information,
design considerations, and practical knowledge that you will need to create and use
your own libraries.

9.7.2 How the Linker Works

The compiler compiles a single high-level language file (C language, for example) into
a single object module file. The linker (ld) can only work with object modules to link
them together. Object modules are the smallest unit that the linker works with.

Typically, on the linker command line, you will specify a set of object modules (that
has been previously compiled) and then a list of libraries, including the Standard C
Library. The linker takes the set of object modules that you specify on the command
line and links them together. Afterwards there will probably be a set of "undefined
references". A reference is essentially a function call. An undefined reference is a
function call, with no defined function to match the call.

The linker will then go through the libraries, in order, to match the undefined references
with function definitions that are found in the libraries. If it finds the function that
matches the call, the linker will then link in the object module in which the function is
located. This part is important: the linker links in THE ENTIRE OBJECT MODULE in
which the function is located. Remember, the linker knows nothing about the functions
internal to an object module, other than symbol names (such as function names). The
smallest unit the linker works with is object modules.

When there are no more undefined references, the linker has linked everything and is
done and outputs the final application.

9.7.3 How to Design a Library

How the linker behaves is very important in designing a library. Ideally, you want to
design a library where only the functions that are called are the only functions to be
linked into the final application. This helps keep the code size to a minimum. In order
to do this, with the way the linker works, is to only write one function per code module.
This will compile to one function per object module. This is usually a very different
way of doing things than writing an application!

There are always exceptions to the rule. There are generally two cases where you

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.7 How to Build a Library 301

would want to have more than one function per object module.

The first is when you have very complementary functions that it doesn’t make much
sense to split them up. For example,malloc() andfree(). If someone is going to use
malloc(), they will very likely be usingfree()(or at least should be usingfree()). In this
case, it makes more sense to aggregate those two functions in the same object module.

The second case is when you want to have an Interrupt Service Routine (ISR) in your
library that you want to link in. The problem in this case is that the linker looks for
unresolved references and tries to resolve them with code in libraries. A reference is
the same as a function call. But with ISRs, there is no function call to initiate the ISR.
The ISR is placed in the Interrupt Vector Table (IVT), hence no call, no reference,
and no linking in of the ISR. In order to do this, you have to trick the linker in a way.
Aggregate the ISR, with another function in the same object module, but have the other
function be something that is required for the user to call in order to use the ISR, like
perhaps an initialization function for the subsystem, or perhaps a function that enables
the ISR in the first place.

9.7.4 Creating a Library

The librarian program is calledar (for "archiver") and is found in the GNU Binutils
project. This program will have been built for the AVR target and will therefore be
namedavr-ar .

The job of the librarian program is simple: aggregate a list of object modules into a
single library (archive) and create an index for the linker to use. The name that you
create for the library filename must follow a specific pattern: libname.a. Thenamepart
is the unique part of the filename that you create. It makes it easier if thenamepart
relates to what the library is about. Thisnamepart must be prefixed by "lib", and it
must have a file extension of .a, for "archive". The reason for the special form of the
filename is for how the library gets used by the toolchain, as we will see later on.

Note:

The filename is case-sensitive. Use a lowercase "lib" prefix, and a lowercase ".a"
as the file extension.

The command line is fairly simple:

avr-as rcs <library name> <list of object modules>

The r command switch tells the program to insert the object modules into the archive
with replacement. Thec command line switch tells the program to create the archive.
And thes command line switch tells the program to write an object-file index into the
archive, or update an existing one. This last switch is very important as it helps the
linker to find what it needs to do its job.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.8 Benchmarks 302

Note:

The command line switches are case sensitive! There are uppercase switches that
have completely different actions.
MFile and the WinAVR distribution contain a Makefile Template that includes the
necessary command lines to build a library. You will have to manually modify the
template to switch it over to build a library instead of an application.

See the GNU Binutils manual for more information on thear program.

9.7.5 Using a Library

To use a library, use the-l switch on your linker command line. The string immedi-
ately following the-l is the unique part of the library filename that the linker will link
in. For example, if you use:

-lm

this will expand to the library filename:

libm.a

which happens to be the math library included in avr-libc.

If you use this on your linker command line:

-lprintf_flt

then the linker will look for a library called:

libprintf_flt.a

This is why naming your library is so important when you create it!

The linker will search libraries in the order that they appear on the command line.
Whichever function is found first that matches the undefined reference, it will be linked
in.

There are also command line switches that tell GCC which directory to look in (-L )
for the libraries that are specified to be linke in with-l .

See the GNU Binutils manual for more information on the GNU linker (ld) program.

9.8 Benchmarks

The results below can only give a rough estimate of the resources necessary for using
certain library functions. There is a number of factors which can both increase or
reduce the effort required:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.8 Benchmarks 303

• Expenses for preparation of operands and their stack are not considered.

• In the table, the size includes all additional functions (for example, function to
multiply two integers) but they are only linked from the library.

• Expenses of time of performance of some functions essentially depend on param-
eters of a call, for example,qsort()is recursive, andsprintf() receives parameters
in a stack.

• Different versions of the compiler can give a significant difference in code size
and execution time. For example, the float version ofsscanf()function, com-
piled with avr-gcc 3.4.6, requires 3792 bytes and uses 124 bytes of stack. After
transition to avr-gcc 4.2.2, the size become 3886 bytes, using 140 bytes of stack.

9.8.1 A few of libc functions.

Avr-gcc version is 4.2.2

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.8 Benchmarks 304

Function Units Avr2 Avr25 Avr4
atoi ("12345") Flash bytes

Stack bytes
MCU clocks

82
2
155

78 74
2
149

atol ("12345") Flash bytes
Stack bytes
MCU clocks

122
2
221

118 118
2
219

dtostre (1.2345,
s, 6, 0)

Flash bytes
Stack bytes
MCU clocks

1184
17
1313

1088 1088
17
1152

dtostrf (1.2345,
15, 6, s)

Flash bytes
Stack bytes
MCU clocks

1676
36
1608

1548 1548
36
1443

itoa (12345, s,
10)

Flash bytes
Stack bytes
MCU clocks

150
4
1172

134 134
4
1152

ltoa (12345L, s,
10)

Flash bytes
Stack bytes
MCU clocks

220
9
3174

200 200
9
3136

malloc (1) Flash bytes
Stack bytes
MCU clocks

556
4
197

508 508
4
179

realloc ((void
∗)0, 1)

Flash bytes
Stack bytes
MCU clocks

1156
20
304

1046 1046
20
281

qsort (s,
sizeof(s), 1, cmp)

Flash bytes
Stack bytes
MCU clocks

1242
38
20914

990 1008
38
16678

sprintf_min (s,
"%d", 12345)

Flash bytes
Stack bytes
MCU clocks

1216
59
1846

1090 1086
59
1711

sprintf (s, "%d",
12345)

Flash bytes
Stack bytes
MCU clocks

1674
58
1610

1542 1498
58
1528

sprintf_flt (s,
"%e", 1.2345)

Flash bytes
Stack bytes
MCU clocks

3334
66
2513

3084 3040
66
2297

sscanf_min
("12345", "%d",
&i)

Flash bytes
Stack bytes
MCU clocks

1528
60
1743

1378 1390
60
1456

sscanf ("12345",
"%d", &i)

Flash bytes
Stack bytes
MCU clocks

1880
62
1849

1724 1694
62
1561

sscanf_flt
("1.2345", "%e",
&x)

Flash bytes
Stack bytes
MCU clocks

4250
140
3131

3916 3886
140
2756

strtod ("1.2345",
&p)

Flash bytes
Stack bytes
MCU clocks

1638
22
1273

1550 1514
22
1012

strtol ("12345",
&p, 0)

Flash bytes
Stack bytes
MCU clocks

956
29
1081

888 822
21
729

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.9 Porting From IAR to AVR GCC 305

9.8.2 Math functions.

The table contains the number of MCU clocks to calculate a function with a given
argument(s). The main reason of a big difference between Avr2 and Avr4 is a hardware
multiplication.

Function Avr2 Avr4
__addsf3 (1.234, 5.678) 113 108
__mulsf3 (1.234, 5.678) 375 138
__divsf3 (1.234, 5.678) 466 465
acos (0.54321) 4648 2689
asin (0.54321) 4754 2790
atan (0.54321) 4710 2271
atan2 (1.234, 5.678) 5270 2857
ceil (1.2345) 177 177
cos (1.2345) 3381 1665
cosh (1.2345) 4922 2979
exp (1.2345) 4708 2765
fdim (5.678, 1.234) 111 111
floor (1.2345) 180 180
fmax (1.234, 5.678) 39 37
fmin (1.234, 5.678) 35 35
fmod (5.678, 1.234) 132 132
frexp (1.2345, 0) 37 36
hypot (1.234, 5.678) 1556 1078
ldexp (1.2345, 6) 42 42
log (1.2345) 4142 2134
log10 (1.2345) 4498 2260
modf (1.2345, 0) 433 429
pow (1.234, 5.678) 9293 5047
round (1.2345) 150 150
sin (1.2345) 3347 1647
sinh (1.2345) 4946 3003
sqrt (1.2345) 709 704
tan (1.2345) 4375 2420
tanh (1.2345) 5126 3173
trunc (1.2345) 178 178

9.9 Porting From IAR to AVR GCC

9.9.1 Introduction

C language was designed to be a portable language. There two main types of port-
ing activities: porting an application to a different platform (OS and/or processor),

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.9 Porting From IAR to AVR GCC 306

and porting to a different compiler. Porting to a different compiler can be exacerbated
when the application is an embedded system. For example, the C language Standard,
strangely, does not specify a standard for declaring and defining Interrupt Service Rou-
tines (ISRs). Different compilers have different ways of defining registers, some of
which use non-standard language constructs.

This chapter describes some methods and pointers on porting an AVR application built
with the IAR compiler to the GNU toolchain (AVR GCC). Note that this may not be
an exhaustive list.

9.9.2 Registers

IO header files contain identifiers for all the register names and bit names for a par-
ticular processor. IAR has individual header files for each processor and they must be
included when registers are being used in the code. For example:

#include <iom169.h>

Note:

IAR does not always use the same register names or bit names that are used in the
AVR datasheet.

AVR GCC also has individual IO header files for each processor. However, the ac-
tual processor type is specified as a command line flag to the compiler. (Using the
-mmcu=processor flag.) This is usually done in the Makefile. This allows you to
specify only a single header file for any processor type:

#include <avr/io.h>

Note:

The forward slash in the<avr/io.h> file name that is used to separate subdirecto-
ries can be used on Windows distributions of the toolchain and is the recommended
method of including this file.

The compiler knows the processor type and through the single header file above, it can
pull in and include the correct individual IO header file. This has the advantage that you
only have to specify one generic header file, and you can easily port your application
to another processor type without having to change every file to include the new IO
header file.

The AVR toolchain tries to adhere to the exact names of the registers and names of
the bits found in the AVR datasheet. There may be some descrepencies between the
register names found in the IAR IO header files and the AVR GCC IO header files.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.9 Porting From IAR to AVR GCC 307

9.9.3 Interrupt Service Routines (ISRs)

As mentioned above, the C language Standard, strangely, does not specify a standard
way of declaring and defining an ISR. Hence, every compiler seems to have their own
special way of doing so.

IAR declares an ISR like so:

#pragma vector=TIMER0_OVF_vect
__interrupt void MotorPWMBottom()
{

// code
}

In AVR GCC, you declare an ISR like so:

ISR(PCINT1_vect)
{

//code
}

AVR GCC uses theISR macro to define an ISR. This macro requries the header file:

#include <avr/interrupt.h>

The names of the various interrupt vectors are found in the individual processor IO
header files that you must include with<avr/io.h >.

Note:

The names of the interrupt vectors in AVR GCC has been changed to match the
names of the vectors in IAR. This significantly helps in porting applications from
IAR to AVR GCC.

9.9.4 Intrinsic Routines

IAR has a number of intrinsic routine such as

__enable_interrupts() __disable_interrupts() __watchdog_-
reset()

These intrinsic functions compile to specific AVR opcodes (SEI, CLI, WDR).

There are equivalent macros that are used in AVR GCC, however they are not located
in a single include file.

AVR GCC has sei() for __enable_interrupts() , and cli()
for __disable_interrupts() . Both of these macros are located in
<avr/interrupts.h >.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.9 Porting From IAR to AVR GCC 308

AVR GCC has the macrowdt_reset() in place of __watchdog_reset() .
However, there is a whole Watchdog Timer API available in AVR GCC that can be
found in<avr/wdt.h >.

9.9.5 Flash Variables

The C language was not designed for Harvard architecture processors with separate
memory spaces. This means that there are various non-standard ways to define a vari-
able whose data resides in the Program Memory (Flash).

IAR uses a non-standard keyword to declare a variable in Program Memory:

__flash int mydata[] = ....

AVR GCC uses Variable Attributes to achieve the same effect:

int mydata[] __attribute__((progmem))

Note:

See the GCC User Manual for more information about Variable Attributes.

avr-libc provides a convenience macro for the Variable Attribute:

#include <avr/pgmspace.h>
.
.
.
int mydata[] PROGMEM = ....

Note:

The PROGMEM macro expands to the Variable Attribute ofprogmem. This
macro requires that you include<avr/pgmspace.h >. This is the canonical
method for defining a variable in Program Space.

To read back flash data, use thepgm_read_ ∗() macros defined in
<avr/pgmspace.h >. All Program Memory handling macros are defined
there.

There is also a way to create a method to define variables in Program Memory that is
common between the two compilers (IAR and AVR GCC). Create a header file that has
these definitions:

#if defined(__ICCAVR__) // IAR C Compiler
#define FLASH_DECLARE(x) __flash x
#endif
#if defined(__GNUC__) // GNU Compiler
#define FLASH_DECLARE(x) x __attribute__((__progmem__))
#endif

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.9 Porting From IAR to AVR GCC 309

This code snippet checks for the IAR compiler or for the GCC compiler and defines a
macroFLASH_DECLARE(x) that will declare a variable in Program Memory using
the appropriate method based on the compiler that is being used. Then you would used
it like so:

FLASH_DECLARE(int mydata[] = ...);

9.9.6 Non-Returning main()

To declare main() to be a non-returning function in IAR, it is done like this:

__C_task void main(void)
{

// code
}

To do the equivalent in AVR GCC, do this:

void main(void) __attribute__((noreturn));

void main(void)
{

//...
}

Note:

See the GCC User Manual for more information on Function Attributes.

In AVR GCC, a prototype for main() is required so you can declare the function at-
tribute to specify that the main() function is of type "noreturn". Then, define main() as
normal. Note that the return type for main() is nowvoid .

9.9.7 Locking Registers

The IAR compiler allows a user to lock general registers from r15 and down by using
compiler options and this keyword syntax:

__regvar __no_init volatile unsigned int filteredTimeSinceCommutation @14;

This line locks r14 for use only when explicitly referenced in your code thorugh the var
name "filteredTimeSinceCommutation". This means that the compiler cannot dispose
of it at its own will.

To do this in AVR GCC, do this:

register unsigned char counter asm("r3");

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 310

Typically, it should be possible to use r2 through r15 that way.

Note:

Do not reserve r0 or r1 as these are used internally by the compiler for a temporary
register and for a zero value.
Locking registers is not recommended in AVR GCC as it removes this register
from the control of the compiler, which may make code generation worse. Use at
your own risk.

9.10 Frequently Asked Questions

9.10.1 FAQ Index

1. My program doesn’t recognize a variable updated within an interrupt routine

2. I get "undefined reference to..." for functions like "sin()"

3. How to permanently bind a variable to a register?

4. How to modify MCUCR or WDTCR early?

5. What is all this _BV() stuff about?

6. Can I use C++ on the AVR?

7. Shouldn’t I initialize all my variables?

8. Why do some 16-bit timer registers sometimes get trashed?

9. How do I use a #define’d constant in an asm statement?

10. Why does the PC randomly jump around when single-stepping through my pro-
gram in avr-gdb?

11. How do I trace an assembler file in avr-gdb?

12. How do I pass an IO port as a parameter to a function?

13. What registers are used by the C compiler?

14. How do I put an array of strings completely in ROM?

15. How to use external RAM?

16. Which -O flag to use?

17. How do I relocate code to a fixed address?

18. My UART is generating nonsense! My ATmega128 keeps crashing! Port F is
completely broken!

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 311

19. Why do all my "foo...bar" strings eat up the SRAM?

20. Why does the compiler compile an 8-bit operation that uses bitwise operators
into a 16-bit operation in assembly?

21. How to detect RAM memory and variable overlap problems?

22. Is it really impossible to program the ATtinyXX in C?

23. What is this "clock skew detected" messsage?

24. Why are (many) interrupt flags cleared by writing a logical 1?

25. Why have "programmed" fuses the bit value 0?

26. Which AVR-specific assembler operators are available?

27. Why are interrupts re-enabled in the middle of writing the stack pointer?

28. Why are there five different linker scripts?

29. How to add a raw binary image to linker output?

30. How do I perform a software reset of the AVR?

9.10.2 My program doesn’t recognize a variable updated within an interrupt
routine

When using the optimizer, in a loop like the following one:

uint8_t flag;
...
ISR(SOME_vect) {

flag = 1;
}
...

while (flag == 0) {
...

}

the compiler will typically accessflag only once, and optimize further accesses com-
pletely away, since its code path analysis shows that nothing inside the loop could
change the value offlag anyway. To tell the compiler that this variable could be
changed outside the scope of its code path analysis (e. g. from within an interrupt
routine), the variable needs to be declared like:

volatile uint8_t flag;

Back toFAQ Index.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 312

9.10.3 I get "undefined reference to..." for functions like "sin()"

In order to access the mathematical functions that are declared in<math.h >, the
linker needs to be told to also link the mathematical library,libm.a .

Typically, system libraries likelibm.a are given to the final C compiler command
line that performs the linking step by adding a flag-lm at the end. (That is, the initial
lib and the filename suffix from the library are written immediately after a-l flag. So
for a libfoo.a library, -lfoo needs to be provided.) This will make the linker
search the library in a path known to the system.

An alternative would be to specify the full path to thelibm.a file at the same place
on the command line, i. e.after all the object files (∗.o ). However, since this re-
quires knowledge of where the build system will exactly find those library files, this is
deprecated for system libraries.

Back toFAQ Index.

9.10.4 How to permanently bind a variable to a register?

This can be done with

register unsigned char counter asm("r3");

Typically, it should be save to use r2 through r7 that way.

Registers r8 through r15 can be used for argument passing by the compiler in case
many or long arguments are being passed to callees. If this is not the case throughout
the entire application, these registers could be used for register variables as well.

Extreme care should be taken that the entire application is compiled with a consistent
set of register-allocated variables, including possibly used library functions.

SeeC Names Used in Assembler Codefor more details.

Back toFAQ Index.

9.10.5 How to modify MCUCR or WDTCR early?

The method of early initialization (MCUCR, WDTCRor anything else) is different (and
more flexible) in the current version. Basically, write a small assembler file which
looks like this:

;; begin xram.S

#include <avr/io.h>

.section .init1,"ax",@progbits

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 313

ldi r16,_BV(SRE) | _BV(SRW)
out _SFR_IO_ADDR(MCUCR),r16

;; end xram.S

Assemble it, link the resultingxram.o with other files in your program, and this piece
of code will be inserted in initialization code, which is run right after reset. See the
linker script for comments about the new.init N sections (which one to use, etc.).

The advantage of this method is that you can insert any initialization code you want
(just remember that this is very early startup – no stack and no__zero_reg__ yet),
and no program memory space is wasted if this feature is not used.

There should be no need to modify linker scripts anymore, except for some very spe-
cial cases. It is best to leave__stack at its default value (end of internal SRAM
– faster, and required on some devices like ATmega161 because of errata), and add
-Wl,-Tdata,0x801100 to start the data section above the stack.

For more information on using sections, seeMemory Sections. There is also an ex-
ample forUsing Sections in C Code. Note that in C code, any such function would
preferrably be placed into section .init3 as the code in .init2 ensures the internal regis-
ter__zero_reg__ is already cleared.

Back toFAQ Index.

9.10.6 What is all this _BV() stuff about?

When performing low-level output work, which is a very central point in microcon-
troller programming, it is quite common that a particular bit needs to be set or cleared
in some IO register. While the device documentation provides mnemonic names for
the various bits in the IO registers, and theAVR device-specific IO definitionsreflect
these names in definitions for numerical constants, a way is needed to convert a bit
number (usually within a byte register) into a byte value that can be assigned directly
to the register. However, sometimes the direct bit numbers are needed as well (e. g. in
anSBI() instruction), so the definitions cannot usefully be made as byte values in the
first place.

So in order to access a particular bit number as a byte value, use the_BV() macro.
Of course, the implementation of this macro is just the usual bit shift (which is done
by the compiler anyway, thus doesn’t impose any run-time penalty), so the following
applies:

_BV(3) => 1 << 3 => 0x08

However, using the macro often makes the program better readable.

"BV" stands for "bit value", in case someone might ask you. :-)

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 314

Example: clock timer 2 with full IO clock (CS2x = 0b001), toggle OC2 output on
compare match (COM2x = 0b01), and clear timer on compare match (CTC2= 1). Make
OC2 (PD7) an output.

TCCR2 = _BV(COM20)|_BV(CTC2)|_BV(CS20);
DDRD = _BV(PD7);

Back toFAQ Index.

9.10.7 Can I use C++ on the AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and
compiled to support it, of course). Source files ending in .cc, .cpp or .C will automati-
cally cause the compiler frontend to invoke the C++ compiler. Alternatively, the C++
compiler could be explicitly called by the nameavr-c++ .

However, there’s currently no support forlibstdc++ , the standard support library
needed for a complete C++ implementation. This imposes a number of restrictions on
the C++ programs that can be compiled. Among them are:

• Obviously, none of the C++ related standard functions, classes, and template
classes are available.

• The operatorsnew anddelete are not implemented, attempting to use them
will cause the linker to complain about undefined external references. (This
could perhaps be fixed.)

• Some of the supplied include files are not C++ safe, i. e. they need to be wrapped
into

extern "C" { . . . }

(This could certainly be fixed, too.)

• Exceptions are not supported. Since exceptions are enabled by default in the
C++ frontend, they explicitly need to be turned off using-fno-exceptions
in the compiler options. Failing this, the linker will complain about an undefined
external reference to__gxx_personality_sj0 .

Constructors and destructorsaresupported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcon-
trollers, extra care should be taken to avoid unwanted side effects of the C++ calling
conventions like implied copy constructors that could be called upon function invo-
cation etc. These things could easily add up into a considerable amount of time and

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 315

program memory wasted. Thus, casual inspection of the generated assembler code
(using the-S compiler option) seems to be warranted.

Back toFAQ Index.

9.10.8 Shouldn’t I initialize all my variables?

Global and static variables are guaranteed to be initialized to 0 by the C standard.
avr-gcc does this by placing the appropriate code into section .init4 (seeThe .initN
Sections). With respect to the standard, this sentence is somewhat simplified (because
the standard allows for machines where the actual bit pattern used differs from all bits
being 0), but for the AVR target, in general, all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not initialized (i. e. they don’t have an equal sign and
an initialization expression to the right within the definition of the variable), they go
into the.bsssection of the file. This section simply records the size of the variable,
but otherwise doesn’t consume space, neither within the object file nor within flash
memory. (Of course, being a variable, it will consume space in the target’s SRAM.)

In contrast, global and static variables that have an initializer go into the.datasection
of the file. This will cause them to consume space in the object file (in order to record
the initializing value),and in the flash ROM of the target device. The latter is needed
since the flash ROM is the only way that the compiler can tell the target device the
value this variable is going to be initialized to.

Now if some programmer "wants to make doubly sure" their variables really get a 0
at program startup, and adds an initializer just containing 0 on the right-hand side,
they waste space. While this waste of space applies to virtually any platform C is
implemented on, it’s usually not noticeable on larger machines like PCs, while the
waste of flash ROM storage can be very painful on a small microcontroller like the
AVR.

So in general, variables should only be explicitly initialized if the initial value is non-
zero.

Note:

Recent versions of GCC are now smart enough to detect this situation, and revert
variables that are explicitly initialized to 0 to the .bss section. Still, other compilers
might not do that optimization, and as the C standard guarantees the initialization,
it is safe to rely on it.

Back toFAQ Index.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 316

9.10.9 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in
the Atmel datasheet) to guarantee an atomic access to the register despite the fact that
two separate 8-bit IO transfers are required to actually move the data. Typically, this
includes access to the current timer/counter value register (TCNTn), the input capture
register (ICRn), and write access to the output compare registers (OCRnM). Refer to
the actual datasheet for each device’s set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and
possibly any other one from within an interrupt routine, care must be taken that no
access from within an interrupt context could clobber the TEMP register data of an
in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it’s usually best to use the
ISR()macro when declaring the interrupt function, and to ensure that interrupts are still
disabled when accessing those 16-bit timer registers.

Within the main program, access to those registers could be encapsulated in calls to the
cli() andsei()macros. If the status of the global interrupt flag before accessing one of
those registers is uncertain, something like the following example code can be used.

uint16_t
read_timer1(void)
{

uint8_t sreg;
uint16_t val;

sreg = SREG;
cli();
val = TCNT1;
SREG = sreg;

return val;
}

Back toFAQ Index.

9.10.10 How do I use a #define’d constant in an asm statement?

So you tried this:

asm volatile("sbi 0x18,0x07;");

Which works. When you do the same thing but replace the address of the port by its
macro name, like this:

asm volatile("sbi PORTB,0x07;");

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 317

you get a compilation error:"Error: constant value required" .

PORTBis a precompiler definition included in the processor specific file included in
avr/io.h . As you may know, the precompiler will not touch strings andPORTB,
instead of0x18 , gets passed to the assembler. One way to avoid this problem is:

asm volatile("sbi %0, 0x07" : "I" (_SFR_IO_ADDR(PORTB)):);

Note:

For C programs, rather use the standard C bit operators instead, so the above would
be expressed asPORTB |= (1 << 7) . The optimizer will take care to trans-
form this into a single SBI instruction, assuming the operands allow for this.

Back toFAQ Index.

9.10.11 Why does the PC randomly jump around when single-stepping through
my program in avr-gdb?

When compiling a program with both optimization (-O) and debug information (-g )
which is fortunately possible inavr-gcc , the code watched in the debugger is opti-
mized code. While it is not guaranteed, very often this code runs with the exact same
optimizations as it would run without the-g switch.

This can have unwanted side effects. Since the compiler is free to reorder code ex-
ecution as long as the semantics do not change, code is often rearranged in order to
make it possible to use a single branch instruction for conditional operations. Branch
instructions can only cover a short range for the target PC (-63 through +64 words from
the current PC). If a branch instruction cannot be used directly, the compiler needs to
work around it by combining a skip instruction together with a relative jump (rjmp )
instruction, which will need one additional word of ROM.

Another side effect of optimzation is that variable usage is restricted to the area of code
where it is actually used. So if a variable was placed in a register at the beginning of
some function, this same register can be re-used later on if the compiler notices that the
first variable is no longer used inside that function, even though the variable is still in
lexical scope. When trying to examine the variable inavr-gdb , the displayed result
will then look garbled.

So in order to avoid these side effects, optimization can be turned off while debugging.
However, some of these optimizations might also have the side effect of uncovering
bugs that would otherwise not be obvious, so it must be noted that turning off opti-
mization can easily change the bug pattern. In most cases, you are better off leaving
optimizations enabled while debugging.

Back toFAQ Index.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 318

9.10.12 How do I trace an assembler file in avr-gdb?

When using the-g compiler option,avr-gcc only generates line number and other
debug information for C (and C++) files that pass the compiler. Functions that don’t
have line number information will be completely skipped by a singlestep command
in gdb . This includes functions linked from a standard library, but by default also
functions defined in an assembler source file, since the-g compiler switch does not
apply to the assembler.

So in order to debug an assembler input file (possibly one that has to be passed through
the C preprocessor), it’s the assembler that needs to be told to include line-number
information into the output file. (Other debug information like data types and variable
allocation cannot be generated, since unlike a compiler, the assembler basically doesn’t
know about this.) This is done using the (GNU) assembler option-gstabs .

Example:

$ avr-as -mmcu=atmega128 --gstabs -o foo.o foo.s

When the assembler is not called directly but through the C compiler frontend
(either implicitly by passing a source file ending in .S, or explicitly using-x
assembler-with-cpp ), the compiler frontend needs to be told to pass the
-gstabs option down to the assembler. This is done using-Wa,-gstabs . Please
take care toonly pass this option when compiling an assembler input file. Otherwise,
the assembler code that results from the C compilation stage will also get line number
information, which confuses the debugger.

Note:

You can also use-Wa,-gstabs since the compiler will add the extra’-’ for
you.

Example:

$ EXTRA_OPTS="-Wall -mmcu=atmega128 -x assembler-with-cpp"
$ avr-gcc -Wa,--gstabs ${EXTRA_OPTS} -c -o foo.o foo.S

Also note that the debugger might get confused when entering a piece of code that has
a non-local label before, since it then takes this label as the name of a new function that
appears to have been entered. Thus, the best practice to avoid this confusion is to only
use non-local labels when declaring a new function, and restrict anything else to local
labels. Local labels consist just of a number only. References to these labels consist
of the number, followed by the letterb for a backward reference, orf for a forward
reference. These local labels may be re-used within the source file, references will pick
the closest label with the same number and given direction.

Example:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 319

myfunc: push r16
push r17
push r18
push YL
push YH
...
eor r16, r16 ; start loop
ldi YL, lo8(sometable)
ldi YH, hi8(sometable)
rjmp 2f ; jump to loop test at end

1: ld r17, Y+ ; loop continues here
...
breq 1f ; return from myfunc prematurely
...
inc r16

2: cmp r16, r18
brlo 1b ; jump back to top of loop

1: pop YH
pop YL
pop r18
pop r17
pop r16
ret

Back toFAQ Index.

9.10.13 How do I pass an IO port as a parameter to a function?

Consider this example code:

#include <inttypes.h>
#include <avr/io.h>

void
set_bits_func_wrong (volatile uint8_t port, uint8_t mask)
{

port |= mask;
}

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

*port |= mask;
}

#define set_bits_macro(port,mask) ((port) |= (mask))

int main (void)
{

set_bits_func_wrong (PORTB, 0xaa);
set_bits_func_correct (&PORTB, 0x55);
set_bits_macro (PORTB, 0xf0);

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 320

return (0);
}

The first function will generate object code which is not even close to what is intended.
The major problem arises when the function is called. When the compiler sees this call,
it will actually pass the value of thePORTBregister (using anIN instruction), instead
of passing the address ofPORTB(e.g. memory mapped io addr of0x38 , io port0x18
for the mega128). This is seen clearly when looking at the disassembly of the call:

set_bits_func_wrong (PORTB, 0xaa);
10a: 6a ea ldi r22, 0xAA ; 170
10c: 88 b3 in r24, 0x18 ; 24
10e: 0e 94 65 00 call 0xca

So, the function, once called, only sees the value of the port register and knows nothing
about which port it came from. At this point, whatever object code is generated for
the function by the compiler is irrelevant. The interested reader can examine the full
disassembly to see that the function’s body is completely fubar.

The second function shows how to pass (by reference) the memory mapped address of
the io port to the function so that you can read and write to it in the function. Here’s
the object code generated for the function call:

set_bits_func_correct (&PORTB, 0x55);
112: 65 e5 ldi r22, 0x55 ; 85
114: 88 e3 ldi r24, 0x38 ; 56
116: 90 e0 ldi r25, 0x00 ; 0
118: 0e 94 7c 00 call 0xf8

You can clearly see that0x0038 is correctly passed for the address of the io port.
Looking at the disassembled object code for the body of the function, we can see that
the function is indeed performing the operation we intended:

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

f8: fc 01 movw r30, r24
*port |= mask;

fa: 80 81 ld r24, Z
fc: 86 2b or r24, r22
fe: 80 83 st Z, r24

}
100: 08 95 ret

Notice that we are accessing the io port via theLD andST instructions.

Theport parameter must be volatile to avoid a compiler warning.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 321

Note:

Because of the nature of theIN andOUTassembly instructions, they can not be
used inside the function when passing the port in this way. Readers interested in
the details should consult theInstruction Setdata sheet.

Finally we come to the macro version of the operation. In this contrived example, the
macro is the most efficient method with respect to both execution speed and code size:

set_bits_macro (PORTB, 0xf0);
11c: 88 b3 in r24, 0x18 ; 24
11e: 80 6f ori r24, 0xF0 ; 240
120: 88 bb out 0x18, r24 ; 24

Of course, in a real application, you might be doing a lot more in your function which
uses a passed by reference io port address and thus the use of a function over a macro
could save you some code space, but still at a cost of execution speed.

Care should be taken when such an indirect port access is going to one of the 16-bit
IO registers where the order of write access is critical (like some timer registers). All
versions of avr-gcc up to 3.3 will generate instructions that use the wrong access order
in this situation (since with normal memory operands where the order doesn’t matter,
this sometimes yields shorter code).

Seehttp://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html
for a possible workaround.

avr-gcc versions after 3.3 have been fixed in a way where this optimization will be
disabled if the respective pointer variable is declared to bevolatile , so the correct
behaviour for 16-bit IO ports can be forced that way.

Back toFAQ Index.

9.10.14 What registers are used by the C compiler?

• Data types:

char is 8 bits,int is 16 bits,long is 32 bits,long long is 64 bits,float and
double are 32 bits (this is the only supported floating point format), pointers
are 16 bits (function pointers are word addresses, to allow addressing the whole
128K program memory space on the ATmega devices with> 64 KB of flash
ROM). There is a-mint8 option (seeOptions for the C compiler avr-gcc) to
makeint 8 bits, but that is not supported by avr-libc and violates C standards
(int mustbe at least 16 bits). It may be removed in a future release.

• Call-used registers (r18-r27, r30-r31):

May be allocated by gcc for local data. Youmayuse them freely in assembler
subroutines. Calling C subroutines can clobber any of them - the caller is re-
sponsible for saving and restoring.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html


9.10 Frequently Asked Questions 322

• Call-saved registers (r2-r17, r28-r29):

May be allocated by gcc for local data. Calling C subroutines leaves them un-
changed. Assembler subroutines are responsible for saving and restoring these
registers, if changed. r29:r28 (Y pointer) is used as a frame pointer (points to
local data on stack) if necessary. The requirement for the callee to save/preserve
the contents of these registers even applies in situations where the compiler as-
signs them for argument passing.

• Fixed registers (r0, r1):

Never allocated by gcc for local data, but often used for fixed purposes:

r0 - temporary register, can be clobbered by any C code (except interrupt handlers
which save it),maybe used to remember something for a while within one piece of
assembler code

r1 - assumed to be always zero in any C code,maybe used to remember something for
a while within one piece of assembler code, butmustthen be cleared after use (clr
r1 ). This includes any use of the[f]mul[s[u]] instructions, which return their
result in r1:r0. Interrupt handlers save and clear r1 on entry, and restore r1 on exit (in
case it was non-zero).

• Function call conventions:

Arguments - allocated left to right, r25 to r8. All arguments are aligned to start in
even-numbered registers (odd-sized arguments, includingchar , have one free
register above them). This allows making better use of themovwinstruction on
the enhanced core.

If too many, those that don’t fit are passed on the stack.

Return values: 8-bit in r24 (not r25!), 16-bit in r25:r24, up to 32 bits in r22-r25, up to
64 bits in r18-r25. 8-bit return values are zero/sign-extended to 16 bits by the caller
(unsigned char is more efficient thansigned char - just clr r25 ). Argu-
ments to functions with variable argument lists (printf etc.) are all passed on stack, and
char is extended toint .

Warning:

There was no such alignment before 2000-07-01, including the old patches for
gcc-2.95.2. Check your old assembler subroutines, and adjust them accordingly.

Back toFAQ Index.

9.10.15 How do I put an array of strings completely in ROM?

There are times when you may need an array of strings which will never be modified.
In this case, you don’t want to waste ram storing the constant strings. The most obvious
(and incorrect) thing to do is this:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 323

#include <avr/pgmspace.h>

PGM_P array[2] PROGMEM = {
"Foo",
"Bar"

};

int main (void)
{

char buf[32];
strcpy_P (buf, array[1]);
return 0;

}

The result is not what you want though. What you end up with is the array stored in
ROM, while the individual strings end up in RAM (in the .data section).

To work around this, you need to do something like this:

#include <avr/pgmspace.h>

const char foo[] PROGMEM = "Foo";
const char bar[] PROGMEM = "Bar";

PGM_P array[2] PROGMEM = {
foo,
bar

};

int main (void)
{

char buf[32];
PGM_P p;
int i;

memcpy_P(&p, &array[i], sizeof(PGM_P));
strcpy_P(buf, p);
return 0;

}

Looking at the disassembly of the resulting object file we see that array is in flash as
such:

00000026 <array>:
26: 2e 00 .word 0x002e ; ????
28: 2a 00 .word 0x002a ; ????

0000002a <bar>:
2a: 42 61 72 00 Bar.

0000002e <foo>:
2e: 46 6f 6f 00 Foo.

foo is at addr 0x002e.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 324

bar is at addr 0x002a.

array is at addr 0x0026.

Then in main we see this:

memcpy_P(&p, &array[i], sizeof(PGM_P));
70: 66 0f add r22, r22
72: 77 1f adc r23, r23
74: 6a 5d subi r22, 0xDA ; 218
76: 7f 4f sbci r23, 0xFF ; 255
78: 42 e0 ldi r20, 0x02 ; 2
7a: 50 e0 ldi r21, 0x00 ; 0
7c: ce 01 movw r24, r28
7e: 81 96 adiw r24, 0x21 ; 33
80: 08 d0 rcall .+16 ; 0x92

This code reads the pointer to the desired string from the ROM tablearray into a
register pair.

The value ofi (in r22:r23) is doubled to accomodate for the word offset required to
access array[], then the address of array (0x26) is added, by subtracting the negated
address (0xffda). The address of variablep is computed by adding its offset within the
stack frame (33) to the Y pointer register, andmemcpy_Pis called.

strcpy_P(buf, p);
82: 69 a1 ldd r22, Y+33 ; 0x21
84: 7a a1 ldd r23, Y+34 ; 0x22
86: ce 01 movw r24, r28
88: 01 96 adiw r24, 0x01 ; 1
8a: 0c d0 rcall .+24 ; 0xa4

This will finally copy the ROM string into the local bufferbuf .

Variablep (located at Y+33) is read, and passed together with the address of buf (Y+1)
to strcpy_P. This will copy the string from ROM tobuf .

Note that when using a compile-time constant index, omitting the first step (reading
the pointer from ROM viamemcpy_P) usually remains unnoticed, since the compiler
would then optimize the code for accessingarray at compile-time.

Back toFAQ Index.

9.10.16 How to use external RAM?

Well, there is no universal answer to this question; it depends on what the external
RAM is going to be used for.

Basically, the bitSRE(SRAM enable) in theMCUCRregister needs to be set in order
to enable the external memory interface. Depending on the device to be used, and
the application details, further registers affecting the external memory operation like

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 325

XMCRAandXMCRB, and/or further bits inMCUCRmight be configured. Refer to the
datasheet for details.

If the external RAM is going to be used to store the variables from the C program
(i. e., the .data and/or .bss segment) in that memory area, it is essential to set up the
external memory interface early during thedevice initializationso the initialization of
these variable will take place. Refer toHow to modify MCUCR or WDTCR early?for
a description how to do this using few lines of assembler code, or to the chapter about
memory sections for anexample written in C.

The explanation ofmalloc() contains adiscussionabout the use of internal RAM vs.
external RAM in particular with respect to the various possible locations of theheap
(area reserved formalloc()). It also explains the linker command-line options that are
required to move the memory regions away from their respective standard locations in
internal RAM.

Finally, if the application simply wants to use the additional RAM for private data
storage kept outside the domain of the C compiler (e. g. through achar ∗ variable
initialized directly to a particular address), it would be sufficient to defer the initializa-
tion of the external RAM interface to the beginning ofmain(), so no tweaking of the
.init3 section is necessary. The same applies if only the heap is going to be located
there, since the application start-up code does not affect the heap.

It is not recommended to locate the stack in external RAM. In general, accessing exter-
nal RAM is slower than internal RAM, and errata of some AVR devices even prevent
this configuration from working properly at all.

Back toFAQ Index.

9.10.17 Which -O flag to use?

There’s a common misconception that larger numbers behind the-O option might auto-
matically cause "better" optimization. First, there’s no universal definition for "better",
with optimization often being a speed vs. code size tradeoff. See thedetailed discus-
sionfor which option affects which part of the code generation.

A test case was run on an ATmega128 to judge the effect of compiling the library itself
using different optimization levels. The following table lists the results. The test case
consisted of around 2 KB of strings to sort. Test #1 usedqsort()using the standard
library strcmp(), test #2 used a function that sorted the strings by their size (thus had
two calls tostrlen()per invocation).

When comparing the resulting code size, it should be noted that a floating point version
of fvprintf() was linked into the binary (in order to print out the time elapsed) which
is entirely not affected by the different optimization levels, and added about 2.5 KB to
the code.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 326

Optimization
flags

Size of .text Time for test #1 Time for test #2

-O3 6898 903µs 19.7 ms
-O2 6666 972µs 20.1 ms
-Os 6618 955µs 20.1 ms
-Os
-mcall-prologues

6474 972µs 20.1 ms

(The difference between 955µs and 972µs was just a single timer-tick, so take this
with a grain of salt.)

So generally, it seems-Os -mcall-prologues is the most universal "best" opti-
mization level. Only applications that need to get the last few percent of speed benefit
from using-O3 .

Back toFAQ Index.

9.10.18 How do I relocate code to a fixed address?

First, the code should be put into a newnamed section. This is done with a section
attribute:

__attribute__ ((section (".bootloader")))

In this example, .bootloader is the name of the new section. This attribute needs to be
placed after the prototype of any function to force the function into the new section.

void boot(void) __attribute__ ((section (".bootloader")));

To relocate the section to a fixed address the linker flag-section-start is used.
This option can be passed to the linker using the-Wl compiler option:

-Wl,--section-start=.bootloader=0x1E000

The name after section-start is the name of the section to be relocated. The number
after the section name is the beginning address of the named section.

Back toFAQ Index.

9.10.19 My UART is generating nonsense! My ATmega128 keeps crashing! Port
F is completely broken!

Well, certain odd problems arise out of the situation that the AVR devices as shipped
by Atmel often come with a default fuse bit configuration that doesn’t match the user’s
expectations. Here is a list of things to care for:

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 327

• All devices that have an internal RC oscillator ship with the fuse enabled that
causes the device to run off this oscillator, instead of an external crystal. This
often remains unnoticed until the first attempt is made to use something critical
in timing, like UART communication.

• The ATmega128 ships with the fuse enabled that turns this device into AT-
mega103 compatibility mode. This means that some ports are not fully usable,
and in particular that the internal SRAM is located at lower addresses. Since by
default, the stack is located at the top of internal SRAM, a program compiled for
an ATmega128 running on such a device will immediately crash upon the first
function call (or rather, upon the first function return).

• Devices with a JTAG interface have theJTAGENfuse programmed by default.
This will make the respective port pins that are used for the JTAG interface un-
available for regular IO.

Back toFAQ Index.

9.10.20 Why do all my "foo...bar" strings eat up the SRAM?

By default, all strings are handled as all other initialized variables: they occupy RAM
(even though the compiler might warn you when it detects write attempts to these RAM
locations), and occupy the same amount of flash ROM so they can be initialized to the
actual string by startup code. The compiler can optimize multiple identical strings into
a single one, but obviously only for one compilation unit (i. e., a single C source file).

That way, any string literal will be a valid argument to any C function that expects a
const char ∗ argument.

Of course, this is going to waste a lot of SRAM. InProgram Space String Utilities, a
method is described how such constant data can be moved out to flash ROM. How-
ever, a constant string located in flash ROM is no longer a valid argument to pass to a
function that expects aconst char ∗-type string, since the AVR processor needs
the special instructionLPMto access these strings. Thus, separate functions are needed
that take this into account. Many of the standard C library functions have equivalents
available where one of the string arguments can be located in flash ROM. Private func-
tions in the applications need to handle this, too. For example, the following can be
used to implement simple debugging messages that will be sent through a UART:

#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>

int
uart_putchar(char c)
{

if (c == ’\n’)
uart_putchar(’\r’);

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 328

loop_until_bit_is_set(USR, UDRE);
UDR = c;
return 0; /* so it could be used for fdevopen(), too */

}

void
debug_P(const char *addr)
{

char c;

while ((c = pgm_read_byte(addr++)))
uart_putchar(c);

}

int
main(void)
{

ioinit(); /* initialize UART, ... */
debug_P(PSTR("foo was here\n"));
return 0;

}

Note:

By convention, the suffix_P to the function name is used as an indication that
this function is going to accept a "program-space string". Note also the use of the
PSTR()macro.

Back toFAQ Index.

9.10.21 Why does the compiler compile an 8-bit operation that uses bitwise op-
erators into a 16-bit operation in assembly?

Bitwise operations in Standard C will automatically promote their operands to an int,
which is (by default) 16 bits in avr-gcc.

To work around this use typecasts on the operands, including literals, to declare that
the values are to be 8 bit operands.

This may be especially important when clearing a bit:

var &= ~mask; /* wrong way! */

The bitwise "not" operator (∼) will also promote the value inmask to an int. To keep
it an 8-bit value, typecast before the "not" operator:

var &= (unsigned char)~mask;

Back toFAQ Index.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 329

9.10.22 How to detect RAM memory and variable overlap problems?

You can simply runavr-nm on your output (ELF) file. Run it with the-n option, and
it will sort the symbols numerically (by default, they are sorted alphabetically).

Look for the symbol_end , that’s the first address in RAM that is not allocated by
a variable. (avr-gcc internally adds 0x800000 to all data/bss variable addresses, so
please ignore this offset.) Then, the run-time initialization code initializes the stack
pointer (by default) to point to the last avaialable address in (internal) SRAM. Thus,
the region between_end and the end of SRAM is what is available for stack. (If your
application usesmalloc(), which e. g. also can happen insideprintf(), the heap for
dynamic memory is also located there. SeeMemory Areas and Using malloc().)

The amount of stack required for your application cannot be determined that easily.
For example, if you recursively call a function and forget to break that recursion, the
amount of stack required is infinite. :-) You can look at the generated assembler code
(avr-gcc ... -S ), there’s a comment in each generated assembler file that tells
you the frame size for each generated function. That’s the amount of stack required for
this function, you have to add up that for all functions where you know that the calls
could be nested.

Back toFAQ Index.

9.10.23 Is it really impossible to program the ATtinyXX in C?

While some small AVRs are not directly supported by the C compiler since they do not
have a RAM-based stack (and some do not even have RAM at all), it is possible anyway
to use the general-purpose registers as a RAM replacement since they are mapped into
the data memory region.

Bruce D. Lightner wrote an excellent description of how to do this, and offers this
together with a toolkit on his web page:

http://lightner.net/avr/ATtinyAvrGcc.html

Back toFAQ Index.

9.10.24 What is this "clock skew detected" messsage?

It’s a known problem of the MS-DOS FAT file system. Since the FAT file system has
only a granularity of 2 seconds for maintaining a file’s timestamp, and it seems that
some MS-DOS derivative (Win9x) perhaps rounds up the current time to the next sec-
ond when calculating the timestamp of an updated file in case the current time cannot
be represented in FAT’s terms, this causes a situation wheremake sees a "file coming
from the future".

Since all make decisions are based on file timestamps, and their dependencies, make
warns about this situation.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://lightner.net/avr/ATtinyAvrGcc.html


9.10 Frequently Asked Questions 330

Solution: don’t use inferior file systems / operating systems. Neither Unix file systems
nor HPFS (aka NTFS) do experience that problem.

Workaround: after saving the file, wait a second before startingmake. Or simply
ignore the warning. If you are paranoid, execute amake clean all to make sure
everything gets rebuilt.

In networked environments where the files are accessed from a file server, this message
can also happen if the file server’s clock differs too much from the network client’s
clock. In this case, the solution is to use a proper time keeping protocol on both sys-
tems, like NTP. As a workaround, synchronize the client’s clock frequently with the
server’s clock.

Back toFAQ Index.

9.10.25 Why are (many) interrupt flags cleared by writing a logical 1?

Usually, each interrupt has its own interrupt flag bit in some control register, indicating
the specified interrupt condition has been met by representing a logical 1 in the respec-
tive bit position. When working with interrupt handlers, this interrupt flag bit usually
gets cleared automatically in the course of processing the interrupt, sometimes by just
calling the handler at all, sometimes (e. g. for the U[S]ART) by reading a particular
hardware register that will normally happen anyway when processing the interrupt.

From the hardware’s point of view, an interrupt is asserted as long as the respective bit
is set, while global interrupts are enabled. Thus, it is essential to have the bit cleared
before interrupts get re-enabled again (which usually happens when returning from an
interrupt handler).

Only few subsystems require an explicit action to clear the interrupt request when using
interrupt handlers. (The notable exception is the TWI interface, where clearing the
interrupt indicates to proceed with the TWI bus hardware handshake, so it’s never done
automatically.)

However, if no normal interrupt handlers are to be used, or in order to make extra
sure any pending interrupt gets cleared before re-activating global interrupts (e. g.
an external edge-triggered one), it can be necessary to explicitly clear the respective
hardware interrupt bit by software. This is usually done by writing a logical 1 into this
bit position. This seems to be illogical at first, the bit position already carries a logical
1 when reading it, so why does writing a logical 1 to itclear the interrupt bit?

The solution is simple: writing a logical 1 to it requires only a singleOUTinstruction,
and it is clear that only this single interrupt request bit will be cleared. There is no need
to perform a read-modify-write cycle (like, anSBI instruction), since all bits in these
control registers are interrupt bits, and writing a logical 0 to the remaining bits (as it
is done by the simpleOUTinstruction) will not alter them, so there is no risk of any
race condition that might accidentally clear another interrupt request bit. So instead of
writing

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 331

TIFR |= _BV(TOV0); /* wrong! */

simply use

TIFR = _BV(TOV0);

Back toFAQ Index.

9.10.26 Why have "programmed" fuses the bit value 0?

Basically, fuses are just a bit in a special EEPROM area. For technical reasons, erased
E[E]PROM cells have all bits set to the value 1, so unprogrammed fuses also have a
logical 1. Conversely, programmed fuse cells read out as bit value 0.

Back toFAQ Index.

9.10.27 Which AVR-specific assembler operators are available?

SeePseudo-ops and operators.

Back toFAQ Index.

9.10.28 Why are interrupts re-enabled in the middle of writing the stack
pointer?

When setting up space for local variables on the stack, the compiler generates code like
this:

/* prologue: frame size=20 */
push r28
push r29
in r28,__SP_L__
in r29,__SP_H__
sbiw r28,20
in __tmp_reg__,__SREG__
cli
out __SP_H__,r29
out __SREG__,__tmp_reg__
out __SP_L__,r28

/* prologue end (size=10) */

It reads the current stack pointer value, decrements it by the required amount of bytes,
then disables interrupts, writes back the high part of the stack pointer, writes back
the savedSREG(which will eventually re-enable interrupts if they have been enabled
before), and finally writes the low part of the stack pointer.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 332

At the first glance, there’s a race between restoringSREG, and writingSPL. However,
after enabling interrupts (either explicitly by setting theI flag, or by restoring it as part
of the entireSREG), the AVR hardware executes (at least) the next instruction still with
interrupts disabled, so the write toSPL is guaranteed to be executed with interrupts
disabled still. Thus, the emitted sequence ensures interrupts will be disabled only for
the minimum time required to guarantee the integrity of this operation.

Back toFAQ Index.

9.10.29 Why are there five different linker scripts?

From a comment in the source code:

Which one of the five linker script files is actually used depends on command line
options given to ld.

A .x script file is the default script A .xr script is for linking without relocation (-r flag)
A .xu script is like .xr but∗do∗ create constructors (-Ur flag) A .xn script is for linking
with -n flag (mix text and data on same page). A .xbn script is for linking with -N flag
(mix text and data on same page).

Back toFAQ Index.

9.10.30 How to add a raw binary image to linker output?

The GNU linkeravr-ld cannot handle binary data directly. However, there’s a com-
panion tool calledavr-objcopy . This is already known from the output side: it’s
used to extract the contents of the linked ELF file into an Intel Hex load file.

avr-objcopy can create a relocatable object file from arbitrary binary input, like

avr-objcopy -I binary -O elf32-avr foo.bin foo.o

This will create a file namedfoo.o , with the contents offoo.bin . The contents will
default to section .data, and two symbols will be created named_binary_foo_-
bin_start_ and_binary_foo_bin_end_ . These symbols can be referred to
inside a C source to access these data.

If the goal is to have those data go to flash ROM (similar to having used the PROGMEM
attribute in C source code), the sections have to be renamed while copying, and it’s also
useful to set the section flags:

avr-objcopy --rename-section .data=.progmem.data,contents,alloc,load,readonly,data -I binary -O elf32-avr foo.bin foo.o

Note that all this could be conveniently wired into a Makefile, so wheneverfoo.bin
changes, it will trigger the recreation offoo.o , and a subsequent relink of the final
ELF file.

Back toFAQ Index.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.10 Frequently Asked Questions 333

9.10.31 How do I perform a software reset of the AVR?

The canonical way to perform a software reset of the AVR is to use the watchdog timer.
Enable the watchdog timer to the shortest timeout setting, then go into an infinite, do-
nothing loop. The watchdog will then reset the processor.

The reason why this is preferrable over jumping to the reset vector, is that when the
watchdog resets the AVR, the registers will be reset to their known, default settings.
Whereas jumping to the reset vector will leave the registers in their previous state,
which is generally not a good idea.

CAUTION! Older AVRs will have the watchdog timer disabled on a reset. For these
older AVRs, doing a soft reset by enabling the watchdog is easy, as the watchdog will
then be disabled after the reset. On newer AVRs, once the watchdog is enabled, then it
stays enabled, even after a reset! For these newer AVRs a function needs to be added
to the .init3 section (i.e. during the startup code, before main()) to disable the watchdog
early enough so it does not continually reset the AVR.

Here is some example code that creates a macro that can be called to perform a soft
reset:

#include <avr/wdt.h>

...

#define soft_reset() \
do \
{ \

wdt_enable(WDTO_15MS); \
for(;;) \
{ \
} \

} while(0)

For newer AVRs (such as the ATmega1281) also add this function to your code to then
disable the watchdog after a reset (e.g., after a soft reset):

#include <avr/wdt.h>

...

// Function Pototype
void wdt_init(void) __attribute__((naked)) __attribute__((section(".init3")));

...

// Function Implementation
void wdt_init(void)
{

MCUSR = 0;
wdt_disable();

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 334

return;
}

Back toFAQ Index.

9.11 Building and Installing the GNU Tool Chain

This chapter shows how to build and install, from source code, a complete develop-
ment environment for the AVR processors using the GNU toolset. There are two main
sections, one for Linux, FreeBSD, and other Unix-like operating systems, and another
section for Windows.

9.11.1 Building and Installing under Linux, FreeBSD, and Others

The default behaviour for most of these tools is to install every thing under the
/usr/local directory. In order to keep the AVR tools separate from the base
system, it is usually better to install everything into/usr/local/avr . If the
/usr/local/avr directory does not exist, you should create it before trying to
install anything. You will needroot access to install there. If you don’t have root
access to the system, you can alternatively install in your home directory, for exam-
ple, in$HOME/local/avr . Where you install is a completely arbitrary decision, but
should be consistent for all the tools.

You specify the installation directory by using the-prefix=dir option with the
configure script. It is important to install all the AVR tools in the same directory
or some of the tools will not work correctly. To ensure consistency and simplify the
discussion, we will use$PREFIX to refer to whatever directory you wish to install in.
You can set this as an environment variable if you wish as such (using a Bourne-like
shell):

$ PREFIX=$HOME/local/avr
$ export PREFIX

Note:

Be sure that you have yourPATHenvironment variable set to search the direc-
tory you install everything inbeforeyou start installing anything. For example, if
you use-prefix=$PREFIX , you must have$PREFIX/bin in your exported
PATH. As such:

$ PATH=$PATH:$PREFIX/bin
$ export PATH

Warning:

If you haveCCset to anything other thanavr-gcc in your environment, this will
cause the configure script to fail. It is best to not haveCCset at all.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 335

Note:

It is usually the best to use the latest released version of each of the tools.

9.11.2 Required Tools

• GNU Binutils

http://sources.redhat.com/binutils/

Installation

• GCC

http://gcc.gnu.org/

Installation

• AVR Libc

http://savannah.gnu.org/projects/avr-libc/

Installation

9.11.3 Optional Tools

You can develop programs for AVR devices without the following tools. They may or
may not be of use for you.

• AVRDUDE

http://savannah.nongnu.org/projects/avrdude/

Installation

Usage Notes

• GDB

http://sources.redhat.com/gdb/

Installation

• SimulAVR

http://savannah.gnu.org/projects/simulavr/

Installation

• AVaRICE

http://avarice.sourceforge.net/

Installation

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://sources.redhat.com/binutils/
http://gcc.gnu.org/
http://savannah.gnu.org/projects/avr-libc/
http://savannah.nongnu.org/projects/avrdude/
http://sources.redhat.com/gdb/
http://savannah.gnu.org/projects/simulavr/
http://avarice.sourceforge.net/


9.11 Building and Installing the GNU Tool Chain 336

9.11.4 GNU Binutils for the AVR target

The binutils package provides all the low-level utilities needed in building and ma-
nipulating object files. Once installed, your environment will have an AVR assembler
(avr-as ), linker (avr-ld ), and librarian (avr-ar andavr-ranlib ). In addi-
tion, you get tools which extract data from object files (avr-objcopy ), dissassem-
ble object file information (avr-objdump ), and strip information from object files
(avr-strip ). Before we can build the C compiler, these tools need to be in place.

Download and unpack the source files:

$ bunzip2 -c binutils-<version>.tar.bz2 | tar xf -
$ cd binutils-<version>

Note:

Replace<version > with the version of the package you downloaded.
If you obtained a gzip compressed file (.gz), usegunzip instead ofbunzip2 .

It is usually a good idea to configure and buildbinutils in a subdirectory so as not
to pollute the source with the compiled files. This is recommended by thebinutils
developers.

$ mkdir obj-avr
$ cd obj-avr

The next step is to configure and build the tools. This is done by supplying arguments
to theconfigure script that enable the AVR-specific options.

$ ../configure --prefix=$PREFIX --target=avr --disable-nls

If you don’t specify the -prefix option, the tools will get installed in the
/usr/local hierarchy (i.e. the binaries will get installed in/usr/local/bin ,
the info pages get installed in/usr/local/info , etc.) Since these tools are chang-
ing frequently, It is preferrable to put them in a location that is easily removed.

When configure is run, it generates a lot of messages while it determines what
is available on your operating system. When it finishes, it will have created several
Makefile s that are custom tailored to your platform. At this point, you can build the
project.

$ make

Note:

BSD users should note that the project’sMakefile uses GNUmake syntax.
This means FreeBSD users may need to build the tools by usinggmake.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 337

If the tools compiled cleanly, you’re ready to install them. If you specified a destination
that isn’t owned by your account, you’ll needroot access to install them. To install:

$ make install

You should now have the programs from binutils installed into$PREFIX/bin . Don’t
forget toset your PATHenvironment variable before going to build avr-gcc.

Note:

The official version of binutils might lack support for recent AVR
devices. A patch that adds more AVR types can be found at
http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-binutils/files/patch-newdevices

9.11.5 GCC for the AVR target

Warning:

You must install avr-binutilsand make sure yourpath is setproperly before in-
stalling avr-gcc.

The steps to buildavr-gcc are essentially same as forbinutils:

$ bunzip2 -c gcc-<version>.tar.bz2 | tar xf -
$ cd gcc-<version>
$ mkdir obj-avr
$ cd obj-avr
$ ../configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \

--disable-nls --disable-libssp --with-dwarf2
$ make
$ make install

To save your self some download time, you can alternatively download only the
gcc-core- <version >.tar.bz2 and gcc-c++- <version >.tar.bz2
parts of the gcc. Also, if you don’t need C++ support, you only need the core part
and should only enable the C language support.

Note:

Early versions of these tools did not support C++.
The stdc++ libs are not included with C++ for AVR due to the size limitations of
the devices.
The official version of GCC might lack support for recent AVR
devices. A patch that adds more AVR types can be found at
http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-gcc/files/patch-newdevices

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-binutils/files/patch-newdevices
http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-gcc/files/patch-newdevices


9.11 Building and Installing the GNU Tool Chain 338

9.11.6 AVR Libc

Warning:

You must install avr-binutils, avr-gccand make sure yourpath is setproperly
before installing avr-libc.

Note:

If you have obtained the latest avr-libc from cvs, you will have to run the
bootstrap script before using either of the build methods described below.

To build and install avr-libc:

$ gunzip -c avr-libc-<version>.tar.gz | tar xf -
$ cd avr-libc-<version>
$ ./configure --prefix=$PREFIX --build=‘./config.guess‘ --host=avr
$ make
$ make install

9.11.7 AVRDUDE

Note:

It has been ported to windows (via MinGW or cygwin), Linux and Solaris. Other
Unix systems should be trivial to port to.

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

# cd /usr/ports/devel/avrdude
# make install

Note:

Installation into the default location usually requires root permissions. However,
running the program only requires access permissions to the appropriateppi(4)
device.

Building and installing on other systems should use theconfigure system, as such:

$ gunzip -c avrdude-<version>.tar.gz | tar xf -
$ cd avrdude-<version>
$ mkdir obj-avr
$ cd obj-avr
$ ../configure --prefix=$PREFIX
$ make
$ make install

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 339

9.11.8 GDB for the AVR target

GDB also uses theconfigure system, so to build and install:

$ bunzip2 -c gdb-<version>.tar.bz2 | tar xf -
$ cd gdb-<version>
$ mkdir obj-avr
$ cd obj-avr
$ ../configure --prefix=$PREFIX --target=avr
$ make
$ make install

Note:

If you are planning on usingavr-gdb , you will probably want to install either
simulavror avaricesince avr-gdb needs one of these to run as a a remote target
backend.

9.11.9 SimulAVR

SimulAVR also uses theconfigure system, so to build and install:

$ gunzip -c simulavr-<version>.tar.gz | tar xf -
$ cd simulavr-<version>
$ mkdir obj-avr
$ cd obj-avr
$ ../configure --prefix=$PREFIX
$ make
$ make install

Note:

You might want to have already installedavr-binutils, avr-gccandavr-libc if you
want to have the test programs built in the simulavr source.

9.11.10 AVaRICE

Note:

These install notes are not applicable to avarice-1.5 or older. You probably don’t
want to use anything that old anyways since there have been many improvements
and bug fixes since the 1.5 release.

AVaRICE also uses theconfigure system, so to build and install:

$ gunzip -c avarice-<version>.tar.gz | tar xf -
$ cd avarice-<version>
$ mkdir obj-avr
$ cd obj-avr

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 340

$ ../configure --prefix=$PREFIX
$ make
$ make install

Note:

AVaRICE uses the BFD library for accessing various binary file formats. You
may need to tell the configure script where to find the lib and headers for the link
to work. This is usually done by invoking the configure script like this (Replace
<hdr_path > with the path to thebfd.h file on your system. Replace<lib_-
path > with the path tolibbfd.a on your system.):

$ CPPFLAGS=-I<hdr_path> LDFLAGS=-L<lib_path> ../configure --prefix=$PREFIX

9.11.11 Building and Installing under Windows

Building and installing the toolchain under Windows requires more effort because all
of the tools required for building, and the programs themselves, are mainly designed
for running under a POSIX environment such as Unix and Linux. Windows does not
natively provide such an environment.

There are two projects available that provide such an environment, Cygwin and Min-
GW/MSYS. There are advantages and disadvantages to both. Cygwin provides a very
complete POSIX environment that allows one to build many Linux based tools from
source with very little or no source modifications. However, POSIX functionality is
provided in the form of a DLL that is linked to the application. This DLL has to be
redistributed with your application and there are issues if the Cygwin DLL already
exists on the installation system and different versions of the DLL. On the other hand,
MinGW/MSYS can compile code as native Win32 applications. However, this means
that programs designed for Unix and Linux (i.e. that use POSIX functionality) will not
compile as MinGW/MSYS does not provide that POSIX layer for you. Therefore most
programs that compile on both types of host systems, usually must provide some sort
of abstraction layer to allow an application to be built cross-platform.

MinGW/MSYS does provide somewhat of a POSIX environment that allows you to
build Unix and Linux applications as they woud normally do, with aconfigure
step and amake step. Cygwin also provides such an environment. This means that
building the AVR toolchain is very similar to how it is built in Linux, described above.
The main differences are in what the PATH environment variable gets set to, pathname
differences, and the tools that are required to build the projects under Windows. We’ll
take a look at the tools next.

9.11.12 Tools Required for Building the Toolchain for Windows

These are the tools that are currently used to build WinAVR 20070525 (or later). This
list may change, either the version of the tools, or the tools themselves, as improve-
ments are made.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 341

• MinGW/MSYS

<http://downloads.sourceforge.net/mingw/Min-
GW-5.1.3.exe?use_mirror=superb-east >

– Put MinGW-5.1.3.exe in it’s own directory (for example: C:\Min-
GWSetup)

– Run MinGW-5.1.3.exe

– Select "Download and install"

– Select "Current" package.

– Select type of install: Full.

• Install MSYS-1.0.10.exe package.

<http://prdownloads.sf.net/mingw/MSYS-1.0.10.exe?download >

– Default selections

– Batch file will ask:

* "Do you wish to continue with the post install?" Press "y" and press
enter.

* "Do you have MinGW installed?" Press "y" and press enter.

* "Where is your MinGW installation?" Type in "c:/mingw" (without
quotes) and press enter

* "Do you wish for me to add mount bindings for c:/mingw to /mingw?"
Press "y" and press enter.

* It will display some messages on the screen, then it will display: "Press
any key to continue . . .". Press any key.

• Edit c:\msys\1.0\msys.bat

Change line (should be line 41):

if EXIST rxvt.exe goto startrxvt

to:

rem if EXIST rxvt.exe goto startrxvt

to remark out this line. Doing this will cause MSYS to always use the bash shell
and not the rxvt shell.

Note:

The order of the next three is important. Install MSYS Developer toolkit before
the autotools.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://downloads.sourceforge.net/mingw/MinGW-5.1.3.exe?use_mirror=superb-east
http://downloads.sourceforge.net/mingw/MinGW-5.1.3.exe?use_mirror=superb-east
http://prdownloads.sf.net/mingw/MSYS-1.0.10.exe?download


9.11 Building and Installing the GNU Tool Chain 342

• MSYS Developer Toolkit version 1.0.1

– This is needed to build avr-libc in MinGW.

– <http://downloads.sourceforge.net/mingw/msys-
DTK-1.0.1.exe?use_mirror=internap >

– Single file installer executable. Install.

• autoconf 2.59 from the "MSYS Developer Toolkit" release

– autoconf 2.59/2.60 is needed to build avr-libc in MinGW.

– <http://downloads.sourceforge.net/mingw/msys-autoconf-2.59.tar.bz2?use_-
mirror=internap >

– Extract to c:\msys\1.0

• automake 1.8.2

– automake 1.8/1.9 is needed to build avr-libc in MinGW.

– <http://downloads.sourceforge.net/mingw/msys-automake-1.8.2.tar.bz2?use_-
mirror=internap >

– Extract to c:\msys\1.0

• Install Cygwin

– Install everything, all users, UNIX line endings. This will take a∗long∗
time. A fat internet pipe is highly recommended. It is also recommended
that you download all to a directory first, and then install from that directory
to your machine.

Note:

MPFR requires GMP, so build it first.

• Build GMP for MinGW

– Version 4.2.1

– <http://gmplib.org/ >

– Build script:

./configure 2>&1 | tee gmp-configure.log
make 2>&1 | tee gmp-make.log
make check 2>&1 | tee gmp-make-check.log
make install 2>&1 | tee gmp-make-install.log

– GMP headers will be installed under /usr/local/include and library installed
under /usr/local/lib.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://downloads.sourceforge.net/mingw/msysDTK-1.0.1.exe?use_mirror=internap
http://downloads.sourceforge.net/mingw/msysDTK-1.0.1.exe?use_mirror=internap
http://downloads.sourceforge.net/mingw/msys-autoconf-2.59.tar.bz2?use_mirror=internap
http://downloads.sourceforge.net/mingw/msys-autoconf-2.59.tar.bz2?use_mirror=internap
http://downloads.sourceforge.net/mingw/msys-automake-1.8.2.tar.bz2?use_mirror=internap
http://downloads.sourceforge.net/mingw/msys-automake-1.8.2.tar.bz2?use_mirror=internap
http://gmplib.org/


9.11 Building and Installing the GNU Tool Chain 343

• Build MPFR for MinGW

– Version 2.2.1

– <http://www.mpfr.org/ >

– Build script:

./configure --with-gmp=/usr/local 2>&1 | tee mpfr-configure.log
make 2>&1 | tee mpfr-make.log
make check 2>&1 | tee mpfr-make-check.log
make install 2>&1 | tee mpfr-make-install.log

– MPFR headers will be installed under /usr/local/include and library in-
stalled under /usr/local/lib.

• Install Doxygen

– Version 1.4.7

– <http://www.stack.nl/ ∼dimitri/doxygen/ >

– Download and install.

• Install NetPBM

– Version 10.27.0

– From the GNUWin32 project:<http://gnuwin32.sourceforge.net/packages.html >

– Download and install.

• Install fig2dev

– Version 3.2 Patchlevel 5-alpha7

– From WinFig 1.71:<http://www.schmidt-web-berlin.de/winfig/ >

– Unzip the download file and install in a location of your choice.

• Install MiKTex

– Version 2.5

– <http://miktex.org/ >

– Download and install.

• Install Ghostscript

– Version 8.54

– <http://www.cs.wisc.edu/ ∼ghost/ >

– Download and install.

• Set the TEMP and TMP environment variables toc:\temp or to the short file-
name version. This helps to avoid NTVDM errors during building.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

http://www.mpfr.org/
http://www.stack.nl/~dimitri/doxygen/
http://gnuwin32.sourceforge.net/packages.html
http://www.schmidt-web-berlin.de/winfig/
http://miktex.org/
http://www.cs.wisc.edu/~ghost/


9.11 Building and Installing the GNU Tool Chain 344

9.11.13 Building the Toolchain for Windows

All directories in the PATH enviornment variable should be specified using their short
filename (8.3) version. This will also help to avoid NTVDM errors during building.
These short filenames can be specific to each machine.

Build the tools below in MSYS.

• Binutils

– Open source code pacakge and patch as necessary.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Configure

CFLAGS=-D__USE_MINGW_ACCESS \
../$archivedir/configure \

--prefix=$installdir \
--target=avr \
--disable-nls \
--enable-doc \
--datadir=$installdir/doc/binutils \
--with-gmp=/usr/local \
--with-mpfr=/usr/local \
2>&1 | tee binutils-configure.log

– Make

make all html install install-html 2>&1 | tee binutils-make.log

– Manually change documentation location.

• GCC

– Open source code pacakge and patch as necessary.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 345

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Configure

CFLAGS=-D__USE_MINGW_ACCESS \
../gcc-$version/configure \

--prefix=$installdir \
--target=$target \
--enable-languages=c,c++ \
--with-dwarf2 \
--enable-win32-registry=WinAVR-$release \
--disable-nls \
--with-gmp=/usr/local \
--with-mpfr=/usr/local \
--enable-doc \
--disable-libssp \
2>&1 | tee $package-configure.log

– Make

make all html install 2>&1 | tee $package-make.log

– Manually copy the HTML documentation from the source code tree to the
installation tree.

• avr-libc

– Open source code package.

– Configure and build at the top of the source code tree.

– Set PATH, in order:

* /usr/local/bin

* /mingw/bin

* /bin

* <MikTex executables>

* <install directory>/bin

* <Doxygen executables>

* <NetPBM executables>

* <fig2dev executables>

* <Ghostscript executables>

* c:/cygwin/bin

– Configure

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 346

./configure \
--host=avr \
--prefix=$installdir \
--enable-doc \
--disable-versioned-doc \
--enable-html-doc \
--enable-pdf-doc \
--enable-man-doc \
--mandir=$installdir/man \
--datadir=$installdir \
2>&1 | tee $package-configure.log

– Make

make all install 2>&1 | tee $package-make.log

– Manually change location of man page documentation.

– Move the examples to the top level of the install tree.

– Convert line endings in examples to Windows line endings.

– Convert line endings in header files to Windows line endings.

• AVRDUDE

– Open source code package.

– Configure and build at the top of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Set location of LibUSB headers and libraries

export CPPFLAGS="-I../../libusb-win32-device-bin-$libusb_version/include"
export CFLAGS="-I../../libusb-win32-device-bin-$libusb_version/include"
export LDFLAGS="-L../../libusb-win32-device-bin-$libusb_version/lib/gcc"

– Configure

./configure \
--prefix=$installdir \
--datadir=$installdir \
--sysconfdir=$installdir/bin \
--enable-doc \
--disable-versioned-doc \
2>&1 | tee $package-configure.log

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 347

– Make

make -k all install 2>&1 | tee $package-make.log

– Convert line endings in avrdude config file to Windows line endings.

– Delete backup copy of avrdude config file in install directory if exists.

• Insight/GDB

– Open source code pacakge and patch as necessary.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Configure

CFLAGS=-D__USE_MINGW_ACCESS \
LDFLAGS=’-static’ \
../$archivedir/configure \

--prefix=$installdir \
--target=avr \
--with-gmp=/usr/local \
--with-mpfr=/usr/local \
--enable-doc \
2>&1 | tee insight-configure.log

– Make

make all install 2>&1 | tee $package-make.log

• SRecord

– Open source code package.

– Configure and build at the top of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.11 Building and Installing the GNU Tool Chain 348

* /bin

* /mingw/bin

* c:/cygwin/bin

* <install directory>/bin

– Configure

./configure \
--prefix=$installdir \
--infodir=$installdir/info \
--mandir=$installdir/man \
2>&1 | tee $package-configure.log

– Make

make all install 2>&1 | tee $package-make.log

Build the tools below in Cygwin.

• AVaRICE

– Open source code package.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* <install directory>/bin

– Set location of LibUSB headers and libraries

export CPPFLAGS=-I$startdir/libusb-win32-device-bin-$libusb_version/include
export CFLAGS=-I$startdir/libusb-win32-device-bin-$libusb_version/include
export LDFLAGS="-static -L$startdir/libusb-win32-device-bin-$libusb_version/lib/gcc "

– Configure

../$archivedir/configure \
--prefix=$installdir \
--datadir=$installdir/doc \
--mandir=$installdir/man \
--infodir=$installdir/info \
2>&1 | tee avarice-configure.log

– Make

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 349

make all install 2>&1 | tee avarice-make.log

• SimulAVR

– Open source code package.

– Configure and build in a directory outside of the source code tree.

– Set PATH, in order:

* <MikTex executables>

* /usr/local/bin

* /usr/bin

* /bin

* <install directory>/bin

– Configure

export LDFLAGS="-static"
../$archivedir/configure \

--prefix=$installdir \
--datadir=$installdir \
--disable-tests \
--disable-versioned-doc \
2>&1 | tee simulavr-configure.log

– Make

make -k all install 2>&1 | tee simulavr-make.log
make pdf install-pdf 2>&1 | tee simulavr-pdf-make.log

9.12 Using the GNU tools

This is a short summary of the AVR-specific aspects of using the GNU tools. Normally,
the generic documentation of these tools is fairly large and maintained intexinfo
files. Command-line options are explained in detail in the manual page.

9.12.1 Options for the C compiler avr-gcc

9.12.1.1 Machine-specific options for the AVR The following machine-specific
options are recognized by the C compiler frontend. In addition to the preprocessor
macros indicated in the tables below, the preprocessor will define the macros __AVR
and __AVR__ (to the value 1) when compiling for an AVR target. The macro AVR will
be defined as well when using the standard levels gnu89 (default) and gnu99 but not
with c89 and c99.

• -mmcu=architecture

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 350

Compile code forarchitecture. Currently known architectures are

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 351

Architecture Macros Description
avr1 __AVR_ARCH__=1__AVR_ASM_ONLY____AVR_2_BYTE_PC__ [2] Simple CPU core, only assembler support
avr2 __AVR_ARCH__=2__AVR_2_BYTE_PC__ [2] "Classic" CPU core, up to 8 KB of ROM
avr25 [1] __AVR_ARCH__=25__AVR_HAVE_MOVW__ [1]__AVR_HAVE_LPMX__ [1]__AVR_2_BYTE_PC__ [2] "Classic" CPU core with ’MOVW’ and ’LPM Rx, Z[+]’ instruction, up to 8 KB of ROM
avr3 __AVR_ARCH__=3__AVR_MEGA____AVR_2_BYTE_PC__ [2] "Classic" CPU core, 16 KB to 128 KB of ROM
avr4 __AVR_ARCH__=4__AVR_ENHANCED____AVR_HAVE_MOVW__ [1]__AVR_HAVE_LPMX__ [1]__AVR_HAVE_MUL__ [1]__AVR_2_BYTE_PC__ [2] "Enhanced" CPU core, up to 8 KB of ROM
avr5 __AVR_ARCH__=5__AVR_MEGA____AVR_ENHANCED____AVR_HAVE_MOVW__ [1]__AVR_HAVE_LPMX__ [1]__AVR_HAVE_MUL__ [1]__AVR_2_BYTE_PC__ [2]"Enhanced" CPU core, 16 KB to 128 KB of ROM
avr6 [2] __AVR_ARCH__=6__AVR_MEGA____AVR_ENHANCED____AVR_HAVE_MOVW__ [1]__AVR_HAVE_LPMX__ [1]__AVR_HAVE_MUL__ [1]__AVR_3_BYTE_PC__ [2]"Enhanced" CPU core, 256 KB of ROM

[1] New in GCC 4.2

[2] Unofficial patch for GCC 4.1

By default, code is generated for the avr2 architecture.

Note that when only using-mmcu=architecturebut no-mmcu=MCU type, including
the file<avr/io.h > cannot work since it cannot decide which device’s definitions
to select.

• -mmcu=MCU type

The following MCU types are currently understood by avr-gcc. The table matches
them against the corresponding avr-gcc architecture name, and shows the preprocessor
symbol declared by the-mmcu option.

Architecture MCU name Macro
avr1 at90s1200 __AVR_AT90S1200__
avr1 attiny11 __AVR_ATtiny11__
avr1 attiny12 __AVR_ATtiny12__
avr1 attiny15 __AVR_ATtiny15__
avr1 attiny28 __AVR_ATtiny28__
avr2 at90s2313 __AVR_AT90S2313__
avr2 at90s2323 __AVR_AT90S2323__
avr2 at90s2333 __AVR_AT90S2333__
avr2 at90s2343 __AVR_AT90S2343__
avr2 attiny22 __AVR_ATtiny22__
avr2 attiny26 __AVR_ATtiny26__
avr2 at90s4414 __AVR_AT90S4414__
avr2 at90s4433 __AVR_AT90S4433__
avr2 at90s4434 __AVR_AT90S4434__
avr2 at90s8515 __AVR_AT90S8515__
avr2 at90c8534 __AVR_AT90C8534__
avr2 at90s8535 __AVR_AT90S8535__
avr2/avr25 [1] at86rf401 __AVR_AT86RF401__
avr2/avr25 [1] attiny13 __AVR_ATtiny13__

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 352

Architecture MCU name Macro
avr2/avr25 [1] attiny2313 __AVR_ATtiny2313__
avr2/avr25 [1] attiny24 __AVR_ATtiny24__
avr2/avr25 [1] attiny25 __AVR_ATtiny25__
avr2/avr25 [1] attiny261 __AVR_ATtiny261__
avr2/avr25 [1] attiny43u __AVR_ATtiny43U__
avr2/avr25 [1] attiny44 __AVR_ATtiny44__
avr2/avr25 [1] attiny45 __AVR_ATtiny45__
avr2/avr25 [1] attiny461 __AVR_ATtiny461__
avr2/avr25 [1] attiny48 __AVR_ATtiny48__
avr2/avr25 [1] attiny84 __AVR_ATtiny84__
avr2/avr25 [1] attiny85 __AVR_ATtiny85__
avr2/avr25 [1] attiny861 __AVR_ATtiny861__
avr2/avr25 [1] attiny88 __AVR_ATtiny88__
avr3 atmega103 __AVR_ATmega103__
avr3 atmega603 __AVR_ATmega603__
avr3 at43usb320 __AVR_AT43USB320__
avr3 at43usb355 __AVR_AT43USB355__
avr3 at76c711 __AVR_AT76C711__
avr4 atmega48 __AVR_ATmega48__
avr4 atmega48p __AVR_ATmega48P__
avr4 atmega8 __AVR_ATmega8__
avr4 atmega8515 __AVR_ATmega8515__
avr4 atmega8535 __AVR_ATmega8535__
avr4 atmega88 __AVR_ATmega88__
avr4 atmega88p __AVR_ATmega88P__
avr4 atmega8hva __AVR_ATmega8HVA__
avr4 at90pwm1 __AVR_AT90PWM1__
avr4 at90pwm2 __AVR_AT90PWM2__
avr4 at90pwm2b __AVR_AT90PWM2B__
avr4 at90pwm3 __AVR_AT90PWM3__
avr4 at90pwm3b __AVR_AT90PWM3B__
avr5 at90pwm216 __AVR_AT90PWM216__
avr5 at90pwm316 __AVR_AT90PWM316__
avr5 at90can32 __AVR_AT90CAN32__
avr5 at90can64 __AVR_AT90CAN64__
avr5 at90can128 __AVR_AT90CAN128__
avr5 at90usb82 __AVR_AT90USB82__
avr5 at90usb162 __AVR_AT90USB162__
avr5 at90usb646 __AVR_AT90USB646__
avr5 at90usb647 __AVR_AT90USB647__
avr5 at90usb1286 __AVR_AT90USB1286__
avr5 at90usb1287 __AVR_AT90USB1287__
avr5 atmega128 __AVR_ATmega128__

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 353

Architecture MCU name Macro
avr5 atmega1280 __AVR_ATmega1280__
avr5 atmega1281 __AVR_ATmega1281__
avr5 atmega1284p __AVR_ATmega1284P__
avr5 atmega16 __AVR_ATmega16__
avr5 atmega161 __AVR_ATmega161__
avr5 atmega162 __AVR_ATmega162__
avr5 atmega163 __AVR_ATmega163__
avr5 atmega164p __AVR_ATmega164P__
avr5 atmega165 __AVR_ATmega165__
avr5 atmega165p __AVR_ATmega165P__
avr5 atmega168 __AVR_ATmega168__
avr5 atmega168p __AVR_ATmega168P__
avr5 atmega169 __AVR_ATmega169__
avr5 atmega169p __AVR_ATmega169P__
avr5 atmega16hva __AVR_ATmega16HVA__
avr5 atmega32 __AVR_ATmega32__
avr5 atmega323 __AVR_ATmega323__
avr5 atmega324p __AVR_ATmega324P__
avr5 atmega325 __AVR_ATmega325__
avr5 atmega325p __AVR_ATmega325P__
avr5 atmega3250 __AVR_ATmega3250__
avr5 atmega3250p __AVR_ATmega3250P__
avr5 atmega328p __AVR_ATmega328P__
avr5 atmega329 __AVR_ATmega329__
avr5 atmega329p __AVR_ATmega329P__
avr5 atmega3290 __AVR_ATmega3290__
avr5 atmega3290p __AVR_ATmega3290P__
avr5 atmega32hvb __AVR_ATmega32HVB__
avr5 atmega406 __AVR_ATmega406__
avr5 atmega64 __AVR_ATmega64__
avr5 atmega640 __AVR_ATmega640__
avr5 atmega644 __AVR_ATmega644__
avr5 atmega644p __AVR_ATmega644P__
avr5 atmega645 __AVR_ATmega645__
avr5 atmega6450 __AVR_ATmega6450__
avr5 atmega649 __AVR_ATmega649__
avr5 atmega6490 __AVR_ATmega6490__
avr5 at94k __AVR_AT94K__
avr6 atmega2560 __AVR_ATmega2560__
avr6 atmega2561 __AVR_ATmega2561__

[1] ’avr25’ architecture is new in GCC 4.2

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 354

• -morder1

• -morder2

Change the order of register assignment. The default is

r24, r25, r18, r19, r20, r21, r22, r23, r30, r31, r26, r27, r28, r29, r17, r16, r15, r14, r13,
r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r0, r1

Order 1 uses

r18, r19, r20, r21, r22, r23, r24, r25, r30, r31, r26, r27, r28, r29, r17, r16, r15, r14, r13,
r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r0, r1

Order 2 uses

r25, r24, r23, r22, r21, r20, r19, r18, r30, r31, r26, r27, r28, r29, r17, r16, r15, r14, r13,
r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r1, r0

• -mint8

Assume int to be an 8-bit integer. Note that this is not really supported by
avr-libc , so it should normally not be used. The default is to use 16-bit integers.

• -mno-interrupts

Generates code that changes the stack pointer without disabling interrupts. Normally,
the state of the status registerSREGis saved in a temporary register, interrupts are
disabled while changing the stack pointer, andSREGis restored.

Specifying this option will define the preprocessor macro__NO_INTERRUPTS__to
the value 1.

• -mcall-prologues

Use subroutines for function prologue/epilogue. For complex functions that use many
registers (that needs to be saved/restored on function entry/exit), this saves some space
at the cost of a slightly increased execution time.

• -mtiny-stack

Change only the low 8 bits of the stack pointer.

• -mno-tablejump

Do not generate tablejump instructions. By default, jump tables can be used to op-
timize switch statements. When turned off, sequences of compare statements are

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 355

used instead. Jump tables are usually faster to execute on average, but in particular for
switch statements where most of the jumps would go to the default label, they might
waste a bit of flash memory.

• -mshort-calls

Use rjmp/rcall (limited range) on>8K devices. Onavr2 andavr4 architec-
tures (less than 8 KB or flash memory), this is always the case. Onavr3 andavr5
architectures, calls and jumps to targets outside the current function will by default use
jmp/call instructions that can cover the entire address range, but that require more
flash ROM and execution time.

• -mrtl

Dump the internal compilation result called "RTL" into comments in the generated
assembler code. Used for debugging avr-gcc.

• -msize

Dump the address, size, and relative cost of each statement into comments in the gen-
erated assembler code. Used for debugging avr-gcc.

• -mdeb

Generate lots of debugging information tostderr .

9.12.1.2 Selected general compiler optionsThe following general gcc options
might be of some interest to AVR users.

• -On

Optimization leveln. Increasingn is meant to optimize more, an optimization level of
0 means no optimization at all, which is the default if no-O option is present. The
special option-Os is meant to turn on all-O2 optimizations that are not expected to
increase code size.

Note that at-O3 , gcc attempts to inline all "simple" functions. For the AVR target,
this will normally constitute a large pessimization due to the code increasement. The
only other optimization turned on with-O3 is -frename-registers , which could
rather be enabled manually instead.

A simple-O option is equivalent to-O1 .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 356

Note also that turning off all optimizations will prevent some warnings from being
issued since the generation of those warnings depends on code analysis steps that are
only performed when optimizing (unreachable code, unused variables).

See also theappropriate FAQ entryfor issues regarding debugging optimized code.

• -Wa, assembler-options

• -Wl, linker-options

Pass the listed options to the assembler, or linker, respectively.

• -g

Generate debugging information that can be used by avr-gdb.

• -ffreestanding

Assume a "freestanding" environment as per the C standard. This turns off automatic
builtin functions (though they can still be reached by prepending__builtin_ to
the actual function name). It also makes the compiler not complain whenmain()
is declared with avoid return type which makes some sense in a microcontroller
environment where the application cannot meaningfully provide a return value to its
environment (in most cases,main() won’t even return anyway). However, this also
turns off all optimizations normally done by the compiler which assume that functions
known by a certain name behave as described by the standard. E. g., applying the
function strlen() to a literal string will normally cause the compiler to immediately
replace that call by the actual length of the string, while with-ffreestanding , it
will always callstrlen()at run-time.

• -funsigned-char

Make any unqualfiedchar type an unsigned char. Without this option, they default to
a signed char.

• -funsigned-bitfields

Make any unqualified bitfield type unsigned. By default, they are signed.

• -fshort-enums

Allocate to anenum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type will be equivalent to the smallest integer
type which has enough room.

• -fpack-struct

Pack all structure members together without holes.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 357

9.12.2 Options for the assembler avr-as

9.12.2.1 Machine-specific assembler options

• -mmcu=architecture

• -mmcu=MCU name

avr-as understands the same-mmcu= options asavr-gcc. By default, avr2 is assumed,
but this can be altered by using the appropriate .arch pseudo-instruction inside the
assembler source file.

• -mall-opcodes

Turns off opcode checking for the actual MCU type, and allows any possible AVR
opcode to be assembled.

• -mno-skip-bug

Don’t emit a warning when trying to skip a 2-word instruction with a
CPSE/SBIC/SBIS/SBRC/SBRS instruction. Early AVR devices suffered from a
hardware bug where these instructions could not be properly skipped.

• -mno-wrap

For RJMP/RCALLinstructions, don’t allow the target address to wrap around for de-
vices that have more than 8 KB of memory.

• -gstabs

Generate .stabs debugging symbols for assembler source lines. This enables avr-gdb
to trace through assembler source files. This optionmust notbe used when assembling
sources that have been generated by the C compiler; these files already contain the
appropriate line number information from the C source files.

• -a[cdhlmns= file]

Turn on the assembler listing. The sub-options are:

• c omit false conditionals

• d omit debugging directives

• h include high-level source

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 358

• l include assembly

• minclude macro expansions

• n omit forms processing

• s include symbols

• =file set the name of the listing file

The various sub-options can be combined into a single-a option list;=file must be the
last one in that case.

9.12.2.2 Examples for assembler options passed through the C compilerRe-
member that assembler options can be passed from the C compiler frontend using-Wa
(seeabove), so in order to include the C source code into the assembler listing in
file foo.lst , when compilingfoo.c , the following compiler command-line can be
used:

$ avr-gcc -c -O foo.c -o foo.o -Wa,-ahls=foo.lst

In order to pass an assembler file through the C preprocessor first, and have the assem-
bler generate line number debugging information for it, the following command can be
used:

$ avr-gcc -c -x assembler-with-cpp -o foo.o foo.S -Wa,--gstabs

Note that on Unix systems that have case-distinguishing file systems, specifying a file
name with the suffix .S (upper-case letter S) will make the compiler automatically
assume-x assembler-with-cpp , while using .s would pass the file directly to
the assembler (no preprocessing done).

9.12.3 Controlling the linker avr-ld

9.12.3.1 Selected linker options While there are no machine-specific options for
avr-ld, a number of the standard options might be of interest to AVR users.

• -l name

Locate the archive library namedlib name.a , and use it to resolve currently
unresolved symbols from it. The library is searched along a path that con-
sists of builtin pathname entries that have been specified at compile time (e. g.
/usr/local/avr/lib on Unix systems), possibly extended by pathname entries
as specified by-L options (that must precede the-l options on the command-line).

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 359

• -L path

Additional location to look for archive libraries requested by-l options.

• -defsym symbol=expr

Define a global symbolsymbolusingexpras the value.

• -M

Print a linker map tostdout .

• -Map mapfile

Print a linker map tomapfile.

• -cref

Output a cross reference table to the map file (in case-Map is also present), or to
stdout .

• -section-start sectionname=org

Start sectionsectionnameat absolute addressorg.

• -Tbss org

• -Tdata org

• -Ttext org

Start thebss , data , or text section atorg, respectively.

• -T scriptfile

Use scriptfile as the linker script, replacing the default linker script. De-
fault linker scripts are stored in a system-specific location (e. g. under
/usr/local/avr/lib/ldscripts on Unix systems), and consist of the AVR
architecture name (avr2 through avr5) with the suffix .x appended. They describe how
the variousmemory sectionswill be linked together.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.12 Using the GNU tools 360

9.12.3.2 Passing linker options from the C compiler By default, all unknown
non-option arguments on the avr-gcc command-line (i. e., all filename arguments that
don’t have a suffix that is handled by avr-gcc) are passed straight to the linker. Thus,
all files ending in .o (object files) and .a (object libraries) are provided to the linker.

System libraries are usually not passed by their explicit filename but rather using the
-l option which uses an abbreviated form of the archive filename (see above). avr-
libc ships two system libraries,libc.a , and libm.a . While the standard library
libc.a will always be searched for unresolved references when the linker is started
using the C compiler frontend (i. e., there’s always at least one implied-lc option),
the mathematics librarylibm.a needs to be explicitly requested using-lm . See also
theentry in the FAQexplaining this.

Conventionally, Makefiles use themake macroLDLIBS to keep track of-l (and
possibly-L ) options that should only be appended to the C compiler command-line
when linking the final binary. In contrast, the macroLDFLAGSis used to store other
command-line options to the C compiler that should be passed as options during the
linking stage. The difference is that options are placed early on the command-line,
while libraries are put at the end since they are to be used to resolve global symbols
that are still unresolved at this point.

Specific linker flags can be passed from the C compiler command-line using the-Wl
compiler option, seeabove. This option requires that there be no spaces in the appended
linker option, while some of the linker options above (like-Map or -defsym ) would
require a space. In these situations, the space can be replaced by an equal sign as
well. For example, the following command-line can be used to compilefoo.c into an
executable, and also produce a link map that contains a cross-reference list in the file
foo.map:

$ avr-gcc -O -o foo.out -Wl,-Map=foo.map -Wl,--cref foo.c

Alternatively, a comma as a placeholder will be replaced by a space before passing the
option to the linker. So for a device with external SRAM, the following command-line
would cause the linker to place the data segment at address 0x2000 in the SRAM:

$ avr-gcc -mmcu=atmega128 -o foo.out -Wl,-Tdata,0x802000

See the explanation of thedata sectionfor why 0x800000 needs to be added to the
actual value. Note that the stack will still remain in internal RAM, through the symbol
__stack that is provided by the run-time startup code. This is probably a good idea
anyway (since internal RAM access is faster), and even required for some early devices
that had hardware bugs preventing them from using a stack in external RAM. Note
also that the heap formalloc() will still be placed after all the variables in the data
section, so in this situation, no stack/heap collision can occur.

In order to relocate the stack from its default location at the top of interns RAM, the
value of the symbol__stack can be changed on the linker command-line. As the

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.13 Using the avrdude program 361

linker is typically called from the compiler frontend, this can be achieved using a com-
piler option like

-Wl,--defsym=__stack=0x8003ff

The above will make the code use stack space from RAM address 0x3ff downwards.
The amount of stack space available then depends on the bottom address of internal
RAM for a particular device. It is the responsibility of the application to ensure the
stack does not grow out of bounds, as well as to arrange for the stack to not collide
with variable allocations made by the compiler (sections .data and .bss).

9.13 Using the avrdude program

Note:

This section was contributed by Brian Dean [bsd@bsdhome.com ].
The avrdude program was previously called avrprog. The name was changed to
avoid confusion with the avrprog program that Atmel ships with AvrStudio.

avrdude is a program that is used to update or read the flash and EEPROM memories
of Atmel AVR microcontrollers on FreeBSD Unix. It supports the Atmel serial pro-
gramming protocol using the PC’s parallel port and can upload either a raw binary file
or an Intel Hex format file. It can also be used in an interactive mode to individually
update EEPROM cells, fuse bits, and/or lock bits (if their access is supported by the
Atmel serial programming protocol.) The main flash instruction memory of the AVR
can also be programmed in interactive mode, however this is not very useful because
one can only turn bits off. The only way to turn flash bits on is to erase the entire
memory (usingavrdude ’s -e option).

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

# cd /usr/ports/devel/avrdude
# make install

Once installed,avrdude can program processors using the contents of the .hex file
specified on the command line. In this example, the filemain.hex is burned into the
flash memory:

# avrdude -p 2313 -e -m flash -i main.hex

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9101

avrdude: erasing chip
avrdude: done.
avrdude: reading input file "main.hex"

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

mailto:bsd@bsdhome.com


9.13 Using the avrdude program 362

avrdude: input file main.hex auto detected as Intel Hex

avrdude: writing flash:
1749 0x00
avrdude: 1750 bytes of flash written
avrdude: verifying flash memory against main.hex:
avrdude: reading on-chip flash data:
1749 0x00
avrdude: verifying ...
avrdude: 1750 bytes of flash verified

avrdude done. Thank you.

The -p 2313 option letsavrdude know that we are operating on an AT90S2313
chip. This option specifies the device id and is matched up with the device of the same
id in avrdude ’s configuration file (/usr/local/etc/avrdude .conf ). To list
valid parts, specify the-v option. The-e option instructsavrdude to perform a
chip-erase before programming; this is almost always necessary before programming
the flash. The-m flash option indicates that we want to upload data into the flash
memory, while-i main.hex specifies the name of the input file.

The EEPROM is uploaded in the same way, the only difference is that you would use
-m eeprom instead of-m flash .

To use interactive mode, use the-t option:

# avrdude -p 2313 -t
avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9101
avrdude>

The ’?’ command displays a list of valid
commands:

avrdude> ?
>>> ?
Valid commands:

dump : dump memory : dump <memtype> <addr> <N-Bytes>
read : alias for dump
write : write memory : write <memtype> <addr> <b1> <b2> ... <bN>
erase : perform a chip erase
sig : display device signature bytes
part : display the current part information
send : send a raw command : send <b1> <b2> <b3> <b4>
help : help
? : help
quit : quit

Use the ’part’ command to display valid memory types for use with the
’dump’ and ’write’ commands.

avrdude>

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.14 Release Numbering and Methodology 363

9.14 Release Numbering and Methodology

9.14.1 Release Version Numbering Scheme

9.14.1.1 Stable Versions A stable release will always have a minor number that is
an even number. This implies that you should be able to upgrade to a new version of
the library with the same major and minor numbers without fear that any of the APIs
have changed. The only changes that should be made to a stable branch are bug fixes
and under some circumstances, additional functionality (e.g. adding support for a new
device).

If major version number has changed, this implies that the required versions of gcc and
binutils have changed. Consult the README file in the toplevel directory of the AVR
Libc source for which versions are required.

9.14.1.2 Development Versions The major version number of a development se-
ries is always the same as the last stable release.

The minor version number of a development series is always an odd number and is 1
more than the last stable release.

The patch version number of a development series is always 0 until a new branch is cut
at which point the patch number is changed to 90 to denote the branch is approaching
a release and the date appended to the version to denote that it is still in development.

All versions in development in cvs will also always have the date appended as a fourth
version number. The format of the date will be YYYYMMDD.

So, the development version number will look like this:

1.1.0.20030825

While a pre-release version number on a branch (destined to become either 1.2 or 2.0)
will look like this:

1.1.90.20030828

9.14.2 Releasing AVR Libc

The information in this section is only relevant to AVR Libc developers and can be
ignored by end users.

Note:

In what follows, I assume you know how to use cvs and how to checkout multiple
source trees in a single directory without having them clobber each other. If you
don’t know how to do this, you probably shouldn’t be making releases or cutting
branches.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.14 Release Numbering and Methodology 364

9.14.2.1 Creating a cvs branch The following steps should be taken to cut a
branch in cvs:

1. Check out a fresh source tree from cvs HEAD.

2. Update the NEWS file with pending release number and commit to cvs HEAD:

Change "Changes since avr-libc-<last_release>:" to "Changes in avr-libc-
<this_relelase>:".

3. Set the branch-point tag (setting<major> and<minor> accordingly):

’cvs tag avr-libc-<major>_<minor>-branchpoint’

4. Create the branch:

’cvs tag -b avr-libc-<major>_<minor>-branch’

5. Update the package version in configure.ac and commit configure.ac to cvs
HEAD:

Change minor number to next odd value.

6. Update the NEWS file and commit to cvs HEAD:

Add "Changes since avr-libc-<this_release>:"

7. Check out a new tree for the branch:

’cvs co -r avr-libc-<major>_<minor>-branch’

8. Update the package version in configure.ac and commit configure.ac to cvs
branch:

Change the patch number to 90 to denote that this now a branch leading up to a
release. Be sure to leave the<date> part of the version.

9. Bring the build system up to date by running bootstrap and configure.

10. Perform a ’make distcheck’ and make sure it succeeds. This will create the
snapshot source tarball. This should be considered the first release candidate.

11. Upload the snapshot tarball to savannah.

12. Announce the branch and the branch tag to the avr-libc-dev list so other devel-
opers can checkout the branch.

Note:

CVS tags do not allow the use of periods (’.’).

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.14 Release Numbering and Methodology 365

9.14.2.2 Making a release A stable release will only be done on a branch, not from
the cvs HEAD.

The following steps should be taken when making a release:

1. Make sure the source tree you are working from is on the correct branch:

’cvs update -r avr-libc-<major>_<minor>-branch’

2. Update the package version in configure.ac and commit it to cvs.

3. Update the gnu tool chain version requirements in the README and commit to
cvs.

4. Update the ChangeLog file to note the release and commit to cvs on the branch:

Add "Released avr-libc-<this_release>."

5. Update the NEWS file with pending release number and commit to cvs:

Change "Changes since avr-libc-<last_release>:" to "Changes in avr-libc-
<this_relelase>:".

6. Bring the build system up to date by running bootstrap and configure.

7. Perform a ’make distcheck’ and make sure it succeeds. This will create the
source tarball.

8. Tag the release:

’cvs tag avr-libc-<major>_<minor>_<patch>-release’

9. Upload the tarball to savannah.

10. Update the NEWS file, and commit to cvs:

Add "Changes since avr-libc-<major>_<minor>_<patch>:"

11. Generate the latest documentation and upload to savannah.

12. Announce the release.

The following hypothetical diagram should help clarify version and branch relation-
ships.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



9.15 Acknowledgments 366

cvs tag −b avr−libc−1_0−branch

cvs tag avr−libc−1_0−branchpoint

set version to 1.1.0.<date>

set version to 0.90.90.<date>

set version to 1.0
cvs tag avr−libc−1_0−release

1.2 Branch1.0 BranchHEAD

set version to 1.0.0.<date>

cvs tag avr−libc−1_2−branchpoint

cvs tag avr−libc−2.0−branchpoint

cvs tag −b avr−libc−1_2−branchset version to 1.3.0.<date>

set version to 2.1.0.<date>

set version to 1.1.90.<date>

set version to 1.0.1

set version to 1.2
cvs tag avr−libc−1_2−release

cvs tag avr−libc−1_0_1−release

Figure 9: Release tree

9.15 Acknowledgments

This document tries to tie together the labors of a large group of people. Without
these individuals’ efforts, we wouldn’t have a terrific,free set of tools to develop AVR
projects. We all owe thanks to:

• The GCC Team, which produced a very capable set of development tools for an
amazing number of platforms and processors.

• Denis Chertykov [denisc@overta.ru ] for making the AVR-specific
changes to the GNU tools.

• Denis Chertykov and Marek Michalkiewicz [marekm@linux.org.pl ] for
developing the standard libraries and startup code forAVR-GCC .

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

mailto:denisc@overta.ru
mailto:marekm@linux.org.pl


9.16 Todo List 367

• Uros Platise for developing the AVR programmer tool,uisp.

• Joerg Wunsch [joerg@FreeBSD.ORG ] for adding all the AVR development
tools to the FreeBSD [http://www.freebsd.org ] ports tree and for pro-
viding the basics for thedemo project.

• Brian Dean [bsd@bsdhome.com ] for developingavrdude (an alternative to
uisp) and for contributingdocumentationwhich describes how to use it.Avr-
dudewas previously calledavrprog.

• Eric Weddington [eweddington@cso.atmel.com ] for maintaining the
WinAVR package and thus making the continued improvements to the open
source AVR toolchain available to many users.

• Rich Neswold for writing the original avr-tools document (which he graciously
allowed to be merged into this document) and his improvements to thedemo
project.

• Theodore A. Roth for having been a long-time maintainer of many of the tools
(AVR-Libc , the AVR port ofGDB, AVaRICE , uisp, avrdude).

• All the people who currently maintain the tools, and/or have submitted sugges-
tions, patches and bug reports. (See the AUTHORS files of the various tools.)

• And lastly, all the users who use the software. If nobody used the software, we
would probably not be very motivated to continue to develop it. Keep those bug
reports coming. ;-)

9.16 Todo List

Group avr_boot From email with Marek: On smaller devices (all except AT-
mega64/128), __SPM_REG is in the I/O space, accessible with the shorter "in"
and "out" instructions - since the boot loader has a limited size, this could be an
important optimization.

9.17 Deprecated List

Global SIGNAL Do not useSIGNAL() in new code. UseISR() instead.

Global ISR_ALIAS For new code, the use of ISR(..., ISR_ALIASOF(...)) is recom-
mended.

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen

mailto:joerg@FreeBSD.ORG
http://www.freebsd.org
mailto:bsd@bsdhome.com
mailto:eweddington@cso.atmel.com


9.17 Deprecated List 368

Global timer_enable_int

Global enable_external_int

Global INTERRUPT

Global inp

Global outp

Global inb

Global outb

Global sbi

Global cbi

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



Index
$PATH,334
$PREFIX,334
–prefix,334
<alloca.h>: Allocate space in the

stack,14
<assert.h>: Diagnostics,15
<avr/boot.h>: Bootloader Support

Utilities, 93
<avr/eeprom.h>: EEPROM handling,

100
<avr/fuse.h>: Fuse Support,103
<avr/interrupt.h>: Interrupts,106
<avr/io.h>: AVR device-specific IO

definitions,129
<avr/lock.h>: Lockbit Support,130
<avr/pgmspace.h>: Program Space

Utilities, 133
<avr/power.h>: Power Reduction

Management,145
<avr/sfr_defs.h>: Special function

registers,149
<avr/sleep.h>: Power Management

and Sleep Modes,152
<avr/version.h>: avr-libc version

macros,154
<avr/wdt.h>: Watchdog timer han-

dling, 156
<compat/deprecated.h>: Deprecated

items,176
<compat/ina90.h>: Compatibility

with IAR EWB 3.x,179
<ctype.h>: Character Operations,16
<errno.h>: System Errors,18
<inttypes.h>: Integer Type conver-

sions,19
<math.h>: Mathematics,31
<setjmp.h>: Non-local goto,38
<stdint.h>: Standard Integer Types,

40
<stdio.h>: Standard IO facilities,52
<stdlib.h>: General utilities,71
<string.h>: Strings,82

<util/atomic.h> Atomically and Non-
Atomically Executed Code
Blocks,159

<util/crc16.h>: CRC Computations,
163

<util/delay.h>: Convenience func-
tions for busy-wait delay
loops,166

<util/delay_basic.h>: Basic busy-
wait delay loops,167

<util/parity.h>: Parity bit generation,
168

<util/setbaud.h>: Helper macros for
baud rate calculations,169

<util/twi.h>: TWI bit mask defini-
tions,171

_BV
avr_sfr,150

_EEGET
avr_eeprom,102

_EEPUT
avr_eeprom,102

_FDEV_EOF
avr_stdio,57

_FDEV_ERR
avr_stdio,57

_FDEV_SETUP_READ
avr_stdio,57

_FDEV_SETUP_RW
avr_stdio,57

_FDEV_SETUP_WRITE
avr_stdio,57

_FFS
avr_string,84

__AVR_LIBC_DATE_
avr_version,155

__AVR_LIBC_DATE_STRING__
avr_version,155

__AVR_LIBC_MAJOR__
avr_version,155

__AVR_LIBC_MINOR__
avr_version,155



INDEX 370

__AVR_LIBC_REVISION__
avr_version,155

__AVR_LIBC_VERSION_-
STRING__

avr_version,155
__AVR_LIBC_VERSION__

avr_version,155
__EEPROM_REG_LOCATIONS__

avr_eeprom,102
__ELPM_classic__

pgmspace.h,241
__ELPM_dword_enhanced__

pgmspace.h,241
__ELPM_enhanced__

pgmspace.h,241
__ELPM_word_classic__

pgmspace.h,242
__ELPM_word_enhanced__

pgmspace.h,242
__LPM_classic__

pgmspace.h,243
__LPM_dword_classic__

pgmspace.h,243
__LPM_dword_enhanced__

pgmspace.h,244
__LPM_enhanced__

pgmspace.h,244
__LPM_word_classic__

pgmspace.h,244
__LPM_word_enhanced__

pgmspace.h,245
__boot_lock_bits_set

boot.h,223
__boot_lock_bits_set_alternate

boot.h,223
__boot_page_erase_alternate

boot.h,223
__boot_page_erase_extended

boot.h,224
__boot_page_erase_normal

boot.h,224
__boot_page_fill_alternate

boot.h,224
__boot_page_fill_extended

boot.h,225
__boot_page_fill_normal

boot.h,225
__boot_page_write_alternate

boot.h,226
__boot_page_write_extended

boot.h,226
__boot_page_write_normal

boot.h,227
__boot_rww_enable

boot.h,227
__boot_rww_enable_alternate

boot.h,227
__compar_fn_t

avr_stdlib,73
__malloc_heap_end

avr_stdlib,82
__malloc_heap_start

avr_stdlib,82
__malloc_margin

avr_stdlib,82
_crc16_update

util_crc,164
_crc_ccitt_update

util_crc,164
_crc_ibutton_update

util_crc,165
_crc_xmodem_update

util_crc,165
_delay_loop_1

util_delay_basic,168
_delay_loop_2

util_delay_basic,168
_delay_ms

util_delay,167
_delay_us

util_delay,167
_wdt_write

wdt.h,261

A more sophisticated project,199
A simple project,184
abort

avr_stdlib,73
abs

avr_stdlib,73
acos

avr_math,33

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 371

Additional notes from <avr/sfr_-
defs.h>, 147

alloca
alloca,14

asin
avr_math,33

assert
avr_assert,15

assert.h,220
atan

avr_math,33
atan2

avr_math,33
atof

avr_stdlib,74
atoi

avr_stdlib,74
atoi.S,221
atol

avr_stdlib,74
atol.S,221
atomic.h,221
ATOMIC_BLOCK

util_atomic,161
ATOMIC_FORCEON

util_atomic,161
ATOMIC_RESTORESTATE

util_atomic,162
avr_assert

assert,15
avr_boot

boot_is_spm_interrupt,95
boot_lock_bits_set,95
boot_lock_bits_set_safe,96
boot_lock_fuse_bits_get,96
boot_page_erase,97
boot_page_erase_safe,97
boot_page_fill,97
boot_page_fill_safe,98
boot_page_write,98
boot_page_write_safe,98
boot_rww_busy,98
boot_rww_enable,98
boot_rww_enable_safe,99
boot_signature_byte_get,99
boot_spm_busy,99

boot_spm_busy_wait,99
boot_spm_interrupt_disable,100
boot_spm_interrupt_enable,100
BOOTLOADER_SECTION,100
GET_EXTENDED_FUSE_-

BITS, 100
GET_HIGH_FUSE_BITS,100
GET_LOCK_BITS,100
GET_LOW_FUSE_BITS,100

avr_eeprom
_EEGET,102
_EEPUT,102
__EEPROM_REG_-

LOCATIONS__,102
EEMEM, 102
eeprom_busy_wait,102
eeprom_is_ready,102
eeprom_read_block,103
eeprom_read_byte,103
eeprom_read_word,103
eeprom_write_block,103
eeprom_write_byte,103
eeprom_write_word,103

avr_errno
EDOM, 19
ERANGE,19

avr_interrupts
BADISR_vect,126
cli, 126
EMPTY_INTERRUPT,126
ISR,127
ISR_ALIAS, 127
ISR_ALIASOF,128
ISR_BLOCK,128
ISR_NAKED,128
ISR_NOBLOCK,128
reti, 129
sei,129
SIGNAL, 129

avr_inttypes
int_farptr_t,31
PRId16,22
PRId32,22
PRId8,22
PRIdFAST16,22
PRIdFAST32,22

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 372

PRIdFAST8,23
PRIdLEAST16,23
PRIdLEAST32,23
PRIdLEAST8,23
PRIdPTR,23
PRIi16,23
PRIi32,23
PRIi8,23
PRIiFAST16,23
PRIiFAST32,23
PRIiFAST8,23
PRIiLEAST16,24
PRIiLEAST32,24
PRIiLEAST8,24
PRIiPTR,24
PRIo16,24
PRIo32,24
PRIo8,24
PRIoFAST16,24
PRIoFAST32,24
PRIoFAST8,24
PRIoLEAST16,24
PRIoLEAST32,25
PRIoLEAST8,25
PRIoPTR,25
PRIu16,25
PRIu32,25
PRIu8,25
PRIuFAST16,25
PRIuFAST32,25
PRIuFAST8,25
PRIuLEAST16,25
PRIuLEAST32,25
PRIuLEAST8,26
PRIuPTR,26
PRIX16,26
PRIx16,26
PRIX32,26
PRIx32,26
PRIX8,26
PRIx8,26
PRIXFAST16,26
PRIxFAST16,26
PRIXFAST32,26
PRIxFAST32,27
PRIXFAST8,27

PRIxFAST8,27
PRIXLEAST16,27
PRIxLEAST16,27
PRIXLEAST32,27
PRIxLEAST32,27
PRIXLEAST8,27
PRIxLEAST8,27
PRIXPTR,27
PRIxPTR,27
SCNd16,28
SCNd32,28
SCNdFAST16,28
SCNdFAST32,28
SCNdLEAST16,28
SCNdLEAST32,28
SCNdPTR,28
SCNi16,28
SCNi32,28
SCNiFAST16,28
SCNiFAST32,28
SCNiLEAST16,29
SCNiLEAST32,29
SCNiPTR,29
SCNo16,29
SCNo32,29
SCNoFAST16,29
SCNoFAST32,29
SCNoLEAST16,29
SCNoLEAST32,29
SCNoPTR,29
SCNu16,29
SCNu32,30
SCNuFAST16,30
SCNuFAST32,30
SCNuLEAST16,30
SCNuLEAST32,30
SCNuPTR,30
SCNx16,30
SCNx32,30
SCNxFAST16,30
SCNxFAST32,30
SCNxLEAST16,30
SCNxLEAST32,31
SCNxPTR,31
uint_farptr_t,31

avr_math

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 373

acos,33
asin,33
atan,33
atan2,33
ceil, 33
copysign,34
cos,34
cosh,34
exp,34
fabs,34
fdim, 34
floor, 34
fma,34
fmax,34
fmin, 35
fmod,35
frexp,35
hypot,35
INFINITY, 33
isfinite,35
isinf, 35
isnan,35
ldexp,36
log, 36
log10,36
lrint, 36
lround,36
M_PI, 33
M_SQRT2,33
modf,36
NAN, 33
pow,37
round,37
signbit,37
sin,37
sinh,37
sqrt,37
square,38
tan,38
tanh,38
trunc,38

avr_pgmspace
memchr_P,138
memcmp_P,139
memcpy_P,139
memmem_P,139

memrchr_P,139
PGM_P,135
pgm_read_byte,135
pgm_read_byte_far,135
pgm_read_byte_near,135
pgm_read_dword,135
pgm_read_dword_far,136
pgm_read_dword_near,136
pgm_read_word,136
pgm_read_word_far,136
pgm_read_word_near,136
PGM_VOID_P,137
prog_char,137
prog_int16_t,137
prog_int32_t,137
prog_int64_t,137
prog_int8_t,137
prog_uchar,138
prog_uint16_t,138
prog_uint32_t,138
prog_uint64_t,138
prog_uint8_t,138
prog_void,138
PROGMEM,137
PSTR,137
strcasecmp_P,139
strcasestr_P,140
strcat_P,140
strchr_P,140
strchrnul_P,140
strcmp_P,141
strcpy_P,141
strcspn_P,141
strlcat_P,141
strlcpy_P,142
strlen_P,142
strncasecmp_P,142
strncat_P,143
strncmp_P,143
strncpy_P,143
strnlen_P,143
strpbrk_P,144
strrchr_P,144
strsep_P,144
strspn_P,144
strstr_P,145

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 374

avr_sfr
_BV, 150
bit_is_clear,151
bit_is_set,151
loop_until_bit_is_clear,151
loop_until_bit_is_set,151

avr_sleep
set_sleep_mode,154
sleep_cpu,154
sleep_disable,154
sleep_enable,154
sleep_mode,154
SLEEP_MODE_ADC,153
SLEEP_MODE_EXT_-

STANDBY, 153
SLEEP_MODE_IDLE,153
SLEEP_MODE_PWR_DOWN,

153
SLEEP_MODE_PWR_SAVE,

153
SLEEP_MODE_STANDBY,153

avr_stdint
INT16_C,44
INT16_MAX, 44
INT16_MIN, 44
int16_t,49
INT32_C,44
INT32_MAX, 44
INT32_MIN, 44
int32_t,49
INT64_C,44
INT64_MAX, 45
INT64_MIN, 45
int64_t,49
INT8_C,45
INT8_MAX, 45
INT8_MIN, 45
int8_t,49
INT_FAST16_MAX,45
INT_FAST16_MIN,45
int_fast16_t,50
INT_FAST32_MAX,45
INT_FAST32_MIN,45
int_fast32_t,50
INT_FAST64_MAX,45
INT_FAST64_MIN,45

int_fast64_t,50
INT_FAST8_MAX, 46
INT_FAST8_MIN,46
int_fast8_t,50
INT_LEAST16_MAX, 46
INT_LEAST16_MIN,46
int_least16_t,50
INT_LEAST32_MAX, 46
INT_LEAST32_MIN,46
int_least32_t,50
INT_LEAST64_MAX, 46
INT_LEAST64_MIN,46
int_least64_t,50
INT_LEAST8_MAX, 46
INT_LEAST8_MIN, 46
int_least8_t,50
INTMAX_C, 46
INTMAX_MAX, 47
INTMAX_MIN, 47
intmax_t,50
INTPTR_MAX, 47
INTPTR_MIN, 47
intptr_t,51
PTRDIFF_MAX,47
PTRDIFF_MIN,47
SIG_ATOMIC_MAX, 47
SIG_ATOMIC_MIN, 47
SIZE_MAX, 47
UINT16_C,47
UINT16_MAX, 47
uint16_t,51
UINT32_C,48
UINT32_MAX, 48
uint32_t,51
UINT64_C,48
UINT64_MAX, 48
uint64_t,51
UINT8_C,48
UINT8_MAX, 48
uint8_t,51
UINT_FAST16_MAX,48
uint_fast16_t,51
UINT_FAST32_MAX,48
uint_fast32_t,51
UINT_FAST64_MAX,48
uint_fast64_t,51

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 375

UINT_FAST8_MAX, 48
uint_fast8_t,51
UINT_LEAST16_MAX, 48
uint_least16_t,52
UINT_LEAST32_MAX, 49
uint_least32_t,52
UINT_LEAST64_MAX, 49
uint_least64_t,52
UINT_LEAST8_MAX, 49
uint_least8_t,52
UINTMAX_C, 49
UINTMAX_MAX, 49
uintmax_t,52
UINTPTR_MAX, 49
uintptr_t,52

avr_stdio
_FDEV_EOF,57
_FDEV_ERR,57
_FDEV_SETUP_READ,57
_FDEV_SETUP_RW,57
_FDEV_SETUP_WRITE,57
clearerr,60
EOF,58
fclose,60
fdev_close,58
fdev_get_udata,58
fdev_set_udata,58
FDEV_SETUP_STREAM,58
fdev_setup_stream,58
fdevopen,60
feof, 61
ferror,61
fflush,61
fgetc,61
fgets,61
FILE, 59
fprintf, 62
fprintf_P,62
fputc,62
fputs,62
fputs_P,62
fread,62
fscanf,62
fscanf_P,62
fwrite, 63
getc,59

getchar,59
gets,63
printf, 63
printf_P,63
putc,59
putchar,59
puts,63
puts_P,63
scanf,63
scanf_P,63
snprintf,63
snprintf_P,64
sprintf,64
sprintf_P,64
sscanf,64
sscanf_P,64
stderr,59
stdin,59
stdout,60
ungetc,64
vfprintf, 64
vfprintf_P,67
vfscanf,67
vfscanf_P,70
vprintf, 70
vscanf,70
vsnprintf,70
vsnprintf_P,70
vsprintf,71
vsprintf_P,71

avr_stdlib
__compar_fn_t,73
__malloc_heap_end,82
__malloc_heap_start,82
__malloc_margin,82
abort,73
abs,73
atof,74
atoi,74
atol,74
bsearch,74
calloc,75
div, 75
DTOSTR_ALWAYS_SIGN,73
DTOSTR_PLUS_SIGN,73
DTOSTR_UPPERCASE,73

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 376

dtostre,75
dtostrf,75
exit, 76
free,76
itoa,76
labs,76
ldiv, 77
ltoa,77
malloc,77
qsort,77
rand,78
RAND_MAX, 73
rand_r,78
random,78
RANDOM_MAX, 73
random_r,78
realloc,79
srand,79
srandom,79
strtod,79
strtol,80
strtoul,80
ultoa,81
utoa,81

avr_string
_FFS,84
ffs, 84
ffsl, 84
ffsll, 84
memccpy,84
memchr,85
memcmp,85
memcpy,85
memmem,86
memmove,86
memrchr,86
memset,86
strcasecmp,86
strcasestr,87
strcat,87
strchr,87
strchrnul,88
strcmp,88
strcpy,88
strcspn,88
strlcat,89

strlcpy,89
strlen,89
strlwr, 89
strncasecmp,90
strncat,90
strncmp,90
strncpy,90
strnlen,91
strpbrk,91
strrchr,91
strrev,92
strsep,92
strspn,92
strstr,92
strtok_r,93
strupr,93

avr_version
__AVR_LIBC_DATE_,155
__AVR_LIBC_DATE_-

STRING__,155
__AVR_LIBC_MAJOR__,155
__AVR_LIBC_MINOR__,155
__AVR_LIBC_REVISION__,

155
__AVR_LIBC_VERSION_-

STRING__,155
__AVR_LIBC_VERSION__,

155
avr_watchdog

wdt_disable,157
wdt_enable,157
wdt_reset,157
WDTO_120MS,157
WDTO_15MS,158
WDTO_1S,158
WDTO_250MS,158
WDTO_2S,158
WDTO_30MS,158
WDTO_4S,158
WDTO_500MS,159
WDTO_60MS,159
WDTO_8S,159

avrdude, usage,361
avrprog, usage,361

BADISR_vect

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 377

avr_interrupts,126
BAUD_TOL

util_setbaud,171
bit_is_clear

avr_sfr,151
bit_is_set

avr_sfr,151
boot.h,221

__boot_lock_bits_set,223
__boot_lock_bits_set_alternate,

223
__boot_page_erase_alternate,

223
__boot_page_erase_extended,

224
__boot_page_erase_normal,224
__boot_page_fill_alternate,224
__boot_page_fill_extended,225
__boot_page_fill_normal,225
__boot_page_write_alternate,

226
__boot_page_write_extended,

226
__boot_page_write_normal,227
__boot_rww_enable,227
__boot_rww_enable_alternate,

227
boot_is_spm_interrupt

avr_boot,95
boot_lock_bits_set

avr_boot,95
boot_lock_bits_set_safe

avr_boot,96
boot_lock_fuse_bits_get

avr_boot,96
boot_page_erase

avr_boot,97
boot_page_erase_safe

avr_boot,97
boot_page_fill

avr_boot,97
boot_page_fill_safe

avr_boot,98
boot_page_write

avr_boot,98
boot_page_write_safe

avr_boot,98
boot_rww_busy

avr_boot,98
boot_rww_enable

avr_boot,98
boot_rww_enable_safe

avr_boot,99
boot_signature_byte_get

avr_boot,99
boot_spm_busy

avr_boot,99
boot_spm_busy_wait

avr_boot,99
boot_spm_interrupt_disable

avr_boot,100
boot_spm_interrupt_enable

avr_boot,100
BOOTLOADER_SECTION

avr_boot,100
bsearch

avr_stdlib,74

calloc
avr_stdlib,75

cbi
deprecated_items,177

ceil
avr_math,33

clearerr
avr_stdio,60

cli
avr_interrupts,126

clock_prescale_set
power.h,246

Combining C and assembly source
files,181

copysign
avr_math,34

cos
avr_math,34

cosh
avr_math,34

crc16.h,228
ctype

isalnum,17
isalpha,17

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 378

isascii,17
isblank,17
iscntrl,17
isdigit, 17
isgraph,17
islower,17
isprint,17
ispunct,17
isspace,17
isupper,18
isxdigit, 18
toascii,18
tolower,18
toupper,18

ctype.h,228

delay.h,229
delay_basic.h,229
Demo projects,179
deprecated_items

cbi, 177
enable_external_int,177
inb, 177
inp, 177
INTERRUPT,178
outb,178
outp,178
sbi,178
timer_enable_int,179

disassembling,189
div

avr_stdlib,75
div_t, 219

quot,219
rem,219

DTOSTR_ALWAYS_SIGN
avr_stdlib,73

DTOSTR_PLUS_SIGN
avr_stdlib,73

DTOSTR_UPPERCASE
avr_stdlib,73

dtostre
avr_stdlib,75

dtostrf
avr_stdlib,75

EDOM
avr_errno,19

EEMEM
avr_eeprom,102

eeprom.h,230
eeprom_busy_wait

avr_eeprom,102
eeprom_is_ready

avr_eeprom,102
eeprom_read_block

avr_eeprom,103
eeprom_read_byte

avr_eeprom,103
eeprom_read_word

avr_eeprom,103
eeprom_write_block

avr_eeprom,103
eeprom_write_byte

avr_eeprom,103
eeprom_write_word

avr_eeprom,103
EMPTY_INTERRUPT

avr_interrupts,126
enable_external_int

deprecated_items,177
EOF

avr_stdio,58
ERANGE

avr_errno,19
errno.h,231
Example using the two-wire interface

(TWI), 214
exit

avr_stdlib,76
exp

avr_math,34

fabs
avr_math,34

FAQ, 310
fclose

avr_stdio,60
fdev_close

avr_stdio,58
fdev_get_udata

avr_stdio,58

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 379

fdev_set_udata
avr_stdio,58

FDEV_SETUP_STREAM
avr_stdio,58

fdev_setup_stream
avr_stdio,58

fdevopen
avr_stdio,60

fdevopen.c,231
fdim

avr_math,34
feof

avr_stdio,61
ferror

avr_stdio,61
fflush

avr_stdio,61
ffs

avr_string,84
ffs.S,232
ffsl

avr_string,84
ffsl.S,232
ffsll

avr_string,84
ffsll.S, 232
fgetc

avr_stdio,61
fgets

avr_stdio,61
FILE

avr_stdio,59
floor

avr_math,34
fma

avr_math,34
fmax

avr_math,34
fmin

avr_math,35
fmod

avr_math,35
fprintf

avr_stdio,62
fprintf_P

avr_stdio,62

fputc
avr_stdio,62

fputs
avr_stdio,62

fputs_P
avr_stdio,62

fread
avr_stdio,62

free
avr_stdlib,76

frexp
avr_math,35

fscanf
avr_stdio,62

fscanf_P
avr_stdio,62

fuse.h,232
fwrite

avr_stdio,63

GET_EXTENDED_FUSE_BITS
avr_boot,100

GET_HIGH_FUSE_BITS
avr_boot,100

GET_LOCK_BITS
avr_boot,100

GET_LOW_FUSE_BITS
avr_boot,100

getc
avr_stdio,59

getchar
avr_stdio,59

gets
avr_stdio,63

hypot
avr_math,35

inb
deprecated_items,177

INFINITY
avr_math,33

inp
deprecated_items,177

installation,334
installation, avarice,339

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 380

installation, avr-libc,338
installation, avrdude,338
installation, avrprog,338
installation, binutils,336
installation, gcc,337
Installation, gdb,339
installation, simulavr,339
INT16_C

avr_stdint,44
INT16_MAX

avr_stdint,44
INT16_MIN

avr_stdint,44
int16_t

avr_stdint,49
INT32_C

avr_stdint,44
INT32_MAX

avr_stdint,44
INT32_MIN

avr_stdint,44
int32_t

avr_stdint,49
INT64_C

avr_stdint,44
INT64_MAX

avr_stdint,45
INT64_MIN

avr_stdint,45
int64_t

avr_stdint,49
INT8_C

avr_stdint,45
INT8_MAX

avr_stdint,45
INT8_MIN

avr_stdint,45
int8_t

avr_stdint,49
int_farptr_t

avr_inttypes,31
INT_FAST16_MAX

avr_stdint,45
INT_FAST16_MIN

avr_stdint,45
int_fast16_t

avr_stdint,50
INT_FAST32_MAX

avr_stdint,45
INT_FAST32_MIN

avr_stdint,45
int_fast32_t

avr_stdint,50
INT_FAST64_MAX

avr_stdint,45
INT_FAST64_MIN

avr_stdint,45
int_fast64_t

avr_stdint,50
INT_FAST8_MAX

avr_stdint,46
INT_FAST8_MIN

avr_stdint,46
int_fast8_t

avr_stdint,50
INT_LEAST16_MAX

avr_stdint,46
INT_LEAST16_MIN

avr_stdint,46
int_least16_t

avr_stdint,50
INT_LEAST32_MAX

avr_stdint,46
INT_LEAST32_MIN

avr_stdint,46
int_least32_t

avr_stdint,50
INT_LEAST64_MAX

avr_stdint,46
INT_LEAST64_MIN

avr_stdint,46
int_least64_t

avr_stdint,50
INT_LEAST8_MAX

avr_stdint,46
INT_LEAST8_MIN

avr_stdint,46
int_least8_t

avr_stdint,50
INTERRUPT

deprecated_items,178
interrupt.h,232

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 381

INTMAX_C
avr_stdint,46

INTMAX_MAX
avr_stdint,47

INTMAX_MIN
avr_stdint,47

intmax_t
avr_stdint,50

INTPTR_MAX
avr_stdint,47

INTPTR_MIN
avr_stdint,47

intptr_t
avr_stdint,51

inttypes.h,233
io.h,235
isalnum

ctype,17
isalpha

ctype,17
isascii

ctype,17
isblank

ctype,17
iscntrl

ctype,17
isdigit

ctype,17
isfinite

avr_math,35
isgraph

ctype,17
isinf

avr_math,35
islower

ctype,17
isnan

avr_math,35
isprint

ctype,17
ispunct

ctype,17
ISR

avr_interrupts,127
ISR_ALIAS

avr_interrupts,127

ISR_ALIASOF
avr_interrupts,128

ISR_BLOCK
avr_interrupts,128

ISR_NAKED
avr_interrupts,128

ISR_NOBLOCK
avr_interrupts,128

isspace
ctype,17

isupper
ctype,18

isxdigit
ctype,18

itoa
avr_stdlib,76

labs
avr_stdlib,76

ldexp
avr_math,36

ldiv
avr_stdlib,77

ldiv_t, 220
quot,220
rem,220

lock.h,235
log

avr_math,36
log10

avr_math,36
longjmp

setjmp,39
loop_until_bit_is_clear

avr_sfr,151
loop_until_bit_is_set

avr_sfr,151
lrint

avr_math,36
lround

avr_math,36
ltoa

avr_stdlib,77

M_PI
avr_math,33

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 382

M_SQRT2
avr_math,33

malloc
avr_stdlib,77

math.h,235
memccpy

avr_string,84
memccpy.S,238
memchr

avr_string,85
memchr.S,238
memchr_P

avr_pgmspace,138
memchr_P.S,238
memcmp

avr_string,85
memcmp.S,238
memcmp_P

avr_pgmspace,139
memcmp_P.S,238
memcpy

avr_string,85
memcpy.S,238
memcpy_P

avr_pgmspace,139
memcpy_P.S,238
memmem

avr_string,86
memmem.S,238
memmem_P

avr_pgmspace,139
memmove

avr_string,86
memmove.S,238
memrchr

avr_string,86
memrchr.S,238
memrchr_P

avr_pgmspace,139
memrchr_P.S,238
memset

avr_string,86
memset.S,238
modf

avr_math,36

NAN
avr_math,33

NONATOMIC_BLOCK
util_atomic,162

NONATOMIC_FORCEOFF
util_atomic,162

NONATOMIC_RESTORESTATE
util_atomic,162

outb
deprecated_items,178

outp
deprecated_items,178

parity.h,238
parity_even_bit

util_parity,169
PGM_P

avr_pgmspace,135
pgm_read_byte

avr_pgmspace,135
pgm_read_byte_far

avr_pgmspace,135
pgm_read_byte_near

avr_pgmspace,135
pgm_read_dword

avr_pgmspace,135
pgm_read_dword_far

avr_pgmspace,136
pgm_read_dword_near

avr_pgmspace,136
pgm_read_word

avr_pgmspace,136
pgm_read_word_far

avr_pgmspace,136
pgm_read_word_near

avr_pgmspace,136
PGM_VOID_P

avr_pgmspace,137
pgmspace.h,239

__ELPM_classic__,241
__ELPM_dword_enhanced__,

241
__ELPM_enhanced__,241
__ELPM_word_classic__,242
__ELPM_word_enhanced__,242

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 383

__LPM_classic__,243
__LPM_dword_classic__,243
__LPM_dword_enhanced__,244
__LPM_enhanced__,244
__LPM_word_classic__,244
__LPM_word_enhanced__,245

pow
avr_math,37

power.h,245
clock_prescale_set,246

PRId16
avr_inttypes,22

PRId32
avr_inttypes,22

PRId8
avr_inttypes,22

PRIdFAST16
avr_inttypes,22

PRIdFAST32
avr_inttypes,22

PRIdFAST8
avr_inttypes,23

PRIdLEAST16
avr_inttypes,23

PRIdLEAST32
avr_inttypes,23

PRIdLEAST8
avr_inttypes,23

PRIdPTR
avr_inttypes,23

PRIi16
avr_inttypes,23

PRIi32
avr_inttypes,23

PRIi8
avr_inttypes,23

PRIiFAST16
avr_inttypes,23

PRIiFAST32
avr_inttypes,23

PRIiFAST8
avr_inttypes,23

PRIiLEAST16
avr_inttypes,24

PRIiLEAST32
avr_inttypes,24

PRIiLEAST8
avr_inttypes,24

PRIiPTR
avr_inttypes,24

printf
avr_stdio,63

printf_P
avr_stdio,63

PRIo16
avr_inttypes,24

PRIo32
avr_inttypes,24

PRIo8
avr_inttypes,24

PRIoFAST16
avr_inttypes,24

PRIoFAST32
avr_inttypes,24

PRIoFAST8
avr_inttypes,24

PRIoLEAST16
avr_inttypes,24

PRIoLEAST32
avr_inttypes,25

PRIoLEAST8
avr_inttypes,25

PRIoPTR
avr_inttypes,25

PRIu16
avr_inttypes,25

PRIu32
avr_inttypes,25

PRIu8
avr_inttypes,25

PRIuFAST16
avr_inttypes,25

PRIuFAST32
avr_inttypes,25

PRIuFAST8
avr_inttypes,25

PRIuLEAST16
avr_inttypes,25

PRIuLEAST32
avr_inttypes,25

PRIuLEAST8
avr_inttypes,26

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 384

PRIuPTR
avr_inttypes,26

PRIX16
avr_inttypes,26

PRIx16
avr_inttypes,26

PRIX32
avr_inttypes,26

PRIx32
avr_inttypes,26

PRIX8
avr_inttypes,26

PRIx8
avr_inttypes,26

PRIXFAST16
avr_inttypes,26

PRIxFAST16
avr_inttypes,26

PRIXFAST32
avr_inttypes,26

PRIxFAST32
avr_inttypes,27

PRIXFAST8
avr_inttypes,27

PRIxFAST8
avr_inttypes,27

PRIXLEAST16
avr_inttypes,27

PRIxLEAST16
avr_inttypes,27

PRIXLEAST32
avr_inttypes,27

PRIxLEAST32
avr_inttypes,27

PRIXLEAST8
avr_inttypes,27

PRIxLEAST8
avr_inttypes,27

PRIXPTR
avr_inttypes,27

PRIxPTR
avr_inttypes,27

prog_char
avr_pgmspace,137

prog_int16_t
avr_pgmspace,137

prog_int32_t
avr_pgmspace,137

prog_int64_t
avr_pgmspace,137

prog_int8_t
avr_pgmspace,137

prog_uchar
avr_pgmspace,138

prog_uint16_t
avr_pgmspace,138

prog_uint32_t
avr_pgmspace,138

prog_uint64_t
avr_pgmspace,138

prog_uint8_t
avr_pgmspace,138

prog_void
avr_pgmspace,138

PROGMEM
avr_pgmspace,137

PSTR
avr_pgmspace,137

PTRDIFF_MAX
avr_stdint,47

PTRDIFF_MIN
avr_stdint,47

putc
avr_stdio,59

putchar
avr_stdio,59

puts
avr_stdio,63

puts_P
avr_stdio,63

qsort
avr_stdlib,77

quot
div_t, 219
ldiv_t, 220

rand
avr_stdlib,78

RAND_MAX
avr_stdlib,73

rand_r

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 385

avr_stdlib,78
random

avr_stdlib,78
RANDOM_MAX

avr_stdlib,73
random_r

avr_stdlib,78
realloc

avr_stdlib,79
rem

div_t, 219
ldiv_t, 220

reti
avr_interrupts,129

round
avr_math,37

sbi
deprecated_items,178

scanf
avr_stdio,63

scanf_P
avr_stdio,63

SCNd16
avr_inttypes,28

SCNd32
avr_inttypes,28

SCNdFAST16
avr_inttypes,28

SCNdFAST32
avr_inttypes,28

SCNdLEAST16
avr_inttypes,28

SCNdLEAST32
avr_inttypes,28

SCNdPTR
avr_inttypes,28

SCNi16
avr_inttypes,28

SCNi32
avr_inttypes,28

SCNiFAST16
avr_inttypes,28

SCNiFAST32
avr_inttypes,28

SCNiLEAST16

avr_inttypes,29
SCNiLEAST32

avr_inttypes,29
SCNiPTR

avr_inttypes,29
SCNo16

avr_inttypes,29
SCNo32

avr_inttypes,29
SCNoFAST16

avr_inttypes,29
SCNoFAST32

avr_inttypes,29
SCNoLEAST16

avr_inttypes,29
SCNoLEAST32

avr_inttypes,29
SCNoPTR

avr_inttypes,29
SCNu16

avr_inttypes,29
SCNu32

avr_inttypes,30
SCNuFAST16

avr_inttypes,30
SCNuFAST32

avr_inttypes,30
SCNuLEAST16

avr_inttypes,30
SCNuLEAST32

avr_inttypes,30
SCNuPTR

avr_inttypes,30
SCNx16

avr_inttypes,30
SCNx32

avr_inttypes,30
SCNxFAST16

avr_inttypes,30
SCNxFAST32

avr_inttypes,30
SCNxLEAST16

avr_inttypes,30
SCNxLEAST32

avr_inttypes,31
SCNxPTR

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 386

avr_inttypes,31
sei

avr_interrupts,129
set_sleep_mode

avr_sleep,154
setbaud.h,246
setjmp

longjmp,39
setjmp,40

setjmp.h,246
SIG_ATOMIC_MAX

avr_stdint,47
SIG_ATOMIC_MIN

avr_stdint,47
SIGNAL

avr_interrupts,129
signbit

avr_math,37
sin

avr_math,37
sinh

avr_math,37
SIZE_MAX

avr_stdint,47
sleep.h,247
sleep_cpu

avr_sleep,154
sleep_disable

avr_sleep,154
sleep_enable

avr_sleep,154
sleep_mode

avr_sleep,154
SLEEP_MODE_ADC

avr_sleep,153
SLEEP_MODE_EXT_STANDBY

avr_sleep,153
SLEEP_MODE_IDLE

avr_sleep,153
SLEEP_MODE_PWR_DOWN

avr_sleep,153
SLEEP_MODE_PWR_SAVE

avr_sleep,153
SLEEP_MODE_STANDBY

avr_sleep,153
snprintf

avr_stdio,63
snprintf_P

avr_stdio,64
sprintf

avr_stdio,64
sprintf_P

avr_stdio,64
sqrt

avr_math,37
square

avr_math,38
srand

avr_stdlib,79
srandom

avr_stdlib,79
sscanf

avr_stdio,64
sscanf_P

avr_stdio,64
stderr

avr_stdio,59
stdin

avr_stdio,59
stdint.h,247
stdio.h,250
stdlib.h,252
stdout

avr_stdio,60
strcasecmp

avr_string,86
strcasecmp.S,256
strcasecmp_P

avr_pgmspace,139
strcasecmp_P.S,256
strcasestr

avr_string,87
strcasestr.S,256
strcasestr_P

avr_pgmspace,140
strcat

avr_string,87
strcat.S,256
strcat_P

avr_pgmspace,140
strcat_P.S,256
strchr

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 387

avr_string,87
strchr.S,256
strchr_P

avr_pgmspace,140
strchr_P.S,256
strchrnul

avr_string,88
strchrnul.S,256
strchrnul_P

avr_pgmspace,140
strchrnul_P.S,256
strcmp

avr_string,88
strcmp.S,256
strcmp_P

avr_pgmspace,141
strcmp_P.S,256
strcpy

avr_string,88
strcpy.S,256
strcpy_P

avr_pgmspace,141
strcpy_P.S,256
strcspn

avr_string,88
strcspn.S,256
strcspn_P

avr_pgmspace,141
strcspn_P.S,256
string.h,256
strlcat

avr_string,89
strlcat.S,259
strlcat_P

avr_pgmspace,141
strlcat_P.S,259
strlcpy

avr_string,89
strlcpy.S,259
strlcpy_P

avr_pgmspace,142
strlcpy_P.S,259
strlen

avr_string,89
strlen.S,259
strlen_P

avr_pgmspace,142
strlen_P.S,259
strlwr

avr_string,89
strlwr.S,259
strncasecmp

avr_string,90
strncasecmp.S,259
strncasecmp_P

avr_pgmspace,142
strncasecmp_P.S,259
strncat

avr_string,90
strncat.S,259
strncat_P

avr_pgmspace,143
strncat_P.S,259
strncmp

avr_string,90
strncmp.S,259
strncmp_P

avr_pgmspace,143
strncmp_P.S,259
strncpy

avr_string,90
strncpy.S,259
strncpy_P

avr_pgmspace,143
strncpy_P.S,259
strnlen

avr_string,91
strnlen.S,259
strnlen_P

avr_pgmspace,143
strnlen_P.S,259
strpbrk

avr_string,91
strpbrk.S,259
strpbrk_P

avr_pgmspace,144
strpbrk_P.S,259
strrchr

avr_string,91
strrchr.S,259
strrchr_P

avr_pgmspace,144

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 388

strrchr_P.S,259
strrev

avr_string,92
strrev.S,259
strsep

avr_string,92
strsep.S,259
strsep_P

avr_pgmspace,144
strsep_P.S,259
strspn

avr_string,92
strspn.S,259
strspn_P

avr_pgmspace,144
strspn_P.S,259
strstr

avr_string,92
strstr.S,259
strstr_P

avr_pgmspace,145
strstr_P.S,259
strtod

avr_stdlib,79
strtok_r

avr_string,93
strtok_r.S,259
strtol

avr_stdlib,80
strtoul

avr_stdlib,80
strupr

avr_string,93
strupr.S,259
supported devices,2

tan
avr_math,38

tanh
avr_math,38

timer_enable_int
deprecated_items,179

toascii
ctype,18

tolower
ctype,18

tools, optional,335
tools, required,335
toupper

ctype,18
trunc

avr_math,38
TW_BUS_ERROR

util_twi, 173
TW_MR_ARB_LOST

util_twi, 173
TW_MR_DATA_ACK

util_twi, 173
TW_MR_DATA_NACK

util_twi, 173
TW_MR_SLA_ACK

util_twi, 173
TW_MR_SLA_NACK

util_twi, 173
TW_MT_ARB_LOST

util_twi, 173
TW_MT_DATA_ACK

util_twi, 173
TW_MT_DATA_NACK

util_twi, 173
TW_MT_SLA_ACK

util_twi, 173
TW_MT_SLA_NACK

util_twi, 173
TW_NO_INFO

util_twi, 173
TW_READ

util_twi, 174
TW_REP_START

util_twi, 174
TW_SR_ARB_LOST_GCALL_ACK

util_twi, 174
TW_SR_ARB_LOST_SLA_ACK

util_twi, 174
TW_SR_DATA_ACK

util_twi, 174
TW_SR_DATA_NACK

util_twi, 174
TW_SR_GCALL_ACK

util_twi, 174
TW_SR_GCALL_DATA_ACK

util_twi, 174

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 389

TW_SR_GCALL_DATA_NACK
util_twi, 174

TW_SR_SLA_ACK
util_twi, 174

TW_SR_STOP
util_twi, 174

TW_ST_ARB_LOST_SLA_ACK
util_twi, 175

TW_ST_DATA_ACK
util_twi, 175

TW_ST_DATA_NACK
util_twi, 175

TW_ST_LAST_DATA
util_twi, 175

TW_ST_SLA_ACK
util_twi, 175

TW_START
util_twi, 175

TW_STATUS
util_twi, 175

TW_STATUS_MASK
util_twi, 175

TW_WRITE
util_twi, 175

twi.h, 259

UBRR_VALUE
util_setbaud,171

UBRRH_VALUE
util_setbaud,171

UBRRL_VALUE
util_setbaud,171

UINT16_C
avr_stdint,47

UINT16_MAX
avr_stdint,47

uint16_t
avr_stdint,51

UINT32_C
avr_stdint,48

UINT32_MAX
avr_stdint,48

uint32_t
avr_stdint,51

UINT64_C
avr_stdint,48

UINT64_MAX
avr_stdint,48

uint64_t
avr_stdint,51

UINT8_C
avr_stdint,48

UINT8_MAX
avr_stdint,48

uint8_t
avr_stdint,51

uint_farptr_t
avr_inttypes,31

UINT_FAST16_MAX
avr_stdint,48

uint_fast16_t
avr_stdint,51

UINT_FAST32_MAX
avr_stdint,48

uint_fast32_t
avr_stdint,51

UINT_FAST64_MAX
avr_stdint,48

uint_fast64_t
avr_stdint,51

UINT_FAST8_MAX
avr_stdint,48

uint_fast8_t
avr_stdint,51

UINT_LEAST16_MAX
avr_stdint,48

uint_least16_t
avr_stdint,52

UINT_LEAST32_MAX
avr_stdint,49

uint_least32_t
avr_stdint,52

UINT_LEAST64_MAX
avr_stdint,49

uint_least64_t
avr_stdint,52

UINT_LEAST8_MAX
avr_stdint,49

uint_least8_t
avr_stdint,52

UINTMAX_C
avr_stdint,49

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 390

UINTMAX_MAX
avr_stdint,49

uintmax_t
avr_stdint,52

UINTPTR_MAX
avr_stdint,49

uintptr_t
avr_stdint,52

ultoa
avr_stdlib,81

ungetc
avr_stdio,64

USE_2X
util_setbaud,171

Using the standard IO facilities,207
util_atomic

ATOMIC_BLOCK, 161
ATOMIC_FORCEON,161
ATOMIC_RESTORESTATE,

162
NONATOMIC_BLOCK, 162
NONATOMIC_FORCEOFF,162
NONATOMIC_-

RESTORESTATE,162
util_crc

_crc16_update,164
_crc_ccitt_update,164
_crc_ibutton_update,165
_crc_xmodem_update,165

util_delay
_delay_ms,167
_delay_us,167

util_delay_basic
_delay_loop_1,168
_delay_loop_2,168

util_parity
parity_even_bit,169

util_setbaud
BAUD_TOL, 171
UBRR_VALUE, 171
UBRRH_VALUE, 171
UBRRL_VALUE, 171
USE_2X,171

util_twi
TW_BUS_ERROR,173
TW_MR_ARB_LOST,173

TW_MR_DATA_ACK, 173
TW_MR_DATA_NACK, 173
TW_MR_SLA_ACK,173
TW_MR_SLA_NACK,173
TW_MT_ARB_LOST,173
TW_MT_DATA_ACK, 173
TW_MT_DATA_NACK, 173
TW_MT_SLA_ACK, 173
TW_MT_SLA_NACK, 173
TW_NO_INFO,173
TW_READ,174
TW_REP_START,174
TW_SR_ARB_LOST_GCALL_-

ACK, 174
TW_SR_ARB_LOST_SLA_-

ACK, 174
TW_SR_DATA_ACK,174
TW_SR_DATA_NACK,174
TW_SR_GCALL_ACK,174
TW_SR_GCALL_DATA_ACK,

174
TW_SR_GCALL_DATA_-

NACK, 174
TW_SR_SLA_ACK,174
TW_SR_STOP,174
TW_ST_ARB_LOST_SLA_-

ACK, 175
TW_ST_DATA_ACK,175
TW_ST_DATA_NACK,175
TW_ST_LAST_DATA,175
TW_ST_SLA_ACK,175
TW_START,175
TW_STATUS,175
TW_STATUS_MASK,175
TW_WRITE,175

utoa
avr_stdlib,81

vfprintf
avr_stdio,64

vfprintf_P
avr_stdio,67

vfscanf
avr_stdio,67

vfscanf_P
avr_stdio,70

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen



INDEX 391

vprintf
avr_stdio,70

vscanf
avr_stdio,70

vsnprintf
avr_stdio,70

vsnprintf_P
avr_stdio,70

vsprintf
avr_stdio,71

vsprintf_P
avr_stdio,71

wdt.h,261
_wdt_write,261

wdt_disable
avr_watchdog,157

wdt_enable
avr_watchdog,157

wdt_reset
avr_watchdog,157

WDTO_120MS
avr_watchdog,157

WDTO_15MS
avr_watchdog,158

WDTO_1S
avr_watchdog,158

WDTO_250MS
avr_watchdog,158

WDTO_2S
avr_watchdog,158

WDTO_30MS
avr_watchdog,158

WDTO_4S
avr_watchdog,158

WDTO_500MS
avr_watchdog,159

WDTO_60MS
avr_watchdog,159

WDTO_8S
avr_watchdog,159

Generated on Wed Jan 9 15:18:30 2008 for avr-libc by Doxygen


	AVR Libc 
	Introduction
	General information about this library
	Supported Devices
	avr-libc License

	avr-libc Module Index
	avr-libc Modules

	avr-libc Data Structure Index
	avr-libc Data Structures

	avr-libc File Index
	avr-libc File List

	avr-libc Page Index
	avr-libc Related Pages

	avr-libc Module Documentation
	<alloca.h>: Allocate space in the stack
	Function Documentation

	<assert.h>: Diagnostics
	Detailed Description
	Define Documentation

	<ctype.h>: Character Operations
	Detailed Description
	Function Documentation

	<errno.h>: System Errors
	Detailed Description
	Define Documentation

	<inttypes.h>: Integer Type conversions
	Detailed Description
	Define Documentation
	Typedef Documentation

	<math.h>: Mathematics
	Detailed Description
	Define Documentation
	Function Documentation

	<setjmp.h>: Non-local goto
	Detailed Description
	Function Documentation

	<stdint.h>: Standard Integer Types
	Detailed Description
	Define Documentation
	Typedef Documentation

	<stdio.h>: Standard IO facilities
	Detailed Description
	Define Documentation
	Function Documentation

	<stdlib.h>: General utilities
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	<string.h>: Strings
	Detailed Description
	Define Documentation
	Function Documentation

	<avr/boot.h>: Bootloader Support Utilities
	Detailed Description
	Define Documentation

	<avr/eeprom.h>: EEPROM handling
	Detailed Description
	Define Documentation
	Function Documentation

	<avr/fuse.h>: Fuse Support
	<avr/interrupt.h>: Interrupts
	Detailed Description
	Define Documentation

	<avr/io.h>: AVR device-specific IO definitions
	<avr/lock.h>: Lockbit Support
	<avr/pgmspace.h>: Program Space Utilities
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation

	<avr/power.h>: Power Reduction Management
	Additional notes from <avr/sfr_defs.h>
	<avr/sfr_defs.h>: Special function registers
	Detailed Description
	Define Documentation

	<avr/sleep.h>: Power Management and Sleep Modes
	Detailed Description
	Define Documentation
	Function Documentation

	<avr/version.h>: avr-libc version macros
	Detailed Description
	Define Documentation

	<avr/wdt.h>: Watchdog timer handling
	Detailed Description
	Define Documentation

	<util/atomic.h> Atomically and Non-Atomically Executed Code Blocks
	Detailed Description
	Define Documentation

	<util/crc16.h>: CRC Computations
	Detailed Description
	Function Documentation

	<util/delay.h>: Convenience functions for busy-wait delay loops
	Detailed Description
	Function Documentation

	<util/delay_basic.h>: Basic busy-wait delay loops
	Detailed Description
	Function Documentation

	<util/parity.h>: Parity bit generation
	Detailed Description
	Define Documentation

	<util/setbaud.h>: Helper macros for baud rate calculations
	Detailed Description
	Define Documentation

	<util/twi.h>: TWI bit mask definitions
	Detailed Description
	Define Documentation

	<compat/deprecated.h>: Deprecated items
	Detailed Description
	Define Documentation
	Function Documentation

	<compat/ina90.h>: Compatibility with IAR EWB 3.x
	Demo projects
	Detailed Description

	Combining C and assembly source files
	Hardware setup
	A code walkthrough
	The source code

	A simple project
	The Project
	The Source Code
	Compiling and Linking
	Examining the Object File
	Linker Map Files
	Generating Intel Hex Files
	Letting Make Build the Project
	Reference to the source code

	A more sophisticated project
	Hardware setup
	Functional overview
	A code walkthrough
	The source code

	Using the standard IO facilities
	Hardware setup
	Functional overview
	A code walkthrough
	The source code

	Example using the two-wire interface (TWI)
	Introduction into TWI
	The TWI example project
	The Source Code


	avr-libc Data Structure Documentation
	div_t Struct Reference
	Detailed Description
	Field Documentation

	ldiv_t Struct Reference
	Detailed Description
	Field Documentation


	avr-libc File Documentation
	assert.h File Reference
	Detailed Description

	atoi.S File Reference
	Detailed Description

	atol.S File Reference
	Detailed Description

	atomic.h File Reference
	Detailed Description

	boot.h File Reference
	Detailed Description
	Define Documentation

	crc16.h File Reference
	Detailed Description

	ctype.h File Reference
	Detailed Description

	delay.h File Reference
	Detailed Description

	delay_basic.h File Reference
	Detailed Description

	eeprom.h File Reference
	Detailed Description

	errno.h File Reference
	Detailed Description

	fdevopen.c File Reference
	Detailed Description

	ffs.S File Reference
	Detailed Description

	ffsl.S File Reference
	Detailed Description

	ffsll.S File Reference
	Detailed Description

	fuse.h File Reference
	Detailed Description

	interrupt.h File Reference
	Detailed Description

	inttypes.h File Reference
	Detailed Description

	io.h File Reference
	Detailed Description

	lock.h File Reference
	Detailed Description

	math.h File Reference
	Detailed Description

	memccpy.S File Reference
	Detailed Description

	memchr.S File Reference
	Detailed Description

	memchr_P.S File Reference
	Detailed Description

	memcmp.S File Reference
	Detailed Description

	memcmp_P.S File Reference
	Detailed Description

	memcpy.S File Reference
	Detailed Description

	memcpy_P.S File Reference
	Detailed Description

	memmem.S File Reference
	Detailed Description

	memmove.S File Reference
	Detailed Description

	memrchr.S File Reference
	Detailed Description

	memrchr_P.S File Reference
	Detailed Description

	memset.S File Reference
	Detailed Description

	parity.h File Reference
	Detailed Description

	pgmspace.h File Reference
	Detailed Description
	Define Documentation

	power.h File Reference
	Detailed Description
	Define Documentation

	setbaud.h File Reference
	Detailed Description

	setjmp.h File Reference
	Detailed Description

	sleep.h File Reference
	Detailed Description

	stdint.h File Reference
	Detailed Description

	stdio.h File Reference
	Detailed Description

	stdlib.h File Reference
	Detailed Description

	strcasecmp.S File Reference
	Detailed Description

	strcasecmp_P.S File Reference
	Detailed Description

	strcasestr.S File Reference
	Detailed Description

	strcat.S File Reference
	Detailed Description

	strcat_P.S File Reference
	Detailed Description

	strchr.S File Reference
	Detailed Description

	strchr_P.S File Reference
	Detailed Description

	strchrnul.S File Reference
	Detailed Description

	strchrnul_P.S File Reference
	Detailed Description

	strcmp.S File Reference
	Detailed Description

	strcmp_P.S File Reference
	Detailed Description

	strcpy.S File Reference
	Detailed Description

	strcpy_P.S File Reference
	Detailed Description

	strcspn.S File Reference
	Detailed Description

	strcspn_P.S File Reference
	Detailed Description

	string.h File Reference
	Detailed Description

	strlcat.S File Reference
	Detailed Description

	strlcat_P.S File Reference
	Detailed Description

	strlcpy.S File Reference
	Detailed Description

	strlcpy_P.S File Reference
	Detailed Description

	strlen.S File Reference
	Detailed Description

	strlen_P.S File Reference
	Detailed Description

	strlwr.S File Reference
	Detailed Description

	strncasecmp.S File Reference
	Detailed Description

	strncasecmp_P.S File Reference
	Detailed Description

	strncat.S File Reference
	Detailed Description

	strncat_P.S File Reference
	Detailed Description

	strncmp.S File Reference
	Detailed Description

	strncmp_P.S File Reference
	Detailed Description

	strncpy.S File Reference
	Detailed Description

	strncpy_P.S File Reference
	Detailed Description

	strnlen.S File Reference
	Detailed Description

	strnlen_P.S File Reference
	Detailed Description

	strpbrk.S File Reference
	Detailed Description

	strpbrk_P.S File Reference
	Detailed Description

	strrchr.S File Reference
	Detailed Description

	strrchr_P.S File Reference
	Detailed Description

	strrev.S File Reference
	Detailed Description

	strsep.S File Reference
	Detailed Description

	strsep_P.S File Reference
	Detailed Description

	strspn.S File Reference
	Detailed Description

	strspn_P.S File Reference
	Detailed Description

	strstr.S File Reference
	Detailed Description

	strstr_P.S File Reference
	Detailed Description

	strtok_r.S File Reference
	Detailed Description

	strupr.S File Reference
	Detailed Description

	twi.h File Reference
	Detailed Description

	wdt.h File Reference
	Detailed Description
	Define Documentation


	avr-libc Page Documentation
	Toolchain Overview
	Introduction
	FSF and GNU
	GCC
	GNU Binutils
	avr-libc
	Building Software
	AVRDUDE
	GDB / Insight / DDD
	AVaRICE
	SimulAVR
	Utilities
	Toolchain Distributions (Distros)
	Open Source

	Memory Areas and Using malloc()
	Introduction
	Internal vs. external RAM
	Tunables for malloc()
	Implementation details

	Memory Sections
	The .text Section
	The .data Section
	The .bss Section
	The .eeprom Section
	The .noinit Section
	The .initN Sections
	The .finiN Sections
	Using Sections in Assembler Code
	Using Sections in C Code

	Data in Program Space
	Introduction
	A Note On const
	Storing and Retrieving Data in the Program Space
	Storing and Retrieving Strings in the Program Space
	Caveats

	avr-libc and assembler programs
	Introduction
	Invoking the compiler
	Example program
	Pseudo-ops and operators

	Inline Assembler Cookbook
	GCC asm Statement
	Assembler Code
	Input and Output Operands
	Clobbers
	Assembler Macros
	C Stub Functions
	C Names Used in Assembler Code
	Links

	How to Build a Library
	Introduction
	How the Linker Works
	How to Design a Library
	Creating a Library
	Using a Library

	Benchmarks
	A few of libc functions.
	Math functions.

	Porting From IAR to AVR GCC
	Introduction
	Registers
	Interrupt Service Routines (ISRs)
	Intrinsic Routines
	Flash Variables
	Non-Returning main()
	Locking Registers

	Frequently Asked Questions
	FAQ Index
	My program doesn't recognize a variable updated within an interrupt routine
	I get `¨undefined reference to...`¨ for functions like `¨sin()`¨
	How to permanently bind a variable to a register?
	How to modify MCUCR or WDTCR early?
	What is all this _BV() stuff about?
	Can I use C++ on the AVR?
	Shouldn't I initialize all my variables?
	Why do some 16-bit timer registers sometimes get trashed?
	How do I use a #define'd constant in an asm statement?
	Why does the PC randomly jump around when single-stepping through my program in avr-gdb?
	How do I trace an assembler file in avr-gdb?
	How do I pass an IO port as a parameter to a function?
	What registers are used by the C compiler?
	How do I put an array of strings completely in ROM?
	How to use external RAM?
	Which -O flag to use?
	How do I relocate code to a fixed address?
	My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken!
	Why do all my `¨foo...bar`¨ strings eat up the SRAM?
	Why does the compiler compile an 8-bit operation that uses bitwise operators into a 16-bit operation in assembly?
	How to detect RAM memory and variable overlap problems?
	Is it really impossible to program the ATtinyXX in C?
	What is this `¨clock skew detected`¨ messsage?
	Why are (many) interrupt flags cleared by writing a logical 1?
	Why have `¨programmed`¨ fuses the bit value 0?
	Which AVR-specific assembler operators are available?
	Why are interrupts re-enabled in the middle of writing the stack pointer?
	Why are there five different linker scripts?
	How to add a raw binary image to linker output?
	How do I perform a software reset of the AVR?

	Building and Installing the GNU Tool Chain
	Building and Installing under Linux, FreeBSD, and Others
	Required Tools
	Optional Tools
	GNU Binutils for the AVR target
	GCC for the AVR target
	AVR Libc
	AVRDUDE
	GDB for the AVR target
	SimulAVR
	AVaRICE
	Building and Installing under Windows
	Tools Required for Building the Toolchain for Windows
	Building the Toolchain for Windows

	Using the GNU tools
	Options for the C compiler avr-gcc
	Options for the assembler avr-as
	Controlling the linker avr-ld

	Using the avrdude program
	Release Numbering and Methodology
	Release Version Numbering Scheme
	Releasing AVR Libc

	Acknowledgments
	Todo List
	Deprecated List


