R: A Language and Environment for
Statistical Computing

Reference Index

TheR Development Core Team

Version 2.6.2 (2008-02-08)

Copyright (©) 1999-2003 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-07-0

Contents

1 Thebase package 1
base-package 1
Device .. e e e 1
Machine e 2
Platform . o e 4
SCHPL . o 5
abbreviate e e 6
AOIED .+ v o e e e e e 7
all . e e e 8
alllequal 10
allnames e 11
ANY . . L e 12
APEIM . L L o e e 13
append e e e 14
apply .. e e 15
ArOS . o e 16
Arithmetic e e e 17
AaIrayo e 19
as.data.frame e 20
as.environment e e e e e e 21
as.function. L e e 22
as.POSIX* . . e e 23
ASIS . e e e 24
asSigN e 25
assignOPSo 27
attach e 28
attr . . e e e e 29
attributes L e 30
autoload e 32
backsolve 33
base-deprecated e 34
basename e 34
Bessel e e 35
bindenv e 37
body 39
bquote L 40
browser e e 40
builtins e 41
DY 42
o 43
call . . . e e e 44

CONTENTS
CallCC e 46
capabiliies 46
Cat . . . L e e 47
chind e 49
charexpand 51
character e e e 52
charmatch e 53
chartr e e 54
chol . . . e e 56
chol2inv e e 58
class e 59
COl . e 60
Colon e 61
ColSUMS e e e 62
commandArgS e e e e e e 63
COMMENt e e e e e e e e e e e e e 64
Comparison e e 65
COMPIEX . . o e 66
conditions L e e e 68
conflicts e 71
CONNECLIONS o e e e e e 72
Constants e e e 78
contributors e e 79
Control e e 80
copyright L e 81
Crossprod e e e 82
Cstack _info e 83
CUMSUM . . . o ot e e e e e e e e e s e e e e e e e e e 83
CUL . . . e e e e e e e e e 84
CUt.POSIXt e 86
data.class e e 87
data.frame e 88
data.matrix e e e e e 90
date e 91
Dates 92
DateTimeClasses o i e e e e 93
def . o e e e 95
debug 97
Defunct e e e 98
delayedAssign 98
deparse 99
deparseOpts e e 101
Deprecated 102
det . . . e 103
detach e e 104
diag 105
diff . . e e 107
difftime e 108
dim . e e 109
dimnames e e e e 110
do.call e 112

CONTENTS iii

dput . . 115
drop . . . 116
dump . e 117
duplicated 118
dyn.doad 120
eapPlY . . . e 122
BIOEN . . 123
encodeString L 125
Encoding e 126
ENVIFONMENL e 127
eval . .. e 129
EXISES . . 131
expand.grid 133
EXPreSSION o e e e e e e e 134
EXtract 135
Extract.dataframe 139
Extract.factor 142
EXtremes e e 143
factor e e 145
file.access 147
file.choose e 148
fileinfo 149
filejpath o 150
file.show e 151
files . . . 152
findinterval e 153
force e 155
Foreign e 156
formals e 159
format e e 160
format.Date 162
formatinfo 164
format.pval 165
formatC 166
formatDL e 168
function L 169
funprog e e 171
OC . o o e 172
getime . . . e 174
gotorture e 175
gt . . . e 175
getCallingDLL e 177
getDLLRegisteredRoutines e 178
getLoadedDLLs 179
getNativeSymbolinfo 180
getNumCConverters e 182
getpid e 184
gettext e e 184
getwd 186
gl e 187
OrEP .« o e e e e e e e 187

OroupGENEIIC o o o o e 190

CONTENTS
OZCON . . o o e e e e e e e e e e 193
hexmode e 194
Hyperbolic e 195
ICONV . . . o e e e e e e e 196
identical e e 197
ifelse e e e e 199
INTEOEN e 200
iNteraction e e e e 201
iNteractive e 202
Internal e e 202
InternalMethods e 203
invisible e 204
is.finite . . . e e 204
is.function L e e e 206
isdanguage e e 207
is.object 207
IS R e e e 208
IS.TECUISIVE v o e e e e e e e e e e 209
is.single 210
ISSA . . e 210
ISSYMMELric 211
L= 212
Kappa e 213
Kronecker e 214
[10n_info e e 215
labels e 216
apply . . . 216
Lastvalue e 218
length o e 219
levels e e 220
libPaths e 221
lbrary . . . e 223
library.dynam L 227
ICENSE e e 228
St . . e 229
listfiles e e e 231
l0ad e e 232
localeconv e e 233
locales e e e 234
(09 . . . 236
LOGIC . . o o 237
logical e e 239
lowertri e e 240
IS . e 241
Make.Names e e 242
make.unique 243
manglePackageName 244
MapPly . . o e e e 244
margin.table 246
Mat.OrVEC e e e e e e e 247
match e e 247

match.arg 249

CONTENTS v

match.call 250
match.fun 251
Math . . . 252
matmult e e 253
MAatriX e e 254
MaxCol e 256
MEAN o o e e e e 257
Memory e 258
Memory-limits e 259
memory.profile 260
MEIJE . . o o i e e e e e e e e 261
MESSAGE . . & o o e o e e e e e e e 262
MISSING o e 264
MOde e 265
NA 266
NAME L e e e e e 267
NAMES o e e e 269
NAIGS o o e e e e e e e e e 270
Nchar e 271
nlevels e 272
NOQUOLE o e e e 273
NoOtYet e e e e 274
NFOW . . . o o e e e e e e e e e e e e e 275
ns-dblcolon e 276
NS-hOOKS e 277
ns-load 278
NS-TOPENV e 279
NULL . . 280
NUMETIC . . . o o e 280
NumericConstants e 282
NUMENIC_VErSION e e e e e e e e e e e e 283
octmode L e 284
ON.EXIt e 285
Ops.Date e e 286
OPLIONS . .« . . o 286
OFdEN . . o o o e 292
OULEN . . o o o e e 294
Paren e 296
PAISE e e e e e 297
PASte e 298
path.expand 299
pmatch e e e e 300
POIYIOOL o 301
POS.TO.EBNV e e 302
Pretty . . . e e e e 303
Primitive e e e 304
PrN . . o e 305
print.data.frame 306
printdefault 307
PrmatriX e e e e e 309
Proc.time e e e e e 310

Prod 311

Vi

CONTENTS
prop.table 312
pushBack 313
0] 314
QR.AuXIliaries e 316
QUIL . . o 317
QUOLES e e e e e 319
R.home e 320
R.Version e e 321
Random e 322
Random.user e 325
FTANGE . . o e e e e e 327
FANK . . . e 328
rapply . . . 329
FAW . o o e e e e e e e e e 331
rAWCONVEISION ot e e e e e e e e e e e 332
RAUtils e 333
readBin e 334
readChar. e 336
readline e e 338
readLines e 339
real e 340
Recall e 341
reg.finalizer 341
FTEOEX . . o o o e e e e e 342
FEMOVE i o e e e e e e e e e e e e e 346
1= 347
replace 349
Reserved e e 350
FTEV . . . e e e e e e 350
fle . . e e e 351
Round e e 352
round.POSIXt e 353
FTOW . . o e e e e e e 354
FTOW.NAMES e e e e e e e e e e e e e 355
row/colnames e e e e e 356
FOWSUMttt e e e e e e e e e e e e e e e e e 357
sample e e e e 358
SAVE . . L e 360
scale e e e 362
SCAN . v v i e e e e 363
search e e e 366
SEEK . . e e 367
SBU « v v e e e e e e e e 368
seqg.Date 370
Seq.POSIXt e e e 371
SEQUENCE o v v et e e e e e e e e e e e 372
SEIS . L e e 373
showConnections e 374
shQuote L e 375
SION . . e 377
Signals. e e 377

SINK . . e 378

CONTENTS Vii

slicedndex 379
SIOtOP . . . 380
socketSelect 381
SOIVE . . . e e 381
SOIT . . e 383
ST o 385
Special 387
Split . . e 389
Sprintf . . L e e 391
SQUOLE e 394
srefile . . 396
Startup e e 397
SIOP . . . e 400
stopifnot e 401
SUptime e e 402
strsplit . . . 406
SIREriM . . L e 408
SIrUCTUre e e 409
SIWIAP o e e e 410
SUDSEL . . . e 411
substitute L e e e 412
SUDSEE . o e 414
SUM L o e e e 415
SUMMANY . . . o v o e e e e e e e e e e e e 416
SVA . . e 417
SWEEPD & v v o e e e e e e e e e e e e e e 419
switch e 420
SYNAX . . . o e e e e e e 421
Sys.getenv 422
Sys.glob 423
Sys.info . . . e 424
SYS.paArent 425
Sys.Setenv L 428
Sys.sleep . .. e 429
SYS.SOUICE v it i e i e e e e e e e e 430
Sys.dime 431
Sys.which 432
SYStem . . . oL e 432
system.file 434
system.time L 435
b e 436
table 437
tabulate e 439
apply . . . e 440
taskCallback e 441
taskCallbackManager e 443
taskCallbackNames e 445
tempfile e 446
textConnection 447
tilde e 449
OStNg e e e 449

IracCe . . . e e e e e e e e e 450

viii CONTENTS
traceback e e 454
racemem e e e e e e e e e e e 455
transform L e 456
L1 o Y < ¥ 4
11,5/ (oY1
typeof e 460
UNIGUE . o . o e 460
unlink e e e 462
unlist . . . e e e 463
UNNAIME o e e e e e e e e e e e e e e 464
UseMethod e 465
UserHOOKS e 467
utf8BCONVEISION e e e e 469
VECIOI . . . e e e e e e e e e 469
WarNiNGg o o e e e 471
WArNINGS o e e e e e 472
weekdays e e e 473
Which . . e e 474
which.min e 475
With . . e e e e, AT
WIITE . o o e e e 478
WHEELINES e e e e 479
ZPACKAgES e 480
ZULIIS . . . e e 481

2 Thedatasets package 483
datasets-package e 483
ability.cov e 483
airmiles e e 484
AIrPasSSENgEerS 485
airquality 486
anscombe e e 487
attenu L e e e 488
attitude e 489
aUSIIeS e e e e e e e e e 490
beavers e e 490
BJsales e e 491
BOD e 492
CAIS . . o i e e e e e e 493
ChickWeight 494
chickwts e e 495
CO2 . e 496
COZ . o e e 497
crimtab L e e e 497
discoveries e e e 499
DNase e e e e e e 500
esoph . . . 501
BUID . . . o it e e e e e e 502
eurodist L e e e 503
EuStockMarkets e 503
faithful e 504
Formaldehyde 505

freeny 506

CONTENTS iX

HairEyeColor e 507
Harman23.cor e e e 508
Harman74.cor 508
Indometh 509
infert e 510
INSECISPrays o e e e e 511
NS . o e e 511
islands e 513
JohnsonJdohnson L 513
LakeHuron e 514
I 514
LifeCycleSavings e 515
Loblolly 516
longley e e 516
YNX . e 517
morley 518
MICAIS o o e e e 519
Nhtemp 519
Nile . . 520
NOLEM e e 521
Orange 522
OrchardSprays o e 523
PlantGrowth 524
PrECID .« o o o o 524
presidents 525
PreSSUIMe o e e e e e e e e e e 526
Puromycin 526
quakes e e 528
randu . ..o e e 528
MVEIS . . . o e 529
FOCK . . . e 530
Sleep . . 530
stackloss e e R31
State 532
sunspot.month L 533
SUNSPOLYEAN o o i e e e e 534
SUNSPOLS . . . o o e e e e e e 535
SWISS . & o e 535
Theoph e 536
TitaniC e e e 538
ToothGrowth e 539
treering e 539
reeS e e e e 540
UCBAdMISSIONS e e e 541
UKDriverDeaths e 542
UKgas 543
UKLungDeaths 544
USAccDeaths e K44
USAITESES o e e e e e 545
USJdudgeRatings 545
USPersonalExpenditure e e 546

USPOP © o v o e e e e e e e e e e e e 547

X CONTENTS

VADeaths e 547
VOICANO e e 548
warpbreaks 549
WOMEBN . . . o o ot e e e e e e e e e e e e 550
WorldPhones 550
WWWUSAGE e e 551
3 ThegrDevices package 553
grDevices-package 553
as.graphicsAnnot e 553
boxplot.stats e 554
check.ooptions 556
chull . . . e 557
CIM L o e e e e e e 558
col2rgh . . . e 558
COlorRamMpP e 559
COlOrS e e e 561
contourLines e e 562
convertColor e 563
devinteractive L 565
JEV.XXX . o o o e e 566
dev2 . .. e 567
dev2bitmap 569
Devices e 570
embedFonts L 571
extendrange e e e 572
getGraphicsEvent 573
OraY .« o e e e e 574
gray.Colors 575
hel . . e 576
Hershey e 578
RSV . . e 581
Japanese e e 582
make.rgh 583
N2MITOW o e e e 584
NCIAaSS e 585
palette 586
Palettes e 587
PAf . e 588
PICEX . . o o e 591
plotmath 593
PN . . o e e 596
POSISCHIPt o . 598
POStSCriptFONtS e e e 603
PS.OPLIONS e e e 606
QUAITZ e 607
quartzFonts L 608
recordGraphiCs 609
recordPlot L 610
0o 611
rgb2hsv e 612
trans3d e 614

TypelFont e 615

CONTENTS Xi

XL o e 616
XLIIFONIS e e 618
XAQ o 619
XY.COOMAS o e 620
xyTable e 622
XYZ.COOIAS v i e e 623
4 Thegraphics package 625
graphics-package 625
abline 625
AITOWS . . . o o e e e e e e 627
assocplot 628
AXIS . . 630
AXIS . . e 631
axis.POSIXCt e 633
axXTICKS . . o o o 635
barplot e 636
boX . . e 639
boxplot 640
bXp . . 643
cdplot e 645
CONMOUN . . . o o ot e e e e e e e e e e 647
coplot 650
CUIVE . . o o o e e e e e e e e e 653
dotchart 654
filled.contour 655
fourfoldplot e 658
frame . . . 659
Orid . . 660
hist. . . . e 661
histPOSIXt e 664
identify e 665
IMAgE . . . o ot e e e 668
layout 670
legend 672
INes e 676
locator e 677
matplot e 678
Mmosaicplot e 680
MEEXE e e 683
PAIFS . . . o 685
panel.smooth L 687
PAr . . . 688
PEISD . v o e e e e 695
PIE . . e 698
0] 0 S 4 00
plot.data.frame 701
plot.default 702
plot.design. e e 705
plot.factor e 706
plotformula 707
plot.histogram 708

plot.table 710

Xii CONTENTS
plotwindow e T2
PIOLXY . . o . e 12
POINS e 713
Polygon e e e 715
FECL . o o e 717
TUD « o e o e e e e e e e e e e e e e e 718
SCIEEN . o o i i e e e 719
SEOMENTS 721
spineplot 722
SEArS . . . 125
SIEM . . e 728
stripchart e 729
strwidth e 730
sunflowerplot 731
symbols 733
OXt . 736
ttle . . . 738
UNIES . . . e 739
Xspline e e e 740

5 Thegrid package 743
grid-package e 743
absolute.size L e 744
AITOW . . o o o e e e e e e e e e 745
convertNative 745
dataViewport e 746
drawDetails 747
editDetails e 748
gEdit. . . . 749
getNames 750
OPAI . . o e e 750
gPath e 752
Grid VIeWpOortS e 754
gridadd 757
grid.arrowWs L 758
grid.circle 761
grid.clip e 762
grid.collection 763
grid.Convert 764
Orid.COPY . . o o o 766
grid.curve e 767
griddisplay.list 769
grid.draw L e 770
gridedit e e 771
gridframe 772
grid.get 773
gridgrab 774
grid.grill e 775
grid.grob e 776
griddayout 777
grid.lines 779

griddocator e 781

CONTENTS Xiii

grid.ds . .. e e 782
grid.move.to 784
grid.NeWPAGE e 785
grid.pack 786
grid.place e 788
grid.plot.and.legend 789
grid.points e e 789
grid.polygon 790
grid.pretty 792
grid.prompt e 792
griderecord L e e e 793
grid.rect e e 794
grid.refresh L 795
grid.remove e 795
grid.segments 796
grid.set e 798
grid.show.layout 799
grid.show.viewport 800
gridtexto e 801
grid.Xaxis 803
grid.xspline L 804
gridyaxis e 807
grobName e 808
grobWidth e 808
grobX . .o 809
plotViewport e 810
POP.VIEWPOIT o o e e e 810
PUSh.VIEWPOIt e e e 811
Queryingthe Viewport Tree 0 e 812
stringWidth L L 813
UNIL . e e e 813
UNILC . o o e e e e 815
unitdength L 816
Unit.pmin L e e e e e e 817
UNILIEP . o o o e e e e e e e e e e e e e e e e e 817
validDetails e 818
vpPath e 819
widthDetails e 820
Working with Viewports 820
xDetails 823
6 Themethods package 825
methods-package 825
BasicFunsList 826
AS . 826
BasicClasses e 830
callNextMethod 831
CaNCOBICE o i e e 833
chind2 e 834
Classes 835
classRepresentation-class e 837
Documentation e 838

ENVIroNMENt-Class o e e e e e 840

Xiv CONTENTS
fiXPredl.8 e e 840
genericFunction-class 841
GenericFunctions e 842
getClass e 846
getMethod e 847
getPackageName 850
hasArg e 851
implicitGeneric 852
initialize-methods 854
IS o e 855
isSealedMethod e 858
language-class e e 859
LinearMethodsList-class e 860
makeClassRepresentation 861
method.skeleton e 862
MethodDefinition-class e 863
Methods e e 864
MethodsList-class e 866
MethodWithNext-class e 867
NEW . . . e e e e e e 868
ObjectsWithPackage-class 870
promptClass e e 871
promptMethods 872
representation L e e e 873
SAGroupGENENIC 875
SClassExtension-class e 877
seemsS40bject L 878
SetClass e e e e 879
setClassUnion 883
SEtGENEIIC . . . v o o e e e e e e e 885
setMethod e 888
setOldClass e e e e 891
ShOW e e e 894
showMethods e 895
signature-class. e 897
Slot. . . e e 898
StructureClasses e 899
TraceClasses e e e e 900
validObject e 901

7 Thestats package 905
stats-package 905
.checkMFClasses e e 905
act . . e e e 906
acf2AR . . . e 908
addl 9209
addmargins 911
aggregate . . oL .o e 913
AlC e 915
alias e 916
ANOVA e e e e e e e e e e e e e e e 917
anova.glm 918

anova.lm e e 920

CONTENTS XV

anova.mim e e 921
ansari.test L e e 923
A0V . . . i e e e e 925
approxfun . . .o 927
= 929
arols e e e 932
arima 934
anmaLSiMm o e e e e e 937
arimal e 938
ARMAAGACT e 942
ARMAIOMA . . . e e 943
as.hclust e 944
asOneSidedFormula e 945
AVE . . e e e e e e 945
bandwidth e 946
bartlett.test e 948
Beta e e 949
binom.test e 951
Binomial e e 952
biplot e 954
biplot.princomp 955
birthday e 957
Box.test e e e e 958
C o e 959
CANCOI o e e e e e e e e e e e e e e 960
caselvariable.names e 961
Cauchy 962
chisg.test e 963
Chisquare e 966
clearNames e e 968
cmdscale e e e 969
COBT . L e 970
complete.cases 971
confint e e 972
CONSLrOPLIM 973
contrast e e e e e 975
CONtrastS e e e e e 976
convolve e 977
cophenetic e 979
COl . e e e e e e 980
CONIESt e e e e 982
COV.WLE . . o e e e e e e e e e e e 985
CPOrAM o o e 986
CULIEE . . . e e e e e 987
decompose e e 988
delete.response 989
dendrapply e 990
dendrogram L e e e Q91
density 995
deriv . . . e e 998
deviance e 1000

df.residual L e 1001

XVi

CONTENTS
diffinv . . L e e 1002
dist. . . e e 1003
dummy.coef e 1006
ecdl . . e e 1007
effaovlist e 1009
effects e 1010
embed e 1011
expand.model.frame 1012
Exponential e 1013
extractAIC e 1014
factanal e 1015
factor.scope e 1018
family 1019
FDist e 1023
1 1024
filter . . e e 1025
fishertest e 1027
fitted e 1029
fivenum . . . L e e e e 1030
flignertest e 1031
formula e 1033
formula.nls e e 1035
friedman.test e 1035
ftable e 1037
ftable.formula 1039
GammabDist e e 1040
GEOMELNC o e e e e 1043
getinitial L e 1044
alm 1045
gim.control 1049
gim.summaries e e 1050
helust e 1051
heatmap e 1054
HoltWinters e e e 1057
Hypergeometric 1060
identify.hclust L 1061
influence.measures 1062
integrate 1065
interaction.plot 1067
QR . . e 1069
is.empty.model 1070
150 = 1071
KalmanLike e 1072
kernapply e 1074
Kernel e 1075
Kmeans e 1076
kruskal.test e 1078
Ks.test e 1080
ksmooth e 1082
ag e 1083
lag.plot e 1084

INe . . . e e 1085

CONTENTS XVii

I e e 1086
ImLfit . . e e 1089
Im.influence e 1091
Im.summaries e e e e 1092
loadings 1094
0SS e 1095
loess.control e e 1097
LOgistiC e 1098
logLik e e 1099
loglin e 1100
Lognormal 1102
IOWESS e 1103
Is.diag 1105
IS.print e e e e 1106
ISfit . . e e 1106
Mad . . . e e e 1108
mahalanobis e 1109
make.link e 1110
makepredictcall 1111
MANOVA o ot i e e e e e e e e e e e e e e e 1112
mantelhaen.test 1113
mauchly.test 1115
mecnemartest e e e 1117
median. e 1118
medpolish e 1119
model.extract e 1120
model.frame e 1121
model.matriX e e e 1123
model.tables e 1125
monthplot e 1126
mood.test L e e 1128
Multinomial e 1130
Na.action e e e 1131
NA.CONLIJUOUS v o e et e e e e e e e e e e e e e 1132
nafail e 1132
NAPINt 1133
naresid e e e 1134
NegBinomial 1135
NEeXIN e e e e 1137
NIM . e e 1137
niminb e e e 1140
NS . o e e e 1142
nis.control e 1146
NLSStASYmMptotic 1148
NLSStCIoSeStX o o e 1148
NLSstLfASymptote 1149
NLSstRtAsymptote e 1150
Normal e 1151
numericDeriv e e e e 1153
offset e e e 1154
oneway.test e e e e e 1154

OPLIM . . 1156

Xviii

CONTENTS
OPtIMIZE e e 1160
order.dendrogram e e 1162
p.adjust e 1163
pairwise.prop.test 1165
pairwise.t.test L 1166
pairwise.table 1167
pairwise.wilcox.test 1168
plot.act e 1168
plot.density e 1170
plot.HoltWinters 1170
plotisoreg e e 1172
plot.m e 1173
PIOL.PPr . o o o 1175
plot.profile.nls 1176
PIOL.SPEC e e 1177
plot.stepfun 1179
plotts e e 1180
POISSON e e 1182
POlY . . e 1183
POWET . . . o e e e e e e e 1185
power.anova.test. 1186
power.prop.test 1187
powerttest L e e e e 1188
PP.test e 1189
PPOINIS o e 1190
0] o] 1191
PrCOMP . . . o o e e e 1194
predict e 1197
predict Arima e 1198
predict.glm 1199
predict.HoltWinters e 1201
predict.m L 1202
predict.loess 1204
predict.nls e e 1206
predict.smooth.spline 1207
preplot e 1208
PrINCOMP . . . o e e e e e e e e e 1209
print.powerhtest. 1211
PriNtES e e 1212
printCoefmat 1213
profile 1214
profile.nls 1215
PrOj . o o o e 1216
Prop.test e 1218
prop.trend.test L 1220
o o | T T 1 o 0 1221
quade.test 1222
quantile e 1224
r2dtable 1226
read.ftable 1227
rect.hclust 1229

relevel e 1230

CONTENTS XiX

reorder.dendrogram L 1230
reorderfactor 1231
replications e 1233
reshape 1234
residuals L 1236
runmed ... L e e e 1237
scatter.smooth 1239
screeplot . . . L 1241
SA 1242
SE.CONrast e e e e 1242
selfStart 1244
setNames 1246
shapiro.test L 1247
SignRank 1248
simulate 1249
SMOOth e 1250
smooth.spline 1252
SMOOthENdS e 1255
sortedXyData 1257
SPEC.AI . . . i e e e e e e 1257
SPEC.POrAM e e 1259
SPEC.EAPEI 1261
SPECIIUM o e e e e 1262
splinefun 1263
SSasymp . .. e 1265
SSasympOff e 1266
SSasympOrig 1267
SShiexp e 1268
SSD .. e 1269
SSfol . . e 1270
SSIpl . e 1271
SSQOMPErzZ 1272
SSIogIsS . . . 1273
SSMICMEN e 1274
SSweibull e 1275
Start . . . 1276
stat.anova e 1277
stats-deprecated 1278
St . . e e 1278
stepfun. . . . 1280
St e 1282
stimethods 1284
StUCtTS 1285
SUMMAIY. B0V . . . v v v o it e e e e e e e e e e e e 1287
summary.glm e e 1289
summary.dm . .o 1291
SUMMATNY.MANOVA« v v v v e i e e e e e e e e e e e e 1293
summary.nls e e e e e e 1294
SUMMArY.PrinCoOMP o o o o e e e e e 1295
SUPSIMU . o v v e e e e e e e e e e e e e e e 1296
SYMNUM . . o o e e e e e e e e e e e e e e e e e 1297

LeSt . . e e e e e e e e e 1300

XX CONTENTS
TDISt . . . e e 1302
termplot e 1304
terms e e 1305
terms.formula e 1306
terms.object 1307
tiIMe . . . e e e 1308
toeplitz e e 1309
1S . . e e e e e e e e 1310
tss-methods e 1312
ts.plot . . . e 1313
IS.UNION . . . e e e 1313
tsdiag e 1314
ISP . . 1315
tSSMooth e e 1316
Tukey . . 1317
TukeyHSD 1318
uniform e e 1319
UNIFOOL o e e e e e e e e e e e e e e 1320
update 1322
update.formula 1323
vartesto e e 1324
VarMaX . . o . o e e e e e e e e e e e e e e 1325
VCOV . v v v e e e e e e e e e e e e e 1326
Weibull e e 1327
weighted.mean 1328
weighted.residuals L 1329
WIlCOoX.teSt e e e e 1330
Wilcoxon e e 1333
WINAOW o e e e e 1335
Xtabs . . . e 1336

8 Thetools package 1339
tools-package 1339
buildVignettes e 1339
charsets e e 1340
checkFF e 1341
checkMD5sSUMS e 1342
checkTnF e 1343
checkVignettes 1344
COAOC o e, 1345
delimMatch e e 1346
encoded text to latex 1347
fileutils e 1348
getDepList. e 1350
installFoundDepends e 1351
makeLazylLoading 1352
MASSUM e e e e e 1353
package.dependencies 1353
QC . e 1354
RAindex e e 1355
Rdutils e 1356
read.00Index e 1357

eXi2dvi . . . L e e 1358

CONTENTS XXi

tools-deprecated e 1358
UNdOC . . . o e e e e 1359
vignetteDepends 1360
write_ PACKAGES e 1361
Xgettext e e e e e 1362
9 Theutils package 1365
utils-package 1365
alarm ..o e 1365
APIOPOS . . o e e e e e e e e 1366
BATCH . . . 1367
browseEnv. 1368
browseURL e 1370
bug.report 1371
capture.QUtPUL e e e e e 1373
ChoOSECRANMIITOr e e e e e e e e e e e 1374
citation e 1375
CILENtrYy o 1376
close.socket 1378
combn . . oL 1378
compareVersion e e e e 1380
COMPILE e 1380
countfields e 1381
data e 1382
dataentry 1384
debugger e 1386
demo . .. 1388
download.file 1389
edit e 1391
edit.data.frame L 1392
example 1393
file.edit 1395
file test e 1396
fiX e e 1397
flush.console 1398
format e e 1398
getAnywhere L 1399
getFromNamespace e e e e 1400
getS3method L 1401
glob2rx 1402
head e 1403
help e 1404
help.search 1408
help.start. e 1410
index.search 1411
INSTALL e e 1412
installed.packages 1413
LINK 1414
localeToCharset e 1415
IS.Str . . 1416
make.packages.html 1417
make.socket L 1418

MEMOIY.SIZE e e e 1419

XXil

CONTENTS
MENU . . o o e e e 1420
methods e 1421
MirrorAdmin e 1422
modifyList. 1423
normalizePath 1423
NSl . L e 1424
object.size 1425
package.skeleton 1426
packageDescription e 1427
packageStatus 1428
PAgE . . . e e e e 1430
PEISON e e 1430
PkaUtIIS 1431
PrOMPt . . . o e e e e e e e e e e 1432
promptData e 1434
promptPackage 1435
read.DIF 1436
read.fortran L e e 1438
read.fwf L 1439
read.socket L 1441
read.table 1442
readNEWS 1446
FTECOVEI . . . o o ot e e e e e 1447
relist e e 1448
REMOVE e 1450
remove.packages e 1451
RHOME e e e 1452
FOMAN . . . o o e e e e e e e e e e e e e e e e e 1452
Rprof . . 1453
Rprofmem e 1454
RSCript e 1455
RShowDoOC e 1456
RSiteSearch e 1457
Rtangle e 1458
RweavelLatex e 1459
savehistory 1461
selectlist 1463
sessionInfo L 1464
setRepositories e 1464
SHLIB e e 1465
stack e 1466
] 1467
summaryRprof 1470
SWEAVE e e e e 1471
SweaveSyntConv e e e e e 1473
toLatex e e e e e 1474
ftype.Cconvert 1475
update.packages e e 1475
url.show o e 1480
URLencode e 1480
utils-deprecated 1481

VIBW . . . e e 1482

CONTENTS XXiii

Index

Vignette e e 1482
withVisible 1484
write.table 1485
zipfile.extract 1487

1489

XXivV CONTENTS

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions whichRefunction as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, usibrary(help="base")

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is store®@vices . The name of the active
device (sealev.cur) is stored in.Device . Both are symbols and so appear in the base name
space.

Value

.Device is alength-one character vector.

.Devices is a pairlist of length-one character vectors. The first entry is alwaysll

device" , and there are as many entries as the maximal number of graphics devices which have
been simultaneously active. If a device has been removed, its entry will hantil the device
number is reused.

.Machine

.Machine

Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the maBhise
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR.

Note that on most platforms smaller positive values thdachine$double.xmin can occur.
On a typicalR platform the smallest positive double is abdet324 .

Value

A list with components (for simplicity, the prefix ‘double’ is omitted in the explanations)

double.eps

double.neg.eps

double.xmin

double.xmax

double.base
double.digits

double.rounding

the smallest positive floating-point numbesuchthatl + x = 1 . Itequals
base”ulp.digits if either base is 2 orrounding is O; otherwise, it is
(base’ulp.digits) / 2

a small positive floating-point number such thatl - x = 1 . It equals

base”neg.ulp.digits if base is 2 orround is 0; otherwise, it is
(base™neg.ulp.digits) / 2 . As neg.ulp.digits is bounded be-
low by -(digits + 3) ,heg.eps may not be the smallest number that can

alter 1 by subtraction.

the smallest non-vanishing normalized floating-point power of the radix, i.e.,
base”min.exp

the largest finite floating-point number. Typically, it is equal (b -
neg.eps) * base“max.exp , but on some machines it is only the second,
or perhaps third, largest number, being too small by 1 or 2 units in the last digit
of the significand.

the radix for the floating-point representation
the number of base digits in the floating-point significand

the rounding action.

0 if floating-point addition chops;

1 if floating-point addition rounds, but not in the IEEE style;

2 if floating-point addition rounds in the IEEE style;

3 if floating-point addition chops, and there is partial underflow;

4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;

5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow

.Machine 3

double.guard the number of guard digits for multiplication with truncating arithmetic. Itis 1
if floating-point arithmetic truncates and more thdigits basebase digits
participate in the post-normalization shift of the floating-point significand in
multiplication, and 0 otherwise.

double.ulp.digits
the largest negative integersuch thatl + base®i = 1 | except that it is
bounded below by(digits + 3)
double.neg.ulp.digits
the largest negative integersuch thatl - base”i != 1 | except that itis
bounded below by(digits + 3)
double.exponent
the number of bits (decimal placesifise is 10) reserved for the representation
of the exponent (including the bias or sign) of a floating-point number
double.min.exp

the largest in magnitude negative integesuch thabase ” i is positive and
normalized.

double.max.exp
the smallest positive power base that overflows.
integer.max the largest integer which can be represented.

sizeof.long the number of bytes in a ong type.

sizeof.longlong
the number of bytes in a ©ng long type. Will be zero if there is no such
type.

sizeof.longdouble
the number of bytesinalong double type. Will be zero if there is no such
type.

sizeof.pointer
the number of bytes in a SEXPtype.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine param@&tarss-
actions on Mathematical Software4, 4, 303—-311.

See Also

.Platform for details of the platform.

Examples

.Machine
or for a neat printout
noquote(unlist(format(.Machine)))

4 .Platform

.Platform Platform Specific Variables

Description

.Platform is a list with some details of the platform under whiRhwas built. This provides
means to write OS-portabi code.

Usage

.Platform

Value

A list with at least the following components:

OS.type character string, giving th®peratingSystem (family) of the computer. One of
"unix" or"windows"

file.sep character string, giving thiéle separator used on your platformi7* on both
Unix-alikes and on Windows (but not on the now abandoned port to Classic
MacOS).

dynlib.ext character string, giving the file namextension of dynamically loadable
libraries, e.g.,".dll" on Windows and'.so" or ".s|" on Unix-alikes.
(Note for MacOS X users: these are shared objects as loaddgrbipad
and not dylibs.)

GUI character string, giving the type of GUI in use,"onknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given viggthe *
command-line flag"11" , "Tk" , "none" and perhaps others under alterna-
tive front-ends or embedddr), "AQUA" (running undeR.app on MacOS X),
"Rgui" and"RTerm" (Windows).

endian character stringbig" or "little" , giving the endianness of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: g2 Bin

pkgType character string, the preferred setting fiptions ("pkgType") . Values
"source" ,"mac.binary" and"win.binary" are currently in use.
path.sep character string, giving theath separator, used on your platform, e.§.;; on

Unix-alikes and';" on Windows. Used to separate paths in variables such as
PATHandTEXINPUTS

r_arch character string, possibly . The name of the architecture-specific directories
used in this build oR.

See Also
R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under whiBhwas com-
piled.

.Machine for details of the arithmetic used, asgistem for invoking platform-specific system
commands.

.Script 5

Examples

Note: this can be done in a system-independent way
by file.info()$isdir
if(.Platform$OS.type == "unix") {
system.test <- function(...) { system(paste("test", ...)) == 0 }
dir.exists <- function(dir)
sapply(dir, function(d)system.test("-d", d))

dir.exists(c(R.home(), "tmp", "~", "INO")# > T T T F
}
.Script Scripting Language Interface
Description

Run a script through its interpreter with given arguments.

Usage

.Script(interpreter, script, args, ...)

Arguments
interpreter a character string naming the interpreter for the script.
script a character string with the base file name of the script, which must be lo-
cated in the interpreter " subdirectory of R_SHARE_DIR’ (normally
‘R_HOME/share).
args a character string giving the arguments to pass to the script.
further arguments to be passedsistem when invoking the interpreter on the
script.
Note

This function is for R internal use only.

Examples

not useful on Windows, where the help is zipped.
Script("perl”, "massage-Examples.pl",
paste("tools”, system.file("R-ex", package = "tools")))

6 abbreviate

abbreviate Abbreviate Strings

Description

Abbreviate strings to at leastinlength characters, such that they remaimque(if they were).

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, method = c("left.kept", "both.sides"))

Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector bgs.character
minlength the minimum length of the abbreviations.
use.classes logical (currently ignored byr).
dot logical: should a dot"(") be appended?
method a string specifying the method used with defaigéft.kept” , see ‘Detalls’
below.
Details
The algorithm (hethod = "left.kept") used is similar to that of S. For a single string it

works as follows. First all spaces at the beginning of the string are stripped. Then (if necessary)
any other spaces are stripped. Next, lower case vowels are removed (starting at the right) followed
by lower case consonants. Finally if the abbreviation is still longer theskength upper case

letters are stripped.

Characters are always stripped from the end of the word first. If an elemeatt@fs.arg contains
more than one word (words are separated by space) then at least one letter from each word will be
retained.

Missing (NA) values are unaltered.

If use.classes is FALSEthen the only distinction is to be between letters and space. This has
NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates in
the originalnames.arg will be given identical abbreviations. If any non-duplicated elements
have the sameinlength abbreviations then, ifnethod = "both.sides" the basic inter-

nal abbreviate() algorithm is applied to the characterwissversedstrings; if there are still
duplicated abbreviationsjinlength is incremented by one and new abbreviations are found for
those elements only. This process is repeated until all unique elemerasiet.arg have unique
abbreviations.

The character version efames.arg is attached to the returned value as a nhames argument: no
other attributes are retained.

agrep 7

Warning

This is really only suitable for English, and does not work correctly with non-ASCII characters in
multibyte locales. It will warn if used with non-ASCII characters.

See Also

substr

Examples

X <- c("abcd", "efgh", "abce")
abbreviate(x, 2)

(st.abb <- abbreviate(state.name, 2))
table(nchar(st.abb))# out of 50, 3 need 4 letters

method="both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate(state.name, 2, method="both")
table(nchar(st.ab2))

Compare the two methods:

chind(st.abb, st.ab2)

agrep Approximate String Matching (Fuzzy Matching)

Description
Searches for approximate matchepadtern (the first argument) within the string (the second
argument) using the Levenshtein edit distance.

Usage

agrep(pattern, x, ignore.case = FALSE, value = FALSE,
max.distance = 0.1)

Arguments

pattern a non-empty character string to be matcheat & regular expression!). Coerced
by as.character to a string if possible.

X character vector where matches are sought. Coerced.bharacter to a
character vector if possible.

ignore.case if FALSE the pattern matching isase sensitivand if TRUE case is ignored
during matching.

value if FALSE, a vector containing the (integer) indices of the matches determined is
returned and iTRUE a vector containing the matching elements themselves is
returned.

max.distance Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length (will be replaced by the smallest integer not less
than the corresponding fraction), or a list with possible components

all : maximal (overall) distance

8 all

insertions : maximum number/fraction of insertions
deletions : maximum number/fraction of deletions
substitutions : maximum number/fraction of substitutions

If all is missing, it is set to 10%, the other components defaudtlito. The
component names can be abbreviated.

Details

The Levenshtein edit distance is used as measure of approximateness: it is the total number of
insertions, deletions and substitutions required to transform one string into another. Note that this

is currently done at byte-level, and so is not wholly appropriate for multibyte encodings such as
UTF-8.

The function is a simple interface to tlpse library developed by Jarkko Hietaniemi (also used
in the Perl String::Approx module).

Value

Either a vector giving the indices of the elements that yielded a match,walué is TRUE the
matched elements (after coercion, preserving names but no other attributes).

Author(s)

David Meyer, based on C code by Jarkko Hietaniemi; modifications by Kurt Hornik.

See Also

grep

Examples

agrep(“lasy”, "1 lazy 2")

agrep('lasy”, "1 lazy 2", max = list(sub = 0))
agrep("laysy", c("1l lazy", "1", "1 LAZY"), max
agrep("laysy”, c("1l lazy", "1", "1 LAZY"), max
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max

2)
2, value = TRUE)
2, ignore.case = TRUE)

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

zero or more logical vectors. Other objects are coerced to logical, ignoring any
class.

na.rm logical. If trueNAvalues are removed before the result is computed.

all 9

Details
This is a generic function: methods can be defined for it directly or vi&themary group generic.
For this to work properly, the arguments should be unnamed, and dispatch is on the first
argument.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors.in (after coercion), after removing
NAs if requested bypa.rm = TRUE.

The value returned iSRUEIf all of the values inx areTRUE(including if there are no values), and
FALSEIf at least one of the values inis FALSE Otherwise the value A (which can only occur
if na.rm = FALSE and... contains nd~ALSEvalues and at least omdAvalue).

S4 methods
This is part of the S&Summary group generic. Methods for it must use the signatyre..,
na.rm .

Note

Thatall(logical(0)) is true is a useful convention: it ensures that

all(all(x), all(y)) == all(x,y)

even ifx has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ ofll , andstopifnot (*) whichisanall(*) ‘insurance’.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2, 1)))
if(al(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

10 all.equal

all.equal Test if Two Objects are (Nearly) Equal
Description
all.equal(x,y) is a utility to compareR objectsx andy testing ‘near equality’. If they

are different, comparison is still made to some extent, and a report of the differences is returned.
Don’t useall.equal directly inif expressions—either useTRUE(all.equal(....))
or identical if appropriate.

Usage

all.equal(target, current, ...)

S3 method for class 'numeric":

all.equal(target, current,
tolerance = .Machine$double.eps * 0.5,
scale = NULL, check.attributes = TRUE, ...)

attr.all.equal(target, current,
check.attributes = TRUE, check.names = TRUE, ...)

Arguments
target R object.
current otherR object, to be compared witlarget
Further arguments for different methods, notably the following two, for numer-
ical comparison:
tolerance numeric> 0. Differences smaller thaolerance are not considered.
scale numeric scalar > 0 (dNULL). See ‘Details’.

check.attributes
logical indicating if theattributes () oftarget andcurrent should
be compared as well.

check.names logical indicating if thenames(.) oftarget andcurrent should be com-
pared as well (and separately from tit&ributes).

Details

There are several methods available, most of which are dispatched by the default method, see
methods ("all.equal) . all.equal.list andall.equal.language provide com-
parison of recursive objects.

Numerical comparisons facale = NULL (the default) are done by first computing the mean
absolute difference of the two numerical vectors. If this is smaller tbkemance or not finite,
absolute differences are used, otherwise relative differences scaled by the mean absolute difference.

If scale is positive, absolute comparisons are made after scaling (dividinggdde .

For complex arguments, the modulM®d of the difference is usedall.equal.numeric is
called so argumentslerance andscale are available.

attr.all.equal is used for comparingttributes , returningNULL or acharacter vec-
tor.

all.names 11

Value

EitherTRUEor a vector oinode "character" describing the differences betwenget and
current

References

Chambers, J. M. (1998 rogramming with Data. A Guide to the S Languageringer (for=).

See Also

identical ,iISTRUE, ==, andall for exact equality testing.

Examples

all.equal(pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10)

stopifnot(
all.equal(tan(d45), rep(1,10))) # TRUE, but
all (tan(d45) == rep(1,10)) # FALSE, since not exactly

all.equal(tan(d45), rep(1,10), tol=0) # to see difference

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE, max.names = -1L, unique = FALSE)

all.vars(expr, functions = FALSE, max.names = -1L, unique = TRUE)

Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the
result.
max.names the maximum number of names to be returnddindicates no limit (other than
vector size limits).
unique a logical value which indicates whether duplicate names should be removed
from the value.
Details

These functions differ only in the default values for their arguments.

12 any

Value

A character vector with the extracted names.

Examples

all.names(expression(sin(x+y)))
all.vars(expression(sin(x+y)))

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any(..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects are coerced to logical, ignoring any
class.
na.rm logical. If trueNAvalues are removed before the result is computed.
Details

This is a generic function: methods can be defined for it directly or vi&thmemary group generic.
For this to work properly, the arguments should be unnamed, and dispatch is on the first
argument.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors.in (after coercion), after removing
NAs if requested bypa.rm = TRUE.

The value returned ISRUEIf at least one of the values inis TRUE andFALSEIf all of the values
in X areFALSE (including if there are no values). Otherwise the valulAgwhich can only occur
if na.rm = FALSE and... contains noTRUEvalues and at least oMAvalue).

S4 methods
This is part of the SSummary group generic. Methods for it must use the signatyre..,
na.rm .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

aperm 13

See Also

all , the ‘complement’ ofny .

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2,1)))
iflany(x < 0)) cat("x contains negative values\n")

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, resize = TRUE)

Arguments
a the array to be transposed.
perm the subscript permutation vector, which must be a permutation of the integers
1:n , wheren is the number of dimensions af The default is to reverse the
order of the dimensions.
resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (defaulRUB.
Value

A transposed version of arrag, with subscripts permuted as indicated by the apaym. If
resize is TRUE the array is reshaped as well as having its elements permutedinthames
are also permuted; iesize = FALSE then the returned object has the same dimensioas as
and the dimnames are dropped. In each case other attributes are copied from

The functiont provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougiet,).C.Rougier@durham.ac.uflid the faster C implementation.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

t, to transpose matrices.

14 append

Examples

interchange the first two subscripts on a 3-way array X
X <- array(1:24, 2:4)
xt <- aperm(x, c(2,1,3))
stopifnot(t(xt[,,2]) == x[,,2],
t(xt[,,3]) == x[.,3],
t(xt[,,4]) == x[.,4])

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after = length(x))

Arguments

X the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values ix with the elements ofalues appended after the specified
element ofx.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Examples

append(1:5, 0:1, after=3)

apply 15

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array.

Usage

apply(X, MARGIN, FUN, ..)

Arguments
X the array to be used.
MARGIN a vector giving the subscripts which the function will be applied ovéndicates
rows,2 indicates columng;(1,2) indicates rows and columns.
FUN the function to be applied: see ‘Details’. In the case of functions+ike&*%
etc., the function name must be backquoted or quoted.
optional arguments t6UN
Details

If X is not an array but has a dimension attribuapply attempts to coerce it to an array via
as.matrix if it is two-dimensional (e.g., data frames) or d@a.array

FUNis found by a call tanatch.fun and typically is either a function or a symbol (e.g. a back-
guoted name) or a character string specifying a function to be searched for from the environment of
the call toapply .

Value

If each call toFUNreturns a vector of length, thenapply returns an array of dimensiar{n,
dim(X)[MARGIN]) if n > 1. If n equalsl, apply returns a vector iMARGINhas length 1
and an array of dimensiafim(X)[MARGIN] otherwise. Ifn is 0, the result has length 0 but not
necessarily the ‘correct’ dimension.

If the calls to FUN return vectors of different lengthsapply returns a list of length
prod(dim(X)[MARGIN]) with dim set toMARGINIf this has length greater than one.

In all cases the result is coerced &g.vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

lapply ,tapply , and convenience functiossveep andaggregate

16 args

Examples

Compute row and column sums for a matrix:

X <- chind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(x)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, c1, c2) c(mean(x[cl]), mean(x[c2]))
apply(x,1, cave, cl="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)

ma

apply(ma, 1, table) #--> a list of length 2

apply(ma, 1, stats::quantile)#¥ 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <- array(1:24, dim=2:4)

zseq <- apply(z, 1:2, function(x) seq(length=max(x)))
zseq # a 2 x 3 matrix

typeof(zseq) ## list

dim(zseq) ## 2 3

zseq[1,]

apply(z, 3, function(x) seq(length=max(x)))

a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage
args(name)
Arguments
name a function (a closure or a primitive). Hame is a character string then the
function with that name is found and used.
Details

This function is mainly used interactively. For programming, issenals instead.

Arithmetic 17

Value

A function with identical formal argument list but an empty body if given a closure.

A function with the documented usage for a primitive: note that in almost all cases primitives do
not make use of named arguments and match by position rather than mamear(dseq.int
are exceptions.)

NULLin case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

formals , help .

Examples

args(c)
args(graphics::plot.default)

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on numeric or complex vectors (or objects which can be
coerced to them).

+

X< << <«

%% y
%/% y

X X X X X X X
S~ % 1

Arguments

X, Y numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.

18 Arithmetic

Details
The binary arithmetic operators are generic functions: methods can be written for them individually
or via theOps group generic function. (Se@ps for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectbisl . SE having value zero aniRUE
having value one.

1~y andy ™ 0 arel, always x ~ y should also give the proper limit result when either
argument is infinite (i.e4- Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For real argument®o%an be subject to catastrophic loss of accurasyig much larger thay,
and a warning is given if this is detected.

Value

These operators return vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (Wmitir@ng when they are recycled

only fractionally). The operators ar¢ for addition,- for subtraction* for multiplication,/ for

division and® for exponentiation.

%%indicatesx mod y and %/% indicates integer division. It is guaranteed that== (x

%% y) +y * (X % /% y) (up to rounding error) unlesg == 0 where the result is
NA integer_ or NaN (depending on thaypeof of the arguments). Sebttp://en.
wikipedia.org/wiki/Modulo_operation for the rationale.

If either argument is complex the result will be complex, and if one or both arguments are numeric,
the result will be numeric. If both arguments are integer, the resultaofd” is numeric and of the
other operators integer (with overflow returned\&swith a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are
taken from the longer argument, the first if they are of the same length. Names will be copied from
the first if it is the same length as the answer, otherwise from the second if that is. For time series,
these operations are allowed only if the series are compatible, when the clatsp ardtribute

of whichever is a time series (the same, if both are) are used. For arrays (and an array result) the
dimensions and dimnames are taken from first argument if it is an array, otherwise the second.

S4 methods

These operators are members of theA8ith group generic, and so methods can be written for
them individually as well as for the group generic (or tBps group generic), with arguments
c(el, e2)

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

sqgrt for miscellaneous an8lpecial for special mathematical functions.
Syntax for operator precedence.
%*%for matrix multiplication.

http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation

array 19

Examples

X <- -1:12

X+ 1

2 *x + 3

X %% 2 #-- is periodic
X %/% 5

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x)

is.array(x)
Arguments
data a vector (including a list) giving data to fill the array.
dim the dim attribute for the array to be created, that is a vector of length one or more
giving the maximal indices in each dimension.
dimnames the names for the dimensions. This is a list with one component for each di-
mension, either NULL or a character vector of the length givediby for that
dimension. The list can be names, and the names will be used as names for the
dimensions.
X anR object.
Value

array returns an array with the extents specifiedlim and naming information idimnames.

The values irdata are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements thata to fill the array, then the elements data are recycled. If
data has length zerd\Aof an appropriate type is used for atomic vect@ddr raw vectors) and
NULL for lists.

as.array() coerces its argument to be an array by attachimgma attribute to it. It also at-
tachesdimnames if x hasnames. The sole purpose of this is to make it possible to access the
dim [names] attribute at a later time.

is.array returnsTRUEor FALSEdepending on whether its argument is an array (i.e., ltima
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, seénternalMethods

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

20

as.data.frame

See Also

aperm, matrix ,dim, dimnames.

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

(1] [,2] [3] [4]
#[1] 1 3 2 1
#[2.] 2 1 3 2
as.data.frame Coerce to a Data Frame
Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage

as.data.frame(x, row.names = NULL, optional = FALSE, ..)
S3 method for class ‘character"
as.data.frame(x, ...,
stringsAsFactors = default.stringsAsFactors())
S3 method for class 'matrix":
as.data.frame(x, row.names = NULL, optional = FALSE, ..,
stringsAsFactors = default.stringsAsFactors())

is.data.frame(x)

Arguments
X anyR object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE setting row names and converting column names (to syntactic

names) is optional.

additional arguments to be passed to or from methods.

stringsAsFactors
logical: should the character vector be converted to a factor?

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods.

If a listis supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method foras.data.frame : two examples are matrices of cldssodel.matrix " (which

are included as a single column) and list objects of cl&3@SIXIt " which are coerced to class
"POSIXct ".

as.environment 21

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices

by ‘flattening’ all dimensions after the first and creating suitable column labels.
Character variables are converted to factor columns unless protected by

If a data frame is supplied, all classes preceditega.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL , row names are constructed from the names or dimnamesodifierwise

are the integer sequence starting at one. Few of the methods check for duplicated row names. Names

are removed from vector columns unléss

Value

as.data.frame returns a data frame, normally with all row narfiésif optional = TRUE

is.data.frame returnsTRUEIf its argument is a data frame (that is, Hakta.frame"
amongst its classes) aR@ALSE otherwise.

References

Chambers, J. M. (1992)ata for models Chapter 3 ofStatistical Models in &ds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame , as.data.frame.table for thetable method (which has additional argu-
ments if called directly).

as.environment Coerce to an Environment Object

Description

Converts a number or a character string to the corresponding environment on the search path.

Usage

as.environment(object)

Arguments
object the object to convert. If it is already an environment, just return it. Ifitis a
number, return the environment corresponding to that position on the search list.
If it is a character string, match the string to the names on the search list.
Value

The corresponding environment object.

Author(s)

John Chambers

22 as.function

See Also

environment for creation and manipulatiosgarch .

Examples

as.environment(1l) ## the global environment
identical(globalenv(), as.environment(1)) ## is TRUE
try(as.environment("package:stats")) ## stats need not be loaded

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a listx, which should contain the concatenation of a formal
argument list and an expression or an object of modall " which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage
as.function(x, ...)

Default S3 method:
as.function(x, envir = parent.frame(), ...

Arguments
X object to convert, a list for the default method.
additional arguments, depending on object
envir environment in which the function should be defined
Value

The desired function.

Note

For ancient historical reasonsnvir = NULL uses the global environment rather than the base
environment. Please usavir = globalenv () instead if this is what you want, as the special
handling ofNULL may change in a future release.

Author(s)

Peter Dalgaard

See Also

function ;alist which is handy for the construction of argument lists, etc.

as.POSIX* 23

Examples

as.function(alist(a=,b=2,a+b))
as.function(alist(a=,b=2,a+b))(3)

as.POSIX* Date-time Conversion Functions

Description
Functions to manipulate objects of classEOSIXIt" and"POSIXct" representing calendar
dates and times.
Usage
as.POSIXct(x, tz = ")
as.POSIXIt(x, tz = ")

S3 method for class 'POSIXIt":
as.double(x, ...)

Arguments
X An object to be converted.
tz A timezone specification to be used for the conversibrgne is required
System-specific, but" is the current timezone, an®&GMT" is UTC (Coor-
dinated Universal Time, in French).
further arguments to be passed to or from other methods.
Details

Theas.POSIX* functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert a wide variety of objects, includ-
ing objects of the other class and of clas4eate" , "date" (from packagedate or survival),

"chron” and"dates" (from packagechron) to these classes. Dates without times are treated

as being at midnight UTC.

They can also convert character strings of the fornia@1-02-03" and "2001/02/03"
optionally followed by white space and a time in the forfit4:52" or "14:52:03" . (For-
mats such as01/02/03" are ambiguous but can be converted via a format specification by
strptime .) Fractional seconds are allowed.

Logical NAs can be converted to either of the classes, but no other logical vectors can be.
Theas.double method convertsSPOSIXIt" objects to'POSIXct"
If you are given a numeric time as the number of seconds since an epoch, see the examples.

Where OSes describe their valid timezones can be obscure. The hétgdor (or _tzset on
Windows) can be helpful, but it can also be inaccurate. There is a cumbersome POSIX specifica-
tion (listed under environment variabl& athttp://www.opengroup.org/onlinepubs/
009695399/basedefs/xbd_chap08.html), which is often at least partially supported, but
there may be other more user-friendly ways to specify timezones. For most Unix-alikes (includ-
ing MacOS X) this can be an optional colon prepended to the path to a file (by default under
‘/usr/share/zoneinfo’ or ‘/ust/lib/zoneinfo’ (or even /usr/share/lib/zoneinfo’ on Solaris)), for
example EST5EDT’ or ‘GB’ or ‘Europe/Paris’. See http://www.twinsun.com/tz/

tz-link.htm for more details and references.

http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap08.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap08.html
http://www.twinsun.com/tz/tz-link.htm
http://www.twinsun.com/tz/tz-link.htm

24 Asls

Value
as.POSIXct andas.POSIXIt return an object of the appropriate classizf was specified,
as.POSIXIt will give an appropriatétzone” attribute.

Note

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class"POSIXIt" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the weekipuset. POSIXIt orformat.POSIXct

If a timezone is needed and that specified is invalid on your system, what happens is system-specific
but it will probably be ignored.

See Also

DateTimeClassef®r details of the classestrptime for conversion to and from character repre-

sentations.

Examples
(z <- Sys.time()) # the current datetime, as class "POSIXct"
unclass(z) # a large integer
floor(unclass(z)/86400) # the number of days since 1970-01-01
(z <- as.POSIXIt(Sys.time())) # the current datetime, as class "POSIXIt"
unlist(unclass(z)) # a list shown as a named vector

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
z <- 1472562988

two ways to convert this

ISOdatetime(1960,1,1,0,0,0) + z # late August 2006

strptime("1960-01-01", "%Y-%m-%d", tz="GMT") + z

as.POSIXIt(Sys.time(), "GMT") # the current time in GMT

Not run:

These may not be correct names on your system
as.POSIXIt(Sys.time(), "ESTS5EDT") # the current time in New York
as.POSIXIt(Sys.time(), "EST") # ditto, ignoring DST
as.POSIXIt(Sys.time(), "HST") # the current time in Hawaii
as.POSIXIt(Sys.time(), "Australia/Darwin")

End(Not run)

Asls Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

1(x)

assign 25

Arguments

X an object

Details
Functionl has two main uses.

« In function data.frame . Protecting an object by enclosing it if) in a call to
data.frame inhibits the conversion of character vectors to factors and the dropping of
names, and ensures that matrices are inserted as single columeoan also be used to
protect objects which are to be added to a data frame, or converted to a datavfeame
as.data.frame

It achieves this by prepending the cld#siIs" to the object’s classes. Cla%sls" has a
few of its own methods, including fdr, as.data.frame , print andformat .

« In functionformula . There it is used to inhibit the interpretation of operators suckas
"o and™ as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol lgrms.formula

Value

A copy of the object with clas®sIs" prepended to the class(es).

References
Chambers, J. M. (1992)inear models.Chapter 4 ofStatistical Models in &ds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame , formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)

Arguments
X a variable name (given as a quoted string in the function call).
value a value to be assigned xo
pos where to do the assignment. By default, assigns into the current environment.
See the details for other possibilities.
envir theenvironment to use. See the details section.
inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

26 assign

Details

The pos argument can specify the environment in which to assign the object in any of several
ways: as an integer (the position in thearch list); as the character string name of an element
in the search list; or as anvironment (including usingsys.frame to access the currently
active function calls). Thenvir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: seattach

Value

This function is invoked for its side effect, which is assignuadue to the variable. If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE enclosing environments of the supplied environment are searched until the
variablex is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: IsekBinding : if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’'s workspace (the
global environment).

If inherits is FALSE assignment takes place in the initial framesokir , unless an existing
binding is locked or there is no existing binding and the environment is locked.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

<-,get ,exists ,environment

Examples

for(i in 1:6) { #-- Create objects 'r.1', T.2', ... T.6' --
nam <- paste("r",i, sep=".")

assign(nam, 1:i)

}

Is(pattern = "/r..$")

##-- Global assignment within a function:

myf <- function(x) {

innerf <- function(x) assign("Global.res", x*2, envir = .GlobalEnv)
innerf(x+1)

}

myf(3)

Global.res # 16

a <- 14

assign("a[1]", 2)

a[l] == 2 #FALSE
get("a[1]") == #TRUE

assignOps 27

assignOps Assignment Operators

Description

Assign a value to a name.

Usage

X <- value
X <<- value
value -> X
value ->> x

x = value

Arguments
X a variable name (possibly quoted).
value a value to be assigned xo

Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators- and= assign into the environment in which they are evaluated. The opsrator
can be used anywhere, whereas the operatisronly allowed at the top level (e.g., in the com-

plete expression typed at the command prompt) or as one of the subexpressions in a braced list of

expressions.
The operators<- and->> cause a search to made through the environment for an existing defi-

nition of the variable being assigned. If such a variable is found (and its binding is not locked) then
its value is redefined, otherwise assignment takes place in the global environment. Note that their
semantics differ from that in the S language, but are useful in conjunction with the scoping rules of
R. See ‘The R Language Definition’ manual for further details and examples.

In all the assignment operator expressionsan be a name or an expression defining a part of an
object to be replaced (e.@[[1]]). A syntactic name does not need to be quoted, though it can
be (preferably byackticls).

The leftwards forms of assignmest = <<- group right to left, the other from left to right.

Value

value . Thusonecanuse <- b <- ¢ <- 6

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Chamber, J. M. (1998Frogramming with Data. A Guide to the S Langua§eringer (for=).

See Also

assign , environment

28 attach

attach Attach Set of R Objects to Search Path

Description
The database is attached to fReearch path. This means that the database is searcheavhgn
evaluating a variable, so objects in the database can be accessed by simply giving their names.
Usage

attach(what, pos = 2, name = deparse(substitute(what)),
warn.conflicts = TRUE)

Arguments
what ‘database’. This can bedata.frame oralist oraR data file created with
save or NULLor an environment. See also ‘Details’.
pos integer specifying position isearch () where to attach.
name name to use for the attached database.

warn.conflicts
logical. If TRUE warnings are printed abouabnflicts from attaching the
database, unless that database contains an obgetlicts.OK . A conflict
is a function masking a function, or a non-function masking a non-function.

Details

When evaluating a variable or function naiResearches for that name in the databases listed by
search . The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g. in the example
below,height rather tharwomen$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously loaded packages and previously attached databases. This can
be altered to attach later in the search path withpie option, but you cannot attach pbs=1 .

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
arecopiedinto the new environment. If you use<- orassign to assign to an attached database,

you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’'s workspace: see the examples.) For this ratisch can lead to confusion.

One useful ‘trick’ is to usavhat = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigneddiyn or load or
sys.source

Names startingpackage:" are reserved fdibrary and should not be used by end users. The
name given for the attached environment will be useddsrch and can be used as the argument
to as.environment

There are hooks to attach user-defined table objects of EldssrDefinedDatabase" ,
supported by the Omegahat packdg@®bjectTables Seehttp://www.omegahat.org/
RObjectTables/

http://www.omegahat.org/RObjectTables/
http://www.omegahat.org/RObjectTables/

attr 29

Value

Theenvironment s returned invisibly with &name" attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

library ,detach ,search ,objects ,environment ,with .

Examples

require(utils)

summary(women$height) # refers to variable 'height' in the data frame
attach(women)
summary(height) # The same variable now available by name
height <- height*2.54 # Don't do this. It creates a new variable

in the user's workspace
find("height")

summary(height) # The new variable in the workspace
rm(height)
summary(height) # The original variable.

height <<- height*25.4 # Change the copy in the attached environment
find("height")

summary(height) # The changed copy

detach("women")

summary(women$height) # unchanged

Not run:

create an environment on the search path and populate it
sys.source("myfuns.R", envir=attach(NULL, name="myfuns"))

End(Not run)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- value

Arguments
X an object whose attributes are to be accessed.
which a hon-empty character string specifying which attribute is to be accessed.
exact logical: shouldwhich be matched exactly?

value an object, the new value of the attribute NIDLL to remove the attribute.

30 attributes

Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match tehich amongst the at-
tributes of x, then (unlessexact = TRUE) a unique partial match. (Setting
options (warnPartialMatchAttr=TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (nameadiass , comment, dim, dimnames, names, row.names
andtsp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true oflevels which should be set for factors via thevels replacement function.)

The extractor function allows (and does not match) empty and missing valwesiaf : the re-
placement function does not.

Value
For the extractor, the value of the attribute matched\Ot_L if no exact match is found and no or
more than one partial match is found.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
X <- 1:10
attr(x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes(obj)
attributes(obj) <- value
mostattributes(obj) <- value

attributes 31

Arguments

obj an object

value an appropriate named list of attributes NIgL L
Details

Unlike attr it is possible to set attributes onNULL object: it will first be coerced to an empty
list.

Note that some attributes (nameadlass , comment, dim, dimnames, names, row.names
andtsp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true oflevels which should be set for factors via thevels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vector. They
must have unique names (aNdis taken asNA" , not a missing value).

Assigning attributes first removes all attributes, then setsdimy attribute and then the remain-
ing attributes in the order given: this ensures that settimima attribute always precedes the
dimnames attribute.

The mostattributes assignment takes special care for the , names anddimnames at-
tributes, and assigns them only when valid whereaataibutes assignment would give an
error if any are not.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement method for attributes).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

attr

Examples

X <- chind(a=1:3, pi=pi) # simple matrix w/ dimnames
attributes(x)

strip an object's attributes:
attributes(x) <- NULL
X # now just a vector of length 6

mostattributes(x) <- listtmycomment = "really special", dim = 3:2,
dimnames = list(LETTERS[1:3], letters[1:5]), names = paste(1:6))
x # dim(), but not {dim}names

32 autoload

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluataitoloader and stores it with nameame in
AutoloadEnv environment. WherR attempts to evaluateame, autoloader is run, the
package is loaded améame is re-evaluated in the new package’s environment. The result iRthat
behaves as file was loaded but it does not occupy memory.

Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload(name, package, reset = FALSE, ..))
autoloader(name, package, ...)

.AutoloadEnv

.Autoloaded
Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use byutoloader
other arguments tlibrary
Value

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign |, library

Examples

require(stats)
autoload("interpSpline”, "splines")
search()

Is("Autoloads")

.Autoloaded

X <- sort(stats::rnorm(12))

y <- x"2

is <- interpSpline(x,y)
search() ## now has splines
detach("package:splines")
search()

is2 <- interpSpline(x,y+x)
search() ## and again
detach("package:splines")

backsolve 33

backsolve Solve an Upper or Lower Triangular System

Description

Solves a system of linear equations where the coefficient matrix is upper or lower triangular.

Usage

backsolve(r, x, k=ncol(r), upper.tri=TRUE, transpose=FALSE)
forwardsolve(l, x, k=ncol(l), upper.tri=FALSE, transpose=FALSE)

Arguments
rl an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.
X a matrix whose columns give the right-hand sides for the equations.
k The number of columns af and rows ofx to use.
upper.tri logical; if TRUE(default), theupper triangular part of is used. Otherwise, the
lower one.
transpose logical; if TRUE solver’ x y = x for y, i.e.,t(r) %*% y == x
Value

The solution of the triangular system. The result will be a vectrriff a vector and a matrix ¥ is
a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (18M8PACK Users Guide.
Philadelphia: SIAM Publications.

See Also

chol ,gr, solve .

Examples

upper triangular matrix 'r":
r <- rbind(c(1,2,3),
c(0,1,1),
¢(0,0,2))
(y <- backsolve(r, x <- ¢(8,4,2))) # -1 3 1
r %% y # == x = (8,4,2)
backsolve(r, x, transpose = TRUE) # 8 -12 -5

34 basename

base-deprecated Deprecated Functions in Base package

Description
These functions are provided for compatibility with older versionRafnly, and may be defunct
as soon as the next release.

Usage

Sys.putenv(...)

Arguments

named arguments with values coercible to a character string.

Details

The original help page for these functions is often available hatp("oldName-
deprecated"”) (note the quotes). Functions in packages other than the base package are listed
in help("pkg-deprecated")

Sys.putenv is a deprecated synonym f8§s.setenv

See Also

Deprecated , base-defunct

basename Manipulate File Paths

Description

basename removes all of the path up to the last path separator (if any).
dirname returns the part of thpath up to (but excluding) the last path separator;.br if there

is no path separator.
Usage

basename(path)

dirname(path)
Arguments

path character vector, containing path names.

Details

Fordirname tilde expansion is done: see the descriptiopath.expand

Trailing file separators are removed before dissecting the path, amitfiaame any trailing file
separators are removed from the result.

Bessel 35

Value
A character vector of the same lengthpath . A zero-length input will give a zero-length output
with no error.

See Also

file.path , path.expand

Examples

basename(file.path("","p1","p2","p3", c("filel", "file2")))
dirname(file.path(","p1","p2","p3","filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kinahdY,,, and Modified
Bessel functions (of first and third kind), and K,,.

gammaCaodyis the (T") function from the Specfun package and originally used in the Bessel code.

Usage

bessell(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)

gammacCody(x)
Arguments
X numeric,> 0.
nu numeric; Theorder (maybe fractional!) of the corresponding Bessel function.

expon.scaled logical; if TRUE the results are exponentially scaled in order to avoid overflow
(1,) or underflow {,), respectively.

Details
The underlying C code stems froNetlib (http://www.netlib.org/specfun/r[ijky]
besl).
If expon.scaled = TRUE ,e *I,(z), ore*K,(x) are returned.

gammaCodymay be somewhat faster but less precise and/or robusRsatandardyjamma It is
here for experimental purpose mainly, andy be defunct very soon

Forv < 0, formulae 9.1.2 and 9.6.2 from the reference below are applied (which is probably
suboptimal), unless fdsesselK which is symmetric imu.
Value

Numeric vector of the same length xfwith the (scaled, iexpon.scale=TRUE) values of the
corresponding Bessel function.

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl

36 Bessel

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption R Martin MaechleXmaechler@stat.math.ethz.ch.

References

Abramowitz, M. and Stegun, I. A. (1972)andbook of Mathematical Function®over, New York;
Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, suclyasimaI'(z), andbeta , B(z).

Examples

require(graphics)
nus <- c(0:5, 10, 20)

X <- seq(0, 4, len = 501)
plot(x, x, ylim = c(0, 6), ylab = ", type = "n",
main = "Bessel Functions |_nu(x)")
for(nu in nus) lines(x, bessell(x, nu=nu), col = nu+2)
legend(0, 6, legend = paste("nu=", nus), col = nus+2, lwd = 1)

X <- seq(0, 40, len=801); yl <- c(-.8, .8)
plot(x, x, ylim = yl, ylab = "™, type = "n",
main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x, besselJ(x, nu=nu), col = nu+2)
legend(32,-.18, legend = paste("nu=", nus), col = nus+2, lwd = 1)

Negative nu's :

XX <- 2:7

nu <- seq(-10, 9, len = 2001)
op <- par(lab = c(16, 5, 7))

matplot(nu, t(outer(xx, nu, bessell)), type = "I", ylim = c(-50, 200),
main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,
", as ", f(nu))),

xlab = expression(nu))
abline(v=0, col = "light gray", Ity = 3)
legend(5, 200, legend = paste("x=", xx), col=seq(xx), lty=seq(xx))
par(op)

x0 <- 27(-20:10)
main = "Bessel Functions J nu(x) near O\n log - log scale")
for(nu in sort(c(nus, nus+.5)))
lines(x0, besselJ(x0, nu=nu), col = nu+2)
legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),
col = nus + 2, lwd = 1)

plot(x0, x0"-8, log="xy", ylab="", type="n",

main = "Bessel Functions K_nu(x) near O\n log - log scale")
for(nu in sort(c(nus, nus+.5)))

lines(x0, besselK(x0, nu=nu), col = nu+2)
legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),

bindenv 37

col = nus + 2, lwd = 1)

X <- X[x > 0]

plot(x, x, ylim=c(1le-18, 1lell), log = "y", ylab = ™, type = "n",
main = "Bessel Functions K_nu(x)")

for(nu in nus) lines(x, besselK(x, nu=nu), col = nu+2)

legend(0, le-5, legend=paste("nu=", nus), col = nus+2, lwd = 1)

yl <- ¢(-1.6, .6)
plot(x, x, ylim = yl, ylab = "™, type = "n",
main = "Bessel Functions Y_nu(x)")
for(nu in nus){
XX <- X[x > .6*nu]
lines(xx, besselY(xx, nu=nu), col = nu+2)

}

legend(25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

negative nu in bessel_Y -- was bogous for a long time
curve(besselY(x, -0.1), 0, 10, ylim = ¢(-3,1), ylab = ")
for(nu in c(seq(-0.2, -2, by = -0.1)))
curve(besselY(x, nu), add = TRUE)
title(expression(besselY(x, nu) * " " *
{nu == list(-0.1, -0.2, ..., -2)}))

bindenv Binding and Environment Adjustments

Description

These functions represent an experimental interface for adjustments to environments and bindings
within environments. They allow for locking environments as well as individual bindings, and for
linking a variable to a function.

Usage

lockEnvironment(env, bindings = FALSE)
environmentlsLocked(env)
lockBinding(sym, env)
unlockBinding(sym, env)
bindinglsLocked(sym, env)
makeActiveBinding(sym, fun, env)
bindinglsActive(sym, env)

Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string

fun a function taking zero or one arguments

38 bindenv

Details

The functionlockEnvironment locks its environment argument, which must be a normal en-
vironment (not base). (Locking the base environment and name space may be supported later.)
Locking the environment prevents adding or removing variable bindings from the environment.
Changing the value of a variable is still possible unless the binding has been locked. The name
space environments of packages with name spaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBinding installsfun so that getting the value sfym callsfun with no arguments,
and assigning teym calls fun with one argument, the value to be assigned. This allows the
implementation of things like C variables linkedRovariables and variables linked to databases. It
may also be useful for making thread-safe versions of some system globals.

Author(s)

Luke Tierney

Examples

locking environments

e <- new.env()

assign("x", 1, envir = e)

get("x", envir = e)
lockEnvironment(e)

get("x", envir = e)

assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings

e <- new.env()

assign("x", 1, envir = e)

get("x", envir = e)

lockBinding("x", €)

try(assign("x", 2, envir = e)) # error
unlockBinding("x", €)

assign("x", 2, envir = e)

get("x", envir = e)

active bindings
f <- local({
X <-1
function(v) {
if (missing(v))
cat("get\n")

else {
cat("set\n")
X <<- v

}

X

}
)
makeActiveBinding("fred”, f, .GlobalEnv)
bindinglsActive("fred", .GlobalEnv)
fred

body 39

fred <- 2
fred

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun, envir = environment(fun)) <- value

Arguments
fun a function object, or see ‘Details’.
envir environment in which the function should be defined.
value an expression or a list & expressions.

Details

For the first formfun can be a character string naming the function to be manipulated, which is
searched for from the parent environment. If it is not specified, the function callidg is used.

Value

body returns the body of the function specified.

The replacement form sets the body of a function to the expression/list on the right hand side, and
(potentially) resets the environment of the function.

See Also

alist ,args , function

Examples

body(body)

f <- function(x) x"5

body(f) <- expression(5”x)

or equivalently body(f) <- list(quote(5"x))
f(3) # = 125

body(f)

40 browser

bquote Partial substitution in expressions

Description
An analogue of the LISP backquote madoguote quotes its argument except that terms wrapped
in.() are evaluated in the specifisthere environment.

Usage

bquote(expr, where = parent.frame())

Arguments
expr A language object.
where An environment.
Value

A language object.

See Also

guote , substitute

Examples

require(graphics)

a<-2
bquote(a == a)
quote(a == a)

bquote(a == .(a))
substitute(a == A, list(A = a))

plot(1:10, a*(1:10), main = bquote(a == .(a)))

browser Environment Browser

Description
Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser()

builtins 41

Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access ®ithiterpreter.

At the browser prompt the user can enter command® expressions. The commands are

¢ (orjustreturn) exit the browser and continue execution at the next statement.
cont synonym forc.

n enter the step-through debugger. This changes the meaniog sfe the documentation for
debug .

where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for return).

Anything else entered at the browser prompt is interpreted &8 expression to be evaluated in

the calling environment: in particular typing an object name will cause the object to be printed, and
Is() lists the objects in the calling frame. (If you want to look at an object with a name suth as
print it explicitly.)

The number of lines printed for the deparsed call can be limited by setting
options (deparse.max.lines)
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Chambers, J. M. (199&)rogramming with Data. A Guide to the S Langua§gringer.

See Also

debug, andtraceback for the stack on error.

builtins Returns the Names of All Built-in Objects

Description
Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins(internal = FALSE)

Arguments

internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.

42 by

Details

builtins() returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing ts(bsseenv(), all=TRUE)

builtins(TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed dnternal(foo(args ...)) for foo in the list.

Value

A character vector.

by Apply a Function to a Data Frame split by Factors

Description

Functionby is an object-oriented wrapper faapply applied to data frames.

Usage

by(data, INDICES, FUN, ...)

Arguments
data anR object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of lengthow(data)
FUN a function to be applied to data frame subsetdaif .
further arguments t6UN
Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
functionFUNis applied to each subset in turn.

Objectdata will be coerced to a data frame by default.

Value

A list of class"by" , giving the results for each subset.

See Also

tapply

Examples

require(stats)

attach(warpbreaks)

by(warpbreaks[, 1:2], tension, summary)

by(warpbreaks[, 1], list(wool = wool, tension = tension), summary)
by(warpbreaks, tension, function(x) Im(breaks ~ wool, data = X))

now suppose we want to extract the coefficients by group
tmp <- by(warpbreaks, tension, function(x) Im(breaks ~ wool, data = X))
sapply(tmp, coef)

detach("warpbreaks")

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage

c(..., recursive=FALSE)

Arguments
objects to be concatenated.
recursive logical. If recursive = TRUE |, the function recursively descends through
lists (and pairlists) combining all their elements into a vector.
Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression. Pairlists are treated as lists,
but non-vector components (such names and calls) are treated as one-element lists which cannot be
unlisted even ifecursive = TRUE

¢ is sometimes used for its side effect of removing attributes except names, for example to turn an
array into a vectoras.vector is a more intuitive way to do this, but also drops names.

Value

NULL or an expression or a vector of an appropriate mode.

S4 methods

This function is S4 generic, but with argument [j8t ..., recursive = FALSE)

44 call

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

unlist andas.vector to produce attribute-free vectors.

Examples

c(1,7:9)
c(1:5, 10.5, "next")

uses with a single argument to drop attributes

X <- 14

names(x) <- letters[1:4]

X

c(x) # has names

as.vector(xX) # no names
dim(x) <- c¢(2,2)

X

c(x)

as.vector(x)

append to a list:

Il <- list(A = 1, c="C")

do *not* use

c(ll, d = 1:3) # which is == c(ll, as.list(c(d=1:3))
but rather

c(ll, d = list(1:3))# c() combining two lists

c(list(A=c(B=1)), recursive=TRUE)

c(options(), recursive=TRUE)
c(list(A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of moteall"

Usage

call(name, ...
is.call(x)
as.call(x)

Arguments

name a non-empty character string naming the function to be called.
arguments to be part of the call.
X an arbitraryR object.

call 45

Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of
the named function applied to the given argumengsife must be a quoted string which gives the
name of a function to be called). Note that although the call is unevaluated, the argumerase
evaluated.

call is a primitive, so the first argument (named or not) is takemase and the remaining
arguments as arguments for the constructed call{x="c", 1,3, name="foo") is acall
to ¢ and not tdfoo .

is.call is used to determine whetheiis a call (i.e., of modé&call").

Objects of modélist" can be coerced to modeall* . The first element of the list becomes
the function part of the call, so should be a function or the name of one (as a symbol; a quoted string
will not do).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument IRgcall for recursive calling of func-
tions; furtheris.language , expression , function

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
cl <- call("round", 10.5)

is.call(cl)y# TRUE

cl

such a call can also be evaluated.

eval(ch# [1] 10

A <- 105

call("round”, A) # round(10.5)

call("round”, quote(A)) # round(A)

f <- "round"

call(f, quote(A)) # round(A)

if we want to supply a function we need to use as.call or similar
f <- round

Not run: call(f, quote(A)) # error: first arg must be character
(g <- as.call(list(f, quote(A))))

eval(g)

alternatively but less transparently

g <- list(f, quote(A))

mode(g) <- “"call"

g

eval(g)

see also the examples in the help for do.call

46 capabilities

callCC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

Usage

callCC(fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCC provides a non-local exit mechanism that can be useful for early termination of a com-
putation.callCC callsfun with one argument, aexit function The exit function takes a single
argument, the intended return value. If the bodyfiof calls the exit function then the call to
callCC immediately returns, with the value supplied to the exit function as the value returned by
callCC .

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC(function(k) 1)

callCC(function(k) k(1))
callCC(function(k) {k(1); 2})
callCC(function(k) repeat k(1))

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this buRd of

Usage

capabilities(what = NULL)

Arguments

what character vector dlULL, specifying required componentslULL implies that
all are required.

cat

Value

47

A named logical vector. Current components are

jpeg
png
tcltk
X11

http/ftp
sockets
libxml
fifo
cledit

iconv
NLS

profmem

See Also

.Platform

Examples

capabilities()

Is thejpeg function operational?
Is thepng function operational?
Is thetcltk package operational?

(Unix) Are the X11 graphics device and the X11-based data editor available?
This loads the X11 module if not already loaded, and checks that the default
display can be contacted unlesXhl device has already been used.

Areurl and the internal method falownload.file available?
Are make.socket and related functions available?

Is there support for integratiddpxml with the R event loop?
are FIFO connections supported?

Is command-line editing available in the currésession? This is false in non-
interactive sessions. It will be true for the command-line interfacesflline
support has been compiled in aneho-readline " was notinvoked.

is internationalization conversion vieonv supported?
is there Natural Language Support (for message translations)?

is there support for memory profiling?

if('capabilities("http/ftp"))
warning(“internal download.file() is not available")

See also the examples for 'connections'.

cat

Concatenate and Print

Description

Outputs the objects, concatenating the representatigats. performs much less conversion than

print

Usage

cat(... , file =

"™, sep = " " fill = FALSE, labels = NULL,

append = FALSE)

48 cat

Arguments

R objects (see ‘Details’ for the types of objects allowed).

file A connection, or a character string naming the file to print t8! I{the default),
cat prints to the standard output connection, the console unless redirected by
sink . Ifitis "lemd" , the output is piped to the command given bynd’, by
opening a pipe connection.

sep a character vector of strings to append after each element.

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. IFALSE (default), only newlines created explicitly bj\n"
are printed. Otherwise, the output is broken into lines with print width equal to
the optionwidth if fill is TRUE or the value ofill if this is numeric.
Non-positivefill values are ignored, with a warning.

labels character vector of labels for the lines printed. Ignorddlif is FALSE

append logical. Only used if the argumefite is the name of file (and not a connec-
tion or”|cmd"). If TRUEoutput will be appended tiile ; otherwise, it will
overwrite the contents dile

Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends theegiwestring(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested'by
fill is TRUEor numeric.)

or if generated by filling (if argument

Currently only atomic vectors (and so not lists) aranes are handled. Character strings are output
‘as is’ (unlike print.default which escapes non-printable characters and backslash — use
encodeString if you want to output encoded strings usicat). Other types oR object should

be converted (e.g. bgs.character orformat) before being passed tat .

cat converts numeric/complex elements in the same wayias (and not in the same way as
as.character which is used by the S equivalent), sptions "digits" and"scipen"

are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

Value

None (invisibleNULL).

Note
Despite its name and earlier documentatiggy is a vector of terminators rather than separators,
being output after every vector element (including the last). Entries are recycled as needed.
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.
See Also

print ,format , andpaste which concatenates into a string.

cbind 49

Examples

iter <- stats::rpois(1, lambda=10)
print an informative message
cat("iteration = ", iter <- iter + 1, "\n")

#t fill' and label lines:
cat(paste(letters, 100* 1:26), fill = TRUE,
labels = paste("{",1:10,"}:",sep=""))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combaadubyns orrows,
respectively. These are generic functions with methods for ®tetasses.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

Arguments

vectors or matrices. These can be given as named arguments. FOtiter
jects will be coerced as appropriate: see sections ‘Details’ and ‘Value'. (For
the "data.frame" method ofcbind these can be further arguments to
data.frame such asstringsAsFactors J)

deparse.level
integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):
deparse.level = 0 constructs no labels; the defauligparse.level
= 1 or 2 constructs labels from the argument names, see the ‘Value’ section
below.

Details

The functionscbind andrbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.

There can be other methods; in particular, there is one for time series objects. See the section on

Dispatch for how the method to be used is selected.

In the default method, all the vectors/matrices must be atomicv@gter) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (witlaraing if they are recycled only
fractionally).

50 cbind

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

Forcbind (rbind), vectors of zero length (includingULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored inR.)

Value

For the default method, a matrix combining the arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs aMe&JLL, the value isNULL)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < real < complex < character < list .

For cbind (rbind) the column (row) names are taken from tt@names (rownames) of

the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied amdeparse.level > 0 , by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, sgsymbol).

Forchind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

Forrbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

Thecbind data frame method is just a wrapper fiata.frame (..., check.names =
FALSE). This means that it will split matrix columns in data frame arguments, and convert charac-
ter columns to factors unlessringsAsFactors = FALSE is passed.

Therbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the levelsets of the factors encountered) and the result is an ordered factor if and only if all the
components were ordered factors. (The last point differs from S-PLUS.) Categories (integer vectors
with levels) are promoted to factors.

Dispatch
The method dispatching ot done viaUseMethod () , but by C-internal dispatching. Therefore,
there is no need for, e.ghind.default
The dispatch algorithm is described in the source file'§rc/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an an applicable method.

3. If we find an applicable method we make sure that it is identical to any method determined for
prior arguments. If it is identical, we proceed, otherwise we immediately drop through to the
default code.

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

char.expand 51

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

¢ to combine vectors (and lists) as vectadafa.frame to combine vectors and matrices as a
data frame.

Examples

m <- chind(1, 1:7) # the 'l' (= shorter vector) is recycled
m

m <- chind(m, 8:14)[, c(1, 3, 2)] # insert a column

m

cbind(1:7, diag(3))# vector is subset -> warning

cbind(0, rbind(1, 1:3))

cbind(I=0, X=rbind(a=1, b=1:3)) # use some names
xx <- data.frame(l=rep(0,2))

cbind(xx, X=rbind(a=1, b=1:3)) # named differently

cbind(0, matrix(1, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind(0, matrix(1, nrow=2, ncol=0)))#> 2 x 1

deparse.level

dd <- 10
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=0)# middle 2 rownames
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=1)# 3 rownames (default)
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=2)# 4 rownames
char.expand Expand a String with Respect to a Target Table
Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch anR expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

52 character

See Also

charmatch andpmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of typeharacter"

Usage

character(length = 0)
as.character(x, ...)
is.character(x)

Arguments
length desired length.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details
as.character andis.character are generic: you can write methods to handle specific

classes of objects, sésternalMethods Further, foras.character the default method calls
as.vector , so dispatch is first on methods fas.character and then for methods for
as.vector

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constaBBL_DIG, which will be 15 on machines supporting
IEC60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, ukgmat

Value

character creates a character vector of the specified length. The elements of the vector are all

equal to

as.character attempts to coerce its argument to character type; dkeector it strips
attributes including names. For lists it deparses the elements individually, except that it extracts the
first element of length-one character vectors.

is.character returnsTRUEor FALSE depending on whether its argument is of character type
or not.

charmatch 53

Note

as.character truncates components of language objects to 500 characters (was about 70 before
1.3.1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

paste , substr andstrsplit for character concatenation and splittiosartr ~ for character
translation and casefolding (e.g., upper to lower case)sabd grep etc for string matching and
substitutions. Note thdtelp.search(keyword = "character") gives even more links.
deparse , which is normally preferable tas.character for language objects.

Examples

foom <-y ~a +b +c
as.character(form) ## length 3
deparse(form) ## like the input

a0 <- 11/999 # has a repeating decimal representation
(al <- as.character(a0))

format(a0, digits=16) # shows one more digit

a2 <- as.numeric(al)

a2 - a0 # normally around -le-17
as.character(a2) # normally different from al

print(c(a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA integer)

Arguments
X the values to be matched: converted to a character vectas.biparacter
table the values to be matched against: converted to a character vector.

nomatch the (integer) value to be returned at non-matching positions.

54 chartr

Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are foundtisaeturned
and if no match is found themomatch is returned.

NAvalues are treated as the string constait" .

Value
An integer vector of the same length asgiving the indices of the elements table which
matched, onomatch .

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch , match .
grep orregexpr for more general (regexp) matching of strings.

Examples
charmatch(™, ™) # returns 1
charmatch("m", c("mean”, "median”, "mode")) # returns 0

charmatch("med", c("mean”, "median", "mode")) # returns 2

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr(old, new, x)
tolower(x)

toupper(x)

casefold(x, upper = FALSE)

Arguments
X a character vector, or an object that can be coerced to character by
as.character
old a character string specifying the characters to be translated.
new a character string specifying the translations.

upper logical: translate to upper or lower case?.

chartr 55

Details

chartr translates each characternthat is specified irold to the corresponding character
specified innew. Ranges are supported in the specifications, but character classes and repeated
characters are not. ld contains more characters than new, an error is signaled,; if it contains
fewer characters, the extra characters at the emewfare ignored.

tolower andtoupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper fotolower andtoupper provided for compatibility with S-PLUS.

Value

A character vector of the same length and with the same attributegadier possible coercion).

See Also

sub andgsub for other substitutions in strings.

Examples

X <- "MiXeD cAst 123"
chartr("iXs", "why", x)
chartr("a-cX", "D-Fw", x)
tolower(x)

toupper(x)

"Mixed Case" Capitalizing - toupper(every first letter of a word) :

.simpleCap <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2),
sep="", collapse=" ")
}
.simpleCap("the quick red fox jumps over the lazy brown dog")
-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function(s, strict = FALSE) {
cap <- function(s) paste(toupper(substring(s,1,1)),
{s <- substring(s,2); if(strict) tolower(s) else s},
sep = ", collapse = " ")
sapply(strsplit(s, split = " "), cap, USE.NAMES = lis.null(names(s)))

capwords(c("using AIC for model selection™))

-> [1] "Using AIC For Model Selection"
capwords(c("using AIC", "for MODEL selection"), strict=TRUE)
#t -> [1] "Using Aic" "For Model Selection"

TAVAVAN TAVAVAVAVAN

'bad' ‘good’

-- Very simple insecure crypto --
rot <- function(ch, k = 13) {
pO <- function(...) paste(c(...), collapse="")
A <- c(letters, LETTERS, " ™)
I <- seq_len(k); chartr(pO(A), pO(c(A[-1], A[l])), ch)

56 chol

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now decrypt" :
rot(crypw, 54 - 13)# -> the original:
stopifnot(identical(pw, rot(crypw, 54 - 13)))

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage
chol(x, ...)

Default S3 method:
chol(x, pivot = FALSE, LINPACK = pivot, ...

Arguments
X an object for which a method exists. The default method applies to real sym-
metric, positive-definite matrices.
arguments to be based to or from methods.
pivot Should pivoting be used?
LINPACK logical. Should LINPACK be used in the non-pivoting case (for compatibility
with R < 1.7.0)?
Details

chol is generic: the description here applies to the default method.

This is an interface to the LAPACK routine DPOTRF and the LINPACK routines DPOFA and
DCHDC.

Note that only the upper triangular partofs used, so thakR’ R = x whenx is symmetric.

If pivot = FALSE andx is not non-negative definite an error occurs.xlis positive semi-
definite (i.e., some zero eigenvalues) an error will also occur, as a numerical tolerance is used.

If pivot = TRUE , then the Choleski decomposition of a positive semi-defixitean be com-

puted. The rank of is returned aattr(Q, "rank") , Subject to numerical errors. The pivot is
returned asittr(Q, "pivot”) . Itis no longer the case thH)) %*% Q equalsx. However,
settingpivot <- attr(Q, "pivot") andoo <- order(pivot) , itis true thatt(QJ,

00]) %*% Q[, oo] equalsx, or, alternativelyt(Q) %*% Q equalsx|[pivot, pivot]
See the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the mAtsuych thatR’'R = x
(see example).

If pivoting is used, then two additional attributgsvot* and"rank" are also returned.

chol 57

Warning

The code does not check for symmetry.

If pivot = TRUE andx is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only usiwot = TRUE whenx is non-negative definite by
construction.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (12M8PACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999PACK Users’ GuideThird Edition. SIAM.
Available on-line atttp://www.netlib.org/lapack/lug/lapack_lug.html

See Also

chol2inv for its inverse(without pivoting),backsolve for solving linear systems with upper
triangular left sides.

gr,svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <- chol(m))

tcm) %*% cm #-- = 'm'
crossprod(cm) #-- = 'm'

now for something positive semi-definite
X <- matrix(c(1:5, (1:5)"2), 5, 2)

X <- chind(x, x[, 1] + 3*x[, 2])

m <- crossprod(x)

gr(m)$rank # is 2, as it should be

chol() may fail, depending on numerical rounding:
chol() unlike gr() does not use a tolerance.
try(chol(m))

(Q <- chol(m, pivot = TRUE)) # NB wrong rank here - see Warning section.
we can use this by

pivot <- attr(Q, "pivot")

00 <- order(pivot)

t(Q[, 00]) %*% Q[, oo] # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3),2,2))
try(chol(m)) # fails

try(chol(m, LINPACK=TRUE)) # fails
(Q <- chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m

http://www.netlib.org/lapack/lug/lapack_lug.html

58 chol2inv

chol2inv Inverse from Choleski Decomposition

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition.

Usage

chol2inv(x, size = NCOL(x), LINPACK = FALSE)

Arguments
X a matrix. The firstsize columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of containing the Choleski decomposition.
LINPACK logical. Should LINPACK be used (for compatibility wifR < 1.7.0)?
Details

This is an interface to the LAPACK routine DPOTRI and the LINPACK routine DPODI.

Value

The inverse of the matrix whose Choleski decomposition was given.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (12MPACK Users Guide
Philadelphia: SIAM Publications.

Anderson. E. and ten others (199BPACK Users’ GuideThird Edition. SIAM. Available on-line
at http://'www.netlib.org/lapack/lug/lapack_lug.html

See Also

chol , solve .

Examples

cma <- chol(ma <- cbhind(1, 1:3, ¢(1,3,7)))
ma %*% chol2inv(cma)

http://www.netlib.org/lapack/lug/lapack_lug.html

class 59

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class(x)

class(x) <- value

unclass(x)

inherits(x, what, which = FALSE)

oldClass(x)
oldClass(x) <- value

Arguments
X aR object
what, value a character vector naming classealue can also béNULL
which logical affecting return value: see ‘Details’.

Details

Many R objects have a@lass attribute, a character vector giving the names of the classes from
which the objectinherits If the object does not have a class attribute, it has an implicit class,
"matrix" , "array"” or the result ofmode(x) (except that integer vectors have implicit class
"integer"). (FunctionsoldClass andoldClass<- get and set the attribute, which can also
be done directly.)

When a generic functiorfun is applied to an object with class attributg"first",

"second") , the system searches for a function calfad.first and, if it finds it, applies
it to the object. If no such function is found, a function calfed.second is tried. If no class
name produces a suitable function, the funcfiomdefault is used (if it exists). If there is no

class attribute, the implicit class is tried, then the default method.

The functionclass prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning a zero-length vedlblidrremoves
the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. [fwhich is TRUEthen an integer vector of the same lengtiwést is returned.
Each element indicates the position in ttlass(x) = matched by the element efhat ; zero
indicates no match. Mvhich is FALSEthenTRUEis returned byinherits if any of the names

in what match with anyclass .

60 col

Formal classes

An additional mechanism dbrmal classes is available in packagasthodswhich is attached by
default. For objects which have a formal class, its name is returnethby as a character vector
of length one.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as (object, value) is the way to coerce an object to a particular class.

The analogue ahherits for formal classes ifs .

Note

FunctionsoldClass andoldClass<- behave in the same way as functions of those names
in S-PLUS 5/6,butin R UseMethod dispatches on the class as returnecclags (with some
interpolated classes: see the link) rather thlmiClass . However group generis dispatch on the
oldClass for efficiency, andnternal generis only dispatch on objects for whigf.object is

true.

See Also

UseMethod , NextMethod , ‘group generit ‘ internal generic

Examples

x <- 10

class(x) # "numeric"

oldClass(x) # NULL

inherits(x, "a") #FALSE

class(x) <- c("a", "b")

inherits(x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object.

Usage

col(x, as.factor = FALSE)

Arguments
X a matrix-like object, that is one with a two-dimensiodah .
as.factor a logical value indicating whether the value should be returned as a factor rather
than as numeric.
Value

An integer matrix with the same dimensionsxaand whoséj -th element is equal tp.

Colon 61

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)
mafrow(ma) == col(ma) + 1]

create an identity 5-by-5 matrix
X <- matrix(0, nrow = 5, ncol = 5)
X[row(x) == col(x)] <- 1

Colon Colon Operator

Description

Generate regular sequences.

Usage
from:to
ab
Arguments

from starting value of sequence.
to (maximal) end value of the sequence.
a, b factor s of same length.

Details

The binary operatar has two meanings: for factoesb is equivalent tanteraction (a, b)
(but the levels are ordered and labelled differently).

For numeric argumentsom:to is equivalent toseq(from, to) , and generates a sequence

from from toto in steps ofl or 1- . Valueto will be included if it differs fromfrom by an
integer up to a numeric fuzz of abole-7 .

Value

For numeric arguments, a numeric vector. This will be of tyggeger if from andto are both
integers and representable in the integer type, otherwise ofityperic .

For factors, an unordered factor with levels labelledbad and ordered lexicographically (that
is, Ib varies fastest).

62 colSums

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.
(for numeric arguments: S does not havéor factors.)

See Also
seq.
As an alternative to using for factors,interaction
For: used in the formal representation of an interaction fsgaula

Examples

1:4
pi:6 # real
6:pi # integer

fl <- gl(2,3); f1
f2 <- gI(3,2); f2
f1:.f2 # a factor, the "cross" fl x f2

colSums Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays.

Usage

colSums (X, na.rm = FALSE, dims = 1)
rowSums (X, nha.rm = FALSE, dims = 1)
colMeans(x, na.rm = FALSE, dims = 1)
rowMeans(x, na.rm = FALSE, dims = 1)

Arguments
X an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame.
na.rm logical. Should missing values (includigaN) be omitted from the calcula-
tions?
dims Which dimensions are regarded as ‘rows’ or ‘columns’ to sum overréwt ,
the sum or mean is over dimensiodisns+1, ... ; for col* it is over di-
mensiongl:dims .
Details

These functions are equivalent to usepply with FUN = meanor FUN = sumwith appropri-

ate margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties
of NaNandNA If na.rm = FALSE and eitheNaNor NAappears in a sum, the result will be one

of NaNor NA but which might be platform-dependent.

commandArgs 63

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The
dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing valueswwith =
TRUB, that component of the output is set@q*Sums) or NA (*Means), consistent wittsum
andmean.

See Also

apply , rowsum

Examples

Compute row and column sums for a matrix:

X <- chind(x1 = 3, x2 = c¢(4:1, 2:5))

rowSums(x); colSums(x)

dimnames(xX)[[1]] <- letters[1:8]

rowSums(x); colSums(x); rowMeans(x); colMeans(x)

X[] <- as.integer(x)

rowSums(x); colSums(x)

X[] <-x <3

rowSums(x); colSums(x)

X <- chind(x1 = 3, x2 = c(4:1, 2:5))

X[3,] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array

dim(UCBAdmissions)

rowSums(UCBAdmissions); rowSums(UCBAdmissions, dims = 2)
colSums(UCBAdmissions); colSums(UCBAdmissions, dims = 2)

complex case

X <- chind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

X[3,] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied whigrs#dssion was invoked.

Usage

commandArgs(trailingOnly = FALSE)

64

comment

Arguments

trailingOnly logical. Should only arguments afteargs be returned?

Details

These arguments are captured before the stariRardimmand line processing takes place. This
means that they are the unmodified values. This is especially useful witkatigs command-
line flag toR, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by vitiehs invoked. The exact form of

this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embed®@é@dtan be anything the programmer supplied.

If trailingOnly = TRUE , a character vector of those arguments (if any) supplied after
args .
See Also

Startup BATCH

Examples

commandArgs()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste(commandArgs(), collapse=" "))

comment Query or Set a ‘Comment’ Attribute

Description

These functions set and querccammentttribute for anyR objects. This is typically useful for
data.frame s or model fits.

Contrary to otheattributes , thecomment is not printed (byprint or print.default).
AssigningNULL or a zero-length character vector removes the comment.

Usage
comment(x)
comment(x) <- value
Arguments

X anyR object
value acharacter vector, orNULL

Comparison 65

See Also

attributes andattr for other attributes.

Examples

X <- matrix(1:12, 3,4)
comment(x) <- c("This is my very important data from experiment #0234",

"Jun 5, 1998")
X
comment(x)
Comparison Relational Operators
Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

X <y

X
X y
X >=y
X y
X y

Arguments
X, Y atomic vectors, symbols, calls, or other objects for which methods have been
written.
Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via theOps) group generic function. (Se@ps for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: $eeales . The collating sequence of locales suchas ‘US' is
normally different from C' (which should use ASCII) and can be surprising.

At least one ok andy must be an atomic vector, but if the other is a Rsattempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

When comparisons are made between character strings, parts of the strings after embkdded
characters are ignored. (This is necessary as the positiounl ofn the collation sequence is unde-
fined, and we want one &f, == and> to be true for any comparison.)

Missing valueslA) andNaNvalues are regarded as non-comparable even to themselves, so com-
parisons involving them will always result NA Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

66 complex

Value

A vector of logicals indicating the result of the element by element comparison. The elements of
shorter vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of theC®npare group generic, and so methods can be written
for them individually as well as for the group generic (or @ps group generic), with arguments
c(el, e2)

Note

Do not use== and!= for tests, such as iif expressions, where you must get a singRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, rememberand!= do not allow for the finite representa-
tion of fractions, nor for rounding error. Usirajl.equal with identical is almost always
preferable. See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

factor for the behaviour with factor arguments.

Syntax for operator precedence.

Examples

X <- stats::rnorm(20)
x <1
x[x > 0]

x1 <- 05 - 0.3

X2 <- 03 - 0.1

x1l == x2 # FALSE on most machines
identical(all.equal(x1, x2), TRUE) # TRUE everywhere

complex Complex Vectors

Description

Basic functions which support complex arithmetic in R.

complex 67

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)

is.complex(x)

Re(z)
Im(z)
Mod(z)
Arg(2)
Conj(2)
Arguments
length.out numeric. Desired length of the output vector, inputs being recycled as needed.
real numeric vector.
imaginary numeric vector.
modulus numeric vector.
argument numeric vector.
X an object, probably of modmmplex .
z an object of modeomplex , or one of a class for which a methods has been
defined.
further arguments passed to or from other methods.
Details

Complex vectors can be created witbhmplex . The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: dk&keector it strips
attributes including names. All forms dfAandNaNare coerced to a complé¥A for which both
the real and imaginary parts ax\

Note thatis.complex andis.numeric are never botTRUE

The functionsRe, Im, Mod, Arg andConj have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for complex values. Modulus and
argument are also called tpelar coordinates|f z = = + iy with realz andy, for r = Mod(z) =

Vz?2 +y?, andg = Arg (z), = = r * cos(¢) andy = r = sin(¢). They are all generic functions:
methods can be defined for them individually or via @@mplex group generic.

In addition, the elementary trigonometric, logarithmic and exponential functions are available for
complex values.

S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg andConj constitute the S4 group genefimmplex and so S4 methods can be
set for them individually or via the group generic.

68 conditions

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Examples

require(graphics)
0i ~ (-3:3)

matrix(1i® (-6:5), nrow=4) #- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector

z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):

z2 <- 1:2 + 1i*(8:9)

The Arg(.) is an angle:
zz <- (rep(1:4,len=9) + 1i*(9:1))/10
zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by " ", pi == 180"0)))
abline(h=0,v=0, col="blue", Ity=3)
points(zz.shift, col="orange")

conditions Condition Handling and Recovery

Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.

Usage

tryCatch(expr, ..., finally)
withCallingHandlers(expr, ...)

signalCondition(cond)

simpleCondition(message, call = NULL)

simpleError (message, call = NULL)
simpleWarning (message, call = NULL)
simpleMessage (message, call = NULL)

S3 method for class 'condition’:
as.character(x, ...)

S3 method for class ‘error"
as.character(x, ...)

S3 method for class 'condition':
print(x, ...)

conditions 69

S3 method for class 'restart':
print(x, ...)

conditionCall(c)

S3 method for class ‘condition':
conditionCall(c)

conditionMessage(c)

S3 method for class 'condition':
conditionMessage(c)

withRestarts(expr, ...)

computeRestarts(cond = NULL)
findRestart(name, cond = NULL)
invokeRestart(r, ...)
invokeRestartInteractively(r)

isRestart(x)
restartDescription(r)
restartFormals(r)

.signalSimpleWarning(msg, call)
.handleSimpleError(h, msg, call)

Arguments

c a condition object.

call call expression.

cond a condition object.

expr expression to be evaluated.

finally expression to be evaluated before returning or exiting.

h function.

message character string.

msg character string.

name character string naming a restart.

r restart object.

X object.

additional arguments; see details below.

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-

ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract clemsdition . Errors and warnings are
objects inheriting from the abstract subclassesr andwarning . The classimpleError

is the class used bgtop and all internal error signals. SimilarlgimpleWarning is used
by warning , and simpleMessage is used bymessage. The constructors by the same

70

conditions

names take a string describing the condition as argument and an optional call. The functions
conditionMessage andconditionCall are generic functions that return the message and
call of a condition.

Conditions are signaled tsignalCondition . In addition, thestop andwarning functions
have been modified to also accept condition arguments.

The functiontryCatch evaluates its expression argument in a context where the handlers pro-
vided inthe... argument are available. Tliaally expression is then evaluated in the context

in which tryCatch was called; that is, the handlers supplied to the cunrg@atch call are

not active when thénally expression is evaluated.

Handlers provided in the. argument totryCatch are established for the duration of the
evaluation ofexpr . If no condition is signaled when evaluatiegpr thentryCatch returns the
value of the expression.

If a condition is signaled while evaluatirexpr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a singkgCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred tdrfi@atch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established withCallingHandlers . If a condition is signaled and the
applicable handler is a calling handler, then the handler is callesignalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been triesignalCondition returnsNULL

User interrupts signal a condition of clagsterrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts . One pre-established restart is @port restart that represents a jump to top
level.

findRestart andcomputeRestarts find the available restartindRestart returns the

most recently established restart of the specified naromputeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’'s handler with the arguments, if any, given as additional arguments to
invokeRestart . The restart argument tovokeRestart can be a character string, in which
casefindRestart is used to find the restart.

New restarts forwithRestarts can be specified in several ways. The simplest is in
name=function = form where the function is the handler to call when the restart is invoked. An-
other simple variant is asame=string where the string is stored in tldescription field of

the restart object returned indRestart ; in this case the handler ignores its arguments and
returnsNULL The most flexible form of a restart specification is as a list that can include several
fields, includinghandler , description ,andtest . Thetest field should contain a function

of one argument, a condition, that retuffRUEIf the restart applies to the condition aRALSE f
it does not; the default function returi®UEfor all conditions.

One additional field that can be specified for a restartinieractive . This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function

conflicts 71

invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The defadultteractive method queries the user for values for the formal
arguments of the handler function.

.signalSimpleWarning and.handleSimpleError are used internally and should not be
called directly.

References

ThetryCatch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop andwarning signal conditions, antty is essentially a simplified version tf/Catch

Examples

tryCatch(1, finally=print("Hello"))

e <- simpleError("test error”)

Not run:

stop(e)

tryCatch(stop(e), finally=print("Hello"))

tryCatch(stop("fred"), finally=print("Hello"))

End(Not run)

tryCatch(stop(e), error = function(e) e, finally=print("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally=print("Hello"))
withCallingHandlers({ warning("A"); 1+2 }, warning = function(w) {})
Not run:

{ withRestarts(stop("A"), abort = function() {}); 1 }

End(Not run)

withRestarts(invokeRestart("foo”, 1, 2), foo = function(x, y) {x + y})

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same nhame in two or more places sedith
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts(where = search(), detail = FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detall If TRUE give the masked or masking functions for all members of the search

path.

72 connections

Value

If detail=FALSE , a character vector of masked objectsdétail=TRUE , a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[1] "Im"

#

$package:base

[1] "Im"

Remove things from your "workspace" that mask others:
remove(list = conflicts(detail=TRUE)$.GlobalEnv)

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

Usage
file(description = "™, open = ", blocking = TRUE,
encoding = getOption("encoding"))
url(description, open = ", blocking = TRUE,
encoding = getOption("encoding"))
gzfile(description, open = ", encoding = getOption("encoding"),
compression = 6)
bzfile(description, open = ™, encoding = getOption("encoding™))

unz(description, filename, open = ",
encoding = getOption("encoding"))

pipe(description, open = ", encoding = getOption("encoding"))

fifo(description, open = ", blocking = FALSE,
encoding = getOption("encoding"))

socketConnection(host = "localhost”, port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption("encoding"))

open(con, ...)

connections 73

S3 method for class ‘connection’:
open(con, open = "r", blocking = TRUE, ..)

close(con, ...)
S3 method for class ‘connection':

close(con, type = "rw", ...)

flush(con)

isOpen(con, rw

= ")

isincomplete(con)

compression

Arguments
description character string. A description of the connection: see ‘Details’.
open character. A description of how to open the connection (if at all). See ‘Details’
for possible values.
blocking logical. See the ‘Blocking’ section below.
encoding The name of the encoding to be used. See the ‘Encoding’ section below.

integer in 0-9. The amount of compression to be applied when writing, from
none to maximal. The default is a good space/time compromise.

filename a filename within a zip file.
host character. Host name for port.
port integer. The TCP port number.
server logical. Should the socket be a client or a server?
con a connection.
type character. Currently ignored.
rw character. Empty diread" or"write" , partial matches allowed.
arguments passed to or from other methods.
Details

The first eight functions create connections. By default the connection is not opened (except for

socketConnection

For file

For url
file://).

For gzfile

the description is a complete URL, including scheme (suchtgs//

), but may be opened by setting a non-empty value of arguoyzaTi .

the description is either a path to the file to be opened or a complete URL, {the
default) or"stdin"

or "clipboard" (see below).

, ftp:// or

the description is the path to a file that is compressedziy : it can also opened

uncompressed files.

For bzfile

the description is the path to a file that is compressebziy2 .

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with ‘.zip’ extension if required.

Forpipe the description is the command line to be piped to or from (see the Examples).

Forfifo

the description is the path of the fifo.

74

connections

file allows description="stdin" to refer to the C-levebtdin of the process (which
need not be connected to anything in a console version or embedded ver&pnpobvided the
C99 functionfdopen is supported on the platform.

gzfile andbzfile open the actual file in binary mode and so no translations are done if the
original file was a text file. (Segzcon for a way to add compression to non-file connections such
as URLs.)

All platforms supporfile , gzfile , bzfile , unz andurl("file://") connections. The
other types may be partially implemented or not implemented at all. (They do work on most Unix
platforms, and all butifo on Windows.)

Proxies can be specified farl connections: segownload.file

open, close andseek are generic functions: the following applies to the methods relevant to
connections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection opepeallexplicitly.

Possible values for the mod@en to open a connection are

r' or"rt" Open for reading in text mode.
"w" or "wt" Open for writing in text mode.

"a" or"at" Open for appending in text mode.
“rb" Open for reading in binary mode.

"wh" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+" ,"r+b" Open for reading and writing.

"w+" , "w+b" Open for reading and writing, truncating file initially.

"a+" ,"a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for reading and writing/appending. For many
connections there is little or no difference between text and binary modes, but there is for file-like

connections on Windows, amaishBack is text-oriented and is only allowed on connections open
for reading in text mode.

close closes and destroys a connection. Note that this will happen automatically in due course if
there is ndR object referring to the connection.

flush flushes the output stream of a connection open for write/append (where implemented).

If for a file orfifo connection the description 18 , the file/fifo is immediately opened (in
"w+" mode unlesgpen="w+b" is specified) and unlinked from the file system. This provides a
temporary file/fifo to write to and then read from.

A note on file:// URLSs. The most general form (from RFC1738) s
file://host/path/to/file , but R only accepts the form with an emptyost field
referring to the local machine. This is thile:///path/to/file , Wwherepath/to/file

is relative to/ . So although the third slash is strictly part of the specification not part of the path,
this can be regarded as a way to specify the fgath/to/file'. It is not possible to specify a relative
path using a file URL. Also, no attempt is made to decode an encoded URIURRHecode if
necessatry.

Note thathttps:// connections are not supported.

connections 75

Value

file , pipe ,fifo ,url ,gzfile ,bzfile ,unz andsocketConnection return a connec-
tion object which inherits from classonnection” and has a first more specific class.

isOpen returns a logical value, whether the connection is currently open.

isincomplete returns a logical value, whether last read attempt was blocked, or for an output
text connection whether there is unflushed output.

Encoding

The encoding of the input/output stream of a connectiaextmode can be specified by name, in

the same way as it would be givenitmnv : see that help page for how to find out what names
are recognized on your platform. Additionally, and"native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done. Not
all builds of R support this, and if yours does not, specifying a non-default encoding will give an
error when the connection is opened.

Re-encoding only works for connections in text mode.

The encodinUCS-2LE" is treated specially, as it is the appropriate value for Windows ‘Unicode’
text files. If the first two bytes are the Byte Order M&kFFFE then these are removed as most
implementations ofconv do not accept BOMs. Note that some implementations will handle
BOMs using encodingUCS-2" but many will not.

Exactly what happens when the requested translation cannot be done is in general undocumented.
Requesting a conversion that is not supported is an error, reported when the connection is opened.
On output the result is likely to be that up to the error, with a warning. On input, it will most likely

be all or some of the input up to the error.

Blocking

The default condition for all but fifo and socket connections is to be in blocking mode. In that
mode, functions do not return to te evaluator until they are complete. In non-blocking mode,
operations return as soon as possible, so on input they will return with whatever input is available
(possibly none) and for output they will return whether or not the write succeeded.

The functionreadLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI partRoThese do not always succeed, and the whole
process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on URLs and sockets are subject to the timeout set by
options("timeout") . Note that this is a timeout for no response at all, not for the whole
operation. The timeout is set at the time the connection is opened (more precisely, when the last
connection of that type http: , ftp: or socket — was opened).

Fifos

Fifos default to non-blocking. That follows Svr4 and is probably most natural, but it does have
some implications. In particular, opening a non-blocking fifo connection for writing (only) will fail
unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to thR process, and provides an similar facilityfiie()

76 connections

Clipboard

file can also be used witkdescription = "clipboard" in mode "r" only. This

reads the X11 primary selection (seéttp://standards.freedesktop.org/

clipboards-spec/clipboards-latest.txt), which can also be specified as
"X11 primary" and the secondary selection 8511 secondary" . On most sys-

tems the clipboard selection (that used by ‘Copy’ from an ‘Edit’ menu) can be specified as

"X11_clipboard"

When a clipboard is opened for reading, the contents are immediately copied to internal storage in

the connection.

Unix users wishing towrite to one of the selections may be able to do soxdbp (http:

/Ipeople.debian.org/~kims/xclip/), for example bypipe("xclip -i", "w"
for the primary selection.

MacOS X users can ugape("pbpaste”) andpipe("pbcopy”, "w") to read from and

write to that system’s clipboard.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). HRvgmes well

beyond the Svr4 model, for example in output text connections and gR&ile , bzfile
socket connections.

The default mode iR is"r" except for socket connections. This differs from Svr4, where it is the

equivalent of'r+" , known as™" .

On platforms where/snprintf does not return the needed length of output there is a 100,000

and

character output limit on the length of line féfo , gzfile andbzfile connections: longer

lines will be truncated with a warning.

References

Chambers, J. M. (199&)rogramming with Data. A Guide to the S Langua§eringer.

See Also
textConnection , seek, readLines , readBin , writeLines , writeBin
showConnections , pushBack .
capabilities to see ifurl |, fifo andsocketConnection are supported by this build of
R.

gzcon to wrap gzip (de)compression around a connection.

Examples
zz <- file("ex.data", "w") # open an output file connection
cat("TITLE extra line", "2 3 5 7", ™, "11 13 17", file = zz, sep = "\n")
cat("One more line\n", file = zz)
close(zz)

readLines("ex.data")
unlink("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file

cat("TITLE extra line", "2 3 5 7", ™, "11 13 17", file = zz, sep = "\n")
close(zz)

readLines(zz <- gzfile("ex.gz"))

close(zz)

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://people.debian.org/~kims/xclip/
http://people.debian.org/~kims/xclip/

connections

unlink("ex.gz")

zz <- bZfile("ex.bz2", "w") # bzip2-ed file

cat("TITLE extra line", "2 3 5 7", ™, "11 13 17", file = zz, sep = "\n")
close(zz)

print(readLines(zz <- bzfile("ex.bz2")))

close(zz)

unlink("ex.bz2")

An example of a file open for reading and writing
Tfile <- file("testl", "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat("abc\ndef\n”, file=Tfile)

readLines(Tfile)

seek(Tfile, 0, rw="r") # reset to beginning
readLines(Tfile)

cat("ghi\n", file=Tfile)

readLines(Tfile)

close(Tfile)

unlink("test1")

We can do the same thing with an anonymous file.
Tfile <- file()

cat("abc\ndef\n”, file=Tfile)

readLines(Tfile)

close(Tfile)

if(capabilities("fifo")) {
zz <- fifo("foo-fifo", "w+")
writeLines("abc", zz)
print(readLines(zz))
close(zz)
unlink(“foo-fifo")

}

Not run: ## Unix examples of use of pipes

read listing of current directory
readLines(pipe("ls -1"))

remove trailing commas. Suppose

% cat data2

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

Then read this by

scan(pipe("sed -e s/,$// data2"), sep=",")

convert decimal point to comma in output

both R strings and (probably) the shell need \ doubled
zz <- pipe(paste("sed s/A\\\./,/ >", "outfile"), "w")
cat(format(round(stats::rnorm(100), 4)), sep = "\n", file = zz)
close(zz)

file.show("outfile", delete.file=TRUE)## End(Not run)

Not run: ## example for Unix machine running a finger daemon

78 Constants

con <- socketConnection(port = 79, blocking = TRUE)
writeLines(paste(system("whoami”, intern=TRUE), "\r", sep=
gsub(" *$", "™, readLines(con))

close(con)## End(Not run)

), con)

Not run:

Unix examples of use of anonymous fifo
con <- fifo("™) # file("™) would also work
writeLines(letters, con)

readLines(con, n=3)

readLines(con, n=5)

close(con)

End(Not run)

Not run: ## two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection(port = 6011, server=TRUE)
writeLines(LETTERS, conl)

close(conl)

R process 2

con2 <- socketConnection(Sys.info()["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines(con2)

while(isincomplete(con2)) {Sys.sleep(1); readLines(con2)}
close(con2)

End(Not run)

Not run:

examples of use of encodings

cat(x, file = file("foo", "w", encoding="UTF-8"))

read a 'Windows Unicode' file including names
A <- read.table(file("students”, encoding="UCS-2LE"))
End(Not run)

Constants Built-in Constants

Description

Constants built intdRr.

Usage

LETTERS
letters
month.abb
month.name

pi
Details

R has a small number of built-in constants (there is also a rather larger library of data sets which
can be loaded with the functiatata).

The following constants are available:

contributors 79

LETTERS the 26 upper-case letters of the Roman alphabet;

letters : the 26 lower-case letters of the Roman alphabet;

month.abb : the three-letter abbreviations for the English month names;
« month.name : the English names for the months of the year;

* pi : the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base name space taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

data , DateTimeClasses

Quotes for the parsing of character constanitsimericConstants for numeric constants.

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4*(4*atan(1/5) - atan(1/239))

months in English

month.name

months in your current locale
format(ISOdate(2000, 1:12, 1), "%B")
format(ISOdate(2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the developméht of

Usage

contributors()

80 Control

Control Control Flow

Description

These are the basic control-flow constructs offlanguage. They function in much the same way
as control statements in any Algol-like language. They areealtrvedvords.

Usage

if(cond) expr
iflcond) cons.expr else alt.expr

for(var in seq) expr
while(cond) expr
repeat expr

break
next
Arguments

cond A length-one logical vector that is nbtA Conditions of length greater than one
are accepted with a warning, but only the first element is used. Other types are
coerced to logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list an@égpressiohor to a

pairlistor NULL

expr, cons.expr, alt.expr
An expressiotin a formal sense. This is either a simple expression or a so called
compound expressipasually of the forr{ exprl ; expr2 }

Details

break breaks out of dor , while orrepeat loop; control is transferred to the first statement
outside the inner-most loomext halts the processing of the current iteration and advances the
looping index. Bottbreak andnext apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put brades.(}) around your statements, e.g.,
afterif(..) orfor(....) . In particular, you should not have a newline betwgeandelse

to avoid a syntax error in enteringifa... else construct at the keyboard or vémurce .

For that reason, one (somewhat extreme) attitude of defensive programming is to always use braces,
e.g., forif clauses.

The indexseq in afor loop is evaluated at the start of the loop; changing it subsequently does not
affect the loop. The variablear has the same type aeq, and is read-only: assigning to it does
not alterseq . If seq is a factor (which is not strictly allowed) then its internal codes are used: the
effect is that ofas.integer notas.vector

copyright 81

Value

if returns the value of the expression evaluatedOLL if none was (which may happen if there
isnoelse).

for ,while andrepeat return the value of the last expression evaluatedN@LL if none was),
invisibly. for setsvar to the last used element séq, or toNULL if it was of length zero.

break andnext have valueNULL, although it would be strange to look for a return value.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

Syntax forthe basidR syntax and operatorBaren for parentheses and braces; furtlifetse
switch

Examples

for(i in 1:5) print(1:i)

for(n in ¢(2,5,10,20,50)) {
X <- stats::rnorm(n)
cat(n,":", sum(x"2),"\n")

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: dieense for details. The license describes
your right to useR. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributorsq@egibutors) for the ability to use

their work.

Details

The file ‘$R_HOME/COPYRIGHTS' lists the copyrights in full detail.

82 crossprod

crossprod Matrix Crossproduct

Description

Given matricex andy as arguments, return a matrix cross-product. This is formally equivalent to
(but faster than) the cal{x) %*% y (crossprod)orx %*% t(y) (tcrossprod).

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments
X, Y matricesly = NULL is taken to be the same matrix)asVectors are promoted
to single-column matrices.
Note

Whenx ory are not matrices, they are treated as column or row matrices, butidyeies are
usuallynot promoted tadimnames . Hence, currently, the last example has empty dimnames.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

%*%and outer produco%

Examples

(z <- crossprod(1:4)) # = sum(l + 272 + 372 + 4"2)
drop(z) # scalar
X <- 1:4; names(x) <- letters[1:4]; x
tcrossprod(as.matrix(x)) # is
identical(tcrossprod(as.matrix(x)),

crossprod(t(x)))
tcrossprod(x) # no dimnames

Cstack_info 83

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info()

Details

On most platforms, C stack information is recorded wikeris initialized and used for stack-
checking. If this information is unavailable, teeze will be returned adNA and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux and
FreeBSD (including MacOS X), but a heuristic is used on other platforms. Because this might
be slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used
on embedded uses Bfon platforms where the stack base is not thought to be accurate.)

Value

An integer vector. This has named elements

size The size of the stack (in bytes), NAif unknown.

current The estimated current usage (in bytes), possiAy

direction 1 (stack grows down, the usual case)br (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to

Cstack _info).

Examples

Cstack_info()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax(x)
cummin(x)

84 cut

Arguments
X a numeric or complex (natummin or cummay) object, or an object that can
be coerced to one of these.
Details

These are generic functions: methods can be defined for them individually or Wéathegroup
generic.

Value

A vector of the same length and typexagfter coercion), except thaimprod returns a numeric
vector for integer input (for consistency with). Names are preserved.

An NAvalue inx causes the corresponding and following elements of the return value\, lzes
does integer overflow inumsum(with a warning).

S4 methods

cumsumandcumprod are S4 generic functions: methods can be defined for them individually or
via theMath group genericcummaxandcummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole. ¢umsumonly.)

Examples

cumsum(1:10)
cumprod(1:10)
cummin(c(3:1, 2:0, 4:2))
cummax(c(3:1, 2:0, 4:2))

cut Convert Numeric to Factor

Description
cut divides the range of into intervals and codes the valuescimaccording to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.
Usage

cut(x, ...)

Default S3 method:

cut(x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3,
ordered_result = FALSE, ...)

cut 85

Arguments
X a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more cut points or a single number (greater
than or equal to 2) giving the number of intervals into whxcts to be cut.
labels labels for the levels of the resulting category. By default, labels are constructed
using"(a,b]" interval notation. ilabels = FALSE , simple integer codes

_ are returned instead of a factor.
include.lowest

logical, indicating if an ‘X[i]’ equal to the lowest (or highest, foight =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.
dig.lab integer which is used when labels are not given. It determines the number of

digits used in formatting the break numbers.
ordered_result

logical: should the result be an ordered factor?
further arguments passed to or from other methods.

Details

Whenbreaks is specified as a single number, the range of the data is dividebrieéks pieces

of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals.x(lis a constant vector, equal-length intervals

are created that cover the single value.)

Ifalabels parameter is specified, its values are used to name the factor levels. If none is specified,

the factor level labels are constructed'ésl, b2]" ,"(b2, b3]" etc. forright = TRUE
and as'[bl, b2)" , ...ifright = FALSE . In this casedig.lab indicates the minimum
number of digits should be used in formatting the numhersb2, A larger value (up to

12) will be used if needed to distinguish between any pair of endpoints: if this fails labels such as
"Range3" will be used.

Value

A factor isreturned, unlesebels = FALSE which results in the mere integer level codes.

Note
Instead oftable(cut(x, br)) , hist(x, br, plot = FALSE) is more efficient and
less memory hungry. Instead ofit(*, labels = FALSE) , findInterval () is more
efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also
split for splitting a variable according to a group factdgctor , tabulate , table ,
findInterval 0 .

qguantile for ways of choosing breaks of roughly equal content (rather than lergit), in
packagehmiscfor a canned way to form quantile groups.

86 cut. POSIXt

Examples

Z <- stats::rnorm(10000)

table(cut(Z, breaks = -6:6))

sum(table(cut(Z, breaks = -6:6, labels=FALSE)))
sum(graphics::hist(Z, breaks = -6:6, plot=FALSE)$counts)

cut(rep(1,5),4)#-- dummy

tx0 <- ¢(9, 4, 6, 5, 3, 10, 5, 3, 5)
X <- rep(0:8, tx0)

stopifnot(table(x) == tx0)

table(cut(x, b = 8))
table(cut(x, breaks = 3*(-2:5)))
table(cut(x, breaks = 3*(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :

table(cx <- cut(x, breaks = 2*(0:4)))

table(cxl <- cut(x, breaks = 2*(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:
y <- stats::rnorm(100)
table(cut(y, breaks
table(cut(y, breaks

pi/3*(-3:3)))
pi/3*(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))

extra digits don't "harm" here

table(cut(y, breaks = 1*(-3:3), right = FALSE))
#- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- ¢(1,2,3,4,5,2,3,4,5,6,7)

cut(aaa, 3)

cut(aaa, 3, dig.lab=4, ordered = TRUE)

cut.POSIXt Convert a Date or Date-Time Object to a Factor

Description

Method forcut applied to date-time objects.

Usage

S3 method for class 'POSIXt":
cut(x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)

S3 method for class 'Date":
cut(x, breaks, labels = NULL, start.on.monday
right = FALSE, ..)

TRUE,

data.class 87

Arguments

X an object inheriting from clas$OSIXt" or "Date"

breaks a vector of cut pointor number giving the number of intervals whichis
to be cut intoor an interval specification, one déec" , "min" , "hour"
"day" ,"DSTday" ,"week" ,"month" or"year" , optionally preceded by
an integer and a space, or followed'lsy . For"Date" objects only'day" ,
"week" , "month" and"year" are allowed.

labels labels for the levels of the resulting category. By default, labels are constructed

from the left-hand end of the intervals (which are include for the default value
of right). If labels = FALSE , simple integer codes are returned instead
of a factor.

start.on.monday
logical. If breaks = "weeks" , should the week start on Mondays or Sun-
days?

right, ... arguments to be passed to or from other methods.

Details
Using bothright = TRUE andinclude.lowest = TRUE will include both ends of the
range of dates.

Value

A factor is returned, unledabels = FALSE which returns the integer level codes.

See Also

seq.POSIXt ,seq.Date ,cut

Examples

random dates in a 10-week period
cut(ISOdate(2001, 1, 1) + 70*86400*stats::runif(100), "weeks")
cut(as.Date("2001/1/1") + 70*stats::runif(100), "weeks")

data.class Object Classes

Description

Determine the class of an arbitraRyobject.

Usage

data.class(x)

Arguments

X anR object.

88 data.frame

Value

character string giving thelassof x.

The class is the (first element) of tletass attribute if this is nornNULL, or inferred from the
object’'sdim attribute if this is nonlNULL, or mode(x) .

Simply speakingdata.class(x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note
For compatibility reasons, there is one exception to the rule above: Wisinteger , the result
of data.class(x) is "numeric" even wherx is classed.

See Also
class

Examples
X <- LETTERS
data.class(factor(x)) # has a class attribute
data.class(matrix(x, ncol = 13)) # has a dim attribute
data.class(list(x)) # the same as mode(x)
data.class(x) # the same as mode(x)
stopifnot(data.class(1:2) == "numeric")# compatibility "rule"

data.frame Data Frames
Description

This function creates data frames, tightly coupled collections of variables which share many of the
properties of matrices and of lists, used as the fundamental data structure by Rstafdeling
software.

Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

default.stringsAsFactors()

Arguments
these arguments are of either the foradlue ortag = value . Component
names are created based on the tag (if present) or the deparsed argument itself.
row.names NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

check.rows if TRUEthen the rows are checked for consistency of length and names.

data.frame 89

check.names logical. If TRUEthen the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (imake.names) so that they are.
stringsAsFactors
logical: should character vectors be converted to factors? The
‘factory-fresh’ default is TRUE but this can be changed by setting
options (stringsAsFactors = FALSE

Details

A data frame is a list of variables of the same length with unique row names, given class
"data.frame" . If there are zero variables, the row names determine the number of rows.

Duplicate column names are allowed, but you need to cleck.names=FALSE for
data.frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame (optional=TRUE) . As that is a generic function, methods can be written to
change the behaviour of arguments according to their clafsesmes with many such methods.
Character variables passeddata.frame are converted to factor columns unless protected by
| . If alist or data frame or matrix is passeddata.frame itis as if each component or column
had been passed as a separate argument (except for matrices dfroladsl.matrix " and
those protected bly).

Objects passed wata.frame should have the same number of rows, but atomic vectors, factors
and character vectors protectedlbwill be recycled a whole number of times if necessary.

If row names are not supplied in the calldata.frame , the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied aBlULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved bys.matrix).

If row names are supplied of length one and the data frame has a single raeywtinames is
taken to specify the row names and not a column (by nhame or number).

Names are removed from vector inputs not protectetl.by
default.stringsAsFactors is a utility that takegietOption ("stringsAsFactors")

and ensures the resultiRUEor FALSE (or throws an error if the value is nblULL).

Value
A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

Note
In versions oR prior to 2.4.0row.names had to be character: to ensure compatibility with earlier
versions ofR, supply a character vector as tfiev.names argument.

References

Chambers, J. M. (1992)ata for models Chapter 3 ofStatistical Models in &ds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

90 data.matrix

See Also

|, plot.data.frame , print.data.frame , row.names , names (for the column names),
[.data.frame for subsetting methoddylath.data.frame etc, aboutGroup methods for
data.frame s;read.table , make.names.

Examples

L3 <- LETTERS[1:3]
(d <- data.frame(cbind(x=1, y=1:10), fac=sample(L3, 10, replace=TRUE)))

The same with automatic column names:
data.frame(cbind(1, 1:10), sample(L3, 10, replace=TRUE))

is.data.frame(d)

do not convert to factor, using I() :

(dd <- cbind(d, char = I(letters[1:10])))
rbind(class=sapply(dd, class), mode=sapply(dd, mode))
stopifnot(1:10 == row.names(d))# {coercion}

(d0 <- d[, FALSE]) # NULL data frame with 10 rows

(d.0 <- d[FALSE,]) # <0 rows> data frame (3 cols)
(dO0 <- dO[FALSE,]) # NULL data frame with O rows

data.matrix Convert a Data Frame to a Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage

data.matrix(frame, rownames.force = NA)

Arguments

frame a data frame whose components are logical vectors, factors or numeric vectors.

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULL rownames. The defaultNA usesNULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

Supplying a data frame with columns which are not numeric, factor or logical is an error. A warning
is given if any non-factor column has a class, as then information can be lost.

date 91

Value

If frame inherits from class'data.frame” , an integer or numeric matrix of the same di-
mensions adframe , with dimnames taken from theow.names (or NULL, depending on
rownames.force) andnames.

Otherwise, the result afs.matrix

Note

The default behaviour for data frames differs fr&ws 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992)ata for models Chapter 3 ofStatistical Models in &ds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix ,data.frame , matrix

Examples

DF <- data.frame(a=1:3, b=letters[10:12],
c=seq(as.Date("2004-01-01"), by = "week", len = 3),
stringsAsFactors = TRUE)

data.matrix(DF[1:2])

data.matrix(DF) # gives a warning and quotes dates as #days since 1970.

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date()

Value

The string has the formiFri Aug 20 11:11:00 1999" , i.e., length 24, since it relies on
POSIX'sctime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, buhotindicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

92 Dates

See Also
Sys.Date andSys.time ; Date andDateTimeClasses for objects representing date and
time.

Examples

(d <- date())
nchar(d) == 24

something similar in the current locale
format(Sys.time(), "%a %b %d %H:%M:%S %Y")

Dates Date Class

Description

Description of the clas®ate" representing calendar dates.

Usage

S3 method for class 'Date":
summary(object, digits = 12, ...)

Arguments
object An object summarized.
digits Number of significant digits for the computations.
Further arguments to be passed from or to other methods.
Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

Itis intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days vieete
method or by adding or subtracting (€8ps.Date).

See Also

Sys.Date for the current date.

Ops.Date for operators orfiDate” objects.

format.Date for conversion to and from character strings.
plot.Date andhist.Date for plotting.

weekdays for convenience extraction functions.

seq.Date ,cut.Date ,round.Date for utility operations.
DateTimeClasses for date-time classes.

DateTimeClasses 93

Examples

(today <- Sys.Date())

format(today, "%d %b %Y") # with month as a word

(tenweeks <- seq(today, length.out=10, by="1 week")) # next ten weeks
weekdays(today)

months(tenweeks)

as.Date(.leap.seconds)

DateTimeClasses Date-Time Classes

Description

Description of the classéPOSIXIt" and"POSIXct" representing calendar dates and times (to
the nearest second).

Usage
S3 method for class 'POSIXct'":
print(x, ...)

S3 method for class 'POSIXct"
summary(object, digits = 15, ..)

time + z
time - z
timel lop time2

Arguments

X, object An object to be printed or summarized from one of the date-time classes.

digits Number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.
Further arguments to be passed from or to other methods.

time date-time objects

timel, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct)

z a numeric vector (in seconds)

lop One of==, 1= | <, <=, > or >=.

Details

There are two basic classes of date/times. CIBS3SIXct" represents the (signed) number of
seconds since the beginning of 1970 as a numeric vector. (F&3SIXIt" is a named list of
vectors representing

sec 0-61: seconds

min 0-59: minutes

hour 0-23: hours

94

DateTimeClasses

mday 1-31: day of the month

mon 0-11: months after the first of the year.
year Years since 1900.

wday 0-6 day of the week, starting on Sunday.
yday 0-365: day of the year.

isdst Daylight savings time flag. Positive if in force, zero if not, negative if unknown.

The classes correspond to the POSIX/C99 constructs of ‘calendar timdir(teet data type)
and ‘local time’ (or broken-down time, the&ruct tm data type), from which they also inherit
their names.

"POSIXct" is more convenient for including in data frames, dR@SIXIt" s closer to human-
readable forms. A virtual clas$OSIXt" inherits from both of the classes: it is used to allow
operations such as subtraction to mix the two classes.

Logical comparisons and limited arithmetic are available for both classes. One can add or subtract
a number of seconds from a date-time object, but not add two date-time objects. Subtraction of
two date-time objects is equivalent to usidifftime . Be aware thatPOSIXIt" objects will

be interpreted as being in the current timezone for these operations, unless a timezone has been
specified.

"POSIXIt" objects will often have an attributézone” , a character vector of length 3 giving

the timezone name from thEZ environment variable and the names of the base timezone and the
alternate (daylight-saving) timezone. Sometimes this may just be of length one, giving the timezone
name.

"POSIXct" objects may also have an attribiteone" , a character vector of length one. If
set, it will determine how the object is converted to cl&BOSIXIt" and in particular how it is
printed. This is usually desirable, but if you want to specify an object in a particular timezone but to
be printed in the current timezone you may want to removétitume" attribute (e.g. bye(x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(23 days have been 86401 seconds long so far: the times of the extra seconds are in the object
Jleap.seconds). The details of this are entrusted to the OS services where possible. This will
usually cover the period 1970-2037, and on Unix machines back to 1902 (when time zones were in
their infancy). Outside those ranges we use our own C code. This uses the offset from GMT in use
in the timezone in one of 1970 to 1978 (chosen so that the likely DST transition days are Sundays),
and uses the alternate (daylight-saving) timezone origddgt is positive. (There is no reason to
suppose that the DST rules will remain the same in the future, and indeed the US legislated in 2005
to change its rules as from 2007, with a possible future reversion.)

It seems that some systems use leap seconds but most do not. This is detected and corrected for
at build time, so allPOSIXct" times used by do not include leap seconds. (Conceivably this
could be wrong if the system has changed since build time, just possibly by changing locales.)

Usingc on"POSIXIt" objects converts them to the current time zone.

Sub-second Accuracy

ClassesPOSIXct" and"POSIXIt" are able to express fractions of a second. (Conversion of
fractions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed onlyijftions ("digits.secs") is set: seetrftime

dcf 95

Warning

Some Unix-like systems (especially Linux ones) do not HI#&' set, yet have internal code that
expects it (as does POSIX). We have tried to work around this, but if you get unexpected results try
setting"TZ" . Seeas.POSIXIt for valid settings.

See Also

Datesfor dates without times.

as.POSIXct andas.POSIXIt for conversion between the classes.
strptime for conversion to and from character representations.
Sys.time for clock time as &POSIXct" object.

difftime for time intervals.

cut.POSIXt , seq.POSIXt , round.POSIXt andtrunc.POSIXt for methods for these
classes.

weekdays.POSIXt for convenience extraction functions.

Examples
(z <- Sys.time() # the current date, as class "POSIXct"
Sys.time() - 3600 # an hour ago

as.POSIXIt(Sys.time(), "GMT") # the current time in GMT
format(.leap.seconds) # all 23 leapseconds in your timezone
print(.leap.seconds, tz="PST8PDT") # and in Seattle's

dcf Read and Write Data in DCF Format

Description

Reads or writes aR object from/to a file in Debian Control File format.

Usage
read.dcf(file, fields = NULL, all = FALSE)
write.dcf(x, file = ", append = FALSE,

indent = 0.1 * getOption("width"),
width = 0.9 * getOption("width"))

Arguments
file either a character string naming a file or a connectidnindicates output to the
console. Foread.dcf this can name gzip -compressed file.
fields Fields to read from the DCF file. Default is to read all fields.
all a logical indicating whether in case of multiple occurrences of a field in a record,

all these should be gathered.alf is false (default), only the last such occur-
rence is used.

96 dcf

X the object to be written, typically a data frame. If not, it is attempted to coerce
x to a data frame.

append logical. If TRUE the output is appended to the file. HALSE, any existing file
of the name is destroyed.

indent a positive integer specifying the indentation for continuation lines in output en-
tries.

width a positive integer giving the target column for wrapping lines in the output.

Details

DCF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to siosystem information, like descriptions
and contents of packages.

The DCF rules as implementedihare:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of forrtag:value |, i.e., have a name tag and a value for the field, sepa-
rated by: (only the first: counts). The value can be empty (=whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
character is a."” are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (=whitespace only) lines.

By default,read.dcf returns a character matrix with one row per record and one column per
field. Leading and trailing whitespace of field values is ignored. If a tag name is specified, but the
corresponding value is empty, then an empty string is returned. If the tag name of a field is never
used in a record, theXAis returned. If fields are repeated within a record, the last one encountered
is returned. Malformed lines are ignored (with a warninggllf is true, a data frame is returned,
again with one row per record and one column per field, and columns lists of character vectors for
fields with multiple occurrences, and character vectors otherwise.

write.dcf does not writdNAfields.

See Also

write.table

Examples

Create a reduced version of the 'CONTENTS' file in package 'splines'
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))
write.dcf(x)

debug 97

debug Debug a Function

Description

Set or unset the debugging flag on a function.

Usage

debug(fun)
undebug(fun)

Arguments

fun any interpreted function.

Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step (and
the previous one destroyed).

At the debug prompt the user can enter command® expressions. The commands are

n (or just return). Advance to the next step.

¢ continue to the end of the current context: e.g. to the end of the loop if within a loop or to the
end of the function.

cont synonym forc.
where print a stack trace of all active function calls.
Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for return).

Anything else entered at the debug prompt is interpreted & expression to be evaluated in the
calling environment: in particular typing an object name will cause the object to be printed, and
Is() lists the objects in the calling frame. (If you want to look at an object with a name suth as
print it explicitly.)

If a function is defined inside a function, single-step though to the end of its definition, and then call
debug on its name.

In order to debug S4 methods (ddethods), you need to usace , typically callingbrowser ,

e.g., as
trace("plot", browser, exit=browser, signature = c("track”,
"missing"))
See Also
browser , trace ; traceback to see the stack after d&frror: ... messagerecover

for another debugging approach.

98 delayedAssign

Defunct Marking Objects as Defunct

Description

When a function is removed froR it should be replaced by a function which calBefunct

Usage

.Defunct(new, package = NULL, msg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details

.Defunct is called from defunct functions. Functions should be listechéip("pkg-
defunct") for an appropriat@kg, includingbase .
See Also

Deprecated
base-defunct and so on which list the defunct functions in the packages.

delayedAssign Delay Evaluation

Description

delayedAssign creates @romiseto evaluate the given expression if its value is requested. This
provides direct access to ttazy evaluatiormechanism used by for the evaluation of (interpreted)
functions.

Usage

delayedAssign(x, value, eval.env = parent.frame(1),
assign.env = parent.frame(1))

Arguments
X a variable name (given as a quoted string in the function call)
value an expression to be assignedto
eval.env an environment in which to evaluatalue

assign.env an environment in which to assign

deparse 99

Details

Botheval.env andassign.env default to the currently active environment.

The expression assigned to a promisedblayedAssign will not be evaluated until it is even-
tually ‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evakaéie to the
variablex.

See Also

substitute , to see the expression associated with a promise.

Examples

msg <- "old"
delayedAssign("x", msg)
msg <- "new!"

X #- new!

substitute(x) #- msg

delayedAssign("x", {
for(i in 1:3)
cat("yippee\n™)
10
)

xX"\2 #- yippee
x"2 #- simple number

e <- (function(x, y = 1, z) environment())(1+2, "y", {cat(" HO! "); pi+2})
(le <- as.list(e)) # evaluates the promises

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60,
backtick = mode(expr) %in% c("call", "expression”, "(*),
control = c("keeplnteger”, "showAttributes"”, "keepNA"))

100 deparse

Arguments
expr anyR expression.
width.cutoff integer in[20, 500] determining the cutoff at which line-breaking is tried.
backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.
control character vector of deparsing options. SteparseOpts
Details

This function turns unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of modexpression” used inexpression) into character strings
(a kind of inversegparse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functiodsparse andsubstitute to create labels for a
plot which are character string versions of the actual arguments to the funcyjaot .

The default for thebacktick option is not to quote single symbols but only composite expres-
sions. This is a compromise to avoid breaking existing code.

Usingcontrol = "all" comes closest to makirdgparse() aninverse oparse() . How-
ever, not all objects are deparse-able even with this option and a warning will be issued if the func-
tion recognizes that it is being asked to do the impossible.

Numeric and complex vectors are converted using 15 significant digitsasselearacter for

more detalils.
width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff byteshave been output and e.grg = value expressions will not be split
across lines.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

substitute , parse , expression
Quotes for quoting conventions, including backticks.

Examples

require(stats); require(graphics)

deparse(args(Im))
deparse(args(Im), width = 500)
myplot <-
function(x, y) {
plot(x, y, xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)))

deparseOpts 101

}

e <- quote(‘foo bar’)
deparse(e)

deparse(e, backtick=TRUE)
e <- quote(‘foo bar+1)

deparse(e)
deparse(e, control = "all")
deparseOpts Options for Expression Deparsing
Description

Process the deparsing options @lmparse , dput anddump.

Usage

.deparseOpts(control)
Arguments

control character vector of deparsing options.
Details

This is called bydeparse , dput anddumpto process theicontrol — argument.

Thecontrol argument is a vector containing zero or more of the following strings. Partial string
matching is used.

keeplnteger Either surround integer vectors kas.integer() or use suffixL, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (vidlA_integer_ if there are no nomNAvalues in the vector, unless

"S_compatible" is set).

quoteExpressions Surround expressions witjuote() , so they are not evaluated when re-
parsed.

showAttributes If the object has attributes (other than source attribute), use
structure() to display them as well as the object value. This is the defaulléparse
anddput .

useSource If the object has aource attribute, display that instead of deparsing the object.
Currently only applies to function definitions.

warnincomplete Some exotic objects such asvironmens, external pointers, etc. can not
be deparsed properly. This option causes a warning to be issued if any of those may give
problems.

Also, the parser iR < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

keepNA Integer, real and charactdi®s are surrounded by coercion where necessary to ensure that
they are parsed to the same type.

all An abbreviated way to specify all of the options listed above. This is the defauliiop,
and the options used tBdit (which are fixed).

102 Deprecated

delayPromises Deparse promises in the form <promise: expression> rather than evaluating
them. The value and the environment of the promise will not be shown and the deparsed code
cannot be sourced.

S _compatible Make deparsing as far as possible compatible with SRrd2.5.0. For com-
patibility with S, integer values of double vectors are deparsed with a trailing decimal point.

For the most readable (but perhaps incomplete) displaycastol = NULL . This displays
the object’s value, but not its attributes. The defaultl@parse is to display the attributes as
well, but not to use any of the other options to make the result parseatpet (anddump do
use more default options, and printing of functions without sources a(Skseplinteger",
"keepNA"))

Usingcontrol = "all" comes closest to makirdgparse() aninverse oparse() . How-
ever, not all objects are deparse-able even with this option. A warning will be issued if the function
recognizes that it is being asked to do the impossible.

Value

A numerical value corresponding to the options selected.

Deprecated Marking Objects as Deprecated
Description
When an object is about removed froRi it is first deprecated and should include a call to
.Deprecated
Usage

.Deprecated(new, package=NULL, msg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details
.Deprecated("<new name>") is called from deprecated functions. The original help page
for these functions is often available lalp("oldName-deprecated") (note the quotes).
Functions should be listed inelp("pkg-deprecated") for an appropriatgkg , including
base .
See Also
Defunct

base-deprecated and so on which list the deprecated functions in the packages.

det 103

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrideterminant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the
determinant.

Usage

det(x, ...)
determinant(x, logarithm = TRUE, ...)

Arguments
X numeric matrix.
logarithm logical; if TRUE(default) return the logarithm of the modulus of the determi-
nant.
Optional arguments. At present none are used. Previous versiatet ofl-
lowed an optionamethod argument. This argument will be ignored but will
not produce an error.
Details

Thedeterminant function uses an LU decomposition and thet function is simply a wrapper
around a call taleterminant

Often, computing the determinantrist what you should be doing to solve a given problem.

Value

Fordet , the determinant af. Fordeterminant , a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithm is FALSE otherwise the logarithm of the modulus.
sign integer; either+1 or —1 according to whether the determinant is positive or
negative.
Examples

(x <- matrix(1:4, ncol=2))
unlist(determinant(x))
det(x)

det(print(cbind(1,1:3,¢(2,0,1))))

104 detach

detach Detach Objects from the Search Path

Description
Detach a database, i.e., remove it fromskearch () path of availabldr objects. Usually, this is
either adata.frame which has beeattach ed or a package which was required previously.
Usage

detach(name, pos = 2, version, unload = FALSE)

Arguments
name The object to detach. Defaults search()[pos] . This can be an unquoted
name or a character string uta character vector. If a number is supplied this
is taken apos .
pos Index position insearch () of database to detach. Whaame is a number,
pos = name is used.
version A character string denoting a version number of the package to be removed. This
should be used only with a versioned installation of the packagditsagy
unload A logical value indicating whether or not to attempt to unload the namespace and
S4 methods when a package is being detached. If the package has a namespace
andunload is TRUE thendetach will attempt to unload the namespace and
remove any S4 methods defined by the package. If the namespace is in use or
unload is FALSE, no unloading will occur.
Details

This most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools

When a package have been loaded with an explicit version number it can be detached using the
name shown bgearch or by supplyinghame andversion : see the examples.

If a package has a hamespace, detaching it does not by default unload the namespace (and may
not even withunload=TRUE), and detaching will not in general unload any dynamically loaded
compiled code. Further, registered S3 methods from the namespace will not be removed. If you
uselibrary on a package whose name space is loaded, it attaches the exports of the loaded name
space. So detaching and re-attaching a package may not refresh some or all components of the
package, and is inadvisable.

Value

The attached database is returned invisibly, eithelads.frame or aslist

Note

You cannot detach either the workspace (position 1) ob#sepackage (the last item in the search
list).

diag

References

105

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &

Brooks/Cole.

See Also

attach ,library ,search ,objects ,unloadNamespace , library.dynam.unload

Examples

require(splines) # package

detach(package:splines)

could equally well use detach("package:splines”)
but NOT pkg <- "package:splines"; detach(pkg)
Instead, use

library(splines)

pkg <- "package:splines"

detach(pos = match(pkg, search()))

careful: do not do this unless 'splines' is not already loaded.
library(splines)
detach(2) # 'pos' used for 'name’

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function(db, pos=2)
{
name <- deparse(substitute(db))
attach(db, pos=pos, name=name)
print(search()[pos])
eval(substitute(detach(n), list(h=name)))

attach_and_detach(women, pos=3)

Not run:

Using a versioned install

library(ash, version="1.0-9") # or perhaps just library(ash)
then one of

detach("package:ash”, version="1.0-9")

or

detach("package:ash_1.0-9")

End(Not run)

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol = n)
diag(x) <- value

106 diag

Arguments
X a matrix, vector or 1D array.
nrow, ncol Optional dimensions for the result.
value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that. of
Value

If x is a matrix therdiag(x) returns the diagonal of. The resulting vector will havaames if
the matrixx has matching column and row names.

If X is a vector (or 1D array) of length two or more, thding(x) returns a diagonal matrix whose
diagonal isx.

If x is a vector of length one thediag(x) returns an identity matrix of order the nearest integer
to x. The dimension of the returned matrix can be specifiechtmpv andncol (the default is
square).

The replacement form sets the diagonal of the matria the given value(s).

Note
Using diag(x) can have unexpected effectsxifis a vector that could be of length one. Use
diag(x, nrow = length(x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

upper.tri , lower.tri , matrix

Examples

require(stats)

dim(diag(3))

diag(10,3,4) # guess what?

all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X = 1:5, Y = stats::rnorm(5))))
#-> vector with names "X" and "Y"

rownames(M) <- c(colnames(M),rep("™,3));
M; diag(M) # named as well

diff 107

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.
Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'POSIXt"
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'Date":
diff(x, lag = 1, differences = 1, ...)

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.
differences an integer indicating the order of the difference.
further arguments to be passed to or from methods.
Details

diff is a generic function with a default method and ones for cla%ses , " POSIXt" and
"Date ".

NAs propagate.

Value

If x is a vector of lengtm anddifferences=1 , then the computed result is equal to the succes-
sive differencex[(1+lag):n] - x[1:(n-lag)]

If difference is larger than one this algorithm is applied recursively tdNote that the returned
value is a vector which is shorter than

If x is a matrix then the difference operations are carried out on each column separately.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

diff.ts , diffinv

108

Examples

diff(1:10, 2)
diff(1:10, 2, 2)

difftime

X <- cumsum(cumsum(1:10))

diff(x, lag = 2)
diff(x, differences

diff(.leap.seconds)

:2)

difftime

Time Intervals

Description

Create, print and

Usage

timel - time2

difftime(timel, time2, tz = ™,
units

round time intervals.

= c("auto", "secs", "mins", "hours",
"dayS", "WeekS"))

as.difftime(tim, format = "%X", units="auto")

S3 method for class 'difftime":
round(x, digits = 0, ...
S3 method for class 'difftime":

format(x, ...)

S3 method for class 'difftime"

units(x)

S3 replacement method for class 'difftime"
units(x) <- value

S3 method for class 'difftime"

as.double(x, units="auto", ...

Arguments

timel, time2
V4

units
value
tim
format

X
digits

date-timeor dateobjects.

a timezone specification to be used for the conversion. System-specifi€, but
is the current time zone, ariGMT" is UTC.

character. Units in which the results are desired. Can be abbreviated.
character. Likaunits above, except that abbreviations are not allowed.
character string or numeric value specifying a time interval.

character specifying the formattiin : seestrptime . The defaultis a locale-
specific time format.

an object inheriting from clas@ifftime”
integer. Number of significant digits to retain.
arguments to be passed to or from other methods.

dim 109

Details

Functiondifftime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. There isand method for objects of this
class, as well as methods for the group-generic @8 logical and arithmetic operations.

If units = "auto" , & suitable set of units is chosen, the largest possible (exclidiegks")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by catlifffme with
units="auto" . Alternatively, as.difftime() works on character-coded or numeric time
intervals; in the latter case, units must be specified fandat has no effect.

Limited arithmetic is available ofdifftime" objects: they can be added or subtracted, and mul-
tiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector implicitly
converts the numeric vector to"difftime" object with the same units as théifftime"

object.

The units of a'difftime" object can be extracted by thmits function, which also has an
replacement form. If the units are changed, the numerical value is scaled accordingly.

The as.double method returns the numeric value expressed in the specified units. Using
units="auto" means the units of the object.

Theformat method simply formats the numeric value and appends the units as a text string.

See Also

DateTimeClasses

Examples

(z <- Sys.time() - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between releases of R 1.2.2 and 1.2.3.
ISOdate(2001, 4, 26) - 1SOdate(2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format= "%H:%M")# 3rd gives NA
(z <- as.difftime(c(0,30,60), units="mins"))

as.numeric(z, units="secs")

as.numeric(z, units="hours")

format(z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- value

110 dimnames

Arguments
X anR object, for example a matrix, array or data frame.
value For the default method, eith®ULL or a numeric vector, which is coerced to
integer (by truncation).
Details

The functiongdim anddim<- are generic.

dim has a method fodata.frame s, which returns the lengths of thew.names attribute ofx
and ofx (as the numbers of rows and columns respecitvely).

Value

For an array (and hence in particular, for a matdih retrieves thalim attribute of the object. It
is NULL or a vector of modénteger

The replacemnt method changes tHan" attribute (provided the new value is compatible) and
removes anydimnames" and"names" attributes.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

ncol , nrow anddimnames.

Examples

X <- 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x)[1]
ncol0 <- function(x) dim(x)[2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage
dimnames(x)
dimnames(x) <- value
Arguments

X anR object, for example a matrix, array or data frame.
value a possible value fadimnames(x) : see the Value section.

dimnames 111

Details

The functiongddimnames anddimnames<- are generic.

For anarray (and hence in particular, forraatrix), they retrieve or set théimnames attribute
(seeattribute3 of the object. A listvalue can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elemeaitgeofto char-
acter, but does not dispatch methods &stcharacter . It coerces zero-length elements to
NULL

Both have methods for data frames. The dimnames of a data frame arewitsames
and itsnames. For the replacement method each componentatfie will be coerced by
as.character

For a 1D matrix thenames are the same thing as the (only) component ofdinenames .

Value

The dimnames of a matrix or array canMELLor a list of the same length aém(x) . If alist, its
components are eith&lULL or a character vector with positive length of the appropriate dimension
of x.

For the"data.frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

Note

Setting components of the dimnames, edimnames(A)[[1]] <- value is a common
paradigm, but note that it will not work if the value assignedNIdLL Userownames instead,
or (as it does) manipulate the whole dimnames list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

rownames, colnames ; array , matrix , data.frame

Examples

simple versions of rownames and colnames
could be defined as follows

rownames0 <- function(x) dimnames(x)[[1]]
colnames0 <- function(x) dimnames(x)[[2]]

112 do.call

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage

do.call(what, args, quote = FALSE, envir = parent.frame())

Arguments
what either a function or a non-empty character string naming the function to be
called.
args alist of arguments to the function call. Tilames attribute ofargs gives the
argument names.
guote a logical value indicating whether to quote the arguments.
envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.
Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment,
notenvir .). If quote is TRUEthen each argument is quoted (sp®te) so that the effect of
argument evaluation is to remove the quotes — leaving the original arguments unevaluated when the
call is constructed.

The behavior of some functions, suctsadstitute , will not be the same for functions evaluated
usingdo.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

double 113

Examples

do.call("complex", list(imag = 1:3))

if we already have a list (e.g. a data frame)
we need c() to add further arguments

tmp <- expand.grid(letters[1:2], 1:3, c("+", "-")
do.call("paste”, c(tmp, sep=""))

do.call(paste, list(as.name("A"), as.name("B")), quote=TRUE)

examples of where objects will be found.
A< 2

f <- function(x) print(x"2)

env <- new.env()

assign("A", 10, envir = env)

assign("f", f, envir = env)

f <- function(x) print(x)

f(A) # 2
do.call("f", list(A)) # 2
do.call(*f", list(A), envir=env) # 4

do.call(f, list(A), envir=env) # 2

do.call("f", list(quote(A)), envir=env) # 100
do.call(f, list(quote(A)), envir=env) # 10
do.call("f", list(as.name("A"), envir=env) # 100

eval(call("f", A)) # 2
eval(call("f", quote(A))) # 2
eval(call("f", A), envir=env) # 4
eval(call("f", quote(A)), envir=env) # 100
double Double-Precision Vectors
Description

Create, coerce to or test for a double-precision vector.

Usage

double(length = 0)
as.double(x, ...)
is.double(x)

single(length = 0)
as.single(x, ...)

Arguments
length desired length.
X object to be coerced or tested.

further arguments passed to or from other methods.

114 double

Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to0. It is identical tonumeric (andreal).

as.double is a generic function. It is identical tas.numeric (andas.real). Methods
should return an object of base tyfrouble"

is.double s atest of doublé¢ype

R has no single precision data type. All real numbers are stored in double precision fofinat
functionsas.single andsingle are identical tas.double anddouble exceptthey setthe
attributeCsingle that is used in theC and.Fortran interface, and they are intended only to
be used in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to0.

as.double attempts to coerce its argument to be of double type: dikeector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode .) Character strings containing either a decimal representation or a hexadecimal
representation (starting withx or 0X) can be convertedas.double for factors yields the codes
underlying the factor levels, not the numeric representation of the labels, sdacitso .

is.double returnsTRUEor FALSE depending on whether its argument is of doulgfee or not.

Note on names

It is a historical anomaly tha has three names for its floating-point vectalsuble , numeric
andreal

double is the name of théype numeric is the name of thenodeand also of the implicitlass
As an S4 formal class, usaumeric” (there is a deprecated formal cldgsuble”).

real is deprecated and should not be used in new code.

The potential confusion is th& has usednode"numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thisnumeric tests the mode, not the class, bstnumeric
(which is identical taas.double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

integer , numeric , storage.mode

Examples

is.double(1)
all(double(3) == 0)

dput 115

dput Write an Object to a File or Recreate it
Description
Writes an ASCII text representation of &iobject to a file or connection, or uses one to recreate
the object.
Usage
dput(x, file = ™|
control = c("keepNA", "keepinteger", "showAttributes"))
dget(file)
Arguments
X an object.
file either a character string naming a file or a connectidnindicates output to the
console.
control character vector indicating deparsing options. SkeparseOpts for their
description.
Details

dput opensfile and deparses the objectinto that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the detauitrol , dput()

attempts to deparse in a way that is readable, but for more complex or unusual objects, not likely to
be parsed as identical to the original. Wsmtrol = "all" for the most complete deparsing;
usecontrol = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.

To display saved source rather than deparsing the internal representation iuda8eurce"
in control . R currently saves source only for function definitions.
Value

Fordput , the first argument invisibly.
Fordget , the object created.

Note
To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

116 drop

See Also

deparse , dump, write

Examples

Write an ASCIl version of mean to the file "foo"
dput(mean, "foo")
And read it back into 'bar'
bar <- dget("foo")
unlink(“*foo")
Create a function with comments
baz <- function(x) {
Subtract from one
1-x
}
and display it
dput(baz)
and now display the saved source
dput(baz, control = "useSource")

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop(x)

Arguments

X an array (including a matrix).

Value

If x is an object with alim attribute (e.g., a matrix aarray), thendrop returns an object likg,
but with any extents of length one removed. Any accompanglinghames attribute is adjusted
and returned witkx.

Array subsetting[() performs this reduction unless used wittop = FALSE , but sometimes it
is useful to invokedrop directly.
See Also

dropl which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))}# = 3 2 2
drop(1:3 %*% 2:4)# scalar product

dump 117

dump Text Representations of R Objects

Description

This function takes a vector of namesRfobjects and produces text representations of the objects
on a file or connection. Adump file can usually besource d into anotheR (or S) session.

Usage
dump(list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)
Arguments
list character. The names of one or m&ebjects to be dumped.
file either a character string naming a file or a connectidnindicates output to the
console.
append if TRUEandfile is a character string, output will be appendedil® ; oth-
erwise, it will overwrite the contents dile
control character vector indicating deparsing options. SkparseOpts for their
description.
envir the environment to search for objects.
evaluate logical. Should promises be evaluated?
Details

If some of the objects named do not exist (in scope), they are omitted, with a warriitg. Ifis a
file and no objects exist then no file is created.

source ing may not produce an identical copydifmped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can besource d into anothemR (or perhaps S) session, but the functeave is
designed to be used for transportiRgdata, and will work withR objects thatdump does not
handle.

To produce a more readable representation of an objecicargeol = NULL . This will skip
attributes, and will make other simplifications that makerce less likely to produce an identical
copy. Sealeparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control = c("keeplnteger”, "warnincomplete”, "keepNA") . This will lose all
formatting and comments, but may be useful in those cases where the saved source is no longer
correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the default
evaluate = TRUE is essential) and after the used#layedAssign , whenevaluate =
FALSEmight be intended.

118 duplicated

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base name space, ltheepackage will be searchdakforethe global
environment unlesdump is called from the top level prompt or trenvir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects &4yge not deparsed

in a way that can beource d. In addition, language objects are deparsed in a simple way what-
ever the value otontrol , and this includes not dumping their attributes (which will result in a
warning).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.
See Also
dput , dget , write
save for a more reliable way to sav objects.

Examples

X <- 1; y <- 1:10

dump(Is(pattern = '"N[xyz]'), "xyz.Rdmped")
print(.Last.value)

unlink("xyz.Rdmped")

duplicated Determine Duplicate Elements

Description
Determines which elements of a vector or data frame are duplicates of elements with smaller sub-
scripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage

duplicated(x, incomparables = FALSE, ...)

Default S3 method:
duplicated(x, incomparables = FALSE,
fromLast = FALSE, ..)

S3 method for class 'array":
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ..)

duplicated 119

Arguments

X a vector or a data frame or an arrayNdLL

incomparables
a vector of values that cannot be compared. CurreRtiy,SEis the only pos-
sible value, meaning that all values can be compared.

fromLast logical indicating if duplication should be considered from the reverse
side, i.e., the last (or rightmost) of identical elements would correspond to
duplicated=FALSE
arguments for particular methods.

MARGIN the array margin to be held fixed: sapply .

Details

This is a generic function with methods for vectors (including lists), data frames and arrays (includ-
ing matrices).

duplicated(x, fromLast=TRUE) is equivalent to but faster than
rev(duplicated(rev(x)))

The data frame method works by pasting together a character representation of the rows separated
by \r , so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

The array method calculates for each element of the sub-array specifibdliReINf the remaining
dimensions are identical to those for an earlier (or later, wiemLast=TRUE) element (in row-
major order). This would most commonly be used to find duplicated rows (the default) or columns
(with MARGIN = 2.

Warning
Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case iti§n?).

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

unique .

Examples

X <- ¢(9:20, 1.5, 3.7, 0:8)

extract unique elements

(xu <- x['duplicated(x)])

similar, but not the same:

(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique(x) but unique(x) is more efficient
stopifnot(identical(xu, unique(x)),
identical(xu2, unique(x, fromLast = TRUE)))

duplicated(iris)[140:143]

120 dyn.load

duplicated(iris3, MARGIN = c(1, 3))

dyn.load Foreign Function Interface

Description

Load or unload shared libraries, and test whether a C function or Fortran subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE)
dyn.unload(x)

is.loaded(symbol, PACKAGE = "™, type = ")
Arguments
X a character string giving the pathname to a shared library or DLL.
local a logical value controlling whether the symbols in the shared library are stored

in their own local table and not shared across shared libraries, or added to the
global symbol table. Whether this has any effect is system-dependent.

now a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

symbol a character string giving a symbol name.
PACKAGE if supplied, confine the search for thame to the DLL given by this argument
(plus the conventional extensiorso , .sl , .dll , ...). This is intended to

add safety for packages, which can ensure by using this argument that no other
package can override their external symbols. BAEKAGE="base" for sym-

bols linked in toR. This is used in the same way as.@, .Call , .Fortran
and.External functions

type The type of symbol to look for: can be any'(, the default),"Fortran"
"Call" or"External"

Details

See ‘See Also’ and th@/riting R Extensionsind R Installation and Administratiomanuals for
how to create and install a suitable shared library. Note that unlike some versions of S-PLUS,
dyn.load does not load an object.¢’) file but a shared library or DLL.

Unfortunately a very few platforms (Compaq Tru64) do not handlePRAEKAGErgument cor-
rectly, and may incorrectly find symbols linked irfgo

The additional arguments ttyn.load mirror the different aspects of the mode argument to the
dlopen() routine on UNIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the defaults values are appropriate and
you should override them only if there is good reason and you understand the implications.

dyn.load 121

Thelocal argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own name space is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading viadheargument as
FALSE If a routine is called that has a missing symbol, the process will terminate immediately and
unsaved session variables will be lost. The intended use is for library developers to call specify a
valueTRUEto check that all symbols are actually resolved and for regular users to alFaitBE

so that missing symbols can be ignored and the available ones can be called.

The initial motivation for adding these was to avoid such termination in_thé() routines

of the Java virtual machine library. However, symbols loaded locally may not be (read probably)
available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLSs.

Some systems do not provide (explicit) support for local/global and lazy/eager symbol resolution.
This can be the source of subtle bugs. One can arrange to have warning messages emitted when
unsupported options are used. This is done by setting either of the optidosse orwarn to be
non-zero via theptions function. Currently, we know of only 2 platforms that do not provide a
value for local load (RTLD_LOCAL). These are IRIX6.4 and unpatched versions of Solaris 2.5.1.

There is a short discussion of these additional arguments with some example code available at
http://cm.bell-labs.com/stat/duncan/R/dynload

Value

The functiondyn.load is used for its side effect which links the specified shared library to the
executingR image. Calls taC, .Call , .Fortran and.External can then be used to ex-
ecute compiled C functions or Fortran subroutines contained in the library. The return value of
dyn.load is an object of clas®LLInfo . SeegetLoadedDLLs for information about this
class.

The functiondyn.unload unlinks the shared library.

is.loaded checks if the symbol name is loaded and hence available for u€ean.Fortran
or.Call or.External . It will succeed if any one of the four calling functions would succeed
in using the entry point unleggpe is specified. (Sed-ortran for how Fortran symbols are
mapped.)

Warning

Do not use dyn.unload on a shared object loaded blibrary.dynam ©use
library.dynam.unload

Note

is.loaded requires the name you would give.to etc anchot (as in S) that remapped by defunct
functionssymbol.C or symbol.For

The creation of shared libraries and the runtime linking of them into executing programs is very
platform dependent. In recent years there has been some simplification in the process because
the C subroutine calflopen has become the standard for doing this under UNIX. Under UNIX
dyn.load uses thalopen mechanism and should work on all platforms which support it. On
Windows it uses the standard mechanisms for loading DLLs.

The original code for loading DLLs in UNIX was provided by Heiner Schwarte. The compatibility
code for HP-UX was provided by Luke Tierney.

http://cm.bell-labs.com/stat/duncan/R/dynload

122 eapply

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a packagerst.lib initialization.
SHLIB for how to create suitable shared objects.

.C, .Fortran ,.External ,.Call

Examples

is.loaded("hcass2") #-> probably TRUE, as stats is loaded
is.loaded("supsmu") # Fortran entry point in stats
is.loaded("supsmu", "stats", "Fortran")

is.loaded("PDF", type = "External")

eapply Apply a Function over values in an environment

Description

eapply appliesFUNto the named values from an environment and returns the results as a list. The
user can request that all named objects are used (normally names that begin with a dot are not). The
output is not sorted and no parent environments are searched.

Usage

eapply(env, FUN, ..., all.Lnames = FALSE)

Arguments
env environment to be used.
FUN the function to be applied, founda match.fun . In the case of functions like
+, %*% etc., the function name must be backquoted or quoted.
optional arguments tBUN
all.names a logical indicating whether to apply the function to all values
See Also

lapply

eigen 123

Examples

require(utils); require(stats)

env <- new.env()

env$a <- 1:10

env$beta <- exp(-3:3)

env$logic <- c(TRUE,FALSE,FALSE,TRUE)
what have we there?

eapply(env, str)

compute the mean for each list element
eapply(env, mean)

median and quartiles for each list element
eapply(env, quantile, probs = 1:3/4)
eapply(env, quantile)

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of real or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments
X a matrix whose spectral decomposition is to be computed.
symmetric if TRUE the matrix is assumed to be symmetric (or Hermitian if complex) and
only its lower triangle (diagonal included) is usedsyimmetric is not speci-
fied, the matrix is inspected for symmetry.
only.values if TRUE only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.
EISPACK logical. Should EISPACK be used (for compatibility with< 1.7.0)?
Details

By defaulteigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV whereas
eigen(EISPACK=TRUE) provides an interface to the EISPACK routireRS§ RG CHandCG

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up to
plausible numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred teeigen(EISPACK = TRUE) for new projects, but its eigenvectors may
differ in sign and (in the asymmetric case) in normalization. (They may also differ between methods
and between platforms.)

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close tox. So even though a real asymmetxienay have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

124 eigen

Value

The spectral decomposition »fis returned as components of a list with components

values a vector containing thg eigenvalues oX, sorted indecreasingrder, according
to Mod(values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

vectors either ap x p matrix whose columns contain the eigenvectors oér NULL if
only.values is TRUE
Foreigen(, symmetric = FALSE, EISPACK =TRUE) the choice of
length of the eigenvectors is not defined by EISPACK. In all other cases the
vectors are normalized to unit length.
Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., lkebe,Y., Klema, V., and Moler, C.
B. (1976). Matrix Eigensystems Routines — EISPACK Gui@pringer-Verlag Lecture Notes in
Computer Science.

Anderson. E. and ten others (199RPACK Users’ GuideThird Edition. SIAM.
Available on-line ahttp://www.netlib.org/lapack/lug/lapack_lug.html

Wilkinson, J. H. (1965)he Algebraic Eigenvalue Probler@larendon Press, Oxford.

See Also

svd , a generalization ofigen ; qr , andchol for related decompositions.

To compute the determinant of a matrix, tre decomposition is much more efficientet .

Examples

eigen(cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)

eigen(cbind(-1,2:1)) # complex values

eigen(print(cbind(c(0,1i), c(-1i,0))))}# Hermite ==> real Eigen values
3 x 3

eigen(cbind(1,3:1,1:3))

eigen(cbind(-1,c(1:2,0),0:2)) # complex values

http://www.netlib.org/lapack/lug/lapack_lug.html

encodeString 125

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the samepwatydefault
does, and optionally fits the encoded strings within a field width.

Usage
encodeString(x, width = 0, quote = "™, na.encode = TRUE,
justify = c("left", "right", "centre", "none"))
Arguments
X A character vector, or an object that can be coerced to oas loharacter
width integer: the minimum field width. INULL or NA this is taken to be the largest
field width needed for any element f
quote character: quoting character, if any.
na.encode logical: shouldNAstrings be encoded?
justify character: partial matches are allowed. If padding to the minimum field width is
needed, how should spaces be inserfjedfify == "none" is equivalent
towidth = 0 , for consistency witliormat.default
Details

This escapes backslash and the control chara@erbell), \b (backspace)f (formfeed),\n
(line feed)\r (carriage returnlt (tab),\v (vertical tab) and0 (nul) as well as any non-printable
characters in a single-byte locale, which are printed in octal notatkya (with leading zeroes).
(Which characters are non-printable depends on the current locale.prifedefault for
how non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same lengthxgswith the same attributes (including names and dimen-
sions) but with no class set.

Note

The default fowidth is different fromformat.default , Which does similar things for char-
acter vectors but without encoding using escapes.

See Also

print.default

126 Encoding

Examples

x <- "ab\bc\ndef"

print(x)

cat(x) # interprets escapes

cat(encodeString(x), "\n", sep="") # similar to print()

factor(x) # makes use of this to print the levels
X <_ C("a", Ilabll’ "adee")

encodeString(x, width NA) # left justification
encodeString(x, width NA, justify = "c")

encodeString(x, width NA, justify = "r")
encodeString(x, width NA, quote = ", justify = "r")
Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.

Usage

Encoding(x)

Encoding(x) <- value

Arguments
X A character vector.
value A character vector of positive length.

Details
Character strings iR can be declared to be [tatin1" or "UTF-8" . These declarations can
be read byEncoding , which will return a character vector of valudiatinl" , "UTF-8" or
"unknown" , or set, whervalue is recycled as needed and other values are silently treated as
"unknown" .

There are other ways for character strings to acquire a declared encoding apart from explicitly set-
ting it. Functionsscan , read.table ,readLines , parse andsource have arencoding
argument that is used to declare encodinigsnv declares encodings from ifeom argument,

and console input in suitable locales is also declared.

Value

A character vector.

environment 127

Examples

x is intended to be in latinl
x <- "fa\xE7ile"

Encoding(x)

Encoding(x) <- "latin1"

X

XX <- iconv(x, "latin1l", "UTF-8")
Encoding(c(x, xx))

c(X, xx)

environment Environment Access

Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value

is.environment(x)
.GlobalEnv
globalenv()

.BaseNamespaceEnv

emptyenv()
baseenv()

new.env(hash = FALSE, parent = parent.frame(), size = 29L)

parent.env(env)
parent.env(env) <- value

environmentName(env)

env.profile(env)

Arguments
fun afunction ,aformula , or NULL, which is the default.
value an environment to associate with the function
X an arbitraryR object.
hash a logical, if TRUEthe environment will be hashed
parent an environment to be used as the enclosure of the environment created.
env an environment
size an integer specifying the initial size for a hashed environment. An internal de-

fault value will be used isize isNAor zero. This argumentis ignoredifsh
is FALSE

128 environment

Details

Environments consist offlame or collection of named objects, and a pointer teanlosing envi-
ronment The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined. The enclosing environment is distinguished
from theparent frame the latter (returned bparent.frame) refers to the environment of the
caller of a function.

Whenget or exists search an environment with the defaulberits = TRUE , they look
for the variable in the frame, then in the enclosing frame, and so on.

The global environmenGlobalEnv , more often known as the user’s workspace, is the first item
on the search path. It can also be accessedltiyalenv() . On the search path, each item’s
enclosure is the next item.

The object.BaseNamespaceEnv is the name space environment for the base package. The
environment of the base package itself is availabldaseenv() . The ultimate enclosure of
any environment is the empty environmarhptyenv() , to which nothing may be assigned.

If one follows theparent.env() chain of enclosures back far enough from any environment,
eventually one reaches the empty environment.

The replacement functioparent.env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

Value

If fun is a function or a formula theanvironment(fun) returns the environment associated
with that function or formula. Ifun is NULLthen the current evaluation environment is returned.

The replacement form sets the environment of the function or forfoulato thevalue given.
is.environment(obj) returnsTRUEIf and only if obj is arenvironment

new.env returns a new (empty) environment enclosed in the parent’s environment, by default.
parent.env returns the parent environment of its argument.

parent.env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printéd or
if it is not a named environment.

env.profile returns a list with the following componentsize the number of chains that can
be stored in the hash tablechains the number of non-empty chains in the table (as reported
by HASHPRI), andcounts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environmentenwien

a non-hashed environmeMLLis returned.

See Also

Theenvir argument okval , get , andexists

Is may be used to view the objects in an environment, and hisrste may be useful for an
overview.

sys.source can be used to populate an environment.

Examples

f <- function() "top level function"

##-- all three give the same:

eval 129

environment()
environment(f)
.GlobalEnv

Is(envir=environment(stats::approxfun(1:2,1:2, method="const")))
is.environment(.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = el)

assign("a", 3, envir=el)

Is(el)

Is(e2)

exists("a", envir=e2) # this succeeds by inheritance

exists("a", envir=e2, inherits = FALSE)

exists("+", envir=e2) # this succeeds by inheritance

eval Evaluate an (Unevaluated) Expression

Description

Evaluate arR expression in a specified environment.

Usage

eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv())
evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments
expr an object to be evaluated. See ‘Details’.
envir the environment in which expr is to be evaluated. May also INMULL, a
list, a data frame, a pairlist or an integer as specifiesl/tocall
enclos Relevant whewrnvir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
whereR looks for objects not found ienvir . This can beNULL (interpreted
as the base package environment) or an environment.
n number of parent generations to go back
Details

eval evaluates thexpr argument in the environment specifieddyir and returns the com-
puted value. Ifenvir is not specified, then the defaultpsrent.frame () (the environment
where the call teval was made).

Objects to be evaluated can be of typadl orexpression or name(when the name is looked
up in the current scope and its binding is evaluated)ramiseor any of the basic types such as
vectors, functions and environments (which are returned unchanged).

130 eval

Theevalg form is equivalent teval(quote(expr), ...) . eval evaluates its first argu-
ment in the current scope before passing it to the evaluat@ig avoids this.

eval.parent(expr, n) is a shorthand foeval(expr, parent.frame(n))

If envir is alist (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosureenclos), and the temporary environment is used for evaluation. ®apf changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULLIt is interpreted as an empty list so no values could be fourehvir and
look-up goes directly tenclos

local evaluates an expression in a local environment. It is equivaleewdtyy except that its

default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited name space feature since variables defined in the environment are
not visible from the outside.

Value

The result of evaluating the object: for an expression vector this it the result of evaluating the last
elements.

Note

Due to the difference in scoping rules, there are some differences beRvasth S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in data frames that has been passed as argument to a function,
the relevant enclosure is often the caller's environment, i.e., one neeal$x, data,
parent.frame())

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole. éval only.)

See Also

expression , quote , sys.frame , parent.frame , environment
Further,force toforceevaluation, typically of function arguments.

Examples

eval(2 » 2 ~ 3)
mEx <- expression(2"273); mEx; 1 + eval(mEXx)
eval({ xx <- pi; xx*2}) ; xx

a <- 3 ; aa <- 4 ; evalg(evalg(atb+aa, list(a=1)), list(b=5)) # == 10
a <- 3 ; aa <- 4 ; evalg(evalq(atb+aa, -1), list(b=5)) # == 12

ev <- function() {
el <- parent.frame()
Evaluate a in el
aa <- eval(expression(a),el)
evaluate the expression bound to a in el
a <- expression(x+y)
list(aa = aa, eval = eval(a, el))

exists 131

tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }
tstev()#-> aa : 7, eval : 4.14

a <- list(a=3, b=4)
with(a, a <- 5) # alters the copy of a from the list, discarded.

Hit
Example of evalq()
Hit

N < 3

env <- new.env()

assign("N", 27, envir=env)

this version changes the visible copy of N only, since the argument
passed to eval is '4'.

eval(N <- 4, env)

N

get("N", envir=env)

this version does the assignment in env, and changes N only there.
evalg(N <- 5, env)

N

get("N", envir=env)

Hit
Uses of local()
H#Hit

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local({
k <- function(y)f(y)
f <- function(x) if(x) x*k(x-1) else 1
)
99(10)
sapply(1:5, gg)

Nesting locals. a is private storage accessible to k
gg <- local({
k <- local({
a<-1
function(y){print(a <<- a+1);f(y)}
)
f <- function(x) if(x) x*k(x-1) else 1
)
sapply(1:5, gg)

Is(envir=environment(gg))
Is(envir=environment(get("k", envir=environment(gg))))

exists Is an Object Defined?

Description

Look for anR object of the given name.

132 exists

Usage
exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)
Arguments
X a variable name (given as a character string).
where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in, but it is usually simpler
to just use thevhere argument.
frame a frame in the calling Ilist. Equivalent to givingwhere as
sys.frame(frame)
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?
Details

Thewhere argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in thearch list); as the character string name of an element
in the search list; or as anvironment (including usingsys.frame to access the currently
active function calls). Thenvir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the namehas a value bound to it in the specified environment. If
inherits is TRUEand a value is not found for in the specified environment, the enclosing
frames of the environment are searched until the nanie encountered. Seenvironment

and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE s the default behaviour fdR but not for S.

If mode is specified then only objects of that type are sought. fleele may specify one of the
collections'numeric* and"function” (seemode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for examplde="special" will
seek any type of function.)

Value

Logical, true if and only if an object of the correct name and mode is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

get .

expand.grid 133

Examples

Define a substitute function if necessary:
if(lexists("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }
search()
exists("Is", 2) # true even though Is is in pos=3
exists("Is", 2, inherits = FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description
Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE)

Arguments

vectors, factors or a list containing these.
KEEP.OUT.ATTRS
a logical indicating thé'out.attrs" attribute (see below) should be com-

puted and returned.
Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out.attrs" is a list which gives the dimension and dimnames for uspregict
methods.

References

Chambers, J. M. and Hastie, T. J. (19%2tistical Models in SiVadsworth & Brooks/Cole.

See Also

combn (packagautils) for the generation of all combinations of n elements, taken m at a time.

Examples

require(utils)

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male","Female™))

X <- seq(0,10, length=100)
y <- seq(-1,1, length=20)

134 expression

dl <- expand.grid(x=x, y=y)

d2 <- expand.grid(x=x, y=y, KEEP.OUT.ATTRS = FALSE)
object.size(d1) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of motbxpression”

Usage

expression(...)

is.expression(x)
as.expression(x, ...)

Arguments
expression : R objects, typically calls, symbols or constants.
as.expression : arguments to be passed to methods.
X an arbitraryR object.
Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (seeall) in R, and anR expression vector is a list of calls, symbols etc, typically as
returned byparse .

As an object of modé&expression” is a list, it can be subsetted by bdttand by[[, the latter
extracting individual calls etc.

Value
expression returns a vector of typ&expression" containing its arguments (unevaluated).
is.expression returnsTRUEIf expr is an expression object afALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and
only the default method is described heMULL, calls, symbols (seas.symbol) and pairlists

are returned as the element of a length-one expression vector. Vectors (including lists) are placed
element-by-element into an expression vector. Other types are not currently supported.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

call ,eval ,function . Furthertext andlegend for plotting mathematical expressions.

Extract 135

Examples

length(exl <- expression(1+ 0:9))# 1
exl
eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3
mode(ex3 [3]) # expression
mode(ex3[[3]])# call

rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage

X[i]

x[i, Jj, ... , drop = TRUE]

X[[i, exact = NA]]

X[, j, ..., exact = NA]]

x$name

Arguments

X object from which to extract element(s) or in which to replace element(s).

i Jy . indices specifying elements to extract or replace. Indicesnaraeric or
character vectors or empty (missing) MULL Numeric values are coerced
to integer as bys.integer (and hence truncated towards zero). Character
vectors will be matched to theames of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.

For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extenti, j, ... can also be negative integers, indicating
elements/slices to leave out of the selection.

When indexing arrays bly a single argumernit can be a matrix with as many
columns as there are dimensionsxgfthe result is then a vector with elements
corresponding to the sets of indices in each row .of

An index value ofNULL is treated as if it weranteger(0)

name A literal character string or aame(possiblybacktickquoted). For extraction,
this is normally (see under ‘Environments’) partially matched torthmes of
the object.

drop For matrices and arrays. TRUEthe result is coerced to the lowest possible

dimension (see the examples). This only works for extracting elements, not for
the replacement.

136 Extract

exact Controls possible partial matching f when extracting by a character vector
(for most objects, but see under ‘Environments’). The default vildeallows
partial matching, but issues a warning when it occurs. WHBRE no par-
tial matching is performed. WheRALSE, partial matching is allowed and no
warning is issued when it occurs.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
seelnternalMethodss well ag.data.frame and[.factor . The descriptions here apply only

to the default methods. Note that separate methods are required for the replacement f[sctions

[[<- and$<- for use when indexing occurs on the assignment side of an expression.

The most important distinction betwegn[[and$ is that the] can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, seés.recursive) objects.$ returnsNULL (with a warning) except for recursive
objects, and is only discussed in the section below on recursive objects. Its use on non-recursive
objects was deprecatedi2.5.0 and will be removed iR 2.7.0.

Subsetting (except by an empty index) will drop all attributes exaeptes, dim anddimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignmehthen that part ok is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed to
accept the values. Attributes are preserved (althoaghes, dim anddimnames will be adjusted
suitably). Subassignment is done sequentially, so if an index is specified more than once the latest
assigned value for an index will result.

Atomic vectors

The usual form of indexing i§" ."[[* can be used to select a single element,"But can also
do so.

The index object can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (@ator) and not by the character values which
are printed (for which usgs.character(i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unissme-dimensional
when it will be a one-dimensional array.

The most common form of indexingkadimensional array is to specifyindices tq . As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. An empty index (a
comma separated blank) indicates that all entries in that dimension are selected. The argument
drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matriéAand zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containingAproduce arNAin the result.

Extract 137

A vector obtained by matrix indexing will be unnamed unlgss one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by[is similar to atomic vectors and selects a list of the specified element(s).

Both[[and$ select a single element of the list. The main difference is$tddes not allow com-
puted indices, whereds does.x$name is equivalent toc[['name", exact = FALSE]]
Also, the partial matching behavior fif can be controlled using thexact argument.

[and[[are sometimes applied to other recursive objects sucialissandexpression. Pairlists
are coerced to lists for extraction py but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single indeis a vector of lengthp,
alist[[il] is equivalent taalist[[i1]]...[[ip]] providing all but the final indexing
results in a list.

When$<- is applied to aNULL x, it first coerces to list() . This is what also happens with
[[<- ifthe replacement valuealue is of length greater than one:vhlue has length 1 or Ox
is first coerced to a zero-length vector of the typeaifie .

Environments

Both $ and[[can be applied to environments. Only character indices are allowed and no
partial matching is done. The semantics of these operations are thags(pf env=x,

inherits=FALSE) . If no match is found themNULL is returned. The replacement versions,
$<- and[[<- , can also be used. Again, only character arguments are allowed. The semantics
in this case are those aésign(i, value, env=x, inherits=FALSE) . Such an assign-

ment will either create a new binding or change the existing binding in

NAs in indexing

When extracting, a numerical, logical or charadi& index picks an unknown element and so
returnsNAIn the corresponding element of a logical, integer, numeric, complex or character result,
andNULLfor a list. (It return00 for a raw result.]

When replacing (that is using indexing on the lhs of an assignn&htloes not select any element

to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome).

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used ng§j2,i=1] is equivalent tan[2,1] and
not to m[1,2]

This may not be true for methods defined for them; for example it is not true falatfzeframe
methods described [ndata.frame

To avoid confusion, do not name index arguments (sap andexact must be named).

S4 methods
These operators are also S4 generic, but as primitives, S4 methods will be dispatched only on S4
objects.

S4 methods foi$ will be passedname as a character vector: despite the message given by
getGeneric("$") you cannot usefully write methods based on the clasgofe.

138 Extract

Character indices

Character indices can in some circumstances be partially matchedn(sgeh) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Beaker
358)),R has never used partial matching when extracting b¥yPartial matching is currently used
by default for extraction by (see argumergxact).

Partial matching is used when extracting (only) from recursive objects (except environmests) by
In that case, warnings can be switched omptions (warnPartialMatchAttr = TRUE)

The intention is that neither empty"() nor NAindices match any names, not even empty nor
missing names. If any object has no names or appropriate dimnames, they are také&h asdll

so match nothing. The implementation fr is currently incomplete (they do match empty names

in some circumstances), but such names should be avoided as this will be altered in future versions
of R.

Note

The documented behaviour of S is thatMA replacement index ‘goes nowhere’ but uses up an
element ofvalue (Beckeret alp. 359). However, that is not the current behaviour of S-PLUS.

The default forexact will becomeexact=TRUE in R 2.7.0: partial matching fa$ will remain
the default.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

names for details of matching to names, apthatch for partial matching.

options (warnPartialMatchAttr = TRUE) causes partial matches Bname to give
warnings.

list ,array , matrix
[.data.frame and[.factor for the behaviour when applied to data.frame and factors.
Syntax for operator precedence, and fRd.anguageeference manual about indexing details.

Examples
X <- 1:12; m <- matrix(1:6, nrow=2); li <- list(pi=pi, e = exp(1))
X[10] # the tenth element of x
X <- x[-1] # delete the 1st element of x
m[1,] # the first row of matrix m

m[1, , drop = FALSE] # is a 1-row matrix
m[,c(TRUE,FALSE,TRUE)J# logical indexing
m[cbind(c(1,2,1),3:1)][# matrix index

m <- m[,-1] # delete the first column of m

l[[21] # the first element of list li

y <- list(1,2,a=4,5)

y[c(3,4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(i <- 3.999999999) # "4" is printed
@:5)i] # 3

Extract.data.frame

139

recursive indexing into lists
z <- list(a=list(b=9, c='hello’), d=1:5)

unlist(z)

z[[c(1, 2)]]
z[[c(1, 2, 1)]] #
z[[c("a”, "b")]] <-
unlist(z)

check $ and
el <- new.env()
el$a <- 10
el[["a"]

el[["b"]] <- 20
els$b

Is(el)

both "hello"
"new"

[[for environments

Extract.data.frame

Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame":

X[i, J, drop =]

S3 replacement method for class 'data.frame':

X[i, j] <- value

S3 method for class 'data.frame’
X[[..., exact = NA]]
S3 replacement method for class 'data.frame':

X[[i, jIl <- value

S3 replacement method for class ‘data.frame'"

x$i <- value

Arguments
X
i, j, .-

drop

value

exact

data frame.

elements to extract or replace. Fprand[[, these arenumeric or
character or, for[only, empty. Numeric values are coerced to integer as
if by as.integer . For replacement by, a logical matrix is allowed. For
replacement bsg, i is a name or literal character string.

logical. If TRUEthe result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, babt to drop if only one row is
left.

A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion sectULIf, deletes the
column if a single column is selected.

logical: seq , and applies to column names.

140 Extract.data.frame

Details

Data frames can be indexed in several modes. Whand[[are used with a single index|{]
orx[[i]l),theyindexthe data frame as if it were a list. In this usadeo@ argumentis ignored,
with a warning. Usindp is equivalent to usinffi, exact = FALSE]]

When[and[[are used with two indicex([i, j] andx[[i, j1]) they act like indexing a
matrix: [[can only be used to select one element.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names usingnake.unique . Similarly, column names will be transformed to be unique if
necessary (e.g. if columns are selected more than once, or if more than one column of a given name
is selected if the data frame has duplicate columns).

Whendrop = TRUE, this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-

umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values

in the indices are not allowed for replacement.

For[the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can cont&itJLL elements which will cause the corresponding columns

to be deleted. (See the Examples.)

Matrix indexing using is not recommended, and barely supported. For extractitTjrst coerced
to a matrix. For replacement a logical matrix (only) can be used to select the elements to be replaced
in the same way as for a matrix.

Both[and[[extraction methods partially match row namfs. partially matches column names
(depending on the value ekact : the default is to allow partial matches with a warning) whereas
[does not. If you want to do exact matching on row namesnesieh as in the examples.

Value

For[adataframe, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a matrix results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a 'missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the rédultlis

For[[a column of the data frame &ULL (extraction with one index) or a length-one vector
(extraction with two indices).

For$, a column of the data frame (bIULL).
For[<- ,[[<- and$<-,adata frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has changed
duringR’s development. This section is a guide only.

When[and[[are used to add or replace a whole column, no coercion takes placalbait will
be replicated (by calling the generic functimp) to the right length if an exact number of repeats
can be used.

When[is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

Extract.data.frame 141

When[and[[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrixhdtigeated as a series of
columns (aglata.frame andas.data.frame do) but inserted as a single column.

Warning
The default behaviour when only onew is left is equivalent to specifyindrop = FALSE . To
drop from a data frame to a lisfrop = TRUE has to be specified explicitly.

See Also

subset which is often easier for extractiodata.frame , Extract

Examples

sw <- swiss[1:5, 1:4] # select a manageable subset

sw[1:3] # select columns

sw[, 1:3] # same

sw[4:5, 1:3] # select rows and columns
sw[1] # a one-column data frame
sw[, 1, drop = FALSE] # the same

sw[, 1] # a (unnamed) vector
sw[[1]] # the same

sw[l,] # a one-row data frame

sw[l,, drop=TRUE] # a list

sw['C",] # partially matches
sw[match("C", row.names(sw)),] # no exact match

swiss[c¢(1, 1:2),] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
sw

adding a column

sw['newl"] <- LETTERS[1:5] # adds a character column
sw[['new2"]] <- letters[1:5] # ditto

sw[, "new3"] <- LETTERS[1:5] # ditto

sw$newsd <- 1:5

sapply(sw, class)

swnew4d <- NULL # delete the column
sw

sw[6:8] <- list(letters[10:14], NULL, aa=1:5)

delete col7, update 6, append

sw

matrices in a data frame

A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters[1:9],3,3)))
A[1:3, "y"] # a matrix

A[1:3, "Z"] # a matrix

Al "y # a matrix

142 Extract.factor

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

S3 method for class 'factor"

X[..., drop = FALSE]

S3 method for class ‘factor"

X[[--.1]

S3 replacement method for class ‘factor":
X[...] <- value

Arguments
X a factor
a specification of indices — s&tract
drop logical. If true, unused levels are dropped.
value character: a set of levels. Factor values are coerced to character.
Details

When unused levels are dropped the ordering of the remaining levels is preserved.
If value isnotinlevels(x) , amissing value is assigned with a warning.
Any contrasts assigned to the factor are preserved untkep=TRUE.

The[[method supports argumeetact .

Value

A factor with the same set of levels asunlessdrop=TRUE.

See Also

factor , Extract

Examples

following example(factor)

(ff <- factor(substring("statistics”, 1:10, 1:10), levels=letters))
ff[, drop=TRUE]

factor(letters[7:10])[2:3, drop = TRUE]

Extremes 143

Extremes Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage
max(..., ha.rm = FALSE)
min(..., na.rm = FALSE)

pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)

pmax.int(..., na.rm = FALSE)
pmin.int(..., na.rm = FALSE)

Arguments
numeric or character arguments (see Note).
na.rm a logical indicating whether missing values should be removed.
Details

max andmin return the maximum or minimum dll the values present in their arguments, as
integer ifallarelogical orinteger ,asdouble ifallare numeric, and character otherwise.

If na.rm is FALSEanNAvalue in any of the arguments will cause a valuéNéfto be returned,
otherwiseNAvalues are ignored.

The minimum and maximum of a numeric empty set-am& and-Inf (in this order!) which
ensuregransitivity, e.g.,min(x1, min(x2)) == min(x1, x2) . For numericx max(x)

== -Inf andmin(x) == +Inf whenevelength(x) == (after removing missing values
if requested). Howevepmax and pmin return NAif all the parallel elements ardA even for
na.rm = TRUE.

pmax andpmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘parallel’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result
is the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs
are recycled if necessangattributes (such asnames or dim) are transferred from the first
argument (if applicable).

pmax.int andpmin.int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordered.)

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments should be unnamed, and
dispatch is on the first argument.

By definition the min/max of any vector containing aNis NaN except that the min/max of any
vector containing aiNAis NAeven if it also contains aNaN Note thatmax(NA, Inf) == NA
even though the maximum would b& whatever the missing value actually is.

144 Extremes

The max/min of an empty character vector is a charadier(One could argue that &% is the
smallest character element, the maximum should'bebut there is no obvious candidate for the
minimum.)

Value

Formin or max, a length-one vector. F@min or pmax, a vector of length the longest of the input
vectors.

The type of the result will be that of the highest of the inputs in the hierarchy integer < real <
character.

Formin andmaxif there are only numeric inputs and all are empty (after possible remoxs)f
the result is doublelff or-Inf).

S4 methods

max andmin are part of the S&ummary group generic. Methods for them must use the signature
X, ..., ha.rm

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reason\ULL is accepted as equivalentitdeger(0)

pmax and pmin will also work on classed objects with appropriate methods for comparison,
is.na andrep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

range (both min and max) andvhich.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

‘plotmatHh for the use ofmin in plot annotation.

Examples

require(stats); require(graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #> 5 numbers

X <- sort(rnorm(100)); cH <- 1.35
pmin(cH, quantile(x)) # no names
pmin(quantile(x), cH) # has names
plot(x, pmin(cH, pmax(-cH, X)), type='b', main= "Huber's function")

factor 145

factor Factors

Description

The functionfactor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). dfdered is TRUE the factor levels are assumed to be ordered.
For compatibility with S there is also a functiondered

is.factor ,is.ordered , as.factor andas.ordered are the membership and coercion
functions for these classes.

Usage

factor(x = character(),
levels = sort(unique.default(x), na.last

= TRUE),
labels = levels, exclude = NA, ordered =

is.ordered(x))
ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

Arguments
X a vector of data, usually taking a small number of distinct values.
levels an optional vector of the values thatmight have taken. The default is the set
of values taken by, sorted into increasing order.
labels eitheran optional vector of labels for the levels (in the same ordéeasls
after removing those iexclude), or a character string of length 1.
exclude a vector of values to be excluded when forming the set of levels. This should be
of the same type as, and will be coerced if necessary.
ordered logical flag to determine if the levels should be regarded as ordered (in the order
given).
(inordered(.)): any of the above, apart froordered itself.
Details

The type of the vectax is not restricted.

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the valuesdlude are removed from
levels . If x[i] equalslevels[j] , then thei -th element of the result is. If no match is
found forx[i] inlevels ,thenthea -th element of the result is set A

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those inexclude , but this can be altered by supplyitapels . This should either be a set of

146 factor

new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor(x, exclude=NULL) applied to a factor is a no-operation unless there are unused lev-
els: in that case, a factor with the reduced level set is returnezkcliide is used it should also
be a factor with the same level setasr a set of codes for the levels to be excluded.

The codes of a factor may contdA For a numerix, setexclude=NULL to makeNAan extra
level ('NA"), by default the last level.

If "NA" is a level, the way to set a code to be missing is toisis& on the left-hand-side of an
assignment. Under those circumstances missing values are prirkéthas

is.factor is generic: you can write methods to handle specific classes of objeclsiseel-
Methods

Value

factor returns an object of clasactor" which has a set of integer codes the lengti @fith
a'"levels" attribute of modeharacter . If ordered is true (orordered is used) the result
has clasg("ordered", "factor")

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see algfactor for a more transparent way to achieve this.

is.factor returnsTRUEor FALSE depending on whether its argument is of type factor or not.
Correspondinglyis.ordered returnsTRUEwhen its argument is ordered aRALSEotherwise.

as.factor coerces its argument to a factor. It is an abbreviated forfaaibr

as.ordered(x) returnsx if this is ordered, andrdered(x) otherwise.

Warning

The interpretation of a factor depends on both the codes antietveds” attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particutarmeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform & féxtor
its original numeric valuesgs.numeric(levels(f))[f] is recommended and slightly more
efficient thanas.numeric(as.character(f))

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

Comparison operators and group generic methods

There are'factor" and"ordered"” methods for thgroup generi®©ps, which provide meth-
ods for theComparisonoperators. (The rest of the group and tlath and Summary groups
generate an error as they are not meaningful for factors.)

Only == and!= can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Sorting is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

file.access 147

Note

Storing character data as a factor is more efficient storage if there is even a small proportion of
repeats. On a 32-bit machine storing a stringudfytes take28 + 8[(n + 1)/8] bytes whereas
storing a factor code takes 4 bytes. (On a 64-bit machine 28 is replaced by 56 or more.) Only if they
were computed from the same values (or in some cases read from a filcasepwill identical

strings share storage.

References

Chambers, J. M. and Hastie, T. J. (19%2atistical Models in SNadsworth & Brooks/Cole.

See Also

[.factor for subsetting of factors.

gl for construction of balanced factors a@dor factors with specified contrastéevels and
nlevels for accessing the levels, andclass to get integer codes.

Examples

(ff <- factor(substring("statistics”, 1:10, 1:10), levels=letters))
as.integer(ff) # the internal codes

factor(ff) # drops the levels that do not occur

ff[, drop=TRUE] # the same, more transparently

factor(letters[1:20], labels="letter")

class(ordered(4:1)) # "ordered", inheriting from “factor"

suppose you want "NA" as a level, and to allowing missing values.
(x <- factor(c(1, 2, "NA"), exclude = "))

is.na(x)[2] <- TRUE
X #[1] 1 <NA> NA, <NA> used because NA is a level.

is.na(x)
[1] FALSE TRUE FALSE
factor()
file.access Ascertain File Accessibility
Description

Utility function to access information about files on the user's file systems.

Usage

file.access(names, mode = 0)

Arguments

names character vector containing file names.
mode integer specifying access mode required.

148 file.choose

Details
Tilde-expansion is done amames: seepath.expand

Themode value can be the exclusive or of the following values

0 test for existence.

1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not good to use this function to test before trying to open a file. On a multi-
tasking system, it is possible that the accessibility of a file will change between the time you call
file.access() and the time you try to open the file. It is better to wrap file open attempts in

try .
Value

An integer vector with valueB for success anel for failure.

Note

This is intended as a replacement for the S-PLUS funaiiress , a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return falsefisr
success

See Also

file.info , try

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new = FALSE)

Arguments

new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.

file.info 149

Value

A character vector of length one giving the file path.

See Also
list.files for non-interactive selection.
file.info Extract File Information
Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

character vectors containing file paths.

Details

The file paths are tilde-expanded: gegh.expand
What is meant by ‘file access’ and hence the last access time is system-dependent.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logichtead
(4), write (2) and execute/search (1) permissions.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

A data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of clasSoctmode” . The file permissions, printed in octal, for example
644.

mtime, ctime, atime
integer of clasSPOSIXct" : file modification, creation and last access times.

uid integer: the user ID of the file’s owner.

gid integer: the group ID of the file’s group.
uname characteruid interpreted as a user name.
grname charactergid interpreted as a group name.

Unknown user and group names will N\

Entries for non-existent or non-readable files will & The uid , gid , uname and grname
columns may not be supplied on a non-POSIX Unix system.

150 file.path

Note

Some (broken) systems allow files of more than 2Gb to be created but not accessedtay the
system call. Such files will show up as non-readable (and very likely not be readable byRisy of
input functions).

See Also

files , file.access , list.files , andDateTimeClasses for the date formats.

Examples

ncol(finf <- file.info(dir()))# at least six

Not run: finf # the whole list

Those that are more than 100 days old :
finf[difftime(Sys.time(), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep = .Platform$file.sep)

Arguments
character vectors.
fsep the path separator to use.
Value

A character vector of the arguments concatenated term-by-term and separttep by all argu-
ments have positive length; otherwise, an empty character vector.

file.show 151

file.show Display One or More Files

Description

Display one or more files.

Usage
file.show(..., header = rep(", nfiles),
titte = "R Information”,
delete.file = FALSE, pager = getOption("pager"),
encoding = ™)
Arguments
one or more character vectors containing the names of the files to be displayed.
These will be tilde-expanded: spath.expand
header character vector (of the same length as the number of files specified i
giving a header for each file being displayed. Defaults to empty strings.
title an overall title for the display. If a single separate window is used for the display,
title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.
delete file should the files be deleted after display? Used for temporary files.
pager the pager to be used.
encoding character string giving the encoding to be assumed for the file(s).
Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such apage.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by thmager argument, which is a character vector specifying a system
command (usuallfess) to run on the set of files.

Most GUI systems will use a separate pager window for each file, and let the user leave it up while
R continues running. The selection of such pagers could either be done using special pager names
being intercepted by lower-level code (such'iaernal” and"console” on Windows), or

by letting pager be an R function which will be called with the same first four arguments as
file.show and take care of interfacing to the GUI.

Not all implementations will honouwtelete.file

Author(s)
Ross lIhaka, Brian Ripley.

See Also

files , list.files , help .

152 files

Examples

file.show(file.path(R.home("doc"), "COPYRIGHTS"))

files File and Directory Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create(...)

file.exists(...)

file.remove(...)

file.rename(from, to)

file.append(filel, file2)

file.copy(from, to, overwrite = FALSE)

file.symlink(from, to)

dir.create(path, showWarnings = TRUE, recursive = FALSE)

Arguments

.., filel, file2, from, to
character vectors, containing file names or paths.

path a character vector containing a single path name.
overwrite logical; should the destination files be overwritten?
showWarnings logical; should the warnings on failure be shown?

recursive logical: should elements of the path other than the last be created? If true, like
Unix’s mkdir -p

Details
The... arguments are concatenated to form one character string: you can specify the files sepa-
rately or as one vector. All of these functions expand path namegaskexpand
file.create creates files with the given names if they do not already exist and truncates them
if they do.
file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the systestat call: a file will be reported as existing only if you
have the permissions neededdigt . Existence can also be checkedfiyy.access , Which

might use different permissions and so obtain a different result. Note that the existence of a file
does not imply that it is readable: for that Uge.access)

file.remove attempts to remove the files named in its argument.
file.rename attempts to rename a single file.

file.append attempts to append the files named by its second argument to those named by its
first. TheR subscript recycling rule is used to align names given in vectors of different lengths.

findInterval 153

file.copy works in a similar way tdile.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unkasswrite = TRUE . The
to argument can specify a single existing directory.

file.symlink makes symbolic links on those Unix-like platforms which support them.tdhe
argument can specify a single existing directory.

dir.create creates the last element of the path, unlessirsive = TRUE . Trailing path
separators are removed.
Value

dir.create andfile.rename return a logical, true for success.

The remaining functions return a logical vector indicating which operation succeeded for each of
the files attempted.

dir.create will return failure if the directory already exists.

Author(s)
Ross Ihaka, Brian Ripley

See Also
file.info , file.access , file.path , file.show , list.files , unlink ,
basename, path.expand
file_test

Examples

cat("file A\n", file="A")
cat("file B\n", file="B")
file.append("A", "B")
file.create("A")

file.append("A", rep("B", 10))
if(interactive()) file.show("A")
file.copy("A", "C")
dir.create("tmp")
file.copy(c("A", "B"), "tmp")
list.files("tmp")

setwd("tmp")

file.remove("B")
file.symlink(file.path("..", c("A", "B")), ".")
setwd("..")

unlink("tmp", recursive=TRUE)
file.remove("A", "B", "C")

findinterval Find Interval Numbers or Indices

Description

Find the indices ofx in vec, wherevec must be sorted (non-decreasingly); i.e.,iik-
findInterval(x,v) , we havev;, < z; < v;;41 Wherevg := —oo, vx41 1= +o0, andN

<- length(vec) . At the two boundaries, the returned index may differ by 1, depending on the
optional argumentsghtmost.closed andall.inside

154 findInterval

Usage

findinterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments
X numeric.
vec numeric, sorted (weakly) increasingly, of lengthsay.
rightmost.closed
logical; if true, the rightmost intervaljec[N-1] .. vec[N] is treated as
closed see below.
all.inside logical; if true, the returned indices are coerced ifito..., N — 1}, i.e., Ois
mappedto 1 andv to N — 1.
Details
The functionfindinterval finds the index of one vectot in another,vec, where the lat-
ter must be non-decreasing. Where this is trivial, equivalerapply(outer(x, vec,
">="), 1, sum) , as a matter of fact, the internal algorithm uses interval search ensuring

O(nlog N) complexity wheren <- length(x) (andN <- length(vec)). For (almost)
sortedx, it will be even faster, basicall§)(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval(t, sort(X)) is identicalto nF, (¢; X1, ..., X,) whereF,, is the empirical
distribution function ofX4, ..., X,,.

Whenrightmost.closed = TRUE , the result forx[j] = vec[N] (= max(vec)),isN -
1 as for all other values in the last interval.

Value

vector of lengtHength(x) with values inO:N (andNA) whereN <- length(vec) , or val-
ues coerced tt:(N-1) ifand onlyifall.inside = TRUE (equivalently coercing all x values
insidethe intervals). Note thallAs are propagated from, andInf values are allowed in botk
andvec .

Author(s)

Martin Maechler

See Also

approx (*, method = "constant") which is a generalization dfindinterval() ,
ecdf for computing the empirical distribution function which is (up to a factompfalso basi-
cally the same as findInterval(.).

Examples

N <- 100

X <- sort(round(stats::rt(N, df=2), 2))

tt <- ¢(-100, seq(-2,2, len=201), +100)

it <- findinterval(tt, X)

ttit < 1 | it >= N] # only first and last are outside range(X)

force 155

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force(x)

Arguments

X a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of othamomises (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implemenigzy evaluatior)

Examples

f <- function(y) function() y

If <- vector("list", 5)

for (i in seq(along = If)) If[[i]] <- f(i)
If[1]1) # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)

for (i in seq(along = Ig)) Ig[[il] <- g(i)
I9[[1]]() # returns 1

This is identical to
g <- function(y) { y; function() y }

156 Foreign

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loadeRinto

Usage

TRUE, PACKAGE, ENCODING)

.C(name, ..., NAOK = FALSE, DUP =
= TRUE, PACKAGE, ENCODING)

.Fortran(name, ..., NAOK = FALSE, DUP
.External(name, ..., PACKAGE)
.Call(name, ..., PACKAGE)

.External.graphics(name, ..., PACKAGE)
.Call.graphics(name, ..., PACKAGE)

Arguments

name a character string giving the name of a C function or Fortran subroutine, or an
object of class' NativeSymbolinfo " or" NativeSymbol " referring to
such a name.

arguments to be passed to the foreign function.

NAOK if TRUEthen anyNAor NaNor Inf values in the arguments are passed on to
the foreign function. IfFALSE, the presence diAor NaNor Inf values is
regarded as an error.

DUP if TRUEthen arguments are duplicated before their address is passed to C or
Fortran.

PACKAGE if supplied, confine the search for thame to the DLL given by this argument
(plus the conventional extensiasp ,.sl ,.dll ,...). Thisisintended to add
safety for packages, which can ensure by using this argument that no other pack-
age can override their external symbols. BP#CKAGE="base" for symbols
linked in toR.

ENCODING optional name for an encoding to be assumed for character vectors. See ‘De-
tails’.

Details

The functionsC and.Fortran can be used to make calls to compiled C and Fortran code.

.External and.External.graphics can be used to call compiled code that uResbjects
in the same way as internBl functions.

.Call and.Call.graphics can be used to call compiled code which makes use of internal
R objects. The arguments are passed to the C code as a sequéhabjetts. It is included to
provide compatibility with S version 4.

SpecifyingENCODINCoverrrides any declared encodings ($@&{Encoding}) which are
otherwise used to translate to the current locale before passing the strings to the compiled code.

For details about how to write code to use wiall and.External , see the chapter on “Sys-
tem and foreign language interfaces” in the “WritiRgextensions” manual.

Foreign 157

Value
The functionsC and.Fortran return a list similar to the.. list of arguments passed in, but
reflecting any changes made by the C or Fortran code.
.External ,.Call ,.External.graphics , and.Call.graphics return anR object.

These calls are typically made in conjunction wiyn.load which links DLLs toR.

The.graphics versions of.Call and.External are used when calling code which makes
low-level graphics calls. They take additional steps to ensure that the device driver display lists are
updated correctly.

Argument types

The mapping of the types &t arguments to C or Fortran arguments@ or .Fortran is

R C Fortran

integer int * integer

numeric double * double precision

—or— float * real

complex Rcomplex * double complex

logical int * integer

character char ** [see below]

raw unsigned char * not allowed

list SEXP * not allowed

other SEXP not allowed
Numeric vectors irR will be passed as typdouble * to C (and aglouble precision to

Fortran) unless (i)C or .Fortran is used, (ii)DUPIs true and (iii) the argument has attribute
Csingle settoTRUE(useas.single orsingle). This mechanism is only intended to be
used to facilitate the interfacing of existing C and Fortran code.

The C typeRcomplex is defined in Complex.h’ as atypedef struct {double r;
double i;} . Fortran typedouble complex is an extension to the Fortran standard, and the
availability of a mapping o€omplex to Fortran may be compiler dependent.

Note: The C types corresponding toteger andlogical areint , notlong asin S. This
difference matters on 64-bit platforms.

The first character string of a character vector is passed as a C character array to Fortran: that
string may be usable aharacter 255 if its true length is passed separately. Only up to 255
characters of the string are passed back. (How well this works, or even if it works at all, depends on
the C and Fortran compilers and the platform.)

Missing (NA string values are passed.t© as the string "NA". As the €har type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA" . If this distinction is important useCall

Functions, expressions, environments and other language elements are passed as th& internal
pointer typeSEXPR This type is defined inRinternals.h’ or the arguments can be declared as
generic pointersyoid * . Lists are passed as C arraysSEXPand can be declared aeid *

or SEXP * Note that you cannot assign values to the elements of the list within the C routine.
Assigning values to elements of the array corresponding to the list bypasses R's memory manage-
ment/garbage collection and will cause problems. Essentially, the array corresponding to the list is
read-only. If you need to return S objects created within the C routine, us€dlie interface.

R functions can be invoked usirggll_S orcall R and can be passed lists or the simple types
as arguments.

158 Foreign

Warning

DUP=FALSHSs dangerous.
There are two dangers with usibyJP=FALSE

The first is that if you pass a local variable.®@/.Fortran with DUP=FALSE your compiled

code can alter the local variable and not just the copy in the return list. Worse, if you pass a local
variable that is a formal parameter of the calling function, you may be able to change not only the
local variable but the variable one level up. This will be very hard to trace.

The second is that lists are passed as a sRgd&XPwith DUP=FALSEnot as an array ddEXP
This means the accessor macrosRimternals.h’ are needed to get at the list elements and the lists
cannot be passed tall_ S /call R . New code usindr objects should be written usingall

or .External , so this is how only a minor issue.

In addition, character vectors and lists cannot be useditR=FALSE

It is safe and useful to s®@UP=FALSE(f you do not change any of the variables that might be
affected, e.g.,

.C("Cfunction", input=x, output=numeric(10))

In this case the output variable did not exist before the call so it cannot cause trouble. If the input
variable is not changed in the C codeGfiuinction you are safe.

Neither.Call nor.External copy their arguments. You should treat arguments you receive
through these interfaces as read-only.

Fortran symbol names

All compilers that can be used witk map symbol names to lower case, and so dBedran

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers (includirgy 7) will allow them but translate them in a different

way to names not containing underscores. Such names will work.®dttiran , but portable

code should not use Fortran names containing underscores.

Use.Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran compiler used when configuRngspecially if the subroutine name
is not lower-case or includes an underscore.

Header files for external code

Writing code for use withExternal and.Call will need to use internaR structures. If
possible use just those defined Rinternals.h’ and/or the macros irRdefines.h’, as other header
files are not installed and are even more likely to be changed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole. (C and.Fortran)

Chambers, J. M. (199&rogramming with Data. A Guide to the S Langua8eringer. (Call .)

See Also

dyn.load

formals 159

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun, envir = environment(fun)) <- value

Arguments
fun a function object, or see ‘Details’.
envir environment in which the function should be defined.
value a list (or pairlist) ofR expressions.

Details

For the first formfun can also be a character string naming the function to be manipulated, which
is searched for from the parent environment. If it is not specified, the function cilingls is
used.

Only closureshave formals, not primitive functions.

Value

formals returns the formal argument list of the function specified, paidist , or NULL for
a non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function.

See Also

args for a human-readable versiaaljst , body , function

Examples

require(stats); require(graphics)
length(formals(Im)) # the number of formal arguments
names(formals(boxplot)) # formal arguments names

f <- function(x) a+b
formals(f) <- alist(a=,b=3) # function(a,b=3)a+b
f(2) # result = 5

160

format

format Encode in a Common Format

Description

Format arR object for pretty printing.

Usage

format(x, ...)

Default S3 method:
format(x, trim = FALSE, digits = NULL, nsmall = 0,
justify = c("left", "right", "centre", "none"),
width NULL, na.encode = TRUE, scientific = NA,
big.mark = ", big.interval = 3,
small.mark = ™, small.interval = 5,
decimal.mark = ".", zero.print = NULL, ...

S3 method for class 'data.frame':
format(x, ..., justify = "none")

S3 method for class ‘factor':
format(x, ...)

S3 method for class 'Asls"
format(x, width = 12, ...)

Arguments

X anyR object (conceptually); typically numeric.

trim logical; if FALSE, logical, numeric and complex values are right-justified to a

common width: ifTRUEthe leading blanks for justification are suppressed.

digits how many significant digits are to be used for numeric and compleXhe

default, NULL, usesgetOption (digits) . This is a suggestion: enough
decimal places will be used so that the smallest (in magnitude) number has this

many significant digits, and also to satisfgmall . (For the interpretation for

complex numbers sesgnif)

nsmall the minimum number of digits to the right of the decimal point in format-

ting real/complex numbers in non-scientific formats. Allowed valueare=

nsmall <= 20

justify should acharactervector be left-justified (the default), right-justified, centred

or left alone.

width default method: theminimumfield width orNULL or O for no restriction.
Asls method: thanaximumfield width for non-character object®IULL cor-

responds to the default 12.

na.encode logical: shouldNAstrings be encoded?

format 161

scientific Either a logical specifying whether elements of a real or complex vec-
tor should be encoded in scientific format, or an integer penalty (see
options ("scipen”) . Missing values correspond to the current default
penalty.

further arguments passed to or from other methods.

big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print
used for prettying longer decimal sequences, passprettyNum : that help
page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods for
dates (seé¢ormat.Date), date-times (seformat.POSIXct)) and for other classes such as
format.octmode andformat.dist

format.data.frame formats the data frame column by column, applying the appropriate
method offormat for each column. Methods for columns are often similaasccharacter

but offer more control. Matrix and data-frame columns will be converted to separate columns in the
result, and character columns (normally all) will be given claasls "

format.factor converts the factor to a character vector and then calls the default method (and
sojustify applies).

format.Asls deals with columns of complicated objects that have been extracted from a data
frame. Character objects are passed to the default method (amdtbo does not apply). Other-
wise it callstoString to convert the object to character (if a vector or list, element by element)
and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods) is
done on display width (seechar), taking double-width characters and the rendering of special
characters (as escape sequences, including escaping backslaghintséefault) into ac-

count. Character strings are padded with blanks to the display width of the widest.diifcode

= FALSE missing character strings are not included in the width computations and are not en-
coded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least thdigit significant digits. However, if all the elements then have trailing
zeroes, the number of decimal places is reduced until at least one element has a non-zero final digit.

Raw vectors are converted to their 2-digit hexadecimal representatias.tiyaracter

Value

An object of similar structure t& containing character representations of the elements of the first
argumeni in a common format.

For numeric or complex, dims and dimnames are preserved on matrices/arrays and names on
vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by appliongat.default(x, ...)

to each element of the list (aftenlist ing elements which are themselves lists), and then col-
lapsing the result for each element withste(collapse = ", ") . The defaults in this case
aretrim = TRUE, justify = "none" since one does not usually want alignment in the
collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

162 format.Date

See Also

format.info indicates how an atomic vector would be formatted.

formatC , paste , as.character ,sprintf , print ,toString , encodeString

Examples

format(1:10)
format(1:10, trim = TRUE)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)
format(zz)
format(zz, justify = "left")

use of nsmall
format(13.7)

format(13.7, nsmall = 3)
format(c(6.0, 13.1), digits
format(c(6.0, 13.1), digits

2)
2, nsmall = 1)

use of scientific
format(2731-1)
format(2731-1, scientific = TRUE)

a list

z <- list(a=letters[1:3], b=(-pi+0i)*((-2:2)/2), c=c(1,10,100,1000),
d=c("a", "longer", "character", "string"))

format(z, digits = 2)

format(z, digits = 2, justify = "left", trim = FALSE)

format.Date Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects 0Da#&ss representing
calendar dates.

Usage

as.Date(x, ...)
S3 method for class ‘character”
as.Date(x, format = "™, ..)

S3 method for class 'Date":
format(x, ...)

S3 method for class 'Date':
as.character(x, ...)

format.Date 163

Arguments
X An object to be converted.
format A character string. The default'18Y-%m-%d". For details sestrftime
Further arguments to be passed from or to other methods, inclfofingat
for as.character andas.Date methods.
Details

The usual vector re-cycling rules are appliecktandformat so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, loghAland objects of classes
"POSIXIt " and" POSIXct ". (The last are converted to days by ignoring the time after mid-
night in the representation of the time in UTC.) Also objects of cldsse” (from packagealate

or survival) and"dates" (from packagechron). Character strings are processed as far as neces-
sary for the format specified: any trailing characters are ignored.

See the examples for how to convert a day given as the number of days since an epoch.
Theformat andas.character methods ignore any fractional part of the date.

Value

Theformat andas.character methods return a character vector representing the date.

Theas.Date methods return an object of clasBate " .

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as"2001-02-03"

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA Unfortunately some common implementations (suchgéib¢ ') are unreliable and guess at

the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

References

International Organization for Standardization (2004, 1988, 1997,1SO) 8601. Data elements
and interchange formats — Information interchange — Representation of dates and tioes.
links to versions available on-line see (at the time of writihtp:// www.gsl.net/glsmd/
isopdf.htm ; for information on the current official version, sé&p://www.iso.org/
iso/en/prods-services/popstds/datesandtime.html

See Also

Datefor details of the date claskjcales to query or set a locale.
Your system'’s help pages atrftime andstrptime to see how to specify their formats.

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

164 format.info

Examples

locale-specific version of the date
format(Sys.Date(), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
Ict <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")

X <- ¢("1jan1960", "2jan1960", "31mar1960", "30jul1960")

z <- as.Date(x, "%d%b%Y")

Sys.setlocale("LC_TIME", Ict)

z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date(dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date("1900-01-01") + 32768

format.info format(.) Information
Description
Information is returned on hoformat (x, digits, nsmall) would be formatted.
Usage

format.info(x, digits = NULL, nsmall = 0)

Arguments
X an atomic vector; a potential argumentfofmat (x, ...)
digits how many significant digits are to be used for numeric and comypleXhe
default,NULL, usegyetOption (digits)
nsmall (seeformat (..., nsmall)).
Value

Aninteger vector oflength1, 3 or6, say.

For logical, integer and character vectors a single element, the width which would be used by
format if width = NULL .

For numeric vectors:

1] width (in characters) used bgrmat(x)

r2] number of digits after decimal point.

r[3] in 0:2 ; if >1, exponentiaftepresentation would be used, with exponent length
of r[3]+1

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

format.pval 165

See Also

format , formatC .

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following
format.info(123) # 3 0
format.info(pi) # 86
format.info(1e8) # 5 0
format.info(1e222) # 6 0

- exponential "1e+08"
- exponential "le+222"

N Co

X <- pi*10”c(-10,-2,0:2,8,20)

names(x) <- formatC(x, width=1, digits=3, format="g")
cbind(sapply(x,format))

t(sapply(x, format.info))

using at least 8 digits right of "."
t(sapply(x, format.info, nsmall = 8))

Reset old options:

options(dd)
format.pval Format P Values
Description
format.pval is intended for formatting p-values.
Usage

format.pval(pv, digits = max(1l, getOption("digits") - 2),
eps = .Machine$double.eps, na.form = "NA")

Arguments
pv a numeric vector.
digits how many significant digits are to be used.
eps a numerical tolerance: see ‘Details’.
na.form character representation Nfs.
Details
format.pval is mainly an auxiliary function foprint.summary.Im etc., and does separate
formatting for fixed, floating point and very small values; those less ¢ipsnare formatted a%<
[eps]" (where ‘[eps] stands foformat(eps, digits)).
Value

A character vector.

166 formatC

Examples

format.pval(c(stats::runif(5), pi*-100, NA))
format.pval(c(0.1, 0.0001, le-27))

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, usif@style format specifications.

Usage
formatC(x, digits = NULL, width = NULL,
format = NULL, flag = ", mode = NULL,
big.mark = ", big.interval = 3,
small.mark = "™, small.interval = 5,
decimal.mark = ".", preserve.width = "individual™)
prettyNum(x, big.mark = ", big.interval = 3,
small.mark = "™, small.interval = 5,
decimal.mark = ".",
preserve.width = c("common”, "individual®, "none"),
zero.print = NULL, ..)
Arguments
X an atomic numerical or character object, typically a vector of real numbers.
digits the desired number of digits after the decimal pofatrfat = "f*) or sig-

nificantdigits format = "g" ,= "e" or= "fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6 digits
is used. If specified as more than 50, 50 will be used with a warning. (Not more
than about 15 digits will be significant, and this limit is just a precaution against
segfaults in the underlying C runtime.)

width the total field width; if bothdigits and width are unspecifiedwidth
defaults to 1, otherwise tdigits + 1 . width = 0 will use width =
digits ,width < 0 means left justify the number in this field (equivalent to
flag ="-"). If necessary, the result will have more characters thiith .

format equal to"d" (for integers),"f* ,"e" ,"E","g" ,"G", "fg" (for reals), or
"s" (for strings). Default isd" for integers,'g" for reals.
"f* gives numbers in the usualxx.xxx format; "e" and "E" give
n.ddde+nn orn.dddE+nn (scientific format);'g" and"G" putx[i] into
scientific format only if it saves space to do so.
"fg" usesfixed formatd$" , butdigits asthe minimum number signif-
icantdigits. That this can lead to quite long result strings, see examples below.
Note that unlikesignif this prints large numbers with more significant digits
thandigits

formatC 167

flag ForformatC , a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243)'0" pads leading zeros:" does left adjustment,
others aré'+" , " " , and"#" . There can be more than one of these, in any

order.

mode "double” (or "real"), "integer" or "character" . Default: Deter-
mined from the storage mode »f

big.mark character; if not empty used as mark between ebagynterval decimals
before(hencebig) the decimal point.

big.interval seebig.mark above; defaults to 3.

small.mark character; if not empty used as mark between esgeargll.interval deci-

malsafter (hencesmall) the decimal point.
small.interval
seesmall.mark above; defaults to 5.

decimal.mark the character to be used to indicate the numeric decimal point.

preserve.width
string specifying if the string widths should be preserved where possible in those
cases where markbig.mark orsmall.mark) are added.common", the
default, corresponds format -like behavior wherea$ndividual" is the
default informatC()

zero.print logical, character string ddULL specifying if and howzerosshould be format-
ted specially. Useful for pretty printing ‘sparse’ objects.

arguments passed format .

Details

If you setformat it overrides the setting ahode, soformatC(123.45, mode="double",
format="d") gives123.

The rendering of scientific format is platform-dependent: some systems.ddde+nnn or
n.dddenn rather tham.ddde+nn .

formatC does not necessarily align the numbers on the decimal poirfibrs@atC(c(6.11,
13.1), digits=2, format="fg") givesc("6.1", " 13") . If you want common for-
matting for several numbers, ukgmat .

prettyNum is the utility function for prettifyingx. If x is not a characterformat(x]i],

...) isapplied to each element, and then it is left unchanged if all the other arguments are at their
defaults. Note thaprettyNum(x) may behave unexpectedlyxfis acharacter vector not
resulting from something likéormat(<number>) : in particular it assumes that a period is a
decimal mark.

Value

A character object of same size and attributex adJnlike format , each number is formatted
individually. Looping over each elementfthe C functiorsprintf(...) is called (inside the
C functionstr_signif).

formatC : for charactex, do simple (left or right) padding with white space.

Author(s)

formatC was originally written by Bill Dunlap, later much improved by Martin Maechler. It was
first adapted foR by Friedrich Leisch.

168 formatDL

References

Kernighan, B. W. and Ritchie, D. M. (1988he C Programming Languag8econd edition. Pren-
tice Hall.

See Also

format
sprintf for more general C like formatting.

Examples

XX <- pi * 10"(-5:4)

cbind(format(xx, digits=4), formatC(xx))

cbind(formatC(xx, width 9, flag = "-"))

cbind(formatC(xx, digits = 5, width = 8, format = "f', flag = "0"))
cbind(format(xx, digits=4), formatC(xx, digits = 4, format = "fg"))

formatC(c("a", "Abc", "no way"), width = -7) # <=> flag = "
formatC(c((-1:1)/0,c(1,100)*pi), width=8, digits=1)

XX <- c(le-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)

#t 1 2 3 4 5 6
formatC(xx)
formatC(xx, format="fg") # special "fixed" format.

formatC(xx, format="f", digits=80) #>> also long strings

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:
prettyNum(r, big.mark
Some Europeans:

prettyNum(r, big.mark = "", decimal.mark = ",")

")

(dd <- sapply(1:10, function(i)paste((9:0)[1:i],collapse="")))
prettyNum(dd, big.mark="")

examples of 'small.mark’
pN <- stats::pnorm(1:7, lower.tail = FALSE)
cbind(format (pN, small.mark = " ", digits

= 15))
cbind(formatC(pN, small.mark = " "

, digits = 17, format = "f"))

cbind(ff <- format(1.2345 + 107(0:5), width = 11, big.mark = "))
all with same width (one more than the specified minimum)

individual formatting to common width:
fc <- formatC(1.234 + 107(0:8), format="fg", width=11, big.mark = ")
cbind(fc)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

function

Usage

169

formatDL(x, vy, style = c("table", "list"),

Arguments

X

style

width
indent

Details

width = 0.9 * getOption("width"), indent = NULL)

a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.

a vector of the same length aswith the corresponding descriptions. Only used
if x does not already give the descriptions.

a character string specifying the rendering style of the description information.
If "table” , a two-column table with items and descriptions as columns is
produced (similar to Texinfo'®@table environment. If'list" , a LaTeX-
style tagged description list is obtained.

a positive integer giving the target column for wrapping lines in the output.

a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2 |, and defaults tavidth/3 for table style anavidth/9 for list style.

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more thandent - 3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

Examples

Use R to create the 'INDEX' for package 'splines' from its 'CONTENTS'

X <- read.dcf(file

= system.file("CONTENTS", package = "splines"),
fields = c("Entry", "Description™))

X <- as.data.frame(x)

writeLines(formatDL(x$Entry, x$Description))

or equivalently: writeLines(formatDL(x))

Same information in tagged description list style:

writeLines(formatDL(x$Entry, x$Description, style = "list"))
or equivalently: writeLines(formatDL(x, style = "list"))
function Function Definition

Description

These functions provide the base mechanisms for defining new functionsRilémguage.

170 function

Usage

function(arglist) expr
return(value)

Arguments
arglist Empty or one or more hame or name=expression terms.
value An expression.

Details

The names in an argument list can be back-quoted non-standard namédm(depIOt8.

If value is missing,NULL is returned. If it is a single expression, the value of the evaluated
expression is returned.

If the end of a function is reached without callirigurn , the value of the last evaluated expression
is returned.

Warning

Prior toR 1.8.0,value could be a series of non-empty expressions separated by commas. In that
case the value returned is a list of the evaluated expressions, with names set to the expressions where
these are the names Bfobjects. That isa=foo() names the list componeatand gives it the

value which results from evaluatirigo()

This has been deprecated (and a warning is given), as it was never documented in S, and whether or
not the list is named differs by S versions. Supply a (namedydilste instead.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

args andbody for accessing the arguments and body of a function.

debug for debugging; usingnvisible insidereturn(.) for returninginvisibly.

Examples

norm <- function(x) sqrt(x%*%x)
norm(1:4)

An anonymous function:
(function(x,y){ z <- x"2 + y"2; x+y+z }(0:7, 1)

funprog 171

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reduce uses a binary function to successively combine the elements of a given vector and a pos-
sibly given initial value.Filter ~ extracts the elements of a vector for which a predicate (logical)
function gives trueMap applies a function to the corresponding elements of given vectors.

Usage
Reduce(f, x, init, right = FALSE, accumulate = FALSE)
Filter(f, x)
Map(f, ...)
Arguments
f a function of the appropriate arity (binary fReduce, unary forFilter , k-
ary for Mapif this is called withk arguments.
X a vector.
init anR object of the same kind as the elements of
right a logical indicating whether reduction should proceed from left to right (left-
associative, default) or from right to left.
accumulate a logical indicating whether the successive combinations should be accumu-
lated. By default, only the final combination is used.
vectors.
Details

If init is given,Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vectdrasn > 1 elementsReduce successively
appliesf to the elements of from left to right or right to left, respectively. l.e., a left reduce
computed; = f(v1,v2), la = f(l1,v3), etc., and returng,_1; = f(l,,—2,v,), and a right reduce
doesr,—1 = f(vn-1,vn), Tn—2 = f(Vn—2,7n—1) and returng; = f(vy,r2). (E.Q., ifv is the
sequence (2, 3, 4) andis division, left and right reduce giv@/3)/4 = 1/6 and2/(3/4) = 8/3,
respectively.) Ifv has only a single element, this is returned; if there are no elemidbisl is
returned. Thus, it is ensured tHats always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

Reduce is patterned after Common Lispreduce . A reduce is also known as a fold (e.g., in
Haskell) or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version
corresponds to Haskell's scan functions.

Filter applies the unary predicate functibrto each element of, coercing to logical if neces-
sary, and returns the subsetxofor which this gives true. Note that possilé\values are currently
always taken as false; control oldAhandling may be added in the futudéilter ~ corresponds
tofilter in Haskell orremove-if-not in Common Lisp.

Map is a simple wrapper tonapply which does not attempt to simplify the result, similar to
Common Lisp'smapcar (with arguments being recycled, however). Future versions may allow
some control of the result type.

172

Examples

A general-purpose adder:

add <- function(x) Reduce("+", Xx)

add(list(1, 2, 3))

Like sum(), but can also used for adding matrices etc., as it will
use the appropriate '+ method in each reduction step.

More generally, many generics meant to work on arbitrarily many
arguments can be defined via reduction:

FOO <- function(...) Reduce(FOO2, list(...))

FOO2 <- function(x, y) UseMethod("FOO2")

FOO() methods can then be provided via FOO2() methods.

A general-purpose cumulative adder:
cadd <- function(x) Reduce("+", X, accumulate = TRUE)
cadd(seq_len(7))

A simple function to compute continued fractions:

cfrac <- function(x) Reduce(function(u, v) u + 1 / v, X, right = TRUE)
Continued fraction approximation for pi:

cfrac(c(3, 7, 15, 1, 292))

Continued fraction approximation for Euler's number (e):

cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log(exp(acos(cos(0))
Reduce(Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)

function(x) Reduce(Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate(function(x) 1 + 1 / x, 30)(1)
which is the same as
cfrac(rep.int(1, 31))
Computing square root approximations for x as fixed points of the
function t |-> (t + x / t) / 2, as a function of the initial value:
asqgrt <- function(x, n) lterate(function(t) (t + x / t) / 2, n)
asgrt(2, 30)(10) # Starting from a positive value => +sqrt(2)
asqrt(2, 30)(-1) # Starting from a negative value => -sqrt(2)

A list of all functions in the base environment:
funs <- Filter(is.function, sapply(Is(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names(Filter(function(f) length(formals(args(f))) > 10, funs))
Number of functions in base with a '..." argument:
length(Filter(function(f)
any(names(formals(args(f))) %in% "..."),
funs))

gC

gc Garbage Collection

gc 173

Description
A call of gc causes a garbage collection to take plaggnfo sets a flag so that automatic collec-
tion is either silent\ferbose=FALSE) or prints memory usage statistiocee(bose=TRUE).
Usage

gc(verbose = getOption("verbose"), reset=FALSE)
gcinfo(verbose)

Arguments
verbose logical; if TRUE the garbage collection prints statistics about cons cells and the
space allocated for vectors.
reset logical; if TRUEthe values for maximum space used are reset to the current
values.
Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of caltjngs for the report on memory usage.

However, it can be useful to cajc after a large object has been removed, as this may prBnpt
return memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the reptrcefls” , a relict of an
earlier allocator (that used a vector heap).

Whengcinfo(TRUE) s in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0) ...
6.4 Mbytes of cons cells used (58
2.0 Mbytes of vectors used (32

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rowSNcells" (cons cell¥, usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, aficells” (vector cells 8 bytes each), and columhssed” and
"gc trigger” , each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for eith&cells" or"Vcells" , afifth column is printed giving the
current limits in Mb (withNAdenoting no limit).

The final two columns show the maximum space used since the last galreset=TRUE) (or
sinceR started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.
Memory on R's memory management, agdtorture if you are anR developer.
reg.finalizer for actions to happen at garbage collection.

174 gc.time

Examples
gc() # do it now
gcinfo(TRUE) #-- in the future, show when R does it
X <- integer(100000); for(i in 1:18) x <- c(x,i)
gcinfo(verbose = FALSE)#-- don't show it anymore

gc(TRUE)

gc(reset=TRUE)

gc.time Report Time Spent in Garbage Collection
Description
This function reports the time spent in garbage collection so far ifRtkession while GC timing
was enabled.
Usage

gc.time(on = TRUE)

Arguments

on logical; if TRUE GC timing is enabled.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Warnings

This is experimental functionality, likely to be removed as soon as the next release.

The timings are rounded up by the sampling interval for timing processes, and so are likely to be
over-estimates.

See Also

gc, proc.time for the timings for the session.

Examples

gc.time()

gctorture 175

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makéds runveryslowly, unfortunately.

Usage

gctorture(on = TRUE)

Arguments

on logical; turning it on/off.

Value

Previous value.

Author(s)

Peter Dalgaard

get Return the Value of a Named Object

Description

Search for afR object with a given name and return it.

Usage

get(x, pos = -1, envir = as.environment(pos), mode = "any",
inherits = TRUE)

mget(x, envir, mode = "any",
ifnotfound = list(function(x)
stop(paste("value for "™, x,
call. = FALSE)),

inherits = FALSE)

not found", sep = ",

176 get

Arguments
X a variable name (given as a character string).
pos where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in; see the ‘Details’ section.
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?
ifnotfound Alist of values to be used if the item is not found: it will be coerced to list if
necessary.
Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in thearch list); as the character string name of an element
in the search list; or as aenvironment (including usingsys.frame to access the currently
active function calls). Thenvir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the namehas a value bound to it in the specified environment. If
inherits is TRUEand a value is not found for in the specified environment, the enclosing
frames of the environment are searched until the nanie encountered. Seenvironment

and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE s the default behaviour fdR but not for S.

If mode is specified then only objects of that type are sought. floee may specify one of the
collections'numeric” and"function” (seemode): any member of the collection will suffice.

Using aNULL environment is equivalent to using the current environment.

For mget multiple values are returned in a namigst . This is true even if only one value is
requested. The value mode andifnotfound can be either the same length as the number of
requested items or of length 1. The argumiémbtfound must be a list containing either the
value to use if the requested item is not found or a function of one argument which will be called
if the item is not found, with argument the name of the item being requested. The default value for
inherits is FALSE, in contrast to the default behavior fget .

mode here is a mixture of the meanings typeof andmode: "function” covers primitive
functions and operatorSnumeric" , "integer" , "real" and"double" all refer to any
numeric type;'symbol" and"'name" are equivalenbut"language” must be used.

Value

The object found. (If no object is found an error results.)

Note

The reverse oh <- get(nam) isassign (ham, a) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

getCallingDLL 177

See Also

exists ,assign .

Examples
get("%0%")
#test mget

el <- new.env()
mget(letters, el, ifnotfound = as.list(LETTERS))

getCallingDLL Compute DLL for native interface call

Description

This is an internal function that is called from R’s C code to determine the enclosing name space
of a .C/.Call/.Fortran/.External call which has no PACKAGE argument. If the call has been made

from a function within a name space, then we can find the DLL associated with that name space.
The purpose of this is to avoid having to use the PACKAGE argument in these native calls and so
better support versions of packages.

This is an internal function that may be migrated to internal C code in the future and so should not
be used by R programmers.

Usage

getCallingDLL(f = sys.function(-1), doStop = FALSE)
getCallingDLLe(e)

Arguments
f the function whose name space and DLL are to be found. By default, this is
the current function being called which is the one in which the native routine is
being invoked.
doStop a logical value indicating whether failure to find a name space and/or DLL is
an error TRUB or not (FALSE). The default isFALSE so that when this is
called because there is no PACKAGE argument i€a.Call , .Fortran
.External call, no error occurs and the regular lookup is performed by
searching all DLLs in order.
e an environment.
See Also

.C,.Call ,.Fortran ,.External

Examples

if(exists("ansari.test"))
getCallingDLL(ansari.test)

178

getDLL RegisteredRoutines

getDLLRegisteredRoutines

Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e.C, .Call ,.Fortran and.External

Usage

getDLLRegisteredRoutines(dll, addNames = TRUE)

Arguments

dil

addNames

Details

This takes the registration information after it has been registered and processed by the R internals.

a character string obLLInfo object. The character string specifies the file
name of the DLL of interest, and is given without the file hame extension
(e.g. thedll or.so) and with no directory/path information. So a file
MyPackage/libs/MyPackage.so would be specified aglyPackage .

The DLLInfo objects can be obtained directly in calls dgn.load and
library.dynam , or can be found after the DLL has been loaded using
getLoadedDLLs , which returns a list oDLLInfo objects (index-able by
DLL file name).

TheDLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

a logical value. If this iSTRUE the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolinfo objects in the lists.

In other words, it uses the extended information

Value

A list with four elements corresponding to the routines registered for the .C, .Call, .Fortran and

.External interfaces. Each element is a list with as many elements as there were routines registered

for that interface. Each element identifies a routine and is an object oftddis® Symbolinfo
An object of this class has the following fields:

name
address

dll

the registered name of the routine (not necessarily the name in the C code).

the memory address of the routine as resolved in the loaded DLL. This may be
NULLf the symbol has not yet been resolved.

an object of clas®LLInfo describing the DLL. This is same for all elements
returned.

getLoadedDLLs 179

numParameters

the number of arguments the native routine is to be called with. In the future,
we will provide information about the types of the parameters also.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

"Writing R Extensions Manual” for symbol registration. R News, Volume 1/3, September 2001. "In
search of C/C++ & Fortran Symbols™

See Also

getLoadedDLLs

Examples

dils <- getLoadedDLLs()
getDLLRegisteredRoutines(dlIs[["base"]])

getDLLRegisteredRoutines("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description

This function provides a way to get a list of all the Dynamically Loadable Libraries (DLLs) that are
currently loaded in the curre® session.

Usage

getLoadedDLLs()

Details

This queries the internal table that manages the DLLs.

Value

An object of classDLLInfoList" which is a list with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of'Elaknfo" which has
the following entries.

name the abbreviated name.
path the fully qualified name of the file which was dynamically loaded.
dynamicLookup
a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of clas®LLHandle ".

180 getNativeSymbollnfo

Note that the clasBLLInfo has an overloaded method fBmwhich can be used to resolve native
symbols within that DLL. Therefore, one must access the R-level elements described above using
[,e.g.x['name']] orx[[*handle"]]

Note
We are starting to use thlieandle elements in the DLL object to resolve symbols more directly in
R.

Author(s)

Duncan Temple Langduncan@wald.ucdavis.edu

See Also

getDLLRegisteredRoutines , getNativeSymbolinfo

Examples

getLoadedDLLs()

getNativeSymbolinfo
Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns as comprehensive a description of one or more dynamically loaded or ‘ex-
ported’ built-in native symbols. For each name, it returns information about the name of the symbol,
the library in which it is located and, if available, the number of arguments it expects and by which
interface it should be called (i.€all ,.C,.Fortran ,or.External). Additionally, it returns

the address of the symbol and this can be passed to other C routines which can invoke. Specifically,
this provides a way to explicitly share symbols between different dynamically loaded package li-
braries. Also, it provides a way to query where symbols were resolved, and aids diagnosing strange
behavior associated with dynamic resolution.

This is now vectorized in theame argument so can process multiple symbols in a single call. The
result is a list that can be indexed by the given symbol names.

Usage
getNativeSymbolinfo(name, PACKAGE, unlist = TRUE,
withRegistrationinfo = FALSE)
Arguments
name the name(s) of the native symbol(s) as used in a ca.toaded , etc. Note
that Fortran symbols should be supplied as-is, not wrappegntbol.For
PACKAGE an optional argument that specifies to which dynamically loaded library we re-

strict the search for this symbol. If this tbase" , we search in the R exe-
cutable itself.

getNativeSymbollnfo 181

unlist a logical value which controls how the result is returned if the function is called
with the name of a single symbol. Uhlist is TRUEand the number of sym-
bol names imame is one, then th&lativeSymbolinfo object is returned.
If it is FALSE, then a list ofNativeSymbolinfo objects is returned. This
is ignored if the number of symbols passechame is more than one. To be
compatible with earlier versions of this function, this default§ RIUE

withRegistrationinfo
a logical value indicating whether, TTRUE to return information that was reg-
istered withR about the symbol and its parameter types if such information is
available, or ifFALSETto return the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native inte@altes, (

etc.). If the symbol has been explicitly registered by the shared library in which it is contained,
information about the number of arguments and the interface by which it should be called will be
returned. Otherwise, a generic native symbol object is returned.

Value

Generally, a list ofNativeSymbolinfo elements whose elements can be indexed by the ele-
ments ofname in the call. EachNativeSymbolinfo object is a list containing the following
elements:

name the name of the symbol, as given by theeme argument.

address if withRegistrationInfo is FALSE, this is the native memory address
of the symbol which can be used to invoke the routine, and also to com-
pare with other symbol addresses. This is an external pointer object and of
classNativeSymbol . If withRegistrationinfo is TRUEand regis-
tration information is available for the symbol, then this is an object of class
RegisteredNativeSymbol and is a reference to an internal data type that
has access to the routine pointer and registration information. This too can be
used in callstoCall ,.C,.Fortran and.External

package a list containing 3 elements:
name the short form of the library name which can be used as the value of the
PACKAGHErgument in the different native interface functions.
path the fully qualified name of the shared library file.
dynamicLookup a logical value indicating whether dynamic resolution is used
when looking for symbols in this library, or only registered routines can be
located.
numParameters
the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, beingRoutine , CallRoutine ,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

If any of the symbols is not found, an error is immediately raised.

If name contains only one symbol name andnlist is TRUE then the single
NativeSymbolinfo is returned rather than the list containing that one element.

182 getNumCConverters

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routinefRdndctions in a
similar manner, such as when passind=afunction to C code that makes callbacks to that function

at different points in its computation (e.gls). Additionally, we can resolve the symbol just once

and avoid resolving it repeatedly or using the internal cache. In the future, one may be able to treat
NativeSymbol objects directly as callback objects.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Rou-
tines”, R News, volume 1, number 3, 2001, p20-R8(://CRAN.R-project.org/doc/

Rnews/).
See Also
getDLLRegisteredRoutines , is.loaded , .C, .Fortran , .External , .Call ,
dyn.load
Examples
library(stats) # normally loaded
getNativeSymbolinfo("dansari")
getNativeSymbolinfo("hcass2") # a Fortran symbol
getNumCConverters Management of .C argument conversion list

Description

These functions provide facilities to manage the extensible list of converters used to translate R
objects to C pointers for use i€ calls. The nhumber and a description of each element in the list
can be retrieved. One can also query and set the activity status of individual elements, temporarily
ignoring them. And one can remove individual elements.

Usage

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
setCConverterStatus(id, status)
removeCConverter(id)

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

getNumCConverters 183

Arguments
id either a number or a string identifying the element of interest in the converter list.
A string is matched against the description strings for each element to identify
the element. Integers are specified starting at 1 (rather than 0).
status a logical value specifying whether the element is to be considered atRgH
or not FALSBE.
Details

The internal list of converters is potentially used when converting individual argumentsCn a

call. If an argument has a non-trivial class attribute, we iterate over the list of converters looking
for the first that matches. If we find a matching converter, we have it create the C-level pointer
corresponding to the R object. When the call to the C routine is complete, we use the same converter
for that argument to reverse the conversion and create an R object from the current value in the C
pointer. This is done separately for all the arguments.

The functions documented here provideuser-level capabilities for investigating and managing
the list of converters. There is currently no mechanism for adding an element to the converter list
within theR language. This must be done in C code using the roRireddToCConverter()

Value

getNumCConverters returns an integer giving the number of elements in the list, both active
and inactive.

getCConverterDescriptions returns a character vector containing the description string of
each element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter
list. Each value indicates whether that converter is aciRUE or inactive FALSE). The names
of the elements are the description strings returnegdt¢ ConverterDescriptions

setCConverterStatus returns the logical value indicating the activity status of the specified
element before the call to change it took effect. ThisRUEfor active and=ALSEfor inactive.

removeCConverter returnsTRUEf an element in the converter list was identified and removed.
In the case that no such element was found, an error occurs.
Author(s)

Duncan Temple Lang

References

http://developer.R-project.org/CObjectConversion.pdf

See Also
.C

Examples

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()

Not run:

old <- setCConverterStatus(1, FALSE)

http://developer.R-project.org/CObjectConversion.pdf

184 gettext

setCConverterStatus(1, old)

End(Not run)

Not run:

removeCConverter(1)
removeCConverter(getCConverterDescriptions()[1])
End(Not run)

getpid Get the Process ID of the R Session

Description

Get the process ID of the Session. It is guaranteed by the operating system thaRt&essions
running simultaneously will have different IDs, but it is possible Raessions running at different
times will have the same ID.

Usage

Sys.getpid()

Value
An integer, usually a small integer between 0 and 32767 under Unix-alikes and a much small integer
under Windows.

Examples

Sys.getpid()

gettext Translate Text Messages

Description

If Native Language Support was enabled in this builRpkttempt to translate character vectors or
set where the translations are to be found.

Usage
gettext(..., domain = NULL)
ngettext(n, msgl, msg2, domain = NULL)

bindtextdomain(domain, dirname = NULL)

gettext 185

Arguments
One or more character vectors.

domain The ‘domain’ for the translation.

n a non-negative integer.

msgl the message to be used in Englishrio= 1.

msg2 the message to be used in Englishrio= 0, 2, 3,...

dirname The directory in which to find translated message catalogs for the domain.
Details

If domain is NULLor™ , a domain is searched for based on the name space which contains the
function callinggettext orngettext . If a suitable domain can be found, each character string
is offered for translation, and replaced by its translation into the current language if one is found.

Conventionally the domain fd® warning/error messages in packaug is "R-pkg" , and that for
C-level messages pkg" .

Forgettext , leading and trailing whitespace is ignored when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string

will often contain a single instance &bdto be used irsprintf . If English is usedmsgl is
returned ifn == 1 andmsg?2 in all other cases.
Value

Forgettext , a character vector, one element per string.in . If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

Forngettext , a character string.

Forbindtextdomain , a character string giving the current base director)WOt L if setting it
failed.

See Also

stop andwarning make use ofjettext to translate messages.
xgettext for extracting translatable strings framsource files.

Examples
bindtextdomain("R") # non-null if and only if NLS is enabled
for(n in 0:3)

print(sprintf(ngettext(n, "%d variable has missing values",
"%d variables have missing values"),

n))
Not run:
for translation, those strings should appear in R-pkg.pot as
msgid "%d variable has missing values”
msgid_plural "%d variables have missing values"
msgstr[0] "™
msgstr[1] ™"

End(Not run)

186 getwd

miss <- c¢("one", "or", "another")

cat(ngettext(length(miss), "variable", "variables"),
paste(sQuote(miss), collapse=", "),
ngettext(length(miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat(sprintf(ngettext(length(miss),
"variable %s contains missing values\n",
"variables %s contain missing values\n"),
paste(sQuote(miss), collapse=", ")))

getwd Get or Set Working Directory

Description

getwd returns an absolute filename representing the current working directory Bf tiecess;
setwd(dir) is used to set the working directory diir .

Usage

getwd()
setwd(dir)

Arguments

dir A character string.

Value

getwd returns a character vector, NtJLLif the working directory is not available.

setwd returns the current directory before the change, invisibly. It will give an error if it does not
succeed.

Note

These functions are not implemented on all platforms.

See Also

list.files for the contentsof a directory.

Examples

(WD <- getwd())
if (lis.null(WD)) setwd(WD)

gl 187

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.
ordered a logical indicating whether the result should be ordered or not.
Value

The result has levels frorh to n with each value replicated in groups of lendthout to a total
length oflength

gl is modelled on th&LIM function of the same name.

See Also

The underlyingactor () .

Examples

First control, then treatment:
gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1s and 2s

gl2, 1, 20)
alternating pairs of 1s and 2s
gl(2, 2, 20)
grep Pattern Matching and Replacement
Description

grep searches for matches pattern (its first argument) within the character vectof{second
argument)regexpr andgregexpr do too, but return more detail in a different format.

sub andgsub perform replacement of matches determined by regular expression matching.

188 grep

Usage

grep(pattern, x, ignore.case = FALSE, extended = TRUE,
perl = FALSE, value FALSE, fixed = FALSE, useBytes = FALSE)

sub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub(pattern, replacement, X,
ignore.case = FALSE, extended = TRUE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr(pattern, text, ignore.case = FALSE, extended = TRUE,
perl = FALSE, fixed = FALSE, useBytes = FALSE)

gregexpr(pattern, text, ignore.case = FALSE, extended = TRUE,
perl = FALSE, fixed = FALSE, useBytes = FALSE)

Arguments

pattern character string containing a@egular expression(or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to a character string if possible.

X, text a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector.

ignore.case if FALSE the pattern matching isase sensitivand if TRUE case is ignored
during matching.

extended if TRUE extended regular expression matching is used, afdhifSE basic
regular expressions are used.

perl logical. Should perl-compatible regexps be used? Has priorityestended .

value if FALSE, a vector containing theinteger) indices of the matches deter-
mined bygrep is returned, and iTRUE a vector containing the matching ele-
ments themselves is returned.

fixed logical. If TRUE pattern is a string to be matched as is. Overrides all con-
flicting arguments.

useBytes logical. If TRUEthe matching is done byte-by-byte rather than character-by-

character. See ‘Details’.

replacement a replacement for matched patternsab andgsub. Coerced to character
if possible. Forfixed = FALSE this can include backreferencéd" to
"\9" to parenthesized subexpressionpattern . Forperl = TRUE only,
it can also contaif\U" or"\L" to convert the rest of the replacement to upper
or lower case.

Details

Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

The two*sub functions differ only in thasub replaces only the first occurrence opattern
whereagysub replaces all occurrences.

grep 189

Forregexpr itis an error forpattern to be NA otherwiseNAis permitted and gives aNA
match.

The regular expressions used are those specified by POSIX 1003.2, either extended or basic, de-
pending on the value of thextended argument, unlesperl = TRUE when they are those

of PCRE, http://www.pcre.org/ . (The exact set of patterns supported may depend on the
version of PCRE installed on the system in usk ifvas configured to use the system PCRE.)

useBytes is only used iffixed = TRUE or perl = TRUE . Its main effect is to avoid er-
rors/warnings about invalid inputs and spurious matches, buefmxpr it changes the interpre-
tation of the output.

PCRE only supports caseless matching for a non-ASCII pattern in a UTF-8 locale (and not for
useBytes = TRUE in any locale).

Value
Forgrep a vector giving either the indices of the elements @hat yielded a match or, ifalue
is TRUE the matched elements wf(after coercion, preserving names but no other attributes).

Forsub andgsub a character vector of the same length and with the same attributeadier
possible coercion).

Forregexpr an integer vector of the same lengthtest giving the starting position of the first
match, or—1 if there is none, with attributématch.length" giving the length of the matched

text (or—1 for no match). In a multi-byte locale these quantities are in characters rather than bytes
unlessuseBytes = TRUE is used withfixed = TRUE orperl = TRUE .

Forgregexpr a list of the same length @dext each element of which is an integer vector as in
regexpr , except that the starting positions of every (disjoint) match are given.

If in a multi-byte locale the pattern or replacement is not a valid sequence of bytes, an error is
thrown. An invalid string inx ortext is a non-match with a warning fgrep orregexpr , but
an error forsub orgsub .

Warning

The standard regular-expression code has been reported to be very slow when applied to extremely
long character strings (tens of thousands of characters or more): the code usegenthen
TRUEseems much faster and more reliable for such usages.

The standard version ofsub does not substitute correctly repeated word-boundaries (e.g.
pattern = "\b"). Useperl = TRUE for such matches.

Theperl = TRUE option is only implemented for single-byte and UTF-8 encodings, and will
warn if used in a non-UTF-8 multi-byte locale (unlegeBytes = TRUE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole ¢rep)

See Also

regular expressiofakaregexp) for the details of the pattern specification.
glob2rx to turn wildcard matches into regular expressions.
agrep for approximate matching.

tolower , toupper andchartr for character translationscharmatch , pmatch , match .
apropos uses regexps and has nice examples.

http://www.pcre.org/

190 groupGeneric

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")
if(any(i <- grep("foo",txt)))
cat("foo' appears at least once in\n\t"txt,"\n")
i # 2 and 4
txt[i]

Double all 'a’ or 'b's; "\" must be escaped, i.e., 'doubled'
gsub("([ab])", "\1_\1_", "abc and ABC")

txt <- c("The", "licenses", "for", "most", "software", "are",
"designed"”, "to", "take", "away", "your", "freedom",
"to", "share", "and", "change", "it.",
", "By", "contrast,", "the", "GNU", "General", "Public", "License",
"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share”, "and", "change", "free", "software", "--",
"to", "make", "sure", "the", "software", "is",
“free”, "for", "all", "its", "users")

(i <- grep("[gu]", txt)) # indices

stopifnot(txt[i] == grep("[gu]", txt, value = TRUE))

Note that in locales such as en_US this includes B as the
collation order is aAbBcCdEe ...

(ot <- sub("[b-e]",".", txt))

txtfot !'= gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) I=
gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en”, txt)
gregexpr("e", txt)

trim trailing white space
str <- 'Now is the time
sub(" +$', ", str) ## spaces only

sub('[[:space:]]+$', ", str) ## white space, POSIX-style
sub(\\s+$', ", str, perl = TRUE) ## Perl-style white space

capitalizing
gsub("(\Ww)(\Ww*)", "WUWIWLW\2", "a test of capitalizing”, perl=TRUE)
gsub("\b(\w)", "WUW1", "a test of capitalizing”, perl=TRUE)

groupGeneric S3 Group Generic Functions

Description

Group generic methods can be defined for four pre-specified groups of fundtiiatis, Ops,
Summary and Complex . (There are no objects of these names in Haseut there are in the
methodspackage.)

groupGeneric 191

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)

Ops(el, e2)

Complex(z)

Summary(..., nha.rm = FALSE)

Arguments

X, z, el, e2 objects.
further arguments passed to methods.
na.rm logical: should missing values be removed?

Details

There are fourgroups for which S3 methods can be written, namely théath" , "Ops" ,
"Summary” and"Complex" groups. These are n® objects, but methods can be supplied
for them and basR containsfactor , data.frame anddifftime methods for the first three
groups. (There is also@dered method forOps, POSIXt andDate methods forMath and
Ops, package version methods forOps andSummary, as well as d@s method forOps in
packagestats)

1. Group"Math" :

e abs, sign ,sqrt
floor ,ceiling ,trunc |,
round , signif
e exp,log , expml, loglp ,
cos, sin ,tan ,
acos , asin , atan
cosh, sinh , tanh ,
acosh , asinh , atanh
¢ lgamma, gamma digamma, trigamma
e cumsum cumprod , cummax cummin

Members of this group dispatch an Most members accept only one argument, but members
log ,round andsignif accept one or two arguments, andnc accepts one or more.
2. Group"Ops" :
o MM L o upro UAT 0406, "%%/%"
o &MLt

o "z Mz ’ nen , ne—m , NN

’)

This group contains both binary and unary operaters (and!): when a unary operator is
encountered th®ps method is called with one argument a2l is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.

192 groupGeneric

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group"Summary"” :
e al ,any
e sum, prod
* min, max
e range
Members of this group dispatch on the first argument supplied.
4. Group"Complex"
e Arg, Conj, Im, Mod, Re
Members of this group dispatch an
Note that a method will used for either one of these groups or one of its meotdgi§ it corre-

sponds to dclass" attribute, as the internal code dispatchestClass and not orclass .
This is for efficiency: having to dispatch on, s@ps.integer would be too slow.

The number of arguments supplied for primitive members of'fhath" group generic methods
is not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive amsternal generic
The details of method dispatch and variables suchGeeric are discussed in the help for
UseMethod . There are a few small differences:

 For the operators of groupps, the objectMethod is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding elemerit'is)

» Object.Group records the group used for dispatch (if a specific method is used thig.is

References

Appendix A,Classes and Methodd
Chambers, J. M. and Hastie, T. J. eds (198@}istical Models in SiVadsworth & Brooks/Cole.

See Also

methods for methods of non-Internal generic functions.
S4groupGeneritor group generics for S4 methods.

Examples

require(utils)

d.fr <- data.frame(x=1:9, y=stats::rnorm(9))
class(1 + d.fr) == "data.frame" ##-- add to d.f. ...

methods("Math")

methods("Ops")

methods("Summary")
methods("Complex") # none in base R

gzcon 193

gzcon (De)compress I/0O Through Connections

Description
gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Stanglepd headers are assumed.

Usage

gzcon(con, level = 6, allowNonCompressed = TRUE)

Arguments
con a connection.
level integer between 0 and 9, the compression level when writing.

allowNonCompressed
logical. When reading, should non-compressed input be allowed?

Details

If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not suppbzg magic header is equivalent to reading
from the original connection #llowNonCompressed s true, otherwise an error.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection.

When the connection is opened for reading, the input is expected to start wigizithe magic
header. If it does not and #llowNonCompressed = TRUE (the default) the input is read
as-is.

Value

An object inheriting from clas®onnection" . This is the same connectiomberas supplied,
but with a modified internal structure. It has binary mode.

See Also

gzfile

Examples

Not run:

Uncompress a data file from a URL

z <- gzcon(url("http://www.stats.ox.ac.uk/pub/datasets/csb/ch12.dat.gz"))
read.table can only read from a text-mode connection.

raw <- textConnection(readLines(z))

close(z)

dat <- read.table(raw)

close(raw)

End(Not run)

194 hexmode

gzfile and gzcon can inter-work.

Of course here one would used gzfile, but file() can be replaced by
any other connection generator.

zz <- gzfile("ex.gz", "w")

cat("TITLE extra line", "2 3 5 7", ™, "11 13 17", file = zz, sep = "\n")
close(zz)

readLines(zz <- gzcon(file("ex.gz", "rb")))

close(zz)

unlink("ex.gz")

zz <- gzcon(file("ex.gz", "wb"))

cat("TITLE extra line", "2 3 5 7", ™, "11 13 17", file = zz, sep = "\n")
close(zz)

readLines(zz <- gzfile("ex.gz"))

close(zz)

unlink("ex.gz")

hexmode Display Numbers in Hexadecimal

Description

Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

S3 method for class 'hexmode':
as.character(x, ...)

S3 method for class 'hexmode":
format(x, ...)

S3 method for class 'hexmode":

print(x, ...)
Arguments
X An object inheriting from clasthexmode” .
further arguments passed to or from other methods.
Details

Class"hexmode" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in hex.

See Also

octmode

Hyperbolic 195

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangarggaosing etc).

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

Arguments

X a numeric or complex vector

Details

These are generic functions: methods can be defined for them individually or vidathegroup
generic.

Branch cuts are consistent with the inverse trigonometric functising) et seq, and agree with
those defined in Abramowitz and Stegun, figure 4.7, page 86.

S4 methods
All are S4 generic functions: methods can be defined for them individually or visi#tle group
generic.

References

Abramowitz, M. and Stegun, I. A. (197Handbook of Mathematical Functionsew York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functiong;os , sin , tan , and their inverseacos , asin , atan .

The logistic distribution functioplogis is a shifted version afanh() for numericx.

196 iconv

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-
ternationalization’.

Usage
iconv(x, from ="", to = ", sub=NA)
iconvlist()
Arguments
X A character vector, or an object to be converted to a character vector by
as.character
from A character string describing the current encoding.
to A character string describing the target encoding.
sub character string. If noNAit is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be moréyté"
the indication is'<xx>" with the hex code of the byte.
Details

The names of encodings and which ones are available (and indeed, if any are) is platform-dependent.
On all systems that suppddonv you can us€" for the encoding of the current locale, as well
as"latin1" and"UTF-8" .

On many platformgconvlist provides an alphabetical list of the supported encodings. On
others, the information is on the man page imnv(5) or elsewhere in the man pages (and
beware that the system commaitdnv may not support the same set of encodings as the C
functionsR calls). Unfortunately, the names are rarely common across platforms.

Elements ok which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returnedAasnlesssub is specified.

Some versions a€onv will allow transliteration by appendingTRANSLIT to theto encoding:
see the examples.
Value

A character vector of the same length and the same attributegadter conversion).
The elements of the result have a declared encodiffigiifi is "latin1" or "UTF-8" , or if

from = ™ and the current locale’s encoding is detected as Latin-1 or UTF-8.
Note

Not all platforms support these functions, although almost all supporty . See also
capabilities ("iconv")

identical 197

See Also

localeToCharset , file

Examples
utils::head(iconvlist(), n = 50)

Not run:

convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")

iconv(x, "LATIN2", "UTF-8")

End(Not run)

Both x below are in latinl and will only display correctly in a
locale that can represent and display latinl.

x <- "fa\xE7ile"

Encoding(x) <- "latin1"

X

charToRaw(xx <- iconv(x, "latinl", "UTF-8"))

XX

iconv(x, "latin1l", "ASCII") # NA
iconv(x, "latin1", "ASCII", "?") # "fazile"
iconv(x, "latin1", "ASCII", ") # "faile"

iconv(x, "latin1", "ASCII", "byte") # "fa<e7>ile"

Extracts from R help files

x <- c("Ekstr\xf8m", "J\xféreskog", "bi\xdfchen Z\xfcrcher")
Encoding(x) <- "latin1"

X

try(iconv(x, "latinl", "ASCII//TRANSLIT"))

iconv(x, "latinl", "ASCII", sub="byte")

identical Test Objects for Exact Equality

Description
The safe and reliable way to test two objects for bargctlyequal. It return’RUEIn this case,
FALSEIn every other case.

Usage

identical(x, y)

Arguments

X, Y anyR objects.

198 identical

Details
A call to identical is the way to test exact equality ih andwhile statements, as well as in
logical expressions that uge or || . In all these applications you need to be assured of getting a

single logical value.

Users often use the comparison operators, such=agr =, in these situations. It looks natural,

but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expectedk andy to be of length 1, but it happened that one of them wasn’t, younsilget

a singleFALSE. Similarly, if one of the arguments NA the result is alsdNA In either case, the
expressionf(x == vy).... won't work as expected.

The functionall.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations ifdentical are also reliable and usually fast. There should never be an error.
The only known way to kilidentical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

identical seesNaN as different fromNA_real_ , but all NaNs are equal (and aNA of the
same type are equal).

Comparison of character strings allows for embedded characters. Comparison of attributes
view them as a set (and not a vector, so order is not tested).

Value

A single logical valueTRUEor FALSE, neverNAand never anything other than a single value.

Author(s)

John Chambers and R Core

References

Chambers, J. M. (1998 rogramming with Data. A Guide to the S Langua§eringer.

See Also

all.equal for descriptions of how two objects diffeGomparisorfor operators that generate
elementwise comparisonsTRUE is a simple wrapper based atentical

Examples

identical(1, NULL) ## FALSE -- don't try this with ==
identical(1, 1.) ## TRUE in R (both are stored as doubles)
identical(1, as.integer(1)) ## FALSE, stored as different types

X <- 1.0; y <- 0.99999999999

how to test for object equality allowing for numeric fuzz :

(E <- all.equal(x,y))

iISTRUE(E) # which is simply defined to just use

identical(TRUE, E)

If all.,equal thinks the objects are different, it returns a

character string, and the above expression evaluates to FALSE

ifelse 199

even for unusual R objects :
identical(.GlobalEnv, environment())

ifelse Conditional Element Selection

Description
ifelse returns a value with the same shapdest which is filled with elements selected from
eitheryes or no depending on whether the elementedt is TRUEor FALSE

Usage

ifelse(test, yes, no)

Arguments
test an object which can be coerced to logical mode.
yes return values for true elements tefst
no return values for false elementsteft

Details

If yes or no are too short, their elements are recyclgds will be evaluated if and only if any
element oftest is true, and analogously fo.

Missing values irtest give missing values in the result.

Value

A vector of the same length and attributes (including clas®sts and data values from the values
of yes orno. The mode of the answer will be coerced from logical to accommodate first any values
taken fromyes and then any values taken fram.

Warning

The mode of the result may depend on the valugesf , and the class attribute of the result is
taken fromtest and may be inappropriate for the values selected fyem andno.

Sometimes it is better to use a construction such(tegp <- yes; tmp[!test] <-
no['test]; tmp) , possibly extended to handle missing valuetest

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

if .

200 integer

Examples

X <- c(6:-4)
sqrt(x)#- gives warning
sqrt(ifelse(x >= 0, x, NA))# no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqrt(x), NA)

example of different return modes:
yes <- 1:3

no <- pi"(0:3)

typeof(ifelse(NA, yes, no)) # logical
typeof(ifelse(TRUE, yes, no)) # integer
typeof(ifelse(FALSE, yes, no))# double

integer Integer Vectors

Description

Creates or tests for objects of tyfiateger

Usage

integer(length = 0)
as.integer(x, ...
is.integer(x)

Arguments
length desired length.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
small integer data can be represented exactly and compactly.

Note that on almost all implementations Rfthe range of representable integers is restricted to
aboutE+2 x 10°: double s can hold much larger integers exactly.

Value

integer creates a integer vector of the specified length. Each element of the vector is egual to

as.integer attempts to coerce its argument to be of integer type. The answer viNlAbmless

the coercion succeeds. Real values larger in modulus than the largest integer are cobiged to
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values are
truncated towards zero (i.as.integer(x) equalstrunc (x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing either a decimal rep-
resentation or a hexadecimal representation (startingOxithr 0X) can be converted, as well as any

interaction 201

allowed by the platform for real numbers. Liks.vector it strips attributes including names.
(To ensure that an object is of integer type without stripping attributesstosgge.mode .)

is.integer returnsTRUEor FALSE depending on whether its argument is of intetygre or
not, unless it is a factor when it returR&LSE

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.
See Also

numeric , storage.mode
round (andceiling andfloor on that help page) to convert to integral values.

Examples

as.integer() truncates:
X <- pi * c¢(-1:1,10)
as.integer(x)

interaction Compute Factor Interactions
Description
interaction computes a factor which represents the interaction of the given factors. The result
of interaction is always unordered.
Usage
interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)
Arguments
the factors for which interaction is to be computed, or a single list giving those
factors.
drop if drop is TRUE unused factor levels are dropped from the result. The default
is to retain all factor levels.
sep string to construct the new level labels by joining the constituent ones.
lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.
Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined bgep which is. by default.

By default, whenlex.order = FALSE |, the levels are ordered so the level of the first factor
varies fastest, then the second and so on. This is the reverse of lexicographic ordering (which you

can get byex.order = TRUE), and differs front . (It is done this way for compatibility with
S)

202 Internal

References
Chambers, J. M. and Hastie, T. J. (19%2atistical Models in SNadsworth & Brooks/Cole.

See Also

factor ; : wheref.g is similar tointeraction(f, g, sep=":") whenf andg are
factors.

Examples

a <- gl(2, 4, 8)

b < gl(2, 2, 8, labels = c("ctrl", "treat"))
s <- gl(2, 1, 8, labels = c("M", "F")
interaction(a, b)

interaction(a, b, s, sep = "")
stopifnot(identical(a:s,

interaction(a, s, sep = ", lex.order = TRUE)),
identical(a:s:b,
interaction(a, s, b, sep = "", lex.order = TRUE)))
interactive Is R Running Interactively?

Description
ReturnTRUEwWhenR is being used interactively arALSE otherwise.

Usage

interactive()

See Also

source |, .First

Examples

.First <- function() if(interactive()) x11()

Internal Call an Internal Function
Description
.Internal performs a call to an internal code which is built in to Rénterpreter.

Only trueR wizards should even consider using this function, and 8fievelopers can add to the
list of internal functions.

Usage

.Internal(call)

InternalMethods 203

Arguments
call a call expression
See Also
.Primitive , .External (the nearest equivalent available to users).
InternalMethods Internal Generic Functions
Description

Many R-internal functions argenericand allow methods to be written for.

Details

The following primitive and internal functions ageneric i.e., you can writenethods for them:
[1[[!$![<' 1[[<' 1$<_1

length , length<- , dimnames, dimnames<-, dim, dim<-, names, names<-,
levels<-

c,unlist ,cbind ,rbind ,

as.character , as.complex , as.double , as.integer , as.logical , as.raw ,
as.vector ,is.array ,is.matrix ,is.na ,is.nan ,is.numeric ,rep andseq.int
(which dispatches methods f&seq”).

In addition,is.name is a synonym fois.symbol and dispatches methods for the latter.

Note that all of thegroup generidunctions are also internal/primitive and allow methods to be

written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic

and notgroup generic Currentlyas.vector , cbind , rbind andunlist are the internal
non-primitive functions which are internally generic.

For efficiency, internal dispatch only occursabjects that is those for whicks.object returns
true.

See Also

methods for the methods which are available.

204 is.finite

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

X an arbitraryR object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

withVisible ,return , function

Examples

These functions both return their argument
fl <- function(x) x

f2 <- function(x) invisible(x)

f1(1)# prints

f2(1)# does not

is.finite Finite, Infinite and NaN Numbers
Description
is.finite andis.infinite return a vector of the same lengthrasindicating which ele-

ments are finite (not infinite and not missing).

Inf and-Inf are positive and negative infinity wheredaN means ‘Not a Number'. (These
apply to numeric values and real and imaginary parts of complex values but not to values of integer
vectors.) All arereserved words in theR language.

is.finite 205

Usage

is.finite(x)
is.infinite(x)
Inf

NaN
is.nan(x)

Arguments

X (numerical) object to be tested.

Details

is.finite returns a vector of the same lengthxathe jth element of which iFRUEIf X][j]

is finite (i.e., it is not one of the valué¢A NaN Inf or-Inf). All elements of types other than
logical, integer, numeric and complex vectors are false. Complex numbers are finite if both the real
and imaginary parts are.

is.infinite returns a vector of the same lengthxathe jth element of which iIFRUEIf X]j]
is infinite (i.e., equal to one dhf or-Inf). This will be false unlesg is numeric or complex.
Complex numbers are infinite if either the real and imaginary part is.

is.nan tests if a numeric value islaN Do not test equality ttNaN or even usedentical

since systems typically have many different NaN values. One of these is used for the numeric
missing valueNA andis.nan is false for that value. A complex number is regardedNa! if

either the real or imaginary partisaNbut notNA

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethodsThe default methods handle real and complex vectors.

Note

In R, basically all mathematical functions (including basiéthmetic), are supposed to work
properly with+/- Inf andNaNas input or output.

The basic rule should be that calls and relations with s really are statements with a proper
mathematicalimit.

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.

D. Goldberg (1991What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys23(1).

Postscript version available ttp://www.validlab.com/goldberg/paper.ps Ex-
tended PDF version attp://www.validlab.com/goldberg/paper.pdf

http://grouper.ieee.org/groups/754/ for accessible information.
The C99 functiorisfinite is used foris.finite if available.
See Also

NA ‘Not Availablé which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric.

http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf
http://grouper.ieee.org/groups/754/

206

Examples

pi / 0 ## = Inf a non-zero number divided by zero creates infinity
0/0 ## = NaN

1/0 + 1/0# Inf
1/0 - 1/0# NaN

stopifnot(
1/0 == Inf,
UInf ==

)

sin(Inf)

cos(Inf)

tan(Inf)

is.function

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage

is.function(x)
is.primitive(x)

Arguments
X anR object.
Details
is.primitive(x) tests ifx is a primitive function (either dbuiltin”

described fotypeof)?

Value

TRUEIf x is a (primitive) function, andFALSE otherwise.

Examples

is.function(1) # FALSE

is.function(is.primitive) # TRUE: it is a function, but ..
is.primitive(is.primitive) # FALSE:it's not a primitive one, whereas
is.primitive(is.function) # TRUE: that one *is*

or "special"

as

is.language 207

is.language Is an Object a Language Object?

Description

is.language returnsTRUEIf x is a variablename, acall , or anexpression

Usage

is.language(x)

Arguments

X object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Examples

Il <- list(a = expression(x*2 - 2*x + 1), b = as.name("Jim"),
¢ = as.expression(exp(1)), d = call("sin", pi))

sapply(ll, typeof)

sapply(ll, mode)

stopifnot(sapply(ll, is.language))

is.object Is an Object “internally classed"?

Description

A function rather for internal use. It returiRRUEIf the objectx has theR internalOBJECThit set,
andFALSE otherwise. TheOBJECThbit is set when dclass" attribute is added and removed
when that attribute is removed, so this is a very efficient way to check if an object has a class
attribute. (S4 objects always should.)

Usage

is.object(x)

Arguments

X object to be tested.

See Also

class , andmethods .
isS4 .

208 is.R

Examples

is.object(1) # FALSE
is.object(as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running undeR.

Usage

is.R()

Details

The function has been written such as to correctly run in all versioRs 8fand S-PLUS. In order
for code to be runnable in bofR and S dialects previous to S-PLUS 8.0, your code must either
defineis.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code

} else {

S-version of code

}

Value

is.R returnsTRUEIf we are usingR andFALSE otherwise.

See Also

R.version ,system .

Examples

X <- stats::runif(20); small <- x < 0.4
In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seq(along=small)[small]

is.recursive 209

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returnsTRUEIf x is an atomic vector (0NULL) andFALSE otherwise.

is.recursive returnsTRUEIf x has a recursive (list-like) structure aRAALSE otherwise.

Usage

is.atomic(x)
is.recursive(x)

Arguments
X object to be tested.

Details
is.atomic is true for the atomic vector typeslidgical” , "integer" , "numeric"
"complex" , "character" and"raw") andNULL

Most types of language objects are regarded as recursive: those which are not are the atomic vector

types,NULLand symbols (as given k3s.name).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &

Brooks/Cole.

See Also

is.list ,is.language , etc, and thelemo("is.things")

Examples

require(stats)

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a=1,b=3)) # TRUE FALSE
is.a.r(list()) # FALSE TRUE ??
is.a.r(list(2)) # FALSE TRUE
is.a.r(Im) # FALSE TRUE
isa.rly ~ x) # FALSE TRUE

is.a.r(expression(x+1)) # FALSE TRUE (not in 0.62.3!)

210 isS4

is.single Is an Object of Single Precision Type?

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

Arguments

X object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

isS4 Test for an S4 object

Description

Tests whether the object was created from a formally defined class.

Usage

isS4(object)

asS4(object, value = TRUE)

Arguments

object Any R object.

value A single logical value; noNA
Details

Note thatisS4 does not rely on thenethodspackage, so in particular it can be used to detect the
need torequire that package. (BusS4 does depend omethods)

You should not set the flag directly unless you really know why. As fR&16.0, S4 methods are
restricted to S4 objects for primitive functionssS4 allows method dispatch of S4 methods on
primitives for S3 classes. For all other purposes, an object will sasS#(x) if and only if it
should.

Note that S4 methods can only be set on those primitives whichraezrial genericand %*%

isSymmetric 211

Value

isS4 always return§ RUEor FALSE according to whether the internal flag marking an S4 object
has been turned on for this object.

asS4 will turn this flag on or off. But see the details.

Examples

isS4(pi) # FALSE
isS4(getClass("MethodDefinition")) # TRUE

isSymmetric Test if a Matrix or other Object is Symmetric
Description
Generic function to test ibbject is symmetric or not. Currently only a matrix method is imple-
mented.
Usage

isSymmetric(object, ...)
S3 method for class 'matrix"
isSymmetric(object, tol = 100 * .Machine$double.eps, ...

Arguments
object anyR object; amatrix for the matrix method.
tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric
further arguments passed to methods; the matrix method passes these to
all.equal
Details

Thematrix method is used insideigen by default to test symmetry of matricap to rounding
error, usingall.equal . It might not be appropriate in all situations.

Value

logical indicating ifobject is symmetric or not.

See Also

eigen which callsisSymmetric when itssymmetric argument is missing, as per default.

212 jitter

Examples

isSymmetric(D3 <- diag(3)) # -> TRUE

D3[2,1] <- 1e-100

D3

isSymmetric(D3) # TRUE

isSymmetric(D3, tol = 0) # FALSE for zero-tolerance

jitter Add ‘Jitter’ (Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor=1, amount = NULL)

Arguments
X numeric vector to whicljitter should be added.
factor numeric
amount numeric; if positive, used aamount(see below), otherwise, # 0 the default
is factor * z/50
Default NULL): factor * d/5 whered is about the smallest difference be-
tweenx values.
Details
The result, say, isr <- x + runif(n, -a, a) wheren <- length(x) anda is the
amount argument (if specified).
Letz <- max(x) - min(x) (assuming the usual case). The amaarnb be added is either
provided agositiveargumentmount or otherwise computed from, as follows:
If amount == 0, we seta <- factor * z/50 (same as S).
If amount is NULL (defaul), we seta <- factor * d/5 whered is the smallest difference

between adjacent unique (apart from fuzzjalues.

Value
jitter(x,...) returns a numeric of the same lengthxadut with anamount of noise added
in order to break ties.

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

kappa 213
References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1@88phical Methods for Data
Analysis.Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (19%2atistical Models in SiWadsworth & Brooks/Cole.

See Also

rug which you may want to combine wiftter

Examples

round(jitter(c(rep(1,3), rep(1.2, 4), rep(3,3))), 3)
These two 'fail' with S-plus 3.x:

jitter(rep(0, 7))

jitter(rep(10000,5))

kappa Estimate the Condition Number

Description

An estimate of the condition number of a matrix or of Renatrix of aQ) R decomposition, perhaps
of a linear fit. The condition number is defined as the ratio of the largest to the snmalegtro

singular value of the matrix.

Usage
kappa(z, ...
S3 method for class 'Im"
kappa(z, ...)

Default S3 method:
kappa(z, exact = FALSE, ..)
S3 method for class ‘gr"
kappa(z, ...)

kappa.tri(z, exact = FALSE, ...)

Arguments
z A matrix or a the result ofr or a fit from a class inheriting froim" .
exact logical. Should the result be exact?
further arguments passed to or from other methods.
Details

If exact = FALSE (the default) the condition number is estimated by a cheap approximation.
Following S, this uses the LINPACK routindtrco.f'. However, inR (or S) the exact calculation is
also likely to be quick enough.

kappa.tri is an internal function called byappa.qr

214 kronecker

Value

The condition numbekappa, or an approximation iéxact = FALSE .

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

References

Chambers, J. M. (1992)inear models.Chapter 4 ofStatistical Models in &ds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

svd for the singular value decomposition agd for the Q R one.

Examples

kappa(x1 <- chind(1,1:10))# 15.71
kappa(x1, exact = TRUE) # 13.68
kappa(x2 <- chind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- L:n; 1 / outer(i - 1, i, "+") }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa(h9)# pretty high!

kappa(h9, exact = TRUE) == max(sv9) / min(sv9)

kappa(h9, exact = TRUE) / kappa(h9) # .677 (i.e., rel.error = 32%)

kronecker Kronecker products on arrays

Description

Computes the generalised kronecker product of two arpagedY. kronecker(X, Y) returns
an arrayA with dimensiongdim(X) * dim(Y)

Usage
kronecker(X, Y, FUN = " make.dimnames = FALSE, ...
X %x% Y
Arguments
X A vector or array.
Y A vector or array.
FUN a function; it may be a quoted string.

make.dimnames
Provide dimnames that are the product of the dimnamésanfd.

optional arguments to be passeddN

110n_info 215

Details

If XandY do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by Xadireggterm at a time
and expanding that term &JN(x, Y, ...)

%x%is an alias fokronecker (whereFUNis hardwired td™").

Author(s)

Jonathan Rougiet,).C.Rougier@durham.acuk

References

Shayle R. Searle (198R)atrix Algebra Useful for Statisticslohn Wiley and Sons.

See Also

outer , on whichkronecker is built and%*%for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(1:6, ncol=2))
kronecker(4, M)

Block diagonal matrix:
kronecker(diag(1, 3), M)

ask for dimnames
fred <- matrix(1:12, 3, 4, dimnames=list(LETTERS[1:3], LETTERS[4:7]))
bill <- c("happy" = 100, "sad" = 1000)

kronecker(fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat"=3, "dog"=4))
kronecker(fred, bill, make.dimnames = TRUE)

110n_info Localization Information

Description

Report on localization information.

Usage

110n_info()

Value
A list with three logical components:

MBCS If a multi-byte character set in use?
UTF-8 Is this a UTF-8 locale?
Latin-1 Is this a Latin-1 locale?

216 lapply

See Also

Sys.getlocale , localeconv

Examples
110n_info()

labels Find Labels from Object

Description
Find a suitable set of labels from an object for use in printing or plotting, for example. A generic
function.

Usage

labels(object, ...)

Arguments
object Any R object: the function is generic.
further arguments passed to or from other methods.
Value

A character vector or list of such vectors. For a vector the results is the narseg(afong=x)
and for a data frame or array it is the dimnames (WthLL expanded taeq(len=d[i])

References

Chambers, J. M. and Hastie, T. J. (19%2atistical Models in SiVadsworth & Brooks/Cole.

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length¥seach element of which is the result of applyirgN
to the corresponding element Xf

sapply is auser-friendly version dapply by default returning a vector or matrix if appropriate.

replicate is a wrapper for the common uses#pply for repeated evaluation of an expression
(which will usually involve random number generation).

Usage

lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

replicate(n, expr, simplify = TRUE)

lapply 217

Arguments
X a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced hy.list
FUN the function to be applied to each elementofsee ‘Details’. In the case of
functions like+, %*% etc., the function name must be backquoted or quoted.
optional arguments tBUN
simplify logical; should the result be simplified to a vector or matrix if possible?

USE.NAMES logical; if TRUEand if X is character, us¥ asnames for the result unless it
had names already.

n number of replications.
expr expression (language object, usually a call) to evaluate repeatedly.
Details

FUNis found by a call tanatch.fun and typically is specified as a function or a symbol (e.g. a
backquoted name) or a character string specifying a function to be searched for from the environ-
ment of the call tdapply

FunctionFUNmust be able to accept as input any of the elements dffthe latter is an atomic
vector,FUNwill always be passed a length-one vector of the same type as

Simplification insapply is only attempted iK has length greater than zero and if the return values
from all elements oK are all of the same (positive) length. If the common length is one the result
is a vector, and if greater than one is a matrix with a column corresponding to each elemdent of

The mode of the simplified answer is chosen to accommodate the modes of all the values returned
by the calls tdFUN seeunlist

if X has length 0, the return value sdpply is always a O0-length list.

Users of S4 classes should pass a listajgply : the internal coercion is done by the system
as.list in the base namespace and not one defined by a user (e.g. by setting S4 methods on the
system function).

Note

sapply(*, simplify = FALSE, USE.NAMES = FALSE) is equivalent to
lapply(*)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

apply , tapply , mapply for applying a function tomultiple arguments, andapply for
a recursive version oflapply() , eapply for applying a function to each entry in an
environment

218 Last.value

Examples

require(stats); require(graphics)

x <- list(ta = 1:10, beta = exp(-3:3), logic = c¢(TRUE,FALSE,FALSE, TRUE))
compute the list mean for each list element

lapply(x,mean)

median and quartiles for each list element

lapply(x, quantile, probs = 1:3/4)

sapply(x, quantile)

i39 <- sapply(3:9, seq) # list of vectors

sapply(i39, fivenum)

hist(replicate(100, mean(rexp(10))))

Last.value Value of Last Evaluated Expression

Description

The value of the internal evaluation of a top-levRl expression is always assigned to
.Last.value (in package:base) before further processing (e.g., printing).

Usage
.Last.value
Details
The value of a top-level assignmesaput in.Last.value , unlike S.
Do not assign toLast.value in the workspace, because this will always mask the object of the

same name ipackage:base

See Also

eval

Examples

These will not work correctly from example(),

but they will in make check or if pasted in,

as example() does not run them at the top level
gamma(1:15) # think of some intensive calculation...
facl4 <- .Last.value # keep them

library("splines") # returns invisibly
.Last.value # shows what library(.) above returned

length 219

length Length of an Object

Description

Get or set the length of vectors (including lists) and factors, and of any Btledject for which a
method has been defined.

Usage

length(x)
length(x) <- value

Arguments
X anR object. For replacement, a vector or factor.
value an integer.

Details

Both functions are generic: you can write methods to handle specific classes of objettteisee
nalMethodslength<- has d'factor"” method.

The replacement form can be used to reset the length of a vector. If a vector is shortened, extra
values are discarded and when a vector is lengthened, it is padded out to its new lengtiAswvith
(nul for raw vectors).

Value

The default method currently returnsiateger of length 1. Since this may change in the future
and may differ for other methods, programmers should not rely on it. (Should the length exceed the
maximum representable integer, it is returnedNag

For vectors (including lists) and factors the length is the number of elements. For an environment it
is the number of objects in the environment, &dLL has length 0. For expressions and pairlists
(including language objects and dotlists) it is the length of the pairlist chain. All other objects
(including functions) have length one: note that for functions this differs from S.

The replacement form removes all the attributeg ekcept its names.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors.

220 levels

Examples

length(diag(4))# = 16 (4 x 4)
length(options())# 12 or more
length(y ~ x1 + x2 + x3)# 3
length(expression(x, {y <- x"2; y+2}, x%y)) # 3

from example(warpbreaks)
require(stats)

fml <- Im(breaks ~ wool * tension, data = warpbreaks)
length(fm1$call) # 3, Im() and two arguments.
length(formula(fm1)) # 3, ~ Ihs rhs

levels Levels Attributes

Description

levels provides access to the levels attribute of a variable. The first form returns the value of the
levels of its argument and the second sets the attribute.

Usage

levels(x)
levels(x) <- value

Arguments
X an object, for example a factor.
value A valid value forlevels(x) . For the default method\ULL or a character
vector. For thefactor method, a vector of character strings with length at
least the number of levels of, or a named list specifying how to rename the
levels.
Details

Both the extractor and replacement forms are generic and new methods can be written for them.
The most important method for the replacment function is thafefoior — s.

For the factor replacement methodYAin value causes that level to be removed from the levels
and the elements formerly with that level to be replacetBy

Note that for a factor, replacing the levels \gaels(x) <- value is not the same as (and is
preferred togttr(x, "levels") <- value

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

nlevels ,relevel ,reorder

libPaths 221

Examples

assign individual levels
x <- gl(2, 4, 8)
levels(x)[1] <- "low"
levels(x)[2] <- "high"

X

or as a group

y <- dl(2, 4, 8)
levels(y) <- c("low", "high")
y

combine some levels

z <- g3, 2, 12)

|eVe|S(Z) <- C(”A", "B", uAn)
z

same, using a named list
z <- g3, 2, 12)

levels(z) <- list(A=c(1,3), B=2)
z

we can add levels this way:
f <- factor(c("a","b"))
levels(f) <- c("c", "a", "b")

f <- factor(c("a","b"))
levels(f) <- list(C="C", A="a", B="b")
f

libPaths Search Paths for Packages

Description

libPaths gets/sets the library trees within which packages are looked for.

Usage

JlibPaths(new)

.Library
.Library.site

Arguments

new a character vector with the locations Bf library trees. Tilde expansion
(path.expand) is done, and if any element contains one*®f , globbing
is done where supported by the platform: Sgs.glob

222 libPaths

Details
.Library is a character string giving the location of the default library, theary’ subdirectory
of R_HOME

.Library.site is a (possibly empty) character vector giving the locations of the site libraries,
by default the site-library’ subdirectory ofR_ HOMEwhich may not exist).

JlibPaths is used for getting or setting the library trees tRaknows about (and hence uses
when looking for packages). If called with argumestwv, the library search path is set to the exist-
ing directories irunique(c(new, .Library.site, .Library)) and this is returned. If
given no argument, a character vector with the currently active library trees is returned.

The library search path is initialized at startup from the environment variabldBS (which
should be a colon-separated list of directories at wRidibrary trees are rooted) followed by those
in environment variabl® _LIBS_USER Only directories which exist at the time will be included.

By default R_LIBS is unset, andR_LIBS_USER is set to directory R/R.version$platform-
library/x.y’ of the home directory, foR x.y.z.

.Library.site can be set via the environment variaBleLIBS_SITE (as a colon-separated
list of library trees).

Both R_LIBS_USERandR_LIBS_SITE feature possible expansion of specifiers Roversion
specific information as part of the startup process. The possible conversion specifiers all start with a
‘% and are followed by a single letter (us&%:to obtain ‘%), with currently available conversion
specifications as follows:

%V R version number including the patchlevel (e.§.5.0).

%v R version number excluding the patchlevel (e.3.5"").

%p the platform for whichR was built.

%o0 the underlying operating system.

%a the architecture (CPUR was built on/for.

(Seeversion for details on R version information.)

Function.libPaths always uses the values dfibrary and.Library.site in the base
name spacelLibrary.site can be set by the site iRprofile.site’, which should be followed
by a call to.libPaths(.libPaths()) to make use of the updated value.

Value

A character vector of file paths.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

library

Examples

libPaths() # all library trees R knows about

library

223

library

Loading and Listing of Packages

Description

library andrequire load add-on packages.

.First.lib
tached.

Usage

is called when a package is loadedast.lib is called when a package is de-

library(package, help, pos = 2, lib.loc = NULL,
character.only = FALSE, logical.return = FALSE,
warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"),
version)

require(package, lib.loc
warn.conflicts
keep.source =
character.only

NULL, quietly = FALSE,

TRUE,
getOption("keep.source.pkgs"),

= FALSE, version, save = TRUE)

.First.lib(libname, pkgname)
.Last.lib(libpath)

Arguments

package, help

pos

lib.loc

character.only

version

logical.return

warn.conflicts

the name of a package, given amameor literal character string, or a char-
acter string, depending on whettadraracter.only is FALSE (default) or
TRUBE.

the position on the search list at which to attach the loaded package. Note
that .First.lib may attach other packages, apds is computedafter
.First.lib has been run. Can also be the name of a position on the cur-
rent search list as given tgearch () .

a character vector describing the locatiorRdfbrary trees to search through, or
NULL The default value oNULL corresponds to all libraries currently known.
Non-existent library trees are silently ignored.

a logical indicating whethguackage orhelp can be assumed to be character
strings.

A character string denoting a version number of the package to be loaded, for
use withversioned installssee the section later in this document.

logical. Ifitis TRUE FALSEor TRUEIs returned to indicate success.

logical. If TRUE warnings are printed abouabnflicts from attaching the
new package, unless that package contains an abuflicts.OK .Acon-
flict is a function masking a function, or a non-function masking a non-function.

224 library

keep.source logical. If TRUE functions ‘keep their source’ including comments, see argu-
mentkeep.source to options . This applies only to the named package,
and not to any packages or name spaces which might be loaded to satisfy depen-
dencies or imports.
This argument does not apply to packages using lazy-loading or saved images.
Whether they have kept source is determined when they are installed (and is
most likely false).

verbose a logical. If TRUE additional diagnostics are printed.
quietly a logical. If TRUE no message confirming package loading is printed.
save logical or environment. ITRUE a call torequire ~ from the source for a pack-

age will save the name of the required package in the variaiglguired" ,
allowing functiondetach to warn if a required package is detached. See sec-
tion ‘Packages that require other packages’ below.

libname a character string giving the library directory where the package was found.
pkgname a character string giving the name of the package, including the version number
if the package was installed withwith-package-versions

libpath a character string giving the complete path to the package.

Details
library(package) andrequire(package) both load the package with narpackage .
require is designed for use inside other functions; it retufdd. SE and gives a warning (rather
than an error akbrary() does by default) if the package does not exist. Both functions check

and update the list of currently loaded packages and do not reload a package which is already
loaded. (Furthermore, if the package has a name space and a name space of that name is already
loaded, they work from the existing name space rather than reloading from the file system. If you
want to reload a package, cdittach or unloadNamespace first.)

To suppress messages during the loading of packages use
suppressPackageStartupMessages : this will suppress all messages froR itself
but not necessarily all those from package authors.

If library s called with nopackage or help argument, it lists all available packages in the
libraries specified byib.loc , and returns the corresponding information in an object of class
"librarylQR" . The structure of this class may change in future versions. In earlier versions of
R, only the names of all available packages were returned;paskages(all = TRUE) for
obtaining these. Note thatstalled.packages () returns even more information.

library(help = somename) computes basic information about the packagenename,
and returns this in an object of clagsmckagelnfo" . The structure of this class may change in
future versions. When used with the default valN&J{L) for lib.loc |, the loaded packages are
searched before the libraries.

.First.lib is called when a package without a name space is loadeiblayy . (For
packages with name spaces seeLoad .) It is called with two arguments, the name of the
library directory where the package was found (i.e., the corresponding eleméhtlad),

and the name of the package (in that order, and with the package name including the ver-
sion for a versioned install, e.g.tree_ 1.0-16). It is a good place to put calls to
library.dynam which are needed when loading a package into this function (don't call
library.dynam directly, as this will not work if the package is not installed in a standard
location). .First.lib is invoked after the search path interrogatedsiearch() has been
updated, s@s.environment(match("package:name", search())) will return the
environment in which the package is stored. If callifdrst.lib gives an error the load-

ing of the package is abandoned, and the package will be unavailable. Similarly, if the option

library 225

" First.lib" has a list element with the package’s name, this element is called in the same
manner asFirst.lib when the package is loaded. This mechanism allows the user to set pack-
age ‘load hooks' in addition to startup code as provided by the package maintainesstHobk

is preferred.

.Last.lib is called when a package is detached. Beware that it might be calkédbitlib
has failed, so it should be written defensively. (It is called wittnin , so errors will not stop the
package being detached.)

Value

library returns the list of loaded (or available) packagesTBUEIf logical.return is
TRUB. require returns a logical indicating whether the required package is available, invisibly

Packages that require other packages

NB: This mechanism has been almost entirely superseded by usindetbends: field in the
‘DESCRIPTION' file of a package.

The source code for a package that requires one or more other packages should have a call to
require , preferably near the beginning of the source, and of course before any code that uses
functions, classes or methods from the other package. The default for argsawventwill save

the names of all required packages in the environment of the new package. The saved package
names are used letach when a package is detached to warn if other packages still require the
to-be-detached package. Also, if a package is installed with saved imagBl&B%L_L), the saved
package names are used to require these packages when the new package is attached.

Formal methods

library takes some further actions when packagehodsis attached (as it is by default). Pack-
ages may define formal generic functions as well as re-defining functions in other packages (notably
base to be generic, and this information is cached whenever such a package is loadetedfter
odsand re-defined functions are excluded from the list of conflicts. The check requires looking for
a pattern of objects; the pattern search may be avoided by defining an .ob@enerics (with

any value) in the package. Naturally, if the packdgeshave any such methods, this will prevent
them from being used.

Versioned installs

Packages can be installed with version informatiorRO\CMDINSTALL --with-package-

versions orinstall.packages (installwWithVers = TRUE) . This allows more than

one version of a package to be installed in a library directory, using package directory names like
foo_1.5-1 . When such packages are loaded, it is tlssionedname thasearch () returns.

Some utility functions require the versioned name and some the unversioned nanfeghere

If version is notspecifiedibrary looks first for a packages of that name, and then for ver-
sioned installs of the package, selecting the one with the latest version numbersitin is
specified, a versioned install with an exactly matching version is looked for.

If version is not specifiedrequire will accept any version that is already loaded, whereas
library will look for an unversioned install even if a versioned install is already loaded.

Loading more than one version of a package intd&rasession is not currently supported. Support
for versioned installs is patchy.

226 library

Note

library andrequire can only load arinstalled package, and this is detected by having a
‘DESCRIPTION'’ file containing aBuilt: field.

Under Unix-alikes, the code checks that the package was installed under a similar operating system
as given byR.version$platform (the canonical name of the platform under which R was
compiled), provided it contains compiled code. Packages which do not contain compiled code can
be shared between Unix-alikes, but not to other OSes because of potential problems with line end-
ings and OS-specific help files. If sub-architectures are used, the OS similarity is not checked since
the OS used to build may differ (e.886-pc-linux-gnu code can be built on ax86_64-
unknown-linux-gnu 0S).

The package name givenfibrary andrequire must match the name given in the package’s
‘DESCRIPTION' file exactly, even on case-insensitive file systems such as MS Windows.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

libPaths | .packages

attach , detach , search , objects , autoload , library.dynam , data ,
install.packages andinstalled.packages i INSTALL,, REMOVE
Examples
library() # list all available packages
library(lib.loc = .Library) # list all packages in the default library
library(help = splines) # documentation on package 'splines’
library(splines) # load package 'splines’
require(splines) # the same
search() # "splines", too

detach("package:splines")

if the package name is in a character vector, use

pkg <- "splines"

library(pkg, character.only = TRUE)

detach(pos = match(paste("package"”, pkg, sep=":"), search()))

require(pkg, character.only = TRUE)
detach(pos = match(paste("package"”, pkg, sep=":"), search()))

require(nonexistent) # FALSE
Not run:
Suppose a package needs to call a shared library named 'fooEXT',
where 'EXT' is the system-specific extension. Then you should use
.First.lib <- function(lib, pkg) {

library.dynam("foo", pkg, lib)
}

if you want to mask as little as possible, use
library(mypkg, pos = "package:base")
End(Not run)

library.dynam 227

library.dynam Loading Shared Libraries

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package = NULL, lib.loc = NULL,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext, ...

library.dynam.unload(chname, libpath,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext)

.dynLibs(new)
Arguments

chname a character string naming a shared library to load.

package a character vector with the names of packages to search throulyhlldr By
default, all packages in the search path are used.

lib.loc a character vector describing the locatiorRdfbrary trees to search through, or
NULL The default value oNULL corresponds to all libraries currently known.

libpath the path to the loaded package whose shared library is to be unloaded.

verbose a logical value indicating whether an announcement is printed on the console
before loading the shared library. The default value is taken from the verbose
entry in the system options.

file.ext the extension to append to the file name to specify the library to be loaded. This
defaults to the appropriate value for the operating system.
additional arguments needed by some libraries that are passed to the call to
dyn.load to control how the library is loaded.

new a list of "DLLInfo" objects corresponding to the shared libraries loaded by
packages. Can be missing.

Details
library.dynam is designed to be used inside a package rather than at the command line, and
should really only be used insid€&irst.lib or .onLoad . The system-specific extension

for shared libraries (e.g.,s0’ or ‘.slI' on Unix systems) should not be added. Note that to al-
low for versioned installs, thehname argument should not be set to thkgname argument of
.First.lib or.onLoad .

library.dynam.unload is designed for use irLast.lib or.onUnload : it unloads the
shared object and updates the valuedghLibs()

.dynLibs is used for getting (with no argument) or setting the shared libraries which are currently
loaded by packages (usitigrary.dynam).

228

license

Value

If chname is not specifiedlibrary.dynam returns an object of clas®LLInfoList" cor-
responding to the shared libraries loaded by packages.

If chname is specified, an object of clasBLLInfo" that identifies the DLL and can be used
in future calls is returned invisibly. For packages that have name spaces, a list of these objects is
stored in the name space’s environment for use at run-time.

Note that the clasBLLInfo has an overloaded method f®which can be used to resolve native
symbols within that DLL.

library.dynam.unload invisibly returns an object of clas®LLInfo" identifying the DLL
successfully unloaded.

.dynLibs returns an object of clas®LLInfoList" corresponding corresponding to its cur-
rent value.

Warning
Do not use dyn.unload on a shared object loaded blibrary.dynam ©use
library.dynam.unload to ensure thatdynLibs gets updated. Otherwise a subsequent

call tolibrary.dynam will be told the object is already loaded.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also
getLoadedDLLs for information on'DLLInfo" and"DLLInfoList" objects.
.First.lib ,library ,dyn.load ,.packages , .libPaths

SHLIB for how to create suitable shared libraries.

Examples
Which DLLs were "dynamically loaded" by packages?
library.dynam()
license The R License Terms
Description

The license terms under whihis distributed.

Usage

license()
licence()

list 229

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE Version 2, June
1991. A copy of this license is in file$R_HOME/COPYING’' and can be viewed by
RShowDoc("COPYING") .

A small number of files (the API header files) are distributed under the LESSER GNU GENERAL

PUBLIC LICENSE version 2.1. A copy of this license is in fi8R_DOC_DIR/COPYING.LIB’
and can be viewed brShowDoc("COPYING.LIB")

list Lists — Generic and Dotted Pairs

Description

Functions to construct, coerce and check for both kind® lidts.

Usage

list(...)
pairlist(...)

as.list(x, ...)

S3 method for class 'environment'
as.list(x, all.names = FALSE, ..)
as.pairlist(x)

is.list(x)
is.pairlist(x)
alist(...)
Arguments
objects, possibly named.
X object to be coerced or tested.
all.names a logical indicating whether to copy all values or (default) only those whose
names do not begin with a dot.
Details

Most lists inR internally areGeneric Vectorswhereas traditionalotted pairlists (as in LISP) are
available but rarely seen by users (excegbasials of functions).

The arguments tlist or pairlist are of the formvalue ortag=value . The functions
return a list or dotted pair list composed of its arguments with each value either tagged or untagged,
depending on how the argument was specified.

alist handles its arguments as if they described function arguments. So the values are not evalu-
ated, and tagged arguments with no value are allowed whiseas simply ignores themalist
is most often used in conjunction witbrmals

as.list attempts to coerce its argument to a list. For functions, this returns the concatenation of
the list of formal arguments and the function body. For expressions, the list of constituent elements

230 list

is returnedas.list is generic, and as the default method callsvector (mode="list")

methods foras.vector may be invoked.as.list turns a factor into a list of one-element
factors. All attributes will be dropped unless the argument already is a list. (This is inconsistent
with functions such aas.character , and is for efficiency since lists can be expensive to copy.)

is.list returnsTRUEIf and only if its argument is éist or a pairlist of length > 0.
is.pairlist returnsTRUEIf and only if the argument is a pairlist dULL (see below).

The" environment method foras.list copies the name-value pairs (for names not begin-

ning with a dot) from an environment to a named list. The user can request that all named objects
are copied. The listis in no particular order (the order depends on the order of creation of objects
and whether the environment is hashed). No parent environments are searched. (Objects copied are
duplicated so this can be an expensive operation.)

An empty pairlistpairlist() is the same aslULL This is different fromlist()

as.pairlist is implemented ass.vector (x, "pairlist") , and hence will dispatch
methods for the generic functi@s.vector

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

vector ("list", length) for creation of a list with empty components;for concatenation;
formals . unlist is an approximate inverse &s.list()

‘plotmath for the use oflist in plot annotation.

Examples

require(graphics)

create a plotting structure
pts <- list(x=cars[,1], y=cars[,2])
plot(pts)

is.pairlist(.Options) # a user-level pairlist

"pre-allocate” an empty list of length 5
vector("list", 5)

Argument lists

f <- function() x

Note the specification of a argument:
formals(f) <- al <- alist(x=, y=2+3, ...5)

f

al

environment->list coercion

el <- new.env()
el$a <- 10
el$b <- 20
as.list(el)

list.files 231

list.files List the Files in a Directory/Folder

Description

These functions produce a character vector of the names of files in the named directory.

Usage
list.files(path = ".", pattern = NULL, all.fles = FALSE,
fulLnames = FALSE, recursive = FALSE)
dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE)
Arguments
path a character vector of full path names; the default corresponds to the working
directorygetwd () .
pattern an optionaregular expressiorOnly file names which match the regular expres-
sion will be returned.
all.files a logical value. IfFALSE, only the names of visible files are returnedTRUE
all file names will be returned.
full.names a logical value. IfTRUE the directory path is prepended to the file names. If
FALSE only the file names are returned.
recursive logical. Should the listing recurse into directories?
Value

A character vector containing the names of the files in the specified directorl&s,iicthere were
no files. If a path does not exist or is not a directory or is unreadable it is skipped, with a warning.

The files are sorted in alphabetical order, on the full pathlifnames = TRUE

Note

File naming conventions are very platform dependent.

recursive = TRUE is not supported on all platforms, and may be ignored, with a warning.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info , file.access and files for many more file handling functions and
file.choose for interactive selection.

glob2rx to convert wildcards (as used by system file commands and shells) to regular expressions.
Sys.glob for wildcard expansion on file paths.

232 load
Examples

list.files(R.home())

Only files starting with a-l or r

dir("../..", pattern = "Ma-Ir]",ful.names=TRUE)

load Reload Saved Datasets

Description

Reload datasets written with the functisave .
Usage

load(file, envir = parent.frame())
Arguments

file a (readable binary) connection or a character string giving the name of the file

to load.

envir the environment where the data should be loaded.

Details

load can loadR objects saved in the current or any earlier format. It can read a compressed file
(seesave) directly from a file or from a suitable connection (including a callitb).

Only R objects saved in the current format (used siRck.4.0) can be read from a connection. If
no input is available on a connection a warning will be given, but any input not in the current format

will result in a error.

Loading from an earlier version will give a warning about the ‘magic nhumber’: magic numbers
1971:1977 are fromR <0.99.0, andR[ADX]1 fromR 0.99.0 toR 1.3.1.

Value

A character vector of the names of objects created, invisibly.

Warning

SavedR objects are binary files, even those saved \aghii
transferred without conversion of end of line markeisad tries to detect this case and give an

informative error message.

See Also

save , download.file

TRUE |, so ensure that they are

localeconv 233

Examples

save all data

XX <- pi # to ensure there is some data
save(list = Is(all=TRUE), file= "all.Rdata")
rm(xx)

restore the saved values to the current environment
local({

load("all.Rdata")

Is()
)]
restore the saved values to the user's workspace
load("all.Rdata", .GlobalEnv)

unlink("all.Rdata")

Not run:

con <- url("http://some.where.net/R/data/example.rda")
print the value to see what objects were created.
print(load(con))

close(con) # url() always opens the connection

End(Not run)

localeconv Find Details of the Numerical and Monetary Representations in the
Current Locale

Description

Get details of the numerical and monetary representations in the current locale.

Usage

Sys.localeconv()

Details

These settings are usually controlled by the environment variabl@esNUMERIC and
LC_MONETARaANd if not set the values €fC_ALL or LANG

Normally R is run without looking at the value &fC_NUMERICso the decimal point remains™
So the first three of these values will not be useful unless you hat®€Cs@&UMERIGn the current
R session.

Value

A character vector with 18 named components. See your ISO C documentation for details of the
meaning.

It is possible to compil® without support for locales, in which case the value willNigL L

See Also

Sys.setlocale for ways to set locales.

234 locales

Examples

Sys.localeconv()
The results in the C locale are

#t decimal_point thousands_sep grouping int_curr_symbol

it
currency_symbol mon_decimal_point mon_thousands_sep mon_grouping

#t

positive_sign negative_sign int_frac_digits frac_digits

#t "127" "127"
#t p_cs_precedes p_sep_by_space n_cs_precedes n_sep_by_space

it 7" 27" no7" n27"
#H p_sign_posn n_sign_posn

#t "127" "127"

Now try your default locale (which might be "C").
Not run:

old <- Sys.getlocale()

Sys.setlocale(locale = ™)

Sys.localeconv()

Sys.setlocale(locale = old)

End(Not run)

Not run: read.table("foo", dec=Sys.localeconv()["decimal_point"])

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale forfhprocess.

Usage

Sys.getlocale(category = "LC_ALL")
Sys.setlocale(category "LC_ALL", locale = ")

Arguments
category character string. The following categories should always be sup-
ported: "LC_ALL" , "LC_COLLATE", "LC_CTYPE", "LC_MONETARY,
"LC_NUMERIC" and "LC_TIME" . Some systems will also support
"LC_MESSAGES;"LC_PAPER" and"LC_MEASUREMENT"
locale character string. A valid locale name on the system in use. Norriallgthe
default) will pick up the default locale for the system.
Details

The locale describes aspects of the internationalization of a program. Initially most aspects of
the locale oR are set td'C" (which is the default for the C language and reflects North-American
usage)R sets'LC_CTYPE" and"LC_COLLATE", which allow the use of a different character set
and alphabetic comparisons in that character set (including the ssetof), "LC_MONETARY"

(for use bySys.localeconv) and"LC_TIME" may affect the behaviour afs.POSIXIt and
strptime and functions which use them (but rdzte).

locales 235

R can be built with no support for locales, but it is normally available on Unix and is available on
Windows.

The first seven categories described here are those specified by POSIXIESSAGES'will be
"C" on systems that do not support message translation, and is not supported on Windows. Trying
to use an unsupported category is an erroiSips.setlocale

Note that settindLC_ALL" sets only'LC_COLLATE", "LC_CTYPE", "LC_MONETARY"and
"LC_TIME" .

Attempts to set an invalid locale are ignored. There may or may not be a warning, depending on the
os.

Attempts to change the character set @ys.setlocale("LC_TYPE",) , if that implies a
different character set) during a session may not work and are likely to lead to some confusion.

Value

A character string of length one describing the locale in use (after settiryfosetlocale),
or an empty character string if the current locale settings are invallduL if locale information
is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a sin-
gle locale or a set of locales separated"By (Solaris) or";" (Windows, Linux). For porta-
bility, it is best to query categories individually. It is guaranteed that the resulbef<-
Sys.getlocale() can be used irBys.setlocale("LC_ALL", locale = foo) on

the same machine.

Warning

Setting"LC_NUMERIC" may causeRr to function anomalously, so gives a warning. (The known
problems are with input conversion in locales wijthas the decimal point.) Setting it temporar-
ily to produce graphical or text output may work well enough, typtions (OutDec) is often
preferable.

See Also

strptime for uses ofcategory = "LC_TIME" . Sys.localeconv for details of numeri-
cal and monetary representations.

I10n_info gives some summary facts about the locale and its encoding.

Examples

Sys.getlocale()

Sys.getlocale("LC_TIME")

Not run:

Sys.setlocale("LC_TIME", "de") # Solaris 7: details are OS-dependent
Sys.setlocale("LC_TIME", "de_DE.utf8") # Modern Linux etc.
Sys.setlocale("LC_TIME", "German") # Windows

End(Not run)

Sys.getlocale("LC_PAPER") # may or may not be set

Sys.setlocale("LC_COLLATE", "C") # turn off locale-specific sorting

236 log

log Logarithms and Exponentials

Description

log computes logarithms, by default natural logarithdog10 computes common (i.e., base
10) logarithms, andbg2 computes binary (i.e., base 2) logarithms. The general fogix,
base) computes logarithms with babase .

loglp(x) computedog(1 + x) accurately also fopr| < 1 (and less accurately whan~ —1).
exp computes the exponential function.

expml(x) computes:xp(x) — 1 accurately also fopr| < 1.

Usage

log(x, base = exp(1l))
logb(x, base = exp(1))
log10(x)
log2(x)

log1p(x)

exp(x)
expml(x)

Arguments

X a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults te=exp(1) .

Details

All exceptlogb are generic functions: methods can be defined for them individually or via the
Math group generic.

logl0 andlog2 are only convenience wrappers, but logs to bases 10 and 2 (whether computed
vialog or the wrappers) will be computed more efficiently and accurately where supported by the
OS. Methods can be set for them individually (and otherwise methodsdomill be used).

logb is awrapper fofog for compatibility with S. If (S3 or S4) methods are setlag they will
be dispatched. Do not set S4 methoddagb itself.

Value

A vector of the same length ascontaining the transformed valudsg(0) gives-Inf

Logic 237

S4 methods

exp, expml,log ,logl0 ,log2 andloglp are S4 generic and are members ofitfath group
generic.

Note that this means that the S4 generidégr has a signature with only one argumentbut that

base can be passed to methods (but will not be used for method selection). On the other hand, if
you only set a method for thdath group generic thebase argument ofog will be ignored for

your class.

Note

log andlogb are the same thing iR, butlogb is preferred ifbase is specified, for S-PLUS
compatibility.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole. (folog ,logl0 andexp.)

Chambers, J. M. (1998rogramming with Data. A Guide to the S Langua8eringer. (fotogb .)

See Also

Trig ,sqrt , Arithmetic

Examples

log(exp(3))
logl0(le7)# = 7

X <- 10"-(1+2*1:9)
cbind(x, log(1+x), loglp(x), exp(x)-1, expml(x))

Logic Logical Operators

Description

These operators act on logical vectors.

iISTRUE(x)

238 Logic

Arguments
X, Y logical vectors, or objects which can be coerced to such or for which methods
have been written.
Details

I indicates logical negation (NOT).

& and && indicate logical AND and and|| indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form evaluates
left to right examining only the first element of each vector. Evaluation proceeds only until the
result is determined. The longer form is appropriate for programming control-flow and typically
preferred inf clauses.

xor indicates elementwise exclusive OR.

iISTRUE(X) is an abbreviation oidentical(TRUE, Xx) , and so is true if and only X is a
length-one logical vector with no attributes (not even names).

Numeric and complex vectors will be coerced to logical values, with zero being false and all non-
zero values being true. Raw vectors are handled without any coercidn &and| , with these
operators being applied bitwise (sas the 1-complement).

The operators, & and| are generic functions: methods can be written for them individually or via
the Ops) group generic function. (Se@ps for how dispatch is computed.)

NAis a valid logical object. Where a componentyofor y is NA the result will beNA if the
outcome is ambiguous. In other worl® & TRUEevaluates tiNA butNA & FALSEevaluates

to FALSE See the examples below.

SeeSyntaxfor the precedence of these operators: unlike many other languages (including S) the
AND and OR operators do not have the same precedence (the AND operators are higher than the
OR operators).

Value

For!, alogical or raw vector of the same lengthxas

For| , &andxor a logical or raw vector. The elements of shorter vectors are recycled as necessary
(with awarning when they are recycled onfsactionally). The rules for determining the attributes

of the result are rather complicated. Most attributes are taken from the longer argument, the first
if they are of the same length. Names will be copied from the first if it is the same length as the
answer, otherwise from the second if that is. For time series, these operations are allowed only if
the series are compatible, when the classtapd attribute of whichever is a time series (the same,

if both are) are used. For arrays (and an array result) the dimensions and dimnames are taken from
first argument if it is an array, otherwise the second.

For]| , &&andisTRUE, a length-one logical vector.

S4 methods

I, &and| are S4 generics, the latter two part of thegic group generic (and hence methods
need argument nameg, e2).

Prior toR 2.6.0 S4 methods fdr needed argument nameé , but nowx is correct.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

logical 239

See Also

TRUEor logical
any andall for OR and AND on many scalar arguments.

Syntax for operator precedence.

Examples

y <- 1 + (x <- stats:rpois(50, lambda=1.5) / 4 - 1)
X[(x > 0) & (x < 1)] # all x values between 0 and 1
if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables :

x <- ¢(NA, FALSE, TRUE)
names(x) <- as.character(x)
outer(x, X, "&")## AND table
outer(x, x, "|")y## OR table

logical Logical Vectors

Description

Create or test for objects of tygkgical” , and the basic logical constants.

Usage

TRUE
FALSE
T, F

logical(length = 0)
as.logical(x, ...)

is.logical(x)
Arguments
length desired length.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

TRUEandFALSE arereservedvords denoting logical constants in tRdanguage, whereasand
F are global variables whose initial values set to these. All foutcgieal(1) vectors.

240 lower.tri

Value

logical creates a logical vector of the specified length. Each element of the vector is equal to

FALSE
as.logical attempts to coerce its argument to be of logical type. feotor s, this uses the
levels (labels). Likeas.vector it strips attributes including names.
is.logical returnsTRUEor FALSE depending on whether its argument is of logical type or
not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

NA the other logical constant.

lower.tri Lower and Upper Triangular Part of a Matrix

Description
Returns a matrix of logicals the same size of a given matrix with entiRd$Ein the lower or upper
triangle.

Usage

lower.tri(x, diag FALSE)
upper.tri(x, diag = FALSE)

Arguments

X a matrix.

diag logical. Should the diagonal be included?
See Also

diag , matrix

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri(m2)
m2[lower.triim2)] <- NA
m2

Is 241

Is List Objects

Description

Is andobjects return avector of character strings giving the names of the objects in the specified

environment. When invoked with no argument at the top level prolmpshows what data sets and
functions a user has defined. When invoked with no argument inside a funistiorgturns the
names of the functions local variables. This is useful in conjunction britkvser .

Usage

Is(name, pos = -1, envir = as.environment(pos),
all.Lnames = FALSE, pattern)
objects(name, pos= -1, envir = as.environment(pos),
all.names = FALSE, pattern)

Arguments
name which environment to use in listing the available objects. Defaults tatine
rent environment. Although calledame for back compatibility, in fact this
argument can specify the environment in any form; see the details section.
pos An alternative argument toame for specifying the environment as a position
in the search list. Mostly there for back compatibility.
envir an alternative argument ttame for specifying the environment evaluation en-
vironment. Mostly there for back compatibility.
all.names a logical value. IfTRUE all object names are returned HALSE, names which
begin with a . ’ are omitted.
pattern an optionalregular expressionOnly names matchingattern are returned.
glob2rx can be used to convert wildcard patterns to regular expressions.
Details

The name argument can specify the environment from which object names are taken in one of

several forms: as an integer (the position in search list); as the character string name of an
element in the search list; or as an explesivironment (including usingsys.frame to access
the currently active function calls). By default, the environment of the cdll t@r objects is

used. Thepos andenvir arguments are an alternative way to specify an environment, but are

primarily there for back compatibility.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

glob2rx for converting wildcard patterns to regular expressions.

Is.str for a long listing based ostr . apropos (or find) for finding objects in the whole
search pathgrep for more details on ‘regular expressionslass , methods , etc., for object-
oriented programming.

242 make.names

Examples
.Ob <1
Is(pattern = "O")
Is(pattern= " O", all.Lnames = TRUE) # also shows ".[foo]"

shows an empty list because inside myfunc no variables are defined
myfunc <- function() {Is()}
myfunc()

define a local variable inside myfunc
myfunc <- function() {y <- 1; Is()}

myfunc() # shows "y"
make.names Make Syntactically Valid Names
Description

Make syntactically valid names out of character vectors.

Usage
make.names(names, unique = FALSE, allow_ = TRUE)
Arguments
names character vector to be coerced to syntactically valid names. This is coerced to
character if necessary.
unique logical; if TRUE the resulting elements are unique. This may be desired for,
e.g., column names.
allow_ logical. For compatibility withR prior to 1.9.0.
Details

A syntactically valid name consists of letters, numbers and the dot or underline characters and
starts with a letter or the dot not followed by a number. Names sutRaay" are not valid, and
neither are the reserved words.

The charactetX" is prepended if necessary. All invalid characters are translatéd to A
missing value is translated tBlA" . Names which matcR keywords have a dot appended to them.
Duplicated values are altered byake.unique

Value

A character vector of same lengthr@ames with each changed to a syntactically valid name.

Note
Prior toR version 1.9.0, underscores were not valid in variable names, and code that relies on them
being converted to dots will no longer work. Uakkbow_ = FALSE for back-compatibility.

allow_ = FALSE is also useful when creating names for export to applications which do not
allow underline in names (for example, S-PLUS and some DBMSSs).

make.unique 243

See Also

make.unique , names, character , data.frame

Examples

make.names(c("a and b", "a-and-b"), unique=TRUE)

"a.and.b" "a.and.b.1"

make.names(c("a and b", "a_and_b"), unique=TRUE)

"a.and.b” "a_and_b"

make.names(c("a and b", "a_and_b"), unique=TRUE, allow_=FALSE)
"a.and.b" "a.and.b.1"

state.name[make.names(state.name) != state.name] # those 10 with a space

make.unique Make Character Strings Unique

Description

Makes the elements of a character vector unique by appending sequence numbers to duplicates.

Usage

make.unique(names, sep = ".")
Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence number.
Details

The algorithm used bynake.unique has the property thanake.unique(c(A, B)) ==
make.unique(c(make.unique(A), B))

In other words, you can append one string at a time to a vector, making it unique each time, and get
the same result as applyimgake.unique to all of the strings at once.

If character vectoA is already unique, themake.unique(c(A, B)) preserves\.

Value

A character vector of same lengthra@mes with duplicates changed.

Author(s)
Thomas P Minka

See Also

make.names

244 mapply

Examples

make.unique(c("a", "a", "a"))
make.unigue(c(make.unique(c("a", "a")), "a"))

make.unique(c("a", "a", "a.2", "a"))
make.unigue(c(make.unique(c("a", "a")), "a.2", "a"))

rbind(data.frame(x=1), data.frame(x=2), data.frame(x=3))
rbind(rbind(data.frame(x=1), data.frame(x=2)), data.frame(x=3))

manglePackageName Mangle the Package Name

Description

This function takes the package name and the package version number and pastes them together
with a separating underscore.

Usage

manglePackageName(pkgName, pkgVersion)

Arguments
pkgName The package name, as a character string.
pkgVersion The package version, as a character string.
Value

A character string with the two inputs pasted together.

Examples

manglePackageName("foo", "1.2.3")

mapply Apply a function to multiple list or vector arguments

Description

mapply is a multivariate version afapply . mapply appliesFUNto the first elements of each
...argument, the second elements, the third elements, and so on. Arguments are recycled if neces-
sary.

Vectorize returns a new function that acts asifipply was called.

mapply 245

Usage
mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Vectorize(FUN, vectorize.args = arg.names, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Arguments
FUN function to apply, found vianatch.fun
arguments to vectorize over (list or vector).
MoreArgs a list of other arguments 6UN
SIMPLIFY logical; attempt to reduce the result to a vector or matrix?

USE.NAMES logical; use names if the first . . . argument has names, or if it is a character vector,

use that character vector as the names.
vectorize.args

a character vector of arguments which should be vectorized. Defaults to all

arguments té¢-UN

Details

The arguments named in thectorize.args argument toVectorize correspond to the
arguments passed in the list to mapply . However, only those that are actually passed will be
vectorized; default values will not. See the example below.

Vectorize cannot be used with primitive functions as they have no formal list.

Value

mapply returns a list, vector, or matrix.
Vectorize returns a function with the same argument&aN but wrapping a call tanapply .

See Also
sapply , outer
Examples
require(graphics)
mapply(rep, 1:4, 4:1)
mapply(rep, times=1:4, x=4:1)
mapply(rep, times=1:4, MoreArgs=list(x=42))
Repeat the same using Vectorize: use rep.int as rep is primitive
vrep <- Vectorize(rep.int)
vrep(1:4, 4:1)

vrep(times=1:4, x=4:1)

vrep <- Vectorize(rep.int, "times")
vrep(times=1:4, x=42)

246 margin.table

mapply(function(x,y) seq_len(x) + v,
c(a= 1, b=2, c= 3), # names from first
c(A=10, B=0, C=-10))

word <- function(C,k) paste(rep.int(C,k), collapse=")
utils::str(mapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))

f <- function(x=1:3, y) c(x,y)

vf <- Vectorize(f, SIMPLIFY = FALSE)
f(1:3,1:3)

vf(1:3,1:3)

vf(y=1:3) # Only vectorizes y, not X

Nonlinear regression contour plot, based on nis() example
SS <- function(Vm, K, resp, conc) {

pred <- (Vm * conc)/(K + conc)
sum((resp - pred)*2 / pred)

}
vSS <- Vectorize(SS, c("Vm", "K"))
Treated <- subset(Puromycin, state == "treated")

Vm <- seq(140, 310, len=50)

K <- seq(0, 0.15, len=40)

SSvals <- outer(Vm, K, vSS, Treated$rate, Treated$conc)
contour(Vm, K, SSvals, levels=(1:10)"2, xlab="Vm", ylab="K")

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table(x, margin=NULL)

Arguments
X an array
margin index number (1 for rows, etc.)
Details
This is really justapply(x, margin, sum) packaged up for newbies, except thahifrgin

has length zero you gstim(x) .

Value

The relevant marginal table. The classxois copied to the output table, except in the summation
case.

mat.or.vec 247

Author(s)
Peter Dalgaard

See Also

prop.table andaddmargins

Examples

m <- matrix(1:4,2)
margin.table(m,1)
margin.table(m,2)

mat.or.vec Create a Matrix or a Vector

Description
mat.or.vec creates amr by nc zero matrix ifnc is greater than 1, and a zero vector of length
nr if nc equals 1.

Usage

mat.or.vec(nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec(3, 1)
mat.or.vec(3, 2)

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in%is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for its left operand.

Usage

match(x, table, nomatch = NA_integer_, incomparables = FALSE)

X %in% table

248 match

Arguments
X vector orNULL: the values to be matched.
table vector orNULL: the values to be matched against.
nomatch the value to be returned in the case when no match is found. Note that it is

coerced tanteger
incomparables

a vector of values that cannot be matched. Any valug matching a value
in this vector is assigned theomatch value. CurrentlyFALSE is the only
possible value, meaning that all values can be matched.

Details
%in%is currently defined as
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0

Factors, raw vectors and lists are converted to character vectors, anddhdiable are coerced
to a common type (the later of the two types in R’s ordering, logical < integer < numeric < complex
< character) before matching.

Matching for lists is potentially very slow and best avoided except in simple cases.

Exactly what matches what is to some extent a matter of definition. For all tiifematchedNA
and no other value. For real and complex valudaN values are regarded as matching any other
NaNvalue, but not matchinyA

Value

A vector of the same length as

match : An integer vector giving the position itable of the first match if there is a match,
otherwisenomatch .

If x[i] is found to equatablelj] then the value returned in theth position of the return
value isj , for the smallest possibie. If no match is found, the value imomatch .

%in% A logical vector, indicating if a match was located for each element of

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

pmatch andcharmatch for (partial) string matchingmatch.arg , etc for function argument
matching findinterval similarly returns a vector of positions, but finds numbers within inter-
vals, rather than exact matches.

is.element for an S-compatible equivalent &6in%

Examples

The intersection of two sets :
intersect <- function(x, y) y[match(x, y, nomatch = 0)]
intersect(1:10,7:20)

1:10 %in% c(1,3,5,9)

match.arg 249

sstr <- c¢("c","ab","B","bba","c","@","bla","a","Ba","%")
sstr[sstr %in% c(letters,LETTERS)]

"%w/0%" <- function(x,y) X[x %in% y] #-- x without y
(1:10) %w/o% c(3,7,12)

match.arg Argument Verification Using Partial Matching

Description

match.arg matchesarg against a table of candidate values as specifiedimjces , where
NULL means to take the first one.

Usage

match.arg(arg, choices, several.ok = FALSE)

Arguments

arg a character vector (of length one unlesveral.ok is TRUB or NULL

choices a character vector of candidate values

several.ok logical specifying ifarg should be allowed to have more than one element.
Details

In the one-argument forrmatch.arg(arg) , the choices are obtained from a default setting

for the formal argumendrg of the function from whichmatch.arg was called. (Since default
argument matching will sedrg to choices |, this is allowed as an exception to the ‘length one
unlessseveral.ok is TRUErule, and returns the first element.)

Matching is done usingmatch , soarg may be abbreviated.

Value

The unabbreviated version of the exact or unique partial match if there is one; otherwise, an error is

signalled ifseveral.ok s false, as per default. Wheseveral.ok s true and more than one
element ofarg has a match, all unabbreviated versions of matches are returned.

See Also

pmatch , match.fun , match.call

Examples

require(stats)

Extends the example for 'switch’'

center <- function(x, type = c("'mean”, "median"”, "trimmed")) {
type <- match.arg(type)

switch(type,
mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

250 match.call

}

X <- rcauchy(10)

center(x, "t") # Works

center(x, "med") # Works

try(center(x, "m")) # Error
stopifnot(identical(center(x), center(x, "mean")),

identical(center(x, NULL), center(x, "mean")))

Allowing more than one match:

match.arg(c("gauss”, "rect", "ep"),
c("gaussian”, "epanechnikov", "rectangular”, “"triangular"),
several.ok = TRUE)

match.call Argument Matching
Description
match.call returns a call in which all of the specified arguments are specified by their full
names.
Usage

match.call(definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments
definition a function, by default the function from whiamatch.call is called. See
details.
call an unevaluated call to the function specifieddgfinition , as generated by
call
expand.dots logical. Should arguments matching in the call be included or left as.a
argument?
Details

‘function’ on this help page means an interpreted function (also known as a ‘closure’):
match.call does not support with primitive functions (where argument matching is normally
positional).

match.call is most commonly used in two circumstances:
» Torecord the call for later re-use: for example most model-fitting functions record the call as

elementcall of the list they return. Here the defaeltpand.dots = TRUE is appropri-
ate.

» To pass most of the call to another function, ofteadel.frame . Here the common idiom
is thatexpand.dots = FALSE is used, and the. elememt of the matched call is
removed. An alternative is to explicitly select the arguments to be passed on, as is iione in

Callingmatch.call outside a function without specifyirggefinition is an error.

match.fun 251

Value

An object of clasgall

References

Chambers, J. M. (199&rogramming with Data. A Guide to the S Langua§gringer.

See Also

sys.call () issimilar, but doesotexpand the argument namesjl , pmatch , match.arg ,
match.fun

Examples

match.call(get, call("get”, "abc", i = FALSE, p = 3))
-> get(x = "abc", pos = 3, inherits = FALSE)
fun <- function(x, lower = 0, upper = 1) {
structure((x - lower) / (upper - lower), CALL = match.call())

}
fun(4 * atan(l), u = pi)

match.fun Function Verification for “Function Variables”

Description

When called inside functions that take a function as argument, extract the desired function object
while avoiding undesired matching to objects of other types.

Usage

match.fun(FUN, descend = TRUE)

Arguments
FUN item to match as function: a function, symbol or character string. See ‘Details’.
descend logical; control whether to search past non-function objects.

Details

match.fun is not intended to be used at the top level since it will perform matching ipahent
of the caller.

If FUNis a function, it is returned. If it is a symbol (for example, enclosed in backquotes) or a
character vector of length one, it will be looked up usge in the environment of the parent of

the caller. Ifitis of any other mode, it is attempted first to get the argument to the caller as a symbol
(usingsubstitute twice), and if that fails, an error is declared.

If descend = TRUE, match.fun will look past non-function objects with the given name;
otherwise ifFUNpoints to a non-function object then an error is generated.

This is used in base functions suchegply |, lapply , outer , andsweep.

252 Math

Value

A function matching=UNor an error is generated.

Bugs

Thedescend argument is a bit of misnomer and probably not actually needed by anything. It may
go away in the future.

Itis impossible to fully foolproof this. If onattach es alist or data frame containing a length-one
character vector with the same name as a function, it may be used (although name spaces will help).

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg , get

Examples

Same as get("*"):

match.fun("*")

Overwrite outer with a vector

outer <- 1:5

Not run:

match.fun(outer, descend = FALSE) #-> Error: not a function
End(Not run)

match.fun(outer) # finds it anyway
is.function(match.fun("outer")) # as well

Math Miscellaneous Mathematical Functions

Description
These functions compute miscellaneous mathematical functions. The naming follows the standard
for computer languages such as C or Fortran.
Usage
abs(x)
sqrt(x)
Arguments

X a numeric 0|complex vector or array.

Details

These are generic functions: methods can be defined for them individually or vislatie
group generic. For complex arguments (and the default metkodihs(z) == Modz) and
sqrt(z) == z"0.5

abs(x) returns arinteger vector wherx isinteger orlogical

matmult 253

S4 methods

Both are S4 generic and members of ath group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

Arithmetic ~ for simple,log for logarithmic,sin for trigonometric, andSpecial for special
mathematical functions.

‘plotmath for the use ofsgrt in plot annotation.

Examples

require(stats) # for spline

require(graphics)

XX <- -9:9

plot(xx, sgrt(abs(xx)), col = "red")
lines(spline(xx, sgrt(abs(xx)), n=101), col = "pink")

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be promoted to
either a row or column matrix to make the two arguments conformable. If both are vectors it will
return the inner product.

Usage

X %*% y

Arguments

X, Yy numeric or complex matrices or vectors.

Details

When a vector is promoted to a matrix, its names are not promoted to row or column names, unlike
as.matrix

This operator is S4 generic but not S3 generic. S4 methods need to be written for a function of two
arguments namexi andy.

Value

The matrix product. Usdrop to get rid of dimensions which have only one level.

254 matrix

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

matrix , Arithmetic , diag .

Examples

X <- 1:4
(z <- X %*% Xx) # scalar ("inner") product (1 x 1 matrix)
drop(z) # as scalar

<- diag(x)

<- matrix(1:12, ncol = 3, nrow = 4)
%*% z

%*% X

%*% z

X <K< N

matrix Matrices

Description

matrix creates a matrix from the given set of values.
as.matrix attempts to turn its argument into a matrix.
is.matrix tests if its argument is a (strict) matrix.

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

as.matrix(x, ...)
S3 method for class 'data.frame"
as.matrix(x, rownames.force = NA, ...)

is.matrix(x)
Arguments

data an optional data vector.

nrow the desired number of rows.

ncol the desired number of columns.

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.

dimnames A dimnames attribute for the matrix: dist of length 2 giving the row and

column names respectively.
X anR object.

matrix 255

additional arguments to be passed to or from methods.

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULD rownames. The default,NA usesNULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

If one of nrow or ncol is not given, an attempt is made to infer it from the lengtidafa and
the other parameter. If neither is given, a one-column matrix is returned.

If there are too few elements thata to fill the array, then the elements data are recycled. If
data has length zerd\Aof an appropriate type is used for atomic vect@ddr raw vectors) and
NULLfor lists.

is.matrix returnsTRUEIf x is a matrix and has dim attribute of length 2) an8ALSE other-
wise. Note that alata.frame is not a matrix by this test. It is generic: you can write methods to
handle specific classes of objects, gernalMethods

as.matrix is a generic function. The method for data frames will return a character matrix if
there is any non-(numeric/logical/complex) column, applyimgnat to non-character columns.
Otherwise, the usual coercion hierarchy (logical < integer < double < complex) will be used, e.g.,
all-logical data frames will be coerced to a logical matrix, mixed logical-integer will give a integer
matrix, etc.

When coercing a vector, it produces a one-column matrix, and promotes the names (if any) of the
vector to the rownames of the matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

data.matrix , which attempts to convert to a numeric matrix.

Examples

is.matrix(as.matrix(1:10))

lis.matrix(warpbreaks)# data.frame, NOT matrix!
warpbreaks[1:10,]

as.matrix(warpbreaks[1:10,]) #using as.matrix.data.frame(.) method

Example of setting row and column names
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE,
dimnames = list(c("rowl", "row2"),
c("'C.1", "C.2", "C.3"))
mdat

256 maxCol

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col(m, ties.method=c("random", “first", "last"))

Arguments
m numerical matrix
ties.method a character string specifying how ties are handteahhdom" by default; can
be abbreviated; see ‘Details’.
Details
Whenties.method = "random" , as per default, ties are broken at random. In this case, the

determination of a tie assumes that the entries are probabilities: there is a relative tolei@nce of
relative to the largest (in magnitude, omitting infinity) entry in the row.

If ties.method = "first" ,max.col returns the column number of tfiest of several max-

ima in every row, the same asiname(unname(m, 1, unname)) .

Correspondinglyties.method = "last" returns thdast of possibly several indices.
Value

index of a maximal value for each row, an integer vector of lemgttw(m) .

References

Venables, W. N. and Ripley, B. D. (200R)odern Applied Statistics with 8lew York: Springer
(4th ed).

See Also

which.max for vectors.

Examples

table(mc <- max.col(swiss))# mostly "1" and "5", 5 x "2" and once "4"
swiss[unique(print(mr <- max.col(t(swiss)))) ,] # 3 33 45 45 33 6

set.seed(1)# reproducible example:
(mm <- rbind(x = round(2*stats::runif(12)),
round(5*stats::runif(12)),

y
z = round(8*stats::runif(12))))

Not run:

(1] [:2] [,3] [4] 5] [.6] 7] [.8] [.9] [10] [11] [12]
X 1 1 1 2 0 2 2 1 1 0
y 3 2 4 2 4 5 2 4 5 1 3 1

o
o

mean 257

z 2 3 0 3 7 3 4 5 4 1 7 5
End(Not run)

column indices of all row maxima :

utils::str(lapply(1:3, function(i) which(mm[i,] == max(mm([i,]))))

max.col(mm) ; max.col(mm) # "random"

max.col(mm, "first}# -> 4 6 5

max.col(mm, "last") # -> 7 9 11

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean(x, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...

Arguments
X An R object. Currently there are methods for numeric data frames, numeric
vectors and dates. A complex vector is allowedtfan = 0 , only.
trim the fraction (0 to 0.5) of observations to be trimmed from each endlmdfore
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.
na.rm a logical value indicating wheth@&tAvalues should be stripped before the com-
putation proceeds.
further arguments passed to or from other methods.
Value

For a data frame, a named vector with the appropriate method being applied column by column.

If trim is zero (the default), the arithmetic mean of the values is computed, as a numeric or
complex vector of length one. ¥ is not logical (coerced to numeric), integer, numeric or complex,
NAis returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fractiomnof observa-
tions deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

weighted.mean , mean.POSIXct

258 Memory

Examples

x <- ¢(0:10, 50)
Xxm <- mean(x)
c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)

Memory Memory Available for Data Storage

Description

Use command line options to control the memory availabldfor

Usage

R --min-vsize=vl --max-vsize=vu --min-nsize=nl --max-nsize=nu --max-ppsize=N

mem.limits(nsize = NA, vsize = NA)

Arguments

vl, vu, vsize

Heap memory in bytes.
nl, nu, nsize

Number of cons cells.

N Number of neste@ROTECTalls.

Details

R has a variable-sized workspace. There is much less need to set memory options thanRprior to
1.2.0, and most users will never need to set these. They are provided both as a way to control the
overall memory usage (which can also be done by operating-system facilities sliitfit as on

Unix), and since setting larger values of the minima will mékslightly more efficient on large

tasks.

To understand the options, one needs to knowRhataintains separate areas for fixed and variable
sized objects. The first of these is allocated as an arragms cellgLisp programmers will know

what they are, others may think of them as the building blocks of the language itself, parse trees,
etc.), and the second are thrown oheapof ‘Vcells’ of 8 bytes each. Effectively, the inputd

andvu are rounded up to the next multiple of 8.

Each cons cell occupies 28 bytes on a 32-bit machine, (usually) 56 bytes on a 64-bit machine.

The --*-nsize ' options can be used to specify the number of cons cells and-thesize
options specify the size of the vector heap in bytes. Both options must be integers or integers
followed by G M K, ork meaningGiga (230 = 1073741824) Mega(22° = 1048576), (computer)

Kilo (21° = 1024), or regularkilo (1000).

The --min-* ' options set the minimal sizes for the number of cons cells and for the vector heap.
These values are also the initial values, but there&teill grow or shrink the areas depending on

Memory-limits 259

usage, but never exceeding the limits set by thmax-* '’ options nor decreasing below the initial
values.

The default values are currently minima of 350k cons cells, 6Mb of vector heap and no max-
ima (other than machine resources). The maxima can be changed dufihgession by calling
mem.limits . (If this is called with the default values, it reports the current settings.)

You can find out the current memory consumption (the heap and cons cells used as numbers and
megabytes) by typingc() at theR prompt. Note that followingycinfo (TRUE), automatic
garbage collection always prints memory use statistics. Maxima will never be reduced below the
current values for triggering garbage collection, and attempts to do so will be silently ignored.

The command-line option-max-ppsize ' controls the maximum size of the pointer protection
stack. This defaults to 50000, but can be increased to allow deep recursion or large and complicated
calculations to be doneNote that parts of the garbage collection process goes through the full
reserved pointer protection stack and hence becomes slower when the size is increased. Currently
the maximum value accepted is 500000.

Value

mem.limits() returns an integer vector giving the current settings of the maxima, po$&tbly

See Also

An Introduction to Ror more command-line options
Memory-limits for the design limitations.

gc for information on the garbage collector and total memory usalject.size (@) forthe
(approximate) size dR objecta. memory.profile for profiling the usage of cons cells.

Examples

Start R with 10MB of heap memory and 500k cons cells, limit to
100Mb and 1M cells

Not run:

Unix

R --min-vsize=10M --max-vsize=100M --min-nsize=500k --max-nsize=1M
End(Not run)

Memory-limits Memory Limits in R

Description

R holds objects it is using in memory. This help file documents the current design limitations on
large objects: these differ between 32-bit and 64-bit buildR.of

Details

R holds all objects in memory, and there are limits based on the amount of memory that can be used
by all objects:

» There may be limits on the size of the heap and the number of cons cells allowed — see
Memory — but these are usually not imposed.

260 memory.profile

» There is a limit on the address space of a single process such Bsekecutable. This is
system-specific, but 32-bit OSes imposes a limit of no more than 4Gb: it is often 3Gb or less.

» The environment may impose limitations on the resources available to a single process — see
the OS/shell’'s help on commands sucHiast or ulimit

Error messages beginnimgnnot allocate vector of size indicate a failure to obtain
memory, either because the size exceeded the address-space limit for a process or, more likely,
because the system was unable to provide the memory. Note that on a 32-bit OS there may well be
enough free memory available, but not a large enough contiguous block of address space into which
to map it.

There are also limits on individual objects. On all version®pthe maximum length (number of
elements) of a vector 83! — 1 ~ 210, as lengths are stored as signed integers. In addition, the
storage space cannot exceed the address limit, and if you try to exceed that limit, the error message
beginscannot allocate vector of length . The number of characters in a character
string is in theory only limited by the address space.

See Also

object.size (a) forthe (approximate) size & objecta.

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells 8£XPREQGype.

Usage

memory.profile()

Details

The current types and their uses are listed in the includeRileternals.h’.

Value

A vector of counts, named by the types. $gseof for an explanation of types.

See Also

gc for the overall usage of cons cell&profmem andtracemem allow memory profiling of
specific code or objects, but need to be enabled at compile time.

Examples

memory.profile()

merge 261

merge Merge Two Data Frames
Description
Merge two data frames by common columns or row names, or do other versions of datébase
operations.
Usage

merge(x, vy, ...)

Default S3 method:
merge(x, vy, ...)

S3 method for class 'data.frame'

merge(x, y, by = intersect(names(x), names(y)),
by.x = by, by.y = by, all = FALSE, all.x = all, alL.y = all,
sort = TRUE, suffixes = c(".x",".y"), ...)

Arguments
X, Y data frames, or objects to be coerced to one.
by, by.x, by.y
specifications of the common columns. See ‘Details’.
all logical;all = L isshorthandfoall.x = L andally = L
all.x logical; if TRUE then extra rows will be added to the output, one for each row
in x that has no matching row . These rows will havé&\As in those columns
that are usually filled with values from. The default iSFALSE, so that only
rows with data from botlx andy are included in the output.
all.y logical; analogous tall.x above.
sort logical. Should the results be sorted on byecolumns?
suffixes character(2) specifying the suffixes to be used for making monames()
unique.
arguments to be passed to or from methods.
Details

By default the data frames are merged on the columns with names they both have, but separate
specifications of the columns can be giverblyyx andby.y . Columns can be specified by name,
number or by a logical vector: the nafrew.names" or the numbef specifies the row names.

The rows in the two data frames that match on the specified columns are extracted, and joined
together. If there is more than one match, all possible matches contribute one row each.

If by or bothby.x andby.y are of length O (a length zero vector BULL), the result,r,
is the Cartesian producbf x andy, i.e., dim(r) = c(nrow(x)*nrow(y), ncol(x) +
ncol(y))

If all.x is true, all the non matching casesxoére appended to the result as well, witAfilled
in the corresponding columns pf analogously foall.y

262 message

If the remaining columns in the data frames have any common names, thessuififaxes
"x" and"y" by default) appended to make the names of the result unique.

The complexity of the algorithm used is proportional to the length of the answer.

Value

A data frame. The rows are by default lexicographically sorted on the common columns, but for
sort = FALSE are in an unspecified order. The columns are the common columns followed by
the remaining columns iR and then those iy. If the matching involved row names, an extra
character column callédow.names is added at the left, and in all cases the result has ‘automatic’
row names.

See Also

data.frame , by, cbind

Examples

use character columns of names to get sensible sort order
authors <- data.frame(
surname = I(c("Tukey", "Venables", "Tierney", "Ripley”, "McNeil")),
nationality = c("US", "Australia”, "US", "UK", "Australia"),
deceased = c("yes", rep("no", 4)))
books <- data.frame(
name = I(c("Tukey", "Venables", "Tierney",
"Ripley", "Ripley", "McNeil", "R Core")),
titte = c("Exploratory Data Analysis”,
"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics”, "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),
other.author = c(NA, "Ripley”, NA, NA, NA, NA,
"Venables & Smith"))

(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))
(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))
stopifnot(as.character(ml1[,1]) == as.character(m2[,1]),
all.equal(ml[, -1], m2[, -1][names(m1)[-1] 1),
dim(merge(m1, m2, by = integer(0))) == c(36, 10))

"R core" is missing from authors and appears only here :
merge(authors, books, by.x = "surname", by.y = "name", all = TRUE)

message Diagnostic Messages

Description

Generate a diagnostic message from its arguments.

message 263

Usage

message(..., domain = NULL, appendLF = TRUE)
suppressMessages(expr)

packageStartupMessage(..., domain = NULL, appendLF = TRUE)
suppressPackageStartupMessages(expr)

.makeMessage(..., domain = NULL, appendLF = FALSE)

Arguments
zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (foressage only) a single condition object.
domain seegettext . If NA messages will not be translated.
appendLF logical: should messages given as a character string have a newline appended?
expr expression to evaluate.
Details

message is used for generating ‘simple’ diagnostic messages which are neither warnings nor
errors, but nevertheless represented as conditions. Unlike warnings and errors, a final newline is
regarded as part of the message, and is optional. The default handler sends the message to the
stderr () connection.

If a condition object is supplied tmessage it should be the only argument, and further arguments
will be ignored, with a warning.

While the message is being processeahdfleMessage restart is available.

suppressMessages evaluates its expression in a context that ignores all ‘simple’ diagnostic
messages.

packageStartupMessage is a variant whose messages can be suppressed separately by
suppressPackageStartupMessages . (They are still messages, so can be suppressed by
suppressMessages .)

.makeMessage is a utility used bymessage, warning andstop to generate a text message
from the... arguments by possible translation (ggttext) and concatenation (with no sepa-
rator).

See Also

warning andstop for generating warnings and errorspnditions for condition handling
and recovery.

gettext for the mechanisms for the automated translation of text.

Examples

message("ABC", "DEF")
suppressMessages(message("ABC"))

testit <- function() {
message("testing package startup messages")
packageStartupMessage(“initializing ...", appendLF = FALSE)
Sys.sleep(1)
packageStartupMessage(" done")

264 missing

}

testit()
suppressPackageStartupMessages(testit())
suppressMessages(testit())

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing(x)

Arguments

X a formal argument.

Details
missing(x) is only reliable ifx has not been altered since entering the function: in particular it
will alwaysbe false aftex <- match.arg(x)

The example shows how a plotting function can be written to work with either a pair of vectors
giving x and y coordinates of points to be plotted or a single vector giving y values to be plotted
against their indexes.

Currentlymissing can only be used in the immediate body of the function that defines the argu-
ment, not in the body of a nested function doeal call. This may change in the future.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.
Chambers, J. M. (199&rogramming with Data. A Guide to the S Langua§gringer.

See Also

substitute for argument expressiofAfor missing values in data.

Examples

myplot <- function(x,y) {
if(missing(y)) {
y < X
X <- liength(y)
}
plot(x,y)

mode 265

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode(x)

mode(x) <- value
storage.mode(x)
storage.mode(x) <- value

Arguments

X anyR object.

value a character string giving the desired mode or ‘storage mode’ (type) of the object.
Details

Both mode andstorage.mode return a character string giving the (storage) mode of the object
— often the same — both relying on the outputgfeof (x) , see the example below.

mode(x) <- "newmode" changes thanode of objectx to newmode. This is only sup-

ported if there is an appropriases.newmode function, for exampl€logical” , "integer"
"double" , "complex" , "raw" , "character" , "list" , "expression" , "name",
"symbol" and"function” . Attributes are preserved (but see below).

storage.mode(x) <- "newmode" is a more efficient internal version afiode<-, which

works for"newmode” which is one of the internal types (sggeof), but not for"single"
Attributes are preserved.

As storage modésingle” is only a pseudo-mode iR, it will not be reported bymode or
storage.mode : useattr(object, "Csingle") to examine this. Howevemode<-

can be used to set the mode "&gingle" , which sets the real mode tmouble"” and the
"Csingle" attribute toTRUE Setting any other mode will remove this attribute.

Note (in the examples below) that soal s have modé&(" which is S compatible.

Mode names
Modes have the same set of names as typegypeef) except that
* types'integer" and"double" are returned asiumeric"
* types"special" and"builtin” are returned a¥unction"
* type"symbol" is called modéname" .
 type"language” isreturned as(" or"call"

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

266 NA

See Also

typeof for the R-internal ‘mode’attributes

Examples

require(stats)
sapply(options(),mode)

cex3 <- c("NULL""1","1:1""1i","list(1)","data.frame(x=1)",

"pairlist(pi)’, "c", "Im", "formals(Im)[[1]]", "formals(Im)[[2]]",

"y~x","expression((1)[[1]]", "(y~x)[[1]]",

"expression(x <- pi)[[11I[[1]]")
lex3 <- sapply(cex3, function(x) eval(parse(text=x)))
mex3 <- t(sapply(lex3,

function(x) c(typeof(x), storage.mode(x), mode(x))))

dimnames(mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))
mex3

This also makes a local copy of 'pi"
storage.mode(pi) <- "complex"
storage.mode(pi)

rm(pi)

NA Not Available / “Missing” Values

Description

NAis a logical constant of length 1 which contains a missing value indicéécan be freely
coerced to any other vector type except raw. There are also consianitsteger _ , NA_real ,
NA_complex_ andNA character_ of the other atomic vector types which support missing
values: all of these ameservedvords in theR language.

The generic functiofis.na indicates which elements are missing.

The generic functios.na<- sets elements tHA

Usage

NA

is.na(x)

S3 method for class 'data.frame"
is.na(x)

is.na(x) <- value

Arguments

X anR object to be tested.

value a suitable index vector for use wikh

name 267

Details

The NAof character type is distinct from the strifyA" . Programmers who need to specify an
explicit string NA should useNA_character _ rather than'NA" , or set elements tblA using
is.na<-

is.na(x) works elementwise whexis alist . Itis generic: you can write methods to handle
specific classes of objects, daéernalMethodsA complex value is regarded BBAIf either its real
or imaginary part isNAor NaN

Functionis.na<- may provide a safer way to set missingness. It behaves differently for factors,
for example.

Value

The default method fois.na returns a logical vector of the same length as its argumeobn-
taining TRUEfor those elements markédAor NaN(!) and FALSE otherwise.dim, dimnames
andnames attributes are preserved.

The methods.na.data.frame returns a logical matrix with the same dimensions as the data
frame, and with dimnames taken from the row and column names of the data frame.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Chambers, J. M. (1998 rogramming with Data. A Guide to the S Langua§gringer.

See Also

NaN is.nan , etc., and the utility functiosomplete.cases
na.action ,na.omit , na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c(l, NA)) #> FALSE TRUE
is.na(paste(c(1, NA))) #> FALSE FALSE

(xx <- ¢(0:4))
is.na(xx) <- c(2, 4)

XX # 0 NA 2 NA 4
name Names and Symbols
Description

A ‘name’ (also known as a ‘symbol’) is a way to referRoobjects by name (rather than the value
of the object, if any, bound to that name).

as.name andas.symbol are identical: they attempt to coerce the argument to a name.

is.symbol and the identicals.name returnTRUEor FALSE depending on whether the argu-
ment is a name or not.

268 name

Usage

as.symbol(x)
is.symbol(x)

as.name(x)
is.name(x)

Arguments

X object to be coerced or tested.

Details

as.name first coerces its argument internally to a character vector (so methods for
as.character are not used). It then takes the first element and provided it i8'noteturns a
symbol of that name (and if the elementN#_character_ , the name iSNA" .

as.name is implemented ass.vector (X, "symbol") , and hence will dispatch methods
for the generic functioms.vector

Value

Foras.name andas.symbol , anR object of type'symbol" (seetypeof).

Foris.name andis.symbol , alength-one logical vector with valdeRUEor FALSE

Note

The term ‘symbol’ is from the LISP backgroundRf whereas ‘name’ has been the standard S term
for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

call ,is.language . For the internal object modgpeof

plotmath for another use of ‘symbol’.

Examples

an <- as.name("arrg")
is.name(an) # TRUE
mode(an) # name
typeof(an) # symbol

names 269

names The Names of an Object

Description

Functions to get or set the names of an object.

Usage

names(x)
names(x) <- value

Arguments

X anR object.

value a character vector of up to the same length agr NULL
Details

names is a generic accessor function, ammmes<- is a generic replacement function. The default
methods get and set theames" attribute of a vector (including a list) or pairlist.

If value is shorter tharx, it is extended by charactéAs to the length ok.

It is possible to update just part of the names attribute via the general rules: see the exam-
ples. This works because the expression there is evaluated<as"names<-"(z, "[<-
"(names(z), 3, "c2"))

The namé" is special: it is used to indicate that there is no name associated with an element of a
(atomic or generic) vector. Subscripting By will match nothing (not even elements which have
no name).

A name can be charactBiy but such a name will never be matched and is likely to lead to confu-
sion.

Value

For names, NULL or a character vector of the same lengtlxagNULL is given if the object has
no names, including for objects of types which cannot have names.)

For names<- , the updated object. (Note that the valuenafnes(x) <- value is that of the
assignmentyalue , not the return value from the left-hand side.)

Note

For vectors, the names are one of #tigibuteswith restrictions on the possible values. For pairlists,
the names are the tags and converted to and from a character vector.

For a one-dimensional array thames attribute really islimnames [[1]]

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

270 nargs

Examples

print the names attribute of the islands data set
names(islands)

remove the names attribute
names(islands) <- NULL

islands

rm(islands) # remove the copy made

z <- list(a=1, b="c", ¢c=1:3)

names(z)

change just the name of the third element.
names(z)[3] <- "c2"

z

z <- 1:3

names(z)

assign just one name
names(z)[2] <- "b"

z

nargs The Number of Arguments to a Function

Description
When used inside a function bodyargs returns the number of arguments supplied to that func-
tion, including positional arguments left blank.

Usage

nargs()

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

args , formals andsys.call

Examples

tst <- function(a, b = 3, ...) {nargs()}
tst) # O

tst(clicketyclack) # 1 (even non-existing)
tst(cl, a2, rr3) # 3

foo <- function(x, y, z, w) {
cat("call was", deparse(match.call()), "\n")
nargs()

nchar 271

foo() #0
foo(,,3) # 3
foo(z=3) # 1, even though this is the same call

nargs()# not really meaningful

nchar Count the Number of Characters (or Bytes or Width)

Description

nchar takes a character vector as an argument and returns a vector whose elements contain the
sizes of the corresponding elementxof

nzchar is afast way to find out if elements of a character vector are non-empty strings.

Usage

nchar(x, type = "chars", allowNA = FALSE)

nzchar(x)
Arguments
X character vector, or a vector to be coerced to a character vector.
type character string: partial matching to one of'bytes", "chars",
"width") . See ‘Details’.
allowNA logical: showNADbe returned for invalid multibyte strings (rather than throwing
an error)?
Details

The ‘size’ of a character string can be measured in one of three ways

bytes The number of bytes needed to store the string (plus in C a final terminator which is not
counted).

chars The number of human-readable characters.

width The number of columnesat will use to print the string in a monospaced font. The same
aschars if this cannot be calculated.

These will often be the same, and almost always will be in single-byte locales. There will be
differences between the first two with multibyte character sequences, e.g. in UTF-8 locales. If the
byte stream contains embeddad bytes,type = "bytes" looks at all the bytes whereas the
other two types look only at the string as printedday , up to the firsihul byte.

The internal equivalent of the default methodasfcharacter is performed orx (so there is
no method dispatch). If you want to operate on non-vector objects passing them tbepagke
first will be required.

272 nlevels

Value

For nchar , an integer vector giving the sizes of each element, currently al®ags missing
values (forNA).

If allowNA = TRUE and an element is invalid in a multi-byte character set such as UTF-8, its
number of characters and the width will b\ Otherwise the number of characters will be non-
negative, sdis.na(nchar(x, "chars", TRUE)) is a test of validity.

Names, dims and dimnames are copied from the input.

Fornzchar , a logical vector of the same lengthyastrue if and only if the element has non-zero
length.
Note

This doesnot by default give the number of characters that will be usegdriot() the string.
UseencodeString to find the characters used to print the string.

Embeddedul bytes are included in the byte count (but not the fimall). In contrast, characters
are counted up to the string terminator (the firgt that is not part of a character representation).
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.
See Also

strwidth giving width of strings for plottingpaste , substr , strsplit

Examples

x <- c("asfef", "gwerty", "yuiop[", "b", "stuff.blah.yech")
nchar(x)
#5 6 6 115

nchar(deparse(mean))
18 17

nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels(x)

Arguments

X an object, usually a factor.

noquote 273

Details

This is usually applied to a factor, but other objects can have levels.
The actual factor levels (if they exist) can be obtained withi¢hels function.

Value

The length oflevels (x) , which is zero ifx has no levels.

See Also

levels |, factor

Examples
nlevels(gl(3,7)) # = 3

noquote Class for “no quote” Printing of Character Strings

Description

Print character strings without quotes.
Usage
noquote(obj)

S3 method for class 'noquote’:
print(x, ...)

S3 method for class 'noquote’:
c(..., recursive = FALSE)

Arguments
obj anyR object, typically a vector ofharacter strings.
X an object of clastnoquote”
further options passed to next methods, sucpris
recursive for compatibility with the generic function.
Details

noquote returns its argument as an object of classquote” . There is a method faz() and

subscript method'[.noquote”) which ensures that the class is not lost by subsetting. The print

method print.noquote) prints character stringsithoutquotes (...").
These functions exist both as utilities and as an example of usingg&3) and object orientation.

Author(s)

Martin Maechler{maechler@stat.math.ethzch

274 NotYet

See Also

methods , class |, print

Examples

letters

ngl <- noquote(letters)
nql

ngl[1:4] <- "oh"
nql[1:12]

cmp.logical <- function(log.v)

{
Purpose: compact printing of logicals
log.v <- as.logical(log.v)
noquote(if(length(log.v)==0)"()" else c(".","|")[1+log.v])

cmp.logical(stats::runif(20) > 0.8)

NotYet Not Yet Implemented Functions and Unused Arguments

Description

In order to pinpoint missing functionality, tHe core team uses these functions for misgtifyinc-
tions and not yet used arguments of exisfunctions (which are typically there for compatibility
purposes).

You are very welcome to contribute your code ...

Usage

.NotYetimplemented()
.NotYetUsed(arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.

error alogical. If TRUE an error is signalled; iIFALSE, only a warning is given.
See Also

the contraryDeprecated andDefunct for outdated code.

Examples

require(graphics)

require(stats)

plot.mim # to see how the "NotYetimplemented"
reference is made automagically

try(plot.mim())

barplot(1:5, inside = TRUE) # 'inside' is not yet used

nrow 275

nrow The Number of Rows/Columns of an Array

Description

nrow andncol return the number of rows or columns present iNCOLandNROWo the same
treating a vector as 1-column matrix.

Usage
nrow(x)
ncol(x)

NCOL(x)
NROW(X)

Arguments

X a vector, array or data frame

Value

aninteger of length 1 oNULL

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole ficol andnrow .)

See Also

dim which returnsall dimensionsarray , matrix

Examples

ma <- matrix(1:12, 3, 4)
nrow(ma) # 3
ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension
NCOL(1:12) # 1
NROW(1:12) # 12

276 ns-dblcolon

ns-dblcolon Double Colon and Triple Colon Operators

Description

Accessing exported and internal variables in a name space.

Usage
pkg::name
pkg:::name

Arguments

pkg package name symbol or literal character string.

name variable name symbol or literal character string.

Details

The expressiopkg::name returns the value of the exported variableme in packagekg if the
package has a name space. The expregdign:name returns the value of the internal variable

name in packagepkg if the package has a hame space. The package will be loaded if it was not

loaded already before the call. Assignment into hame spaces is not supported.

Note that it is typically a design mistake to use in your code since the corresponding object

has probably been kept namespace-internal for a good reason. Consider contacting the package

maintainer if you feel the need to access the object for anything but mere inspection.

If the packaggkg does not have a name space but is on the search patpkgename returns
the value ofhame in the package environment.
See Also

get to access an object masked by another of the same name.

Examples

base::log
base::"+"

Beware -- use "' at your own risk! (see "Details")
stats:::coef.default

ns-hooks 277

ns-hooks Hooks for Name Space events

Description

Packages with name spaces can supply functions to be called when loaded, attached or unloaded.

Usage

.onLoad(libname, pkgname)
.onAttach(libname, pkgname)
.onUnload(libpath)

Arguments
libname a character string giving the library directory where the package defining the
namespace was found.
pkgname a character string giving the name of the package, including the version number
if the package was installed withwith-package-versions
libpath a character string giving the complete path to the package.
Details

These functions apply only to packages with name spaces.

After loading,loadNamespace looks for a hook function name@nLoad and runs it before
sealing the namespace and processing exports.

If a name space is unloaded (vinloadNamespace), a hook functiononUnload is run before
final unloading.

Note that the code itonLoad and.onUnload is run without the package being on the search
path, but (unless circumvented) lexical scope will make objects in the namespace and its imports
visible. (Do not use the double colon operatoranLoad as exports have not been processed at
the pointitis run.)

When the package is attached (lilzrary), the hook functiononAttach is looked for and

if found is called after the exported functions are attached and before the package environment is
sealed. This is less likely to be useful thammLoad , which should be seen as the analogue of
.First.lib (which is only used for packages without a name space).

.onLoad , .onUnload and.onAttach are looked for as internal variables in the name space
and should not be exported.

If a function.Last.lib is visible in the package, it will be called when the package is detached:
this does need to be exported.

Anything needed for the functioning of the name space should be handled at load/unload times by
the.onLoad and.onUnload hooks. For example, shared libraries can be loaded (unless done by
auseDynLib directive in the NAMESPACE' file) and initialized in.onLoad and unloaded in
.onUnload . Use.onAttach only for actions that are needed only when the package becomes
visible to the user, for example a start-up message.

If a package was installed withwith-package-versions , thepkgname supplied will be
something likeree_1.0-16

278 ns-load

See Also

setHook shows how users can set hooks on the same events.

ns-load Loading and Unloading Name Spaces

Description

Functions to load and unload namespaces.

Usage

attachNamespace(ns, pos = 2, dataPath = NULL)
loadNamespace(package, lib.loc = NULL,
keep.source = getOption("keep.source.pkgs"),
partial = FALSE, declarativeOnly = FALSE)
loadedNamespaces()
unloadNamespace(ns)

Arguments

ns string or namespace object.

pos integer specifying position to attach.

dataPath path to directory containing a database of datasets to be lazy-loaded into the
attached environment.

package string naming the package/name space to load.

lib.loc character vector specifying library search path.

keep.source logical specifying whether to retain source. This applies only to the specified
name space, and not to other name spaces which might be loaded to satisfy
imports.
For more details see this argumentibvary

partial logical; if true, stop just after loading code.

declarativeOnly
logical; disablesimport , etc, if true.

Details

The functionsloadNamespace andattachNamespace are usually called implicitly when
library is used to load a name space and any imports needed. However it may be useful to call
these functions directly at times.

loadNamespace loads the specified name space and registers it in an internal data base. A request
to load a name space that is already loaded has no effect. The arguments have the same meaning as
the corresponding argumentdlitarary , whose help page explains the details of how a particular
installed package comes to be chosen. After loadosgiNamespace looks for a hook function
namedonLoad as an internal variable in the name space (it should not be exported). This function

is called with the same arguments.&gst.lib . Partial loading is used to support installation

with the --save ’'and‘--lazy ’options.

ns-topenv 279

loadNamespace does not attach the name space it loads to the search path.
attachNamespace can be used to attach a frame containing the exported values of a
name space to the search path. The hook functinAttach is run after the name space exports
are attached.

loadedNamespaces returns a character vector of the names of the loaded name spaces.

unloadNamespace can be used to force a name space to be unloaded. An error is signaled if
the name space is imported by other loaded name spaces. If defined, a hook fuomdtinioad

is run before removing the name space from the internal registipadNamespace will first
detach a package of the same name if one is on the path, thereby runriiagtdib function

in the package if one is exported.

Author(s)

Luke Tierney

ns-topenv Top Level Environment

Description

Finding the top level environment.

Usage

topenv(envir = parent.frame(),
matchThiseEnv = getOption("topLevelEnvironment"))

Arguments

envir environment.

matchThisEnv return this environment, if it matches before any other criterion is satisfied. The
default, the option ‘topLevelEnvironment’, is setfys.source , which treats
a specific environment as the top level environment. Supplying the argument as
NULL means it will never match.

Details

topenv returns the first top level environment found when searchimgr and its parent envi-
ronments. An environment is considered top level if it is the internal environment of a name space,
a package environment in the search pathGiobalEnv

Examples

topenv(.GlobalEnv)
topenv(new.env())

280 numeric

NULL The Null Object

Description

NULL represents the null object in R: it isaservedvord. NULL is often returned by expressions
and functions whose value is undefined: it is also used as the grapligt

as.null ignores its argument and returns the vailglL L
is.null returnsTRUEIf its argument iNULL andFALSE otherwise.

Usage

NULL
as.null(x, ...)
is.null(x)

Arguments

X an object to be tested or coerced.
ignored.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Examples

is.null(list()) # FALSE (on purpose!)
is.null(integer(0))# F
is.null(logical(0))# F
as.null(list(a=1,b="c"))

numeric Numeric Vectors
Description
Creates or coerces objects of tyjmeimeric" . is.numeric is a more general test of an object

being interpretable as numbers.

Usage

numeric(length = 0)
as.numeric(x, ...)
is.numeric(x)

numeric 281

Arguments
length desired length.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

numeric is identical todouble (andreal). It creates a double-precision vector of the specified
length with each element equal@o

as.numeric is a generic function, but S3 methods must be writtera®double . It is identi-

cal toas.double (andas.real).

is.numeric is generic: you can write methods to handle specific classes of objectafeseal-
Methods It is not the same ais.double . Factors are handled by the default method, and there
are methods for classé®date " and" POSIXt" (in all three cases the result is false). Methods
foris.numeric should only return true if the base type of the clagtosble orinteger and
values can reasonably be regarded as numeric (e.g. arithmetic on them makes sense).

Value

for numeric andas.numeric seedouble .

The default method foris.numeric returns TRUE if its argument is of mode
"numeric" (type "double" or type "integer") and not a factor, and~ALSE other-
wise. Thatisjs.integer(x) || is.double(x) , or(mode(x) == "numeric") &&

lis.factor(x)

S4 methods
as.numeric andis.numeric are internally S4 generic and so methods can be set for tieem
setMethod

To ensure thaas.numeric , as.double andas.real remain identical, S4 methods can only
be set foras.numeric

Note on names
It is a historical anomaly tha has three names for its floating-point vectalsuble , numeric
andreal

double is the name of théype numeric is the name of thenodeand also of the implicitlass
As an S4 formal class, usaumeric” (there is a deprecated formal cldgsuble”).

real is deprecated and should not be used in new code.

The potential confusion is th& has usednode"numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thisshumeric tests the mode, not the class, lstnumeric
(which is identical tcas.double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

double ,integer ,storage.mode

282 NumericConstants

Examples

as.numeric(c("-.1"," 2.7 ""B")) # (-0.1, 2.7, NA) + warning
as.numeric(factor(5:10))

NumericConstants Numeric Constants

Description

How R parses numeric constants.

Details

R parses numeric constants in its input in a very similar way to C floating-point constants.

Inf andNaN are numeric constants (witlypeof (.) "double"). All other numeric con-
stants start with a digit or period.

Hexadecimal constants start wilx or OX followed by a non-empty sequence fradm a-f
A-F which is interpreted as a hexadecimal numBido@ble” |, not"integer").

Decimal constants consists of a nonempty sequence of digits possibly containing a period (the
decimal point), optionally followed by a decimal exponent. A decimal exponent consistsEof an

or e followed by an optional plus or minus sign followed by a non-empty sequence of digits, and
indicates multiplication by a power of ten.

A numeric constant immediately followed byis regarded as an imaginacgmplexnumber.

An numeric constant immediately followed hyis regarded as anteger number when possible
(and with a warning if it contains 8").

Only the ASCII digits 0—9 are recognized as digits, even in languages which have other representa-
tions of digits. The ‘decimal separator’ is always a period and never a comma.

Note that a leading plus or minus is not part of numeric constant but a unary operator applied to the
constant.

See Also

Syntax .

Quotes for the parsing of character constants,

Examples

21

typeof(2)

sqrt(1i) # remember elementary math?
utils::str(OxAO0)

identical(1L, as.integer(1))

You can combine the "Ox" prefix with the "L" suffix :
identical(OxFL, as.integer(15)) # (with a regard to Fritz :-)

numeric_version 283

numeric_version Numeric Versions
Description
A simple S3 class for representing numeric versions including package versions, and associated
methods.
Usage

numeric_version(x, strict = TRUE)

package_version(x, strict = TRUE)

R_system_version(x, strict = TRUE)
getRversion()

Arguments
X a character vector with suitable numeric version strings (see ‘Details’);
for package_version , alternatively an R version object as obtained by
R.version
strict a logical indicating whether invalid numeric versions should results in an error
(default) or not.
Details

Numeric versions are sequences of one or more non-negative integers, usually (e.g., in package
‘DESCRIPTION'’ files) represented as character strings with the elements of the sequence con-
catenated and separated by singleor ‘- ’ charactersR package versions consist of at least two

such integers, aR system version of exactly three (major, minor and patchlevel).

Functionsnumeric_version , package version andR_system_version create a rep-
resentation from such strings (if suitable) which allows for coercion and testing, combination, com-
parison, summaries (min/max), inclusion in data frames, subscripting, and printing. The classes can
hold a vector of such representations.

getRversion returns the version of the runnimjyas an R system version object.

The[[operator extracts or replaces a single version. To access the integers of a version use two
indices: see the examples.

See Also

compareVersion

Examples

X <- package_version(c("1.2-4", "1.2-3", "2.1")
X < "1.4-2.3"

c(min(x), max(x))

x[2, 2]

x$major

x$minor

if(getRversion() <= "2.5.0") { ## work around missing feature

284 octmode

cat("Your version of R, ", as.character(getRversion()),
", is outdated.\n",
"Now trying to work around that ..\n", sep = ")

}

X[[c(1,3)]] # '4' as a numeric vector, same as X[1, 3]
x[1, 3] # 4 as an integer

X[[2, 3]] <- 0O # zero the patchlevel

X[[c(2,3)]] <- O # same

X

X[3] <- "2.2.3"; X

octmode Display Numbers in Octal

Description

Convert or print integers in octal format, with as many digits as are needed to display the largest,
using leading zeroes as necessary.

Usage

S3 method for class 'octmode':
as.character(x, ...)

S3 method for class 'octmode’:
format(x, ...)

S3 method for class 'octmode':

print(x, ...)
Arguments
X An object inheriting from clas%ctmode"
further arguments passed to or from other methods.
Details

Class"octmode" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in octal notation, specifically for Unix-like file permissions su@®as Subsetting
([) works too.

See Also

These are auxiliary functions fdite.info
hexmode

Examples

(on <- structure(c(16,32, 127:129), class = "octmode")) #-> print.*()
##-> "020" "040" "177" "200" "201"
unclass(on[3:4]) # subsetting

on.exit 285

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the current
function exits (either naturally or as the result of an error). This is useful for resetting graphical
parameters or performing other cleanup actions.

If no expression is provided, i.e., the callas.exit() , then the currenbn.exit code is re-
moved.
on.exit is a primitive function so positional matching is used and names of supplied arguments
are ignored.

Usage

on.exit(expr, add = FALSE)

Arguments
expr an expression to be executed.
add if TRUE, addexpr to be executed after any previously set expressions; other-
wise (the defaultgxpr will overwrite any previously set expressions.
Value
Invisible NULL
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also
sys.on.exit which returns the expression stored for usedpyexit() in the function in
which sys.on.exit() is evaluated.

Examples

require(graphics)

opar <- par(mai = c(1,1,1,1))
on.exit(par(opar))

286 options

Ops.Date Operators on the Date Class

Description

Operators for thé Date " class.
There is arDps method and specific methods ferand- for theDate class.

Usage
date + x
date - x

datel lop date2

Arguments
date date objects
datel, date2 date objects or character vectors. (Character vectors are converted by
as.Date .)
X a numeric vector (in day®)r an object of class difftime .
lop One of==, 1=, <, <=, > or>=.
Examples

(z <- Sys.Date())
z + 10
z < ¢("2006-06-01", "2007-01-01", "2010-01-01")

options Options Settings

Description
Allow the user to set and examine a variety of globptionswhich affect the way in whiciR
computes and displays its results.

Usage

options(...)
getOption(x)
.Options

Arguments

any options can be defined, usingme = value or by passing a list of such
tagged values. However, only the ones below are used in Rasaurther,
options('name’) == options()['name’] , see the example.

X a character string holding an option name.

options 287

Details

Invokingoptions() with no arguments returns a list with the current values of the options. Note
that not all options listed below are set initially. To access the value of a single option, one should
usegetOption("width") , €.0., rather thaoptions("width") which is alist of length

one.

.Options also always contains ttaptions() list (as a pairlist, unsorted), for S compatibility.
Assigning to it will make a local copy and not change the original.

Value

ForgetOption , the current value set for option or NULL if the option is unset.

Foroptions() , alist of all set options sorted by name. Fmtions(name) , a list of length
one containing the set value, NUJLLIf it is unset. For uses setting one or more options, a list with
the previous values of the options changed (returned invisibly).

Options used in baseR

add.smooth : typically logical, defaulting tad’ RUE Could also be set to an integer for specifying
how many (simulated) smooths should be added. This is currently only ugadttgn

check.bounds : logical, defaulting td~ALSE. If true, awarningis produced whenever a vector
(atomic orlist) is extended, by something like <- 1:3; x[5] <- 6

continue : anon-empty string setting the prompt used for lines which continue over one line.

defaultPackages : the packages that are attached by default wkerstarts up. Ini-
tially set from value of the environment variabie DEFAULT_PACKAGE®r if that is
unset toc("datasets"”, "utils", "grDevices", "graphics", "stats",
"methods") . (SetR_DEFAULT_PACKAGHS®S NULL or a comma-separated list of pack-
age names.) A call toptions should be in your.Rprofile’ file to ensure that the change
takes effect before the base package is initialized fdagup).

deparse.max.lines . controls the number of lines used when deparsingaoeback and
browser . Initially unset, and only used if set to a positive integer.

digits : controls the number of digits to print when printing numeric values. It is a suggestion
only. Valid values are 1...22 with default 7. See the warningrint.default about
values greater than 15.

digits.secs : controls the maximum number of digits to print when formatting time values in
seconds. Valid values are 0. .. 6 with default 0. Setime

download.file.method : Method to be used fodownload.file . Currently download
methods'internal” , "wget" and"lynx" are available. There is no default for this
option, whermethod = "auto" is chosen: sedownload.file

echo: logical. Only used in non-interactive mode, when it controls whether input is echoed.
Command-line optiorslave sets this td-ALSE, but otherwise it starts the sessionT&UE

encoding : The name of an encoding, defatltiative.enc"). Seeconnections

error : either a function or an expression governing the handling of non-catastrophic errors such
as those generated Byop as well as by signals and internally detected errors. If the option
is a function, a call to that function, with no arguments, is generated as the expression. The
default value iNULL: seestop for the behaviour in that case. The functiahsnp.frames
andrecover provide alternatives that allow post-mortem debugging. Note that these need
to specified as e.gptions=utils::recover in startup files such asRprofile’.

288

options

expressions : sets a limit on the number of nested expressions that will be evaluated. Valid
values are 25...500000 with default 5000. If you increase it, you may also want t&start
with a larger protection stack; semax-ppsize in Memory. Note too that you may cause
a segfault from overflow of the C stack, and on OSes where it is possible you may want to
increase that.

keep.source : WhenTRUE the source code for functions (newly defined or loaded) is stored in
their"source" attribute (seattr) allowing comments to be kept in the right places.

The default isnteractive () ,i.e.,TRUEfor interactive use.

keep.source.pkgs : As for keep.source , for functions in packages loaded bgrary
orrequire . Defaults toFALSE unless the environment variate KEEP_PKG_SOURCE
is set toyes .

Note this does not apply to packages using lazy-loading or saved images. Whether they have
kept source is determined when they are installed (and is almost certainly false).

mailer : default mailer used bgug.report () . Can bé'none" .

max.contour.segments . positive integer, defaulting tB50000 and usually not set. A limit
on the number of segments in a single contour lineantour or contourLines

max.print : integer, defaulting t89999 . print or show methods can make use of this option,
to limit the amount of information that is printed, to something in the order of (and typically
slightly less thanjnax.print entries

OutDec: one-character string. The character to be used as the decimal point in output conversions,
that is in printing, plotting ands.character but not deparsing.

pager : the command used for displaying text files Hbile.show . Defaults to
‘$R_HOME/bin/pager’, which selects a pager via tHRAGERenvironment variable (and
that usually defaults ttess). Can be a character string or Bnfunction, in which case it
needs to accept the same first four argumenfdeashow

papersize : the default paper format used lpostscript ; set by environment variable
R_PAPERSIZEwhenR is started: if that is unset or invalid it defaults to a value derived
from the locale categoritC_PAPER or if that is unavailable to a default set whBnwas
built.

printemd : the command used bpostscript for printing; set by environment variable
R_PRINTCMDwhenR is started. This should be a command that expects either input to
be piped to stdin’ or to be given a single flename argument.

prompt : a non-empty string to be used fais prompt; should usually end in a blank ().

rl_word_breaks : Used for the readline-based terminal interface. Default value
\\n\"\W><=%;,|&{()}" . This is the set of characters use to break the input line
up into tokens for object- and file-name completion. Those who do not use spaces around
operators may prefer \\n\"\\‘><=+-*%:;,|&{(}" . which was the default iR
2.5.0. (The default in pre-2.5.0 versionsPivas" \(\n\"\\"@$><=;|&{(")

save.defaults , save.image.defaults . seesave .

scipen : integer. A penalty to be applied when deciding to print numeric values in fixed or expo-
nential notation. Positive values bias towards fixed and negative towards scientific notation:
fixed notation will be preferred unless it is more ttemipen digits wider.

showWarnCalls , showErrorCalls : a logical. Should warning and error messages show a
summary of the call stack? By default error calls are shown in non-interactive sessions.

showNCalls : ainteger. Controls how long the sequence of calls must be (in bytes) before ellipses
are used. Defaults to 40 and should be at least 30 and no more than 500.

show.error.messages : alogical. Should error messages be printed? Intended for use with
try or a user-installed error handler.

options 289

stringsAsFactors . The default setting for arguments @dta.frame andread.table
texi2dvi : used by the unexported functitexi2dvi in name spac#ols.

timeout : integer. The timeout for some Internet operations, in seconds. Default 60 seconds. See
download.file andconnections

topLevelEnvironment . seetopenv andsys.source

useFancyQuotes : seesQuote .

verbose : logical. ShouldR report extra information on progress? SeT®RUEby the command-
line option “verbose

warn : sets the handling of warning messageswé#irn is negative all warnings are ignored. If
warn is zero (the default) warnings are stored until the top—level function returns. If fewer
than 10 warnings were signalled they will be printed otherwise a message saying how many
(max 50) were signalled. An object calléast.warning is created and can be printed
through the functiorwarnings . If warn is one, warnings are printed as they occur. If
warn is two or larger all warnings are turned into errors.

warnPartialMatchArgs . logical. If true, warns if partial matching is used in argument
matching.

warnPartialMatchAttr
tributes viaattr

. logical. If true, warns if partial matching is used in extracting at-

warnPartialMatchDollar
by $.

warning.expression : anR code expression to be called if a warning is generated, replacing
the standard message. If non-null it is called irrespective of the value of opéion.

. logical. If true, warns if partial matching is used for extraction

warning.length . sets the truncation limit for error and warning messages. A non-negative
integer, with allowed values 100...8170, default 1000.

width : controls the maximum number of columns on a line used in printing vectors, matrices and
arrays, and when filling bgat .
Columns are normally the same as characters except in CIK languages.

You may want to change this if you re-size the window tRas running in. Valid values are
10...10000 with default normally 80. (The limits on valid values are in Rierit.h’ and can

be changed by re-compiling.) SomeR consoles automatically change the value when they
are resized.

The ‘factory-fresh’ default settings of some of these options are

add.smooth TRUE
check.bounds FALSE
continue "+

digits 7

echo TRUE
encoding "native.enc"
error NULL
expressions 5000
keep.source interactive()
keep.source.pkgs FALSE
max.print 99999
OutDec
prompt ">
scipen 0
show.error.messages TRUE

290 options

timeout 60
verbose FALSE
warn 0
warnings.length 1000
width 80

Others are set from environment variables or are platform-dependent.

Options set in package grDevices

These will be set when packageDevices(or its name space) is loaded if not already set.

device : a character string giving the name of a function, or the function object itself, which
when called creates a new graphics device of the default type for that session. The value of
this option defaults to the normal screen device (@1,, windows or quartz) for an
interactive session, armmbstscript in batch use or if a screen is not available. If named, it
is looked for first from the global environment and then in gnBevicesnamespace.

locatorBell . logical. Should selection itocator andidentify be confirmed by a bell?
Default TRUE Honoured at least 0§11 andwindows devices.

par.ask.default . logical. The default fopar ("ask”) when a device is opened.
X1lcolortype : The default colour type foX11 devices. Defaulttrue”

X11ifonts : character vector of length 2. S¥é1.

gamma double. The default value gammafor X11 devices, defaulting to 1 if unset (the default).

Options set in package stats

These will be set when packagtts (or its name space) is loaded if not already set.

contrasts : the defaultcontrasts used in model fitting such as wittov or Im. A charac-
ter vector of length two, the first giving the function to be used with unordered factors and
the second the function to be used with ordered factors. By default the elements are named
c("unordered", "ordered") , but the names are unused.

na.action : the name of a function for treating missing valuBig\§) for certain situations.

show.coef.Pvalues . logical, affecting whether P values are printed in summary tables of
coefficients. SeprintCoefmat

show.signif.stars . logical, should stars be printed on summary tables of coefficients? See
printCoefmat

ts.eps : the relative tolerance for certain time series Y computations. Defaulte-05 .

ts.S.compat : logical. Used to select S compatibility for plotting time-series spectra. See the
description of argumenbg in plot.spec

Options set in package utils

These will be set when packagéls (or its name space) is loaded if not already set.
browser : default HTML browser used bigelp.start () on UNIX, or a non-default browser
on Windows.

de.cellwidth . integer: the cell widths (number of characters) to be used in the data editor
dataentry . If this is unset (the default), 0, negativedA variable cell widths are used.

options 291

editor : anon-empty string. Sets the default text editor, e.g.eétir . Set from the environment
variableVISUAL on UNIX.

example.ask : default for theask argument oexample .
help.try.all.packages . default for an argument dfelp .

HTTPUserAgent : string used as the user agent in HTTP requestNUEL, HTTP requests
will be made without a user agent header. The defauR ié<version> <platform>
<arch> <os>)

internet.info : The minimum level of information to be printed on URL downloads etc. De-
fault is 2, for failure causes. Set to 1 or O to get more information.

menu.graphics : Logical: should graphical menus be used if available?. DefaulEROE
Currently applies tahooseCRANmirror , setRepositories and to select from multi-
ple help files inhelp .

pkgType : The default type of packages to be downloaded and installed — see
install.packages . Possible values artsource" (the default except under the
CRAN Mac OS X build) andmac.binary"

repos : URLs of the repositories for use byupdate.packages . Defaults to

C(CRAN="@CRAN@") a value that causes some utilities to prompt for a CRAN
mirror. ~ To avoid this do set the CRAN mirror, by something lilkecal({r

<- getOption("repos"); r["CRAN"] <- "http://my.local.cran”;

options(repos=r)})

Note that you can add more repositories (Bioconductor and Omegahat, notably) using
setRepositories 0 .

SweaveHooks , SweaveSyntax : seeSweave.

unzip : a character string, the path of the command used for unzipping help files, or
"internal” . Defaults to the value oR_UNZIPCMDwhich is set in étc/Renviron’ if
anunzip command was found during configuration.

Options used on Unix only

latexcmd, dvipscmd : character strings giving commands to be used in off-line printing of
help pages.

pdfviewer : default PDF viewer. Set from the environment variaRle°PDFVIEWER

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Examples

options() # printing all current options
op <- options(); utils::str(op) # nicer printing

getOption("width") == options()$width # the latter needs more memory
options(digits = 15)
pi

set the editor, and save previous value
old.o <- options(editor = "nedit")
old.o

292 order

options(check.bounds = TRUE, warn = 1)
X <- NULL; x[4] <- "yes" # gives a warning

options(digits=5)
print(1e5)
options(scipen=3); print(1e5)

options(op) # reset (all) initial options
options("digits")

Not run:

set contrast handling to be like S
options(contrasts = c("contr.helmert", "contr.poly"))
End(Not run)

Not run:

on error, terminate the R session with error status 66
options(error = quote(q("no", status=66, runLast=FALSE)))
stop(“test it")

End(Not run)

Not run:

Set error actions for debugging:

enter browser on error, see ?recover:

options(error = recover)

allows to call debugger() afterwards, see ?debugger:
options(error = dump.frames)

A possible setting for non-interactive sessions
options(error = quote({dump.frames(to.file=TRUE); q()}))
End(Not run)

order Ordering Permutation

Description

order returns a permutation which rearranges its first argument into ascending or descending
order, breaking ties by further argumergsrt.list is the same, using only one argument.
See the examples for how to use these functions to sort data frames, etc.

Usage

order(..., na.last = TRUE, decreasing = FALSE)

sort.list(x, partial = NULL, na.last = TRUE, decreasing = FALSE,
method = c("shell", "quick", "radix"))

Arguments
a sequence of numeric, complex, character or logical vectors, all of the same
length.
X a vector.

partial vector of indices for partial sorting. (NONULL values are not implemented.)

order 293

decreasing logical. Should the sort order be increasing or decreasing?
na.last for controlling the treatment dfiAs. If TRUE missing values in the data are put
last; if FALSE, they are put first; iNA they are removed.
method the method to be used: partial matches are allowed.
Details

In the case of ties in the first vector, values in the second are used to break the ties. If the values are
still tied, values in the later arguments are used to break the tie (see the first example). The sort used
is stable(except formethod = "quick"), so any unresolved ties will be left in their original
ordering.

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use: see
Comparison .

The default method fosort.list is a good compromise. Methdduick” is only supported
for numericx with na.last=NA , and is not stable, but will be faster for long vectors. Method
"radix" is only implemented for integer with a range of less than 100,000. For swdhis very
fast (and stable), and hence is ideal for sorting factors.

partial is supplied for compatibility with other implementations of S, but no other values are
accepted and ordering is always complete.

Note that these functions are only defined for vectors, so any class of the object supplied is ignored:
this means factors are sorted on their internal codes and not their printed representation.

Note
sort.list can get called by mistake as a method ort with a list argument, and gives a
suitable error message for list

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

sort andrank .

Examples

require(stats)

(i <- order(x <- ¢(1,1,3:1,1:4,3), y <- ¢(9,9:1), z <-c(2,1:9)))
#6 5 2 1 7 410 8 3 9
rbind(x,y,z)[,iil # shows the reordering (ties via 2nd & 3rd arg)

Suppose we wanted descending order on y. A simple solution is
rbind(x,y,z)[, order(x, -y, z)]

For character vectors we can make use of rank:

cy <- as.character(y)

rbind(x,y,z)[, order(x, -rank(cy), z)]

Sorting data frames:

294 outer

dd <- transform(data.frame(x,y,z),
z = factor(z, labels=LETTERS[9:1]))
Either as above {for factor 'z' : using internal coding}:
dd[order(x, -y, z) ,]
or along 1st column, ties along 2nd, ... *arbitrary* no.{columns}:
dd[do.call(order, dd) ,]

set.seed(1)# reproducible example:
d4 <- data.frame(x = round(rnorm(100)), y = round(10*runif(100)),
z = round(8*rnorm(100)), u = round(50*runif(100)))
(d4s <- d4[do.call(order, d4) ,])
(i <- which(diff(d4s[,3]) == 0))
in 2 places, needed 3 cols to break ties:
d4s[rbind(i,i+1),]

rearrange matched vectors so that the first is in ascending order
x <- ¢(5:1, 6:8, 12:9)

y <- (X - 5”2

0 <- order(x)

rbind(x[0], y[0])

tests of na.last
a<-c4, 3,2 NA 1
b <- c(4, NA, 2, 7, 1)
z <- chind(a, b)

(o <- order(a, b)); z[o,]
(o <- order(a, b, na.last
(o <- order(a, b, na.last

FALSE)); z[o,]
NA)); z[o,]

Not run:

speed examples for long vectors:

x <- factor(sample(letters, 1e6, replace=TRUE))

system.time(o <- sort.list(x)) ## 1.2 secs

stopifnot(lis.unsorted(x[o]))

system.time(o <- sort.list(x, method="quick", na.last=NA)) # 0.15 sec
stopifnot(lis.unsorted(x[0]))

system.time(o <- sort.list(x, method="radix")) # 0.02 sec
stopifnot(lis.unsorted(x[0]))

xX <- sample(1:26, le7, replace=TRUE)

system.time(o <- sort.list(xx, method="radix")) # 0.2 sec

XX <- sample(1:100000, 1le7, replace=TRUE)

system.time(o <- sort.list(xx, method="radix")) # 0.8 sec
system.time(o <- sort.list(xx, method="quick", na.last=NA)) # 1.4 sec
End(Not run)

outer Outer Product of Arrays

Description

The outer product of the arraysandY is the arrayA with dimensionc(dim(X), dim(Y))
where elemenfA[c(arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x],
Y[arrayindex.y], ...)

outer 295

Usage
outer(X, Y, FUN="*")
X %0% Y
Arguments
X, Y First and second arguments for functiedN Typically a vector or array.
FUN a function to use on the outer products, fowma match.fun (except for the
special cas&").
optional arguments to be passed-dN
Details

XandY must be suitable arguments flBUN Each will be extended bgep to length the products
of the lengths o andY beforeFUNis called.

FUNis called with these two extended vectors as arguments. Therefore, it must be a vectorized
function (or the name of one), expecting at least two arguments.

Where they exist, the [dim]namesXfindY will be copied to the answer, and a dimension assigned
which is the concatenation of the dimensionxa@ndY (or lengths if dimensions do not exist).

FUN = ™" is handled internally as a special caseyia as.vector(X) %*%
t(as.vector(Y)) , and is intended only for numeric vectors and arrays.

%0%s binary operator providing a wrapper foater(x, y, "*")

Author(s)

Jonathan Rougier

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

%*%for usual {nner) matrix vector multiplication;kronecker which is based orouter ;
Vectorize for vectorizing a non-vectorized function.

Examples

X <- 1:9; names(x) <- X

Multiplication & Power Tables

X %0% X

y <- 2:8; names(y) <- paste(y,":",sep="")
outer(y, x, ")

outer(month.abb, 1999:2003, FUN = "paste")

three way multiplication table:
X %0% x %0% y[1:3]

296 Paren

Paren Parentheses and Braces

Description

Open parenthesi¢, and open bracég,, are.Primitive functions inR.

Effectively, (is semantically equivalent to the identiynction(x) x , Whereaq is slightly
more interesting, see examples.

Usage
(...)
{ ..}

Value

For (, the result of evaluating the argument. This has visibility set, so will auto-print if used at
top-level.

For{, the result of the last expression evaluated. This has the visibility of the last evaluation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

if ,return , etc for other objects used in tielanguage itself.

Syntax for operator precedence.

Examples

f <- get("(")
e <- expression(3 + 2 * 4)
identical(f(e), e)

do <- get("{")
do(x <- 3, y < 2*x-3, 6-X-y); X; Y

note the differences
(2+3)

{2+3; 4+5}
(invisible(2+3))
{invisible(2+3)}

parse 297

parse Parse Expressions

Description

parse returns the parsed but unevaluated expressions in a list.

Usage
parse(file = "™, n = NULL, text = NULL, prompt = "?", srcfile,
encoding = "unknown")
Arguments
file a connection, or a character string giving the name of a file or a URL to read the
expressions from. Ifile is™ andtext is missing orNULL then input is
taken from the console.
n integer (or coerced to integer). The maximum number of expressions to parse.
If n is NULLor negative oNAthe input is parsed in its entirety.
text character vector. The text to parse. Elements are treated as if they were lines of
a file. OtherR objects will be coerced to character (without method dispatch) if
possible.
prompt the prompt to print when parsing from the keyboaMlJLL means to us®’s
prompt,getOption("prompt")
srcfile NULL, or asrcfile object. See the ‘Details’ section.
encoding encoding to be assumed for input strings. It is used to mark character strings as
known to be in Latin-1 or UTF-8: it is not used to re-encode the input.
Details

If text has length greater than zero (after coercion) it is used in prefereffite to.

All versions ofR accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic MacOS). The final line can be incom-
plete, that is missing the final EOL marker.

Seesource for the limits on the size of functions that can be parsed (by default). There is also a
limit of 8192 bytes on the size of strings which can be parsed.

When input is taken from the console,= NULL is equivalenttcn = 1, andn < O will read
until an EOF character is read.

The default forsrcfile is set as follows. Ifoptions("keep.source") is FALSE,
srcfile defaults taoNULL Otherwise, itext isusedsrcfile will be set to asrcfilecopy
containing the text. If a character string is usedffler , asrcfile object referring to that file
will be used.

298 paste

Value

An object of type' expression ", with up ton elements if specified as a non-negative integer.

Whensrcfile isnonNULL, a"srcref" attribute will be attached to the result containing a list

of srcref records corresponding to each element, atisrefile” attribute will be attached
containing a copy o$rcfile

A syntax error (including an incomplete expression) will throw an error.

Character strings in the result will have a declared encodiegdbding is"latin1" or"UTF-
8".
References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

scan , source ,eval ,deparse .

Examples

cat("x <- ¢(1,4)\n x ~ 3 -10 ; outer(1:7,5:9\n", file="xyz.Rdmped")
parse 3 statements from the file "xyz.Rdmped"

parse(file = "xyz.Rdmped", n = 3)

unlink("xyz.Rdmped")

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage
paste(..., sep = " ", collapse = NULL)
Arguments
one or moreR objects, to be converted to character vectors.
sep a character string to separate the terms.

collapse an optional character string to separate the results.

path.expand 299

Details

paste converts its argumentsi@ as.character) to character strings, and concatenates them
(separating them by the string given bgp). If the arguments are vectors, they are concatenated
term-by-term to give a character vector result. Vector arguments are recycled as needed, with zero-
length arguments being recycled"to.

Note thatpaste() coercesas.character(NA) to "NA" (a string with two characters rather
than thecharacter missing valueNA_ character), which may seem undesirable, e.g., when

pasting two character vectors, but very desirable in, pagte("the value of p is ",
p) .

If a value is specified focollapse , the values in the result are then concatenated into a single
string, with the elements being separated by the valusltdpse

Value

A character vector of the concatenated values. This will be of length zero if all the objects are,
unlesscollapse is non-NULL, in which case it is a single empty string.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

String manipulation withas.character , substr , nchar , strsplit ; further, cat which
concatenates and writes to a file, aamlintf ~ for C like string construction.

‘plotmath for the use ofpaste in plot annotation.

Examples

paste(1:12) # same as as.character(1:12)
paste("A", 1:6, sep = ")
paste("Today is", date())

path.expand Expand File Paths

Description

Expand a path name, for example by replacing a leading tilde by the user's home directory (if
defined on that platform).

Usage

path.expand(path)

Arguments

path character vector containing one or more path names.

300 pmatch

Details
On someUnix versions, a leadinguser will expand to the home directory afser , but not on
Unix versions withouteadline installed, nor ifR is invoked with =-no-readline '

See Also

basename

Examples

path.expand("~/foo")

pmatch Partial String Matching

Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch(x, table, nomatch = NA_integer_, duplicates.ok = FALSE)

Arguments
X the values to be matched: converted to a character vectas.bjiaracter
table the values to be matched against: converted to a character vector.
nomatch the value to be returned at non-matching or multiply partially matching posi-

tions. Note that it is coerced toteger
duplicates.ok
should elements be iable be used more than once?

Details

The behaviour differs by the value déiplicates.ok . Consider first the case if this is true. First

exact matches are considered, and the positions of the first exact matches are recorded. Then unique
partial matches are considered, and if found recorded. (A partial match occurs if the whole of the
element ok matches the beginning of the elementaifle .) Finally, all remaining elements af

are regarded as unmatched. In addition, an empty string can match nothing, not even an exact match
to an empty string. This is the appropriate behaviour for partial matching of character indices, for
example.

If duplicates.ok is FALSE, values oftable once matched are excluded from the search
for subsequent matches. This behaviour is equivalent t&kta&orithm for argument matching,
except for the consideration of empty strings (which in argument matching are matched after exact
and partial matching to any remaining arguments).

charmatch is similar topmatch with duplicates.ok true, the differences being that it dif-
ferentiates between no match and an ambiguous partial match, it does match empty strings, and it
does not allow multiple exact matches.

NAvalues are treated as if they were the string constdaAt .

polyroot 301

Value

An integer vector (possibly includingAif nomatch = NA) of the same length as, giving the
indices of the elements table which matched, onomatch .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Chambers, J. M. (199&)rogramming with Data. A Guide to the S Langua§gringer.

See Also

match , charmatch and match.arg , match.fun , match.call , for function argument
matching etc.grep etc for more general (regexp) matching of strings.

Examples
pmatch(", ") # returns NA
pmatch("m", c("mean”, "median”, "mode")) # returns NA

pmatch("med”, c("mean”, "median”, "mode")) # returns 2

pmatch(c(™, "ab", "ab"), c("abc", "ab"), dup=FALSE)
pmatch(c("™, "ab", "ab"), c("abc", "ab"), dup=TRUE)
compare

charmatch(c(™, "ab", "ab"), c("abc", "ab"))

polyroot Find Zeros of a Real or Complex Polynomial

Description

Find zeros of a real or complex polynomial.

Usage

polyroot(z)

Arguments

z the vector of polynomial coefficients in increasing order.

Details
A polynomial of degreen — 1,

p(x) =214+ 22+ 4 202" !

is given by its coefficient vectaz[1:n] . polyroot returns then — 1 complex zeros op(z)
using the Jenkins-Traub algorithm.

If the coefficient vector has zeroes for the highest powers, these are discarded.

302 pos.to.env

Value

A complex vector of length, — 1, wheren is the position of the largest non-zero element of

References

Jenkins and Traub (1972) TOMS Algorithm 4X@omm. ACM15, 97-99.

See Also

uniroot for numerical root finding of arbitrary functionspmplex and thezero example in
the demos directory.

Examples

polyroot(c(1, 2, 1))

round(polyroot(choose(8, 0:8)), 11) # guess what!
for (n1 in 1:4) print(polyroot(1:nl), digits = 4)
polyroot(c(1, 2, 1, 0, 0)) # same as the first

pos.to.env Convert Positions in the Search Path to Environments

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env(x)

Arguments

X an integer between 1 ahehgth(search()) , the length of the search path.

Details

SeveralR functions for manipulating objects in environments (suchets andls) allow specify-

ing environments via corresponding positions in the search pathto.env is a convenience
function for programmers which converts these positions to corresponding environments; users will
typically have no need for it.

Examples

pos.to.env(l) # R_GlobalEnv
the next returns the base environment
pos.to.env(length(search()))

pretty 303

pretty Pretty Breakpoints

Description
Compute a sequence of aboutl equally spaced ‘round’ values which cover the range of the
values inx. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, n = 5, min.n = n %/% 3, shrink.sml = 0.75,
high.u.bias = 1.5, ub.bias = .5 + 1.5*high.u.bias,
eps.correct = 0)

Arguments
X an object coercible to numeric &g.numeric
n integer giving thedesirednumber of intervals. Non-integer values are rounded
down.
min.n nonnegative integer giving thminimalnumber of intervals. Imin.n == ,
pretty(.) may return a single value.
shrink.sml positive numeric by a which a default scale is shrunk in the case when
range(x) is very small (usually 0).
high.u.bias non-negative numeric, typically 1. The interval unit is determined as
{1,2,5,10} timesb, a power of 10. Largehigh.u.bias values favor larger
units.
u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and ‘optimal’:
u5.bias = .5 + 1.5*high.u.bias
eps.correct integer code, one of {0,1,2}. If non-0, a@psilon correctionis made at the
boundaries such that the result boundaries will be outsidge(x) ; in the
smallcase, the correction is only donegijps.correct >=2
Details

pretty ignores non-finite values ix.

Letd <- max(x) - min(x) > 0. If d is not (very close) to 0, we let <- d/n , otherwise
more or les <- max(abs(range(x)))*shrink.sml / min.n . Then, thelO baseb
is 10L°g10(9)) such thab < ¢ < 10b.

Now determine the basianit « as one of{1,2,5,10}b, depending ore/b € [1,10) and the two
‘bias coefficients,h =high.u.bias andf =ub.bias

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

304 Primitive

See Also

axTicks for the computation of pretty axis tick locations in plots, particularly on the log scale.

Examples

pretty(1:15) #0 2 4 6 810 12 14 16
pretty(1:15, h=2)# 0 5 10 15

pretty(1:15, n=4)# 0 5 10 15

pretty(1:15 * 2) # 0 5 10 15 20 25 30
pretty(1:20) #0 5 10 15 20

pretty(1:20, n=2) # 0 10 20

pretty(1:20, n=10)# 0 2 4 .. 20

for(k in 5:11) {

##-- more bizarre, when min(x) == max(x):
pretty(pi)

add.names <- function(v) { names(v) <- paste(v); v}
utils::str(lapply(add.names(-10:20), pretty))
utils::str(lapply(add.names(0:20), pretty, min = 0))
sapply(add.names(0:20), pretty, min = 4)

pretty(1.234e100)
pretty(1001.1001)
pretty(1001.1001, shrink = .2)
for(k in -7:3)
cat("shrink=", formatC(2"k, width=9),":",
formatC(pretty(1001.1001, shrink = 27k), width=6),"\n")

Primitive Call a “Primitive” Internal Function
Description
.Primitive returns an entry point to a ‘primitive’ (internally implemented) function.
Usage

.Primitive(name)

Arguments

name name of theR function.

Details

The advantage oPrimitive over.Internal functions is the potential efficiency of argument
passing. However, this is done by ignoring argument names and using positional matching of
arguments (unless arranged differently for specific primitives suchmm3, so this is discouraged

for functions of more than one argument.

All primitive functions are in the base name space.

print

See Also

.Internal

Examples

305

mysqgrt <- .Primitive("sqrt")

c

Internal # this one *must* be primitive!

get("if") # just 'if

or 'print(if) are not syntactically ok.

print

Print Values

Description

print prints its argument and returnsiiitvisibly (via invisible (x)). Itis a generic function
which means that new printing methods can be easily added foclaes es.

Usage

print(x, ...)

S3 method for class ‘factor"
print(x, quote = FALSE, max.levels = NULL,

width =

getOption("width"), ...)

S3 method for class 'table':

print(x, digits =

na.print =

Arguments

X

guote
max.levels
width
digits
na.print

zero.print

justify

getOption("digits"), quote = FALSE,
" zero.print = "0", justify = "none", ..)

an object used to select a method.
further arguments passed to or from other methods.

logical, indicating whether or not strings should be printed with surrounding
quotes.

integer, indicating how many levels should be printed for a factof, iho
extra "Levels" line will be printed. The defaultNULL, entails choosing
max.levels such that the levels print on one line of widtldth .

only used whemax.levels is NULL, see above.
minimal number okignificantdigits, seerint.default

character string (orNULL indicating NA values in printed output, see
print.default

character specifying how zero8)(should be printed; for sparse tables, using
"." can produce stronger results.

character indicating if strings should left- or right-justified or left alone, passed
toformat .

306 print.data.frame

Details
The default methodyrint.default has its own help page. Useethods ("print") to get
all the methods for thprint generic.
print.factor allows some customization and is used for printimdered factors as well.
print.table for printingtable s allows other customization.

Seenoquote as an example of a class whose main purpose is a sppaific method.

References

Chambers, J. M. and Hastie, T. J. (19%2atistical Models in SiWadsworth & Brooks/Cole.

See Also

The default methodorint.default , and help for the methods above; furthgptions
noquote .

For more customizable (but cumbersome) printing,cse, format or alsowrite

Examples

require(stats)

ts(1:20)#-- print is the "Default function" --> print.ts(.) is called
rr <- for(i in 1:3) print(1:i)
rr

Printing of factors
attenu$station ## 117 levels -> 'max.levels' depending on width

ordered factors: levels "l1 < 12 < ."
esoph$agegp[1:12]
esoph$alcgp[1:12]

Printing of sparse (contingency) tables
set.seed(521)

t1 <- round(abs(rt(200, df=1.8)))

t2 <- round(abs(rt(200, df=1.4)))
table(t1,t2) # simple

print(table(t1,t2), zero.print = ".")# nicer to read
print.data.frame Printing Data Frames
Description

Print a data frame.

Usage

S3 method for class 'data.frame':
print(x, ..., digits = NULL, quote = FALSE, right = TRUE)

print.default 307

Arguments
X object of classlata.frame
. optional arguments tprint orplot methods.
digits the minimum number of significant digits to be used: papt.default
guote logical, indicating whether or not entries should be printed with surrounding
quotes.
right logical, indicating whether or not strings should be right-aligned. The default is
right-alignment.
Details

This callsformat which formats the data frame column-by-column, then converts to a character
matrix and dispatches to tlpgint method for matrices.

Whenquote = TRUE only the entries are quoted not the row nhames nor the column names.

See Also

data.frame

print.default Default Printing

Description

print.default is thedefaultmethod of the generigrint ~ function which prints its argument.

Usage

Default S3 method:

print(x, digits = NULL, quote = TRUE,
na.print = NULL, print.gap = NULL, right = FALSE,
max = NULL, useSource = TRUE, ..)

Arguments
X the object to be printed.
digits a non-null value fodigits specifies the minimum number of significant digits

to be printed in values. The defaufJLL, useggetOption (digits) . (For

the interpretation for complex numbers ségnif .) Non-integer values will

be rounded down, and only values greater than or equal to 1 and no greater than
22 are accepted.

quote logical, indicating whether or not stringsharacter s) should be printed with
surrounding quotes.

na.print a character string which is used to indicAt&values in printed output, dMULL
(see ‘Details’).

print.gap a non-negative integex 1024, or NULL (meaning 1), giving the spacing be-
tween adjacent columns in printed vectors, matrices and arrays.

308

print.default

right logical, indicating whether or not strings should be right aligned. The default is
left alignment.

max a non-null value fomax specifies the approximate maximum number of entries
to be printed. The defaulNULL, usesgetOption (max.print) ; see that
help page for more details.

useSource logical, indicating whether to use source references or copies rather than depars-
ing language objects. The default is to use the original source if it is available.

further arguments to be passed to or from other methods. They are ignored in
this function.

Details

The default for printind\NAs is to printNA(without quotes) unless this is a charadté&and quote
= FALSE, when<NA>is printed.

The same number of decimal places is used throughout a vector. This meatigiteat specifies

the minimum number of significant digits to be used, and that at least one entry will be encoded
with that minimum number. However, if all the encoded elements then have trailing zeroes, the
number of decimal places is reduced until at least one element has a non-zero final digit. Decimal
points are only included if at least one decimal place is selected.

Attributes are printed respecting their class(es), using the valuligitdf to print.default ,
but using the default values (for the methods called) of the other arguments.

When themethodspackage is attachedrint ~ will call show for R objects with formal classes if
called with no optional arguments.

Warning

Using too large a value dfigits may lead to representation errors in the calculation of the
number of significant digits and the decimal representation: these are likedigits >= 16

and these possible errors are taken into account in assessing the numher of significant digits to be
printed in that case.

Whereas earlier versions & might have printed further digits fadigits >= 16 on some
platforms, they were not necessarily reliable.

Single-byte locales

If a non-printable character is encountered during output, it is represented as one of the ANSI escape
sequencesd ,\b ,\f ,\n,\r ;\t ,\Wv ,\\ and\0 : seeQuotey, or failing that as a 3-digit octal

code: for example the UK currency pound sign in the C locale (if implemented correctly) is printed
as\243 . Which characters are non-printable depends on the locale.

Unicode and other multi-byte locales

In all locales, the characters in the ASCII ran@e@0 to Ox7f) are printed in the same way, as-is if
printable, otherwise via ANSI escape sequences or 3-digit octal escapes as described for single-byte
locales.

Multi-byte non-printing characters are printed as an escape sequence of théufoxxw or
\Uxxxxxxxx (in hexadecimal). This is the internal code for the wide-character representation

of the character. If this is not known to be the Unicode point, a warning is issued. The only known
exceptions are certain Japanese 1SO2022 locales on commercial Unixes, which use a concatenation
of the bytes: it is unlikely thaR compiles on such a system.

prmatrix 309

It is possible to have a character string in a character vector that is not valid in the current locale. If
a byte is encountered that is not part of a valid character it is printed in hex in théxXabm and

this is repeated until the start of a valid character. (This will rapidly recover from minor errors in
UTF-8.)

See Also

The generigrint , options . The" noquote " class and print method.
encodeString , which encodes a character vector the way it would be printed.

Examples

pi

print(pi, digits = 16)
LETTERS[1:16]

print(LETTERS, quote = FALSE)

M <- cbind(l = 1, matrix(1:10000, ncol = 10,

dimnames = list(NULL, LETTERS[1:10])))
utils::head(M) # makes more sense than
print(M, max = 1000)# prints 90 rows and a message about omitting 910

prmatrix Print Matrices, Old-style

Description

An earlier method for printing matrices, provided for S compatibility.

Usage

prmatrix(x, rowlab =, collab =,
quote = TRUE, right = FALSE, na.print = NULL, ...)

Arguments
X numeric or character matrix.
rowlab,collab
(optional) character vectors giving row or column names respectively. By de-
fault, these are taken frodimnames (x) .
guote logical; if TRUEandx is of mode"character” , quoteq") are used.
right if TRUEand x is of mode"character" , the output columns areght-
justified.
na.print how NAs are printed. If this is non-null, its value is used to represkft
arguments foprint methods.
Details
prmatrix is an earlier form oprint.matrix , and is very similar to the S function of the same

name.

310 proc.time

Value

Invisibly returns its argumenk,.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

print.default , and otheprint methods.

Examples

prmatrix(mé <- diag(6), rowlab = rep(™,6), collab =rep(",6))

chm <- matrix(scan(system.file("help”, "Anindex", package = "splines"),
what = ™), , 2, byrow = TRUE)

chm # uses print.matrix()

prmatrix(chm, collab = paste("Column",1:3), right=TRUE, quote=FALSE)

proc.time Running Time of R

Description

proc.time determines how much real and CPU time (in seconds) the currently ruRrpngcess
has already taken.

Usage

proc.time()

Details

proc.time returns five elements for backwards compatibility, butptgxt method prints a
named vector of length 3. The first two entries are the total user and system CPU times of the
currentR process and any child processes on which it has waited, and the third entry is the ‘real’
elapsed time since the process was started.

Value

An object of class'proc_time" which is a numeric vector of length 5, containing the user,
system, and total elapsed times for the currently runRipyocess, and the cumulative sum of user
and system times of any child processes spawned by it on which it has waitegr{fithe method
combines the child times with those of the main process.)

The resolution of the times will be system-specific and times are rounded to the nearest 1ms. On

modern systems they will be that accurate, but on older systems they might be accurate to 1/100 or
1/60 sec.

It is useful for timing the evaluation d® expressions, which can be done more conveniently with
system.time

prod 311

Note

Itis possible to compil® without support foproc.time , when the function will throw an error.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

system.time for timing a validR expressiongc.time for how much of the time was spentin
garbage collection.

Examples

Not run:

a way to time an R expression: system.time is preferred
ptm <- proc.time()

for (i in 1:50) mad(stats::runif(500))

proc.time() - ptm

End(Not run)

prod Product of Veector Elements

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm = FALSE)

Arguments
numeric or complex or logical vectors.
na.rm logical. Should missing values be removed?
Details

If na.rm is FALSE anNAvalue in any of the arguments will cause a valuéNéfto be returned,
otherwiseNAvalues are ignored.

This is a generic function: methods can be defined for it directly or vi&themary group generic.
For this to work properly, the arguments should be unnamed, and dispatch is on the first
argument.

Logical true values are regarded as one, false values as zero. For historical réfsbhss ac-
cepted and treated as if it wememeric(0)
Value

The product, a numeric (of typelouble”) or complex vector of length on@&B: the product of
an empty set is one, by definition.

312 prop.table

S4 methods
This is part of the S&Summary group generic. Methods for it must use the signatyre..,
na.rm .

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

sum, cumprod , cumsum
‘plotmath for the use ofprod in plot annotation.

Examples

print(prod(1:7)) == print(gamma(8))

prop.table Express Table Entries as Fraction of Marginal Table
Description
This is reallysweep(x, margin, margin.table(x, margin), "/") for newbies, ex-

cept that ifmargin has length zero, then one getfsum(x)

Usage

prop.table(x, margin=NULL)

Arguments

X table

margin index, or vector of indices to generate margin for
Value

Table likex expressed relative tmargin

Author(s)
Peter Dalgaard

See Also

margin.table

Examples

m <- matrix(1:4,2)
m
prop.table(m,1)

pushBack 313

pushBack Push Text Back on to a Connection

Description
Functions to push back text lines onto a connection, and to enquire how many lines are currently
pushed back.

Usage

pushBack(data, connection, newLine = TRUE)
pushBackLength(connection)

Arguments

data a character vector.

connection A connection.

newlLine logical. If true, a newline is appended to each string pushed back.
Details

Several character strings can be pushed back on one or more occasions. The occasions form a stack,
so the first line to be retrieved will be the first string from the last cafiushBack . Lines which

are pushed back are read prior to the normal input from the connection, by the normal text-reading
functions such aseadLines andscan .

Pushback is only allowed for readable connections.

Not all uses of connections respect pushbacks, in particular the input connection is still wired di-
rectly, so for example parsing commands from the consolesaad (") ignore pushbacks on
stdin

Value

pushBack returns nothing.
pushBackLength returns number of lines currently pushed back.

See Also

connections ,readLines

Examples

zz <- textConnection(LETTERS)
readLines(zz, 2)
pushBack(c("aa", "bb"), zz)
pushBackLength(zz)
readLines(zz, 1)
pushBackLength(zz)
readLines(zz, 1)

readLines(zz, 1)

close(zz)

314 qr

qr The QR Decomposition of a Matrix

Description

gr computes the QR decomposition of a matrix. It provides an interface to the techniques used
in the LINPACK routine DQRDC or the LAPACK routines DGEQP3 and (for complex matrices)
ZGEQP3.

Usage

ar(x, ...
Default S3 method:
gr(x, tol = 1e-07 , LAPACK = FALSE, ..)

gr.coef(qr, v)

ar.ay(ar, y)

ar.qty(ar, y)

gr.resid(qr, y)

gr.fitted(qr, y, k = gr$rank)
gr.solve(a, b, tol = 1e-7)
S3 method for class 'gr:
solve(a, b, ...

is.gr(x)
as.gr(x)
Arguments
X a matrix whose QR decomposition is to be computed.
tol the tolerance for detecting linear dependencies in the columxs ©hly used
if LAPACK:Is false and is real.
qr a QR decomposition of the type computeddpy.
y, b a vector or matrix of right-hand sides of equations.
a A QR decomposition ordr.solve only) a rectangular matrix.
k effective rank.
LAPACK logical. For reak, if true use LAPACK otherwise use LINPACK.
further arguments passed to or from other methods
Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equatighic = b for given matrixA, and vectow. It is useful for computing
regression coefficients and in applying the Newton-Raphson algorithm.

The functiongyr.coef ,qgr.resid , andqr.fitted return the coefficients, residuals and fitted
values obtained when fitting to the matrix with QR decompositiagr . (If pivoting is used, some
of the coefficients will beNA) qr.qy andgr.qty returnQ %*% yandt(Q) %*% vy , where
Qis the (completef) matrix.

qr 315

All the above functions keegimnames (andnames) of x andy if there are.

solve.qr is the method forsolve for gr objects. gr.solve solves systems of equations

via the QR decomposition: # is a QR decomposition it is the samesdve.qr , butif a is

a rectangular matrix the QR decomposition is computed first. Either will handle over- and under-
determined systems, providing a least-squares fit if appropriate.

is.gr returnsTRUEIf x is alist ~ with components namegr , rank andqraux andFALSE
otherwise.

It is not possible to coerce objects to mddg" . Objects either are QR decompositions or they
are not.

Value

The QR decomposition of the matrix as computed by LINPACK or LAPACK. The components in
the returned value correspond directly to the values returned by DQRDC/DGEQP3/ZGEQP3.

qr a matrix with the same dimensionsas The upper triangle contains tHe of
the decomposition and the lower triangle contains information or@xtod the
decomposition (stored in compact form). Note that the storage used by DQRDC
and DGEQP3 differs.

graux a vector of lengtmcol(x) which contains additional information .

rank the rank ofx as computed by the decomposition: always full rank in the LA-
PACK case.

pivot information on the pivoting strategy used during the decomposition.

Non-complex QR objects computed by LAPACK have the attributeeLAPACK" with value
TRUE

Note

To compute the determinant of a matrix (do y@ally need it?), the QR decomposition is much
more efficient than using Eigen valuesden). Seedet .

Using LAPACK (including in the complex case) uses column pivoting and does not attempt to
detect rank-deficient matrices.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (12M8PACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999PACK Users’ GuideThird Edition. SIAM.
Available on-line atttp://www.netlib.org/lapack/lug/lapack_lug.html
See Also

gr.Q ,gr.R ,qr.X forreconstruction of the matricebn.fit ,Isfit ,eigen ,svd.

det (usinggr) to compute the determinant of a matrix.

http://www.netlib.org/lapack/lug/lapack_lug.html

316 QR.Auxiliaries

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert(9); h9

gr(h9)$rank #--> only 7

grh9 <- gr(h9, tol = 1le-10)

grh9%$rank #-> 9

##-- Solve linear equation system H %*% x =y :
y <- 1:9/10

X <- gr.solve(h9, y, tol = 1e-10) # or equivalently :

X <- qgr.coef(grh9, y) #-- is == but much better than
#-- solve(h9) %*% y

h9 %*% x # =y

overdetermined system

A <- matrix(runif(12), 4)

b <- 1:4

gr.solve(A, b) # or solve(qr(A), b)

solve(gr(A, LAPACK=TRUE), b)

this is a least-squares solution, cf. Im(b ~ 0 + A)

underdetermined system

A <- matrix(runif(12), 3)

b < 1.3

gr.solve(A, b)

solve(qr(A, LAPACK=TRUE), b)

solutions will have one zero, not necessarily the same one

QR.Auxiliaries Reconstruct the Q, R, or X Matrices from a QR Object
Description
Returns the original matrix from which the object was constructed or the components of the decom-
position.
Usage

gr.X(gr, complete FALSE, ncol =)
gr.Q(gr, complete = FALSE, Dvec =)

gr.R(gr, complete = FALSE)
Arguments

qr object representing a QR decomposition. This will typically have come from a
previous call tagr or Isfit

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of the@ or X matrices is to be made, or whether tRematrix is to be
completed by binding zero-value rows beneath the square upper triangle.

ncol integer in the rangel:nrow(qr$qr) . The number of columns to be in

the reconstructedX. The default whercomplete is FALSE is the first
min(ncol(X), nrow(X)) columns of the originalX from which the qr

quit 317

object was constructed. The default whmimplete is TRUEIs a square ma-

trix with the original X in the firstncol(X) columns and an arbitrary or-
thogonal completion (unitary completion in the complex case) in the remaining
columns.

Dvec vector (not matrix) of diagonal values. Each column of the retui@edill be
multiplied by the corresponding diagonal value. Defaults td all

Value

gr.X returnsX, the original matrix from which the qr object was constructed, provitz(X)
<= nrow(X) .If complete is TRUEorthe argumentcol is greaterthamcol(X) , additional
columns from an arbitrary orthogonal (unitary) completiorXafre returned.

gr.Q returns part or all o, the order-nrow(X) orthogonal (unitary) transformation represented by
gr . If complete is TRUE Q hasnrow(X) columns. Ifcomplete is FALSE Q hasncol(X)
columns. WherDvec is specified, each column @ is multiplied by the corresponding value in
Dvec.

gr.R returnsR. The number of rows oR is eithernrow(X) orncol(X) (and may depend on
whethercomplete is TRUEor FALSE

See Also

qr, qr.qy

Examples

p <- ncol(x <- LifeCycleSavings[,-1]) # not the 'sr'
grstr <- gr(x) # dim(x) == c(n,p)

grstr $ rank # = 4 = p

Q <- gr.Q(grstr) # dim(Q) == dim(x)

R <- gr.R(grstr) # dim(R) == ncol(x)

X <- gr.X(grstr) # X == x

range(X - as.matrix(x)}# ~ < 6e-12

X == %*% R if there has been no pivoting, as here.
Q %*% R
quit Terminate an R Session
Description

The functionquit or its aliasg terminate the currerR session.

Usage

quit(save = "default", status = 0, runLast = TRUE)
g(save = "default", status = 0, runLast = TRUE)
.Last <- function(x) { }

318 quit
Arguments
save a character string indicating whether the environment (workspace) should be
saved, one ofno" , "yes" ,"ask" or"default"
status the (numerical) error status to be returned to the operating system, where rele-
vant. Conventionally) indicates successful completion.
runLast should.Last() be executed?
Details
save must be one ofno" , "yes" , "ask" or"default" . In the first case the workspace is

not saved, in the second it is saved and in the third the user is prompted and can alssmdecide
to quit. The default is to ask in interactive use but may be overridden by command-line arguments
(which must be supplied in non-interactive use).

Immediatelybeforeterminating, the functionLast() is executed if it exists andunLast is
true. If in interactive use there are errors in thast function, control will be returned to the
command prompt, so do test the function thoroughly. There is a system analcagtesys() ,
which is run afterLast() if runLast is true.

Some error statuses are usedigself. The default error handler for non-interactive use effectively
callsq("no", 1, FALSE) and returns error code 1. Error status 2 is use@ftauicide’, that is

a catastrophic failure, and other small numbers are used by specific ports for initialization failures.
It is recommended that users choose statuses of 10 or more.

Valid values ofstatus are system-dependent, QU255 are normally valid. (Many OSes will
report the last byte of the value, that is report the number modulo 256. But not all.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)e New S LanguageWadsworth &
Brooks/Cole.

See Also

.First for setting things on startup.

Examples

Not run:

Unix-flavour example

.Last <- function() {
cat("Now sending PostScript graphics to the printer:\n®)
system(“lpr Rplots.ps")
cat("bye bye...\n")

}

quit("yes")

End(Not run)

Quotes 319

Quotes Quotes

Description

Descriptions of the various uses of quotindRn

Details

Three types of quote are part of the syntaxRofsingle and double quotation marks and the back-
tick (or back quote;). In addition, backslash is used for quoting the following characters inside
character constants.

Character constants

Single and double quotes delimit character constants. They can be used interchangeably but double
guotes are preferred (and character constants are printed using double quotes), so single quotes are
normally only used to delimit character constants containing double quotes.

Backslash is used to start an escape sequence inside character constants. Unless specified in the
following table, an escaped character is interpreted as the character itself. (Note that the parser
will warn about most such uses, as they are most often erroneous, e.g\.usimgere\\. ~ was
intended.)

Single quotes need to be escaped by backslash in single-quoted strings, and double quotes in double-
guoted strings.

\n newline

\r carriage return

\t tab

\b backspace

\a alert (bell)

\f form feed

\v vertical tab

\\ backslash

\nnn character with given octal code (1, 2 or 3 digits)
\xnn character with given hex code (1 or 2 hex digits)
\unnnn Unicode character with given code (1-4 hex digits)

\Unnnnnnnn Unicode character with given code (1-8 hex digits)

The last two are only supported on versionsPofbuilt with MBCS support, and the last is
only supported in MBCS locales, and not on Windows. Alternative formswgrennn} and
\U{nnnnnnnn} . (They are an error if used where not supported.) All except the Unicode es-
cape sequences are also supported when reading character strsgmbgndread.table if
allowEscapes = TRUE

These forms will also be used tprint.default when outputting non-printable characters
(including backslash).
Names and ldentifiers

Identifiers con