
R: A Language and Environment for
Statistical Computing

Reference Index

TheR Development Core Team

Version 2.6.2 (2008-02-08)

Copyright (©) 1999–2003 R Foundation for Statistical Computing.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-07-0

Contents

1 Thebase package 1
base-package .1
.Device . 1
.Machine . 2
.Platform . 4
.Script . 5
abbreviate . 6
agrep . 7
all . 8
all.equal .10
all.names .11
any . 12
aperm .13
append .14
apply . 15
args .16
Arithmetic . 17
array . 19
as.data.frame .20
as.environment .21
as.function .22
as.POSIX* . 23
AsIs . 24
assign .25
assignOps .27
attach .28
attr . 29
attributes .30
autoload .32
backsolve .33
base-deprecated .34
basename .34
Bessel .35
bindenv . 37
body . 39
bquote .40
browser .40
builtins . 41
by . 42
c . 43
call . 44

i

ii CONTENTS

callCC . 46
capabilities .46
cat . 47
cbind . 49
char.expand .51
character .52
charmatch .53
chartr . 54
chol . 56
chol2inv . 58
class .59
col . 60
Colon . 61
colSums .62
commandArgs .63
comment .64
Comparison .65
complex . 66
conditions .68
conflicts . 71
connections .72
Constants .78
contributors .79
Control . 80
copyright . 81
crossprod .82
Cstack_info .83
cumsum .83
cut . 84
cut.POSIXt . 86
data.class .87
data.frame .88
data.matrix .90
date .91
Dates .92
DateTimeClasses .93
dcf . 95
debug .97
Defunct . 98
delayedAssign .98
deparse .99
deparseOpts .101
Deprecated .102
det .103
detach .104
diag .105
diff .107
difftime .108
dim .109
dimnames .110
do.call .112
double .113

CONTENTS iii

dput .115
drop .116
dump .117
duplicated .118
dyn.load .120
eapply .122
eigen .123
encodeString .125
Encoding .126
environment .127
eval .129
exists .131
expand.grid .133
expression .134
Extract .135
Extract.data.frame .139
Extract.factor .142
Extremes .143
factor .145
file.access .147
file.choose .148
file.info .149
file.path .150
file.show .151
files .152
findInterval .153
force .155
Foreign .156
formals .159
format .160
format.Date .162
format.info .164
format.pval .165
formatC .166
formatDL .168
function .169
funprog .171
gc .172
gc.time .174
gctorture .175
get .175
getCallingDLL .177
getDLLRegisteredRoutines .178
getLoadedDLLs .179
getNativeSymbolInfo .180
getNumCConverters .182
getpid .184
gettext .184
getwd .186
gl .187
grep .187
groupGeneric .190

iv CONTENTS

gzcon .193
hexmode .194
Hyperbolic .195
iconv .196
identical .197
ifelse .199
integer .200
interaction .201
interactive .202
Internal .202
InternalMethods .203
invisible .204
is.finite .204
is.function .206
is.language .207
is.object .207
is.R .208
is.recursive .209
is.single .210
isS4 .210
isSymmetric .211
jitter .212
kappa .213
kronecker .214
l10n_info .215
labels .216
lapply .216
Last.value .218
length .219
levels .220
libPaths .221
library .223
library.dynam .227
license .228
list .229
list.files .231
load .232
localeconv .233
locales .234
log .236
Logic .237
logical .239
lower.tri .240
ls .241
make.names .242
make.unique .243
manglePackageName .244
mapply .244
margin.table .246
mat.or.vec .247
match .247
match.arg .249

CONTENTS v

match.call .250
match.fun .251
Math .252
matmult .253
matrix .254
maxCol .256
mean .257
Memory .258
Memory-limits .259
memory.profile .260
merge .261
message .262
missing .264
mode .265
NA .266
name .267
names .269
nargs .270
nchar .271
nlevels .272
noquote .273
NotYet .274
nrow .275
ns-dblcolon .276
ns-hooks .277
ns-load .278
ns-topenv .279
NULL .280
numeric .280
NumericConstants .282
numeric_version .283
octmode .284
on.exit .285
Ops.Date .286
options .286
order .292
outer .294
Paren .296
parse .297
paste .298
path.expand .299
pmatch .300
polyroot .301
pos.to.env .302
pretty .303
Primitive .304
print .305
print.data.frame .306
print.default .307
prmatrix .309
proc.time .310
prod .311

vi CONTENTS

prop.table .312
pushBack .313
qr .314
QR.Auxiliaries .316
quit .317
Quotes .319
R.home .320
R.Version .321
Random .322
Random.user .325
range .327
rank .328
rapply .329
raw .331
rawConversion .332
RdUtils .333
readBin .334
readChar .336
readline .338
readLines .339
real .340
Recall .341
reg.finalizer .341
regex .342
remove .346
rep .347
replace .349
Reserved .350
rev .350
rle .351
Round .352
round.POSIXt .353
row .354
row.names .355
row/colnames .356
rowsum .357
sample .358
save .360
scale .362
scan .363
search .366
seek .367
seq .368
seq.Date .370
seq.POSIXt .371
sequence .372
sets .373
showConnections .374
shQuote .375
sign .377
Signals .377
sink .378

CONTENTS vii

slice.index .379
slotOp .380
socketSelect .381
solve .381
sort .383
source .385
Special .387
split .389
sprintf .391
sQuote .394
srcfile .396
Startup .397
stop .400
stopifnot .401
strptime .402
strsplit .406
strtrim .408
structure .409
strwrap .410
subset .411
substitute .412
substr .414
sum .415
summary .416
svd .417
sweep .419
switch .420
Syntax .421
Sys.getenv .422
Sys.glob .423
Sys.info .424
sys.parent .425
Sys.setenv .428
Sys.sleep .429
sys.source .430
Sys.time .431
Sys.which .432
system .432
system.file .434
system.time .435
t .436
table .437
tabulate .439
tapply .440
taskCallback .441
taskCallbackManager .443
taskCallbackNames .445
tempfile .446
textConnection .447
tilde .449
toString .449
trace .450

viii CONTENTS

traceback .454
tracemem .455
transform .456
Trig .457
try .458
typeof .460
unique .460
unlink .462
unlist .463
unname .464
UseMethod .465
UserHooks .467
utf8Conversion .469
vector .469
warning .471
warnings .472
weekdays .473
which .474
which.min .475
with .476
write .478
writeLines .479
zpackages .480
zutils .481

2 Thedatasets package 483
datasets-package .483
ability.cov .483
airmiles .484
AirPassengers .485
airquality .486
anscombe .487
attenu .488
attitude .489
austres .490
beavers .490
BJsales .491
BOD .492
cars .493
ChickWeight .494
chickwts .495
CO2 .496
co2 .497
crimtab .497
discoveries .499
DNase .500
esoph .501
euro .502
eurodist .503
EuStockMarkets .503
faithful .504
Formaldehyde .505
freeny .506

CONTENTS ix

HairEyeColor .507
Harman23.cor .508
Harman74.cor .508
Indometh .509
infert .510
InsectSprays .511
iris .511
islands .513
JohnsonJohnson .513
LakeHuron .514
lh .514
LifeCycleSavings .515
Loblolly .516
longley .516
lynx .517
morley .518
mtcars .519
nhtemp .519
Nile .520
nottem .521
Orange .522
OrchardSprays .523
PlantGrowth .524
precip .524
presidents .525
pressure .526
Puromycin .526
quakes .528
randu .528
rivers .529
rock .530
sleep .530
stackloss .531
state .532
sunspot.month .533
sunspot.year .534
sunspots .535
swiss .535
Theoph .536
Titanic .538
ToothGrowth .539
treering .539
trees .540
UCBAdmissions .541
UKDriverDeaths .542
UKgas .543
UKLungDeaths .544
USAccDeaths .544
USArrests .545
USJudgeRatings .545
USPersonalExpenditure .546
uspop .547

x CONTENTS

VADeaths .547
volcano .548
warpbreaks .549
women .550
WorldPhones .550
WWWusage .551

3 ThegrDevices package 553
grDevices-package .553
as.graphicsAnnot .553
boxplot.stats .554
check.options .556
chull .557
cm .558
col2rgb .558
colorRamp .559
colors .561
contourLines .562
convertColor .563
dev.interactive .565
dev.xxx .566
dev2 .567
dev2bitmap .569
Devices .570
embedFonts .571
extendrange .572
getGraphicsEvent .573
gray .574
gray.colors .575
hcl .576
Hershey .578
hsv .581
Japanese .582
make.rgb .583
n2mfrow .584
nclass .585
palette .586
Palettes .587
pdf .588
pictex .591
plotmath .593
png .596
postscript .598
postscriptFonts .603
ps.options .606
quartz .607
quartzFonts .608
recordGraphics .609
recordPlot .610
rgb .611
rgb2hsv .612
trans3d .614
Type1Font .615

CONTENTS xi

x11 .616
X11Fonts .618
xfig .619
xy.coords .620
xyTable .622
xyz.coords .623

4 Thegraphics package 625
graphics-package .625
abline .625
arrows .627
assocplot .628
Axis .630
axis .631
axis.POSIXct .633
axTicks .635
barplot .636
box .639
boxplot .640
bxp .643
cdplot .645
contour .647
coplot .650
curve .653
dotchart .654
filled.contour .655
fourfoldplot .658
frame .659
grid .660
hist .661
hist.POSIXt .664
identify .665
image .668
layout .670
legend .672
lines .676
locator .677
matplot .678
mosaicplot .680
mtext .683
pairs .685
panel.smooth .687
par .688
persp .695
pie .698
plot .700
plot.data.frame .701
plot.default .702
plot.design .705
plot.factor .706
plot.formula .707
plot.histogram .708
plot.table .710

xii CONTENTS

plot.window .711
plot.xy .712
points .713
polygon .715
rect .717
rug .718
screen .719
segments .721
spineplot .722
stars .725
stem .728
stripchart .729
strwidth .730
sunflowerplot .731
symbols .733
text .736
title .738
units .739
xspline .740

5 Thegrid package 743
grid-package .743
absolute.size .744
arrow .745
convertNative .745
dataViewport .746
drawDetails .747
editDetails .748
gEdit .749
getNames .750
gpar .750
gPath .752
Grid .753
Grid Viewports .754
grid.add .757
grid.arrows .758
grid.circle .761
grid.clip .762
grid.collection .763
grid.convert .764
grid.copy .766
grid.curve .767
grid.display.list .769
grid.draw .770
grid.edit .771
grid.frame .772
grid.get .773
grid.grab .774
grid.grill .775
grid.grob .776
grid.layout .777
grid.lines .779
grid.locator .781

CONTENTS xiii

grid.ls .782
grid.move.to .784
grid.newpage .785
grid.pack .786
grid.place .788
grid.plot.and.legend .789
grid.points .789
grid.polygon .790
grid.pretty .792
grid.prompt .792
grid.record .793
grid.rect .794
grid.refresh .795
grid.remove .795
grid.segments .796
grid.set .798
grid.show.layout .799
grid.show.viewport .800
grid.text .801
grid.xaxis .803
grid.xspline .804
grid.yaxis .807
grobName .808
grobWidth .808
grobX .809
plotViewport .810
pop.viewport .810
push.viewport .811
Querying the Viewport Tree .812
stringWidth .813
unit .813
unit.c .815
unit.length .816
unit.pmin .817
unit.rep .817
validDetails .818
vpPath .819
widthDetails .820
Working with Viewports .820
xDetails .823

6 Themethods package 825
methods-package .825
.BasicFunsList .826
as .826
BasicClasses .830
callNextMethod .831
canCoerce .833
cbind2 .834
Classes .835
classRepresentation-class .837
Documentation .838
environment-class .840

xiv CONTENTS

fixPre1.8 .840
genericFunction-class .841
GenericFunctions .842
getClass .846
getMethod .847
getPackageName .850
hasArg .851
implicitGeneric .852
initialize-methods .854
is .855
isSealedMethod .858
language-class .859
LinearMethodsList-class .860
makeClassRepresentation .861
method.skeleton .862
MethodDefinition-class .863
Methods .864
MethodsList-class .866
MethodWithNext-class .867
new .868
ObjectsWithPackage-class .870
promptClass .871
promptMethods .872
representation .873
S4groupGeneric .875
SClassExtension-class .877
seemsS4Object .878
setClass .879
setClassUnion .883
setGeneric .885
setMethod .888
setOldClass .891
show .894
showMethods .895
signature-class .897
slot .898
StructureClasses .899
TraceClasses .900
validObject .901

7 Thestats package 905
stats-package .905
.checkMFClasses .905
acf .906
acf2AR .908
add1 .909
addmargins .911
aggregate .913
AIC .915
alias .916
anova .917
anova.glm .918
anova.lm .920

CONTENTS xv

anova.mlm .921
ansari.test .923
aov .925
approxfun .927
ar .929
ar.ols .932
arima .934
arima.sim .937
arima0 .938
ARMAacf .942
ARMAtoMA . 943
as.hclust .944
asOneSidedFormula .945
ave .945
bandwidth .946
bartlett.test .948
Beta .949
binom.test .951
Binomial .952
biplot .954
biplot.princomp .955
birthday .957
Box.test .958
C .959
cancor .960
case/variable.names .961
Cauchy .962
chisq.test .963
Chisquare .966
clearNames .968
cmdscale .969
coef .970
complete.cases .971
confint .972
constrOptim .973
contrast .975
contrasts .976
convolve .977
cophenetic .979
cor .980
cor.test .982
cov.wt .985
cpgram .986
cutree .987
decompose .988
delete.response .989
dendrapply .990
dendrogram .991
density .995
deriv .998
deviance .1000
df.residual .1001

xvi CONTENTS

diffinv .1002
dist .1003
dummy.coef .1006
ecdf .1007
eff.aovlist .1009
effects .1010
embed .1011
expand.model.frame .1012
Exponential .1013
extractAIC .1014
factanal .1015
factor.scope .1018
family .1019
FDist .1023
fft .1024
filter .1025
fisher.test .1027
fitted .1029
fivenum .1030
fligner.test .1031
formula .1033
formula.nls .1035
friedman.test .1035
ftable .1037
ftable.formula .1039
GammaDist .1040
Geometric .1043
getInitial .1044
glm .1045
glm.control .1049
glm.summaries .1050
hclust .1051
heatmap .1054
HoltWinters .1057
Hypergeometric .1060
identify.hclust .1061
influence.measures .1062
integrate .1065
interaction.plot .1067
IQR .1069
is.empty.model .1070
isoreg .1071
KalmanLike .1072
kernapply .1074
kernel .1075
kmeans .1076
kruskal.test .1078
ks.test .1080
ksmooth .1082
lag .1083
lag.plot .1084
line .1085

CONTENTS xvii

lm .1086
lm.fit .1089
lm.influence .1091
lm.summaries .1092
loadings .1094
loess .1095
loess.control .1097
Logistic .1098
logLik .1099
loglin .1100
Lognormal .1102
lowess .1103
ls.diag .1105
ls.print .1106
lsfit .1106
mad .1108
mahalanobis .1109
make.link .1110
makepredictcall .1111
manova .1112
mantelhaen.test .1113
mauchly.test .1115
mcnemar.test .1117
median .1118
medpolish .1119
model.extract .1120
model.frame .1121
model.matrix .1123
model.tables .1125
monthplot .1126
mood.test .1128
Multinomial .1130
na.action .1131
na.contiguous .1132
na.fail .1132
naprint .1133
naresid .1134
NegBinomial .1135
nextn .1137
nlm .1137
nlminb .1140
nls .1142
nls.control .1146
NLSstAsymptotic .1148
NLSstClosestX .1148
NLSstLfAsymptote .1149
NLSstRtAsymptote .1150
Normal .1151
numericDeriv .1153
offset .1154
oneway.test .1154
optim .1156

xviii CONTENTS

optimize .1160
order.dendrogram .1162
p.adjust .1163
pairwise.prop.test .1165
pairwise.t.test .1166
pairwise.table .1167
pairwise.wilcox.test .1168
plot.acf .1168
plot.density .1170
plot.HoltWinters .1170
plot.isoreg .1172
plot.lm .1173
plot.ppr .1175
plot.profile.nls .1176
plot.spec .1177
plot.stepfun .1179
plot.ts .1180
Poisson .1182
poly .1183
power .1185
power.anova.test .1186
power.prop.test .1187
power.t.test .1188
PP.test .1189
ppoints .1190
ppr .1191
prcomp .1194
predict .1197
predict.Arima .1198
predict.glm .1199
predict.HoltWinters .1201
predict.lm .1202
predict.loess .1204
predict.nls .1206
predict.smooth.spline .1207
preplot .1208
princomp .1209
print.power.htest .1211
print.ts .1212
printCoefmat .1213
profile .1214
profile.nls .1215
proj .1216
prop.test .1218
prop.trend.test .1220
qqnorm .1221
quade.test .1222
quantile .1224
r2dtable .1226
read.ftable .1227
rect.hclust .1229
relevel .1230

CONTENTS xix

reorder.dendrogram .1230
reorder.factor .1231
replications .1233
reshape .1234
residuals .1236
runmed .1237
scatter.smooth .1239
screeplot .1241
sd .1242
se.contrast .1242
selfStart .1244
setNames .1246
shapiro.test .1247
SignRank .1248
simulate .1249
smooth .1250
smooth.spline .1252
smoothEnds .1255
sortedXyData .1257
spec.ar .1257
spec.pgram .1259
spec.taper .1261
spectrum .1262
splinefun .1263
SSasymp .1265
SSasympOff .1266
SSasympOrig .1267
SSbiexp .1268
SSD .1269
SSfol .1270
SSfpl .1271
SSgompertz .1272
SSlogis .1273
SSmicmen .1274
SSweibull .1275
start .1276
stat.anova .1277
stats-deprecated .1278
step .1278
stepfun .1280
stl .1282
stlmethods .1284
StructTS .1285
summary.aov .1287
summary.glm .1289
summary.lm .1291
summary.manova .1293
summary.nls .1294
summary.princomp .1295
supsmu .1296
symnum .1297
t.test .1300

xx CONTENTS

TDist .1302
termplot .1304
terms .1305
terms.formula .1306
terms.object .1307
time .1308
toeplitz .1309
ts .1310
ts-methods .1312
ts.plot .1313
ts.union .1313
tsdiag .1314
tsp .1315
tsSmooth .1316
Tukey .1317
TukeyHSD .1318
Uniform .1319
uniroot .1320
update .1322
update.formula .1323
var.test .1324
varimax .1325
vcov .1326
Weibull .1327
weighted.mean .1328
weighted.residuals .1329
wilcox.test .1330
Wilcoxon .1333
window .1335
xtabs .1336

8 The tools package 1339
tools-package .1339
buildVignettes .1339
charsets .1340
checkFF .1341
checkMD5sums .1342
checkTnF .1343
checkVignettes .1344
codoc .1345
delimMatch .1346
encoded_text_to_latex .1347
fileutils .1348
getDepList .1350
installFoundDepends .1351
makeLazyLoading .1352
md5sum .1353
package.dependencies .1353
QC .1354
Rdindex .1355
Rdutils .1356
read.00Index .1357
texi2dvi .1358

CONTENTS xxi

tools-deprecated .1358
undoc .1359
vignetteDepends .1360
write_PACKAGES .1361
xgettext .1362

9 Theutils package 1365
utils-package .1365
alarm .1365
apropos .1366
BATCH .1367
browseEnv .1368
browseURL .1370
bug.report .1371
capture.output .1373
chooseCRANmirror .1374
citation .1375
citEntry .1376
close.socket .1378
combn .1378
compareVersion .1380
COMPILE .1380
count.fields .1381
data .1382
dataentry .1384
debugger .1386
demo .1388
download.file .1389
edit .1391
edit.data.frame .1392
example .1393
file.edit .1395
file_test .1396
fix .1397
flush.console .1398
format .1398
getAnywhere .1399
getFromNamespace .1400
getS3method .1401
glob2rx .1402
head .1403
help .1404
help.search .1408
help.start .1410
index.search .1411
INSTALL .1412
installed.packages .1413
LINK .1414
localeToCharset .1415
ls.str .1416
make.packages.html .1417
make.socket .1418
memory.size .1419

xxii CONTENTS

menu .1420
methods .1421
mirrorAdmin .1422
modifyList .1423
normalizePath .1423
nsl .1424
object.size .1425
package.skeleton .1426
packageDescription .1427
packageStatus .1428
page .1430
person .1430
PkgUtils .1431
prompt .1432
promptData .1434
promptPackage .1435
read.DIF .1436
read.fortran .1438
read.fwf .1439
read.socket .1441
read.table .1442
readNEWS .1446
recover .1447
relist .1448
REMOVE .1450
remove.packages .1451
RHOME .1452
roman .1452
Rprof .1453
Rprofmem .1454
Rscript .1455
RShowDoc .1456
RSiteSearch .1457
Rtangle .1458
RweaveLatex .1459
savehistory .1461
select.list .1463
sessionInfo .1464
setRepositories .1464
SHLIB .1465
stack .1466
str .1467
summaryRprof .1470
Sweave .1471
SweaveSyntConv .1473
toLatex .1474
type.convert .1475
update.packages .1475
url.show .1480
URLencode .1480
utils-deprecated .1481
View .1482

CONTENTS xxiii

vignette .1482
withVisible .1484
write.table .1485
zip.file.extract .1487

Index 1489

xxiv CONTENTS

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which letR function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, uselibrary(help="base") .

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is stored in.Devices . The name of the active
device (seedev.cur) is stored in.Device . Both are symbols and so appear in the base name
space.

Value

.Device is a length-one character vector.

.Devices is a pairlist of length-one character vectors. The first entry is always"null
device" , and there are as many entries as the maximal number of graphics devices which have
been simultaneously active. If a device has been removed, its entry will be"" until the device
number is reused.

1

2 .Machine

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machineR is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR.

Note that on most platforms smaller positive values than.Machine$double.xmin can occur.
On a typicalR platform the smallest positive double is about5e-324 .

Value

A list with components (for simplicity, the prefix ‘double’ is omitted in the explanations)

double.eps the smallest positive floating-point numberx such that1 + x != 1 . It equals
base^ulp.digits if either base is 2 or rounding is 0; otherwise, it is
(base^ulp.digits) / 2 .

double.neg.eps
a small positive floating-point numberx such that1 - x != 1 . It equals
base^neg.ulp.digits if base is 2 or round is 0; otherwise, it is
(base^neg.ulp.digits) / 2 . As neg.ulp.digits is bounded be-
low by -(digits + 3) , neg.eps may not be the smallest number that can
alter 1 by subtraction.

double.xmin the smallest non-vanishing normalized floating-point power of the radix, i.e.,
base^min.exp .

double.xmax the largest finite floating-point number. Typically, it is equal to(1 -
neg.eps) * base^max.exp , but on some machines it is only the second,
or perhaps third, largest number, being too small by 1 or 2 units in the last digit
of the significand.

double.base the radix for the floating-point representation
double.digits

the number of base digits in the floating-point significand
double.rounding

the rounding action.
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;
5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow

.Machine 3

double.guard the number of guard digits for multiplication with truncating arithmetic. It is 1
if floating-point arithmetic truncates and more thandigits basebase digits
participate in the post-normalization shift of the floating-point significand in
multiplication, and 0 otherwise.

double.ulp.digits
the largest negative integeri such that1 + base^i != 1 , except that it is
bounded below by-(digits + 3) .

double.neg.ulp.digits
the largest negative integeri such that1 - base^i != 1 , except that it is
bounded below by-(digits + 3) .

double.exponent
the number of bits (decimal places ifbase is 10) reserved for the representation
of the exponent (including the bias or sign) of a floating-point number

double.min.exp
the largest in magnitude negative integeri such thatbase ^ i is positive and
normalized.

double.max.exp
the smallest positive power ofbase that overflows.

integer.max the largest integer which can be represented.

sizeof.long the number of bytes in a Clong type.

sizeof.longlong
the number of bytes in a Clong long type. Will be zero if there is no such
type.

sizeof.longdouble
the number of bytes in a Clong double type. Will be zero if there is no such
type.

sizeof.pointer
the number of bytes in a CSEXPtype.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters.Trans-
actions on Mathematical Software, 14, 4, 303–311.

See Also

.Platform for details of the platform.

Examples

.Machine
or for a neat printout
noquote(unlist(format(.Machine)))

4 .Platform

.Platform Platform Specific Variables

Description

.Platform is a list with some details of the platform under whichR was built. This provides
means to write OS-portableR code.

Usage

.Platform

Value

A list with at least the following components:

OS.type character string, giving theOperatingSystem (family) of the computer. One of
"unix" or "windows" .

file.sep character string, giving thefile separator used on your platform:"/" on both
Unix-alikes and on Windows (but not on the now abandoned port to Classic
MacOS).

dynlib.ext character string, giving the file nameextension of dynamically loadable
lib raries, e.g.,".dll" on Windows and".so" or ".sl" on Unix-alikes.
(Note for MacOS X users: these are shared objects as loaded bydyn.load
and not dylibs.)

GUI character string, giving the type of GUI in use, or"unknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘-g ’
command-line flag ("X11" , "Tk" , "none" and perhaps others under alterna-
tive front-ends or embeddedR), "AQUA" (running underR.app on MacOS X),
"Rgui" and"RTerm" (Windows).

endian character string,"big" or "little" , giving the endianness of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: seereadBin .

pkgType character string, the preferred setting foroptions ("pkgType") . Values
"source" , "mac.binary" and"win.binary" are currently in use.

path.sep character string, giving thepath separator, used on your platform, e.g.,":" on
Unix-alikes and";" on Windows. Used to separate paths in variables such as
PATHandTEXINPUTS.

r_arch character string, possibly"" . The name of the architecture-specific directories
used in this build ofR.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under whichR was com-
piled.

.Machine for details of the arithmetic used, andsystem for invoking platform-specific system
commands.

.Script 5

Examples

Note: this can be done in a system-independent way
by file.info()$isdir
if(.Platform$OS.type == "unix") {

system.test <- function(...) { system(paste("test", ...)) == 0 }
dir.exists <- function(dir)

sapply(dir, function(d)system.test("-d", d))
dir.exists(c(R.home(), "/tmp", "~", "/NO"))# > T T T F

}

.Script Scripting Language Interface

Description

Run a script through its interpreter with given arguments.

Usage

.Script(interpreter, script, args, ...)

Arguments

interpreter a character string naming the interpreter for the script.

script a character string with the base file name of the script, which must be lo-
cated in the ‘interpreter ’ subdirectory of ‘R_SHARE_DIR’ (normally
‘R_HOME/share’).

args a character string giving the arguments to pass to the script.

... further arguments to be passed tosystem when invoking the interpreter on the
script.

Note

This function is for R internal use only.

Examples

not useful on Windows, where the help is zipped.
.Script("perl", "massage-Examples.pl",

paste("tools", system.file("R-ex", package = "tools")))

6 abbreviate

abbreviate Abbreviate Strings

Description

Abbreviate strings to at leastminlength characters, such that they remainunique(if they were).

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, method = c("left.kept", "both.sides"))

Arguments

names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector byas.character .

minlength the minimum length of the abbreviations.

use.classes logical (currently ignored byR).

dot logical: should a dot (".") be appended?

method a string specifying the method used with default"left.kept" , see ‘Details’
below.

Details

The algorithm (method = "left.kept") used is similar to that of S. For a single string it
works as follows. First all spaces at the beginning of the string are stripped. Then (if necessary)
any other spaces are stripped. Next, lower case vowels are removed (starting at the right) followed
by lower case consonants. Finally if the abbreviation is still longer thanminlength upper case
letters are stripped.

Characters are always stripped from the end of the word first. If an element ofnames.arg contains
more than one word (words are separated by space) then at least one letter from each word will be
retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space. This has
NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates in
the originalnames.arg will be given identical abbreviations. If any non-duplicated elements
have the sameminlength abbreviations then, ifmethod = "both.sides" the basic inter-
nal abbreviate() algorithm is applied to the characterwisereversedstrings; if there are still
duplicated abbreviations,minlength is incremented by one and new abbreviations are found for
those elements only. This process is repeated until all unique elements ofnames.arg have unique
abbreviations.

The character version ofnames.arg is attached to the returned value as a names argument: no
other attributes are retained.

agrep 7

Warning

This is really only suitable for English, and does not work correctly with non-ASCII characters in
multibyte locales. It will warn if used with non-ASCII characters.

See Also

substr .

Examples

x <- c("abcd", "efgh", "abce")
abbreviate(x, 2)

(st.abb <- abbreviate(state.name, 2))
table(nchar(st.abb))# out of 50, 3 need 4 letters

method="both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate(state.name, 2, method="both")
table(nchar(st.ab2))
Compare the two methods:
cbind(st.abb, st.ab2)

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches topattern (the first argument) within the stringx (the second
argument) using the Levenshtein edit distance.

Usage

agrep(pattern, x, ignore.case = FALSE, value = FALSE,
max.distance = 0.1)

Arguments

pattern a non-empty character string to be matched (nota regular expression!). Coerced
by as.character to a string if possible.

x character vector where matches are sought. Coerced byas.character to a
character vector if possible.

ignore.case if FALSE, the pattern matching iscase sensitiveand if TRUE, case is ignored
during matching.

value if FALSE, a vector containing the (integer) indices of the matches determined is
returned and ifTRUE, a vector containing the matching elements themselves is
returned.

max.distance Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length (will be replaced by the smallest integer not less
than the corresponding fraction), or a list with possible components

all : maximal (overall) distance

8 all

insertions : maximum number/fraction of insertions
deletions : maximum number/fraction of deletions
substitutions : maximum number/fraction of substitutions

If all is missing, it is set to 10%, the other components default toall . The
component names can be abbreviated.

Details

The Levenshtein edit distance is used as measure of approximateness: it is the total number of
insertions, deletions and substitutions required to transform one string into another. Note that this
is currently done at byte-level, and so is not wholly appropriate for multibyte encodings such as
UTF-8.

The function is a simple interface to theapse library developed by Jarkko Hietaniemi (also used
in the Perl String::Approx module).

Value

Either a vector giving the indices of the elements that yielded a match, or, ifvalue is TRUE, the
matched elements (after coercion, preserving names but no other attributes).

Author(s)

David Meyer, based on C code by Jarkko Hietaniemi; modifications by Kurt Hornik.

See Also

grep

Examples

agrep("lasy", "1 lazy 2")
agrep("lasy", "1 lazy 2", max = list(sub = 0))
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2)
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE)
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

... zero or more logical vectors. Other objects are coerced to logical, ignoring any
class.

na.rm logical. If trueNAvalues are removed before the result is computed.

all 9

Details

This is a generic function: methods can be defined for it directly or via theSummarygroup generic.
For this to work properly, the arguments... should be unnamed, and dispatch is on the first
argument.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in... (after coercion), after removing
NAs if requested byna.rm = TRUE .

The value returned isTRUEif all of the values inx areTRUE(including if there are no values), and
FALSEif at least one of the values inx is FALSE. Otherwise the value isNA(which can only occur
if na.rm = FALSE and... contains noFALSEvalues and at least oneNAvalue).

S4 methods

This is part of the S4Summary group generic. Methods for it must use the signaturex, ...,
na.rm .

Note

Thatall(logical(0)) is true is a useful convention: it ensures that

all(all(x), all(y)) == all(x,y)

even ifx has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

any , the ‘complement’ ofall , andstopifnot (*) which is anall(*) ‘insurance’.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

10 all.equal

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal(x,y) is a utility to compareR objectsx and y testing ‘near equality’. If they
are different, comparison is still made to some extent, and a report of the differences is returned.
Don’t useall.equal directly in if expressions—either useisTRUE(all.equal(....))
or identical if appropriate.

Usage

all.equal(target, current, ...)

S3 method for class 'numeric':
all.equal(target, current,

tolerance = .Machine$double.eps ^ 0.5,
scale = NULL, check.attributes = TRUE, ...)

attr.all.equal(target, current,
check.attributes = TRUE, check.names = TRUE, ...)

Arguments

target R object.

current otherR object, to be compared withtarget .

... Further arguments for different methods, notably the following two, for numer-
ical comparison:

tolerance numeric≥ 0. Differences smaller thantolerance are not considered.

scale numeric scalar > 0 (orNULL). See ‘Details’.
check.attributes

logical indicating if theattributes (.) of target andcurrent should
be compared as well.

check.names logical indicating if thenames(.) of target andcurrent should be com-
pared as well (and separately from theattributes).

Details

There are several methods available, most of which are dispatched by the default method, see
methods ("all.equal") . all.equal.list andall.equal.language provide com-
parison of recursive objects.

Numerical comparisons forscale = NULL (the default) are done by first computing the mean
absolute difference of the two numerical vectors. If this is smaller thantolerance or not finite,
absolute differences are used, otherwise relative differences scaled by the mean absolute difference.

If scale is positive, absolute comparisons are made after scaling (dividing) byscale .

For complex arguments, the modulusMod of the difference is used:all.equal.numeric is
called so argumentstolerance andscale are available.

attr.all.equal is used for comparingattributes , returningNULLor acharacter vec-
tor.

all.names 11

Value

EitherTRUEor a vector ofmode"character" describing the differences betweentarget and
current .

References

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer (for=).

See Also

identical , isTRUE , ==, andall for exact equality testing.

Examples

all.equal(pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10)
stopifnot(
all.equal(tan(d45), rep(1,10))) # TRUE, but
all (tan(d45) == rep(1,10)) # FALSE, since not exactly
all.equal(tan(d45), rep(1,10), tol=0) # to see difference

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE, max.names = -1L, unique = FALSE)

all.vars(expr, functions = FALSE, max.names = -1L, unique = TRUE)

Arguments

expr an expression or call from which the names are to be extracted.

functions a logical value indicating whether function names should be included in the
result.

max.names the maximum number of names to be returned.-1 indicates no limit (other than
vector size limits).

unique a logical value which indicates whether duplicate names should be removed
from the value.

Details

These functions differ only in the default values for their arguments.

12 any

Value

A character vector with the extracted names.

Examples

all.names(expression(sin(x+y)))
all.vars(expression(sin(x+y)))

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any(..., na.rm = FALSE)

Arguments

... zero or more logical vectors. Other objects are coerced to logical, ignoring any
class.

na.rm logical. If trueNAvalues are removed before the result is computed.

Details

This is a generic function: methods can be defined for it directly or via theSummarygroup generic.
For this to work properly, the arguments... should be unnamed, and dispatch is on the first
argument.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in... (after coercion), after removing
NAs if requested byna.rm = TRUE .

The value returned isTRUEif at least one of the values inx is TRUE, andFALSEif all of the values
in x areFALSE(including if there are no values). Otherwise the value isNA(which can only occur
if na.rm = FALSE and... contains noTRUEvalues and at least oneNAvalue).

S4 methods

This is part of the S4Summary group generic. Methods for it must use the signaturex, ...,
na.rm .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

aperm 13

See Also

all , the ‘complement’ ofany .

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2,1)))
if(any(x < 0)) cat("x contains negative values\n")

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, resize = TRUE)

Arguments

a the array to be transposed.

perm the subscript permutation vector, which must be a permutation of the integers
1:n , wheren is the number of dimensions ofa. The default is to reverse the
order of the dimensions.

resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (defaultTRUE).

Value

A transposed version of arraya, with subscripts permuted as indicated by the arrayperm . If
resize is TRUE, the array is reshaped as well as having its elements permuted, thedimnames
are also permuted; ifresize = FALSE then the returned object has the same dimensions asa,
and the dimnames are dropped. In each case other attributes are copied froma.

The functiont provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier,〈J.C.Rougier@durham.ac.uk〉 did the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

t , to transpose matrices.

14 append

Examples

interchange the first two subscripts on a 3-way array x
x <- array(1:24, 2:4)
xt <- aperm(x, c(2,1,3))
stopifnot(t(xt[,,2]) == x[,,2],

t(xt[,,3]) == x[,,3],
t(xt[,,4]) == x[,,4])

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after = length(x))

Arguments

x the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.

Value

A vector containing the values inx with the elements ofvalues appended after the specified
element ofx .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

append(1:5, 0:1, after=3)

apply 15

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array.

Usage

apply(X, MARGIN, FUN, ...)

Arguments

X the array to be used.

MARGIN a vector giving the subscripts which the function will be applied over.1 indicates
rows,2 indicates columns,c(1,2) indicates rows and columns.

FUN the function to be applied: see ‘Details’. In the case of functions like+, %*%,
etc., the function name must be backquoted or quoted.

... optional arguments toFUN.

Details

If X is not an array but has a dimension attribute,apply attempts to coerce it to an array via
as.matrix if it is two-dimensional (e.g., data frames) or viaas.array .

FUNis found by a call tomatch.fun and typically is either a function or a symbol (e.g. a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call toapply .

Value

If each call toFUNreturns a vector of lengthn, thenapply returns an array of dimensionc(n,
dim(X)[MARGIN]) if n > 1 . If n equals1, apply returns a vector ifMARGINhas length 1
and an array of dimensiondim(X)[MARGIN] otherwise. Ifn is 0, the result has length 0 but not
necessarily the ‘correct’ dimension.

If the calls to FUN return vectors of different lengths,apply returns a list of length
prod(dim(X)[MARGIN]) with dim set toMARGINif this has length greater than one.

In all cases the result is coerced byas.vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply , tapply , and convenience functionssweep andaggregate .

16 args

Examples

Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
apply(x, 2, mean, trim = .2)
col.sums <- apply(x, 2, sum)
row.sums <- apply(x, 1, sum)
rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))
apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
ma
apply(ma, 1, table) #--> a list of length 2
apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call
z <- array(1:24, dim=2:4)
zseq <- apply(z, 1:2, function(x) seq(length=max(x)))
zseq ## a 2 x 3 matrix
typeof(zseq) ## list
dim(zseq) ## 2 3
zseq[1,]
apply(z, 3, function(x) seq(length=max(x)))
a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage

args(name)

Arguments

name a function (a closure or a primitive). Ifname is a character string then the
function with that name is found and used.

Details

This function is mainly used interactively. For programming, useformals instead.

Arithmetic 17

Value

A function with identical formal argument list but an empty body if given a closure.

A function with the documented usage for a primitive: note that in almost all cases primitives do
not make use of named arguments and match by position rather than name. (rep andseq.int
are exceptions.)

NULL in case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals , help .

Examples

args(c)
args(graphics::plot.default)

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on numeric or complex vectors (or objects which can be
coerced to them).

Usage

x + y
x - y
x * y
x / y
x ^ y
x %% y
x %/% y

Arguments

x, y numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.

18 Arithmetic

Details

The binary arithmetic operators are generic functions: methods can be written for them individually
or via theOps group generic function. (SeeOps for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors,FALSEhaving value zero andTRUE
having value one.

1 ^ y andy ^ 0 are1, always. x ^ y should also give the proper limit result when either
argument is infinite (i.e.,+- Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For real arguments,%%can be subject to catastrophic loss of accuracy ifx is much larger thany ,
and a warning is given if this is detected.

Value

These operators return vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with awarning when they are recycled
only fractionally). The operators are+ for addition,- for subtraction,* for multiplication, / for
division and̂ for exponentiation.

%%indicatesx mod y and %/% indicates integer division. It is guaranteed thatx == (x
%% y) + y * (x %/% y) (up to rounding error) unlessy == 0 where the result is
NA_integer_ or NaN (depending on thetypeof of the arguments). Seehttp://en.
wikipedia.org/wiki/Modulo_operation for the rationale.

If either argument is complex the result will be complex, and if one or both arguments are numeric,
the result will be numeric. If both arguments are integer, the result of/ and^ is numeric and of the
other operators integer (with overflow returned asNAwith a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are
taken from the longer argument, the first if they are of the same length. Names will be copied from
the first if it is the same length as the answer, otherwise from the second if that is. For time series,
these operations are allowed only if the series are compatible, when the class andtsp attribute
of whichever is a time series (the same, if both are) are used. For arrays (and an array result) the
dimensions and dimnames are taken from first argument if it is an array, otherwise the second.

S4 methods

These operators are members of the S4Arith group generic, and so methods can be written for
them individually as well as for the group generic (or theOps group generic), with arguments
c(e1, e2) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

sqrt for miscellaneous andSpecial for special mathematical functions.

Syntax for operator precedence.

%*%for matrix multiplication.

http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation

array 19

Examples

x <- -1:12
x + 1
2 * x + 3
x %% 2 #-- is periodic
x %/% 5

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x)
is.array(x)

Arguments

data a vector (including a list) giving data to fill the array.

dim the dim attribute for the array to be created, that is a vector of length one or more
giving the maximal indices in each dimension.

dimnames the names for the dimensions. This is a list with one component for each di-
mension, either NULL or a character vector of the length given bydim for that
dimension. The list can be names, and the names will be used as names for the
dimensions.

x anR object.

Value

array returns an array with the extents specified indim and naming information indimnames .
The values indata are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements indata to fill the array, then the elements indata are recycled. If
data has length zero,NAof an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

as.array() coerces its argument to be an array by attaching adim attribute to it. It also at-
tachesdimnames if x hasnames. The sole purpose of this is to make it possible to access the
dim [names] attribute at a later time.

is.array returnsTRUEor FALSEdepending on whether its argument is an array (i.e., has adim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, seeInternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

20 as.data.frame

See Also

aperm , matrix , dim , dimnames .

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"
[,1] [,2] [,3] [,4]
#[1,] 1 3 2 1
#[2,] 2 1 3 2

as.data.frame Coerce to a Data Frame

Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage

as.data.frame(x, row.names = NULL, optional = FALSE, ...)
S3 method for class 'character':
as.data.frame(x, ...,

stringsAsFactors = default.stringsAsFactors())
S3 method for class 'matrix':
as.data.frame(x, row.names = NULL, optional = FALSE, ...,

stringsAsFactors = default.stringsAsFactors())

is.data.frame(x)

Arguments

x anyR object.

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntactic
names) is optional.

... additional arguments to be passed to or from methods.
stringsAsFactors

logical: should the character vector be converted to a factor?

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method foras.data.frame : two examples are matrices of class" model.matrix " (which
are included as a single column) and list objects of class" POSIXlt " which are coerced to class
" POSIXct " .

as.environment 21

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected byI .

If a data frame is supplied, all classes preceding"data.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL , row names are constructed from the names or dimnames ofx , otherwise
are the integer sequence starting at one. Few of the methods check for duplicated row names. Names
are removed from vector columns unlessI .

Value

as.data.frame returns a data frame, normally with all row names"" if optional = TRUE .

is.data.frame returnsTRUEif its argument is a data frame (that is, has"data.frame"
amongst its classes) andFALSEotherwise.

References

Chambers, J. M. (1992)Data for models.Chapter 3 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame , as.data.frame.table for the table method (which has additional argu-
ments if called directly).

as.environment Coerce to an Environment Object

Description

Converts a number or a character string to the corresponding environment on the search path.

Usage

as.environment(object)

Arguments

object the object to convert. If it is already an environment, just return it. If it is a
number, return the environment corresponding to that position on the search list.
If it is a character string, match the string to the names on the search list.

Value

The corresponding environment object.

Author(s)

John Chambers

22 as.function

See Also

environment for creation and manipulation,search .

Examples

as.environment(1) ## the global environment
identical(globalenv(), as.environment(1)) ## is TRUE
try(as.environment("package:stats")) ## stats need not be loaded

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a listx , which should contain the concatenation of a formal
argument list and an expression or an object of mode" call " which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:
as.function(x, envir = parent.frame(), ...)

Arguments

x object to convert, a list for the default method.

... additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

Note

For ancient historical reasons,envir = NULL uses the global environment rather than the base
environment. Please useenvir = globalenv () instead if this is what you want, as the special
handling ofNULLmay change in a future release.

Author(s)

Peter Dalgaard

See Also

function ; alist which is handy for the construction of argument lists, etc.

as.POSIX* 23

Examples

as.function(alist(a=,b=2,a+b))
as.function(alist(a=,b=2,a+b))(3)

as.POSIX* Date-time Conversion Functions

Description

Functions to manipulate objects of classes"POSIXlt" and "POSIXct" representing calendar
dates and times.

Usage

as.POSIXct(x, tz = "")
as.POSIXlt(x, tz = "")

S3 method for class 'POSIXlt':
as.double(x, ...)

Arguments

x An object to be converted.

tz A timezone specification to be used for the conversion,if one is required.
System-specific, but"" is the current timezone, and"GMT" is UTC (Coor-
dinated Universal Time, in French).

... further arguments to be passed to or from other methods.

Details

Theas.POSIX* functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert a wide variety of objects, includ-
ing objects of the other class and of classes"Date" , "date" (from packagedate or survival),
"chron" and"dates" (from packagechron) to these classes. Dates without times are treated
as being at midnight UTC.

They can also convert character strings of the formats"2001-02-03" and "2001/02/03"
optionally followed by white space and a time in the format"14:52" or "14:52:03" . (For-
mats such as"01/02/03" are ambiguous but can be converted via a format specification by
strptime .) Fractional seconds are allowed.

LogicalNAs can be converted to either of the classes, but no other logical vectors can be.

Theas.double method converts"POSIXlt" objects to"POSIXct" .

If you are given a numeric time as the number of seconds since an epoch, see the examples.

Where OSes describe their valid timezones can be obscure. The help fortzset (or _tzset on
Windows) can be helpful, but it can also be inaccurate. There is a cumbersome POSIX specifica-
tion (listed under environment variableTZ athttp://www.opengroup.org/onlinepubs/
009695399/basedefs/xbd_chap08.html), which is often at least partially supported, but
there may be other more user-friendly ways to specify timezones. For most Unix-alikes (includ-
ing MacOS X) this can be an optional colon prepended to the path to a file (by default under
‘ /usr/share/zoneinfo’ or ‘ /usr/lib/zoneinfo’ (or even ‘/usr/share/lib/zoneinfo’ on Solaris)), for
example ‘EST5EDT’ or ‘ GB’ or ‘ Europe/Paris’. See http://www.twinsun.com/tz/
tz-link.htm for more details and references.

http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap08.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap08.html
http://www.twinsun.com/tz/tz-link.htm
http://www.twinsun.com/tz/tz-link.htm

24 AsIs

Value

as.POSIXct andas.POSIXlt return an object of the appropriate class. Iftz was specified,
as.POSIXlt will give an appropriate"tzone" attribute.

Note

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class"POSIXlt" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the week) useformat.POSIXlt or format.POSIXct .

If a timezone is needed and that specified is invalid on your system, what happens is system-specific
but it will probably be ignored.

See Also

DateTimeClassesfor details of the classes;strptime for conversion to and from character repre-
sentations.

Examples

(z <- Sys.time()) # the current datetime, as class "POSIXct"
unclass(z) # a large integer
floor(unclass(z)/86400) # the number of days since 1970-01-01
(z <- as.POSIXlt(Sys.time())) # the current datetime, as class "POSIXlt"
unlist(unclass(z)) # a list shown as a named vector

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
z <- 1472562988
two ways to convert this
ISOdatetime(1960,1,1,0,0,0) + z # late August 2006
strptime("1960-01-01", "%Y-%m-%d", tz="GMT") + z

as.POSIXlt(Sys.time(), "GMT") # the current time in GMT
Not run:
These may not be correct names on your system
as.POSIXlt(Sys.time(), "EST5EDT") # the current time in New York
as.POSIXlt(Sys.time(), "EST") # ditto, ignoring DST
as.POSIXlt(Sys.time(), "HST") # the current time in Hawaii
as.POSIXlt(Sys.time(), "Australia/Darwin")
End(Not run)

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

I(x)

assign 25

Arguments

x an object

Details

FunctionI has two main uses.

• In function data.frame . Protecting an object by enclosing it inI() in a call to
data.frame inhibits the conversion of character vectors to factors and the dropping of
names, and ensures that matrices are inserted as single columns.I can also be used to
protect objects which are to be added to a data frame, or converted to a data framevia
as.data.frame .
It achieves this by prepending the class"AsIs" to the object’s classes. Class"AsIs" has a
few of its own methods, including for[, as.data.frame , print andformat .

• In function formula . There it is used to inhibit the interpretation of operators such as"+" ,
"-" , "*" and"^" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol byterms.formula .

Value

A copy of the object with class"AsIs" prepended to the class(es).

References

Chambers, J. M. (1992)Linear models.Chapter 4 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame , formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)

Arguments

x a variable name (given as a quoted string in the function call).

value a value to be assigned tox .

pos where to do the assignment. By default, assigns into the current environment.
See the details for other possibilities.

envir theenvironment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

26 assign

Details

The pos argument can specify the environment in which to assign the object in any of several
ways: as an integer (the position in thesearch list); as the character string name of an element
in the search list; or as anenvironment (including usingsys.frame to access the currently
active function calls). Theenvir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: seeattach .

Value

This function is invoked for its side effect, which is assigningvalue to the variablex . If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variablex is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: seelockBinding : if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’s workspace (the
global environment).

If inherits is FALSE, assignment takes place in the initial frame ofenvir , unless an existing
binding is locked or there is no existing binding and the environment is locked.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

<- , get , exists , environment .

Examples

for(i in 1:6) { #-- Create objects 'r.1', 'r.2', ... 'r.6' --
nam <- paste("r",i, sep=".")
assign(nam, 1:i)

}
ls(pattern = "^r..$")

##-- Global assignment within a function:
myf <- function(x) {

innerf <- function(x) assign("Global.res", x^2, envir = .GlobalEnv)
innerf(x+1)

}
myf(3)
Global.res # 16

a <- 1:4
assign("a[1]", 2)
a[1] == 2 #FALSE
get("a[1]") == 2 #TRUE

assignOps 27

assignOps Assignment Operators

Description

Assign a value to a name.

Usage

x <- value
x <<- value
value -> x
value ->> x

x = value

Arguments

x a variable name (possibly quoted).

value a value to be assigned tox .

Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators<- and= assign into the environment in which they are evaluated. The operator<-
can be used anywhere, whereas the operator= is only allowed at the top level (e.g., in the com-
plete expression typed at the command prompt) or as one of the subexpressions in a braced list of
expressions.

The operators<<- and->> cause a search to made through the environment for an existing defi-
nition of the variable being assigned. If such a variable is found (and its binding is not locked) then
its value is redefined, otherwise assignment takes place in the global environment. Note that their
semantics differ from that in the S language, but are useful in conjunction with the scoping rules of
R. See ‘The R Language Definition’ manual for further details and examples.

In all the assignment operator expressions,x can be a name or an expression defining a part of an
object to be replaced (e.g.,z[[1]]). A syntactic name does not need to be quoted, though it can
be (preferably bybackticks).

The leftwards forms of assignment<- = <<- group right to left, the other from left to right.

Value

value . Thus one can usea <- b <- c <- 6 .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Chamber, J. M. (1998)Programming with Data. A Guide to the S Language. Springer (for=).

See Also

assign , environment .

28 attach

attach Attach Set of R Objects to Search Path

Description

The database is attached to theR search path. This means that the database is searched byR when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage

attach(what, pos = 2, name = deparse(substitute(what)),
warn.conflicts = TRUE)

Arguments

what ‘database’. This can be adata.frame or a list or aR data file created with
save or NULLor an environment. See also ‘Details’.

pos integer specifying position insearch () where to attach.

name name to use for the attached database.
warn.conflicts

logical. If TRUE, warnings are printed aboutconflicts from attaching the
database, unless that database contains an object.conflicts.OK . A conflict
is a function masking a function, or a non-function masking a non-function.

Details

When evaluating a variable or function nameR searches for that name in the databases listed by
search . The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g. in the example
below,height rather thanwomen$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously loaded packages and previously attached databases. This can
be altered to attach later in the search path with thepos option, but you cannot attach atpos=1 .

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
arecopiedinto the new environment. If you use<<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reasonattach can lead to confusion.

One useful ‘trick’ is to usewhat = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigned byassign or load or
sys.source .

Names starting"package:" are reserved forlibrary and should not be used by end users. The
name given for the attached environment will be used bysearch and can be used as the argument
to as.environment .

There are hooks to attach user-defined table objects of class"UserDefinedDatabase" ,
supported by the Omegahat packageRObjectTables. Seehttp://www.omegahat.org/
RObjectTables/ .

http://www.omegahat.org/RObjectTables/
http://www.omegahat.org/RObjectTables/

attr 29

Value

Theenvironment is returned invisibly with a"name" attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

library , detach , search , objects , environment , with .

Examples

require(utils)

summary(women$height) # refers to variable 'height' in the data frame
attach(women)
summary(height) # The same variable now available by name
height <- height*2.54 # Don't do this. It creates a new variable

in the user's workspace
find("height")
summary(height) # The new variable in the workspace
rm(height)
summary(height) # The original variable.
height <<- height*25.4 # Change the copy in the attached environment
find("height")
summary(height) # The changed copy
detach("women")
summary(women$height) # unchanged

Not run:
create an environment on the search path and populate it
sys.source("myfuns.R", envir=attach(NULL, name="myfuns"))
End(Not run)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- value

Arguments

x an object whose attributes are to be accessed.

which a non-empty character string specifying which attribute is to be accessed.

exact logical: shouldwhich be matched exactly?

value an object, the new value of the attribute, orNULL to remove the attribute.

30 attributes

Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match towhich amongst the at-
tributes of x , then (unless exact = TRUE) a unique partial match. (Setting
options (warnPartialMatchAttr=TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namelyclass , comment , dim , dimnames , names, row.names
andtsp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true oflevels which should be set for factors via thelevels replacement function.)

The extractor function allows (and does not match) empty and missing values ofwhich : the re-
placement function does not.

Value

For the extractor, the value of the attribute matched, orNULL if no exact match is found and no or
more than one partial match is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
x <- 1:10
attr(x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes(obj)
attributes(obj) <- value
mostattributes(obj) <- value

attributes 31

Arguments

obj an object

value an appropriate named list of attributes, orNULL.

Details

Unlike attr it is possible to set attributes on aNULL object: it will first be coerced to an empty
list.

Note that some attributes (namelyclass , comment , dim , dimnames , names, row.names
andtsp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true oflevels which should be set for factors via thelevels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vector. They
must have unique names (andNAis taken as"NA" , not a missing value).

Assigning attributes first removes all attributes, then sets anydim attribute and then the remain-
ing attributes in the order given: this ensures that setting adim attribute always precedes the
dimnames attribute.

The mostattributes assignment takes special care for thedim , names anddimnames at-
tributes, and assigns them only when valid whereas anattributes assignment would give an
error if any are not.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement method for attributes).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr .

Examples

x <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames
attributes(x)

strip an object's attributes:
attributes(x) <- NULL
x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special", dim = 3:2,
dimnames = list(LETTERS[1:3], letters[1:5]), names = paste(1:6))

x # dim(), but not {dim}names

32 autoload

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluateautoloader and stores it with namename in
.AutoloadEnv environment. WhenR attempts to evaluatename, autoloader is run, the
package is loaded andname is re-evaluated in the new package’s environment. The result is thatR
behaves as iffile was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload(name, package, reset = FALSE, ...)
autoloader(name, package, ...)

.AutoloadEnv

.Autoloaded

Arguments

name string giving the name of an object.

package string giving the name of a package containing the object.

reset logical: for internal use byautoloader .

... other arguments tolibrary .

Value

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign , library

Examples

require(stats)
autoload("interpSpline", "splines")
search()
ls("Autoloads")
.Autoloaded

x <- sort(stats::rnorm(12))
y <- x^2
is <- interpSpline(x,y)
search() ## now has splines
detach("package:splines")
search()
is2 <- interpSpline(x,y+x)
search() ## and again
detach("package:splines")

backsolve 33

backsolve Solve an Upper or Lower Triangular System

Description

Solves a system of linear equations where the coefficient matrix is upper or lower triangular.

Usage

backsolve(r, x, k=ncol(r), upper.tri=TRUE, transpose=FALSE)
forwardsolve(l, x, k=ncol(l), upper.tri=FALSE, transpose=FALSE)

Arguments

r,l an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.

x a matrix whose columns give the right-hand sides for the equations.

k The number of columns ofr and rows ofx to use.

upper.tri logical; if TRUE(default), theupper triangular part ofr is used. Otherwise, the
lower one.

transpose logical; if TRUE, solver′ ∗ y = x for y, i.e.,t(r) %*% y == x .

Value

The solution of the triangular system. The result will be a vector ifx is a vector and a matrix ifx is
a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978)LINPACK Users Guide.
Philadelphia: SIAM Publications.

See Also

chol , qr , solve .

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),

c(0,1,1),
c(0,0,2))

(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r %*% y # == x = (8,4,2)
backsolve(r, x, transpose = TRUE) # 8 -12 -5

34 basename

base-deprecated Deprecated Functions in Base package

Description

These functions are provided for compatibility with older versions ofR only, and may be defunct
as soon as the next release.

Usage

Sys.putenv(...)

Arguments

... named arguments with values coercible to a character string.

Details

The original help page for these functions is often available athelp("oldName-
deprecated") (note the quotes). Functions in packages other than the base package are listed
in help("pkg-deprecated") .

Sys.putenv is a deprecated synonym forSys.setenv .

See Also

Deprecated , base-defunct

basename Manipulate File Paths

Description

basename removes all of the path up to the last path separator (if any).

dirname returns the part of thepath up to (but excluding) the last path separator, or"." if there
is no path separator.

Usage

basename(path)
dirname(path)

Arguments

path character vector, containing path names.

Details

For dirname tilde expansion is done: see the description ofpath.expand .

Trailing file separators are removed before dissecting the path, and fordirname any trailing file
separators are removed from the result.

Bessel 35

Value

A character vector of the same length aspath . A zero-length input will give a zero-length output
with no error.

See Also

file.path , path.expand .

Examples

basename(file.path("","p1","p2","p3", c("file1", "file2")))
dirname(file.path("","p1","p2","p3","filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind,Jν andYν , and Modified
Bessel functions (of first and third kind),Iν andKν .

gammaCodyis the(Γ) function from the Specfun package and originally used in the Bessel code.

Usage

besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)
gammaCody(x)

Arguments

x numeric,≥ 0.

nu numeric; Theorder (maybe fractional!) of the corresponding Bessel function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(Iν) or underflow (Kν), respectively.

Details

The underlying C code stems fromNetlib (http://www.netlib.org/specfun/r[ijky]
besl).

If expon.scaled = TRUE , e−xIν(x), or exKν(x) are returned.

gammaCodymay be somewhat faster but less precise and/or robust thanR’s standardgamma. It is
here for experimental purpose mainly, andmay be defunct very soon.

For ν < 0, formulae 9.1.2 and 9.6.2 from the reference below are applied (which is probably
suboptimal), unless forbesselK which is symmetric innu .

Value

Numeric vector of the same length ofx with the (scaled, ifexpon.scale=TRUE) values of the
corresponding Bessel function.

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl

36 Bessel

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption toR: Martin Maechler〈maechler@stat.math.ethz.ch.〉

References

Abramowitz, M. and Stegun, I. A. (1972)Handbook of Mathematical Functions.Dover, New York;
Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, such asgamma, Γ(x), andbeta ,B(x).

Examples

require(graphics)

nus <- c(0:5, 10, 20)

x <- seq(0, 4, len = 501)
plot(x, x, ylim = c(0, 6), ylab = "", type = "n",

main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu=nu), col = nu+2)
legend(0, 6, legend = paste("nu=", nus), col = nus+2, lwd = 1)

x <- seq(0, 40, len=801); yl <- c(-.8, .8)
plot(x, x, ylim = yl, ylab = "", type = "n",

main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x, besselJ(x, nu=nu), col = nu+2)
legend(32,-.18, legend = paste("nu=", nus), col = nus+2, lwd = 1)

Negative nu's :
xx <- 2:7
nu <- seq(-10, 9, len = 2001)
op <- par(lab = c(16, 5, 7))
matplot(nu, t(outer(xx, nu, besselI)), type = "l", ylim = c(-50, 200),

main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,
", as ", f(nu))),

xlab = expression(nu))
abline(v=0, col = "light gray", lty = 3)
legend(5, 200, legend = paste("x=", xx), col=seq(xx), lty=seq(xx))
par(op)

x0 <- 2^(-20:10)
plot(x0, x0^-8, log="xy", ylab="",type="n",

main = "Bessel Functions J_nu(x) near 0\n log - log scale")
for(nu in sort(c(nus, nus+.5)))

lines(x0, besselJ(x0, nu=nu), col = nu+2)
legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),

col = nus + 2, lwd = 1)

plot(x0, x0^-8, log="xy", ylab="", type="n",
main = "Bessel Functions K_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus, nus+.5)))
lines(x0, besselK(x0, nu=nu), col = nu+2)

legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),

bindenv 37

col = nus + 2, lwd = 1)

x <- x[x > 0]
plot(x, x, ylim=c(1e-18, 1e11), log = "y", ylab = "", type = "n",

main = "Bessel Functions K_nu(x)")
for(nu in nus) lines(x, besselK(x, nu=nu), col = nu+2)
legend(0, 1e-5, legend=paste("nu=", nus), col = nus+2, lwd = 1)

yl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",

main = "Bessel Functions Y_nu(x)")
for(nu in nus){

xx <- x[x > .6*nu]
lines(xx, besselY(xx, nu=nu), col = nu+2)

}
legend(25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

negative nu in bessel_Y -- was bogous for a long time
curve(besselY(x, -0.1), 0, 10, ylim = c(-3,1), ylab = '')
for(nu in c(seq(-0.2, -2, by = -0.1)))

curve(besselY(x, nu), add = TRUE)
title(expression(besselY(x, nu) * " " *

{nu == list(-0.1, -0.2, ..., -2)}))

bindenv Binding and Environment Adjustments

Description

These functions represent an experimental interface for adjustments to environments and bindings
within environments. They allow for locking environments as well as individual bindings, and for
linking a variable to a function.

Usage

lockEnvironment(env, bindings = FALSE)
environmentIsLocked(env)
lockBinding(sym, env)
unlockBinding(sym, env)
bindingIsLocked(sym, env)
makeActiveBinding(sym, fun, env)
bindingIsActive(sym, env)

Arguments

env an environment.

bindings logical specifying whether bindings should be locked.

sym a name object or character string

fun a function taking zero or one arguments

38 bindenv

Details

The functionlockEnvironment locks its environment argument, which must be a normal en-
vironment (not base). (Locking the base environment and name space may be supported later.)
Locking the environment prevents adding or removing variable bindings from the environment.
Changing the value of a variable is still possible unless the binding has been locked. The name
space environments of packages with name spaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBinding installsfun so that getting the value ofsym callsfun with no arguments,
and assigning tosym calls fun with one argument, the value to be assigned. This allows the
implementation of things like C variables linked toR variables and variables linked to databases. It
may also be useful for making thread-safe versions of some system globals.

Author(s)

Luke Tierney

Examples

locking environments
e <- new.env()
assign("x", 1, envir = e)
get("x", envir = e)
lockEnvironment(e)
get("x", envir = e)
assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings
e <- new.env()
assign("x", 1, envir = e)
get("x", envir = e)
lockBinding("x", e)
try(assign("x", 2, envir = e)) # error
unlockBinding("x", e)
assign("x", 2, envir = e)
get("x", envir = e)

active bindings
f <- local({

x <- 1
function(v) {

if (missing(v))
cat("get\n")

else {
cat("set\n")
x <<- v

}
x

}
})
makeActiveBinding("fred", f, .GlobalEnv)
bindingIsActive("fred", .GlobalEnv)
fred

body 39

fred <- 2
fred

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun, envir = environment(fun)) <- value

Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value an expression or a list ofR expressions.

Details

For the first form,fun can be a character string naming the function to be manipulated, which is
searched for from the parent environment. If it is not specified, the function callingbody is used.

Value

body returns the body of the function specified.

The replacement form sets the body of a function to the expression/list on the right hand side, and
(potentially) resets the environment of the function.

See Also

alist , args , function .

Examples

body(body)
f <- function(x) x^5
body(f) <- expression(5^x)
or equivalently body(f) <- list(quote(5^x))
f(3) # = 125
body(f)

40 browser

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro.bquote quotes its argument except that terms wrapped
in .() are evaluated in the specifiedwhere environment.

Usage

bquote(expr, where = parent.frame())

Arguments

expr A language object.

where An environment.

Value

A language object.

See Also

quote , substitute

Examples

require(graphics)

a <- 2

bquote(a == a)
quote(a == a)

bquote(a == .(a))
substitute(a == A, list(A = a))

plot(1:10, a*(1:10), main = bquote(a == .(a)))

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser()

builtins 41

Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access to theR interpreter.

At the browser prompt the user can enter commands orR expressions. The commands are

c (or just return) exit the browser and continue execution at the next statement.

cont synonym forc .

n enter the step-through debugger. This changes the meaning ofc : see the documentation for
debug .

where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for return).

Anything else entered at the browser prompt is interpreted as anR expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and
ls() lists the objects in the calling frame. (If you want to look at an object with a name such asn,
print it explicitly.)

The number of lines printed for the deparsed call can be limited by setting
options (deparse.max.lines) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.

See Also

debug , andtraceback for the stack on error.

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins(internal = FALSE)

Arguments

internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.

42 by

Details

builtins() returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing to usels(baseenv(), all=TRUE) .

builtins(TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed as.Internal(foo(args ...)) for foo in the list.

Value

A character vector.

by Apply a Function to a Data Frame split by Factors

Description

Functionby is an object-oriented wrapper fortapply applied to data frames.

Usage

by(data, INDICES, FUN, ...)

Arguments

data anR object, normally a data frame, possibly a matrix.

INDICES a factor or a list of factors, each of lengthnrow(data) .

FUN a function to be applied to data frame subsets ofdata .

... further arguments toFUN.

Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
functionFUNis applied to each subset in turn.

Objectdata will be coerced to a data frame by default.

Value

A list of class"by" , giving the results for each subset.

See Also

tapply

c 43

Examples

require(stats)
attach(warpbreaks)
by(warpbreaks[, 1:2], tension, summary)
by(warpbreaks[, 1], list(wool = wool, tension = tension), summary)
by(warpbreaks, tension, function(x) lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- by(warpbreaks, tension, function(x) lm(breaks ~ wool, data = x))
sapply(tmp, coef)

detach("warpbreaks")

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage

c(..., recursive=FALSE)

Arguments

... objects to be concatenated.

recursive logical. If recursive = TRUE , the function recursively descends through
lists (and pairlists) combining all their elements into a vector.

Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression. Pairlists are treated as lists,
but non-vector components (such names and calls) are treated as one-element lists which cannot be
unlisted even ifrecursive = TRUE .

c is sometimes used for its side effect of removing attributes except names, for example to turn an
array into a vector.as.vector is a more intuitive way to do this, but also drops names.

Value

NULLor an expression or a vector of an appropriate mode.

S4 methods

This function is S4 generic, but with argument list(x, ..., recursive = FALSE) .

44 call

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist andas.vector to produce attribute-free vectors.

Examples

c(1,7:9)
c(1:5, 10.5, "next")

uses with a single argument to drop attributes
x <- 1:4
names(x) <- letters[1:4]
x
c(x) # has names
as.vector(x) # no names
dim(x) <- c(2,2)
x
c(x)
as.vector(x)

append to a list:
ll <- list(A = 1, c="C")
do *not* use
c(ll, d = 1:3) # which is == c(ll, as.list(c(d=1:3))
but rather
c(ll, d = list(1:3))# c() combining two lists

c(list(A=c(B=1)), recursive=TRUE)

c(options(), recursive=TRUE)
c(list(A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of mode"call" .

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments

name a non-empty character string naming the function to be called.

... arguments to be part of the call.

x an arbitraryR object.

call 45

Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of
the named function applied to the given arguments (name must be a quoted string which gives the
name of a function to be called). Note that although the call is unevaluated, the arguments... are
evaluated.

call is a primitive, so the first argument (named or not) is taken asname and the remaining
arguments as arguments for the constructed call:call(x="c", 1,3, name="foo") is a call
to c and not tofoo .

is.call is used to determine whetherx is a call (i.e., of mode"call").

Objects of mode"list" can be coerced to mode"call" . The first element of the list becomes
the function part of the call, so should be a function or the name of one (as a symbol; a quoted string
will not do).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument list;Recall for recursive calling of func-
tions; furtheris.language , expression , function .

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
cl <- call("round", 10.5)
is.call(cl)# TRUE
cl
such a call can also be evaluated.
eval(cl)# [1] 10

A <- 10.5
call("round", A) # round(10.5)
call("round", quote(A)) # round(A)
f <- "round"
call(f, quote(A)) # round(A)
if we want to supply a function we need to use as.call or similar
f <- round
Not run: call(f, quote(A)) # error: first arg must be character
(g <- as.call(list(f, quote(A))))
eval(g)
alternatively but less transparently
g <- list(f, quote(A))
mode(g) <- "call"
g
eval(g)
see also the examples in the help for do.call

46 capabilities

callCC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

Usage

callCC(fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCC provides a non-local exit mechanism that can be useful for early termination of a com-
putation.callCC calls fun with one argument, anexit function. The exit function takes a single
argument, the intended return value. If the body offun calls the exit function then the call to
callCC immediately returns, with the value supplied to the exit function as the value returned by
callCC .

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC(function(k) 1)
callCC(function(k) k(1))
callCC(function(k) {k(1); 2})
callCC(function(k) repeat k(1))

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build ofR.

Usage

capabilities(what = NULL)

Arguments

what character vector orNULL, specifying required components.NULL implies that
all are required.

cat 47

Value

A named logical vector. Current components are

jpeg Is thejpeg function operational?

png Is thepng function operational?

tcltk Is thetcltk package operational?

X11 (Unix) Are theX11 graphics device and the X11-based data editor available?
This loads the X11 module if not already loaded, and checks that the default
display can be contacted unless aX11 device has already been used.

http/ftp Are url and the internal method fordownload.file available?

sockets Are make.socket and related functions available?

libxml Is there support for integratinglibxml with theR event loop?

fifo are FIFO connections supported?

cledit Is command-line editing available in the currentR session? This is false in non-
interactive sessions. It will be true for the command-line interface ifreadline
support has been compiled in and ‘--no-readline ’ wasnot invoked.

iconv is internationalization conversion viaiconv supported?

NLS is there Natural Language Support (for message translations)?

profmem is there support for memory profiling?

See Also

.Platform

Examples

capabilities()

if(!capabilities("http/ftp"))
warning("internal download.file() is not available")

See also the examples for 'connections'.

cat Concatenate and Print

Description

Outputs the objects, concatenating the representations.cat performs much less conversion than
print .

Usage

cat(... , file = "", sep = " ", fill = FALSE, labels = NULL,
append = FALSE)

48 cat

Arguments

... R objects (see ‘Details’ for the types of objects allowed).

file A connection, or a character string naming the file to print to. If"" (the default),
cat prints to the standard output connection, the console unless redirected by
sink . If it is "|cmd" , the output is piped to the command given by ‘cmd’, by
opening a pipe connection.

sep a character vector of strings to append after each element.

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. IfFALSE (default), only newlines created explicitly by ‘"\n" ’
are printed. Otherwise, the output is broken into lines with print width equal to
the optionwidth if fill is TRUE, or the value offill if this is numeric.
Non-positivefill values are ignored, with a warning.

labels character vector of labels for the lines printed. Ignored iffill is FALSE.

append logical. Only used if the argumentfile is the name of file (and not a connec-
tion or "|cmd"). If TRUEoutput will be appended tofile ; otherwise, it will
overwrite the contents offile .

Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the givensep= string(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested by ‘"\n" ’ or if generated by filling (if argument
fill is TRUEor numeric.)

Currently only atomic vectors (and so not lists) andnames are handled. Character strings are output
‘as is’ (unlike print.default which escapes non-printable characters and backslash — use
encodeString if you want to output encoded strings usingcat). Other types ofR object should
be converted (e.g. byas.character or format) before being passed tocat .

cat converts numeric/complex elements in the same way asprint (and not in the same way as
as.character which is used by the S equivalent), sooptions "digits" and"scipen"
are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

Value

None (invisibleNULL).

Note

Despite its name and earlier documentation,sep is a vector of terminators rather than separators,
being output after every vector element (including the last). Entries are recycled as needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

print , format , andpaste which concatenates into a string.

cbind 49

Examples

iter <- stats::rpois(1, lambda=10)
print an informative message
cat("iteration = ", iter <- iter + 1, "\n")

'fill' and label lines:
cat(paste(letters, 100* 1:26), fill = TRUE,

labels = paste("{",1:10,"}:",sep=""))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine bycolumns orrows,
respectively. These are generic functions with methods for otherR classes.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

Arguments

... vectors or matrices. These can be given as named arguments. OtherR ob-
jects will be coerced as appropriate: see sections ‘Details’ and ‘Value’. (For
the "data.frame" method ofcbind these can be further arguments to
data.frame such asstringsAsFactors .)

deparse.level
integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):
deparse.level = 0 constructs no labels; the default,deparse.level
= 1 or 2 constructs labels from the argument names, see the ‘Value’ section
below.

Details

The functionscbind andrbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
Dispatch for how the method to be used is selected.

In the default method, all the vectors/matrices must be atomic (seevector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (with awarning if they are recycled only
fractionally).

50 cbind

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (includingNULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored inR.)

Value

For the default method, a matrix combining the... arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs areNULL, the value isNULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < real < complex < character < list .

For cbind (rbind) the column (row) names are taken from thecolnames (rownames) of
the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied anddeparse.level > 0 , by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, seeis.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper fordata.frame (..., check.names =
FALSE) . This means that it will split matrix columns in data frame arguments, and convert charac-
ter columns to factors unlessstringsAsFactors = FALSE is passed.

Therbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the levelsets of the factors encountered) and the result is an ordered factor if and only if all the
components were ordered factors. (The last point differs from S-PLUS.) Categories (integer vectors
with levels) are promoted to factors.

Dispatch

The method dispatching isnot done viaUseMethod () , but by C-internal dispatching. Therefore,
there is no need for, e.g.,rbind.default .

The dispatch algorithm is described in the source file (‘.../src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.

2. We inspect each class in turn to see if there is an an applicable method.

3. If we find an applicable method we make sure that it is identical to any method determined for
prior arguments. If it is identical, we proceed, otherwise we immediately drop through to the
default code.

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

char.expand 51

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

c to combine vectors (and lists) as vectors,data.frame to combine vectors and matrices as a
data frame.

Examples

m <- cbind(1, 1:7) # the '1' (= shorter vector) is recycled
m
m <- cbind(m, 8:14)[, c(1, 3, 2)] # insert a column
m
cbind(1:7, diag(3))# vector is subset -> warning

cbind(0, rbind(1, 1:3))
cbind(I=0, X=rbind(a=1, b=1:3)) # use some names
xx <- data.frame(I=rep(0,2))
cbind(xx, X=rbind(a=1, b=1:3)) # named differently

cbind(0, matrix(1, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind(0, matrix(1, nrow=2, ncol=0)))#-> 2 x 1

deparse.level
dd <- 10
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=0)# middle 2 rownames
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=1)# 3 rownames (default)
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=2)# 4 rownames

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch anR expression to be evaluated in case expansion was not possible.

Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

52 character

See Also

charmatch andpmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type"character" .

Usage

character(length = 0)
as.character(x, ...)
is.character(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, seeInternalMethods. Further, foras.character the default method calls
as.vector , so dispatch is first on methods foras.character and then for methods for
as.vector .

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constantDBL_DIG, which will be 15 on machines supporting
IEC60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, useformat .

Value

character creates a character vector of the specified length. The elements of the vector are all
equal to"" .

as.character attempts to coerce its argument to character type; likeas.vector it strips
attributes including names. For lists it deparses the elements individually, except that it extracts the
first element of length-one character vectors.

is.character returnsTRUEor FALSEdepending on whether its argument is of character type
or not.

charmatch 53

Note

as.character truncates components of language objects to 500 characters (was about 70 before
1.3.1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

paste , substr andstrsplit for character concatenation and splitting,chartr for character
translation and casefolding (e.g., upper to lower case) andsub , grep etc for string matching and
substitutions. Note thathelp.search(keyword = "character") gives even more links.
deparse , which is normally preferable toas.character for language objects.

Examples

form <- y ~ a + b + c
as.character(form) ## length 3
deparse(form) ## like the input

a0 <- 11/999 # has a repeating decimal representation
(a1 <- as.character(a0))
format(a0, digits=16) # shows one more digit
a2 <- as.numeric(a1)
a2 - a0 # normally around -1e-17
as.character(a2) # normally different from a1
print(c(a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA_integer_)

Arguments

x the values to be matched: converted to a character vector byas.character .

table the values to be matched against: converted to a character vector.

nomatch the (integer) value to be returned at non-matching positions.

54 chartr

Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then0 is returned
and if no match is found thennomatch is returned.

NAvalues are treated as the string constant"NA" .

Value

An integer vector of the same length asx , giving the indices of the elements intable which
matched, ornomatch .

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch , match .

grep or regexpr for more general (regexp) matching of strings.

Examples

charmatch("", "") # returns 1
charmatch("m", c("mean", "median", "mode")) # returns 0
charmatch("med", c("mean", "median", "mode")) # returns 2

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr(old, new, x)
tolower(x)
toupper(x)
casefold(x, upper = FALSE)

Arguments

x a character vector, or an object that can be coerced to character by
as.character .

old a character string specifying the characters to be translated.

new a character string specifying the translations.

upper logical: translate to upper or lower case?.

chartr 55

Details

chartr translates each character inx that is specified inold to the corresponding character
specified innew. Ranges are supported in the specifications, but character classes and repeated
characters are not. Ifold contains more characters than new, an error is signaled; if it contains
fewer characters, the extra characters at the end ofnew are ignored.

tolower andtoupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper fortolower andtoupper provided for compatibility with S-PLUS.

Value

A character vector of the same length and with the same attributes asx (after possible coercion).

See Also

sub andgsub for other substitutions in strings.

Examples

x <- "MiXeD cAsE 123"
chartr("iXs", "why", x)
chartr("a-cX", "D-Fw", x)
tolower(x)
toupper(x)

"Mixed Case" Capitalizing - toupper(every first letter of a word) :

.simpleCap <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2),

sep="", collapse=" ")
}
.simpleCap("the quick red fox jumps over the lazy brown dog")
-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function(s, strict = FALSE) {

cap <- function(s) paste(toupper(substring(s,1,1)),
{s <- substring(s,2); if(strict) tolower(s) else s},

sep = "", collapse = " ")
sapply(strsplit(s, split = " "), cap, USE.NAMES = !is.null(names(s)))

}
capwords(c("using AIC for model selection"))
-> [1] "Using AIC For Model Selection"
capwords(c("using AIC", "for MODEL selection"), strict=TRUE)
-> [1] "Using Aic" "For Model Selection"
^^^ ^^^^^
'bad' 'good'

-- Very simple insecure crypto --
rot <- function(ch, k = 13) {

p0 <- function(...) paste(c(...), collapse="")
A <- c(letters, LETTERS, " '")
I <- seq_len(k); chartr(p0(A), p0(c(A[-I], A[I])), ch)

}

56 chol

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now ``decrypt'' :
rot(crypw, 54 - 13)# -> the original:
stopifnot(identical(pw, rot(crypw, 54 - 13)))

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage

chol(x, ...)

Default S3 method:
chol(x, pivot = FALSE, LINPACK = pivot, ...)

Arguments

x an object for which a method exists. The default method applies to real sym-
metric, positive-definite matrices.

... arguments to be based to or from methods.

pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used in the non-pivoting case (for compatibility
with R < 1.7.0)?

Details

chol is generic: the description here applies to the default method.

This is an interface to the LAPACK routine DPOTRF and the LINPACK routines DPOFA and
DCHDC.

Note that only the upper triangular part ofx is used, so thatR′R = x whenx is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. Ifx is positive semi-
definite (i.e., some zero eigenvalues) an error will also occur, as a numerical tolerance is used.

If pivot = TRUE , then the Choleski decomposition of a positive semi-definitex can be com-
puted. The rank ofx is returned asattr(Q, "rank") , subject to numerical errors. The pivot is
returned asattr(Q, "pivot") . It is no longer the case thatt(Q) %*% Q equalsx . However,
settingpivot <- attr(Q, "pivot") andoo <- order(pivot) , it is true thatt(Q[,
oo]) %*% Q[, oo] equalsx , or, alternatively,t(Q) %*% Q equalsx[pivot, pivot] .
See the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrixR such thatR′R = x
(see example).

If pivoting is used, then two additional attributes"pivot" and"rank" are also returned.

chol 57

Warning

The code does not check for symmetry.

If pivot = TRUE andx is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only usepivot = TRUE whenx is non-negative definite by
construction.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978)LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999)LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line athttp://www.netlib.org/lapack/lug/lapack_lug.html .

See Also

chol2inv for its inverse(without pivoting),backsolve for solving linear systems with upper
triangular left sides.

qr , svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <- chol(m))
t(cm) %*% cm #-- = 'm'
crossprod(cm) #-- = 'm'

now for something positive semi-definite
x <- matrix(c(1:5, (1:5)^2), 5, 2)
x <- cbind(x, x[, 1] + 3*x[, 2])
m <- crossprod(x)
qr(m)$rank # is 2, as it should be

chol() may fail, depending on numerical rounding:
chol() unlike qr() does not use a tolerance.
try(chol(m))

(Q <- chol(m, pivot = TRUE)) # NB wrong rank here - see Warning section.
we can use this by
pivot <- attr(Q, "pivot")
oo <- order(pivot)
t(Q[, oo]) %*% Q[, oo] # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3),2,2))
try(chol(m)) # fails
try(chol(m, LINPACK=TRUE)) # fails
(Q <- chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m

http://www.netlib.org/lapack/lug/lapack_lug.html

58 chol2inv

chol2inv Inverse from Choleski Decomposition

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition.

Usage

chol2inv(x, size = NCOL(x), LINPACK = FALSE)

Arguments

x a matrix. The firstsize columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.

size the number of columns ofx containing the Choleski decomposition.

LINPACK logical. Should LINPACK be used (for compatibility withR < 1.7.0)?

Details

This is an interface to the LAPACK routine DPOTRI and the LINPACK routine DPODI.

Value

The inverse of the matrix whose Choleski decomposition was given.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978)LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999)LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
athttp://www.netlib.org/lapack/lug/lapack_lug.html .

See Also

chol , solve .

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %*% chol2inv(cma)

http://www.netlib.org/lapack/lug/lapack_lug.html

class 59

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class(x)
class(x) <- value
unclass(x)
inherits(x, what, which = FALSE)

oldClass(x)
oldClass(x) <- value

Arguments

x aR object

what, value a character vector naming classes.value can also beNULL.

which logical affecting return value: see ‘Details’.

Details

Many R objects have aclass attribute, a character vector giving the names of the classes from
which the objectinherits. If the object does not have a class attribute, it has an implicit class,
"matrix" , "array" or the result ofmode(x) (except that integer vectors have implicit class
"integer"). (FunctionsoldClass andoldClass<- get and set the attribute, which can also
be done directly.)

When a generic functionfun is applied to an object with class attributec("first",
"second") , the system searches for a function calledfun.first and, if it finds it, applies
it to the object. If no such function is found, a function calledfun.second is tried. If no class
name produces a suitable function, the functionfun.default is used (if it exists). If there is no
class attribute, the implicit class is tried, then the default method.

The functionclass prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning a zero-length vector orNULLremoves
the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. Ifwhich is TRUEthen an integer vector of the same length aswhat is returned.
Each element indicates the position in theclass(x) matched by the element ofwhat ; zero
indicates no match. Ifwhich is FALSE thenTRUEis returned byinherits if any of the names
in what match with anyclass .

60 col

Formal classes

An additional mechanism offormal classes is available in packagesmethodswhich is attached by
default. For objects which have a formal class, its name is returned byclass as a character vector
of length one.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as (object, value) is the way to coerce an object to a particular class.

The analogue ofinherits for formal classes isis .

Note

FunctionsoldClass and oldClass<- behave in the same way as functions of those names
in S-PLUS 5/6,but in R UseMethod dispatches on the class as returned byclass (with some
interpolated classes: see the link) rather thanoldClass . However, group generics dispatch on the
oldClass for efficiency, andinternal generics only dispatch on objects for whichis.object is
true.

See Also

UseMethod , NextMethod , ‘group generic’, ‘ internal generic’

Examples

x <- 10
class(x) # "numeric"
oldClass(x) # NULL
inherits(x, "a") #FALSE
class(x) <- c("a", "b")
inherits(x,"a") #TRUE
inherits(x, "a", TRUE) # 1
inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object.

Usage

col(x, as.factor = FALSE)

Arguments

x a matrix-like object, that is one with a two-dimensionaldim .

as.factor a logical value indicating whether the value should be returned as a factor rather
than as numeric.

Value

An integer matrix with the same dimensions asx and whoseij -th element is equal toj .

Colon 61

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)
ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix
x <- matrix(0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <- 1

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
a:b

Arguments

from starting value of sequence.

to (maximal) end value of the sequence.

a, b factor s of same length.

Details

The binary operator: has two meanings: for factorsa:b is equivalent tointeraction (a, b)
(but the levels are ordered and labelled differently).

For numeric argumentsfrom:to is equivalent toseq(from, to) , and generates a sequence
from from to to in steps of1 or 1- . Value to will be included if it differs fromfrom by an
integer up to a numeric fuzz of about1e-7 .

Value

For numeric arguments, a numeric vector. This will be of typeinteger if from andto are both
integers and representable in the integer type, otherwise of typenumeric .

For factors, an unordered factor with levels labelled asla:lb and ordered lexicographically (that
is, lb varies fastest).

62 colSums

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have: for factors.)

See Also

seq .

As an alternative to using: for factors,interaction .

For : used in the formal representation of an interaction, seeformula .

Examples

1:4
pi:6 # real
6:pi # integer

f1 <- gl(2,3); f1
f2 <- gl(3,2); f2
f1:f2 # a factor, the "cross" f1 x f2

colSums Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays.

Usage

colSums (x, na.rm = FALSE, dims = 1)
rowSums (x, na.rm = FALSE, dims = 1)
colMeans(x, na.rm = FALSE, dims = 1)
rowMeans(x, na.rm = FALSE, dims = 1)

Arguments

x an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame.

na.rm logical. Should missing values (includingNaN) be omitted from the calcula-
tions?

dims Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over. Forrow* ,
the sum or mean is over dimensionsdims+1, ... ; for col* it is over di-
mensions1:dims .

Details

These functions are equivalent to use ofapply with FUN = meanor FUN = sumwith appropri-
ate margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties
of NaNandNA. If na.rm = FALSE and eitherNaNor NAappears in a sum, the result will be one
of NaNor NA, but which might be platform-dependent.

commandArgs 63

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The
dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values withna.rm =
TRUE), that component of the output is set to0 (*Sums) or NA (*Means), consistent withsum
andmean.

See Also

apply , rowsum

Examples

Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
rowSums(x); colSums(x)
dimnames(x)[[1]] <- letters[1:8]
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
x[] <- as.integer(x)
rowSums(x); colSums(x)
x[] <- x < 3
rowSums(x); colSums(x)
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
x[3,] <- NA; x[4, 2] <- NA
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array
dim(UCBAdmissions)
rowSums(UCBAdmissions); rowSums(UCBAdmissions, dims = 2)
colSums(UCBAdmissions); colSums(UCBAdmissions, dims = 2)

complex case
x <- cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)
x[3,] <- NA; x[4, 2] <- NA
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when thisR session was invoked.

Usage

commandArgs(trailingOnly = FALSE)

64 comment

Arguments

trailingOnly logical. Should only arguments after--args be returned?

Details

These arguments are captured before the standardR command line processing takes place. This
means that they are the unmodified values. This is especially useful with the--args command-
line flag toR, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by whichR was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embeddedR it can be anything the programmer supplied.

If trailingOnly = TRUE , a character vector of those arguments (if any) supplied after--
args .

See Also

Startup BATCH

Examples

commandArgs()
Spawn a copy of this application as it was invoked,
subject to shell quoting issues
system(paste(commandArgs(), collapse=" "))

comment Query or Set a ‘Comment’ Attribute

Description

These functions set and query acommentattribute for anyR objects. This is typically useful for
data.frame s or model fits.

Contrary to otherattributes , thecomment is not printed (byprint or print.default).

AssigningNULLor a zero-length character vector removes the comment.

Usage

comment(x)
comment(x) <- value

Arguments

x anyR object

value acharacter vector, orNULL.

Comparison 65

See Also

attributes andattr for other attributes.

Examples

x <- matrix(1:12, 3,4)
comment(x) <- c("This is my very important data from experiment #0234",

"Jun 5, 1998")
x
comment(x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

x < y
x > y
x <= y
x >= y
x == y
x != y

Arguments

x, y atomic vectors, symbols, calls, or other objects for which methods have been
written.

Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via theOps) group generic function. (SeeOps for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: seelocales . The collating sequence of locales such as ‘en_US’ is
normally different from ‘C’ (which should use ASCII) and can be surprising.

At least one ofx andy must be an atomic vector, but if the other is a listR attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

When comparisons are made between character strings, parts of the strings after embeddednul
characters are ignored. (This is necessary as the position ofnul in the collation sequence is unde-
fined, and we want one of<, == and> to be true for any comparison.)

Missing values (NA) andNaNvalues are regarded as non-comparable even to themselves, so com-
parisons involving them will always result inNA. Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

66 complex

Value

A vector of logicals indicating the result of the element by element comparison. The elements of
shorter vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4Compare group generic, and so methods can be written
for them individually as well as for the group generic (or theOps group generic), with arguments
c(e1, e2) .

Note

Do not use== and != for tests, such as inif expressions, where you must get a singleTRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, remember== and != do not allow for the finite representa-
tion of fractions, nor for rounding error. Usingall.equal with identical is almost always
preferable. See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

factor for the behaviour with factor arguments.

Syntax for operator precedence.

Examples

x <- stats::rnorm(20)
x < 1
x[x > 0]

x1 <- 0.5 - 0.3
x2 <- 0.3 - 0.1
x1 == x2 # FALSE on most machines
identical(all.equal(x1, x2), TRUE) # TRUE everywhere

complex Complex Vectors

Description

Basic functions which support complex arithmetic in R.

complex 67

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex(x)

Re(z)
Im(z)
Mod(z)
Arg(z)
Conj(z)

Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as needed.

real numeric vector.

imaginary numeric vector.

modulus numeric vector.

argument numeric vector.

x an object, probably of modecomplex .

z an object of modecomplex , or one of a class for which a methods has been
defined.

... further arguments passed to or from other methods.

Details

Complex vectors can be created withcomplex . The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: likeas.vector it strips
attributes including names. All forms ofNAandNaNare coerced to a complexNA, for which both
the real and imaginary parts areNA.

Note thatis.complex andis.numeric are never bothTRUE.

The functionsRe, Im , Mod, Arg andConj have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for complex values. Modulus and
argument are also called thepolar coordinates. If z = x+ iy with realx andy, for r = Mod(z) =√
x2 + y2, andφ = Arg (z), x = r ∗ cos(φ) andy = r ∗ sin(φ). They are all generic functions:

methods can be defined for them individually or via theComplex group generic.

In addition, the elementary trigonometric, logarithmic and exponential functions are available for
complex values.

S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im , Mod, Arg andConj constitute the S4 group genericComplex and so S4 methods can be
set for them individually or via the group generic.

68 conditions

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(graphics)

0i ^ (-3:3)

matrix(1i^ (-6:5), nrow=4) #- all columns are the same
0 ^ 1i # a complex NaN

create a complex normal vector
z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):
z2 <- 1:2 + 1i*(8:9)

The Arg(.) is an angle:
zz <- (rep(1:4,len=9) + 1i*(9:1))/10
zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by "," ", pi == 180^o)))
abline(h=0,v=0, col="blue", lty=3)
points(zz.shift, col="orange")

conditions Condition Handling and Recovery

Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.

Usage

tryCatch(expr, ..., finally)
withCallingHandlers(expr, ...)

signalCondition(cond)

simpleCondition(message, call = NULL)
simpleError (message, call = NULL)
simpleWarning (message, call = NULL)
simpleMessage (message, call = NULL)

S3 method for class 'condition':
as.character(x, ...)
S3 method for class 'error':
as.character(x, ...)
S3 method for class 'condition':
print(x, ...)

conditions 69

S3 method for class 'restart':
print(x, ...)

conditionCall(c)
S3 method for class 'condition':
conditionCall(c)
conditionMessage(c)
S3 method for class 'condition':
conditionMessage(c)

withRestarts(expr, ...)

computeRestarts(cond = NULL)
findRestart(name, cond = NULL)
invokeRestart(r, ...)
invokeRestartInteractively(r)

isRestart(x)
restartDescription(r)
restartFormals(r)

.signalSimpleWarning(msg, call)

.handleSimpleError(h, msg, call)

Arguments

c a condition object.

call call expression.

cond a condition object.

expr expression to be evaluated.

finally expression to be evaluated before returning or exiting.

h function.

message character string.

msg character string.

name character string naming a restart.

r restart object.

x object.

... additional arguments; see details below.

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract classcondition . Errors and warnings are
objects inheriting from the abstract subclasseserror andwarning . The classsimpleError
is the class used bystop and all internal error signals. Similarly,simpleWarning is used
by warning , and simpleMessage is used bymessage . The constructors by the same

70 conditions

names take a string describing the condition as argument and an optional call. The functions
conditionMessage andconditionCall are generic functions that return the message and
call of a condition.

Conditions are signaled bysignalCondition . In addition, thestop andwarning functions
have been modified to also accept condition arguments.

The functiontryCatch evaluates its expression argument in a context where the handlers pro-
vided in the... argument are available. Thefinally expression is then evaluated in the context
in which tryCatch was called; that is, the handlers supplied to the currenttryCatch call are
not active when thefinally expression is evaluated.

Handlers provided in the... argument totryCatch are established for the duration of the
evaluation ofexpr . If no condition is signaled when evaluatingexpr thentryCatch returns the
value of the expression.

If a condition is signaled while evaluatingexpr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a singletryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to thetryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established bywithCallingHandlers . If a condition is signaled and the
applicable handler is a calling handler, then the handler is called bysignalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been tried,signalCondition returnsNULL.

User interrupts signal a condition of classinterrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts . One pre-established restart is anabort restart that represents a jump to top
level.

findRestart andcomputeRestarts find the available restarts.findRestart returns the
most recently established restart of the specified name.computeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments to
invokeRestart . The restart argument toinvokeRestart can be a character string, in which
casefindRestart is used to find the restart.

New restarts forwithRestarts can be specified in several ways. The simplest is in
name=function form where the function is the handler to call when the restart is invoked. An-
other simple variant is asname=string where the string is stored in thedescription field of
the restart object returned byfindRestart ; in this case the handler ignores its arguments and
returnsNULL. The most flexible form of a restart specification is as a list that can include several
fields, includinghandler , description , andtest . Thetest field should contain a function
of one argument, a condition, that returnsTRUEif the restart applies to the condition andFALSE if
it does not; the default function returnsTRUEfor all conditions.

One additional field that can be specified for a restart isinteractive . This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function

conflicts 71

invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The defaultinteractive method queries the user for values for the formal
arguments of the handler function.

.signalSimpleWarning and.handleSimpleError are used internally and should not be
called directly.

References

The tryCatch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop andwarning signal conditions, andtry is essentially a simplified version oftryCatch .

Examples

tryCatch(1, finally=print("Hello"))
e <- simpleError("test error")
Not run:

stop(e)
tryCatch(stop(e), finally=print("Hello"))
tryCatch(stop("fred"), finally=print("Hello"))

End(Not run)
tryCatch(stop(e), error = function(e) e, finally=print("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally=print("Hello"))
withCallingHandlers({ warning("A"); 1+2 }, warning = function(w) {})
Not run:

{ withRestarts(stop("A"), abort = function() {}); 1 }
End(Not run)
withRestarts(invokeRestart("foo", 1, 2), foo = function(x, y) {x + y})

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same name in two or more places on thesearch
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts(where = search(), detail = FALSE)

Arguments

where A subset of the search path, by default the whole search path.

detail If TRUE, give the masked or masking functions for all members of the search
path.

72 connections

Value

If detail=FALSE , a character vector of masked objects. Ifdetail=TRUE , a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

lm <- 1:3
conflicts(, TRUE)
gives something like
$.GlobalEnv
[1] "lm"
#
$package:base
[1] "lm"

Remove things from your "workspace" that mask others:
remove(list = conflicts(detail=TRUE)$.GlobalEnv)

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

Usage

file(description = "", open = "", blocking = TRUE,
encoding = getOption("encoding"))

url(description, open = "", blocking = TRUE,
encoding = getOption("encoding"))

gzfile(description, open = "", encoding = getOption("encoding"),
compression = 6)

bzfile(description, open = "", encoding = getOption("encoding"))

unz(description, filename, open = "",
encoding = getOption("encoding"))

pipe(description, open = "", encoding = getOption("encoding"))

fifo(description, open = "", blocking = FALSE,
encoding = getOption("encoding"))

socketConnection(host = "localhost", port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption("encoding"))

open(con, ...)

connections 73

S3 method for class 'connection':
open(con, open = "r", blocking = TRUE, ...)

close(con, ...)
S3 method for class 'connection':
close(con, type = "rw", ...)

flush(con)

isOpen(con, rw = "")
isIncomplete(con)

Arguments

description character string. A description of the connection: see ‘Details’.

open character. A description of how to open the connection (if at all). See ‘Details’
for possible values.

blocking logical. See the ‘Blocking’ section below.

encoding The name of the encoding to be used. See the ‘Encoding’ section below.

compression integer in 0–9. The amount of compression to be applied when writing, from
none to maximal. The default is a good space/time compromise.

filename a filename within a zip file.

host character. Host name for port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

con a connection.

type character. Currently ignored.

rw character. Empty or"read" or "write" , partial matches allowed.

... arguments passed to or from other methods.

Details

The first eight functions create connections. By default the connection is not opened (except for
socketConnection), but may be opened by setting a non-empty value of argumentopen .

For file the description is either a path to the file to be opened or a complete URL, or"" (the
default) or"stdin" or "clipboard" (see below).

For url the description is a complete URL, including scheme (such ashttp:// , ftp:// or
file://).

For gzfile the description is the path to a file that is compressed bygzip : it can also opened
uncompressed files.

For bzfile the description is the path to a file that is compressed bybzip2 .

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with ‘.zip’ extension if required.

For pipe the description is the command line to be piped to or from (see the Examples).

For fifo the description is the path of the fifo.

74 connections

file allows description="stdin" to refer to the C-levelstdin of the process (which
need not be connected to anything in a console version or embedded version ofR), provided the
C99 functionfdopen is supported on the platform.

gzfile andbzfile open the actual file in binary mode and so no translations are done if the
original file was a text file. (Seegzcon for a way to add compression to non-file connections such
as URLs.)

All platforms supportfile , gzfile , bzfile , unz andurl("file://") connections. The
other types may be partially implemented or not implemented at all. (They do work on most Unix
platforms, and all butfifo on Windows.)

Proxies can be specified forurl connections: seedownload.file .

open , close andseek are generic functions: the following applies to the methods relevant to
connections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open callopen explicitly.

Possible values for the modeopen to open a connection are

"r" or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+" , "r+b" Open for reading and writing.

"w+" , "w+b" Open for reading and writing, truncating file initially.

"a+" , "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for reading and writing/appending. For many
connections there is little or no difference between text and binary modes, but there is for file-like
connections on Windows, andpushBack is text-oriented and is only allowed on connections open
for reading in text mode.

close closes and destroys a connection. Note that this will happen automatically in due course if
there is noR object referring to the connection.

flush flushes the output stream of a connection open for write/append (where implemented).

If for a file or fifo connection the description is"" , the file/fifo is immediately opened (in
"w+" mode unlessopen="w+b" is specified) and unlinked from the file system. This provides a
temporary file/fifo to write to and then read from.

A note on file:// URLs. The most general form (from RFC1738) is
file://host/path/to/file , but R only accepts the form with an emptyhost field
referring to the local machine. This is thenfile:///path/to/file , wherepath/to/file
is relative to/ . So although the third slash is strictly part of the specification not part of the path,
this can be regarded as a way to specify the file ‘/path/to/file’. It is not possible to specify a relative
path using a file URL. Also, no attempt is made to decode an encoded URL: callURLdecode if
necessary.

Note thathttps:// connections are not supported.

connections 75

Value

file , pipe , fifo , url , gzfile , bzfile , unz andsocketConnection return a connec-
tion object which inherits from class"connection" and has a first more specific class.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether last read attempt was blocked, or for an output
text connection whether there is unflushed output.

Encoding

The encoding of the input/output stream of a connection intextmode can be specified by name, in
the same way as it would be given toiconv : see that help page for how to find out what names
are recognized on your platform. Additionally,"" and"native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done. Not
all builds ofR support this, and if yours does not, specifying a non-default encoding will give an
error when the connection is opened.

Re-encoding only works for connections in text mode.

The encoding"UCS-2LE" is treated specially, as it is the appropriate value for Windows ‘Unicode’
text files. If the first two bytes are the Byte Order Mark0xFFFE then these are removed as most
implementations oficonv do not accept BOMs. Note that some implementations will handle
BOMs using encoding"UCS-2" but many will not.

Exactly what happens when the requested translation cannot be done is in general undocumented.
Requesting a conversion that is not supported is an error, reported when the connection is opened.
On output the result is likely to be that up to the error, with a warning. On input, it will most likely
be all or some of the input up to the error.

Blocking

The default condition for all but fifo and socket connections is to be in blocking mode. In that
mode, functions do not return to theR evaluator until they are complete. In non-blocking mode,
operations return as soon as possible, so on input they will return with whatever input is available
(possibly none) and for output they will return whether or not the write succeeded.

The functionreadLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts ofR. These do not always succeed, and the whole
process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on URLs and sockets are subject to the timeout set by
options("timeout") . Note that this is a timeout for no response at all, not for the whole
operation. The timeout is set at the time the connection is opened (more precisely, when the last
connection of that type –http: , ftp: or socket – was opened).

Fifos

Fifos default to non-blocking. That follows Svr4 and is probably most natural, but it does have
some implications. In particular, opening a non-blocking fifo connection for writing (only) will fail
unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to theR process, and provides an similar facility tofile() .

76 connections

Clipboard

file can also be used withdescription = "clipboard" in mode "r" only. This
reads the X11 primary selection (seehttp://standards.freedesktop.org/
clipboards-spec/clipboards-latest.txt), which can also be specified as
"X11_primary" and the secondary selection as"X11_secondary" . On most sys-
tems the clipboard selection (that used by ‘Copy’ from an ‘Edit’ menu) can be specified as
"X11_clipboard" .

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing towrite to one of the selections may be able to do so viaxclip (http:
//people.debian.org/~kims/xclip/), for example bypipe("xclip -i", "w")
for the primary selection.

MacOS X users can usepipe("pbpaste") andpipe("pbcopy", "w") to read from and
write to that system’s clipboard.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). HoweverR goes well
beyond the Svr4 model, for example in output text connections and URL,gzfile , bzfile and
socket connections.

The default mode inR is "r" except for socket connections. This differs from Svr4, where it is the
equivalent of"r+" , known as"*" .

On platforms wherevsnprintf does not return the needed length of output there is a 100,000
character output limit on the length of line forfifo , gzfile andbzfile connections: longer
lines will be truncated with a warning.

References

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language.Springer.

See Also

textConnection , seek , readLines , readBin , writeLines , writeBin ,
showConnections , pushBack .

capabilities to see ifurl , fifo andsocketConnection are supported by this build of
R.

gzcon to wrap gzip (de)compression around a connection.

Examples

zz <- file("ex.data", "w") # open an output file connection
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat("One more line\n", file = zz)
close(zz)
readLines("ex.data")
unlink("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzfile("ex.gz"))
close(zz)

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://people.debian.org/~kims/xclip/
http://people.debian.org/~kims/xclip/

connections 77

unlink("ex.gz")

zz <- bzfile("ex.bz2", "w") # bzip2-ed file
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
print(readLines(zz <- bzfile("ex.bz2")))
close(zz)
unlink("ex.bz2")

An example of a file open for reading and writing
Tfile <- file("test1", "w+")
c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat("abc\ndef\n", file=Tfile)
readLines(Tfile)
seek(Tfile, 0, rw="r") # reset to beginning
readLines(Tfile)
cat("ghi\n", file=Tfile)
readLines(Tfile)
close(Tfile)
unlink("test1")

We can do the same thing with an anonymous file.
Tfile <- file()
cat("abc\ndef\n", file=Tfile)
readLines(Tfile)
close(Tfile)

if(capabilities("fifo")) {
zz <- fifo("foo-fifo", "w+")
writeLines("abc", zz)
print(readLines(zz))
close(zz)
unlink("foo-fifo")

}

Not run: ## Unix examples of use of pipes

read listing of current directory
readLines(pipe("ls -1"))

remove trailing commas. Suppose
% cat data2
450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479
Then read this by
scan(pipe("sed -e s/,$// data2"), sep=",")

convert decimal point to comma in output
both R strings and (probably) the shell need \ doubled
zz <- pipe(paste("sed s/\\\\./,/ >", "outfile"), "w")
cat(format(round(stats::rnorm(100), 4)), sep = "\n", file = zz)
close(zz)
file.show("outfile", delete.file=TRUE)## End(Not run)

Not run: ## example for Unix machine running a finger daemon

78 Constants

con <- socketConnection(port = 79, blocking = TRUE)
writeLines(paste(system("whoami", intern=TRUE), "\r", sep=""), con)
gsub(" *$", "", readLines(con))
close(con)## End(Not run)

Not run:
Unix examples of use of anonymous fifo
con <- fifo("") # file("") would also work
writeLines(letters, con)
readLines(con, n=3)
readLines(con, n=5)
close(con)
End(Not run)

Not run: ## two R processes communicating via non-blocking sockets
R process 1
con1 <- socketConnection(port = 6011, server=TRUE)
writeLines(LETTERS, con1)
close(con1)

R process 2
con2 <- socketConnection(Sys.info()["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines(con2)
while(isIncomplete(con2)) {Sys.sleep(1); readLines(con2)}
close(con2)
End(Not run)

Not run:
examples of use of encodings
cat(x, file = file("foo", "w", encoding="UTF-8"))
read a 'Windows Unicode' file including names
A <- read.table(file("students", encoding="UCS-2LE"))
End(Not run)

Constants Built-in Constants

Description

Constants built intoR.

Usage

LETTERS
letters
month.abb
month.name
pi

Details

R has a small number of built-in constants (there is also a rather larger library of data sets which
can be loaded with the functiondata).

The following constants are available:

contributors 79

• LETTERS: the 26 upper-case letters of the Roman alphabet;

• letters : the 26 lower-case letters of the Roman alphabet;

• month.abb : the three-letter abbreviations for the English month names;

• month.name : the English names for the months of the year;

• pi : the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base name space taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

data , DateTimeClasses .

Quotes for the parsing of character constants,NumericConstants for numeric constants.

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4*(4*atan(1/5) - atan(1/239))

months in English
month.name
months in your current locale
format(ISOdate(2000, 1:12, 1), "%B")
format(ISOdate(2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

TheR Who-is-who, describing who made significant contributions to the development ofR.

Usage

contributors()

80 Control

Control Control Flow

Description

These are the basic control-flow constructs of theR language. They function in much the same way
as control statements in any Algol-like language. They are allreservedwords.

Usage

if(cond) expr
if(cond) cons.expr else alt.expr

for(var in seq) expr
while(cond) expr
repeat expr
break
next

Arguments

cond A length-one logical vector that is notNA. Conditions of length greater than one
are accepted with a warning, but only the first element is used. Other types are
coerced to logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and anexpression) or to a
pairlist or NULL.

expr, cons.expr, alt.expr
An expressionin a formal sense. This is either a simple expression or a so called
compound expression, usually of the form{ expr1 ; expr2 } .

Details

break breaks out of afor , while or repeat loop; control is transferred to the first statement
outside the inner-most loop.next halts the processing of the current iteration and advances the
looping index. Bothbreak andnext apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ .. }) around your statements, e.g.,
after if(..) or for(....) . In particular, you should not have a newline between} andelse
to avoid a syntax error in entering aif ... else construct at the keyboard or viasource .
For that reason, one (somewhat extreme) attitude of defensive programming is to always use braces,
e.g., forif clauses.

The indexseq in a for loop is evaluated at the start of the loop; changing it subsequently does not
affect the loop. The variablevar has the same type asseq , and is read-only: assigning to it does
not alterseq . If seq is a factor (which is not strictly allowed) then its internal codes are used: the
effect is that ofas.integer notas.vector .

copyright 81

Value

if returns the value of the expression evaluated, orNULL if none was (which may happen if there
is noelse).

for , while andrepeat return the value of the last expression evaluated (orNULL if none was),
invisibly. for setsvar to the last used element ofseq , or toNULL if it was of length zero.

break andnext have valueNULL, although it would be strange to look for a return value.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basicR syntax and operators,Paren for parentheses and braces; further,ifelse ,
switch .

Examples

for(i in 1:5) print(1:i)
for(n in c(2,5,10,20,50)) {

x <- stats::rnorm(n)
cat(n,":", sum(x^2),"\n")

}

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: seelicense for details. The license describes
your right to useR. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (seecontributors) for the ability to use
their work.

Details

The file ‘$R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

82 crossprod

crossprod Matrix Crossproduct

Description

Given matricesx andy as arguments, return a matrix cross-product. This is formally equivalent to
(but faster than) the callt(x) %*% y (crossprod) or x %*% t(y) (tcrossprod).

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments

x, y matrices:y = NULL is taken to be the same matrix asx . Vectors are promoted
to single-column matrices.

Note

Whenx or y are not matrices, they are treated as column or row matrices, but theirnames are
usuallynot promoted todimnames . Hence, currently, the last example has empty dimnames.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*%and outer product%o%.

Examples

(z <- crossprod(1:4)) # = sum(1 + 2^2 + 3^2 + 4^2)
drop(z) # scalar
x <- 1:4; names(x) <- letters[1:4]; x
tcrossprod(as.matrix(x)) # is
identical(tcrossprod(as.matrix(x)),

crossprod(t(x)))
tcrossprod(x) # no dimnames

Cstack_info 83

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info()

Details

On most platforms, C stack information is recorded whenR is initialized and used for stack-
checking. If this information is unavailable, thesize will be returned asNA, and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux and
FreeBSD (including MacOS X), but a heuristic is used on other platforms. Because this might
be slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used
on embedded uses ofR on platforms where the stack base is not thought to be accurate.)

Value

An integer vector. This has named elements

size The size of the stack (in bytes), orNAif unknown.

current The estimated current usage (in bytes), possiblyNA.

direction 1 (stack grows down, the usual case) or-1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to
Cstack_info).

Examples

Cstack_info()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax(x)
cummin(x)

84 cut

Arguments

x a numeric or complex (notcummin or cummax) object, or an object that can
be coerced to one of these.

Details

These are generic functions: methods can be defined for them individually or via theMath group
generic.

Value

A vector of the same length and type asx (after coercion), except thatcumprod returns a numeric
vector for integer input (for consistency with*). Names are preserved.

An NAvalue inx causes the corresponding and following elements of the return value to beNA, as
does integer overflow incumsum(with a warning).

S4 methods

cumsumandcumprod are S4 generic functions: methods can be defined for them individually or
via theMath group generic.cummaxandcummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (cumsumonly.)

Examples

cumsum(1:10)
cumprod(1:10)
cummin(c(3:1, 2:0, 4:2))
cummax(c(3:1, 2:0, 4:2))

cut Convert Numeric to Factor

Description

cut divides the range ofx into intervals and codes the values inx according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

cut(x, ...)

Default S3 method:
cut(x, breaks, labels = NULL,

include.lowest = FALSE, right = TRUE, dig.lab = 3,
ordered_result = FALSE, ...)

cut 85

Arguments

x a numeric vector which is to be converted to a factor by cutting.

breaks either a numeric vector of two or more cut points or a single number (greater
than or equal to 2) giving the number of intervals into whichx is to be cut.

labels labels for the levels of the resulting category. By default, labels are constructed
using"(a,b]" interval notation. Iflabels = FALSE , simple integer codes
are returned instead of a factor.

include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, forright =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result
logical: should the result be an ordered factor?

... further arguments passed to or from other methods.

Details

Whenbreaks is specified as a single number, the range of the data is divided intobreaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (Ifx is a constant vector, equal-length intervals
are created that cover the single value.)

If a labels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as"(b1, b2]" , "(b2, b3]" etc. forright = TRUE
and as"[b1, b2)" , . . . if right = FALSE . In this case,dig.lab indicates the minimum
number of digits should be used in formatting the numbersb1 , b2 , A larger value (up to
12) will be used if needed to distinguish between any pair of endpoints: if this fails labels such as
"Range3" will be used.

Value

A factor is returned, unlesslabels = FALSE which results in the mere integer level codes.

Note

Instead oftable(cut(x, br)) , hist(x, br, plot = FALSE) is more efficient and
less memory hungry. Instead ofcut(*, labels = FALSE) , findInterval () is more
efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor;factor , tabulate , table ,
findInterval () .

quantile for ways of choosing breaks of roughly equal content (rather than length),cut2 in
packagehmisc for a canned way to form quantile groups.

86 cut.POSIXt

Examples

Z <- stats::rnorm(10000)
table(cut(Z, breaks = -6:6))
sum(table(cut(Z, breaks = -6:6, labels=FALSE)))
sum(graphics::hist(Z, breaks = -6:6, plot=FALSE)$counts)

cut(rep(1,5),4)#-- dummy
tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <- rep(0:8, tx0)
stopifnot(table(x) == tx0)

table(cut(x, b = 8))
table(cut(x, breaks = 3*(-2:5)))
table(cut(x, breaks = 3*(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :
table(cx <- cut(x, breaks = 2*(0:4)))
table(cxl <- cut(x, breaks = 2*(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:
y <- stats::rnorm(100)
table(cut(y, breaks = pi/3*(-3:3)))
table(cut(y, breaks = pi/3*(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))
extra digits don't "harm" here
table(cut(y, breaks = 1*(-3:3), right = FALSE))
#- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- c(1,2,3,4,5,2,3,4,5,6,7)
cut(aaa, 3)
cut(aaa, 3, dig.lab=4, ordered = TRUE)

cut.POSIXt Convert a Date or Date-Time Object to a Factor

Description

Method forcut applied to date-time objects.

Usage

S3 method for class 'POSIXt':
cut(x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)

S3 method for class 'Date':
cut(x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)

data.class 87

Arguments

x an object inheriting from class"POSIXt" or "Date" .

breaks a vector of cut pointsor number giving the number of intervals whichx is
to be cut intoor an interval specification, one of"sec" , "min" , "hour" ,
"day" , "DSTday" , "week" , "month" or "year" , optionally preceded by
an integer and a space, or followed by"s" . For "Date" objects only"day" ,
"week" , "month" and"year" are allowed.

labels labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are include for the default value
of right). If labels = FALSE , simple integer codes are returned instead
of a factor.

start.on.monday
logical. If breaks = "weeks" , should the week start on Mondays or Sun-
days?

right, ... arguments to be passed to or from other methods.

Details

Using bothright = TRUE and include.lowest = TRUE will include both ends of the
range of dates.

Value

A factor is returned, unlesslabels = FALSE which returns the integer level codes.

See Also

seq.POSIXt , seq.Date , cut

Examples

random dates in a 10-week period
cut(ISOdate(2001, 1, 1) + 70*86400*stats::runif(100), "weeks")
cut(as.Date("2001/1/1") + 70*stats::runif(100), "weeks")

data.class Object Classes

Description

Determine the class of an arbitraryR object.

Usage

data.class(x)

Arguments

x anR object.

88 data.frame

Value

character string giving theclassof x .

The class is the (first element) of theclass attribute if this is non-NULL, or inferred from the
object’sdim attribute if this is non-NULL, or mode(x) .

Simply speaking,data.class(x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: Whenx is integer , the result
of data.class(x) is "numeric" even whenx is classed.

See Also

class

Examples

x <- LETTERS
data.class(factor(x)) # has a class attribute
data.class(matrix(x, ncol = 13)) # has a dim attribute
data.class(list(x)) # the same as mode(x)
data.class(x) # the same as mode(x)

stopifnot(data.class(1:2) == "numeric")# compatibility "rule"

data.frame Data Frames

Description

This function creates data frames, tightly coupled collections of variables which share many of the
properties of matrices and of lists, used as the fundamental data structure by most ofR’s modeling
software.

Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

default.stringsAsFactors()

Arguments

... these arguments are of either the formvalue or tag = value . Component
names are created based on the tag (if present) or the deparsed argument itself.

row.names NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

check.rows if TRUEthen the rows are checked for consistency of length and names.

data.frame 89

check.names logical. If TRUEthen the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (bymake.names) so that they are.

stringsAsFactors
logical: should character vectors be converted to factors? The
‘factory-fresh’ default is TRUE, but this can be changed by setting
options (stringsAsFactors = FALSE .

Details

A data frame is a list of variables of the same length with unique row names, given class
"data.frame" . If there are zero variables, the row names determine the number of rows.

Duplicate column names are allowed, but you need to usecheck.names=FALSE for
data.frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame (optional=TRUE) . As that is a generic function, methods can be written to
change the behaviour of arguments according to their classes:R comes with many such methods.
Character variables passed todata.frame are converted to factor columns unless protected by
I . If a list or data frame or matrix is passed todata.frame it is as if each component or column
had been passed as a separate argument (except for matrices of class" model.matrix " and
those protected byI).

Objects passed todata.frame should have the same number of rows, but atomic vectors, factors
and character vectors protected byI will be recycled a whole number of times if necessary.

If row names are not supplied in the call todata.frame , the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied asNULLor no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved byas.matrix).

If row names are supplied of length one and the data frame has a single row, therow.names is
taken to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected byI .

default.stringsAsFactors is a utility that takesgetOption ("stringsAsFactors")
and ensures the result isTRUEor FALSE(or throws an error if the value is notNULL).

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

Note

In versions ofR prior to 2.4.0row.names had to be character: to ensure compatibility with earlier
versions ofR, supply a character vector as therow.names argument.

References

Chambers, J. M. (1992)Data for models.Chapter 3 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

90 data.matrix

See Also

I , plot.data.frame , print.data.frame , row.names , names (for the column names),
[.data.frame for subsetting methods,Math.data.frame etc, aboutGroup methods for
data.frame s; read.table , make.names .

Examples

L3 <- LETTERS[1:3]
(d <- data.frame(cbind(x=1, y=1:10), fac=sample(L3, 10, replace=TRUE)))

The same with automatic column names:
data.frame(cbind(1, 1:10), sample(L3, 10, replace=TRUE))

is.data.frame(d)

do not convert to factor, using I() :
(dd <- cbind(d, char = I(letters[1:10])))
rbind(class=sapply(dd, class), mode=sapply(dd, mode))

stopifnot(1:10 == row.names(d))# {coercion}

(d0 <- d[, FALSE]) # NULL data frame with 10 rows
(d.0 <- d[FALSE,]) # <0 rows> data frame (3 cols)
(d00 <- d0[FALSE,]) # NULL data frame with 0 rows

data.matrix Convert a Data Frame to a Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage

data.matrix(frame, rownames.force = NA)

Arguments

frame a data frame whose components are logical vectors, factors or numeric vectors.

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULL) rownames . The default,NA, usesNULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

Supplying a data frame with columns which are not numeric, factor or logical is an error. A warning
is given if any non-factor column has a class, as then information can be lost.

date 91

Value

If frame inherits from class"data.frame" , an integer or numeric matrix of the same di-
mensions asframe , with dimnames taken from therow.names (or NULL, depending on
rownames.force) andnames.

Otherwise, the result ofas.matrix .

Note

The default behaviour for data frames differs fromR < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992)Data for models.Chapter 3 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix , data.frame , matrix .

Examples

DF <- data.frame(a=1:3, b=letters[10:12],
c=seq(as.Date("2004-01-01"), by = "week", len = 3),
stringsAsFactors = TRUE)

data.matrix(DF[1:2])
data.matrix(DF) # gives a warning and quotes dates as #days since 1970.

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date()

Value

The string has the form"Fri Aug 20 11:11:00 1999" , i.e., length 24, since it relies on
POSIX’sctime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, butnot indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

92 Dates

See Also

Sys.Date andSys.time ; Date andDateTimeClasses for objects representing date and
time.

Examples

(d <- date())
nchar(d) == 24

something similar in the current locale
format(Sys.time(), "%a %b %d %H:%M:%S %Y")

Dates Date Class

Description

Description of the class"Date" representing calendar dates.

Usage

S3 method for class 'Date':
summary(object, digits = 12, ...)

Arguments

object An object summarized.

digits Number of significant digits for the computations.

... Further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via themean
method or by adding or subtracting (seeOps.Date).

See Also

Sys.Date for the current date.

Ops.Date for operators on"Date" objects.

format.Date for conversion to and from character strings.

plot.Date andhist.Date for plotting.

weekdays for convenience extraction functions.

seq.Date , cut.Date , round.Date for utility operations.

DateTimeClasses for date-time classes.

DateTimeClasses 93

Examples

(today <- Sys.Date())
format(today, "%d %b %Y") # with month as a word
(tenweeks <- seq(today, length.out=10, by="1 week")) # next ten weeks
weekdays(today)
months(tenweeks)
as.Date(.leap.seconds)

DateTimeClasses Date-Time Classes

Description

Description of the classes"POSIXlt" and"POSIXct" representing calendar dates and times (to
the nearest second).

Usage

S3 method for class 'POSIXct':
print(x, ...)

S3 method for class 'POSIXct':
summary(object, digits = 15, ...)

time + z
time - z
time1 lop time2

Arguments

x, object An object to be printed or summarized from one of the date-time classes.

digits Number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.

... Further arguments to be passed from or to other methods.

time date-time objects

time1, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct .)

z a numeric vector (in seconds)

lop One of==, != , <, <=, > or >=.

Details

There are two basic classes of date/times. Class"POSIXct" represents the (signed) number of
seconds since the beginning of 1970 as a numeric vector. Class"POSIXlt" is a named list of
vectors representing

sec 0–61: seconds

min 0–59: minutes

hour 0–23: hours

94 DateTimeClasses

mday 1–31: day of the month

mon 0–11: months after the first of the year.

year Years since 1900.

wday 0–6 day of the week, starting on Sunday.

yday 0–365: day of the year.

isdst Daylight savings time flag. Positive if in force, zero if not, negative if unknown.

The classes correspond to the POSIX/C99 constructs of ‘calendar time’ (thetime_t data type)
and ‘local time’ (or broken-down time, thestruct tm data type), from which they also inherit
their names.

"POSIXct" is more convenient for including in data frames, and"POSIXlt" is closer to human-
readable forms. A virtual class"POSIXt" inherits from both of the classes: it is used to allow
operations such as subtraction to mix the two classes.

Logical comparisons and limited arithmetic are available for both classes. One can add or subtract
a number of seconds from a date-time object, but not add two date-time objects. Subtraction of
two date-time objects is equivalent to usingdifftime . Be aware that"POSIXlt" objects will
be interpreted as being in the current timezone for these operations, unless a timezone has been
specified.

"POSIXlt" objects will often have an attribute"tzone" , a character vector of length 3 giving
the timezone name from theTZ environment variable and the names of the base timezone and the
alternate (daylight-saving) timezone. Sometimes this may just be of length one, giving the timezone
name.

"POSIXct" objects may also have an attribute"tzone" , a character vector of length one. If
set, it will determine how the object is converted to class"POSIXlt" and in particular how it is
printed. This is usually desirable, but if you want to specify an object in a particular timezone but to
be printed in the current timezone you may want to remove the"tzone" attribute (e.g. byc(x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(23 days have been 86401 seconds long so far: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. This will
usually cover the period 1970–2037, and on Unix machines back to 1902 (when time zones were in
their infancy). Outside those ranges we use our own C code. This uses the offset from GMT in use
in the timezone in one of 1970 to 1978 (chosen so that the likely DST transition days are Sundays),
and uses the alternate (daylight-saving) timezone only ifisdst is positive. (There is no reason to
suppose that the DST rules will remain the same in the future, and indeed the US legislated in 2005
to change its rules as from 2007, with a possible future reversion.)

It seems that some systems use leap seconds but most do not. This is detected and corrected for
at build time, so all"POSIXct" times used byR do not include leap seconds. (Conceivably this
could be wrong if the system has changed since build time, just possibly by changing locales.)

Usingc on "POSIXlt" objects converts them to the current time zone.

Sub-second Accuracy

Classes"POSIXct" and"POSIXlt" are able to express fractions of a second. (Conversion of
fractions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only ifoptions ("digits.secs") is set: seestrftime .

dcf 95

Warning

Some Unix-like systems (especially Linux ones) do not have"TZ" set, yet have internal code that
expects it (as does POSIX). We have tried to work around this, but if you get unexpected results try
setting"TZ" . Seeas.POSIXlt for valid settings.

See Also

Datesfor dates without times.

as.POSIXct andas.POSIXlt for conversion between the classes.

strptime for conversion to and from character representations.

Sys.time for clock time as a"POSIXct" object.

difftime for time intervals.

cut.POSIXt , seq.POSIXt , round.POSIXt and trunc.POSIXt for methods for these
classes.

weekdays.POSIXt for convenience extraction functions.

Examples

(z <- Sys.time()) # the current date, as class "POSIXct"

Sys.time() - 3600 # an hour ago

as.POSIXlt(Sys.time(), "GMT") # the current time in GMT
format(.leap.seconds) # all 23 leapseconds in your timezone
print(.leap.seconds, tz="PST8PDT") # and in Seattle's

dcf Read and Write Data in DCF Format

Description

Reads or writes anR object from/to a file in Debian Control File format.

Usage

read.dcf(file, fields = NULL, all = FALSE)

write.dcf(x, file = "", append = FALSE,
indent = 0.1 * getOption("width"),
width = 0.9 * getOption("width"))

Arguments

file either a character string naming a file or a connection."" indicates output to the
console. Forread.dcf this can name agzip -compressed file.

fields Fields to read from the DCF file. Default is to read all fields.

all a logical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. Ifall is false (default), only the last such occur-
rence is used.

96 dcf

x the object to be written, typically a data frame. If not, it is attempted to coerce
x to a data frame.

append logical. If TRUE, the output is appended to the file. IfFALSE, any existing file
of the name is destroyed.

indent a positive integer specifying the indentation for continuation lines in output en-
tries.

width a positive integer giving the target column for wrapping lines in the output.

Details

DCF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to storeR system information, like descriptions
and contents of packages.

The DCF rules as implemented inR are:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of formtag:value , i.e., have a name tag and a value for the field, sepa-
rated by: (only the first: counts). The value can be empty (=whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
character is a ‘. ’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (=whitespace only) lines.

By default, read.dcf returns a character matrix with one row per record and one column per
field. Leading and trailing whitespace of field values is ignored. If a tag name is specified, but the
corresponding value is empty, then an empty string is returned. If the tag name of a field is never
used in a record, thenNAis returned. If fields are repeated within a record, the last one encountered
is returned. Malformed lines are ignored (with a warning). Ifall is true, a data frame is returned,
again with one row per record and one column per field, and columns lists of character vectors for
fields with multiple occurrences, and character vectors otherwise.

write.dcf does not writeNAfields.

See Also

write.table .

Examples

Create a reduced version of the 'CONTENTS' file in package 'splines'
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))
write.dcf(x)

debug 97

debug Debug a Function

Description

Set or unset the debugging flag on a function.

Usage

debug(fun)
undebug(fun)

Arguments

fun any interpretedR function.

Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step (and
the previous one destroyed).

At the debug prompt the user can enter commands orR expressions. The commands are

n (or just return). Advance to the next step.

c continue to the end of the current context: e.g. to the end of the loop if within a loop or to the
end of the function.

cont synonym forc .

where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for return).

Anything else entered at the debug prompt is interpreted as anR expression to be evaluated in the
calling environment: in particular typing an object name will cause the object to be printed, and
ls() lists the objects in the calling frame. (If you want to look at an object with a name such asn,
print it explicitly.)

If a function is defined inside a function, single-step though to the end of its definition, and then call
debug on its name.

In order to debug S4 methods (seeMethods), you need to usetrace , typically callingbrowser ,
e.g., as
trace("plot", browser, exit=browser, signature = c("track",
"missing"))

See Also

browser , trace ; traceback to see the stack after anError: ... message;recover
for another debugging approach.

98 delayedAssign

Defunct Marking Objects as Defunct

Description

When a function is removed fromR it should be replaced by a function which calls.Defunct .

Usage

.Defunct(new, package = NULL, msg)

Arguments

new character string: A suggestion for a replacement function.

package character string: The package to be used when suggesting where the defunct
function might be listed.

msg character string: A message to be printed, if missing a default message is used.

Details

.Defunct is called from defunct functions. Functions should be listed inhelp("pkg-
defunct") for an appropriatepkg , includingbase .

See Also

Deprecated .

base-defunct and so on which list the defunct functions in the packages.

delayedAssign Delay Evaluation

Description

delayedAssign creates apromiseto evaluate the given expression if its value is requested. This
provides direct access to thelazy evaluationmechanism used byR for the evaluation of (interpreted)
functions.

Usage

delayedAssign(x, value, eval.env = parent.frame(1),
assign.env = parent.frame(1))

Arguments

x a variable name (given as a quoted string in the function call)

value an expression to be assigned tox

eval.env an environment in which to evaluatevalue

assign.env an environment in which to assignx

deparse 99

Details

Botheval.env andassign.env default to the currently active environment.

The expression assigned to a promise bydelayedAssign will not be evaluated until it is even-
tually ‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluatevalue to the
variablex .

See Also

substitute , to see the expression associated with a promise.

Examples

msg <- "old"
delayedAssign("x", msg)
msg <- "new!"
x #- new!
substitute(x) #- msg

delayedAssign("x", {
for(i in 1:3)

cat("yippee!\n")
10

})

x^2 #- yippee
x^2 #- simple number

e <- (function(x, y = 1, z) environment())(1+2, "y", {cat(" HO! "); pi+2})
(le <- as.list(e)) # evaluates the promises

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60,
backtick = mode(expr) %in% c("call", "expression", "("),
control = c("keepInteger", "showAttributes", "keepNA"))

100 deparse

Arguments

expr anyR expression.

width.cutoff integer in[20, 500] determining the cutoff at which line-breaking is tried.

backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.

control character vector of deparsing options. See.deparseOpts .

Details

This function turns unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode"expression" used inexpression) into character strings
(a kind of inverseparse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functionsdeparse andsubstitute to create labels for a
plot which are character string versions of the actual arguments to the functionmyplot .

The default for thebacktick option is not to quote single symbols but only composite expres-
sions. This is a compromise to avoid breaking existing code.

Usingcontrol = "all" comes closest to makingdeparse() an inverse ofparse() . How-
ever, not all objects are deparse-able even with this option and a warning will be issued if the func-
tion recognizes that it is being asked to do the impossible.

Numeric and complex vectors are converted using 15 significant digits: seeas.character for
more details.

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff byteshave been output and e.g.arg = value expressions will not be split
across lines.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

substitute , parse , expression .

Quotes for quoting conventions, including backticks.

Examples

require(stats); require(graphics)

deparse(args(lm))
deparse(args(lm), width = 500)
myplot <-
function(x, y) {

plot(x, y, xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)))

deparseOpts 101

}
e <- quote(`foo bar`)
deparse(e)
deparse(e, backtick=TRUE)
e <- quote(`foo bar`+1)
deparse(e)
deparse(e, control = "all")

deparseOpts Options for Expression Deparsing

Description

Process the deparsing options fordeparse , dput anddump.

Usage

.deparseOpts(control)

Arguments

control character vector of deparsing options.

Details

This is called bydeparse , dput anddump to process theircontrol argument.

Thecontrol argument is a vector containing zero or more of the following strings. Partial string
matching is used.

keepInteger Either surround integer vectors byas.integer() or use suffixL, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (viaNA_integer_ if there are no non-NA values in the vector, unless
"S_compatible" is set).

quoteExpressions Surround expressions withquote() , so they are not evaluated when re-
parsed.

showAttributes If the object has attributes (other than asource attribute), use
structure() to display them as well as the object value. This is the default fordeparse
anddput .

useSource If the object has asource attribute, display that instead of deparsing the object.
Currently only applies to function definitions.

warnIncomplete Some exotic objects such asenvironments, external pointers, etc. can not
be deparsed properly. This option causes a warning to be issued if any of those may give
problems.

Also, the parser inR < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

keepNA Integer, real and characterNAs are surrounded by coercion where necessary to ensure that
they are parsed to the same type.

all An abbreviated way to specify all of the options listed above. This is the default fordump,
and the options used byedit (which are fixed).

102 Deprecated

delayPromises Deparse promises in the form <promise: expression> rather than evaluating
them. The value and the environment of the promise will not be shown and the deparsed code
cannot be sourced.

S_compatible Make deparsing as far as possible compatible with S andR < 2.5.0. For com-
patibility with S, integer values of double vectors are deparsed with a trailing decimal point.

For the most readable (but perhaps incomplete) display, usecontrol = NULL . This displays
the object’s value, but not its attributes. The default indeparse is to display the attributes as
well, but not to use any of the other options to make the result parseable. (dput anddump do
use more default options, and printing of functions without sources usesc("keepInteger",
"keepNA") .)

Usingcontrol = "all" comes closest to makingdeparse() an inverse ofparse() . How-
ever, not all objects are deparse-able even with this option. A warning will be issued if the function
recognizes that it is being asked to do the impossible.

Value

A numerical value corresponding to the options selected.

Deprecated Marking Objects as Deprecated

Description

When an object is about removed fromR it is first deprecated and should include a call to
.Deprecated .

Usage

.Deprecated(new, package=NULL, msg)

Arguments

new character string: A suggestion for a replacement function.

package character string: The package to be used when suggesting where the deprecated
function might be listed.

msg character string: A message to be printed, if missing a default message is used.

Details

.Deprecated("<new name>") is called from deprecated functions. The original help page
for these functions is often available athelp("oldName-deprecated") (note the quotes).
Functions should be listed inhelp("pkg-deprecated") for an appropriatepkg , including
base .

See Also

Defunct

base-deprecated and so on which list the deprecated functions in the packages.

det 103

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix.determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the
determinant.

Usage

det(x, ...)
determinant(x, logarithm = TRUE, ...)

Arguments

x numeric matrix.

logarithm logical; if TRUE(default) return the logarithm of the modulus of the determi-
nant.

... Optional arguments. At present none are used. Previous versions ofdet al-
lowed an optionalmethod argument. This argument will be ignored but will
not produce an error.

Details

Thedeterminant function uses an LU decomposition and thedet function is simply a wrapper
around a call todeterminant .

Often, computing the determinant isnot what you should be doing to solve a given problem.

Value

For det , the determinant ofx . Fordeterminant , a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithm is FALSE; otherwise the logarithm of the modulus.

sign integer; either+1 or −1 according to whether the determinant is positive or
negative.

Examples

(x <- matrix(1:4, ncol=2))
unlist(determinant(x))
det(x)

det(print(cbind(1,1:3,c(2,0,1))))

104 detach

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from thesearch () path of availableR objects. Usually, this is
either adata.frame which has beenattach ed or a package which was required previously.

Usage

detach(name, pos = 2, version, unload = FALSE)

Arguments

name The object to detach. Defaults tosearch()[pos] . This can be an unquoted
name or a character string butnota character vector. If a number is supplied this
is taken aspos .

pos Index position insearch () of database to detach. Whenname is a number,
pos = name is used.

version A character string denoting a version number of the package to be removed. This
should be used only with a versioned installation of the package: seelibrary .

unload A logical value indicating whether or not to attempt to unload the namespace and
S4 methods when a package is being detached. If the package has a namespace
andunload is TRUE, thendetach will attempt to unload the namespace and
remove any S4 methods defined by the package. If the namespace is in use or
unload is FALSE, no unloading will occur.

Details

This most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools .

When a package have been loaded with an explicit version number it can be detached using the
name shown bysearch or by supplyingname andversion : see the examples.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even withunload=TRUE), and detaching will not in general unload any dynamically loaded
compiled code. Further, registered S3 methods from the namespace will not be removed. If you
uselibrary on a package whose name space is loaded, it attaches the exports of the loaded name
space. So detaching and re-attaching a package may not refresh some or all components of the
package, and is inadvisable.

Value

The attached database is returned invisibly, either asdata.frame or aslist .

Note

You cannot detach either the workspace (position 1) or thebasepackage (the last item in the search
list).

diag 105

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach , library , search , objects , unloadNamespace , library.dynam.unload .

Examples

require(splines) # package
detach(package:splines)
could equally well use detach("package:splines")
but NOT pkg <- "package:splines"; detach(pkg)
Instead, use
library(splines)
pkg <- "package:splines"
detach(pos = match(pkg, search()))

careful: do not do this unless 'splines' is not already loaded.
library(splines)
detach(2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function(db, pos=2)
{

name <- deparse(substitute(db))
attach(db, pos=pos, name=name)
print(search()[pos])
eval(substitute(detach(n), list(n=name)))

}
attach_and_detach(women, pos=3)

Not run:
Using a versioned install
library(ash, version="1.0-9") # or perhaps just library(ash)
then one of
detach("package:ash", version="1.0-9")
or
detach("package:ash_1.0-9")
End(Not run)

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol = n)
diag(x) <- value

106 diag

Arguments

x a matrix, vector or 1D array.

nrow, ncol Optional dimensions for the result.

value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that ofx .

Value

If x is a matrix thendiag(x) returns the diagonal ofx . The resulting vector will havenames if
the matrixx has matching column and row names.

If x is a vector (or 1D array) of length two or more, thendiag(x) returns a diagonal matrix whose
diagonal isx .

If x is a vector of length one thendiag(x) returns an identity matrix of order the nearest integer
to x . The dimension of the returned matrix can be specified bynrow andncol (the default is
square).

The replacement form sets the diagonal of the matrixx to the given value(s).

Note

Using diag(x) can have unexpected effects ifx is a vector that could be of length one. Use
diag(x, nrow = length(x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri , lower.tri , matrix .

Examples

require(stats)
dim(diag(3))
diag(10,3,4) # guess what?
all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X = 1:5, Y = stats::rnorm(5))))
#-> vector with names "X" and "Y"

rownames(M) <- c(colnames(M),rep("",3));
M; diag(M) # named as well

diff 107

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

Usage

diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'POSIXt':
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'Date':
diff(x, lag = 1, differences = 1, ...)

Arguments

x a numeric vector or matrix containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

... further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes" ts " , " POSIXt " and
" Date " .

NA’s propagate.

Value

If x is a vector of lengthn anddifferences=1 , then the computed result is equal to the succes-
sive differencesx[(1+lag):n] - x[1:(n-lag)] .

If difference is larger than one this algorithm is applied recursively tox . Note that the returned
value is a vector which is shorter thanx .

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff.ts , diffinv .

108 difftime

Examples

diff(1:10, 2)
diff(1:10, 2, 2)
x <- cumsum(cumsum(1:10))
diff(x, lag = 2)
diff(x, differences = 2)

diff(.leap.seconds)

difftime Time Intervals

Description

Create, print and round time intervals.

Usage

time1 - time2

difftime(time1, time2, tz = "",
units = c("auto", "secs", "mins", "hours",

"days", "weeks"))

as.difftime(tim, format = "%X", units="auto")

S3 method for class 'difftime':
round(x, digits = 0, ...)
S3 method for class 'difftime':
format(x, ...)
S3 method for class 'difftime':
units(x)
S3 replacement method for class 'difftime':
units(x) <- value
S3 method for class 'difftime':
as.double(x, units="auto", ...)

Arguments

time1, time2 date-timeor dateobjects.

tz a timezone specification to be used for the conversion. System-specific, but""
is the current time zone, and"GMT" is UTC.

units character. Units in which the results are desired. Can be abbreviated.

value character. Likeunits above, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format oftim : seestrptime . The default is a locale-
specific time format.

x an object inheriting from class"difftime" .

digits integer. Number of significant digits to retain.

... arguments to be passed to or from other methods.

dim 109

Details

Functiondifftime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. There is around method for objects of this
class, as well as methods for the group-generic (seeOps) logical and arithmetic operations.

If units = "auto" , a suitable set of units is chosen, the largest possible (excluding"weeks")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by callingdifftime with
units="auto" . Alternatively, as.difftime() works on character-coded or numeric time
intervals; in the latter case, units must be specified, andformat has no effect.

Limited arithmetic is available on"difftime" objects: they can be added or subtracted, and mul-
tiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector implicitly
converts the numeric vector to a"difftime" object with the same units as the"difftime"
object.

The units of a"difftime" object can be extracted by theunits function, which also has an
replacement form. If the units are changed, the numerical value is scaled accordingly.

The as.double method returns the numeric value expressed in the specified units. Using
units="auto" means the units of the object.

Theformat method simply formats the numeric value and appends the units as a text string.

See Also

DateTimeClasses .

Examples

(z <- Sys.time() - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between releases of R 1.2.2 and 1.2.3.
ISOdate(2001, 4, 26) - ISOdate(2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))
as.difftime(c("3:20", "23:15", "2:"), format= "%H:%M")# 3rd gives NA
(z <- as.difftime(c(0,30,60), units="mins"))
as.numeric(z, units="secs")
as.numeric(z, units="hours")
format(z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- value

110 dimnames

Arguments

x anR object, for example a matrix, array or data frame.

value For the default method, eitherNULL or a numeric vector, which is coerced to
integer (by truncation).

Details

The functionsdim anddim<- are generic.

dim has a method fordata.frame s, which returns the lengths of therow.names attribute ofx
and ofx (as the numbers of rows and columns respecitvely).

Value

For an array (and hence in particular, for a matrix)dim retrieves thedim attribute of the object. It
is NULLor a vector of modeinteger .

The replacemnt method changes the"dim" attribute (provided the new value is compatible) and
removes any"dimnames" and "names" attributes.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol , nrow anddimnames .

Examples

x <- 1:12 ; dim(x) <- c(3,4)
x

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x)[1]
ncol0 <- function(x) dim(x)[2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames(x)
dimnames(x) <- value

Arguments

x anR object, for example a matrix, array or data frame.

value a possible value fordimnames(x) : see the Value section.

dimnames 111

Details

The functionsdimnames anddimnames<- are generic.

For anarray (and hence in particular, for amatrix), they retrieve or set thedimnames attribute
(seeattributes) of the object. A listvalue can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements ofvalue to char-
acter, but does not dispatch methods foras.character . It coerces zero-length elements to
NULL.

Both have methods for data frames. The dimnames of a data frame are itsrow.names
and its names. For the replacement method each component ofvalue will be coerced by
as.character .

For a 1D matrix thenames are the same thing as the (only) component of thedimnames .

Value

The dimnames of a matrix or array can beNULLor a list of the same length asdim(x) . If a list, its
components are eitherNULLor a character vector with positive length of the appropriate dimension
of x .

For the"data.frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

Note

Setting components of the dimnames, e.g.dimnames(A)[[1]] <- value is a common
paradigm, but note that it will not work if the value assigned isNULL. Userownames instead,
or (as it does) manipulate the whole dimnames list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownames , colnames ; array , matrix , data.frame .

Examples

simple versions of rownames and colnames
could be defined as follows
rownames0 <- function(x) dimnames(x)[[1]]
colnames0 <- function(x) dimnames(x)[[2]]

112 do.call

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage

do.call(what, args, quote = FALSE, envir = parent.frame())

Arguments

what either a function or a non-empty character string naming the function to be
called.

args a list of arguments to the function call. Thenames attribute ofargs gives the
argument names.

quote a logical value indicating whether to quote the arguments.

envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment,
not envir .). If quote is TRUEthen each argument is quoted (seequote) so that the effect of
argument evaluation is to remove the quotes – leaving the original arguments unevaluated when the
call is constructed.

The behavior of some functions, such assubstitute , will not be the same for functions evaluated
usingdo.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

double 113

Examples

do.call("complex", list(imag = 1:3))

if we already have a list (e.g. a data frame)
we need c() to add further arguments
tmp <- expand.grid(letters[1:2], 1:3, c("+", "-"))
do.call("paste", c(tmp, sep=""))

do.call(paste, list(as.name("A"), as.name("B")), quote=TRUE)

examples of where objects will be found.
A <- 2
f <- function(x) print(x^2)
env <- new.env()
assign("A", 10, envir = env)
assign("f", f, envir = env)
f <- function(x) print(x)
f(A) # 2
do.call("f", list(A)) # 2
do.call("f", list(A), envir=env) # 4
do.call(f, list(A), envir=env) # 2
do.call("f", list(quote(A)), envir=env) # 100
do.call(f, list(quote(A)), envir=env) # 10
do.call("f", list(as.name("A")), envir=env) # 100

eval(call("f", A)) # 2
eval(call("f", quote(A))) # 2
eval(call("f", A), envir=env) # 4
eval(call("f", quote(A)), envir=env) # 100

double Double-Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

Usage

double(length = 0)
as.double(x, ...)
is.double(x)

single(length = 0)
as.single(x, ...)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

114 double

Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to0. It is identical tonumeric (andreal).

as.double is a generic function. It is identical toas.numeric (andas.real). Methods
should return an object of base type"double" .

is.double is a test of doubletype.

R has no single precision data type. All real numbers are stored in double precision format. The
functionsas.single andsingle are identical toas.double anddouble except they set the
attributeCsingle that is used in the.C and.Fortran interface, and they are intended only to
be used in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to0.

as.double attempts to coerce its argument to be of double type: likeas.vector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode .) Character strings containing either a decimal representation or a hexadecimal
representation (starting with0x or 0X) can be converted.as.double for factors yields the codes
underlying the factor levels, not the numeric representation of the labels, see alsofactor .

is.double returnsTRUEor FALSEdepending on whether its argument is of doubletypeor not.

Note on names

It is a historical anomaly thatR has three names for its floating-point vectors,double , numeric
andreal .

double is the name of thetype. numeric is the name of themodeand also of the implicitclass.
As an S4 formal class, use"numeric" (there is a deprecated formal class"double").

real is deprecated and should not be used in new code.

The potential confusion is thatR has usedmode"numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thusis.numeric tests the mode, not the class, butas.numeric
(which is identical toas.double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

integer , numeric , storage.mode .

Examples

is.double(1)
all(double(3) == 0)

dput 115

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of anR object to a file or connection, or uses one to recreate
the object.

Usage

dput(x, file = "",
control = c("keepNA", "keepInteger", "showAttributes"))

dget(file)

Arguments

x an object.

file either a character string naming a file or a connection."" indicates output to the
console.

control character vector indicating deparsing options. See.deparseOpts for their
description.

Details

dput opensfile and deparses the objectx into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the defaultcontrol , dput()
attempts to deparse in a way that is readable, but for more complex or unusual objects, not likely to
be parsed as identical to the original. Usecontrol = "all" for the most complete deparsing;
usecontrol = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.

To display saved source rather than deparsing the internal representation include"useSource"
in control . R currently saves source only for function definitions.

Value

For dput , the first argument invisibly.

For dget , the object created.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

116 drop

See Also

deparse , dump, write .

Examples

Write an ASCII version of mean to the file "foo"
dput(mean, "foo")
And read it back into 'bar'
bar <- dget("foo")
unlink("foo")
Create a function with comments
baz <- function(x) {

Subtract from one
1-x

}
and display it
dput(baz)
and now display the saved source
dput(baz, control = "useSource")

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop(x)

Arguments

x an array (including a matrix).

Value

If x is an object with adim attribute (e.g., a matrix orarray), thendrop returns an object likex ,
but with any extents of length one removed. Any accompanyingdimnames attribute is adjusted
and returned withx .

Array subsetting ([) performs this reduction unless used withdrop = FALSE , but sometimes it
is useful to invokedrop directly.

See Also

drop1 which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# = 3 2 2
drop(1:3 %*% 2:4)# scalar product

dump 117

dump Text Representations of R Objects

Description

This function takes a vector of names ofR objects and produces text representations of the objects
on a file or connection. Adump file can usually besource d into anotherR (or S) session.

Usage

dump(list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)

Arguments

list character. The names of one or moreR objects to be dumped.

file either a character string naming a file or a connection."" indicates output to the
console.

append if TRUEandfile is a character string, output will be appended tofile ; oth-
erwise, it will overwrite the contents offile .

control character vector indicating deparsing options. See.deparseOpts for their
description.

envir the environment to search for objects.

evaluate logical. Should promises be evaluated?

Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. Iffile is a
file and no objects exist then no file is created.

source ing may not produce an identical copy ofdumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can besource d into anotherR (or perhaps S) session, but the functionsave is
designed to be used for transportingR data, and will work withR objects thatdump does not
handle.

To produce a more readable representation of an object, usecontrol = NULL . This will skip
attributes, and will make other simplifications that makesource less likely to produce an identical
copy. Seedeparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control = c("keepInteger", "warnIncomplete", "keepNA") . This will lose all
formatting and comments, but may be useful in those cases where the saved source is no longer
correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the default
evaluate = TRUE is essential) and after the use ofdelayedAssign , whenevaluate =
FALSEmight be intended.

118 duplicated

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base name space, thebasepackage will be searchedbeforethe global
environment unlessdump is called from the top level prompt or theenvir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of typeS4 are not deparsed
in a way that can besource d. In addition, language objects are deparsed in a simple way what-
ever the value ofcontrol , and this includes not dumping their attributes (which will result in a
warning).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

dput , dget , write .
save for a more reliable way to saveR objects.

Examples

x <- 1; y <- 1:10
dump(ls(pattern = '^[xyz]'), "xyz.Rdmped")
print(.Last.value)
unlink("xyz.Rdmped")

duplicated Determine Duplicate Elements

Description

Determines which elements of a vector or data frame are duplicates of elements with smaller sub-
scripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage

duplicated(x, incomparables = FALSE, ...)

Default S3 method:
duplicated(x, incomparables = FALSE,

fromLast = FALSE, ...)

S3 method for class 'array':
duplicated(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

duplicated 119

Arguments

x a vector or a data frame or an array orNULL.
incomparables

a vector of values that cannot be compared. Currently,FALSE is the only pos-
sible value, meaning that all values can be compared.

fromLast logical indicating if duplication should be considered from the reverse
side, i.e., the last (or rightmost) of identical elements would correspond to
duplicated=FALSE .

... arguments for particular methods.

MARGIN the array margin to be held fixed: seeapply .

Details

This is a generic function with methods for vectors (including lists), data frames and arrays (includ-
ing matrices).

duplicated(x, fromLast=TRUE) is equivalent to but faster than
rev(duplicated(rev(x))) .

The data frame method works by pasting together a character representation of the rows separated
by \r , so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

The array method calculates for each element of the sub-array specified byMARGINif the remaining
dimensions are identical to those for an earlier (or later, whenfromLast=TRUE) element (in row-
major order). This would most commonly be used to find duplicated rows (the default) or columns
(with MARGIN = 2).

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it isO(n2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique .

Examples

x <- c(9:20, 1:5, 3:7, 0:8)
extract unique elements
(xu <- x[!duplicated(x)])
similar, but not the same:
(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique(x) but unique(x) is more efficient
stopifnot(identical(xu, unique(x)),

identical(xu2, unique(x, fromLast = TRUE)))

duplicated(iris)[140:143]

120 dyn.load

duplicated(iris3, MARGIN = c(1, 3))

dyn.load Foreign Function Interface

Description

Load or unload shared libraries, and test whether a C function or Fortran subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE)
dyn.unload(x)

is.loaded(symbol, PACKAGE = "", type = "")

Arguments

x a character string giving the pathname to a shared library or DLL.

local a logical value controlling whether the symbols in the shared library are stored
in their own local table and not shared across shared libraries, or added to the
global symbol table. Whether this has any effect is system-dependent.

now a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

symbol a character string giving a symbol name.

PACKAGE if supplied, confine the search for thename to the DLL given by this argument
(plus the conventional extension,.so , .sl , .dll , . . .). This is intended to
add safety for packages, which can ensure by using this argument that no other
package can override their external symbols. UsePACKAGE="base" for sym-
bols linked in toR. This is used in the same way as in.C , .Call , .Fortran
and.External functions

type The type of symbol to look for: can be any ("" , the default),"Fortran" ,
"Call" or "External" .

Details

See ‘See Also’ and theWriting R ExtensionsandR Installation and Administrationmanuals for
how to create and install a suitable shared library. Note that unlike some versions of S-PLUS,
dyn.load does not load an object (‘.o’) file but a shared library or DLL.

Unfortunately a very few platforms (Compaq Tru64) do not handle thePACKAGEargument cor-
rectly, and may incorrectly find symbols linked intoR.

The additional arguments todyn.load mirror the different aspects of the mode argument to the
dlopen() routine on UNIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the defaults values are appropriate and
you should override them only if there is good reason and you understand the implications.

dyn.load 121

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own name space is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via thenow argument as
FALSE. If a routine is called that has a missing symbol, the process will terminate immediately and
unsaved session variables will be lost. The intended use is for library developers to call specify a
valueTRUEto check that all symbols are actually resolved and for regular users to all withFALSE
so that missing symbols can be ignored and the available ones can be called.

The initial motivation for adding these was to avoid such termination in the_init() routines
of the Java virtual machine library. However, symbols loaded locally may not be (read probably)
available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLs.

Some systems do not provide (explicit) support for local/global and lazy/eager symbol resolution.
This can be the source of subtle bugs. One can arrange to have warning messages emitted when
unsupported options are used. This is done by setting either of the optionsverbose or warn to be
non-zero via theoptions function. Currently, we know of only 2 platforms that do not provide a
value for local load (RTLD_LOCAL). These are IRIX6.4 and unpatched versions of Solaris 2.5.1.

There is a short discussion of these additional arguments with some example code available at
http://cm.bell-labs.com/stat/duncan/R/dynload .

Value

The functiondyn.load is used for its side effect which links the specified shared library to the
executingR image. Calls to.C , .Call , .Fortran and .External can then be used to ex-
ecute compiled C functions or Fortran subroutines contained in the library. The return value of
dyn.load is an object of classDLLInfo . SeegetLoadedDLLs for information about this
class.

The functiondyn.unload unlinks the shared library.

is.loaded checks if the symbol name is loaded and hence available for use in.C or .Fortran
or .Call or .External . It will succeed if any one of the four calling functions would succeed
in using the entry point unlesstype is specified. (See.Fortran for how Fortran symbols are
mapped.)

Warning

Do not use dyn.unload on a shared object loaded bylibrary.dynam : use
library.dynam.unload .

Note

is.loaded requires the name you would give to.C etc andnot (as in S) that remapped by defunct
functionssymbol.C or symbol.For .

The creation of shared libraries and the runtime linking of them into executing programs is very
platform dependent. In recent years there has been some simplification in the process because
the C subroutine calldlopen has become the standard for doing this under UNIX. Under UNIX
dyn.load uses thedlopen mechanism and should work on all platforms which support it. On
Windows it uses the standard mechanisms for loading DLLs.

The original code for loading DLLs in UNIX was provided by Heiner Schwarte. The compatibility
code for HP-UX was provided by Luke Tierney.

http://cm.bell-labs.com/stat/duncan/R/dynload

122 eapply

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s.First.lib initialization.

SHLIB for how to create suitable shared objects.

.C , .Fortran , .External , .Call .

Examples

is.loaded("hcass2") #-> probably TRUE, as stats is loaded
is.loaded("supsmu") # Fortran entry point in stats
is.loaded("supsmu", "stats", "Fortran")
is.loaded("PDF", type = "External")

eapply Apply a Function over values in an environment

Description

eapply appliesFUNto the named values from an environment and returns the results as a list. The
user can request that all named objects are used (normally names that begin with a dot are not). The
output is not sorted and no parent environments are searched.

Usage

eapply(env, FUN, ..., all.names = FALSE)

Arguments

env environment to be used.

FUN the function to be applied, foundvia match.fun . In the case of functions like
+, %*%, etc., the function name must be backquoted or quoted.

... optional arguments toFUN.

all.names a logical indicating whether to apply the function to all values

See Also

lapply .

eigen 123

Examples

require(utils); require(stats)

env <- new.env()
env$a <- 1:10
env$beta <- exp(-3:3)
env$logic <- c(TRUE,FALSE,FALSE,TRUE)
what have we there?
eapply(env, str)

compute the mean for each list element
eapply(env, mean)
median and quartiles for each list element
eapply(env, quantile, probs = 1:3/4)
eapply(env, quantile)

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of real or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments

x a matrix whose spectral decomposition is to be computed.

symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and
only its lower triangle (diagonal included) is used. Ifsymmetric is not speci-
fied, the matrix is inspected for symmetry.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Should EISPACK be used (for compatibility withR < 1.7.0)?

Details

By defaulteigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV whereas
eigen(EISPACK=TRUE) provides an interface to the EISPACK routinesRS, RG, CHandCG.

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up to
plausible numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred toeigen(EISPACK = TRUE) for new projects, but its eigenvectors may
differ in sign and (in the asymmetric case) in normalization. (They may also differ between methods
and between platforms.)

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close tox . So even though a real asymmetricx may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

124 eigen

Value

The spectral decomposition ofx is returned as components of a list with components

values a vector containing thep eigenvalues ofx , sorted indecreasingorder, according
to Mod(values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

vectors either ap × p matrix whose columns contain the eigenvectors ofx , or NULL if
only.values is TRUE.

For eigen(, symmetric = FALSE, EISPACK =TRUE) the choice of
length of the eigenvectors is not defined by EISPACK. In all other cases the
vectors are normalized to unit length.

Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler, C.
B. (1976). Matrix Eigensystems Routines – EISPACK Guide. Springer-Verlag Lecture Notes in
Computer Science.

Anderson. E. and ten others (1999)LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line athttp://www.netlib.org/lapack/lug/lapack_lug.html .

Wilkinson, J. H. (1965)The Algebraic Eigenvalue Problem.Clarendon Press, Oxford.

See Also

svd , a generalization ofeigen ; qr , andchol for related decompositions.

To compute the determinant of a matrix, theqr decomposition is much more efficient:det .

Examples

eigen(cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)
eigen(cbind(-1,2:1)) # complex values
eigen(print(cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values
3 x 3:
eigen(cbind(1,3:1,1:3))
eigen(cbind(-1,c(1:2,0),0:2)) # complex values

http://www.netlib.org/lapack/lug/lapack_lug.html

encodeString 125

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same wayprint.default
does, and optionally fits the encoded strings within a field width.

Usage

encodeString(x, width = 0, quote = "", na.encode = TRUE,
justify = c("left", "right", "centre", "none"))

Arguments

x A character vector, or an object that can be coerced to one byas.character .

width integer: the minimum field width. IfNULLor NA, this is taken to be the largest
field width needed for any element ofx .

quote character: quoting character, if any.

na.encode logical: shouldNAstrings be encoded?

justify character: partial matches are allowed. If padding to the minimum field width is
needed, how should spaces be inserted?justify == "none" is equivalent
to width = 0 , for consistency withformat.default .

Details

This escapes backslash and the control characters\a (bell), \b (backspace),\f (formfeed),\n
(line feed),\r (carriage return),\t (tab),\v (vertical tab) and\0 (nul) as well as any non-printable
characters in a single-byte locale, which are printed in octal notation (\xyz with leading zeroes).
(Which characters are non-printable depends on the current locale.) Seeprint.default for
how non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length asx , with the same attributes (including names and dimen-
sions) but with no class set.

Note

The default forwidth is different fromformat.default , which does similar things for char-
acter vectors but without encoding using escapes.

See Also

print.default

126 Encoding

Examples

x <- "ab\bc\ndef"
print(x)
cat(x) # interprets escapes
cat(encodeString(x), "\n", sep="") # similar to print()

factor(x) # makes use of this to print the levels

x <- c("a", "ab", "abcde")
encodeString(x, width = NA) # left justification
encodeString(x, width = NA, justify = "c")
encodeString(x, width = NA, justify = "r")
encodeString(x, width = NA, quote = "'", justify = "r")

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.

Usage

Encoding(x)

Encoding(x) <- value

Arguments

x A character vector.

value A character vector of positive length.

Details

Character strings inR can be declared to be in"latin1" or "UTF-8" . These declarations can
be read byEncoding , which will return a character vector of values"latin1" , "UTF-8" or
"unknown" , or set, whenvalue is recycled as needed and other values are silently treated as
"unknown" .

There are other ways for character strings to acquire a declared encoding apart from explicitly set-
ting it. Functionsscan , read.table , readLines , parse andsource have anencoding
argument that is used to declare encodings,iconv declares encodings from itsfrom argument,
and console input in suitable locales is also declared.

Value

A character vector.

environment 127

Examples

x is intended to be in latin1
x <- "fa\xE7ile"
Encoding(x)
Encoding(x) <- "latin1"
x
xx <- iconv(x, "latin1", "UTF-8")
Encoding(c(x, xx))
c(x, xx)

environment Environment Access

Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value

is.environment(x)

.GlobalEnv
globalenv()
.BaseNamespaceEnv

emptyenv()
baseenv()

new.env(hash = FALSE, parent = parent.frame(), size = 29L)

parent.env(env)
parent.env(env) <- value

environmentName(env)

env.profile(env)

Arguments

fun a function , a formula , or NULL, which is the default.

value an environment to associate with the function

x an arbitraryR object.

hash a logical, ifTRUEthe environment will be hashed

parent an environment to be used as the enclosure of the environment created.

env an environment

size an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used ifsize is NAor zero. This argument is ignored ifhash
is FALSE.

128 environment

Details

Environments consist of aframe, or collection of named objects, and a pointer to anenclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined. The enclosing environment is distinguished
from theparent frame: the latter (returned byparent.frame) refers to the environment of the
caller of a function.

Whenget or exists search an environment with the defaultinherits = TRUE , they look
for the variable in the frame, then in the enclosing frame, and so on.

The global environment.GlobalEnv , more often known as the user’s workspace, is the first item
on the search path. It can also be accessed byglobalenv() . On the search path, each item’s
enclosure is the next item.

The object.BaseNamespaceEnv is the name space environment for the base package. The
environment of the base package itself is available asbaseenv() . The ultimate enclosure of
any environment is the empty environmentemptyenv() , to which nothing may be assigned.
If one follows theparent.env() chain of enclosures back far enough from any environment,
eventually one reaches the empty environment.

The replacement functionparent.env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

Value

If fun is a function or a formula thenenvironment(fun) returns the environment associated
with that function or formula. Iffun is NULL then the current evaluation environment is returned.

The replacement form sets the environment of the function or formulafun to thevalue given.

is.environment(obj) returnsTRUEif and only if obj is anenvironment .

new.env returns a new (empty) environment enclosed in the parent’s environment, by default.

parent.env returns the parent environment of its argument.

parent.env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or""
if it is not a named environment.

env.profile returns a list with the following components:size the number of chains that can
be stored in the hash table,nchains the number of non-empty chains in the table (as reported
by HASHPRI), andcounts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environments. Whenenv is
a non-hashed environment,NULL is returned.

See Also

Theenvir argument ofeval , get , andexists .

ls may be used to view the objects in an environment, and hencels.str may be useful for an
overview.

sys.source can be used to populate an environment.

Examples

f <- function() "top level function"

##-- all three give the same:

eval 129

environment()
environment(f)
.GlobalEnv

ls(envir=environment(stats::approxfun(1:2,1:2, method="const")))

is.environment(.GlobalEnv) # TRUE

e1 <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = e1)
assign("a", 3, envir=e1)
ls(e1)
ls(e2)
exists("a", envir=e2) # this succeeds by inheritance
exists("a", envir=e2, inherits = FALSE)
exists("+", envir=e2) # this succeeds by inheritance

eval Evaluate an (Unevaluated) Expression

Description

Evaluate anR expression in a specified environment.

Usage

eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir))

parent.frame() else baseenv())
evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also beNULL, a
list, a data frame, a pairlist or an integer as specified tosys.call .

enclos Relevant whenenvir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
whereR looks for objects not found inenvir . This can beNULL (interpreted
as the base package environment) or an environment.

n number of parent generations to go back

Details

eval evaluates theexpr argument in the environment specified byenvir and returns the com-
puted value. Ifenvir is not specified, then the default isparent.frame () (the environment
where the call toeval was made).

Objects to be evaluated can be of typescall or expression or name(when the name is looked
up in the current scope and its binding is evaluated), apromiseor any of the basic types such as
vectors, functions and environments (which are returned unchanged).

130 eval

Theevalq form is equivalent toeval(quote(expr), ...) . eval evaluates its first argu-
ment in the current scope before passing it to the evaluator:evalq avoids this.

eval.parent(expr, n) is a shorthand foreval(expr, parent.frame(n)) .

If envir is a list (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosureenclos), and the temporary environment is used for evaluation. So ifexpr changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found inenvir and
look-up goes directly toenclos .

local evaluates an expression in a local environment. It is equivalent toevalq except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited name space feature since variables defined in the environment are
not visible from the outside.

Value

The result of evaluating the object: for an expression vector this it the result of evaluating the last
elements.

Note

Due to the difference in scoping rules, there are some differences betweenR and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in data frames that has been passed as argument to a function,
the relevant enclosure is often the caller’s environment, i.e., one needseval(x, data,
parent.frame()) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression , quote , sys.frame , parent.frame , environment .

Further,force to forceevaluation, typically of function arguments.

Examples

eval(2 ^ 2 ^ 3)
mEx <- expression(2^2^3); mEx; 1 + eval(mEx)
eval({ xx <- pi; xx^2}) ; xx

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, list(a=1)), list(b=5)) # == 10
a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, -1), list(b=5)) # == 12

ev <- function() {
e1 <- parent.frame()
Evaluate a in e1
aa <- eval(expression(a),e1)
evaluate the expression bound to a in e1
a <- expression(x+y)
list(aa = aa, eval = eval(a, e1))

}

exists 131

tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }
tst.ev()#-> aa : 7, eval : 4.14

a <- list(a=3, b=4)
with(a, a <- 5) # alters the copy of a from the list, discarded.

##
Example of evalq()
##

N <- 3
env <- new.env()
assign("N", 27, envir=env)
this version changes the visible copy of N only, since the argument
passed to eval is '4'.
eval(N <- 4, env)
N
get("N", envir=env)
this version does the assignment in env, and changes N only there.
evalq(N <- 5, env)
N
get("N", envir=env)

##
Uses of local()
##

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local({
k <- function(y)f(y)
f <- function(x) if(x) x*k(x-1) else 1

})
gg(10)
sapply(1:5, gg)

Nesting locals. a is private storage accessible to k
gg <- local({

k <- local({
a <- 1
function(y){print(a <<- a+1);f(y)}

})
f <- function(x) if(x) x*k(x-1) else 1

})
sapply(1:5, gg)

ls(envir=environment(gg))
ls(envir=environment(get("k", envir=environment(gg))))

exists Is an Object Defined?

Description

Look for anR object of the given name.

132 exists

Usage

exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)

Arguments

x a variable name (given as a character string).

where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in, but it is usually simpler
to just use thewhere argument.

frame a frame in the calling list. Equivalent to givingwhere as
sys.frame(frame) .

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

Details

Thewhere argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in thesearch list); as the character string name of an element
in the search list; or as anenvironment (including usingsys.frame to access the currently
active function calls). Theenvir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the namex has a value bound to it in the specified environment. If
inherits is TRUEand a value is not found forx in the specified environment, the enclosing
frames of the environment are searched until the namex is encountered. Seeenvironment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour forR but not for S.

If mode is specified then only objects of that type are sought. Themode may specify one of the
collections"numeric" and"function" (seemode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for examplemode="special" will
seek any type of function.)

Value

Logical, true if and only if an object of the correct name and mode is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

get .

expand.grid 133

Examples

Define a substitute function if necessary:
if(!exists("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }
search()
exists("ls", 2) # true even though ls is in pos=3
exists("ls", 2, inherits = FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE)

Arguments

... vectors, factors or a list containing these.
KEEP.OUT.ATTRS

a logical indicating the"out.attrs" attribute (see below) should be com-
puted and returned.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out.attrs" is a list which gives the dimension and dimnames for use bypredict
methods.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

combn (packageutils) for the generation of all combinations of n elements, taken m at a time.

Examples

require(utils)

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male","Female"))

x <- seq(0,10, length=100)
y <- seq(-1,1, length=20)

134 expression

d1 <- expand.grid(x=x, y=y)
d2 <- expand.grid(x=x, y=y, KEEP.OUT.ATTRS = FALSE)
object.size(d1) - object.size(d2)
##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode"expression" .

Usage

expression(...)

is.expression(x)
as.expression(x, ...)

Arguments

... expression : R objects, typically calls, symbols or constants.
as.expression : arguments to be passed to methods.

x an arbitraryR object.

Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (seecall) in R, and anR expression vector is a list of calls, symbols etc, typically as
returned byparse .

As an object of mode"expression" is a list, it can be subsetted by both[and by[[, the latter
extracting individual calls etc.

Value

expression returns a vector of type"expression" containing its arguments (unevaluated).

is.expression returnsTRUEif expr is an expression object andFALSEotherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and
only the default method is described here.NULL, calls, symbols (seeas.symbol) and pairlists
are returned as the element of a length-one expression vector. Vectors (including lists) are placed
element-by-element into an expression vector. Other types are not currently supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

call , eval , function . Further,text andlegend for plotting mathematical expressions.

Extract 135

Examples

length(ex1 <- expression(1+ 0:9))# 1
ex1
eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3
mode(ex3 [3]) # expression
mode(ex3[[3]])# call
rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage

x[i]
x[i, j, ... , drop = TRUE]
x[[i, exact = NA]]
x[[i, j, ..., exact = NA]]
x$name

Arguments

x object from which to extract element(s) or in which to replace element(s).

i, j, ... indices specifying elements to extract or replace. Indices arenumeric or
character vectors or empty (missing) orNULL. Numeric values are coerced
to integer as byas.integer (and hence truncated towards zero). Character
vectors will be matched to thenames of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.

For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent.i, j, ... can also be negative integers, indicating
elements/slices to leave out of the selection.

When indexing arrays by[a single argumenti can be a matrix with as many
columns as there are dimensions ofx ; the result is then a vector with elements
corresponding to the sets of indices in each row ofi .

An index value ofNULL is treated as if it wereinteger(0) .

name A literal character string or aname(possiblybacktickquoted). For extraction,
this is normally (see under ‘Environments’) partially matched to thenames of
the object.

drop For matrices and arrays. IfTRUEthe result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement.

136 Extract

exact Controls possible partial matching of[[when extracting by a character vector
(for most objects, but see under ‘Environments’). The default value,NA, allows
partial matching, but issues a warning when it occurs. WhenTRUE, no par-
tial matching is performed. WhenFALSE, partial matching is allowed and no
warning is issued when it occurs.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
seeInternalMethodsas well as[.data.frame and[.factor . The descriptions here apply only
to the default methods. Note that separate methods are required for the replacement functions[<- ,
[[<- and$<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between[, [[and$ is that the[can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, seeis.recursive) objects.$ returnsNULL(with a warning) except for recursive
objects, and is only discussed in the section below on recursive objects. Its use on non-recursive
objects was deprecated inR 2.5.0 and will be removed inR 2.7.0.

Subsetting (except by an empty index) will drop all attributes exceptnames, dim anddimnames .

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part ofx is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed to
accept the values. Attributes are preserved (althoughnames, dim anddimnames will be adjusted
suitably). Subassignment is done sequentially, so if an index is specified more than once the latest
assigned value for an index will result.

Atomic vectors

The usual form of indexing is"[" . "[[" can be used to select a single element, but"[" can also
do so.

The index objecti can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (seefactor) and not by the character values which
are printed (for which use[as.character(i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes .

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unlessx is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing ak-dimensional array is to specifyk indices to[. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. An empty index (a
comma separated blank) indicates that all entries in that dimension are selected. The argument
drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix.NAand zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing anNAproduce anNAin the result.

Extract 137

A vector obtained by matrix indexing will be unnamed unlessx is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by[is similar to atomic vectors and selects a list of the specified element(s).

Both [[and$ select a single element of the list. The main difference is that$ does not allow com-
puted indices, whereas[[does.x$name is equivalent tox[["name", exact = FALSE]] .
Also, the partial matching behavior of[[can be controlled using theexact argument.

[and[[are sometimes applied to other recursive objects such ascalls andexpressions. Pairlists
are coerced to lists for extraction by[, but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single indexi is a vector of lengthp,
alist[[i]] is equivalent toalist[[i1]]...[[ip]] providing all but the final indexing
results in a list.

When$<- is applied to aNULL x, it first coercesx to list() . This is what also happens with
[[<- if the replacement valuevalue is of length greater than one: ifvalue has length 1 or 0,x
is first coerced to a zero-length vector of the type ofvalue .

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no
partial matching is done. The semantics of these operations are those ofget(i, env=x,
inherits=FALSE) . If no match is found thenNULL is returned. The replacement versions,
$<- and [[<- , can also be used. Again, only character arguments are allowed. The semantics
in this case are those ofassign(i, value, env=x, inherits=FALSE) . Such an assign-
ment will either create a new binding or change the existing binding inx .

NAs in indexing

When extracting, a numerical, logical or characterNA index picks an unknown element and so
returnsNAin the corresponding element of a logical, integer, numeric, complex or character result,
andNULL for a list. (It returns00 for a raw result.]

When replacing (that is using indexing on the lhs of an assignment)NAdoes not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome).

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. Som[j=2,i=1] is equivalent tom[2,1] and
not to m[1,2] .

This may not be true for methods defined for them; for example it is not true for thedata.frame
methods described in[.data.frame .

To avoid confusion, do not name index arguments (butdrop andexact must be named).

S4 methods

These operators are also S4 generic, but as primitives, S4 methods will be dispatched only on S4
objects.

S4 methods for$ will be passedname as a character vector: despite the message given by
getGeneric("$") you cannot usefully write methods based on the class ofname.

138 Extract

Character indices

Character indices can in some circumstances be partially matched (seepmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Beckeret al p.
358)),R has never used partial matching when extracting by[. Partial matching is currently used
by default for extraction by[[(see argumentexact).

Partial matching is used when extracting (only) from recursive objects (except environments) by$.
In that case, warnings can be switched on byoptions (warnPartialMatchAttr = TRUE) .

The intention is that neither empty ("") nor NA indices match any names, not even empty nor
missing names. If any object has no names or appropriate dimnames, they are taken as all"" and
so match nothing. The implementation for"" is currently incomplete (they do match empty names
in some circumstances), but such names should be avoided as this will be altered in future versions
of R.

Note

The documented behaviour of S is that anNA replacement index ‘goes nowhere’ but uses up an
element ofvalue (Beckeret alp. 359). However, that is not the current behaviour of S-PLUS.

The default forexact will becomeexact=TRUE in R 2.7.0: partial matching for$ will remain
the default.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, andpmatch for partial matching.

options (warnPartialMatchAttr = TRUE) causes partial matches in$name to give
warnings.

list , array , matrix .

[.data.frame and[.factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and theR Languagereference manual about indexing details.

Examples

x <- 1:12; m <- matrix(1:6, nrow=2); li <- list(pi=pi, e = exp(1))
x[10] # the tenth element of x
x <- x[-1] # delete the 1st element of x
m[1,] # the first row of matrix m
m[1, , drop = FALSE] # is a 1-row matrix
m[,c(TRUE,FALSE,TRUE)]# logical indexing
m[cbind(c(1,2,1),3:1)]# matrix index
m <- m[,-1] # delete the first column of m
li[[1]] # the first element of list li
y <- list(1,2,a=4,5)
y[c(3,4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(i <- 3.999999999) # "4" is printed
(1:5)[i] # 3

Extract.data.frame 139

recursive indexing into lists
z <- list(a=list(b=9, c='hello'), d=1:5)
unlist(z)
z[[c(1, 2)]]
z[[c(1, 2, 1)]] # both "hello"
z[[c("a", "b")]] <- "new"
unlist(z)

check $ and [[for environments
e1 <- new.env()
e1$a <- 10
e1[["a"]]
e1[["b"]] <- 20
e1$b
ls(e1)

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame':
x[i, j, drop =]
S3 replacement method for class 'data.frame':
x[i, j] <- value
S3 method for class 'data.frame':
x[[..., exact = NA]]
S3 replacement method for class 'data.frame':
x[[i, j]] <- value
S3 replacement method for class 'data.frame':
x$i <- value

Arguments

x data frame.

i, j, ... elements to extract or replace. For[and [[, these arenumeric or
character or, for [only, empty. Numeric values are coerced to integer as
if by as.integer . For replacement by[, a logical matrix is allowed. For
replacement by$, i is a name or literal character string.

drop logical. If TRUEthe result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, butnot to drop if only one row is
left.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. IfNULL, deletes the
column if a single column is selected.

exact logical: see[, and applies to column names.

140 Extract.data.frame

Details

Data frames can be indexed in several modes. When[and[[are used with a single index (x[i]
or x[[i]]), they index the data frame as if it were a list. In this usage adrop argument is ignored,
with a warning. Using$ is equivalent to using[[i, exact = FALSE]] .

When[and[[are used with two indices (x[i, j] andx[[i, j]]) they act like indexing a
matrix: [[can only be used to select one element.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names usingmake.unique . Similarly, column names will be transformed to be unique if
necessary (e.g. if columns are selected more than once, or if more than one column of a given name
is selected if the data frame has duplicate columns).

Whendrop = TRUE , this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can containNULLelements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing using[is not recommended, and barely supported. For extraction,x is first coerced
to a matrix. For replacement a logical matrix (only) can be used to select the elements to be replaced
in the same way as for a matrix.

Both [and[[extraction methods partially match row names.[[partially matches column names
(depending on the value ofexact : the default is to allow partial matches with a warning) whereas
[does not. If you want to do exact matching on row names usematch as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a matrix results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a ’missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result isNULL.

For [[a column of the data frame orNULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (orNULL).

For [<- , [[<- and$<- , a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has changed
duringR’s development. This section is a guide only.

When[and[[are used to add or replace a whole column, no coercion takes place butvalue will
be replicated (by calling the generic functionrep) to the right length if an exact number of repeats
can be used.

When[is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

Extract.data.frame 141

When[and[[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it isnot treated as a series of
columns (asdata.frame andas.data.frame do) but inserted as a single column.

Warning

The default behaviour when only onerow is left is equivalent to specifyingdrop = FALSE . To
drop from a data frame to a list,drop = TRUE has to be specified explicitly.

See Also

subset which is often easier for extraction,data.frame , Extract .

Examples

sw <- swiss[1:5, 1:4] # select a manageable subset

sw[1:3] # select columns
sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns
sw[1] # a one-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
sw[[1]] # the same

sw[1,] # a one-row data frame
sw[1,, drop=TRUE] # a list

sw["C",] # partially matches
sw[match("C", row.names(sw)),] # no exact match

swiss[c(1, 1:2),] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
sw

adding a column
sw["new1"] <- LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1:5] # ditto
sw[, "new3"] <- LETTERS[1:5] # ditto
sw$new4 <- 1:5
sapply(sw, class)
sw$new4 <- NULL # delete the column
sw
sw[6:8] <- list(letters[10:14], NULL, aa=1:5)
delete col7, update 6, append
sw

matrices in a data frame
A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters[1:9],3,3)))
A[1:3, "y"] # a matrix
A[1:3, "z"] # a matrix
A[, "y"] # a matrix

142 Extract.factor

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

S3 method for class 'factor':
x[..., drop = FALSE]
S3 method for class 'factor':
x[[...]]
S3 replacement method for class 'factor':
x[...] <- value

Arguments

x a factor

... a specification of indices – seeExtract .

drop logical. If true, unused levels are dropped.

value character: a set of levels. Factor values are coerced to character.

Details

When unused levels are dropped the ordering of the remaining levels is preserved.

If value is not in levels(x) , a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unlessdrop=TRUE .

The[[method supports argumentexact .

Value

A factor with the same set of levels asx unlessdrop=TRUE .

See Also

factor , Extract .

Examples

following example(factor)
(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
ff[, drop=TRUE]
factor(letters[7:10])[2:3, drop = TRUE]

Extremes 143

Extremes Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage

max(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)

pmax.int(..., na.rm = FALSE)
pmin.int(..., na.rm = FALSE)

Arguments

... numeric or character arguments (see Note).

na.rm a logical indicating whether missing values should be removed.

Details

max andmin return the maximum or minimum ofall the values present in their arguments, as
integer if all are logical or integer , asdouble if all are numeric, and character otherwise.

If na.rm is FALSEanNAvalue in any of the arguments will cause a value ofNA to be returned,
otherwiseNAvalues are ignored.

The minimum and maximum of a numeric empty set are+Inf and-Inf (in this order!) which
ensurestransitivity, e.g.,min(x1, min(x2)) == min(x1, x2) . For numericx max(x)
== -Inf andmin(x) == +Inf wheneverlength(x) == 0 (after removing missing values
if requested). However,pmax andpmin returnNA if all the parallel elements areNA even for
na.rm = TRUE .

pmax andpmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘parallel’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result
is the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs
are recycled if necessary.attributes (such asnames or dim) are transferred from the first
argument (if applicable).

pmax.int andpmin.int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordered.)

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments... should be unnamed, and
dispatch is on the first argument.

By definition the min/max of any vector containing anNaNis NaN, except that the min/max of any
vector containing anNAis NAeven if it also contains anNaN. Note thatmax(NA, Inf) == NA
even though the maximum would beInf whatever the missing value actually is.

144 Extremes

The max/min of an empty character vector is a characterNA. (One could argue that as"" is the
smallest character element, the maximum should be"" , but there is no obvious candidate for the
minimum.)

Value

Formin or max, a length-one vector. Forpmin or pmax, a vector of length the longest of the input
vectors.

The type of the result will be that of the highest of the inputs in the hierarchy integer < real <
character.

Formin andmax if there are only numeric inputs and all are empty (after possible removal ofNAs),
the result is double (Inf or -Inf).

S4 methods

max andmin are part of the S4Summary group generic. Methods for them must use the signature
x, ..., na.rm .

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons,NULL is accepted as equivalent tointeger(0) .

pmax and pmin will also work on classed objects with appropriate methods for comparison,
is.na andrep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) andwhich.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

‘plotmath’ for the use ofmin in plot annotation.

Examples

require(stats); require(graphics)
min(5:1, pi) #-> one number

pmin(5:1, pi) #-> 5 numbers

x <- sort(rnorm(100)); cH <- 1.35
pmin(cH, quantile(x)) # no names
pmin(quantile(x), cH) # has names
plot(x, pmin(cH, pmax(-cH, x)), type='b', main= "Huber's function")

factor 145

factor Factors

Description

The functionfactor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). Ifordered is TRUE, the factor levels are assumed to be ordered.
For compatibility with S there is also a functionordered .

is.factor , is.ordered , as.factor andas.ordered are the membership and coercion
functions for these classes.

Usage

factor(x = character(),
levels = sort(unique.default(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

Arguments

x a vector of data, usually taking a small number of distinct values.

levels an optional vector of the values thatx might have taken. The default is the set
of values taken byx , sorted into increasing order.

labels eitheran optional vector of labels for the levels (in the same order aslevels
after removing those inexclude), or a character string of length 1.

exclude a vector of values to be excluded when forming the set of levels. This should be
of the same type asx , and will be coerced if necessary.

ordered logical flag to determine if the levels should be regarded as ordered (in the order
given).

... (in ordered(.)): any of the above, apart fromordered itself.

Details

The type of the vectorx is not restricted.

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values inexclude are removed from
levels . If x[i] equalslevels[j] , then thei -th element of the result isj . If no match is
found forx[i] in levels , then thei -th element of the result is set toNA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those inexclude , but this can be altered by supplyinglabels . This should either be a set of

146 factor

new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor(x, exclude=NULL) applied to a factor is a no-operation unless there are unused lev-
els: in that case, a factor with the reduced level set is returned. Ifexclude is used it should also
be a factor with the same level set asx or a set of codes for the levels to be excluded.

The codes of a factor may containNA. For a numericx , setexclude=NULL to makeNAan extra
level ("NA"), by default the last level.

If "NA" is a level, the way to set a code to be missing is to useis.na on the left-hand-side of an
assignment. Under those circumstances missing values are printed as<NA>.

is.factor is generic: you can write methods to handle specific classes of objects, seeInternal-
Methods.

Value

factor returns an object of class"factor" which has a set of integer codes the length ofx with
a "levels" attribute of modecharacter . If ordered is true (orordered is used) the result
has classc("ordered", "factor") .

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see also[.factor for a more transparent way to achieve this.

is.factor returnsTRUEor FALSEdepending on whether its argument is of type factor or not.
Correspondingly,is.ordered returnsTRUEwhen its argument is ordered andFALSEotherwise.

as.factor coerces its argument to a factor. It is an abbreviated form offactor .

as.ordered(x) returnsx if this is ordered, andordered(x) otherwise.

Warning

The interpretation of a factor depends on both the codes and the"levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular,as.numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factorf to
its original numeric values,as.numeric(levels(f))[f] is recommended and slightly more
efficient thanas.numeric(as.character(f)) .

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

Comparison operators and group generic methods

There are"factor" and"ordered" methods for thegroup genericOps, which provide meth-
ods for theComparisonoperators. (The rest of the group and theMath andSummary groups
generate an error as they are not meaningful for factors.)

Only == and!= can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Sorting is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

file.access 147

Note

Storing character data as a factor is more efficient storage if there is even a small proportion of
repeats. On a 32-bit machine storing a string ofn bytes takes28 + 8d(n + 1)/8e bytes whereas
storing a factor code takes 4 bytes. (On a 64-bit machine 28 is replaced by 56 or more.) Only if they
were computed from the same values (or in some cases read from a file: seescan) will identical
strings share storage.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[.factor for subsetting of factors.

gl for construction of balanced factors andC for factors with specified contrasts.levels and
nlevels for accessing the levels, andunclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
as.integer(ff) # the internal codes
factor(ff) # drops the levels that do not occur
ff[, drop=TRUE] # the same, more transparently

factor(letters[1:20], labels="letter")

class(ordered(4:1)) # "ordered", inheriting from "factor"

suppose you want "NA" as a level, and to allowing missing values.
(x <- factor(c(1, 2, "NA"), exclude = ""))
is.na(x)[2] <- TRUE
x # [1] 1 <NA> NA, <NA> used because NA is a level.
is.na(x)
[1] FALSE TRUE FALSE
factor()

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access(names, mode = 0)

Arguments

names character vector containing file names.

mode integer specifying access mode required.

148 file.choose

Details

Tilde-expansion is done onnames: seepath.expand .

Themode value can be the exclusive or of the following values

0 test for existence.

1 test for execute permission.

2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not good to use this function to test before trying to open a file. On a multi-
tasking system, it is possible that the accessibility of a file will change between the time you call
file.access() and the time you try to open the file. It is better to wrap file open attempts in
try .

Value

An integer vector with values0 for success and-1 for failure.

Note

This is intended as a replacement for the S-PLUS functionaccess , a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value isfalse for
success.

See Also

file.info , try

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new = FALSE)

Arguments

new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.

file.info 149

Value

A character vector of length one giving the file path.

See Also

list.files for non-interactive selection.

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

... character vectors containing file paths.

Details

The file paths are tilde-expanded: seepath.expand .

What is meant by ‘file access’ and hence the last access time is system-dependent.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logicalor of read
(4), write (2) and execute/search (1) permissions.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

A data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class"octmode" . The file permissions, printed in octal, for example
644 .

mtime, ctime, atime
integer of class"POSIXct" : file modification, creation and last access times.

uid integer: the user ID of the file’s owner.

gid integer: the group ID of the file’s group.

uname character:uid interpreted as a user name.

grname character:gid interpreted as a group name.

Unknown user and group names will beNA.

Entries for non-existent or non-readable files will beNA. The uid , gid , uname and grname
columns may not be supplied on a non-POSIX Unix system.

150 file.path

Note

Some (broken) systems allow files of more than 2Gb to be created but not accessed by thestat
system call. Such files will show up as non-readable (and very likely not be readable by any ofR’s
input functions).

See Also

files , file.access , list.files , andDateTimeClasses for the date formats.

Examples

ncol(finf <- file.info(dir()))# at least six
Not run: finf # the whole list
Those that are more than 100 days old :
finf[difftime(Sys.time(), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep = .Platform$file.sep)

Arguments

... character vectors.

fsep the path separator to use.

Value

A character vector of the arguments concatenated term-by-term and separated byfsep if all argu-
ments have positive length; otherwise, an empty character vector.

file.show 151

file.show Display One or More Files

Description

Display one or more files.

Usage

file.show(..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption("pager"),
encoding = "")

Arguments

... one or more character vectors containing the names of the files to be displayed.
These will be tilde-expanded: seepath.expand .

header character vector (of the same length as the number of files specified in...)
giving a header for each file being displayed. Defaults to empty strings.

title an overall title for the display. If a single separate window is used for the display,
title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.

pager the pager to be used.

encoding character string giving the encoding to be assumed for the file(s).

Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such aspage .

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by thepager argument, which is a character vector specifying a system
command (usuallyless) to run on the set of files.

Most GUI systems will use a separate pager window for each file, and let the user leave it up while
R continues running. The selection of such pagers could either be done using special pager names
being intercepted by lower-level code (such as"internal" and"console" on Windows), or
by letting pager be an R function which will be called with the same first four arguments as
file.show and take care of interfacing to the GUI.

Not all implementations will honourdelete.file .

Author(s)

Ross Ihaka, Brian Ripley.

See Also

files , list.files , help .

152 files

Examples

file.show(file.path(R.home("doc"), "COPYRIGHTS"))

files File and Directory Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create(...)
file.exists(...)
file.remove(...)
file.rename(from, to)
file.append(file1, file2)
file.copy(from, to, overwrite = FALSE)
file.symlink(from, to)
dir.create(path, showWarnings = TRUE, recursive = FALSE)

Arguments

..., file1, file2, from, to
character vectors, containing file names or paths.

path a character vector containing a single path name.

overwrite logical; should the destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical: should elements of the path other than the last be created? If true, like
Unix’s mkdir -p .

Details

The ... arguments are concatenated to form one character string: you can specify the files sepa-
rately or as one vector. All of these functions expand path names: seepath.expand .

file.create creates files with the given names if they do not already exist and truncates them
if they do.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’sstat call: a file will be reported as existing only if you
have the permissions needed bystat . Existence can also be checked byfile.access , which
might use different permissions and so obtain a different result. Note that the existence of a file
does not imply that it is readable: for that usefile.access .)

file.remove attempts to remove the files named in its argument.

file.rename attempts to rename a single file.

file.append attempts to append the files named by its second argument to those named by its
first. TheR subscript recycling rule is used to align names given in vectors of different lengths.

findInterval 153

file.copy works in a similar way tofile.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unlessoverwrite = TRUE . The
to argument can specify a single existing directory.

file.symlink makes symbolic links on those Unix-like platforms which support them. Theto
argument can specify a single existing directory.

dir.create creates the last element of the path, unlessrecursive = TRUE . Trailing path
separators are removed.

Value

dir.create andfile.rename return a logical, true for success.

The remaining functions return a logical vector indicating which operation succeeded for each of
the files attempted.

dir.create will return failure if the directory already exists.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info , file.access , file.path , file.show , list.files , unlink ,
basename , path.expand .

file_test .

Examples

cat("file A\n", file="A")
cat("file B\n", file="B")
file.append("A", "B")
file.create("A")
file.append("A", rep("B", 10))
if(interactive()) file.show("A")
file.copy("A", "C")
dir.create("tmp")
file.copy(c("A", "B"), "tmp")
list.files("tmp")
setwd("tmp")
file.remove("B")
file.symlink(file.path("..", c("A", "B")), ".")
setwd("..")
unlink("tmp", recursive=TRUE)
file.remove("A", "B", "C")

findInterval Find Interval Numbers or Indices

Description

Find the indices ofx in vec , where vec must be sorted (non-decreasingly); i.e., ifi <-
findInterval(x,v) , we havevij

≤ xj < vij+1 wherev0 := −∞, vN+1 := +∞, andN
<- length(vec) . At the two boundaries, the returned index may differ by 1, depending on the
optional argumentsrightmost.closed andall.inside .

154 findInterval

Usage

findInterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments

x numeric.

vec numeric, sorted (weakly) increasingly, of lengthN, say.
rightmost.closed

logical; if true, the rightmost interval,vec[N-1] .. vec[N] is treated as
closed, see below.

all.inside logical; if true, the returned indices are coerced into{1, . . . , N − 1}, i.e., 0 is
mapped to 1 andN toN − 1.

Details

The functionfindInterval finds the index of one vectorx in another,vec , where the lat-
ter must be non-decreasing. Where this is trivial, equivalent toapply(outer(x, vec,
">="), 1, sum) , as a matter of fact, the internal algorithm uses interval search ensuring
O(n logN) complexity wheren <- length(x) (andN <- length(vec)). For (almost)
sortedx , it will be even faster, basicallyO(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval(t, sort(X)) is identical to nFn(t;X1, . . . , Xn) whereFn is the empirical
distribution function ofX1, . . . , Xn.

Whenrightmost.closed = TRUE , the result forx[j] = vec[N] (= max(vec)), is N -
1 as for all other values in the last interval.

Value

vector of lengthlength(x) with values in0:N (andNA) whereN <- length(vec) , or val-
ues coerced to1:(N-1) if and only if all.inside = TRUE (equivalently coercing all x values
insidethe intervals). Note thatNAs are propagated fromx , andInf values are allowed in bothx
andvec .

Author(s)

Martin Maechler

See Also

approx (*, method = "constant") which is a generalization offindInterval() ,
ecdf for computing the empirical distribution function which is (up to a factor ofn) also basi-
cally the same as findInterval(.).

Examples

N <- 100
X <- sort(round(stats::rt(N, df=2), 2))
tt <- c(-100, seq(-2,2, len=201), +100)
it <- findInterval(tt, X)
tt[it < 1 | it >= N] # only first and last are outside range(X)

force 155

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force(x)

Arguments

x a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of otherpromises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implementslazy evaluation.)

Examples

f <- function(y) function() y
lf <- vector("list", 5)
for (i in seq(along = lf)) lf[[i]] <- f(i)
lf[[1]]() # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)
for (i in seq(along = lg)) lg[[i]] <- g(i)
lg[[1]]() # returns 1

This is identical to
g <- function(y) { y; function() y }

156 Foreign

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded intoR.

Usage

.C(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.Fortran(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)

.External(name, ..., PACKAGE)
.Call(name, ..., PACKAGE)

.External.graphics(name, ..., PACKAGE)
.Call.graphics(name, ..., PACKAGE)

Arguments

name a character string giving the name of a C function or Fortran subroutine, or an
object of class" NativeSymbolInfo " or " NativeSymbol " referring to
such a name.

... arguments to be passed to the foreign function.

NAOK if TRUEthen anyNAor NaNor Inf values in the arguments are passed on to
the foreign function. IfFALSE, the presence ofNA or NaNor Inf values is
regarded as an error.

DUP if TRUEthen arguments are duplicated before their address is passed to C or
Fortran.

PACKAGE if supplied, confine the search for thename to the DLL given by this argument
(plus the conventional extension,.so , .sl , .dll , . . .). This is intended to add
safety for packages, which can ensure by using this argument that no other pack-
age can override their external symbols. UsePACKAGE="base" for symbols
linked in toR.

ENCODING optional name for an encoding to be assumed for character vectors. See ‘De-
tails’.

Details

The functions.C and.Fortran can be used to make calls to compiled C and Fortran code.

.External and.External.graphics can be used to call compiled code that usesR objects
in the same way as internalR functions.

.Call and .Call.graphics can be used to call compiled code which makes use of internal
R objects. The arguments are passed to the C code as a sequence ofR objects. It is included to
provide compatibility with S version 4.

SpecifyingENCODINGoverrrides any declared encodings (seelink{Encoding}) which are
otherwise used to translate to the current locale before passing the strings to the compiled code.

For details about how to write code to use with.Call and.External , see the chapter on “Sys-
tem and foreign language interfaces” in the “WritingR Extensions” manual.

Foreign 157

Value

The functions.C and.Fortran return a list similar to the... list of arguments passed in, but
reflecting any changes made by the C or Fortran code.

.External , .Call , .External.graphics , and.Call.graphics return anR object.

These calls are typically made in conjunction withdyn.load which links DLLs toR.

The .graphics versions of.Call and.External are used when calling code which makes
low-level graphics calls. They take additional steps to ensure that the device driver display lists are
updated correctly.

Argument types

The mapping of the types ofR arguments to C or Fortran arguments in.C or .Fortran is

R C Fortran
integer int * integer
numeric double * double precision
– or – float * real
complex Rcomplex * double complex
logical int * integer
character char ** [see below]
raw unsigned char * not allowed
list SEXP * not allowed
other SEXP not allowed

Numeric vectors inR will be passed as typedouble * to C (and asdouble precision to
Fortran) unless (i).C or .Fortran is used, (ii)DUPis true and (iii) the argument has attribute
Csingle set toTRUE(useas.single or single). This mechanism is only intended to be
used to facilitate the interfacing of existing C and Fortran code.

The C typeRcomplex is defined in ‘Complex.h’ as a typedef struct {double r;
double i;} . Fortran typedouble complex is an extension to the Fortran standard, and the
availability of a mapping ofcomplex to Fortran may be compiler dependent.

Note: The C types corresponding tointeger and logical are int , not long as in S. This
difference matters on 64-bit platforms.

The first character string of a character vector is passed as a C character array to Fortran: that
string may be usable ascharacter*255 if its true length is passed separately. Only up to 255
characters of the string are passed back. (How well this works, or even if it works at all, depends on
the C and Fortran compilers and the platform.)

Missing (NA) string values are passed to.C as the string "NA". As the Cchar type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA" . If this distinction is important use.Call .

Functions, expressions, environments and other language elements are passed as the internalR
pointer typeSEXP. This type is defined in ‘Rinternals.h’ or the arguments can be declared as
generic pointers,void * . Lists are passed as C arrays ofSEXPand can be declared asvoid *
or SEXP *. Note that you cannot assign values to the elements of the list within the C routine.
Assigning values to elements of the array corresponding to the list bypasses R’s memory manage-
ment/garbage collection and will cause problems. Essentially, the array corresponding to the list is
read-only. If you need to return S objects created within the C routine, use the.Call interface.

R functions can be invoked usingcall_S or call_R and can be passed lists or the simple types
as arguments.

158 Foreign

Warning

DUP=FALSEis dangerous.

There are two dangers with usingDUP=FALSE.

The first is that if you pass a local variable to.C /.Fortran with DUP=FALSE, your compiled
code can alter the local variable and not just the copy in the return list. Worse, if you pass a local
variable that is a formal parameter of the calling function, you may be able to change not only the
local variable but the variable one level up. This will be very hard to trace.

The second is that lists are passed as a singleR SEXPwith DUP=FALSE, not as an array ofSEXP.
This means the accessor macros in ‘Rinternals.h’ are needed to get at the list elements and the lists
cannot be passed tocall_S /call_R . New code usingR objects should be written using.Call
or .External , so this is now only a minor issue.

In addition, character vectors and lists cannot be used withDUP=FALSE.

It is safe and useful to setDUP=FALSEif you do not change any of the variables that might be
affected, e.g.,

.C("Cfunction", input=x, output=numeric(10)) .

In this case the output variable did not exist before the call so it cannot cause trouble. If the input
variable is not changed in the C code ofCfunction you are safe.

Neither .Call nor .External copy their arguments. You should treat arguments you receive
through these interfaces as read-only.

Fortran symbol names

All compilers that can be used withR map symbol names to lower case, and so does.Fortran .

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers (includingg77) will allow them but translate them in a different
way to names not containing underscores. Such names will work with.Fortran , but portable
code should not use Fortran names containing underscores.

Use.Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran compiler used when configuringR, especially if the subroutine name
is not lower-case or includes an underscore.

Header files for external code

Writing code for use with.External and .Call will need to use internalR structures. If
possible use just those defined in ‘Rinternals.h’ and/or the macros in ‘Rdefines.h’, as other header
files are not installed and are even more likely to be changed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (.C and.Fortran .)

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer. (.Call .)

See Also

dyn.load .

formals 159

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun, envir = environment(fun)) <- value

Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value a list (or pairlist) ofR expressions.

Details

For the first form,fun can also be a character string naming the function to be manipulated, which
is searched for from the parent environment. If it is not specified, the function callingformals is
used.

Only closureshave formals, not primitive functions.

Value

formals returns the formal argument list of the function specified, as apairlist , or NULL for
a non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function.

See Also

args for a human-readable version,alist , body , function .

Examples

require(stats); require(graphics)
length(formals(lm)) # the number of formal arguments
names(formals(boxplot)) # formal arguments names

f <- function(x) a+b
formals(f) <- alist(a=,b=3) # function(a,b=3)a+b
f(2) # result = 5

160 format

format Encode in a Common Format

Description

Format anR object for pretty printing.

Usage

format(x, ...)

Default S3 method:
format(x, trim = FALSE, digits = NULL, nsmall = 0,

justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,
big.mark = "", big.interval = 3,

small.mark = "", small.interval = 5,
decimal.mark = ".", zero.print = NULL, ...)

S3 method for class 'data.frame':
format(x, ..., justify = "none")

S3 method for class 'factor':
format(x, ...)

S3 method for class 'AsIs':
format(x, width = 12, ...)

Arguments

x anyR object (conceptually); typically numeric.

trim logical; if FALSE, logical, numeric and complex values are right-justified to a
common width: ifTRUEthe leading blanks for justification are suppressed.

digits how many significant digits are to be used for numeric and complexx . The
default, NULL, usesgetOption (digits) . This is a suggestion: enough
decimal places will be used so that the smallest (in magnitude) number has this
many significant digits, and also to satisfynsmall . (For the interpretation for
complex numbers seesignif .)

nsmall the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are0 <=
nsmall <= 20 .

justify should acharactervector be left-justified (the default), right-justified, centred
or left alone.

width default method: theminimumfield width orNULLor 0 for no restriction.

AsIs method: themaximumfield width for non-character objects.NULL cor-
responds to the default 12.

na.encode logical: shouldNAstrings be encoded?

format 161

scientific Either a logical specifying whether elements of a real or complex vec-
tor should be encoded in scientific format, or an integer penalty (see
options ("scipen") . Missing values correspond to the current default
penalty.

... further arguments passed to or from other methods.
big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print

used for prettying longer decimal sequences, passed toprettyNum : that help
page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods for
dates (seeformat.Date), date-times (seeformat.POSIXct)) and for other classes such as
format.octmode andformat.dist .

format.data.frame formats the data frame column by column, applying the appropriate
method offormat for each column. Methods for columns are often similar toas.character
but offer more control. Matrix and data-frame columns will be converted to separate columns in the
result, and character columns (normally all) will be given class" AsIs " .

format.factor converts the factor to a character vector and then calls the default method (and
so justify applies).

format.AsIs deals with columns of complicated objects that have been extracted from a data
frame. Character objects are passed to the default method (and sowidth does not apply). Other-
wise it callstoString to convert the object to character (if a vector or list, element by element)
and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods) is
done on display width (seenchar), taking double-width characters and the rendering of special
characters (as escape sequences, including escaping backslash: seeprint.default) into ac-
count. Character strings are padded with blanks to the display width of the widest. (Ifna.encode
= FALSE missing character strings are not included in the width computations and are not en-
coded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least thedigit significant digits. However, if all the elements then have trailing
zeroes, the number of decimal places is reduced until at least one element has a non-zero final digit.

Raw vectors are converted to their 2-digit hexadecimal representation byas.character .

Value

An object of similar structure tox containing character representations of the elements of the first
argumentx in a common format.

For numeric or complexx , dims and dimnames are preserved on matrices/arrays and names on
vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applyingformat.default(x, ...)
to each element of the list (afterunlist ing elements which are themselves lists), and then col-
lapsing the result for each element withpaste(collapse = ", ") . The defaults in this case
are trim = TRUE, justify = "none" since one does not usually want alignment in the
collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

162 format.Date

See Also

format.info indicates how an atomic vector would be formatted.

formatC , paste , as.character , sprintf , print , toString , encodeString .

Examples

format(1:10)
format(1:10, trim = TRUE)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)
format(zz)
format(zz, justify = "left")

use of nsmall
format(13.7)
format(13.7, nsmall = 3)
format(c(6.0, 13.1), digits = 2)
format(c(6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format(2^31-1)
format(2^31-1, scientific = TRUE)

a list
z <- list(a=letters[1:3], b=(-pi+0i)^((-2:2)/2), c=c(1,10,100,1000),

d=c("a", "longer", "character", "string"))
format(z, digits = 2)
format(z, digits = 2, justify = "left", trim = FALSE)

format.Date Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class"Date" representing
calendar dates.

Usage

as.Date(x, ...)
S3 method for class 'character':
as.Date(x, format = "", ...)

S3 method for class 'Date':
format(x, ...)

S3 method for class 'Date':
as.character(x, ...)

format.Date 163

Arguments

x An object to be converted.

format A character string. The default is"%Y-%m-%d". For details seestrftime .

... Further arguments to be passed from or to other methods, includingformat
for as.character andas.Date methods.

Details

The usual vector re-cycling rules are applied tox andformat so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logicalNA and objects of classes
" POSIXlt " and " POSIXct " . (The last are converted to days by ignoring the time after mid-
night in the representation of the time in UTC.) Also objects of class"date" (from packagedate
or survival) and"dates" (from packagechron). Character strings are processed as far as neces-
sary for the format specified: any trailing characters are ignored.

See the examples for how to convert a day given as the number of days since an epoch.

Theformat andas.character methods ignore any fractional part of the date.

Value

Theformat andas.character methods return a character vector representing the date.

Theas.Date methods return an object of class" Date " .

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as"2001-02-03" .

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc ’) are unreliable and guess at
the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

References

International Organization for Standardization (2004, 1988, 1997, . . .)ISO 8601. Data elements
and interchange formats – Information interchange – Representation of dates and times.For
links to versions available on-line see (at the time of writing)http://www.qsl.net/g1smd/
isopdf.htm ; for information on the current official version, seehttp://www.iso.org/
iso/en/prods-services/popstds/datesandtime.html .

See Also

Datefor details of the date class;locales to query or set a locale.

Your system’s help pages onstrftime andstrptime to see how to specify their formats.

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

164 format.info

Examples

locale-specific version of the date
format(Sys.Date(), "%a %b %d")

read in date info in format 'ddmmmyyyy'
This will give NA(s) in some locales; setting the C locale
as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")
z <- as.Date(x, "%d%b%Y")
Sys.setlocale("LC_TIME", lct)
z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date(dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date("1900-01-01") + 32768

format.info format(.) Information

Description

Information is returned on howformat (x, digits, nsmall) would be formatted.

Usage

format.info(x, digits = NULL, nsmall = 0)

Arguments

x an atomic vector; a potential argument offormat (x, ...) .

digits how many significant digits are to be used for numeric and complexx . The
default,NULL, usesgetOption (digits) .

nsmall (seeformat (..., nsmall)).

Value

An integer vector of length 1, 3 or 6, sayr .

For logical, integer and character vectors a single element, the width which would be used by
format if width = NULL .

For numeric vectors:

r[1] width (in characters) used byformat(x)

r[2] number of digits after decimal point.

r[3] in 0:2 ; if ≥1, exponentialrepresentation would be used, with exponent length
of r[3]+1 .

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

format.pval 165

See Also

format , formatC .

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following
format.info(123) # 3 0 0
format.info(pi) # 8 6 0
format.info(1e8) # 5 0 1 - exponential "1e+08"
format.info(1e222) # 6 0 2 - exponential "1e+222"

x <- pi*10^c(-10,-2,0:2,8,20)
names(x) <- formatC(x, width=1, digits=3, format="g")
cbind(sapply(x,format))
t(sapply(x, format.info))

using at least 8 digits right of "."
t(sapply(x, format.info, nsmall = 8))

Reset old options:
options(dd)

format.pval Format P Values

Description

format.pval is intended for formatting p-values.

Usage

format.pval(pv, digits = max(1, getOption("digits") - 2),
eps = .Machine$double.eps, na.form = "NA")

Arguments

pv a numeric vector.

digits how many significant digits are to be used.

eps a numerical tolerance: see ‘Details’.

na.form character representation ofNAs.

Details

format.pval is mainly an auxiliary function forprint.summary.lm etc., and does separate
formatting for fixed, floating point and very small values; those less thaneps are formatted as"<
[eps]" (where ‘[eps]’ stands forformat(eps, digits)).

Value

A character vector.

166 formatC

Examples

format.pval(c(stats::runif(5), pi^-100, NA))
format.pval(c(0.1, 0.0001, 1e-27))

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, usingCstyle format specifications.

Usage

formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3,

small.mark = "", small.interval = 5,
decimal.mark = ".", preserve.width = "individual")

prettyNum(x, big.mark = "", big.interval = 3,
small.mark = "", small.interval = 5,
decimal.mark = ".",
preserve.width = c("common", "individual", "none"),
zero.print = NULL, ...)

Arguments

x an atomic numerical or character object, typically a vector of real numbers.

digits the desired number of digits after the decimal point (format = "f") or sig-
nificantdigits (format = "g" , = "e" or = "fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6 digits
is used. If specified as more than 50, 50 will be used with a warning. (Not more
than about 15 digits will be significant, and this limit is just a precaution against
segfaults in the underlying C runtime.)

width the total field width; if bothdigits and width are unspecified,width
defaults to 1, otherwise todigits + 1 . width = 0 will use width =
digits , width < 0 means left justify the number in this field (equivalent to
flag ="-"). If necessary, the result will have more characters thanwidth .

format equal to"d" (for integers),"f" , "e" , "E" , "g" , "G" , "fg" (for reals), or
"s" (for strings). Default is"d" for integers,"g" for reals.

"f" gives numbers in the usualxxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format);"g" and"G" put x[i] into
scientific format only if it saves space to do so.

"fg" uses fixed format as"f" , butdigits as the minimum number ofsignif-
icant digits. That this can lead to quite long result strings, see examples below.
Note that unlikesignif this prints large numbers with more significant digits
thandigits .

formatC 167

flag For formatC , a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243)."0" pads leading zeros;"-" does left adjustment,
others are"+" , " " , and"#" . There can be more than one of these, in any
order.

mode "double" (or "real"), "integer" or "character" . Default: Deter-
mined from the storage mode ofx .

big.mark character; if not empty used as mark between everybig.interval decimals
before(hencebig) the decimal point.

big.interval seebig.mark above; defaults to 3.

small.mark character; if not empty used as mark between everysmall.interval deci-
malsafter (hencesmall) the decimal point.

small.interval
seesmall.mark above; defaults to 5.

decimal.mark the character to be used to indicate the numeric decimal point.
preserve.width

string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added."common" , the
default, corresponds toformat -like behavior whereas"individual" is the
default informatC() .

zero.print logical, character string orNULLspecifying if and howzerosshould be format-
ted specially. Useful for pretty printing ‘sparse’ objects.

... arguments passed toformat .

Details

If you setformat it overrides the setting ofmode, soformatC(123.45, mode="double",
format="d") gives123 .

The rendering of scientific format is platform-dependent: some systems usen.ddde+nnn or
n.dddenn rather thann.ddde+nn .

formatC does not necessarily align the numbers on the decimal point, soformatC(c(6.11,
13.1), digits=2, format="fg") givesc("6.1", " 13") . If you want common for-
matting for several numbers, useformat .

prettyNum is the utility function for prettifyingx . If x is not a character,format(x[i],
...) is applied to each element, and then it is left unchanged if all the other arguments are at their
defaults. Note thatprettyNum(x) may behave unexpectedly ifx is a character vector not
resulting from something likeformat(<number>) : in particular it assumes that a period is a
decimal mark.

Value

A character object of same size and attributes asx . Unlike format , each number is formatted
individually. Looping over each element ofx , the C functionsprintf(...) is called (inside the
C functionstr_signif).

formatC : for characterx , do simple (left or right) padding with white space.

Author(s)

formatC was originally written by Bill Dunlap, later much improved by Martin Maechler. It was
first adapted forR by Friedrich Leisch.

168 formatDL

References

Kernighan, B. W. and Ritchie, D. M. (1988)The C Programming Language.Second edition. Pren-
tice Hall.

See Also

format .

sprintf for more general C like formatting.

Examples

xx <- pi * 10^(-5:4)
cbind(format(xx, digits=4), formatC(xx))
cbind(formatC(xx, width = 9, flag = "-"))
cbind(formatC(xx, digits = 5, width = 8, format = "f", flag = "0"))
cbind(format(xx, digits=4), formatC(xx, digits = 4, format = "fg"))

formatC(c("a", "Abc", "no way"), width = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), width=8, digits=1)

xx <- c(1e-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)
1 2 3 4 5 6
formatC(xx)
formatC(xx, format="fg") # special "fixed" format.
formatC(xx, format="f", digits=80) #>> also long strings

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:
prettyNum(r, big.mark = ",")
Some Europeans:
prettyNum(r, big.mark = "'", decimal.mark = ",")

(dd <- sapply(1:10, function(i)paste((9:0)[1:i],collapse="")))
prettyNum(dd, big.mark="'")

examples of 'small.mark'
pN <- stats::pnorm(1:7, lower.tail = FALSE)
cbind(format (pN, small.mark = " ", digits = 15))
cbind(formatC(pN, small.mark = " ", digits = 17, format = "f"))

cbind(ff <- format(1.2345 + 10^(0:5), width = 11, big.mark = "'"))
all with same width (one more than the specified minimum)

individual formatting to common width:
fc <- formatC(1.234 + 10^(0:8), format="fg", width=11, big.mark = "'")
cbind(fc)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

function 169

Usage

formatDL(x, y, style = c("table", "list"),
width = 0.9 * getOption("width"), indent = NULL)

Arguments

x a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.

y a vector of the same length asx with the corresponding descriptions. Only used
if x does not already give the descriptions.

style a character string specifying the rendering style of the description information.
If "table" , a two-column table with items and descriptions as columns is
produced (similar to Texinfo’s@table environment. If"list" , a LaTeX-
style tagged description list is obtained.

width a positive integer giving the target column for wrapping lines in the output.

indent a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2 , and defaults towidth/3 for table style andwidth/9 for list style.

Details

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more thanindent - 3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

Examples

Use R to create the 'INDEX' for package 'splines' from its 'CONTENTS'
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))
x <- as.data.frame(x)
writeLines(formatDL(x$Entry, x$Description))
or equivalently: writeLines(formatDL(x))
Same information in tagged description list style:
writeLines(formatDL(x$Entry, x$Description, style = "list"))
or equivalently: writeLines(formatDL(x, style = "list"))

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in theR language.

170 function

Usage

function(arglist) expr
return(value)

Arguments

arglist Empty or one or more name or name=expression terms.

value An expression.

Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote’).

If value is missing,NULL is returned. If it is a single expression, the value of the evaluated
expression is returned.

If the end of a function is reached without callingreturn , the value of the last evaluated expression
is returned.

Warning

Prior toR 1.8.0,value could be a series of non-empty expressions separated by commas. In that
case the value returned is a list of the evaluated expressions, with names set to the expressions where
these are the names ofR objects. That is,a=foo() names the list componenta and gives it the
value which results from evaluatingfoo() .

This has been deprecated (and a warning is given), as it was never documented in S, and whether or
not the list is named differs by S versions. Supply a (named) listvalue instead.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

args andbody for accessing the arguments and body of a function.

debug for debugging; usinginvisible insidereturn(.) for returninginvisibly.

Examples

norm <- function(x) sqrt(x%*%x)
norm(1:4)

An anonymous function:
(function(x,y){ z <- x^2 + y^2; x+y+z })(0:7, 1)

funprog 171

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reduce uses a binary function to successively combine the elements of a given vector and a pos-
sibly given initial value.Filter extracts the elements of a vector for which a predicate (logical)
function gives true.Mapapplies a function to the corresponding elements of given vectors.

Usage

Reduce(f, x, init, right = FALSE, accumulate = FALSE)
Filter(f, x)
Map(f, ...)

Arguments

f a function of the appropriate arity (binary forReduce , unary forFilter , k-
ary forMap if this is called withk arguments.

x a vector.

init anR object of the same kind as the elements ofx .

right a logical indicating whether reduction should proceed from left to right (left-
associative, default) or from right to left.

accumulate a logical indicating whether the successive combinations should be accumu-
lated. By default, only the final combination is used.

... vectors.

Details

If init is given,Reduce logically adds it to the start (when proceeding left to right) or the end
of x , respectively. If this possibly augmented vectorv hasn > 1 elements,Reduce successively
appliesf to the elements ofv from left to right or right to left, respectively. I.e., a left reduce
computesl1 = f(v1, v2), l2 = f(l1, v3), etc., and returnsln−1 = f(ln−2, vn), and a right reduce
doesrn−1 = f(vn−1, vn), rn−2 = f(vn−2, rn−1) and returnsr1 = f(v1, r2). (E.g., if v is the
sequence (2, 3, 4) andf is division, left and right reduce give(2/3)/4 = 1/6 and2/(3/4) = 8/3,
respectively.) Ifv has only a single element, this is returned; if there are no elements,NULL is
returned. Thus, it is ensured thatf is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

Reduce is patterned after Common Lisp’sreduce . A reduce is also known as a fold (e.g., in
Haskell) or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version
corresponds to Haskell’s scan functions.

Filter applies the unary predicate functionf to each element ofx , coercing to logical if neces-
sary, and returns the subset ofx for which this gives true. Note that possibleNAvalues are currently
always taken as false; control overNAhandling may be added in the future.Filter corresponds
to filter in Haskell orremove-if-not in Common Lisp.

Map is a simple wrapper tomapply which does not attempt to simplify the result, similar to
Common Lisp’smapcar (with arguments being recycled, however). Future versions may allow
some control of the result type.

172 gc

Examples

A general-purpose adder:
add <- function(x) Reduce("+", x)
add(list(1, 2, 3))
Like sum(), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.
More generally, many generics meant to work on arbitrarily many
arguments can be defined via reduction:
FOO <- function(...) Reduce(FOO2, list(...))
FOO2 <- function(x, y) UseMethod("FOO2")
FOO() methods can then be provided via FOO2() methods.

A general-purpose cumulative adder:
cadd <- function(x) Reduce("+", x, accumulate = TRUE)
cadd(seq_len(7))

A simple function to compute continued fractions:
cfrac <- function(x) Reduce(function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:
cfrac(c(3, 7, 15, 1, 292))
Continued fraction approximation for Euler's number (e):
cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log(exp(acos(cos(0))
Reduce(Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)

function(x) Reduce(Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate(function(x) 1 + 1 / x, 30)(1)
which is the same as
cfrac(rep.int(1, 31))
Computing square root approximations for x as fixed points of the
function t |-> (t + x / t) / 2, as a function of the initial value:
asqrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)
asqrt(2, 30)(10) # Starting from a positive value => +sqrt(2)
asqrt(2, 30)(-1) # Starting from a negative value => -sqrt(2)

A list of all functions in the base environment:
funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names(Filter(function(f) length(formals(args(f))) > 10, funs))
Number of functions in base with a '...' argument:
length(Filter(function(f)

any(names(formals(args(f))) %in% "..."),
funs))

gc Garbage Collection

gc 173

Description

A call of gc causes a garbage collection to take place.gcinfo sets a flag so that automatic collec-
tion is either silent (verbose=FALSE) or prints memory usage statistics (verbose=TRUE).

Usage

gc(verbose = getOption("verbose"), reset=FALSE)
gcinfo(verbose)

Arguments

verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.

reset logical; if TRUEthe values for maximum space used are reset to the current
values.

Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of callinggc is for the report on memory usage.

However, it can be useful to callgc after a large object has been removed, as this may promptR to
return memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of"Vcells" , a relict of an
earlier allocator (that used a vector heap).

Whengcinfo(TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0) ...
6.4 Mbytes of cons cells used (58
2.0 Mbytes of vectors used (32

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows"Ncells" (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and"Vcells" (vector cells, 8 bytes each), and columns"used" and
"gc trigger" , each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either"Ncells" or "Vcells" , a fifth column is printed giving the
current limits in Mb (withNAdenoting no limit).

The final two columns show the maximum space used since the last call togc(reset=TRUE) (or
sinceR started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.

Memory onR’s memory management, andgctorture if you are anR developer.

reg.finalizer for actions to happen at garbage collection.

174 gc.time

Examples

gc() #- do it now
gcinfo(TRUE) #-- in the future, show when R does it
x <- integer(100000); for(i in 1:18) x <- c(x,i)
gcinfo(verbose = FALSE)#-- don't show it anymore

gc(TRUE)

gc(reset=TRUE)

gc.time Report Time Spent in Garbage Collection

Description

This function reports the time spent in garbage collection so far in theR session while GC timing
was enabled.

Usage

gc.time(on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Warnings

This is experimental functionality, likely to be removed as soon as the next release.

The timings are rounded up by the sampling interval for timing processes, and so are likely to be
over-estimates.

See Also

gc , proc.time for the timings for the session.

Examples

gc.time()

gctorture 175

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makesR runveryslowly, unfortunately.

Usage

gctorture(on = TRUE)

Arguments

on logical; turning it on/off.

Value

Previous value.

Author(s)

Peter Dalgaard

get Return the Value of a Named Object

Description

Search for anR object with a given name and return it.

Usage

get(x, pos = -1, envir = as.environment(pos), mode = "any",
inherits = TRUE)

mget(x, envir, mode = "any",
ifnotfound = list(function(x)

stop(paste("value for '", x, "' not found", sep = ""),
call. = FALSE)),

inherits = FALSE)

176 get

Arguments

x a variable name (given as a character string).

pos where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in; see the ‘Details’ section.

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

ifnotfound A list of values to be used if the item is not found: it will be coerced to list if
necessary.

Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in thesearch list); as the character string name of an element
in the search list; or as anenvironment (including usingsys.frame to access the currently
active function calls). Theenvir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the namex has a value bound to it in the specified environment. If
inherits is TRUEand a value is not found forx in the specified environment, the enclosing
frames of the environment are searched until the namex is encountered. Seeenvironment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour forR but not for S.

If mode is specified then only objects of that type are sought. Themode may specify one of the
collections"numeric" and"function" (seemode): any member of the collection will suffice.

Using aNULLenvironment is equivalent to using the current environment.

For mget multiple values are returned in a namedlist . This is true even if only one value is
requested. The value inmode andifnotfound can be either the same length as the number of
requested items or of length 1. The argumentifnotfound must be a list containing either the
value to use if the requested item is not found or a function of one argument which will be called
if the item is not found, with argument the name of the item being requested. The default value for
inherits is FALSE, in contrast to the default behavior forget .

mode here is a mixture of the meanings oftypeof andmode: "function" covers primitive
functions and operators,"numeric" , "integer" , "real" and "double" all refer to any
numeric type,"symbol" and"name" are equivalentbut "language" must be used.

Value

The object found. (If no object is found an error results.)

Note

The reverse ofa <- get(nam) is assign (nam, a) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

getCallingDLL 177

See Also

exists , assign .

Examples

get("%o%")

##test mget
e1 <- new.env()
mget(letters, e1, ifnotfound = as.list(LETTERS))

getCallingDLL Compute DLL for native interface call

Description

This is an internal function that is called from R’s C code to determine the enclosing name space
of a .C/.Call/.Fortran/.External call which has no PACKAGE argument. If the call has been made
from a function within a name space, then we can find the DLL associated with that name space.
The purpose of this is to avoid having to use the PACKAGE argument in these native calls and so
better support versions of packages.

This is an internal function that may be migrated to internal C code in the future and so should not
be used by R programmers.

Usage

getCallingDLL(f = sys.function(-1), doStop = FALSE)
getCallingDLLe(e)

Arguments

f the function whose name space and DLL are to be found. By default, this is
the current function being called which is the one in which the native routine is
being invoked.

doStop a logical value indicating whether failure to find a name space and/or DLL is
an error (TRUE) or not (FALSE). The default isFALSE so that when this is
called because there is no PACKAGE argument in a.C , .Call , .Fortran ,
.External call, no error occurs and the regular lookup is performed by
searching all DLLs in order.

e an environment.

See Also

.C , .Call , .Fortran , .External

Examples

if(exists("ansari.test"))
getCallingDLL(ansari.test)

178 getDLLRegisteredRoutines

getDLLRegisteredRoutines
Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e..C , .Call , .Fortran and.External .

Usage

getDLLRegisteredRoutines(dll, addNames = TRUE)

Arguments

dll a character string orDLLInfo object. The character string specifies the file
name of the DLL of interest, and is given without the file name extension
(e.g. the.dll or .so) and with no directory/path information. So a file
MyPackage/libs/MyPackage.so would be specified asMyPackage .

The DLLInfo objects can be obtained directly in calls todyn.load and
library.dynam , or can be found after the DLL has been loaded using
getLoadedDLLs , which returns a list ofDLLInfo objects (index-able by
DLL file name).

TheDLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

addNames a logical value. If this isTRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

Details

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information

Value

A list with four elements corresponding to the routines registered for the .C, .Call, .Fortran and
.External interfaces. Each element is a list with as many elements as there were routines registered
for that interface. Each element identifies a routine and is an object of classNativeSymbolInfo .
An object of this class has the following fields:

name the registered name of the routine (not necessarily the name in the C code).

address the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

dll an object of classDLLInfo describing the DLL. This is same for all elements
returned.

getLoadedDLLs 179

numParameters
the number of arguments the native routine is to be called with. In the future,
we will provide information about the types of the parameters also.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

"Writing R Extensions Manual" for symbol registration. R News, Volume 1/3, September 2001. "In
search of C/C++ & Fortran Symbols"

See Also

getLoadedDLLs

Examples

dlls <- getLoadedDLLs()
getDLLRegisteredRoutines(dlls[["base"]])

getDLLRegisteredRoutines("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description

This function provides a way to get a list of all the Dynamically Loadable Libraries (DLLs) that are
currently loaded in the currentR session.

Usage

getLoadedDLLs()

Details

This queries the internal table that manages the DLLs.

Value

An object of class"DLLInfoList" which is a list with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of class"DLLInfo" which has
the following entries.

name the abbreviated name.

path the fully qualified name of the file which was dynamically loaded.
dynamicLookup

a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class"DLLHandle ".

180 getNativeSymbolInfo

Note that the classDLLInfo has an overloaded method for$ which can be used to resolve native
symbols within that DLL. Therefore, one must access the R-level elements described above using
[[, e.g.x[["name"]] or x[["handle"]] .

Note

We are starting to use thehandle elements in the DLL object to resolve symbols more directly in
R.

Author(s)

Duncan Temple Lang〈duncan@wald.ucdavis.edu〉.

See Also

getDLLRegisteredRoutines , getNativeSymbolInfo

Examples

getLoadedDLLs()

getNativeSymbolInfo
Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns as comprehensive a description of one or more dynamically loaded or ‘ex-
ported’ built-in native symbols. For each name, it returns information about the name of the symbol,
the library in which it is located and, if available, the number of arguments it expects and by which
interface it should be called (i.e.Call , .C , .Fortran , or .External). Additionally, it returns
the address of the symbol and this can be passed to other C routines which can invoke. Specifically,
this provides a way to explicitly share symbols between different dynamically loaded package li-
braries. Also, it provides a way to query where symbols were resolved, and aids diagnosing strange
behavior associated with dynamic resolution.

This is now vectorized in thename argument so can process multiple symbols in a single call. The
result is a list that can be indexed by the given symbol names.

Usage

getNativeSymbolInfo(name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

Arguments

name the name(s) of the native symbol(s) as used in a call tois.loaded , etc. Note
that Fortran symbols should be supplied as-is, not wrapped insymbol.For .

PACKAGE an optional argument that specifies to which dynamically loaded library we re-
strict the search for this symbol. If this is"base" , we search in the R exe-
cutable itself.

getNativeSymbolInfo 181

unlist a logical value which controls how the result is returned if the function is called
with the name of a single symbol. Ifunlist is TRUEand the number of sym-
bol names inname is one, then theNativeSymbolInfo object is returned.
If it is FALSE, then a list ofNativeSymbolInfo objects is returned. This
is ignored if the number of symbols passed inname is more than one. To be
compatible with earlier versions of this function, this defaults toTRUE.

withRegistrationInfo
a logical value indicating whether, ifTRUE, to return information that was reg-
istered withR about the symbol and its parameter types if such information is
available, or ifFALSEto return the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (.Call ,
etc.). If the symbol has been explicitly registered by the shared library in which it is contained,
information about the number of arguments and the interface by which it should be called will be
returned. Otherwise, a generic native symbol object is returned.

Value

Generally, a list ofNativeSymbolInfo elements whose elements can be indexed by the ele-
ments ofname in the call. EachNativeSymbolInfo object is a list containing the following
elements:

name the name of the symbol, as given by thename argument.

address if withRegistrationInfo is FALSE, this is the native memory address
of the symbol which can be used to invoke the routine, and also to com-
pare with other symbol addresses. This is an external pointer object and of
classNativeSymbol . If withRegistrationInfo is TRUEand regis-
tration information is available for the symbol, then this is an object of class
RegisteredNativeSymbol and is a reference to an internal data type that
has access to the routine pointer and registration information. This too can be
used in calls to.Call , .C , .Fortran and.External .

package a list containing 3 elements:

name the short form of the library name which can be used as the value of the
PACKAGEargument in the different native interface functions.

path the fully qualified name of the shared library file.

dynamicLookup a logical value indicating whether dynamic resolution is used
when looking for symbols in this library, or only registered routines can be
located.

numParameters
the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, beingCRoutine , CallRoutine ,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

If any of the symbols is not found, an error is immediately raised.

If name contains only one symbol name andunlist is TRUE, then the single
NativeSymbolInfo is returned rather than the list containing that one element.

182 getNumCConverters

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines andR functions in a
similar manner, such as when passing anR function to C code that makes callbacks to that function
at different points in its computation (e.g.,nls). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache. In the future, one may be able to treat
NativeSymbol objects directly as callback objects.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Rou-
tines”, R News, volume 1, number 3, 2001, p20–23 (http://CRAN.R-project.org/doc/
Rnews/).

See Also

getDLLRegisteredRoutines , is.loaded , .C , .Fortran , .External , .Call ,
dyn.load .

Examples

library(stats) # normally loaded
getNativeSymbolInfo("dansari")

getNativeSymbolInfo("hcass2") # a Fortran symbol

getNumCConverters Management of .C argument conversion list

Description

These functions provide facilities to manage the extensible list of converters used to translate R
objects to C pointers for use in.C calls. The number and a description of each element in the list
can be retrieved. One can also query and set the activity status of individual elements, temporarily
ignoring them. And one can remove individual elements.

Usage

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
setCConverterStatus(id, status)
removeCConverter(id)

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

getNumCConverters 183

Arguments

id either a number or a string identifying the element of interest in the converter list.
A string is matched against the description strings for each element to identify
the element. Integers are specified starting at 1 (rather than 0).

status a logical value specifying whether the element is to be considered active (TRUE)
or not (FALSE).

Details

The internal list of converters is potentially used when converting individual arguments in a.C
call. If an argument has a non-trivial class attribute, we iterate over the list of converters looking
for the first that matches. If we find a matching converter, we have it create the C-level pointer
corresponding to the R object. When the call to the C routine is complete, we use the same converter
for that argument to reverse the conversion and create an R object from the current value in the C
pointer. This is done separately for all the arguments.

The functions documented here provideR user-level capabilities for investigating and managing
the list of converters. There is currently no mechanism for adding an element to the converter list
within theR language. This must be done in C code using the routineR_addToCConverter() .

Value

getNumCConverters returns an integer giving the number of elements in the list, both active
and inactive.

getCConverterDescriptions returns a character vector containing the description string of
each element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter
list. Each value indicates whether that converter is active (TRUE) or inactive (FALSE). The names
of the elements are the description strings returned bygetCConverterDescriptions .

setCConverterStatus returns the logical value indicating the activity status of the specified
element before the call to change it took effect. This isTRUEfor active andFALSEfor inactive.

removeCConverter returnsTRUEif an element in the converter list was identified and removed.
In the case that no such element was found, an error occurs.

Author(s)

Duncan Temple Lang

References

http://developer.R-project.org/CObjectConversion.pdf

See Also

.C

Examples

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
Not run:
old <- setCConverterStatus(1, FALSE)

http://developer.R-project.org/CObjectConversion.pdf

184 gettext

setCConverterStatus(1, old)
End(Not run)
Not run:
removeCConverter(1)
removeCConverter(getCConverterDescriptions()[1])
End(Not run)

getpid Get the Process ID of the R Session

Description

Get the process ID of theR Session. It is guaranteed by the operating system that twoR sessions
running simultaneously will have different IDs, but it is possible thatR sessions running at different
times will have the same ID.

Usage

Sys.getpid()

Value

An integer, usually a small integer between 0 and 32767 under Unix-alikes and a much small integer
under Windows.

Examples

Sys.getpid()

gettext Translate Text Messages

Description

If Native Language Support was enabled in this build ofR, attempt to translate character vectors or
set where the translations are to be found.

Usage

gettext(..., domain = NULL)

ngettext(n, msg1, msg2, domain = NULL)

bindtextdomain(domain, dirname = NULL)

gettext 185

Arguments

... One or more character vectors.

domain The ‘domain’ for the translation.

n a non-negative integer.

msg1 the message to be used in English forn = 1 .

msg2 the message to be used in English forn = 0, 2, 3,... .

dirname The directory in which to find translated message catalogs for the domain.

Details

If domain is NULLor "" , a domain is searched for based on the name space which contains the
function callinggettext or ngettext . If a suitable domain can be found, each character string
is offered for translation, and replaced by its translation into the current language if one is found.

Conventionally the domain forR warning/error messages in packagepkg is "R-pkg" , and that for
C-level messages is"pkg" .

For gettext , leading and trailing whitespace is ignored when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string
will often contain a single instance of%d to be used insprintf . If English is used,msg1 is
returned ifn == 1 andmsg2 in all other cases.

Value

Forgettext , a character vector, one element per string in... . If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext , a character string.

For bindtextdomain , a character string giving the current base directory, orNULL if setting it
failed.

See Also

stop andwarning make use ofgettext to translate messages.

xgettext for extracting translatable strings fromR source files.

Examples

bindtextdomain("R") # non-null if and only if NLS is enabled

for(n in 0:3)
print(sprintf(ngettext(n, "%d variable has missing values",

"%d variables have missing values"),
n))

Not run:
for translation, those strings should appear in R-pkg.pot as
msgid "%d variable has missing values"
msgid_plural "%d variables have missing values"
msgstr[0] ""
msgstr[1] ""
End(Not run)

186 getwd

miss <- c("one", "or", "another")
cat(ngettext(length(miss), "variable", "variables"),

paste(sQuote(miss), collapse=", "),
ngettext(length(miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat(sprintf(ngettext(length(miss),

"variable %s contains missing values\n",
"variables %s contain missing values\n"),

paste(sQuote(miss), collapse=", ")))

getwd Get or Set Working Directory

Description

getwd returns an absolute filename representing the current working directory of theR process;
setwd(dir) is used to set the working directory todir .

Usage

getwd()
setwd(dir)

Arguments

dir A character string.

Value

getwd returns a character vector, orNULL if the working directory is not available.

setwd returns the current directory before the change, invisibly. It will give an error if it does not
succeed.

Note

These functions are not implemented on all platforms.

See Also

list.files for thecontentsof a directory.

Examples

(WD <- getwd())
if (!is.null(WD)) setwd(WD)

gl 187

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)

Arguments

n an integer giving the number of levels.

k an integer giving the number of replications.

length an integer giving the length of the result.

labels an optional vector of labels for the resulting factor levels.

ordered a logical indicating whether the result should be ordered or not.

Value

The result has levels from1 to n with each value replicated in groups of lengthk out to a total
length oflength .

gl is modelled on theGLIM function of the same name.

See Also

The underlyingfactor () .

Examples

First control, then treatment:
gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1s and 2s
gl(2, 1, 20)
alternating pairs of 1s and 2s
gl(2, 2, 20)

grep Pattern Matching and Replacement

Description

grep searches for matches topattern (its first argument) within the character vectorx (second
argument).regexpr andgregexpr do too, but return more detail in a different format.

sub andgsub perform replacement of matches determined by regular expression matching.

188 grep

Usage

grep(pattern, x, ignore.case = FALSE, extended = TRUE,
perl = FALSE, value = FALSE, fixed = FALSE, useBytes = FALSE)

sub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr(pattern, text, ignore.case = FALSE, extended = TRUE,
perl = FALSE, fixed = FALSE, useBytes = FALSE)

gregexpr(pattern, text, ignore.case = FALSE, extended = TRUE,
perl = FALSE, fixed = FALSE, useBytes = FALSE)

Arguments

pattern character string containing aregular expression(or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to a character string if possible.

x, text a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector.

ignore.case if FALSE, the pattern matching iscase sensitiveand if TRUE, case is ignored
during matching.

extended if TRUE, extended regular expression matching is used, and ifFALSE basic
regular expressions are used.

perl logical. Should perl-compatible regexps be used? Has priority overextended .

value if FALSE, a vector containing the (integer) indices of the matches deter-
mined bygrep is returned, and ifTRUE, a vector containing the matching ele-
ments themselves is returned.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all con-
flicting arguments.

useBytes logical. If TRUEthe matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

replacement a replacement for matched pattern insub and gsub . Coerced to character
if possible. Forfixed = FALSE this can include backreferences"\1" to
"\9" to parenthesized subexpressions ofpattern . Forperl = TRUE only,
it can also contain"\U" or "\L" to convert the rest of the replacement to upper
or lower case.

Details

Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

The two*sub functions differ only in thatsub replaces only the first occurrence of apattern
whereasgsub replaces all occurrences.

grep 189

For regexpr it is an error forpattern to beNA, otherwiseNA is permitted and gives anNA
match.

The regular expressions used are those specified by POSIX 1003.2, either extended or basic, de-
pending on the value of theextended argument, unlessperl = TRUE when they are those
of PCRE,http://www.pcre.org/ . (The exact set of patterns supported may depend on the
version of PCRE installed on the system in use ifR was configured to use the system PCRE.)

useBytes is only used iffixed = TRUE or perl = TRUE . Its main effect is to avoid er-
rors/warnings about invalid inputs and spurious matches, but forregexpr it changes the interpre-
tation of the output.

PCRE only supports caseless matching for a non-ASCII pattern in a UTF-8 locale (and not for
useBytes = TRUE in any locale).

Value

For grep a vector giving either the indices of the elements ofx that yielded a match or, ifvalue
is TRUE, the matched elements ofx (after coercion, preserving names but no other attributes).

For sub andgsub a character vector of the same length and with the same attributes asx (after
possible coercion).

For regexpr an integer vector of the same length astext giving the starting position of the first
match, or−1 if there is none, with attribute"match.length" giving the length of the matched
text (or−1 for no match). In a multi-byte locale these quantities are in characters rather than bytes
unlessuseBytes = TRUE is used withfixed = TRUE or perl = TRUE .

For gregexpr a list of the same length astext each element of which is an integer vector as in
regexpr , except that the starting positions of every (disjoint) match are given.

If in a multi-byte locale the pattern or replacement is not a valid sequence of bytes, an error is
thrown. An invalid string inx or text is a non-match with a warning forgrep or regexpr , but
an error forsub or gsub .

Warning

The standard regular-expression code has been reported to be very slow when applied to extremely
long character strings (tens of thousands of characters or more): the code used whenperl =
TRUEseems much faster and more reliable for such usages.

The standard version ofgsub does not substitute correctly repeated word-boundaries (e.g.
pattern = "\b"). Useperl = TRUE for such matches.

The perl = TRUE option is only implemented for single-byte and UTF-8 encodings, and will
warn if used in a non-UTF-8 multi-byte locale (unlessuseBytes = TRUE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole (grep)

See Also

regular expression(akaregexp) for the details of the pattern specification.

glob2rx to turn wildcard matches into regular expressions.

agrep for approximate matching.

tolower , toupper andchartr for character translations.charmatch , pmatch , match .
apropos uses regexps and has nice examples.

http://www.pcre.org/

190 groupGeneric

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")
if(any(i <- grep("foo",txt)))

cat("'foo' appears at least once in\n\t",txt,"\n")
i # 2 and 4
txt[i]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'
gsub("([ab])", "\\1_\\1_", "abc and ABC")

txt <- c("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
"to", "share", "and", "change", "it.",

"", "By", "contrast,", "the", "GNU", "General", "Public", "License",
"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"to", "make", "sure", "the", "software", "is",
"free", "for", "all", "its", "users")

(i <- grep("[gu]", txt)) # indices
stopifnot(txt[i] == grep("[gu]", txt, value = TRUE))

Note that in locales such as en_US this includes B as the
collation order is aAbBcCdEe ...
(ot <- sub("[b-e]",".", txt))
txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) !=
gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en", txt)

gregexpr("e", txt)

trim trailing white space
str <- 'Now is the time '
sub(' +$', '', str) ## spaces only
sub('[[:space:]]+$', '', str) ## white space, POSIX-style
sub('\\s+$', '', str, perl = TRUE) ## Perl-style white space

capitalizing
gsub("(\\w)(\\w*)", "\\U\\1\\L\\2", "a test of capitalizing", perl=TRUE)
gsub("\\b(\\w)", "\\U\\1", "a test of capitalizing", perl=TRUE)

groupGeneric S3 Group Generic Functions

Description

Group generic methods can be defined for four pre-specified groups of functions,Math , Ops,
Summary andComplex . (There are no objects of these names in baseR, but there are in the
methodspackage.)

groupGeneric 191

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm = FALSE)

Arguments

x, z, e1, e2 objects.

... further arguments passed to methods.

na.rm logical: should missing values be removed?

Details

There are fourgroups for which S3 methods can be written, namely the"Math" , "Ops" ,
"Summary" and "Complex" groups. These are notR objects, but methods can be supplied
for them and baseR containsfactor , data.frame anddifftime methods for the first three
groups. (There is also aordered method forOps, POSIXt andDate methods forMath and
Ops, package_version methods forOps andSummary, as well as ats method forOps in
packagestats.)

1. Group"Math" :

• abs , sign , sqrt ,
floor , ceiling , trunc ,
round , signif

• exp , log , expm1, log1p ,
cos , sin , tan ,
acos , asin , atan
cosh , sinh , tanh ,
acosh , asinh , atanh

• lgamma, gamma, digamma , trigamma

• cumsum, cumprod , cummax, cummin

Members of this group dispatch onx . Most members accept only one argument, but members
log , round andsignif accept one or two arguments, andtrunc accepts one or more.

2. Group"Ops" :

• "+" , "-" , "*" , "/" , "^" , "%%", "%/%"

• "&" , "|" , "!"

• "==" , "!=" , "<" , "<=" , ">=" , ">"

This group contains both binary and unary operators (+, - and!): when a unary operator is
encountered theOps method is called with one argument ande2 is missing.
The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.

192 groupGeneric

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group"Summary" :

• all , any

• sum, prod

• min , max

• range

Members of this group dispatch on the first argument supplied.

4. Group"Complex" :

• Arg , Conj , Im , Mod, Re

Members of this group dispatch onz .

Note that a method will used for either one of these groups or one of its membersonly if it corre-
sponds to a"class" attribute, as the internal code dispatches onoldClass and not onclass .
This is for efficiency: having to dispatch on, say,Ops.integer would be too slow.

The number of arguments supplied for primitive members of the"Math" group generic methods
is not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive andinternal generic.

The details of method dispatch and variables such as.Generic are discussed in the help for
UseMethod . There are a few small differences:

• For the operators of groupOps, the object.Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is"" .)

• Object.Group records the group used for dispatch (if a specific method is used this is"").

References

Appendix A,Classes and Methodsof
Chambers, J. M. and Hastie, T. J. eds (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

methods for methods of non-Internal generic functions.

S4groupGenericfor group generics for S4 methods.

Examples

require(utils)

d.fr <- data.frame(x=1:9, y=stats::rnorm(9))
class(1 + d.fr) == "data.frame" ##-- add to d.f. ...

methods("Math")
methods("Ops")
methods("Summary")
methods("Complex") # none in base R

gzcon 193

gzcon (De)compress I/O Through Connections

Description

gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standardgzip headers are assumed.

Usage

gzcon(con, level = 6, allowNonCompressed = TRUE)

Arguments

con a connection.

level integer between 0 and 9, the compression level when writing.
allowNonCompressed

logical. When reading, should non-compressed input be allowed?

Details

If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply agzip magic header is equivalent to reading
from the original connection ifallowNonCompressed is true, otherwise an error.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection.

When the connection is opened for reading, the input is expected to start with thegzip magic
header. If it does not and ifallowNonCompressed = TRUE (the default) the input is read
as-is.

Value

An object inheriting from class"connection" . This is the same connectionnumberas supplied,
but with a modified internal structure. It has binary mode.

See Also

gzfile

Examples

Not run:
Uncompress a data file from a URL
z <- gzcon(url("http://www.stats.ox.ac.uk/pub/datasets/csb/ch12.dat.gz"))
read.table can only read from a text-mode connection.
raw <- textConnection(readLines(z))
close(z)
dat <- read.table(raw)
close(raw)
End(Not run)

194 hexmode

gzfile and gzcon can inter-work.
Of course here one would used gzfile, but file() can be replaced by
any other connection generator.
zz <- gzfile("ex.gz", "w")
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzcon(file("ex.gz", "rb")))
close(zz)
unlink("ex.gz")

zz <- gzcon(file("ex.gz", "wb"))
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzfile("ex.gz"))
close(zz)
unlink("ex.gz")

hexmode Display Numbers in Hexadecimal

Description

Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

S3 method for class 'hexmode':
as.character(x, ...)

S3 method for class 'hexmode':
format(x, ...)

S3 method for class 'hexmode':
print(x, ...)

Arguments

x An object inheriting from class"hexmode" .

... further arguments passed to or from other methods.

Details

Class"hexmode" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in hex.

See Also

octmode

Hyperbolic 195

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

Arguments

x a numeric or complex vector

Details

These are generic functions: methods can be defined for them individually or via theMath group
generic.

Branch cuts are consistent with the inverse trigonometric functionsasin() et seq, and agree with
those defined in Abramowitz and Stegun, figure 4.7, page 86.

S4 methods

All are S4 generic functions: methods can be defined for them individually or via theMath group
generic.

References

Abramowitz, M. and Stegun, I. A. (1972)Handbook of Mathematical Functions.New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions,cos , sin , tan , and their inversesacos , asin , atan .

The logistic distribution functionplogis is a shifted version oftanh() for numericx .

196 iconv

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-
ternationalization’.

Usage

iconv(x, from ="", to = "", sub=NA)

iconvlist()

Arguments

x A character vector, or an object to be converted to a character vector by
as.character .

from A character string describing the current encoding.

to A character string describing the target encoding.

sub character string. If notNA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If"byte" ,
the indication is"<xx>" with the hex code of the byte.

Details

The names of encodings and which ones are available (and indeed, if any are) is platform-dependent.
On all systems that supporticonv you can use"" for the encoding of the current locale, as well
as"latin1" and"UTF-8" .

On many platformsiconvlist provides an alphabetical list of the supported encodings. On
others, the information is on the man page foriconv(5) or elsewhere in the man pages (and
beware that the system commandiconv may not support the same set of encodings as the C
functionsR calls). Unfortunately, the names are rarely common across platforms.

Elements ofx which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned asNAunlesssub is specified.

Some versions oficonv will allow transliteration by appending//TRANSLIT to theto encoding:
see the examples.

Value

A character vector of the same length and the same attributes asx (after conversion).

The elements of the result have a declared encoding iffrom is "latin1" or "UTF-8" , or if
from = "" and the current locale’s encoding is detected as Latin-1 or UTF-8.

Note

Not all platforms support these functions, although almost all supporticonv . See also
capabilities ("iconv") .

identical 197

See Also

localeToCharset , file .

Examples

utils::head(iconvlist(), n = 50)

Not run:
convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")
iconv(x, "LATIN2", "UTF-8")
End(Not run)

Both x below are in latin1 and will only display correctly in a
locale that can represent and display latin1.
x <- "fa\xE7ile"
Encoding(x) <- "latin1"
x
charToRaw(xx <- iconv(x, "latin1", "UTF-8"))
xx

iconv(x, "latin1", "ASCII") # NA
iconv(x, "latin1", "ASCII", "?") # "fa?ile"
iconv(x, "latin1", "ASCII", "") # "faile"
iconv(x, "latin1", "ASCII", "byte") # "fa<e7>ile"

Extracts from R help files
x <- c("Ekstr\xf8m", "J\xf6reskog", "bi\xdfchen Z\xfcrcher")
Encoding(x) <- "latin1"
x
try(iconv(x, "latin1", "ASCII//TRANSLIT"))
iconv(x, "latin1", "ASCII", sub="byte")

identical Test Objects for Exact Equality

Description

The safe and reliable way to test two objects for beingexactlyequal. It returnsTRUEin this case,
FALSE in every other case.

Usage

identical(x, y)

Arguments

x, y anyR objects.

198 identical

Details

A call to identical is the way to test exact equality inif andwhile statements, as well as in
logical expressions that use&&or || . In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as== or != , in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expectedx andy to be of length 1, but it happened that one of them wasn’t, you willnot get
a singleFALSE. Similarly, if one of the arguments isNA, the result is alsoNA. In either case, the
expressionif(x == y).... won’t work as expected.

The functionall.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations inidentical are also reliable and usually fast. There should never be an error.
The only known way to killidentical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

identical seesNaN as different fromNA_real_ , but all NaNs are equal (and allNA of the
same type are equal).

Comparison of character strings allows for embeddednul characters. Comparison of attributes
view them as a set (and not a vector, so order is not tested).

Value

A single logical value,TRUEor FALSE, neverNAand never anything other than a single value.

Author(s)

John Chambers and R Core

References

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ;Comparisonfor operators that generate
elementwise comparisons.isTRUE is a simple wrapper based onidentical .

Examples

identical(1, NULL) ## FALSE -- don't try this with ==
identical(1, 1.) ## TRUE in R (both are stored as doubles)
identical(1, as.integer(1)) ## FALSE, stored as different types

x <- 1.0; y <- 0.99999999999
how to test for object equality allowing for numeric fuzz :
(E <- all.equal(x,y))
isTRUE(E) # which is simply defined to just use
identical(TRUE, E)
If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

ifelse 199

even for unusual R objects :
identical(.GlobalEnv, environment())

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape astest which is filled with elements selected from
eitheryes or no depending on whether the element oftest is TRUEor FALSE.

Usage

ifelse(test, yes, no)

Arguments

test an object which can be coerced to logical mode.

yes return values for true elements oftest .

no return values for false elements oftest .

Details

If yes or no are too short, their elements are recycled.yes will be evaluated if and only if any
element oftest is true, and analogously forno .

Missing values intest give missing values in the result.

Value

A vector of the same length and attributes (including class) astest and data values from the values
of yes or no . The mode of the answer will be coerced from logical to accommodate first any values
taken fromyes and then any values taken fromno .

Warning

The mode of the result may depend on the value oftest , and the class attribute of the result is
taken fromtest and may be inappropriate for the values selected fromyes andno .

Sometimes it is better to use a construction such as(tmp <- yes; tmp[!test] <-
no[!test]; tmp) , possibly extended to handle missing values intest .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

if .

200 integer

Examples

x <- c(6:-4)
sqrt(x)#- gives warning
sqrt(ifelse(x >= 0, x, NA))# no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqrt(x), NA)

example of different return modes:
yes <- 1:3
no <- pi^(0:3)
typeof(ifelse(NA, yes, no)) # logical
typeof(ifelse(TRUE, yes, no)) # integer
typeof(ifelse(FALSE, yes, no))# double

integer Integer Vectors

Description

Creates or tests for objects of type"integer" .

Usage

integer(length = 0)
as.integer(x, ...)
is.integer(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
small integer data can be represented exactly and compactly.

Note that on almost all implementations ofR the range of representable integers is restricted to
about±2× 109: double s can hold much larger integers exactly.

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to0.

as.integer attempts to coerce its argument to be of integer type. The answer will beNAunless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced toNA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values are
truncated towards zero (i.e.,as.integer(x) equalstrunc (x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing either a decimal rep-
resentation or a hexadecimal representation (starting with0x or 0X) can be converted, as well as any

interaction 201

allowed by the platform for real numbers. Likeas.vector it strips attributes including names.
(To ensure that an object is of integer type without stripping attributes, usestorage.mode .)

is.integer returnsTRUEor FALSE depending on whether its argument is of integertype or
not, unless it is a factor when it returnsFALSE.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric , storage.mode .

round (andceiling andfloor on that help page) to convert to integral values.

Examples

as.integer() truncates:
x <- pi * c(-1:1,10)
as.integer(x)

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result
of interaction is always unordered.

Usage

interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)

Arguments

... the factors for which interaction is to be computed, or a single list giving those
factors.

drop if drop is TRUE, unused factor levels are dropped from the result. The default
is to retain all factor levels.

sep string to construct the new level labels by joining the constituent ones.

lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.

Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined bysep which is. by default.

By default, whenlex.order = FALSE , the levels are ordered so the level of the first factor
varies fastest, then the second and so on. This is the reverse of lexicographic ordering (which you
can get bylex.order = TRUE), and differs from: . (It is done this way for compatibility with
S.)

202 Internal

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

factor ; : where f:g is similar to interaction(f, g, sep=":") when f and g are
factors.

Examples

a <- gl(2, 4, 8)
b <- gl(2, 2, 8, labels = c("ctrl", "treat"))
s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)
interaction(a, b, s, sep = ":")
stopifnot(identical(a:s,

interaction(a, s, sep = ":", lex.order = TRUE)),
identical(a:s:b,

interaction(a, s, b, sep = ":", lex.order = TRUE)))

interactive Is R Running Interactively?

Description

ReturnTRUEwhenR is being used interactively andFALSEotherwise.

Usage

interactive()

See Also

source , .First

Examples

.First <- function() if(interactive()) x11()

Internal Call an Internal Function

Description

.Internal performs a call to an internal code which is built in to theR interpreter.

Only trueR wizards should even consider using this function, and onlyR developers can add to the
list of internal functions.

Usage

.Internal(call)

InternalMethods 203

Arguments

call a call expression

See Also

.Primitive , .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

ManyR-internal functions aregenericand allow methods to be written for.

Details

The following primitive and internal functions aregeneric, i.e., you can writemethods for them:

[, [[, $, [<- , [[<- , $<- ,

length , length<- , dimnames , dimnames<- , dim , dim<- , names, names<- ,
levels<- ,

c , unlist , cbind , rbind ,

as.character , as.complex , as.double , as.integer , as.logical , as.raw ,
as.vector , is.array , is.matrix , is.na , is.nan , is.numeric , rep andseq.int
(which dispatches methods for"seq").

In addition,is.name is a synonym foris.symbol and dispatches methods for the latter.

Note that all of thegroup genericfunctions are also internal/primitive and allow methods to be
written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic
and notgroup generic. Currentlyas.vector , cbind , rbind and unlist are the internal
non-primitive functions which are internally generic.

For efficiency, internal dispatch only occurs onobjects, that is those for whichis.object returns
true.

See Also

methods for the methods which are available.

204 is.finite

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

x an arbitraryR object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible , return , function .

Examples

These functions both return their argument
f1 <- function(x) x
f2 <- function(x) invisible(x)
f1(1)# prints
f2(1)# does not

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length asx , indicating which ele-
ments are finite (not infinite and not missing).

Inf and -Inf are positive and negative infinity whereasNaN means ‘Not a Number’. (These
apply to numeric values and real and imaginary parts of complex values but not to values of integer
vectors.) All arereserved words in theR language.

is.finite 205

Usage

is.finite(x)
is.infinite(x)
Inf
NaN
is.nan(x)

Arguments

x (numerical) object to be tested.

Details

is.finite returns a vector of the same length asx the jth element of which isTRUEif x[j]
is finite (i.e., it is not one of the valuesNA, NaN, Inf or -Inf). All elements of types other than
logical, integer, numeric and complex vectors are false. Complex numbers are finite if both the real
and imaginary parts are.

is.infinite returns a vector of the same length asx the jth element of which isTRUEif x[j]
is infinite (i.e., equal to one ofInf or -Inf). This will be false unlessx is numeric or complex.
Complex numbers are infinite if either the real and imaginary part is.

is.nan tests if a numeric value isNaN. Do not test equality toNaN, or even useidentical ,
since systems typically have many different NaN values. One of these is used for the numeric
missing valueNA, andis.nan is false for that value. A complex number is regarded asNaN if
either the real or imaginary part isNaNbut notNA.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods. The default methods handle real and complex vectors.

Note

In R, basically all mathematical functions (including basicArithmetic), are supposed to work
properly with+/- Inf andNaNas input or output.

The basic rule should be that calls and relations withInf s really are statements with a proper
mathematicallimit.

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.

D. Goldberg (1991)What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys,23(1).
Postscript version available athttp://www.validlab.com/goldberg/paper.ps Ex-
tended PDF version athttp://www.validlab.com/goldberg/paper.pdf

http://grouper.ieee.org/groups/754/ for accessible information.

The C99 functionisfinite is used foris.finite if available.

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric.

http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf
http://grouper.ieee.org/groups/754/

206 is.function

Examples

pi / 0 ## = Inf a non-zero number divided by zero creates infinity
0 / 0 ## = NaN

1/0 + 1/0# Inf
1/0 - 1/0# NaN

stopifnot(
1/0 == Inf,
1/Inf == 0

)
sin(Inf)
cos(Inf)
tan(Inf)

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage

is.function(x)
is.primitive(x)

Arguments

x anR object.

Details

is.primitive(x) tests ifx is a primitive function (either a"builtin" or "special" as
described fortypeof)?

Value

TRUEif x is a (primitive) function, andFALSEotherwise.

Examples

is.function(1) # FALSE
is.function(is.primitive) # TRUE: it is a function, but ..
is.primitive(is.primitive) # FALSE:it's not a primitive one, whereas
is.primitive(is.function) # TRUE: that one *is*

is.language 207

is.language Is an Object a Language Object?

Description

is.language returnsTRUEif x is a variablename, acall , or anexpression .

Usage

is.language(x)

Arguments

x object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

ll <- list(a = expression(x^2 - 2*x + 1), b = as.name("Jim"),
c = as.expression(exp(1)), d = call("sin", pi))

sapply(ll, typeof)
sapply(ll, mode)
stopifnot(sapply(ll, is.language))

is.object Is an Object “internally classed”?

Description

A function rather for internal use. It returnsTRUEif the objectx has theR internalOBJECTbit set,
andFALSE otherwise. TheOBJECTbit is set when a"class" attribute is added and removed
when that attribute is removed, so this is a very efficient way to check if an object has a class
attribute. (S4 objects always should.)

Usage

is.object(x)

Arguments

x object to be tested.

See Also

class , andmethods .

isS4 .

208 is.R

Examples

is.object(1) # FALSE
is.object(as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running underR.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions ofR, S and S-PLUS. In order
for code to be runnable in bothR and S dialects previous to S-PLUS 8.0, your code must either
defineis.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code
} else {
S-version of code
}

Value

is.R returnsTRUEif we are usingR andFALSEotherwise.

See Also

R.version , system .

Examples

x <- stats::runif(20); small <- x < 0.4
In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seq(along=small)[small]

is.recursive 209

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returnsTRUEif x is an atomic vector (orNULL) andFALSEotherwise.

is.recursive returnsTRUEif x has a recursive (list-like) structure andFALSEotherwise.

Usage

is.atomic(x)
is.recursive(x)

Arguments

x object to be tested.

Details

is.atomic is true for the atomic vector types ("logical" , "integer" , "numeric" ,
"complex" , "character" and"raw") andNULL.

Most types of language objects are regarded as recursive: those which are not are the atomic vector
types,NULLand symbols (as given byas.name).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list , is.language , etc, and thedemo("is.things") .

Examples

require(stats)

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a=1,b=3)) # TRUE FALSE
is.a.r(list()) # FALSE TRUE ??
is.a.r(list(2)) # FALSE TRUE
is.a.r(lm) # FALSE TRUE
is.a.r(y ~ x) # FALSE TRUE
is.a.r(expression(x+1)) # FALSE TRUE (not in 0.62.3!)

210 isS4

is.single Is an Object of Single Precision Type?

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

Arguments

x object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

isS4 Test for an S4 object

Description

Tests whether the object was created from a formally defined class.

Usage

isS4(object)

asS4(object, value = TRUE)

Arguments

object Any R object.

value A single logical value; notNA.

Details

Note thatisS4 does not rely on themethodspackage, so in particular it can be used to detect the
need torequire that package. (ButasS4 does depend onmethods.)

You should not set the flag directly unless you really know why. As fromR 2.6.0, S4 methods are
restricted to S4 objects for primitive functions;asS4 allows method dispatch of S4 methods on
primitives for S3 classes. For all other purposes, an object will satisfyisS4(x) if and only if it
should.

Note that S4 methods can only be set on those primitives which are ‘internal generic’ and%*%.

isSymmetric 211

Value

isS4 always returnsTRUEor FALSEaccording to whether the internal flag marking an S4 object
has been turned on for this object.

asS4 will turn this flag on or off. But see the details.

Examples

isS4(pi) # FALSE
isS4(getClass("MethodDefinition")) # TRUE

isSymmetric Test if a Matrix or other Object is Symmetric

Description

Generic function to test ifobject is symmetric or not. Currently only a matrix method is imple-
mented.

Usage

isSymmetric(object, ...)
S3 method for class 'matrix':
isSymmetric(object, tol = 100 * .Machine$double.eps, ...)

Arguments

object anyR object; amatrix for the matrix method.

tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric .

... further arguments passed to methods; the matrix method passes these to
all.equal .

Details

Thematrix method is used insideeigen by default to test symmetry of matricesup to rounding
error, usingall.equal . It might not be appropriate in all situations.

Value

logical indicating ifobject is symmetric or not.

See Also

eigen which callsisSymmetric when itssymmetric argument is missing, as per default.

212 jitter

Examples

isSymmetric(D3 <- diag(3)) # -> TRUE

D3[2,1] <- 1e-100
D3
isSymmetric(D3) # TRUE
isSymmetric(D3, tol = 0) # FALSE for zero-tolerance

jitter Add ‘Jitter’ (Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor=1, amount = NULL)

Arguments

x numeric vector to whichjitter should be added.

factor numeric

amount numeric; if positive, used asamount(see below), otherwise, if= 0 the default
is factor * z/50 .

Default (NULL): factor * d/5 whered is about the smallest difference be-
tweenx values.

Details

The result, sayr , is r <- x + runif(n, -a, a) wheren <- length(x) anda is the
amount argument (if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amounta to be added is either
provided aspositiveargumentamount or otherwise computed fromz , as follows:

If amount == 0 , we seta <- factor * z/50 (same as S).

If amount is NULL (default), we seta <- factor * d/5 whered is the smallest difference
between adjacent unique (apart from fuzz)x values.

Value

jitter(x,...) returns a numeric of the same length asx , but with anamount of noise added
in order to break ties.

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

kappa 213

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983)Graphical Methods for Data
Analysis.Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

rug which you may want to combine withjitter .

Examples

round(jitter(c(rep(1,3), rep(1.2, 4), rep(3,3))), 3)
These two 'fail' with S-plus 3.x:
jitter(rep(0, 7))
jitter(rep(10000,5))

kappa Estimate the Condition Number

Description

An estimate of the condition number of a matrix or of theRmatrix of aQR decomposition, perhaps
of a linear fit. The condition number is defined as the ratio of the largest to the smallestnon-zero
singular value of the matrix.

Usage

kappa(z, ...)
S3 method for class 'lm':
kappa(z, ...)
Default S3 method:
kappa(z, exact = FALSE, ...)
S3 method for class 'qr':
kappa(z, ...)

kappa.tri(z, exact = FALSE, ...)

Arguments

z A matrix or a the result ofqr or a fit from a class inheriting from"lm" .

exact logical. Should the result be exact?

... further arguments passed to or from other methods.

Details

If exact = FALSE (the default) the condition number is estimated by a cheap approximation.
Following S, this uses the LINPACK routine ‘dtrco.f’. However, inR (or S) the exact calculation is
also likely to be quick enough.

kappa.tri is an internal function called bykappa.qr .

214 kronecker

Value

The condition number,kappa, or an approximation ifexact = FALSE .

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

References

Chambers, J. M. (1992)Linear models.Chapter 4 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

svd for the singular value decomposition andqr for theQR one.

Examples

kappa(x1 <- cbind(1,1:10))# 15.71
kappa(x1, exact = TRUE) # 13.68
kappa(x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
sv9 <- svd(h9 <- hilbert(9))$ d
kappa(h9)# pretty high!
kappa(h9, exact = TRUE) == max(sv9) / min(sv9)
kappa(h9, exact = TRUE) / kappa(h9) # .677 (i.e., rel.error = 32%)

kronecker Kronecker products on arrays

Description

Computes the generalised kronecker product of two arrays,X andY. kronecker(X, Y) returns
an arrayA with dimensionsdim(X) * dim(Y) .

Usage

kronecker(X, Y, FUN = "*", make.dimnames = FALSE, ...)
X %x% Y

Arguments

X A vector or array.

Y A vector or array.

FUN a function; it may be a quoted string.
make.dimnames

Provide dimnames that are the product of the dimnames ofX andY.

... optional arguments to be passed toFUN.

l10n_info 215

Details

If X andY do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by takingX one term at a time
and expanding that term asFUN(x, Y, ...) .

%x%is an alias forkronecker (whereFUNis hardwired to"*").

Author(s)

Jonathan Rougier,〈J.C.Rougier@durham.ac.uk〉

References

Shayle R. Searle (1982)Matrix Algebra Useful for Statistics.John Wiley and Sons.

See Also

outer , on whichkronecker is built and%*%for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(1:6, ncol=2))
kronecker(4, M)
Block diagonal matrix:
kronecker(diag(1, 3), M)

ask for dimnames

fred <- matrix(1:12, 3, 4, dimnames=list(LETTERS[1:3], LETTERS[4:7]))
bill <- c("happy" = 100, "sad" = 1000)
kronecker(fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat"=3, "dog"=4))
kronecker(fred, bill, make.dimnames = TRUE)

l10n_info Localization Information

Description

Report on localization information.

Usage

l10n_info()

Value

A list with three logical components:

MBCS If a multi-byte character set in use?

UTF-8 Is this a UTF-8 locale?

Latin-1 Is this a Latin-1 locale?

216 lapply

See Also

Sys.getlocale , localeconv

Examples

l10n_info()

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A generic
function.

Usage

labels(object, ...)

Arguments

object Any R object: the function is generic.

... further arguments passed to or from other methods.

Value

A character vector or list of such vectors. For a vector the results is the names orseq(along=x)
and for a data frame or array it is the dimnames (withNULLexpanded toseq(len=d[i]) .

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length asX, each element of which is the result of applyingFUN
to the corresponding element ofX.

sapply is a user-friendly version oflapply by default returning a vector or matrix if appropriate.

replicate is a wrapper for the common use ofsapply for repeated evaluation of an expression
(which will usually involve random number generation).

Usage

lapply(X, FUN, ...)

sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

replicate(n, expr, simplify = TRUE)

lapply 217

Arguments

X a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced byas.list .

FUN the function to be applied to each element ofX: see ‘Details’. In the case of
functions like+, %*%, etc., the function name must be backquoted or quoted.

... optional arguments toFUN.

simplify logical; should the result be simplified to a vector or matrix if possible?

USE.NAMES logical; if TRUEand if X is character, useX asnames for the result unless it
had names already.

n number of replications.

expr expression (language object, usually a call) to evaluate repeatedly.

Details

FUNis found by a call tomatch.fun and typically is specified as a function or a symbol (e.g. a
backquoted name) or a character string specifying a function to be searched for from the environ-
ment of the call tolapply .

FunctionFUNmust be able to accept as input any of the elements ofX. If the latter is an atomic
vector,FUNwill always be passed a length-one vector of the same type asX.

Simplification insapply is only attempted ifX has length greater than zero and if the return values
from all elements ofX are all of the same (positive) length. If the common length is one the result
is a vector, and if greater than one is a matrix with a column corresponding to each element ofX.

The mode of the simplified answer is chosen to accommodate the modes of all the values returned
by the calls toFUN: seeunlist .

if X has length 0, the return value ofsapply is always a 0-length list.

Users of S4 classes should pass a list tolapply : the internal coercion is done by the system
as.list in the base namespace and not one defined by a user (e.g. by setting S4 methods on the
system function).

Note

sapply(*, simplify = FALSE, USE.NAMES = FALSE) is equivalent to
lapply(*) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply , tapply , mapply for applying a function tomultiple arguments, andrapply for
a recursive version oflapply() , eapply for applying a function to each entry in an
environment .

218 Last.value

Examples

require(stats); require(graphics)

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
lapply(x,mean)
median and quartiles for each list element
lapply(x, quantile, probs = 1:3/4)
sapply(x, quantile)
i39 <- sapply(3:9, seq) # list of vectors
sapply(i39, fivenum)

hist(replicate(100, mean(rexp(10))))

Last.value Value of Last Evaluated Expression

Description

The value of the internal evaluation of a top-levelR expression is always assigned to
.Last.value (in package:base) before further processing (e.g., printing).

Usage

.Last.value

Details

The value of a top-level assignmentis put in .Last.value , unlike S.

Do not assign to.Last.value in the workspace, because this will always mask the object of the
same name inpackage:base .

See Also

eval

Examples

These will not work correctly from example(),
but they will in make check or if pasted in,
as example() does not run them at the top level
gamma(1:15) # think of some intensive calculation...
fac14 <- .Last.value # keep them

library("splines") # returns invisibly
.Last.value # shows what library(.) above returned

length 219

length Length of an Object

Description

Get or set the length of vectors (including lists) and factors, and of any otherR object for which a
method has been defined.

Usage

length(x)
length(x) <- value

Arguments

x anR object. For replacement, a vector or factor.

value an integer.

Details

Both functions are generic: you can write methods to handle specific classes of objects, seeInter-
nalMethods. length<- has a"factor" method.

The replacement form can be used to reset the length of a vector. If a vector is shortened, extra
values are discarded and when a vector is lengthened, it is padded out to its new length withNAs
(nul for raw vectors).

Value

The default method currently returns aninteger of length 1. Since this may change in the future
and may differ for other methods, programmers should not rely on it. (Should the length exceed the
maximum representable integer, it is returned asNA.)

For vectors (including lists) and factors the length is the number of elements. For an environment it
is the number of objects in the environment, andNULLhas length 0. For expressions and pairlists
(including language objects and dotlists) it is the length of the pairlist chain. All other objects
(including functions) have length one: note that for functions this differs from S.

The replacement form removes all the attributes ofx except its names.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors.

220 levels

Examples

length(diag(4))# = 16 (4 x 4)
length(options())# 12 or more
length(y ~ x1 + x2 + x3)# 3
length(expression(x, {y <- x^2; y+2}, x^y)) # 3

from example(warpbreaks)
require(stats)

fm1 <- lm(breaks ~ wool * tension, data = warpbreaks)
length(fm1$call) # 3, lm() and two arguments.
length(formula(fm1)) # 3, ~ lhs rhs

levels Levels Attributes

Description

levels provides access to the levels attribute of a variable. The first form returns the value of the
levels of its argument and the second sets the attribute.

Usage

levels(x)
levels(x) <- value

Arguments

x an object, for example a factor.

value A valid value for levels(x) . For the default method,NULL or a character
vector. For thefactor method, a vector of character strings with length at
least the number of levels ofx , or a named list specifying how to rename the
levels.

Details

Both the extractor and replacement forms are generic and new methods can be written for them.
The most important method for the replacment function is that forfactor s.

For the factor replacement method, aNA in value causes that level to be removed from the levels
and the elements formerly with that level to be replaced byNA.

Note that for a factor, replacing the levels vialevels(x) <- value is not the same as (and is
preferred to)attr(x, "levels") <- value .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

nlevels , relevel , reorder .

libPaths 221

Examples

assign individual levels
x <- gl(2, 4, 8)
levels(x)[1] <- "low"
levels(x)[2] <- "high"
x

or as a group
y <- gl(2, 4, 8)
levels(y) <- c("low", "high")
y

combine some levels
z <- gl(3, 2, 12)
levels(z) <- c("A", "B", "A")
z

same, using a named list
z <- gl(3, 2, 12)
levels(z) <- list(A=c(1,3), B=2)
z

we can add levels this way:
f <- factor(c("a","b"))
levels(f) <- c("c", "a", "b")
f

f <- factor(c("a","b"))
levels(f) <- list(C="C", A="a", B="b")
f

libPaths Search Paths for Packages

Description

.libPaths gets/sets the library trees within which packages are looked for.

Usage

.libPaths(new)

.Library

.Library.site

Arguments

new a character vector with the locations ofR library trees. Tilde expansion
(path.expand) is done, and if any element contains one of*?[, globbing
is done where supported by the platform: seeSys.glob .

222 libPaths

Details

.Library is a character string giving the location of the default library, the ‘library’ subdirectory
of R_HOME.

.Library.site is a (possibly empty) character vector giving the locations of the site libraries,
by default the ‘site-library’ subdirectory ofR_HOME(which may not exist).

.libPaths is used for getting or setting the library trees thatR knows about (and hence uses
when looking for packages). If called with argumentnew, the library search path is set to the exist-
ing directories inunique(c(new, .Library.site, .Library)) and this is returned. If
given no argument, a character vector with the currently active library trees is returned.

The library search path is initialized at startup from the environment variableR_LIBS (which
should be a colon-separated list of directories at whichR library trees are rooted) followed by those
in environment variableR_LIBS_USER. Only directories which exist at the time will be included.

By default R_LIBS is unset, andR_LIBS_USER is set to directory ‘R/R.version$platform-
library/x.y ’ of the home directory, forR x.y.z.

.Library.site can be set via the environment variableR_LIBS_SITE (as a colon-separated
list of library trees).

Both R_LIBS_USERandR_LIBS_SITE feature possible expansion of specifiers forR version
specific information as part of the startup process. The possible conversion specifiers all start with a
‘%’ and are followed by a single letter (use ‘%%’ to obtain ‘%’), with currently available conversion
specifications as follows:

%V R version number including the patchlevel (e.g., ‘2.5.0 ’).

%v R version number excluding the patchlevel (e.g., ‘2.5 ’).

%p the platform for whichR was built.

%o the underlying operating system.

%a the architecture (CPU)R was built on/for.

(Seeversion for details on R version information.)

Function.libPaths always uses the values of.Library and.Library.site in the base
name space..Library.site can be set by the site in ‘Rprofile.site’, which should be followed
by a call to.libPaths(.libPaths()) to make use of the updated value.

Value

A character vector of file paths.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

library

Examples

.libPaths() # all library trees R knows about

library 223

library Loading and Listing of Packages

Description

library andrequire load add-on packages.

.First.lib is called when a package is loaded;.Last.lib is called when a package is de-
tached.

Usage

library(package, help, pos = 2, lib.loc = NULL,
character.only = FALSE, logical.return = FALSE,
warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"),
version)

require(package, lib.loc = NULL, quietly = FALSE,
warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
character.only = FALSE, version, save = TRUE)

.First.lib(libname, pkgname)

.Last.lib(libpath)

Arguments

package, help
the name of a package, given as anameor literal character string, or a char-
acter string, depending on whethercharacter.only is FALSE (default) or
TRUE).

pos the position on the search list at which to attach the loaded package. Note
that .First.lib may attach other packages, andpos is computedafter
.First.lib has been run. Can also be the name of a position on the cur-
rent search list as given bysearch () .

lib.loc a character vector describing the location ofR library trees to search through, or
NULL. The default value ofNULLcorresponds to all libraries currently known.
Non-existent library trees are silently ignored.

character.only
a logical indicating whetherpackage or help can be assumed to be character
strings.

version A character string denoting a version number of the package to be loaded, for
use withversioned installs: see the section later in this document.

logical.return
logical. If it is TRUE, FALSEor TRUEis returned to indicate success.

warn.conflicts
logical. If TRUE, warnings are printed aboutconflicts from attaching the
new package, unless that package contains an object.conflicts.OK . A con-
flict is a function masking a function, or a non-function masking a non-function.

224 library

keep.source logical. If TRUE, functions ‘keep their source’ including comments, see argu-
mentkeep.source to options . This applies only to the named package,
and not to any packages or name spaces which might be loaded to satisfy depen-
dencies or imports.
This argument does not apply to packages using lazy-loading or saved images.
Whether they have kept source is determined when they are installed (and is
most likely false).

verbose a logical. IfTRUE, additional diagnostics are printed.

quietly a logical. IfTRUE, no message confirming package loading is printed.

save logical or environment. IfTRUE, a call torequire from the source for a pack-
age will save the name of the required package in the variable".required" ,
allowing functiondetach to warn if a required package is detached. See sec-
tion ‘Packages that require other packages’ below.

libname a character string giving the library directory where the package was found.

pkgname a character string giving the name of the package, including the version number
if the package was installed with--with-package-versions .

libpath a character string giving the complete path to the package.

Details

library(package) andrequire(package) both load the package with namepackage .
require is designed for use inside other functions; it returnsFALSEand gives a warning (rather
than an error aslibrary() does by default) if the package does not exist. Both functions check
and update the list of currently loaded packages and do not reload a package which is already
loaded. (Furthermore, if the package has a name space and a name space of that name is already
loaded, they work from the existing name space rather than reloading from the file system. If you
want to reload a package, calldetach or unloadNamespace first.)

To suppress messages during the loading of packages use
suppressPackageStartupMessages : this will suppress all messages fromR itself
but not necessarily all those from package authors.

If library is called with nopackage or help argument, it lists all available packages in the
libraries specified bylib.loc , and returns the corresponding information in an object of class
"libraryIQR" . The structure of this class may change in future versions. In earlier versions of
R, only the names of all available packages were returned; use.packages(all = TRUE) for
obtaining these. Note thatinstalled.packages () returns even more information.

library(help = somename) computes basic information about the packagesomename,
and returns this in an object of class"packageInfo" . The structure of this class may change in
future versions. When used with the default value (NULL) for lib.loc , the loaded packages are
searched before the libraries.

.First.lib is called when a package without a name space is loaded bylibrary . (For
packages with name spaces see.onLoad .) It is called with two arguments, the name of the
library directory where the package was found (i.e., the corresponding element oflib.loc),
and the name of the package (in that order, and with the package name including the ver-
sion for a versioned install, e.g. tree_1.0-16). It is a good place to put calls to
library.dynam which are needed when loading a package into this function (don’t call
library.dynam directly, as this will not work if the package is not installed in a standard
location). .First.lib is invoked after the search path interrogated bysearch() has been
updated, soas.environment(match("package:name", search())) will return the
environment in which the package is stored. If calling.First.lib gives an error the load-
ing of the package is abandoned, and the package will be unavailable. Similarly, if the option

library 225

".First.lib" has a list element with the package’s name, this element is called in the same
manner as.First.lib when the package is loaded. This mechanism allows the user to set pack-
age ‘load hooks’ in addition to startup code as provided by the package maintainers, butsetHook
is preferred.

.Last.lib is called when a package is detached. Beware that it might be called if.First.lib
has failed, so it should be written defensively. (It is called withintry , so errors will not stop the
package being detached.)

Value

library returns the list of loaded (or available) packages (orTRUEif logical.return is
TRUE). require returns a logical indicating whether the required package is available, invisibly

Packages that require other packages

NB: This mechanism has been almost entirely superseded by using theDepends: field in the
‘DESCRIPTION’ file of a package.

The source code for a package that requires one or more other packages should have a call to
require , preferably near the beginning of the source, and of course before any code that uses
functions, classes or methods from the other package. The default for argumentsave will save
the names of all required packages in the environment of the new package. The saved package
names are used bydetach when a package is detached to warn if other packages still require the
to-be-detached package. Also, if a package is installed with saved image (seeINSTALL), the saved
package names are used to require these packages when the new package is attached.

Formal methods

library takes some further actions when packagemethodsis attached (as it is by default). Pack-
ages may define formal generic functions as well as re-defining functions in other packages (notably
base) to be generic, and this information is cached whenever such a package is loaded aftermeth-
odsand re-defined functions are excluded from the list of conflicts. The check requires looking for
a pattern of objects; the pattern search may be avoided by defining an object.noGenerics (with
any value) in the package. Naturally, if the packagedoeshave any such methods, this will prevent
them from being used.

Versioned installs

Packages can be installed with version information byR CMDINSTALL --with-package-
versions or install.packages (installWithVers = TRUE) . This allows more than
one version of a package to be installed in a library directory, using package directory names like
foo_1.5-1 . When such packages are loaded, it is thisversionedname thatsearch () returns.
Some utility functions require the versioned name and some the unversioned name (herefoo).

If version is not specified,library looks first for a packages of that name, and then for ver-
sioned installs of the package, selecting the one with the latest version number. Ifversion is
specified, a versioned install with an exactly matching version is looked for.

If version is not specified,require will accept any version that is already loaded, whereas
library will look for an unversioned install even if a versioned install is already loaded.

Loading more than one version of a package into anR session is not currently supported. Support
for versioned installs is patchy.

226 library

Note

library and require can only load aninstalled package, and this is detected by having a
‘DESCRIPTION’ file containing aBuilt: field.

Under Unix-alikes, the code checks that the package was installed under a similar operating system
as given byR.version$platform (the canonical name of the platform under which R was
compiled), provided it contains compiled code. Packages which do not contain compiled code can
be shared between Unix-alikes, but not to other OSes because of potential problems with line end-
ings and OS-specific help files. If sub-architectures are used, the OS similarity is not checked since
the OS used to build may differ (e.g.i386-pc-linux-gnu code can be built on anx86_64-
unknown-linux-gnu OS).

The package name given tolibrary andrequire must match the name given in the package’s
‘DESCRIPTION’ file exactly, even on case-insensitive file systems such as MS Windows.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

.libPaths , .packages .

attach , detach , search , objects , autoload , library.dynam , data ,
install.packages andinstalled.packages ; INSTALL , REMOVE.

Examples

library() # list all available packages
library(lib.loc = .Library) # list all packages in the default library
library(help = splines) # documentation on package 'splines'
library(splines) # load package 'splines'
require(splines) # the same
search() # "splines", too
detach("package:splines")

if the package name is in a character vector, use
pkg <- "splines"
library(pkg, character.only = TRUE)
detach(pos = match(paste("package", pkg, sep=":"), search()))

require(pkg, character.only = TRUE)
detach(pos = match(paste("package", pkg, sep=":"), search()))

require(nonexistent) # FALSE
Not run:
Suppose a package needs to call a shared library named 'fooEXT',
where 'EXT' is the system-specific extension. Then you should use
.First.lib <- function(lib, pkg) {

library.dynam("foo", pkg, lib)
}

if you want to mask as little as possible, use
library(mypkg, pos = "package:base")
End(Not run)

library.dynam 227

library.dynam Loading Shared Libraries

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package = NULL, lib.loc = NULL,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext, ...)

library.dynam.unload(chname, libpath,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext)

.dynLibs(new)

Arguments

chname a character string naming a shared library to load.

package a character vector with the names of packages to search through, orNULL. By
default, all packages in the search path are used.

lib.loc a character vector describing the location ofR library trees to search through, or
NULL. The default value ofNULLcorresponds to all libraries currently known.

libpath the path to the loaded package whose shared library is to be unloaded.

verbose a logical value indicating whether an announcement is printed on the console
before loading the shared library. The default value is taken from the verbose
entry in the system options.

file.ext the extension to append to the file name to specify the library to be loaded. This
defaults to the appropriate value for the operating system.

... additional arguments needed by some libraries that are passed to the call to
dyn.load to control how the library is loaded.

new a list of "DLLInfo" objects corresponding to the shared libraries loaded by
packages. Can be missing.

Details

library.dynam is designed to be used inside a package rather than at the command line, and
should really only be used inside.First.lib or .onLoad . The system-specific extension
for shared libraries (e.g., ‘.so’ or ‘ .sl’ on Unix systems) should not be added. Note that to al-
low for versioned installs, thechname argument should not be set to thepkgname argument of
.First.lib or .onLoad .

library.dynam.unload is designed for use in.Last.lib or .onUnload : it unloads the
shared object and updates the value of.dynLibs()

.dynLibs is used for getting (with no argument) or setting the shared libraries which are currently
loaded by packages (usinglibrary.dynam).

228 license

Value

If chname is not specified,library.dynam returns an object of class"DLLInfoList" cor-
responding to the shared libraries loaded by packages.

If chname is specified, an object of class"DLLInfo" that identifies the DLL and can be used
in future calls is returned invisibly. For packages that have name spaces, a list of these objects is
stored in the name space’s environment for use at run-time.

Note that the classDLLInfo has an overloaded method for$ which can be used to resolve native
symbols within that DLL.

library.dynam.unload invisibly returns an object of class"DLLInfo" identifying the DLL
successfully unloaded.

.dynLibs returns an object of class"DLLInfoList" corresponding corresponding to its cur-
rent value.

Warning

Do not use dyn.unload on a shared object loaded bylibrary.dynam : use
library.dynam.unload to ensure that.dynLibs gets updated. Otherwise a subsequent
call to library.dynam will be told the object is already loaded.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

getLoadedDLLs for information on"DLLInfo" and"DLLInfoList" objects.

.First.lib , library , dyn.load , .packages , .libPaths

SHLIB for how to create suitable shared libraries.

Examples

Which DLLs were "dynamically loaded" by packages?
library.dynam()

license The R License Terms

Description

The license terms under whichR is distributed.

Usage

license()
licence()

list 229

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE Version 2, June
1991. A copy of this license is in file ‘$R_HOME/COPYING’ and can be viewed by
RShowDoc("COPYING") .

A small number of files (the API header files) are distributed under the LESSER GNU GENERAL
PUBLIC LICENSE version 2.1. A copy of this license is in file ‘$R_DOC_DIR/COPYING.LIB’
and can be viewed byRShowDoc("COPYING.LIB") .

list Lists – Generic and Dotted Pairs

Description

Functions to construct, coerce and check for both kinds ofR lists.

Usage

list(...)
pairlist(...)

as.list(x, ...)
S3 method for class 'environment':
as.list(x, all.names = FALSE, ...)
as.pairlist(x)

is.list(x)
is.pairlist(x)

alist(...)

Arguments

... objects, possibly named.

x object to be coerced or tested.

all.names a logical indicating whether to copy all values or (default) only those whose
names do not begin with a dot.

Details

Most lists inR internally areGeneric Vectors, whereas traditionaldotted pairlists (as in LISP) are
available but rarely seen by users (except asformals of functions).

The arguments tolist or pairlist are of the formvalue or tag=value . The functions
return a list or dotted pair list composed of its arguments with each value either tagged or untagged,
depending on how the argument was specified.

alist handles its arguments as if they described function arguments. So the values are not evalu-
ated, and tagged arguments with no value are allowed whereaslist simply ignores them.alist
is most often used in conjunction withformals .

as.list attempts to coerce its argument to a list. For functions, this returns the concatenation of
the list of formal arguments and the function body. For expressions, the list of constituent elements

230 list

is returned.as.list is generic, and as the default method callsas.vector (mode="list")
methods foras.vector may be invoked.as.list turns a factor into a list of one-element
factors. All attributes will be dropped unless the argument already is a list. (This is inconsistent
with functions such asas.character , and is for efficiency since lists can be expensive to copy.)

is.list returnsTRUEif and only if its argument is alist or a pairlist of length > 0.
is.pairlist returnsTRUEif and only if the argument is a pairlist orNULL(see below).

The " environment " method foras.list copies the name-value pairs (for names not begin-
ning with a dot) from an environment to a named list. The user can request that all named objects
are copied. The list is in no particular order (the order depends on the order of creation of objects
and whether the environment is hashed). No parent environments are searched. (Objects copied are
duplicated so this can be an expensive operation.)

An empty pairlist,pairlist() is the same asNULL. This is different fromlist() .

as.pairlist is implemented asas.vector (x, "pairlist") , and hence will dispatch
methods for the generic functionas.vector .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

vector ("list", length) for creation of a list with empty components;c , for concatenation;
formals . unlist is an approximate inverse toas.list() .

‘plotmath’ for the use oflist in plot annotation.

Examples

require(graphics)

create a plotting structure
pts <- list(x=cars[,1], y=cars[,2])
plot(pts)

is.pairlist(.Options) # a user-level pairlist

"pre-allocate" an empty list of length 5
vector("list", 5)

Argument lists
f <- function() x
Note the specification of a "..." argument:
formals(f) <- al <- alist(x=, y=2+3, ...=)
f
al

environment->list coercion

e1 <- new.env()
e1$a <- 10
e1$b <- 20
as.list(e1)

list.files 231

list.files List the Files in a Directory/Folder

Description

These functions produce a character vector of the names of files in the named directory.

Usage

list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE)

dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE)

Arguments

path a character vector of full path names; the default corresponds to the working
directorygetwd () .

pattern an optionalregular expression. Only file names which match the regular expres-
sion will be returned.

all.files a logical value. IfFALSE, only the names of visible files are returned. IfTRUE,
all file names will be returned.

full.names a logical value. IfTRUE, the directory path is prepended to the file names. If
FALSE, only the file names are returned.

recursive logical. Should the listing recurse into directories?

Value

A character vector containing the names of the files in the specified directories, or"" if there were
no files. If a path does not exist or is not a directory or is unreadable it is skipped, with a warning.

The files are sorted in alphabetical order, on the full path iffull.names = TRUE .

Note

File naming conventions are very platform dependent.

recursive = TRUE is not supported on all platforms, and may be ignored, with a warning.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info , file.access and files for many more file handling functions and
file.choose for interactive selection.

glob2rx to convert wildcards (as used by system file commands and shells) to regular expressions.

Sys.glob for wildcard expansion on file paths.

232 load

Examples

list.files(R.home())
Only files starting with a-l or r
dir("../..", pattern = "^[a-lr]",full.names=TRUE)

load Reload Saved Datasets

Description

Reload datasets written with the functionsave .

Usage

load(file, envir = parent.frame())

Arguments

file a (readable binary) connection or a character string giving the name of the file
to load.

envir the environment where the data should be loaded.

Details

load can loadR objects saved in the current or any earlier format. It can read a compressed file
(seesave) directly from a file or from a suitable connection (including a call tourl).

Only R objects saved in the current format (used sinceR 1.4.0) can be read from a connection. If
no input is available on a connection a warning will be given, but any input not in the current format
will result in a error.

Loading from an earlier version will give a warning about the ‘magic number’: magic numbers
1971:1977 are fromR < 0.99.0, andR[ADX]1 from R 0.99.0 toR 1.3.1.

Value

A character vector of the names of objects created, invisibly.

Warning

SavedR objects are binary files, even those saved withascii = TRUE , so ensure that they are
transferred without conversion of end of line markers.load tries to detect this case and give an
informative error message.

See Also

save , download.file .

localeconv 233

Examples

save all data
xx <- pi # to ensure there is some data
save(list = ls(all=TRUE), file= "all.Rdata")
rm(xx)

restore the saved values to the current environment
local({

load("all.Rdata")
ls()

})
restore the saved values to the user's workspace
load("all.Rdata", .GlobalEnv)

unlink("all.Rdata")

Not run:
con <- url("http://some.where.net/R/data/example.rda")
print the value to see what objects were created.
print(load(con))
close(con) # url() always opens the connection
End(Not run)

localeconv Find Details of the Numerical and Monetary Representations in the
Current Locale

Description

Get details of the numerical and monetary representations in the current locale.

Usage

Sys.localeconv()

Details

These settings are usually controlled by the environment variablesLC_NUMERIC and
LC_MONETARYand if not set the values ofLC_ALL or LANG.

NormallyR is run without looking at the value ofLC_NUMERIC, so the decimal point remains ’. ’.
So the first three of these values will not be useful unless you have setLC_NUMERICin the current
R session.

Value

A character vector with 18 named components. See your ISO C documentation for details of the
meaning.

It is possible to compileR without support for locales, in which case the value will beNULL.

See Also

Sys.setlocale for ways to set locales.

234 locales

Examples

Sys.localeconv()
The results in the C locale are
decimal_point thousands_sep grouping int_curr_symbol
"." "" "" ""
currency_symbol mon_decimal_point mon_thousands_sep mon_grouping
"" "" "" ""
positive_sign negative_sign int_frac_digits frac_digits
"" "" "127" "127"
p_cs_precedes p_sep_by_space n_cs_precedes n_sep_by_space
"127" "127" "127" "127"
p_sign_posn n_sign_posn
"127" "127"

Now try your default locale (which might be "C").
Not run:
old <- Sys.getlocale()
Sys.setlocale(locale = "")
Sys.localeconv()
Sys.setlocale(locale = old)
End(Not run)

Not run: read.table("foo", dec=Sys.localeconv()["decimal_point"])

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for theR process.

Usage

Sys.getlocale(category = "LC_ALL")
Sys.setlocale(category = "LC_ALL", locale = "")

Arguments

category character string. The following categories should always be sup-
ported: "LC_ALL" , "LC_COLLATE" , "LC_CTYPE" , "LC_MONETARY",
"LC_NUMERIC" and "LC_TIME" . Some systems will also support
"LC_MESSAGES", "LC_PAPER" and"LC_MEASUREMENT".

locale character string. A valid locale name on the system in use. Normally"" (the
default) will pick up the default locale for the system.

Details

The locale describes aspects of the internationalization of a program. Initially most aspects of
the locale ofR are set to"C" (which is the default for the C language and reflects North-American
usage).R sets"LC_CTYPE" and"LC_COLLATE" , which allow the use of a different character set
and alphabetic comparisons in that character set (including the use ofsort), "LC_MONETARY"
(for use bySys.localeconv) and"LC_TIME" may affect the behaviour ofas.POSIXlt and
strptime and functions which use them (but notdate).

locales 235

R can be built with no support for locales, but it is normally available on Unix and is available on
Windows.

The first seven categories described here are those specified by POSIX."LC_MESSAGES"will be
"C" on systems that do not support message translation, and is not supported on Windows. Trying
to use an unsupported category is an error forSys.setlocale .

Note that setting"LC_ALL" sets only"LC_COLLATE" , "LC_CTYPE" , "LC_MONETARY"and
"LC_TIME" .

Attempts to set an invalid locale are ignored. There may or may not be a warning, depending on the
OS.

Attempts to change the character set (bySys.setlocale("LC_TYPE",) , if that implies a
different character set) during a session may not work and are likely to lead to some confusion.

Value

A character string of length one describing the locale in use (after setting forSys.setlocale),
or an empty character string if the current locale settings are invalid orNULL if locale information
is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a sin-
gle locale or a set of locales separated by"/" (Solaris) or";" (Windows, Linux). For porta-
bility, it is best to query categories individually. It is guaranteed that the result offoo <-
Sys.getlocale() can be used inSys.setlocale("LC_ALL", locale = foo) on
the same machine.

Warning

Setting"LC_NUMERIC" may causeR to function anomalously, so gives a warning. (The known
problems are with input conversion in locales with, as the decimal point.) Setting it temporar-
ily to produce graphical or text output may work well enough, butoptions (OutDec) is often
preferable.

See Also

strptime for uses ofcategory = "LC_TIME" . Sys.localeconv for details of numeri-
cal and monetary representations.

l10n_info gives some summary facts about the locale and its encoding.

Examples

Sys.getlocale()
Sys.getlocale("LC_TIME")
Not run:
Sys.setlocale("LC_TIME", "de") # Solaris 7: details are OS-dependent
Sys.setlocale("LC_TIME", "de_DE.utf8") # Modern Linux etc.
Sys.setlocale("LC_TIME", "German") # Windows
End(Not run)
Sys.getlocale("LC_PAPER") # may or may not be set

Sys.setlocale("LC_COLLATE", "C") # turn off locale-specific sorting

236 log

log Logarithms and Exponentials

Description

log computes logarithms, by default natural logarithms,log10 computes common (i.e., base
10) logarithms, andlog2 computes binary (i.e., base 2) logarithms. The general formlog(x,
base) computes logarithms with basebase .

log1p(x) computeslog(1 + x) accurately also for|x| � 1 (and less accurately whenx ≈ −1).

exp computes the exponential function.

expm1(x) computesexp(x)− 1 accurately also for|x| � 1.

Usage

log(x, base = exp(1))
logb(x, base = exp(1))
log10(x)
log2(x)

log1p(x)

exp(x)
expm1(x)

Arguments

x a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults toe=exp(1) .

Details

All except logb are generic functions: methods can be defined for them individually or via the
Math group generic.

log10 and log2 are only convenience wrappers, but logs to bases 10 and 2 (whether computed
via log or the wrappers) will be computed more efficiently and accurately where supported by the
OS. Methods can be set for them individually (and otherwise methods forlog will be used).

logb is a wrapper forlog for compatibility with S. If (S3 or S4) methods are set forlog they will
be dispatched. Do not set S4 methods onlogb itself.

Value

A vector of the same length asx containing the transformed values.log(0) gives-Inf .

Logic 237

S4 methods

exp , expm1, log , log10 , log2 andlog1p are S4 generic and are members of theMath group
generic.

Note that this means that the S4 generic forlog has a signature with only one argument,x , but that
base can be passed to methods (but will not be used for method selection). On the other hand, if
you only set a method for theMath group generic thenbase argument oflog will be ignored for
your class.

Note

log and logb are the same thing inR, but logb is preferred ifbase is specified, for S-PLUS
compatibility.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (forlog , log10 andexp .)

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer. (forlogb .)

See Also

Trig , sqrt , Arithmetic .

Examples

log(exp(3))
log10(1e7)# = 7

x <- 10^-(1+2*1:9)
cbind(x, log(1+x), log1p(x), exp(x)-1, expm1(x))

Logic Logical Operators

Description

These operators act on logical vectors.

Usage

! x
x & y
x && y
x | y
x || y
xor(x, y)

isTRUE(x)

238 Logic

Arguments

x, y logical vectors, or objects which can be coerced to such or for which methods
have been written.

Details

! indicates logical negation (NOT).

& and && indicate logical AND and| and || indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form evaluates
left to right examining only the first element of each vector. Evaluation proceeds only until the
result is determined. The longer form is appropriate for programming control-flow and typically
preferred inif clauses.

xor indicates elementwise exclusive OR.

isTRUE(x) is an abbreviation ofidentical(TRUE, x) , and so is true if and only ifx is a
length-one logical vector with no attributes (not even names).

Numeric and complex vectors will be coerced to logical values, with zero being false and all non-
zero values being true. Raw vectors are handled without any coercion for! , & and | , with these
operators being applied bitwise (so! is the 1-complement).

The operators! , & and| are generic functions: methods can be written for them individually or via
theOps) group generic function. (SeeOps for how dispatch is computed.)

NA is a valid logical object. Where a component ofx or y is NA, the result will beNA if the
outcome is ambiguous. In other wordsNA & TRUEevaluates toNA, butNA & FALSEevaluates
to FALSE. See the examples below.

SeeSyntaxfor the precedence of these operators: unlike many other languages (including S) the
AND and OR operators do not have the same precedence (the AND operators are higher than the
OR operators).

Value

For ! , a logical or raw vector of the same length asx .

For | , & andxor a logical or raw vector. The elements of shorter vectors are recycled as necessary
(with awarning when they are recycled onlyfractionally). The rules for determining the attributes
of the result are rather complicated. Most attributes are taken from the longer argument, the first
if they are of the same length. Names will be copied from the first if it is the same length as the
answer, otherwise from the second if that is. For time series, these operations are allowed only if
the series are compatible, when the class andtsp attribute of whichever is a time series (the same,
if both are) are used. For arrays (and an array result) the dimensions and dimnames are taken from
first argument if it is an array, otherwise the second.

For || , &&andisTRUE , a length-one logical vector.

S4 methods

! , & and | are S4 generics, the latter two part of theLogic group generic (and hence methods
need argument namese1, e2).

Prior toR 2.6.0 S4 methods for! needed argument namee1 , but nowx is correct.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

logical 239

See Also

TRUEor logical .

any andall for OR and AND on many scalar arguments.

Syntax for operator precedence.

Examples

y <- 1 + (x <- stats::rpois(50, lambda=1.5) / 4 - 1)
x[(x > 0) & (x < 1)] # all x values between 0 and 1
if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables :

x <- c(NA, FALSE, TRUE)
names(x) <- as.character(x)
outer(x, x, "&")## AND table
outer(x, x, "|")## OR table

logical Logical Vectors

Description

Create or test for objects of type"logical" , and the basic logical constants.

Usage

TRUE
FALSE
T; F

logical(length = 0)
as.logical(x, ...)
is.logical(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

TRUEandFALSEarereservedwords denoting logical constants in theR language, whereasT and
F are global variables whose initial values set to these. All four arelogical(1) vectors.

240 lower.tri

Value

logical creates a logical vector of the specified length. Each element of the vector is equal to
FALSE.

as.logical attempts to coerce its argument to be of logical type. Forfactor s, this uses the
levels (labels). Likeas.vector it strips attributes including names.

is.logical returnsTRUEor FALSE depending on whether its argument is of logical type or
not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

NA, the other logical constant.

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entriesTRUEin the lower or upper
triangle.

Usage

lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)

Arguments

x a matrix.

diag logical. Should the diagonal be included?

See Also

diag , matrix .

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri(m2)
m2[lower.tri(m2)] <- NA
m2

ls 241

ls List Objects

Description

ls andobjects return a vector of character strings giving the names of the objects in the specified
environment. When invoked with no argument at the top level prompt,ls shows what data sets and
functions a user has defined. When invoked with no argument inside a function,ls returns the
names of the functions local variables. This is useful in conjunction withbrowser .

Usage

ls(name, pos = -1, envir = as.environment(pos),
all.names = FALSE, pattern)

objects(name, pos= -1, envir = as.environment(pos),
all.names = FALSE, pattern)

Arguments

name which environment to use in listing the available objects. Defaults to thecur-
rent environment. Although calledname for back compatibility, in fact this
argument can specify the environment in any form; see the details section.

pos An alternative argument toname for specifying the environment as a position
in the search list. Mostly there for back compatibility.

envir an alternative argument toname for specifying the environment evaluation en-
vironment. Mostly there for back compatibility.

all.names a logical value. IfTRUE, all object names are returned. IfFALSE, names which
begin with a ‘. ’ are omitted.

pattern an optionalregular expression. Only names matchingpattern are returned.
glob2rx can be used to convert wildcard patterns to regular expressions.

Details

The name argument can specify the environment from which object names are taken in one of
several forms: as an integer (the position in thesearch list); as the character string name of an
element in the search list; or as an explicitenvironment (including usingsys.frame to access
the currently active function calls). By default, the environment of the call tols or objects is
used. Thepos andenvir arguments are an alternative way to specify an environment, but are
primarily there for back compatibility.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

glob2rx for converting wildcard patterns to regular expressions.

ls.str for a long listing based onstr . apropos (or find) for finding objects in the whole
search path;grep for more details on ‘regular expressions’;class , methods , etc., for object-
oriented programming.

242 make.names

Examples

.Ob <- 1
ls(pattern = "O")
ls(pattern= " O", all.names = TRUE) # also shows ".[foo]"

shows an empty list because inside myfunc no variables are defined
myfunc <- function() {ls()}
myfunc()

define a local variable inside myfunc
myfunc <- function() {y <- 1; ls()}
myfunc() # shows "y"

make.names Make Syntactically Valid Names

Description

Make syntactically valid names out of character vectors.

Usage

make.names(names, unique = FALSE, allow_ = TRUE)

Arguments

names character vector to be coerced to syntactically valid names. This is coerced to
character if necessary.

unique logical; if TRUE, the resulting elements are unique. This may be desired for,
e.g., column names.

allow_ logical. For compatibility withR prior to 1.9.0.

Details

A syntactically valid name consists of letters, numbers and the dot or underline characters and
starts with a letter or the dot not followed by a number. Names such as".2way" are not valid, and
neither are the reserved words.

The character"X" is prepended if necessary. All invalid characters are translated to"." . A
missing value is translated to"NA" . Names which matchR keywords have a dot appended to them.
Duplicated values are altered bymake.unique .

Value

A character vector of same length asnames with each changed to a syntactically valid name.

Note

Prior toR version 1.9.0, underscores were not valid in variable names, and code that relies on them
being converted to dots will no longer work. Useallow_ = FALSE for back-compatibility.

allow_ = FALSE is also useful when creating names for export to applications which do not
allow underline in names (for example, S-PLUS and some DBMSs).

make.unique 243

See Also

make.unique , names, character , data.frame .

Examples

make.names(c("a and b", "a-and-b"), unique=TRUE)
"a.and.b" "a.and.b.1"
make.names(c("a and b", "a_and_b"), unique=TRUE)
"a.and.b" "a_and_b"
make.names(c("a and b", "a_and_b"), unique=TRUE, allow_=FALSE)
"a.and.b" "a.and.b.1"

state.name[make.names(state.name) != state.name] # those 10 with a space

make.unique Make Character Strings Unique

Description

Makes the elements of a character vector unique by appending sequence numbers to duplicates.

Usage

make.unique(names, sep = ".")

Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence number.

Details

The algorithm used bymake.unique has the property thatmake.unique(c(A, B)) ==
make.unique(c(make.unique(A), B)) .

In other words, you can append one string at a time to a vector, making it unique each time, and get
the same result as applyingmake.unique to all of the strings at once.

If character vectorA is already unique, thenmake.unique(c(A, B)) preservesA.

Value

A character vector of same length asnames with duplicates changed.

Author(s)

Thomas P Minka

See Also

make.names

244 mapply

Examples

make.unique(c("a", "a", "a"))
make.unique(c(make.unique(c("a", "a")), "a"))

make.unique(c("a", "a", "a.2", "a"))
make.unique(c(make.unique(c("a", "a")), "a.2", "a"))

rbind(data.frame(x=1), data.frame(x=2), data.frame(x=3))
rbind(rbind(data.frame(x=1), data.frame(x=2)), data.frame(x=3))

manglePackageName Mangle the Package Name

Description

This function takes the package name and the package version number and pastes them together
with a separating underscore.

Usage

manglePackageName(pkgName, pkgVersion)

Arguments

pkgName The package name, as a character string.

pkgVersion The package version, as a character string.

Value

A character string with the two inputs pasted together.

Examples

manglePackageName("foo", "1.2.3")

mapply Apply a function to multiple list or vector arguments

Description

mapply is a multivariate version ofsapply . mapply appliesFUNto the first elements of each
. . . argument, the second elements, the third elements, and so on. Arguments are recycled if neces-
sary.

Vectorize returns a new function that acts as ifmapply was called.

mapply 245

Usage

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Vectorize(FUN, vectorize.args = arg.names, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Arguments

FUN function to apply, found viamatch.fun .

... arguments to vectorize over (list or vector).

MoreArgs a list of other arguments toFUN.

SIMPLIFY logical; attempt to reduce the result to a vector or matrix?

USE.NAMES logical; use names if the first . . . argument has names, or if it is a character vector,
use that character vector as the names.

vectorize.args
a character vector of arguments which should be vectorized. Defaults to all
arguments toFUN.

Details

The arguments named in thevectorize.args argument toVectorize correspond to the
arguments passed in the... list to mapply . However, only those that are actually passed will be
vectorized; default values will not. See the example below.

Vectorize cannot be used with primitive functions as they have no formal list.

Value

mapply returns a list, vector, or matrix.

Vectorize returns a function with the same arguments asFUN, but wrapping a call tomapply .

See Also

sapply , outer

Examples

require(graphics)

mapply(rep, 1:4, 4:1)

mapply(rep, times=1:4, x=4:1)

mapply(rep, times=1:4, MoreArgs=list(x=42))

Repeat the same using Vectorize: use rep.int as rep is primitive
vrep <- Vectorize(rep.int)
vrep(1:4, 4:1)
vrep(times=1:4, x=4:1)

vrep <- Vectorize(rep.int, "times")
vrep(times=1:4, x=42)

246 margin.table

mapply(function(x,y) seq_len(x) + y,
c(a= 1, b=2, c= 3), # names from first
c(A=10, B=0, C=-10))

word <- function(C,k) paste(rep.int(C,k), collapse='')
utils::str(mapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))

f <- function(x=1:3, y) c(x,y)
vf <- Vectorize(f, SIMPLIFY = FALSE)
f(1:3,1:3)
vf(1:3,1:3)
vf(y=1:3) # Only vectorizes y, not x

Nonlinear regression contour plot, based on nls() example

SS <- function(Vm, K, resp, conc) {
pred <- (Vm * conc)/(K + conc)
sum((resp - pred)^2 / pred)

}
vSS <- Vectorize(SS, c("Vm", "K"))
Treated <- subset(Puromycin, state == "treated")

Vm <- seq(140, 310, len=50)
K <- seq(0, 0.15, len=40)
SSvals <- outer(Vm, K, vSS, Treated$rate, Treated$conc)
contour(Vm, K, SSvals, levels=(1:10)^2, xlab="Vm", ylab="K")

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table(x, margin=NULL)

Arguments

x an array

margin index number (1 for rows, etc.)

Details

This is really justapply(x, margin, sum) packaged up for newbies, except that ifmargin
has length zero you getsum(x) .

Value

The relevant marginal table. The class ofx is copied to the output table, except in the summation
case.

mat.or.vec 247

Author(s)

Peter Dalgaard

See Also

prop.table andaddmargins .

Examples

m <- matrix(1:4,2)
margin.table(m,1)
margin.table(m,2)

mat.or.vec Create a Matrix or a Vector

Description

mat.or.vec creates annr by nc zero matrix ifnc is greater than 1, and a zero vector of length
nr if nc equals 1.

Usage

mat.or.vec(nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec(3, 1)
mat.or.vec(3, 2)

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for its left operand.

Usage

match(x, table, nomatch = NA_integer_, incomparables = FALSE)

x %in% table

248 match

Arguments

x vector orNULL: the values to be matched.

table vector orNULL: the values to be matched against.

nomatch the value to be returned in the case when no match is found. Note that it is
coerced tointeger .

incomparables
a vector of values that cannot be matched. Any value inx matching a value
in this vector is assigned thenomatch value. Currently,FALSE is the only
possible value, meaning that all values can be matched.

Details

%in% is currently defined as
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0

Factors, raw vectors and lists are converted to character vectors, and thenx andtable are coerced
to a common type (the later of the two types in R’s ordering, logical < integer < numeric < complex
< character) before matching.

Matching for lists is potentially very slow and best avoided except in simple cases.

Exactly what matches what is to some extent a matter of definition. For all types,NAmatchesNA
and no other value. For real and complex values,NaNvalues are regarded as matching any other
NaNvalue, but not matchingNA.

Value

A vector of the same length asx .

match : An integer vector giving the position intable of the first match if there is a match,
otherwisenomatch .

If x[i] is found to equaltable[j] then the value returned in thei -th position of the return
value isj , for the smallest possiblej . If no match is found, the value isnomatch .

%in%: A logical vector, indicating if a match was located for each element ofx .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

pmatch andcharmatch for (partial) string matching,match.arg , etc for function argument
matching.findInterval similarly returns a vector of positions, but finds numbers within inter-
vals, rather than exact matches.

is.element for an S-compatible equivalent of%in%.

Examples

The intersection of two sets :
intersect <- function(x, y) y[match(x, y, nomatch = 0)]
intersect(1:10,7:20)

1:10 %in% c(1,3,5,9)

match.arg 249

sstr <- c("c","ab","B","bba","c","@","bla","a","Ba","%")
sstr[sstr %in% c(letters,LETTERS)]

"%w/o%" <- function(x,y) x[!x %in% y] #-- x without y
(1:10) %w/o% c(3,7,12)

match.arg Argument Verification Using Partial Matching

Description

match.arg matchesarg against a table of candidate values as specified bychoices , where
NULLmeans to take the first one.

Usage

match.arg(arg, choices, several.ok = FALSE)

Arguments

arg a character vector (of length one unlessseveral.ok is TRUE) or NULL.

choices a character vector of candidate values

several.ok logical specifying ifarg should be allowed to have more than one element.

Details

In the one-argument formmatch.arg(arg) , the choices are obtained from a default setting
for the formal argumentarg of the function from whichmatch.arg was called. (Since default
argument matching will setarg to choices , this is allowed as an exception to the ‘length one
unlessseveral.ok is TRUE’ rule, and returns the first element.)

Matching is done usingpmatch , soarg may be abbreviated.

Value

The unabbreviated version of the exact or unique partial match if there is one; otherwise, an error is
signalled ifseveral.ok is false, as per default. Whenseveral.ok is true and more than one
element ofarg has a match, all unabbreviated versions of matches are returned.

See Also

pmatch , match.fun , match.call .

Examples

require(stats)
Extends the example for 'switch'
center <- function(x, type = c("mean", "median", "trimmed")) {

type <- match.arg(type)
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

250 match.call

}
x <- rcauchy(10)
center(x, "t") # Works
center(x, "med") # Works
try(center(x, "m")) # Error
stopifnot(identical(center(x), center(x, "mean")),

identical(center(x, NULL), center(x, "mean")))

Allowing more than one match:
match.arg(c("gauss", "rect", "ep"),

c("gaussian", "epanechnikov", "rectangular", "triangular"),
several.ok = TRUE)

match.call Argument Matching

Description

match.call returns a call in which all of the specified arguments are specified by their full
names.

Usage

match.call(definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments

definition a function, by default the function from whichmatch.call is called. See
details.

call an unevaluated call to the function specified bydefinition , as generated by
call .

expand.dots logical. Should arguments matching... in the call be included or left as a...
argument?

Details

‘function’ on this help page means an interpreted function (also known as a ‘closure’):
match.call does not support with primitive functions (where argument matching is normally
positional).

match.call is most commonly used in two circumstances:

• To record the call for later re-use: for example most model-fitting functions record the call as
elementcall of the list they return. Here the defaultexpand.dots = TRUE is appropri-
ate.

• To pass most of the call to another function, oftenmodel.frame . Here the common idiom
is that expand.dots = FALSE is used, and the... elememt of the matched call is
removed. An alternative is to explicitly select the arguments to be passed on, as is done inlm .

Callingmatch.call outside a function without specifyingdefinition is an error.

match.fun 251

Value

An object of classcall .

References

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.

See Also

sys.call () is similar, but doesnotexpand the argument names;call , pmatch , match.arg ,
match.fun .

Examples

match.call(get, call("get", "abc", i = FALSE, p = 3))
-> get(x = "abc", pos = 3, inherits = FALSE)
fun <- function(x, lower = 0, upper = 1) {

structure((x - lower) / (upper - lower), CALL = match.call())
}
fun(4 * atan(1), u = pi)

match.fun Function Verification for “Function Variables”

Description

When called inside functions that take a function as argument, extract the desired function object
while avoiding undesired matching to objects of other types.

Usage

match.fun(FUN, descend = TRUE)

Arguments

FUN item to match as function: a function, symbol or character string. See ‘Details’.

descend logical; control whether to search past non-function objects.

Details

match.fun is not intended to be used at the top level since it will perform matching in theparent
of the caller.

If FUN is a function, it is returned. If it is a symbol (for example, enclosed in backquotes) or a
character vector of length one, it will be looked up usingget in the environment of the parent of
the caller. If it is of any other mode, it is attempted first to get the argument to the caller as a symbol
(usingsubstitute twice), and if that fails, an error is declared.

If descend = TRUE , match.fun will look past non-function objects with the given name;
otherwise ifFUNpoints to a non-function object then an error is generated.

This is used in base functions such asapply , lapply , outer , andsweep .

252 Math

Value

A function matchingFUNor an error is generated.

Bugs

Thedescend argument is a bit of misnomer and probably not actually needed by anything. It may
go away in the future.

It is impossible to fully foolproof this. If oneattach es a list or data frame containing a length-one
character vector with the same name as a function, it may be used (although name spaces will help).

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg , get

Examples

Same as get("*"):
match.fun("*")
Overwrite outer with a vector
outer <- 1:5
Not run:
match.fun(outer, descend = FALSE) #-> Error: not a function
End(Not run)
match.fun(outer) # finds it anyway
is.function(match.fun("outer")) # as well

Math Miscellaneous Mathematical Functions

Description

These functions compute miscellaneous mathematical functions. The naming follows the standard
for computer languages such as C or Fortran.

Usage

abs(x)
sqrt(x)

Arguments

x a numeric orcomplex vector or array.

Details

These are generic functions: methods can be defined for them individually or via theMath
group generic. For complex arguments (and the default method),z , abs(z) == Mod(z) and
sqrt(z) == z^0.5 .

abs(x) returns aninteger vector whenx is integer or logical .

matmult 253

S4 methods

Both are S4 generic and members of theMath group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic for simple,log for logarithmic,sin for trigonometric, andSpecial for special
mathematical functions.

‘plotmath’ for the use ofsqrt in plot annotation.

Examples

require(stats) # for spline
require(graphics)
xx <- -9:9
plot(xx, sqrt(abs(xx)), col = "red")
lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be promoted to
either a row or column matrix to make the two arguments conformable. If both are vectors it will
return the inner product.

Usage

x %*% y

Arguments

x, y numeric or complex matrices or vectors.

Details

When a vector is promoted to a matrix, its names are not promoted to row or column names, unlike
as.matrix .

This operator is S4 generic but not S3 generic. S4 methods need to be written for a function of two
arguments namedx andy .

Value

The matrix product. Usedrop to get rid of dimensions which have only one level.

254 matrix

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

matrix , Arithmetic , diag .

Examples

x <- 1:4
(z <- x %*% x) # scalar ("inner") product (1 x 1 matrix)
drop(z) # as scalar

y <- diag(x)
z <- matrix(1:12, ncol = 3, nrow = 4)
y %*% z
y %*% x
x %*% z

matrix Matrices

Description

matrix creates a matrix from the given set of values.

as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix.

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

as.matrix(x, ...)
S3 method for class 'data.frame':
as.matrix(x, rownames.force = NA, ...)

is.matrix(x)

Arguments

data an optional data vector.

nrow the desired number of rows.

ncol the desired number of columns.

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.

dimnames A dimnames attribute for the matrix: alist of length 2 giving the row and
column names respectively.

x anR object.

matrix 255

... additional arguments to be passed to or from methods.

rownames.force
logical indicating if the resulting matrix should have character (rather than
NULL) rownames . The default,NA, usesNULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

If one of nrow or ncol is not given, an attempt is made to infer it from the length ofdata and
the other parameter. If neither is given, a one-column matrix is returned.

If there are too few elements indata to fill the array, then the elements indata are recycled. If
data has length zero,NAof an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

is.matrix returnsTRUEif x is a matrix and has adim attribute of length 2) andFALSEother-
wise. Note that adata.frame is not a matrix by this test. It is generic: you can write methods to
handle specific classes of objects, seeInternalMethods.

as.matrix is a generic function. The method for data frames will return a character matrix if
there is any non-(numeric/logical/complex) column, applyingformat to non-character columns.
Otherwise, the usual coercion hierarchy (logical < integer < double < complex) will be used, e.g.,
all-logical data frames will be coerced to a logical matrix, mixed logical-integer will give a integer
matrix, etc.

When coercing a vector, it produces a one-column matrix, and promotes the names (if any) of the
vector to the rownames of the matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

data.matrix , which attempts to convert to a numeric matrix.

Examples

is.matrix(as.matrix(1:10))
!is.matrix(warpbreaks)# data.frame, NOT matrix!
warpbreaks[1:10,]
as.matrix(warpbreaks[1:10,]) #using as.matrix.data.frame(.) method

Example of setting row and column names
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE,

dimnames = list(c("row1", "row2"),
c("C.1", "C.2", "C.3")))

mdat

256 maxCol

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col(m, ties.method=c("random", "first", "last"))

Arguments

m numerical matrix

ties.method a character string specifying how ties are handled,"random" by default; can
be abbreviated; see ‘Details’.

Details

Whenties.method = "random" , as per default, ties are broken at random. In this case, the
determination of a tie assumes that the entries are probabilities: there is a relative tolerance of10−5,
relative to the largest (in magnitude, omitting infinity) entry in the row.

If ties.method = "first" , max.col returns the column number of thefirst of several max-
ima in every row, the same asunname(unname(m, 1, unname)) .
Correspondingly,ties.method = "last" returns thelast of possibly several indices.

Value

index of a maximal value for each row, an integer vector of lengthnrow(m) .

References

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S.New York: Springer
(4th ed).

See Also

which.max for vectors.

Examples

table(mc <- max.col(swiss))# mostly "1" and "5", 5 x "2" and once "4"
swiss[unique(print(mr <- max.col(t(swiss)))) ,] # 3 33 45 45 33 6

set.seed(1)# reproducible example:
(mm <- rbind(x = round(2*stats::runif(12)),

y = round(5*stats::runif(12)),
z = round(8*stats::runif(12))))

Not run:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 1 1 2 0 2 2 1 1 0 0 0
y 3 2 4 2 4 5 2 4 5 1 3 1

mean 257

z 2 3 0 3 7 3 4 5 4 1 7 5
End(Not run)
column indices of all row maxima :
utils::str(lapply(1:3, function(i) which(mm[i,] == max(mm[i,]))))
max.col(mm) ; max.col(mm) # "random"
max.col(mm, "first")# -> 4 6 5
max.col(mm, "last") # -> 7 9 11

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean(x, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric data frames, numeric
vectors and dates. A complex vector is allowed fortrim = 0 , only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end ofx before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

na.rm a logical value indicating whetherNAvalues should be stripped before the com-
putation proceeds.

... further arguments passed to or from other methods.

Value

For a data frame, a named vector with the appropriate method being applied column by column.

If trim is zero (the default), the arithmetic mean of the values inx is computed, as a numeric or
complex vector of length one. Ifx is not logical (coerced to numeric), integer, numeric or complex,
NAis returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction oftrim observa-
tions deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

weighted.mean , mean.POSIXct

258 Memory

Examples

x <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)

Memory Memory Available for Data Storage

Description

Use command line options to control the memory available forR.

Usage

R --min-vsize=vl --max-vsize=vu --min-nsize=nl --max-nsize=nu --max-ppsize=N

mem.limits(nsize = NA, vsize = NA)

Arguments

vl, vu, vsize
Heap memory in bytes.

nl, nu, nsize
Number of cons cells.

N Number of nestedPROTECTcalls.

.

Details

R has a variable-sized workspace. There is much less need to set memory options than prior toR
1.2.0, and most users will never need to set these. They are provided both as a way to control the
overall memory usage (which can also be done by operating-system facilities such aslimit on
Unix), and since setting larger values of the minima will makeR slightly more efficient on large
tasks.

To understand the options, one needs to know thatR maintains separate areas for fixed and variable
sized objects. The first of these is allocated as an array ofcons cells(Lisp programmers will know
what they are, others may think of them as the building blocks of the language itself, parse trees,
etc.), and the second are thrown on aheapof ‘Vcells’ of 8 bytes each. Effectively, the inputsvl
andvu are rounded up to the next multiple of 8.

Each cons cell occupies 28 bytes on a 32-bit machine, (usually) 56 bytes on a 64-bit machine.

The ‘--*-nsize ’ options can be used to specify the number of cons cells and the ‘--*-vsize ’
options specify the size of the vector heap in bytes. Both options must be integers or integers
followed byG, M, K, or k meaningGiga (230 = 1073741824) Mega(220 = 1048576), (computer)
Kilo (210 = 1024), or regularkilo (1000).

The ‘--min-* ’ options set the minimal sizes for the number of cons cells and for the vector heap.
These values are also the initial values, but thereafterR will grow or shrink the areas depending on

Memory-limits 259

usage, but never exceeding the limits set by the ‘--max-* ’ options nor decreasing below the initial
values.

The default values are currently minima of 350k cons cells, 6Mb of vector heap and no max-
ima (other than machine resources). The maxima can be changed during anR session by calling
mem.limits . (If this is called with the default values, it reports the current settings.)

You can find out the current memory consumption (the heap and cons cells used as numbers and
megabytes) by typinggc () at theR prompt. Note that followinggcinfo (TRUE) , automatic
garbage collection always prints memory use statistics. Maxima will never be reduced below the
current values for triggering garbage collection, and attempts to do so will be silently ignored.

The command-line option ‘--max-ppsize ’ controls the maximum size of the pointer protection
stack. This defaults to 50000, but can be increased to allow deep recursion or large and complicated
calculations to be done.Note that parts of the garbage collection process goes through the full
reserved pointer protection stack and hence becomes slower when the size is increased. Currently
the maximum value accepted is 500000.

Value

mem.limits() returns an integer vector giving the current settings of the maxima, possiblyNA.

See Also

An Introduction to Rfor more command-line options

Memory-limits for the design limitations.

gc for information on the garbage collector and total memory usage,object.size (a) for the
(approximate) size ofR objecta. memory.profile for profiling the usage of cons cells.

Examples

Start R with 10MB of heap memory and 500k cons cells, limit to
100Mb and 1M cells
Not run:
Unix
R --min-vsize=10M --max-vsize=100M --min-nsize=500k --max-nsize=1M
End(Not run)

Memory-limits Memory Limits in R

Description

R holds objects it is using in memory. This help file documents the current design limitations on
large objects: these differ between 32-bit and 64-bit builds ofR.

Details

R holds all objects in memory, and there are limits based on the amount of memory that can be used
by all objects:

• There may be limits on the size of the heap and the number of cons cells allowed – see
Memory – but these are usually not imposed.

260 memory.profile

• There is a limit on the address space of a single process such as theR executable. This is
system-specific, but 32-bit OSes imposes a limit of no more than 4Gb: it is often 3Gb or less.

• The environment may impose limitations on the resources available to a single process – see
the OS/shell’s help on commands such aslimit or ulimit .

Error messages beginningcannot allocate vector of size indicate a failure to obtain
memory, either because the size exceeded the address-space limit for a process or, more likely,
because the system was unable to provide the memory. Note that on a 32-bit OS there may well be
enough free memory available, but not a large enough contiguous block of address space into which
to map it.

There are also limits on individual objects. On all versions ofR, the maximum length (number of
elements) of a vector is231 − 1 ≈ 2 109, as lengths are stored as signed integers. In addition, the
storage space cannot exceed the address limit, and if you try to exceed that limit, the error message
beginscannot allocate vector of length . The number of characters in a character
string is in theory only limited by the address space.

See Also

object.size (a) for the (approximate) size ofR objecta.

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells bySEXPRECtype.

Usage

memory.profile()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’.

Value

A vector of counts, named by the types. Seetypeof for an explanation of types.

See Also

gc for the overall usage of cons cells.Rprofmem and tracemem allow memory profiling of
specific code or objects, but need to be enabled at compile time.

Examples

memory.profile()

merge 261

merge Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of databasejoin
operations.

Usage

merge(x, y, ...)

Default S3 method:
merge(x, y, ...)

S3 method for class 'data.frame':
merge(x, y, by = intersect(names(x), names(y)),

by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
sort = TRUE, suffixes = c(".x",".y"), ...)

Arguments

x, y data frames, or objects to be coerced to one.
by, by.x, by.y

specifications of the common columns. See ‘Details’.

all logical;all = L is shorthand forall.x = L andall.y = L .

all.x logical; if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row iny . These rows will haveNAs in those columns
that are usually filled with values fromy . The default isFALSE, so that only
rows with data from bothx andy are included in the output.

all.y logical; analogous toall.x above.

sort logical. Should the results be sorted on theby columns?

suffixes character(2) specifying the suffixes to be used for making non-by names()
unique.

... arguments to be passed to or from methods.

Details

By default the data frames are merged on the columns with names they both have, but separate
specifications of the columns can be given byby.x andby.y . Columns can be specified by name,
number or by a logical vector: the name"row.names" or the number0 specifies the row names.
The rows in the two data frames that match on the specified columns are extracted, and joined
together. If there is more than one match, all possible matches contribute one row each.

If by or both by.x and by.y are of length 0 (a length zero vector orNULL), the result,r ,
is theCartesian productof x andy , i.e., dim(r) = c(nrow(x)*nrow(y), ncol(x) +
ncol(y)) .

If all.x is true, all the non matching cases ofx are appended to the result as well, withNAfilled
in the corresponding columns ofy ; analogously forall.y .

262 message

If the remaining columns in the data frames have any common names, these havesuffixes
(".x" and".y" by default) appended to make the names of the result unique.

The complexity of the algorithm used is proportional to the length of the answer.

Value

A data frame. The rows are by default lexicographically sorted on the common columns, but for
sort = FALSE are in an unspecified order. The columns are the common columns followed by
the remaining columns inx and then those iny . If the matching involved row names, an extra
character column calledRow.names is added at the left, and in all cases the result has ‘automatic’
row names.

See Also

data.frame , by , cbind

Examples

use character columns of names to get sensible sort order
authors <- data.frame(

surname = I(c("Tukey", "Venables", "Tierney", "Ripley", "McNeil")),
nationality = c("US", "Australia", "US", "UK", "Australia"),
deceased = c("yes", rep("no", 4)))

books <- data.frame(
name = I(c("Tukey", "Venables", "Tierney",

"Ripley", "Ripley", "McNeil", "R Core")),
title = c("Exploratory Data Analysis",

"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics", "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),

other.author = c(NA, "Ripley", NA, NA, NA, NA,
"Venables & Smith"))

(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))
(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))
stopifnot(as.character(m1[,1]) == as.character(m2[,1]),

all.equal(m1[, -1], m2[, -1][names(m1)[-1]]),
dim(merge(m1, m2, by = integer(0))) == c(36, 10))

"R core" is missing from authors and appears only here :
merge(authors, books, by.x = "surname", by.y = "name", all = TRUE)

message Diagnostic Messages

Description

Generate a diagnostic message from its arguments.

message 263

Usage

message(..., domain = NULL, appendLF = TRUE)
suppressMessages(expr)

packageStartupMessage(..., domain = NULL, appendLF = TRUE)
suppressPackageStartupMessages(expr)

.makeMessage(..., domain = NULL, appendLF = FALSE)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (formessage only) a single condition object.

domain seegettext . If NA, messages will not be translated.

appendLF logical: should messages given as a character string have a newline appended?

expr expression to evaluate.

Details

message is used for generating ‘simple’ diagnostic messages which are neither warnings nor
errors, but nevertheless represented as conditions. Unlike warnings and errors, a final newline is
regarded as part of the message, and is optional. The default handler sends the message to the
stderr () connection.

If a condition object is supplied tomessage it should be the only argument, and further arguments
will be ignored, with a warning.

While the message is being processed, amuffleMessage restart is available.

suppressMessages evaluates its expression in a context that ignores all ‘simple’ diagnostic
messages.

packageStartupMessage is a variant whose messages can be suppressed separately by
suppressPackageStartupMessages . (They are still messages, so can be suppressed by
suppressMessages .)

.makeMessage is a utility used bymessage , warning andstop to generate a text message
from the... arguments by possible translation (seegettext) and concatenation (with no sepa-
rator).

See Also

warning andstop for generating warnings and errors;conditions for condition handling
and recovery.

gettext for the mechanisms for the automated translation of text.

Examples

message("ABC", "DEF")
suppressMessages(message("ABC"))

testit <- function() {
message("testing package startup messages")
packageStartupMessage("initializing ...", appendLF = FALSE)
Sys.sleep(1)
packageStartupMessage(" done")

264 missing

}

testit()
suppressPackageStartupMessages(testit())
suppressMessages(testit())

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing(x)

Arguments

x a formal argument.

Details

missing(x) is only reliable ifx has not been altered since entering the function: in particular it
will alwaysbe false afterx <- match.arg(x) .

The example shows how a plotting function can be written to work with either a pair of vectors
giving x and y coordinates of points to be plotted or a single vector giving y values to be plotted
against their indexes.

Currentlymissing can only be used in the immediate body of the function that defines the argu-
ment, not in the body of a nested function or alocal call. This may change in the future.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression;NAfor missing values in data.

Examples

myplot <- function(x,y) {
if(missing(y)) {

y <- x
x <- 1:length(y)

}
plot(x,y)

}

mode 265

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode(x)
mode(x) <- value
storage.mode(x)
storage.mode(x) <- value

Arguments

x anyR object.

value a character string giving the desired mode or ‘storage mode’ (type) of the object.

Details

Both mode andstorage.mode return a character string giving the (storage) mode of the object
— often the same — both relying on the output oftypeof (x) , see the example below.

mode(x) <- "newmode" changes themode of object x to newmode. This is only sup-
ported if there is an appropriateas.newmode function, for example"logical" , "integer" ,
"double" , "complex" , "raw" , "character" , "list" , "expression" , "name" ,
"symbol" and"function" . Attributes are preserved (but see below).

storage.mode(x) <- "newmode" is a more efficient internal version ofmode<- , which
works for "newmode" which is one of the internal types (seetypeof), but not for"single" .
Attributes are preserved.

As storage mode"single" is only a pseudo-mode inR, it will not be reported bymode or
storage.mode : use attr(object, "Csingle") to examine this. However,mode<-
can be used to set the mode to"single" , which sets the real mode to"double" and the
"Csingle" attribute toTRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that somecall s have mode"(" which is S compatible.

Mode names

Modes have the same set of names as types (seetypeof) except that

• types"integer" and"double" are returned as"numeric" .

• types"special" and"builtin" are returned as"function" .

• type"symbol" is called mode"name" .

• type"language" is returned as"(" or "call" .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

266 NA

See Also

typeof for the R-internal ‘mode’,attributes .

Examples

require(stats)

sapply(options(),mode)

cex3 <- c("NULL","1","1:1","1i","list(1)","data.frame(x=1)",
"pairlist(pi)", "c", "lm", "formals(lm)[[1]]", "formals(lm)[[2]]",
"y~x","expression((1))[[1]]", "(y~x)[[1]]",
"expression(x <- pi)[[1]][[1]]")

lex3 <- sapply(cex3, function(x) eval(parse(text=x)))
mex3 <- t(sapply(lex3,

function(x) c(typeof(x), storage.mode(x), mode(x))))
dimnames(mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))
mex3

This also makes a local copy of 'pi':
storage.mode(pi) <- "complex"
storage.mode(pi)
rm(pi)

NA Not Available / “Missing” Values

Description

NA is a logical constant of length 1 which contains a missing value indicator.NA can be freely
coerced to any other vector type except raw. There are also constantsNA_integer_ , NA_real_ ,
NA_complex_ andNA_character_ of the other atomic vector types which support missing
values: all of these arereservedwords in theR language.

The generic functionis.na indicates which elements are missing.

The generic functionis.na<- sets elements toNA.

Usage

NA
is.na(x)
S3 method for class 'data.frame':
is.na(x)

is.na(x) <- value

Arguments

x anR object to be tested.

value a suitable index vector for use withx .

name 267

Details

The NAof character type is distinct from the string"NA" . Programmers who need to specify an
explicit stringNA should useNA_character_ rather than"NA" , or set elements toNA using
is.na<- .

is.na(x) works elementwise whenx is a list . It is generic: you can write methods to handle
specific classes of objects, seeInternalMethods. A complex value is regarded asNAif either its real
or imaginary part isNAor NaN.

Functionis.na<- may provide a safer way to set missingness. It behaves differently for factors,
for example.

Value

The default method foris.na returns a logical vector of the same length as its argumentx , con-
tainingTRUEfor those elements markedNAor NaN(!) andFALSEotherwise.dim , dimnames
andnames attributes are preserved.

The methodis.na.data.frame returns a logical matrix with the same dimensions as the data
frame, and with dimnames taken from the row and column names of the data frame.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan , etc., and the utility functioncomplete.cases .

na.action , na.omit , na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c(1, NA)) #> FALSE TRUE
is.na(paste(c(1, NA))) #> FALSE FALSE

(xx <- c(0:4))
is.na(xx) <- c(2, 4)
xx #> 0 NA 2 NA 4

name Names and Symbols

Description

A ‘name’ (also known as a ‘symbol’) is a way to refer toR objects by name (rather than the value
of the object, if any, bound to that name).

as.name andas.symbol are identical: they attempt to coerce the argument to a name.

is.symbol and the identicalis.name returnTRUEor FALSEdepending on whether the argu-
ment is a name or not.

268 name

Usage

as.symbol(x)
is.symbol(x)

as.name(x)
is.name(x)

Arguments

x object to be coerced or tested.

Details

as.name first coerces its argument internally to a character vector (so methods for
as.character are not used). It then takes the first element and provided it is not"" , returns a
symbol of that name (and if the element isNA_character_ , the name is‘NA‘ .

as.name is implemented asas.vector (x, "symbol") , and hence will dispatch methods
for the generic functionas.vector .

Value

For as.name andas.symbol , anR object of type"symbol" (seetypeof).

For is.name andis.symbol , a length-one logical vector with valueTRUEor FALSE.

Note

The term ‘symbol’ is from the LISP background ofR, whereas ‘name’ has been the standard S term
for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

call , is.language . For the internal object mode,typeof .

plotmath for another use of ‘symbol’.

Examples

an <- as.name("arrg")
is.name(an) # TRUE
mode(an) # name
typeof(an) # symbol

names 269

names The Names of an Object

Description

Functions to get or set the names of an object.

Usage

names(x)
names(x) <- value

Arguments

x anR object.

value a character vector of up to the same length asx , or NULL.

Details

names is a generic accessor function, andnames<- is a generic replacement function. The default
methods get and set the"names" attribute of a vector (including a list) or pairlist.

If value is shorter thanx , it is extended by characterNAs to the length ofx .

It is possible to update just part of the names attribute via the general rules: see the exam-
ples. This works because the expression there is evaluated asz <- "names<-"(z, "[<-
"(names(z), 3, "c2")) .

The name"" is special: it is used to indicate that there is no name associated with an element of a
(atomic or generic) vector. Subscripting by"" will match nothing (not even elements which have
no name).

A name can be characterNA, but such a name will never be matched and is likely to lead to confu-
sion.

Value

For names, NULLor a character vector of the same length asx . (NULL is given if the object has
no names, including for objects of types which cannot have names.)

For names<- , the updated object. (Note that the value ofnames(x) <- value is that of the
assignment,value , not the return value from the left-hand side.)

Note

For vectors, the names are one of theattributeswith restrictions on the possible values. For pairlists,
the names are the tags and converted to and from a character vector.

For a one-dimensional array thenames attribute really isdimnames [[1]] .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

270 nargs

Examples

print the names attribute of the islands data set
names(islands)

remove the names attribute
names(islands) <- NULL
islands
rm(islands) # remove the copy made

z <- list(a=1, b="c", c=1:3)
names(z)
change just the name of the third element.
names(z)[3] <- "c2"
z

z <- 1:3
names(z)
assign just one name
names(z)[2] <- "b"
z

nargs The Number of Arguments to a Function

Description

When used inside a function body,nargs returns the number of arguments supplied to that func-
tion, includingpositional arguments left blank.

Usage

nargs()

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

args , formals andsys.call .

Examples

tst <- function(a, b = 3, ...) {nargs()}
tst() # 0
tst(clicketyclack) # 1 (even non-existing)
tst(c1, a2, rr3) # 3

foo <- function(x, y, z, w) {
cat("call was", deparse(match.call()), "\n")
nargs()

}

nchar 271

foo() # 0
foo(,,3) # 3
foo(z=3) # 1, even though this is the same call

nargs()# not really meaningful

nchar Count the Number of Characters (or Bytes or Width)

Description

nchar takes a character vector as an argument and returns a vector whose elements contain the
sizes of the corresponding elements ofx .

nzchar is a fast way to find out if elements of a character vector are non-empty strings.

Usage

nchar(x, type = "chars", allowNA = FALSE)

nzchar(x)

Arguments

x character vector, or a vector to be coerced to a character vector.

type character string: partial matching to one ofc("bytes", "chars",
"width") . See ‘Details’.

allowNA logical: showNAbe returned for invalid multibyte strings (rather than throwing
an error)?

Details

The ‘size’ of a character string can be measured in one of three ways

bytes The number of bytes needed to store the string (plus in C a final terminator which is not
counted).

chars The number of human-readable characters.

width The number of columnscat will use to print the string in a monospaced font. The same
aschars if this cannot be calculated.

These will often be the same, and almost always will be in single-byte locales. There will be
differences between the first two with multibyte character sequences, e.g. in UTF-8 locales. If the
byte stream contains embeddednul bytes,type = "bytes" looks at all the bytes whereas the
other two types look only at the string as printed bycat , up to the firstnul byte.

The internal equivalent of the default method ofas.character is performed onx (so there is
no method dispatch). If you want to operate on non-vector objects passing them throughdeparse
first will be required.

272 nlevels

Value

For nchar , an integer vector giving the sizes of each element, currently always2 for missing
values (forNA).

If allowNA = TRUE and an element is invalid in a multi-byte character set such as UTF-8, its
number of characters and the width will beNA. Otherwise the number of characters will be non-
negative, so!is.na(nchar(x, "chars", TRUE)) is a test of validity.

Names, dims and dimnames are copied from the input.

For nzchar , a logical vector of the same length asx , true if and only if the element has non-zero
length.

Note

This doesnot by default give the number of characters that will be used toprint() the string.
UseencodeString to find the characters used to print the string.

Embeddednul bytes are included in the byte count (but not the finalnul). In contrast, characters
are counted up to the string terminator (the firstnul that is not part of a character representation).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

strwidth giving width of strings for plotting;paste , substr , strsplit

Examples

x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")
nchar(x)
5 6 6 1 15

nchar(deparse(mean))
18 17

nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels(x)

Arguments

x an object, usually a factor.

noquote 273

Details

This is usually applied to a factor, but other objects can have levels.

The actual factor levels (if they exist) can be obtained with thelevels function.

Value

The length oflevels (x) , which is zero ifx has no levels.

See Also

levels , factor .

Examples

nlevels(gl(3,7)) # = 3

noquote Class for “no quote” Printing of Character Strings

Description

Print character strings without quotes.

Usage

noquote(obj)

S3 method for class 'noquote':
print(x, ...)

S3 method for class 'noquote':
c(..., recursive = FALSE)

Arguments

obj anyR object, typically a vector ofcharacter strings.

x an object of class"noquote" .

... further options passed to next methods, such asprint .

recursive for compatibility with the genericc function.

Details

noquote returns its argument as an object of class"noquote" . There is a method forc() and
subscript method ("[.noquote") which ensures that the class is not lost by subsetting. The print
method (print.noquote) prints character stringswithoutquotes ("...").

These functions exist both as utilities and as an example of using (S3)class and object orientation.

Author(s)

Martin Maechler〈maechler@stat.math.ethz.ch〉

274 NotYet

See Also

methods , class , print .

Examples

letters
nql <- noquote(letters)
nql
nql[1:4] <- "oh"
nql[1:12]

cmp.logical <- function(log.v)
{

Purpose: compact printing of logicals
log.v <- as.logical(log.v)
noquote(if(length(log.v)==0)"()" else c(".","|")[1+log.v])

}
cmp.logical(stats::runif(20) > 0.8)

NotYet Not Yet Implemented Functions and Unused Arguments

Description

In order to pinpoint missing functionality, theR core team uses these functions for missingR func-
tions and not yet used arguments of existingR functions (which are typically there for compatibility
purposes).

You are very welcome to contribute your code . . .

Usage

.NotYetImplemented()

.NotYetUsed(arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.

error a logical. IfTRUE, an error is signalled; ifFALSE; only a warning is given.

See Also

the contrary,Deprecated andDefunct for outdated code.

Examples

require(graphics)
require(stats)
plot.mlm # to see how the "NotYetImplemented"

reference is made automagically
try(plot.mlm())

barplot(1:5, inside = TRUE) # 'inside' is not yet used

nrow 275

nrow The Number of Rows/Columns of an Array

Description

nrow andncol return the number of rows or columns present inx . NCOLandNROWdo the same
treating a vector as 1-column matrix.

Usage

nrow(x)
ncol(x)
NCOL(x)
NROW(x)

Arguments

x a vector, array or data frame

Value

an integer of length 1 orNULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole (ncol andnrow .)

See Also

dim which returnsall dimensions;array , matrix .

Examples

ma <- matrix(1:12, 3, 4)
nrow(ma) # 3
ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension
NCOL(1:12) # 1
NROW(1:12) # 12

276 ns-dblcolon

ns-dblcolon Double Colon and Triple Colon Operators

Description

Accessing exported and internal variables in a name space.

Usage

pkg::name
pkg:::name

Arguments

pkg package name symbol or literal character string.

name variable name symbol or literal character string.

Details

The expressionpkg::name returns the value of the exported variablename in packagepkg if the
package has a name space. The expressionpkg:::name returns the value of the internal variable
name in packagepkg if the package has a name space. The package will be loaded if it was not
loaded already before the call. Assignment into name spaces is not supported.

Note that it is typically a design mistake to use::: in your code since the corresponding object
has probably been kept namespace-internal for a good reason. Consider contacting the package
maintainer if you feel the need to access the object for anything but mere inspection.

If the packagepkg does not have a name space but is on the search path thenpkg::name returns
the value ofname in the package environment.

See Also

get to access an object masked by another of the same name.

Examples

base::log
base::"+"

Beware -- use ':::' at your own risk! (see "Details")
stats:::coef.default

ns-hooks 277

ns-hooks Hooks for Name Space events

Description

Packages with name spaces can supply functions to be called when loaded, attached or unloaded.

Usage

.onLoad(libname, pkgname)

.onAttach(libname, pkgname)

.onUnload(libpath)

Arguments

libname a character string giving the library directory where the package defining the
namespace was found.

pkgname a character string giving the name of the package, including the version number
if the package was installed with--with-package-versions .

libpath a character string giving the complete path to the package.

Details

These functions apply only to packages with name spaces.

After loading, loadNamespace looks for a hook function named.onLoad and runs it before
sealing the namespace and processing exports.

If a name space is unloaded (viaunloadNamespace), a hook function.onUnload is run before
final unloading.

Note that the code in.onLoad and.onUnload is run without the package being on the search
path, but (unless circumvented) lexical scope will make objects in the namespace and its imports
visible. (Do not use the double colon operator in.onLoad as exports have not been processed at
the point it is run.)

When the package is attached (vialibrary), the hook function.onAttach is looked for and
if found is called after the exported functions are attached and before the package environment is
sealed. This is less likely to be useful than.onLoad , which should be seen as the analogue of
.First.lib (which is only used for packages without a name space).

.onLoad , .onUnload and.onAttach are looked for as internal variables in the name space
and should not be exported.

If a function.Last.lib is visible in the package, it will be called when the package is detached:
this does need to be exported.

Anything needed for the functioning of the name space should be handled at load/unload times by
the.onLoad and.onUnload hooks. For example, shared libraries can be loaded (unless done by
a useDynLib directive in the ‘NAMESPACE’ file) and initialized in.onLoad and unloaded in
.onUnload . Use.onAttach only for actions that are needed only when the package becomes
visible to the user, for example a start-up message.

If a package was installed with--with-package-versions , thepkgname supplied will be
something liketree_1.0-16 .

278 ns-load

See Also

setHook shows how users can set hooks on the same events.

ns-load Loading and Unloading Name Spaces

Description

Functions to load and unload namespaces.

Usage

attachNamespace(ns, pos = 2, dataPath = NULL)
loadNamespace(package, lib.loc = NULL,

keep.source = getOption("keep.source.pkgs"),
partial = FALSE, declarativeOnly = FALSE)

loadedNamespaces()
unloadNamespace(ns)

Arguments

ns string or namespace object.

pos integer specifying position to attach.

dataPath path to directory containing a database of datasets to be lazy-loaded into the
attached environment.

package string naming the package/name space to load.

lib.loc character vector specifying library search path.

keep.source logical specifying whether to retain source. This applies only to the specified
name space, and not to other name spaces which might be loaded to satisfy
imports.

For more details see this argument tolibrary .

partial logical; if true, stop just after loading code.

declarativeOnly
logical; disables.Import , etc, if true.

Details

The functionsloadNamespace and attachNamespace are usually called implicitly when
library is used to load a name space and any imports needed. However it may be useful to call
these functions directly at times.

loadNamespace loads the specified name space and registers it in an internal data base. A request
to load a name space that is already loaded has no effect. The arguments have the same meaning as
the corresponding arguments tolibrary , whose help page explains the details of how a particular
installed package comes to be chosen. After loading,loadNamespace looks for a hook function
named.onLoad as an internal variable in the name space (it should not be exported). This function
is called with the same arguments as.First.lib . Partial loading is used to support installation
with the ‘--save ’ and ‘--lazy ’ options.

ns-topenv 279

loadNamespace does not attach the name space it loads to the search path.
attachNamespace can be used to attach a frame containing the exported values of a
name space to the search path. The hook function.onAttach is run after the name space exports
are attached.

loadedNamespaces returns a character vector of the names of the loaded name spaces.

unloadNamespace can be used to force a name space to be unloaded. An error is signaled if
the name space is imported by other loaded name spaces. If defined, a hook function.onUnload
is run before removing the name space from the internal registry.unloadNamespace will first
detach a package of the same name if one is on the path, thereby running a.Last.lib function
in the package if one is exported.

Author(s)

Luke Tierney

ns-topenv Top Level Environment

Description

Finding the top level environment.

Usage

topenv(envir = parent.frame(),
matchThisEnv = getOption("topLevelEnvironment"))

Arguments

envir environment.

matchThisEnv return this environment, if it matches before any other criterion is satisfied. The
default, the option ‘topLevelEnvironment’, is set bysys.source , which treats
a specific environment as the top level environment. Supplying the argument as
NULLmeans it will never match.

Details

topenv returns the first top level environment found when searchingenvir and its parent envi-
ronments. An environment is considered top level if it is the internal environment of a name space,
a package environment in the search path, or.GlobalEnv .

Examples

topenv(.GlobalEnv)
topenv(new.env())

280 numeric

NULL The Null Object

Description

NULLrepresents the null object in R: it is areservedword. NULL is often returned by expressions
and functions whose value is undefined: it is also used as the emptypairlist.

as.null ignores its argument and returns the valueNULL.

is.null returnsTRUEif its argument isNULLandFALSEotherwise.

Usage

NULL
as.null(x, ...)
is.null(x)

Arguments

x an object to be tested or coerced.

... ignored.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

is.null(list()) # FALSE (on purpose!)
is.null(integer(0))# F
is.null(logical(0))# F
as.null(list(a=1,b='c'))

numeric Numeric Vectors

Description

Creates or coerces objects of type"numeric" . is.numeric is a more general test of an object
being interpretable as numbers.

Usage

numeric(length = 0)
as.numeric(x, ...)
is.numeric(x)

numeric 281

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

numeric is identical todouble (andreal). It creates a double-precision vector of the specified
length with each element equal to0.

as.numeric is a generic function, but S3 methods must be written foras.double . It is identi-
cal toas.double (andas.real).

is.numeric is generic: you can write methods to handle specific classes of objects, seeInternal-
Methods. It is not the same asis.double . Factors are handled by the default method, and there
are methods for classes" Date " and" POSIXt " (in all three cases the result is false). Methods
for is.numeric should only return true if the base type of the class isdouble or integer and
values can reasonably be regarded as numeric (e.g. arithmetic on them makes sense).

Value

for numeric andas.numeric seedouble .

The default method for is.numeric returns TRUE if its argument is of mode
"numeric" (type "double" or type "integer") and not a factor, andFALSE other-
wise. That is,is.integer(x) || is.double(x) , or (mode(x) == "numeric") &&
!is.factor(x) .

S4 methods

as.numeric andis.numeric are internally S4 generic and so methods can be set for themvia
setMethod .

To ensure thatas.numeric , as.double andas.real remain identical, S4 methods can only
be set foras.numeric .

Note on names

It is a historical anomaly thatR has three names for its floating-point vectors,double , numeric
andreal .

double is the name of thetype. numeric is the name of themodeand also of the implicitclass.
As an S4 formal class, use"numeric" (there is a deprecated formal class"double").

real is deprecated and should not be used in new code.

The potential confusion is thatR has usedmode"numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thusis.numeric tests the mode, not the class, butas.numeric
(which is identical toas.double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

double , integer , storage.mode .

282 NumericConstants

Examples

as.numeric(c("-.1"," 2.7 ","B")) # (-0.1, 2.7, NA) + warning
as.numeric(factor(5:10))

NumericConstants Numeric Constants

Description

How R parses numeric constants.

Details

R parses numeric constants in its input in a very similar way to C floating-point constants.

Inf andNaNare numeric constants (withtypeof (.) "double"). All other numeric con-
stants start with a digit or period.

Hexadecimal constants start with0x or 0X followed by a non-empty sequence from0-9 a-f
A-F which is interpreted as a hexadecimal number ("double" , not "integer").

Decimal constants consists of a nonempty sequence of digits possibly containing a period (the
decimal point), optionally followed by a decimal exponent. A decimal exponent consists of anE
or e followed by an optional plus or minus sign followed by a non-empty sequence of digits, and
indicates multiplication by a power of ten.

A numeric constant immediately followed byi is regarded as an imaginarycomplexnumber.

An numeric constant immediately followed byL is regarded as aninteger number when possible
(and with a warning if it contains a".").

Only the ASCII digits 0–9 are recognized as digits, even in languages which have other representa-
tions of digits. The ‘decimal separator’ is always a period and never a comma.

Note that a leading plus or minus is not part of numeric constant but a unary operator applied to the
constant.

See Also

Syntax .

Quotes for the parsing of character constants,

Examples

2.1
typeof(2)
sqrt(1i) # remember elementary math?
utils::str(0xA0)
identical(1L, as.integer(1))

You can combine the "0x" prefix with the "L" suffix :
identical(0xFL, as.integer(15)) # (with a regard to Fritz :-)

numeric_version 283

numeric_version Numeric Versions

Description

A simple S3 class for representing numeric versions including package versions, and associated
methods.

Usage

numeric_version(x, strict = TRUE)
package_version(x, strict = TRUE)
R_system_version(x, strict = TRUE)
getRversion()

Arguments

x a character vector with suitable numeric version strings (see ‘Details’);
for package_version , alternatively an R version object as obtained by
R.version .

strict a logical indicating whether invalid numeric versions should results in an error
(default) or not.

Details

Numeric versions are sequences of one or more non-negative integers, usually (e.g., in package
‘DESCRIPTION’ files) represented as character strings with the elements of the sequence con-
catenated and separated by single ‘. ’ or ‘ - ’ characters.R package versions consist of at least two
such integers, anR system version of exactly three (major, minor and patchlevel).

Functionsnumeric_version , package_version andR_system_version create a rep-
resentation from such strings (if suitable) which allows for coercion and testing, combination, com-
parison, summaries (min/max), inclusion in data frames, subscripting, and printing. The classes can
hold a vector of such representations.

getRversion returns the version of the runningR as an R system version object.

The [[operator extracts or replaces a single version. To access the integers of a version use two
indices: see the examples.

See Also

compareVersion

Examples

x <- package_version(c("1.2-4", "1.2-3", "2.1"))
x < "1.4-2.3"
c(min(x), max(x))
x[2, 2]
x$major
x$minor

if(getRversion() <= "2.5.0") { ## work around missing feature

284 octmode

cat("Your version of R, ", as.character(getRversion()),
", is outdated.\n",
"Now trying to work around that ...\n", sep = "")

}

x[[c(1,3)]] # '4' as a numeric vector, same as x[1, 3]
x[1, 3] # 4 as an integer
x[[2, 3]] <- 0 # zero the patchlevel
x[[c(2,3)]] <- 0 # same
x
x[3] <- "2.2.3"; x

octmode Display Numbers in Octal

Description

Convert or print integers in octal format, with as many digits as are needed to display the largest,
using leading zeroes as necessary.

Usage

S3 method for class 'octmode':
as.character(x, ...)

S3 method for class 'octmode':
format(x, ...)

S3 method for class 'octmode':
print(x, ...)

Arguments

x An object inheriting from class"octmode" .

... further arguments passed to or from other methods.

Details

Class"octmode" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in octal notation, specifically for Unix-like file permissions such as755 . Subsetting
([) works too.

See Also

These are auxiliary functions forfile.info .

hexmode

Examples

(on <- structure(c(16,32, 127:129), class = "octmode")) #-> print.*()
##-> "020" "040" "177" "200" "201"
unclass(on[3:4]) # subsetting

on.exit 285

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the current
function exits (either naturally or as the result of an error). This is useful for resetting graphical
parameters or performing other cleanup actions.

If no expression is provided, i.e., the call ison.exit() , then the currenton.exit code is re-
moved.

on.exit is a primitive function so positional matching is used and names of supplied arguments
are ignored.

Usage

on.exit(expr, add = FALSE)

Arguments

expr an expression to be executed.

add if TRUE, addexpr to be executed after any previously set expressions; other-
wise (the default)expr will overwrite any previously set expressions.

Value

InvisibleNULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

sys.on.exit which returns the expression stored for use byon.exit() in the function in
whichsys.on.exit() is evaluated.

Examples

require(graphics)

opar <- par(mai = c(1,1,1,1))
on.exit(par(opar))

286 options

Ops.Date Operators on the Date Class

Description

Operators for the" Date " class.

There is anOps method and specific methods for+ and- for theDate class.

Usage

date + x
date - x
date1 lop date2

Arguments

date date objects

date1, date2 date objects or character vectors. (Character vectors are converted by
as.Date .)

x a numeric vector (in days)or an object of class" difftime " .

lop One of==, != , <, <=, > or >=.

Examples

(z <- Sys.Date())
z + 10
z < c("2006-06-01", "2007-01-01", "2010-01-01")

options Options Settings

Description

Allow the user to set and examine a variety of globaloptionswhich affect the way in whichR
computes and displays its results.

Usage

options(...)

getOption(x)

.Options

Arguments

... any options can be defined, usingname = value or by passing a list of such
tagged values. However, only the ones below are used in baseR. Further,
options(’name’) == options()[’name’] , see the example.

x a character string holding an option name.

options 287

Details

Invokingoptions() with no arguments returns a list with the current values of the options. Note
that not all options listed below are set initially. To access the value of a single option, one should
usegetOption("width") , e.g., rather thanoptions("width") which is alist of length
one.

.Options also always contains theoptions() list (as a pairlist, unsorted), for S compatibility.
Assigning to it will make a local copy and not change the original.

Value

For getOption , the current value set for optionx , or NULL if the option is unset.

For options() , a list of all set options sorted by name. Foroptions(name) , a list of length
one containing the set value, orNULL if it is unset. For uses setting one or more options, a list with
the previous values of the options changed (returned invisibly).

Options used in baseR

add.smooth : typically logical, defaulting toTRUE. Could also be set to an integer for specifying
how many (simulated) smooths should be added. This is currently only used byplot.lm .

check.bounds : logical, defaulting toFALSE. If true, awarningis produced whenever a vector
(atomic orlist) is extended, by something likex <- 1:3; x[5] <- 6 .

continue : a non-empty string setting the prompt used for lines which continue over one line.

defaultPackages : the packages that are attached by default whenR starts up. Ini-
tially set from value of the environment variableR_DEFAULT_PACKAGES, or if that is
unset toc("datasets", "utils", "grDevices", "graphics", "stats",
"methods") . (SetR_DEFAULT_PACKAGESto NULLor a comma-separated list of pack-
age names.) A call tooptions should be in your ‘.Rprofile’ file to ensure that the change
takes effect before the base package is initialized (seeStartup).

deparse.max.lines : controls the number of lines used when deparsing intraceback and
browser . Initially unset, and only used if set to a positive integer.

digits : controls the number of digits to print when printing numeric values. It is a suggestion
only. Valid values are 1. . . 22 with default 7. See the warning inprint.default about
values greater than 15.

digits.secs : controls the maximum number of digits to print when formatting time values in
seconds. Valid values are 0. . . 6 with default 0. Seestrftime .

download.file.method : Method to be used fordownload.file . Currently download
methods"internal" , "wget" and "lynx" are available. There is no default for this
option, whenmethod = "auto" is chosen: seedownload.file .

echo : logical. Only used in non-interactive mode, when it controls whether input is echoed.
Command-line option-slave sets this toFALSE, but otherwise it starts the session asTRUE.

encoding : The name of an encoding, default"native.enc"). Seeconnections .

error : either a function or an expression governing the handling of non-catastrophic errors such
as those generated bystop as well as by signals and internally detected errors. If the option
is a function, a call to that function, with no arguments, is generated as the expression. The
default value isNULL: seestop for the behaviour in that case. The functionsdump.frames
andrecover provide alternatives that allow post-mortem debugging. Note that these need
to specified as e.g.options=utils::recover in startup files such as ‘.Rprofile’.

288 options

expressions : sets a limit on the number of nested expressions that will be evaluated. Valid
values are 25. . . 500000 with default 5000. If you increase it, you may also want to startR
with a larger protection stack; see-max-ppsize in Memory. Note too that you may cause
a segfault from overflow of the C stack, and on OSes where it is possible you may want to
increase that.

keep.source : WhenTRUE, the source code for functions (newly defined or loaded) is stored in
their "source" attribute (seeattr) allowing comments to be kept in the right places.
The default isinteractive () , i.e.,TRUEfor interactive use.

keep.source.pkgs : As for keep.source , for functions in packages loaded bylibrary
or require . Defaults toFALSEunless the environment variableR_KEEP_PKG_SOURCE
is set toyes .
Note this does not apply to packages using lazy-loading or saved images. Whether they have
kept source is determined when they are installed (and is almost certainly false).

mailer : default mailer used bybug.report () . Can be"none" .

max.contour.segments : positive integer, defaulting to250000 and usually not set. A limit
on the number of segments in a single contour line incontour or contourLines .

max.print : integer, defaulting to99999 . print or show methods can make use of this option,
to limit the amount of information that is printed, to something in the order of (and typically
slightly less than)max.print entries.

OutDec : one-character string. The character to be used as the decimal point in output conversions,
that is in printing, plotting andas.character but not deparsing.

pager : the command used for displaying text files byfile.show . Defaults to
‘$R_HOME/bin/pager’, which selects a pager via thePAGERenvironment variable (and
that usually defaults toless). Can be a character string or anR function, in which case it
needs to accept the same first four arguments asfile.show .

papersize : the default paper format used bypostscript ; set by environment variable
R_PAPERSIZEwhenR is started: if that is unset or invalid it defaults to a value derived
from the locale categoryLC_PAPER, or if that is unavailable to a default set whenR was
built.

printcmd : the command used bypostscript for printing; set by environment variable
R_PRINTCMDwhen R is started. This should be a command that expects either input to
be piped to ‘stdin’ or to be given a single filename argument.

prompt : a non-empty string to be used forR’s prompt; should usually end in a blank (" ").

rl_word_breaks : Used for the readline-based terminal interface. Default value"
\t\n\"\\’‘><=%;,|&{()}" . This is the set of characters use to break the input line
up into tokens for object- and file-name completion. Those who do not use spaces around
operators may prefer" \t\n\"\\’‘><=+-*%;,|&{()}" . which was the default inR
2.5.0. (The default in pre-2.5.0 versions ofR was" \t\n\"\\’‘@$><=;|&{(" .)

save.defaults , save.image.defaults : seesave .

scipen : integer. A penalty to be applied when deciding to print numeric values in fixed or expo-
nential notation. Positive values bias towards fixed and negative towards scientific notation:
fixed notation will be preferred unless it is more thanscipen digits wider.

showWarnCalls , showErrorCalls : a logical. Should warning and error messages show a
summary of the call stack? By default error calls are shown in non-interactive sessions.

showNCalls : a integer. Controls how long the sequence of calls must be (in bytes) before ellipses
are used. Defaults to 40 and should be at least 30 and no more than 500.

show.error.messages : a logical. Should error messages be printed? Intended for use with
try or a user-installed error handler.

options 289

stringsAsFactors : The default setting for arguments ofdata.frame andread.table .

texi2dvi : used by the unexported functiontexi2dvi in name spacetools.

timeout : integer. The timeout for some Internet operations, in seconds. Default 60 seconds. See
download.file andconnections .

topLevelEnvironment : seetopenv andsys.source .

useFancyQuotes : seesQuote .

verbose : logical. ShouldR report extra information on progress? Set toTRUEby the command-
line option ‘-verbose ’.

warn : sets the handling of warning messages. Ifwarn is negative all warnings are ignored. If
warn is zero (the default) warnings are stored until the top–level function returns. If fewer
than 10 warnings were signalled they will be printed otherwise a message saying how many
(max 50) were signalled. An object calledlast.warning is created and can be printed
through the functionwarnings . If warn is one, warnings are printed as they occur. If
warn is two or larger all warnings are turned into errors.

warnPartialMatchArgs : logical. If true, warns if partial matching is used in argument
matching.

warnPartialMatchAttr : logical. If true, warns if partial matching is used in extracting at-
tributes viaattr .

warnPartialMatchDollar : logical. If true, warns if partial matching is used for extraction
by $.

warning.expression : anR code expression to be called if a warning is generated, replacing
the standard message. If non-null it is called irrespective of the value of optionwarn .

warning.length : sets the truncation limit for error and warning messages. A non-negative
integer, with allowed values 100. . . 8170, default 1000.

width : controls the maximum number of columns on a line used in printing vectors, matrices and
arrays, and when filling bycat .

Columns are normally the same as characters except in CJK languages.

You may want to change this if you re-size the window thatR is running in. Valid values are
10. . . 10000 with default normally 80. (The limits on valid values are in file ‘Print.h’ and can
be changed by re-compilingR.) SomeR consoles automatically change the value when they
are resized.

The ‘factory-fresh’ default settings of some of these options are

add.smooth TRUE
check.bounds FALSE
continue "+ "
digits 7
echo TRUE
encoding "native.enc"
error NULL
expressions 5000
keep.source interactive()
keep.source.pkgs FALSE
max.print 99999
OutDec "."
prompt "> "
scipen 0
show.error.messages TRUE

290 options

timeout 60
verbose FALSE
warn 0
warnings.length 1000
width 80

Others are set from environment variables or are platform-dependent.

Options set in package grDevices

These will be set when packagegrDevices(or its name space) is loaded if not already set.

device : a character string giving the name of a function, or the function object itself, which
when called creates a new graphics device of the default type for that session. The value of
this option defaults to the normal screen device (e.g.,x11 , windows or quartz) for an
interactive session, andpostscript in batch use or if a screen is not available. If named, it
is looked for first from the global environment and then in thegrDevicesnamespace.

locatorBell : logical. Should selection inlocator andidentify be confirmed by a bell?
DefaultTRUE. Honoured at least onX11 andwindows devices.

par.ask.default : logical. The default forpar ("ask") when a device is opened.

X11colortype : The default colour type forX11 devices. Default"true" .

X11fonts : character vector of length 2. SeeX11.

gamma: double. The default value ofgammafor X11 devices, defaulting to 1 if unset (the default).

Options set in package stats

These will be set when packagestats(or its name space) is loaded if not already set.

contrasts : the defaultcontrasts used in model fitting such as withaov or lm . A charac-
ter vector of length two, the first giving the function to be used with unordered factors and
the second the function to be used with ordered factors. By default the elements are named
c("unordered", "ordered") , but the names are unused.

na.action : the name of a function for treating missing values (NA’s) for certain situations.

show.coef.Pvalues : logical, affecting whether P values are printed in summary tables of
coefficients. SeeprintCoefmat .

show.signif.stars : logical, should stars be printed on summary tables of coefficients? See
printCoefmat .

ts.eps : the relative tolerance for certain time series (ts) computations. Default1e-05 .

ts.S.compat : logical. Used to select S compatibility for plotting time-series spectra. See the
description of argumentlog in plot.spec .

Options set in package utils

These will be set when packageutils (or its name space) is loaded if not already set.

browser : default HTML browser used byhelp.start () on UNIX, or a non-default browser
on Windows.

de.cellwidth : integer: the cell widths (number of characters) to be used in the data editor
dataentry . If this is unset (the default), 0, negative orNA, variable cell widths are used.

options 291

editor : a non-empty string. Sets the default text editor, e.g., foredit . Set from the environment
variableVISUAL on UNIX.

example.ask : default for theask argument ofexample .

help.try.all.packages : default for an argument ofhelp .

HTTPUserAgent : string used as the user agent in HTTP requests. IfNULL, HTTP requests
will be made without a user agent header. The default isR (<version> <platform>
<arch> <os>)

internet.info : The minimum level of information to be printed on URL downloads etc. De-
fault is 2, for failure causes. Set to 1 or 0 to get more information.

menu.graphics : Logical: should graphical menus be used if available?. Defaults toTRUE.
Currently applies tochooseCRANmirror , setRepositories and to select from multi-
ple help files inhelp .

pkgType : The default type of packages to be downloaded and installed – see
install.packages . Possible values are"source" (the default except under the
CRAN Mac OS X build) and"mac.binary" .

repos : URLs of the repositories for use byupdate.packages . Defaults to
c(CRAN="@CRAN@"), a value that causes some utilities to prompt for a CRAN
mirror. To avoid this do set the CRAN mirror, by something likelocal({r
<- getOption("repos"); r["CRAN"] <- "http://my.local.cran";
options(repos=r)}) .

Note that you can add more repositories (Bioconductor and Omegahat, notably) using
setRepositories () .

SweaveHooks , SweaveSyntax : seeSweave.

unzip : a character string, the path of the command used for unzipping help files, or
"internal" . Defaults to the value ofR_UNZIPCMD, which is set in ‘etc/Renviron’ if
anunzip command was found during configuration.

Options used on Unix only

latexcmd, dvipscmd : character strings giving commands to be used in off-line printing of
help pages.

pdfviewer : default PDF viewer. Set from the environment variableR_PDFVIEWER.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

options() # printing all current options
op <- options(); utils::str(op) # nicer printing

getOption("width") == options()$width # the latter needs more memory
options(digits = 15)
pi

set the editor, and save previous value
old.o <- options(editor = "nedit")
old.o

292 order

options(check.bounds = TRUE, warn = 1)
x <- NULL; x[4] <- "yes" # gives a warning

options(digits=5)
print(1e5)
options(scipen=3); print(1e5)

options(op) # reset (all) initial options
options("digits")

Not run:
set contrast handling to be like S
options(contrasts = c("contr.helmert", "contr.poly"))
End(Not run)

Not run:
on error, terminate the R session with error status 66
options(error = quote(q("no", status=66, runLast=FALSE)))
stop("test it")
End(Not run)

Not run:
Set error actions for debugging:
enter browser on error, see ?recover:
options(error = recover)
allows to call debugger() afterwards, see ?debugger:
options(error = dump.frames)
A possible setting for non-interactive sessions
options(error = quote({dump.frames(to.file=TRUE); q()}))
End(Not run)

order Ordering Permutation

Description

order returns a permutation which rearranges its first argument into ascending or descending
order, breaking ties by further arguments.sort.list is the same, using only one argument.
See the examples for how to use these functions to sort data frames, etc.

Usage

order(..., na.last = TRUE, decreasing = FALSE)

sort.list(x, partial = NULL, na.last = TRUE, decreasing = FALSE,
method = c("shell", "quick", "radix"))

Arguments

... a sequence of numeric, complex, character or logical vectors, all of the same
length.

x a vector.

partial vector of indices for partial sorting. (Non-NULLvalues are not implemented.)

order 293

decreasing logical. Should the sort order be increasing or decreasing?

na.last for controlling the treatment ofNAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; ifNA, they are removed.

method the method to be used: partial matches are allowed.

Details

In the case of ties in the first vector, values in the second are used to break the ties. If the values are
still tied, values in the later arguments are used to break the tie (see the first example). The sort used
is stable(except formethod = "quick"), so any unresolved ties will be left in their original
ordering.

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use: see
Comparison .

The default method forsort.list is a good compromise. Method"quick" is only supported
for numericx with na.last=NA , and is not stable, but will be faster for long vectors. Method
"radix" is only implemented for integerx with a range of less than 100,000. For suchx it is very
fast (and stable), and hence is ideal for sorting factors.

partial is supplied for compatibility with other implementations of S, but no other values are
accepted and ordering is always complete.

Note that these functions are only defined for vectors, so any class of the object supplied is ignored:
this means factors are sorted on their internal codes and not their printed representation.

Note

sort.list can get called by mistake as a method forsort with a list argument, and gives a
suitable error message for listx .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

sort andrank .

Examples

require(stats)

(ii <- order(x <- c(1,1,3:1,1:4,3), y <- c(9,9:1), z <-c(2,1:9)))
6 5 2 1 7 4 10 8 3 9
rbind(x,y,z)[,ii] # shows the reordering (ties via 2nd & 3rd arg)

Suppose we wanted descending order on y. A simple solution is
rbind(x,y,z)[, order(x, -y, z)]
For character vectors we can make use of rank:
cy <- as.character(y)
rbind(x,y,z)[, order(x, -rank(cy), z)]

Sorting data frames:

294 outer

dd <- transform(data.frame(x,y,z),
z = factor(z, labels=LETTERS[9:1]))

Either as above {for factor 'z' : using internal coding}:
dd[order(x, -y, z) ,]
or along 1st column, ties along 2nd, ... *arbitrary* no.{columns}:
dd[do.call(order, dd) ,]

set.seed(1)# reproducible example:
d4 <- data.frame(x = round(rnorm(100)), y = round(10*runif(100)),

z = round(8*rnorm(100)), u = round(50*runif(100)))
(d4s <- d4[do.call(order, d4) ,])
(i <- which(diff(d4s[,3]) == 0))
in 2 places, needed 3 cols to break ties:
d4s[rbind(i,i+1),]

rearrange matched vectors so that the first is in ascending order
x <- c(5:1, 6:8, 12:9)
y <- (x - 5)^2
o <- order(x)
rbind(x[o], y[o])

tests of na.last
a <- c(4, 3, 2, NA, 1)
b <- c(4, NA, 2, 7, 1)
z <- cbind(a, b)
(o <- order(a, b)); z[o,]
(o <- order(a, b, na.last = FALSE)); z[o,]
(o <- order(a, b, na.last = NA)); z[o,]

Not run:
speed examples for long vectors:
x <- factor(sample(letters, 1e6, replace=TRUE))
system.time(o <- sort.list(x)) ## 1.2 secs
stopifnot(!is.unsorted(x[o]))
system.time(o <- sort.list(x, method="quick", na.last=NA)) # 0.15 sec
stopifnot(!is.unsorted(x[o]))
system.time(o <- sort.list(x, method="radix")) # 0.02 sec
stopifnot(!is.unsorted(x[o]))
xx <- sample(1:26, 1e7, replace=TRUE)
system.time(o <- sort.list(xx, method="radix")) # 0.2 sec
xx <- sample(1:100000, 1e7, replace=TRUE)
system.time(o <- sort.list(xx, method="radix")) # 0.8 sec
system.time(o <- sort.list(xx, method="quick", na.last=NA)) # 1.4 sec
End(Not run)

outer Outer Product of Arrays

Description

The outer product of the arraysX andY is the arrayA with dimensionc(dim(X), dim(Y))
where elementA[c(arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x],
Y[arrayindex.y], ...) .

outer 295

Usage

outer(X, Y, FUN="*", ...)
X %o% Y

Arguments

X, Y First and second arguments for functionFUN. Typically a vector or array.

FUN a function to use on the outer products, foundvia match.fun (except for the
special case"*").

... optional arguments to be passed toFUN.

Details

X andY must be suitable arguments forFUN. Each will be extended byrep to length the products
of the lengths ofX andY beforeFUNis called.

FUN is called with these two extended vectors as arguments. Therefore, it must be a vectorized
function (or the name of one), expecting at least two arguments.

Where they exist, the [dim]names ofX andY will be copied to the answer, and a dimension assigned
which is the concatenation of the dimensions ofX andY (or lengths if dimensions do not exist).

FUN = "*" is handled internally as a special case,via as.vector(X) %*%
t(as.vector(Y)) , and is intended only for numeric vectors and arrays.

%o%is binary operator providing a wrapper forouter(x, y, "*") .

Author(s)

Jonathan Rougier

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*% for usual (inner) matrix vector multiplication;kronecker which is based onouter ;
Vectorize for vectorizing a non-vectorized function.

Examples

x <- 1:9; names(x) <- x
Multiplication & Power Tables
x %o% x
y <- 2:8; names(y) <- paste(y,":",sep="")
outer(y, x, "^")

outer(month.abb, 1999:2003, FUN = "paste")

three way multiplication table:
x %o% x %o% y[1:3]

296 Paren

Paren Parentheses and Braces

Description

Open parenthesis,(, and open brace,{ , are.Primitive functions inR.

Effectively, (is semantically equivalent to the identityfunction(x) x , whereas{ is slightly
more interesting, see examples.

Usage

(...)

{ ... }

Value

For (, the result of evaluating the argument. This has visibility set, so will auto-print if used at
top-level.

For { , the result of the last expression evaluated. This has the visibility of the last evaluation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

if , return , etc for other objects used in theR language itself.

Syntax for operator precedence.

Examples

f <- get("(")
e <- expression(3 + 2 * 4)
identical(f(e), e)

do <- get("{")
do(x <- 3, y <- 2*x-3, 6-x-y); x; y

note the differences
(2+3)
{2+3; 4+5}
(invisible(2+3))
{invisible(2+3)}

parse 297

parse Parse Expressions

Description

parse returns the parsed but unevaluated expressions in a list.

Usage

parse(file = "", n = NULL, text = NULL, prompt = "?", srcfile,
encoding = "unknown")

Arguments

file a connection, or a character string giving the name of a file or a URL to read the
expressions from. Iffile is "" and text is missing orNULL then input is
taken from the console.

n integer (or coerced to integer). The maximum number of expressions to parse.
If n is NULLor negative orNAthe input is parsed in its entirety.

text character vector. The text to parse. Elements are treated as if they were lines of
a file. OtherR objects will be coerced to character (without method dispatch) if
possible.

prompt the prompt to print when parsing from the keyboard.NULL means to useR’s
prompt,getOption("prompt") .

srcfile NULL, or asrcfile object. See the ‘Details’ section.

encoding encoding to be assumed for input strings. It is used to mark character strings as
known to be in Latin-1 or UTF-8: it is not used to re-encode the input.

Details

If text has length greater than zero (after coercion) it is used in preference tofile .

All versions ofR accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic MacOS). The final line can be incom-
plete, that is missing the final EOL marker.

Seesource for the limits on the size of functions that can be parsed (by default). There is also a
limit of 8192 bytes on the size of strings which can be parsed.

When input is taken from the console,n = NULL is equivalent ton = 1 , andn < 0 will read
until an EOF character is read.

The default forsrcfile is set as follows. Ifoptions("keep.source") is FALSE,
srcfile defaults toNULL. Otherwise, iftext is used,srcfile will be set to asrcfilecopy
containing the text. If a character string is used forfile , asrcfile object referring to that file
will be used.

298 paste

Value

An object of type" expression " , with up ton elements if specified as a non-negative integer.

Whensrcfile is non-NULL, a"srcref" attribute will be attached to the result containing a list
of srcref records corresponding to each element, and a"srcfile" attribute will be attached
containing a copy ofsrcfile .

A syntax error (including an incomplete expression) will throw an error.

Character strings in the result will have a declared encoding ifencoding is "latin1" or "UTF-
8" .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

scan , source , eval , deparse .

Examples

cat("x <- c(1,4)\n x ^ 3 -10 ; outer(1:7,5:9)\n", file="xyz.Rdmped")
parse 3 statements from the file "xyz.Rdmped"
parse(file = "xyz.Rdmped", n = 3)
unlink("xyz.Rdmped")

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage

paste(..., sep = " ", collapse = NULL)

Arguments

... one or moreR objects, to be converted to character vectors.

sep a character string to separate the terms.

collapse an optional character string to separate the results.

path.expand 299

Details

paste converts its arguments (via as.character) to character strings, and concatenates them
(separating them by the string given bysep). If the arguments are vectors, they are concatenated
term-by-term to give a character vector result. Vector arguments are recycled as needed, with zero-
length arguments being recycled to"" .

Note thatpaste() coercesas.character(NA) to "NA" (a string with two characters rather
than thecharacter missing value,NA_character_), which may seem undesirable, e.g., when
pasting two character vectors, but very desirable in, e.g.,paste("the value of p is ",
p) .

If a value is specified forcollapse , the values in the result are then concatenated into a single
string, with the elements being separated by the value ofcollapse .

Value

A character vector of the concatenated values. This will be of length zero if all the objects are,
unlesscollapse is non-NULL, in which case it is a single empty string.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

String manipulation withas.character , substr , nchar , strsplit ; further, cat which
concatenates and writes to a file, andsprintf for C like string construction.

‘plotmath’ for the use ofpaste in plot annotation.

Examples

paste(1:12) # same as as.character(1:12)
paste("A", 1:6, sep = "")
paste("Today is", date())

path.expand Expand File Paths

Description

Expand a path name, for example by replacing a leading tilde by the user’s home directory (if
defined on that platform).

Usage

path.expand(path)

Arguments

path character vector containing one or more path names.

300 pmatch

Details

On someUnix versions, a leading~user will expand to the home directory ofuser , but not on
Unix versions withoutreadline installed, nor ifR is invoked with ‘--no-readline ’.

See Also

basename

Examples

path.expand("~/foo")

pmatch Partial String Matching

Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch(x, table, nomatch = NA_integer_, duplicates.ok = FALSE)

Arguments

x the values to be matched: converted to a character vector byas.character .

table the values to be matched against: converted to a character vector.

nomatch the value to be returned at non-matching or multiply partially matching posi-
tions. Note that it is coerced tointeger .

duplicates.ok
should elements be intable be used more than once?

Details

The behaviour differs by the value ofduplicates.ok . Consider first the case if this is true. First
exact matches are considered, and the positions of the first exact matches are recorded. Then unique
partial matches are considered, and if found recorded. (A partial match occurs if the whole of the
element ofx matches the beginning of the element oftable .) Finally, all remaining elements ofx
are regarded as unmatched. In addition, an empty string can match nothing, not even an exact match
to an empty string. This is the appropriate behaviour for partial matching of character indices, for
example.

If duplicates.ok is FALSE, values oftable once matched are excluded from the search
for subsequent matches. This behaviour is equivalent to theR algorithm for argument matching,
except for the consideration of empty strings (which in argument matching are matched after exact
and partial matching to any remaining arguments).

charmatch is similar topmatch with duplicates.ok true, the differences being that it dif-
ferentiates between no match and an ambiguous partial match, it does match empty strings, and it
does not allow multiple exact matches.

NAvalues are treated as if they were the string constant"NA" .

polyroot 301

Value

An integer vector (possibly includingNA if nomatch = NA) of the same length asx , giving the
indices of the elements intable which matched, ornomatch .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.

See Also

match , charmatch and match.arg , match.fun , match.call , for function argument
matching etc.,grep etc for more general (regexp) matching of strings.

Examples

pmatch("", "") # returns NA
pmatch("m", c("mean", "median", "mode")) # returns NA
pmatch("med", c("mean", "median", "mode")) # returns 2

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=FALSE)
pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=TRUE)
compare
charmatch(c("", "ab", "ab"), c("abc", "ab"))

polyroot Find Zeros of a Real or Complex Polynomial

Description

Find zeros of a real or complex polynomial.

Usage

polyroot(z)

Arguments

z the vector of polynomial coefficients in increasing order.

Details

A polynomial of degreen− 1,

p(x) = z1 + z2x+ · · ·+ znx
n−1

is given by its coefficient vectorz[1:n] . polyroot returns then − 1 complex zeros ofp(x)
using the Jenkins-Traub algorithm.

If the coefficient vectorz has zeroes for the highest powers, these are discarded.

302 pos.to.env

Value

A complex vector of lengthn− 1, wheren is the position of the largest non-zero element ofz .

References

Jenkins and Traub (1972) TOMS Algorithm 419.Comm. ACM, 15, 97–99.

See Also

uniroot for numerical root finding of arbitrary functions;complex and thezero example in
the demos directory.

Examples

polyroot(c(1, 2, 1))
round(polyroot(choose(8, 0:8)), 11) # guess what!
for (n1 in 1:4) print(polyroot(1:n1), digits = 4)
polyroot(c(1, 2, 1, 0, 0)) # same as the first

pos.to.env Convert Positions in the Search Path to Environments

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env(x)

Arguments

x an integer between 1 andlength(search()) , the length of the search path.

Details

SeveralR functions for manipulating objects in environments (such asget andls) allow specify-
ing environments via corresponding positions in the search path.pos.to.env is a convenience
function for programmers which converts these positions to corresponding environments; users will
typically have no need for it.

Examples

pos.to.env(1) # R_GlobalEnv
the next returns the base environment
pos.to.env(length(search()))

pretty 303

pretty Pretty Breakpoints

Description

Compute a sequence of aboutn+1 equally spaced ‘round’ values which cover the range of the
values inx . The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, n = 5, min.n = n %/% 3, shrink.sml = 0.75,
high.u.bias = 1.5, u5.bias = .5 + 1.5*high.u.bias,
eps.correct = 0)

Arguments

x an object coercible to numeric byas.numeric .

n integer giving thedesirednumber of intervals. Non-integer values are rounded
down.

min.n nonnegative integer giving theminimalnumber of intervals. Ifmin.n == 0 ,
pretty(.) may return a single value.

shrink.sml positive numeric by a which a default scale is shrunk in the case when
range(x) is very small (usually 0).

high.u.bias non-negative numeric, typically> 1. The interval unit is determined as
{1,2,5,10} timesb, a power of 10. Largerhigh.u.bias values favor larger
units.

u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and ‘optimal’:
u5.bias = .5 + 1.5*high.u.bias .

eps.correct integer code, one of {0,1,2}. If non-0, anepsilon correctionis made at the
boundaries such that the result boundaries will be outsiderange(x) ; in the
smallcase, the correction is only done ifeps.correct >=2 .

Details

pretty ignores non-finite values inx .

Let d <- max(x) - min(x) ≥ 0. If d is not (very close) to 0, we letc <- d/n , otherwise
more or lessc <- max(abs(range(x)))*shrink.sml / min.n . Then, the10 baseb
is 10blog10(c)c such thatb ≤ c < 10b.

Now determine the basicunit u as one of{1, 2, 5, 10}b, depending onc/b ∈ [1, 10) and the two
‘bias’ coefficients,h =high.u.bias andf =u5.bias .

.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

304 Primitive

See Also

axTicks for the computation of pretty axis tick locations in plots, particularly on the log scale.

Examples

pretty(1:15) # 0 2 4 6 8 10 12 14 16
pretty(1:15, h=2)# 0 5 10 15
pretty(1:15, n=4)# 0 5 10 15
pretty(1:15 * 2) # 0 5 10 15 20 25 30
pretty(1:20) # 0 5 10 15 20
pretty(1:20, n=2) # 0 10 20
pretty(1:20, n=10)# 0 2 4 ... 20

for(k in 5:11) {
cat("k=",k,": "); print(diff(range(pretty(100 + c(0, pi*10^-k)))))}

##-- more bizarre, when min(x) == max(x):
pretty(pi)

add.names <- function(v) { names(v) <- paste(v); v}
utils::str(lapply(add.names(-10:20), pretty))
utils::str(lapply(add.names(0:20), pretty, min = 0))
sapply(add.names(0:20), pretty, min = 4)

pretty(1.234e100)
pretty(1001.1001)
pretty(1001.1001, shrink = .2)
for(k in -7:3)

cat("shrink=", formatC(2^k, width=9),":",
formatC(pretty(1001.1001, shrink = 2^k), width=6),"\n")

Primitive Call a “Primitive” Internal Function

Description

.Primitive returns an entry point to a ‘primitive’ (internally implemented) function.

Usage

.Primitive(name)

Arguments

name name of theR function.

Details

The advantage of.Primitive over.Internal functions is the potential efficiency of argument
passing. However, this is done by ignoring argument names and using positional matching of
arguments (unless arranged differently for specific primitives such asrep), so this is discouraged
for functions of more than one argument.

All primitive functions are in the base name space.

print 305

See Also

.Internal .

Examples

mysqrt <- .Primitive("sqrt")
c
.Internal # this one *must* be primitive!
get("if") # just 'if' or 'print(if)' are not syntactically ok.

print Print Values

Description

print prints its argument and returns itinvisibly (via invisible (x)). It is a generic function
which means that new printing methods can be easily added for newclass es.

Usage

print(x, ...)

S3 method for class 'factor':
print(x, quote = FALSE, max.levels = NULL,

width = getOption("width"), ...)

S3 method for class 'table':
print(x, digits = getOption("digits"), quote = FALSE,

na.print = "", zero.print = "0", justify = "none", ...)

Arguments

x an object used to select a method.

... further arguments passed to or from other methods.

quote logical, indicating whether or not strings should be printed with surrounding
quotes.

max.levels integer, indicating how many levels should be printed for a factor; if0, no
extra "Levels" line will be printed. The default,NULL, entails choosing
max.levels such that the levels print on one line of widthwidth .

width only used whenmax.levels is NULL, see above.

digits minimal number ofsignificantdigits, seeprint.default .

na.print character string (orNULL) indicating NA values in printed output, see
print.default .

zero.print character specifying how zeros (0) should be printed; for sparse tables, using
"." can produce stronger results.

justify character indicating if strings should left- or right-justified or left alone, passed
to format .

306 print.data.frame

Details

The default method,print.default has its own help page. Usemethods ("print") to get
all the methods for theprint generic.

print.factor allows some customization and is used for printingordered factors as well.

print.table for printing table s allows other customization.

Seenoquote as an example of a class whose main purpose is a specificprint method.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

The default methodprint.default , and help for the methods above; furtheroptions ,
noquote .

For more customizable (but cumbersome) printing, seecat , format or alsowrite .

Examples

require(stats)

ts(1:20)#-- print is the "Default function" --> print.ts(.) is called
rr <- for(i in 1:3) print(1:i)
rr

Printing of factors
attenu$station ## 117 levels -> 'max.levels' depending on width

ordered factors: levels "l1 < l2 < .."
esoph$agegp[1:12]
esoph$alcgp[1:12]

Printing of sparse (contingency) tables
set.seed(521)
t1 <- round(abs(rt(200, df=1.8)))
t2 <- round(abs(rt(200, df=1.4)))
table(t1,t2) # simple
print(table(t1,t2), zero.print = ".")# nicer to read

print.data.frame Printing Data Frames

Description

Print a data frame.

Usage

S3 method for class 'data.frame':
print(x, ..., digits = NULL, quote = FALSE, right = TRUE)

print.default 307

Arguments

x object of classdata.frame .

... optional arguments toprint or plot methods.

digits the minimum number of significant digits to be used: seeprint.default .

quote logical, indicating whether or not entries should be printed with surrounding
quotes.

right logical, indicating whether or not strings should be right-aligned. The default is
right-alignment.

Details

This callsformat which formats the data frame column-by-column, then converts to a character
matrix and dispatches to theprint method for matrices.

Whenquote = TRUE only the entries are quoted not the row names nor the column names.

See Also

data.frame .

print.default Default Printing

Description

print.default is thedefaultmethod of the genericprint function which prints its argument.

Usage

Default S3 method:
print(x, digits = NULL, quote = TRUE,

na.print = NULL, print.gap = NULL, right = FALSE,
max = NULL, useSource = TRUE, ...)

Arguments

x the object to be printed.

digits a non-null value fordigits specifies the minimum number of significant digits
to be printed in values. The default,NULL, usesgetOption (digits) . (For
the interpretation for complex numbers seesignif .) Non-integer values will
be rounded down, and only values greater than or equal to 1 and no greater than
22 are accepted.

quote logical, indicating whether or not strings (character s) should be printed with
surrounding quotes.

na.print a character string which is used to indicateNAvalues in printed output, orNULL
(see ‘Details’).

print.gap a non-negative integer≤ 1024, or NULL (meaning 1), giving the spacing be-
tween adjacent columns in printed vectors, matrices and arrays.

308 print.default

right logical, indicating whether or not strings should be right aligned. The default is
left alignment.

max a non-null value formax specifies the approximate maximum number of entries
to be printed. The default,NULL, usesgetOption (max.print) ; see that
help page for more details.

useSource logical, indicating whether to use source references or copies rather than depars-
ing language objects. The default is to use the original source if it is available.

... further arguments to be passed to or from other methods. They are ignored in
this function.

Details

The default for printingNAs is to printNA(without quotes) unless this is a characterNAandquote
= FALSE, when<NA> is printed.

The same number of decimal places is used throughout a vector. This means thatdigits specifies
the minimum number of significant digits to be used, and that at least one entry will be encoded
with that minimum number. However, if all the encoded elements then have trailing zeroes, the
number of decimal places is reduced until at least one element has a non-zero final digit. Decimal
points are only included if at least one decimal place is selected.

Attributes are printed respecting their class(es), using the values ofdigits to print.default ,
but using the default values (for the methods called) of the other arguments.

When themethodspackage is attached,print will call show for R objects with formal classes if
called with no optional arguments.

Warning

Using too large a value ofdigits may lead to representation errors in the calculation of the
number of significant digits and the decimal representation: these are likely fordigits >= 16 ,
and these possible errors are taken into account in assessing the numher of significant digits to be
printed in that case.

Whereas earlier versions ofR might have printed further digits fordigits >= 16 on some
platforms, they were not necessarily reliable.

Single-byte locales

If a non-printable character is encountered during output, it is represented as one of the ANSI escape
sequences (\a , \b , \f , \n , \r , \t , \v , \\ and\0 : seeQuotes), or failing that as a 3-digit octal
code: for example the UK currency pound sign in the C locale (if implemented correctly) is printed
as\243 . Which characters are non-printable depends on the locale.

Unicode and other multi-byte locales

In all locales, the characters in the ASCII range (0x00 to 0x7f) are printed in the same way, as-is if
printable, otherwise via ANSI escape sequences or 3-digit octal escapes as described for single-byte
locales.

Multi-byte non-printing characters are printed as an escape sequence of the form\uxxxx or
\Uxxxxxxxx (in hexadecimal). This is the internal code for the wide-character representation
of the character. If this is not known to be the Unicode point, a warning is issued. The only known
exceptions are certain Japanese ISO2022 locales on commercial Unixes, which use a concatenation
of the bytes: it is unlikely thatR compiles on such a system.

prmatrix 309

It is possible to have a character string in a character vector that is not valid in the current locale. If
a byte is encountered that is not part of a valid character it is printed in hex in the form\xab and
this is repeated until the start of a valid character. (This will rapidly recover from minor errors in
UTF-8.)

See Also

The genericprint , options . The" noquote " class and print method.

encodeString , which encodes a character vector the way it would be printed.

Examples

pi
print(pi, digits = 16)
LETTERS[1:16]
print(LETTERS, quote = FALSE)

M <- cbind(I = 1, matrix(1:10000, ncol = 10,
dimnames = list(NULL, LETTERS[1:10])))

utils::head(M) # makes more sense than
print(M, max = 1000)# prints 90 rows and a message about omitting 910

prmatrix Print Matrices, Old-style

Description

An earlier method for printing matrices, provided for S compatibility.

Usage

prmatrix(x, rowlab =, collab =,
quote = TRUE, right = FALSE, na.print = NULL, ...)

Arguments

x numeric or character matrix.
rowlab,collab

(optional) character vectors giving row or column names respectively. By de-
fault, these are taken fromdimnames (x) .

quote logical; if TRUEandx is of mode"character" , quotes(") are used.

right if TRUEand x is of mode "character" , the output columns areright-
justified.

na.print howNAs are printed. If this is non-null, its value is used to representNA.

... arguments forprint methods.

Details

prmatrix is an earlier form ofprint.matrix , and is very similar to the S function of the same
name.

310 proc.time

Value

Invisibly returns its argument,x .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

print.default , and otherprint methods.

Examples

prmatrix(m6 <- diag(6), rowlab = rep("",6), collab =rep("",6))

chm <- matrix(scan(system.file("help", "AnIndex", package = "splines"),
what = ""), , 2, byrow = TRUE)

chm # uses print.matrix()
prmatrix(chm, collab = paste("Column",1:3), right=TRUE, quote=FALSE)

proc.time Running Time of R

Description

proc.time determines how much real and CPU time (in seconds) the currently runningR process
has already taken.

Usage

proc.time()

Details

proc.time returns five elements for backwards compatibility, but itsprint method prints a
named vector of length 3. The first two entries are the total user and system CPU times of the
currentR process and any child processes on which it has waited, and the third entry is the ‘real’
elapsed time since the process was started.

Value

An object of class"proc_time" which is a numeric vector of length 5, containing the user,
system, and total elapsed times for the currently runningR process, and the cumulative sum of user
and system times of any child processes spawned by it on which it has waited. (Theprint method
combines the child times with those of the main process.)

The resolution of the times will be system-specific and times are rounded to the nearest 1ms. On
modern systems they will be that accurate, but on older systems they might be accurate to 1/100 or
1/60 sec.

It is useful for timing the evaluation ofR expressions, which can be done more conveniently with
system.time .

prod 311

Note

It is possible to compileR without support forproc.time , when the function will throw an error.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

system.time for timing a validR expression,gc.time for how much of the time was spent in
garbage collection.

Examples

Not run:
a way to time an R expression: system.time is preferred
ptm <- proc.time()
for (i in 1:50) mad(stats::runif(500))
proc.time() - ptm
End(Not run)

prod Product of Vector Elements

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm = FALSE)

Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values be removed?

Details

If na.rm is FALSEanNAvalue in any of the arguments will cause a value ofNA to be returned,
otherwiseNAvalues are ignored.

This is a generic function: methods can be defined for it directly or via theSummarygroup generic.
For this to work properly, the arguments... should be unnamed, and dispatch is on the first
argument.

Logical true values are regarded as one, false values as zero. For historical reasons,NULL is ac-
cepted and treated as if it werenumeric(0) .

Value

The product, a numeric (of type"double") or complex vector of length one.NB: the product of
an empty set is one, by definition.

312 prop.table

S4 methods

This is part of the S4Summary group generic. Methods for it must use the signaturex, ...,
na.rm .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

sum, cumprod , cumsum.

‘plotmath’ for the use ofprod in plot annotation.

Examples

print(prod(1:7)) == print(gamma(8))

prop.table Express Table Entries as Fraction of Marginal Table

Description

This is reallysweep(x, margin, margin.table(x, margin), "/") for newbies, ex-
cept that ifmargin has length zero, then one getsx/sum(x) .

Usage

prop.table(x, margin=NULL)

Arguments

x table

margin index, or vector of indices to generate margin for

Value

Table likex expressed relative tomargin

Author(s)

Peter Dalgaard

See Also

margin.table

Examples

m <- matrix(1:4,2)
m
prop.table(m,1)

pushBack 313

pushBack Push Text Back on to a Connection

Description

Functions to push back text lines onto a connection, and to enquire how many lines are currently
pushed back.

Usage

pushBack(data, connection, newLine = TRUE)
pushBackLength(connection)

Arguments

data a character vector.

connection A connection.

newLine logical. If true, a newline is appended to each string pushed back.

Details

Several character strings can be pushed back on one or more occasions. The occasions form a stack,
so the first line to be retrieved will be the first string from the last call topushBack . Lines which
are pushed back are read prior to the normal input from the connection, by the normal text-reading
functions such asreadLines andscan .

Pushback is only allowed for readable connections.

Not all uses of connections respect pushbacks, in particular the input connection is still wired di-
rectly, so for example parsing commands from the console andscan ("") ignore pushbacks on
stdin .

Value

pushBack returns nothing.

pushBackLength returns number of lines currently pushed back.

See Also

connections , readLines .

Examples

zz <- textConnection(LETTERS)
readLines(zz, 2)
pushBack(c("aa", "bb"), zz)
pushBackLength(zz)
readLines(zz, 1)
pushBackLength(zz)
readLines(zz, 1)
readLines(zz, 1)
close(zz)

314 qr

qr The QR Decomposition of a Matrix

Description

qr computes the QR decomposition of a matrix. It provides an interface to the techniques used
in the LINPACK routine DQRDC or the LAPACK routines DGEQP3 and (for complex matrices)
ZGEQP3.

Usage

qr(x, ...)
Default S3 method:
qr(x, tol = 1e-07 , LAPACK = FALSE, ...)

qr.coef(qr, y)
qr.qy(qr, y)
qr.qty(qr, y)
qr.resid(qr, y)
qr.fitted(qr, y, k = qr$rank)
qr.solve(a, b, tol = 1e-7)
S3 method for class 'qr':
solve(a, b, ...)

is.qr(x)
as.qr(x)

Arguments

x a matrix whose QR decomposition is to be computed.

tol the tolerance for detecting linear dependencies in the columns ofx . Only used
if LAPACKis false andx is real.

qr a QR decomposition of the type computed byqr .

y, b a vector or matrix of right-hand sides of equations.

a A QR decomposition or (qr.solve only) a rectangular matrix.

k effective rank.

LAPACK logical. For realx , if true use LAPACK otherwise use LINPACK.

... further arguments passed to or from other methods

Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equationAx = b for given matrixA, and vectorb. It is useful for computing
regression coefficients and in applying the Newton-Raphson algorithm.

The functionsqr.coef , qr.resid , andqr.fitted return the coefficients, residuals and fitted
values obtained when fittingy to the matrix with QR decompositionqr . (If pivoting is used, some
of the coefficients will beNA.) qr.qy andqr.qty returnQ %*% yandt(Q) %*% y , where
Q is the (complete)Q matrix.

qr 315

All the above functions keepdimnames (andnames) of x andy if there are.

solve.qr is the method forsolve for qr objects. qr.solve solves systems of equations
via the QR decomposition: ifa is a QR decomposition it is the same assolve.qr , but if a is
a rectangular matrix the QR decomposition is computed first. Either will handle over- and under-
determined systems, providing a least-squares fit if appropriate.

is.qr returnsTRUEif x is a list with components namedqr , rank andqraux andFALSE
otherwise.

It is not possible to coerce objects to mode"qr" . Objects either are QR decompositions or they
are not.

Value

The QR decomposition of the matrix as computed by LINPACK or LAPACK. The components in
the returned value correspond directly to the values returned by DQRDC/DGEQP3/ZGEQP3.

qr a matrix with the same dimensions asx . The upper triangle contains theR of
the decomposition and the lower triangle contains information on theQ of the
decomposition (stored in compact form). Note that the storage used by DQRDC
and DGEQP3 differs.

qraux a vector of lengthncol(x) which contains additional information onQ.

rank the rank ofx as computed by the decomposition: always full rank in the LA-
PACK case.

pivot information on the pivoting strategy used during the decomposition.

Non-complex QR objects computed by LAPACK have the attribute"useLAPACK" with value
TRUE.

Note

To compute the determinant of a matrix (do youreally need it?), the QR decomposition is much
more efficient than using Eigen values (eigen). Seedet .

Using LAPACK (including in the complex case) uses column pivoting and does not attempt to
detect rank-deficient matrices.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978)LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999)LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line athttp://www.netlib.org/lapack/lug/lapack_lug.html .

See Also

qr.Q , qr.R , qr.X for reconstruction of the matrices.lm.fit , lsfit , eigen , svd .

det (usingqr) to compute the determinant of a matrix.

http://www.netlib.org/lapack/lug/lapack_lug.html

316 QR.Auxiliaries

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert(9); h9
qr(h9)$rank #--> only 7
qrh9 <- qr(h9, tol = 1e-10)
qrh9$rank #--> 9
##-- Solve linear equation system H %*% x = y :
y <- 1:9/10
x <- qr.solve(h9, y, tol = 1e-10) # or equivalently :
x <- qr.coef(qrh9, y) #-- is == but much better than

#-- solve(h9) %*% y
h9 %*% x # = y

overdetermined system
A <- matrix(runif(12), 4)
b <- 1:4
qr.solve(A, b) # or solve(qr(A), b)
solve(qr(A, LAPACK=TRUE), b)
this is a least-squares solution, cf. lm(b ~ 0 + A)

underdetermined system
A <- matrix(runif(12), 3)
b <- 1:3
qr.solve(A, b)
solve(qr(A, LAPACK=TRUE), b)
solutions will have one zero, not necessarily the same one

QR.Auxiliaries Reconstruct the Q, R, or X Matrices from a QR Object

Description

Returns the original matrix from which the object was constructed or the components of the decom-
position.

Usage

qr.X(qr, complete = FALSE, ncol =)
qr.Q(qr, complete = FALSE, Dvec =)
qr.R(qr, complete = FALSE)

Arguments

qr object representing a QR decomposition. This will typically have come from a
previous call toqr or lsfit .

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of theQ or X matrices is to be made, or whether theR matrix is to be
completed by binding zero-value rows beneath the square upper triangle.

ncol integer in the range1:nrow(qr$qr) . The number of columns to be in
the reconstructedX. The default whencomplete is FALSE is the first
min(ncol(X), nrow(X)) columns of the originalX from which the qr

quit 317

object was constructed. The default whencomplete is TRUEis a square ma-
trix with the original X in the first ncol(X) columns and an arbitrary or-
thogonal completion (unitary completion in the complex case) in the remaining
columns.

Dvec vector (not matrix) of diagonal values. Each column of the returnedQ will be
multiplied by the corresponding diagonal value. Defaults to all1s.

Value

qr.X returnsX, the original matrix from which the qr object was constructed, providedncol(X)
<= nrow(X) . If complete is TRUEor the argumentncol is greater thanncol(X) , additional
columns from an arbitrary orthogonal (unitary) completion ofX are returned.

qr.Q returns part or all ofQ, the order-nrow(X) orthogonal (unitary) transformation represented by
qr . If complete is TRUE, Q hasnrow(X) columns. Ifcomplete is FALSE, Q hasncol(X)
columns. WhenDvec is specified, each column ofQ is multiplied by the corresponding value in
Dvec .

qr.R returnsR. The number of rows ofR is eithernrow(X) or ncol(X) (and may depend on
whethercomplete is TRUEor FALSE.

See Also

qr , qr.qy .

Examples

p <- ncol(x <- LifeCycleSavings[,-1]) # not the 'sr'
qrstr <- qr(x) # dim(x) == c(n,p)
qrstr $ rank # = 4 = p
Q <- qr.Q(qrstr) # dim(Q) == dim(x)
R <- qr.R(qrstr) # dim(R) == ncol(x)
X <- qr.X(qrstr) # X == x
range(X - as.matrix(x))# ~ < 6e-12
X == Q %*% R if there has been no pivoting, as here.
Q %*% R

quit Terminate an R Session

Description

The functionquit or its aliasq terminate the currentR session.

Usage

quit(save = "default", status = 0, runLast = TRUE)
q(save = "default", status = 0, runLast = TRUE)

.Last <- function(x) { }

318 quit

Arguments

save a character string indicating whether the environment (workspace) should be
saved, one of"no" , "yes" , "ask" or "default" .

status the (numerical) error status to be returned to the operating system, where rele-
vant. Conventionally0 indicates successful completion.

runLast should.Last() be executed?

Details

save must be one of"no" , "yes" , "ask" or "default" . In the first case the workspace is
not saved, in the second it is saved and in the third the user is prompted and can also decidenot
to quit. The default is to ask in interactive use but may be overridden by command-line arguments
(which must be supplied in non-interactive use).

Immediatelybeforeterminating, the function.Last() is executed if it exists andrunLast is
true. If in interactive use there are errors in the.Last function, control will be returned to the
command prompt, so do test the function thoroughly. There is a system analogue,.Last.sys() ,
which is run after.Last() if runLast is true.

Some error statuses are used byR itself. The default error handler for non-interactive use effectively
callsq("no", 1, FALSE) and returns error code 1. Error status 2 is used forR ‘suicide’, that is
a catastrophic failure, and other small numbers are used by specific ports for initialization failures.
It is recommended that users choose statuses of 10 or more.

Valid values ofstatus are system-dependent, but0:255 are normally valid. (Many OSes will
report the last byte of the value, that is report the number modulo 256. But not all.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

.First for setting things on startup.

Examples

Not run:
Unix-flavour example
.Last <- function() {

cat("Now sending PostScript graphics to the printer:\n")
system("lpr Rplots.ps")
cat("bye bye...\n")

}
quit("yes")
End(Not run)

Quotes 319

Quotes Quotes

Description

Descriptions of the various uses of quoting inR.

Details

Three types of quote are part of the syntax ofR: single and double quotation marks and the back-
tick (or back quote,‘). In addition, backslash is used for quoting the following characters inside
character constants.

Character constants

Single and double quotes delimit character constants. They can be used interchangeably but double
quotes are preferred (and character constants are printed using double quotes), so single quotes are
normally only used to delimit character constants containing double quotes.

Backslash is used to start an escape sequence inside character constants. Unless specified in the
following table, an escaped character is interpreted as the character itself. (Note that the parser
will warn about most such uses, as they are most often erroneous, e.g. using\. where\\. was
intended.)

Single quotes need to be escaped by backslash in single-quoted strings, and double quotes in double-
quoted strings.

\n newline
\r carriage return
\t tab
\b backspace
\a alert (bell)
\f form feed
\v vertical tab
\\ backslash\
\nnn character with given octal code (1, 2 or 3 digits)
\xnn character with given hex code (1 or 2 hex digits)
\unnnn Unicode character with given code (1–4 hex digits)
\Unnnnnnnn Unicode character with given code (1–8 hex digits)

The last two are only supported on versions ofR built with MBCS support, and the last is
only supported in MBCS locales, and not on Windows. Alternative forms are\u{nnnn} and
\U{nnnnnnnn} . (They are an error if used where not supported.) All except the Unicode es-
cape sequences are also supported when reading character strings byscan andread.table if
allowEscapes = TRUE .

These forms will also be used byprint.default when outputting non-printable characters
(including backslash).

Names and Identifiers

Identifiers consist of a sequence of letters, digits, the period (.) and the underscore. They must not
start with a digit nor underscore, nor with a period followed by a digit.

320 R.home

The definition of aletter depends on the current locale, but only ASCII digits are considered to be
digits.

Such identifiers are also known assyntactic namesand may be used directly inR code. Almost
always, other names can be used provided they are quoted. The preferred quote is the backtick (‘),
anddeparse will normally use it, but under many circumstances single or double quotes can be
used (as a character constant will often be converted to a name). One place where backticks may be
essential is to delimit variable names in formulae: seeformula .

See Also

Syntax for other aspects of the syntax.

sQuote for quoting English text.

shQuote for quoting OS commands.

TheR Language Definitionmanual.

R.home Return the R Home Directory

Description

Return theR home directory.

Usage

R.home(component="home")

Arguments

component As well as"home" which gives theR home directory, other known values are
"bin" , "doc" , "etc" and"share" giving the paths to the corresponding
parts of anR installation.

Details

TheR home directory is the top-level directory of theR installation being run.

TheR home directory is often referred to asR_HOME, and is the value of an environment variable
of that name in anR session. It can be found outside anR session byR RHOME.

Value

A character string giving theR home directory or path to a particular component. Normally the
components are all subdirectories of theR home directory, but this may not be the case in a Unix-
like installation.

R.Version 321

R.Version Version Information

Description

R.Version() provides detailed information about the version ofR running.

R.version is a variable (alist) holding this information (andversion is a copy of it for S
compatibility).

Usage

R.Version()
R.version
R.version.string
version

Value

R.Version returns a list with character-string components

platform the platform for whichR was built. A triplet of the form CPU-VENDOR-OS,
as determined by the configure script. E.g,"i586-unknown-linux" or
"i386-pc-mingw32" .

arch the architecture (CPU)R was built on/for.

os the underlying operating system

system CPU and OS, separated by a comma.

status the status of the version (e.g.,"Alpha")

major the major version number

minor the minor version number, including the patchlevel

year the year the version was released

month the month the version was released

day the day the version was released

svn rev the Subversion revision number, which should be either"unknown" or a single
number. (A range of numbers or a number with ‘M’ or ‘ S’ appended indicates
inconsistencies in the sources used to build this version ofR.)

language always"R" .
version.string

a character string concatenating some of the info above, useful for plotting,
etc.

R.version andversion are lists of class"simple.list" which has aprint method.

Note

Do not use R.version$os to test the platform the code is running on: use
.Platform$OS.type instead. Slightly different versions of the OS may report different val-
ues ofR.version$os , as may different versions ofR.

R.version.string is a copy ofR.version$version.string for simplicity and back-
wards compatibility.

322 Random

See Also

sessionInfo which provides additional information;getRversion typically used inside R
code,.Platform .

Examples

require(graphics)

R.version$os # to check how lucky you are ...
plot(0) # any plot
mtext(R.version.string, side=1,line=4,adj=1)# a useful bottom-right note

Random Random Number Generation

Description

.Random.seed is an integer vector, containing the random number generator (RNG)state for
random number generation inR. It can be saved and restored, but should not be altered by the user.

RNGkind is a more friendly interface to query or set the kind of RNG in use.

RNGversion can be used to set the random generators as they were in an earlierR version (for
reproducibility).

set.seed is the recommended way to specify seeds.

Usage

.Random.seed <- c(rng.kind, n1, n2, ...)
save.seed <- .Random.seed

RNGkind(kind = NULL, normal.kind = NULL)
RNGversion(vstr)
set.seed(seed, kind = NULL)

Arguments

kind character orNULL. If kind is a character string, setR’s RNG to the kind de-
sired. If it isNULL, return the currently used RNG. Use"default" to return
to theR default.

normal.kind character string orNULL. If it is a character string, set the method of Normal
generation. Use"default" to return to theR default.

seed a single value, interpreted as an integer.

vstr a character string containing a version number, e.g.,"1.6.2"

rng.kind integer code in0:k for the abovekind .

n1, n2, ... integers. See the details for how many are required (which depends on
rng.kind).

Random 323

Details

The currently available RNG kinds are given below.kind is partially matched to this list. The
default is"Mersenne-Twister" .

"Wichmann-Hill" The seed,.Random.seed[-1] == r[1:3] is an integer vector of
length 3, where eachr[i] is in 1:(p[i] - 1) , wherep is the length 3 vector of primes,
p = (30269, 30307, 30323) . The Wichmann–Hill generator has a cycle length of
6.9536 × 1012 (= prod(p-1)/4 , seeApplied Statistics(1984)33, 123 which corrects the
original article).

"Marsaglia-Multicarry" : A multiply-with-carryRNG is used, as recommended by George
Marsaglia in his post to the mailing list ‘sci.stat.math’. It has a period of more than260 and
has passed all tests (according to Marsaglia). The seed is two integers (all values allowed).

"Super-Duper" : Marsaglia’s famous Super-Duper from the 70’s. This is the original version
which doesnot pass the MTUPLE test of the Diehard battery. It has a period of≈ 4.6× 1018

for most initial seeds. The seed is two integers (all values allowed for the first seed: the second
must be odd).
We use the implementation by Reeds et al. (1982–84).
The two seeds are the Tausworthe and congruence long integers, respectively. A one-to-one
mapping to S’s.Random.seed[1:12] is possible but we will not publish one, not least as
this generator isnot exactly the same as that in recent versions of S-PLUS.

"Mersenne-Twister": From Matsumoto and Nishimura (1998). A twisted GFSR with period
219937 − 1 and equidistribution in 623 consecutive dimensions (over the whole period). The
‘seed’ is a 624-dimensional set of 32-bit integers plus a current position in that set.

"Knuth-TAOCP-2002": A GFSR using lagged Fibonacci sequences with subtraction. That is,
the recurrence used is

Xj = (Xj−100 −Xj−37) mod 230

and the ‘seed’ is the set of the 100 last numbers (actually recorded as 101 numbers, the last
being a cyclic shift of the buffer). The period is around2129.

"Knuth-TAOCP": An earlier version from Knuth (1997).
The 2002 version was not backwards compatible with the earlier version: the initialization of
the GFSR from the seed was altered.R did not allow you to choose consecutive seeds, the
reported ‘weakness’, and already scrambled the seeds.
Initialization of this generator is done in interpretedR code and so takes a short but noticeable
time.

"user-supplied": Use a user-supplied generator. SeeRandom.user for details.

normal.kind can be "Kinderman-Ramage" , "Buggy Kinderman-Ramage" ,
"Ahrens-Dieter" , "Box-Muller" , "Inversion" (the default), or"user-supplied" .
(For inversion, see the reference inqnorm .) The Kinderman-Ramage generator used in versions
prior to 1.7.1 had several approximation errors and should only be used for reproduction of older
results.

set.seed uses its single integer argument to set as many seeds as are required. It is intended as
a simple way to get quite different seeds by specifying small integer arguments, and also as a way
to get valid seed sets for the more complicated methods (especially"Mersenne-Twister" and
"Knuth-TAOCP").

Value

.Random.seed is an integer vector whose first elementcodesthe kind of RNG and normal
generator. The lowest two decimal digits are in0:(k-1) wherek is the number of available
RNGs. The hundreds represent the type of normal generator (starting at0).

324 Random

In the underlying C,.Random.seed[-1] is unsigned ; therefore inR .Random.seed[-1]
can be negative, due to the representation of an unsigned integer by a signed integer.

RNGkind returns a two-element character vector of the RNG and normal kinds in usebeforethe
call, invisibly if either argument is notNULL. RNGversion returns the same information.

set.seed returnsNULL, invisibly.

Note

Initially, there is no seed; a new one is created from the current time when one is required. Hence,
different sessions will give different simulation results, by default.

.Random.seed saves the seed set for the uniform random-number generator, at least for the
system generators. It does not necessarily save the state of other generators, and in particular does
not save the state of the Box–Muller normal generator. If you want to reproduce work later, call
set.seed rather than set.Random.seed .

The object.Random.seed is only looked for in the user’s workspace.

All the supplied uniform generators return 32-bit integer values that are converted to doubles, so
they take at most232 distinct values and long runs will return duplicated values.

Author(s)

of RNGkind: Martin Maechler. Current implementation, B. D. Ripley

References

Ahrens, J. H. and Dieter, U. (1973) Extensions of Forsythe’s method for random sampling from the
normal distribution.Mathematics of Computation27, 927-937.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (set.seed , storing in.Random.seed .)

Box, G. E. P. and Muller, M. E. (1958) A note on the generation of normal random deviates.Annals
of Mathmatical Statistics29, 610–611.

De Matteis, A. and Pagnutti, S. (1993)Long-range Correlation Analysis of the Wichmann-Hill
Random Number Generator, Statist. Comput.,3, 67–70.

Kinderman, A. J. and Ramage, J. G. (1976) Computer generation of normal random variables.
Journal of the American Statistical Association71, 893-896.

Knuth, D. E. (1997)The Art of Computer Programming.Volume 2, third edition.
Source code athttp://www-cs-faculty.stanford.edu/~knuth/taocp.html .

Knuth, D. E. (2002)The Art of Computer Programming.Volume 2, third edition, ninth printing.
Seehttp://Sunburn.Stanford.EDU/~knuth/news02.html .

Marsaglia, G. (1997)A random number generator for C.Discussion paper, posting on Usenet news-
groupsci.stat.math on September 29, 1997.

Marsaglia, G. and Zaman, A. (1994) Some portable very-long-period random number generators.
Computers in Physics, 8, 117–121.

Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator,ACM Transactions on Modeling and Computer Simula-
tion, 8, 3–30.
Source code athttp://www.math.keio.ac.jp/~matumoto/emt.html .

Reeds, J., Hubert, S. and Abrahams, M. (1982–4) C implementation of SuperDuper, University of
California at Berkeley. (Personal communication from Jim Reeds to Ross Ihaka.)

http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://Sunburn.Stanford.EDU/~knuth/news02.html
http://www.math.keio.ac.jp/~matumoto/emt.html

Random.user 325

Wichmann, B. A. and Hill, I. D. (1982)Algorithm AS 183: An Efficient and Portable Pseudo-
random Number Generator, Applied Statistics,31, 188–190; Remarks:34, 198 and35, 89.

See Also

runif , rnorm ,

Examples

require(stats)

the default random seed is 626 integers, so only print a few
runif(1); .Random.seed[1:6]; runif(1); .Random.seed[1:6]
If there is no seed, a "random" new one is created:
rm(.Random.seed); runif(1); .Random.seed[1:6]

RNGkind("Wich")# (partial string matching on 'kind')

This shows how 'runif(.)' works for Wichmann-Hill,
using only R functions:

p.WH <- c(30269, 30307, 30323)
a.WH <- c(171, 172, 170)
next.WHseed <- function(i.seed = .Random.seed[-1])

{ (a.WH * i.seed) %% p.WH }
my.runif1 <- function(i.seed = .Random.seed)

{ ns <- next.WHseed(i.seed[-1]); sum(ns / p.WH) %% 1 }
rs <- .Random.seed
(WHs <- next.WHseed(rs[-1]))
u <- runif(1)
stopifnot(

next.WHseed(rs[-1]) == .Random.seed[-1],
all.equal(u, my.runif1(rs))

)

.Random.seed
ok <- RNGkind()
RNGkind("Super")#matches "Super-Duper"
RNGkind()
.Random.seed # new, corresponding to Super-Duper

Reset:
RNGkind(ok[1])

sum(duplicated(runif(1e6))) # around 110
and we would expect about almost sure duplicates beyond about
qbirthday(1-1e-6, classes=2e9) # 235,000

Random.user User-supplied Random Number Generation

326 Random.user

Description

FunctionRNGkind allows user-coded uniform and normal random number generators to be sup-
plied. The details are given here.

Details

A user-specified uniform RNG is called from entry points in dynamically-loaded compiled code.
The user must supply the entry pointuser_unif_rand , which takes no arguments and returns a
pointer toa double. The example below will show the general pattern.

Optionally, the user can supply the entry pointuser_unif_init , which is called with an
unsigned int argument whenRNGkind (or set.seed) is called, and is intended to be used
to initialize the user’s RNG code. The argument is intended to be used to set the ‘seeds’; it is the
seed argument toset.seed or an essentially random seed ifRNGkind is called.

If only these functions are supplied, no information about the generator’s state is recorded in
.Random.seed . Optionally, functionsuser_unif_nseed anduser_unif_seedloc can
be supplied which are called with no arguments and should return pointers to the number of seeds
and to an integer array of seeds. Calls toGetRNGstate andPutRNGstate will then copy this
array to and from.Random.seed .

A user-specified normal RNG is specified by a single entry pointuser_norm_rand , which takes
no arguments and returns apointer toa double.

Warning

As with all compiled code, mis-specifying these functions can crashR. Do include the
‘R_ext/Random.h’ header file for type checking.

Examples

Not run:
Marsaglia's congruential PRNG
#include <R_ext/Random.h>

static Int32 seed;
static double res;
static int nseed = 1;

double * user_unif_rand()
{

seed = 69069 * seed + 1;
res = seed * 2.32830643653869e-10;
return &res;

}

void user_unif_init(Int32 seed_in) { seed = seed_in; }
int * user_unif_nseed() { return &nseed; }
int * user_unif_seedloc() { return (int *) &seed; }

/* ratio-of-uniforms for normal */
#include <math.h>
static double x;

double * user_norm_rand()
{

double u, v, z;

range 327

do {
u = unif_rand();
v = 0.857764 * (2. * unif_rand() - 1);
x = v/u; z = 0.25 * x * x;
if (z < 1. - u) break;
if (z > 0.259/u + 0.35) continue;

} while (z > -log(u));
return &x;

}

Use under Unix:
R CMD SHLIB urand.c
R
> dyn.load("urand.so")
> RNGkind("user")
> runif(10)
> .Random.seed
> RNGkind(, "user")
> rnorm(10)
> RNGkind()
[1] "user-supplied" "user-supplied"
End(Not run)

range Range of Values

Description

range returns a vector containing the minimum and maximum of all the given arguments.

Usage

range(..., na.rm = FALSE)

Default S3 method:
range(..., na.rm = FALSE, finite = FALSE)

Arguments

... anynumeric or character objects.

na.rm logical, indicating ifNA’s should be omitted.

finite logical, indicating if all non-finite elements should be omitted.

Details

range is a generic function: methods can be defined for it directly or via theSummary group
generic. For this to work properly, the arguments... should be unnamed, and dispatch is on the
first argument.

If na.rm is FALSE, NAandNaNvalues in any of the arguments will causeNAvalues to be returned,
otherwiseNAvalues are ignored.

If finite is TRUE, the minimum and maximum of all finite values is computed, i.e.,
finite=TRUE includesna.rm=TRUE .

328 rank

A special situation occurs when there is no (after omission ofNAs) nonempty argument left, see
min .

S4 methods

This is part of the S4Summary group generic. Methods for it must use the signaturex, ...,
na.rm .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

Theextendrange () utility; min , max, Methods .

Examples

(r.x <- range(stats::rnorm(100)))
diff(r.x) # the SAMPLE range

x <- c(NA, 1:3, -1:1/0); x
range(x)
range(x, na.rm = TRUE)
range(x, finite = TRUE)

rank Sample Ranks

Description

Returns the sample ranks of the values in a vector. Ties (i.e., equal values) and missing values can
be handled in several ways.

Usage

rank(x, na.last = TRUE,
ties.method = c("average", "first", "random", "max", "min"))

Arguments

x a numeric, complex, character or logical vector.

na.last for controlling the treatment ofNAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; ifNA, they are removed; if"keep" they are
kept with rankNA.

ties.method a character string specifying how ties are treated, see below; can be abbreviated.

rapply 329

Details

If all components are different (and noNAs), the ranks are well defined, with values in
seq_len(x) . With some values equal (called ‘ties’), the argumentties.method determines
the result at the corresponding indices. The"first" method results in a permutation with increas-
ing values at each index set of ties. The"random" method puts these in random order whereas
the default,"average" , replaces them by their mean, and"max" and"min" replaces them by
their maximum and minimum respectively, the latter being the typical sports ranking.

NA values are never considered to be equal: forna.last = TRUE andna.last = FALSE
they are given distinct ranks in the order in which they occur inx .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

order andsort .

Examples

(r1 <- rank(x1 <- c(3, 1, 4, 15, 92)))
x2 <- c(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5)
names(x2) <- letters[1:11]
(r2 <- rank(x2)) # ties are averaged

rank() is "idempotent": rank(rank(x)) == rank(x) :
stopifnot(rank(r1) == r1, rank(r2) == r2)

ranks without averaging
rank(x2, ties.method= "first") # first occurrence wins
rank(x2, ties.method= "random") # ties broken at random
rank(x2, ties.method= "random") # and again

keep ties ties, no average
(rma <- rank(x2, ties.method= "max")) # as used classically
(rmi <- rank(x2, ties.method= "min")) # as in Sports
stopifnot(rma + rmi == round(r2 + r2))

rapply Recursively Apply a Function to a List

Description

rapply is a recursive version oflapply .

Usage

rapply(object, f, classes = "ANY", deflt = NULL,
how = c("unlist", "replace", "list"), ...)

330 rapply

Arguments

object A list.

f A function of a single argument.

classes A character vector ofclass names, or"ANY" to match any class.

deflt The default result (not used ifhow = "replace").

how A character string matching the three possibilities given: see ‘Details’.

... additional arguments passed to the call tof .

Details

This function has two basic modes. Ifhow = "replace" , each element of the list which is not
itself a list and has a class included inclasses is replaced by the result of applyingf to the
element.

If the mode ishow = "list" or how = "unlist" , the list is copied, all non-list elements
which have a class included inclasses are replaced by the result of applyingf to the element
and all others are replaced bydeflt . Finally, if how = "unlist" , unlist(recursive =
TRUE) is called on the result.

The semantics differ in detail fromlapply : in particular the arguments are evaluated before call-
ing the C code.

Value

If how = "unlist" , a vector, otherwise a list of similar structure toobject .

References

Chambers, J. A. (1998)Programming with Data. Springer.
(rapply is only described briefly there.)

See Also

lapply , dendrapply .

Examples

X <- list(list(a=pi, b=list(c=1:1)), d="a test")
rapply(X, function(x) x, how="replace")
rapply(X, sqrt, classes="numeric", how="replace")
rapply(X, nchar, classes="character",

deflt = as.integer(NA), how="list")
rapply(X, nchar, classes="character",

deflt = as.integer(NA), how="unlist")
rapply(X, nchar, classes="character", how="unlist")
rapply(X, log, classes="numeric", how="replace", base=2)

raw 331

raw Raw Vectors

Description

Creates or tests for objects of type"raw" .

Usage

raw(length = 0)
as.raw(x)
is.raw(x)

Arguments

length desired length.

x object to be coerced.

Details

The raw type is intended to hold raw bytes. It is possible to extract subsequences of bytes, and to
replace elements (but only by elements of a raw vector). The relational operators (seeComparison)
work, as do the logical operators (seeLogic) with a bitwise interpretation.

A raw vector is printed with each byte separately represented as a pair of hex digits. If you want to
see a character representation (with escape sequences for non-printing characters) userawToChar .

Coercion to raw treats the input values as representing a small (decimal) integers, so the input is
first coerced to integer, and then values which are outside the range[0 ... 255] or areNAare
set to0 (thenul byte).

Value

raw creates a raw vector of the specified length. Each element of the vector is equal to0. Raw
vectors are used to store fixed-length sequences of bytes.

as.raw attempts to coerce its argument to be of raw type. The (elementwise) answer will be0
unless the coercion succeeds.

is.raw returns true if and only iftypeof(x) == "raw" .

See Also

charToRaw , rawShift , etc.

Examples

xx <- raw(2)
xx[1] <- as.raw(40) # NB, not just 40.
xx[2] <- charToRaw("A")
xx

x <- "A test string"
(y <- charToRaw(x))
is.vector(y) # TRUE

332 rawConversion

rawToChar(y)
is.raw(x)
is.raw(y)

isASCII <- function(txt) all(charToRaw(txt) <= as.raw(127))
isASCII(x) # true
isASCII("\x9c25.63") # false (in Latin-1, this is an amount in UK pounds)

rawConversion Convert to or from Raw Vectors

Description

Conversion and manipulation of objects of type"raw" .

Usage

charToRaw(x)
rawToChar(x, multiple = FALSE)

rawShift(x, n)

rawToBits(x)
intToBits(x)
packBits(x, type = c("raw", "integer"))

Arguments

x object to be converted or shifted.

multiple logical: should the conversion be to a single character string or multiple individ-
ual characters?

n the number of bits to shift. Positive numbers shift right and negative numbers
shift left: allowed values are-8 ... 8 .

type the result type.

Details

packBits accepts raw, integer or logical inputs, the last two without any NAs.

Note that ‘bytes’ are not necessarily the same as characters, e.g. in UTF-8 domains.

Value

charToRaw converts a length-one character string to raw bytes. It does so without taking into
account any declared encoding (seeEncoding).

rawToChar converts raw bytes either to a single character string or a character vector of single
bytes. (Note that a single character string could contain embedded nuls.)

rawToBits returns a raw vector of 8 times the length of a raw vector with entries 0 or 1.
intToBits returns a raw vector of 32 times the length of an integer vector with entries 0 or
1. In both cases the unpacking is least-significant bit first.

packbits packs its input (using only the lowest bit for raw or integer vectors) least-significant bit
first to a raw or integer vector.

RdUtils 333

Examples

x <- "A test string"
(y <- charToRaw(x))
is.vector(y) # TRUE

rawToChar(y)
rawToChar(y, multiple = TRUE)
(xx <- c(y, as.raw(0), charToRaw("more")))
rawToChar(xx)
xxx <- xx
xxx[length(y)+1] <- charToRaw("&")
xxx
rawToChar(xxx)

rawShift(y, 1)
rawShift(y, -2)

rawToBits(y)

RdUtils Utilities for Processing Rd Files

Description

Utilities for converting files in R documentation (Rd) format to other formats or create indices from
them, and for converting documentation in other formats to Rd format.

Usage

R CMD Rdconv [options] file
R CMD Rd2dvi [options] files
R CMD Rd2txt [options] file
R CMD Sd2Rd [options] file

Arguments

file the path to a file to be processed.

files a list of file names specifying the R documentation sources to use, by either
giving the paths to the files, or the path to a directory with the sources of a
package.

options further options to control the processing, or for obtaining information about us-
age and version of the utility.

Details

Rdconv converts Rd format to other formats. Currently, plain text, HTML, LaTeX, S version 3
(Sd), and S version 4 (.sgml) formats are supported. It can also extract the examples for run-time
testing.

Rd2dvi andRd2txt are user-level programs for producing DVI/PDF output or pretty text output
from Rd sources.

334 readBin

Sd2Rd converts S (version 3 or 4) documentation formats to Rd format.

UseR CMD foo --help to obtain usage information on utilityfoo .

Note

Conversion to S version 3/4 formats is rough: there are some.Rd constructs for which there is no
natural analogue. They are intended as a starting point for hand-tuning.

See Also

The chapter “Processing Rd format” in the “WritingR Extensions” manual.

readBin Transfer Binary Data To and From Connections

Description

Read binary data from a connection, or write binary data to a connection.

Usage

readBin(con, what, n = 1, size = NA, signed = TRUE,
endian = .Platform$endian)

writeBin(object, con, size = NA, endian = .Platform$endian)

Arguments

con A connection object or a character string naming a file or a raw vector.

what Either an object whose mode will give the mode of the vector to be read, or
a character vector of length one describing the mode: one of"numeric",
"double", "integer", "int", "logical", "complex",
"character", "raw" .

n integer. The (maximal) number of records to be read. You can use an over-
estimate here, but not too large as storage is reserved forn items.

size integer. The number of bytes per element in the byte stream. The default,NA,
uses the natural size. Size changing is not supported for raw and complex vec-
tors.

signed logical. Only used for integers of sizes 1 and 2, when it determines if the quantity
on file should be regarded as a signed or unsigned integer.

endian The endian-ness ("big" or "little" of the target system for the file. Using
"swap" will force swapping endian-ness.

object An R object to be written to the connection.

readBin 335

Details

If con is a character string, the functions callfile to obtain an file connection which is opened
for the duration of the function call.

If the connection is open it is read/written from its current position. If it is not open, it is opened for
the duration of the call and then closed again. The connection must be open or open-able in binary
mode.

If readBin is called withcon a raw vector, the data in the vector is used as input. IfwriteBin
is called withcon a raw vector, it is just an indication that a raw vector should be returned.

If size is specified and not the natural size of the object, each element of the vector is coerced
to an appropriate type before being written or as it is read. Possible sizes are 1, 2, 4 and possibly
8 for integer or logical vectors, and 4, 8 and possibly 12/16 for numeric vectors. (Note that co-
ercion occurs as signed types except ifsigned = FALSE when reading integers of sizes 1 and
2.) Changing sizes is unlikely to preserveNAs, and the extended precision sizes are unlikely to be
portable across platforms.

readBin andwriteBin read and write C-style zero-terminated character strings. Input strings
are limited to 10000 characters.readChar andwriteChar can be used to read and write fixed-
length strings.

HandlingR’s missing and special (Inf , -Inf andNaN) values is discussed in theR Data Im-
port/Exportmanual.

Value

For readBin , a vector of appropriate mode and length the number of items read (which might be
less thann).

For writeBin , a raw vector (ifcon is a raw vector) or invisiblyNULL.

Note

Integer read/writes of size 8 will be available if either C typelong is of size 8 bytes or C type
long long exists and is of size 8 bytes.

Real read/writes of sizesizeof(long double) (usually 12 or 16 bytes) will be available only
if that type is available and different fromdouble .

If readBin(what = character()) is used incorrectly on a file which does not contain C-
style character strings, warnings (usually many) are given. From a file or connection, the input will
be broken into pieces of length 10000 with any final part being discarded.

See Also

TheR Data Import/Exportmanual.

readChar to read/write fixed-length strings.

connections , readLines , writeLines .

.Machine for the sizes oflong , long long andlong double .

Examples

zz <- file("testbin", "wb")
writeBin(1:10, zz)
writeBin(pi, zz, endian="swap")
writeBin(pi, zz, size=4)
writeBin(pi^2, zz, size=4, endian="swap")

336 readChar

writeBin(pi+3i, zz)
writeBin("A test of a connection", zz)
z <- paste("A very long string", 1:100, collapse=" + ")
writeBin(z, zz)
if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

writeBin(as.integer(5^(1:10)), zz, size = 8)
if((s <-.Machine$sizeof.longdouble) > 8)

writeBin((pi/3)^(1:10), zz, size = s)
close(zz)

zz <- file("testbin", "rb")
readBin(zz, integer(), 4)
readBin(zz, integer(), 6)
readBin(zz, numeric(), 1, endian="swap")
readBin(zz, numeric(), size=4)
readBin(zz, numeric(), size=4, endian="swap")
readBin(zz, complex(), 1)
readBin(zz, character(), 1)
z2 <- readBin(zz, character(), 1)
if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

readBin(zz, integer(), 10, size = 8)
if((s <-.Machine$sizeof.longdouble) > 8)

readBin(zz, numeric(), 10, size = s)
close(zz)
unlink("testbin")
stopifnot(z2 == z)

signed vs unsigned ints
zz <- file("testbin", "wb")
x <- as.integer(seq(0, 255, 32))
writeBin(x, zz, size=1)
writeBin(x, zz, size=1)
x <- as.integer(seq(0, 60000, 10000))
writeBin(x, zz, size=2)
writeBin(x, zz, size=2)
close(zz)
zz <- file("testbin", "rb")
readBin(zz, integer(), 8, size=1)
readBin(zz, integer(), 8, size=1, signed=FALSE)
readBin(zz, integer(), 7, size=2)
readBin(zz, integer(), 7, size=2, signed=FALSE)
close(zz)
unlink("testbin")

use of raw
z <- writeBin(pi^{1:5}, raw(), size = 4)
readBin(z, numeric(), 5, size = 4)
z <- writeBin(c("a", "test", "of", "character"), raw())
rawToChar(z)
readBin(z, character(), 4)

readChar Transfer Character Strings To and From Connections

readChar 337

Description

Transfer character strings to and from connections, without assuming they are null-terminated on
the connection.

Usage

readChar(con, nchars)

writeChar(object, con,
nchars = nchar(object, type="chars"), eos = "")

Arguments

con A connection object, or a character string naming a file, or a raw vector.

nchars integer, giving the lengths in characters of (unterminated) character strings to be
read or written. Must be >= 0 and not missing.

object A character vector to be written to the connection, at least as long asnchars .

eos ‘end of string’: character string . The terminator to be written after each string,
followed by an ASCIInul ; useNULL for no terminator at all.

Details

These functions complementreadBin and writeBin which read and write C-style zero-
terminated character strings. They are for strings of known length, and can optionally write an
end-of-string mark. They are intended only for character strings valid in the current locale.

If con is a character string, the functions callfile to obtain an file connection which is opened
for the duration of the function call.

If the connection is open it is read/written from its current position. If it is not open, it is opened
for the duration of the call and then closed again. Connections can be open in either text or binary
mode.

If readChar is called withcon a raw vector, the data in the vector is used as input. IfwriteChar
is called withcon a raw vector, it is just an indication that a raw vector should be returned.

In a single-byte locale, character strings containing ASCIInul (s) will be read correctly by
readChar and appear with embedded nuls in the character vector returned. This may not work
for multi-byte locales, and does not work forwriteChar .

If the character length requested forreadChar is longer than the data available on the connection,
what is available is returned. ForwriteChar if too many characters are requested the output is
zero-padded, with a warning.

Missing strings are written asNA.

Value

For readChar , a character vector of length the number of items read (which might be less than
length(nchars)).

For writeChar , a raw vector (ifcon is a raw vector) or invisiblyNULL.

See Also

TheR Data Import/Exportmanual.

connections , readLines , writeLines , readBin

338 readline

Examples

test fixed-length strings
zz <- file("testchar", "wb")
x <- c("a", "this will be truncated", "abc")
nc <- c(3, 10, 3)
writeChar(x, zz, nc, eos=NULL)
writeChar(x, zz, eos="\r\n")
close(zz)

zz <- file("testchar", "rb")
readChar(zz, nc)
readChar(zz, nchar(x)+3) # need to read the terminator explicitly
close(zz)
unlink("testchar")

readline Read a Line from the Terminal

Description

readline reads a line from the terminal

Usage

readline(prompt = "")

Arguments

prompt the string printed when prompting the user for input. Should usually end with a
space" " .

Details

The prompt string will be truncated to a maximum allowed length, normally 256 chars (but can be
changed in the source code).

Value

A character vector of length one.

See Also

readLines for reading text lines of connections, including files.

Examples

fun <- function() {
ANSWER <- readline("Are you a satisfied R user? ")
if (substr(ANSWER, 1, 1) == "n")

cat("This is impossible. YOU LIED!\n")
else

cat("I knew it.\n")
}
fun()

readLines 339

readLines Read Text Lines from a Connection

Description

Read some or all text lines from a connection.

Usage

readLines(con = stdin(), n = -1, ok = TRUE, warn = TRUE,
encoding = "unknown")

Arguments

con a connection object or a character string.

n integer. The (maximal) number of lines to read. Negative values indicate that
one should read up to the end of the connection.

ok logical. Is it OK to reach the end of the connection beforen > 0 lines are read?
If not, an error will be generated.

warn logical. Warn if a text file is missing a final EOL.

encoding encoding to be assumed for input strings. It is used to mark character strings
as known to be in Latin-1 or UTF-8: it is not used to re-encode the input.
To do the latter, specify the encoding as part of the connectioncon or via
options (encoding=) : see the example underfile .

Details

If the con is a character string, the function callsfile to obtain a file connection which is opened
for the duration of the function call.

If the connection is open it is read from its current position. If it is not open, it is opened for the
duration of the call and then closed again.

If the final line is incomplete (no final EOL marker) the behaviour depends on whether the connec-
tion is blocking or not. For a blocking text-mode connection (or a non-text-mode connection) the
line will be accepted, with a warning. For a non-blocking text-mode connection the incomplete line
is pushed back, silently.

Whatever mode the connection is opened in, any of LF, CRLF or CR will be accepted as the EOL
marker for a line.

Value

A character vector of length the number of lines read.

The elements of the result have a declared encoding ifencoding is "latin1" or "UTF-8" ,

Note

The default connection,stdin , may be different fromcon = "stdin" : seefile .

See Also

connections , writeLines , readBin , scan

340 real

Examples

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file="ex.data",
sep="\n")

readLines("ex.data", n=-1)
unlink("ex.data") # tidy up

difference in blocking
cat("123\nabc", file = "test1")
readLines("test1") # line with a warning

con <- file("test1", "r", blocking = FALSE)
readLines(con) # empty
cat(" def\n", file = "test1", append = TRUE)
readLines(con) # gets both
close(con)

unlink("test1") # tidy up

real Real Vectors

Description

These functions are the same as theirdouble equivalents and are provided for backwards compat-
ibility only.

Usage

real(length = 0)
as.real(x, ...)
is.real(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

as.real is a generic function, but S3 methods must be written foras.double .

Recall 341

Recall Recursive Calling

Description

Recall is used as a placeholder for the name of the function in which it is called. It allows the
definition of recursive functions which still work after being renamed, see example below.

Usage

Recall(...)

Arguments

... all the arguments to be passed.

Note

Recall will not work correctly when passed as a function argument, e.g. to theapply family of
functions.

See Also

do.call andcall .

local for another way to write anonymous recursive functions.

Examples

A trivial (but inefficient!) example:
fib <- function(n)

if(n<=2) { if(n>=0) 1 else 0 } else Recall(n-1) + Recall(n-2)
fibonacci <- fib; rm(fib)
renaming wouldn't work without Recall
fibonacci(10) # 55

reg.finalizer Finalization of Objects

Description

Registers anR function to be called upon garbage collection of object or (optionally) at the end of
anR session.

Usage

reg.finalizer(e, f, onexit = FALSE)

342 regex

Arguments

e Object to finalize. Must be environment or external pointer.

f Function to call on finalization. Must accept a single argument, which will be
the object to finalize.

onexit logical: should the finalizer be run if the object is still uncollected at the end of
theR session?

Value

NULL.

Note

The purpose of this function is mainly to allow objects that refer to external items (a temporary
file, say) to perform cleanup actions when they are no longer referenced from withinR. This only
makes sense for objects that are never copied on assignment, hence the restriction to environments
and external pointers.

See Also

gc andMemory for garbage collection and memory management.

Examples

f <- function(e) print("cleaning....")
g <- function(x){ e <- environment(); reg.finalizer(e,f) }
g()
invisible(gc()) # trigger cleanup

regex Regular Expressions as used in R

Description

This help page documents the regular expression patterns supported bygrep and related functions
regexpr , gregexpr , sub andgsub , as well as bystrsplit .

Details

A ‘regular expression’ is a pattern that describes a set of strings. Three types of regular expressions
are used inR, extendedregular expressions, used bygrep(extended = TRUE) (its default),
basic regular expressions, as used bygrep(extended = FALSE) , andPerl-like regular ex-
pressions used bygrep(perl = TRUE) .

Other functions which use regular expressions (often via the use ofgrep) include apropos ,
browseEnv , help.search , list.files , ls andstrsplit . These will all useextended
regular expressions, unlessstrsplit is called with argumentextended = FALSE or perl
= TRUE.

Patterns are described here as they would be printed bycat : do remember that backslashes need
to be doubled when enteringR character strings, e.g. from the keyboard.

regex 343

Extended Regular Expressions

This section covers the regular expressions allowed ifextended = TRUE in grep , regexpr ,
gregexpr , sub , gsub and strsplit . They use theglibc 2.5 implementation of the
POSIX 1003.2 standard.

Regular expressions are constructed analogously to arithmetic expressions, by using various opera-
tors to combine smaller expressions.

The fundamental building blocks are the regular expressions that match a single character. Most
characters, including all letters and digits, are regular expressions that match themselves. Any
metacharacter with special meaning may be quoted by preceding it with a backslash. (Escaping
other characters with a backslash is undefined in POSIX but gives the character in theR implemen-
tation.) The metacharacters in EREs are. \ | () [{ ^ $ * + ? , but note that whether
these have a special meaning depends on the context.

A character classis a list of characters enclosed between[and] which matches any single char-
acter in that list; unless the first character of the list is the caret^ , when it matches any character
not in the list. For example, the regular expression[0123456789] matches any single digit, and
[^abc] matches anything except the charactersa, b or c . A range of characters may be specified
by giving the first and last characters, separated by a hyphen. (Because their interpretation is so
locale-dependent, they are best avoided.)

The precise way character ranges are interpreted depends on the values ofperl and
ignore.case . For basic and extended regular expressions the collation order is taken from the
OS’s implementation of the setting of the locale categoryLC_COLLATE, so[W-Z] may includex
and if it does may or may not includew. (In most English locales the collation order iswWxXyYzZ.)
For caseless matching the characters in a range are interpreted as if in lower case, so in an English
locale[W-z] matchesWXYZwxyz.

For Perl regexps, the ranges are interpreted in the numerical order of the characters, either as bytes
in an 8-bit locale or as Unicode points in a UTF-8 locale.

Certain named classes of characters are predefined. Their interpretation depends on thelocale(see
locales); the interpretation below is that of the POSIX locale.

[:alnum:] Alphanumeric characters:[:alpha:] and[:digit:] .

[:alpha:] Alphabetic characters:[:lower:] and[:upper:] .

[:blank:] Blank characters: space and tab.

[:cntrl:] Control characters. In ASCII, these characters have octal codes 000 through 037,
and 177 (DEL). In another character set, these are the equivalent characters, if any.

[:digit:] Digits: 0 1 2 3 4 5 6 7 8 9 .

[:graph:] Graphical characters:[:alnum:] and[:punct:] .

[:lower:] Lower-case letters in the current locale.

[:print:] Printable characters:[:alnum:] , [:punct:] and space.

[:punct:] Punctuation characters:! " # $ % & ’ () * + , - . / : ; < =
> ? @ [\] ^ _ ‘ { | } ~ .

[:space:] Space characters: tab, newline, vertical tab, form feed, carriage return, and space.

[:upper:] Upper-case letters in the current locale.

[:xdigit:] Hexadecimal digits:0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e
f .

For example,[[:alnum:]] means[0-9A-Za-z] , except the latter depends upon the locale
and the character encoding, whereas the former is independent of locale and character set. (Note

344 regex

that the brackets in these class names are part of the symbolic names, and must be included in
addition to the brackets delimiting the bracket list.) Most metacharacters lose their special meaning
inside lists. To include a literal] , place it first in the list. Similarly, to include a literal^ , place it
anywhere but first. Finally, to include a literal- , place it first or last (or, forperl = TRUE only,
precede it by a backslash.). (Only these and\ remain special inside character classes.)

The period. matches any single character. The symbol\w is documented to be synonym for
[[:alnum:]] and \W is its negation. However,\w also matches underscore in the GNU grep
code used inR.

The caret̂ and the dollar sign$ are metacharacters that respectively match the empty string at the
beginning and end of a line. The symbols\< and \> respectively match the empty string at the
beginning and end of a word. The symbol\b matches the empty string at either edge of a word,
and\B matches the empty string provided it is not at an edge of a word.

A regular expression may be followed by one of several repetition quantifiers:

? The preceding item is optional and will be matched at most once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{n} The preceding item is matched exactlyn times.

{n,} The preceding item is matchedn or more times.

{n,m} The preceding item is matched at leastn times, but not more thanmtimes.

Repetition is greedy, so the maximal possible number of repeats is used.

Two regular expressions may be concatenated; the resulting regular expression matches any string
formed by concatenating two substrings that respectively match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator| ; the resulting regular expression
matches any string matching either subexpression. For example,abba|cde matches either the
stringabba or the stringcde . Note that alternation does not work inside character classes, where
| has its literal meaning.

Repetition takes precedence over concatenation, which in turn takes precedence over alternation. A
whole subexpression may be enclosed in parentheses to override these precedence rules.

The backreference\N , where N is a single digit, matches the substring previously matched by the
Nth parenthesized subexpression of the regular expression.

Basic Regular Expressions

This section covers the regular expressions allowed ifextended = FALSE in grep , regexpr ,
gregexpr , sub , gsub andstrsplit .

In basic regular expressions the metacharacters?, +, { , | , (, and) lose their special meaning;
instead use the backslashed versions\? , \+ , \ { , \| , \(, and\) . Thus the metacharacters are.
\ [^ $ * .

Perl Regular Expressions

The perl = TRUE argument togrep , regexpr , gregexpr , sub , gsub and strsplit
switches to the PCRE library that ‘implements regular expression pattern matching using the same
syntax and semantics as Perl 5.6 or later, with just a few differences’. It adds some features planned
for Perl 5.10.

For complete details please consult the man pages for PCRE, especiallyman pcrepattern
andman pcreapi), on your system or from the sources athttp://www.pcre.org . If PCRE

http://www.pcre.org

regex 345

support was compiled from the sources withinR, the PCRE version is 7.5 as described here (version
≥ 4.0 is required ifR is configured to use the system’s PCRE library).

Perl regular expressions are computed byte-by-byte rather than character-by-character except in
UTF-8 locales. Since the only non-UTF-8 multibyte locales in common use are those for CJK
languages, they should be used with care in non-UTF-8 CJK locales.

All the regular expressions described for extended regular expressions are accepted except\< and
\> : in Perl all backslashed metacharacters are alphanumeric and backslashed symbols always are
interpreted as a literal character.{ is not special if it would be the start of an invalid interval
specification. There can be more than 9 backreferences. In a UTF-8 locale the named character
classes only match ASCII characters: see\p below for an alternative.

The construct(?...) is used for Perl extensions in a variety of ways depending on what immedi-
ately follows the?.

Perl-like matching can work in several modes, set by the options(?i) (caseless, equivalent to
Perl’s /i), (?m) (multiline, equivalent to Perl’s/m), (?s) (single line, so a dot matches all
characters, even new lines: equivalent to Perl’s/s) and(?x) (extended, whitespace data characters
are ignored unless escaped and comments are allowed: equivalent to Perl’s/x). These can be
concatenated, so for example,(?im) sets caseless multiline matching. It is also possible to unset
these options by preceding the letter with a hyphen, and to combine setting and unsetting such as
(?im-sx) . These settings can be applied within patterns, and then apply to the remainder of
the pattern. Additional options not in Perl include(?U) to set ‘ungreedy’ mode (so matching is
minimal unless? is used, when it is greedy). Initially none of these options are set.

If you want to remove the special meaning from a sequence of characters, you can do so by putting
them between\Q and \E . This is different from Perl in that$ and @are handled as literals in
\Q...\E sequences in PCRE, whereas in Perl,$ and@cause variable interpolation.

The escape sequences\d , \s and \w represent any decimal digit, space character and ‘word’
character (letter, digit or underscore in the current locale, except that in a UTF-8 locale only ASCII
letters are considered) respectively, and their upper-case versions represent their negation. Unlike
POSIX and earlier versions of Perl and PCRE, vertical tab is not regarded as a whitespace character.

Escape sequence\a is BEL, \e is ESC, \f is FF, \n is LF, \r is CRand\t is TAB. In addition
\cx is cntrl-x for any x , \ddd is the octal characterddd (for up to three digits unless inter-
pretable as a backreference, as\1 to \7 always are), and\xhh specifies a character in hex. In a
UTF-8 locale,\x{h...} specifies a Unicode point by one or more hex digits.

Outside a character class,\b matches a word boundary,\B is its negation,\A matches at start of
a subject (even in multiline mode, unlikê), \Z matches at end of a subject or before newline at
end,\z matches at end of a subject. and\G matches at first matching position in a subject (which
is subtly different from Perl’s end of the previous match).\C matches a single byte. including
a newline. In a UTF-8 locale,\R matches any Unicode newline character (not just CR), and\X
matches any number of Unicode characters that form an extended Unicode sequence.

In a UTF-8 locale, some Unicode properties are supported via\p{ xx} and\P{ xx} which match
characters with and without propertyxx respectively. For a list of supported properties see the
PCRE documentation, but for exampleLu is ‘upper case letter’ andSc is ‘currency symbol’.

The same repetition quantifiers as extended POSIX are supported. However, if a quantifier is fol-
lowed by?, the match is ‘ungreedy’, that is as short as possible rather than as long as possible
(unless the meanings are reversed by the(?U) option.)

The sequence(?# marks the start of a comment which continues up to the next closing parenthesis.
Nested parentheses are not permitted. The characters that make up a comment play no part at all in
the pattern matching.

If the extended option is set, an unescaped# character outside a character class introduces a com-
ment that continues up to the next newline character in the pattern.

346 remove

The pattern(?:...) groups characters just as parentheses do but does not make a backreference.

Patterns(?=...) and(?!...) are zero-width positive and negative lookaheadassertions: they
match if an attempt to match the... forward from the current position would succeed (or not), but
use up no characters in the string being processed. Patterns(?<=...) and(?<!...) are the
lookbehind equivalents: they do not allow repetition quantifiers nor\C in

Named subpatterns, atomic grouping, possessive qualifiers and conditional and recursive patterns
are not covered here.

Author(s)

This help page is based on the documentation of GNU grep 2.4.2 and thepcrepattern man page
from PCRE 7.4.

See Also

grep , apropos , browseEnv , glob2rx , help.search , list.files , ls and
strsplit .

http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_
chap09.html

Thepcrepattern can be found as part ofhttp://www.pcre.org/pcre.txt , and details
of Perl’s own implementation athttp://perldoc.perl.org/perlre.html .

remove Remove Objects from a Specified Environment

Description

remove andrm can be used to remove objects. These can be specified successively as character
strings, or in the character vectorlist , or through a combination of both. All objects thus specified
will be removed.

If envir is NULL then the currently active environment is searched first.

If inherits is TRUEthen parents of the supplied directory are searched until a variable with the
given name is encountered. A warning is printed for each variable that is not found.

Usage

remove(..., list = character(0), pos = -1,
envir = as.environment(pos), inherits = FALSE)

rm (..., list = character(0), pos = -1,
envir = as.environment(pos), inherits = FALSE)

Arguments

... the objects to be removed, as names (unquoted) or character strings (quoted).

list a character vector naming objects to be removed.

pos where to do the removal. By default, uses the current environment. See the
details for other possibilities.

envir theenvironment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?

http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://www.pcre.org/pcre.txt
http://perldoc.perl.org/perlre.html

rep 347

Details

Thepos argument can specify the environment from which to remove the objects in any of several
ways: as an integer (the position in thesearch list); as the character string name of an element
in the search list; or as anenvironment (including usingsys.frame to access the currently
active function calls). Theenvir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

It is not allowed to remove variables from the base environment and base name space, nor from any
environment which is locked (seelockEnvironment).

Earlier versions ofR incorrectly claimed that supplying a character vector in... removed the
objects named in the character vector, but it removed the character vector. Use thelist argument
to specify objectsvia a character vector.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

ls , objects

Examples

tmp <- 1:4
work with tmp and cleanup
rm(tmp)

Not run:
remove (almost) everything in the working environment.
You will get no warning, so don't do this unless you are really sure.
rm(list = ls())
End(Not run)

rep Replicate Elements of Vectors and Lists

Description

rep replicates the values inx . It is a generic function, and the (internal) default method is described
here.

rep.int is a faster simplified version for the most common case.

Usage

rep(x, ...)

rep.int(x, times)

348 rep

Arguments

x a vector (of any mode including a list) or a pairlist or a factor or (except for
rep.int) aPOSIXct or POSIXlt or date object.

... further arguments to be passed to or from other methods. For the internal default
method these can include:

times A vector giving the number of times to repeat each element if of length
length(x) , or to repeat the whole vector if of length 1.

length.out non-negative integer. The desired length of the output vector.
Ignored ifNAor invalid.

each non-negative integer. Each element ofx is repeatedeach times. Treated
as1 if NAor invalid.

times see... .

Details

The default behaviour is as if the call wasrep(x, times=1, length.out=NA, each=1) .
Normally just one of the additional arguments is specified, but ifeach is specified with either of
the other two, its replication is performed first, and then that implied bytimes or length.out .

If times consists of a single integer, the result consists of the whole input repeated this many
times. If times is a vector of the same length asx (after replication byeach), the result consists
of x[1] repeatedtimes[1] times,x[2] repeatedtimes[2] times and so on.

length.out may be given in place oftimes , in which casex is repeated as many times as
is necessary to create a vector of this length. If both are given,length.out takes priority and
times is ignored.

Non-integer values oftimes will be truncated towards zero. Iftimes is a computed quantity it is
prudent to add a small fuzz.

If x has length zero andlength.out is supplied and is positive, the values are filled in using the
extraction rules, that is by anNAof the appropriate class for an atomic vector (0 for raw vectors)
andNULL for a list.

Value

An object of the same type asx (except thatrep will coerce pairlists to vector lists).

rep.int returns no attributes.

The default method ofrep gives the result names (which will almost always contain duplicates) if
x had names, but retains no other attributes except for factors.

Note

Functionrep.int is a simple case handled by internal code, and provided as a separate function
purely for S compatibility.

Functionrep is a primitive, but (partial) matching of argument names is performed as for normal
functions. You can no longer pass a missing argument to. e.g.length.out .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

replace 349

See Also

seq , sequence , replicate .

Examples

rep(1:4, 2)
rep(1:4, each = 2) # not the same.
rep(1:4, c(2,2,2,2)) # same as second.
rep(1:4, c(2,1,2,1))
rep(1:4, each = 2, len = 4) # first 4 only.
rep(1:4, each = 2, len = 10) # 8 integers plus two recycled 1's.
rep(1:4, each = 2, times = 3) # length 24, 3 complete replications

rep(1, 40*(1-.8)) # length 7 on most platforms
rep(1, 40*(1-.8)+1e-7) # better

replicate a list
fred <- list(happy = 1:10, name = "squash")
rep(fred, 5)

date-time objects
x <- .leap.seconds[1:3]
rep(x, 2)
rep(as.POSIXlt(x), rep(2, 3))

named factor
x <- factor(LETTERS[1:4]); names(x) <- letters[1:4]
x
rep(x, 2)
rep(x, each=2)
rep.int(x, 2) # no names

replace Replace Values in a Vector

Description

replace replaces the values inx with indexes given inlist by those given invalues . If
necessary, the values invalues are recycled.

Usage

replace(x, list, values)

Arguments

x vector

list an index vector

values replacement values

Value

A vector with the values replaced.

350 rev

Note

x is unchanged: remember to assign the result.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Reserved Reserved Words in R

Description

The reserved words inR are

if else repeat while function for in next break

TRUE FALSE NULL Inf NaN NA NA_integer_ NA_real_ NA_complex_
NA_character_

... and..1 , ..2 etc, used to refer to arguments passed down from an enclosing function.

rev Reverse Elements

Description

rev provides a reversed version of its argument. It is generic function with a default method for
vectors and one fordendrogram s.

Note that this is no longer needed (nor efficient) for obtaining vectors sorted into descending order,
since that is now rather more directly achievable bysort (x, decreasing = TRUE) .

Usage

rev(x)

Arguments

x a vector or another object for which reversal is defined.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

seq , sort .

Examples

x <- c(1:5,5:3)
sort into descending order; first more efficiently:
stopifnot(sort(x, decreasing = TRUE) == rev(sort(x)))
stopifnot(rev(1:7) == 7:1)#- don't need 'rev' here

rle 351

rle Run Length Encoding

Description

Compute the lengths and values of runs of equal values in a vector – or the reverse operation.

Usage

rle(x)
inverse.rle(x, ...)

Arguments

x an atomic vector forrle() ; an object of class"rle" for inverse.rle() .

... further arguments which are ignored inR.

Details

Missing values are regarded as unequal to the previous value, even if that is also missing.

inverse.rle() is the inverse function ofrle() , reconstructingx from the runs.

Value

rle() returns an object of class"rle" which is a list with components:

lengths an integer vector containing the length of each run.

values a vector of the same length aslengths with the corresponding values.

inverse.rle() returns an atomic vector.

Examples

x <- rev(rep(6:10, 1:5))
rle(x)
lengths [1:5] 5 4 3 2 1
values [1:5] 10 9 8 7 6

z <- c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE)
rle(z)
rle(as.character(z))

stopifnot(x == inverse.rle(rle(x)),
z == inverse.rle(rle(z)))

352 Round

Round Rounding of Numbers

Description

ceiling takes a single numeric argumentx and returns a numeric vector containing the smallest
integers not less than the corresponding elements ofx .

floor takes a single numeric argumentx and returns a numeric vector containing the largest
integers not greater than the corresponding elements ofx .

trunc takes a single numeric argumentx and returns a numeric vector containing the integers
formed by truncating the values inx toward0.

round rounds the values in its first argument to the specified number of decimal places (default 0).

signif rounds the values in its first argument to the specified number of significant digits.

zapsmall determines adigits argumentdr for calling round(x, digits = dr) such
that values close to zero (compared with the maximal absolute value) are ‘zapped’, i.e., treated as
0.

Usage

ceiling(x)
floor(x)
trunc(x, ...)

round(x, digits = 0)
signif(x, digits = 6)
zapsmall(x, digits = getOption("digits"))

Arguments

x a numeric vector. A complex vector is allowed forround , signif and
zapsmall .

digits integer indicating the precision to be used.

... arguments to be passed to methods.

Details

All but zapsmall are generic functions: methods can be defined for them individually or via the
Math group generic.

Note that for rounding off a 5, the IEC 60559 standard is expected to be used, ‘go to the even
digit’. Thereforeround(0.5) is 0 andround(-1.5) is -2 . However, this is dependent on OS
services and on representation error (since e.g.0.15 is not represented exactly, the rounding rule
applies to the represented number and not to the printed number, and soround(0.15, 1) could
be either0.1 or 0.2).

For signif the recognized values ofdigits are1...22 . Complex numbers are rounded to
retain the specified number of digits in the larger of the components. Each element of the vector is
rounded individually, unlike printing.

All exceptzapsmall are primitive, so positional argument matching is used for the default meth-
ods ofround andsignif .

round.POSIXt 353

S4 methods

ceiling , floor andtrunc are S4 generic and members of theMath group generic. As an S4
generic,trunc has only one argument.

round andsignif are S4 generic and members of theMath2 group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (Exceptzapsmall .)

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.
(zapsmall .)

See Also

as.integer .

Examples

round(.5 + -2:4) # IEEE rounding: -2 0 0 2 2 4 4
(x1 <- seq(-2, 4, by = .5))
round(x1)#-- IEEE rounding !
x1[trunc(x1) != floor(x1)]
x1[round(x1) != floor(x1 + .5)]
(non.int <- ceiling(x1) != floor(x1))

x2 <- pi * 100^(-1:3)
round(x2, 3)
signif(x2, 3)

print (x2 / 1000, digits=4)
zapsmall(x2 / 1000, digits=4)
zapsmall(exp(1i*0:4*pi/2))

round.POSIXt Round / Truncate Data-Time Objects

Description

Round or truncate date-time objects.

Usage

S3 method for class 'POSIXt':
round(x, units = c("secs", "mins", "hours", "days"))
S3 method for class 'POSIXt':
trunc(x, units = c("secs", "mins", "hours", "days"), ...)

S3 method for class 'Date':
round(x, ...)
S3 method for class 'Date':
trunc(x, ...)

354 row

Arguments

x an object inheriting from"POSIXt" or "Date" .

units one of the units listed. Can be abbreviated.

... arguments to be passed to or from other methods, notablydigits for round .

Details

The time is rounded or truncated to the second, minute, hour or day. Timezones are only relevant to
days, when midnight in the current timezone is used.

The methods for class"Date" are of little use except to remove fractional days.

Value

An object of class"POSIXlt" or "Date" .

See Also

round for the generic function and default methods.

DateTimeClasses , Date

Examples

round(.leap.seconds + 1000, "hour")
trunc(Sys.time(), "day")

row Row Indexes

Description

Returns a matrix of integers indicating their row number in a matrix-like object.

Usage

row(x, as.factor = FALSE)

Arguments

x a matrix-like object, that is one with a two-dimensionaldim .

as.factor a logical value indicating whether the value should be returned as a factor rather
than as numeric.

Value

An integer matrix with the same dimensions asx and whoseij -th element is equal toi .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

row.names 355

See Also

col to get columns.

Examples

x <- matrix(1:12, 3, 4)
extract the diagonal of a matrix
dx <- x[row(x) == col(x)]
dx

create an identity 5-by-5 matrix
x <- matrix(0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <- 1
x

row.names Get and Set Row Names for Data Frames

Description

All data frames have a row names attribute, a character vector of length the number of rows with no
duplicates nor missing values.

For convenience, these are generic functions for which users can write other methods, and there are
default methods for arrays. The description here is for thedata.frame method.

Usage

row.names(x)
row.names(x) <- value

Arguments

x object of class"data.frame" , or any other class for which a method has
been defined.

value an object to be coerced to character unless an integer vector. It should have
(after coercion) the same length as the number of rows ofx with no duplicated
nor missing values.NULL is also allowed: see ‘Details’.

Details

A data frame has (by definition) a vector ofrow nameswhich has length the number of rows in the
data frame, and contains neither missing nor duplicated values. Where a row names sequence has
been added by the software to meet this requirement, they are regarded as ‘automatic’.

Row names were character are allowed to be integer or character, but for backwards compat-
ibility (with R <= 2.4.0) row.names will always return a character vector. (Useattr(x,
"row.names") if you need an integer value.)

UsingNULLfor the value resets the row names toseq_len(nrow(x)) , regarded as ‘automatic’.

356 row/colnames

Value

row.names returns a character vector.

row.names<- returns a data frame with the row names changed.

Note

row.names is similar torownames for arrays, and it has a method that callsrownames for an
array argument.

Row names of the form1:n for n > 2 are stored internally in a compact form, which might be
seen from C code or by deparsing but never viarow.names or attr (x, "row.names") .
Additionally, some names of this sort are marked as ‘automatic’ and handled differently by
as.matrix and data.matrix (and potentially other functions). (All zero-row data frames
are regarded as having automatic row.names.)

References

Chambers, J. M. (1992)Data for models.Chapter 3 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame , rownames , names.

.row_names_info for the internal representations.

row/colnames Row and Column Names

Description

Retrieve or set the row or column names of a matrix-like object.

Usage

rownames(x, do.NULL = TRUE, prefix = "row")
rownames(x) <- value

colnames(x, do.NULL = TRUE, prefix = "col")
colnames(x) <- value

Arguments

x a matrix-likeR object, with at least two dimensions forcolnames .

do.NULL logical. Should this create names if they areNULL?

prefix for created names.

value a valid value for that component ofdimnames (x) . For a matrix or array this
is eitherNULLor a character vector of non-zero length equal to the appropriate
dimension.

rowsum 357

Details

The extractor functions try to do something sensible for any matrix-like objectx . If the object has
dimnames the first component is used as the row names, and the second component (if any) is used
for the column names. For a data frame,rownames andcolnames eventually callrow.names
andnames respectively, but the latter are preferred.

If do.NULL is FALSE, a character vector (of lengthNROW(x) or NCOL(x)) is returned in any
case, prependingprefix to simple numbers, if there are no dimnames or the corresponding com-
ponent of the dimnames isNULL.

The replacement methods for arrays/matrices coerce vector and factor values ofvalue to character,
but do not dispatch methods foras.character .

For a data frame,value for rownames should be a character vector of non-duplicated and non-
missing names (this is enforced), and forcolnames a character vector of (preferably) unique
syntactically-valid names. In both cases,value will be coerced byas.character , and setting
colnames will convert the row names to character.

See Also

dimnames , case.names , variable.names .

Examples

m0 <- matrix(NA, 4, 0)
rownames(m0)

m2 <- cbind(1,1:4)
colnames(m2, do.NULL = FALSE)
colnames(m2) <- c("x","Y")
rownames(m2) <- rownames(m2, do.NULL = FALSE, prefix = "Obs.")
m2

rowsum Give column sums of a matrix or data frame, based on a grouping
variable

Description

Compute column sums across rows of a matrix-like object for each level of a grouping variable.
rowsum is generic, with a method for data frames and a default method for vectors and matrices.

Usage

rowsum(x, group, reorder = TRUE, ...)

S3 method for class 'data.frame':
rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)

Default S3 method:
rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)

358 sample

Arguments

x a matrix, data frame or vector of numeric data. Missing values are allowed. A
numeric vector will be treated as a column vector.

group a vector or factor giving the grouping, with one element per row ofx . Missing
values will be treated as another group and a warning will be given.

reorder if TRUE, then the result will be in order ofsort(unique(group)) , if
FALSE, it will be in the order that groups were encountered.

na.rm logical (TRUEor FALSE). ShouldNAvalues be discarded?

... other arguments to be passed to or from methods

Details

The default is to reorder the rows to agree withtapply as in the example below. Reordering
should not add noticeably to the time except when there are very many distinct values ofgroup
andx has few columns.

The original function was written by Terry Therneau, but this is a new implementation using hashing
that is much faster for large matrices.

To sum over all the rows of a matrix (ie, a singlegroup) usecolSums , which should be even
faster.

Value

A matrix or data frame containing the sums. There will be one row per unique value ofgroup .

See Also

tapply , aggregate , rowSums

Examples

require(stats)

x <- matrix(runif(100), ncol=5)
group <- sample(1:8, 20, TRUE)
(xsum <- rowsum(x, group))
Slower versions
tapply(x, list(group[row(x)], col(x)), sum)
t(sapply(split(as.data.frame(x), group), colSums))
aggregate(x, list(group), sum)[-1]

sample Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements ofx using either with or without
replacement.

Usage

sample(x, size, replace = FALSE, prob = NULL)

sample 359

Arguments

x Either a (numeric, complex, character or logical) vector of more than one ele-
ment from which to choose, or a positive integer.

size non-negative integer giving the number of items to choose.

replace Should sampling be with replacement?

prob A vector of probability weights for obtaining the elements of the vector being
sampled.

Details

If x has length 1, is numeric (in the sense ofis.numeric) andx >= 1 , sampling takes place
from 1:x . Notethat this convenience feature may lead to undesired behaviour whenx is of varying
lengthsample(x) . See theresample() example below.

By defaultsize is equal tolength(x) so thatsample(x) generates a random permutation of
the elements ofx (or 1:x).

The optionalprob argument can be used to give a vector of weights for obtaining the elements
of the vector being sampled. They need not sum to one, but they should be nonnegative and not
all zero. If replace is true, Walker’s alias method (Ripley, 1987) is used when there are more
than 250 reasonably probable values: this gives results incompatible with those fromR < 2.2.0, and
there will be a warning the first time this happens in a session.

If replace is false, these probabilities are applied sequentially, that is the probability of choosing
the next item is proportional to the probabilities amongst the remaining items. The number of
nonzero weights must be at leastsize in this case.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Ripley, B. D. (1987)Stochastic Simulation. Wiley.

See Also

Packagesampling for other methods of weighted sampling without replacement.

Examples

x <- 1:12
a random permutation
sample(x)
bootstrap sampling -- only if length(x) > 1 !
sample(x,replace=TRUE)

100 Bernoulli trials
sample(c(0,1), 100, replace = TRUE)

More careful bootstrapping -- Consider this when using sample()
programmatically (i.e., in your function or simulation)!

sample()'s surprise -- example
x <- 1:10

sample(x[x > 8]) # length 2
sample(x[x > 9]) # oops -- length 10!

360 save

try(sample(x[x > 10]))# error!

This is safer, but only for sampling without replacement
resample <- function(x, size, ...)

if(length(x) <= 1) { if(!missing(size) && size == 0) x[FALSE] else x
} else sample(x, size, ...)

resample(x[x > 8])# length 2
resample(x[x > 9])# length 1
resample(x[x > 10])# length 0

save Save R Objects

Description

save writes an external representation ofR objects to the specified file. The objects can be read
back from the file at a later date by using the functionload (or data in some cases).

save.image() is just a short-cut for ‘save my current workspace’, i.e.,save(list =
ls(all=TRUE), file = ".RData") . It is also what happens withq("yes") .

Usage

save(..., list = character(0),
file = stop("'file' must be specified"),
ascii = FALSE, version = NULL, envir = parent.frame(),
compress = !ascii, eval.promises = TRUE)

save.image(file = ".RData", version = NULL, ascii = FALSE,
compress = !ascii, safe = TRUE)

Arguments

... the names of the objects to be saved (as symbols or character strings).

list A character vector containing the names of objects to be saved.

file a connection or the name of the file where the data will be saved. Must be a file
name for workspace format version 1.

ascii if TRUE, an ASCII representation of the data is written. The default value of
ascii is FALSEwhich leads to a more compact binary file being written.

version the workspace format version to use.NULLspecifies the current default format.
The version used fromR 0.99.0 toR 1.3.1 was version 1. The default format as
from R 1.4.0 is version 2.

envir environment to search for objects to be saved.

compress logical specifying whether saving to a named file is to use compression. Ignored
whenfile is a connection and for workspace format version 1.

eval.promises
logical: should objects which are promises be forced before saving?

safe logical. If TRUE, a temporary file is used for creating the saved workspace.
The temporary file is renamed tofile if the save succeeds. This preserves an
existing workspacefile if the save fails, but at the cost of using extra disk
space during the save.

save 361

Details

The names of the objects specified either as symbols (or character strings) in... or as a character
vector inlist are used to look up the objects from environmentenvir . By defaultpromisesare
evaluated, but ifeval.promises = FALSE promises are saved (together with their evaluation
environments). (Promises embedded in objects are always saved unevaluated.)

All R platforms use the XDR (bigendian) representation of C ints and doubles in binary save-d
files, and these are portable across allR platforms. (ASCII saves used to be useful for moving data
between platforms but are now mainly of historical interest.)

Default values for theascii , compress , safe andversion arguments can be modified with
thesave.defaults option (used both bysave andsave.image), see also the example sec-
tion below. If asave.image.defaults option is set it overridessave.defaults for func-
tion save.image (which allows this to have different defaults).

It is possible to compress later (withgzip) a file saved withcompress = FALSE : the effect is
the same as saving withcompress = TRUE .

Warnings

The ... arguments only give thenamesof the objects to be saved: they are searched for in the
environment given by theenvir argument, and the actual objects given as arguments need not be
those found.

SavedR objects are binary files, even those saved withascii = TRUE , so ensure that they are
transferred without conversion of end of line markers and of 8-bit characters. The lines are delimited
by LF on all platforms.

Although the default version has not changed sinceR 1.4.0, this does not mean that saved files are
necessarily backwards compatible. You will be able to load a saved image into an earlier version of
R unless use is made of later additions (for example, raw vectors or external pointers).

Note

The defaults were changed to use compressed saves forsave in 2.3.0 and forsave.image in
2.4.0. Any recent version ofR can read compressed save files, and a compressed file can be uncom-
pressed (bygzip -d) for use with very old versions ofR.

See Also

dput , dump, load , data .

Examples

x <- stats::runif(20)
y <- list(a = 1, b = TRUE, c = "oops")
save(x, y, file = "xy.Rdata")
save.image()
unlink("xy.Rdata")
unlink(".RData")

set save defaults using option:
options(save.defaults=list(ascii=TRUE, safe=FALSE))
save.image()
unlink(".RData")

362 scale

scale Scaling and Centering of Matrix-like Objects

Description

scale is generic function whose default method centers and/or scales the columns of a numeric
matrix.

Usage

scale(x, center = TRUE, scale = TRUE)

Arguments

x a numeric matrix(like object).

center either a logical value or a numeric vector of length equal to the number of
columns ofx .

scale either a logical value or a numeric vector of length equal to the number of
columns ofx .

Details

The value ofcenter determines how column centering is performed. Ifcenter is a numeric vec-
tor with length equal to the number of columns ofx , then each column ofx has the corresponding
value fromcenter subtracted from it. Ifcenter is TRUEthen centering is done by subtract-
ing the column means (omittingNAs) of x from their corresponding columns, and ifcenter is
FALSE, no centering is done.

The value ofscale determines how column scaling is performed (after centering). Ifscale is a
numeric vector with length equal to the number of columns ofx , then each column ofx is divided
by the corresponding value fromscale . If scale is TRUEthen scaling is done by dividing the
(centered) columns ofx by their root-mean-square, and ifscale is FALSE, no scaling is done.

The root-mean-square for a column is obtained by computing the square-root of the sum-of-squares
of the non-missing values in the column divided by the number of non-missing values minus one.

Value

For scale.default , the centered, scaled matrix. The numeric centering and scalings used (if
any) are returned as attributes"scaled:center" and"scaled:scale"

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

sweep which allows centering (and scaling) with arbitrary statistics.

For working with the scale of a plot, seepar .

scan 363

Examples

require(stats)
x <- matrix(1:10, ncol=2)
(centered.x <- scale(x, scale=FALSE))
cov(centered.scaled.x <- scale(x))# all 1

scan Read Data Values

Description

Read data into a vector or list from the console or file.

Usage

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
quote = if(identical(sep, "\n")) "" else "'\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE,
quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE,
comment.char = "", allowEscapes = FALSE,
encoding = "unknown")

Arguments

file the name of a file to read data values from. If the specified file is"" , then input
is taken from the keyboard (or whateverstdin () reads if input is redirected
or R is embedded). (In this case input can be terminated by a blank line or an
EOF signal,Ctrl-D on Unix andCtrl-Z on Windows.)
Otherwise, the file name is interpretedrelative to the current working directory
(given bygetwd ()), unless it specifies anabsolutepath. Tilde-expansion is
performed where supported. When runningR from a script,file="stdin"
can be used to refer to the process’sstdin file stream.
Alternatively,file can be aconnection , which will be opened if necessary,
and if so closed at the end of the function call. Whatever mode the connection
is opened in, any of LF, CRLF or CR will be accepted as the EOL marker for a
line and so will matchsep = "\n" .
file can also be a complete URL.
To read a data file not in the current encoding (for example a Latin-1 file in
a UTF-8 locale or conversely) use afile connection setting theencoding
argument.

what the type ofwhat gives the type of data to be read. The supported types are
logical , integer , numeric , complex , character , raw and list .
If what is a list, it is assumed that the lines of the data file are records each con-
taining length(what) items (‘fields’) and the list components should have
elements which are one of the first six types listed orNULL, see section ‘Details’
below.

nmax integer: the maximum number of data values to be read, or ifwhat is a list, the
maximum number of records to be read. If omitted or not positive or an invalid
value for an integer (andnlines is not set to a positive value),scan will read
to the end offile .

364 scan

n integer: the maximum number of data values to be read, defaulting to no limit.
Invalid values will be ignored.

sep by default, scan expects to read white-space delimited input fields. Alternatively,
sep can be used to specify a character which delimits fields. A field is always
delimited by an end-of-line marker unless it is quoted.
If specified this should be the empty character string (the default) orNULLor a
character string containing just one single-byte character.

quote the set of quoting characters as a single character string orNULL. In a multibyte
locale the quoting characters must be ASCII (single-byte).

dec decimal point character. This should be a character string containing just one
single-byte character. (NULL and a zero-length character vector are also ac-
cepted, and taken as the default.)

skip the number of lines of the input file to skip before beginning to read data values.

nlines if positive, the maximum number of lines of data to be read.

na.strings character vector. Elements of this vector are to be interpreted as missing (NA)
values. Blank fields are also considered to be missing values in logical, integer,
numeric and complex fields.

flush logical: if TRUE, scan will flush to the end of the line after reading the last
of the fields requested. This allows putting comments after the last field, but
precludes putting more that one record on a line.

fill logical: if TRUE, scan will implicitly add empty fields to any lines with fewer
fields than implied bywhat .

strip.white vector of logical value(s) corresponding to items in thewhat argument. It is
used only whensep has been specified, and allows the stripping of leading
and trailing white space fromcharacter fields (numeric fields are always
stripped).
If strip.white is of length 1, it applies to all fields; otherwise, if
strip.white[i] is TRUEand the i -th field is of mode character (because
what[i] is) then the leading and trailing white space from fieldi is stripped.

quiet logical: if FALSE(default), scan() will print a line, saying how many items have
been read.

blank.lines.skip
logical: if TRUEblank lines in the input are ignored, except when counting
skip andnlines .

multi.line logical. Only used ifwhat is a list. If FALSE, all of a record must appear on
one line (but more than one record can appear on a single line). Note that using
fill = TRUE implies that a record will terminated at the end of a line.

comment.char character: a character vector of length one containing a single character or an
empty string. Use"" to turn off the interpretation of comments altogether (the
default).

allowEscapes logical. Should C-style escapes such as\n be processed (the default) or read
verbatim? Note that if not within quotes these could be interpreted as a delimiter
(but not as a comment character).
The escapes which are interpreted are the control characters\a, \b, \f,
\n, \r, \t, \v and octal and hexadecimal representations like\040 and
\0x2A . Any other escaped character is treated as itself, including backslash.

encoding encoding to be assumed for input strings. It is used to mark character strings
as known to be in Latin-1 or UTF-8: it is not used to re-encode the input.
To do the latter, specify the encoding as part of the connectioncon or via
options (encoding=) : see the example underfile .

scan 365

Details

The value ofwhat can be a list of types, in which casescan returns a list of vectors with the
types given by the types of the elements inwhat . This provides a way of reading columnar data. If
any of the types isNULL, the corresponding field is skipped (but aNULLcomponent appears in the
result).

The type ofwhat or its components can be one of the six atomic vector types orNULL (see
is.atomic).

‘White space’ is defined for the purposes of this function as one or more contiguous characters from
the set space, horizontal tab, carriage return and line feed. It does not include form feed, vertical
tab or other non-ASCII space characters.

Empty numeric fields are always regarded as missing values. Empty character fields are scanned
as empty character vectors, unlessna.strings contains"" when they are regarded as missing
values.

If sep is the default (""), the character\ in a quoted string escapes the following character, so
quotes may be included in the string by escaping them.

If sep is non-default, the fields may be quoted in the style of ‘.csv’ files where separators inside
quotes (” or "") are ignored and quotes may be put inside strings by doubling them. However, if
sep = "\n" it is assumed by default that one wants to read entire lines verbatim.

Quoting is only interpreted in character fields and inNULLfields (which might be skipping character
fields).

Note that sincesep is a separator and not a terminator, reading a file byscan("foo",
sep="\n", blank.lines.skip=FALSE) will give an empty final line if the file ends in
a linefeed and not if it does not. This might not be what you expected; see alsoreadLines .

If comment.char occurs (except inside a quoted character field), it signals that the rest of the
line should be regarded as a comment and be discarded. Lines beginning with a comment character
(possibly after white space with the default separator) are treated as blank lines.

There is a check for a user interrupt every 1000 lines ifwhat is a list, otherwise every 10000 items.

Value

if what is a list, a list of the same length and same names (as any) aswhat .

Otherwise, a vector of the type ofwhat .

Character strings in the result will have a declared encoding ifencoding is "latin1" or "UTF-
8" .

Note

The default formulti.line differs from S. To read one record per line, useflush = TRUE
andmulti.line = FALSE . (Note that quoted character strings can still include embedded new
lines.)

If number of items is not specified, the internal mechanism re-allocates memory in powers of two
and so could use up to three times as much memory as needed. (It needs both old and new copies.)
If you can, specify eithern or nmax whenever inputting a large vector, andnmax or nlines when
inputting a large list.

Usingscan on an open connection to read partial lines can lose chars: use an explicit separator to
avoid this.

366 search

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

read.table for more user-friendly reading of data matrices;readLines to read a file a line at
a time.write .

Quotes for the details of C-style escape sequences.

readChar andreadBin to read fixed or variable length character strings or binary representa-
tions of numbers a few at a time from a connection.

Examples

cat("TITLE extra line", "2 3 5 7", "11 13 17", file="ex.data", sep="\n")
pp <- scan("ex.data", skip = 1, quiet= TRUE)
scan("ex.data", skip = 1)
scan("ex.data", skip = 1, nlines=1) # only 1 line after the skipped one
scan("ex.data", what = list("","","")) # flush is F -> read "7"
scan("ex.data", what = list("","",""), flush = TRUE)
unlink("ex.data") # tidy up

search Give Search Path for R Objects

Description

Gives a list ofattach edpackages(seelibrary), andR objects, usuallydata.frame s .

Usage

search()
searchpaths()

Value

A character vector, starting with" .GlobalEnv " , and ending with"package:base" which is
R’s basepackage required always.

searchpaths gives a similar character vector, with the entries for packages being the path to the
package used to load the code.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (search .)

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.
(searchPaths .)

seek 367

See Also

.packages to list just the packages on search path.

loadedNamespaces to list loaded name spaces.

attach anddetach to change the search path,objects to findR objects in there.

Examples

search()
searchpaths()

seek Functions to Reposition Connections

Description

Functions to re-position connections.

Usage

seek(con, ...)
S3 method for class 'connection':
seek(con, where = NA, origin = "start", rw = "", ...)

isSeekable(con)

truncate(con, ...)

Arguments

con a connection.

where numeric. A file position (relative to the origin specified byorigin), or NA.

rw character. Empty or"read" or "write" , partial matches allowed.

origin character. One of"start" , "current" , "end" : see ‘Details’.

... further arguments passed to or from other methods.

Details

seek with where = NA returns the current byte offset of a connection (from the beginning), and
with a non-missingwhere argument the connection is re-positioned (if possible) to the specified
position.isSeekable returns whether the connection in principle supportsseek : currently only
(possibly gz-compressed) file connections do.gzfile connections do not supportorigin =
"end" ; the file position they use is that of the uncompressed file.

where is stored as a real but should represent an integer: non-integer values are likely to be trun-
cated. Note that the possible values can exceed the largest representable number in anR integer
on 64-bit OSes, and on some 32-bit OSes.

File connections can be open for both writing/appending, in which caseR keeps separate positions
for reading and writing. Whichseek refers to can be set by itsrw argument: the default is the last
mode (reading or writing) which was used. Most files are only opened for reading or writing and so

368 seq

default to that state. If a file is open for both reading and writing but has not been used, the default
is to give the reading position (0).

The initial file position for reading is always at the beginning. The initial position for writing is
at the beginning of the file for modes"r+" and "r+b" , otherwise at the end of the file. Some
platforms only allow writing at the end of the file in the append modes. (The reported write position
for a file opened in an append mode will typically be unreliable until the file has been written to.)

truncate truncates a file opened for writing at its current position. It works only forfile
connections, and is not implemented on all platforms: on others (including Windows) it will not
work for large (> 2Gb) files.

Value

seek returns the current position (before any move), as a (numeric) byte offset from the origin, if
relevant, or0 if not. Note that the position can exceed the largest representable number in anR
integer on 64-bit OSes, and on some 32-bit OSes.

truncate returnsNULL: it stops with an error if it fails (or is not implemented).

isSeekable returns a logical value, whether the connection supportsseek .

See Also

connections

seq Sequence Generation

Description

Generate regular sequences.seq is a standard generic with a default method.seq.int is an
internal generic which can be much faster but has a few restrictions.seq_along andseq_len
are very fast primitives for two common cases.

Usage

seq(...)

Default S3 method:
seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL, ...)

seq.int(from, to, by, length.out, along.with, ...)

seq_along(along.with)
seq_len(length.out)

Arguments

... arguments passed to or from methods.

from, to the starting and (maximal) end value of the sequence.

by number: increment of the sequence.

seq 369

length.out desired length of the sequence. A non-negative number, which forseq and
seq.int will be rounded up if fractional.

along.with take the length from the length of this argument.

Details

The interpretation of the unnamed arguments ofseq andseq.int is not standard, and it is rec-
ommended always to name the arguments when programming.

Bothseq areseq.int are generic, and only the default method is described here. Typical usages
are

seq(from, to)
seq(from, to, by=)
seq(from, to, length.out=)
seq(along.with=)
seq(from)
seq(length.out=)

The first form generates the sequencefrom, from+/-1, ..., to (identical tofrom:to).

The second form generatesfrom, from+by , . . . , up to the sequence value less than or equal to
to . Specifyingto - from andby of opposite signs is an error.

The third generates a sequence oflength.out equally spaced values fromfrom to to .
(length.out is usually abbreviated tolength or len , andseq_len is much faster.)

The fourth form generates the sequence1, 2, ..., length(along.with) .
(along.with is usually abbreviated toalong , andseq_along is much faster.)

The fifth form generates the sequence1, 2, ..., length(from) (as if argument
along.with had been specified),unlessthe argument is numeric of length 1 when it is inter-
preted as1:from (even forseq(0) for compatibility with S).

The final form generates1, 2, ..., length.out unlesslength.out = 0 , when it gen-
eratesinteger(0) .

Very small sequences (withfrom - to of the order of10−14 times the larger of the ends) will
returnfrom .

For seq (only), up to two of from , to and by can be supplied as complex values provided
length.out or along.with is specified.

Value

Currently, the default method returns a result of type"integer" if from is (numerically equal
to an) integer and, e.g., onlyto is specified, or also if onlylength or only along.with is
specified.Note: this may change in the future and programmers should not rely on it.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

The methodsseq.Date andseq.POSIXt .

: , rep , sequence , row , col .

370 seq.Date

Examples

seq(0, 1, length=11)
seq(stats::rnorm(20))
seq(1, 9, by = 2) # match
seq(1, 9, by = pi)# stay below
seq(1, 6, by = 3)
seq(1.575, 5.125, by=0.05)
seq(17) # same as 1:17

seq.Date Generate Regular Sequences of Dates

Description

The method forseq for objects of class class" Date " representing calendar dates.

Usage

S3 method for class 'Date':
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

Arguments

from starting date. Required

to end date. Optional.

by increment of the sequence. Optional. See ‘Details’.

length.out integer, optional. desired length of the sequence.

along.with take the length from the length of this argument.

... arguments passed to or from other methods.

Details

by can be specified in several ways.

• A number, taken to be in days.

• A object of classdifftime

• A character string, containing one of"day" , "week" , "month" or "year" . This can
optionally be preceded by a (positive or negative) integer and a space, or followed by"s" .

Seeseq.POSIXt for the details of"month" .

Value

A vector of class"Date" .

See Also

Date

seq.POSIXt 371

Examples

first days of years
seq(as.Date("1910/1/1"), as.Date("1999/1/1"), "years")
by month
seq(as.Date("2000/1/1"), by="month", length=12)
quarters
seq(as.Date("2000/1/1"), as.Date("2003/1/1"), by="3 months")

find all 7th of the month between two dates, the last being a 7th.
st <- as.Date("1998-12-17")
en <- as.Date("2000-1-7")
ll <- seq(en, st, by="-1 month")
rev(ll[ll > st & ll < en])

seq.POSIXt Generate Regular Sequences of Dates

Description

The method forseq for date-time classes.

Usage

S3 method for class 'POSIXt':
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

Arguments

from starting date. Required.

to end date. Optional.

by increment of the sequence. Optional. See ‘Details’.

length.out integer, optional. desired length of the sequence.

along.with take the length from the length of this argument.

... arguments passed to or from other methods.

Details

by can be specified in several ways.

• A number, taken to be in seconds.

• A object of classdifftime

• A character string, containing one of"sec" , "min" , "hour" , "day" , "DSTday" ,
"week" , "month" or "year" . This can optionally be preceded by a (positive or nega-
tive) integer and a space, or followed by"s" .

The difference between"day" and"DSTday" is that the former ignores changes to/from daylight
savings time and the latter takes the same clock time each day. ("week" ignores DST (it is a period
of 144 hours), but"7 DSTdays") can be used as an alternative."month" and"year" allow
for DST.)

372 sequence

The timezone of the result is taken fromfrom : remember than GMT does not have daylight savings
time.

Using"month" first advances the month without changing the day: if this results in an invalid day
of the month, it is counted forward into the next month: see the examples.

Value

A vector of class"POSIXct" .

See Also

DateTimeClasses

Examples

first days of years
seq(ISOdate(1910,1,1), ISOdate(1999,1,1), "years")
by month
seq(ISOdate(2000,1,1), by = "month", length = 12)
seq(ISOdate(2000,1,31), by = "month", length = 4)
quarters
seq(ISOdate(1990,1,1), ISOdate(2000,1,1), by = "3 months")
days vs DSTdays: use c() to lose the timezone.
seq(c(ISOdate(2000,3,20)), by = "day", length = 10)
seq(c(ISOdate(2000,3,20)), by = "DSTday", length = 10)
seq(c(ISOdate(2000,3,20)), by = "7 DSTdays", length = 4)

sequence Create A Vector of Sequences

Description

For each element ofnvec the sequenceseq_len (nvec[i]) is created. These are concatenated
and the result returned.

Usage

sequence(nvec)

Arguments

nvec a non-negative integer vector each element of which specifies the end point of a
sequence.

Details

Earlier versions ofsequence used to work for 0 or negative inputs asseq(x) == 1:x .

Note thatsequence <- function(nvec) unlist(lapply(nvec, seq_len)) and
it mainly exists in reverence to the very early history ofR.

See Also

gl , seq , rep .

sets 373

Examples

sequence(c(3,2))# the concatenated sequences 1:3 and 1:2.
#> [1] 1 2 3 1 2

sets Set Operations

Description

Performssetunion, intersection, (asymmetric!) difference, equality and membership on two vec-
tors.

Usage

union(x, y)
intersect(x, y)
setdiff(x, y)
setequal(x, y)

is.element(el, set)

Arguments

x, y, el, set
vectors (of the same mode) containing a sequence of items (conceptually) with
no duplicated values.

Details

Each ofunion , intersect , setdiff andsetequal will discard any duplicated values in
the arguments, and they applyas.vector to their arguments (and so in particular coerce factors
to character vectors).

is.element(x, y) is identical tox %in% y.

Value

A vector of the samemode as x or y for setdiff and intersect , respectively, and of a
common mode forunion .

A logical scalar forsetequal and a logical of the same length asx for is.element .

See Also

%in%

‘plotmath’ for the use ofunion andintersect in plot annotation.

374 showConnections

Examples

(x <- c(sort(sample(1:20, 9)),NA))
(y <- c(sort(sample(3:23, 7)),NA))
union(x, y)
intersect(x, y)
setdiff(x, y)
setdiff(y, x)
setequal(x, y)

True for all possible x & y :
setequal(union(x,y),

c(setdiff(x,y), intersect(x,y), setdiff(y,x)))

is.element(x, y)# length 10
is.element(y, x)# length 8

showConnections Display Connections

Description

Display aspects of connections.

Usage

showConnections(all = FALSE)
getConnection(what)
closeAllConnections()

stdin()
stdout()
stderr()

Arguments

all logical: if true all connections, including closed ones and the standard ones are
displayed. If false only open user-created connections are included.

what integer: a row number of the table given byshowConnections .

Details

stdin() , stdout() andstderr() are standard connections corresponding to input, output
and error on the console respectively (and not necessarily to file streams). They are text-mode
connections of class"terminal" which cannot be opened or closed, and are read-only, write-
only and write-only respectively. Thestdout() andstderr() connections can be re-directed
by sink (and in some circumstances the output fromstdout() can be split: see the help page).

The encoding forstdin () when redirected can be set by the command-line flag--encoding .

showConnections returns a matrix of information. If a connection object has been lost or
forgotten,getConnection will take a row number from the table and return a connection object
for that connection, which can be used to close the connection, for example. However, if there is

shQuote 375

no R level object referring to the connection it will be closed automatically at the next garbage
collection.

closeAllConnections closes (and destroys) all user connections, restoring allsink diver-
sions as it does so.

Value

stdin() , stdout() andstderr() return connection objects.

showConnections returns a character matrix of information with a row for each connection, by
default only for open non-standard connections.

getConnection returns a connection object, orNULL.

Note

stdin() refers to the ‘console’ and not to the C-level ‘stdin’ of the process. The distinction mat-
ters in GUI consoles (which may not have an active ‘stdin’, and if they do it may not be connected
to console input), and also in embedded applications. If you want access to the C-level file stream
‘stdin’, usefile ("stdin") .

WhenR is reading a script from a file, thefile is the ‘console’: this is traditional usage to allow
in-line data (see ‘An Introduction to R’ for an example).

See Also

connections

Examples

showConnections(all = TRUE)

textConnection(letters)
oops, I forgot to record that one
showConnections()
class description mode text isopen can read can write
#3 "letters" "textConnection" "r" "text" "opened" "yes" "no"
Not run: close(getConnection(3))

showConnections()

shQuote Quote Strings for Use in OS Shells

Description

Quote a string to be passed to an operating system shell.

Usage

shQuote(string, type = c("sh", "csh", "cmd"))

376 shQuote

Arguments

string a character vector, usually of length one.

type character: the type of shell. Partial matching is supported."cmd" refers to the
Windows NT shell, and is the default under Windows.

Details

The default type of quoting supported under Unix-alikes is that for the Bourne shellsh . If the string
does not contain single quotes, we can just surround it with single quotes. Otherwise, the string is
surrounded in double quotes, which suppresses all special meanings of metacharacters except dollar,
backquote and backslash, so these (and of course double quote) are preceded by backslash. This
type of quoting is also appropriate forbash , ksh andzsh .

The other type of quoting is for the C-shell (csh and tcsh). Once again, if the string does not
contain single quotes, we can just surround it with single quotes. If it does contain single quotes,
we can use double quotes provided it does not contain dollar or backquote (and we need to escape
backslash, exclamation mark and double quote). As a last resort, we need to split the string into
pieces not containing single quotes and surround each with single quotes, and the single quotes with
double quotes.

References

Loukides, M. et al (2002)Unix Power ToolsThird Edition. O’Reilly. Section 27.12.

http://www.mhuffman.com/notes/dos/bash_cmd.htm

See Also

Quotes for quotingR code.

sQuote for quoting English text.

Examples

test <- "abc$def`gh`i\\j"
cat(shQuote(test), "\n")
Not run: system(paste("echo", shQuote(test)))
test <- "don't do it!"
cat(shQuote(test), "\n")

tryit <- paste("use the", sQuote("-c"), "switch\nlike this")
cat(shQuote(tryit), "\n")
Not run: system(paste("echo", shQuote(tryit)))
cat(shQuote(tryit, type="csh"), "\n")

Windows-only example.
perlcmd <- 'print "Hello World\n";'
Not run: shell(paste("perl -e", shQuote(perlcmd, type="cmd")))

http://www.mhuffman.com/notes/dos/bash_cmd.htm

sign 377

sign Sign Function

Description

sign returns a vector with the signs of the corresponding elements ofx (the sign of a real number
is 1, 0, or−1 if the number is positive, zero, or negative, respectively).

Note thatsign does not operate on complex vectors.

Usage

sign(x)

Arguments

x a numeric vector

Details

This is a generic function: methods can be defined for it directly or via theMath group generic.

See Also

abs

Examples

sign(pi) # == 1
sign(-2:3)# -1 -1 0 1 1 1

Signals Interrupting Execution of R

Description

On receivingSIGUSR1R will save the workspace and quit.SIGUSR2has the same result except
that the.Last function andon.exit expressions will not be called.

Usage

kill -USR1 pid
kill -USR2 pid

Arguments

pid The process ID of the R process

Warning

It is possible that one or more R objects will be undergoing modification at the time the signal is
sent. These objects could be saved in a corrupted form.

378 sink

sink Send R Output to a File

Description

sink divertsR output to a connection.

sink.number() reports how many diversions are in use.

sink.number(type = "message") reports the number of the connection currently being
used for error messages.

Usage

sink(file = NULL, append = FALSE, type = c("output", "message"),
split = FALSE)

sink.number(type = c("output", "message"))

Arguments

file a connection or a character string naming the file to write to, orNULL to stop
sink-ing.

append logical. If TRUE, output will be appended tofile ; otherwise, it will overwrite
the contents offile .

type character. Either the output stream or the messages stream.

split logical: if TRUE, output will be sent to the new sink and to the current output
stream, like the Unix programtee .

Details

sink divertsR output to a connection. Iffile is a character string, a file connection with that
name will be established for the duration of the diversion.

NormalR output (to connectionstdout)) is diverted by the defaulttype = "output" . Only
prompts and (most) messages continue to appear on the console. Messages sent tostderr ()
(including those frommessage , warning and stop) can be diverted bysink(type =
"message") (see below).

sink() or sink(file=NULL) ends the last diversion (of the specified type). There is a stack
of diversions for normal output, so output reverts to the previous diversion (if there was one). The
stack is of up to 21 connections (20 diversions).

If file is a connection it will be opened if necessary.

Sink-ing the messages stream should be done only with great care. For that streamfile must be
an already open connection, and there is no stack of connections.

Value

sink returnsNULL.

For sink.number() the number (0, 1, 2, . . .) of diversions of output in place.

For sink.number("message") the connection number used for messages, 2 if no diversion
has been used.

slice.index 379

Warning

Don’t use a connection that is open forsink for any other purpose. The software will stop you
closing one such inadvertently.

Do not sink the messages stream unless you understand the source code implementing it and hence
the pitfalls.

Note

sink(split = TRUE) is only available on systems which support the C99 functionva_copy
(or under the name__va_copy), but we know of no current systems which do not.

It only splits internalR output, not that fromR-level use ofstdout .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language. Springer.

See Also

capture.output

Examples

sink("sink-examp.txt")
i <- 1:10
outer(i, i, "*")
sink()
unlink("sink-examp.txt")
Not run:
capture all the output to a file.
zz <- file("all.Rout", open="wt")
sink(zz)
sink(zz, type="message")
try(log("a"))
back to the console
sink(type="message")
sink()
try(log("a"))
End(Not run)

slice.index Slice Indexes in an Array

Description

Returns a matrix of integers indicating the number of their slice in a given array.

Usage

slice.index(x, MARGIN)

380 slotOp

Arguments

x an array. Ifx has no dimension attribute, it is considered a one-dimensional
array.

MARGIN an integer giving the dimension number to slice by.

Value

An integer arrayy with dimensions corresponding to those ofx such that all elements of slice
numberi with respect to dimensionMARGINhave valuei .

See Also

row and col for determining row and column indexes; in fact, these are special cases of
slice.index corresponding toMARGINequal to 1 and 2, respectively whenx is a matrix.

Examples

x <- array(1 : 24, c(2, 3, 4))
slice.index(x, 2)

slotOp Extract Slots

Description

Extract tbe contents of a slot in a object with a formal class structure.

Usage

object@name

Arguments

object An object from a formally defined class.

name The character-string name of the slot.

Details

This operator supports the formal classes of packagemethods, and is disabled unless themethods
is loaded. Seeslot for further details.

Currently there is no checking that the object is an instance of a formal class, nor thatname is a
slot name.

See Also

Extract , slot

socketSelect 381

socketSelect Wait on Socket Connections

Description

Waits for the first of several socket connections to become available.

Usage

socketSelect(socklist, write = FALSE, timeout = NULL)

Arguments

socklist list of open socket connections

write logical. If TRUEwait for corresponding socket to become available for writing;
otherwise wait for it to become available for reading.

timeout numeric orNULL. Time in seconds to wait for a socket to become available;
NULLmeans wait indefinitely.

Details

The values inwrite are recycled if necessary to make up a logical vector the same length as
socklist . Socket connections can appear more than once insocklist ; this can be useful if
you want to determine whether a socket is available for reading or writing.

Value

Logical the same length assocklist indicating whether the corresponding socket connection is
available for output or input, depending on the corresponding value ofwrite .

Examples

Not run:
test whether socket connection s is available for writing or reading
socketSelect(list(s,s),c(TRUE,FALSE),timeout=0)
End(Not run)

solve Solve a System of Equations

Description

This generic function solves the equationa %*% x = b for x , whereb can be either a vector or
a matrix.

Usage

solve(a, b, ...)

Default S3 method:
solve(a, b, tol, LINPACK = FALSE, ...)

382 solve

Arguments

a a square numeric or complex matrix containing the coefficients of the linear
system.

b a numeric or complex vector or matrix giving the right-hand side(s) of the linear
system. If missing,b is taken to be an identity matrix andsolve will return
the inverse ofa.

tol the tolerance for detecting linear dependencies in the columns ofa. If LINPACK
is TRUEthe default is1e-7 , otherwise it is.Machine$double.eps . Future
versions of R may use a tighter tolerance. Not presently used with complex
matricesa.

LINPACK logical. Should LINPACK be used (for compatibility withR < 1.7.0)? Other-
wise LAPACK is used.

... further arguments passed to or from other methods

Details

a or b can be complex, but this uses double complex arithmetic which might not be available on all
platforms and LAPACK will always be used.

The row and column names of the result are taken from the column names ofa and ofb respectively.
If b is missing the column names of the result are the row names ofa. No check is made that the
column names ofa and the row names ofb are equal.

For back-compatibilitya can be a (real) QR decomposition, althoughqr.solve should be called
in that case.qr.solve can handle non-square systems.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

solve.qr for theqr method,chol2inv for inverting from the Choleski factorbacksolve ,
qr.solve .

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h8 <- hilbert(8); h8
sh8 <- solve(h8)
round(sh8 %*% h8, 3)

A <- hilbert(4)
A[] <- as.complex(A)
might not be supported on all platforms
try(solve(A))

sort 383

sort Sorting or Ordering Vectors

Description

Sort (ororder) a vector or factor (partially) into ascending (or descending) order. For ordering along
more than one variable, e.g., for sorting data frames, seeorder .

Usage

sort(x, decreasing = FALSE, ...)

Default S3 method:
sort(x, decreasing = FALSE, na.last = NA, ...)

sort.int(x, partial = NULL, na.last = NA, decreasing = FALSE,
method = c("shell", "quick"), index.return = FALSE)

is.unsorted(x, na.rm = FALSE)

Arguments

x for sort , an R object with a class or a numeric, complex, character or logical
vector. Forsort.int , a numeric, complex, character or logical vector, or a
factor.

decreasing logical. Should the sort be increasing or decreasing? Not available for partial
sorting.

... arguments to be passed to or from methods or (for the default methods and
objects without a class) tosort.int .

na.last for controlling the treatment ofNAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; ifNA, they are removed.

partial NULLor an integer vector of indices for partial sorting.

method character string specifying the algorithm used.

index.return logical indicating if the ordering index vector should be returned as well; this is
only available for a few cases, the defaultna.last = NA and full sorting of
non-factors.

na.rm logical. Should missing values be removed?

Details

sort is a generic function for which methods can be written, andsort.int is the internal method
which is compatible with S if only the first three arguments are used.

If partial is notNULL, it is taken to contain indices of elements ofx which are to be placed in
their correct positions by partial sorting. After the sort, the values specified inpartial are in their
correct position in the sorted array. Any values smaller than these values are guaranteed to have a
smaller index in the sorted array and any values which are greater are guaranteed to have a bigger
index in the sorted array. (This is included for efficiency, and many of the options are not available
for partial sorting. It is only substantially more efficient ifpartial has a handful of elements, and
a full sort is done if there are more than 10.) Names are discarded for partial sorting.

384 sort

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use:
seeComparison . The sort order for factors is the order of their levels (which is particularly
appropriate for ordered factors).

is.unsorted returns a logical indicating ifx is sorted increasingly, i.e.,is.unsorted(x) is
true if any(x != sort(x)) (and there are noNAs).

Method"shell" uses Shellsort (anO(n4/3) variant from Sedgewick (1996)). Ifx has names a
stable sort is used, so ties are not reordered. (This only matters if names are present.)

Method"quick" uses Singleton’s Quicksort implementation and is only available whenx is nu-
meric (double or integer) andpartial is NULL. (For other types ofx Shellsort is used, silently.) It
is normally somewhat faster than Shellsort (perhaps twice as fast on vectors of length a million) but
has poor performance in the rare worst case. (Peto’s modification using a pseudo-random midpoint
is used to make the worst case rarer.) This is not a stable sort, and ties may be reordered.

Value

For sort , the result depends on the S3 method which is dispatched. Ifx does not have a class
the rest of this section applies. For classed objects which do not have a specific method the default
method will be used and is equivalent tox[order(x, ...)] : this depends on the class having
a suitable method for[(and also thatorder will work, which is not the case for a class based on
a list).

For sort.int the sorted vector unlessindex.return is true, when the result is a list with
components namedx andix containing the sorted numbers and the ordering index vector. In the
latter case, ifmethod == "quick" ties may be reversed in the ordering, unlikesort.list ,
as quicksort is not stable.

All attributes are removed from the return value (see Beckeret al, 1988, p.146) except names, which
are sorted. (Ifpartial is specified even the names are removed.) Note that this means that the
returned value has no class, except for factors and ordered factors (which are treated specially and
whose result is transformed back to the original class).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Sedgewick, R. (1986) A new upper bound for Shell sort.J. Algorithms7, 159–173.

Singleton, R. C. (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347.
Communications of the ACM12, 185–187.

See Also

order for sorting on or reordering multiple variables.

rank .

Examples

require(stats)

x <- swiss$Education[1:25]
x; sort(x); sort(x, partial = c(10, 15))
median.default # shows you another example for 'partial'

source 385

illustrate 'stable' sorting (of ties):
sort(c(10:3,2:12), method = "sh", index.return=TRUE) # is stable
$x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12
$ix: 9 8 10 7 11 6 12 5 13 4 14 3 15 2 16 1 17 18 19
sort(c(10:3,2:12), method = "qu", index.return=TRUE) # is not
$x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12
$ix: 9 10 8 7 11 6 12 5 13 4 14 3 15 16 2 17 1 18 19
^^^^^

Not run: ## Small speed comparison simulation:
N <- 2000
Sim <- 20
rep <- 1000 # << adjust to your CPU
c1 <- c2 <- numeric(Sim)
for(is in 1:Sim){

x <- rnorm(N)
c1[is] <- system.time(for(i in 1:rep) sort(x, method = "shell"))[1]
c2[is] <- system.time(for(i in 1:rep) sort(x, method = "quick"))[1]
stopifnot(sort(x, method = "s") == sort(x, method = "q"))

}
rbind(ShellSort = c1, QuickSort = c2)
cat("Speedup factor of quick sort():\n")
summary({qq <- c1 / c2; qq[is.finite(qq)]})

A larger test
x <- rnorm(1e7)
system.time(x1 <- sort(x, method = "shell"))
system.time(x2 <- sort(x, method = "quick"))
stopifnot(identical(x1, x2))
End(Not run)

source Read R Code from a File or a Connection

Description

source causesR to accept its input from the named file or URL (the name must be quoted) or
connection. Input is read andparse d by from that file until the end of the file is reached, then the
parsed expressions are evaluated sequentially in the chosen environment.

Usage

source(file, local = FALSE, echo = verbose, print.eval = echo,
verbose = getOption("verbose"),
prompt.echo = getOption("prompt"),
max.deparse.length = 150, chdir = FALSE,
encoding = getOption("encoding"),
continue.echo = getOption("continue"),
skip.echo = 0)

Arguments

file a connection or a character string giving the pathname of the file or URL to read
from.

386 source

local if local is FALSE, the statements scanned are evaluated in the user’s
workspace (the global environment), otherwise in the environment calling
source .

echo logical; if TRUE, each expression is printed after parsing, before evaluation.

print.eval logical; if TRUE, the result ofeval(i) is printed for each expressioni ; de-
faults toecho .

verbose if TRUE, more diagnostics (than justecho = TRUE) are printed during parsing
and evaluation of input, including extra info foreachexpression.

prompt.echo character; gives the prompt to be used ifecho = TRUE.

max.deparse.length
integer; is used only ifecho is TRUEand gives the maximal number of charac-
ters output for the deparse of a single expression.

chdir logical; if TRUEandfile is a pathname, theR working directory is temporar-
ily changed to the directory containingfile for evaluating.

encoding character vector. The encoding(x) to be assumed whenfile is a character
string: seefile . A possible value is"unknown" : see the ‘Details’.

continue.echo
character; gives the prompt to use on continuation lines ifecho = TRUE.

skip.echo integer; how many comment lines at the start of the file to skip ifecho =
TRUE.

Details

All versions ofR accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic MacOS). The final line can be incom-
plete, that is missing the final end-of-line marker.

If options ("keep.source") is true (the default), the source of functions is kept so they can be listed
exactly as input. This imposes a limit of 128K bytes on the function size and a nesting limit of 265.
Useoption(keep.source = FALSE) when these limits might take effect: if exceeded they
generate an error.

This paragraph applies iffile is a filename (rather than a connection). Ifencoding =
"unknown" , an attempt is made to guess the encoding. The result oflocaleToCharset ()
is used as a guide. Ifencoding has two or more elements, they are tried in turn until the file/URL
can be read without error in the trial encoding.

Unlike input from a console, lines in the file or on a connection can contain an unlimited number of
characters. However, there is a limit of 8192 bytes on the size of character strings.

When skip.echo > 0 , that many comment lines at the start of the file will not be echoed.
This does not affect the execution of the code at all. If there are executable lines within the first
skip.echo lines, echoing will start with the first of them.

If echo is true and a deparsed expression exceedsmax.deparse.length , that many characters
are output followed by [TRUNCATED] .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Special 387

See Also

demo which usessource ; eval , parse andscan ; options ("keep.source") .

sys.source which is a streamlined version to source a file into an environment.

Examples

If you want to source() a bunch of files, something like
the following may be useful:

sourceDir <- function(path, trace = TRUE, ...) {
for (nm in list.files(path, pattern = "\\.[RrSsQq]$")) {

if(trace) cat(nm,":")
source(file.path(path, nm), ...)
if(trace) cat("\n")

}
}

Special Special Functions of Mathematics

Description

Special mathematical functions related to the beta and gamma functions.

Usage

beta(a, b)
lbeta(a, b)

gamma(x)
lgamma(x)
psigamma(x, deriv = 0)
digamma(x)
trigamma(x)

choose(n, k)
lchoose(n, k)
factorial(x)
lfactorial(x)

Arguments

a, b, x, n numeric vectors.

k, deriv integer vectors.

Details

The functionsbeta and lbeta return the beta function and the natural logarithm of the beta
function,

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

.

388 Special

The formal definition is

B(a, b) =
∫ 1

0

ta−1(1− t)b−1dt

(Abramowitz and Stegun section 6.2.1, page 258).

The functionsgammaand lgamma return the gamma functionΓ(x) and the natural logarithm of
the absolute value of the gamma function. The gamma function is defined by (Abramowitz and
Stegun section 6.1.1, page 255)

Γ(x) =
∫ ∞

0

ta−1e−tdt

factorial(x) is x! and identical togamma(x+1) andlfactorial is lgamma(x+1) .

The functionsdigamma andtrigamma return the first and second derivatives of the logarithm of
the gamma function.psigamma(x, deriv) (deriv >= 0) computes thederiv -th deriva-
tive ofψ(x).

digamma(x) = ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

This is often called the ‘polygamma’ function, e.g. in Abramowitz and Stegun (section 6.4.1, page
260); and its higher derivatives (deriv = 2:4) have occasionally been called ‘tetragamma’,
‘pentagamma’, and ‘hexagamma’.

The functionschoose andlchoose return binomial coefficients and their logarithms. Note that
choose(n,k) is defined for all real numbersn and integerk. Fork ≥ 1 asn(n− 1) · · · (n− k+
1)/k!, as1 for k = 0 and as0 for negativek.
choose(*,k) uses direct arithmetic (instead of[l]gamma calls) for smallk , for speed and
accuracy reasons. Note the functioncombn (packageutils) for enumeration of all possible combi-
nations.

Thegamma, lgamma, digamma andtrigamma functions are generic: methods can be defined
for them individually or via theMath group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (Forgammaandlgamma.)

Abramowitz, M. and Stegun, I. A. (1972)Handbook of Mathematical Functions.New York: Dover.
Chapter 6: Gamma and Related Functions.

See Also

Arithmetic for simple,sqrt for miscellaneous mathematical functions andBessel for the
real Bessel functions. Note thatgammaCody(x) is considerably faster thangamma(x) but
slightly less accurate and (potentially) less reliable.

For the incomplete gamma function seepgamma.

Examples

require(graphics)

choose(5, 2)
for (n in 0:10) print(choose(n, k = 0:n))

factorial(100)
lfactorial(10000)

split 389

gamma has 1st order poles at 0, -1, -2, ...
this will generate loss of precision warnings, so turn off
op <- options("warn")
options(warn = -1)
x <- sort(c(seq(-3,4, length=201), outer(0:-3, (-1:1)*1e-6, "+")))
plot(x, gamma(x), ylim=c(-20,20), col="red", type="l", lwd=2,

main=expression(Gamma(x)))
abline(h=0, v=-3:0, lty=3, col="midnightblue")
options(op)

x <- seq(.1, 4, length = 201); dx <- diff(x)[1]
par(mfrow = c(2, 3))
for (ch in c("", "l","di","tri","tetra","penta")) {

is.deriv <- nchar(ch) >= 2
nm <- paste(ch, "gamma", sep = "")
if (is.deriv) {

dy <- diff(y) / dx # finite difference
der <- which(ch == c("di","tri","tetra","penta")) - 1
nm2 <- paste("psigamma(*, deriv = ", der,")",sep='')
nm <- if(der >= 2) nm2 else paste(nm, nm2, sep = " ==\n")
y <- psigamma(x, deriv=der)

} else {
y <- get(nm)(x)

}
plot(x, y, type = "l", main = nm, col = "red")
abline(h = 0, col = "lightgray")
if (is.deriv) lines(x[-1], dy, col = "blue", lty = 2)

}
par(mfrow = c(1, 1))

"Extended" Pascal triangle:
fN <- function(n) formatC(n, width=2)
for (n in -4:10) cat(fN(n),":", fN(choose(n, k= -2:max(3,n+2))), "\n")

R code version of choose() [simplistic; warning for k < 0]:
mychoose <- function(r,k)

ifelse(k <= 0, (k==0),
sapply(k, function(k) prod(r:(r-k+1))) / factorial(k))

k <- -1:6
cbind(k=k, choose(1/2, k), mychoose(1/2, k))

Binomial theorem for n=1/2 ;
sqrt(1+x) = (1+x)^(1/2) = sum_{k=0}^Inf choose(1/2, k) * x^k :
k <- 0:10 # 10 is sufficient for ~ 9 digit precision:
sqrt(1.25)
sum(choose(1/2, k)* .25^k)

split Divide into Groups and Reassemble

Description

split divides the data in the vectorx into the groups defined byf . The replacement forms replace
values corresponding to such a division.unsplit reverses the effect ofsplit .

390 split

Usage

split(x, f, drop = FALSE, ...)
split(x, f, drop = FALSE, ...) <- value
unsplit(value, f, drop = FALSE)

Arguments

x vector or data frame containing values to be divided into groups.

f a ‘factor’ in the sense thatas.factor (f) defines the grouping, or a list of
such factors in which case their interaction is used for the grouping.

drop logical indicating if levels that do not occur should be dropped (iff is afactor
or a list).

value a list of vectors or data frames compatible with a splitting ofx . Recycling
applies if the lengths do not match.

... further potential arguments passed to methods.

Details

split andsplit<- are generic functions with default anddata.frame methods. The data
frame method can also be used to split a matrix into a list of matrices, and the replacement form
likewise, provided they are invoked explicitly.

unsplit works with lists of vectors or data frames (assumed to have compatible structure, as if
created bysplit). It puts elements or rows back in the positions given byf . In the data frame
case, row names are obtained by unsplitting the row name vectors from the elements ofvalue .

f is recycled as necessary and if the length ofx is not a multiple of the length off a warning is
printed.

Any missing values inf are dropped together with the corresponding values ofx .

Value

The value returned fromsplit is a list of vectors containing the values for the groups. The
components of the list are named by the levels off (after converting to a factor, or if already a
factor anddrop=TRUE , dropping unused levels).

The replacement forms return their right hand side.unsplit returns a vector or data frame for
whichsplit(x, f) equalsvalue

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

cut

Examples

require(stats); require(graphics)
n <- 10; nn <- 100
g <- factor(round(n * stats::runif(n * nn)))
x <- rnorm(n * nn) + sqrt(as.numeric(g))

sprintf 391

xg <- split(x, g)
boxplot(xg, col = "lavender", notch = TRUE, varwidth = TRUE)
sapply(xg, length)
sapply(xg, mean)

Calculate z-scores by group

z <- unsplit(lapply(split(x, g), scale), g)
tapply(z, g, mean)

or

z <- x
split(z, g) <- lapply(split(x, g), scale)
tapply(z, g, sd)

data frame variation

Notice that assignment form is not used since a variable is being added

g <- airquality$Month
l <- split(airquality, g)
l <- lapply(l, transform, Oz.Z = scale(Ozone))
aq2 <- unsplit(l, g)
head(aq2)
with(aq2, tapply(Oz.Z, Month, sd, na.rm=TRUE))

Split a matrix into a list by columns
ma <- cbind(x = 1:10, y = (-4:5)^2)
split(ma, col(ma))

split(1:10, 1:2)

sprintf Use C-style String Formatting Commands

Description

A wrapper for the C functionsprintf , that returns a character vector containing a formatted
combination of text and variable values.

Usage

sprintf(fmt, ...)
gettextf(fmt, ..., domain = NULL)

Arguments

fmt a format string. Up to 8192 bytes.

... values to be passed intofmt . Only logical, integer, real and character vectors
are supported, but some coercion will be done: see the ‘Details’ section.

domain seegettext .

392 sprintf

Details

sprintf is a wrapper for the systemsprintf C-library function. Attempts are made to check
that the mode of the values passed match the format supplied, andR’s special values (NA, Inf ,
-Inf andNaN) are handled correctly.

gettextf is a convenience function which provides C-style string formatting with possible trans-
lation of the format string.

The arguments (includingfmt) are recycled if possible a whole number of times to the length of
the longest, and then the formatting is done in parallel.

The following is abstracted from Kernighan and Ritchie (see References). The stringfmt contains
normal characters, which are passed through to the output string, and also special characters that
operate on the arguments provided through... . Special characters start with a%and end with one
of the letters in the setdifeEgGsxX% . These letters denote the following types:

d, i, x, X Integer value,x and X being hexadecimal (using the same case fora-f as the
code). Numeric variables with exactly integer values will be coerced to integer.

f Double precision value, in decimal notation of the form "[-]mmm.ddd". The number of decimal
places is specified by the precision: the default is 6; a precision of 0 suppresses the decimal
point.

e, E Double precision value, in decimal notation of the form[-]m.ddde[+-]xx or
[-]m.dddE[+-]xx .

g, G Double precision value, in%eor %Eformat if the exponent is less than -4 or greater than or
equal to the precision, and%f format otherwise.

s Character string.

% Literal %(none of the formatting characters given below are permitted in this case).

as.character is used for non-character arguments withs and as.double for non-double
arguments withf, e, E, g, G . NB: the length is determined before conversion, so do not rely
on the internal coercion if this would change the length. Also, the coercion has to be done for each
line of output (as the format string may differ between lines), so it is more efficient not to rely on
internal coercion.

In addition, between the initial%and the terminating conversion character there may be, in any
order:

m.n Two numbers separated by a period, denoting the field width (m) and the precision (n)

- Left adjustment of converted argument in its field

+ Always print number with sign

a spacePrefix a space if the first number is not a sign

0 For numbers, pad to the field width with leading zeros

Further, immediately after%may come1$ to 99$ to refer to the numbered argument: this allows
arguments to be referenced out of order and is mainly intended for translators of error messages. If
this is done it is best if all formats are numbered: if not the unnumbered ones process the arguments
in order. See the examples.

A field width or precision (but not both) may be indicated by an asterisk* . In this case an argument
specifies the desired number. A negative field width is taken as a ’-’ flag followed by a positive field
width. A negative precision is taken as if the precision were omitted. The*1$ to *99$ notation
for arguments referenced out of order is also supported.

sprintf 393

Value

A character vector of length that of the longest input. CharacterNAs are converted to"NA" .

Author(s)

Original code by Jonathan Rougier,〈J.C.Rougier@durham.ac.uk〉.

References

Kernighan, B. W. and Ritchie, D. M. (1988)The C Programming Language.Second edition, Pren-
tice Hall. describes the format options in table B-1 in the Appendix.

See Also

formatC for a way of formatting vectors of numbers in a similar fashion.

paste for another way of creating a vector combining text and values.

gettext for the mechanisms for the automated translation of text.

Examples

be careful with the format: most things in R are floats
only integer-valued reals get coerced to integer.

sprintf("%s is %f feet tall\n", "Sven", 7.1) # OK
try(sprintf("%s is %i feet tall\n", "Sven", 7.1)) # not OK
try(sprintf("%s is %i feet tall\n", "Sven", 7)) # OK

use a literal % :

sprintf("%.0f%% said yes (out of a sample of size %.0f)", 66.666, 3)

various formats of pi :

sprintf("%f", pi)
sprintf("%.3f", pi)
sprintf("%1.0f", pi)
sprintf("%5.1f", pi)
sprintf("%05.1f", pi)
sprintf("%+f", pi)
sprintf("% f", pi)
sprintf("%-10f", pi) # left justified
sprintf("%e", pi)
sprintf("%E", pi)
sprintf("%g", pi)
sprintf("%g", 1e6 * pi) # -> exponential
sprintf("%.9g", 1e6 * pi) # -> "fixed"
sprintf("%G", 1e-6 * pi)

no truncation:
sprintf("%1.f",101)

re-use one argument three times, show difference between %x and %X
xx <- sprintf("%1$d %1$x %1$X", 0:15)
xx <- matrix(xx, dimnames=list(rep("", 16), "%d%x%X"))
noquote(format(xx, justify="right"))

394 sQuote

More sophisticated:

sprintf("min 10-char string '%10s'",
c("a", "ABC", "and an even longer one"))

n <- 1:18
sprintf(paste("e with %2d digits = %.",n,"g",sep=""), n, exp(1))

Using arguments out of order
sprintf("second %2$1.0f, first %1$5.2f, third %3$1.0f", pi, 2, 3)

Using asterisk for width or precision
sprintf("precision %.*f, width '%*.3f'", 3, pi, 8, pi)

Asterisk and argument re-use, 'e' example reiterated:
sprintf("e with %1$2d digits = %2$.*1$g", n, exp(1))

re-cycle arguments
sprintf("%s %d", "test", 1:3)

sQuote Quote Text

Description

Single or double quote text by combining with appropriate single or double left and right quotation
marks.

Usage

sQuote(x)
dQuote(x)

Arguments

x anR object, to be coerced to a character vector.

Details

The purpose of the functions is to provide a simple means of markup for quoting text to be used in
the R output, e.g., in warnings or error messages.

The choice of the appropriate quotation marks depends on both the locale and the available character
sets. Older Unix/X11 fonts displayed the grave accent (ASCII code 0x60) and the apostrophe (0x27)
in a way that they could also be used as matching open and close single quotation marks. Using
modern fonts, or non-Unix systems, these characters no longer produce matching glyphs. Unicode
provides left and right single quotation mark characters (U+2018 and U+2019); if Unicode markup
cannot be assumed to be available, it seems good practice to use the apostrophe as a non-directional
single quotation mark.

Similarly, Unicode has left and right double quotation mark characters (U+201C and U+201D); if
only ASCII’s typewriter characteristics can be employed, than the ASCII quotation mark (0x22)
should be used as both the left and right double quotation mark.

sQuote 395

Some other locales also have the directional quotation marks, notably on Windows. TeX uses
grave and apostrophe for the directional single quotation marks, and doubled grave and doubled
apostrophe for the directional double quotation marks.

What rendering is used depend on theoptions setting foruseFancyQuotes . If this is FALSE
then the undirectional ASCII quotation style is used. If this isTRUE(the default), Unicode di-
rectional quotes are used are used where available (currently, UTF-8 locales on Unix-alikes and
all Windows locales exceptC): if set to "UTF-8" UTF-8 markup is used (whatever the current
locale). If set to"TeX" , TeX-style markup is used. Finally, if this is set to a character vector of
length four, the first two entries are used for beginning and ending single quotes and the second
two for beginning and ending double quotes: this can be used to implement non-English quoting
conventions such as the use of guillemets.

Where fancy quotes are used, you should be aware that they may not be rendered correctly as
not all fonts include the requisite glyphs: for example some have directional single quotes but not
directional double quotes.

References

Markus Kuhn, “ASCII and Unicode quotation marks”.http://www.cl.cam.ac.uk/
~mgk25/ucs/quotes.html

See Also

Quotes for quotingR code.

shQuote for quoting OS commands.

Examples

op <- options("useFancyQuotes")
paste("argument", sQuote("x"), "must be non-zero")
options(useFancyQuotes = FALSE)
cat("\ndistinguish plain", sQuote("single"), "and",

dQuote("double"), "quotes\n")
options(useFancyQuotes = TRUE)
cat("\ndistinguish fancy", sQuote("single"), "and",

dQuote("double"), "quotes\n")
options(useFancyQuotes = "TeX")
cat("\ndistinguish TeX", sQuote("single"), "and",

dQuote("double"), "quotes\n")
if(l10n_info()$`Latin-1`) {

options(useFancyQuotes = c("\xab", "\xbb", "\xbf", "?"))
cat("\n", sQuote("guillemet"), "and",

dQuote("Spanish question"), "styles\n")
} else if(l10n_info()$`UTF-8`) {

options(useFancyQuotes = c("\xc2\xab", "\xc2\xbb", "\xc2\xbf", "?"))
cat("\n", sQuote("guillemet"), "and",

dQuote("Spanish question"), "styles\n")
}
options(op)

http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html
http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html

396 srcfile

srcfile References to source files

Description

These functions are for working with source files.

Usage

srcfile(filename, encoding = getOption("encoding"))
srcfilecopy(filename, lines)
getSrcLines(srcfile, first, last)
srcref(srcfile, lloc)
S3 method for class 'srcfile':
print(x, ...)
S3 method for class 'srcfile':
open(con, line, ...)
S3 method for class 'srcfile':
close(con, ...)
S3 method for class 'srcref':
print(x, useSource = TRUE, ...)
S3 method for class 'srcref':
as.character(x, useSource = TRUE, ...)
.isOpen(srcfile)

Arguments

filename The name of a file

encoding The character encoding to assume for the file

lines A character vector of source lines. OtherR objects will be coerced to character.

srcfile A srcfile object.
first, last, line

Line numbers.

lloc A vector of four values giving a source location; see ‘Details’.

x, con An object of the appropriate type.

useSource Whether to read thesrcfile to obtain the text of asrcref .

... Additional arguments to the methods; these will be ignored.

Details

These functions and classes handle source code references.

The srcfile function produces an object of classsrcfile , which contains the name and di-
rectory of a source code file, along with its timestamp, for use in source level debugging (not yet
implemented) and source echoing. The encoding of the file is saved; seefile for a discussion of
encodings, andiconvlist for a list of allowable encodings on your platform.

Thesrcfilecopy function produces an object of the descendant classsrcfilecopy , which
saves the source lines in a character vector.

ThegetSrcLines function reads the specified lines fromsrcfile .

Startup 397

Thesrcref function produces an object of classsrcref , which describes a range of characters in
asrcfile . Thelloc value gives the following values:c(first_line, first_column,
last_line, last_column) .

Methods are defined forprint , open , andclose for classessrcfile andsrcfilecopy .
Theopen method opens its internalfile connection at a particular line; if it was already open, it
will be repositioned to that line.

Methods are defined forprint andas.character for classsrcref . Theas.character
method will read the associated source file to obtain the text corresponding to the reference. If
an error occurs (e.g. the file no longer exists), text like<srcref: "file" chars 1:1 to
2:10> will be returned instead, indicating theline:column ranges of the first and last character.

Lists of srcref objects may be attached to expressions as the"srcref" attribute. (The list of
srcref objects should be the same length as the expression.) By default, expressions are printed by
print.default using the associatedsrcref . To see deparsed code instead, callprint with
argumentuseSource = FALSE . If a srcref object is printed withuseSource = FALSE ,
the<srcref: ...> record will be printed.

.isOpen is intended for internal use: it checks whether the connection associated with a
srcfile object is open.

Value

srcfile returns asrcfile object.

srcfilecopy returns asrcfilecopy object.

getSrcLines returns a character vector of source code lines.

srcref returns asrcref object.

Author(s)

Duncan Murdoch

Examples

src <- srcfile(system.file("DESCRIPTION", package = "base"))
getSrcLines(src, 1, 4)
ref <- srcref(src, c(1, 1, 2, 1000))
ref
print(ref, useSource = FALSE)

Startup Initialization at Start of an R Session

Description

In R, the startup mechanism is as follows.

Unless ‘--no-environ ’ was given on the command line,R searches for site and user files to
process for setting environment variables. The name of the site file is the one pointed to by the
environment variableR_ENVIRON; if this is unset or empty, ‘$R_HOME/etc/Renviron.site’ is
used (if it exists, which it does not in a ‘factory-fresh’ installation). The user files searched for are
‘ .Renviron’ in the current or in the user’s home directory (in that order). See ‘Details’ for how the
files are read.

398 Startup

Then R searches for the site-wide startup profile unless the command line option
‘ --no-site-file ’ was given. The name of this file is taken from the value of theR_PROFILE
environment variable. If this variable is unset, the default is ‘$R_HOME/etc/Rprofile.site’, which
is used if it exists (which it does not in a ‘factory-fresh’ installation). This code is sourced into the
basepackage. Users need to be careful not to unintentionally overwrite objects inbase, and it is
normally advisable to uselocal if code needs to be executed: see the examples.

Then, unless ‘--no-init-file ’ was given,R searches for a file called ‘.Rprofile’ in the current
directory or in the user’s home directory (in that order) and sources it into the user workspace.

Note that when the site and user profile files are sourced only thebasepackage is loaded, so objects
in other packages need to be referred to by e.g.utils::dump.frames or after explicitly loading
the package concerned.

It then loads a saved image of the user workspace from ‘.RData’ if there is one (unless
‘ --no-restore-data ’ or ‘ --no-restore ’ was specified on the command line).

Next, if a function.First is found on the search path, it is executed as.First() . Finally,
function .First.sys() in the basepackage is run. This callsrequire to attach the default
packages specified byoptions ("defaultPackages") . If the methodspackage is included,
this will have been attached earlier (by function.OptRequireMethods()) so that name space
initializations such as those from the user workspace will proceed correctly.

A function .First (and .Last) can be defined in appropriate ‘.Rprofile’ or ‘ Rprofile.site’
files or have been saved in ‘.RData’. If you want a different set of packages than the de-
fault ones when you start, insert a call tooptions in the ‘.Rprofile’ or ‘ Rprofile.site’
file. For example,options(defaultPackages = character()) will attach no ex-
tra packages on startup (only thebase package) (or setR_DEFAULT_PACKAGES=NULLas
an environment variable before runningR). Using options(defaultPackages = "") or
R_DEFAULT_PACKAGES=""enforces the Rsystemdefault.

On front-ends which support it, the commands history is read from the file specified by the envi-
ronment variableR_HISTFILE (default ‘.Rhistory’) unless ‘--no-restore-history ’ was
specified (or ‘--no-restore ’).

The command-line flag ‘--vanilla ’ implies ‘--no-site-file ’, ‘ --no-init-file ’,
‘ --no-restore ’ and ‘--no-environ ’.

Usage

.First <- function() { }

.Rprofile <startup file>

Details

Note that there are two sorts of files used in startup:environment fileswhich contain lists of envi-
ronment variables to be set, andprofile fileswhich containR code.

Lines in a site or user environment file should be either comment lines starting with#, or lines
of the formname=value. The latter sets the environmental variablename to value, overriding an
existing value. Ifvalue contains an expression of the form${foo-bar} , the value is that of the
environmental variablefoo if that exists and is set to a non-empty value, otherwisebar . (If it is
of the form${foo} , the default is"" .) This construction can be nested, sobar can be of the
same form (as in${foo-${bar-blah}}). Note that the braces are essential:$HOMEwill not
be interpreted.

Leading and trailing white space invalue are stripped.value is then processed in a similar way to a
Unix shell: in particular the outermost level of (single or double) quotes is stripped, and backslashes
are removed except inside quotes.

Startup 399

Note

The file ‘$R_HOME/etc/Renviron’ is always read very early in the start-up processing. It contains
environment variables set byR in the configure process. Values in that file can be overridden in site
or user environment files: do not change ‘$R_HOME/etc/Renviron’ itself. Note that this is distinct
from ‘$R_HOME/etc/Renviron.site’.

See Also

.Last for final actions at the close of anR session.commandArgs for accessing the command
line arguments.

An Introduction to Rfor more command-line options: those affecting memory management are
covered in the help file forMemory.

For profiling code, seeRprof .

Examples

Not run:
Example ~/.Renviron on Unix
R_LIBS=~/R/library
PAGER=/usr/local/bin/less

Example .Renviron on Windows
R_LIBS=C:/R/library
MY_TCLTK=yes
TCL_LIBRARY=c:/packages/Tcl/lib/tcl8.4

Example of setting R_DEFAULT_PACKAGES (from R CMD check)
R_DEFAULT_PACKAGES='utils,grDevices,graphics,stats'
this loads the packages in the order given, so they appear on
the search path in reverse order.

Example of .Rprofile
options(width=65, digits=5)
options(show.signif.stars=FALSE)
setHook(packageEvent("grDevices", "onLoad"),

function(...) grDevices::ps.options(horizontal=FALSE))
set.seed(1234)
.First <- function() cat("\n Welcome to R!\n\n")
.Last <- function() cat("\n Goodbye!\n\n")

Example of Rprofile.site
local({

add MASS to the default packages, set a CRAN mirror
old <- getOption("defaultPackages"); r <- getOption("repos")
r["CRAN"] <- "http://my.local.cran"
options(defaultPackages = c(old, "MASS"), repos = r)

})

if .Renviron contains
FOOBAR="coo\bar"doh\ex"abc\"def'"

then we get
> cat(Sys.getenv("FOOBAR"), "\n")
coo\bardoh\exabc"def'
End(Not run)

400 stop

stop Stop Function Execution

Description

stop stops execution of the current expression and executes an error action.

geterrmessage gives the last error message.

Usage

stop(..., call. = TRUE, domain = NULL)
geterrmessage()

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or a single condition object.

call. logical, indicating if the call should become part of the error message.

domain seegettext . If NA, messages will not be translated.

Details

The error action is controlled by error handlers established within the executing code and by the
current default error handler set byoptions(error=) . The error is first signaled as if using
signalCondition () . If there are no handlers or if all handlers return, then the error message
is printed (if options("show.error.messages") is true) and the default error handler is
used. The default behaviour (theNULL error-handler) in interactive use is to return to the top
level prompt or the top level browser, and in non-interactive use to (effectively) callq("no",
status=1, runLast=FALSE). The default handler stores the error message in a buffer; it can
be retrieved bygeterrmessage() . It also stores a trace of the call stack that can be retrieved by
traceback () .

Errors will be truncated togetOption("warning.length") characters, default 1000.

If a condition object is supplied it should be the only argument, and further arguments will be
ignored, with a warning.

Value

geterrmessage gives the last error message, as a character string ending in"\n" .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

warning , try to catch errors and retry, andoptions for setting error handlers.stopifnot
for validity testing. tryCatch andwithCallingHandlers can be used to establish custom
handlers while executing an expression.

gettext for the mechanisms for the automated translation of messages.

stopifnot 401

Examples

options(error = expression(NULL))
don't stop on stop(.) << Use with CARE! >>

iter <- 12
if(iter > 10) stop("too many iterations")

tst1 <- function(...) stop("dummy error")
tst1(1:10, long, calling, expression)

tst2 <- function(...) stop("dummy error", call. = FALSE)
tst2(1:10, longcalling, expression, but.not.seen.in.Error)

options(error = NULL)# revert to default

stopifnot Ensure the ‘Truth’ of R Expressions

Description

If any of the expressions in... are notall TRUE, stop is called, producing an error message
indicating thefirst of the elements of... which were not true.

Usage

stopifnot(...)

Arguments

... any number of (logical) R expressions, which should evaluate toTRUE.

Details

This function is intended for use in regression tests or also argument checking of functions, in
particular to make them easier to read.

stopifnot(A, B) is conceptually equivalent to{ if(any(is.na(A)) || !all(A))
stop(...) ; if(any(is.na(B)) || !all(B)) stop(...) } .

Value

(NULL if all statements in... areTRUE.)

See Also

stop , warning .

402 strptime

Examples

stopifnot(1 == 1, all.equal(pi, 3.14159265), 1 < 2) # all TRUE

m <- matrix(c(1,3,3,1), 2,2)
stopifnot(m == t(m), diag(m) == rep(1,2)) # all(.) |=> TRUE

op <- options(error = expression(NULL))
"disable stop(.)" << Use with CARE! >>

stopifnot(all.equal(pi, 3.141593), 2 < 2, all(1:10 < 12), "a" < "b")
stopifnot(all.equal(pi, 3.1415927), 2 < 2, all(1:10 < 12), "a" < "b")

options(op)# revert to previous error handler

strptime Date-time Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of classes"POSIXlt" and
"POSIXct" representing calendar dates and times.

Usage

S3 method for class 'POSIXct':
format(x, format = "", tz = "", usetz = FALSE, ...)
S3 method for class 'POSIXlt':
format(x, format = "", usetz = FALSE, ...)

S3 method for class 'POSIXt':
as.character(x, ...)

strftime(x, format="", usetz = FALSE, ...)
strptime(x, format, tz = "")

ISOdatetime(year, month, day, hour, min, sec, tz = "")
ISOdate(year, month, day, hour = 12, min = 0, sec = 0, tz = "GMT")

Arguments

x An object to be converted.

tz A timezone specification to be used for the conversion. System-specific (see
as.POSIXlt), but "" is the current time zone, and"GMT" is UTC.

format A character string. The default is"%Y-%m-%d %H:%M:%S"if any component
has a time component which is not midnight, and"%Y-%m-%d" otherwise. If
options ("digits.secs") is set, up to the specified number of digits will
be printed for seconds.

... Further arguments to be passed from or to other methods.

usetz logical. Should the timezone be appended to the output? This is used in print-
ing times, and as a workaround for problems with using"%Z" on most Linux
systems.

strptime 403

year, month, day
numerical values to specify a day.

hour, min, sec
numerical values for a time within a day. Fractional seconds are allowed.

Details

The format and as.character methods andstrftime convert objects from the classes
"POSIXlt" and"POSIXct" (notstrftime) to character vectors.

strptime converts character strings to class"POSIXlt" : its inputx is first coerced to character
if necessary. Each string is processed as far as necessary for the format specified: any trailing
characters are ignored.

strftime is an alias forformat.POSIXlt , and format.POSIXct first converts to class
"POSIXlt" by callingas.POSIXlt . Note that only that conversion depends on the time zone.

The usual vector re-cycling rules are applied tox andformat so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months, the AM/PM indicator (if used) and the separators in
formats such as%xand%X.

The details of the formats are system-specific, but the following are defined by the ISO C / POSIX
standard forstrftime and are likely to be widely available. Aconversion specificationis intro-
duced by%, usually followed by a single letter orO or E and then a single letter. Any character
in the format string not part of a conversion specification is interpreted literally (and%%gives%).
Widely implemented conversion specifications include

%a Abbreviated weekday name in the current locale. (Also matches full name on input.)

%A Full weekday name in the current locale. (Also matches abbreviated name on input.)

%b Abbreviated month name in the current locale. (Also matches full name on input.)

%B Full month name in the current locale. (Also matches abbreviated name on input.)

%c Date and time, locale-specific.

%d Day of the month as decimal number (01–31).

%HHours as decimal number (00–23).

%I Hours as decimal number (01–12).

%j Day of year as decimal number (001–366).

%mMonth as decimal number (01–12).

%MMinute as decimal number (00–59).

%p AM/PM indicator in the locale. Used in conjuction with%I andnot with %H.

%S Second as decimal number (00–61), allowing for up to two leap-seconds (but POSIX-compliant
OSes will ignore leap seconds).

%UWeek of the year as decimal number (00–53) using the first Sunday as day 1 of week 1.

%wWeekday as decimal number (0–6, Sunday is 0).

%WWeek of the year as decimal number (00–53) using the first Monday as day 1 of week 1.

%x Date, locale-specific.

%X Time, locale-specific.

%y Year without century (00–99). If you use this on input, which century you get is system-specific.
So don’t! Often values up to 69 (or 68) are prefixed by 20 and 70(or 69) to 99 by 19.

404 strptime

%Y Year with century.

%z (output only.) Offset from Greenwich, so-0800 is 8 hours west of Greenwich.

%Z (output only.) Time zone as a character string (empty if not available).

Where leading zeros are shown they will be used on output but are optional on input.

Also defined in the current standards but less widely implemented (e.g. not for output on Windows)
are

%CCentury (00–99): the integer part of the year divided by 100.

%DLocale-specific date format such as%m/%d/%y: ISO C99 says it should be that exact format.

%e Day of the month as decimal number (1–31), with a leading space for a single-digit number.

%F Equivalent to %Y-%m-%d (the ISO 8601 date format).

%g The last two digits of the week-based year (see%V). (Typically accepted but ignored on input.)

%GThe week-based year (see%V) as a decimal number. (Typically accepted but ignored on input.)

%h Equivalent to%b.

%k The 24-hour clock time with single digits preceded by a blank.

%l The 12-hour clock time with single digits preceded by a blank.

%n Newline on output, arbitrary whitespace on input.

%r The 12-hour clock time (using the locale’s AM or PM).

%REquivalent to%H:%M.

%t Tab on output, arbitrary whitespace on input.

%T Equivalent to%H:%M:%S.

%u Weekday as a decimal number (1–7, Monday is 1).

%V Week of the year as decimal number (00–53). If the week (starting on Monday) containing 1
January has four or more days in the new year, then it is considered week 1. Otherwise, it
is the last week of the previous year, and the next week is week 1. (Typically accepted but
ignored on input.)

For output (and possibly input) there are also%O[dHImMUVwWy]which may emit numbers in an
alternative locale-dependent format (e.g. roman numerals), and%E[cCyYxX] which can use an
alternative ‘era’ (e.g. a different religious calendar). Which of these are supported is OS-dependent.

Specific toR is %OSn, which for output gives the seconds to0 <= n <= 6 decimal places (and if
%OSis not followed by a digit, it uses the setting ofgetOption ("digits.secs") , or if that
is unset,n = 3). Further, forstrptime %OS will input seconds including fractional seconds.
Note that%Signore fractional parts on output.

The behaviour of other conversion specifications (and even if other character sequences commenc-
ing with %areconversion specifications) is system-specific.

ISOdatetime andISOdate are convenience wrappers forstrptime , that differ only in their
defaults and thatISOdate sets a timezone. (For dates without times it would be better to use the
" Date " class.)

Value

Theformat methods andstrftime return character vectors representing the time.

strptime turns character representations into an object of class" POSIXlt " . The timezone is
used to set theisdst component and to set the"tzone" attribute iftz != "" .

ISOdatetime andISOdate return an object of class" POSIXct " .

strptime 405

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as"2001-02-28" and a time as"14:01:02" using leading zeroes as here. The ISO form uses
no space to separate dates and times.

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that unspecified seconds, minutes or hours are zero,
and a missing year, month or day is the current one. If it specifies a date incorrectly, reliable
implementations will give an error and the date is reported asNA. Unfortunately some common
implementations (such as ‘glibc ’) are unreliable and guess at the intended meaning.

If the timezone specified is invalid on your system, what happens is system-specific but it will
probably be ignored.

OS facilities will probably not print years before 1CE (aka 1AD) correctly.

Remember that in most timezones some times do not occur and some occur twice because of tran-
sitions to/from summer time. What happens in those cases is OS-specific.

References

International Organization for Standardization (2004, 1988, 1997, . . .)ISO 8601. Data elements
and interchange formats – Information interchange – Representation of dates and times.For
links to versions available on-line see (at the time of writing)http://www.qsl.net/g1smd/
isopdf.htm ; for information on the current official version, seehttp://www.iso.org/
iso/en/prods-services/popstds/datesandtime.html .

See Also

DateTimeClassesfor details of the date-time classes;locales to query or set a locale.

Your system’s help pages onstrftime andstrptime to see how to specify their formats. (On
some systemsstrptime is replaced by corrected code from ‘glibc ’, when all the conversion
specifications described here are supported, but with no alternative number representation nor era
available in any locale.)

Examples

locale-specific version of date()
format(Sys.time(), "%a %b %d %X %Y %Z")

time to sub-second accuracy (if supported by the OS)
format(Sys.time(), "%H:%M:%OS3")

read in date info in format 'ddmmmyyyy'
This will give NA(s) in some locales; setting the C locale
as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")
z <- strptime(x, "%d%b%Y")
Sys.setlocale("LC_TIME", lct)
z

read in date/time info in format 'm/d/y h:m:s'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
times <- c("23:03:20", "22:29:56", "01:03:30", "18:21:03", "16:56:26")
x <- paste(dates, times)
strptime(x, "%m/%d/%y %H:%M:%S")

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

406 strsplit

time with fractional seconds
z <- strptime("20/2/06 11:16:16.683", "%d/%m/%y %H:%M:%OS")
z # prints without fractional seconds
op <- options(digits.secs=3)
z
options(op)

timezones are not portable, but 'EST5EDT' comes pretty close.
(x <- strptime(c("2006-01-08 10:07:52", "2006-08-07 19:33:02"),

"%Y-%m-%d %H:%M:%S", tz="EST5EDT"))
attr(x, "tzone")

strsplit Split the Elements of a Character Vector

Description

Split the elements of a character vectorx into substrings according to the presence of substring
split within them.

Usage

strsplit(x, split, extended = TRUE, fixed = FALSE, perl = FALSE)

Arguments

x character vector, each element of which is to be split. Other inputs, including a
factor, will give an error.

split character vector (or object which can be coerced to such) containingregular
expression(s) (unlessfixed = TRUE) to use for splitting. If empty matches
occur, in particular ifsplit has length 0,x is split into single characters. If
split has length greater than 1, it is re-cycled alongx .

extended logical. If TRUE(the default), extended regular expression matching is used,
and ifFALSEbasic regular expressions are used.

fixed logical. If TRUEmatchsplit exactly, otherwise use regular expressions. Has
priority overperl andextended .

perl logical. Should perl-compatible regexps be used? Has priority overextended .

Details

Argumentsplit will be coerced to character, so you will see uses withsplit = NULL to mean
split = character(0) , including in the examples below.

Note that splitting into single characters can be donevia split=character(0) or split="" ;
the two are equivalent. The definition of ‘character’ here depends on the locale (and perhaps OS):
in a single-byte locale it is a byte, and in a multi-byte locale it is the unit represented by a ‘wide
character’ (almost always a Unicode point).

A missing value ofsplit does not split the corresponding element(s) ofx at all.

The algorithm applied to each input string is

strsplit 407

repeat {
if the string is empty

break.
if there is a match

add the string to the left of the match to the output.
remove the match and all to the left of it.

else
add the string to the output.
break.

}

Note that this means that if there is a match at the beginning of a (non-empty) string, the first
element of the output is"" , but if there is a match at the end of the string, the output is the same as
with the match removed.

Value

A list of length length(x) the i -th element of which contains the vector of splits ofx[i] .

Warning

The standard regular expression code has been reported to be very slow when applied to extremely
long character strings (tens of thousands of characters or more): the code used whenperl =
TRUEseems much faster and more reliable for such usages.

The perl = TRUE option is only implemented for single-byte and UTF-8 encodings, and will
warn if used in a non-UTF-8 multibyte locale.

See Also

paste for the reverse,grep and sub for string search and manipulation; furthernchar ,
substr .

‘ regular expression’ for the details of the pattern specification.

Examples

noquote(strsplit("A text I want to display with spaces", NULL)[[1]])

x <- c(as = "asfef", qu = "qwerty", "yuiop[", "b", "stuff.blah.yech")
split x on the letter e
strsplit(x,"e")

unlist(strsplit("a.b.c", "."))
[1] "" "" "" "" ""
Note that 'split' is a regexp!
If you really want to split on '.', use
unlist(strsplit("a.b.c", "\\."))
[1] "a" "b" "c"
or
unlist(strsplit("a.b.c", ".", fixed = TRUE))

a useful function: rev() for strings
strReverse <- function(x)

sapply(lapply(strsplit(x, NULL), rev), paste, collapse="")
strReverse(c("abc", "Statistics"))

408 strtrim

get the first names of the members of R-core
a <- readLines(file.path(R.home("doc"),"AUTHORS"))[-(1:8)]
a <- a[(0:2)-length(a)]
(a <- sub(" .*","", a))
and reverse them
strReverse(a)

Note that final empty strings are not produced:
strsplit(paste(c("", "a", ""), collapse="#"), split="#")[[1]]
[1] "" "a"
and also an empty string is only produced before a definite match:
strsplit("", " ")[[1]] # character(0)
strsplit(" ", " ")[[1]] # [1] ""

strtrim Trim Character Strings to Specified Widths

Description

Trim character strings to specified display widths.

Usage

strtrim(x, width)

Arguments

x a character vector, or an object which can be coerced to a character vector by
as.character .

width Positive integer values: recycled to the length ofx .

Details

‘Width’ is interpreted as the display width in a monospaced font. What happens with non-printable
characters (such as backspace, tab) is implementation-dependent and may depend on the locale (e.g.
they may be included in the count or they may be omitted).

Using this function rather thansubstr is important when there might be double-width characters
in character vectors

Value

A character vector of the same length and with the same attributes asx (after possible coercion).

Examples

strtrim(c("abcdef", "abcdef", "abcdef"), c(1,5,10))

structure 409

structure Attribute Specification

Description

structure returns the given object with furtherattributesset.

Usage

structure(.Data, ...)

Arguments

.Data an object which will have various attributes attached to it.

... attributes, specified intag=value form, which will be attached to data.

Details

Adding a class"factor" will ensure that numeric codes are given integer storage mode.

For historical reasons (these names are used when deparsing), attributes".Dim" , ".Dimnames" ,
".Names" , ".Tsp" and".Label" are renamed to"dim" , "dimnames" , "names" , "tsp"
and"levels" .

It is possible to give the same tag more than once, in which case the last value assigned wins. As
with other ways of assigning attributes, usingtag=NULL removes attributetag from .Data if it
is present.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes , attr .

Examples

structure(1:6, dim = 2:3)

410 strwrap

strwrap Wrap Character Strings to Format Paragraphs

Description

Each character string in the input is first split into paragraphs (on lines containing whitespace only).
The paragraphs are then formatted by breaking lines at word boundaries. The target columns for
wrapping lines and the indentation of the first and all subsequent lines of a paragraph can be con-
trolled independently.

Usage

strwrap(x, width = 0.9 * getOption("width"), indent = 0,
exdent = 0, prefix = "", simplify = TRUE)

Arguments

x a character vector, or an object which can be converted to a character vector by
as.character .

width a positive integer giving the target column for wrapping lines in the output.

indent a non-negative integer giving the indentation of the first line in a paragraph.

exdent a non-negative integer specifying the indentation of subsequent lines in para-
graphs.

prefix a character string to be used as prefix for each line.

simplify a logical. IfTRUE, the result is a single character vector of line text; otherwise,
it is a list of the same length asx the elements of which are character vectors of
line text obtained from the corresponding element ofx . (Hence, the result in the
former case is obtained by unlisting that of the latter.)

Details

Whitespace in the input is destroyed. Double spaces after periods (thought as representing sentence
ends) are preserved. Currently, possible sentence ends at line breaks are not considered specially.

Indentation is relative to the number of characters in the prefix string.

Examples

Read in file 'THANKS'.
x <- paste(readLines(file.path(R.home("doc"), "THANKS")), collapse = "\n")
Split into paragraphs and remove the first three ones
x <- unlist(strsplit(x, "\n[\t\n]*\n"))[-(1:3)]
Join the rest
x <- paste(x, collapse = "\n\n")
Now for some fun:
writeLines(strwrap(x, width = 60))
writeLines(strwrap(x, width = 60, indent = 5))
writeLines(strwrap(x, width = 60, exdent = 5))
writeLines(strwrap(x, prefix = "THANKS> "))

Note that messages are wrapped AT the target column indicated by
'width' (and not beyond it).

subset 411

From an R-devel posting by J. Hosking <jh910@juno.com>.
x <- paste(sapply(sample(10, 100, replace=TRUE),

function(x) substring("aaaaaaaaaa", 1, x)), collapse = " ")
sapply(10:40,

function(m)
c(target = m, actual = max(nchar(strwrap(x, m)))))

subset Subsetting Vectors, Matrices and Data Frames

Description

Return subsets of vectors, matrices or data frames which meet conditions.

Usage

subset(x, ...)

Default S3 method:
subset(x, subset, ...)

S3 method for class 'matrix':
subset(x, subset, select, drop = FALSE, ...)

S3 method for class 'data.frame':
subset(x, subset, select, drop = FALSE, ...)

Arguments

x object to be subsetted.

subset logical expression indicating elements or rows to keep: missing values are taken
as false.

select expression, indicating columns to select from a data frame.

drop passed on to[indexing operator.

... further arguments to be passed to or from other methods.

Details

This is a generic function, with methods supplied for matrices, data frames and vectors (including
lists). Packages and users can add further methods.

For ordinary vectors, the result is simplyx[subset & !is.na(subset)] .

For data frames, thesubset argument works on the rows. Note thatsubset will be evaluated
in the data frame, so columns can be referred to (by name) as variables in the expression (see the
examples).

Theselect argument exists only for the methods for data frames and matrices. It works by first
replacing column names in the selection expression with the corresponding column numbers in the
data frame and then using the resulting integer vector to index the columns. This allows the use of
the standard indexing conventions so that for example ranges of columns can be specified easily, or
single columns can be dropped (see the examples).

The drop argument is passed on to the indexing method for matrices and data frames: note that
the default for matrices is different from that for indexing.

412 substitute

Value

An object similar tox contain just the selected elements (for a vector), rows and columns (for a
matrix or data frame), and so on.

Author(s)

Peter Dalgaard and Brian Ripley

See Also

[, transform

Examples

subset(airquality, Temp > 80, select = c(Ozone, Temp))
subset(airquality, Day == 1, select = -Temp)
subset(airquality, select = Ozone:Wind)

with(airquality, subset(Ozone, Temp > 80))

sometimes requiring a logical 'subset' argument is a nuisance
nm <- rownames(state.x77)
start_with_M <- nm %in% grep("^M", nm, value=TRUE)
subset(state.x77, start_with_M, Illiteracy:Murder)

substitute Substituting and Quoting Expressions

Description

substitute returns the parse tree for the (unevaluated) expressionexpr , substituting any vari-
ables bound inenv .

quote simply returns its argument. The argument is not evaluated and can be any R expression.

Usage

substitute(expr, env)
quote(expr)

Arguments

expr Any syntactically validR expression

env An environment or a list object. Defaults to the current evaluation environment.

substitute 413

Details

The typical use ofsubstitute is to create informative labels for data sets and plots. The
myplot example below shows a simple use of this facility. It uses the functionsdeparse and
substitute to create labels for a plot which are character string versions of the actual arguments
to the functionmyplot .

Substitution takes place by examining each component of the parse tree as follows: If it is not a
bound symbol inenv , it is unchanged. If it is a promise object, i.e., a formal argument to a function
or explicitly created usingdelayedAssign () , the expression slot of the promise replaces the
symbol. If it is an ordinary variable, its value is substituted, unlessenv is .GlobalEnv in which
case the symbol is left unchanged.

substitute is a primitive function so positional matching is used and names of supplied argu-
ments are ignored.

Value

Themodeof the result is generally"call" but may in principle be any type. In particular, single-
variable expressions have mode"name" and constants have the appropriate base mode.

Note

Substitute works on a purely lexical basis. There is no guarantee that the resulting expression makes
any sense.

Substituting and quoting often causes confusion when the argument isexpression(...) . The
result is a call to theexpression constructor function and needs to be evaluated witheval to
give the actual expression object.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

missing for argument ‘missingness’,bquote for partial substitution,sQuote anddQuote for
adding quotation marks to strings.

Examples

require(graphics)
(s.e <- substitute(expression(a + b), list(a = 1))) #> expression(1 + b)
(s.s <- substitute(a + b, list(a = 1))) #> 1 + b
c(mode(s.e), typeof(s.e)) # "call", "language"
c(mode(s.s), typeof(s.s)) # (the same)
but:
(e.s.e <- eval(s.e)) #> expression(1 + b)
c(mode(e.s.e), typeof(e.s.e)) # "expression", "expression"

substitute(x <- x + 1, list(x=1)) # nonsense

myplot <- function(x, y)
plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

414 substr

Simple examples about lazy evaluation, etc:

f1 <- function(x, y = x) { x <- x + 1; y }
s1 <- function(x, y = substitute(x)) { x <- x + 1; y }
s2 <- function(x, y) { if(missing(y)) y <- substitute(x); x <- x + 1; y }
a <- 10
f1(a)# 11
s1(a)# 11
s2(a)# a
typeof(s2(a))# "symbol"

substr Substrings of a Character Vector

Description

Extract or replace substrings in a character vector.

Usage

substr(x, start, stop)
substring(text, first, last = 1000000)
substr(x, start, stop) <- value
substring(text, first, last = 1000000) <- value

Arguments

x, text a character vector.

start, first integer. The first element to be replaced.

stop, last integer. The last element to be replaced.

value a character vector, recycled if necessary.

Details

substring is compatible with S, withfirst andlast instead ofstart andstop . For vector
arguments, it expands the arguments cyclically to the length of the longestprovidednone are of zero
length.

When extracting, ifstart is larger than the string length then"" is returned.

For the extraction functions,x or text will be converted to a character vector byas.character
if it is not already one.

For the replacement functions, ifstart is larger than the string length then no replacement is done.
If the portion to be replaced is longer than the replacement string, then only the portion the length
of the string is replaced.

If any argument is anNAelement, the corresponding element of the answer isNA.

Value

Forsubstr , a character vector of the same length and with the same attributes asx (after possible
coercion).

For substring , a character vector of length the longest of the arguments. This will have names
taken fromx (if it has any after coercion, repeated as needed), and other attributes copied fromx if
it is the longest of the arguments).

sum 415

Note

The S4 version ofsubstring<- ignoreslast ; this version does not.

These functions are often used withnchar to truncate a display. That does not really work (you
want to limit the width, not the number of characters, so it would be better to usestrtrim), but
at least make sure you usenchar(type="c") .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (substring .)

See Also

strsplit , paste , nchar .

Examples

substr("abcdef",2,4)
substring("abcdef",1:6,1:6)
strsplit is more efficient ...

substr(rep("abcdef",4),1:4,4:5)
x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")
substr(x, 2, 5)
substring(x, 2, 4:6)

substring(x, 2) <- c("..", "+++")
x

sum Sum of Vector Elements

Description

sum returns the sum of all the values present in its arguments.

Usage

sum(..., na.rm = FALSE)

Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values be removed?

416 summary

Details

This is a generic function: methods can be defined for it directly or via theSummarygroup generic.
For this to work properly, the arguments... should be unnamed, and dispatch is on the first
argument.

If na.rm is FALSEanNAvalue in any of the arguments will cause a value ofNA to be returned,
otherwiseNAvalues are ignored.

Logical true values are regarded as one, false values as zero. For historical reasons,NULL is ac-
cepted and treated as if it wereinteger(0) .

Value

The sum. If all of... are of type integer or logical, then the sum is integer, and in that case the
result will beNA(with a warning) if integer overflow occurs. Otherwise it is a length-one numeric
or complex vector.

NB: the sum of an empty set is zero, by definition.

S4 methods

This is part of the S4Summary group generic. Methods for it must use the signaturex, ...,
na.rm .

‘plotmath’ for the use ofsum in plot annotation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

summary Object Summaries

Description

summary is a generic function used to produce result summaries of the results of various model
fitting functions. The function invokes particularmethods which depend on theclass of the
first argument.

Usage

summary(object, ...)

Default S3 method:
summary(object, ..., digits = max(3, getOption("digits")-3))
S3 method for class 'data.frame':
summary(object, maxsum = 7,

digits = max(3, getOption("digits")-3), ...)

S3 method for class 'factor':
summary(object, maxsum = 100, ...)

S3 method for class 'matrix':
summary(object, ...)

svd 417

Arguments

object an object for which a summary is desired.

maxsum integer, indicating how many levels should be shown forfactor s.

digits integer, used for number formatting with signif () (for
summary.default) or format () (for summary.data.frame).

... additional arguments affecting the summary produced.

Details

For factor s, the frequency of the firstmaxsum - 1 most frequent levels is shown, where the
less frequent levels are summarized in"(Others)" (resulting inmaxsumfrequencies).

The functionssummary.lm andsummary.glm are examples of particular methods which sum-
marize the results produced bylm andglm .

Value

The form of the value returned bysummary depends on the class of its argument. See the docu-
mentation of the particular methods for details of what is produced by that method.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

anova , summary.glm , summary.lm .

Examples

summary(attenu, digits = 4) #-> summary.data.frame(...), default precision
summary(attenu $ station, maxsum = 20) #-> summary.factor(...)

lst <- unclass(attenu$station) > 20 # logical with NAs
summary.default() for logicals -- different from *.factor:
summary(lst)
summary(as.factor(lst))

svd Singular Value Decomposition of a Matrix

Description

Compute the singular-value decomposition of a rectangular matrix.

Usage

svd(x, nu = min(n, p), nv = min(n, p), LINPACK = FALSE)

La.svd(x, nu = min(n, p), nv = min(n, p))

418 svd

Arguments

x a real or complex matrix whose SVD decomposition is to be computed.

nu the number of left singular vectors to be computed. This must between0 andn
= nrow(x) .

nv the number of right singular vectors to be computed. This must be between0
andp = ncol(x) .

LINPACK logical. Should LINPACK be used (for compatibility withR < 1.7.0)? In this
casenu must be0, nrow(x) or ncol(x) .

Details

The singular value decomposition plays an important role in many statistical techniques.svd and
La.svd provide two slightly different interfaces. The main functions used are the LAPACK rou-
tines DGESDD and ZGESVD;svd(LINPACK = TRUE) provides an interface to the LINPACK
routine DSVDC, purely for backwards compatibility.

Computing the singular vectors is the slow part for large matrices. The computation will be more
efficient if nu <= min(n, p) andnv <= min(n, p) , and even more efficient if one or both
are zero.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

Value

The SVD decomposition of the matrix as computed by LAPACK/LINPACK,

X = UDV ′,

whereU andV are orthogonal,V ′ meansV transposed, andD is a diagonal matrix with the
singular valuesDii. Equivalently,D = U ′XV , which is verified in the examples, below.

The returned value is a list with components

d a vector containing the singular values ofx , of lengthmin(n, p) .

u a matrix whose columns contain the left singular vectors ofx , present ifnu >
0. Dimensionc(n, nu) .

v a matrix whose columns contain the right singular vectors ofx , present ifnv >
0. Dimensionc(p, nv) .

For La.svd the return value replacesv by vt , the (conjugated if complex) transpose ofv .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978)LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999)LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line athttp://www.netlib.org/lapack/lug/lapack_lug.html .

See Also

eigen , qr .

http://www.netlib.org/lapack/lug/lapack_lug.html

sweep 419

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
X <- hilbert(9)[,1:6]
(s <- svd(X))
D <- diag(s$d)
s$u %*% D %*% t(s$v) # X = U D V'
t(s$u) %*% X %*% s$v # D = U' X V

sweep Sweep out Array Summaries

Description

Return an array obtained from an input array by sweeping out a summary statistic.

Usage

sweep(x, MARGIN, STATS, FUN="-", check.margin=TRUE, ...)

Arguments

x an array.

MARGIN a vector of indices giving the extents ofx which correspond toSTATS.

STATS the summary statistic which is to be swept out.

FUN the function to be used to carry out the sweep. In the case of binary operators
such as"/" etc., the function name must backquoted or quoted. (FUNis found
by a call tomatch.fun .)

check.margin logical. If TRUE(the default), warn if the length or dimensions ofSTATSdo
not match the specified dimensions ofx . Set toFALSE for a small speed gain
when youknowthat dimensions match.

... optional arguments toFUN.

Details

The consistency check amongSTATS, MARGINand x is stricter if STATS is an array than if
it is a vector. In the vector case, some kinds of recycling are allowed without a warning. Use
sweep(x,MARGIN,as.array(STATS)) if STATS is a vector and you want to be warned if
any recycling occurs.

Value

An array with the same shape asx , but with the summary statistics swept out.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply on whichsweep used to be based;scale for centering and scaling.

420 switch

Examples

require(stats) # for median
med.att <- apply(attitude, 2, median)
sweep(data.matrix(attitude), 2, med.att)# subtract the column medians

More sweeping:
A <- array(1:24, dim = 4:2)

no warnings in normal use
sweep(A, 1, 5)
(A.min <- apply(A, 1, min)) # == 1:4
sweep(A, 1, A.min)
sweep(A, 1:2, apply(A, 1:2, median))

warnings when mismatch
sweep(A, 1, 1:3)## STATS does not recycle
sweep(A, 1, 6:1)## STATS is longer

exact recycling:
sweep(A, 1, 1:2)## no warning
sweep(A, 1, as.array(1:2))## warning

switch Select One of a List of Alternatives

Description

switch evaluatesEXPRand accordingly chooses one of the further arguments (in...).

Usage

switch(EXPR, ...)

Arguments

EXPR an expression evaluating to a number or a character string.

... the list of alternatives, given explicitly.

Details

If the value ofEXPRis an integer between 1 andnargs()-1 then the corresponding element of
... is evaluated and the result returned.

If EXPRreturns a character string then that string is used to match the names of the elements in
... . If there is an exact match then that element is evaluated and returned if there is one, otherwise
the next element is chosen, e.g.,switch("cc", a=1, cc=, d=2) evaluates to2.

In the case of no match, if there’s a further argument inswitch that one is returned, otherwise
NULL.

Warning

Beware of partial matching: an alternativeE = foo will match the first argumentEXPRunless
that is named. See the examples for good practice in naming the first argument.

Syntax 421

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats)
centre <- function(x, type) {

switch(type,
mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
centre(x, "mean")
centre(x, "median")
centre(x, "trimmed")

ccc <- c("b","QQ","a","A","bb")
for(ch in ccc)

cat(ch,":",switch(EXPR = ch, a=1, b=2:3), "\n")
for(ch in ccc)

cat(ch,":",switch(EXPR = ch, a=, A=1, b=2:3, "Otherwise: last"),"\n")

Numeric EXPR don't allow an 'otherwise':
for(i in c(-1:3,9)) print(switch(i, 1,2,3,4))

Syntax Operator Syntax and Precedence

Description

OutlinesR syntax and gives the precedence of operators

Details

The following unary and binary operators are defined. They are listed in precedence groups, from
highest to lowest.

[[[indexing
:: ::: access variables in a name space
$ @ component / slot extraction
^ exponentiation (right to left)
- + unary minus and plus
: sequence operator
%any% special operators
* / multiply, divide
+ - (binary) add, subtract
< > <= >= == != ordering and comparison
! negation
& && and
| || or

422 Sys.getenv

~ as in formulae
-> ->> rightwards assignment
= assignment (right to left)
<- <<- assignment (right to left)
? help (unary and binary)

Within an expression operators of equal precedence are evaluated from left to right except where
indicated.

The links in theSee Alsosection cover most other aspects of the basic syntax.

Note

There are substantial precedence differences betweenR and S. In particular, in S? has the same
precedence as (binary)+ - and& && | || have equal precedence.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic , Comparison , Control , Extract , Logic , NumericConstants , Paren ,
Quotes , Reserved .

TheR Language Definitionmanual.

Sys.getenv Get Environment Variables

Description

Sys.getenv obtains the values of the environment variables.

Usage

Sys.getenv(x = NULL, unset = "")

Arguments

x a character vector, orNULL.

unset a character string.

Details

Both arguments will be coerced to character if necessary.

Settingunset = NA will enable unset variables and those set to the value"" to be distinguished,
if the OS does.

Sys.glob 423

Value

A vector of the same length asx , with the variable names as itsnames attribute. Each element
holds the value of the environment variable named by the corresponding component ofx (or the
value ofunset if no environment variable with that name was found).

On most platformsSys.getenv() will return a named vector giving the values of all the envi-
ronment variables, collated in the current locale. (It may be confused by names containing"="
which some platforms allow but POSIX does not.)

See Also

Sys.putenv , Sys.getlocale for the locale in use,getwd for the working directory.

Examples

whether HOST is set will be shell-dependent e.g. Solaris' csh does not.
Sys.getenv(c("R_HOME", "R_PAPERSIZE", "R_PRINTCMD", "HOST"))

names(s <- Sys.getenv()) # all settings (the values could be very long)

Language and Locale settings -- but rather use Sys.getlocale()
s[grep("^L(C|ANG)", names(s))]

Sys.glob Wildcard Expansion on File Paths

Description

Function to do wildcard expansion (also known as ‘globbing’) on file paths.

Not all platforms support this.

Usage

Sys.glob(paths, dirmark = FALSE)

Arguments

paths character vector of patterns for relative or absolute filepaths.

dirmark logical: should matches to directories from patterns that do not already end in/
have a slash appended? May not be supported on all platforms.

Details

This expands wildcards in file paths. For precise details, see your system’s documentation on the
glob system call. There is a POSIX 1003.2 standard (seehttp://www.opengroup.org/
onlinepubs/009695399/functions/glob.html) but some OSes will go beyond this
(in particular some BSD-based OSes also do tilde expansion, seepath.expand).

All systems should interpret* (match zero or more characters),? (match a single character) and[
(begin a character class or range). If a filename starts with. this must be matched explicitly. By
default paths ending in/ will be accepted and matched only to directories.

The rest of these details are indicative (and based on the POSIX standard).

http://www.opengroup.org/onlinepubs/009695399/functions/glob.html
http://www.opengroup.org/onlinepubs/009695399/functions/glob.html

424 Sys.info

[begins a character class. If the first character in[...] is not ! , this is a character class which
matches a single character against any of the characters specified. The class cannot be empty, so]
can be included provided it is first. If the first character is! , the character class matches a single
character which isnoneof the specified characters.

Character classes can include ranges such as[A-Z] : include- as a character by having it first or
last in a class. (The interpretation of ranges should be locale-specific, so the example is not a good
idea in an Estonian locale.)

One can remove the special meaning of?, * and[by preceding them by a backslash (except within
a character class).

Value

A character vector of matched file paths. The order is system-specific (but in the order of the
elements ofpaths): it is normally collated in either the current locale or in byte (ASCII) order.

Directory errors are normally ignored, so the matches are to accessible file paths (but not necessarily
accessible files).

On platforms which do not have theglob system call (nor, as for R under Windows, an emulation),
paths is returned unchanged.

See Also

path.expand .

Quotesfor handling backslashes in character strings.

Examples

Not run:
Sys.glob(file.path(R.home(), "library", "*", "R", "*.rdx"))
End(Not run)

Sys.info Extract System and User Information

Description

Reports system and user information.

Usage

Sys.info()

Details

This function is not implemented on allR platforms, and returnsNULLwhen not available. Where
possible it is based on POSIX system calls.

Sys.info() returns details of the platformR is running on, whereasR.version gives details
of the platformR was built on: they may well be different.

sys.parent 425

Value

A character vector with fields

sysname The operating system.

release The OS release.

version The OS version.

nodename A name by which the machine is known on the network (if any).

machine A concise description of the hardware.

login The user’s login name, or"unknown" if it cannot be ascertained.

user The name of the real user ID, or"unknown" if it cannot be ascertained.

The first five fields come from theuname(2) system call. The login name comes from
getlogin(2) , and the user name fromgetpwuid(getuid())

Note

The meaning of OS ‘release’ and ‘version’ is system-dependent and there is no guarantee that the
node or login or user names will be what you might reasonably expect. (In particular on some Linux
distributions the login name is unknown from sessions with re-directed inputs.)

See Also

.Platform , andR.version .

Examples

Sys.info()
An alternative (and probably better) way to get the login name on Unix
Sys.getenv("LOGNAME")

sys.parent Functions to Access the Function Call Stack

Description

These functions provide access toenvironment s (‘frames’ in S terminology) associated with
functions further up the calling stack.

Usage

sys.call(which = 0)
sys.frame(which = 0)
sys.nframe()
sys.function(which = 0)
sys.parent(n = 1)

sys.calls()
sys.frames()
sys.parents()
sys.on.exit()
sys.status()
parent.frame(n = 1)

426 sys.parent

Arguments

which the frame number if non-negative, the number of frames to go back if negative.

n the number of generations to go back. (See the ‘Details’ section.)

Details

.GlobalEnv is given number 0 in the list of frames. Each subsequent function evaluation in-
creases the frame stack by 1 and the call, function definition and the environment for evaluation of
that function are returned bysys.call , sys.function andsys.frame with the appropriate
index.

sys.call , sys.frame andsys.function accept integer values for the argumentwhich .
Non-negative values ofwhich are frame numbers whereas negative values are counted back from
the frame number of the current evaluation.

The parent frame of a function evaluation is the environment in which the function was called.
It is not necessarily numbered one less than the frame number of the current evaluation, nor is it
the environment within which the function was defined.sys.parent returns the number of the
parent frame ifn is 1 (the default), the grandparent ifn is 2, and so on. See also the Note.

sys.nframe returns an integer, the number of the current frame as described in the first paragraph.

sys.calls andsys.frames give a pairlist of all the active calls and frames, respectively, and
sys.parents returns an integer vector of indices of the parent frames of each of those frames.

Notice that even though thesys. xxx functions (exceptsys.status) are interpreted, their con-
texts are not counted nor are they reported. There is no access to them.

sys.status() returns a list with componentssys.calls , sys.parents and
sys.frames , the results of calls to those three functions (which this will include the call
to sys.status : see the first example).

sys.on.exit() returns the expression stored for use byon.exit in the function currently
being evaluated. (Note that this differs from S, which returns a list of expressions for the current
frame and its parents.)

parent.frame(n) is a convenient shorthand forsys.frame(sys.parent(n)) (imple-
mented slightly more efficiently).

Value

sys.call returns a call, sys.function a function definition, andsys.frame and
parent.frame return an environment.

For the other functions, see the ‘Details’ section.

Note

Strictly,sys.parent andparent.frame refer to thecontextof the parent interpreted function.
So internal functions (which may or may not set contexts and so may or may not appear on the call
stack) are not counted, and S3 methods can also do suprising things.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (notparent.frame .)

sys.parent 427

See Also

eval for a usage ofsys.frame andparent.frame .

Examples

require(utils)

Note: the first two examples will give different results
if run by example().
ff <- function(x) gg(x)
gg <- function(y) sys.status()
str(ff(1))

gg <- function(y) {
ggg <- function() {

cat("current frame is", sys.nframe(), "\n")
cat("parents are", sys.parents(), "\n")
print(sys.function(0)) # ggg
print(sys.function(2)) # gg

}
if(y > 0) gg(y-1) else ggg()

}
gg(3)

t1 <- function() {
aa <- "here"
t2 <- function() {

in frame 2 here
cat("current frame is", sys.nframe(), "\n")
str(sys.calls()) ## list with two components t1() and t2()
cat("parents are frame numbers", sys.parents(), "\n") ## 0 1
print(ls(envir=sys.frame(-1))) ## [1] "aa" "t2"
invisible()

}
t2()

}
t1()

test.sys.on.exit <- function() {
on.exit(print(1))
ex <- sys.on.exit()
str(ex)
cat("exiting...\n")

}
test.sys.on.exit()
gives 'language print(1)', prints 1 on exit

An example where the parent is not the next frame up the stack
since method dispatch uses a frame.
as.double.foo <- function(x)
{

str(sys.calls())
print(sys.frames())
print(sys.parents())
print(sys.frame(-1)); print(parent.frame())
x

428 Sys.setenv

}
t2 <- function(x) as.double(x)
a <- structure(pi, class = "foo")
t2(a)

Sys.setenv Set or Unset Environment Variables

Description

Sys.setenv sets environment variables (for other processes called from withinR or future calls
to Sys.getenv from thisR process).

Sys.unsetenv removes environment variables.

Usage

Sys.setenv(...)

Sys.unsetenv(x)

Arguments

... named arguments with values coercible to a character string.

x a character vector, or an object coercible to character.

Details

The namessetenv andputenv come from different Unix traditions:R also hasSys.putenv ,
but this is now deprecated. The internal code usessetenv if available, otherwiseputenv .

Non-standardR names must be quoted inSys.setenv : see the examples. Most platforms (and
POSIX) do not allow names containing"=" .

Value

A logical vector, with elements being true if (un)setting the corresponding variable succeeded. (For
Sys.unsetenv this includes attempting to remove a non-existent variable.)

Note

Not all systems need supportSys.setenv (although all known current platforms do) nor
Sys.unsetenv . If Sys.unsetenv is not supported, it will at least try to set the value of
the environment variable to"" , with a warning.

See Also

Sys.getenv , Startupfor ways to set environment variables for theR session.

setwd for the working directory.

Sys.sleep 429

Examples

print(Sys.setenv(R_TEST="testit", "A+C"=123)) # `A+C` could also be used
Sys.getenv("R_TEST")
Sys.unsetenv("R_TEST") # may warn and not succeed
Sys.getenv("R_TEST", unset=NA)

Sys.sleep Suspend Execution for a Time Interval

Description

Suspend execution ofR expressions for a given number of seconds

Usage

Sys.sleep(time)

Arguments

time The time interval to suspend execution for, in seconds.

Details

Using this function allowsR to be given very low priority and hence not to interfere with more
important foreground tasks. A typical use is to allow a process launched fromR to set itself up and
read its input files beforeR execution is resumed.

The intention is that this function suspends execution ofR expressions but wakes the process up
often enough to respond to GUI events, typically every 0.5 seconds.

There is no guarantee that the process will sleep for the whole of the specified interval, and it may
well take slightly longer in real time to resume execution. The resolution of the time interval is
system-dependent, but will normally be down to 0.02 secs or better. (On modern Unix-alikes it will
be better than 1ms.)

Value

InvisibleNULL.

Note

This function may not be implemented on all systems.

Examples

testit <- function(x)
{

p1 <- proc.time()
Sys.sleep(x)
proc.time() - p1 # The cpu usage should be negligible

}
testit(3.7)

430 sys.source

sys.source Parse and Evaluate Expressions from a File

Description

Parses expressions in the given file, and then successively evaluates them in the specified environ-
ment.

Usage

sys.source(file, envir = baseenv(), chdir = FALSE,
keep.source = getOption("keep.source.pkgs"))

Arguments

file a character string naming the file to be read from

envir anR object specifying the environment in which the expressions are to be eval-
uated. May also be a list or an integer. The default valueNULLcorresponds to
evaluation in the base environment. This is probably not what you want; you
should typically supply an explicitenvir argument.

chdir logical; if TRUE, theR working directory is changed to the directory containing
file for evaluating.

keep.source logical. If TRUE, functions keep their source including comments, see
options (keep.source = *) for more details.

Details

For large files,keep.source = FALSE may save quite a bit of memory. In order for the code
being evaluated to use the correct environment (for example, in global assignments), source code in
packages should calltopenv () , which will return the name space, if any, the environment set up
by sys.source , or the global environment if a saved image is being used.

See Also

source , andlibrary which usessys.source .

Examples

a simple way to put some objects in an environment
high on the search path
tmp <- tempfile()
writeLines("aaa <- pi", tmp)
env <- attach(NULL, name = "myenv")
sys.source(tmp, env)
unlink(tmp)
search()
aaa
detach("myenv")

Sys.time 431

Sys.time Get Current Date, Time and Timezone

Description

Sys.time andSys.Date returns the system’s idea of the current date with and without time,
andSys.timezone returns the current time zone.

Usage

Sys.time()
Sys.Date()
Sys.timezone()

Details

Sys.time returns an absolute date-time value which can be converted in various time zones and
may return different days.

Sys.Date returns the day in the current timezone.

Value

Sys.time returns an object of class"POSIXct" (seeDateTimeClasses). On some systems it
will have sub-second accuracy, but on others it will increment in seconds. On systems conforming
to POSIX 1003.1-2001 the time will be reported in microsecond increments.

Sys.Date returns an object of class"Date" (seeDate).

Sys.timezone returns an OS-specific character string, possibly an empty string. It may be
possible to set the timezone via the environment variable"TZ" : seeas.POSIXlt .

See Also

date for the system time in a fixed-format character string; the elapsed time component of
proc.time for possibly finer resolution in changes in time.

Examples

Sys.time()
print with possibly greater accuracy:
op <- options(digits.secs=6)
Sys.time()
options(op)

locale-specific version of date()
format(Sys.time(), "%a %b %d %X %Y")

Sys.Date()

Sys.timezone()

432 system

Sys.which Find Full Paths of Executables

Description

This is an interface to the system commandwhich .

Usage

Sys.which(names)

Arguments

names Character vector of names of possible executables.

Details

The system commandwhich reports on the full names of an executable (including an executable
script) found on the current path.

Value

A character vector of the same length asnames, named bynames. The elements are either the
full path to the executable/script or"" if no executable of that name was found.

Examples

the first two are likely to exist everywhere
texi2dvi exists on most Unix-alikes and under MiKTeX
Sys.which(c("ftp", "ping", "texi2dvi", "this-does-not-exist"))

system Invoke a System Command

Description

system invokes the OS command specified bycommand.

Usage

system(command, intern = FALSE, ignore.stderr = FALSE,
wait = TRUE, input = NULL, show.output.on.console = TRUE,
minimized = FALSE, invisible = TRUE)

system 433

Arguments

command the system command to be invoked, as a string.

intern a logical (notNA) which indicates whether to make the output of the command
anR object. Not available unlesspopen is supported on the platform.

ignore.stderr
a logical indicating whether error messages written to ‘stderr’ should be ig-
nored.

wait a logical indicating whether theR interpreter should wait for the command to
finish, or run it asynchronously. This will be ignored (and the interpreter will
always wait) ifintern = TRUE .

input if a character vector is supplied, this is copied one string per line to a temporary
file, and the standard input ofcommandis redirected to the file.

show.output.on.console, minimized, invisible
arguments that are accepted on other platforms but ignored on this one, with a
warning.

Details

command is parsed as a command plus arguments separated by spaces. So if the path to the
command (or a filepath argument) contains spaces, it must be quoted e.g. byshQuote .

How the command is run differs by platform: Unix-alikes use a shell (‘/bin/sh’ by default), and
Windows executes the command directly (extensions.exe , .com) or as a batch file (extensions
.cmd and.bat).

If intern is TRUEthenpopen is used to invoke the command and the output collected, line by
line, into anR character vector. If intern is FALSE then the C functionsystem is used to
invoke the command.

The ordering of arguments after the first two has changed from time to time: it is recommended to
name all arguments after the first.

Value

If intern = TRUE , a character vector giving the output of the command, one line per character
string. (Output lines of more than 8095 characters will be split.) If the command could not be run
or gives an error this will be reported on the shell’s ‘stderr’ (unlesspopen is not supported, when
there is anR error).

If intern = FALSE , the return value is an error code (0 for success), given the invisible attribute
(so needs to be printed explicitly). If the command could not be run for any reason, the value is
256*127 = 52512 . Otherwise ifwait = TRUE the value is 256 times the error code returned
by the command, and ifwait = FALSE it is 0 (the conventional success value).

Stdout and stderr

Error messages written to ‘stderr’ will be sent by the shell to the terminal unlessignore.stderr
= TRUE. They can be captured (in the most likely shells) by

system("some command 2>&1", intern=TRUE)

What happens to output sent to ‘stdout’ and ‘stderr’ if intern = FALSE is interface-specific,
and it is unsafe to assume that such messages will appear on the console (they do on the MacOS X
console but not on thegnomeGUIconsole, for example).

434 system.file

Note

wait is implemented by appending& to the command: this is shell-dependent, but required by
POSIX and so widely supported.

See Also

.Platform for platform-specific variables.

Examples

list all files in the current directory using the -F flag
Not run: system("ls -F")

t1 is a character vector, each one
representing a separate line of output from who
(if the platform has popen and who)
t1 <- try(system("who", intern = TRUE))

try(system("ls fizzlipuzzli", intern = TRUE, ignore.stderr = TRUE))
empty since file doesn't exist

system.file Find Names of R System Files

Description

Finds the full file names of files in packages etc.

Usage

system.file(..., package = "base", lib.loc = NULL)

Arguments

... character strings, specifying subdirectory and file(s) within some package. The
default, none, returns the root of the package. Wildcards are not supported.

package a character string with the name of a single package. An error occurs if more
than one package name is given.

lib.loc a character vector with path names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

Value

A character vector of positive length, containing the file names that matched... , or the empty
string,"" , if none matched. If matching the root of a package, there is no trailing separator.

As a special case,system.file() gives the root of thebasepackage only.

See Also

R.home for the root directory of theR installation,list.files

system.time 435

Examples

system.file() # The root of the 'base' package
system.file(package = "stats") # The root of package 'stats'
system.file("INDEX")
system.file("help", "AnIndex", package = "splines")

system.time CPU Time Used

Description

Return CPU (and other) times thatexpr used.

Usage

system.time(expr, gcFirst = TRUE)
unix.time(expr, gcFirst = TRUE)

Arguments

expr Valid R expression to be timed.

gcFirst Logical - should a garbage collection be performed immediately before the tim-
ing? Default isTRUE.

Details

system.time calls the functionproc.time , evaluatesexpr , and then callsproc.time once
more, returning the difference between the twoproc.time calls.

unix.time is an alias ofsystem.time , for compatibility with S.

Timings of evaluations of the same expression can vary considerably depending on whether the
evaluation triggers a garbage collection. WhengcFirst is TRUEa garbage collection (gc) will be
performed immediately before the evaluation ofexpr . This will usually produce more consistent
timings.

Value

A object of class"proc_time" : seeproc.time for details.

Note

It is possible to compileR without support forsystem.time , when the function will throw an
error.

See Also

proc.time , time which is for time series.

436 t

Examples

require(stats)
system.time(for(i in 1:100) mad(runif(1000)))
Not run:
exT <- function(n = 1000) {

Purpose: Test if system.time works ok; n: loop size
system.time(for(i in 1:n) x <- mean(rt(1000, df=4)))

}
#-- Try to interrupt one of the following (using Ctrl-C / Escape):
exT() #- about 3 secs on a 1GHz PIII
system.time(exT()) #~ +/- same
End(Not run)

t Matrix Transpose

Description

Given a matrix ordata.frame x , t returns the transpose ofx .

Usage

t(x)

Arguments

x a matrix or data frame, typically.

Details

This is a generic function for which methods can be written. The description here applies to the
default and"data.frame" methods.

A data frame is first coerced to a matrix: seeas.matrix . Whenx is a vector, it is treated as a
column, i.e., the result is a 1-row matrix.

Value

A matrix, with dim anddimnames constructed appropriately from those ofx , and other attributes
except names copied across.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm for permuting the dimensions of arrays.

table 437

Examples

a <- matrix(1:30, 5,6)
ta <- t(a) ##-- i.e., a[i, j] == ta[j, i] for all i,j :
for(j in seq(ncol(a)))

if(! all(a[, j] == ta[j,])) stop("wrong transpose")

table Cross Tabulation and Table Creation

Description

table uses the cross-classifying factors to build a contingency table of the counts at each combi-
nation of factor levels.

Usage

table(..., exclude = c(NA, NaN), dnn = list.names(...),
deparse.level = 1)

as.table(x, ...)
is.table(x)

S3 method for class 'table':
as.data.frame(x, row.names = NULL, ...,

responseName = "Freq")

Arguments

... one of more objects which can be interpreted as factors (including character
strings), or a list (or data frame) whose components can be so interpreted. (For
as.table andas.data.frame , arguments passed to specific methods.)

exclude values to use in the exclude argument offactor when interpreting non-factor
objects; if specified, levels to remove from all factors in... .

dnn the names to be given to the dimensions in the result (thedimnames names).

deparse.level
controls how the defaultdnn is constructed. See details.

x an arbitraryR object, or an object inheriting from class"table" for the
as.data.frame method.

row.names a character vector giving the row names for the data frame.

responseName The name to be used for the column of table entries, usually counts.

Details

If the argumentdnn is not supplied, the internal functionlist.names is called to compute the
‘dimname names’. If the arguments in... are named, those names are used. For the remain-
ing arguments,deparse.level = 0 gives an empty name,deparse.level = 1 uses the
supplied argument if it is a symbol, anddeparse.level = 2 will deparse the argument.

Only whenexclude is specified (i.e., not by default), willtable potentially drop levels of factor
arguments.

438 table

Note (again!) thatexclude has no effect on factor arguments; if these containNA’s and you want
to tabulate them, usetable(factor(., exclude=NULL), ...) ; see the examples.

Thesummary method for class"table" (used for objects created bytable or xtabs) which
gives basic information and performs a chi-squared test for independence of factors (note that the
functionchisq.test currently only handles 2-d tables).

Value

table() returns acontingency table, an object ofclass "table" , an array of integer values.
Note that unlike S the result is always an array, a 1D array if one factor is given.

as.table andis.table coerce to and test for contingency table, respectively.

Theas.data.frame method for objects inheriting from class"table" can be used to convert
the array-based representation of a contingency table to a data frame containing the classifying
factors and the corresponding entries (the latter as component named byresponseName). This
is the inverse ofxtabs .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

tabulate is the underlying function and allows finer control.

Use ftable for printing (and more) of multidimensional tables. margin.table ,
prop.table , addmargins .

Examples

require(stats) # for rpois and xtabs
Simple frequency distribution
table(rpois(100,5))
Check the design:
with(warpbreaks, table(wool, tension))
table(state.division, state.region)

simple two-way contingency table
with(airquality, table(cut(Temp, quantile(Temp)), Month))

a <- letters[1:3]
table(a, sample(a)) # dnn is c("a", "")
table(a, sample(a), deparse.level = 0) # dnn is c("", "")
table(a, sample(a), deparse.level = 2) # dnn is c("a", "sample(a)")

xtabs() <-> as.data.frame.table() :
UCBAdmissions ## already a contingency table
DF <- as.data.frame(UCBAdmissions)
class(tab <- xtabs(Freq ~ ., DF)) # xtabs & table
tab *is* "the same" as the original table:
all(tab == UCBAdmissions)
all.equal(dimnames(tab), dimnames(UCBAdmissions))

a <- rep(c(NA, 1/0:3), 10)
table(a)

tabulate 439

table(a, exclude=NULL)
b <- factor(rep(c("A","B","C"), 10))
table(b)
table(b, exclude="B")
d <- factor(rep(c("A","B","C"), 10), levels=c("A","B","C","D","E"))
table(d, exclude="B")
print(table(b,d), zero.print = ".")

NA counting:
is.na(d) <- 3:4
d. <- factor(d, exclude=NULL)
d.[1:7]
table(d.) # ", exclude = NULL" is not needed
i.e., if you want to count the NA's of 'd', use
table(factor(d, exclude = NULL))

tabulate Tabulation for Vectors

Description

tabulate takes the integer-valued vectorbin and counts the number of times each integer occurs
in it.

Usage

tabulate(bin, nbins = max(1, bin))

Arguments

bin a numeric vector (of positive integers), or a factor.

nbins the number of bins to be used.

Details

tabulate is used as the basis of thetable function.

If bin is a factor, its internal integer representation is tabulated.

If the elements ofbin are numeric but not integers, they are truncated to the nearest integer.

Value

An integer vector (without names). There is a bin for each of the values1, ..., nbins ; values
outside that range are (silently) ignored.

See Also

table , factor .

440 tapply

Examples

tabulate(c(2,3,5))
tabulate(c(2,3,3,5), nbins = 10)
tabulate(c(-2,0,2,3,3,5)) # -2 and 0 are ignored
tabulate(c(-2,0,2,3,3,5), nbins = 3)
tabulate(factor(letters[1:10]))

tapply Apply a Function Over a “Ragged” Array

Description

Apply a function to each cell of a ragged array, that is to each (non-empty) group of values given
by a unique combination of the levels of certain factors.

Usage

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

Arguments

X an atomic object, typically a vector.

INDEX list of factors, each of same length asX. The elements are coerced to factors by
as.factor .

FUN the function to be applied. In the case of functions like+, %*%, etc., the function
name must be quoted. IfFUNis NULL, tapply returns a vector which can be used
to subscript the multi-way arraytapply normally produces.

... optional arguments toFUN: the Note section.

simplify If FALSE, tapply always returns an array of mode"list" . If TRUE(the
default), then ifFUNalways returns a scalar,tapply returns an array with the
mode of the scalar.

Value

When FUN is present,tapply calls FUN for each cell that has any data in it. IfFUN returns
a single atomic value for each such cell (e.g., functionsmean or var) and whensimplify is
TRUE, tapply returns a multi-wayarraycontaining the values, andNA for the empty cells. The
array has the same number of dimensions asINDEX has components; the number of levels in a
dimension is the number of levels (nlevels()) in the corresponding component ofINDEX.

Note that contrary to S,simplify = TRUE always returns an array, possibly 1-dimensional.

If FUNdoes not return a single atomic value,tapply returns an array of modelist whose
components are the values of the individual calls toFUN, i.e., the result is a list with adim attribute.

When there is an array answer, itsdimnames are named by the names ofINDEX and are based on
the levels of the grouping factors (possibly after coercion).

For a list result, the elements corresponding to empty cells areNULL.

Note

Optional arguments toFUNsupplied by the... argument are not divided into cells. It is therefore
inappropriate forFUNto expect additional arguments with the same length asX.

taskCallback 441

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

the convenience functionsby andaggregate (using tapply); apply , lapply with its ver-
sionssapply andmapply .

Examples

require(stats)
groups <- as.factor(rbinom(32, n = 5, prob = 0.4))
tapply(groups, groups, length) #- is almost the same as
table(groups)

contingency table from data.frame : array with named dimnames
tapply(warpbreaks$breaks, warpbreaks[,-1], sum)
tapply(warpbreaks$breaks, warpbreaks[, 3, drop = FALSE], sum)

n <- 17; fac <- factor(rep(1:3, length = n), levels = 1:5)
table(fac)
tapply(1:n, fac, sum)
tapply(1:n, fac, sum, simplify = FALSE)
tapply(1:n, fac, range)
tapply(1:n, fac, quantile)

example of ... argument: find quarterly means
tapply(presidents, cycle(presidents), mean, na.rm = TRUE)

ind <- list(c(1, 2, 2), c("A", "A", "B"))
table(ind)
tapply(1:3, ind) #-> the split vector
tapply(1:3, ind, sum)

taskCallback Add or remove a top-level task callback

Description

addTaskCallback registers an R function that is to be called each time a top-level task is com-
pleted.

removeTaskCallback un-registers a function that was registered earlier via
addTaskCallback .

These provide low-level access to the internal/native mechanism for managing task-completion
actions. One can usetaskCallbackManager at the S-language level to manage S functions
that are called at the completion of each task. This is easier and more direct.

Usage

addTaskCallback(f, data = NULL, name = character(0))
removeTaskCallback(id)

442 taskCallback

Arguments

f the function that is to be invoked each time a top-level task is successfully com-
pleted. This is called with 5 or 4 arguments depending on whetherdata is
specified or not, respectively. The return value should be a logical value in-
dicating whether to keep the callback in the list of active callbacks or discard
it.

data if specified, this is the 5-th argument in the call to the callback functionf .

id a string or an integer identifying the element in the internal callback list to be
removed. Integer indices are 1-based, i.e the first element is 1. The names
of currently registered handlers is available usinggetTaskCallbackNames
and is also returned in a call toaddTaskCallback .

name character: names to be used.

Details

Top-level tasks are individual expressions rather than entire lines of input. Thus an input line of the
form expression1 ; expression2 will give rise to 2 top-level tasks.

A top-level task callback is called with the expression for the top-level task, the result of the top-
level task, a logical value indicating whether it was successfully completed or not (always TRUE at
present), and a logical value indicating whether the result was printed or not. If thedata argument
was specified in the call toaddTaskCallback , that value is given as the fifth argument.

The callback function should return a logical value. If the value is FALSE, the callback is removed
from the task list and will not be called again by this mechanism. If the function returns TRUE, it
is kept in the list and will be called on the completion of the next top-level task.

Value

addTaskCallback returns an integer value giving the position in the list of task callbacks that
this new callback occupies. This is only the current position of the callback. It can be used to
remove the entry as long as no other values are removed from earlier positions in the list first.

removeTaskCallback returns a logical value indicating whether the specified element was
removed. This can fail (i.e., returnFALSE) if an incorrect name or index is given that does not
correspond to the name or position of an element in the list.

Note

This is an experimental feature and the interface may be changed in the future.

There is also C-level access to top-level task callbacks to allow C routines rather than R functions
be used.

See Also

getTaskCallbackNames taskCallbackManager http://developer.
r-project.org/TaskHandlers.pdf

Examples

times <- function(total = 3, str="Task a") {
ctr <- 0

function(expr, value, ok, visible) {

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

taskCallbackManager 443

ctr <<- ctr + 1
cat(str, ctr, "\n")
if(ctr == total) {

cat("handler removing itself\n")
}
return(ctr < total)

}
}

add the callback that will work for
4 top-level tasks and then remove itself.
n <- addTaskCallback(times(4))

now remove it, assuming it is still first in the list.
removeTaskCallback(n)

Not run:
There is no point in running this
as

addTaskCallback(times(4))

sum(1:10)
sum(1:10)
sum(1:10)
sum(1:10)
sum(1:10)

End(Not run)

taskCallbackManager
Create an R-level task callback manager

Description

This provides an entirely S-language mechanism for managing callbacks or actions that are invoked
at the conclusion of each top-level task. Essentially, we register a single R function from this
manager with the underlying, native task-callback mechanism and this function handles invoking
the other R callbacks under the control of the manager. The manager consists of a collection of
functions that access shared variables to manage the list of user-level callbacks.

Usage

taskCallbackManager(handlers = list(), registered = FALSE,
verbose = FALSE)

Arguments

handlers this can be a list of callbacks in which each element is a list with an ele-
ment named"f" which is a callback function, and an optional element named
"data" which is the 5-th argument to be supplied to the callback when it is
invoked. Typically this argument is not specified, and one usesadd to register
callbacks after the manager is created.

444 taskCallbackManager

registered a logical value indicating whether theevaluate function has already been
registered with the internal task callback mechanism. This is usuallyFALSEand
the first time a callback is added via theadd function, theevaluate function
is automatically registered. One can control when the function is registered by
specifyingTRUEfor this argument and callingaddTaskCallback manually.

verbose a logical value, which ifTRUE, causes information to be printed to the con-
sole about certain activities this dispatch manager performs. This is useful for
debugging callbacks and the handler itself.

Value

A list containing 6 functions:

add register a callback with this manager, giving the function, an optional 5-th ar-
gument, an optional name by which the callback is stored in the list, and a
register argument which controls whether theevaluate function is regis-
tered with the internal C-level dispatch mechanism if necessary.

remove remove an element from the manager’s collection of callbacks, either by name
or position/index.

evaluate the ‘real’ callback function that is registered with the C-level dispatch mech-
anism and which invokes each of the R-level callbacks within this manager’s
control.

suspend a function to set the suspend state of the manager. If it is suspended, none of
the callbacks will be invoked when a task is completed. One sets the state by
specifying a logical value for thestatus argument.

register a function to register theevaluate function with the internal C-level dispatch
mechanism. This is done automatically by theadd function, but can be called
manually.

callbacks returns the list of callbacks being maintained by this manager.

Note

This is an experimental feature and the interface may be changed in the future.

See Also

addTaskCallback , removeTaskCallback , getTaskCallbackNames \ http://
developer.r-project.org/TaskHandlers.pdf

Examples

create the manager
h <- taskCallbackManager()

add a callback
h$add(function(expr, value, ok, visible) {

cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")

look at the internal callbacks.
getTaskCallbackNames()

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

taskCallbackNames 445

look at the R-level callbacks
names(h$callbacks())

getTaskCallbackNames()
removeTaskCallback("R-taskCallbackManager")

taskCallbackNames Query the names of the current internal top-level task callbacks

Description

This provides a way to get the names (or identifiers) for the currently registered task callbacks that
are invoked at the conclusion of each top-level task. These identifiers can be used to remove a
callback.

Usage

getTaskCallbackNames()

Value

A character vector giving the name for each of the registered callbacks which are invoked when a
top-level task is completed successfully. Each name is the one used when registering the callbacks
and returned as the in the call toaddTaskCallback .

Note

One can usetaskCallbackManager to manage user-level task callbacks, i.e., S-language func-
tions, entirely within the S language and access the names more directly.

See Also

addTaskCallback , removeTaskCallback , taskCallbackManager \ http:
//developer.r-project.org/TaskHandlers.pdf

Examples

n <- addTaskCallback(function(expr, value, ok, visible) {
cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")

getTaskCallbackNames()

now remove it by name
removeTaskCallback("simpleHandler")

h <- taskCallbackManager()
h$add(function(expr, value, ok, visible) {

cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")
getTaskCallbackNames()
removeTaskCallback("R-taskCallbackManager")

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

446 tempfile

tempfile Create Names for Temporary Files

Description

tempfile returns a vector of character strings which can be used as names for temporary files.

Usage

tempfile(pattern = "file", tmpdir = tempdir())
tempdir()

Arguments

pattern a non-empty character vector giving the initial part of the name.

tmpdir a non-empty character vector giving the directory name

Details

If pattern has length greater than one then the result is of the same length giving a temporary file
name for each component ofpattern .

The names are very likely to be unique among calls totempfile in an R session and across
simultaneousR sessions. The filenames are guaranteed not to be currently in use.

The file name is made of the pattern and a random suffix in hex. By default, the filenames will be in
the directory given bytempdir() . This will be a subdirectory of the temporary directory found
by the following rule. The environment variablesTMPDIR, TMPandTEMPare checked in turn and
the first found which points to a writable directory is used: if none succeeds ‘/tmp’ is used.

Value

For tempfile a character vector giving the names of possible (temporary) files. Note that no files
are generated bytempfile .

For tempdir , the path of the per-session temporary directory.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlink for deleting files.

Examples

tempfile(c("ab", "a b c")) # give file name with spaces in!

tempdir() # working on all platforms with quite platform dependent result

textConnection 447

textConnection Text Connections

Description

Input and output text connections.

Usage

textConnection(object, open = "r", local = FALSE)

textConnectionValue(con)

Arguments

object character. A description of the connection. For an input this is anR character
vector object, and for an output connection the name for theR character vector
to receive the output, orNULL(for none).

open character. Either"r" (or equivalently"") for an input connection or"w" or
"a" for an output connection.

local logical. Used only for output connections. IfTRUE, output is assigned to a
variable in the calling environment. Otherwise the global environment is used.

con An output text connection.

Details

An input text connection is opened and the character vector is copied at time the connection object
is created, andclose destroys the copy.

An output text connection is opened and creates anR character vector of the given name in the user’s
workspace or in the calling environment, depending on the value of thelocal argument. This ob-
ject will at all times hold the completed lines of output to the connection, andisIncomplete will
indicate if there is an incomplete final line. Closing the connection will output the final line, com-
plete or not. (A line is complete once it has been terminated by end-of-line, represented by"\n" in
R.) The output character vector has locked bindings (seelockBinding) until close is called on
the connection. The character vector can also be retrievedvia textConnectionValue , which
is the only way to do so ifobject = NULL .

Opening a text connection withmode = "a" will attempt to append to an existing character vector
with the given name in the user’s workspace or the calling environment. If none is found (even if
an object exists of the right name but the wrong type) a new character vector will be created, with a
warning.

You cannotseek on a text connection, andseek will always return zero as the position.

Value

For textConnection , a connection object of class"textConnection" which inherits from
class"connection" .

For textConnectionValue, a character vector.

448 textConnection

Note

As output text connections keep the character vector up to date line-by-line, they are relatively
expensive to use, and it is often better to use an anonymousfile () connection to collect output.

On platforms wherevsnprintf does not return the needed length of output (e.g., Windows)
there is a 100,000 character limit on the length of line for output connections: longer lines will be
truncated with a warning.

References

Chambers, J. M. (1998)Programming with Data. A Guide to the S Language.Springer.
[S has input text conections only.]

See Also

connections , showConnections , pushBack , capture.output .

Examples

zz <- textConnection(LETTERS)
readLines(zz, 2)
scan(zz, "", 4)
pushBack(c("aa", "bb"), zz)
scan(zz, "", 4)
close(zz)

zz <- textConnection("foo", "w")
writeLines(c("testit1", "testit2"), zz)
cat("testit3 ", file=zz)
isIncomplete(zz)
cat("testit4\n", file=zz)
isIncomplete(zz)
close(zz)
foo

Not run:
capture R output: use part of example from help(lm)
zz <- textConnection("foo", "w")
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
sink(zz)
anova(lm.D9 <- lm(weight ~ group))
cat("\nSummary of Residuals:\n\n")
summary(resid(lm.D9))
sink()
close(zz)
cat(foo, sep = "\n")
End(Not run)

tilde 449

tilde Tilde Operator

Description

Tilde is used to separate the left- and right-hand sides in model formula.

Usage

y ~ model

Arguments

y, model symbolic expressions.

Details

The left-hand side is optional, and one-sided formulae are used in some contexts.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical models.Chapter 2 ofStatistical Models in Seds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

formula

toString Convert an R Object to a Character String

Description

This is a helper function forformat to produce a single character string describing anR object.

Usage

toString(x, ...)

Default S3 method:
toString(x, width = NULL, ...)

Arguments

x The object to be converted.

width Suggestion for the maximum field width. Values ofNULL or 0 indicate no
maximum. The minimum value accepted is 6 and smaller values are taken as 6.

... Optional arguments passed to or from methods.

450 trace

Details

This is a generic function for which methods can be written: only the default method is described
here. Most methods should honor thewidth argument to specify the maximum display width (as
measured bynchar (type = "width") of the result.

The default method first convertsx to character and then concatenates the elements separated by
", " . If width is supplied and is notNULL, the default method returns the firstwidth -
4 characters of the result with.... appended, if the full result would use more thanwidth
characters.

Value

A character vector of length 1 is returned.

Author(s)

Robert Gentleman

See Also

format

Examples

x <- c("a", "b", "aaaaaaaaaaa")
toString(x)
toString(x, width=8)

trace Interactive Tracing and Debugging of Calls to a Function or Method

Description

A call to trace allows you to insert debugging code (e.g., a call tobrowser or recover) at
chosen places in any function. A call tountrace cancels the tracing. Specified methods can be
traced the same way, without tracing all calls to the function. Trace code can be anyR expression.
Tracing can be temporarily turned on or off globally by callingtracingState .

Usage

trace(what, tracer, exit, at, print, signature,
where = topenv(parent.frame()), edit = FALSE)

untrace(what, signature = NULL, where = topenv(parent.frame()))

tracingState(on = NULL)
.doTrace(expr, msg)

trace 451

Arguments

what The name (quoted or not) of a function to be traced or untraced. Foruntrace
or for trace with more than one argument, more than one name can be given
in the quoted form, and the same action will be applied to each one.

tracer Either a function or an unevaluated expression. The function will be called or
the expression will be evaluated either at the beginning of the call, or before
those steps in the call specified by the argumentat . See the details section.

exit Either a function or an unevaluated expression. The function will be called or
the expression will be evaluated on exiting the function. See the details section.

at optional numeric vector. If supplied,tracer will be called just before the
corresponding step in the body of the function. See the details section.

print If TRUE(as per default), a descriptive line is printed before any trace expression
is evaluated.

signature If this argument is supplied, it should be a signature for a method for function
what . In this case, the method, andnot the function itself, is traced.

edit For complicated tracing, such as tracing within a loop inside the function, you
will need to insert the desired calls by editing the body of the function. If so,
supply theedit argument either asTRUE, or as the name of the editor you want
to use. Thentrace() will call edit and use the version of the function after
you edit it. See the details section for additional information.

where where to look for the function to be traced; by default, the top-level environment
of the call totrace .

An important use of this argument is to trace a function when it is called from
a package with a name space. The current name space mechanism imports the
functions to be called (with the exception of functions in the base package).
The functions being called arenot the same objects seen from the top-level (in
general, the imported packages may not even be attached). Therefore, you must
ensure that the correct versions are being traced. The way to do this is to set
argumentwhere to a function in the name space. The tracing computations
will then start looking in the environment of that function (which will be the
name space of the corresponding package). (Yes, it’s subtle, but the semantics
here are central to how name spaces work in R.)

on logical; a call to the support functiontracingState returnsTRUEif tracing
is globally turned on,FALSE otherwise. An argument of one or the other of
those values sets the state. If the tracing state isFALSE, none of the trace actions
will actually occur (used, for example, by debugging functions to shut off tracing
during debugging).

expr, msg

arguments to the support function.doTrace , calls to which are inserted into the modified function
or method:expr is the tracing action (such as a call tobrowser() , andmsg is a string identifying
the place where the trace action occurs.

Details

Thetrace function operates by constructing a revised version of the function (or of the method, if
signature is supplied), and assigning the new object back where the original was found. If only
thewhat argument is given, a line of trace printing is produced for each call to the function (back
compatible with the earlier version oftrace).

452 trace

The object constructed bytrace is from a class that extends"function" and which contains
the original, untraced version. A call tountrace re-assigns this version.

If the argumenttracer or exit is the name of a function, the tracing expression will be a call
to that function, with no arguments. This is the easiest and most common case, with the functions
browser andrecover the likeliest candidates; the former browses in the frame of the function
being traced, and the latter allows browsing in any of the currently active calls.

The tracer or exit argument can also be an unevaluated expression (such as returned by a call
to quote or substitute). This expression itself is inserted in the traced function, so it will
typically involve arguments or local objects in the traced function. An expression of this form is
useful if you only want to interact when certain conditions apply (and in this case you probably
want to supplyprint=FALSE in the call totrace also).

When theat argument is supplied, it should be a vector of integers referring to the substeps of the
body of the function (this only works if the body of the function is enclosed in{ ...} . In this
casetracer is notcalled on entry, but instead just before evaluating each of the steps listed inat .
(Hint: you don’t want to try to count the steps in the printed version of a function; instead, look at
as.list(body(f)) to get the numbers associated with the steps in functionf .)

An intrinsic limitation in theexit argument is that it won’t work if the function itself uses
on.exit , since the existing calls will override the one supplied bytrace .

Tracing does not nest. Any call totrace replaces previously traced versions of that function or
method (except for edited versions as discussed below), anduntrace always restores an untraced
version. (Allowing nested tracing has too many potentials for confusion and for accidentally leaving
traced versions behind.)

When theedit argument is used repeatedly with no call tountrace on the same function or
method in between, the previously edited version is retained. If you want to throw away all the
previous tracing and then edit, calluntrace before the next call totrace . Editing may be
combined with automatic tracing; just supply the other arguments such astracer , and theedit
argument as well. Theedit=TRUE argument uses the default editor (seeedit).

Tracing primitive functions (builtins and specials) from the base package works, but only by a spe-
cial mechanism and not very informatively. Tracing a primitive causes the primitive to be replaced
by a function with argument . . . (only). You can get a bit of information out, but not much. A
warning message is issued whentrace is used on a primitive.

The practice of saving the traced version of the function back where the function came from means
that tracing carries over from one session to another,if the traced function is saved in the session
image. (In the next session,untrace will remove the tracing.) On the other hand, functions that
were in a package, not in the global environment, are not saved in the image, so tracing expires with
the session for such functions.

Tracing a method is basically just like tracing a function, with the exception that the traced version
is stored by a call tosetMethod rather than by direct assignment, and so is the untraced version
after a call tountrace .

The version oftrace described here is largely compatible with the version in S-Plus, although
the two work by entirely different mechanisms. The S-Plustrace uses the session frame, with
the result that tracing never carries over from one session to another (R does not have a session
frame). Another relevant distinction has nothing directly to do withtrace : The browser in S-Plus
allows changes to be made to the frame being browsed, and the changes will persist after exiting
the browser. TheR browser allows changes, but they disappear when the browser exits. This may
be relevant in that the S-Plus version allows you to experiment with code changes interactively, but
theR version does not. (A future revision may include a ‘destructive’ browser forR.)

trace 453

Value

In the simple version (just the first argument), invisibleNULL. Otherwise, the traced function(s)
name(s). The relevant consequence is the assignment that takes place.

Note

The version of function tracing that includes any of the arguments except for the function name
requires themethodspackage (because it uses special classes of objects to store and restore versions
of the traced functions).

If methods dispatch is not currently on,trace will load the methods name space, but will not put
the methods package on the search list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

browser andrecover , the likeliest tracing functions; also,quote andsubstitute for con-
structing general expressions.

Examples

require(graphics)

Very simple use
trace(sum)
hist(stats::rnorm(100)) # shows about 3-4 calls to sum()
untrace(sum)

if(.isMethodsDispatchOn()) { # non-simple use needs 'methods' package

f <- function(x, y) {
y <- pmax(y, .001)
x ^ y

}

arrange to call the browser on entering and exiting
function f
trace("f", browser, exit = browser)

instead, conditionally assign some data, and then browse
on exit, but only then. Don't bother me otherwise

trace("f", quote(if(any(y < 0)) yOrig <- y),
exit = quote(if(exists("yOrig")) browser()),
print = FALSE)

trace a utility function, with recover so we
can browse in the calling functions as well.

trace("as.matrix", recover)

turn off the tracing

454 traceback

untrace(c("f", "as.matrix"))

Not run:
trace calls to the function lm() that come from
the nlme package.
(The function nlme is in that package, and the package
has a name space, so the where= argument must be used
to get the right version of lm)

trace(lm, exit = recover, where = nlme)
End(Not run)
}

traceback Print Call Stacks

Description

By defaulttraceback() prints the call stack of the last uncaught error, i.e., the sequence of calls
that lead to the error. This is useful when an error occurs with an unidentifiable error message. It
can also be used to print arbitrary lists of deparsed calls.

Usage

traceback(x = NULL, max.lines = getOption("deparse.max.lines"))

Arguments

x NULL(default, meaning.Traceback), or a list or pairlist of deparsed calls.

max.lines The maximum number of lines to be printedper call. The default is unlimited.

Details

The stack of the last uncaught error is stored as a list of deparsed calls in.Traceback , which
traceback prints in a user-friendly format. The stack of deparsed calls always contains all func-
tion calls and all foreign function calls (such as.Call): if profiling is in progress it will include
calls to some primitive functions. (Calls to builtins are included, but not to specials.)

Errors which are caughtvia try or tryCatch do not generate a traceback, so what is printed is
the call sequence for the last uncaught error, and not necessarily for the last error.

Value

traceback() returns nothing, but prints the deparsed call stack deepest call first. The calls may
print on more than one line, and the first line for each call is labelled by the frame number. The
number of lines printed per call can be limited viamax.lines .

Warning

It is undocumented where.Traceback is stored nor that it is visible, and this is subject to change.
Prior toR 2.4.0 it was stored in the workspace, but no longer.

tracemem 455

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

foo <- function(x) { print(1); bar(2) }
bar <- function(x) { x + a.variable.which.does.not.exist }
Not run:
foo(2) # gives a strange error
traceback()
End(Not run)
2: bar(2)
1: foo(2)
bar
Ah, this is the culprit ...

tracemem Trace Copying of Objects

Description

This function marks an object so that a message is printed whenever the internal function
duplicate is called. This happens when two objects share the same memory and one of them is
modified. It is a major cause of hard-to-predict memory use in R.

Usage

tracemem(x)
untracemem(x)
retracemem(x, previous = NULL)

Arguments

x An R object, not a function or environment orNULL.

previous A value as returned bytracemem or retracemem .

Details

This functionality is optional, determined at compilation, because it makes R run a little more
slowly even when no objects are being traced.tracemem anduntracemem give errors when R
is not compiled with memory profiling;retracemem does not (so it can be left in code during
development).

When an object is traced any copying of the object by the C functionduplicate or by arithmetic
or mathmetical operations produces a message to standard output. The message consists of the
string tracemem , the identifying strings for the object being copied and the new object being
created, and a stack trace showing where the duplication occurred.retracemem() is used to
indicate that a variable should be considered a copy of a previous variable (e.g. after subscripting).

The messages can be turned off withtracingState .

It is not possible to trace functions, as this would conflict withtrace and it is not useful to trace
NULL, environments, promises, weak references, or external pointer objects, as these are not dupli-
cated.

456 transform

Value

A character string for identifying the object in the trace output (an address in hex enclosed in angle
brackets), orNULL(invisibly for untracemem .

See Also

trace , Rprofmem

http://developer.r-project.org/memory-profiling.html

Examples

Not run:
a <- 1:10
tracemem(a)
b and a share memory
b <- a
b[1] <- 1
untracemem(a)

copying in lm
d <- stats::rnorm(10)
tracemem(d)
lm(d ~ a+log(b))

f is not a copy and is not traced
f <- d[-1]
f+1
indicate that f should be traced as a copy of d
retracemem(f, retracemem(d))
f+1
End(Not run)

transform Transform an Object, for Example a Data Frame

Description

transform is a generic function, which—at least currently—only does anything useful with data
frames. transform.default converts its first argument to a data frame if possible and calls
transform.data.frame .

Usage

transform(`_data`, ...)

Arguments

_data The object to be transformed

... Further arguments of the formtag=value

http://developer.r-project.org/memory-profiling.html

Trig 457

Details

The ... arguments totransform.data.frame are tagged vector expressions, which are
evaluated in the data frame_data . The tags are matched againstnames(_data) , and for those
that match, the value replace the corresponding variable in_data , and the others are appended to
_data .

Value

The modified value of_data .

Note

Prior to R 2.3.0, the first argument was namedx , but this caused trouble if people wanted to create
a variable of that name. Names starting with an underscore are syntactically invalid, so the current
choice should be less problematic.

If some of the values are not vectors of the appropriate length, you deserve whatever you get!

Author(s)

Peter Dalgaard

See Also

subset , list , data.frame

Examples

transform(airquality, Ozone = -Ozone)
transform(airquality, new = -Ozone, Temp = (Temp-32)/1.8)

attach(airquality)
transform(Ozone, logOzone = log(Ozone)) # marginally interesting ...
detach(airquality)

Trig Trigonometric Functions

Description

These functions give the obvious trigonometric functions. They respectively compute the cosine,
sine, tangent, arc-cosine, arc-sine, arc-tangent, and the two-argument arc-tangent.

Usage

cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)
atan2(y, x)

458 try

Arguments

x, y numeric or complex vectors.

Details

The arc-tangent of two argumentsatan2(y, x) returns the angle between the x-axis and the
vector from the origin to(x, y), i.e., for positive argumentsatan2(y, x) == atan(y/x) .

Angles are in radians, not degrees (i.e., a right angle isπ/2).

All exceptatan2 are generic functions: methods can be defined for them individually or via the
Math group generic.

Complex values

For the inverse trigonometric functions, branch cuts are defined as in Abramowitz and Stegun, figure
4.4, page 79. Continuity on the branch cuts is standard.

For asin() andacos() , there are two cuts, both along the real axis:(−∞,−1] and [1,∞).
Functionsasin() andacos() are continuous from above on the interval(−∞,−1] and contin-
uous from below on[1,∞).

Foratan() there are two cuts, both along the pure imaginary axis:(−∞i,−1i] and[1i,∞i). It is
continuous from the left on the interval(−∞i,−1i] and from the right on the interval[1i,∞i).

S4 methods

All exceptatan2 are S4 generic functions: methods can be defined for them individually or via
theMath group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Abramowitz, M. and Stegun, I. A. (1972).Handbook of Mathematical Functions,New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

try Try an Expression Allowing Error Recovery

Description

try is a wrapper to run an expression that might fail and allow the user’s code to handle error-
recovery.

Usage

try(expr, silent = FALSE)

Arguments

expr anR expression to try.

silent logical: should the report of error messages be suppressed?

try 459

Details

try evaluates an expression and traps any errors that occur during the evaluation. If
an error occurs then the error message is printed to thestderr connection unless
options("show.error.messages") is false or the call includessilent = TRUE . The
error message is also stored in a buffer where it can be retrieved bygeterrmessage . (This
should not be needed as the value returned in case of an error contains the error message.)try is
implemented usingtryCatch .

Value

The value of the expression ifexpr is evaluated without error, but an invisible object of class
"try-error" containing the error message if it fails.

See Also

options for setting error handlers and suppressing the printing of error messages;
geterrmessage for retrieving the last error message.tryCatch provides another means of
catching and handling errors.

Examples

this example will not work correctly in example(try), but
it does work correctly if pasted in
options(show.error.messages = FALSE)
try(log("a"))
print(.Last.value)
options(show.error.messages = TRUE)

alternatively,
print(try(log("a"), TRUE))

run a simulation, keep only the results that worked.
set.seed(123)
x <- stats::rnorm(50)
doit <- function(x)
{

x <- sample(x, replace=TRUE)
if(length(unique(x)) > 30) mean(x)
else stop("too few unique points")

}
alternative 1
res <- lapply(1:100, function(i) try(doit(x), TRUE))
alternative 2
Not run:
res <- vector("list", 100)
for(i in 1:100) res[[i]] <- try(doit(x), TRUE)
End(Not run)
unlist(res[sapply(res, function(x) !inherits(x, "try-error"))])

460 unique

typeof The Type of an Object

Description

typeof determines the (R internal) type or storage mode of any object

Usage

typeof(x)

Arguments

x anyR object.

Value

A character string. The possible values are listed in the structureTypeTable in ‘src/main/util.c’.
Current values are the vector types"logical" , "integer" , "double" , "complex" ,
"character" , "raw" and "list" , "NULL" , "closure" (function), "special" and
"builtin" (basic functions and operators),"environment" , "S4" (some S4 objects) and
others that are unlikely to be seen at user level ("symbol" , "pairlist" , "promise" ,
"language" , "char" , "..." , "any" , "expression" , "externalptr" , "bytecode"
and"weakref").

See Also

mode, storage.mode .

isS4 to determine if an object has an S4 class.

Examples

typeof(2)
mode(2)

unique Extract Unique Elements

Description

unique returns a vector, data frame or array likex but with duplicate elements/rows removed.

unique 461

Usage

unique(x, incomparables = FALSE, ...)

Default S3 method:
unique(x, incomparables = FALSE, fromLast = FALSE, ...)

S3 method for class 'matrix':
unique(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

S3 method for class 'array':
unique(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

Arguments

x a vector or a data frame or an array orNULL.

incomparables
a vector of values that cannot be compared. Currently,FALSE is the only pos-
sible value, meaning that all values can be compared.

fromLast logical indicating if duplication should be considered from the last, i.e., the last
(or rightmost) of identical elements will be kept. This only matters fornames
or dimnames .

... arguments for particular methods.

MARGIN the array margin to be held fixed: a single integer.

Details

This is a generic function with methods for vectors, data frames and arrays (including matrices).

The array method calculates for each element of the dimension specified byMARGINif the remain-
ing dimensions are identical to those for an earlier element (in row-major order). This would most
commonly be used for matrices to find unique rows (the default) or columns (withMARGIN = 2).

Note that unlike the Unix commanduniq this omits duplicated and not justrepeatedele-
ments/rows. That is, an element is omitted if it is identical to any previous element and not just
if it is the same as the immediately previous one.

Value

For a vector, an object of the same type ofx , but with only one copy of each duplicated element.
No attributes are copied (so the result has no names).

For a data frame, a data frame is returned with the same columns but possibly fewer rows (and with
row names from the first occurrences of the unique rows).

A matrix or array is subsetted by[, drop = FALSE] , so dimensions and dimnames are copied
appropriately, and the result always has the same number of dimensions asx .

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it isO(n2).

462 unlink

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

duplicated which gives the indices of duplicated elements.

rle which is the equivalent of the Unixuniq -c command.

Examples

x <- c(3:5, 11:8, 8 + 0:5)
(ux <- unique(x))
(u2 <- unique(x, fromLast = TRUE)) # different order
stopifnot(identical(sort(ux), sort(u2)))

length(unique(sample(100, 100, replace=TRUE)))
approximately 100(1 - 1/e) = 63.21

unique(iris)

unlink Delete Files and Directories

Description

unlink deletes the file(s) or directories specified byx .

Usage

unlink(x, recursive = FALSE)

Arguments

x a character vector with the names of the file(s) or directories to be deleted. Wild-
cards (normally ‘*’ and ‘?’) are allowed.

recursive logical. Should directories be deleted recursively?

Details

If recursive = FALSE directories are not deleted, not even empty ones.

file.remove can only remove files, but gives more detailed error information.

Wildcard expansion is done by the internal code ofSys.glob . Wildcards will only be expanded
if the system supports it.

recursive = TRUE is not supported on all platforms, and may be ignored, with a warning.

Value

0 for success,1 for failure. Not deleting a non-existent file is not a failure, nor is being unable to
delete a directory ifrecursive = FALSE .

unlist 463

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

file.remove .

unlist Flatten Lists

Description

Given a list structurex , unlist simplifies it to produce a vector which contains all the atomic
components which occur inx .

Usage

unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

x anR object, typically a list or vector.

recursive logical. Should unlisting be applied to list components ofx?

use.names logical. Should names be preserved?

Details

unlist is generic: you can write methods to handle specific classes of objects, seeInternalMeth-
ods, and note, e.g.,relist with theunlist method forrelistable objects.

If recursive = FALSE , the function will not recurse beyond the first level items inx .

Factors are treated specially. If all non-list elements ofx are factors (or ordered factors) then the
result will be a factor with levels the union of the level sets of the elements, in the order the levels
occur in the level sets of the elements (which means that if all the elements have the same level set,
that is the level set of the result).

x can be an atomic vector, but thenunlist does nothing useful, not even drop names.

By default,unlist tries to retain the naming information present inx . If use.names = FALSE
all naming information is dropped.

Where possible the list elements are coerced to a common mode during the unlisting, and so the
result often ends up as a character vector. Vectors will be coerced to the highest type of the com-
ponents in the hierarchy NULL < raw < logical < integer < real < complex < character < list <
expression: pairlists are treated as lists.

A list is a (generic) vector, and the simplified vector might still be a list (and might be unchanged).
Non-vector elements of the list (for example language elements such as names, formulas and calls)
are not coerced, and so a list containing one or more of these remains a list. (The effect of unlisting
an lm fit is a list which has individual residuals as components.)

464 unname

Value

NULLor an expression or a vector of an appropriate mode to hold the list components.

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression, after coercion of pairlists
to lists.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

c , as.list , relist .

Examples

unlist(options())
unlist(options(), use.names=FALSE)

l.ex <- list(a = list(1:5, LETTERS[1:5]), b = "Z", c = NA)
unlist(l.ex, recursive = FALSE)
unlist(l.ex, recursive = TRUE)

l1 <- list(a="a", b=2, c=pi+2i)
unlist(l1) # a character vector
l2 <- list(a="a", b=as.name("b"), c=pi+2i)
unlist(l2) # remains a list

unname Remove ‘names’ or ‘dimnames’

Description

Remove thenames or dimnames attribute of anR object.

Usage

unname(obj, force = FALSE)

Arguments

obj anR object.

force logical; if true, thedimnames are even removed fromdata.frame s. This
argument is currentlyexperimentaland hence might change!

Value

Object asobj but withoutnames or dimnames .

UseMethod 465

Examples

require(graphics); require(stats)

Answering a question on R-help (14 Oct 1999):
col3 <- 750+ 100*rt(1500, df = 3)
breaks <- factor(cut(col3,breaks=360+5*(0:155)))
z <- table(breaks)
z[1:5] # The names are larger than the data ...
barplot(unname(z), axes= FALSE)

UseMethod Class Methods

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style
of programming. Method dispatch takes place based on the class(es) of the first argument to the
generic function or of the object supplied as an argument toUseMethod or NextMethod .

Usage

UseMethod(generic, object)

NextMethod(generic = NULL, object = NULL, ...)

Arguments

generic a character string naming a function (and not a built-in operator). Required for
UseMethod .

object for UseMethod : an object whose class will determine the method to be dis-
patched. Defaults to the first argument of the enclosing function.

... further arguments to be passed to the next method.

Details

An R object is a data object which has aclass attribute (and this can be tested byis.object).
A class attribute is a character vector giving the names of the classes from which the objectinherits.
If the object does not have a class attribute, it has an implicit class. Matrices and arrays have class
"matrix" or"array" followed by the class of the underlying vector. Most vectors have class
the result ofmode(x) , except that integer vectors have classc("integer", "numeric")
and real vectors have classc("double", "numeric") .

When a function callingUseMethod("fun") is applied to an object with class attribute
c("first", "second") , the system searches for a function calledfun.first and, if it
finds it, applies it to the object. If no such function is found a function calledfun.second is
tried. If no class name produces a suitable function, the functionfun.default is used, if it
exists, or an error results.

Functionmethods can be used to find out about the methods for a particular generic function or
class.

UseMethod is a primitive function so positional matching is used and names of supplied argu-
ments are ignored. It is not the only means of dispatch of methods, for there areinternal generic

466 UseMethod

andgroup genericfunctions.UseMethod currently dispatches on the implicit class even for argu-
ments that are not objects, but the other means of dispatch do not.

NextMethod invokes the next method (determined by the class vector, either of the object supplied
to the generic, or of the first argument to the function containingNextMethod if a method was
invoked directly). NormallyNextMethod is used with only one argument,generic , but if
further arguments are supplied these modify the call to the next method.

NextMethod should not be called except in methods called byUseMethod or from internal
generics (seeInternalGenerics). In particular it will not work inside anonymous calling functions
(e.g.get("print.ts")(AirPassengers)).

Name spaces can register methods for generic functions. To support this,UseMethod and
NextMethod search for methods in two places: first in the environment in which the generic
function is called, and then in the registration data base for the environment in which the generic
is defined (typically a name space). So methods for a generic function need to be available in the
environment of the call to the generic, or they must be registered. (It does not matter whether they
are visible in the environment in which the generic is defined.)

Technical Details

Now for some obscure details that need to appear somewhere. These comments will be slightly
different than those in Chambers(1992). (See also the draft ‘R Language Definition’.)UseMethod
creates a new function call with arguments matched as they came in to the generic. Any local
variables defined before the call toUseMethod are retained (unlike S). Any statements after the
call to UseMethod will not be evaluated asUseMethod does not return.UseMethod can be
called with more than two arguments: a warning will be given and additional arguments ignored.
(They are not completely ignored in S.) If it is called with just one argument, the class of the first
argument of the enclosing function is used asobject : unlike S this is the first actual argument
passed and not the current value of the object of that name.

NextMethod works by creating a special call frame for the next method. If no new arguments are
supplied, the arguments will be the same in number, order and name as those to the current method
but their values will be promises to evaluate their name in the current method and environment. Any
named arguments matched to... are handled specially: they either replace existing arguments of
the same name or are appended to the argument list. They are passed on as the promise that was
supplied as an argument to the current environment. (S does this differently!) If they have been
evaluated in the current (or a previous environment) they remain evaluated. (This is a complex area,
and subject to change: see the draft ‘R Language Definition’.)

The search for methods forNextMethod is slightly different from that forUseMethod . Finding
no fun.default is not necessarily an error, as the search continues to the generic itself. This is
to pick up aninternal genericlike [which has no separate default method, and succeeds only if the
generic is aprimitive function or a wrapper for a.Internal function of the same name. (When a
primitive is called as the default method, argument matching may not work as described above due
to the different semantics of primitives.)

You will see objects such as.Generic , .Method , and.Class used in methods. These are set
in the environment within which the method is evaluated by the dispatch mechanism, which is as
follows:

1. Find the context for the calling function (the generic): this gives us the unevaluated arguments
for the original call.

2. Evaluate the object (usually an argument) to be used for dispatch, and find a method (possibly
the default method) or throw an error.

UserHooks 467

3. Create an environment for evaluating the method and insert special variables (see below) into
that environment. Also copy any variables in the environment of the generic that are not formal
(or actual) arguments.

4. Fix up the argument list to be the arguments of the call matched to the formals of the method.

.Generic is a length-one character vector naming the generic function.

.Method is a character vector (normally of length one) naming the method function. (For functions
in the group genericOps it is of length two.)

.Class is a character vector of classes used to find the next method.NextMethod adds an
attribute"previous" to .Class giving the.Class last used for dispatch, and shifts.Class
along to that used for dispatch.

.GenericCallEnv and.GenericDefEnv are the environments of the call to be generic and
defining the generic respectively. (The latter is used to find methods registered for the generic.)

Note that.Class is set when the generic is called, and is unchanged if the class of the dispatching
argument is changed in a method. It is possible to change the method thatNextMethod would
dispatch by manipulating.Class , but ‘this is not recommended unless you understand the inheri-
tance mechanism thoroughly’ (Chambers & Hastie, 1992, p. 469).

Note

This scheme is calledS3(S version 3). For new projects, it is recommended to use the more flexible
and robustS4scheme provided in themethodspackage.

References

Chambers, J. M. (1992)Classes and methods: object-oriented programming in S.Appendix A of
Statistical Models in Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The draft ‘R Language Definition’.

methods , class , getS3method , is.object .

UserHooks Functions to Get and Set Hooks for Load, Attach, Detach and Unload

Description

These functions allow users to set actions to be taken before packages are attached/detached and
name spaces are (un)loaded.

Usage

getHook(hookName)
setHook(hookName, value,

action = c("append", "prepend", "replace"))

packageEvent(pkgname,
event = c("onLoad", "attach", "detach", "onUnload"))

468 UserHooks

Arguments

hookName character string: the hook name

pkgname character string: the package/name space name. If versioned install has been
used,pkgname should be the unversioned name of the package (but any version
information will be stripped).

event character string: an event for the package

value A function, or foraction="replace" , NULL.

action The action to be taken. The names can be appreviated.

Details

setHook provides a general mechanism for users to register hooks, a list of functions to be called
from system (or user) functions. The initial set of hooks is associated with events on packages/name
spaces: these hooks are named via calls topackageEvent .

To remove a hook completely, callsetHook(hookName, NULL, "replace") .

When anR package is attached bylibrary , it can call initialization code via a function
.First.lib , and when it isdetach -ed it can tidy up via a function.Last.lib . Users can
add their own initialization code via the hooks provided by these functions, functions which will be
called asfunname(pkgname, pkgpath) inside atry call. (The attach hook is called after
.First.lib and the detach hook before.Last.lib .)

If a package has a name space, there are two further actions, when the name space is loaded (before
being attached and after.onLoad is called) and when it is unloaded (after being detached and
before.onUnload). Note that code in these hooks is run without the package being on the search
path, so objects in the package need to be referred to using the double colon operator as in the
example. (Unlike.onLoad , the user hook is run after the name space has been sealed.)

Hooks are normally run in the order shown bygetHook , but the"detach" and"onUnload"
hooks are run in reverse order so the default for package events is to add hooks ‘inside’ existing
ones.

Note that when anR session is finished, packages are not detached and name spaces are not un-
loaded, so the corresponding hooks will not be run.

The hooks are stored in the environment.userHooksEnv in the base package, with ‘mangled’
names.

Value

For getHook function, a list of functions (possible empty). ForsetHook function, no return
value. ForpackageEvent , the derived hook name (a character string).

See Also

library , detach , loadNamespace .

Other hooks may be added later:plot.new andpersp already have them.

Examples

setHook(packageEvent("grDevices", "onLoad"),
function(...) grDevices::ps.options(horizontal=FALSE))

utf8Conversion 469

utf8Conversion Convert to or from UTF-8-encoded Character Vectors

Description

Conversion of UTF-8 encoded character vectors to and from integer vectors.

Usage

utf8ToInt(x)
intToUtf8(x, multiple = FALSE)

Arguments

x object to be converted.

multiple logical: should the conversion be to a single character string or multiple individ-
ual characters?

Details

These will work in any locale, including on machines that do not otherwise support multi-byte
character sets.

Value

utf8ToInt converts a length-one character string encoded in UTF-8 to an integer vector of (nu-
meric) UTF-8 code points.

intToUtf8 converts a vector of (numeric) UTF-8 code points either to a single character string or
a character vector of single characters. (Note that a single character string could contain embedded
nuls.)

vector Vectors

Description

vector produces a vector of the given length and mode.

as.vector , a generic, attempts to coerce its argument into a vector of modemode (the default is
to coerce to whichever mode is most convenient).

is.vector returnsTRUEif x is a vector (of mode logical, integer, real, complex, character, raw
or list if not specified) or expression andFALSEotherwise.

Usage

vector(mode = "logical", length = 0)
as.vector(x, mode = "any")
is.vector(x, mode = "any")

470 vector

Arguments

mode A character string giving an atomic mode or"list" , or (not for vector)
"any" .

length A non-negative integer specifying the desired length.

x An object.

Details

The atomic modes are"logical" , "integer" , "numeric" , "complex" , "character"
and"raw" .

is.vector returnsFALSE if x has any attributes except names. (This is incompatible with S.)
On the other hand,as.vector removesall attributes including names for results of atomic mode.

Note that factors arenot vectors; is.vector returnsFALSE and as.vector converts to a
character vector formode = "any" .

Value

For vector , a vector of the given length and mode. Logical vector elements are initialized to
FALSE, numeric vector elements to0, character vector elements to"" , raw vector elements to
nul bytes and list elements toNULL.

All attributes are removed from the answer if it is of an atomic mode.

Note

as.vector andis.vector are quite distinct from the meaning of the formal class"vector"
in themethodspackage, and henceas (x, "vector") andis (x, "vector") .

modes of "symbol" , "pairlist" and"expression" are allowed but have long been un-
documented.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

c , is.numeric , is.list , etc.

Examples

df <- data.frame(x=1:3, y=5:7)
Not run:
Error:

as.vector(data.frame(x=1:3, y=5:7), mode="numeric")
End(Not run)

x <- c(a = 1, b = 2)
is.vector(x)
as.vector(x)
all.equal(x, as.vector(x)) ## FALSE

###-- All the following are TRUE:

warning 471

is.list(df)
! is.vector(df)
! is.vector(df, mode="list")

is.vector(list(), mode="list")
is.vector(NULL, mode="NULL")

warning Warning Messages

Description

Generates a warning message that corresponds to its argument(s) and (optionally) the expression or
function from which it was called.

Usage

warning(..., call. = TRUE, immediate. = FALSE, domain = NULL)
suppressWarnings(expr)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or a single condition object.

call. logical, indicating if the call should become part of the warning message.

immediate. logical, indicating if the call should be output immediately, even if
getOption (warn) <= 0 .

expr expression to evaluate.

domain seegettext . If NA, messages will not be translated.

Details

The resultdependson the value ofoptions ("warn") and on handlers established in the exe-
cuting code.

If a condition object is supplied it should be the only argument, and further arguments will be
ignored, with a message.

warning signals a warning condition by (effectively) callingsignalCondition . If there are
no handlers or if all handlers return, then the value ofwarn = getOption ("warn") is used
to determine the appropriate action. Ifwarn is negative warnings are ignored; if it is zero they are
stored and printed after the top–level function has completed; if it is one they are printed as they
occur and if it is 2 (or larger) warnings are turned into errors. Callingwarning(immediate.
= TRUE) turnswarn <= 0 into warn = 1 for this call only.

If warn is zero (the default), a read-only variablelast.warning is created. It contains the
warnings which can be printed via a call towarnings .

Warnings will be truncated togetOption ("warning.length") characters, default 1000,
indicated by[... truncated] .

While the warning is being processed, amuffleWarning restart is available. If this restart is
invoked withinvokeRestart , thenwarning returns immediately.

An attempt is made to coerce other types of inputs towarning to character vectors.

suppressWarnings evaluates its expression in a context that ignores all warnings.

472 warnings

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

stop for fatal errors,message for diagnostic messages,warnings , andoptions with argu-
mentwarn= .

gettext for the mechanisms for the automated translation of messages.

Examples

testit <- function() warning("testit")
testit() ## shows call
testit <- function() warning("problem in testit", call. = FALSE)
testit() ## no call
suppressWarnings(warning("testit"))

warnings Print Warning Messages

Description

warnings and itsprint method print the variablelast.warning in a pleasing form.

Usage

warnings(...)

Arguments

... arguments to be passed tocat .

Details

See the decription ofoptions ("warn") for the circumstances under which there is a
last.warning object andwarnings() is used. In essence this is ifoptions(warn =
0) andwarning has been called at least once.

It is possible thatlast.warning refers to the last recorded warning and not to the last warning,
for example ifoptions(warn) has been changed or if a catastrophic error occurred.

Warning

It is undocumented wherelast.warning is stored nor that it is visible, and this is subject to
change. Prior toR 2.4.0 it was stored in the workspace, but no longer.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

weekdays 473

See Also

warning .

Examples

NB this example is intended to be pasted in,
rather than run by example()
ow <- options("warn")
for(w in -1:1) {

options(warn = w); cat("\n warn =",w,"\n")
for(i in 1:3) { cat(i,"..\n"); m <- matrix(1:7, 3,4) }

}
warnings()
options(ow) # reset

weekdays Extract Parts of a POSIXt or Date Object

Description

Extract the weekday, month or quarter, or the Julian time (days since some origin). These are
generic functions: the methods for the internal date-time classes are documented here.

Usage

weekdays(x, abbreviate)
S3 method for class 'POSIXt':
weekdays(x, abbreviate = FALSE)
S3 method for class 'Date':
weekdays(x, abbreviate = FALSE)

months(x, abbreviate)
S3 method for class 'POSIXt':
months(x, abbreviate = FALSE)
S3 method for class 'Date':
months(x, abbreviate = FALSE)

quarters(x, abbreviate)
S3 method for class 'POSIXt':
quarters(x, ...)
S3 method for class 'Date':
quarters(x, ...)

julian(x, ...)
S3 method for class 'POSIXt':
julian(x, origin = as.POSIXct("1970-01-01", tz="GMT"), ...)
S3 method for class 'Date':
julian(x, origin = as.Date("1970-01-01"), ...)

474 which

Arguments

x an object inheriting from class"POSIXt" or "Date" .

abbreviate logical. Should the names be abbreviated?

origin an length-one object inheriting from class"POSIXt" or "Date" .

... arguments for other methods.

Value

weekdays andmonths return a character vector of names in the locale in use.

quarters returns a character vector of"Q1" to "Q4" .

julian returns the number of days (possibly fractional) since the origin, with the origin as a
"origin" attribute.

Note

Other components such as the day of the month or the year are very easy to compute: just use
as.POSIXlt and extract the relevant component.

See Also

DateTimeClasses , Date

Examples

weekdays(.leap.seconds)
months(.leap.seconds)
quarters(.leap.seconds)

which Which indices are TRUE?

Description

Give theTRUEindices of a logical object, allowing for array indices.

Usage

which(x, arr.ind = FALSE)

Arguments

x a logical vector or array.NAs are allowed and omitted (treated as ifFALSE).

arr.ind logical; shouldarr ay indices be returned whenx is an array?

Value

If arr.ind == FALSE (the default), an integer vector withlength equal tosum(x) , i.e., to
the number ofTRUEs inx ; Basically, the result is(1:length(x))[x] .

If arr.ind == TRUE andx is anarray (has adim attribute), the result is a matrix whose rows
each are the indices of one element ofx ; see Examples below.

which.min 475

Author(s)

Werner Stahel and Peter Holzer〈holzer@stat.math.ethz.ch〉, for the array case.

See Also

Logic , which.min for the index of the minimum or maximum, andmatch for the first index
of an element in a vector, i.e., for a scalara, match(a,x) is equivalent tomin(which(x ==
a)) but much more efficient.

Examples

which(LETTERS == "R")
which(ll <- c(TRUE,FALSE,TRUE,NA,FALSE,FALSE,TRUE))#> 1 3 7
names(ll) <- letters[seq(ll)]
which(ll)
which((1:12)%%2 == 0) # which are even?
which(1:10 > 3, arr.ind=TRUE)

(m <- matrix(1:12,3,4))
which(m %% 3 == 0)
which(m %% 3 == 0, arr.ind=TRUE)
rownames(m) <- paste("Case",1:3, sep="_")
which(m %% 5 == 0, arr.ind=TRUE)

dim(m) <- c(2,2,3); m
which(m %% 3 == 0, arr.ind=FALSE)
which(m %% 3 == 0, arr.ind=TRUE)

vm <- c(m)
dim(vm) <- length(vm) #-- funny thing with length(dim(...)) == 1
which(vm %% 3 == 0, arr.ind=TRUE)

which.min Where is the Min() or Max() ?

Description

Determines the location, i.e., index of the (first) minimum or maximum of a numeric vector.

Usage

which.min(x)
which.max(x)

Arguments

x numeric (integer or double) vector, whosemin or max is searched for.

476 with

Value

Missing andNaNvalues are discarded.

an integer of length 1 or 0 (iffx has no non-NAs), giving the index of thefirst minimum or
maximum respectively ofx .

If this extremum is unique (or empty), the results are the same as (but more efficient than)which(x
== min(x)) or which(x == max(x)) respectively.

Author(s)

Martin Maechler

See Also

which , max.col , max, etc.

which.is.max in packagennet differs in breaking ties at random (and having a ‘fuzz’ in the
definition of ties).

Examples

x <- c(1:4,0:5,11)
which.min(x)
which.max(x)

it *does* work with NA's present, by discarding them:
presidents[1:30]
range(presidents, na.rm = TRUE)
which.min(presidents) # 28
which.max(presidents) # 2

with Evaluate an Expression in a Data Environment

Description

Evaluate anR expression in an environment constructed from data, possibly modifying the original
data.

Usage

with(data, expr, ...)
within(data, expr, ...)

Arguments

data data to use for constructing an environment. For the defaultwith method this
may be an environment, a list, a data frame, or an integer as insys.call . For
within , it can be a list or a data frame.

expr expression to evaluate.

... arguments to be passed to future methods.

with 477

Details

with is a generic function that evaluatesexpr in a local environment constructed fromdata .
The environment has the caller’s environment as its parent. This is useful for simplifying calls to
modeling functions.

Note that assignments withinexpr take place in the constructed environment and not in the user’s
workspace.

within is similar, except that it examines the environment after the evaluation ofexpr and makes
the corresponding modifications todata (this may fail in the data frame case if objects are created
which cannot be stored in a data frame), and returns it.within can be used as an alternative to
transform .

Value

For with , the value of the evaluatedexpr . Forwithin , the modified object.

See Also

evalq , attach , assign , transform .

Examples

require(stats); require(graphics)
#examples from glm:
Not run:
library(MASS)
with(anorexia, {

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian)

summary(anorex.1)
})
End(Not run)

aq <- within(airquality, { # Notice that multiple vars can be changed
lOzone<-log(Ozone)
Month<-factor(month.abb[Month])
rm(Day)

})

head(aq)

with(data.frame(u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12)),

list(summary(glm(lot1 ~ log(u), family = Gamma)),
summary(glm(lot2 ~ log(u), family = Gamma))))

example from boxplot:
with(ToothGrowth, {

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,
subset = (supp == "VC"), col = "yellow",
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length", ylim = c(0,35))

boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,

478 write

subset = supp == "OJ", col = "orange")
legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))
})

alternate form that avoids subset argument:
with(subset(ToothGrowth, supp == "VC"),

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,
col = "yellow", main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length", ylim = c(0,35)))

with(subset(ToothGrowth, supp == "OJ"),
boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,

col = "orange"))
legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))

write Write Data to a File

Description

The data (usually a matrix)x are written to filefile . If x is a two-dimensional matrix you need
to transpose it to get the columns infile the same as those in the internal representation.

Usage

write(x, file = "data",
ncolumns = if(is.character(x)) 1 else 5,
append = FALSE, sep = " ")

Arguments

x the data to be written out.

file A connection, or a character string naming the file to write to. If"" , print to the
standard output connection. If it is"|cmd" , the output is piped to the command
given by ‘cmd’.

ncolumns the number of columns to write the data in.

append if TRUEthe datax are appended to the connection.

sep a string used to separate columns. Usingsep = "\t" gives tab delimited
output; default is" " .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

write is a wrapper forcat , which gives further details on the format used.

save for writing anyR objects,write.table for data frames, andscan for reading data.

writeLines 479

Examples

create a 2 by 5 matrix
x <- matrix(1:10,ncol=5)

the file data contains x, two rows, five cols
1 3 5 7 9 will form the first row
write(t(x))

Writing to the "console" 'tab-delimited'
two rows, five cols but the first row is 1 2 3 4 5
write(x, "", sep = "\t")
unlink("data") # tidy up

writeLines Write Lines to a Connection

Description

Write text lines to a connection.

Usage

writeLines(text, con = stdout(), sep = "\n")

Arguments

text A character vector

con A connection object or a character string.

sep character. A string to be written to the connection after each line of text.

Details

If the con is a character string, the function callsfile to obtain a file connection which is opened
for the duration of the function call.

If the connection is open it is written from its current position. If it is not open, it is opened for the
duration of the call and then closed again.

NormallywriteLines is used with a text connection, and the default separator is converted to the
normal separator for that platform (LF on Unix/Linux, CRLF on Windows, CR on Classic MacOS).
For more control, open a binary connection and specify the precise value you want written to the
file in sep . For even more control, usewriteChar on a binary connection.

See Also

connections , writeChar , writeBin , readLines , cat

480 zpackages

zpackages Listing of Packages

Description

.packages returns information about package availability.

Usage

.packages(all.available = FALSE, lib.loc = NULL)

Arguments

all.available
logical; if TRUEreturn a character vector of all available packages inlib.loc .

lib.loc a character vector describing the location ofR library trees to search through, or
NULL. The default value ofNULLcorresponds to all libraries currently known.

Details

.packages() returns the names of the currently attached packagesinvisibly whereas

.packages(all.available = TRUE) gives (visibly)all packages available in the library
location pathlib.loc . If versioned installs have been used, the names returned will be of the
form pkgname_version .

For a package to be regarded as being available it must have a ‘DESCRIPTION’ file containing a
valid version field.

Value

A character vector of package base names, invisible unlessall.available = TRUE .

Author(s)

R core; Guido Masarotto for theall.available=TRUE part of.packages .

See Also

library , .libPaths .

Examples

(.packages()) # maybe just "base"
.packages(all.available = TRUE) # return all available as character vector
require(splines)
(.packages()) # "splines", too
detach("package:splines")

zutils 481

zutils Miscellaneous Internal/Programming Utilities

Description

Miscellaneous internal/programming utilities.

Usage

.standard_regexps()

Details

.standard_regexps returns a list of ‘standard’ regexps, including elements named
valid_package_name and valid_package_version with the obvious meanings. The
regexps are not anchored.

482 zutils

Chapter 2

The datasets package

datasets-package The R Datasets Package

Description

Base R datasets

Details

This package contains a variety of datasets. For a complete list, use
library(help="datasets") .

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team〈R-core@r-project.org〉

ability.cov Ability and Intelligence Tests

Description

Six tests were given to 112 individuals. The covariance matrix is given in this object.

Usage

ability.cov

483

484 airmiles

Details

The tests are described as

general: a non-verbal measure of general intelligence using Cattell’s culture-fair test.

picture: a picture-completion test

blocks: block design

maze: mazes

reading: reading comprehension

vocab: vocabulary

Bartholomew gives both covariance and correlation matrices, but these are inconsistent. Neither are
in the original paper.

Source

Barthlomew, D. J. (1987)Latent Variable Analysis and Factor Analysis.Griffin.

Barthlomew, D. J. and Knott, M. (1990)Latent Variable Analysis and Factor Analysis.Second
Edition, Arnold.

References

Smith, G. A. and Stanley G. (1983) Clockingg: relating intelligence and measures of timed perfor-
mance.Intelligence, 7, 353–368.

Examples

require(stats)
(ability.FA <- factanal(factors = 1, covmat=ability.cov))
update(ability.FA, factors=2)
update(ability.FA, factors=2, rotation="promax")

airmiles Passenger Miles on Commercial US Airlines, 1937–1960

Description

The revenue passenger miles flown by commercial airlines in the United States for each year from
1937 to 1960.

Usage

airmiles

Format

A time series of 24 observations; yearly, 1937–1960.

Source

F.A.A. Statistical Handbook of Aviation.

AirPassengers 485

References

Brown, R. G. (1963)Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice-Hall.

Examples

require(graphics)
plot(airmiles, main = "airmiles data",

xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)

AirPassengers Monthly Airline Passenger Numbers 1949-1960

Description

The classic Box & Jenkins airline data. Monthly totals of international airline passengers, 1949 to
1960.

Usage

AirPassengers

Format

A monthly time series, in thousands.

Source

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976)Time Series Analysis, Forecasting and
Control. Third Edition. Holden-Day. Series G.

Examples

Not run:
These are quite slow and so not run by example(AirPassengers)

The classic 'airline model', by full ML
(fit <- arima(log10(AirPassengers), c(0, 1, 1),

seasonal = list(order=c(0, 1 ,1), period=12)))
update(fit, method = "CSS")
update(fit, x=window(log10(AirPassengers), start = 1954))
pred <- predict(fit, n.ahead = 24)
tl <- pred$pred - 1.96 * pred$se
tu <- pred$pred + 1.96 * pred$se
ts.plot(AirPassengers, 10^tl, 10^tu, log = "y", lty = c(1,2,2))

full ML fit is the same if the series is reversed, CSS fit is not
ap0 <- rev(log10(AirPassengers))
attributes(ap0) <- attributes(AirPassengers)
arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12))
arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12),

method = "CSS")

Structural Time Series

486 airquality

ap <- log10(AirPassengers) - 2
(fit <- StructTS(ap, type= "BSM"))
par(mfrow=c(1,2))
plot(cbind(ap, fitted(fit)), plot.type = "single")
plot(cbind(ap, tsSmooth(fit)), plot.type = "single")
End(Not run)

airquality New York Air Quality Measurements

Description

Daily air quality measurements in New York, May to September 1973.

Usage

airquality

Format

A data frame with 154 observations on 6 variables.

[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1–12)
[,6] Day numeric Day of month (1–31)

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September 30,
1973.

• Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

• Solar.R : Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from
0800 to 1200 hours at Central Park

• Wind : Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport

• Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data) and the
National Weather Service (meteorological data).

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983)Graphical Methods for Data
Analysis. Belmont, CA: Wadsworth.

anscombe 487

Examples

require(graphics)
pairs(airquality, panel = panel.smooth, main = "airquality data")

anscombe Anscombe’s Quartet of “Identical” Simple Linear Regressions

Description

Fourx-y datasets which have the same traditional statistical properties (mean, variance, correlation,
regression line, etc.), yet are quite different.

Usage

anscombe

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19

y1, y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Source

Tufte, Edward R. (1989)The Visual Display of Quantitative Information, 13–14. Graphics Press.

References

Anscombe, Francis J. (1973) Graphs in statistical analysis.American Statistician, 27, 17–21.

Examples

require(stats); require(graphics)
summary(anscombe)

##-- now some "magic" to do the 4 regressions in a loop:
ff <- y ~ x
for(i in 1:4) {

ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
or ff[[2]] <- as.name(paste("y", i, sep=""))
ff[[3]] <- as.name(paste("x", i, sep=""))
assign(paste("lm.",i,sep=""), lmi <- lm(ff, data= anscombe))
print(anova(lmi))

}

See how close they are (numerically!)
sapply(objects(pattern="lm\\.[1-4]$"), function(n) coef(get(n)))
lapply(objects(pattern="lm\\.[1-4]$"),

function(n) coef(summary(get(n))))

Now, do what you should have done in the first place: PLOTS

488 attenu

op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))
for(i in 1:4) {

ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
plot(ff, data =anscombe, col="red", pch=21, bg = "orange", cex = 1.2,

xlim=c(3,19), ylim=c(3,13))
abline(get(paste("lm.",i,sep="")), col="blue")

}
mtext("Anscombe's 4 Regression data sets", outer = TRUE, cex=1.5)
par(op)

attenu The Joyner–Boore Attenuation Data

Description

This data gives peak accelerations measured at various observation stations for 23 earthquakes in
California. The data have been used by various workers to estimate the attenuating affect of distance
on ground acceleration.

Usage

attenu

Format

A data frame with 182 observations on 5 variables.

[,1] event numeric Event Number
[,2] mag numeric Moment Magnitude
[,3] station factor Station Number
[,4] dist numeric Station-hypocenter distance (km)
[,5] accel numeric Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration and velocity
from strong-motion records including records from the 1979 Imperial Valley, California earthquake.
USGS Open File report 81-365. Menlo Park, Ca.

References

Boore, D. M. and Joyner, W.B.(1982) The empirical prediction of ground motion,Bull. Seism. Soc.
Am., 72, S269–S268.

Bolt, B. A. and Abrahamson, N. A. (1982) New attenuation relations for peak and expected accel-
erations of strong ground motion,Bull. Seism. Soc. Am., 72, 2307–2321.

Bolt B. A. and Abrahamson, N. A. (1983) Reply to W. B. Joyner & D. M. Boore’s “Comments on:
New attenuation relations for peak and expected accelerations for peak and expected accelerations
of strong ground motion”,Bull. Seism. Soc. Am., 73, 1481–1483.

Brillinger, D. R. and Preisler, H. K. (1984) An exploratory analysis of the Joyner-Boore attenuation
data,Bull. Seism. Soc. Am., 74, 1441–1449.

attitude 489

Brillinger, D. R. and Preisler, H. K. (1984)Further analysis of the Joyner-Boore attenuation data.
Manuscript.

Examples

require(graphics)
check the data class of the variables
sapply(attenu, data.class)
summary(attenu)
pairs(attenu, main = "attenu data")
coplot(accel ~ dist | as.factor(event), data = attenu, show.given = FALSE)
coplot(log(accel) ~ log(dist) | as.factor(event),

data = attenu, panel = panel.smooth, show.given = FALSE)

attitude The Chatterjee–Price Attitude Data

Description

From a survey of the clerical employees of a large financial organization, the data are aggregated
from the questionnaires of the approximately 35 employees for each of 30 (randomly selected)
departments. The numbers give the percent proportion of favourable responses to seven questions
in each department.

Usage

attitude

Format

A dataframe with 30 observations on 7 variables. The first column are the short names from the
reference, the second one the variable names in the data frame:

Y rating numeric Overall rating
X[1] complaints numeric Handling of employee complaints
X[2] privileges numeric Does not allow special privileges
X[3] learning numeric Opportunity to learn
X[4] raises numeric Raises based on performance
X[5] critical numeric Too critical
X[6] advancel numeric Advancement

Source

Chatterjee, S. and Price, B. (1977)Regression Analysis by Example. New York: Wiley. (Section
3.7, p.68ff of 2nd ed.(1991).)

Examples

require(stats); require(graphics)
pairs(attitude, main = "attitude data")
summary(attitude)
summary(fm1 <- lm(rating ~ ., data = attitude))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

490 beavers

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
summary(fm2 <- lm(rating ~ complaints, data = attitude))
plot(fm2)
par(opar)

austres Quarterly Time Series of the Number of Australian Residents

Description

Numbers (in thousands) of Australian residents measured quarterly from March 1971 to March
1994. The object is of class"ts" .

Usage

austres

Source

P. J. Brockwell and R. A. Davis (1996)Introduction to Time Series and Forecasting.Springer

beavers Body Temperature Series of Two Beavers

Description

Reynolds (1994) describes a small part of a study of the long-term temperature dynamics of beaver
Castor canadensisin north-central Wisconsin. Body temperature was measured by telemetry every
10 minutes for four females, but data from a one period of less than a day for each of two animals
is used there.

Usage

beaver1
beaver2

Format

Thebeaver1 data frame has 114 rows and 4 columns on body temperature measurements at 10
minute intervals.

Thebeaver2 data frame has 100 rows and 4 columns on body temperature measurements at 10
minute intervals.

The variables are as follows:

day Day of observation (in days since the beginning of 1990), December 12–13 (beaver1) and
November 3–4 (beaver2).

time Time of observation, in the form0330 for 3:30am

temp Measured body temperature in degrees Celsius.

activ Indicator of activity outside the retreat.

BJsales 491

Note

The observation at 22:20 is missing inbeaver1 .

Source

P. S. Reynolds (1994) Time-series analyses of beaver body temperatures. Chapter 11 of Lange, N.,
Ryan, L., Billard, L., Brillinger, D., Conquest, L. and Greenhouse, J. eds (1994)Case Studies in
Biometry.New York: John Wiley and Sons.

Examples

require(graphics)
(yl <- range(beaver1$temp, beaver2$temp))

beaver.plot <- function(bdat, ...) {
nam <- deparse(substitute(bdat))
with(bdat, {

Hours since start of day:
hours <- time %/% 100 + 24*(day - day[1]) + (time %% 100)/60
plot (hours, temp, type = "l", ...,

main = paste(nam, "body temperature"))
abline(h = 37.5, col = "gray", lty = 2)
is.act <- activ == 1
points(hours[is.act], temp[is.act], col = 2, cex = .8)

})
}
op <- par(mfrow = c(2,1), mar = c(3,3,4,2), mgp = .9* 2:0)

beaver.plot(beaver1, ylim = yl)
beaver.plot(beaver2, ylim = yl)

par(op)

BJsales Sales Data with Leading Indicator

Description

The sales time seriesBJsales and leading indicatorBJsales.lead each contain 150 observa-
tions. The objects are of class"ts" .

Usage

BJsales
BJsales.lead

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data Library athttp:
//www-personal.buseco.monash.edu.au/~hyndman/TSDL/

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

492 BOD

References

G. E. P. Box and G. M. Jenkins (1976):Time Series Analysis, Forecasting and Control, Holden-Day,
San Francisco, p. 537.

P. J. Brockwell and R. A. Davis (1991):Time Series: Theory and Methods, Second edition, Springer
Verlag, NY, pp. 414.

BOD Biochemical Oxygen Demand

Description

TheBODdata frame has 6 rows and 2 columns giving the biochemical oxygen demand versus time
in an evaluation of water quality.

Usage

BOD

Format

This data frame contains the following columns:

Time A numeric vector giving the time of the measurement (days).

demand A numeric vector giving the biochemical oxygen demand (mg/l).

Source

Bates, D.M. and Watts, D.G. (1988),Nonlinear Regression Analysis and Its Applications, Wiley,
Appendix A1.4.

Originally from Marske (1967),Biochemical Oxygen Demand Data Interpretation Using Sum of
Squares SurfaceM.Sc. Thesis, University of Wisconsin – Madison.

Examples

require(stats)
simplest form of fitting a first-order model to these data
fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD,

start = c(A = 20, lrc = log(.35)))
coef(fm1)
print(fm1)
using the plinear algorithm
fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD,

start = c(lrc = log(.35)), algorithm = "plinear", trace = TRUE)
using a self-starting model
fm3 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
summary(fm3)

cars 493

cars Speed and Stopping Distances of Cars

Description

The data give the speed of cars and the distances taken to stop. Note that the data were recorded in
the 1920s.

Usage

cars

Format

A data frame with 50 observations on 2 variables.

[,1] speed numeric Speed (mph)
[,2] dist numeric Stopping distance (ft)

Source

Ezekiel, M. (1930)Methods of Correlation Analysis. Wiley.

References

McNeil, D. R. (1977)Interactive Data Analysis. Wiley.

Examples

require(stats); require(graphics)
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1)
lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
title(main = "cars data")
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, log = "xy")
title(main = "cars data (logarithmic scales)")
lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
summary(fm1 <- lm(log(dist) ~ log(speed), data = cars))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

An example of polynomial regression
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, xlim = c(0, 25))
d <- seq(0, 25, len = 200)
for(degree in 1:4) {

fm <- lm(dist ~ poly(speed, degree), data = cars)
assign(paste("cars", degree, sep="."), fm)
lines(d, predict(fm, data.frame(speed=d)), col = degree)

}
anova(cars.1, cars.2, cars.3, cars.4)

494 ChickWeight

ChickWeight Weight versus age of chicks on different diets

Description

TheChickWeight data frame has 578 rows and 4 columns from an experiment on the effect of
diet on early growth of chicks.

Usage

ChickWeight

Format

This data frame contains the following columns:

weight a numeric vector giving the body weight of the chick (gm).

Time a numeric vector giving the number of days since birth when the measurement was made.

Chick an ordered factor with levels18 < . . . < 48 giving a unique identifier for the chick. The
ordering of the levels groups chicks on the same diet together and orders them according to
their final weight (lightest to heaviest) within diet.

Diet a factor with levels 1,. . . ,4 indicating which experimental diet the chick received.

Details

The body weights of the chicks were measured at birth and every second day thereafter until day
20. They were also measured on day 21. There were four groups on chicks on different protein
diets.

Source

Crowder, M. and Hand, D. (1990),Analysis of Repeated Measures, Chapman and Hall (example
5.3)

Hand, D. and Crowder, M. (1996),Practical Longitudinal Data Analysis, Chapman and Hall (table
A.2)

Pinheiro, J. C. and Bates, D. M. (2000)Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
coplot(weight ~ Time | Chick, data = ChickWeight,

type = "b", show.given = FALSE)
fit a representative chick
fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal),

data = ChickWeight, subset = Chick == 1)
summary(fm1)

chickwts 495

chickwts Chicken Weights by Feed Type

Description

An experiment was conducted to measure and compare the effectiveness of various feed supple-
ments on the growth rate of chickens.

Usage

chickwts

Format

A data frame with 71 observations on 2 variables.

weight a numeric variable giving the chick weight.

feed a factor giving the feed type.

Details

Newly hatched chicks were randomly allocated into six groups, and each group was given a different
feed supplement. Their weights in grams after six weeks are given along with feed types.

Source

Anonymous (1948)Biometrika, 35, 214.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
boxplot(weight ~ feed, data = chickwts, col = "lightgray",

varwidth = TRUE, notch = TRUE, main = "chickwt data",
ylab = "Weight at six weeks (gm)")

anova(fm1 <- lm(weight ~ feed, data = chickwts))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

496 CO2

CO2 Carbon Dioxide uptake in grass plants

Description

TheCO2data frame has 84 rows and 5 columns of data from an experiment on the cold tolerance
of the grass speciesEchinochloa crus-galli.

Usage

CO2

Format

This data frame contains the following columns:

Plant an ordered factor with levelsQn1 < Qn2 < Qn3 < . . . < Mc1 giving a unique identifier for
each plant.

Type a factor with levelsQuebec Mississippi giving the origin of the plant

Treatment a factor with levelsnonchilled chilled

conc a numeric vector of ambient carbon dioxide concentrations (mL/L).

uptake a numeric vector of carbon dioxide uptake rates (µmol/m2 sec).

Details

TheCO2 uptake of six plants from Quebec and six plants from Mississippi was measured at several
levels of ambientCO2 concentration. Half the plants of each type were chilled overnight before the
experiment was conducted.

Source

Potvin, C., Lechowicz, M. J. and Tardif, S. (1990) “The statistical analysis of ecophysiological
response curves obtained from experiments involving repeated measures”,Ecology, 71, 1389–1400.

Pinheiro, J. C. and Bates, D. M. (2000)Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
coplot(uptake ~ conc | Plant, data = CO2, show.given = FALSE, type = "b")
fit the data for the first plant
fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

data = CO2, subset = Plant == 'Qn1')
summary(fm1)
fit each plant separately
fmlist <- list()
for (pp in levels(CO2$Plant)) {

fmlist[[pp]] <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),
data = CO2, subset = Plant == pp)

}
check the coefficients by plant
sapply(fmlist, coef)

co2 497

co2 Mauna Loa Atmospheric CO2 Concentration

Description

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and reported in the
preliminary 1997 SIO manometric mole fraction scale.

Usage

co2

Format

A time series of 468 observations; monthly from 1959 to 1997.

Details

The values for February, March and April of 1964 were missing and have been obtained by inter-
polating linearly between the values for January and May of 1964.

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of Califor-
nia, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2 .

References

Cleveland, W. S. (1993)Visualizing Data. New Jersey: Summit Press.

Examples

require(graphics)
plot(co2, ylab = expression("Atmospheric concentration of CO"[2]),

las = 1)
title(main = "co2 data set")

crimtab Student’s 3000 Criminals Data

Description

Data of 3000 male criminals over 20 years old undergoing their sentences in the chief prisons of
England and Wales.

Usage

data(crimtab)

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2

498 crimtab

Format

A table object ofinteger counts, of dimension42 × 22 with a total count,sum(crimtab)
of 3000.

The 42rownames ("9.4" , "9.5" , . . .) correspond to midpoints of intervals of finger lengths
whereas the 22 column names (colnames) ("142.24" , "144.78" , . . .) correspond to (body)
heights of 3000 criminals, see also below.

Details

Student is the pseudonym of William Sealy Gosset. In his 1908 paper he wrote (on page 13) at the
beginning of section VI entitledPractical Test of the forgoing Equations:

“Before I had succeeded in solving my problem analytically, I had endeavoured to do so empirically.
The material used was a correlation table containing the height and left middle finger measurements
of 3000 criminals, from a paper by W. R. MacDonell (Biometrika, Vol. I., p. 219). The measure-
ments were written out on 3000 pieces of cardboard, which were then very thoroughly shuffled and
drawn at random. As each card was drawn its numbers were written down in a book, which thus
contains the measurements of 3000 criminals in a random order. Finally, each consecutive set of 4
was taken as a sample—750 in all—and the mean, standard deviation, and correlation of each sam-
ple determined. The difference between the mean of each sample and the mean of the population
was then divided by the standard deviation of the sample, giving us thez of Section III.”

The table is in fact page 216 and not page 219 in MacDonell(1902). In the MacDonell table,
the middle finger lengths were given in mm and the heights in feet/inches intervals, they are
both converted into cm here. The midpoints of intervals were used, e.g., where MacDonell has
4′7′′9/16−−8′′9/16, we have 142.24 which is 2.54*56 = 2.54*(4′8′′).

MacDonell credited the source of data (page 178) as follows:The data on which the memoir is
based were obtained, through the kindness of Dr Garson, from the Central Metric Office, New
Scotland Yard...He pointed out on page 179 that :The forms were drawn at random from the mass
on the office shelves; we are therefore dealing with a random sampling.

Source

http://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt thanks to Jean R.
Lobry and Anne-Béatrice Dufour.

References

Garson, J.G. (1900) The metric system of identification of criminals, as used in in Great Britain and
Ireland.The Journal of the Anthropological Institute of Great Britain and Ireland30, 161–198.

MacDonell, W.R. (1902) On criminal anthropometry and the identification of criminals.Biometrika
1, 2, 177–227.

Student (1908) The probable error of a mean.Biometrika6, 1–25.

Examples

require(stats)
dim(crimtab)
utils::str(crimtab)
for nicer printing:
local({cT <- crimtab

colnames(cT) <- substring(colnames(cT), 2,3)
print(cT, zero.print = " ")

})

http://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt

discoveries 499

Repeat Student's experiment:

1) Reconstitute 3000 raw data for heights in inches and rounded to
nearest integer as in Student's paper:

(heIn <- round(as.numeric(colnames(crimtab)) / 2.54))
d.hei <- data.frame(height = rep(heIn, colSums(crimtab)))

2) shuffle the data:

set.seed(1)
d.hei <- d.hei[sample(1:3000), , drop = FALSE]

3) Make 750 samples each of size 4:

d.hei$sample <- as.factor(rep(1:750, each = 4))

4) Compute the means and standard deviations (n) for the 750 samples:

h.mean <- with(d.hei, tapply(height, sample, FUN = mean))
h.sd <- with(d.hei, tapply(height, sample, FUN = sd)) * sqrt(3/4)

5) Compute the difference between the mean of each sample and
the mean of the population and then divide by the
standard deviation of the sample:

zobs <- (h.mean - mean(d.hei[,"height"]))/h.sd

6) Replace infinite values by +/- 6 as in Student's paper:

zobs[infZ <- is.infinite(zobs)] # 3 of them
zobs[infZ] <- 6 * sign(zobs[infZ])

7) Plot the distribution:

require(grDevices); require(graphics)
hist(x = zobs, probability = TRUE, xlab = "Student's z",

col = grey(0.8), border = grey(0.5),
main = "Distribution of Student's z score for 'crimtab' data")

discoveries Yearly Numbers of Important Discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860 to 1959.

Usage

discoveries

Format

A time series of 100 values.

500 DNase

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315–318.

References

McNeil, D. R. (1977)Interactive Data Analysis. Wiley.

Examples

require(graphics)
plot(discoveries, ylab = "Number of important discoveries",

las = 1)
title(main = "discoveries data set")

DNase Elisa assay of DNase

Description

The DNase data frame has 176 rows and 3 columns of data obtained during development of an
ELISA assay for the recombinant protein DNase in rat serum.

Usage

DNase

Format

This data frame contains the following columns:

Run an ordered factor with levels10 < . . . <3 indicating the assay run.

conc a numeric vector giving the known concentration of the protein.

density a numeric vector giving the measured optical density (dimensionless) in the assay. Dupli-
cate optical density measurements were obtained.

Source

Davidian, M. and Giltinan, D. M. (1995)Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000)Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
coplot(density ~ conc | Run, data = DNase,

show.given = FALSE, type = "b")
coplot(density ~ log(conc) | Run, data = DNase,

show.given = FALSE, type = "b")
fit a representative run
fm1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal),

data = DNase, subset = Run == 1)
compare with a four-parameter logistic

esoph 501

fm2 <- nls(density ~ SSfpl(log(conc), A, B, xmid, scal),
data = DNase, subset = Run == 1)

summary(fm2)
anova(fm1, fm2)

esoph Smoking, Alcohol and (O)esophageal Cancer

Description

Data from a case-control study of (o)esophageal cancer in Ile-et-Vilaine, France.

Usage

esoph

Format

A data frame with records for 88 age/alcohol/tobacco combinations.

[,1] "agegp" Age group 1 25–34 years
2 35–44
3 45–54
4 55–64
5 65–74
6 75+

[,2] "alcgp" Alcohol consumption 1 0–39 gm/day
2 40–79
3 80–119
4 120+

[,3] "tobgp" Tobacco consumption 1 0– 9 gm/day
2 10–19
3 20–29
4 30+

[,4] "ncases" Number of cases
[,5] "ncontrols" Number of controls

Author(s)

Thomas Lumley

Source

Breslow, N. E. and Day, N. E. (1980)Statistical Methods in Cancer Research. 1: The Analysis of
Case-Control Studies.IARC Lyon / Oxford University Press.

Examples

require(stats)
require(graphics) # for mosaicplot
summary(esoph)
effects of alcohol, tobacco and interaction, age-adjusted

502 euro

model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,
data = esoph, family = binomial())

anova(model1)
Try a linear effect of alcohol and tobacco
model2 <- glm(cbind(ncases, ncontrols) ~ agegp + unclass(tobgp)

+ unclass(alcgp),
data = esoph, family = binomial())

summary(model2)
Re-arrange data for a mosaic plot
ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
ttt[ttt == 1] <- esoph$ncases
tt1 <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
tt1[tt1 == 1] <- esoph$ncontrols
tt <- array(c(ttt, tt1), c(dim(ttt),2),

c(dimnames(ttt), list(c("Cancer", "control"))))
mosaicplot(tt, main = "esoph data set", color = TRUE)

euro Conversion Rates of Euro Currencies

Description

Conversion rates between the various Euro currencies.

Usage

euro
euro.cross

Format

euro is a named vector of length 11,euro.cross a matrix of size 11 by 11, with dimnames.

Details

The data seteuro contains the value of 1 Euro in all currencies participating in the European
monetary union (Austrian Schilling ATS, Belgian Franc BEF, German Mark DEM, Spanish Peseta
ESP, Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira ITL, Luxembourg Franc
LUF, Dutch Guilder NLG and Portuguese Escudo PTE). These conversion rates were fixed by
the European Union on December 31, 1998. To convert old prices to Euro prices, divide by the
respective rate and round to 2 digits.

The data seteuro.cross contains conversion rates between the various Euro currencies, i.e., the
result ofouter(1 / euro, euro) .

Examples

cbind(euro)

These relations hold:
euro == signif(euro,6) # [6 digit precision in Euro's definition]
all(euro.cross == outer(1/euro, euro))

Convert 20 Euro to Belgian Franc

eurodist 503

20 * euro["BEF"]
Convert 20 Austrian Schilling to Euro
20 / euro["ATS"]
Convert 20 Spanish Pesetas to Italian Lira
20 * euro.cross["ESP", "ITL"]

require(graphics)
dotchart(euro,

main = "euro data: 1 Euro in currency unit")
dotchart(1/euro,

main = "euro data: 1 currency unit in Euros")
dotchart(log(euro, 10),

main = "euro data: log10(1 Euro in currency unit)")

eurodist Distances Between European Cities

Description

The data give the road distances (in km) between 21 cities in Europe. The data are taken from a
table inThe Cambridge Encyclopaedia.

Usage

eurodist

Format

A dist object based on 21 objects. (You must have thestatspackage loaded to have the methods
for this kind of object available).

Source

Crystal, D. Ed. (1990)The Cambridge Encyclopaedia. Cambridge: Cambridge University Press,

EuStockMarkets Daily Closing Prices of Major European Stock Indices, 1991–1998

Description

Contains the daily closing prices of major European stock indices: Germany DAX (Ibis), Switzer-
land SMI, France CAC, and UK FTSE. The data are sampled in business time, i.e., weekends and
holidays are omitted.

Usage

EuStockMarkets

Format

A multivariate time series with 1860 observations on 4 variables. The object is of class"mts" .

504 faithful

Source

The data were kindly provided by Erste Bank AG, Vienna, Austria.

faithful Old Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in
Yellowstone National Park, Wyoming, USA.

Usage

faithful

Format

A data frame with 272 observations on 2 variables.

[,1] eruptions numeric Eruption time in mins
[,2] waiting numeric Waiting time to next eruption (in mins)

Details

A closer look atfaithful$eruptions reveals that these are heavily rounded times originally
in seconds, where multiples of 5 are more frequent than expected under non-human measurement.
For a better version of the eruption times, see the example below.

There are many versions of this dataset around: Azzalini and Bowman (1990) use a more complete
version.

Source

W. Härdle.

References

Härdle, W. (1991)Smoothing Techniques with Implementation in S. New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser.Applied
Statistics39, 357–365.

See Also

geyser in packageMASS for the Azzalini–Bowman version.

Examples

require(stats); require(graphics)
f.tit <- "faithful data: Eruptions of Old Faithful"

ne60 <- round(e60 <- 60 * faithful$eruptions)
all.equal(e60, ne60) # relative diff. ~ 1/10000

Formaldehyde 505

table(zapsmall(abs(e60 - ne60))) # 0, 0.02 or 0.04
faithful$better.eruptions <- ne60 / 60
te <- table(ne60)
te[te >= 4] # (too) many multiples of 5 !
plot(names(te), te, type="h", main = f.tit, xlab = "Eruption time (sec)")

plot(faithful[, -3], main = f.tit,
xlab = "Eruption time (min)",
ylab = "Waiting time to next eruption (min)")

lines(lowess(faithful$eruptions, faithful$waiting, f = 2/3, iter = 3),
col = "red")

Formaldehyde Determination of Formaldehyde

Description

These data are from a chemical experiment to prepare a standard curve for the determination of
formaldehyde by the addition of chromatropic acid and concentrated sulpuric acid and the reading
of the resulting purple color on a spectrophotometer.

Usage

Formaldehyde

Format

A data frame with 6 observations on 2 variables.

[,1] carb numeric Carbohydrate (ml)
[,2] optden numeric Optical Density

Source

Bennett, N. A. and N. L. Franklin (1954)Statistical Analysis in Chemistry and the Chemical Indus-
try. New York: Wiley.

References

McNeil, D. R. (1977)Interactive Data Analysis.New York: Wiley.

Examples

require(stats); require(graphics)
plot(optden ~ carb, data = Formaldehyde,

xlab = "Carbohydrate (ml)", ylab = "Optical Density",
main = "Formaldehyde data", col = 4, las = 1)

abline(fm1 <- lm(optden ~ carb, data = Formaldehyde))
summary(fm1)
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(fm1)
par(opar)

506 freeny

freeny Freeny’s Revenue Data

Description

Freeny’s data on quarterly revenue and explanatory variables.

Usage

freeny
freeny.x
freeny.y

Format

There are three ‘freeny’ data sets.

freeny.y is a time series with 39 observations on quarterly revenue from (1962,2Q) to (1971,4Q).

freeny.x is a matrix of explanatory variables. The columns arefreeny.y lagged 1 quarter,
price index, income level, and market potential.

Finally, freeny is a data frame with variablesy , lag.quarterly.revenue ,
price.index , income.level , and market.potential obtained from the above
two data objects.

Source

A. E. Freeny (1977)A Portable Linear Regression Package with Test Programs. Bell Laboratories
memorandum.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
summary(freeny)
pairs(freeny, main = "freeny data")
gives warning: freeny$y has class "ts"

summary(fm1 <- lm(y ~ ., data = freeny))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

HairEyeColor 507

HairEyeColor Hair and Eye Color of Statistics Students

Description

Distribution of hair and eye color and sex in 592 statistics students.

Usage

HairEyeColor

Format

A 3-dimensional array resulting from cross-tabulating 592 observations on 3 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Hair Black, Brown, Red, Blond
2 Eye Brown, Blue, Hazel, Green
3 Sex Male, Female

Details

The Hair× Eye table comes rom a survey of students at the University of Delaware reported by
Snee (1974). The split bySex was added by Friendly (1992a) for didactic purposes.

This data set is useful for illustrating various techniques for the analysis of contingency tables, such
as the standard chi-squared test or, more generally, log-linear modelling, and graphical methods
such as mosaic plots, sieve diagrams or association plots.

Source

http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/haireye.sas

Snee (1974) gives the two-way table aggregated overSex. The Sex split of the ‘Brown hair, Brown
eye’ cell was changed inR 2.6.0 to agree with that used by Friendly (2000).

References

Snee, R. D. (1974) Graphical display of two-way contingency tables.The American Statistician,
28, 9–12.

Friendly, M. (1992a) Graphical methods for categorical data.SAS User Group Interna-
tional Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/
sugi17-paper.html

Friendly, M. (1992b) Mosaic displays for loglinear models.Proceedings of the Statistical Graphics
Section, American Statistical Association, pp. 61–68.http://www.math.yorku.ca/SCS/
Papers/asa92.html

Friendly, M. (2000)Visualizing Categorical Data.SAS Institute, ISBN 1-58025-660-0.

See Also

chisq.test , loglin , mosaicplot

http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/haireye.sas
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/Papers/asa92.html
http://www.math.yorku.ca/SCS/Papers/asa92.html

508 Harman74.cor

Examples

require(graphics)
Full mosaic
mosaicplot(HairEyeColor)
Aggregate over sex (as in Snee's original data)
x <- apply(HairEyeColor, c(1, 2), sum)
x
mosaicplot(x, main = "Relation between hair and eye color")

Harman23.cor Harman Example 2.3

Description

A correlation matrix of eight physical measurements on 305 girls between ages seven and seventeen.

Usage

Harman23.cor

Source

Harman, H. H. (1976)Modern Factor Analysis, Third Edition Revised, University of Chicago Press,
Table 2.3.

Examples

require(stats)
(Harman23.FA <- factanal(factors = 1, covmat = Harman23.cor))
for(factors in 2:4) print(update(Harman23.FA, factors = factors))

Harman74.cor Harman Example 7.4

Description

A correlation matrix of 24 psychological tests given to 145 seventh and eight-grade children in a
Chicago suburb by Holzinger and Swineford.

Usage

Harman74.cor

Source

Harman, H. H. (1976)Modern Factor Analysis, Third Edition Revised, University of Chicago Press,
Table 7.4.

Indometh 509

Examples

require(stats)
(Harman74.FA <- factanal(factors = 1, covmat = Harman74.cor))
for(factors in 2:5) print(update(Harman74.FA, factors = factors))
Harman74.FA <- factanal(factors = 5, covmat = Harman74.cor,

rotation="promax")
print(Harman74.FA$loadings, sort = TRUE)

Indometh Pharmacokinetics of Indomethicin

Description

TheIndometh data frame has 66 rows and 3 columns of data on the pharmacokinetics of indome-
thicin.

Usage

Indometh

Format

This data frame contains the following columns:

Subject an ordered factor with containing the subject codes. The ordering is according to increas-
ing maximum response.

time a numeric vector of times at which blood samples were drawn (hr).

conc a numeric vector of plasma concentrations of indomethicin (mcg/ml).

Details

Each of the six subjects were given an intravenous injection of indomethicin.

Source

Kwan, Breault, Umbenhauer, McMahon and Duggan (1976), Kinetics of Indomethicin absorption,
elimination, and enterohepatic circulation in man.Journal of Pharmacokinetics and Biopharma-
ceutics, 4, 255–280.

Davidian, M. and Giltinan, D. M. (1995)Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000)Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats)
fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),

data = Indometh, subset = Subject == 1)
summary(fm1)

510 infert

infert Infertility after Spontaneous and Induced Abortion

Description

This is a matched case-control study dating from before the availability of conditional logistic re-
gression.

Usage

infert

Format

1. Education 0 = 0-5 years
1 = 6-11 years
2 = 12+ years

2. age age in years of case
3. parity count
4. number of prior 0 = 0

induced abortions 1 = 1
2 = 2 or more

5. case status 1 = case
0 = control

6. number of prior 0 = 0
spontaneous abortions 1 = 1

2 = 2 or more
7. matched set number 1-83
8. stratum number 1-63

Note

One case with two prior spontaneous abortions and two prior induced abortions is omitted.

Source

Trichopoulos et al. (1976)Br. J. of Obst. and Gynaec.83, 645–650.

Examples

require(stats)
model1 <- glm(case ~ spontaneous+induced, data=infert,family=binomial())
summary(model1)
adjusted for other potential confounders:
summary(model2 <- glm(case ~ age+parity+education+spontaneous+induced,

data=infert,family=binomial()))
Really should be analysed by conditional logistic regression
which is in the survival package
if(require(survival)){

iris 511

model3 <- clogit(case~spontaneous+induced+strata(stratum),data=infert)
print(summary(model3))
detach()# survival (conflicts)

}

InsectSprays Effectiveness of Insect Sprays

Description

The counts of insects in agricultural experimental units treated with different insecticides.

Usage

InsectSprays

Format

A data frame with 72 observations on 2 variables.

[,1] count numeric Insect count
[,2] spray factor The type of spray

Source

Beall, G., (1942) The Transformation of data from entomological field experiments,Biometrika,
29, 243–262.

References

McNeil, D. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
boxplot(count ~ spray, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",
main = "InsectSprays data", varwidth = TRUE, col = "lightgray")

fm1 <- aov(count ~ spray, data = InsectSprays)
summary(fm1)
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(fm1)
fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)
summary(fm2)
plot(fm2)
par(opar)

iris Edgar Anderson’s Iris Data

512 iris

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for 50 flowers from each
of 3 species of iris. The species areIris setosa, versicolor, andvirginica.

Usage

iris
iris3

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) namedSepal.Length ,
Sepal.Width , Petal.Length , Petal.Width , andSpecies .

iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as represented
by S-PLUS. The first dimension gives the case number within the species subsample, the second the
measurements with namesSepal L. , Sepal W. , Petal L. , andPetal W. , and the third
the species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems.Annals of Eugenics,
7, Part II, 179–188.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula,Bulletin of
the American Iris Society, 59, 2–5.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (hasiris3 asiris .)

See Also

matplot some examples of which useiris .

Examples

dni3 <- dimnames(iris3)
ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol=4,

dimnames = list(NULL, sub(" L.",".Length",
sub(" W.",".Width", dni3[[2]])))),

Species = gl(3, 50, labels=sub("S", "s", sub("V", "v", dni3[[3]]))))
all.equal(ii, iris) # TRUE

islands 513

islands Areas of the World’s Major Landmasses

Description

The areas in thousands of square miles of the landmasses which exceed 10,000 square miles.

Usage

islands

Format

A named vector of length 48.

Source

The World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977)Interactive Data Analysis. Wiley.

Examples

require(graphics)
dotchart(log(islands, 10),

main = "islands data: log10(area) (log10(sq. miles))")
dotchart(log(islands[order(islands)], 10),

main = "islands data: log10(area) (log10(sq. miles))")

JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share

Description

Quarterly earnings (dollars) per Johnson & Johnson share 1960–80.

Usage

JohnsonJohnson

Format

A quarterly time series

Source

Shumway, R. H. and Stoffer, D. S. (2000)Time Series Analysis and its Applications. Second Edi-
tion. Springer. Example 1.1.

514 lh

Examples

require(stats); require(graphics)
JJ <- log10(JohnsonJohnson)
plot(JJ)
(fit <- StructTS(JJ, type="BSM"))
tsdiag(fit)
sm <- tsSmooth(fit)
plot(cbind(JJ, sm[, 1], sm[, 3]-0.5), plot.type = "single",

col = c("black", "green", "blue"))
abline(h = -0.5, col = "grey60")

monthplot(fit)

LakeHuron Level of Lake Huron 1875–1972

Description

Annual measurements of the level, in feet, of Lake Huron 1875–1972.

Usage

LakeHuron

Format

A time series of length 98.

Source

Brockwell, P. J. & Davis, R. A. (1991).Time Series and Forecasting Methods. Second edition.
Springer, New York. Series A, page 555.

Brockwell, P. J. & Davis, R. A. (1996).Introduction to Time Series and Forecasting. Springer, New
York. Sections 5.1 and 7.6.

lh Luteinizing Hormone in Blood Samples

Description

A regular time series giving the luteinizing hormone in blood samples at 10 mins intervals from a
human female, 48 samples.

Usage

lh

Source

P.J. Diggle (1990)Time Series: A Biostatistical Introduction.Oxford, table A.1, series 3

LifeCycleSavings 515

LifeCycleSavings Intercountry Life-Cycle Savings Data

Description

Data on the savings ratio 1960–1970.

Usage

LifeCycleSavings

Format

A data frame with 50 observations on 5 variables.

[,1] sr numeric aggregate personal savings
[,2] pop15 numeric % of population under 15
[,3] pop75 numeric % of population over 75
[,4] dpi numeric real per-capita disposable income
[,5] ddpi numeric % growth rate of dpi

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings ratio (aggre-
gate personal saving divided by disposable income) is explained by per-capita disposable income,
the percentage rate of change in per-capita disposable income, and two demographic variables:
the percentage of population less than 15 years old and the percentage of the population over 75
years old. The data are averaged over the decade 1960–1970 to remove the business cycle or other
short-term fluctuations.

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the data from
Sterling (1977).

References

Sterling, Arnie (1977) Unpublished BS Thesis. Massachusetts Institute of Technology.

Belsley, D. A., Kuh. E. and Welsch, R. E. (1980)Regression Diagnostics. New York: Wiley.

Examples

require(stats); require(graphics)
pairs(LifeCycleSavings, panel = panel.smooth,

main = "LifeCycleSavings data")
fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
summary(fm1)

516 longley

Loblolly Growth of Loblolly pine trees

Description

TheLoblolly data frame has 84 rows and 3 columns of records of the growth of Loblolly pine
trees.

Usage

Loblolly

Format

This data frame contains the following columns:

height a numeric vector of tree heights (ft).

age a numeric vector of tree ages (yr).

Seed an ordered factor indicating the seed source for the tree. The ordering is according to increas-
ing maximum height.

Source

Kung, F. H. (1986), Fitting logistic growth curve with predetermined carrying capacity, inProceed-
ings of the Statistical Computing Section, American Statistical Association, 340–343.

Pinheiro, J. C. and Bates, D. M. (2000)Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
plot(height ~ age, data = Loblolly, subset = Seed == 329,

xlab = "Tree age (yr)", las = 1,
ylab = "Tree height (ft)",
main = "Loblolly data and fitted curve (Seed 329 only)")

fm1 <- nls(height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly, subset = Seed == 329)

summary(fm1)
age <- seq(0, 30, len = 101)
lines(age, predict(fm1, list(age = age)))

longley Longley’s Economic Regression Data

Description

A macroeconomic data set which provides a well-known example for a highly collinear regression.

Usage

longley

lynx 517

Format

A data frame with 7 economical variables, observed yearly from 1947 to 1962 (n = 16).

GNP.deflator: GNP implicit price deflator (1954 = 100)

GNP: Gross National Product.

Unemployed: number of unemployed.

Armed.Forces: number of people in the armed forces.

Population: ‘noninstitutionalized’ population≥ 14 years of age.

Year: the year (time).

Employed: number of people employed.

The regressionlm(Employed ~ .) is known to be highly collinear.

Source

J. W. Longley (1967) An appraisal of least-squares programs from the point of view of the user.
Journal of the American Statistical Association, 62, 819–841.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
give the data set in the form it is used in S-PLUS:
longley.x <- data.matrix(longley[, 1:6])
longley.y <- longley[, "Employed"]
pairs(longley, main = "longley data")
summary(fm1 <- lm(Employed ~ ., data = longley))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

lynx Annual Canadian Lynx trappings 1821–1934

Description

Annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis
(1991), this appears to be the series considered by Campbell & Walker (1977).

Usage

lynx

Source

Brockwell, P. J. and Davis, R. A. (1991)Time Series and Forecasting Methods.Second edition.
Springer. Series G (page 557).

518 morley

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Campbell, M. J.and A. M. Walker (1977). A Survey of statistical work on the Mackenzie River
series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis.Journal of
the Royal Statistical Society series A, 140, 411–431.

morley Michaelson-Morley Speed of Light Data

Description

The classical data of Michaelson and Morley on the speed of light. The data consists of five exper-
iments, each consisting of 20 consecutive ‘runs’. The response is the speed of light measurement,
suitably coded.

Usage

morley

Format

A data frame contains the following components:

Expt The experiment number, from 1 to 5.

Run The run number within each experiment.

Speed Speed-of-light measurement.

Details

The data is here viewed as a randomized block experiment with ‘experiment’ and ‘run’ as the
factors. ‘run’ may also be considered a quantitative variate to account for linear (or polynomial)
changes in the measurement over the course of a single experiment.

Source

A. J. Weekes (1986)A Genstat Primer. London: Edward Arnold.

Examples

require(stats); require(graphics)
morley$Expt <- factor(morley$Expt)
morley$Run <- factor(morley$Run)
attach(morley)
plot(Expt, Speed, main = "Speed of Light Data", xlab = "Experiment No.")
fm <- aov(Speed ~ Run + Expt, data = morley)
summary(fm)
fm0 <- update(fm, . ~ . - Run)
anova(fm0, fm)
detach(morley)

nhtemp 519

mtcars Motor Trend Car Road Tests

Description

The data was extracted from the 1974Motor TrendUS magazine, and comprises fuel consumption
and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

mtcars

Format

A data frame with 32 observations on 11 variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (lb/1000)
[, 7] qsec 1/4 mile time
[, 8] vs V/S
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburetors

Source

Henderson and Velleman (1981), Building multiple regression models interactively.Biometrics, 37,
391–411.

Examples

require(graphics)
pairs(mtcars, main = "mtcars data")
coplot(mpg ~ disp | as.factor(cyl), data = mtcars,

panel = panel.smooth, rows = 1)

nhtemp Average Yearly Temperatures in New Haven

Description

The mean annual temperature in degrees Fahrenheit in New Haven, Connecticut, from 1912 to
1971.

Usage

nhtemp

520 Nile

Format

A time series of 60 observations.

Source

Vaux, J. E. and Brinker, N. B. (1972)Cycles, 1972, 117–121.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
plot(nhtemp, main = "nhtemp data",

ylab = "Mean annual temperature in New Haven, CT (deg. F)")

Nile Flow of the River Nile

Description

Measurements of the annual flow of the river Nile at Ashwan 1871–1970.

Usage

Nile

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.http://www.ssfpack.com/dkbook/

References

Balke, N. S. (1993) Detecting level shifts in time series.Journal of Business and Economic Statistics
11, 81–92.

Cobb, G. W. (1978) The problem of the Nile: conditional solution to a change-point problem.
Biometrika65, 243–51.

http://www.ssfpack.com/dkbook/

nottem 521

Examples

require(stats); require(graphics)
par(mfrow = c(2,2))
plot(Nile)
acf(Nile)
pacf(Nile)
ar(Nile) # selects order 2
cpgram(ar(Nile)$resid)
par(mfrow = c(1,1))
arima(Nile, c(2, 0, 0))

Now consider missing values, following Durbin & Koopman
NileNA <- Nile
NileNA[c(21:40, 61:80)] <- NA
arima(NileNA, c(2, 0, 0))
plot(NileNA)
pred <-

predict(arima(window(NileNA, 1871, 1890), c(2,0,0)), n.ahead = 20)
lines(pred$pred, lty = 3, col = "red")
lines(pred$pred + 2*pred$se, lty=2, col="blue")
lines(pred$pred - 2*pred$se, lty=2, col="blue")
pred <-

predict(arima(window(NileNA, 1871, 1930), c(2,0,0)), n.ahead = 20)
lines(pred$pred, lty = 3, col = "red")
lines(pred$pred + 2*pred$se, lty=2, col="blue")
lines(pred$pred - 2*pred$se, lty=2, col="blue")

Structural time series models
par(mfrow = c(3, 1))
plot(Nile)
local level model
(fit <- StructTS(Nile, type = "level"))
lines(fitted(fit), lty = 2) # contemporaneous smoothing
lines(tsSmooth(fit), lty = 2, col = 4) # fixed-interval smoothing
plot(residuals(fit)); abline(h = 0, lty = 3)
local trend model
(fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted
pred <- predict(fit, n.ahead = 30)
with 50% confidence interval
ts.plot(Nile, pred$pred,

pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se)

Now consider missing values
plot(NileNA)
(fit3 <- StructTS(NileNA, type = "level"))
lines(fitted(fit3), lty = 2)
lines(tsSmooth(fit3), lty = 3)
plot(residuals(fit3)); abline(h = 0, lty = 3)

nottem Average Monthly Temperatures at Nottingham, 1920–1939

522 Orange

Description

A time series object containing average air temperatures at Nottingham Castle in degrees Fahrenheit
for 20 years.

Usage

nottem

Source

Anderson, O. D. (1976)Time Series Analysis and Forecasting: The Box-Jenkins approach.Butter-
worths. Series R.

Examples

Not run:
require(stats); require(graphics)
nott <- window(nottem, end=c(1936,12))
fit <- arima(nott,order=c(1,0,0), list(order=c(2,1,0), period=12))
nott.fore <- predict(fit, n.ahead=36)
ts.plot(nott, nott.fore$pred, nott.fore$pred+2*nott.fore$se,

nott.fore$pred-2*nott.fore$se, gpars=list(col=c(1,1,4,4)))
End(Not run)

Orange Growth of Orange Trees

Description

TheOrange data frame has 35 rows and 3 columns of records of the growth of orange trees.

Usage

Orange

Format

This data frame contains the following columns:

Tree an ordered factor indicating the tree on which the measurement is made. The ordering is
according to increasing maximum diameter.

age a numeric vector giving the age of the tree (days since 1968/12/31)

circumference a numeric vector of trunk circumferences (mm). This is probably “circumference
at breast height”, a standard measurement in forestry.

Source

Draper, N. R. and Smith, H. (1998),Applied Regression Analysis (3rd ed), Wiley (exercise 24.N).

Pinheiro, J. C. and Bates, D. M. (2000)Mixed-effects Models in S and S-PLUS, Springer.

OrchardSprays 523

Examples

require(stats); require(graphics)
coplot(circumference ~ age | Tree, data = Orange, show.given = FALSE)
fm1 <- nls(circumference ~ SSlogis(age, Asym, xmid, scal),

data = Orange, subset = Tree == 3)
plot(circumference ~ age, data = Orange, subset = Tree == 3,

xlab = "Tree age (days since 1968/12/31)",
ylab = "Tree circumference (mm)", las = 1,
main = "Orange tree data and fitted model (Tree 3 only)")

age <- seq(0, 1600, len = 101)
lines(age, predict(fm1, list(age = age)))

OrchardSprays Potency of Orchard Sprays

Description

An experiment was conducted to assess the potency of various constituents of orchard sprays in
repelling honeybees, using a Latin square design.

Usage

OrchardSprays

Format

A data frame with 64 observations on 4 variables.

[,1] rowpos numeric Row of the design
[,2] colpos numeric Column of the design
[,3] treatment factor Treatment level
[,4] decrease numeric Response

Details

Individual cells of dry comb were filled with measured amounts of lime sulphur emulsion in sucrose
solution. Seven different concentrations of lime sulphur ranging from a concentration of 1/100 to
1/1,562,500 in successive factors of 1/5 were used as well as a solution containing no lime sulphur.

The responses for the different solutions were obtained by releasing 100 bees into the chamber for
two hours, and then measuring the decrease in volume of the solutions in the various cells.

An 8× 8 Latin square design was used and the treatments were coded as follows:

A highest level of lime sulphur
B next highest level of lime sulphur
.
.
.

G lowest level of lime sulphur
H no lime sulphur

524 precip

Source

Finney, D. J. (1947)Probit Analysis. Cambridge.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
pairs(OrchardSprays, main = "OrchardSprays data")

PlantGrowth Results from an Experiment on Plant Growth

Description

Results from an experiment to compare yields (as measured by dried weight of plants) obtained
under a control and two different treatment conditions.

Usage

PlantGrowth

Format

A data frame of 30 cases on 2 variables.

[, 1] weight numeric
[, 2] group factor

The levels ofgroup are ‘ctrl’, ‘trt1’, and ‘trt2’.

Source

Dobson, A. J. (1983)An Introduction to Statistical Modelling. London: Chapman and Hall.

Examples

One factor ANOVA example from Dobson's book, cf. Table 7.4:
require(stats); require(graphics)
boxplot(weight ~ group, data = PlantGrowth, main = "PlantGrowth data",

ylab = "Dried weight of plants", col = "lightgray",
notch = TRUE, varwidth = TRUE)

anova(lm(weight ~ group, data = PlantGrowth))

precip Annual Precipitation in US Cities

presidents 525

Description

The average amount of precipitation (rainfall) in inches for each of 70 United States (and Puerto
Rico) cities.

Usage

precip

Format

A named vector of length 70.

Source

Statistical Abstracts of the United States, 1975.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
dotchart(precip[order(precip)], main = "precip data")
title(sub = "Average annual precipitation (in.)")

presidents Quarterly Approval Ratings of US Presidents

Description

The (approximately) quarterly approval rating for the President of the United states from the first
quarter of 1945 to the last quarter of 1974.

Usage

presidents

Format

A time series of 120 values.

Details

The data are actually a fudged version of the approval ratings. See McNeil’s book for details.

Source

The Gallup Organisation.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

526 Puromycin

Examples

require(stats); require(graphics)
plot(presidents, las = 1, ylab = "Approval rating (%)",

main = "presidents data")

pressure Vapor Pressure of Mercury as a Function of Temperature

Description

Data on the relation between temperature in degrees Celsius and vapor pressure of mercury in
millimeters (of mercury).

Usage

pressure

Format

A data frame with 19 observations on 2 variables.

[, 1] temperature numeric temperature (deg C)
[, 2] pressure numeric pressure (mm)

Source

Weast, R. C., ed. (1973)Handbook of Chemistry and Physics. CRC Press.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
plot(pressure, xlab = "Temperature (deg C)",

ylab = "Pressure (mm of Hg)",
main = "pressure data: Vapor Pressure of Mercury")

plot(pressure, xlab = "Temperature (deg C)", log = "y",
ylab = "Pressure (mm of Hg)",
main = "pressure data: Vapor Pressure of Mercury")

Puromycin Reaction velocity of an enzymatic reaction

Description

ThePuromycin data frame has 23 rows and 3 columns of the reaction velocity versus substrate
concentration in an enzymatic reaction involving untreated cells or cells treated with Puromycin.

Puromycin 527

Usage

Puromycin

Format

This data frame contains the following columns:

conc a numeric vector of substrate concentrations (ppm)

rate a numeric vector of instantaneous reaction rates (counts/min/min)

state a factor with levelstreated untreated

Details

Data on the velocity of an enzymatic reaction were obtained by Treloar (1974). The number of
counts per minute of radioactive product from the reaction was measured as a function of substrate
concentration in parts per million (ppm) and from these counts the initial rate (or velocity) of the
reaction was calculated (counts/min/min). The experiment was conducted once with the enzyme
treated with Puromycin, and once with the enzyme untreated.

Source

Bates, D.M. and Watts, D.G. (1988),Nonlinear Regression Analysis and Its Applications, Wiley,
Appendix A1.3.

Treloar, M. A. (1974),Effects of Puromycin on Galactosyltransferase in Golgi Membranes, M.Sc.
Thesis, U. of Toronto.

Examples

require(stats); require(graphics)
plot(rate ~ conc, data = Puromycin, las = 1,

xlab = "Substrate concentration (ppm)",
ylab = "Reaction velocity (counts/min/min)",
pch = as.integer(Puromycin$state),
col = as.integer(Puromycin$state),
main = "Puromycin data and fitted Michaelis-Menten curves")

simplest form of fitting the Michaelis-Menten model to these data
fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "treated",
start = c(Vm = 200, K = 0.05), trace = TRUE)

fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
subset = state == "untreated",
start = c(Vm = 160, K = 0.05), trace = TRUE)

summary(fm1)
summary(fm2)
using partial linearity
fm3 <- nls(rate ~ conc/(K + conc), data = Puromycin,

subset = state == "treated", start = c(K = 0.05),
algorithm = "plinear", trace = TRUE)

using a self-starting model
fm4 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")
summary(fm4)
add fitted lines to the plot
conc <- seq(0, 1.2, len = 101)

528 randu

lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)
lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)
legend(0.8, 120, levels(Puromycin$state),

col = 1:2, lty = 1:2, pch = 1:2)

quakes Locations of Earthquakes off Fiji

Description

The data set give the locations of 1000 seismic events of MB > 4.0. The events occurred in a cube
near Fiji since 1964.

Usage

quakes

Format

A data frame with 1000 observations on 5 variables.

[,1] lat numeric Latitude of event
[,2] long numeric Longitude
[,3] depth numeric Depth (km)
[,4] mag numeric Richter Magnitude
[,5] stations numeric Number of stations reporting

Details

There are two clear planes of seismic activity. One is a major plate junction; the other is the Tonga
trench off New Zealand. These data constitute a subsample from a larger dataset of containing 5000
observations.

Source

This is one of the Harvard PRIM-H project data sets. They in turn obtained it from Dr. John
Woodhouse, Dept. of Geophysics, Harvard University.

Examples

require(graphics)
pairs(quakes, main = "Fiji Earthquakes, N = 1000", cex.main=1.2, pch=".")

randu Random Numbers from Congruential Generator RANDU

Description

400 triples of successive random numbers were taken from the VAX FORTRAN function RANDU
running under VMS 1.5.

rivers 529

Usage

randu

Format

A data frame with 400 observations on 3 variables namedx , y andz which give the first, second
and third random number in the triple.

Details

In three dimensional displays it is evident that the triples fall on 15 parallel planes in 3-space. This
can be shown theoretically to be true for all triples from the RANDU generator.

These particular 400 triples start 5 apart in the sequence, that is they are ((U[5i+1], U[5i+2],
U[5i+3]), i= 0, . . . , 399), and they are rounded to 6 decimal places.

Under VMS versions 2.0 and higher, this problem has been fixed.

Source

David Donoho

Examples

Not run:
We could re-generate the dataset by the following R code
seed <- as.double(1)
RANDU <- function() {

seed <<- ((2^16 + 3) * seed) %% (2^31)
seed/(2^31)

}
for(i in 1:400) {

U <- c(RANDU(), RANDU(), RANDU(), RANDU(), RANDU())
print(round(U[1:3], 6))

}
End(Not run)

rivers Lengths of Major North American Rivers

Description

This data set gives the lengths (in miles) of 141 “major” rivers in North America, as compiled by
the US Geological Survey.

Usage

rivers

Format

A vector containing 141 observations.

530 sleep

Source

World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

rock Measurements on Petroleum Rock Samples

Description

Measurements on 48 rock samples from a petroleum reservoir.

Usage

rock

Format

A data frame with 48 rows and 4 numeric columns.

[,1] area area of pores space, in pixels out of 256 by 256
[,2] peri perimeter in pixels
[,3] shape perimeter/sqrt(area)
[,4] perm permeability in milli-Darcies

Details

Twelve core samples from petroleum reservoirs were sampled by 4 cross-sections. Each core sam-
ple was measured for permeability, and each cross-section has total area of pores, total perimeter of
pores, and shape.

Source

Data from BP Research, image analysis by Ronit Katz, U. Oxford.

sleep Student’s Sleep Data

Description

Data which show the effect of two soporific drugs (increase in hours of sleep compared to control)
on 10 patients.

Usage

sleep

stackloss 531

Format

A data frame with 20 observations on 2 variables.

[, 1] extra numeric increase in hours of sleep
[, 2] group factor drug given

Source

Cushny, A. R. and Peebles, A. R. (1905) The action of optical isomers: II hyoscines.The Journal
of Physiology32, 501–510.

Student (1908) The probable error of the mean.Biometrika, 6, 20.

References

Scheffé, Henry (1959)The Analysis of Variance. New York, NY: Wiley.

Examples

require(stats)
Student's paired t-test
t.test(extra ~ group, data = sleep, paired = TRUE)

stackloss Brownlee’s Stack Loss Plant Data

Description

Operational data of a plant for the oxidation of ammonia to nitric acid.

Usage

stackloss

stack.x
stack.loss

Format

stackloss is a data frame with 21 observations on 4 variables.

[,1] Air Flow Flow of cooling air
[,2] Water Temp Cooling Water Inlet Temperature
[,3] Acid Conc. Concentration of acid [per 1000, minus 500]
[,4] stack.loss Stack loss

For compatibility with S-PLUS, the data setsstack.x , a matrix with the first three (independent)
variables of the data frame, andstack.loss , the numeric vector giving the fourth (dependent)
variable, are provided as well.

532 state

Details

“Obtained from 21 days of operation of a plant for the oxidation of ammonia (NH3) to nitric acid
(HNO3). The nitric oxides produced are absorbed in a countercurrent absorption tower”. (Brownlee,
cited by Dodge, slightly reformatted by MM.)

Air Flow represents the rate of operation of the plant.Water Temp is the temperature of cool-
ing water circulated through coils in the absorption tower.Acid Conc. is the concentration of the
acid circulating, minus 50, times 10: that is, 89 corresponds to 58.9 per cent acid.stack.loss
(the dependent variable) is 10 times the percentage of the ingoing ammonia to the plant that escapes
from the absorption column unabsorbed; that is, an (inverse) measure of the over-all efficiency of
the plant.

Source

Brownlee, K. A. (1960, 2nd ed. 1965)Statistical Theory and Methodology in Science and Engi-
neering. New York: Wiley. pp. 491–500.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Dodge, Y. (1996) The guinea pig of multiple regression. In:Robust Statistics, Data Analysis, and
Computer Intensive Methods; In Honor of Peter Huber’s 60th Birthday, 1996,Lecture Notes in
Statistics109, Springer-Verlag, New York.

Examples

require(stats)
summary(lm.stack <- lm(stack.loss ~ stack.x))

state US State Facts and Figures

Description

Data sets related to the 50 states of the United States of America.

Usage

state.abb
state.area
state.center
state.division
state.name
state.region
state.x77

sunspot.month 533

Details

R currently contains the following “state” data sets. Note that all data are arranged according to
alphabetical order of the state names.

state.abb : character vector of 2-letter abbreviations for the state names.

state.area : numeric vector of state areas (in square miles).

state.center : list with components namedx andy giving the approximate geographic center
of each state in negative longitude and latitude. Alaska and Hawaii are placed just off the West
Coast.

state.division : factor giving state divisions (New England, Middle Atlantic, South Atlantic,
East South Central, West South Central, East North Central, West North Central, Mountain,
and Pacific).

state.name : character vector giving the full state names.

state.region : factor giving the region (Northeast, South, North Central, West) that each state
belongs to.

state.x77 : matrix with 50 rows and 8 columns giving the following statistics in the respective
columns.

Population : population estimate as of July 1, 1975
Income : per capita income (1974)
Illiteracy : illiteracy (1970, percent of population)
Life Exp : life expectancy in years (1969–71)
Murder : murder and non-negligent manslaughter rate per 100,000 population (1976)
HS Grad: percent high-school graduates (1970)
Frost : mean number of days with minimum temperature below freezing (1931–1960) in

capital or large city
Area : land area in square miles

Source

U.S. Department of Commerce, Bureau of the Census (1977)Statistical Abstract of the United
States.

U.S. Department of Commerce, Bureau of the Census (1977)County and City Data Book.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

sunspot.month Monthly Sunspot Data, 1749–1997

Description

Monthly numbers of sunspots.

Usage

sunspot.month

534 sunspot.year

Format

The univariate time seriessunspot.year andsunspot.month contain 289 and 2988 obser-
vations, respectively. The objects are of class"ts" .

Source

World Data Center-C1 For Sunspot Index Royal Observatory of Belgium, Av. Circulaire, 3, B-1180
BRUSSELShttp://www.oma.be/KSB-ORB/SIDC/sidc_txt.html

See Also

sunspot.month is a longer version ofsunspots that runs until 1988 rather than 1983.

Examples

require(stats); require(graphics)
Compare the monthly series
plot (sunspot.month, main = "sunspot.month [stats]", col = 2)
lines(sunspots) # "very barely" see something

Now look at the difference :
all(tsp(sunspots) [c(1,3)] ==

tsp(sunspot.month)[c(1,3)]) ## Start & Periodicity are the same
n1 <- length(sunspots)
table(eq <- sunspots == sunspot.month[1:n1]) #> 132 are different !
i <- which(!eq)
rug(time(eq)[i])
s1 <- sunspots[i] ; s2 <- sunspot.month[i]
cbind(i = i, sunspots = s1, ss.month = s2,

perc.diff = round(100*2*abs(s1-s2)/(s1+s2), 1))

sunspot.year Yearly Sunspot Data, 1700–1988

Description

Yearly numbers of sunspots.

Usage

sunspot.year

Format

The univariate time seriessunspot.year contains 289 observations, and is of class"ts" .

Source

H. Tong (1996)Non-Linear Time Series. Clarendon Press, Oxford, p. 471.

http://www.oma.be/KSB-ORB/SIDC/sidc_txt.html

swiss 535

sunspots Monthly Sunspot Numbers, 1749–1983

Description

Monthly mean relative sunspot numbers from 1749 to 1983. Collected at Swiss Federal Observa-
tory, Zurich until 1960, then Tokyo Astronomical Observatory.

Usage

sunspots

Format

A time series of monthly data from 1749 to 1983.

Source

Andrews, D. F. and Herzberg, A. M. (1985)Data: A Collection of Problems from Many Fields for
the Student and Research Worker. New York: Springer-Verlag.

See Also

sunspot.month has a longer (and a bit different) series.

Examples

require(graphics)
plot(sunspots, main = "sunspots data", xlab = "Year",

ylab = "Monthly sunspot numbers")

swiss Swiss Fertility and Socioeconomic Indicators (1888) Data

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking
provinces of Switzerland at about 1888.

Usage

swiss

Format

A data frame with 47 observations on 6 variables,eachof which is in percent, i.e., in[0, 100].

[,1] Fertility Ig, ‘common standardized fertility measure’
[,2] Agriculture % of males involved in agriculture as occupation
[,3] Examination % draftees receiving highest mark on army examination
[,4] Education % education beyond primary school for draftees.
[,5] Catholic % ‘catholic’ (as opposed to ‘protestant’).
[,6] Infant.Mortality live births who live less than 1 year.

536 Theoph

All variables but ‘Fertility’ give proportions of the population.

Details

(paraphrasing Mosteller and Tukey):

Switzerland, in 1888, was entering a period known as thedemographic transition; i.e., its fertility
was beginning to fall from the high level typical of underdeveloped countries.

The data collected are for 47 French-speaking “provinces” at about 1888.

Here, all variables are scaled to[0, 100], where in the original, all but"Catholic" were scaled to
[0, 1].

Note

Files for all 182 districts in 1888 and other years have been available athttp:
//opr.princeton.edu/archive/eufert/switz.html or http://opr.
princeton.edu/archive/pefp/switz.asp .

They state that variablesExamination andEducation are averages for 1887, 1888 and 1889.

Source

Project “16P5”, pages 549–551 in

Mosteller, F. and Tukey, J. W. (1977)Data Analysis and Regression: A Second Course in Statistics.
Addison-Wesley, Reading Mass.

indicating their source as “Data used by permission of Franice van de Walle. Office of Population
Research, Princeton University, 1976. Unpublished data assembled under NICHD contract number
No 1-HD-O-2077.”

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
pairs(swiss, panel = panel.smooth, main = "swiss data",

col = 3 + (swiss$Catholic > 50))
summary(lm(Fertility ~ . , data = swiss))

Theoph Pharmacokinetics of theophylline

Description

TheTheoph data frame has 132 rows and 5 columns of data from an experiment on the pharma-
cokinetics of theophylline.

Usage

Theoph

http://opr.princeton.edu/archive/eufert/switz.html
http://opr.princeton.edu/archive/eufert/switz.html
http://opr.princeton.edu/archive/pefp/switz.asp
http://opr.princeton.edu/archive/pefp/switz.asp

Theoph 537

Format

This data frame contains the following columns:

Subject an ordered factor with levels1, . . . , 12 identifying the subject on whom the observation
was made. The ordering is by increasing maximum concentration of theophylline observed.

Wt weight of the subject (kg).

Dose dose of theophylline administered orally to the subject (mg/kg).

Time time since drug administration when the sample was drawn (hr).

conc theophylline concentration in the sample (mg/L).

Details

Boeckmann, Sheiner and Beal (1994) report data from a study by Dr. Robert Upton of the kinetics
of the anti-asthmatic drug theophylline. Twelve subjects were given oral doses of theophylline then
serum concentrations were measured at 11 time points over the next 25 hours.

These data are analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (2000) using a
two-compartment open pharmacokinetic model, for which a self-starting model function,SSfol ,
is available.

Source

Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994),NONMEM Users Guide: Part V, NON-
MEM Project Group, University of California, San Francisco.

Davidian, M. and Giltinan, D. M. (1995)Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.5, p. 145 and section 6.6, p. 176)

Pinheiro, J. C. and Bates, D. M. (2000)Mixed-effects Models in S and S-PLUS, Springer (Appendix
A.29)

See Also

SSfol

Examples

require(stats); require(graphics)
coplot(conc ~ Time | Subject, data = Theoph, show.given = FALSE)
Theoph.4 <- subset(Theoph, Subject == 4)
fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),

data = Theoph.4)
summary(fm1)
plot(conc ~ Time, data = Theoph.4,

xlab = "Time since drug administration (hr)",
ylab = "Theophylline concentration (mg/L)",
main = "Observed concentrations and fitted model",
sub = "Theophylline data - Subject 4 only",
las = 1, col = 4)

xvals <- seq(0, par("usr")[2], len = 55)
lines(xvals, predict(fm1, newdata = list(Time = xvals)),

col = 4)

538 Titanic

Titanic Survival of passengers on the Titanic

Description

This data set provides information on the fate of passengers on the fatal maiden voyage of the ocean
liner ‘Titanic’, summarized according to economic status (class), sex, age and survival.

Usage

Titanic

Format

A 4-dimensional array resulting from cross-tabulating 2201 observations on 4 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Class 1st, 2nd, 3rd, Crew
2 Sex Male, Female
3 Age Child, Adult
4 Survived No, Yes

Details

The sinking of the Titanic is a famous event, and new books are still being published about it. Many
well-known facts—from the proportions of first-class passengers to the ‘women and children first’
policy, and the fact that that policy was not entirely successful in saving the women and children in
the third class—are reflected in the survival rates for various classes of passenger.

These data were originally collected by the British Board of Trade in their investigation of the
sinking. Note that there is not complete agreement among primary sources as to the exact numbers
on board, rescued, or lost.

Due in particular to the very successful film ‘Titanic’, the last years saw a rise in public interest in
the Titanic. Very detailed data about the passengers is now available on the Internet, at sites such as
Encyclopedia Titanica(http://www.rmplc.co.uk/eduweb/sites/phind).

Source

Dawson, Robert J. MacG. (1995), The ‘Unusual Episode’ Data Revisited.Journal of Statis-
tics Education, 3. http://www.amstat.org/publications/jse/v3n3/datasets.
dawson.html

The source provides a data set recording class, sex, age, and survival status for each person on board
of the Titanic, and is based on data originally collected by the British Board of Trade and reprinted
in:

British Board of Trade (1990),Report on the Loss of the ‘Titanic’ (S.S.). British Board of Trade
Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing.

Examples

require(graphics)

http://www.rmplc.co.uk/eduweb/sites/phind
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html

treering 539

mosaicplot(Titanic, main = "Survival on the Titanic")
Higher survival rates in children?
apply(Titanic, c(3, 4), sum)
Higher survival rates in females?
apply(Titanic, c(2, 4), sum)
Use loglm() in package 'MASS' for further analysis ...

ToothGrowth The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Description

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose
levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic
acid).

Usage

ToothGrowth

Format

A data frame with 60 observations on 3 variables.

[,1] len numeric Tooth length
[,2] supp factor Supplement type (VC or OJ).
[,3] dose numeric Dose in milligrams.

Source

C. I. Bliss (1952)The Statistics of Bioassay. Academic Press.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,

xlab = "ToothGrowth data: length vs dose, given type of supplement")

treering Yearly Treering Data, -6000–1979

Description

Contains normalized tree-ring widths in dimensionless units.

540 trees

Usage

treering

Format

A univariate time series with 7981 observations. The object is of class"ts" .

Each tree ring corresponds to one year.

Details

The data were recorded by Donald A. Graybill, 1980, from Gt Basin Bristlecone Pine 2805M,
3726-11810 in Methuselah Walk, California.

Source

Time Series Data Library: http://www-personal.buseco.monash.edu.au/
~hyndman/TSDL/ , series ‘CA535.DAT’

References

For background on Bristlecone pines and Methuselah Walk, seehttp://www.sonic.net/
bristlecone/ ; for some photos seehttp://www.ltrr.arizona.edu/~hallman/
sitephotos/meth.html

trees Girth, Height and Volume for Black Cherry Trees

Description

This data set provides measurements of the girth, height and volume of timber in 31 felled black
cherry trees. Note that girth is the diameter of the tree (in inches) measured at 4 ft 6 in above the
ground.

Usage

trees

Format

A data frame with 31 observations on 3 variables.

[,1] Girth numeric Tree diameter in inches
[,2] Height numeric Height in ft
[,3] Volume numeric Volume of timber in cubic ft

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976)The Minitab Student Handbook. Duxbury Press.

References

Atkinson, A. C. (1985)Plots, Transformations and Regression. Oxford University Press.

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www.sonic.net/bristlecone/
http://www.sonic.net/bristlecone/
http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html
http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html

UCBAdmissions 541

Examples

require(stats); require(graphics)
pairs(trees, panel = panel.smooth, main = "trees data")
plot(Volume ~ Girth, data = trees, log = "xy")
coplot(log(Volume) ~ log(Girth) | Height, data = trees,

panel = panel.smooth)
summary(fm1 <- lm(log(Volume) ~ log(Girth), data = trees))
summary(fm2 <- update(fm1, ~ . + log(Height), data = trees))
step(fm2)
i.e., Volume ~= c * Height * Girth^2 seems reasonable

UCBAdmissions Student Admissions at UC Berkeley

Description

Aggregate data on applicants to graduate school at Berkeley for the six largest departments in 1973
classified by admission and sex.

Usage

UCBAdmissions

Format

A 3-dimensional array resulting from cross-tabulating 4526 observations on 3 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Admit Admitted, Rejected
2 Gender Male, Female
3 Dept A, B, C, D, E, F

Details

This data set is frequently used for illustrating Simpson’s paradox, see Bickel et al. (1975). At
issue is whether the data show evidence of sex bias in admission practices. There were 2691 male
applicants, of whom 1198 (44.5%) were admitted, compared with 1835 female applicants of whom
557 (30.4%) were admitted. This gives a sample odds ratio of 1.83, indicating that males were
almost twice as likely to be admitted. In fact, graphical methods (as in the example below) or
log-linear modelling show that the apparent association between admission and sex stems from
differences in the tendency of males and females to apply to the individual departments (females
used to applymoreto departments with higher rejection rates).

This data set can also be used for illustrating methods for graphical display of categorical data, such
as the general-purpose mosaic plot or the ourfold display for 2-by-2-by-k tables. See the home
page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html) for fur-
ther information.

References

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975) Sex bias in graduate admissions: Data
from Berkeley.Science, 187, 398–403.

http://www.math.yorku.ca/SCS/friendly.html

542 UKDriverDeaths

Examples

require(graphics)
Data aggregated over departments
apply(UCBAdmissions, c(1, 2), sum)
mosaicplot(apply(UCBAdmissions, c(1, 2), sum),

main = "Student admissions at UC Berkeley")
Data for individual departments
opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))
for(i in 1:6)

mosaicplot(UCBAdmissions[,,i],
xlab = "Admit", ylab = "Sex",
main = paste("Department", LETTERS[i]))

mtext(expression(bold("Student admissions at UC Berkeley")),
outer = TRUE, cex = 1.5)

par(opar)

UKDriverDeaths Road Casualties in Great Britain 1969–84

Description

UKDriverDeaths is a time series giving the monthly totals of car drivers in Great Britain killed
or seriously injured Jan 1969 to Dec 1984. Compulsory wearing of seat belts was introduced on 31
Jan 1983.

Seatbelts is more information on the same problem.

Usage

UKDriverDeaths
Seatbelts

Format

Seatbelts is a multiple time series, with columns

DriversKilled car drivers killed.

drivers same asUKDriverDeaths .

front front-seat passengers killed or seriously injured.

rear rear-seat passengers killed or seriously injured.

kms distance driven.

PetrolPrice petrol price.

VanKilled number of van (‘light goods vehicle’) drivers.

law 0/1: was the law in effect that month?

Source

Harvey, A.C. (1989)Forecasting, Structural Time Series Models and the Kalman Filter.Cambridge
University Press, pp. 519–523.

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.http://www.ssfpack.com/dkbook/

http://www.ssfpack.com/dkbook/

UKgas 543

References

Harvey, A. C. and Durbin, J. (1986) The effects of seat belt legislation on British road casualties:
A case study in structural time series modelling.Journal of the Royal Statistical Societyseries B,
149, 187–227.

Examples

require(stats); require(graphics)
work with pre-seatbelt period to identify a model, use logs
work <- window(log10(UKDriverDeaths), end = 1982+11/12)
par(mfrow = c(3,1))
plot(work); acf(work); pacf(work)
par(mfrow = c(1,1))
(fit <- arima(work, c(1,0,0), seasonal = list(order= c(1,0,0))))
z <- predict(fit, n.ahead = 24)
ts.plot(log10(UKDriverDeaths), z$pred, z$pred+2*zse, zpred-2*z$se,

lty = c(1,3,2,2), col = c("black", "red", "blue", "blue"))

now see the effect of the explanatory variables
X <- Seatbelts[, c("kms", "PetrolPrice", "law")]
X[, 1] <- log10(X[, 1]) - 4
arima(log10(Seatbelts[, "drivers"]), c(1,0,0),

seasonal = list(order= c(1,0,0)), xreg = X)

UKgas UK Quarterly Gas Consumption

Description

Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of therms.

Usage

UKgas

Format

A quarterly time series of length 108.

Source

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.http://www.ssfpack.com/dkbook/

Examples

maybe str(UKgas) ; plot(UKgas) ...

http://www.ssfpack.com/dkbook/

544 USAccDeaths

UKLungDeaths Monthly Deaths from Lung Diseases in the UK

Description

Three time series giving the monthly deaths from bronchitis, emphysema and asthma in the UK,
1974–1979, both sexes (ldeaths), males (mdeaths) and females (fdeaths).

Usage

ldeaths
fdeaths
mdeaths

Source

P. J. Diggle (1990)Time Series: A Biostatistical Introduction.Oxford, table A.3

Examples

require(stats); require(graphics) # for time
plot(ldeaths)
plot(mdeaths, fdeaths)
Better labels:
yr <- floor(tt <- time(mdeaths))
plot(mdeaths, fdeaths,

xy.labels = paste(month.abb[12*(tt - yr)], yr-1900, sep="'"))

USAccDeaths Accidental Deaths in the US 1973–1978

Description

A time series giving the monthly totals of accidental deaths in the USA. The values for the first six
months of 1979 are 7798 7406 8363 8460 9217 9316.

Usage

USAccDeaths

Source

P. J. Brockwell and R. A. Davis (1991)Time Series: Theory and Methods.Springer, New York.

USJudgeRatings 545

USArrests Violent Crime Rates by US State

Description

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each
of the 50 US states in 1973. Also given is the percent of the population living in urban areas.

Usage

USArrests

Format

A data frame with 50 observations on 4 variables.

[,1] Murder numeric Murder arrests (per 100,000)
[,2] Assault numeric Assault arrests (per 100,000)
[,3] UrbanPop numeric Percent urban population
[,4] Rape numeric Rape arrests (per 100,000)

Source

World Almanac and Book of facts 1975. (Crime rates).

Statistical Abstracts of the United States 1975. (Urban rates).

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

See Also

Thestate data sets.

Examples

require(graphics)
pairs(USArrests, panel = panel.smooth, main = "USArrests data")

USJudgeRatings Lawyers’ Ratings of State Judges in the US Superior Court

Description

Lawyers’ ratings of state judges in the US Superior Court.

Usage

USJudgeRatings

546 USPersonalExpenditure

Format

A data frame containing 43 observations on 12 numeric variables.

[,1] CONT Number of contacts of lawyer with judge.
[,2] INTG Judicial integrity.
[,3] DMNR Demeanor.
[,4] DILG Diligence.
[,5] CFMG Case flow managing.
[,6] DECI Prompt decisions.
[,7] PREP Preparation for trial.
[,8] FAMI Familiarity with law.
[,9] ORAL Sound oral rulings.

[,10] WRIT Sound written rulings.
[,11] PHYS Physical ability.
[,12] RTEN Worthy of retention.

Source

New Haven Register, 14 January, 1977 (from John Hartigan).

Examples

require(graphics)
pairs(USJudgeRatings, main = "USJudgeRatings data")

USPersonalExpenditure
Personal Expenditure Data

Description

This data set consists of United States personal expenditures (in billions of dollars) in the categories;
food and tobacco, household operation, medical and health, personal care, and private education for
the years 1940, 1945, 1950, 1955 and 1960.

Usage

USPersonalExpenditure

Format

A matrix with 5 rows and 5 columns.

Source

The World Almanac and Book of Facts, 1962, page 756.

References

Tukey, J. W. (1977)Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977)Interactive Data Analysis. Wiley.

uspop 547

Examples

require(stats) # for medpolish
USPersonalExpenditure
medpolish(log10(USPersonalExpenditure))

uspop Populations Recorded by the US Census

Description

This data set gives the population of the United States (in millions) as recorded by the decennial
census for the period 1790–1970.

Usage

uspop

Format

A time series of 19 values.

Source

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
plot(uspop, log = "y", main = "uspop data", xlab = "Year",

ylab = "U.S. Population (millions)")

VADeaths Death Rates in Virginia (1940)

Description

Death rates per 1000 in Virginia in 1940.

Usage

VADeaths

Format

A matrix with 5 rows and 4 columns.

Details

The death rates are measured per 1000 population per year. They are cross-classified by age group
(rows) and population group (columns). The age groups are: 50–54, 55–59, 60–64, 65–69, 70–74
and the population groups are Rural/Male, Rural/Female, Urban/Male and Urban/Female.

This provides a rather nice 3-way analysis of variance example.

548 volcano

Source

Molyneaux, L., Gilliam, S. K., and Florant, L. C.(1947) Differences in Virginia death rates by color,
sex, age, and rural or urban residence.American Sociological Review, 12, 525–535.

References

McNeil, D. R. (1977)Interactive Data Analysis. Wiley.

Examples

require(stats); require(graphics)
n <- length(dr <- c(VADeaths))
nam <- names(VADeaths)
d.VAD <- data.frame(

Drate = dr,
age = rep(ordered(rownames(VADeaths)),length=n),
gender= gl(2,5,n, labels= c("M", "F")),
site = gl(2,10, labels= c("rural", "urban")))

coplot(Drate ~ as.numeric(age) | gender * site, data = d.VAD,
panel = panel.smooth, xlab = "VADeaths data - Given: gender")

summary(aov.VAD <- aov(Drate ~ .^2, data = d.VAD))
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(aov.VAD)
par(opar)

volcano Topographic Information on Auckland’s Maunga Whau Volcano

Description

Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland volcanic field. This data set
gives topographic information for Maunga Whau on a 10m by 10m grid.

Usage

volcano

Format

A matrix with 87 rows and 61 columns, rows corresponding to grid lines running east to west and
columns to grid lines running south to north.

Source

Digitized from a topographic map by Ross Ihaka. These data should not be regarded as accurate.

See Also

filled.contour for a nice plot.

warpbreaks 549

Examples

require(grDevices); require(graphics)
filled.contour(volcano, color.palette = terrain.colors, asp = 1)
title(main = "volcano data: filled contour map")

warpbreaks The Number of Breaks in Yarn during Weaving

Description

This data set gives the number of warp breaks per loom, where a loom corresponds to a fixed length
of yarn.

Usage

warpbreaks

Format

A data frame with 54 observations on 3 variables.

[,1] breaks numeric The number of breaks
[,2] wool factor The type of wool (A or B)
[,3] tension factor The level of tension (L, M, H)

There are measurements on 9 looms for each of the six types of warp (AL, AM, AH, BL, BM, BH).

Source

Tippett, L. H. C. (1950)Technological Applications of Statistics. Wiley. Page 106.

References

Tukey, J. W. (1977)Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977)Interactive Data Analysis. Wiley.

See Also

xtabs for ways to display these data as a table.

Examples

require(stats); require(graphics)
summary(warpbreaks)
opar <- par(mfrow = c(1,2), oma = c(0, 0, 1.1, 0))
plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "A", main = "Wool A")
plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "B", main = "Wool B")
mtext("warpbreaks data", side = 3, outer = TRUE)
par(opar)
summary(fm1 <- lm(breaks ~ wool*tension, data = warpbreaks))

550 WorldPhones

anova(fm1)

women Average Heights and Weights for American Women

Description

This data set gives the average heights and weights for American women aged 30–39.

Usage

women

Format

A data frame with 15 observations on 2 variables.

[,1] height numeric Height (in)
[,2] weight numeric Weight (lbs)

Details

The data set appears to have been taken from the American Society of ActuariesBuild and Blood
Pressure Studyfor some (unknown to us) earlier year.

The World Almanac notes: “The figures represent weights in ordinary indoor clothing and shoes,
and heights with shoes”.

Source

The World Almanac and Book of Facts, 1975.

References

McNeil, D. R. (1977)Interactive Data Analysis. Wiley.

Examples

require(graphics)
plot(women, xlab = "Height (in)", ylab = "Weight (lb)",

main = "women data: American women aged 30-39")

WorldPhones The World’s Telephones

Description

The number of telephones in various regions of the world (in thousands).

Usage

phones

WWWusage 551

Format

A matrix with 7 rows and 8 columns. The columns of the matrix give the figures for a given region,
and the rows the figures for a year.

The regions are: North America, Europe, Asia, South America, Oceania, Africa, Central America.

The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.

Source

AT&T (1961) The World’s Telephones.

References

McNeil, D. R. (1977)Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
matplot(rownames(WorldPhones), WorldPhones, type = "b", log = "y",

xlab = "Year", ylab = "Number of telephones (1000's)")
legend(1951.5, 80000, colnames(WorldPhones), col = 1:6, lty = 1:5,

pch = rep(21, 7))
title(main = "World phones data: log scale for response")

WWWusage Internet Usage per Minute

Description

A time series of the numbers of users connected to the Internet through a server every minute.

Usage

WWWusage

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.http://www.ssfpack.com/dkbook/

References

Makridakis, S., Wheelwright, S. C. and Hyndman, R. J. (1998)Forecasting: Methods and Applica-
tions.Wiley.

http://www.ssfpack.com/dkbook/

552 WWWusage

Examples

require(graphics)
work <- diff(WWWusage)
par(mfrow = c(2,1)); plot(WWWusage); plot(work)
Not run:
require(stats)
aics <- matrix(, 6, 6, dimnames=list(p=0:5, q=0:5))
for(q in 1:5) aics[1, 1+q] <- arima(WWWusage, c(0,1,q),

optim.control = list(maxit = 500))$aic
for(p in 1:5)

for(q in 0:5) aics[1+p, 1+q] <- arima(WWWusage, c(p,1,q),
optim.control = list(maxit = 500))$aic

round(aics - min(aics, na.rm=TRUE), 2)
End(Not run)

Chapter 3

The grDevices package

grDevices-package The R Graphics Devices and Support for Colours and Fonts

Description

Graphics devices and support for base and grid graphics

Details

This package contains functions which support bothbaseandgrid graphics.

For a complete list of functions, uselibrary(help="grDevices") .

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team〈R-core@r-project.org〉

as.graphicsAnnot Coerce an Object for Graphics Annotation

Description

Coerce anR object into a form suitable for graphics annotation.

Usage

as.graphicsAnnot(x)

Arguments

x anR object

553

554 boxplot.stats

Details

Expressions, calls and names (as used byplotmath) are passed through unchanged. All other objects
with an S3 class (as determined byis.object) are coerced byas.character to character
vectors.

All the graphicsandgrid functions which use this coerce calls and names to expressions internally.

Value

A language object or a character vector.

boxplot.stats Box Plot Statistics

Description

This function is typically called by another function to gather the statistics necessary for producing
box plots, but may be invoked separately.

Usage

boxplot.stats(x, coef = 1.5, do.conf = TRUE, do.out = TRUE)

Arguments

x a numeric vector for which the boxplot will be constructed (NAs andNaNs are
allowed and omitted).

coef this determines how far the plot ‘whiskers’ extend out from the box. Ifcoef is
positive, the whiskers extend to the most extreme data point which is no more
than coef times the length of the box away from the box. A value of zero
causes the whiskers to extend to the data extremes (and no outliers be returned).

do.conf,do.out
logicals; if FALSE, theconf or out component respectively will be empty in
the result.

Details

The two ‘hinges’ are versions of the first and third quartile, i.e., close toquantile (x,
c(1,3)/4) . The hinges equal the quartiles for oddn (wheren <- length(x)) and differ
for evenn. Where the quartiles only equal observations forn %% 4 == 1(n ≡ 1 mod 4), the
hinges do soadditionally for n %% 4 == 2(n ≡ 2 mod 4), and are in the middle of two obser-
vations otherwise.

The notches (if requested) extend to+/-1.58 IQR/sqrt(n) . This seems to be based on same
calculations as the formula with 1.57 in Chamberset al. (1983, p. 62), given in McGillet al. (1978,
p. 16). They are based on asymptotic normality of the median and roughly equal sample sizes for
the two medians being compared, and are said to be rather insensitive to the underlying distributions
of the samples. The idea appears to be to give roughly a 95% confidence interval for the difference
in two medians.

boxplot.stats 555

Value

List with named components as follows:

stats a vector of length 5, containing the extreme of the lower whisker, the lower
‘hinge’, the median, the upper ‘hinge’ and the extreme of the upper whisker.

n the number of non-NAobservations in the sample.

conf the lower and upper extremes of the ‘notch’ (if(do.conf)). See the details.

out the values of any data points which lie beyond the extremes of the whiskers
(if(do.out)).

Note that$stats and $conf are sorted inincreasing order, unlike S, and that$n and $out
include any+- Inf values.

References

Tukey, J. W. (1977)Exploratory Data Analysis.Section 2C.

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots.The American Statisti-
cian32, 12–16.

Velleman, P. F. and Hoaglin, D. C. (1981)Applications, Basics and Computing of Exploratory Data
Analysis.Duxbury Press.

Emerson, J. D and Strenio, J. (1983). Boxplots and batch comparison. Chapter 3 ofUnderstanding
Robust and Exploratory Data Analysis, eds. D. C. Hoaglin, F. Mosteller and J. W. Tukey. Wiley.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983)Graphical Methods for Data
Analysis.Wadsworth & Brooks/Cole.

See Also

fivenum , boxplot , bxp .

Examples

require(stats)
x <- c(1:100, 1000)
(b1 <- boxplot.stats(x))
(b2 <- boxplot.stats(x, do.conf=FALSE, do.out=FALSE))
stopifnot(b1 $ stats == b2 $ stats) # do.out=F is still robust
boxplot.stats(x, coef = 3, do.conf=FALSE)
no outlier treatment:
boxplot.stats(x, coef = 0)

boxplot.stats(c(x, NA)) # slight change : n is 101
(r <- boxplot.stats(c(x, -1:1/0)))
stopifnot(r$out == c(1000, -Inf, Inf))

556 check.options

check.options Set Options with Consistency Checks

Description

Utility function for setting options with some consistency checks. Theattributes of the new
settings innew are checked for consistency with themodel(often default) list inname.opt .

Usage

check.options(new, name.opt, reset = FALSE, assign.opt = FALSE,
envir = .GlobalEnv,
check.attributes = c("mode", "length"),
override.check = FALSE)

Arguments

new anamedlist

name.opt character with the name ofR object containing the default list.

reset logical; if TRUE, reset the options fromname.opt . If there is more than one
R object with namename.opt , remove the first one in thesearch () path.

assign.opt logical; if TRUE, assign the . . .

envir theenvironment used forget andassign .
check.attributes

character containing the attributes whichcheck.options should check.
override.check

logical vector of lengthlength(new) (or 1 which entails recycling). For
those new[i] where override.check[i] == TRUE , the checks are
overridden and the changes made anyway.

Value

A list of components with the same names as the one calledname.opt . The values of the compo-
nents are changed from thenew list, as long as these pass the checks (when these are not overridden
according tooverride.check).

Author(s)

Martin Maechler

See Also

ps.options which usescheck.options .

Examples

(L1 <- list(a=1:3, b=pi, ch="CH"))
check.options(list(a=0:2), name.opt = "L1")
check.options(NULL, reset = TRUE, name.opt = "L1")

chull 557

chull Compute Convex Hull of a Set of Points

Description

Computes the subset of points which lie on the convex hull of the set of points specified.

Usage

chull(x, y = NULL)

Arguments

x, y coordinate vectors of points. This can be specified as two vectorsx andy , a
2-column matrixx , a listx with two components, etc, seexy.coords .

Details

xy.coords is used to interpret the specification of the points. The algorithm is that given by Eddy
(1977).

‘Peeling’ as used in the S functionchull can be implemented by callingchull recursively.

Value

An integer vector giving the indices of the points lying on the convex hull, in clockwise order.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Eddy, W. F. (1977) A new convex hull algorithm for planar sets.ACM Transactions on Mathemati-
cal Software, 3, 398–403.

Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar sets[Z].
ACM Transactions on Mathematical Software, 3, 411–412.

See Also

xy.coords ,polygon

Examples

require(stats)
X <- matrix(rnorm(2000), ncol = 2)
chull(X)
Not run:

Example usage from graphics package
plot(X, cex = 0.5)
hpts <- chull(X)
hpts <- c(hpts, hpts[1])
lines(X[hpts,])

End(Not run)

558 col2rgb

cm Unit Transformation

Description

Translates from inches to cm (centimeters).

Usage

cm(x)

Arguments

x numeric vector

Examples

cm(1)# = 2.54

col2rgb Color to RGB Conversion

Description

R color to RGB (red/green/blue) conversion.

Usage

col2rgb(col, alpha = FALSE)

Arguments

col vector of any of the three kind ofR colors, i.e., either a color name (an element
of colors ()), a hexadecimal string of the form"#rrggbb" , or an integeri
meaningpalette()[i] .

alpha logical value indicating whether alpha channel values should be returned.

Details

For integer colors,0 is shorthand for the currentpar("bg") , andNA means ‘nothing’ which
effectively does not draw the corresponding item.

For character colors,"NA" is equivalent toNAabove.

Value

an integer matrix with three or four rows and number of columns the length (and names if any) as
col .

colorRamp 559

Author(s)

Martin Maechler

See Also

rgb , colors , palette , etc.

Examples

col2rgb("peachpuff")
col2rgb(c(blu = "royalblue", reddish = "tomato")) # names kept

col2rgb(1:8)# the ones from the palette() :

col2rgb(paste("gold", 1:4, sep=""))

col2rgb("#08a0ff")
all three kind of colors mixed :
col2rgb(c(red="red", palette= 1:3, hex="#abcdef"))

##-- NON-INTRODUCTORY examples --

grC <- col2rgb(paste("gray",0:100,sep=""))
table(print(diff(grC["red",])))# '2' or '3': almost equidistant
The 'named' grays are in between {"slate gray" is not gray, strictly}
col2rgb(c(g66="gray66", darkg= "dark gray", g67="gray67",

g74="gray74", gray = "gray", g75="gray75",
g82="gray82", light="light gray", g83="gray83"))

crgb <- col2rgb(cc <- colors())
colnames(crgb) <- cc
t(crgb)## The whole table

ccodes <- c(256^(2:0) %*% crgb)## = internal codes
How many names are 'aliases' of each other:
table(tcc <- table(ccodes))
length(uc <- unique(sort(ccodes))) # 502
All the multiply named colors:
mult <- uc[tcc >= 2]
cl <- lapply(mult, function(m) cc[ccodes == m])
names(cl) <- apply(col2rgb(sapply(cl, function(x)x[1])),

2, function(n)paste(n, collapse=","))
utils::str(cl)
Not run:

if(require(xgobi)) { ## Look at the color cube dynamically :
tc <- t(crgb[, !duplicated(ccodes)])
table(is.gray <- tc[,1] == tc[,2] & tc[,2] == tc[,3])# (397, 105)
xgobi(tc, color = c("gold", "gray")[1 + is.gray])

}
End(Not run)

colorRamp Color interpolation

560 colorRamp

Description

These functions return functions that interpolate a set of given colors to create new color palettes
(like topo.colors) and color ramps, functions that map the interval[0, 1] to colors (likegrey).

Usage

colorRamp(colors, bias = 1, space = c("rgb", "Lab"),
interpolate = c("linear", "spline"))

colorRampPalette(colors, ...)

Arguments

colors Colors to interpolate

bias A positive number. Higher values give more widely spaced colors at the high
end.

space Interpolation in RGB or CIE Lab color spaces

interpolate Use spline or linear interpolation.

... arguments to pass tocolorRamp .

Details

The CIE Lab color space is approximately perceptually uniform, and so gives smoother and more
uniform color ramps. On the other hand, palettes that vary from one hue to another via white may
have a more symmetrical appearance in RGB space.

The conversion formulas in this function do not appear to be completely accurate and the color ramp
may not reach the extreme values in Lab space. Future changes in theR color model may change
the colors produced withspace="Lab" .

Value

colorRamp returns a function that maps values between 0 and 1 to colors.colorRampPalette
returns a function that takes an integer argument and returns that number of colors interpolating the
given sequence (similar toheat.colors or terrain.colors .

See Also

Good starting points for interpolation are the "sequential" and "diverging" ColorBrewer palettes in
the RColorBrewer package

Examples

require(graphics)

Here space="rgb" gives palettes that vary only in saturation,
as intended.
With space="Lab" the steps are more uniform, but the hues
are slightly purple.
filled.contour(volcano,

color.palette =
colorRampPalette(c("red", "white", "blue")),

asp = 1)
filled.contour(volcano,

color.palette =

colors 561

colorRampPalette(c("red", "white", "blue"),
space = "Lab"),

asp = 1)

Interpolating a 'sequential' ColorBrewer palette
YlOrBr <- c("#FFFFD4", "#FED98E", "#FE9929", "#D95F0E", "#993404")
filled.contour(volcano,

color.palette = colorRampPalette(YlOrBr, space = "Lab"),
asp = 1)

filled.contour(volcano,
color.palette = colorRampPalette(YlOrBr, space = "Lab",

bias = 0.5),
asp = 1)

'jet.colors' is "as in Matlab"
(and hurting the eyes by over-saturation)
jet.colors <-

colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))

filled.contour(volcano, color = jet.colors, asp = 1)

space="Lab" helps when colors don't form a natural sequence
m <- outer(1:20,1:20,function(x,y) sin(sqrt(x*y)/3))
rgb.palette <- colorRampPalette(c("red", "orange", "blue"),

space = "rgb")
Lab.palette <- colorRampPalette(c("red", "orange", "blue"),

space = "Lab")
filled.contour(m, col = rgb.palette(20))
filled.contour(m, col = Lab.palette(20))

colors Color Names

Description

Returns the built-in color names whichR knows about.

Usage

colors()
colours()

Details

These color names can be used with acol= specification in graphics functions.

An even wider variety of colors can be created with primitivesrgb and hsv or the derived
rainbow , heat.colors , etc.

Value

A character vector containing all the built-in color names.

562 contourLines

See Also

palette for setting the ‘palette’ of colors forpar(col= <num>) ; rgb , hsv , hcl , gray ;
rainbow for a nice example; andheat.colors , topo.colors for images.

col2rgb for translating to RGB numbers and extended examples.

Examples

cl <- colors()
length(cl); cl[1:20]

contourLines Calculate Contour Lines

Description

Calculate contour lines for a given set of data.

Usage

contourLines(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z, nlevels = 10,
levels = pretty(range(z, na.rm=TRUE), nlevels))

Arguments

x,y locations of grid lines at which the values inz are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. Ifx is
a list , its componentsx$x andx$y are used forx andy , respectively. If the
list has componentz this is used forz .

z a matrix containing the values to be plotted (NAs are allowed). Note thatx can
be used instead ofz for convenience.

nlevels number of contour levels desirediff levels is not supplied.

levels numeric vector of levels at which to draw contour lines.

Details

contourLines draws nothing, but returns a set of contour lines.

There is currently no documentation about the algorithm. The source code is in
‘$R_HOME/src/main/plot3d.c’.

Value

A list of contours. Each contour is a list with elements:

level The contour level.

x The x-coordinates of the contour.

y The y-coordinates of the contour.

convertColor 563

See Also

options ("max.countour.segments") for the maximal complexity of a single contour
line.

contour .

Examples

x <- 10*1:nrow(volcano)
y <- 10*1:ncol(volcano)
contourLines(x, y, volcano)

convertColor Convert between colour spaces

Description

Convert colours between standard colour space representations. This function is experimental.

Usage

convertColor(color, from, to, from.ref.white, to.ref.white,
scale.in=1, scale.out=1, clip=TRUE)

Arguments

color A matrix whose rows specify colors.

from,to Input and output color spaces. See ‘Details’ below.
from.ref.white,to.ref.white

Reference whites orNULL if these are built in to the definition, as for RGB
spaces.D65 is the default, see ‘Details’ for others.

scale.in, scale.out
Input is divided byscale.in , output is multiplied byscale.out . Use
NULL to suppress scaling when input or output is not numeric.

clip If TRUE, truncate RGB output to [0,1],FALSEreturn out-of-range RGB,NAset
out of range colors toNaN.

Details

Color spaces are specified by objects of classcolorConverter , created bycolorConverter
or make.rgb . Built-in color spaces may be referenced by strings:"XYZ" , "sRGB" , "Apple
RGB", "CIE RGB" , "Lab" , "Luv" . The converters for these colour spaces are in the object
colorspaces .

The"sRGB" color space is that used by standard PC monitors."Apple RGB" is used by Apple
monitors."Lab" and"Luv" are approximately perceptually uniform spaces standardized by the
Commission Internationale d’Eclairage.XYZ is a 1931 CIE standard capable of representing all
visible colors (and then some), but not in a perceptually uniform way.

TheLab andLuv spaces describe colors of objects, and so require the specification of a reference
‘white light’ color. IlluminantD65 is a standard indirect daylight, IlluminantD50 is close to direct
sunlight, and IlluminantA is the light from a standard incandescent bulb. Other standard CIE

564 convertColor

illuminants supported areB, C, E andD55. RGB colour spaces are defined relative to a particular
reference white, and can be only approximately translated to other reference whites. The Bradford
chromatic adaptation algorithm is used for this.

The RGB color spaces are specific to a particular class of display. An RGB space cannot represent
all colors, and theclip option controls what is done to out-of-range colors.

Value

A 3-row matrix whose columns specify the colors.

References

For all the conversion equationshttp://www.brucelindbloom.com/

For the white points http://www.efg2.com/Lab/Graphics/Colors/
Chromaticity.htm

See Also

col2rgb andcolors for ways to specify colors in graphics.

make.rgb for specifying other colour spaces.

Examples

require(graphics); require(stats) # for na.omit
par(mfrow=c(2,2))
The displayable colors from four planes of Lab space
ab <- expand.grid(a=(-10:15)*10,b=(-15:10)*10)

Lab <- cbind(L=20,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=20")

Lab <- cbind(L=40,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=40")

Lab <- cbind(L=60,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=60")

Lab <- cbind(L=80,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")

http://www.brucelindbloom.com/
http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm
http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm

dev.interactive 565

srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=80")

(cols <- t(col2rgb(palette())))
(lab <- convertColor(cols,from="sRGB",to="Lab",scale.in=255))
round(convertColor(lab,from="Lab",to="sRGB",scale.out=255))

dev.interactive Is the Current Graphics Device Interactive ?

Description

Test if the current graphics device (or that which would be opened) is interactive.

Usage

dev.interactive(orNone = FALSE)

deviceIsInteractive(name)

Arguments

orNone logical; if TRUE, the function also returnsTRUEwhen.Device == "null
device" andgetOption ("device") is among the known interactive de-
vices.

name one of more device names, as a character vector, orNULL.

Details

There is a list of known interactive devices, and in addition a current device is regarded as interactive
if its displaylist is enabled (seedev.control).

The X11 (Unix), windows (Windows) andquartz (MacOS X) are regarded as interactive, to-
gether withGTK (available in packagegtkDevice) andJavaGD (from the package of the same
name). Packages can add their devices to the list by callingdeviceIsInteractive .

Value

dev.interactive() returns a logical,TRUEif and only if an interactive (screen) device is in
use.

deviceIsInteractive returns the updated list of known interactive devices, invisibly.

See Also

Devices for the available devices on your platform.

Examples

dev.interactive()
print(deviceIsInteractive(NULL))

566 dev.xxx

dev.xxx Control Multiple Devices

Description

These functions provide control over multiple graphics devices.

Usage

dev.cur()
dev.list()
dev.next(which = dev.cur())
dev.prev(which = dev.cur())
dev.off(which = dev.cur())
dev.set(which = dev.next())
graphics.off()

Arguments

which An integer specifying a device number

Details

Only one device is the ‘active’ device: this is the device in which all graphics operations occur.
There is a"null device" which is always open but is really a placeholder: any attempt to use
it will open a new device specified bygetOption ("device")).

Devices are associated with a name (e.g.,"X11" or "postscript") and a number in the range
1 to 63; the"null device" is always device 1. Once a device has been opened the null device
is not considered as a possible active device. There is a list of open devices, and this is considered
as a circular list not including the null device.dev.next anddev.prev select the next open
device in the appropriate direction, unless no device is open.

dev.off shuts down the specified (by default the current) device. If the current device is shut
down and any other devices are open, the next open device is made current. It is an error to attempt
to shut down device 1.graphics.off() shuts down all open graphics devices.

dev.set makes the specified device the active device. If there is no device with that number, it is
equivalent todev.next . If which = 1 it opens a new device and selects that.

Value

dev.cur returns the number and name of the active device, or 1, the null device, if none is active.

dev.list returns the numbers of all open devices, except device 1, the null device. This is a
numeric vector with a names attribute giving the names, orNULL is there is no open device.

dev.next anddev.prev return the number and name of the next / previous device in the list of
devices. This will be the null device if and only if there are no open devices.

dev.off returns the name and number of the new active device (after the specified device has
been shut down).

dev.set returns the name and number of the new active device.

dev2 567

See Also

Devices , such aspostscript , etc.

layout and its links for setting up plotting regions on the current device.

Examples

Not run:
Unix-specific example
x11()
plot(1:10)
x11()
plot(rnorm(10))
dev.set(dev.prev())
abline(0,1)# through the 1:10 points
dev.set(dev.next())
abline(h=0, col="gray")# for the residual plot
dev.set(dev.prev())
dev.off(); dev.off()#- close the two X devices
End(Not run)

dev2 Copy Graphics Between Multiple Devices

Description

dev.copy copies the graphics contents of the current device to the device specified bywhich
or to a new device which has been created by the function specified bydevice (it is an error to
specify bothwhich anddevice). (If recording is off on the current device, there are no contents
to copy: this will result in no plot or an empty plot.) The device copied to becomes the current
device.

dev.print copies the graphics contents of the current device to a new device which has been
created by the function specified bydevice and then shuts the new device.

dev.copy2eps is similar todev.print but produces an EPSF output file, in portrait orienta-
tion (horizontal = FALSE)

dev.control allows the user to control the recording of graphics operations in a device. If
displaylist is "inhibit" ("enable") then recording is turned off (on). It is only safe to
change this at the beginning of a plot (just before or just after a new page). Initially recording is on
for screen devices, and off for print devices.

Usage

dev.copy(device, ..., which = dev.next())
dev.print(device = postscript, ...)
dev.copy2eps(...)
dev.control(displaylist = c("inhibit", "enable"))

568 dev2

Arguments

device A device function (e.g.,x11 , postscript , . . .)

... Arguments to thedevice function above: fordev.copy2eps arguments to
postscript and fordev.copy2pdf , arguments topdf . Fordev.print ,
this includeswhich and by default anypostscript arguments.

which A device number specifying the device to copy to.

displaylist A character string: the only valid values are"inhibit" and"enable" .

Details

Note that these functions copy thedevice regionand not a plot: the background colour of the device
surface is part of what is copied. Most screen devices default to a transparent background, which is
probably not what is needed when copying to a device such aspng .

For dev.copy2eps anddev.copy2pdf , width andheight are taken from the current de-
vice unless otherwise specified. If just one ofwidth andheight is specified, the other is adjusted
to preserve the aspect ratio of the device being copied. The default file name isRplot.eps or
Rplot.pdf , and can be overridden by specifying afile argument.

The default for dev.print is to produce and print a postscript copy, if
options ("printcmd") is set suitably.

dev.print is most useful for producing a postscript print (its default) when the following applies.
Unlessfile is specified, the plot will be printed. Unlesswidth , height andpointsize are
specified the plot dimensions will be taken from the current device, shrunk if necessary to fit on the
paper. (pointsize is rescaled if the plot is shrunk.) Ifhorizontal is not specified and the plot
can be printed at full size by switching its value this is done instead of shrinking the plot region.

If dev.print is used with a specifieddevice (evenpostscript) it sets the width and height
in the same way asdev.copy2eps . This will not be appropriate unless the device specifies
dimensions in inches, in particular not forpng andjpeg .

Value

dev.copy returns the name and number of the device which has been copied to.

dev.print , dev.copy2eps anddev.copy2pdf return the name and number of the device
which has been copied from.

Note

Most devices (including all screen devices) have a display list which records all of the graphics
operations that occur in the device.dev.copy copies graphics contents by copying the display list
from one device to another device. Also, automatic redrawing of graphics contents following the
resizing of a device depends on the contents of the display list.

After the commanddev.control("inhibit") , graphics operations are not recorded in the
display list so thatdev.copy anddev.print will not copy anything and the contents of a device
will not be redrawn automatically if the device is resized.

The recording of graphics operations is relatively expensive in terms of memory so the command
dev.control("inhibit") can be useful if memory usage is an issue.

See Also

dev.cur and otherdev.xxx functions

dev2bitmap 569

Examples

Not run:
x11()
plot(rnorm(10), main="Plot 1")
dev.copy(device=x11)
mtext("Copy 1", 3)
dev.print(width=6, height=6, horizontal=FALSE) # prints it
dev.off(dev.prev())
dev.off()
End(Not run)

dev2bitmap Graphics Device for Bitmap Files via GhostScript

Description

bitmap generates a graphics file.dev2bitmap copies the current graphics device to a file in a
graphics format.

Usage

bitmap(file, type = "png256", height = 6, width = 6, res = 72,
units = "in", pointsize, ...)

dev2bitmap(file, type = "png256", height = 6, width = 6, res = 72,
units = "in", pointsize, ...,
method = c("postscript", "pdf"))

Arguments

file The output file name, with an appropriate extension.

type The type of bitmap. the default is"png256" .
width, height

Dimensions of the display region.

res Resolution, in dots per inch.

units The units in whichheight andwidth are given. Can bein (inches),px
(pixels),cmor mm.

pointsize The pointsize to be used for text: defaults to something reasonable given the
width and height

... Other parameters passed topostscript or pdf .

method Should the plot be done bypostscript or pdf ?

Details

dev2bitmap works by copying the current device to apostscript or pdf device, and
post-processing the output file usingghostscript . bitmap works in the same way using a
postscript device and post-processing the output as ‘printing’.

You will needghostscript : the full path to the executable can be set by the environment variable
R_GSCMD. (If this is unset the command"gs" is used, which will work if it is in your path.)

570 Devices

The types available will depend on the version ofghostscript , but are likely to in-
clude "pcxmono" , "pcxgray" , "pcx16" , "pcx256" , "pcx24b" , "pcxcmyk" , "pbm" ,
"pbmraw" , "pgm" , "pgmraw" , "pgnm" , "pgnmraw" , "pnm" , "pnmraw" , "ppm" ,
"ppmraw" , "pkm" , "pkmraw" , "tiffcrle" , "tiffg3" , "tiffg32d" , "tiffg4" ,
"tifflzw" , "tiffpack" , "tiff12nc" , "tiff24nc" , "psmono" , "psgray" ,
"psrgb" , "bit" , "bitrgb" , "bitcmyk" , "pngmono" , "pnggray" , "png16" ,
"png256" , "png16m" , "jpeg" , "jpeggray" , "pdfwrite" .

For formats which contain a single image, a file specification likeRplots%03d.png can be used:
this is interpreted by GhostScript.

For dev2bitmap if just one ofwidth andheight is specified, the other is chosen to preserve
aspect ratio of the device being copied. The main reason to prefermethod = "pdf" over the
default would be to allow semi-transparent colours to be used.

For graphics parameters such as"cra" that need to work in pixels, the default resolution of 72dpi
is always used.

Value

None.

See Also

postscript , pdf , png andjpeg and on Windowsbmp.

To display an array of data, seeimage .

Devices List of Graphical Devices

Description

The following graphics devices are currently available:

• postscript Writes PostScript graphics commands to a file

• pdf Write PDF graphics commands to a file

• pictex Writes LaTeX/PicTeX graphics commands to a file

• xfig Device for XFIG graphics file format

• bitmap bitmap pseudo-device viaGhostScript (if available).

The following devices will be available ifR was compiled to use them:

• X11 The graphics driver for the X11 Window system

• png PNG bitmap device

• jpeg JPEG bitmap device

Details

If no device is open, using a high-level graphics function will cause a device to be opened. Which
device is given byoptions ("device") which is initially set as the most appropriate for each
platform: a screen device for most interactive use andpostscript otherwise. The exception is
interactive use under Unix if no screen device is known to be available, whenpostscript() is
used for most systems;pdf() for Mac OS X.

embedFonts 571

See Also

The individual help files for further information on any of the devices listed here;

dev.interactive , dev.cur , dev.print , graphics.off , image , dev2bitmap .

capabilities to see ifX11, jpeg andpng are available.

Examples

Not run:
open the default screen device on this platform if no device is
open
if(dev.cur() == 1) get(getOption("device"))()
End(Not run)

embedFonts Embed Fonts in PostScript and PDF

Description

Runs Ghostscript to process a PDF or PostScript file and embed all fonts in the file.

Usage

embedFonts(file, format, outfile = file, fontpaths = "",
options = "")

Arguments

file a character string giving the name of the original file.

format either"pswrite" or "pdfwrite" . If not specified, it is guessed from the
suffix of file .

outfile the name of the new file (with fonts embedded).

fontpaths a character vector giving directories that Ghostscript will search for fonts.

options a character string containing further options to Ghostscript.

Details

This function is not necessary if you just use the standard default fonts for PostScript and PDF
output.

If you use a special font, this function is useful for embedding that font in your PostScript or PDF
document so that it can be shared with others without them having to install your special font
(provided the font licence allows this).

If the special font is not installed for Ghostscript, you will need to tell Ghostscript where the font
is, using something likeoptions="-sFONTPATH=path/to/font" .

This function relies on a suitable Ghostscript executable being in your path, or the environment
variableR_GSCMD(the same asbitmap) being set as the full path to the Ghostscript executable.
This defaults to"gs" .

Note that Ghostscript may do font substitution, so the font embedded may differ from that specified
in the original file.

572 extendrange

Value

The shell command used to invoke Ghostscript is returned invisibly. This may be useful for debug-
ging purposes as you can run the command by hand in a shell to look for problems.

See Also

postscriptFonts , Devices .

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics.R News,
6(2):41–47.http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf .

extendrange Extend a Numerical Range by a Small Percentage

Description

Extends a numerical range by a small percentage, i.e., fraction,on both sides.

Usage

extendrange(x, r = range(x, na.rm = TRUE), f = 0.05)

Arguments

x numeric vector; not used ifr is specified.

r numeric vector of length 2; defaults to therange of x .

f number specifying the fraction by which the range should be extended.

Value

A numeric vector of length 2,r + c(-f,f) * diff(r) .

See Also

range ; pretty which can be considered a sophisticated extension ofextendrange .

Examples

x <- 1:5
(r <- range(x)) # 1 5
extendrange(x) # 0.8 5.2
extendrange(x, f= 0.01) # 0.96 5.04
Use 'r' if you have it already:
stopifnot(identical(extendrange(r=r),

extendrange(x)))

http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

getGraphicsEvent 573

getGraphicsEvent Wait for a mouse or keyboard event from a graphics window

Description

This function waits for input from a graphics window in the form of a mouse or keyboard event.

Usage

getGraphicsEvent(prompt = "Waiting for input",
onMouseDown = NULL, onMouseMove = NULL,
onMouseUp = NULL, onKeybd = NULL)

Arguments

prompt prompt to be displayed to the user

onMouseDown a function to respond to mouse clicks

onMouseMove a function to respond to mouse movement

onMouseUp a function to respond to mouse button releases

onKeybd a function to respond to key presses

Details

This function allows user input from some graphics devices (currently only the Windows screen
display). When called, event handlers may be installed to respond to events involving the mouse or
keyboard.

The mouse event handlers should be functions with headerfunction(buttons, x, y) . The
coordinatesx andy will be passed to mouse event handlers in device independent coordinates (i.e.
the lower left corner of the window is(0,0) , the upper right is(1,1)). Thebuttons argument
will be a vector listing the buttons that are pressed at the time of the event, with 0 for left, 1 for
middle, and 2 for right.

The keyboard event handler should be a function with headerfunction(key) . A single element
character vector will be passed to this handler, corresponding to the key press. Shift and other
modifier keys will have been processed, soshift-a will be passed as"A" . The following special
keys may also be passed to the handler:

• Control keys, passed as"Ctrl-A" , etc.

• Navigation keys, passed as one of"Left", "Up", "Right", "Down", "PgUp",
"PgDn", "End", "Home"

• Edit keys, passed as one of"Ins", "Del"

• Function keys, passed as one of"F1", "F2", ...

The event handlers are standard R functions, and will be executed in an environment as though they
had been called directly fromgetGraphicsEvent .

Events will be processed until

• one of the event handlers returns a non-NULL value which will be returned as the value of
getGraphicsEvent , or

• the user interrupts the function from the console.

574 gray

Value

A non-NULLvalue returned from one of the event handlers.

Author(s)

Duncan Murdoch

Examples

Not run:
mousedown <- function(buttons, x, y) {

cat("Buttons ", paste(buttons, collapse=" "), " at ", x, y, "\n")
points(x, y)
if (x > 0.85 && y > 0.85) "Done"
else NULL

}

mousemove <- function(buttons, x, y) {
points(x, y)
NULL

}

keybd <- function(key) {
cat("Key <", key, ">\n", sep = "")

}

plot(0:1, 0:1, type='n')
getGraphicsEvent("Click on upper right to quit",

onMouseDown = mousedown,
onMouseMove = mousemove,
onKeybd = keybd)

End(Not run)

gray Gray Level Specification

Description

Create a vector of colors from a vector of gray levels.

Usage

gray(level)
grey(level)

Arguments

level a vector of desired gray levels between0 and1; zero indicates"black" and
one indicates"white" .

gray.colors 575

Details

The values returned bygray can be used with acol= specification in graphics functions or in
par .

grey is an alias forgray .

Value

A vector of colors of the same length aslevel .

See Also

rainbow , hsv , hcl , rgb .

Examples

gray(0:8 / 8)

gray.colors Gray Color Palette

Description

Create a vector ofn gamma-corrected gray colors.

Usage

gray.colors(n, start = 0.3, end = 0.9, gamma = 2.2)
grey.colors(n, start = 0.3, end = 0.9, gamma = 2.2)

Arguments

n the number of gray colors (≥ 1) to be in the palette.

start starting gray level in the palette (should be between0 and1 where zero indicates
"black" and one indicates"white").

end ending gray level in the palette.

gamma the gamma correction.

Details

The functiongray.colors chooses a series ofn gamma-corrected gray levels betweenstart
andend : (startγ , . . . , endγ)(1/γ). The returned palette contains the corresponding gray colors.
This palette is used inbarplot.default .

grey.colors is an alias forgray.colors .

Value

A vector ofn gray colors.

See Also

gray , rainbow , palette .

576 hcl

Examples

require(graphics)

pie(rep(1,12), col = gray.colors(12))
barplot(1:12, col = gray.colors(12))

hcl HCL Color Specification

Description

Create a vector of colors from vectors specifying hue, chroma and luminance.

Usage

hcl(h = 0, c = 35, l = 85, alpha, fixup = TRUE)

Arguments

h The hue of the color specified as an angle in the range [0,360]. 0 yields red, 120
yields green 240 yields blue, etc.

c The chroma of the color. The upper bound for chroma depends on hue and
luminance.

l A value in the range [0,100] giving the luminance of the colour. For a given
combination of hue and chroma, only a subset of this range is possible.

alpha numeric vector of values in the range[0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

fixup a logical value which indicates whether the resulting RGB values should be cor-
rected to ensure that a real color results. iffixup is FALSERGB components
lying outside the range [0,1] will result in anNAvalue.

Details

This function corresponds to polar coordinates in the CIE-LUV color space. Steps of equal size
in this space correspond to approximately equal perceptual changes in color. Thus,hcl can be
thought of as a perceptually based version ofhsv .

The function is primarily intended as a way of computing colors for filling areas in plots where area
corresponds to a numerical value (pie charts, bar charts, mosaic plots, histograms, etc). Choosing
colors which have equal chroma and luminance provides a way of minimising the irradiation illusion
which would otherwise produce a misleading impression of how large the areas are.

The default values of chroma and luminance make it possible to generate a full range of hues and
have a relatively pleasant pastel appearance.

The RGB values produced by this function correspond to the sRGB color space used on most PC
computer displays. There are other packages which provide more general color space facilities.

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: seergb .

Value

A vector of character strings which can be used as color specifications by R graphics functions.

hcl 577

Note

At present there is no guarantee that the colours rendered by R graphics devices will correspond to
their sRGB description. It is planned to adopt sRGB as the standard R color description in future.

Author(s)

Ross Ihaka

References

Ihaka, R. (2003). Colour for Presentation Graphics, Proceedings of the 3rd International Work-
shop on Distributed Statistical Computing (DSC 2003), March 20-22, 2003, Technische Universität
Wien, Vienna, Austria.http://www.ci.tuwien.ac.at/Conferences/DSC-2003 .

See Also

hsv , rgb .

Examples

require(graphics)

The Foley and Van Dam PhD Data.
csd <- matrix(c(4,2,4,6, 4,3,1,4, 4,7,7,1,

0,7,3,2, 4,5,3,2, 5,4,2,2,
3,1,3,0, 4,4,6,7, 1,10,8,7,
1,5,3,2, 1,5,2,1, 4,1,4,3,
0,3,0,6, 2,1,5,5), nrow=4)

csphd <- function(colors)
barplot(csd, col = colors, ylim = c(0,30),

names = 72:85, xlab = "Year", ylab = "Students",
legend = c("Winter", "Spring", "Summer", "Fall"),
main = "Computer Science PhD Graduates", las = 1)

The Original (Metaphorical) Colors (Ouch!)
csphd(c("blue", "green", "yellow", "orange"))

A Color Tetrad (Maximal Color Differences)
csphd(hcl(h = c(30, 120, 210, 300)))

Same, but lighter and less colorful
Turn of automatic correction to make sure
that we have defined real colors.
csphd(hcl(h = c(30, 120, 210, 300),

c = 20, l = 90, fixup = FALSE))

Analogous Colors
Good for those with red/green color confusion
csphd(hcl(h = seq(60, 240, by = 60)))

Metaphorical Colors
csphd(hcl(h = seq(210, 60, length = 4)))

Cool Colors
csphd(hcl(h = seq(120, 0, length = 4) + 150))

http://www.ci.tuwien.ac.at/Conferences/DSC-2003

578 Hershey

Warm Colors
csphd(hcl(h = seq(120, 0, length = 4) - 30))

Single Color
hist(stats::rnorm(1000), col = hcl(240))

Hershey Hershey Vector Fonts in R

Description

If the family graphical parameter (seepar) has been set to one of the Hershey fonts (see ‘De-
tails’) Hershey vector fonts are used to render text.

When using thetext and contour functions Hershey fonts may be selected via thevfont
argument, which is a character vector of length 2 (see ‘Details’ for valid values). This allows
Cyrillic to be selected, which is not available via the font families.

Usage

Hershey

Details

The Hershey fonts have two advantages:

1. vector fonts describe each character in terms of a set of points;R renders the character by join-
ing up the points with straight lines. This intimate knowledge of the outline of each character
means thatR can arbitrarily transform the characters, which can mean that the vector fonts
look better for rotated text.

2. this implementation was adapted from the GNU libplot library which provides support for
non-ASCII and non-English fonts. This means that it is possible, for example, to produce
weird plotting symbols and Japanese characters.

Drawback:
You cannot use mathematical expressions (plotmath) with Hershey fonts.

The Hershey characters are organised into a set of fonts. A particular font is selected by specifying
one of the following font families viapar(family) and specifying the desired font face (plain,
bold, italic, bold-italic) viapar(font) .

family faces available
"HersheySerif" plain, bold, italic, bold-italic
"HersheySans" plain, bold, italic, bold-italic
"HersheyScript" plain, bold
"HersheyGothicEnglish" plain
"HersheyGothicGerman" plain
"HersheyGothicItalian" plain
"HersheySymbol" plain, bold, italic, bold-italic
"HersheySansSymbol" plain, italic

Hershey 579

In thevfont specification for thetext andcontour functions, the Hershey font is specified by a
typeface (e.g.,serif or sans serif) and a fontindex or ‘style’ (e.g.,plain or italic). The
first element ofvfont specifies the typeface and the second element specifies the fontindex. The
first table produced bydemo(Hershey) shows the charactera produced by each of the different
fonts.

The availabletypeface andfontindex values are available as list components of the variable
Hershey . The allowed pairs for(typeface, fontindex) are:

serif plain
serif italic
serif bold
serif bold italic
serif cyrillic
serif oblique cyrillic
serif EUC
sans serif plain
sans serif italic
sans serif bold
sans serif bold italic
script plain
script italic
script bold
gothic english plain
gothic german plain
gothic italian plain
serif symbol plain
serif symbol italic
serif symbol bold
serif symbol bold italic
sans serif symbol plain
sans serif symbol italic

and the indices of these are available asHershey$allowed .

Escape sequences:The string to be drawn can include escape sequences, which all begin with a
\ . WhenR encounters a\ , rather than drawing the\ , it treats the subsequent character(s) as
a coded description of what to draw.
One useful escape sequence (in the current context) is of the form:\123 . The three digits
following the\ specify an octal code for a character. For example, the octal code forp is 160
so the strings"p" and"\160" are equivalent. This is useful for producing characters when
there is not an appropriate key on your keyboard.
The other useful escape sequences all begin with\\ . These are described below. Remember
that backslashes have to be doubled inR character strings, so they need to be entered with
four backslashes.

Symbols: an entire string of Greek symbols can be produced by selecting the HersheySymbol or
HersheySansSymbol family or the Serif Symbol or Sans Serif Symbol typeface. To allow
Greek symbols to be embedded in a string which uses a non-symbol typeface, there are a
set of symbol escape sequences of the form\\ab . For example, the escape sequence*a
produces a Greek alpha. The second table indemo(Hershey) shows all of the symbol
escape sequences and the symbols that they produce.

ISO Latin-1: further escape sequences of the form\\ab are provided for producing ISO Latin-1
characters. Another option is to use the appropriate octal code. The (non-ASCII) ISO Latin-1

580 Hershey

characters are in the range 241. . . 377. For example,\366 produces the charactero with an
umlaut. The third table indemo(Hershey) shows all of the ISO Latin-1 escape sequences.
These characters can be used directly in a Latin-1 or UTF-8 locale. (In the latter, non-Latin-1
characters are replaced by a dot.)

Special Characters: a set of characters are provided which do not fall into any standard font.
These can only be accessed by escape sequence. For example,\\LI produces the zodiac
sign for Libra, and\\JU produces the astronomical sign for Jupiter. The fourth table in
demo(Hershey) shows all of the special character escape sequences.

Cyrillic Characters: cyrillic characters are implemented according to the K018-R encoding, and
can be used directly in such a locale using the Serif typeface and Cyrillic (or Oblique Cyril-
lic) fontindex. Alternatively they can be specified via an octal code in the range 300 to
337 for lower case characters or 340 to 377 for upper case characters. The fifth table in
demo(Hershey) shows the octal codes for the available cyrillic characters.
Cyrillic has to be selected via a("serif", fontindex) pair rather than via a font fam-
ily.

Japanese Characters:83 Hiragana, 86 Katakana, and 603 Kanji characters are implemented ac-
cording to the EUC-JP (Extended Unix Code) encoding. Each character is identified by
a unique hexadecimal code. The Hiragana characters are in the range 0x2421 to 0x2473,
Katakana are in the range 0x2521 to 0x2576, and Kanji are (scattered about) in the range
0x3021 to 0x6d55.
When using the Serif typeface and EUC fontindex, these characters can be produced by apair
of octal codes. Given the hexadecimal code (e.g., 0x2421), take the first two digits and add
0x80 and do the same to the second two digits (e.g., 0x21 and 0x24 become 0xa4 and 0xa1),
then convert both to octal (e.g., 0xa4 and 0xa1 become 244 and 241). For example, the first
Hiragana character is produced by\244\241 .
It is also possible to use the hexadecimal code directly. This works for all non-EUC fonts
by specifying an escape sequence of the form\\#J1234 . For example, the first Hiragana
character is produced by\\#J2421 .
The Kanji characters may be specified in a third way, using the so-called "Nelson Index", by
specifying an escape sequence of the form\\#N1234 . For example, the (obsolete) Kanji for
‘one’ is produced by\\#N0001 .
demo(Japanese) shows the available Japanese characters.

Raw Hershey Glyphs: all of the characters in the Hershey fonts are stored in a large array. Some
characters are not accessible in any of the Hershey fonts. These characters can only be ac-
cessed via an escape sequence of the form\\#H1234 . For example, the fleur-de-lys is pro-
duced by\\#H0746 . The sixth and seventh tables ofdemo(Hershey) shows all of the
available raw glyphs.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo(Hershey) , par , text , contour .

Japanese for the Japanese characters in the Hershey fonts.

Examples

Hershey

for tables of examples, see demo(Hershey)

http://www.gnu.org/software/plotutils/plotutils.html

hsv 581

hsv HSV Color Specification

Description

Create a vector of colors from vectors specifying hue, saturation and value.

Usage

hsv(h = 1, s = 1, v = 1, gamma = 1, alpha)

Arguments

h,s,v numeric vectors of values in the range[0,1] for ‘hue’, ‘saturation’ and ‘value’
to be combined to form a vector of colors. Values in shorter arguments are
recycled.

gamma a gamma-correction exponent,γ

alpha numeric vector of values in the range[0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

Details

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: seergb .

Value

This function creates a vector of colors corresponding to the given values in HSV space. The values
returned byhsv can be used with acol= specification in graphics functions or inpar .

Gamma correction

For each color,(r, g, b) in RGB space (with all values in[0, 1]), the final color corresponds to
(rγ , gγ , bγ).

See Also

hcl for a perceptually based version ofhsv() , rgb andrgb2hsv for RGB to HSV conversion;
rainbow , gray .

Examples

require(graphics)

hsv(.5,.5,.5)

Look at gamma effect:
n <- 20; y <- -sin(3*pi*((1:n)-1/2)/n)
op <- par(mfrow=c(3,2),mar=rep(1.5,4))
for(gamma in c(.4, .6, .8, 1, 1.2, 1.5))

plot(y, axes = FALSE, frame.plot = TRUE,
xlab = "", ylab = "", pch = 21, cex = 30,
bg = rainbow(n, start=.85, end=.1, gamma = gamma),

582 Japanese

main = paste("Red tones; gamma=",format(gamma)))
par(op)

Japanese Japanese characters in R

Description

The implementation of Hershey vector fonts provides a large number of Japanese characters (Hira-
gana, Katakana, and Kanji).

Details

Without keyboard support for typing Japanese characters, the only way to produce these characters
is to use special escape sequences: seeHershey .

For example, the Hiragana character for the sound "ka" is produced by\\#J242b and the
Katakana character for this sound is produced by\\#J252b . The Kanji ideograph for "one" is
produced by\\#J306c or \\#N0001 .

The output fromdemo(Japanese) shows tables of the escape sequences for the available
Japanese characters.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo(Japanese) , Hershey , text

Examples

require(graphics)

plot(1:9, type="n", axes=FALSE, frame=TRUE, ylab="",
main= "example(Japanese)", xlab= "using Hershey fonts")

par(cex=3)
Vf <- c("serif", "plain")
text(4, 2, "\\#J2438\\#J2421\\#J2451\\#J2473", vfont = Vf)
text(4, 4, "\\#J2538\\#J2521\\#J2551\\#J2573", vfont = Vf)
text(4, 6, "\\#J467c\\#J4b5c", vfont = Vf)
text(4, 8, "Japan", vfont = Vf)
par(cex=1)
text(8, 2, "Hiragana")
text(8, 4, "Katakana")
text(8, 6, "Kanji")
text(8, 8, "English")

http://www.gnu.org/software/plotutils/plotutils.html

make.rgb 583

make.rgb Create colour spaces

Description

These functions specify colour spaces for use inconvertColor .

Usage

make.rgb(red, green, blue, name = NULL, white = "D65",
gamma = 2.2)

colorConverter(toXYZ, fromXYZ, name, white=NULL)

Arguments

red,green,blue
Chromaticity (xy or xyY) of RGB primaries

name Name for the colour space

white Character string specifying the reference white (see ‘Details’.)

gamma Display gamma (nonlinearity). A positive number or the string"sRGB"

fromXYZ Function to convert from XYZ tristimulus coordinates to this space

toXYZ Function to convert from this space to XYZ tristimulus coordinates.

Details

An RGB colour space is defined by the chromaticities of the red, green and blue primaries. These
are given as vectors of length 2 or 3 in xyY coordinates (the Y component is not used and may be
omitted). The chromaticities are defined relative to a reference white, which must be one of the CIE
standard illuminants: "A", "B", "C", "D50", "D55", "D60", "E" (usually "D65").

The display gamma is most commonly 2.2, though 1.8 is used for Apple RGB. The sRGB standard
specifies a more complicated function that is close to a gamma of 2.2;gamma="sRGB" uses this
function.

Colour spaces other than RGB can be specified directly by giving conversions to and from XYZ
tristimulus coordinates. The functions should take two arguments. The first is a vector giving the
coordinates for one colour. The second argument is the reference white. If a specific reference
white is included in the definition of the colour space (as for the RGB spaces) this second argument
should be ignored and may be... .

Value

An object of classcolorConverter

References

Conversion algorithms fromhttp://www.brucelindbloom.com

See Also

convertColor

http://www.brucelindbloom.com

584 n2mfrow

Examples

(pal <- make.rgb(red= c(0.6400,0.3300),
green=c(0.2900,0.6000),
blue= c(0.1500,0.0600),
name = "PAL/SECAM RGB"))

converter for sRGB in #rrggbb format
hexcolor <- colorConverter(toXYZ = function(hex,...) {

rgb <- t(col2rgb(hex))/255
colorspaces$sRGB$toXYZ(rgb,...) },

fromXYZ = function(xyz,...) {
rgb <- colorspaces$sRGB$fromXYZ(xyz,..)
rgb <- round(rgb,5)
if (min(rgb) < 0 || max(rgb) > 1)

as.character(NA)
else

rgb(rgb[1],rgb[2],rgb[3])},
white = "D65", name = "#rrggbb")

(cols <- t(col2rgb(palette())))
(luv <- convertColor(cols,from="sRGB", to="Luv", scale.in=255))
(hex <- convertColor(luv, from="Luv", to=hexcolor, scale.out=NULL))

must make hex a matrix before using it
(cc <- round(convertColor(as.matrix(hex), from= hexcolor, to= "sRGB",

scale.in=NULL, scale.out=255)))
stopifnot(cc == cols)

n2mfrow Compute Default mfrow From Number of Plots

Description

Easy setup for plotting multiple figures (in a rectangular layout) on one page. This computes a
sensible default forpar (mfrow) .

Usage

n2mfrow(nr.plots)

Arguments

nr.plots integer; the number of plot figures you’ll want to draw.

Value

A length two integer vectornr, nc giving the number of rows and columns, fulfillingnr >= nc
>= 1 andnr * nc >= nr.plots .

Author(s)

Martin Maechler

nclass 585

See Also

par , layout .

Examples

require(graphics)

n2mfrow(8) # 3 x 3

n <- 5 ; x <- seq(-2,2, len=51)
suppose now that 'n' is not known {inside function}
op <- par(mfrow = n2mfrow(n))
for (j in 1:n)

plot(x, x^j, main = substitute(x^ exp, list(exp = j)), type = "l",
col = "blue")

sapply(1:10, n2mfrow)

nclass Compute the Number of Classes for a Histogram

Description

Compute the number of classes for a histogram.

Usage

nclass.Sturges(x)
nclass.scott(x)
nclass.FD(x)

Arguments

x A data vector.

Details

nclass.Sturges uses Sturges’ formula, implicitly basing bin sizes on the range of the data.

nclass.scott uses Scott’s choice for a normal distribution based on the estimate of the standard
error, unless that is zero where it returns1.

nclass.FD uses the Freedman-Diaconis choice based on the inter-quartile range (IQR) unless
that’s zero where it reverts tomad(x, constant=2) and when that is0 as well, returns1.

Value

The suggested number of classes.

586 palette

References

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S-PLUS.Springer, page
112.

Freedman, D. and Diaconis, P. (1981) On the histogram as a density estimator:L2 theory.Zeitschrift
für Wahrscheinlichkeitstheorie und verwandte Gebiete57, 453–476.

Scott, D. W. (1979) On optimal and data-based histograms.Biometrika66, 605–610.

Scott, D. W. (1992)Multivariate Density Estimation. Theory, Practice, and Visualization. Wiley.

See Also

hist andtruehist (which use a different default).

Examples

set.seed(1)
x <- stats::rnorm(1111)
nclass.Sturges(x)

Compare them:
NC <- function(x) c(Sturges = nclass.Sturges(x),

Scott = nclass.scott(x), FD = nclass.FD(x))
NC(x)
onePt <- rep(1, 11)
NC(onePt) # no longer gives NaN

palette Set or View the Graphics Palette

Description

View or manipulate the color palette which is used when acol= has a numeric index.

Usage

palette(value)

Arguments

value an optional character vector.

Details

If value has length 1, it is taken to be the name of a built in color palette. Ifvalue has length
greater than 1 it is assumed to contain a description of the colors which are to make up the new
palette (either by name or by RGB levels).

If value is omitted or has length 0, no change is made the current palette.

Currently, the only built-in palette is"default" .

Value

The palette whichwasin effect. This isinvisible unless the argument is omitted.

Palettes 587

See Also

colors for the vector of built-in named colors; hsv , gray , rainbow ,
terrain.colors ,. . . to construct colors.

colorRamp to interpolate colors, making custom palettes;col2rgb for translating colors to
RGB 3-vectors.

Examples

require(graphics)

palette() # obtain the current palette
palette(rainbow(6)) # six color rainbow

(palette(gray(seq(0,.9,len=25)))) # gray scales; print old palette
matplot(outer(1:100,1:30), type='l', lty=1,lwd=2, col=1:30,

main = "Gray Scales Palette",
sub = "palette(gray(seq(0,.9,len=25)))")

palette("default") # reset back to the default

Palettes Color Palettes

Description

Create a vector ofn contiguous colors.

Usage

rainbow(n, s = 1, v = 1, start = 0, end = max(1,n - 1)/n,
gamma = 1, alpha = 1)

heat.colors(n, alpha = 1)
terrain.colors(n, alpha = 1)
topo.colors(n, alpha = 1)
cm.colors(n, alpha = 1)

Arguments

n the number of colors (≥ 1) to be in the palette.

s,v the ‘saturation’ and ‘value’ to be used to complete the HSV color descriptions.

start the (corrected) hue in [0,1] at which the rainbow begins.

end the (corrected) hue in [0,1] at which the rainbow ends.

gamma the gamma correction, see argumentgammain hsv .

alpha the alpha transparency, a number in [0,1], see argumentalpha in hsv .

588 pdf

Details

Conceptually, all of these functions actually use (parts of) a line cut out of the 3-dimensional color
space, parametrized byhsv (h,s,v, gamma) , wheregamma= 1 for thefoo.colors function,
and hence, equispaced hues in RGB space tend to cluster at the red, green and blue primaries.

Some applications such as contouring require a palette of colors which do not wrap around to give
a final color close to the starting one.

With rainbow , the parametersstart andend can be used to specify particular subranges of
hues. The following values can be used when generating such a subrange: red=0, yellow=1

6 ,
green=26 , cyan=3

6 , blue=4
6 and magenta=56 .

Value

A character vector,cv , of color names. This can be used either to create a user–defined color palette
for subsequent graphics bypalette (cv) , acol= specification in graphics functions or inpar .

See Also

colors , palette , hsv , hcl , rgb , gray andcol2rgb for translating to RGB numbers.

Examples

require(graphics)
A Color Wheel
pie(rep(1,12), col=rainbow(12))

##------ Some palettes ------------
demo.pal <-

function(n, border = if (n<32) "light gray" else NA,
main = paste("color palettes; n=",n),
ch.col = c("rainbow(n, start=.7, end=.1)", "heat.colors(n)",

"terrain.colors(n)", "topo.colors(n)",
"cm.colors(n)"))

{
nt <- length(ch.col)
i <- 1:n; j <- n / nt; d <- j/6; dy <- 2*d
plot(i,i+d, type="n", yaxt="n", ylab="", main=main)
for (k in 1:nt) {

rect(i-.5, (k-1)*j+ dy, i+.4, k*j,
col = eval(parse(text=ch.col[k])), border = border)

text(2*j, k * j +dy/4, ch.col[k])
}

}
n <- if(.Device == "postscript") 64 else 16

Since for screen, larger n may give color allocation problem
demo.pal(n)

pdf PDF Graphics Device

Description

pdf starts the graphics device driver for producing PDF graphics.

pdf 589

Usage

pdf(file = ifelse(onefile, "Rplots.pdf", "Rplot%03d.pdf"),
width = 6, height = 6, onefile = TRUE, family = "Helvetica",
title = "R Graphics Output", fonts = NULL, version = "1.1",
paper = "special", encoding, bg, fg, pointsize, pagecentre)

Arguments

file a character string giving the name of the file. For use withonefile=FALSE
give a C integer format such as"Rplot%03d.pdf" (the default in that case).
(Seepostscript for further details.)

width, height
the width and height of the graphics region in inches.

onefile logical: if true (the default) allow multiple figures in one file. If false, generate
a file name containing the page number for each page.

family the font family to be used, seepostscript .

title title string to embed as the/Title field in the file.

fonts a character vector specifyingR graphics font family names for fonts which will
be included in the PDF file.

version a string describing the PDF version that will be required to view the output. This
is a minimum, and will be increased (with a warning) if necessary.

paper the target paper size. The choices are"a4" , "letter" , "legal" (or "us")
and"executive" (and these can be capitalized), or"a4r" and"USr" for
rotated (‘landscape’). The default is"special" , which means that thewidth
andheight specify the paper size. A further choice is"default" ; if this is
selected, the papersize is taken from the option"papersize" if that is set and
as"a4" if it is unset or empty.

encoding the name of an encoding file. Seepostscript for details. Defaults to to the
setting given byps.options () , which defaults to"default" .

bg the default background color to be used. Defaults to the setting given by
ps.options () , which defaults to"transparent" .

fg the default foreground color to be used. Defaults to to the setting given by
ps.options () , which defaults to"black" .

pointsize the default point size to be used. Strictly speaking, in bp, that is 1/72 of an inch,
but approximately in points. Defaults to the setting given byps.options () ,
which defaults to12 .

pagecentre logical: should the device region be centred on the page? – is only relevant for
paper != "special" . Defaults to the setting given byps.options () ,
which defaults to true.

Details

pdf() opens the filefile and the PDF commands needed to plot any graphics requested are sent
to that file.

The file argument is interpreted as a C integer format as used bysprintf , with inte-
ger argument the page number. The default gives files ‘Rplot001.pdf’, . . . , ‘Rplot999.pdf’,
‘Rplot1000.pdf’,

The family argument can be used to specify a PDF-specific font family as the initial/default font
for the device.

590 pdf

If a device-independentR graphics font family is specified (e.g., viapar(family=) in the graph-
ics package), the PDF device makes use of the PostScript font mappings to convert theR graphics
font family to a PDF-specific font family description. (See the documentation forpdfFonts .)

R doesnotembed fonts in the PDF file, so it is only straightforward to use mappings to the font fam-
ilies that can be assumed to be available in any PDF viewer:"Times" (equivalently"serif"),
"Helvetica" (equivalently"sans"), "Courier" (equivalently"mono") and "Symbol"
(equivalently"symbol"). Other families may be specified, but it is the user’s responsibility to
ensure that these fonts are available on the system and third-party software, e.g., Ghostscript, may
be required to embed the fonts so that the PDF can be included in other documents (e.g., LaTeX):
seeembedFonts . The URW-based families described forpostscript can be used with view-
ers set up to use URW fonts, which is usual with those based onxpdf or Ghostscript. Since
embedFonts makes use of Ghostscript, it should be able to embed the URW-based families for
use with other viewers.

Seepostscript for details of encodings, as the internal code is shared between the drivers. The
native PDF encoding is given in file ‘PDFDoc.enc’.

pdf writes uncompressed PDF. It is primarily intended for producing PDF graphics for inclusion
in other documents, and PDF-includers such aspdftex are usually able to handle compression.

The PDF produced is fairly simple, with each page being represented as a single stream. TheR
graphics model does not distinguish graphics objects at the level of the driver interface.

Theversion argument declares the version of PDF that gets produced. The version must be at
least 1.4 for semi-transparent output to be understood, and at least 1.3 if CID fonts are to be used:
if these features are used the version number will be increased (with a warning). Specifying a low
version number (as the default) is useful if you want to produce PDF output that can be viewed on
older or non-Adobe PDF viewers. (PDF 1.4 requires Acrobat 5 or later.)

Line widths as controlled bypar(lwd=) are in multiples of 1/96 inch. Multiples less than 1 are
allowed. pch="." with cex = 1 corresponds to a square of side 1/72 inch, which is also the
‘pixel’ size assumed for graphics parameters such as"cra" .

Thepaper argument sets the/MediaBox entry in the file, which defaults towidth by height .
If it is set to something other than"special" , a device region of the specified size is (by default)
centred on the rectangle given by the paper size: if eitherwidth or height is less than0.1 or too
large to give a total margin of 0.5 inch, it is reset to the corresponding paper dimension minus 0.5.
Thus if you want the default behaviour ofpostscript usepdf(paper="a4r", width=0,
height=0) to centre the device region on a landscape A4 page with 0.25 inch margins.

Note

Acrobat Reader does not use the fonts specified but rather emulates them from multiple-master
fonts. This can be seen in imprecise centering of characters, for example the multiply and divide
signs in Helvetica. This can be circumvented by embedding fonts where possible.

Acrobat Reader 5.x and later can be extended by support for Asian and (so-called) Central European
fonts (the latter only for 7.x and later, part of the ‘Extended’ pack for 8.x), and this will be needed
for the full use of encodings other than Latin-1. Seehttp://www.adobe.com/products/
acrobat/acrrasianfontpack.html .

See Also

pdfFonts , embedFonts , Devices , postscript

More details of font families and encodings and especially handling text in a non-Latin-1 encoding
and embedding fonts can be found in

http://www.adobe.com/products/acrobat/acrrasianfontpack.html
http://www.adobe.com/products/acrobat/acrrasianfontpack.html

pictex 591

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics.R News,
6(2):41–47.http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf .

Examples

Not run:
Test function for encodings
TestChars <- function(encoding="ISOLatin1", ...)
{

pdf(encoding=encoding, ...)
par(pty="s")
plot(c(-1,16), c(-1,16), type="n", xlab="", ylab="",

xaxs="i", yaxs="i")
title(paste("Centred chars in encoding", encoding))

grid(17, 17, lty=1)
for(i in c(32:255)) {

x <- i %% 16
y <- i %/% 16
points(x, y, pch=i)

}
dev.off()

}
there will be many warnings.
TestChars("ISOLatin2")
this does not view properly in older viewers.
TestChars("ISOLatin2", family="URWHelvetica")
works well for viewing in gs-based viewers, and often in xpdf.
End(Not run)

pictex A PicTeX Graphics Driver

Description

This function produces graphics suitable for inclusion in TeX and LaTeX documents.

Usage

pictex(file = "Rplots.tex", width = 5, height = 4, debug = FALSE,
bg = "white", fg = "black")

Arguments

file the file where output will appear.

width The width of the plot in inches.

height the height of the plot in inches.

debug should debugging information be printed.

bg the background color for the plot. Ignored.

fg the foreground color for the plot. Ignored.

http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

592 pictex

Details

This driver does not have any font metric information, so the use ofplotmath is not supported.

Multiple plots will be placed as separate environments in the output file.

Line widths are ignored except when setting the spacing of line textures.pch="." corresponds to
a square of side 1pt.

This device does not support colour (nor does the PicTeX package), and all colour settings are
ignored.

Author(s)

This driver was provided by Valerio Aimale〈valerio@svpop.com.dist.unige.it〉 of the Department
of Internal Medicine, University of Genoa, Italy.

References

Knuth, D. E. (1984)The TeXbook.Reading, MA: Addison-Wesley.

Lamport, L. (1994)LATEX: A Document Preparation System.Reading, MA: Addison-Wesley.

Goossens, M., Mittelbach, F. and Samarin, A. (1994)The LATEX Companion.Reading, MA:
Addison-Wesley.

See Also

postscript , Devices .

Examples

require(graphics)

pictex()
plot(1:11,(-5:5)^2, type='b', main="Simple Example Plot")
dev.off()
##--------------------
Not run:
%% LaTeX Example
\documentclass{article}
\usepackage{pictex}
\begin{document}
%...
\begin{figure}[h]

\centerline{\input{Rplots.tex}}
\caption{}

\end{figure}
%...
\end{document}

%%-- plain TeX Example --
\input pictex
$$ \input Rplots.tex $$
End(Not run)
##--------------------
unlink("Rplots.tex")

plotmath 593

plotmath Mathematical Annotation in R

Description

If the text argument to one of the text-drawing functions (text , mtext , axis , legend) in R
is an expression, the argument is interpreted as a mathematical expression and the output will be
formatted according to TeX-like rules. Expressions can also be used for titles, subtitles and x- and
y-axis labels (but not for axis labels onpersp plots).

In most cases other language objects (names and calls) are coerced to expressions and so can also
be used.

Details

A mathematical expression must obey the normal rules of syntax for anyR expression, but it is
interpreted according to very different rules than for normalR expressions.

It is possible to produce many different mathematical symbols, generate sub- or superscripts, pro-
duce fractions, etc.

The output fromdemo(plotmath) includes several tables which show the available features. In
these tables, the columns of grey text show sampleR expressions, and the columns of black text
show the resulting output.

The available features are also described in the tables below:

Syntax Meaning
x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x %.% y x cdot y
x[i] x subscript i
x^2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font

594 plotmath

bolditalic(x) draw x in bolditalic font
symbol(x) draw x in symbol font
list(x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
dot(x) x with a dot
ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
theta1, phi1, sigma1, omega1 cursive Greek symbols
Upsilon1 capital upsilon with hook
infinity infinity symbol
partialdiff partial differential symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
underline(x) draw x underlined
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for "0", but don’t draw it
x + over(1, phantom(0)) leave vertical gap for "0" (don’t draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X=x) for all values of x

plotmath 595

integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0
min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
x^y + z normal operator precedence
x^(y + z) visible grouping of operands
x^{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

The symbol font uses Adobe Symbol encoding so, for example, a lower case mu can be obtained
either by the special symbolmuor by symbol("m") . This provides access to symbols that have
no special symbol name, for example, the universal, or forall, symbol issymbol("\042") , and
alephis symbol("\300") .

Note to TeX users: TeX’s\Upsilon is Upsilon1 , TeX’s \varepsilon is close toepsilon ,
and there is no equivalent of TeX’s\epsilon . TeX’s \varpi is close toomega1. vartheta ,
varphi andvarsigma are allowed as synonyms fortheta1 , phi1 andsigma1 .

sigma1 is also known asstigma , its Unicode name.

Control characters (e.g.\n) are not interpreted in character strings in plotmath, unlike normal
plotting.

References

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in plots.Journal
of Computational and Graphical Statistics, 9, 582–599.

The symbol codes can be found in octal in the Adobe reference manuals, e.g. for Postscripthttp:
//www.adobe.com/products/postscript/pdfs/PLRM.pdf or PDFhttp://www.
adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf and in decimal, octal
and hex athttp://www.stat.auckland.ac.nz/~paul/R/CM/AdobeSym.html .

See Also

demo(plotmath) , axis , mtext , text , title , substitute quote , bquote

Examples

require(graphics)

x <- seq(-4, 4, len = 101)
y <- cbind(sin(x), cos(x))
matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",
plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
labels = expression(-pi, -pi/2, 0, pi/2, pi))

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.stat.auckland.ac.nz/~paul/R/CM/AdobeSym.html

596 png

How to combine "math" and numeric variables :
plot(1:10, type="n", xlab="", ylab="", main = "plot math & numbers")
theta <- 1.23 ; mtext(bquote(hat(theta) == .(theta)))
for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list(x,y),")"),
list(x=i, y=i+1)))

note that both of these use calls rather than expressions.

plot(1:10, 1:10)
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .8)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))
text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))",

cex = .8)
text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})),
cex = 1.2)

png JPEG and PNG graphics devices

Description

A graphics device for JPEG or PNG format bitmap files.

Usage

jpeg(filename = "Rplot%03d.jpeg", width = 480, height = 480, units = "px",
pointsize = 12, quality = 75, bg = "white", res = NA, ...)

png(filename = "Rplot%03d.png", width = 480, height = 480, units = "px",
pointsize = 12, bg = "white", res = NA, ...)

Arguments

filename the name of the output file. The page number is substituted if a C integer format
is included in the character string, as in the default. (The result must be less than
PATH_MAXcharacters long, and may be truncated if not. Seepostscript for
further details.) Tilde expansion is performed where supported by the platform.

width the width of the device in pixels.

height the height of the device in pixels.

units The units in whichheight andwidth are given. Can bein (inches),px
(pixels),cmor mm.

pointsize the default pointsize of plotted text, interpreted at 72 dpi, so one point is approx-
imately one pixel.

quality the ‘quality’ of the JPEG image, as a percentage. Smaller values will give more
compression but also more degradation of the image.

bg default background colour.

png 597

res The nominal resolution in dpi which will be recorded in the bitmap file, if a
positive integer. Also used for units other than the default.

... additional arguments to the underlyingX11 device.

Details

Plots in PNG and JPEG format can easily be converted to many other bitmap formats, and both can
be displayed in modern web browsers. The PNG format is lossless and is best for line diagrams and
blocks of solid colour. The JPEG format is lossy, but may be useful for image plots, for example.

png supports transparent backgrounds: usebg = "transparent" . Not all PNG viewers ren-
der files with transparency correctly. When transparency is in use a very light grey is used as the
background and so will appear as transparent if used in the plot. This allows opaque white to be
used, as on the example.

R can be compiled without support for either or both of these devices: this will be reported if you
attempt to use them on a system where they are not supported. They may not be usable unless the
X11 display is available to the owner of theR process.

By default no resolution is recorded in the file. Readers will often assume a nominal resolution
of 72dpi when none is recorded. As resolutions in PNG files are recorded in pixels/metre, the dpi
value will be changed slightly.

For graphics parameters that make use of dimensions in inches, a resolution of 96dpi is assumed.

png will use a palette if there are less than 256 colours on the page, and record a 24-bit RGB file
otherwise.

Value

A plot device is opened: nothing is returned to theR interpreter.

Warnings

Note that thewidth andheight are in pixels not inches. A warning will be issued if both are
less than 20.

If you plot more than one page on one of these devices and do not include something like%dfor
the sequence number infile , the file will contain the last page plotted.

Note

These are based on theX11 device, so the additional arguments to that device work, but are rarely
appropriate. The colour handling will be that of theX11 device in use.

Author(s)

Guido Masarotto and Brian Ripley

See Also

Devices , dev.print

capabilities to see if these devices are supported by this build ofR.

bitmap provides an alternative way to generate PNG and JPEG plots that does not depend on ac-
cessing the X11 display but does depend on having GhostScript installed. (DevicesGDDin CRAN
packageGDD andCairoJPEG / CairoPNG in CRAN packageCairo are alternatives using sev-
eral other additional pieces of software.)

598 postscript

Examples

these examples will work only if the devices are available
and the X11 display is available.

copy current plot to a (large) PNG file
Not run: dev.print(png, file="myplot.png", width=1024, height=768)

png(file="myplot.png", bg="transparent")
plot(1:10)
rect(1, 5, 3, 7, col="white")
dev.off()

jpeg(file="myplot.jpeg")
example(rect)
dev.off()
End(Not run)

postscript PostScript Graphics

Description

postscript starts the graphics device driver for producing PostScript graphics.

Usage

postscript(file = ifelse(onefile, "Rplots.ps", "Rplot%03d.ps"),
onefile = TRUE, family,
title = "R Graphics Output", fonts = NULL,
encoding, bg, fg,
width, height, horizontal, pointsize,
paper, pagecentre, print.it, command, colormodel)

Arguments

file a character string giving the name of the file. If it is"" , the output is piped to
the command given by the argumentcommand. If it is of the form "|cmd" ,
the output is piped to the command given by ‘cmd’.

For use with onefile = FALSE give a printf format such as
"Rplot%03d.ps" (the default in that case).

onefile logical: if true (the default) allow multiple figures in one file. If false, generate
a file name containing the page number for each page and use an EPSF header
and noDocumentMedia comment.

family the initial font family to be used, normally as a character string. See the sec-
tion ‘Families’. This defaults to the setting given byps.options () , which
defaults to"Helvetica" .

title title string to embed as theTitle comment in the file.

fonts a character vector specifying additionalR graphics font family names for font
families whose declarations will be included in the PostScript file and are avail-
able for use with the device. See ‘Families’ below.

postscript 599

encoding the name of an encoding file. Defaults to to the setting given by
ps.options () , which defaults to"default" . The latter is interpreted as
‘ "ISOLatin1.enc"’ unless the locale is recognized as corresponding to a lan-
guage using ISO 8859-5,7,13,15 or KOI8-R,U. The file is looked forin the ‘enc’
directory of packagegrDevicesif the path does not contain a path separator. An
extension".enc" can be omitted.

bg the default background color to be used. If"transparent" (or an equiva-
lent specification), no background is painted. Defaults to the setting given by
ps.options () , which defaults to"transparent" .

fg the default foreground color to be used. Defaults to to the setting given by
ps.options () , which defaults to"black" .

width, height
the width and height of the graphics region in inches. Default to the settings
given byps.options () , which default to0.

If paper != "special" andwidth or height is less than0.1 or too
large to give a total margin of 0.5 inch, it is reset to the corresponding paper
dimension minus 0.5.

horizontal the orientation of the printed image, a logical. Defaults to the setting given by
ps.options () , which defaults to true, that is landscape orientation on paper
sizes with width less than height.

pointsize the default point size to be used. Strictly speaking, in bp, that is 1/72 of an inch,
but approximately in points. Defaults to the setting given byps.options () ,
which defaults to12 .

paper the size of paper in the printer. The choices are"a4" , "letter" (or
"us"), "legal" and "executive" (and these can be capitalized). Also,
"special" can be used, when argumentswidth andheight specify the
paper size. A further choice is"default" : If this is selected, the papersize
is taken from the option"papersize" if that is set and to"a4" if it is unset
or empty. Defaults to the setting given byps.options () , which defaults to
"default" .

pagecentre logical: should the device region be centred on the page? – defaults to the setting
given byps.options () , which defaults to true.

print.it logical: should the file be printed when the device is closed? (This only applies
if file is a real file name.) Defaults to the setting given byps.options () ,
which defaults to false.

command the command to be used for ‘printing’. Defaults to option"printcmd" ; this
can also be selected as"default" . The length limit is2*PATH_MAX, typi-
cally 8096 bytes.

colormodel a character string describing the color model: currently allowed values as
"rgb" , "rgb-nogray" , "gray" and"cmyk" . Defaults to the setting given
by ps.options () , which defaults to"rgb" .

Details

postscript opens the filefile and the PostScript commands needed to plot any graphics
requested are written to that file. This file can then be printed on a suitable device to obtain hard
copy.

A postscript plot can be printed viapostscript in two ways.

600 postscript

1. Settingprint.it = TRUE causes the command given in argumentcommandto be called
with argument"file" when the device is closed. Note that the plot file is not deleted unless
commandarranges to delete it.

2. file="" or file="|cmd" can be used to print using a pipe on systems that support
‘popen’. Failure to open the command will probably be reported to the terminal but not
to ‘popen’, in which case close the device bydev.off immediately.

The file argument is interpreted as a C integer format as used bysprintf , with integer argu-
ment the page number. The default gives files ‘Rplot001.ps’, . . . , ‘Rplot999.ps’, ‘ Rplot1000.ps’,
. . . .

The postscript produced for a singleR plot is EPS (Encapsulated PostScript) compatible, and can be
included into other documents, e.g., into LaTeX, using\includegraphics{<filename>} .
For use in this way you will probably want to sethorizontal = FALSE, onefile =
FALSE, paper = "special" . Note that the bounding box is for the device region: if you
find the white space around the plot region excessive, reduce the margins of the figure region via
par (mar=) .

Most of the PostScript prologue used is taken from theR character vector.ps.prolog . This
is marked in the output, and can be changed by changing that vector. (This is only advisable for
PostScript experts: the standard version is innamespace:grDevices .)

A PostScript device has a default family, which can be set by the user viafamily . If other font
families are to be used when drawing to the PostScript device, these must be declared when the
device is created viafonts ; the font family names for this argument areR graphics font family
names (see the documentation forpostscriptFonts).

Line widths as controlled bypar(lwd=) are in multiples of 1/96 inch: multiples less than 1 are
allowed. pch="." with cex = 1 corresponds to a square of side 1/72 inch, which is also the
‘pixel’ size assumed for graphics parameters such as"cra" .

Families

Font families are collections of fonts covering the five font faces, (conventionally plain, bold, italic,
bold-italic and symbol) selected by the graphics parameterpar (font=) or the grid parameter
gpar (fontface=) . Font families can be specified either as an an initial/default font family
for the device via thefamily argument or after the device is opened by the graphics parameter
par (family=) or the grid parametergpar (fontfamily=) . Families which will be used in
addition to the initial family must be specified in thefonts argument when the device is opened.

Font families are declared via a call topostscriptFonts .

The argumentfamily specifies the initial/default font family to be used. In normal use it is one
of "AvantGarde" , "Bookman" , "Courier" , "Helvetica" , "Helvetica-Narrow" ,
"NewCenturySchoolbook" , "Palatino" or "Times" , and refers to the standard Adobe
PostScript fonts families of those names which are included (or cloned) in all common PostScript
devices.

Many PostScript emulators (including those based onghostscript) use the URW equivalents
of these fonts, which are"URWGothic" , "URWBookman", "NimbusMon" , "NimbusSan" ,
"NimbusSanCond" , "CenturySch" , "URWPalladio" and "NimbusRom" respectively.
If your PostScript device is using URW fonts, you will obtain access to more characters and more
appropriate metrics by using these names. To make these easier to remember,"URWHelvetica"
== "NimbusSan" and"URWTimes" == "NimbusRom" are also supported.

Another type of family makes use of CID-keyed fonts for East Asian languages – see
postscriptFonts .

postscript 601

The family argument is normally a character string naming a font family, but family objects
generated byType1Font andCIDFont are also accepted. For compatibility with earlier versions
of R, the initial family can also be specified as a vector of four or five afm files.

Note thatR does not embed the font(s) used in the PostScript output: seeembedFonts for a utility
to help do so.

Encodings

Encodings describe which glyphs are used to display the character codes (in the range 0–255). Most
commonlyR uses ISOLatin1 encoding, and the examples fortext are in that encoding. However,
the encoding used on machines runningR may well be different, and by using theencoding
argument the glyphs can be matched to encoding in use. This suffices for European and Cyrillic
languages, but not for CJK languages. For the latter, composite CID fonts are used. These fonts are
useful for other languages: for example they may contain Greek glyphs. (The rest of this section
applies only when CID fonts are not used.)

None of this will matter if only ASCII characters (codes 32–126) are used as all the encodings (ex-
cept"TeXtext") agree over that range. Some encodings are supersets of ISOLatin1, too. How-
ever, if accented and special characters do not come out as you expect, you may need to change the
encoding. Some other encodings are supplied withR: "WinAnsi.enc" and"MacRoman.enc"
correspond to the encodings normally used on Windows and Classic MacOS (at least by Adobe),
and "PDFDoc.enc" is the first 256 characters of the Unicode encoding, the standard for PDF.
There are also encodings"ISOLatin2.enc" , "CP1250.enc" , "ISOLatin7.enc" (ISO
8859-13),"CP1257.enc" , and"ISOLatin9.enc" (ISO 8859-15),"Cyrillic.enc" (ISO
8859-5),"KOI8-R.enc" , "KOI8-U.enc" , "CP1251.enc" , "Greek.enc" (ISO 8859-7)
and"CP1253.enc" . Note that many glyphs in these encodings are not in the fonts corresponding
to the standard families. (The Adobe ones for all but Courier, Helvetica and Times cover little more
than Latin-1, whereas the URW ones also cover Latin-2, Latin-7, Latin-9 and Cyrillic but no Greek.
The Adobe exceptions cover the Latin character sets, but not the Euro.)

If you specify the encoding, it is your responsibility to ensure that the PostScript font contains the
glyphs used. One issue here is the Euro symbol which is in the WinAnsi and MacRoman encodings
but may well not be in the PostScript fonts. (It is in the URW variants; it is not in the supplied
Adobe Font Metric files.)

There is an exception. Character 45 ("-") is always set as minus (its value in Adobe ISOLatin1)
even though it is hyphen in the other encodings. Hyphen is available as character 173 (octal 0255)
in all the Latin encodings, Cyrillic and Greek. (This can be entered as"\uad" in a UTF-8 locale.)
There are some discrepancies in accounts of glyphs 39 and 96: the supplied encodings (except
CP1250 and CP1251) treat these as ‘quoteright’ and ‘quoteleft’ (rather than ‘quotesingle’/‘acute’
and ‘grave’ respectively), as they are in the Adobe documentation.

TeX fonts

TeX has traditionally made use of fonts such as Computer Modern which are encoded rather differ-
ently, in a 7-bit encoding. This encoding can be specified byencoding = "TeXtext.enc" ,
taking care that the ASCII characters< > \ _ { } are not available in those fonts.

There are supplied families"ComputerModern" and "ComputerModernItalic" which
use this encoding, and which are only supported forpostscript (and notpdf). They are in-
tended to use with the Type 1 versions of the TeX CM fonts. It will normally be possible to include
such output in TeX or LaTeX provided it is processed withdvips -Ppfb -j0 or the equivalent
on your system. (-j0 turns off font subsetting.) Whenfamily = "ComputerModern" is
used, the italic/bold-italic fonts used are slanted fonts (cmsl10 andcmbxsl10). To use text italic
fonts instead, setfamily = "ComputerModernItalic" .

602 postscript

These families use the TeX math italic and symbol fonts for a comprehensive but incomplete cover-
age of the glyphs covered by the Adobe symbol font in other families. This is achieved by special-
casing the postscript code generated from the supplied ‘CM_symbol_10.afm’.

Color models

The default color model is RGB, with pure gray colors expressed as greyscales. Color model"rgb-
nogray" uses only RGB, model"cmyk" only CMYK, and model"gray" only greyscales
(and selecting any other colour is an error). Nothing inR specifies the interpretation of the
RGB or CMYK color spaces, and the simplest possible conversion to CMYK is used (http:
//en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK).

Author(s)

Support for Computer Modern fonts is based on a contribution by Brian D’Urso
〈durso@hussle.harvard.edu〉.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

postscriptFonts , Devices , check.options which is called from bothps.options
andpostscript .

More details of font families and encodings and especially handling text in a non-Latin-1 encoding
and embedding fonts can be found in

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics.R News,
6(2):41–47.http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf .

Examples

require(graphics)
Not run:
open the file "foo.ps" for graphics output
postscript("foo.ps")
produce the desired graph(s)
dev.off() # turn off the postscript device
postscript("|lp -dlw")
produce the desired graph(s)
dev.off() # plot will appear on printer

for URW PostScript devices
postscript("foo.ps", family = "NimbusSan")

for inclusion in Computer Modern TeX documents, perhaps
postscript("cm_test.eps", width = 4.0, height = 3.0,

horizontal = FALSE, onefile = FALSE, paper = "special",
family = "ComputerModern", encoding = "TeXtext.enc")

The resultant postscript file can be used by dvips -Ppfb -j0.

To test out encodings, you can use
TestChars <- function(encoding="ISOLatin1", family="URWHelvetica")
{

http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK
http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK
http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

postscriptFonts 603

postscript(encoding=encoding, family=family)
par(pty="s")
plot(c(-1,16), c(-1,16), type="n", xlab="", ylab="",

xaxs="i", yaxs="i")
title(paste("Centred chars in encoding", encoding))
grid(17, 17, lty=1)
for(i in c(32:255)) {

x <- i %% 16
y <- i %/% 16
points(x, y, pch=i)

}
dev.off()

}
there will be many warnings. We use URW to get a complete enough
set of font metrics.
TestChars()
TestChars("ISOLatin2")
TestChars("WinAnsi")
End(Not run)

postscriptFonts PostScript and PDF Font Families

Description

These functions handle the translation of aR graphics font family name to a PostScript or PDF font
description, used by thepostscript or pdf graphics devices.

Usage

postscriptFonts(...)
pdfFonts(...)

Arguments

... either character strings naming mappings to display, or named arguments speci-
fying mappings to add or change.

Details

If these functions are called with no argument they list all the existing mappings, whereas if they
are called with named arguments they add (or change) mappings.

A PostScript or PDF device is created with a default font family (see the documentation for
postscript), but it is also possible to specify a font family when drawing to the device (for
example, see the documentation for"family" in par and for"fontfamily" in gpar in the
grid package).

The font family sent to the device is a simple string name, which must be mapped to a set of
PostScript fonts. Separate lists of mappings forpostscript andpdf devices are maintained for
the currentR session and can be added to by the user.

The postscriptFonts andpdfFonts functions can be used to list existing mappings and
to define new mappings. TheType1Font andCIDFont functions can be used to create new
mappings, when thexxxFonts function is used to add them to the database. See the examples.

604 postscriptFonts

Default mappings are provided for four device-independent family names:"sans" for a sans-serif
font, "serif" for a serif font,"mono" for a monospaced font, and"symbol" for a symbol font.

Mappings for a number of standard Adobe fonts (and URW equivalents) are also pro-
vided: "AvantGarde" , "Bookman" , "Courier" , "Helvetica" , "Helvetica-
Narrow" , "NewCenturySchoolbook" , "Palatino" and "Times" ; "URWGothic" ,
"URWBookman", "NimbusMon" , "NimbusSan" (synonym "URWHelvetica"),
"NimbusSanCond" , "CenturySch" , "URWPalladio" and "NimbusRom" (synonym
"URWTimes").

There are also mappings for"ComputerModern" and"ComputerModernItalic" .

Finally, there are some default mappings for East Asian locales described in a separate section.

The specification of font metrics and encodings is described in the help for thepostscript
function.

The fonts are not embedded in the resulting PostScript or PDF file, so software including the
PostScript or PDF plot file should either embed the font outlines (usually from ‘.pfb’ or ‘ .pfa’
files) or use DSC comments to instruct the print spooler or including application to do so (see also
embedFonts).

A font family has both anR-level name, the argument name used whenpostscriptFonts was
called, and an internal name, thefamily component. These two names are the same for all the
pre-defined font families.

Once a font family is in use it cannot be changed. ‘In use’ means that it has been specifiedvia a
family or fonts argument to an invocation of the same graphics device already in theR session.
(For these purposesxfig counts the same aspostscript but only uses some of the predefined
mappings.)

Value

A list of one or more font mappings.

East Asian fonts

There are some default mappings for East Asian locales:
"Japan1" , "Japan1HeiMin" , "Japan1GothicBBB" , and "Japan1Ryumin" for
Japanese;"Korea1" and"Korea1deb" for Korean;"GB1" (Simplified Chinese) for mainland
China and Singapore;"CNS1" (Traditional Chinese) for Hong Kong and Taiwan.

These refer to the following fonts

Japan1 (PS) HeiseiKakuGo-W5
Linotype Japanese printer font

Japan1 (PDF) KozMinPro-Regular-Acro
from Adobe Reader 7.0 Japanese Font Pack

Japan1HeiMin (PS) HeiseiMin-W3
Linotype Japanese printer font

Japan1HeiMin (PDF) HeiseiMin-W3-Acro
from Adobe Reader 7.0 Japanese Font Pack

Japan1GothicBBB GothicBBB-Medium
Japanese-market PostScript printer font

Japan1Ryumin Ryumin-Light
Japanese-market PostScript printer font

Korea1 (PS) Baekmuk-Batang
TrueType font found on some Linux systems

Korea1 (PDF) HYSMyeongJoStd-Medium-Acro

postscriptFonts 605

from Adobe Reader 7.0 Korean Font Pack
Korea1deb (PS) Batang-Regular

another name for Baekmuk-Batang
Korea1deb (PDF) HYGothic-Medium-Acro

from Adobe Reader 4.0 Korean Font Pack
GB1 (PS) BousungEG-Light-GB

TrueType font found on some Linux systems
GB1 (PDF) STSong-Light-Acro

from Adobe Reader 7.0 Simplified Chinese Font Pack
CNS1 (PS) MOESung-Regular

Ken Lunde’s CJKV resources
CNS1 (PDF) MSungStd-Light-Acro

from Adobe Reader 7.0 Traditional Chinese Font Pack

Baekmuk-Batang can be found at ftp://ftp.mizi.com/pub/baekmuk/ .
BousungEG-Light-GB can be found at ftp://ftp.gnu.org/pub/non-gnu/
chinese-fonts-truetype/ . Ken Lunde’s CJKV resources are atftp://ftp.oreilly.
com/pub/examples/nutshell/cjkv/adobe/samples/ . These will need to be in-
stalled or otherwise made available to the postscript/PDF interpreter such as ghostscript (and not
all interpreters can handle TrueType fonts).

You may well find that your postscript/PDF interpreters has been set up to provide aliases for many
of these fonts. For example, ghostscript on Windows can optionally be installed to map common
CJK fonts names to Windows TrueType fonts. (You may want to add the-Acro versions as well.)

Adding a mapping for a CID-keyed font is for gurus only.

Author(s)

Support for Computer Modern fonts is based on a contribution by Brian D’Urso
〈durso@hussle.harvard.edu〉.

See Also

postscript andpdf ; Type1Font andCIDFont for specifying new font mappings.

Examples

postscriptFonts()
This duplicates "ComputerModernItalic".
CMitalic <- Type1Font("ComputerModern2",

c("CM_regular_10.afm", "CM_boldx_10.afm",
"cmti10.afm", "cmbxti10.afm",

"CM_symbol_10.afm"),
encoding = "TeXtext.enc")

postscriptFonts(CMitalic = CMitalic)

A CID font for Japanese using a different CMap and
corresponding cmapEncoding.
`Jp_UCS-2` <- CIDFont("TestUCS2",

c("Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm"),

"UniJIS-UCS2-H", "UCS-2")
pdfFonts(`Jp_UCS-2` = `Jp_UCS-2`)

ftp://ftp.mizi.com/pub/baekmuk/
ftp://ftp.gnu.org/pub/non-gnu/chinese-fonts-truetype/
ftp://ftp.gnu.org/pub/non-gnu/chinese-fonts-truetype/
ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/samples/
ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/samples/

606 ps.options

names(pdfFonts())

ps.options Auxiliary Function to Set/View Argument of postscript

Description

The auxiliary functionps.options can be used to set and view (if called without arguments)
default values for the arguments topostscript .

ps.options needs to be called before callingpostscript , and the default values it sets can
be overridden by supplying arguments topostscript .

Usage

ps.options(..., reset = FALSE, override.check = FALSE)

Arguments

... argumentspaper , horizontal , width , height , family , encoding ,
pointsize , bg , fg , onefile (unused),print.it , append (unused),
pagecentre , commandandcolormodel can be supplied.

reset, override.check
logical arguments passed tocheck.options . See the Examples.

Details

Note that despite the name, these settings also provide the defaults for some of the arguments for
pdf andxfig , although not in all cases even when they have arguments of the same name.

Argumentsonefile and append are accepted but are unused in any of the graphics devices
making use of this function.

For pdf , argumentsfamily , encoding pointsize , bg , fg andpagecentre are used.

For xfig , argumentspaper , horizontal , width , height , family , pointsize , bg , fg
andpagecentre are used.

Value

A named list of default values for arguments.

See Also

postscript

Examples

ps.options(bg = "pink")
utils::str(ps.options(reset = TRUE))

---- error checking of arguments: ----
ps.options(width=0:12, onefile=0, bg=pi)
override the check for 'onefile', but not the others:
utils::str(ps.options(width=0:12, onefile=1, bg=pi,

override.check = c(FALSE,TRUE,FALSE)))

quartz 607

quartz MacOS X Quartz device

Description

quartz starts a graphics device driver for the MacOS X System. This can only be done on ma-
chines that run MacOS X.

Usage

quartz(display = "", width = 5, height = 5, pointsize = 12,
family = "Helvetica", antialias = TRUE, autorefresh = TRUE)

Arguments

display the display on which the graphics window will appear. The default is to use the
value in the user’s environment variableDISPLAY.

width the width of the plotting window in inches.

height the height of the plotting window in inches.

pointsize the default pointsize to be used.

family this is the family name of the Postscript font that will be used by the device.

antialias whether to use antialiasing. It is never the case to set itFALSE

autorefresh logical specifying if realtime refreshing should be done. IfFALSE, the system
is charged to refresh the context of the device window.

Details

Quartz is the graphic engine based on the PDF format. It is used by the graphic interface of MacOS
X to render high quality graphics. As PDF it is device independent and can be rescaled without loss
of definition.

If a device-independent R graphics font family is specified (e.g., viapar(family=) in the graph-
ics package), the Quartz device makes use of the Quartz font database (seequartzFonts) to
convert the R graphics font family to a Quartz-specific font family description.

Callingquartz() sets.Device to "quartz" .

Line widths as controlled bypar(lwd=) are in multiples of the 1/72 inch, and multiples < 1 are
silently converted to 1.

See Also

quartzFonts , Devices .

608 quartzFonts

quartzFonts quartz Fonts

Description

These functions handle the translation of a device-independent R graphics font family name to a
quartz font description.

Usage

quartzFont(family)

quartzFonts(...)

Arguments

family a character vector containing the four PostScript font names for plain, bold,
italic, and bolditalic versions of a font family.

... either character strings naming mappings to display, or new (named) mappings
to define.

Details

A quartz device is created with a default font (see the documentation forquartz), but it is also
possible to specify a font family when drawing to the device (for example, see the documentation
for gpar in the grid package).

The font family sent to the device is a simple string name, which must be mapped to something
more specific to quartz fonts. A list of mappings is maintained and can be modified by the user.

The quartzFonts function can be used to list existing mappings and to define new mappings.
ThequartzFont function can be used to create a new mapping.

Default mappings are provided for four device-independent font family names:"sans" for a sans-
serif font,"serif" for a serif font,"mono" for a monospaced font, and"symbol" for a symbol
font.

See Also

quartz

Examples

quartzFonts()
quartzFonts("mono")

recordGraphics 609

recordGraphics Record graphics operations

Description

Records arbitrary code on the graphics engine display list. Useful for encapsulating calculations
with graphical output that depends on the calculations. Intendedonly for expert use.

Usage

recordGraphics(expr, list, env)

Arguments

expr object of modeexpression or call or an unevaluated expression.

list a list defining the environment in whichexpr is to be evaluated.

env An environment specifying whereR looks for objects not found inenvir .

Details

The code inexpr is evaluated in an environment constructed fromlist , with env as the parent
of that environment.

All three arguments are saved on the graphics engine display list so that on a device resize or
copying between devices, the original evaluation environment can be recreated and the code can be
re-evaluated to reproduce the graphical output.

Value

The value from evaluatingexpr .

Warning

This function is not intended for general use. Incorrect or improper use of this function could lead
to unintended and/or undesirable results.

An example of acceptable use is querying the current state of a graphics device or graphics system
setting and then calling a graphics function.

An example of improper use would be calling theassign function to performing assignments in
the global environment.

See Also

eval

Examples

require(graphics)

plot(1:10)
This rectangle remains 1inch wide when the device is resized
recordGraphics(

{

610 recordPlot

rect(4, 2,
4 + diff(par("usr")[1:2])/par("pin")[1], 3)

},
list(),
getNamespace("graphics"))

recordPlot Record and Replay Plots

Description

Functions to save the current plot in anR variable, and to replay it.

Usage

recordPlot()
replayPlot(x)

Arguments

x A saved plot.

Details

These functions record and replay the displaylist of the current graphics device. The returned object
is of class"recordedplot" , andreplayPlot acts as aprint method for that class.

Value

recordPlot returns an object of class"recordedplot" .

replayPlot has no return value.

Warning

The format of recorded plots may change betweenR versions. Recorded plots shouldnot be used
as a permanent storage format forR plots.

R will always attempt to replay a recorded plot, but if the plot was recorded with a differentR
version then bad things may happen.

rgb 611

rgb RGB Color Specification

Description

This function creates colors corresponding to the given intensities (between 0 andmax) of the red,
green and blue primaries.

An alpha transparency value can also be specified (0 means fully transparent andmax means
opaque). Ifalpha is not specified, an opaque colour is generated.

The names argument may be used to provide names for the colors.

The values returned by these functions can be used with acol= specification in graphics functions
or in par .

Usage

rgb(red, green, blue, alpha, names = NULL, maxColorValue = 1)

Arguments

red, blue, green, alpha
numeric vectors with values in[0,M] whereM is maxColorValue . When
this is255 , thered , blue , green , andalpha values are coerced to integers
in 0:255 and the result is computed most efficiently.

names character. The names for the resulting vector.

maxColorValue
number giving the maximum of the color values range, see above.

Details

The colors may be specified by passing a matrix or dataframe as argumentred , and leavingblue
andgreen missing. In this case the first three columns ofred are taken to be thered , green
andblue values.

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: at the time of
writing only on thepdf , windows andquartz devices as well as several third-party devices such
as those in packagesCairo, cairoDevice, JavaGD andRSvgDevice. On most of these devices the
actual alpha values used are multiples of 1/255.

Typically other graphics devices silently plot semi-transparent colors as fully transparent.

Value

A character vector with elements of 7 or 9 characters,"#" followed by the red, blue, green and
optionally alpha values in hexadecimal (after rescaling to0 ... 255).

See Also

col2rgb for translatingR colors to RGB vectors;rainbow , hsv , hcl , gray .

612 rgb2hsv

Examples

rgb(0,1,0)
(u01 <- seq(0,1, length=11))
stopifnot(rgb(u01,u01,u01) == gray(u01))
reds <- rgb((0:15)/15, green=0, blue=0, names=paste("red",0:15,sep="."))
reds

rgb(0, 0:12, 0, max = 255)# integer input

ramp <- colorRamp(c("red", "white"))
rgb(ramp(seq(0, 1, length = 5)), max = 255)

rgb2hsv RGB to HSV Conversion

Description

rgb2hsv transforms colors from RGB space (red/green/blue) into HSV space
(hue/saturation/value).

Usage

rgb2hsv(r, g = NULL, b = NULL, gamma = 1, maxColorValue = 255)

Arguments

r vector of ‘red’ values in[0,M], (M =maxColorValue) or 3-row rgb matrix.

g vector of ‘green’ values, orNULLwhenr is a matrix.

b vector of ‘blue’ values, orNULLwhenr is a matrix.

gamma a gamma-correction (supposedly applied to the r,g,b values previously), see
hsv (...., gamma) .

maxColorValue
number giving the maximum of the RGB color values range. The default255
corresponds to the typical0:255 RGB coding as incol2rgb () .

Details

Value (brightness) gives the amount of light in the color.
Hue describes the dominant wavelength.
Saturation is the amount of Hue mixed into the color.

Value

A matrix with a column for each color. The three rows of the matrix indicate hue, saturation and
value and are named"h" , "s" , and"v" accordingly.

Author(s)

R interface by Wolfram Fischer〈wolfram@fischer-zim.ch〉;
C code mainly by Nicholas Lewin-Koh〈nikko@hailmail.net〉.

rgb2hsv 613

See Also

hsv , col2rgb , rgb .

Examples

These (saturated, bright ones) only differ by hue
(rc <- col2rgb(c("red", "yellow","green","cyan", "blue", "magenta")))
(hc <- rgb2hsv(rc))
6 * hc["h",] # the hues are equispaced

(rgb3 <- floor(256 * matrix(stats::runif(3*12), 3,12)))
(hsv3 <- rgb2hsv(rgb3))
Consistency :
stopifnot(rgb3 == col2rgb(hsv(h=hsv3[1,], s=hsv3[2,], v=hsv3[3,])),

all.equal(hsv3, rgb2hsv(rgb3/255, maxColorValue = 1)))

A (simplified) pure R version -- originally by Wolfram Fischer --
showing the exact algorithm:
rgb2hsvR <- function(rgb, gamma = 1, maxColorValue = 255)
{

if(!is.numeric(rgb)) stop("rgb matrix must be numeric")
d <- dim(rgb)
if(d[1] != 3) stop("rgb matrix must have 3 rows")
n <- d[2]
if(n == 0) return(cbind(c(h=1,s=1,v=1))[,0])
rgb <- rgb/maxColorValue
if(gamma != 1) rgb <- rgb ^ (1/gamma)

get the max and min
v <- apply(rgb, 2, max)
s <- apply(rgb, 2, min)
D <- v - s # range

set hue to zero for undefined values (gray has no hue)
h <- numeric(n)
notgray <- (s != v)

blue hue
idx <- (v == rgb[3,] & notgray)
if (any (idx))

h[idx] <- 2/3 + 1/6 * (rgb[1,idx] - rgb[2,idx]) / D[idx]
green hue
idx <- (v == rgb[2,] & notgray)
if (any (idx))

h[idx] <- 1/3 + 1/6 * (rgb[3,idx] - rgb[1,idx]) / D[idx]
red hue
idx <- (v == rgb[1,] & notgray)
if (any (idx))

h[idx] <- 1/6 * (rgb[2,idx] - rgb[3,idx]) / D[idx]

correct for negative red
idx <- (h < 0)
h[idx] <- 1+h[idx]

set the saturation

614 trans3d

s[! notgray] <- 0;
s[notgray] <- 1 - s[notgray] / v[notgray]

rbind(h=h, s=s, v=v)
}

confirm the equivalence:
all.equal(rgb2hsv (rgb3),

rgb2hsvR(rgb3), tol=1e-14) # TRUE

trans3d 3D to 2D Transformation for Perspective Plots

Description

Projection of 3-dimensional to 2-dimensional points using a 4x4 viewing transformation matrix.
Mainly for adding to perspective plots such aspersp .

Usage

trans3d(x,y,z, pmat)

Arguments

x, y, z numeric vectors of equal length, specifying points in 3D space.

pmat a4×4 viewing transformation matrix, suitable for projecting the 3D coordinates
(x, y, z) into the 2D plane using homogeneous 4D coordinates(x, y, z, t); such
matrices are returned bypersp () .

Value

a list with two components

x,y the projected 2d coordinates of the 3d input(x,y,z) .

See Also

persp

Examples

See help(persp) {after attaching the 'graphics' package}

Type1Font 615

Type1Font Type 1 and CID Fonts

Description

These functions are used to define the translation of aR graphics font family name to a Type 1 or
CID font descriptions, used by both thepostscript andpdf graphics devices.

Usage

Type1Font(family, metrics, encoding = "default")

CIDFont(family, cmap, cmapEncoding, pdfresource = "")

Arguments

family a character string giving the name to be used internally for a Type 1 or CID-
keyed font family. This needs to uniquely identify each family, so if you modify
a family which is in use (seepostscriptFonts) you need to change the
family name.

metrics a character vector of four or five strings giving paths to the afm (Adobe Font
Metric) files for the font.

cmap the name of a CMap file for a CID-keyed font.

encoding for Type1Font , the name of an encoding file. Defaults to"default" , which
maps on this platform to "ISOLatin1.enc". Otherwise, a file name in the ‘enc’
directory of thegrDevicespackage, which is used if the path does not contain a
path separator. An extension".enc" can be omitted.

cmapEncoding The name of a character encoding to be used with the named CMap file: strings
will be translated to this encoding when written to the file.

pdfresource A chunk of PDF code; only required for using a CID-keyed font onpdf ; users
should not be expected to provide this.

Details

For Type1Fonts , if four .afm files are supplied the fifth is taken to be"Symbol.afm" . Rela-
tive paths are taken relative to the directory ‘R_HOME/library/grDevices/afm’. The fifth (symbol)
font must be inAdobeSym encoding. However, the glyphs in the first four fonts are referenced by
name and any encoding given within the.afm files is not used.

Glyphs in CID-keyed fonts are accessed by ID (number) and not by name. The CMap file maps
encoded strings (usually in a MBCS) to IDs, socmap andcmapEncoding specifications must
match. There are no real bold or italic versions of CID fonts (bold/italic were very rarely used in
traditional CJK topography), and for thepdf device all four font faces will be identical. However,
for thepostscript device, bold and italic (and bold italic) are emulated.

CID-keyed fonts are intended only for use for the glyphs of CJK languages, which are all
monospaced and are all treated as filling the same bounding box. (Thusplotmath will work
with such characters, but the spacing will be less carefully controlled than with Western glyphs.)
The CID-keyed fonts do contain other characters, including a Latin alphabet: non-CJK glyphs are
regarded as monospaced with half the width of CJK glyphs. This is often the case, but sometimes
Latin glyphs designed for proportional spacing are used (and may look odd). We strongly recom-
mend that CID-keyed fonts areonly used for CJK glyphs.

616 x11

Value

A list of class"Type1Font" or "CIDFont" .

See Also

postscript , pdf , postscriptFonts , andpdfFonts .

Examples

This duplicates "ComputerModernItalic".
CMitalic <- Type1Font("ComputerModern2",

c("CM_regular_10.afm", "CM_boldx_10.afm",
"cmti10.afm", "cmbxti10.afm",
"CM_symbol_10.afm"),

encoding = "TeXtext.enc")

Not run:
This could be used by
postscript(family = CMitalic)
or
postscriptFonts(CMitalic = CMitalic) # once in a session
postscript(family = "CMitalic", encoding = "TeXtext.enc")
End(Not run)

x11 X Window System Graphics

Description

X11 starts a graphics device driver for the X Window System (version 11). This can only be done
on machines that run X.x11 is recognized as a synonym forX11.

Usage

X11(display = "", width = 7, height = 7, pointsize = 12,
gamma = getOption("gamma"), colortype = getOption("X11colortype"),
maxcubesize = 256, bg = "transparent", canvas = "white",
fonts = getOption("X11fonts"), xpos = NA, ypos = NA)

Arguments

display the display on which the graphics window will appear. The default is to use the
value in the user’s environment variableDISPLAY.

width, height
the width and height of the plotting window, in inches. See also Resources.

pointsize the default pointsize to be used.

gamma the gamma correction factor. This value is used to ensure that the colors per-
ceived are linearly related to RGB values (seehsv). By default this is taken
from options ("gamma") , or is 1 (no correction) if that is unset (which is
the usual case).

x11 617

colortype the kind of color model to be used. The possibilities are"mono" , "gray" ,
"pseudo" , "pseudo.cube" and "true" . Ignored if anX11 device is
already open.

maxcubesize can be used to limit the size of color cube allocated for pseudocolor devices.

bg color. The default background color.

canvas color. The color of the canvas, which is visible only when the background color
is transparent.

fonts X11 font description strings into which weight, slant and size will be substituted.
There are two, the first for fonts 1 to 4 and the second for font 5, the symbol font.
See section Fonts.

xpos, ypos initial position of the top left corner of the window, in pixels. Negative values
are from the opposite corner, e.g.xpos=-100 says the top right corner should
be 100 pixels from the right edge of the screen. IfNA, successive devices are
cascaded in 20 pixel steps from the top left. See also Resources.

Details

By default, an X11 device will use the best color rendering strategy that it can. The choice can
be overridden with thecolortype parameter. A value of"mono" results in black and white
graphics,"gray" in grayscale and"true" in truecolor graphics (if this is possible). The values
"pseudo" and "pseudo.cube" provide color strategies for pseudocolor displays. The first
strategy provides on-demand color allocation which produces exact colors until the color resources
of the display are exhausted. The second causes a standard color cube to be set up, and requested
colors are approximated by the closest value in the cube. The default strategy for pseudocolor
displays is"pseudo" .

Note: All X11 devices share acolortype which is set by the first device to be opened. To
change thecolortype you need to closeall openX11 devices then open one with the desired
colortype .

With colortype equal to"pseudo.cube" or "gray" successively smaller palettes are tried
until one is completely allocated. If allocation of the smallest attempt fails the device will revert to
"mono" .

Line widths as controlled bypar(lwd=) are in multiples of the pixel size, and multiples < 1 are
silently converted to 1.

pch="." with cex = 1 corresponds to a rectangle of sides the larger of one pixel and 0.01 inch.

The initial size and position are only hints, and may not be acted on by the window manager.

Fonts

An initial/default font family for the device can be specified via thefonts argument, but if a
device-independent R graphics font family is specified (e.g., viapar(family=) in the graphics
package), the X11 device makes use of the X11 font database (seeX11Fonts) to convert the R
graphics font family to an X11-specific font family description.

X11 chooses fonts by matching to a pattern, and it is quite possible that it will choose a font in
the wrong encoding or which does not contain glyphs for your language (particularly common in
iso10646-1 fonts).

The fonts argument is a two-element character vector, and the first element will be crucial in
successfully using non-Western-European fonts. Settings that have proved useful include

"-*-mincho-%s-%s-*-*-%d-*-*-*-*-*-*-*" for CJK languages and"-cronyx-
helvetica-%s-%s-*-*-%d-*-*-*-*-*-*-*" for Russian.

618 X11Fonts

For UTF-8 locales, theXLC_LOCALEdatabases provide mappings between character encodings,
and you may need to add an entry for your locale (e.g. Fedora Core 3 lacked one forru_RU.utf8).

Resources

The standard X11 resourcegeometry can be used to specify the window position and/or size, but
will be overridden by values specified as arguments. The class looked for isR_x11 . Note that the
resource specifies the width and height in pixels and not in inches. See for examplehttp://web.
mit.edu/answers/xwindows/xwindows_resources.html and perhaps ‘man X’ (or
http://www.xfree86.org/current/X.7.html). An example line in ‘/.Xresources’
might be

R_x11*geometry: 900x900-0+0

that specifies a 900 x 900 pixel window at the top right of the screen.

See Also

Devices , X11Fonts .

X11Fonts X11 Fonts

Description

These functions handle the translation of a device-independent R graphics font family name to an
X11 font description.

Usage

X11Font(font)

X11Fonts(...)

Arguments

font a character string containing an X11 font description.

... either character strings naming mappings to display, or new (named) mappings
to define.

Details

An X11 device is created with a default font (see the documentation forX11), but it is also pos-
sible to specify a font family when drawing to the device (for example, see the documentation for
"family" in par and for"fontfamily" in gpar in thegrid package).

The font family sent to the device is a simple string name, which must be mapped to something
more specific to X11 fonts. A list of mappings is maintained and can be modified by the user.

TheX11Fonts function can be used to list existing mappings and to define new mappings. The
X11Font function can be used to create a new mapping.

Default mappings are provided for four device-independent font family names:"sans" for a sans-
serif font,"serif" for a serif font,"mono" for a monospaced font, and"symbol" for a symbol
font.

http://web.mit.edu/answers/xwindows/xwindows_resources.html
http://web.mit.edu/answers/xwindows/xwindows_resources.html
http://www.xfree86.org/current/X.7.html

xfig 619

See Also

X11

Examples

X11Fonts()
X11Fonts("mono")
utopia <- X11Font("-*-utopia-*-*-*-*-*-*-*-*-*-*-*-*")
X11Fonts(utopia=utopia)

xfig XFig Graphics Device

Description

xfig starts the graphics device driver for producing XFig (version 3.2) graphics.

The auxiliary functionps.options can be used to set and view (if called without arguments)
default values for the arguments toxfig andpostscript .

Usage

xfig(file = ifelse(onefile, "Rplots.fig", "Rplot%03d.fig"),
onefile = FALSE, encoding = "none", ...)

Arguments

file a character string giving the name of the file. For use withonefile = FALSE
give a C integer format such as"Rplot%03d.fig" (the default in that case).
(Seepostscript for further details.)

onefile logical: if true allow multiple figures in one file. If false, assume only one page
per file and generate a file number containing the page number.

encoding The encoding in which to write text strings. The default is not to re-encode.
This can be any encoding recognized byiconv : in a Western UTF-8 locale
you probably want to select an 8-bit encoding such aslatin1 , and in an East
Asian locale anEUCencoding. If re-encoding fails, the text strings will be
written in the current encoding with a warning.

... further arguments tops.options accepted byxfig() :

paper the size of paper region. The choices are"A4" , "Letter" and
"Legal" (and these can be lowercase). A further choice is"default" ,
which is the default. If this is selected, the papersize is taken from the op-
tion "papersize" if that is set to a non-empty value, otherwise"A4" .

horizontal the orientation of the printed image, a logical. Defaults to true,
that is landscape orientation.

width , height the width and height of the graphics region in inches. The
default is to use the entire page less a 0.5 inch overall margin.

family the font family to be used. This must be one of"AvantGarde" ,
"Bookman" , "Courier" , "Helvetica" , "Helvetica-Narrow" ,
"NewCenturySchoolbook" , "Palatino" or "Times" . Any other
value is replaced by"Helvetica" , with a warning.

620 xy.coords

pointsize the default point size to be used.
bg the default background color to be used.
fg the default foreground color to be used.
pagecentre logical: should the device region be centred on the page: de-

faults toTRUE.

Details

Althoughxfig can produce multiple plots in one file, the XFig format does not say how to separate
or view them. Soonefile = FALSE is the default.

The file argument is interpreted as a C integer format as used bysprintf , with integer argu-
ment the page number. The default gives files ‘Rplot001.fig’, . . . , ‘Rplot999.fig’, ‘ Rplot1000.fig’,
. . . .

Line widths as controlled bypar(lwd=) are in multiples of 5/6*1/72 inch. Multiples less than 1
are allowed.pch="." with cex = 1 corresponds to a square of side 1/72 inch.

Windows users can make use of WinFIG (http://www.schmidt-web-berlin.de/
WinFIG.htm).

Note

Only some line textures (0 <= lty < 4) are used. Eventually this will be partially remedied,
but the XFig file format does not allow as general line textures as theR model. Unimplemented
line textures are displayed asdash-double-dotted.

There is a limit of 512 colours (plus white and black) per file.

See Also

Devices , postscript , ps.options .

xy.coords Extracting Plotting Structures

Description

xy.coords is used by many functions to obtain x and y coordinates for plotting. The use of this
common mechanism across all relevantR functions produces a measure of consistency.

Usage

xy.coords(x, y = NULL, xlab = NULL, ylab = NULL, log = NULL,
recycle = FALSE)

Arguments

x, y the x and y coordinates of a set of points. Alternatively, a single argumentx can
be provided.

xlab,ylab names for the x and y variables to be extracted.

log character,"x" , "y" or both, as forplot . Sets negative values toNAand gives
a warning.

recycle logical; if TRUE, recycle (rep) the shorter ofx or y if their lengths differ.

http://www.schmidt-web-berlin.de/WinFIG.htm
http://www.schmidt-web-berlin.de/WinFIG.htm

xy.coords 621

Details

An attempt is made to interpret the argumentsx andy in a way suitable for bivariate plotting (or
other bivariate procedures).

If y is NULLandx is a

formula: of the formyvar ~ xvar . xvar andyvar are used as x and y variables.

list: containing componentsx andy , these are used to define plotting coordinates.

time series: the x values are taken to betime (x) and the y values to be the time series.

matrix or data.frame with two or more columns: the first is assumed to contain the x values
and the second the y values.Note that is also true ifx has columns named"x" and "y" ;
these names will be irrelevant here.

In any other case, thex argument is coerced to a vector and returned asy component where the
resultingx is just the index vector1:n . In this case, the resultingxlab component is set to
"Index" .

If x (after transformation as above) inherits from class"POSIXt" it is coerced to class
"POSIXct" .

Value

A list with the components

x numeric (i.e.,"double") vector of abscissa values.

y numeric vector of the same length asx .

xlab character(1) or NULL, the ‘label’ ofx .

ylab character(1) or NULL, the ‘label’ ofy .

See Also

plot.default , lines , points andlowess are examples of functions which use this mech-
anism.

Examples

xy.coords(stats::fft(c(1:10)), NULL)

with(cars, xy.coords(dist ~ speed, NULL)$xlab) # = "speed"

xy.coords(1:3, 1:2, recycle=TRUE)
xy.coords(-2:10,NULL, log="y")
##> warning: 3 y values <=0 omitted ..

622 xyTable

xyTable Multiplicities of (x,y) Points, e.g., for a Sunflower Plot

Description

Given (x,y) points, determine their multiplicity – checking for equality only up to some (crude kind
of) noise. Note that this is special kind of 2D binning.

Usage

xyTable(x, y = NULL, digits)

Arguments

x,y numeric vectors of the same length; alternatively other (x,y) argument combina-
tions as allowed byxy.coords (x,y) .

digits integer specifying the significant digits to be used for determining equality of co-
ordinates. These are compared after rounding them viasignif (*,digits) .

Value

A list with three components of same length,

x x coordinates, rounded and sorted.

y y coordinates, rounded (and sorted withinx).

number multiplicities (positive integers); i.e.,number[i] is the multiplicity of
(x[i],y[i]) .

See Also

sunflowerplot which typically usesxyTable() ; signif .

Examples

xyTable(iris[,3:4], digits = 6)

Discretized uncorrelated Gaussian:

require(stats)
xy <- data.frame(x = round(sort(rnorm(100))), y = rnorm(100))
xyTable(xy, digits = 1)

xyz.coords 623

xyz.coords Extracting Plotting Structures

Description

Utility for obtaining consistent x, y and z coordinates and labels for three dimensional (3D) plots.

Usage

xyz.coords(x, y = NULL, z = NULL,
xlab = NULL, ylab = NULL, zlab = NULL,
log = NULL, recycle = FALSE)

Arguments

x, y, z the x, y and z coordinates of a set of points. Bothy andz can be left atNULL.
In this case, an attempt is made to interpretx in a way suitable for plotting.

If the argument is a formulazvar ~ xvar + yvar , xvar , yvar andzvar
are used as x, y and z variables; if the argument is a list containing components
x , y andz , these are assumed to define plotting coordinates; if the argument is
a matrix ordata.frame with three or more columns, the first is assumed to
contain the x values, the 2nd the y ones, and the 3rd the z ones – independently
of any column names thatx may have.

Alternatively two argumentsx andy can be provided (leavingz = NULL). One
may be real, the other complex; in any other case, the arguments are coerced to
vectors and the values plotted against their indices.

xlab, ylab, zlab
names for the x, y and z variables to be extracted.

log character,"x" , "y" , "z" or combinations. Sets negative values toNAand gives
a warning.

recycle logical; if TRUE, recycle (rep) the shorter ones ofx , y or z if their lengths
differ.

Value

A list with the components

x numeric (i.e.,double) vector of abscissa values.

y numeric vector of the same length asx .

z numeric vector of the same length asx .

xlab character(1) or NULL, the axis label ofx .

ylab character(1) or NULL, the axis label ofy .

zlab character(1) or NULL, the axis label ofz .

Author(s)

Uwe Ligges and Martin Maechler

624 xyz.coords

See Also

xy.coords for 2D.

Examples

xyz.coords(data.frame(10*1:9, -4), y = NULL, z = NULL)

xyz.coords(1:6, stats::fft(1:6), z = NULL, xlab = "X", ylab = "Y")

y <- 2 * (x2 <- 10 + (x1 <- 1:10))
xyz.coords(y ~ x1 + x2, y = NULL, z = NULL)

xyz.coords(data.frame(x = -1:9, y = 2:12, z = 3:13), y = NULL, z = NULL,
log = "xy")

##> Warning message: 2 x values <= 0 omitted ...

Chapter 4

The graphics package

graphics-package The R Graphics Package

Description

R functions for base graphics

Details

This package contains functions for base graphics. Base graphics are traditional S graphics, as
opposed to the newergrid graphics.

For a complete list of functions with individual help pages, uselibrary(help="graphics") .

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team〈R-core@r-project.org〉

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

abline Add Straight Lines to a Plot

Description

This function adds one or more straight lines through the current plot.

Usage

abline(a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL,
coef = NULL, untf = FALSE, ...)

625

626 abline

Arguments

a, b the intercept and slope, single values.

untf logical asking whether tountransform. See ‘Details’.

h the y-value(s) for horizontal line(s).

v the x-value(s) for vertical line(s).

coef a vector of length two giving the intercept and slope.

reg an object with acoef method. See ‘Details’.

... graphical parameters such ascol , lty andlwd (possibly as vectors: see ‘De-
tails’) and the line characteristicslend , ljoin andlmitre .

Details

Typical usages are

abline(a, b, untf = FALSE, ...)
abline(h=, untf = FALSE, ...)
abline(v=, untf = FALSE, ...)
abline(coef=, untf = FALSE, ...)
abline(reg=, untf = FALSE, ...)

The first form specifies the line in intercept/slope form (alternativelya can be specified on its own
and is taken to contain the slope and intercept in vector form).

Theh= andv= forms draw horizontal and vertical lines at the specified coordinates.

Thecoef form specifies the line by a vector containing the slope and intercept.

reg is a regression object with acoef method. If this returns a vector of length 1 then the value
is taken to be the slope of a line through the origin, otherwise, the first 2 values are taken to be the
intercept and slope.

If untf is true, and one or both axes are log-transformed, then a curve is drawn corresponding to a
line in original coordinates, otherwise a line is drawn in the transformed coordinate system. Theh
andv parameters always refer to original coordinates.

The graphical parameterscol , lty andlwd can be specified; seepar for details. For theh= and
v= usages they can be vectors of length greater than one, recycled as necessary.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

lines andsegments for connected and arbitrary lines given by theirendpoints. par .

Examples

Setup up coordinate system (with x==y aspect ratio):
plot(c(-2,3), c(-1,5), type = "n", xlab="x", ylab="y", asp = 1)
the x- and y-axis, and an integer grid
abline(h=0, v=0, col = "gray60")
text(1,0, "abline(h = 0)", col = "gray60", adj = c(0, -.1))

arrows 627

abline(h = -1:5, v = -2:3, col = "lightgray", lty=3)
abline(a=1, b=2, col = 2)
text(1,3, "abline(1, 2)", col=2, adj=c(-.1,-.1))

Simple Regression Lines:
require(stats)
sale5 <- c(6, 4, 9, 7, 6, 12, 8, 10, 9, 13)
plot(sale5)
abline(lsfit(1:10,sale5))
abline(lsfit(1:10,sale5, intercept = FALSE), col= 4) # less fitting

z <- lm(dist ~ speed, data = cars)
plot(cars)
abline(z) # equivalent to abline(reg = z) or
abline(coef = coef(z))

trivial intercept model
abline(mC <- lm(dist ~ 1, data = cars)) ## the same as
abline(a = coef(mC), b = 0, col = "blue")

arrows Add Arrows to a Plot

Description

Draw arrows between pairs of points.

Usage

arrows(x0, y0, x1, y1, length = 0.25, angle = 30, code = 2,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
...)

Arguments

x0, y0 coordinates of pointsfrom which to draw.

x1, y1 coordinates of pointsto which to draw.

length length of the edges of the arrow head (in inches).

angle angle from the shaft of the arrow to the edge of the arrow head.

code integer code, determiningkind of arrows to be drawn.

col, lty, lwd
graphical parameters, possible vectors.NAvalues incol cause the arrow to be
omitted.

... graphical parameters such asxpd and the line characteristicslend , ljoin
andlmitre : seepar .

628 assocplot

Details

For each i , an arrow is drawn between the point(x0[i], y0[i]) and the point
(x1[i],y1[i]) .

If code=1 an arrowhead is drawn at(x0[i],y0[i]) and ifcode=2 an arrowhead is drawn at
(x1[i],y1[i]) . If code=3 a head is drawn at both ends of the arrow. Unlesslength = 0 ,
when no head is drawn.

The graphical parameterscol , lty andlwd can be vectors of length greater than one and will be
recycled if necessary.

The direction of a zero-length arrow is indeterminate, and hence so is the direction of the arrow-
heads. To allow for rounding error, arrowheads are omitted (with a warning) on any arrow of length
less than 1/1000 inch.

Note

The first four arguments in the comparable S function are namedx1,y1,x2,y2 .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

segments to draw segments.

Examples

x <- stats::runif(12); y <- stats::rnorm(12)
i <- order(x,y); x <- x[i]; y <- y[i]
plot(x,y, main="arrows(.) and segments(.)")
draw arrows from point to point :
s <- seq(length(x)-1)# one shorter than data
arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)
s <- s[-length(s)]
segments(x[s], y[s], x[s+2], y[s+2], col= 'pink')

assocplot Association Plots

Description

Produce a Cohen-Friendly association plot indicating deviations from independence of rows and
columns in a 2-dimensional contingency table.

Usage

assocplot(x, col = c("black", "red"), space = 0.3,
main = NULL, xlab = NULL, ylab = NULL)

assocplot 629

Arguments

x a two-dimensional contingency table in matrix form.

col a character vector of length two giving the colors used for drawing positive and
negative Pearson residuals, respectively.

space the amount of space (as a fraction of the average rectangle width and height) left
between each rectangle.

main overall title for the plot.

xlab a label for the x axis. Defaults to the name (if any) of the row dimension inx .

ylab a label for the y axis. Defaults to the name (if any) of the column dimension in
x .

Details

For a two-way contingency table, the signed contribution to Pearson’sχ2 for cell i, j is dij =
(fij − eij)/

√
eij , wherefij andeij are the observed and expected counts corresponding to the

cell. In the Cohen-Friendly association plot, each cell is represented by a rectangle that has (signed)
height proportional todij and width proportional to

√
eij , so that the area of the box is proportional

to the difference in observed and expected frequencies. The rectangles in each row are positioned
relative to a baseline indicating independence (dij = 0). If the observed frequency of a cell is
greater than the expected one, the box rises above the baseline and is shaded in the color specified
by the first element ofcol , which defaults to black; otherwise, the box falls below the baseline and
is shaded in the color specified by the second element ofcol , which defaults to red.

A more flexible and extensible implementation of association plots written in the grid graphics
system is provided in the functionassoc in the contributed packagevcd (Meyer, Zeileis and
Hornik, 2005).

References

Cohen, A. (1980), On the graphical display of the significant components in a two-way contingency
table.Communications in Statistics—Theory and Methods, A9, 1025–1041.

Friendly, M. (1992), Graphical methods for categorical data.SAS User Group Interna-
tional Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/
sugi17-paper.html

Meyer, D., Zeileis, A., and Hornik, K. (2005) The strucplot framework: Visualizing multi-way
contingency tables with vcd.Report 22, Department of Statistics and Mathematics, Wirtschaftsuni-
versität Wien, Research Report Series.http://epub.wu-wien.ac.at/dyn/openURL?
id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1

See Also

mosaicplot , chisq.test .

Examples

Aggregate over sex:
x <- margin.table(HairEyeColor, c(1, 2))
x
assocplot(x, main = "Relation between hair and eye color")

http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1

630 Axis

Axis Generic function to add an Axis to a Plot

Description

Generic function to add a suitable axis to the current plot.

Usage

Axis(x = NULL, at = NULL, ..., side, labels = NULL)

Arguments

x an object which indicates the range over which an axis should be drawn

at the points at which tick-marks are to be drawn.

side an integer specifying which side of the plot the axis is to be drawn on. The axis
is placed as follows: 1=below, 2=left, 3=above and 4=right.

labels this can either be a logical value specifying whether (numerical) annotations are
to be made at the tickmarks, or a character or expression vector of labels to be
placed at the tickpoints. If this is specified as a character or expression vector,
at should be supplied and they should be the same length.

... Arguments to be passed to methods and perhaps then toaxis .

Details

This is a generic function. It works in a slightly non-standard way: ifx is supplied and non-NULL
it dispatches onx , otherwise ifat is supplied and non-NULL it dispatches onat , and the default
action is to callaxis , omitting argumentx .

The idea is that for plots for which either or both of the axes are numerical but with a spe-
cial interpretation, the standard plotting functions (includingboxplot , contour , coplot ,
filled.contour , pairs , plot.default , rug and stripchart) will set up user co-
ordinates andAxis will be called to label them appropriately.

There are"Date" , "POSIXct" and"POSIXlt" methods which can pass an argumentformat
onto the appropriateaxis method (seeaxis.POSIXct).

Value

The numeric locations on the axis scale at which tick marks were drawn when the plot was first
drawn (see ‘Details’).

This function is usually invoked for its side effect, which is to add an axis to an already existing
plot.

See Also

axis .

axis 631

axis Add an Axis to a Plot

Description

Adds an axis to the current plot, allowing the specification of the side, position, labels, and other
options.

Usage

axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,
pos = NA, outer = FALSE, font = NA,
lty = "solid", lwd = 1, col = NULL, hadj = NA, padj = NA,
...)

Arguments

side an integer specifying which side of the plot the axis is to be drawn on. The axis
is placed as follows: 1=below, 2=left, 3=above and 4=right.

at the points at which tick-marks are to be drawn. Non-finite (infinite,NaNor NA)
values are omitted. By default, whenNULL, tickmark locations are computed,
see ‘Details’ below.

labels this can either be a logical value specifying whether (numerical) annotations are
to be made at the tickmarks, or a character or expression vector of labels to be
placed at the tickpoints. (Other objects are coerced byas.graphicsAnnot .)
If this is not logical,at should also be supplied and of the same length. If
labels is of length zero after coercion, it has the same effect as supplying
TRUE.

tick a logical value specifying whether tickmarks and an axis line should be drawn

line the number of lines into the margin which the axis will be drawn. If notNAthis
overrides the value of the graphical parametermgp[3] . The relative placing of
tickmarks and tick labels is unchanged.

pos the coordinate at which the axis line is to be drawn: if notNAthis overrides the
values of bothline andmgp[3] .

outer a logical value indicating whether the axis should be drawn in the outer plot
margin, rather than the standard plot margin.

font font for text. Defaults topar("font") .

lty, lwd line type, width for the axis line and the tick marks.

col color for the axis line and the tick marks. HereNULL means to use
par("fg") , possibly specified inline.

hadj adjustment (seepar ("adj")) for all labelsparallel (‘horizontal’) to the read-
ing direction. If this is not a finite value, the default is used (centring for strings
parallel to the axis, justification of the end nearest the axis otherwise).

padj adjustment for each tick labelperpendicularto the reading direction. For labels
parallel to the axes,padj=0 means right or top alignment, andpadj=1 means
left or bottom alignment. This can be a vector given a value for each string, and
will be recycled as necessary.

632 axis

If padj is not a finite value (the default), the value ofpar("las") determines
the adjustment. For strings plotted perpendicular to the axis the default is to
centre the string.

... other graphical parameters may also be passed as arguments to this function, par-
ticularly, cex.axis , col.axis and font.axis for axis annotation,mgp
andxaxp or yaxp for positioning,tck or tcl for tick mark length and di-
rection,las for vertical/horizontal label orientation, orfg instead ofcol , see
par on these.

Parametersxaxt (sides 1 and 3) andyaxt (sides 2 and 4) control if the axis is
plotted at all.

Note thatxpd is not accepted as clipping is always to the device region, and that
lab will partial match to argumentlabels unless the latter is also supplied.
(Since the default axes have already been set up byplot.window , lab will
not be acted on byaxis .)

Details

The axis line is drawn from the lowest to the highest value ofat , but will be clipped at the plot
region. Only ticks which are drawn from points within the plot region (up to a tolerance for rounding
error) are plotted, but the ticks and their labels may well extend outside the plot region.

When at = NULL , pretty tick mark locations are computed internally (the same way
axTicks (side) would) frompar ("xaxp") or "yaxp" andpar ("xlog") (or "ylog").
Note that these locations may change if an on-screen plot is resized (for example, if theplot
argumentasp (seeplot.window) is set.)

If labels is not specified, the numeric values supplied or calculated forat are converted to
character strings as if they were a numeric vector printed byprint.default (digits=7) .

The code tries hard not to draw overlapping tick labels, and so will omit labels where they would
abut or overlap previously drawn labels. This can result in, for example, every other tick being
labelled. (The ticks are drawn left to right or bottom to top, and space at least the size of an ‘m’ is
left between labels.)

Several of the graphics parameters affect the way axes are drawn. The vertical (for sides 1 and 3)
positions of the axis and the tick labels are controlled bymgp, the size and direction of the ticks is
controlled bytck andtcl and the appearance of the tick labels bycex.axis , col.axis and
font.axis with orientation controlled bylas (but notsrt , unlike S which usessrt if at is
supplied andlas if it is not). Note thatadj is not supported. Seepar for details.

Value

The numeric locations on the axis scale at which tick marks were drawn when the plot was first
drawn (see ‘Details’).

This function is usually invoked for its side effect, which is to add an axis to an already existing
plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

axis.POSIXct 633

See Also

Axis for a generic interface.

axTicks returns the axis tick locations corresponding toat=NULL ; pretty is more flexible for
computing pretty tick coordinates and doesnot depend on (nor adapt to) the coordinate system in
use.

Several graphics parameters affecting the appearance are documented inpar .

Examples

require(stats) # for rnorm
plot(1:4, rnorm(4), axes = FALSE)
axis(1, 1:4, LETTERS[1:4])
axis(2)
box() #- to make it look "as usual"

plot(1:7, rnorm(7), main = "axis() examples",
type = "s", xaxt = "n", frame = FALSE, col = "red")

axis(1, 1:7, LETTERS[1:7], col.axis = "blue")
unusual options:
axis(4, col = "violet", col.axis="dark violet", lwd = 2)
axis(3, col = "gold", lty = 2, lwd = 0.5)

one way to have a custom x axis
plot(1:10, xaxt = "n")
axis(1, xaxp=c(2, 9, 7))

axis.POSIXct Date and Date-time Plotting Functions

Description

Functions to plot objects of classes"POSIXlt" , "POSIXct" and"Date" representing calendar
dates and times.

Usage

axis.POSIXct(side, x, at, format, labels = TRUE, ...)
axis.Date(side, x, at, format, labels = TRUE, ...)

S3 method for class 'POSIXct':
plot(x, y, xlab = "", ...)
S3 method for class 'POSIXlt':
plot(x, y, xlab = "", ...)
S3 method for class 'Date':
plot(x, y, xlab = "", ...)

Arguments

x, at A date-time or date object.

y numeric values to be plotted againstx .

xlab a character string giving the label for the x axis.

634 axis.POSIXct

side Seeaxis .

format Seestrptime .

labels Either a logical value specifying whether annotations are to be made at the tick-
marks, or a vector of character strings to be placed at the tickpoints.

... Further arguments to be passed from or to other methods, typically graphical
parameters or arguments ofplot.default . For theplot methods, also
format .

Details

The functions plot against an x-axis of date-times.axis.POSIXct andaxis.Date work quite
hard to choose suitable time units (years, months, days, hours, minutes or seconds) and a sensible
output format, but this can be overridden by supplying aformat specification.

If at is supplied it specifies the locations of the ticks and labels whereas ifx is specified a suitable
grid of labels is chosen. Printing of tick labels can be suppressed by usinglabels = FALSE .

Value

The locations on the axis scale at which tick marks were drawn.

See Also

DateTimeClasses, Datesfor details of the classes.

Examples

with(beaver1, {
time <- strptime(paste(1990, day, time %/% 100, time %% 100),

"%Y %j %H %M")
plot(time, temp, type="l") # axis at 4-hour intervals.
now label every hour on the time axis
plot(time, temp, type="l", xaxt="n")
r <- as.POSIXct(round(range(time), "hours"))
axis.POSIXct(1, at=seq(r[1], r[2], by="hour"), format="%H")
})

plot(.leap.seconds, 1:23, type="n", yaxt="n",
xlab="leap seconds", ylab="", bty="n")

rug(.leap.seconds)
or as dates
lps <- as.Date(.leap.seconds)
plot(lps, 1:23, type = "n", yaxt = "n", xlab = "leap seconds",

ylab = "", bty = "n")
rug(lps)

100 random dates in a 10-week period
random.dates <- as.Date("2001/1/1") + 70*sort(stats::runif(100))
plot(random.dates, 1:100)
or for a better axis labelling
plot(random.dates, 1:100, xaxt="n")
axis.Date(1, at=seq(as.Date("2001/1/1"), max(random.dates)+6, "weeks"))
axis.Date(1, at=seq(as.Date("2001/1/1"), max(random.dates)+6, "days"),

labels = FALSE, tcl = -0.2)

axTicks 635

axTicks Compute Axis Tickmark Locations

Description

Compute pretty tickmark locations, the same way asR does internally. This is only non-trivial
whenlog coordinates are active. By default, gives theat values whichaxis (side) would use.

Usage

axTicks(side, axp = NULL, usr = NULL, log = NULL)

Arguments

side integer in 1:4, as foraxis .

axp numeric vector of length three, defaulting topar ("xaxp") or
par ("yaxp") depending on theside argument.

usr numeric vector of length four, defaulting topar ("usr") giving horizontal
(‘x’) and vertical (‘y’) user coordinate limits.

log logical indicating if log coordinates are active; defaults topar ("xlog") or
par ("ylog") .

Details

Theaxp , usr , andlog arguments must be consistent as their default values (thepar(..) re-
sults) are. If you specify all three (as non-NULL), the graphics environment is not used at all.
Note that the meaning ofaxp alters very much whenlog is TRUE, see the documentation on
par (xaxp=.) .

axTicks() can be regarded as anR implementation of the C functionCreateAtVector() in
‘/src/main/plot.c’ which is called byaxis (side,*) when no argumentat is specified.

Value

numeric vector of coordinate values at which axis tickmarks can be drawn. By default, when only
the first argument is specified, these values should be identical to those thataxis (side) would
use or has used.

See Also

axis , par . pretty uses the same algorithm (but independently of the graphics environment)
and has more options. However it is not available forlog = TRUE.

Examples

plot(1:7, 10*21:27)
axTicks(1)
axTicks(2)
stopifnot(identical(axTicks(1), axTicks(3)),

identical(axTicks(2), axTicks(4)))

Show how axTicks() and axis() correspond :

636 barplot

op <- par(mfrow = c(3,1))
for(x in 9999*c(1,2,8)) {

plot(x,9, log = "x")
cat(formatC(par("xaxp"), width=5),";", T <- axTicks(1),"\n")
rug(T, col="red")

}
par(op)

barplot Bar Plots

Description

Creates a bar plot with vertical or horizontal bars.

Usage

barplot(height, ...)

Default S3 method:
barplot(height, width = 1, space = NULL,

names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,
col = NULL, border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE, log = "",
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0,
add = FALSE, ...)

Arguments

height either a vector or matrix of values describing the bars which make up the plot.
If height is a vector, the plot consists of a sequence of rectangular bars with
heights given by the values in the vector. Ifheight is a matrix andbeside is
FALSE then each bar of the plot corresponds to a column ofheight , with the
values in the column giving the heights of stacked sub-bars making up the bar.
If height is a matrix andbeside is TRUE, then the values in each column
are juxtaposed rather than stacked.

width optional vector of bar widths. Re-cycled to length the number of bars drawn.
Specifying a single value will have no visible effect unlessxlim is specified.

space the amount of space (as a fraction of the average bar width) left before each bar.
May be given as a single number or one number per bar. Ifheight is a matrix
andbeside is TRUE, space may be specified by two numbers, where the first
is the space between bars in the same group, and the second the space between
the groups. If not given explicitly, it defaults toc(0,1) if height is a matrix
andbeside is TRUE, and to 0.2 otherwise.

names.arg a vector of names to be plotted below each bar or group of bars. If this argument
is omitted, then the names are taken from thenames attribute ofheight if
this is a vector, or the column names if it is a matrix.

barplot 637

legend.text a vector of text used to construct a legend for the plot, or a logical indicating
whether a legend should be included. This is only useful whenheight is
a matrix. In that case given legend labels should correspond to the rows of
height ; if legend.text is true, the row names ofheight will be used as
labels if they are non-null.

beside a logical value. IfFALSE, the columns ofheight are portrayed as stacked
bars, and ifTRUEthe columns are portrayed as juxtaposed bars.

horiz a logical value. IfFALSE, the bars are drawn vertically with the first bar to the
left. If TRUE, the bars are drawn horizontally with the first at the bottom.

density a vector giving the density of shading lines, in lines per inch, for the bars or bar
components. The default value ofNULLmeans that no shading lines are drawn.
Non-positive values ofdensity also inhibit the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise), for
the bars or bar components.

col a vector of colors for the bars or bar components. By default, grey is used if
height is a vector, and a gamma-corrected grey palette ifheight is a matrix.

border the color to be used for the border of the bars. Useborder = NA to omit bor-
ders. If there are shading lines,border = TRUE means use the same colour
for the border as for the shading lines.

main,sub overall and sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

xlim limits for the x axis.

ylim limits for the y axis.

xpd logical. Should bars be allowed to go outside region?

log string specifying if axis scales should be logarithmic; seeplot.default .

axes logical. If TRUE, a vertical (or horizontal, ifhoriz is true) axis is drawn.

axisnames logical. If TRUE, and if there arenames.arg (see above), the other axis is
drawn (withlty=0) and labeled.

cex.axis expansion factor for numeric axis labels.

cex.names expansion factor for axis names (bar labels).

inside logical. If TRUE, the lines which divide adjacent (non-stacked!) bars will be
drawn. Only applies whenspace = 0 (which it partly is whenbeside =
TRUE).

plot logical. If FALSE, nothing is plotted.

axis.lty the graphics parameterlty applied to the axis and tick marks of the categorical
(default horizontal) axis. Note that by default the axis is suppressed.

offset a vector indicating how much the bars should be shifted relative to the x axis.

add logical specifying if bars should be added to an already existing plot; defaults to
FALSE.

... arguments to be passed to/from other methods. For the default method these
can include further arguments (such asaxes , asp andmain) and graphical
parameters (seepar) which are passed toplot.window () , title () and
axis .

638 barplot

Details

This is a generic function, it currently only has a default method. A formula interface may be added
eventually.

Value

A numeric vector (or matrix, whenbeside = TRUE), saymp, giving the coordinates ofall the
bar midpoints drawn, useful for adding to the graph.

If beside is true, usecolMeans(mp) for the midpoints of eachgroupof bars, see example.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

plot (..., type="h") , dotchart , hist .

Examples

require(grDevices) # for colours
tN <- table(Ni <- stats::rpois(100, lambda=5))
r <- barplot(tN, col=rainbow(20))
#- type = "h" plotting *is* 'bar'plot
lines(r, tN, type='h', col='red', lwd=2)

barplot(tN, space = 1.5, axisnames=FALSE,
sub = "barplot(..., space= 1.5, axisnames = FALSE)")

barplot(VADeaths, plot = FALSE)
barplot(VADeaths, plot = FALSE, beside = TRUE)

mp <- barplot(VADeaths) # default
tot <- colMeans(VADeaths)
text(mp, tot + 3, format(tot), xpd = TRUE, col = "blue")
barplot(VADeaths, beside = TRUE,

col = c("lightblue", "mistyrose", "lightcyan",
"lavender", "cornsilk"),

legend = rownames(VADeaths), ylim = c(0, 100))
title(main = "Death Rates in Virginia", font.main = 4)

hh <- t(VADeaths)[, 5:1]
mybarcol <- "gray20"
mp <- barplot(hh, beside = TRUE,

col = c("lightblue", "mistyrose",
"lightcyan", "lavender"),

legend = colnames(VADeaths), ylim= c(0,100),
main = "Death Rates in Virginia", font.main = 4,
sub = "Faked upper 2*sigma error bars", col.sub = mybarcol,
cex.names = 1.5)

segments(mp, hh, mp, hh + 2*sqrt(1000*hh/100), col = mybarcol, lwd = 1.5)
stopifnot(dim(mp) == dim(hh))# corresponding matrices
mtext(side = 1, at = colMeans(mp), line = -2,

box 639

text = paste("Mean", formatC(colMeans(hh))), col = "red")

Bar shading example
barplot(VADeaths, angle = 15+10*1:5, density = 20, col = "black",

legend = rownames(VADeaths))
title(main = list("Death Rates in Virginia", font = 4))

border :
barplot(VADeaths, border = "dark blue")

log scales (not much sense here):
barplot(tN, col=heat.colors(12), log = "y")
barplot(tN, col=gray.colors(20), log = "xy")

box Draw a Box around a Plot

Description

This function draws a box around the current plot in the given color and linetype. Thebty param-
eter determines the type of box drawn. Seepar for details.

Usage

box(which = "plot", lty = "solid", ...)

Arguments

which character, one of"plot" , "figure" , "inner" and"outer" .

lty line type of the box.

... further graphical parameters, such asbty , col , or lwd , seepar . Note that
xpd is not accepted as clipping is always to the device region.

Details

The choice of colour is complicated. Ifcol was supplied and is notNA, it is used. Otherwise, if
fg was supplied and is notNA, it is used. The final default ispar("col") .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

rect for drawing of arbitrary rectangles.

Examples

plot(1:7, abs(stats::rnorm(7)), type = 'h', axes = FALSE)
axis(1, at = 1:7, labels = letters[1:7])
box(lty = '1373', col = 'red')

640 boxplot

boxplot Box Plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage

boxplot(x, ...)

S3 method for class 'formula':
boxplot(formula, data = NULL, ..., subset, na.action = NULL)

Default S3 method:
boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

notch = FALSE, outline = TRUE, names, plot = TRUE,
border = par("fg"), col = NULL, log = "",
pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)

Arguments

formula a formula, such asy ~ grp , wherey is a numeric vector of data values to be
split into groups according to the grouping variablegrp (usually a factor).

data a data.frame (or list) from which the variables informula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data containNAs. The
default is to ignore missing values in either the response or the group.

x for specifying data from which the boxplots are to be produced. Either a numeric
vector, or a single list containing such vectors. Additional unnamed arguments
specify further data as separate vectors (each corresponding to a component
boxplot).NAs are allowed in the data.

... For theformula method, named arguments to be passed to the default method.
For the default method, unnamed arguments are additional data vectors (unlessx
is a list when they are ignored), and named arguments are arguments and graph-
ical parameters to be passed tobxp in addition to the ones given by argument
pars (and override those inpars).

range this determines how far the plot whiskers extend out from the box. Ifrange is
positive, the whiskers extend to the most extreme data point which is no more
thanrange times the interquartile range from the box. A value of zero causes
the whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap this is ‘strong evidence’ that the two medians differ
(Chamberset al., 1983, p. 62). Seeboxplot.stats for the calculations
used.

boxplot 641

outline if outline is not true, the outliers are not drawn (as points whereas S+ uses
lines).

names group labels which will be printed under each boxplot. Can be a character vector
or anexpression(seeplotmath).

boxwex a scale factor to be applied to all boxes. When there are only a few groups, the
appearance of the plot can be improved by making the boxes narrower.

staplewex staple line width expansion, proportional to box width.

outwex outlier line width expansion, proportional to box width.

plot if TRUE(the default) then a boxplot is produced. If not, the summaries which
the boxplots are based on are returned.

border an optional vector of colors for the outlines of the boxplots. The values in
border are recycled if the length ofborder is less than the number of plots.

col if col is non-null it is assumed to contain colors to be used to colour the bodies
of the box plots. By default they are in the background colour.

log character indicating if x or y or both coordinates should be plotted in log scale.

pars a list of (potentially many) more graphical parameters, e.g.,boxwex or
outpch ; these are passed tobxp (if plot is true); for details, see there.

horizontal logical indicating if the boxplots should be horizontal; defaultFALSE means
vertical boxes.

add logical, if trueaddboxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn, partic-
ularly whenadd = TRUE; defaults to1:n wheren is the number of boxes.

Details

The generic functionboxplot currently has a default method (boxplot.default) and a for-
mula interface (boxplot.formula).

If multiple groups are supplied either as multiple arguments or via a formula, parallel boxplots will
be plotted, in the order of the arguments or the order of the levels of the factor (seefactor).

Missing values are ignored when forming boxplots.

Value

List with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the lower
hinge, the median, the upper hinge and the extreme of the upper whisker for one
group/plot. If all the inputs have the same class attribute, so will this component.

n a vector with the number of observations in each group.

conf a matrix where each column contains the lower and upper extremes of the notch.

out the values of any data points which lie beyond the extremes of the whiskers.

group a vector of the same length asout whose elements indicate to which group the
outlier belongs.

names a vector of names for the groups.

642 boxplot

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983)Graphical Methods for Data
Analysis.Wadsworth & Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See alsoboxplot.stats .

See Also

boxplot.stats which does the computation,bxp for the plotting and more examples; and
stripchart for an alternative (with small data sets).

Examples

boxplot on a formula:
boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
add notches (somewhat funny here):
boxplot(count ~ spray, data = InsectSprays,

notch = TRUE, add = TRUE, col = "blue")

boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col = "bisque")

rb <- boxplot(decrease ~ treatment, data = OrchardSprays, col="bisque")
title("Comparing boxplot()s and non-robust mean +/- SD")

mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)
sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)
xi <- 0.3 + seq(rb$n)
points(xi, mn.t, col = "orange", pch = 18)
arrows(xi, mn.t - sd.t, xi, mn.t + sd.t,

code = 3, col = "pink", angle = 75, length = .1)

boxplot on a matrix:
mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),

`5T` = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
boxplot(as.data.frame(mat),

main = "boxplot(as.data.frame(mat), main = ...)")
par(las=1)# all axis labels horizontal
boxplot(as.data.frame(mat), main = "boxplot(*, horizontal = TRUE)",

horizontal = TRUE)

Using 'at = ' and adding boxplots -- example idea by Roger Bivand :

boxplot(len ~ dose, data = ToothGrowth,
boxwex = 0.25, at = 1:3 - 0.2,
subset = supp == "VC", col = "yellow",
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length",
xlim = c(0.5, 3.5), ylim = c(0, 35), yaxs = "i")

boxplot(len ~ dose, data = ToothGrowth, add = TRUE,
boxwex = 0.25, at = 1:3 + 0.2,
subset = supp == "OJ", col = "orange")

bxp 643

legend(2, 9, c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange"))

more examples in help(bxp)

bxp Draw Box Plots from Summaries

Description

bxp draws box plots based on the given summaries inz . It is usually called from withinboxplot ,
but can be invoked directly.

Usage

bxp(z, notch = FALSE, width = NULL, varwidth = FALSE,
outline = TRUE, notch.frac = 0.5, log = "",
border = par("fg"), pars = NULL, frame.plot = axes,
horizontal = FALSE, add = FALSE, at = NULL, show.names = NULL,
...)

Arguments

z a list containing data summaries to be used in constructing the plots. These are
usually the result of a call toboxplot , but can be generated in any fashion.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at the 5
percent level.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

outline if outline is not true, the outliers are not drawn.

notch.frac numeric in (0,1). Whennotch=TRUE , the fraction of the box width that the
notches should use.

border character or numeric (vector), the color of the box borders. Is recycled for
multiple boxes. Is used as default for theboxcol , medcol , whiskcol ,
staplecol , andoutcol options (see below).

log character, indicating if any axis should be drawn in logarithmic scale, as in
plot.default .

frame.plot logical, indicating if a ‘frame’ (box) should be drawn; defaults toTRUE, unless
axes = FALSE is specified.

horizontal logical indicating if the boxplots should be horizontal; defaultFALSE means
vertical boxes.

add logical, if trueaddboxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn, partic-
ularly whenadd = TRUE; defaults to1:n wheren is the number of boxes.

show.names Set toTRUEor FALSE to override the defaults on whether an x-axis label is
printed for each group.

644 bxp

pars,... graphical parameters (etc) can be passed as arguments to this function, either
as a list (pars) or normally(...), see the following. (Those in... take
precedence over those inpars .)
Currently, yaxs and ylim are used ‘along the boxplot’, i.e., vertically,
when horizontal is false, andxlim horizontally. xaxt , yaxt , las ,
cex.axis , and col.axis are passed toaxis , and main , cex.main ,
col.main , sub , cex.sub , col.sub , xlab , ylab , cex.lab , and
col.lab are passed totitle .
In addition,axes is accepted (seeplot.window), with defaultTRUE.
The following arguments (orpars components) allow further customization
of the boxplot graphics. Their defaults are typically determined from the non-
prefixed version (e.g.,boxlty from lty), either from the specified argument
or pars component or the correspondingpar one.

boxwex: a scale factor to be applied to all boxes. When there are only a few
groups, the appearance of the plot can be improved by making the boxes
narrower. The default depends onat and typically is0.8.

staplewex, outwex:staple and outlier line width expansion, proportional to box
width; both default to 0.5.

boxlty, boxlwd, boxcol, boxfill: box outline type, width, color, and fill color
(which currently defaults tocol and will in future default topar("bg")).

medlty, medlwd, medpch, medcex, medcol, medbg:median line type, line
width, point character, point size expansion, color, and background color.
The defaultmedpch= NA suppresses the point, andmedlty="blank"
does so for the line. Note thatmedlwd defaults to3× the defaultlwd .

whisklty, whisklwd, whiskcol: whisker line type (default: "dashed"),
width, and color.

staplelty, staplelwd, staplecol:staple (= end of whisker) line type, width, and
color.

outlty, outlwd, outpch, outcex, outcol, outbg: outlier line type, line width,
point character, point size expansion, color, and background color. The
defaultoutlty= "blank" suppresses the lines andoutpch=NA sup-
presses points.

Value

An invisible vector, actually identical to theat argument, with the coordinates ("x" if horizontal is
false, "y" otherwise) of box centers, useful for adding to the plot.

Note

if add = FALSE, the default isxlim = c(0.5, n +0.5) . It will usually be a good idea to
specify the latter if the "x" axis has a log scale orat is specified orwidth is far from uniform.

Author(s)

The R Core development team and Arni Magnusson〈arnima@u.washington.edu〉who has provided
most changes for the box*, med*, whisk*, staple*, and out* arguments.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

cdplot 645

Examples

require(stats)
set.seed(753)
(bx.p <- boxplot(split(rt(100, 4), gl(5,20))))
op <- par(mfrow= c(2,2))
bxp(bx.p, xaxt = "n")
bxp(bx.p, notch = TRUE, axes = FALSE, pch = 4, boxfill=1:5)
bxp(bx.p, notch = TRUE, boxfill= "lightblue", frame= FALSE,

outl= FALSE, main = "bxp(*, frame= FALSE, outl= FALSE)")
bxp(bx.p, notch = TRUE, boxfill= "lightblue", border= 2:6,

ylim = c(-4,4), pch = 22, bg = "green", log = "x",
main = "... log='x', ylim=*")

par(op)
op <- par(mfrow= c(1,2))

single group -- no label
boxplot (weight ~ group, data = PlantGrowth, subset = group=="ctrl")
with label
bx <- boxplot(weight ~ group, data = PlantGrowth,

subset = group=="ctrl", plot = FALSE)
bxp(bx,show.names=TRUE)
par(op)

z <- split(rnorm(1000), rpois(1000,2.2))
boxplot(z, whisklty=3, main="boxplot(z, whisklty = 3)")

Colour support similar to plot.default:
op <- par(mfrow=1:2, bg="light gray", fg="midnight blue")
boxplot(z, col.axis="skyblue3", main="boxplot(*, col.axis=..,main=..)")
plot(z[[1]], col.axis="skyblue3", main= "plot(*, col.axis=..,main=..)")
mtext("par(bg=\"light gray\", fg=\"midnight blue\")",

outer = TRUE, line = -1.2)
par(op)

Mimic S-Plus:
splus <- list(boxwex=0.4, staplewex=1, outwex=1, boxfill="grey40",

medlwd=3, medcol="white", whisklty=3, outlty=1, outpch=NA)
boxplot(z, pars=splus)
Recycled and "sweeping" parameters
op <- par(mfrow=c(1,2))

boxplot(z, border=1:5, lty = 3, medlty = 1, medlwd = 2.5)
boxplot(z, boxfill=1:3, pch=1:5, lwd = 1.5, medcol="white")

par(op)
too many possibilities
boxplot(z, boxfill= "light gray", outpch = 21:25, outlty = 2,

bg = "pink", lwd = 2,
medcol = "dark blue", medcex = 2, medpch = 20)

cdplot Conditional Density Plots

Description

Computes and plots conditional densities describing how the conditional distribution of a categori-
cal variabley changes over a numerical variablex .

646 cdplot

Usage

cdplot(x, ...)

Default S3 method:
cdplot(x, y,

plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
bw = "nrd0", n = 512, from = NULL, to = NULL,
col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...)

S3 method for class 'formula':
cdplot(formula, data = list(),

plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
bw = "nrd0", n = 512, from = NULL, to = NULL,
col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...,
subset = NULL)

Arguments

x an object, the default method expects either a single numerical variable.

y a "factor" interpreted to be the dependent variable

formula a"formula" of typey ~ x with a single dependent"factor" and a single
numerical explanatory variable.

data an optional data frame.

plot logical. Should the computed conditional densities be plotted?

tol.ylab convenience tolerance parameter for y-axis annotation. If the distance between
two labels drops under this threshold, they are plotted equidistantly.

ylevels a character or numeric vector specifying in which order the levels of the depen-
dent variable should be plotted.

bw, n, from, to, ...
arguments passed todensity

col a vector of fill colors of the same length aslevels(y) . The default is to call
gray.colors .

border border color of shaded polygons.
main, xlab, ylab

character strings for annotation

yaxlabels character vector for annotation of y axis, defaults tolevels(y) .

xlim, ylim the range of x and y values with sensible defaults.

subset an optional vector specifying a subset of observations to be used for plotting.

Details

cdplot computes the conditional densities ofx given the levels ofy weighted by the marginal
distribution ofy . The densities are derived cumulatively over the levels ofy .

This visualization technique is similar to spinograms (seespineplot) and plotsP (y|x) against
x. The conditional probabilities are not derived by discretization (as in the spinogram), but using a
smoothing approach viadensity .

Note, that the estimates of the conditional densities are more reliable for high-density regions ofx.
Conversely, the are less reliable in regions with only fewx observations.

contour 647

Value

The conditional density functions (cumulative over the levels ofy) are returned invisibly.

Author(s)

Achim Zeileis〈Achim.Zeileis@R-project.org〉

References

Hofmann, H., Theus, M. (2005),Interactive graphics for visualizing conditional distributions, Un-
published Manuscript.

See Also

spineplot , density

Examples

NASA space shuttle o-ring failures
fail <- factor(c(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1,

1, 2, 1, 1, 1, 1, 1),
levels = 1:2, labels = c("no", "yes"))

temperature <- c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70,
70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

CD plot
cdplot(fail ~ temperature)
cdplot(fail ~ temperature, bw = 2)
cdplot(fail ~ temperature, bw = "SJ")

compare with spinogram
(spineplot(fail ~ temperature, breaks = 3))

highlighting for failures
cdplot(fail ~ temperature, ylevels = 2:1)

scatter plot with conditional density
cdens <- cdplot(fail ~ temperature, plot = FALSE)
plot(I(as.numeric(fail) - 1) ~ jitter(temperature, factor = 2),

xlab = "Temperature", ylab = "Conditional failure probability")
lines(53:81, 1 - cdens[[1]](53:81), col = 2)

contour Display Contours

Description

Create a contour plot, or add contour lines to an existing plot.

648 contour

Usage

contour(x, ...)

Default S3 method:
contour(x = seq(0, 1, length.out = nrow(z)),

y = seq(0, 1, length.out = ncol(z)),
z,
nlevels = 10, levels = pretty(zlim, nlevels),
labels = NULL,
xlim = range(x, finite = TRUE),
ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE),
labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont = c("sans serif", "plain"),
axes = TRUE, frame.plot = axes,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)

Arguments

x,y locations of grid lines at which the values inz are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. Ifx is
a list , its componentsx$x andx$y are used forx andy , respectively. If the
list has componentz this is used forz .

z a matrix containing the values to be plotted (NAs are allowed). Note thatx can
be used instead ofz for convenience.

nlevels number of contour levels desirediff levels is not supplied.

levels numeric vector of levels at which to draw contour lines.

labels a vector giving the labels for the contour lines. IfNULL then the levels are used
as labels, otherwise this is coerced byas.character .

labcex cex for contour labelling. This is an absolute size, not a multiple of
par("cex") .

drawlabels logical. Contours are labelled ifTRUE.

method character string specifying where the labels will be located. Possible values
are "simple" , "edge" and "flattest" (the default). See the ‘Details’
section.

vfont if a character vector of length 2 is specified, then Hershey vector fonts are used
for the contour labels. The first element of the vector selects a typeface and the
second element selects a fontindex (seetext for more information).

xlim, ylim, zlim
x-, y- and z-limits for the plot.

axes, frame.plot
logical indicating whether axes or a box should be drawn, seeplot.default .

col color for the lines drawn.

lty line type for the lines drawn.

lwd line width for the lines drawn.

add logical. If TRUE, add to a current plot.

... additional arguments toplot.window , title , Axis and box , typically
graphical parameters such ascex.axis .

contour 649

Details

contour is a generic function with only a default method in baseR.

The methods for positioning the labels on contours are"simple" (draw at the edge of the plot,
overlaying the contour line),"edge" (draw at the edge of the plot, embedded in the contour line,
with no labels overlapping) and"flattest" (draw on the flattest section of the contour, embed-
ded in the contour line, with no labels overlapping). The second and third may not draw a label on
every contour line.

For information about vector fonts, see the help fortext andHershey .

Notice thatcontour interprets thez matrix as a table off(x[i], y[j]) values, so that the x
axis corresponds to row number and the y axis to column number, with column 1 at the bottom, i.e.
a 90 degree clockwise rotation of the conventional textual layout.

Alternatively, usecontourplot from the lattice package where theformula notation allows
to use vectorsx,y,z of the same length.

There is limited control over the axes and frame as argumentscol , lwd and lty refer to the
contour lines (rather than being general graphical parameters). For more control, add contours to a
plot, or add axes and frame to a contour plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

options ("max.countour.segments") for the maximal complexity of a single contour
line.

contourLines , filled.contour for color-filled contours, contourplot (and
levelplot) from packagelattice. Further, image and the graphics demo which can be
invoked asdemo(graphics) .

Examples

require(grDevices) # for colours
x <- -6:16
op <- par(mfrow = c(2, 2))
contour(outer(x, x), method = "edge", vfont = c("sans serif", "plain"))
z <- outer(x, sqrt(abs(x)), FUN = "/")
image(x, x, z)
contour(x, x, z, col = "pink", add = TRUE, method = "edge",

vfont = c("sans serif", "plain"))
contour(x, x, z, ylim = c(1, 6), method = "simple", labcex = 1)
contour(x, x, z, ylim = c(-6, 6), nlev = 20, lty = 2, method = "simple")
par(op)

Persian Rug Art:
x <- y <- seq(-4*pi, 4*pi, len = 27)
r <- sqrt(outer(x^2, y^2, "+"))
opar <- par(mfrow = c(2, 2), mar = rep(0, 4))
for(f in pi^(0:3))

contour(cos(r^2)*exp(-r/f),
drawlabels = FALSE, axes = FALSE, frame = TRUE)

650 coplot

rx <- range(x <- 10*1:nrow(volcano))
ry <- range(y <- 10*1:ncol(volcano))
ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2
tcol <- terrain.colors(12)
par(opar); opar <- par(pty = "s", bg = "lightcyan")
plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")
u <- par("usr")
rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")
contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))
title("A Topographic Map of Maunga Whau", font = 4)
abline(h = 200*0:4, v = 200*0:4, col = "lightgray", lty = 2, lwd = 0.1)

contourLines produces the same contour lines as contour
line.list <- contourLines(x, y, volcano)
plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")
u <- par("usr")
rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")
contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))
templines <- function(clines) {

lines(clines[[2]], clines[[3]])
}
invisible(lapply(line.list, templines))
par(opar)

coplot Conditioning Plots

Description

This function produces two variants of theconditioning plots discussed in the reference below.

Usage

coplot(formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
bar.bg = c(num = gray(0.8), fac = gray(0.95)),
xlab = c(x.name, paste("Given :", a.name)),
ylab = c(y.name, paste("Given :", b.name)),
subscripts = FALSE,
axlabels = function(f) abbreviate(levels(f)),
number = 6, overlap = 0.5, xlim, ylim, ...)

co.intervals(x, number = 6, overlap = 0.5)

Arguments

formula a formula describing the form of conditioning plot. A formula of the formy ~
x | a indicates that plots ofy versusx should be produced conditional on the
variablea. A formula of the formy ~ x| a * b indicates that plots ofy
versusx should be produced conditional on the two variablesa andb.

All three or four variables may be either numeric or factors. Whenx or y are
factors, the result is almost as ifas.numeric() was applied, whereas for

coplot 651

factor a or b, the conditioning (and its graphics ifshow.given is true) are
adapted.

data a data frame containing values for any variables in the formula. By default the
environment wherecoplot was called from is used.

given.values a value or list of two values which determine how the conditioning ona andb
is to take place.
When there is nob (i.e., conditioning only ona), usually this is a matrix with
two columns each row of which gives an interval, to be conditioned on, but is can
also be a single vector of numbers or a set of factor levels (if the variable being
conditioned on is a factor). In this case (nob), the result ofco.intervals
can be used directly asgiven.values argument.

panel a function (x, y, col, pch, ...) which gives the action to be car-
ried out in each panel of the display. The default ispoints .

rows the panels of the plot are laid out in arows by columns array. rows gives
the number of rows in the array.

columns the number of columns in the panel layout array.

show.given logical (possibly of length 2 for 2 conditioning variables): should conditioning
plots be shown for the corresponding conditioning variables (defaultTRUE)

col a vector of colors to be used to plot the points. If too short, the values are
recycled.

pch a vector of plotting symbols or characters. If too short, the values are recycled.

bar.bg a named vector with components"num" and "fac" giving the background
colors for the (shingle) bars, fornumeric andfactor conditioning variables re-
spectively.

xlab character; labels to use for the x axis and the first conditioning variable. If only
one label is given, it is used for the x axis and the default label is used for the
conditioning variable.

ylab character; labels to use for the y axis and any second conditioning variable.

subscripts logical: if true the panel function is given an additional (third) argument
subscripts giving the subscripts of the data passed to that panel.

axlabels function for creating axis (tick) labels when x or y are factors.

number integer; the number of conditioning intervals, for a and b, possibly of length 2.
It is only used if the corresponding conditioning variable is not afactor .

overlap numeric < 1; the fraction of overlap of the conditioning variables, possibly of
length 2 for x and y direction. When overlap < 0, there will begapsbetween the
data slices.

xlim the range for the x axis.

ylim the range for the y axis.

... additional arguments to the panel function.

x a numeric vector.

Details

In the case of a single conditioning variablea, when bothrows andcolumns are unspecified, a
‘close to square’ layout is chosen withcolumns >= rows .

In the case of multiplerows , the order of the panel plots is from the bottom and from the left
(corresponding to increasinga, typically).

652 coplot

A panel function should not attempt to start a new plot, but just plot within a given coordinate
system: thusplot andboxplot are not panel functions.

The rendering of argumentsxlab andylab is not controlled bypar argumentscex.lab and
font.lab even though they are plotted bymtext rather thantitle .

Value

co.intervals(., number, .) returns a (number × 2) matrix , sayci , whereci[k,]
is therange of x values for thek -th interval.

References

Chambers, J. M. (1992)Data for models.Chapter 3 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Cleveland, W. S. (1993)Visualizing Data.New Jersey: Summit Press.

See Also

pairs , panel.smooth , points .

Examples

Tonga Trench Earthquakes
coplot(lat ~ long | depth, data = quakes)
given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)
coplot(lat ~ long | depth, data = quakes, given.v=given.depth, rows=1)

Conditioning on 2 variables:
ll.dm <- lat ~ long | depth * mag
coplot(ll.dm, data = quakes)
coplot(ll.dm, data = quakes, number=c(4,7), show.given=c(TRUE,FALSE))
coplot(ll.dm, data = quakes, number=c(3,7),

overlap=c(-.5,.1)) # negative overlap DROPS values

given two factors
Index <- seq(length=nrow(warpbreaks)) # to get nicer default labels
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

show.given = 0:1)
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

col = "red", bg = "pink", pch = 21,
bar.bg = c(fac = "light blue"))

Example with empty panels:
with(data.frame(state.x77), {
coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,

panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))
y ~ factor -- not really sensical, but 'show off':
coplot(Life.Exp ~ state.region | Income * state.division,

panel = panel.smooth)
})

curve 653

curve Draw Function Plots

Description

Draws a curve corresponding to the given function or, forcurve() also an expression (inx) over
the interval[from,to] .

Usage

curve(expr, from = NULL, to = NULL, n = 101, add = FALSE,
type = "l", ylab = NULL, log = NULL, xlim = NULL, ...)

S3 method for class 'function':
plot(x, y = 0, to = 1, from = y, xlim = NULL, ...)

Arguments

expr an expression written as a function ofx , or alternatively the name of a function
which will be plotted.

x a ‘vectorizing’ numericR function.

from,to the range over which the function will be plotted.

n integer; the number of x values at which to evaluate.

add logical; if TRUEadd to already existing plot.

xlim numeric of length 2; if specified, it serves as default forc(from, to) .

type plot type: seeplot.default .

y alias forfrom for compatibility withplot()

ylab, log, ...
labels and graphical parameters can also be specified as arguments.
plot.function passes all these tocurve .

Details

The evaluation ofexpr is at n points equally spaced over the range[from, to] , possibly
adapted to log scale. The points determined in this way are then joined with straight lines.x(t) or
expr (with x inside) must return a numeric of the same length as the argumentt or x .

Forcurve() , if either of from or to is NULL, it defaults to the corresponding element ofxlim ,
andxlim defaults to the x-limits of the current plot. Forplot(<function>, ..) , the defaults
for (from, to) are(0, 1).

log is taken from the current plot only whenadd is true, and otherwise defaults to"" indicating
linear scales on both axes.

This used to be a quick hack which now seems to serve a useful purpose, but can give bad results
for functions which are not smooth.

For expensive-to-computeexpr essions, you should use smarter tools.

See Also

splinefun for spline interpolation,lines .

654 dotchart

Examples

plot(qnorm)
plot(qlogis, main = "The Inverse Logit : qlogis()")
abline(h=0, v=0:2/2, lty=3, col="gray")

curve(sin, -2*pi, 2*pi)
curve(tan, main = "curve(tan) --> same x-scale as previous plot")

op <- par(mfrow=c(2,2))
curve(x^3-3*x, -2, 2)
curve(x^2-2, add = TRUE, col = "violet")

simple and sophisticated, quite similar:
plot(cos, -pi, 3*pi)
plot(cos, xlim = c(-pi,3*pi), n = 1001, col = "blue", add=TRUE)

chippy <- function(x) sin(cos(x)*exp(-x/2))
curve(chippy, -8, 7, n=2001)
plot (chippy, -8, -5)

for(ll in c("","x","y","xy"))
curve(log(1+x), 1,100, log=ll, sub=paste("log= '",ll,"'",sep=""))

par(op)

dotchart Cleveland Dot Plots

Description

Draw a Cleveland dot plot.

Usage

dotchart(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pch = 21, gpch = 21, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = "gray",
xlim = range(x[is.finite(x)]),
main = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x either a vector or matrix of numeric values (NAs are allowed). Ifx is a matrix
the overall plot consists of juxtaposed dotplots for each row.

labels a vector of labels for each point. For vectors the default is to usenames(x)
and for matrices the row labelsdimnames(x)[[1]] .

groups an optional factor indicating how the elements ofx are grouped. Ifx is a matrix,
groups will default to the columns ofx .

gdata data values for the groups. This is typically a summary such as the median or
mean of each group.

cex the character size to be used. Settingcex to a value smaller than one can be
a useful way of avoiding label overlap. Unlike many other graphics functions,
this sets the actual size, not a multiple ofpar("cex") .

filled.contour 655

pch the plotting character or symbol to be used.

gpch the plotting character or symbol to be used for group values.

bg the background color of plotting characters or symbols to be used; use
par (bg= *) to set the background color of the whole plot.

color the color(s) to be used for points and labels.

gcolor the single color to be used for group labels and values.

lcolor the color(s) to be used for the horizontal lines.

xlim horizontal range for the plot, seeplot.window , e.g.

main overall title for the plot, seetitle .

xlab, ylab axis annotations as intitle .

... graphical parameters can also be specified as arguments.

Value

This function is invoked for its side effect, which is to produce two variants of dotplots as described
in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985)The Elements of Graphing Data.Monterey, CA: Wadsworth.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

Examples

dotchart(VADeaths, main = "Death Rates in Virginia - 1940")
op <- par(xaxs="i")# 0 -- 100%
dotchart(t(VADeaths), xlim = c(0,100),

main = "Death Rates in Virginia - 1940")
par(op)

filled.contour Level (Contour) Plots

Description

This function produces a contour plot with the areas between the contours filled in solid color
(Cleveland calls this a level plot). A key showing how the colors map to z values is shown to the
right of the plot.

656 filled.contour

Usage

filled.contour(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z,
xlim = range(x, finite=TRUE),
ylim = range(y, finite=TRUE),
zlim = range(z, finite=TRUE),
levels = pretty(zlim, nlevels), nlevels = 20,
color.palette = cm.colors,
col = color.palette(length(levels) - 1),
plot.title, plot.axes, key.title, key.axes,
asp = NA, xaxs = "i", yaxs = "i", las = 1,
axes = TRUE, frame.plot = axes, ...)

Arguments

x,y locations of grid lines at which the values inz are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. Ifx is
a list , its componentsx$x andx$y are used forx andy , respectively. If the
list has componentz this is used forz .

z a matrix containing the values to be plotted (NAs are allowed). Note thatx can
be used instead ofz for convenience.

xlim x limits for the plot.

ylim y limits for the plot.

zlim z limits for the plot.

levels a set of levels which are used to partition the range ofz . Must bestrictly in-
creasing (and finite). Areas withz values between consecutive levels are painted
with the same color.

nlevels if levels is not specified, the range ofz , values is divided into approximately
this many levels.

color.palette
a color palette function to be used to assign colors in the plot.

col an explicit set of colors to be used in the plot. This argument overrides any
palette function specification.

plot.title statements which add titles to the main plot.

plot.axes statements which draw axes (and abox) on the main plot. This overrides the
default axes.

key.title statements which add titles for the plot key.

key.axes statements which draw axes on the plot key. This overrides the default axis.

asp they/x aspect ratio, seeplot.window .

xaxs the x axis style. The default is to use internal labeling.

yaxs the y axis style. The default is to use internal labeling.

las the style of labeling to be used. The default is to use horizontal labeling.
axes, frame.plot

logicals indicating if axes and a box should be drawn, as inplot.default .

... additional graphical parameters, currently only passed totitle () .

filled.contour 657

Note

This function currently uses thelayout function and so is restricted to a full page display. As
an alternative consider thelevelplot andcontourplot functions from thelattice package
which work in multipanel displays.

The output produced byfilled.contour is actually a combination of two plots; one is the
filled contour and one is the legend. Two separate coordinate systems are set up for these two plots,
but they are only used internally - once the function has returned these coordinate systems are lost.
If you want to annotate the main contour plot, for example to add points, you can specify graphics
commands in theplot.axes argument. An example is given below.

Author(s)

Ross Ihaka.

References

Cleveland, W. S. (1993)Visualizing Data. Summit, New Jersey: Hobart.

See Also

contour , image , palette ; contourplot from packagelattice.

Examples

require(grDevices) # for colours
filled.contour(volcano, color = terrain.colors, asp = 1)# simple

x <- 10*1:nrow(volcano)
y <- 10*1:ncol(volcano)
filled.contour(x, y, volcano, color = terrain.colors,

plot.title = title(main = "The Topography of Maunga Whau",
xlab = "Meters North", ylab = "Meters West"),
plot.axes = { axis(1, seq(100, 800, by = 100))

axis(2, seq(100, 600, by = 100)) },
key.title = title(main="Height\n(meters)"),
key.axes = axis(4, seq(90, 190, by = 10)))# maybe also asp=1

mtext(paste("filled.contour(.) from", R.version.string),
side = 1, line = 4, adj = 1, cex = .66)

Annotating a filled contour plot
a <- expand.grid(1:20, 1:20)
b <- matrix(a[,1] + a[,2], 20)
filled.contour(x = 1:20, y = 1:20, z = b,

plot.axes={ axis(1); axis(2); points(10,10) })

Persian Rug Art:
x <- y <- seq(-4*pi, 4*pi, len = 27)
r <- sqrt(outer(x^2, y^2, "+"))
filled.contour(cos(r^2)*exp(-r/(2*pi)), axes = FALSE)
rather, the key *should* be labeled:
filled.contour(cos(r^2)*exp(-r/(2*pi)), frame.plot = FALSE,

plot.axes = {})

658 fourfoldplot

fourfoldplot Fourfold Plots

Description

Creates a fourfold display of a 2 by 2 byk contingency table on the current graphics device, allowing
for the visual inspection of the association between two dichotomous variables in one or several
populations (strata).

Usage

fourfoldplot(x, color = c("#99CCFF", "#6699CC"),
conf.level = 0.95,
std = c("margins", "ind.max", "all.max"),
margin = c(1, 2), space = 0.2, main = NULL,
mfrow = NULL, mfcol = NULL)

Arguments

x a 2 by 2 byk contingency table in array form, or as a 2 by 2 matrix ifk is 1.

color a vector of length 2 specifying the colors to use for the smaller and larger diag-
onals of each 2 by 2 table.

conf.level confidence level used for the confidence rings on the odds ratios. Must be a sin-
gle nonnegative number less than 1; if set to 0, confidence rings are suppressed.

std a character string specifying how to standardize the table. Must be one of
"margins" , "ind.max" , or "all.max" , and can be abbreviated by the ini-
tial letter. If set to"margins" , each 2 by 2 table is standardized to equate the
margins specified bymargin while preserving the odds ratio. If"ind.max"
or "all.max" , the tables are either individually or simultaneously standard-
ized to a maximal cell frequency of 1.

margin a numeric vector with the margins to equate. Must be one of1, 2, or c(1,
2) (the default), which corresponds to standardizing the row, column, or both
margins in each 2 by 2 table. Only used ifstd equals"margins" .

space the amount of space (as a fraction of the maximal radius of the quarter circles)
used for the row and column lebals.

main character string for the fourfold title.

mfrow a numeric vector of the formc(nr, nc) , indicating that the displays for the 2
by 2 tables should be arranged in annr by nc layout, filled by rows.

mfcol a numeric vector of the formc(nr, nc) , indicating that the displays for the 2
by 2 tables should be arranged in annr by nc layout, filled by columns.

Details

The fourfold display is designed for the display of 2 by 2 byk tables.

Following suitable standardization, the cell frequenciesfij of each 2 by 2 table are shown as a
quarter circle whose radius is proportional to

√
fij so that its area is proportional to the cell fre-

quency. An association (odds ratio different from 1) between the binary row and column variables
is indicated by the tendency of diagonally opposite cells in one direction to differ in size from those

frame 659

in the other direction; color is used to show this direction. Confidence rings for the odds ratio allow
a visual test of the null of no association; the rings for adjacent quadrants overlap if and only if the
observed counts are consistent with the null hypothesis.

Typically, the numberk corresponds to the number of levels of a stratifying variable, and it is of
interest to see whether the association is homogeneous across strata. The fourfold display visualizes
the pattern of association. Note that the confidence rings for the individual odds ratios are not
adjusted for multiple testing.

References

Friendly, M. (1994). A fourfold display for 2 by 2 byk tables. Technical Report 217, York Uni-
versity, Psychology Department.http://www.math.yorku.ca/SCS/Papers/4fold/
4fold.ps.gz

See Also

mosaicplot

Examples

Use the Berkeley admission data as in Friendly (1995).
x <- aperm(UCBAdmissions, c(2, 1, 3))
dimnames(x)[[2]] <- c("Yes", "No")
names(dimnames(x)) <- c("Sex", "Admit?", "Department")
stats::ftable(x)

Fourfold display of data aggregated over departments, with
frequencies standardized to equate the margins for admission
and sex.
Figure 1 in Friendly (1994).
fourfoldplot(margin.table(x, c(1, 2)))

Fourfold display of x, with frequencies in each table
standardized to equate the margins for admission and sex.
Figure 2 in Friendly (1994).
fourfoldplot(x)

Fourfold display of x, with frequencies in each table
standardized to equate the margins for admission. but not
for sex.
Figure 3 in Friendly (1994).
fourfoldplot(x, margin = 2)

frame Create / Start a New Plot Frame

Description

This function (frame is an alias forplot.new) causes the completion of plotting in the current
plot (if there is one) and an advance to a new graphics frame. This is used in all high-level plotting
functions and also useful for skipping plots when a multi-figure region is in use.

http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz
http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz

660 grid

Usage

plot.new()
frame()

Details

There is a hook called"plot.new" (seesetHook) called immediately after advancing the
frame, which is used in the testing code to annotate the new page. The hook function(s) are called
with no argument. (If the value is a character string,get is called on it from within thegraphics
namespace.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (frame .)

See Also

plot.window , plot.default .

grid Add Grid to a Plot

Description

grid adds annx by ny rectangular grid to an existing plot.

Usage

grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted",
lwd = par("lwd"), equilogs = TRUE)

Arguments

nx,ny number of cells of the grid in x and y direction. WhenNULL, as per default,
the grid aligns with the tick marks on the correspondingdefaultaxis (i.e., tick-
marks as computed byaxTicks). WhenNA, no grid lines are drawn in the
corresponding direction.

col character or (integer) numeric; color of the grid lines.

lty character or (integer) numeric; line type of the grid lines.

lwd non-negative numeric giving line width of the grid lines.

equilogs logical, only used whenlog coordinates and alignment with the axis tick marks
are active. Settingequilogs = FALSE in that case givesnon equidistant
tick aligned grid lines.

Note

If more fine tuning is required, useabline (h = ., v = .) directly.

hist 661

References

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

plot , abline , lines , points .

Examples

plot(1:3)
grid(NA, 5, lwd = 2) # grid only in y-direction

maybe change the desired number of tick marks: par(lab=c(mx,my,7))
op <- par(mfcol = 1:2)
with(iris,

{
plot(Sepal.Length, Sepal.Width, col = as.integer(Species),

xlim = c(4, 8), ylim = c(2, 4.5), panel.first = grid(),
main = "with(iris, plot(...., panel.first = grid(), ..))")

plot(Sepal.Length, Sepal.Width, col = as.integer(Species),
panel.first = grid(3, lty=1,lwd=2),
main = "... panel.first = grid(3, lty=1,lwd=2), ..")

}
)

par(op)

hist Histograms

Description

The generic functionhist computes a histogram of the given data values. Ifplot=TRUE , the re-
sulting object ofclass "histogram" is plotted byplot.histogram , before it is returned.

Usage

hist(x, ...)

Default S3 method:
hist(x, breaks = "Sturges",

freq = NULL, probability = !freq,
include.lowest = TRUE, right = TRUE,
density = NULL, angle = 45, col = NULL, border = NULL,
main = paste("Histogram of" , xname),
xlim = range(breaks), ylim = NULL,
xlab = xname, ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, ...)

662 hist

Arguments

x a vector of values for which the histogram is desired.

breaks one of:

• a vector giving the breakpoints between histogram cells,

• a single number giving the number of cells for the histogram,

• a character string naming an algorithm to compute the number of cells (see
‘Details’),

• a function to compute the number of cells.

In the last three cases the number is a suggestion only.

freq logical; if TRUE, the histogram graphic is a representation of frequencies, the
counts component of the result; ifFALSE, probability densities, component
density , are plotted (so that the histogram has a total area of one). Defaults
to TRUEif and only if breaks are equidistant (andprobability is not
specified).

probability analias for !freq , for S compatibility.

include.lowest
logical; if TRUE, anx[i] equal to thebreaks value will be included in the
first (or last, forright = FALSE) bar. This will be ignored (with a warning)
unlessbreaks is a vector.

right logical; if TRUE, the histograms cells are right-closed (left open) intervals.

density the density of shading lines, in lines per inch. The default value ofNULLmeans
that no shading lines are drawn. Non-positive values ofdensity also inhibit
the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a colour to be used to fill the bars. The default ofNULLyields unfilled bars.

border the color of the border around the bars. The default is to use the standard fore-
ground color.

main, xlab, ylab
these arguments totitle have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults. Note thatxlim is not used
to define the histogram (breaks), but only for plotting (whenplot = TRUE).

axes logical. If TRUE(default), axes are draw if the plot is drawn.

plot logical. If TRUE(default), a histogram is plotted, otherwise a list of breaks and
counts is returned. In the latter case, a warning is used if (typically graphical)
arguments are specified that only apply to theplot = TRUE case.

labels logical or character. Additionally draw labels on top of bars, if notFALSE; see
plot.histogram .

nclass numeric (integer). For S(-PLUS) compatibility only,nclass is equivalent to
breaks for a scalar or character argument.

... further graphical parameters passed toplot.histogram and their totitle
andaxis (if plot=TRUE).

hist 663

Details

The definition ofhistogramdiffers by source (with country-specific biases).R’s default with equi-
spaced breaks (also the default) is to plot the counts in the cells defined bybreaks . Thus the height
of a rectangle is proportional to the number of points falling into the cell, as is the areaprovidedthe
breaks are equally-spaced.

The default with non-equi-spaced breaks is to give a plot of area one, in which thearea of the
rectangles is the fraction of the data points falling in the cells.

If right = TRUE (default), the histogram cells are intervals of the form(a, b] , i.e., they
include their right-hand endpoint, but not their left one, with the exception of the first cell when
include.lowest is TRUE.

For right = FALSE , the intervals are of the form[a, b) , and include.lowest means
‘ include highest’.

A numerical tolerance of10−7 times the median bin size is applied when counting entries on the
edges of bins.

The default forbreaks is "Sturges" : seenclass.Sturges . Other names for which al-
gorithms are supplied are"Scott" and"FD" / "Freedman-Diaconis" (with corresponding
functionsnclass.scott andnclass.FD). Case is ignored and partial matching is used. Alter-
natively, a function can be supplied which will compute the intended number of breaks as a function
of x .

Value

an object of class"histogram" which is a list with components:

breaks then+ 1 cell boundaries (=breaks if that was a vector).

counts n integers; for each cell, the number ofx[] inside.

density values f̂(xi), as estimated density values. Ifall(diff(breaks) ==
1) , they are the relative frequenciescounts/n and in general satisfy∑

i f̂(xi)(bi+1 − bi) = 1, wherebi = breaks[i] .

intensities same asdensity . Deprecated, but retained for compatibility.

mids then cell midpoints.

xname a character string with the actualx argument name.

equidist logical, indicating if the distances betweenbreaks are all the same.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Venables, W. N. and Ripley. B. D. (2002)Modern Applied Statistics with S. Springer.

See Also

nclass.Sturges , stem , density , truehist in packageMASS.

Typical plots with vertical bars arenot histograms. Considerbarplot or plot (*, type =
"h") for such bar plots.

664 hist.POSIXt

Examples

op <- par(mfrow=c(2, 2))
hist(islands)
utils::str(hist(islands, col="gray", labels = TRUE))

hist(sqrt(islands), breaks = 12, col="lightblue", border="pink")
##-- For non-equidistant breaks, counts should NOT be graphed unscaled:
r <- hist(sqrt(islands), breaks = c(4*0:5, 10*3:5, 70, 100, 140),

col='blue1')
text(r$mids, r$density, r$counts, adj=c(.5, -.5), col='blue3')
sapply(r[2:3], sum)
sum(r$density * diff(r$breaks)) # == 1
lines(r, lty = 3, border = "purple") # -> lines.histogram(*)
par(op)

require(utils) # for str
str(hist(islands, breaks=12, plot= FALSE)) #-> 10 (~= 12) breaks
str(hist(islands, breaks=c(12,20,36,80,200,1000,17000), plot = FALSE))

hist(islands, breaks=c(12,20,36,80,200,1000,17000), freq = TRUE,
main = "WRONG histogram") # and warning

require(stats)
set.seed(14)
x <- rchisq(100, df = 4)

Comparing data with a model distribution should be done with qqplot()!
qqplot(x, qchisq(ppoints(x), df = 4)); abline(0,1, col = 2, lty = 2)

if you really insist on using hist() ... :
hist(x, freq = FALSE, ylim = c(0, 0.2))
curve(dchisq(x, df = 4), col = 2, lty = 2, lwd = 2, add = TRUE)

hist.POSIXt Histogram of a Date or Date-Time Object

Description

Method forhist applied to date or date-time objects.

Usage

S3 method for class 'POSIXt':
hist(x, breaks, ...,

xlab = deparse(substitute(x)),
plot = TRUE, freq = FALSE,
start.on.monday = TRUE, format)

S3 method for class 'Date':
hist(x, breaks, ...,

xlab = deparse(substitute(x)),
plot = TRUE, freq = FALSE,
start.on.monday = TRUE, format)

identify 665

Arguments

x an object inheriting from class"POSIXt" or "Date" .

breaks a vector of cut pointsor number giving the number of intervals whichx is to be
cut intoor an interval specification, one of"days" , "weeks" , "months" or
"years" , plus"secs" , "mins" , "hours" for date-time objects.

... graphical parameters, or arguments tohist.default such as
include.lowest , right andlabels .

xlab a character string giving the label for the x axis, if plotted.

plot logical. If TRUE(default), a histogram is plotted, otherwise a list of breaks and
counts is returned.

freq logical; if TRUE, the histogram graphic is a representation of frequencies, i.e, the
counts component of the result; ifFALSE, relativefrequencies (probabilities)
are plotted.

start.on.monday
logical. If breaks = "weeks" , should the week start on Mondays or Sun-
days?

format for the x-axis labels. Seestrptime .

Value

An object of class"histogram" : seehist .

See Also

seq.POSIXt , axis.POSIXct , hist

Examples

hist(.leap.seconds, "years", freq = TRUE)
hist(.leap.seconds,

seq(ISOdate(1970, 1, 1), ISOdate(2010, 1, 1), "5 years"))

100 random dates in a 10-week period
random.dates <- as.Date("2001/1/1") + 70*stats::runif(100)
hist(random.dates, "weeks", format = "%d %b")

identify Identify Points in a Scatter Plot

Description

identify reads the position of the graphics pointer when the (first) mouse button is pressed. It
then searches the coordinates given inx andy for the point closest to the pointer. If this point is
close enough to the pointer, its index will be returned as part of the value of the call.

666 identify

Usage

identify(x, ...)

Default S3 method:
identify(x, y = NULL, labels = seq_along(x), pos = FALSE,

n = length(x), plot = TRUE, atpen = FALSE, offset = 0.5,
tolerance = 0.25, ...)

Arguments

x,y coordinates of points in a scatter plot. Alternatively, any object which defines
coordinates (a plotting structure, time series etc: seexy.coords) can be given
asx , andy left undefined.

labels an optional character vector, the same length asx andy , giving labels for the
points. Will be coerced usingas.character .

pos if pos is TRUE, a component is added to the return value which indicates where
text was plotted relative to each identified point: see Value.

n the maximum number of points to be identified.

plot logical: if plot is TRUE, the labels are printed near the points and ifFALSE
they are omitted.

atpen logical: if TRUEandplot = TRUE , the lower-left corners of the labels are
plotted at the points clicked rather than relative to the points.

offset the distance (in character widths) which separates the label from identified
points. Negative values are allowed. Not used ifatpen = TRUE .

tolerance the maximal distance (in inches) for the pointer to be ‘close enough’ to a point.

... further arguments passed topar such ascex , col andfont .

Details

identify is a generic function, and only the default method is described here.

identify is only supported on screen devices such asX11, windows andquartz . On other
devices the call will do nothing.

Clicking near (as defined bytolerance) a point adds it to the list of identified points. Points can
be identified only once, and if the point has already been identified or the click is not near any of
the points a message is printed immediately on theR console.

If plot is TRUE, the point is labelled with the corresponding element oflabels . If atpen is
false (the default) the labels are placed below, to the left, above or to the right of the identified point,
depending on where the pointer was relative to the point. Ifatpen is true, the labels are placed
with the bottom left of the string’s box at the pointer.

For the usualX11 device the identification process is terminated by pressing any mouse button
other than the first. For thequartz device the process is terminated by pressing theESCkey.

On most devices which supportidentify , successful selection of a point is indicated by a bell
sound unlessoptions (locatorBell = FALSE) has been set.

If the window is resized or hidden and then exposed before the identification process has terminated,
any labels drawn byidentify will disappear. These will reappear once the identification process
has terminated and the window is resized or hidden and exposed again. This is because the labels
drawn byidentify are not recorded in the device’s display list until the identification process
has terminated.

identify 667

If you interrupt theidentify call this leaves the graphics device in an undefined state, with
points labelled but labels not recorded in the display list. Copying a device in that state will give
unpredictable results.

Value

If pos is FALSE, an integer vector containing the indices of the identified points, in the order they
were identified.

If pos is TRUE, a list containing a componentind , indicating which points were identified and a
componentpos , indicating where the labels were placed relative to the identified points (1=below,
2=left, 3=above, 4=right and 0=no offset, used ifatpen = TRUE).

Technicalities

The algorithm used for placing labels is the same as used bytext if pos is specified there, the
difference being that the position of the pointer relative the identified point determinespos in
identify .

For labels placed to the left of a point, the right-hand edge of the string’s box is placedoffset
units to the left of the point, and analogously for points to the right. The baseline of the text is placed
below the point so as to approximately centre string vertically. For labels placed above or below a
point, the string is centered horizontally on the point. For labels placed above, the baseline of the
text is placedoffset units above the point, and for those placed below, the baseline is placed so
that the top of the string’s box is approximatelyoffset units below the point. If you want more
precise placement (e.g. centering) useplot = FALSE and plot viatext or points : see the
examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

locator , text .

Examples

A function to use identify to select points, and overplot the
points with another symbol as they are selected
identifyPch <- function(x, y=NULL, n=length(x), pch=19, ...)
{

xy <- xy.coords(x, y); x <- xy$x; y <- xy$y
sel <- rep(FALSE, length(x)); res <- integer(0)
while(sum(sel) < n) {

ans <- identify(x[!sel], y[!sel], n=1, plot=FALSE, ...)
if(!length(ans)) break
ans <- which(!sel)[ans]
points(x[ans], y[ans], pch = pch)
sel[ans] <- TRUE
res <- c(res, ans)

}
res

}

668 image

image Display a Color Image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values inz . This
can be used to display three-dimensional or spatial data akaimages. This is a generic function.

The functionsheat.colors , terrain.colors and topo.colors create heat-spectrum
(red to white) and topographical color schemes suitable for displaying ordered data, withn giv-
ing the number of colors desired.

Usage

image(x, ...)

Default S3 method:
image(x, y, z, zlim, xlim, ylim, col = heat.colors(12),

add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab,
breaks, oldstyle = FALSE, ...)

Arguments

x,y locations of grid lines at which the values inz are measured. These must be
finite, non-missing and in (strictly) ascending order. By default, equally spaced
values from 0 to 1 are used. Ifx is a list , its componentsx$x andx$y are
used forx andy , respectively. If the list has componentz this is used forz .

z a matrix containing the values to be plotted (NAs are allowed). Note thatx can
be used instead ofz for convenience.

zlim the minimum and maximumz values for which colors should be plotted, de-
faulting to the range of the finite values ofz . Each of the given colors will be
used to color an equispaced interval of this range. Themidpointsof the intervals
cover the range, so that values just outside the range will be plotted.

xlim, ylim ranges for the plottedx andy values, defaulting to the ranges ofx andy .

col a list of colors such as that generated byrainbow , heat.colors ,
topo.colors , terrain.colors or similar functions.

add logical; if TRUE, add to current plot (and disregard the following arguments).
This is rarely useful becauseimage ‘paints’ over existing graphics.

xaxs, yaxs style of x and y axis. The default"i" is appropriate for images. Seepar .

xlab, ylab each a character string giving the labels for the x and y axis. Default to the ‘call
names’ ofx or y , or to "" if these were unspecified.

breaks a set of breakpoints for the colours: must give one more breakpoint than colour.

oldstyle logical. If true the midpoints of the colour intervals are equally spaced, and
zlim[1] andzlim[2] were taken to be midpoints. The default is to have
colour intervals of equal lengths between the limits.

... graphical parameters forplot may also be passed as arguments to this function,
as can the plot aspect ratioasp andaxes (seeplot.window).

image 669

Details

The length ofx should be equal to thenrow(z)+1 or nrow(z) . In the first casex specifies the
boundaries between the cells: in the second casex specifies the midpoints of the cells. Similar
reasoning applies toy . It probably only makes sense to specify the midpoints of an equally-spaced
grid. If you specify just one row or column and a length-onex or y , the whole user area in the
corresponding direction is filled.

Rectangles corresponding to missing values are not plotted (and so are transparent and (unless
add=TRUE) the default background painted inpar("bg") will show though and if that is trans-
parent, the canvas colour will be seen).

If breaks is specified thenzlim is unused and the algorithm used followscut , so intervals are
closed on the right and open on the left except for the lowest interval.

Notice thatimage interprets thez matrix as a table off(x[i], y[j]) values, so that the x axis
corresponds to row number and the y axis to column number, with column 1 at the bottom, i.e. a 90
degree counter-clockwise rotation of the conventional printed layout of a matrix.

Note

Based on a function by Thomas Lumley〈tlumley@u.washington.edu〉.

See Also

filled.contour or heatmap which can look nicer (but are less modular),contour ; The
lattice equivalent ofimage is levelplot .

heat.colors , topo.colors , terrain.colors , rainbow , hsv , par .

Examples

require(grDevices) # for colours
x <- y <- seq(-4*pi, 4*pi, len=27)
r <- sqrt(outer(x^2, y^2, "+"))
image(z = z <- cos(r^2)*exp(-r/6), col=gray((0:32)/32))
image(z, axes = FALSE, main = "Math can be beautiful ...",

xlab = expression(cos(r^2) * e^{-r/6}))
contour(z, add = TRUE, drawlabels = FALSE)

Volcano data visualized as matrix. Need to transpose and flip
matrix horizontally.
image(t(volcano)[ncol(volcano):1,])

A prettier display of the volcano
x <- 10*(1:nrow(volcano))
y <- 10*(1:ncol(volcano))
image(x, y, volcano, col = terrain.colors(100), axes = FALSE)
contour(x, y, volcano, levels = seq(90, 200, by = 5),

add = TRUE, col = "peru")
axis(1, at = seq(100, 800, by = 100))
axis(2, at = seq(100, 600, by = 100))
box()
title(main = "Maunga Whau Volcano", font.main = 4)

670 layout

layout Specifying Complex Plot Arrangements

Description

layout divides the device up into as many rows and columns as there are in matrixmat , with the
column-widths and the row-heights specified in the respective arguments.

Usage

layout(mat, widths = rep(1, ncol(mat)),
heights = rep(1, nrow(mat)), respect = FALSE)

layout.show(n = 1)
lcm(x)

Arguments

mat a matrix object specifying the location of the nextN figures on the output device.
Each value in the matrix must be0 or a positive integer. IfN is the largest
positive integer in the matrix, then the integers{1, . . . , N −1}must also appear
at least once in the matrix.

widths a vector of values for the widths of columns on the device. Relative widths are
specified with numeric values. Absolute widths (in centimetres) are specified
with the lcm() function (see examples).

heights a vector of values for the heights of rows on the device. Relative and absolute
heights can be specified, seewidths above.

respect either a logical value or a matrix object. If the latter, then it must have the same
dimensions asmat and each value in the matrix must be either0 or 1.

n number of figures to plot.

x a dimension to be interpreted as a number of centimetres.

Details

Figurei is allocated a region composed from a subset of these rows and columns, based on the rows
and columns in whichi occurs inmat .

The respect argument controls whether a unit column-width is the same physical measurement
on the device as a unit row-height.

There is a limit (currently 50) for the numbers of rows and columns in the layout, and also for the
total number of cells (500).

layout.show(n) plots (part of) the current layout, namely the outlines of the nextn figures.

lcm is a trivial function, to be used asthe interface for specifying absolute dimensions for the
widths andheights arguments oflayout() .

Value

layout returns the number of figures,N , see above.

layout 671

Warnings

These functions are totally incompatible with the other mechanisms for arranging plots on a device:
par (mfrow) , par(mfcol) andsplit.screen .

Author(s)

Paul R. Murrell

References

Murrell, P. R. (1999) Layouts: A mechanism for arranging plots on a page.Journal of Computa-
tional and Graphical Statistics, 8, 121-134.

Chapter 5 of Paul Murrell’s Ph.D. thesis.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

par with argumentsmfrow , mfcol , or mfg .

Examples

def.par <- par(no.readonly = TRUE) # save default, for resetting...

divide the device into two rows and two columns
allocate figure 1 all of row 1
allocate figure 2 the intersection of column 2 and row 2
layout(matrix(c(1,1,0,2), 2, 2, byrow = TRUE))
show the regions that have been allocated to each plot
layout.show(2)

divide device into two rows and two columns
allocate figure 1 and figure 2 as above
respect relations between widths and heights
nf <- layout(matrix(c(1,1,0,2), 2, 2, byrow=TRUE), respect=TRUE)
layout.show(nf)

create single figure which is 5cm square
nf <- layout(matrix(1), widths=lcm(5), heights=lcm(5))
layout.show(nf)

##-- Create a scatterplot with marginal histograms -----

x <- pmin(3, pmax(-3, stats::rnorm(50)))
y <- pmin(3, pmax(-3, stats::rnorm(50)))
xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)
yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))
xrange <- c(-3,3)
yrange <- c(-3,3)
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
layout.show(nf)

par(mar=c(3,3,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")
par(mar=c(0,3,1,1))

672 legend

barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
par(mar=c(3,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

par(def.par)#- reset to default

legend Add Legends to Plots

Description

This function can be used to add legends to plots. Note that a call to the functionlocator (1)
can be used in place of thex andy arguments.

Usage

legend(x, y = NULL, legend, fill = NULL, col = par("col"),
lty, lwd, pch,
angle = 45, density = NULL, bty = "o", bg = par("bg"),
box.lwd = par("lwd"), box.lty = par("lty"),
pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd,
xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1,
adj = c(0, 0.5), text.width = NULL, text.col = par("col"),
merge = do.lines && has.pch, trace = FALSE,
plot = TRUE, ncol = 1, horiz = FALSE, title = NULL,
inset = 0)

Arguments

x, y the x and y co-ordinates to be used to position the legend. They can be specified
by keyword or in any way which is accepted byxy.coords : See ‘Details’.

legend a character orexpressionvector. of length≥ 1 to appear in the legend. Other
objects will be coerced byas.graphicsAnnot .

fill if specified, this argument will cause boxes filled with the specified colors (or
shaded in the specified colors) to appear beside the legend text.

col the color of points or lines appearing in the legend.

lty, lwd the line types and widths for lines appearing in the legend. One of these two
mustbe specified for line drawing.

pch the plotting symbols appearing in the legend, either as vector of 1-character
strings, or one (multi character) string.Mustbe specified for symbol drawing.

angle angle of shading lines.

density the density of shading lines, if numeric and positive. IfNULLor negative orNA
color filling is assumed.

bty the type of box to be drawn around the legend. The allowed values are"o" (the
default) and"n" .

bg the background color for the legend box. (Note that this is only used ifbty !=
"n" .)

box.lty, box.lwd
the line type and width for the legend box.

legend 673

pt.bg the background color for thepoints , corresponding to its argumentbg .

cex character expansion factorrelative to currentpar("cex") .

pt.cex expansion factor(s) for the points.

pt.lwd line width for the points, defaults to the one for lines, or if that is not set, to
par("lwd") .

xjust how the legend is to be justified relative to the legend x location. A value of 0
means left justified, 0.5 means centered and 1 means right justified.

yjust the same asxjust for the legend y location.

x.intersp character interspacing factor for horizontal (x) spacing.

y.intersp the same for vertical (y) line distances.

adj numeric of length 1 or 2; the string adjustment for legend text. Useful for y-
adjustment whenlabels areplotmathexpressions.

text.width the width of the legend text in x ("user") coordinates. (Should be posi-
tive even for a reversed x axis.) Defaults to the proper value computed by
strwidth (legend) .

text.col the color used for the legend text.

merge logical; if TRUE, merge points and lines but not filled boxes. Defaults toTRUE
if there are points and lines.

trace logical; if TRUE, shows howlegend does all its magical computations.

plot logical. If FALSE, nothing is plotted but the sizes are returned.

ncol the number of columns in which to set the legend items (default is 1, a vertical
legend).

horiz logical; if TRUE, set the legend horizontally rather than vertically (specifying
horiz overrides thencol specification).

title a character string or length-one expression giving a title to be placed at the top
of the legend. Other objects will be coerced byas.graphicsAnnot .

inset inset distance(s) from the margins as a fraction of the plot region when legend
is placed by keyword.

Details

Argumentsx, y, legend are interpreted in a non-standard way to allow the coordinates to be
specifiedvia one or two arguments. Iflegend is missing andy is not numeric, it is assumed that
the second argument is intended to belegend and that the first argument specifies the coordinates.

The coordinates can be specified in any way which is accepted byxy.coords . If this gives the
coordinates of one point, it is used as the top-left coordinate of the rectangle containing the legend.
If it gives the coordinates of two points, these specify opposite corners of the rectangle (either pair
of corners, in any order).

The location may also be specified by settingx to a single keyword from the list"bottomright" ,
"bottom" , "bottomleft" , "left" , "topleft" , "top" , "topright" , "right" and
"center" . This places the legend on the inside of the plot frame at the given location. Partial
argument matching is used. The optionalinset argument specifies how far the legend is inset
from the plot margins. If a single value is given, it is used for both margins; if two values are given,
the first is used forx - distance, the second fory -distance.

Attribute arguments such ascol , pch , lty , etc, are recycled if necessary:merge is not.

Points are drawnafter lines in order that they can cover the line with their background colorpt.bg ,
if applicable.

See the examples for how to right-justify labels.

674 legend

Value

A list with list components

rect a list with components

w, h positive numbers givingwidth andheight of the legend’s box.
left, top x and y coordinates of upper left corner of the box.

text a list with components

x, y numeric vectors of lengthlength(legend) , giving the x and y coor-
dinates of the legend’s text(s).

returned invisibly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

plot , barplot which useslegend() , andtext for more examples of math expressions.

Examples

Run the example in '?matplot' or the following:
leg.txt <- c("Setosa Petals", "Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals")
y.leg <- c(4.5, 3, 2.1, 1.4, .7)
cexv <- c(1.2, 1, 4/5, 2/3, 1/2)
matplot(c(1,8), c(0,4.5), type = "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")
for (i in seq(cexv)) {

text (1, y.leg[i]-.1, paste("cex=",formatC(cexv[i])), cex=.8, adj = 0)
legend(3, y.leg[i], leg.txt, pch = "sSvV", col = c(1, 3), cex = cexv[i])

}

'merge = TRUE' for merging lines & points:
x <- seq(-pi, pi, len = 65)
plot(x, sin(x), type = "l", ylim = c(-1.2, 1.8), col = 3, lty = 2)
points(x, cos(x), pch = 3, col = 4)
lines(x, tan(x), type = "b", lty = 1, pch = 4, col = 6)
title("legend(..., lty = c(2, -1, 1), pch = c(-1,3,4), merge = TRUE)",

cex.main = 1.1)
legend(-1, 1.9, c("sin", "cos", "tan"), col = c(3,4,6),

text.col = "green4", lty = c(2, -1, 1), pch = c(-1, 3, 4),
merge = TRUE, bg = 'gray90')

right-justifying a set of labels: thanks to Uwe Ligges
x <- 1:5; y1 <- 1/x; y2 <- 2/x
plot(rep(x, 2), c(y1, y2), type="n", xlab="x", ylab="y")
lines(x, y1); lines(x, y2, lty=2)
temp <- legend("topright", legend = c(" ", " "),

text.width = strwidth("1,000,000"),
lty = 1:2, xjust = 1, yjust = 1,
title = "Line Types")

legend 675

text(temp$rect$left + temp$rect$w, temp$text$y,
c("1,000", "1,000,000"), pos=2)

##--- log scaled Examples ------------------------------
leg.txt <- c("a one", "a two")

par(mfrow = c(2,2))
for(ll in c("","x","y","xy")) {

plot(2:10, log=ll, main=paste("log = '",ll,"'", sep=""))
abline(1,1)
lines(2:3,3:4, col=2) #
points(2,2, col=3) #
rect(2,3,3,2, col=4)
text(c(3,3),2:3, c("rect(2,3,3,2, col=4)",

"text(c(3,3),2:3,\"c(rect(...)\")"), adj = c(0,.3))
legend(list(x=2,y=8), legend = leg.txt, col=2:3, pch=1:2,

lty=1, merge=TRUE)#, trace=TRUE)
}
par(mfrow=c(1,1))

##-- Math expressions: ------------------------------
x <- seq(-pi, pi, len = 65)
plot(x, sin(x), type="l", col = 2, xlab = expression(phi),

ylab = expression(f(phi)))
abline(h=-1:1, v=pi/2*(-6:6), col="gray90")
lines(x, cos(x), col = 3, lty = 2)
ex.cs1 <- expression(plain(sin) * phi, paste("cos", phi))# 2 ways
utils::str(legend(-3, .9, ex.cs1, lty=1:2, plot=FALSE,

adj = c(0, .6)))# adj y !
legend(-3, .9, ex.cs1, lty=1:2, col=2:3, adj = c(0, .6))

require(stats)
x <- rexp(100, rate = .5)
hist(x, main = "Mean and Median of a Skewed Distribution")
abline(v = mean(x), col=2, lty=2, lwd=2)
abline(v = median(x), col=3, lty=3, lwd=2)
ex12 <- expression(bar(x) == sum(over(x[i], n), i==1, n),

hat(x) == median(x[i], i==1,n))
utils::str(legend(4.1, 30, ex12, col = 2:3, lty=2:3, lwd=2))

'Filled' boxes -- for more, see example(plotfactor)
op <- par(bg="white") # to get an opaque box for the legend
plot(cut(weight, 3) ~ group, data = PlantGrowth, col = NULL,

density = 16*(1:3))
par(op)

Using 'ncol' :
x <- 0:64/64
matplot(x, outer(x, 1:7, function(x, k) sin(k * pi * x)),

type = "o", col = 1:7, ylim = c(-1, 1.5), pch = "*")
op <- par(bg="antiquewhite1")
legend(0, 1.5, paste("sin(", 1:7, "pi * x)"), col=1:7, lty=1:7,

pch = "*", ncol = 4, cex = 0.8)
legend(.8,1.2, paste("sin(", 1:7, "pi * x)"), col=1:7, lty=1:7,

pch = "*", cex = 0.8)
legend(0, -.1, paste("sin(", 1:4, "pi * x)"), col=1:4, lty=1:4,

ncol = 2, cex = 0.8)

676 lines

legend(0, -.4, paste("sin(", 5:7, "pi * x)"), col=4:6, pch=24,
ncol = 2, cex = 1.5, lwd = 2, pt.bg = "pink", pt.cex = 1:3)

par(op)

point covering line :
y <- sin(3*pi*x)
plot(x, y, type="l", col="blue",

main = "points with bg & legend(*, pt.bg)")
points(x, y, pch=21, bg="white")
legend(.4,1, "sin(c x)", pch=21, pt.bg="white", lty=1, col = "blue")

legends with titles at different locations
plot(x, y, type='n')
legend("bottomright", "(x,y)", pch=1, title="bottomright")
legend("bottom", "(x,y)", pch=1, title="bottom")
legend("bottomleft", "(x,y)", pch=1, title="bottomleft")
legend("left", "(x,y)", pch=1, title="left")
legend("topleft", "(x,y)", pch=1, title="topleft, inset = .05",

inset = .05)
legend("top", "(x,y)", pch=1, title="top")
legend("topright", "(x,y)", pch=1, title="topright, inset = .02",

inset = .02)
legend("right", "(x,y)", pch=1, title="right")
legend("center", "(x,y)", pch=1, title="center")

lines Add Connected Line Segments to a Plot

Description

A generic function taking coordinates given in various ways and joining the corresponding points
with line segments.

Usage

lines(x, ...)

Default S3 method:
lines(x, y = NULL, type = "l", ...)

Arguments

x, y coordinate vectors of points to join.

type character indicating the type of plotting; actually any of thetype s as in
plot.default .

... Further graphical parameters (seepar) may also be supplied as arguments, par-
ticularly, line type,lty , line width, lwd , color, col and for type = "b" ,
pch . Also the line characteristicslend , ljoin andlmitre .

locator 677

Details

The coordinates can be passed tolines in a plotting structure (a list withx andy components), a
time series, etc. Seexy.coords .

The coordinates can containNAvalues. If a point containsNAin either itsx or y value, it is omitted
from the plot, and lines are not drawn to or from such points. Thus missing values can be used to
achieve breaks in lines.

For type = "h" , col can be a vector and will be recycled as needed.

lwd can be a vector: its first element will apply to lines but the whole vector to symbols (recycled
as necessary).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

points , particularly fortype %in% c("p","b","o") , plot , and the workhorse function
plot.xy .

abline for drawing (single) straight lines.

par for how to specify colors.

Examples

draw a smooth line through a scatter plot
plot(cars, main="Stopping Distance versus Speed")
lines(stats::lowess(cars))

locator Graphical Input

Description

Reads the position of the graphics cursor when the (first) mouse button is pressed.

Usage

locator(n = 512, type = "n", ...)

Arguments

n the maximum number of points to locate. Valid values start at 1.

type One of"n" , "p" , "l" or "o" . If "p" or "o" the points are plotted; if"l" or
"o" they are joined by lines.

... additional graphics parameters used iftype != "n" for plotting the loca-
tions.

678 matplot

Details

locator is only supported on screen devices such asX11, windows andquartz . On other
devices the call will do nothing.

Unless the process is terminated prematurely by the user (see below) at mostn positions are deter-
mined.

For the usualX11 device the identification process is terminated by pressing any mouse button
other than the first. For thequartz device the process is terminated by pressing theESCkey.

The current graphics parameters apply just as ifplot.default has been called with the same
value oftype . The plotting of the points and lines is subject to clipping, but locations outside the
current clipping rectangle will be returned.

On most devices which supportlocator , successful selection of a point is indicated by a bell
sound unlessoptions (locatorBell=FALSE) has been set.

If the window is resized or hidden and then exposed before the input process has terminated, any
lines or points drawn bylocator will disappear. These will reappear once the input process has
terminated and the window is resized or hidden and exposed again. This is because the points and
lines drawn bylocator are not recorded in the device’s display list until the input process has
terminated.

Value

A list containingx andy components which are the coordinates of the identified points in the user
coordinate system, i.e., the one specified bypar ("usr") .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

identify

matplot Plot Columns of Matrices

Description

Plot the columns of one matrix against the columns of another.

Usage

matplot(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, cex = NULL, bg = NA,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
..., add = FALSE, verbose = getOption("verbose"))

matpoints(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, ...)

matlines (x, y, type = "l", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, ...)

matplot 679

Arguments

x,y vectors or matrices of data for plotting. The number of rows should match. If
one of them are missing, the other is taken asy and anx vector of1:n is used.
Missing values (NAs) are allowed.

type character string (length 1 vector) or vector of 1-character strings indicating the
type of plot for each column ofy , seeplot for all possibletype s. The first
character oftype defines the first plot, the second character the second, etc.
Characters intype are cycled through; e.g.,"pl" alternately plots points and
lines.

lty,lwd vector of line types and widths. The first element is for the first column, the
second element for the second column, etc., even if lines are not plotted for all
columns. Line types will be used cyclically until all plots are drawn.

pch character string or vector of 1-characters or integers for plotting characters, see
points . The first character is the plotting-character for the first plot, the second
for the second, etc. The default is the digits (1 through 9, 0) then the lowercase
and uppercase letters.

col vector of colors. Colors are used cyclically.

cex vector of character expansion sizes, used cyclically. This works as a multiple of
par ("cex") . NULL is equivalent to1.0 .

bg vector of background (fill) colors for the open plot symbols given by
pch=21:25 as in points . The defaultNA corresponds to the one of the
underlying functionplot.xy .

xlab, ylab titles for x and y axes, as inplot .

xlim, ylim ranges of x and y axes, as inplot .

... Graphical parameters (seepar) and any further arguments ofplot , typically
plot.default , may also be supplied as arguments to this function. Hence,
the high-level graphics control arguments described underpar and the argu-
ments totitle may be supplied to this function.

add logical. If TRUE, plots are added to current one, usingpoints andlines .

verbose logical. If TRUE, write one line of what is done.

Details

Points involving missing values are not plotted.

The first column ofx is plotted against the first column ofy , the second column ofx against the
second column ofy , etc. If one matrix has fewer columns, plotting will cycle back through the
columns again. (In particular, eitherx or y may be a vector, against which all columns of the other
argument will be plotted.)

The first element ofcol, cex, lty, lwd is used to plot the axes as well as the first line.

Because plotting symbols are drawn with lines and because these functions may be changing the
line style, you should probably specifylty=1 when using plotting symbols.

Side Effects

Functionmatplot generates a new plot;matpoints andmatlines add to the current one.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

680 mosaicplot

See Also

plot , points , lines , matrix , par .

Examples

require(grDevices)
matplot((-4:5)^2, main = "Quadratic") # almost identical to plot(*)
sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y))
matplot(sines, pch = 1:4, type = "o", col = rainbow(ncol(sines)))
matplot(sines, type = "b", pch = 21:23, col = 2:5, bg = 2:5,

main = "matplot(...., pch = 21:23, bg = 2:5)")

x <- 0:50/50
matplot(x, outer(x, 1:8, function(x, k) sin(k*pi * x)),

ylim = c(-2,2), type = "plobcsSh",
main= "matplot(,type = \"plobcsSh\")")

pch & type = vector of 1-chars :
matplot(x, outer(x, 1:4, function(x, k) sin(k*pi * x)),

pch = letters[1:4], type = c("b","p","o"))

table(iris$Species) # is data.frame with 'Species' factor
iS <- iris$Species == "setosa"
iV <- iris$Species == "versicolor"
op <- par(bg = "bisque")
matplot(c(1, 8), c(0, 4.5), type= "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")
matpoints(iris[iS,c(1,3)], iris[iS,c(2,4)], pch = "sS", col = c(2,4))
matpoints(iris[iV,c(1,3)], iris[iV,c(2,4)], pch = "vV", col = c(2,4))
legend(1, 4, c(" Setosa Petals", " Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals"),
pch = "sSvV", col = rep(c(2,4), 2))

nam.var <- colnames(iris)[-5]
nam.spec <- as.character(iris[1+50*0:2, "Species"])
iris.S <- array(NA, dim = c(50,4,3),

dimnames = list(NULL, nam.var, nam.spec))
for(i in 1:3) iris.S[,,i] <- data.matrix(iris[1:50+50*(i-1), -5])

matplot(iris.S[,"Petal.Length",], iris.S[,"Petal.Width",], pch="SCV",
col = rainbow(3, start = .8, end = .1),
sub = paste(c("S", "C", "V"), dimnames(iris.S)[[3]],

sep = "=", collapse= ", "),
main = "Fisher's Iris Data")

par(op)

mosaicplot Mosaic Plots

Description

Plots a mosaic on the current graphics device.

mosaicplot 681

Usage

mosaicplot(x, ...)

Default S3 method:
mosaicplot(x, main = deparse(substitute(x)),

sub = NULL, xlab = NULL, ylab = NULL,
sort = NULL, off = NULL, dir = NULL,
color = NULL, shade = FALSE, margin = NULL,
cex.axis = 0.66, las = par("las"),
type = c("pearson", "deviance", "FT"), ...)

S3 method for class 'formula':
mosaicplot(formula, data = NULL, ...,

main = deparse(substitute(data)), subset,
na.action = stats::na.omit)

Arguments

x a contingency table in array form, with optional category labels specified in the
dimnames(x) attribute. The table is best created by thetable() command.

main character string for the mosaic title.

sub character string for the mosaic sub-title (at bottom).

xlab,ylab x- and y-axis labels used for the plot; by default, the first and second element of
names(dimnames(X)) (i.e., the name of the first and second variable inX).

sort vector ordering of the variables, containing a permutation of the integers
1:length(dim(x)) (the default).

off vector of offsets to determine percentage spacing at each level of the mosaic
(appropriate values are between 0 and 20, and the default is 20 times the number
of splits for 2-dimensional tables, and 10 otherwise. Rescaled to maximally 50,
and recycled if necessary.

dir vector of split directions ("v" for vertical and"h" for horizontal) for each level
of the mosaic, one direction for each dimension of the contingency table. The
default consists of alternating directions, beginning with a vertical split.

color logical or (recycling) vector of colors for color shading, used only whenshade
is FALSE, or NULL(default). By default, grey boxes are drawn.color=TRUE
uses a gamma-corrected grey palette.color=FALSE gives empty boxes with
no shading.

shade a logical indicating whether to produce extended mosaic plots, or a numeric
vector of at most 5 distinct positive numbers giving the absolute values of the
cut points for the residuals. By default,shade is FALSE, and simple mosaics
are created. Usingshade = TRUE cuts absolute values at 2 and 4.

margin a list of vectors with the marginal totals to be fit in the log-linear model. By
default, an independence model is fitted. Seeloglin for further information.

cex.axis The magnification to be used for axis annotation, as a multiple of
par("cex") .

las numeric; the style of axis labels, seepar .

type a character string indicating the type of residual to be represented. Must be one
of "pearson" (giving components of Pearson’sχ2), "deviance" (giving
components of the likelihood ratioχ2), or "FT" for the Freeman-Tukey residu-
als. The value of this argument can be abbreviated.

682 mosaicplot

formula a formula, such asy ~ x .

data a data frame (or list), or a contingency table from which the variables in
formula should be taken.

... further arguments to be passed to or from methods.

subset an optional vector specifying a subset of observations in the data frame to be
used for plotting.

na.action a function which indicates what should happen when the data contains variables
to be cross-tabulated, and these variables containNAs. The default is to omit
cases which have anNA in any variable. Since the tabulation will omit all cases
containing missing values, this will only be useful if thena.action function
replaces missing values.

Details

This is a generic function. It currently has a default method (mosaicplot.default) and a
formula interface (mosaicplot.formula).

Extended mosaic displays visualize standardized residuals of a loglinear model for the table by color
and outline of the mosaic’s tiles. (Standardized residuals are often referred to a standard normal
distribution.) Negative residuals are drawn in shaded of red and with broken outlines; positive ones
are drawn in blue with solid outlines.

For the formula method, ifdata is an object inheriting from classes"table" or "ftable" , or
an array with more than 2 dimensions, it is taken as a contingency table, and hence all entries should
be nonnegative. In this case, the left-hand side offormula should be empty, and the variables on
the right-hand side should be taken from the names of the dimnames attribute of the contingency
table. A marginal table of these variables is computed, and a mosaic of this table is produced.

Otherwise,data should be a data frame or matrix, list or environment containing the variables
to be cross-tabulated. In this case, after possibly selecting a subset of the data as specified by the
subset argument, a contingency table is computed from the variables given informula , and a
mosaic is produced from this.

See Emerson (1998) for more information and a case study with television viewer data from Nielsen
Media Research.

Missing values are not supported except via anna.action function whendata contains vari-
ables to be cross-tabulated.

A more flexible and extensible implementation of mosaic plots written in the grid graphics system
is provided in the functionmosaic in the contributed packagevcd (Meyer, Zeileis and Hornik,
2005).

Author(s)

S-PLUS original by John Emerson〈john.emerson@yale.edu〉. Originally modified and enhanced
for R by Kurt Hornik.

References

Hartigan, J.A., and Kleiner, B. (1984) A mosaic of television ratings.The American Statistician,
38, 32–35.

Emerson, J. W. (1998) Mosaic displays in S-PLUS: A general implementation and a case study.
Statistical Computing and Graphics Newsletter (ASA), 9, 1, 17–23.

Friendly, M. (1994) Mosaic displays for multi-way contingency tables.Journal of the American
Statistical Association, 89, 190–200.

mtext 683

Meyer, D., Zeileis, A., and Hornik, K. (2005) The strucplot framework: Visualizing multi-way
contingency tables with vcd.Report 22, Department of Statistics and Mathematics, Wirtschaftsuni-
versität Wien, Research Report Series.http://epub.wu-wien.ac.at/dyn/openURL?
id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1

The home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.
html) provides information on various aspects of graphical methods for analyzing categorical data,
including mosaic plots.

See Also

assocplot , loglin .

Examples

require(stats)
mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)
Formula interface for tabulated data:
mosaicplot(~ Sex + Age + Survived, data = Titanic, color = TRUE)

mosaicplot(HairEyeColor, shade = TRUE)
Independence model of hair and eye color and sex. Indicates that
there are more blue eyed blonde females than expected in the case
of independence and too few brown eyed blonde females.
The corresponding model is:
fm <- loglin(HairEyeColor, list(1, 2, 3))
pchisq(fm$pearson, fm$df, lower.tail = FALSE)

mosaicplot(HairEyeColor, shade = TRUE, margin = list(1:2, 3))
Model of joint independence of sex from hair and eye color. Males
are underrepresented among people with brown hair and eyes, and are
overrepresented among people with brown hair and blue eyes.
The corresponding model is:
fm <- loglin(HairEyeColor, list(1:2, 3))
pchisq(fm$pearson, fm$df, lower.tail = FALSE)

Formula interface for raw data: visualize cross-tabulation of numbers
of gears and carburettors in Motor Trend car data.
mosaicplot(~ gear + carb, data = mtcars, color = TRUE, las = 1)
color recycling
mosaicplot(~ gear + carb, data = mtcars, color = 2:3, las = 1)

mtext Write Text into the Margins of a Plot

Description

Text is written in one of the four margins of the current figure region or one of the outer margins of
the device region.

Usage

mtext(text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, padj = NA, cex = NA, col = NA, font = NA, ...)

http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://www.math.yorku.ca/SCS/friendly.html
http://www.math.yorku.ca/SCS/friendly.html

684 mtext

Arguments

text a character orexpressionvector specifying thetext to be written. Other objects
are coerced byas.graphicsAnnot .

side on which side of the plot (1=bottom, 2=left, 3=top, 4=right).

line on which MARgin line, starting at 0 counting outwards.

outer use outer margins if available.

at give location in user coordinates. Iflength(at)==0 (the default), the loca-
tion will be determined byadj .

adj adjustment for each string in reading direction. For strings parallel to the axes,
adj = 0 means left or bottom alignment, andadj = 1 means right or top
alignment.

If adj is not a finite value (the default), the value ofpar("las") determines
the adjustment. For strings plotted parallel to the axis the default is to centre the
string.

padj adjustment for each string perpendicular to the reading direction (which is con-
trolled byadj). For strings parallel to the axes,padj = 0 means right or top
alignment, andpadj = 1 means left or bottom alignment.

If padj is not a finite value (the default), the value ofpar("las") determines
the adjustment. For strings plotted perpendicular to the axis the default is to
centre the string.

cex character expansion factor.NULL and NA are equivalent to1.0 . This is an
absolute measure, not scaled bypar("cex") or by settingpar("mfrow")
or par("mfcol") . Can be a vector.

col color to use. Can be a vector.NAvalues (the default) mean usepar("col") .

font font for text. Can be a vector.NAvalues (the default) mean usepar("font") .

... Further graphical parameters (seepar), including family , las and xpd .
(The latter defaults to the figure region unlessouter = TRUE , otherwise the
device region. It can only be increased.)

Details

The user coordinates in the outer margins always range from zero to one, and are not affected by
the user coordinates in the figure region(s) —R differs here from other implementations of S.

All of the named arguments can be vectors, and recycling will take place to plot as many strings as
the longest of the vector arguments.

Note that a vectoradj has a different meaning fromtext . adj = 0.5 will centre the string, but
for outer=TRUE on the device region rather than the plot region.

Parameterlas will determine the orientation of the string(s). For strings plotted perpendicular to
the axis the default justification is to place the end of the string nearest the axis on the specified line.
(Note that this differs from S, which usessrt if at is supplied andlas if it is not. Parametersrt
is ignored inR.)

Note that if the text is to be plotted perpendicular to the axis,adj determines the justification of
the stringand the position along the axis unlessat is specified.

Side Effects

The given text is written onto the current plot.

pairs 685

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

title , text , plot , par ; plotmath for details on mathematical annotation.

Examples

plot(1:10, (-4:5)^2, main="Parabola Points", xlab="xlab")
mtext("10 of them")
for(s in 1:4)

mtext(paste("mtext(..., line= -1, {side, col, font} = ",s,
", cex = ", (1+s)/2, ")"), line = -1,
side=s, col=s, font=s, cex= (1+s)/2)

mtext("mtext(..., line= -2)", line = -2)
mtext("mtext(..., line= -2, adj = 0)", line = -2, adj =0)
##--- log axis :
plot(1:10, exp(1:10), log='y', main="log='y'", xlab="xlab")
for(s in 1:4) mtext(paste("mtext(...,side=",s,")"), side=s)

pairs Scatterplot Matrices

Description

A matrix of scatterplots is produced.

Usage

pairs(x, ...)

S3 method for class 'formula':
pairs(formula, data = NULL, ..., subset,

na.action = stats::na.pass)

Default S3 method:
pairs(x, labels, panel = points, ...,

lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels = 1,
row1attop = TRUE, gap = 1)

Arguments

x the coordinates of points given as numeric columns of a matrix or dataframe.
Logical and factor columns are converted to numeric in the same way that
data.matrix does.

686 pairs

formula a formula, such as~ x + y + z . Each term will give a separate variable in
the pairs plot, so terms should be numeric vectors. (A response will be inter-
preted as another variable, but not treated specially, so it is confusing to use
one.)

data a data.frame (or list) from which the variables informula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data containNAs. The
default is to pass missing values on to the panel functions, butna.action =
na.omit will cause cases with missing values in any of the variables to be
omitted entirely.

labels the names of the variables.

panel function(x,y,...) which is used to plot the contents of each panel of the
display.

... arguments to be passed to or from methods.
Also, graphical parameters can be given as can arguments toplot such as
main . par("oma") will be set appropriately unless specified.

lower.panel, upper.panel
separate panel functions to be used below and above the diagonal respectively.

diag.panel optionalfunction(x, ...) to be applied on the diagonals.

text.panel optionalfunction(x, y, labels, cex, font, ...) to be applied
on the diagonals.

label.pos y position of labels in the text panel.
cex.labels, font.labels

graphics parameters for the text panel.

row1attop logical. Should the layout be matrix-like with row 1 at the top, or graph-like
with row 1 at the bottom?

gap Distance between subplots, in margin lines.

Details

The ijth scatterplot containsx[,i] plotted againstx[,j] . The scatterplot can be customised
by setting panel functions to appear as something completely different. The off-diagonal panel
functions are passed the appropriate columns ofx asx andy : the diagonal panel function (if any)
is passed a single column, and thetext.panel function is passed a single(x, y) location and
the column name.

The graphical parameterspch andcol can be used to specify a vector of plotting symbols and
colors to be used in the plots.

The graphical parameteromawill be set bypairs.default unless supplied as an argument.

A panel function should not attempt to start a new plot, but just plot within a given coordinate
system: thusplot andboxplot are not panel functions.

By default, missing values are passed to the panel functions and will often be ignored within a
panel. However, for the formula method andna.action = na.omit , all cases which contain
a missing values for any of the variables are omitted completely (including when the scales are
selected).

Author(s)

Enhancements forR 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core members.

panel.smooth 687

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",
pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

formula method
pairs(~ Fertility + Education + Catholic, data = swiss,

subset = Education < 20, main = "Swiss data, Education < 20")

pairs(USJudgeRatings)

put histograms on the diagonal
panel.hist <- function(x, ...)
{

usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

}
pairs(USJudgeRatings[1:5], panel=panel.smooth,

cex = 1.5, pch = 24, bg="light blue",
diag.panel=panel.hist, cex.labels = 2, font.labels=2)

put (absolute) correlations on the upper panels,
with size proportional to the correlations.
panel.cor <- function(x, y, digits=2, prefix="", cex.cor)
{

usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep="")
if(missing(cex.cor)) cex <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex * r)

}
pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

panel.smooth Simple Panel Plot

Description

An example of a simple usefulpanel function to be used as argument in e.g.,coplot or pairs .

Usage

panel.smooth(x, y, col = par("col"), bg = NA, pch = par("pch"),
cex = 1, col.smooth = "red", span = 2/3, iter = 3,
...)

688 par

Arguments

x, y numeric vectors of the same length
col, bg, pch, cex

numeric or character codes for the color(s), point type and size ofpoints ; see
alsopar .

col.smooth color to be used bylines for drawing the smooths.

span smoothing parameterf for lowess , see there.

iter number of robustness iterations forlowess .

... further arguments tolines .

See Also

coplot andpairs wherepanel.smooth is typically used;lowess which does the smooth-
ing.

Examples

pairs(swiss, panel = panel.smooth, pch = ".")# emphasize the smooths
pairs(swiss, panel = panel.smooth, lwd = 2, cex= 1.5, col="blue")# hmm...

par Set or Query Graphical Parameters

Description

par can be used to set or query graphical parameters. Parameters can be set by specifying them as
arguments topar in tag = value form, or by passing them as a list of tagged values.

Usage

par(..., no.readonly = FALSE)

<highlevel plot> (..., <tag> = <value>)

Arguments

... arguments intag = value form, or a list of tagged values. The tags must
come from the graphical parameters described below.

no.readonly logical; if TRUEand there are no other arguments, only parameters are returned
which can be set by a subsequentpar() call on the same device.

Details

Parameters are queried by giving one or more character vectors topar .

par() (no arguments) orpar(no.readonly=TRUE) is used to getall the graphical parameters
(as a named list). Their names are currently taken from the unexported variable.Pars .

R.O.indicatesread-only arguments: These may only be used in queries and cannot be set. ("cin" ,
"cra" , "csi" , "cxy" and"din" are always read-only, and"gamma" is on most devices.)

There are several parameters can only be set by a call topar() :

par 689

• "ask" ,

• "fig" , "fin" ,

• "lheight" ,

• "mai" , "mar" , "mex" , "mfcol" , "mfrow" , "mfg" ,

• "new" ,

• "oma" , "omd" , "omi" ,

• "pin" , "plt" , "ps" , "pty" ,

• "usr" ,

• "xlog" , "ylog"

The remaining parameters can also be set as arguments (often via...) to high-level plot
functions such asplot.default , plot.window , points , lines , abline , axis ,
title , text , mtext , segments , symbols , arrows , polygon , rect , box , contour ,
filled.contour andimage . Such settings will be active during the execution of the function,
only. However, see the comments onbg andcex , which may be taken as arguments to certain plot
functions rather than as graphical parameters.

The meaning of ‘character size’ is not well-defined: this is set up for the device takingpointsize
into account but often not the actual font family in use. Internally the corresponding pars (cra , cin ,
cxy andcsi) are used only to set the inter-line spacing used to convertmar andoma to physical
margins. (The same inter-line spacing multiplied bylheight is used for multi-line strings in
text andstrheight .)

Value

When parameters are set, their former values are returned in an invisible named list. Such a list
can be passed as an argument topar to restore the parameter values. Usepar(no.readonly
= TRUE) for the full list of parameters that can be restored. However, restoring all of these is
not wise since they contain several ways to set the same quantities, and these can have conflicting
effects if the graphics device has been resized since the parameters were saved. You will reset all of
mfrow , mfcol andmfg and will findmfrow wins.

When just one parameter is queried, the value of that parameter is returned as (atomic) vector. When
two or more parameters are queried, their values are returned in a list, with the list names giving the
parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter returns a
vector.

Graphical Parameters

adj The value ofadj determines the way in which text strings are justified. A value of0 produces
left-justified text,0.5 centered text and1 right-justified text. (Any value in[0, 1] is allowed,
and on most devices values outside that interval will also work.) Note that theadj argument
of text also allowsadj = c(x, y) for different adjustment in x- and y- direction.

ann If set to FALSE, high-level plotting functions callingplot.default do not annotate the
plots they produce with axis titles and overall titles. The default is to do annotation.

ask logical. If TRUE(and theR session is interactive) the user is asked for input, before a new
figure is drawn. As this applies to the device, it also affects output by packagesgrid and
lattice. It can be set even on non-screen devices.

690 par

bg The color to be used for the background of the device region. When called frompar() it
also setsnew=FALSE. See section ‘Color Specification’ for suitable values. Note that some
graphics functions such asplot.default andpoints have anargumentof this name
with a different meaning.

bty A character string which determined the type ofbox which is drawn about plots. Ifbty is
one of "o" , "l" , "7" , "c" , "u" , or "]" the resulting box resembles the corresponding
upper case letter. A value of"n" suppresses the box.

cex A numerical value giving the amount by which plotting text and symbols should be magnified
relative to the default. Note that some graphics functions such asplot.default have an
argumentof this name whichmultipliesthis graphical parameter, and some functions such as
points accept a vector of values which are recycled. Other uses will take just the first value
if a vector of length greater than one is supplied.

cex.axis The magnification to be used for axis annotation relative to the current setting ofcex .

cex.lab The magnification to be used for x and y labels relative to the current setting ofcex .

cex.main The magnification to be used for main titles relative to the current setting ofcex .

cex.sub The magnification to be used for sub-titles relative to the current setting ofcex .

cin R.O.; character size(width, height) in inches. These are the same measurements as
cra , expressed in different units.

col A specification for the default plotting color. See section ‘Color Specification’. (Some func-
tions such aslines accept a vector of values which are recycled. Other uses will take just
the first value if a vector of length greater than one is supplied.)

col.axis The color to be used for axis annotation.

col.lab The color to be used for x and y labels.

col.main The color to be used for plot main titles.

col.sub The color to be used for plot sub-titles.

cra R.O.; size of default character(width, height) in ‘rasters’ (pixels). Some devices have
no concept of pixels and so assume an arbitrary pixel size, usually 1/72 inch. These are the
same measurements ascin , expressed in different units.

crt A numerical value specifying (in degrees) how single characters should be rotated. It is unwise
to expect values other than multiples of 90 to work. Compare withsrt which does string
rotation.

csi R.O.; height of (default-sized) characters in inches. The same aspar("cin")[2] .

cxy R.O.; size of default character(width, height) in user coordinate units.par("cxy")
is par("cin")/par("pin") scaled to user coordinates. Note thatc(strwidth (ch),
strwidth (ch)) for a given stringch is usually much more precise.

din R.O.; the device dimensions,(width,height) , in inches.

err (Unimplemented; R is silent when points outside the plot region arenot plotted.) The degree
of error reporting desired.

family The name of a font family for drawing text. The maximum allowed length is 200 bytes.
This name gets mapped by each graphics device to a device-specific font description. The
default value is"" which means that the default device fonts will be used. Standard values
are "serif" , "sans" , "mono" , and"symbol" and theHersheyfont families are also
available. (Different devices may define others, and some devices will ignore this setting
completely.) This can be specified inline fortext .

fg The color to be used for the foreground of plots. This is the default color used for things like
axes and boxes around plots. When called frompar() this also sets parametercol to the
same value. See section ‘Color Specification’.

par 691

fig A numerical vector of the formc(x1, x2, y1, y2) which gives the (NDC) coordinates
of the figure region in the display region of the device. If you set this, unlike S, you start a
new plot, so to add to an existing plot usenew=TRUEas well.

fin The figure region dimensions,(width,height) , in inches. If you set this, unlike S, you
start a new plot.

font An integer which specifies which font to use for text. If possible, device drivers arrange so
that 1 corresponds to plain text, 2 to bold face, 3 to italic and 4 to bold italic. Also, font 5 is
expected to be the symbol font, in Adobe symbol encoding. On some devices font families
can be selected byfamily to choose different sets of 5 fonts.

font.axis The font to be used for axis annotation.

font.lab The font to be used for x and y labels.

font.main The font to be used for plot main titles.

font.sub The font to be used for plot sub-titles.

gamma the gamma correction, see argumentgammato hsv . This is only accepted if the current
device has support for changing the gamma correction: currently onlywindows andquartz
do. (X11 has support for setting the gamma correction when opening the device, but not for
changing it.)

lab A numerical vector of the formc(x, y, len) which modifies the default way that axes
are annotated. The values ofx andy give the (approximate) number of tickmarks on the x
and y axes andlen specifies the label length. The default isc(5, 5, 7) . Note that this
only affects the way the parametersxaxp andyaxp are set when the user coordinate system
is set up, and is not consulted when axes are drawn.len is unimplementedin R.

las numeric in {0,1,2,3}; the style of axis labels.

0: always parallel to the axis [default],

1: always horizontal,

2: always perpendicular to the axis,

3: always vertical.

Also supported bymtext . Note that other string/character rotation (via argumentsrt to
par) doesnot affect the axis labels.

lend The line end style. This can be specified as an integer or string:

0 and"round" mean rounded line caps [default];

1 and"butt" mean butt line caps;

2 and"square" mean square line caps.

lheight The line height multiplier. The height of a line of text (used to vertically space multi-
line text) is found by multiplying the character height both by the current character expansion
and by the line height multiplier. Default value is 1. Used intext andstrheight .

ljoin The line join style. This can be specified as an integer or string:

0 and"round" mean rounded line joins [default];

1 and"mitre" mean mitred line joins;

2 and"bevel" mean bevelled line joins.

lmitre The line mitre limit. This controls when mitred line joins are automatically converted
into bevelled line joins. The value must be larger than 1 and the default is 10. Not all devices
will honour this setting.

lty The line type. Line types can either be specified as an integer (0=blank, 1=solid, 2=dashed,
3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings"blank" ,

692 par

"solid" , "dashed" , "dotted" , "dotdash" , "longdash" , or "twodash" , where
"blank" uses ‘invisible lines’ (i.e., does not draw them).

Alternatively, a string of up to 8 characters (fromc(1:9, "A":"F")) may be given, giving
the length of line segments which are alternatively drawn and skipped. See section ‘Line Type
Specification’.

Some functions such aslines accept a vector of values which are recycled. Other uses will
take just the first value if a vector of length greater than one is supplied.

lwd The line width, apositivenumber, defaulting to1. The interpretation is device-specific, and
some devices do not implement line widths less than one. (See the help on the device for
details of the interpretation.)

Some functions such aslines accept a vector of values which are recycled. Other uses will
take just the first value if a vector of length greater than one is supplied.

mai A numerical vector of the formc(bottom, left, top, right) which gives the mar-
gin size specified in inches.

mar A numerical vector of the formc(bottom, left, top, right) which gives the num-
ber of lines of margin to be specified on the four sides of the plot. The default isc(5, 4,
4, 2) + 0.1 .

mex mex is a character size expansion factor which is used to describe coordinates in the margins
of plots. Note that this does not change the font size, rather specifies the size of font (as a
multiple ofcsi) used to convert betweenmar andmai , and betweenomaandomi .

mfcol, mfrow A vector of the formc(nr, nc) . Subsequent figures will be drawn in an
nr -by-nc array on the device bycolumns(mfcol), or rows(mfrow), respectively.

In a layout with exactly two rows and columns the base value of"cex" is reduced by a factor
of 0.83: if there are three or more of either rows or columns, the reduction factor is 0.66.

If either of these is queried it will give the current layout, so querying cannot tell you the order
the array will be filled.

Consider the alternatives,layout andsplit.screen .

mfg A numerical vector of the formc(i, j) wherei andj indicate which figure in an array of
figures is to be drawn next (if setting) or is being drawn (if enquiring). The array must already
have been set bymfcol or mfrow .

For compatibility with S, the formc(i, j, nr, nc) is also accepted, whennr andnc
should be the current number of rows and number of columns. Mismatches will be ignored,
with a warning.

mgp The margin line (inmex units) for the axis title, axis labels and axis line. The default isc(3,
1, 0) .

mkh The height in inches of symbols to be drawn when the value ofpch is an integer.Completely
ignored currently.

new logical, defaulting toFALSE. If set toTRUE, the next high-level plotting command (actually
plot.new) shouldnot cleanthe frame before drawingas if it was on anew device. It is an
error (ignored with a warning) to try to usenew=TRUEon a device that does not currently
contain a high-level plot.

oma A vector of the formc(bottom, left, top, right) giving the size of the outer
margins in lines of text.

omd A vector of the formc(x1, x2, y1, y2) giving the outer margin region in NDC (=
normalized device coordinates), i.e., as fraction (in[0, 1]) of the device region.

omi A vector of the formc(bottom, left, top, right) giving the size of the outer
margins in inches.

par 693

pch Either an integer specifying a symbol or a single character to be used as the default in plotting
points. Seepoints for possible values and their interpretation. Note that only non-negative
integers and single-byte strings can be set as a graphics parameter.

pin The current plot dimensions,(width,height) , in inches.

plt A vector of the formc(x1, x2, y1, y2) giving the coordinates of the plot region as
fractions of the current figure region.

ps integer; the point size of text (but not symbols). Unlike thepointsize argument of most
devices, this does not change the relationship betweenmar andmai (noromaandomi).

What is meant by ‘point size’ is device-specific, but most devices mean a multiple of 1bp, that
is 1/72 of an inch.

pty A character specifying the type of plot region to be used;"s" generates a square plotting
region and"m" generates the maximal plotting region.

smo (Unimplemented) a value which indicates how smooth circles and circular arcs should be.

srt The string rotation in degrees. See the comment aboutcrt . Only supported bytext .

tck The length of tick marks as a fraction of the smaller of the width or height of the plotting
region. If tck >= 0.5 it is interpreted as a fraction of the relevant side, so iftck = 1
grid lines are drawn. The default setting (tck = NA) is to usetcl = -0.5 .

tcl The length of tick marks as a fraction of the height of a line of text. The default value is-0.5 ;
settingtcl = NA setstck = -0.01 which is S’ default.

usr A vector of the formc(x1, x2, y1, y2) giving the extremes of the user coordinates
of the plotting region. When a logarithmic scale is in use (i.e.,par("xlog") is true, see
below), then the x-limits will be10 ^ par("usr")[1:2] . Similarly for the y-axis.

xaxp A vector of the formc(x1, x2, n) giving the coordinates of the extreme tick marks and
the number of intervals between tick-marks whenpar("xlog") is false. Otherwise, when
log coordinates are active, the three values have a different meaning: For a small range,n
is negative, and the ticks are as in the linear case, otherwise,n is in 1:3 , specifying a case
number, andx1 andx2 are the lowest and highest power of 10 inside the user coordinates,
10 ^ par("usr")[1:2] . (The"usr" coordinates are log10-transformed here!)

n=1 will produce tick marks at10j for integerj,

n=2 gives marksk10j with k ∈ {1, 5},
n=3 gives marksk10j with k ∈ {1, 2, 5}.

SeeaxTicks () for a pureR implementation of this.

This parameter is reset when a user coordinate system is set up, for example by starting a new
page or by callingplot.window or settingpar("usr") : n is taken frompar("lab") .
It affects the default behaviour of subsequent calls toaxis for sides 1 or 3.

xaxs The style of axis interval calculation to be used for the x-axis. Possible values are"r" , "i" ,
"e" , "s" , "d" . The styles are generally controlled by the range of data orxlim , if given.
Style"r" (regular) first extends the data range by 4 percent and then finds an axis with pretty
labels that fits within the range. Style"i" (internal) just finds an axis with pretty labels that
fits within the original data range. Style"s" (standard) finds an axis with pretty labels within
which the original data range fits. Style"e" (extended) is like style"s" , except that it is also
ensures that there is room for plotting symbols within the bounding box. Style"d" (direct)
specifies that the current axis should be used on subsequent plots. (Only "r" and"i" styles
are currently implemented)

xaxt A character which specifies the x axis type. Specifying"n" suppresses plotting of the axis.
The standard value is"s" : for compatibility with S values"l" and"t" are accepted but are
equivalent to"s" : any value other than"n" implies plotting.

694 par

xlog A logical value (seelog in plot.default). If TRUE, a logarithmic scale is in use (e.g.,
afterplot(*, log = "x")). For a new device, it defaults toFALSE, i.e., linear scale.

xpd A logical value orNA. If FALSE, all plotting is clipped to the plot region, ifTRUE, all plotting
is clipped to the figure region, and ifNA, all plotting is clipped to the device region.

yaxp A vector of the formc(y1, y2, n) giving the coordinates of the extreme tick marks and
the number of intervals between tick-marks unless for log coordinates, seexaxp above.

yaxs The style of axis interval calculation to be used for the y-axis. Seexaxs above.

yaxt A character which specifies the y axis type. Specifying"n" suppresses plotting.

ylog A logical value; seexlog above.

Color Specification

Colors can be specified in several different ways. The simplest way is with a character string giving
the color name (e.g.,"red"). A list of the possible colors can be obtained with the function
colors . Alternatively, colors can be specified directly in terms of their RGB components with
a string of the form"#RRGGBB"where each of the pairsRR, GG, BB consist of two hexadecimal
digits giving a value in the range00 to FF. Colors can also be specified by giving an index into a
small table of colors, thepalette . This provides compatibility with S. Index0 corresponds to
the background color.

Additionally, "transparent" or (integer)NA is transparent, useful for filled areas (such as the
background!), and just invisible for things like lines or text. Semi-transparent colors are available
for use on devices that support them.

The functionsrgb , hsv , hcl , gray andrainbow provide additional ways of generating colors.

Line Type Specification

Line types can either be specified by giving an index into a small built-in table of line types (1 =
solid, 2 = dashed, etc, seelty above) or directly as the lengths of on/off stretches of line. This is
done with a string of an even number (up to eight) of characters, namelynon-zero(hexadecimal)
digits which give the lengths in consecutive positions in the string. For example, the string"33"
specifies three units on followed by three off and"3313" specifies three units on followed by three
off followed by one on and finally three off. The ‘units’ here are (on most devices) proportional to
lwd , and withlwd = 1 are in pixels or points or 1/96 inch.

The five standard dash-dot line types (lty = 2:6) correspond toc("44", "13", "1343",
"73", "2262") .

Note thatNAis not a valid value forlty .

Note

The effect of restoring all the (settable) graphics parameters as in the examples is hard to predict if
the device has been resized. Several of them are attempting to set the same things in different ways,
and those last in the alphabet will win. In particular, the settings ofmai , mar, pin , plt andpty
interact, as do the outer margin settings, the figure layout and figure region size.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

persp 695

See Also

plot.default for some high-level plotting parameters;colors ; options for other setup
parameters; graphic devicesx11 , postscript and setting up device regions bylayout and
split.screen .

Examples

op <- par(mfrow = c(2, 2), # 2 x 2 pictures on one plot
pty = "s") # square plotting region,

independent of device size

At end of plotting, reset to previous settings:
par(op)

Alternatively,
op <- par(no.readonly = TRUE) # the whole list of settable par's.
do lots of plotting and par(.) calls, then reset:
par(op)
Note this is not in general good practice

par("ylog") # FALSE
plot(1 : 12, log = "y")
par("ylog") # TRUE

plot(1:2, xaxs = "i") # 'inner axis' w/o extra space
par(c("usr", "xaxp"))

(nr.prof <-
c(prof.pilots=16,lawyers=11,farmers=10,salesmen=9,physicians=9,

mechanics=6,policemen=6,managers=6,engineers=5,teachers=4,
housewives=3,students=3,armed.forces=1))

par(las = 3)
barplot(rbind(nr.prof)) # R 0.63.2: shows alignment problem
par(las = 0)# reset to default

require(grDevices) # for gray
'fg' use:
plot(1:12, type = "b", main="'fg' : axes, ticks and box in gray",

fg = gray(0.7), bty="7" , sub=R.version.string)

ex <- function() {
old.par <- par(no.readonly = TRUE) # all par settings which

could be changed.
on.exit(par(old.par))
...
... do lots of par() settings and plots
...
invisible() #-- now, par(old.par) will be executed

}
ex()

persp Perspective Plots

696 persp

Description

This function draws perspective plots of surfaces over the x–y plane.persp is a generic function.

Usage

persp(x, ...)

Default S3 method:
persp(x = seq(0, 1, length.out = nrow(z)),

y = seq(0, 1, length.out = ncol(z)),
z, xlim = range(x), ylim = range(y),
zlim = range(z, na.rm = TRUE),
xlab = NULL, ylab = NULL, zlab = NULL,
main = NULL, sub = NULL,
theta = 0, phi = 15, r = sqrt(3), d = 1,
scale = TRUE, expand = 1,
col = "white", border = NULL, ltheta = -135, lphi = 0,
shade = NA, box = TRUE, axes = TRUE, nticks = 5,
ticktype = "simple", ...)

Arguments

x, y locations of grid lines at which the values inz are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. Ifx is
a list , its componentsx$x andx$y are used forx andy , respectively.

z a matrix containing the values to be plotted (NAs are allowed). Note thatx can
be used instead ofz for convenience.

xlim, ylim, zlim
x-, y- and z-limits. The plot is produced so that the rectangular volume defined
by these limits is visible.

xlab, ylab, zlab
titles for the axes. N.B. These must be character strings; expressions are not
accepted. Numbers will be coerced to character strings.

main, sub main and sub title, as fortitle .

theta, phi angles defining the viewing direction.theta gives the azimuthal direction and
phi the colatitude.

r the distance of the eyepoint from the centre of the plotting box.

d a value which can be used to vary the strength of the perspective transformation.
Values ofd greater than 1 will lessen the perspective effect and values less and
1 will exaggerate it.

scale before viewing the x, y and z coordinates of the points defining the surface are
transformed to the interval [0,1]. Ifscale is TRUEthe x, y and z coordinates
are transformed separately. Ifscale is FALSE the coordinates are scaled so
that aspect ratios are retained. This is useful for rendering things like DEM
information.

expand a expansion factor applied to thez coordinates. Often used with0 < expand
< 1 to shrink the plotting box in thez direction.

col the color(s) of the surface facets. Transparent colours are ignored. This is recy-
cled to the(nx− 1)(ny − 1) facets.

persp 697

border the color of the line drawn around the surface facets. The default,NULL, corre-
sponds topar("fg") . A value ofNAwill disable the drawing of borders: this
is sometimes useful when the surface is shaded.

ltheta, lphi if finite values are specified forltheta and lphi , the surface is shaded
as though it was being illuminated from the direction specified by azimuth
ltheta and colatitudelphi .

shade the shade at a surface facet is computed as((1+d)/2)^shade , whered is the
dot product of a unit vector normal to the facet and a unit vector in the direction
of a light source. Values ofshade close to one yield shading similar to a point
light source model and values close to zero produce no shading. Values in the
range 0.5 to 0.75 provide an approximation to daylight illumination.

box should the bounding box for the surface be displayed. The default isTRUE.

axes should ticks and labels be added to the box. The default isTRUE. If box is
FALSEthen no ticks or labels are drawn.

ticktype character:"simple" draws just an arrow parallel to the axis to indicate direc-
tion of increase;"detailed" draws normal ticks as per 2D plots.

nticks the (approximate) number of tick marks to draw on the axes. Has no effect if
ticktype is "simple" .

... additional graphical parameters (seepar).

Details

The plots are produced by first transforming the coordinates to the interval [0,1]. The surface is
then viewed by looking at the origin from a direction defined bytheta andphi . If theta and
phi are both zero the viewing direction is directly down the negative y axis. Changingtheta will
vary the azimuth and changingphi the colatitude.

There is a hook called"persp" (seesetHook) called after the plot is completed, which is used
in the testing code to annotate the plot page. The hook function(s) are called with no argument.

Notice thatpersp interprets thez matrix as a table off(x[i], y[j]) values, so that the x axis
corresponds to row number and the y axis to column number, with column 1 at the bottom, so that
with the standard rotation angles, the top left corner of the matrix is displayed at the left hand side,
closest to the user.

The sizes and fonts of the axis labels and the annotations forticktype="detailed" are con-
trolled by graphics parameters"cex.lab" /"font.lab" and "cex.axis" /"font.axis"
respectively. (This changed inR 2.5.0.)

Value

persp() returns theviewing transformation matrix, sayVT, a4× 4 matrix suitable for projecting
3D coordinates(x, y, z) into the 2D plane using homogeneous 4D coordinates(x, y, z, t). It can
be used to superimpose additional graphical elements on the 3D plot, bylines () or points () ,
using the simple functiontrans3d () .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

contour andimage ; trans3d .

698 pie

Examples

require(grDevices) # for trans3d
More examples in demo(persp) !!

(1) The Obligatory Mathematical surface.
Rotated sinc function.

x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
op <- par(bg = "white")
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.75, ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)"

) -> res
round(res, 3)

(2) Add to existing persp plot - using trans3d() :

xE <- c(-10,10); xy <- expand.grid(xE, xE)
points(trans3d(xy[,1], xy[,2], 6, pmat = res), col = 2, pch =16)
lines (trans3d(x, y=10, z= 6 + sin(x), pmat = res), col = 3)

phi <- seq(0, 2*pi, len = 201)
r1 <- 7.725 # radius of 2nd maximum
xr <- r1 * cos(phi)
yr <- r1 * sin(phi)
lines(trans3d(xr,yr, f(xr,yr), res), col = "pink", lwd = 2)
(no hidden lines)

(3) Visualizing a simple DEM model

z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
Don't draw the grid lines : border = NA
par(bg = "slategray")
persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,

ltheta = -120, shade = 0.75, border = NA, box = FALSE)
par(op)

pie Pie Charts

Description

Draw a pie chart.

pie 699

Usage

pie(x, labels = names(x), edges = 200, radius = 0.8,
clockwise = FALSE, init.angle = if(clockwise) 90 else 0,
density = NULL, angle = 45, col = NULL, border = NULL,
lty = NULL, main = NULL, ...)

Arguments

x a vector of non-negative numerical quantities. The values inx are displayed as
the areas of pie slices.

labels one or more expressions or character strings giving names for the slices. Other
objects are coerced byas.graphicsAnnot . For empty orNA(after coercion
to character) labels, no label nor pointing line is drawn.

edges the circular outline of the pie is approximated by a polygon with this many
edges.

radius the pie is drawn centered in a square box whose sides range from−1 to 1. If the
character strings labeling the slices are long it may be necessary to use a smaller
radius.

clockwise logical indicating if slices are drawn clockwise or counter clockwise (i.e., math-
ematically positive direction), the latter is default.

init.angle number specifying thestarting angle(in degrees) for the slices. Defaults to 0
(i.e., ‘3 o’clock’) unlessclockwise is true whereinit.angle defaults to
90 (degrees), (i.e., ‘12 o’clock’).

density the density of shading lines, in lines per inch. The default value ofNULLmeans
that no shading lines are drawn. Non-positive values ofdensity also inhibit
the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a vector of colors to be used in filling or shading the slices. If missing a set of 6
pastel colours is used, unlessdensity is specified whenpar("fg") is used.

border, lty (possibly vectors) arguments passed topolygon which draws each slice.

main an overall title for the plot.

... graphical parameters can be given as arguments topie . They will affect the
main title and labels only.

Note

Pie charts are a very bad way of displaying information. The eye is good at judging linear measures
and bad at judging relative areas. A bar chart or dot chart is a preferable way of displaying this type
of data.

Cleveland (1985), page 264: “Data that can be shown by pie charts always can be shown by a dot
chart. This means that judgements of position along a common scale can be made instead of the less
accurate angle judgements.” This statement is based on the empirical investigations of Cleveland
and McGill as well as investigations by perceptual psychologists.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985)The elements of graphing data. Wadsworth: Monterey, CA, USA.

700 plot

See Also

dotchart .

Examples

require(grDevices)
pie(rep(1, 24), col = rainbow(24), radius = 0.9)

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
names(pie.sales) <- c("Blueberry", "Cherry",

"Apple", "Boston Cream", "Other", "Vanilla Cream")
pie(pie.sales) # default colours
pie(pie.sales,

col = c("purple", "violetred1", "green3", "cornsilk", "cyan", "white"))
pie(pie.sales, col = gray(seq(0.4,1.0,length=6)))
pie(pie.sales, density = 10, angle = 15 + 10 * 1:6)
pie(pie.sales, clockwise=TRUE, main="pie(*, clockwise=TRUE)")
segments(0,0, 0,1, col= "red", lwd = 2)
text(0,1, "init.angle = 90", col= "red")

n <- 200
pie(rep(1,n), labels="", col=rainbow(n), border=NA,

main = "pie(*, labels=\"\", col=rainbow(n), border=NA,..")

plot Generic X-Y Plotting

Description

Generic function for plotting ofR objects. For more details about the graphical parameter argu-
ments, seepar .

Usage

plot(x, y, ...)

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting structure,
function oranyR object with aplot methodcan be provided.

y the y coordinates of points in the plot,optional if x is an appropriate structure.

... Arguments to be passed to methods, such as graphical parameters (seepar).
Many methods will accept the following arguments:

type what type of plot should be drawn. Possible types are

• "p" for points,

• "l" for lines,

• "b" for both,

• "c" for the lines part alone of"b" ,

• "o" for both ‘overplotted’,

• "h" for ‘histogram’ like (or ‘high-density’) vertical lines,

plot.data.frame 701

• "s" for stairsteps,

• "S" for othersteps, see ‘Details’ below,

• "n" for no plotting.

All other type s give a warning or an error; using, e.g.,type = "punkte"
being equivalent totype = "p" for S compatibility.

main an overall title for the plot: seetitle .

sub a sub title for the plot: seetitle .

xlab a title for the x axis: seetitle .

ylab a title for the y axis: seetitle .

asp they/x aspect ratio, seeplot.window .

Details

For simple scatter plots,plot.default will be used. However, there areplot meth-
ods for manyR objects, includingfunction s, data.frame s, density objects, etc. Use
methods(plot) and the documentation for these.

The two step types differ in their x-y preference: Going from(x1, y1) to (x2, y2) with x1 < x2,
type = "s" moves first horizontal, then vertical, whereastype = "S" moves the other way
around.

See Also

plot.default , plot.formula and other methods;points , lines , par .

Examples

require(stats)
plot(cars)
lines(lowess(cars))

plot(sin, -pi, 2*pi)

Discrete Distribution Plot:
plot(table(rpois(100,5)), type = "h", col = "red", lwd=10,

main="rpois(100,lambda=5)")

Simple quantiles/ECDF, see ecdf() {library(stats)} for a better one:
plot(x <- sort(rnorm(47)), type = "s", main = "plot(x, type = \"s\")")
points(x, cex = .5, col = "dark red")

plot.data.frame Plot Method for Data Frames

Description

plot.data.frame , a method for theplot generic. It is designed for a quick look at numeric
data frames.

702 plot.default

Usage

S3 method for class 'data.frame':
plot(x, ...)

Arguments

x object of classdata.frame .

... further arguments tostripchart , plot.default or pairs .

Details

This is intended for data frames withnumericcolumns. For more than two columns it first calls
data.matrix to convert the data frame to a numeric matrix and then callspairs to produce a
scatterplot matrix). This can fail and may well be inappropriate: for example numerical conversion
of dates will lose their special meaning and a warning will be given.

For a two-column data frame it plots the second column against the first by the most appropriate
method for the first column.

For a single numeric column it usesstripchart , and for other single-column data frames tries
to find a plot method for the single column.

See Also

data.frame

Examples

plot(OrchardSprays[1], method="jitter")
plot(OrchardSprays[c(4,1)])
plot(OrchardSprays)

plot(iris)
plot(iris[5:4])
plot(women)

plot.default The Default Scatterplot Function

Description

Draw a scatter plot with decorations such as axes and titles in the active graphics window.

Usage

Default S3 method:
plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL, asp = NA, ...)

plot.default 703

Arguments

x, y the x and y arguments provide the x and y coordinates for the plot. Any
reasonable way of defining the coordinates is acceptable. See the function
xy.coords for details.

type 1-character string giving the type of plot desired. The following values are pos-
sible, for details, seeplot : "p" for points,"l" for lines,"o" for overplotted
points and lines,"b" , "c") for (empty if "c") points joined by lines,"s" and
"S" for stair steps and"h" for histogram-like vertical lines. Finally,"n" does
not produce any points or lines.

xlim the x limits (x1, x2) of the plot. Note thatx1 > x2 is allowed and leads to a
‘reversed axis’.

ylim the y limits of the plot.

log a character string which contains"x" if the x axis is to be logarithmic,"y"
if the y axis is to be logarithmic and"xy" or "yx" if both axes are to be
logarithmic.

main a main title for the plot, see alsotitle .

sub a sub title for the plot.

xlab a label for the x axis, defaults to a description ofx .

ylab a label for the y axis, defaults to a description ofy .

ann a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.

axes a logical value indicating whether both axes should be drawn on the plot. Use
graphical parameter"xaxt" or "yaxt" to suppress just one of the axes.

frame.plot a logical indicating whether a box should be drawn around the plot.

panel.first an expression to be evaluated after the plot axes are set up but before any plotting
takes place. This can be useful for drawing background grids or scatterplot
smooths.

panel.last an expression to be evaluated after plotting has taken place.

asp they/x aspect ratio, seeplot.window .

... other graphical parameters (seepar and section ‘Details’ below).

Details

Commonly used graphical parameters are:

col The colors for lines and points. Multiple colors can be specified so that each point can be
given its own color. If there are fewer colors than points they are recycled in the standard
fashion. Lines will all be plotted in the first colour specified.

bg a vector of background colors for open plot symbols, seepoints . Note: this isnot the same
setting aspar ("bg") .

pch a vector of plotting characters or symbols: seepoints .

cex a numerical vector giving the amount by which plotting text and symbols should be scaled
relative to the default. This works as a multiple ofpar ("cex") . NULLandNAare equivalent
to 1.0 .

lty the line type, seepar .

cex.main, col.lab, font.sub , etc settings for main- and sub-title and axis annotation,
seetitle andpar .

lwd the line width, seepar .

704 plot.default

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985)The Elements of Graphing Data.Monterey, CA: Wadsworth.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

plot , plot.window , xy.coords .

Examples

Speed <- cars$speed
Distance <- cars$dist
plot(Speed, Distance, panel.first = grid(8,8),

pch = 0, cex = 1.2, col = "blue")
plot(Speed, Distance,

panel.first = lines(stats::lowess(Speed, Distance), lty = "dashed"),
pch = 0, cex = 1.2, col = "blue")

Show the different plot types
x <- 0:12
y <- sin(pi/5 * x)
op <- par(mfrow = c(3,3), mar = .1+ c(2,2,3,1))
for (tp in c("p","l","b", "c","o","h", "s","S","n")) {

plot(y ~ x, type = tp,
main = paste("plot(*, type = \"",tp,"\")",sep=""))

if(tp == "S") {
lines(x,y, type = "s", col = "red", lty = 2)
mtext("lines(*, type = \"s\", ...)", col = "red", cex=.8)

}
}
par(op)

##--- Log-Log Plot with custom axes
lx <- seq(1,5, length=41)
yl <- expression(e^{-frac(1,2) * {log[10](x)}^2})
y <- exp(-.5*lx^2)
op <- par(mfrow=c(2,1), mar=par("mar")+c(0,1,0,0))
plot(10^lx, y, log="xy", type="l", col="purple",

main="Log-Log plot", ylab=yl, xlab="x")
plot(10^lx, y, log="xy", type="o", pch='.', col="forestgreen",

main="Log-Log plot with custom axes", ylab=yl, xlab="x",
axes = FALSE, frame.plot = TRUE)

my.at <- 10^(1:5)
axis(1, at = my.at, labels = formatC(my.at, format="fg"))
at.y <- 10^(-5:-1)
axis(2, at = at.y, labels = formatC(at.y, format="fg"), col.axis="red")
par(op)

plot.design 705

plot.design Plot Univariate Effects of a ‘Design’ or Model

Description

Plot univariate effects of one ore morefactor s, typically for a designed experiment as analyzed
by aov () . Further, in S this a method of theplot generic function fordesign objects.

Usage

plot.design(x, y = NULL, fun = mean, data = NULL, ...,
ylim = NULL, xlab = "Factors", ylab = NULL,
main = NULL, ask = NULL, xaxt = par("xaxt"),
axes = TRUE, xtick = FALSE)

Arguments

x either a data frame containing the design factors and optionally the response, or
a formula or terms object.

y the response, if not given in x.

fun a function (or name of one) to be applied to each subset. It must return one
number for a numeric (vector) input.

data data frame containing the variables referenced byx when that is formula like.

... graphical arguments such ascol , seepar .

ylim range of y values, as inplot.default .

xlab x axis label, seetitle .

ylab y axis label with a ‘smart’ default.

main main title, seetitle .

ask logical indicating if the user should be asked before a new page is started – in
the case of multiple y’s.

xaxt character giving the type of x axis.

axes logical indicating if axes should be drawn.

xtick logical indicating if ticks (one per factor) should be drawn on the x axis.

Details

The supplied function will be called once for each level of each factor in the design and the plot
will show these summary values. The levels of a particular factor are shown along a vertical line,
and the overall value offun() for the response is drawn as a horizontal line.

This is a newR implementation which will not be completely compatible to the earlier S imple-
mentations. This is not a bug but might still change.

Note

A big effort was taken to make this closely compatible to the S version. However,col (andfg)
specification has different effects.

706 plot.factor

Author(s)

Roberto Frisullo and Martin Maechler

References

Chambers, J. M. and Hastie, T. J. eds (1992)Statistical Models in S. Chapman & Hall, London,the
white book, pp. 546–7 (and 163–4).

Freeny, A. E. and Landwehr, J. M. (1990) Displays for data from large designed experiments;
Computer Science and Statistics: Proc. 22nd Sympİnterface, 117–126, Springer Verlag.

See Also

interaction.plot for a ‘standard graphic’ of designed experiments.

Examples

require(stats)
plot.design(warpbreaks)# automatic for data frame with one numeric var.

Form <- breaks ~ wool + tension
summary(fm1 <- aov(Form, data = warpbreaks))
plot.design(Form, data = warpbreaks, col = 2)# same as above

More than one y :
utils::str(esoph)
plot.design(esoph) ## two plots; if interactive you are "ask"ed

or rather, compare mean and median:
op <- par(mfcol = 1:2)
plot.design(ncases/ncontrols ~ ., data = esoph, ylim = c(0, 0.8))
plot.design(ncases/ncontrols ~ ., data = esoph, ylim = c(0, 0.8),

fun = median)
par(op)

plot.factor Plotting Factor Variables

Description

This functions implements a scatterplot method forfactor arguments of thegenericplot func-
tion. Actually,boxplot is used wheny is numeric and aspineplot wheny is a factor. For a
single factorx (i.e., withy missing) a simplebarplot is produced.

Usage

S3 method for class 'factor':
plot(x, y, legend.text = NULL, ...)

plot.formula 707

Arguments

x, y numeric or factor.y may be missing.

legend.text character vector for annotation of y axis, defaults tolevels(y) . Can be used
instead ofyaxlabels (for backward compatibility).

... Further arguments toplot , see alsopar .

See Also

plot.default , plot.formula , barplot , boxplot , spineplot .

Examples

require(grDevices)
plot(PlantGrowth) # -> plot.data.frame
plot(weight ~ group, data = PlantGrowth) # numeric vector ~ factor
plot(cut(weight, 2) ~ group, data = PlantGrowth) # factor ~ factor
passing "..." to spineplot() eventually:
plot(cut(weight, 3) ~ group, data = PlantGrowth,

col = hcl(c(0, 120, 240), 50, 70))

plot(PlantGrowth$group, axes=FALSE, main="no axes")# extremely silly

plot.formula Formula Notation for Scatterplots

Description

Specify a scatterplot or add points or lines via a formula.

Usage

S3 method for class 'formula':
plot(formula, data = parent.frame(), ..., subset,

ylab = varnames[response], ask = TRUE)

S3 method for class 'formula':
points(formula, data = parent.frame(), ..., subset)

S3 method for class 'formula':
lines(formula, data = parent.frame(), ..., subset)

Arguments

formula a formula , such asy ~ x .

data a data.frame (or list) from which the variables informula should be taken.

... Arguments to be passed to or from other methods.horizontal = TRUE is
also accepted.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

ylab the y label of the plot(s).

ask logical, seepar .

708 plot.histogram

Details

Both the terms in the formula and the... arguments are evaluated indata enclosed in
parent.frame() if data is a list or a data frame. The terms of the formula and those ar-
guments in... that are of the same length asdata are subjected to the subsetting specified in
subset . If the formula inplot.formula contains more than one non-response term, a series of
plots of y against each term is given. A plot against the running index can be specified asplot(y
~ 1) .

Missing values are not considered in these methods, and in particular cases with missing values are
not removed.

If y is an object (i.e. has aclass attribute) thenplot.formula looks for a plot method for that
class first. Otherwise, the class ofx will determine the type of the plot. For factors this will be a
parallel boxplot, and argumenthorizontal = TRUE can be used (seeboxplot).

Value

These functions are invoked for their side effect of drawing in the active graphics device.

See Also

plot.default , points , lines , plot.factor .

Examples

op <- par(mfrow=c(2,1))
plot(Ozone ~ Wind, data = airquality, pch=as.character(Month))
plot(Ozone ~ Wind, data = airquality, pch=as.character(Month),

subset = Month != 7)
par(op)

plot.histogram Plot Histograms

Description

These are methods for objects of class"histogram" , typically produced byhist .

Usage

S3 method for class 'histogram':
plot(x, freq = equidist, density = NULL, angle = 45,

col = NULL, border = par("fg"), lty = NULL,
main = paste("Histogram of",

paste(x$xname, collapse="\n")),
sub = NULL, xlab = x$xname, ylab,
xlim = range(x$breaks), ylim = NULL,
axes = TRUE, labels = FALSE, add = FALSE, ...)

S3 method for class 'histogram':
lines(x, ...)

plot.histogram 709

Arguments

x ahistogram object, or a list with componentsdensity , mid , etc, seehist
for information about the components ofx .

freq logical; if TRUE, the histogram graphic is to present a representation of fre-
quencies, i.e,x$counts ; if FALSE, relative frequencies (probabilities), i.e.,
x$density , are plotted. The default is true for equidistantbreaks and false
otherwise.

col a colour to be used to fill the bars. The default ofNULLyields unfilled bars.

border the color of the border around the bars.

angle, density
select shading of bars by lines: seerect .

lty the line type used for the bars, see alsolines .

main, sub, xlab, ylab
these arguments totitle have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults.

axes logical, indicating if axes should be drawn.

labels logical or character. Additionally draw labels on top of bars, if notFALSE; if
TRUE, draw the counts or rounded densities; iflabels is acharacter , draw
itself.

add logical. If TRUE, only the bars are added to the current plot. This is what
lines.histogram(*) does.

... further graphical parameters totitle andaxis .

Details

lines.histogram(*) is the same asplot.histogram(*, add = TRUE) .

See Also

hist , stem , density .

Examples

(wwt <- hist(women$weight, nclass = 7, plot = FALSE))
plot(wwt, labels = TRUE) # default main & xlab using wwt$xname
plot(wwt, border = "dark blue", col = "light blue",

main = "Histogram of 15 women's weights", xlab = "weight [pounds]")

Fake "lines" example, using non-default labels:
w2 <- wwt; w2$counts <- w2$counts - 1
lines(w2, col = "Midnight Blue", labels = ifelse(w2$counts, "> 1", "1"))

710 plot.table

plot.table Plot Methods for ‘table’ Objects

Description

This is a method of the genericplot function for (contingency)table objects. Whereas for two-
and more dimensional tables, amosaicplot is drawn, one-dimensional ones are plotted as bars.

Usage

S3 method for class 'table':
plot(x, type = "h", ylim = c(0, max(x)), lwd = 2,

xlab = NULL, ylab = NULL, frame.plot = is.num, ...)

Arguments

x a table (like) object.

type plotting type.

ylim range of y-axis.

lwd line width for bars whentype = "h" is used in the 1D case.

xlab, ylab x- and y-axis labels.

frame.plot logical indicating if a frame (box) should be drawn in the 1D case. Defaults to
true whenx hasdimnames coerce-able to numbers.

... further graphical arguments, seeplot.default .

See Also

plot.factor , theplot method for factors.

Examples

1-d tables
(Poiss.tab <- table(N = stats::rpois(200, lambda = 5)))
plot(Poiss.tab, main = "plot(table(rpois(200, lambda = 5)))")

plot(table(state.division))

4-D :
plot(Titanic, main ="plot(Titanic, main= *)")

plot.window 711

plot.window Set up World Coordinates for Graphics Window

Description

This function sets up the world coordinate system for a graphics window. It is called by higher level
functions such asplot.default (after plot.new).

Usage

plot.window(xlim, ylim, log = "", asp = NA, ...)

Arguments

xlim, ylim numeric vectors of length 2, giving the x and y coordinates ranges.

log character; indicating which axes should be in log scale.

asp numeric, giving theaspect ratio y/x, see below.

... further graphical parameters as inpar . The relevant ones arexaxs , yaxs and
lab .

Details

asp: If asp is a finite positive value then the window is set up so that one data unit in the x direction
is equal in length toasp × one data unit in the y direction.

Note that in this case,par ("usr") is no longer determined by, e.g.,par("xaxs") , but
rather byasp and the device’s aspect ratio. (See what happens if you interactively resize the
plot device after running the example below!)

The special caseasp == 1 produces plots where distances between points are represented
accurately on screen. Values withasp > 1 can be used to produce more accurate maps when
using latitude and longitude.

To reverse an axis, usexlim or ylim of the formc(hi, lo) .

The function attempts to produce a plausible set of scales if one or both ofxlim andylim is of
length one or the two values given are identical, but it is better to avoid that case.

Usually, one should rather use the higher level functions such asplot , hist , image , . . . , instead
and refer to their help pages for explanation of the arguments.

A side-effect of the call is to set up theusr , xaxp andyaxp graphical parameters. (It is for the
latter two thatlab is used.)

See Also

xy.coords , plot.xy , plot.default .

Examples

##--- An example for the use of 'asp' :
require(stats) # normally loaded
loc <- cmdscale(eurodist)
rx <- range(x <- loc[,1])
ry <- range(y <- -loc[,2])

712 plot.xy

plot(x, y, type="n", asp=1, xlab="", ylab="")
abline(h = pretty(rx, 10), v = pretty(ry, 10), col = "lightgray")
text(x, y, labels(eurodist), cex=0.8)

plot.xy Basic Internal Plot Function

Description

This is the internal function that does the basic plotting of points and lines. Usually, one should
rather use the higher level functions instead and refer to their help pages for explanation of the
arguments.

Usage

plot.xy(xy, type, pch = par("pch"), lty = par("lty"),
col = par("col"), bg = NA,
cex = 1, lwd = par("lwd"), ...)

Arguments

xy A four-element list as results fromxy.coords .

type 1 character code: seeplot.default . NULL is accepted as a synonym for
"p" .

pch character or integer code for kind of points, seepoints.default .

lty line type code, seelines .

col color code or name, seecolors , palette . HereNULLmeans colour 0.

bg background (fill) color for the open plot symbols 21:25: see
points.default .

cex character expansion.

lwd line width, also used for (non-filled) plot symbols, seelines andpoints .

... further graphical parameters such asxpd , lend , ljoin andlmitre .

Details

The argumentspch, col, bg, cex, lwd may be vectors and may be recycled, depending
on type : seepoints andlines for specifics. In particular note thatlwd is treated as a vector
for points and as a single (first) value for lines.

See Also

plot , plot.default , points , lines .

Examples

points.default # to see how it calls "plot.xy(xy.coords(x, y), ...)"

points 713

points Add Points to a Plot

Description

points is a generic function to draw a sequence of points at the specified coordinates. The speci-
fied character(s) are plotted, centered at the coordinates.

Usage

points(x, ...)

Default S3 method:
points(x, y = NULL, type = "p", ...)

Arguments

x, y coordinate vectors of points to plot.

type character indicating the type of plotting; actually any of thetype s as in
plot.default .

... Further graphical parameters may also be supplied as arguments. See ‘Details’.

Details

The coordinates can be passed in a plotting structure (a list withx andy components), a two-column
matrix, a time series, Seexy.coords .

Graphical parameters commonly used are

pch plotting ‘character’, i.e., symbol to use. This can either be a single character or an integer code
for one of a set of graphics symbols. The full set of S symbols is available withpch=0:18 ,
see the last picture fromexample(points) , i.e., the examples below.
In addition, there is a special set ofR plotting symbols which can be obtained with
pch=19:25 and21:25 can be colored and filled with different colors:

• pch=19 : solid circle,
• pch=20 : bullet (smaller circle),
• pch=21 : circle,
• pch=22 : square,
• pch=23 : diamond,
• pch=24 : triangle point-up,
• pch=25 : triangle point down.

Valuespch=26:32 are currently unused, andpch=32:255 give the text symbol in a single-
byte locale. In a multi-byte locale such as UTF-8, numeric values ofpch greater than or equal
to 32 specify a Unicode code point (except for the symbol font as selected bypar (font =
5)).
If pch is an integer or characterNAor an empty character string, the point is omitted from the
plot.
Valuepch="." is handled specially. It is a rectangle of side 0.01 inch (scaled bycex). In
addition, if cex = 1 (the default), each side is at least one pixel (1/72 inch on thepdf ,
postscript andxfig devices).

714 points

For other text symbols,cex=1 corresponds to the default fontsize of the device, often spec-
ified by an argumentpointsize . For pch in 1:25 the default size is about 75% of the
character height (seepar("cin")).

col color code or name, seepar .

bg background (fill) color for the open plot symbols given bypch=21:25 .

cex character (or symbol) expansion: a numerical vector. This works as a multiple of
par ("cex") .

lwd line width for drawing symbols seepar .

Others less commonly used arelty andlwd for types such as"b" and"l" .

Graphical parameterspch , col , bg , cex and lwd can be vectors (which will be recycled as
needed) giving a value for each point plotted. If lines are to be plotted (e.g. fortype = "b" the
first element oflwd is used.

Points whosex , y , pch , col or cex value isNAare omitted from the plot.

Note

What is meant by ‘a single character’ is locale-dependent.

The encoding may not have symbols for some or all of the characters inpch=128:255

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

plot , lines , and the underlying workhorse functionplot.xy .

Examples

require(stats) # for rnorm
plot(-4:4, -4:4, type = "n")# setting up coord. system
points(rnorm(200), rnorm(200), col = "red")
points(rnorm(100)/2, rnorm(100)/2, col = "blue", cex = 1.5)

op <- par(bg = "light blue")
x <- seq(0,2*pi, len=51)
something "between type='b' and type='o'":
plot(x, sin(x), type="o", pch=21, bg=par("bg"), col = "blue", cex=.6,

main='plot(..., type="o", pch=21, bg=par("bg"))')
par(op)

##-------- Showing all the extra & some char graphics symbols ------------
pchShow <-

function(extras = c("*",".", "o","O","0","+","-","|","%","#"),
cex = 3, ## good for both .Device=="postscript" and "x11"
col = "red3", bg = "gold", coltext = "brown", cextext = 1.2,
main = paste("plot symbols : points (... pch = *, cex =", cex,")"))

{
nex <- length(extras)
np <- 26 + nex
ipch <- 0:(np-1)

polygon 715

k <- floor(sqrt(np))
dd <- c(-1,1)/2
rx <- dd + range(ix <- ipch %/% k)
ry <- dd + range(iy <- 3 + (k-1)- ipch %% k)
pch <- as.list(ipch) # list with integers & strings
if(nex > 0) pch[26+ 1:nex] <- as.list(extras)
plot(rx, ry, type="n", axes = FALSE, xlab = "", ylab = "", main = main)
abline(v = ix, h = iy, col = "lightgray", lty = "dotted")
for(i in 1:np) {

pc <- pch[[i]]
'col' symbols with a 'bg'-colored interior (where available) :
points(ix[i], iy[i], pch = pc, col = col, bg = bg, cex = cex)
if(cextext > 0)

text(ix[i] - .3, iy[i], pc, col = coltext, cex = cextext)
}

}

pchShow()
pchShow(c("o","O","0"), cex = 2.5)
pchShow({}, cex = 4, cextext=0, main=NULL)

polygon Polygon Drawing

Description

polygon draws the polygons whose vertices are given inx andy .

Usage

polygon(x, y = NULL, density = NULL, angle = 45,
border = NULL, col = NA, lty = par("lty"), ...)

Arguments

x,y vectors containing the coordinates of the vertices of the polygon.

density the density of shading lines, in lines per inch. The default value ofNULLmeans
that no shading lines are drawn. A zero value ofdensity means no shading
nor filling whereas negative values (andNA) suppress shading (and so allow
color filling).

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col the color for filling the polygon. The default,NA, is to leave polygons unfilled,
unlessdensity is specified. (For back-compatibility,NULL is equivalent to
NA.) If density is specified with a positive value this gives the color of the
shading lines.

border the color to draw the border. The default,NULL, means to usepar ("fg") .
Useborder = NA to omit borders.
For compatibility with S,border can also be logical, in which caseFALSE
is equivalent toNA(borders omitted) andTRUEis equivalent toNULL (use the
foreground colour),

lty the line type to be used, as inpar .

... graphical parameters such asxpd , lend , ljoin andlmitre can be given as
arguments.

716 polygon

Details

The coordinates can be passed in a plotting structure (a list withx andy components), a two-column
matrix, Seexy.coords .

It is assumed that the polygon is to be closed by joining the last point to the first point.

The coordinates can contain missing values. The behaviour is similar to that oflines , except
that instead of breaking a line into several lines,NAvalues break the polygon into several complete
polygons (including closing the last point to the first point). See the examples below.

When multiple polygons are produced, the values ofdensity , angle , col , border , andlty
are recycled in the usual manner.

Bugs

The present shading algorithm can produce incorrect results for self-intersecting polygons.

Author(s)

The code implementing polygon shading was donated by Kevin Buhr〈buhr@stat.wisc.edu〉.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

segments for even more flexibility,lines , rect , box , abline .

par for how to specify colors.

Examples

x <- c(1:9,8:1)
y <- c(1,2*(5:3),2,-1,17,9,8,2:9)
op <- par(mfcol=c(3,1))
for(xpd in c(FALSE,TRUE,NA)) {

plot(1:10, main = paste("xpd =", xpd))
box("figure", col = "pink", lwd=3)
polygon(x,y, xpd=xpd, col="orange", lty=2, lwd=2, border="red")

}
par(op)

n <- 100
xx <- c(0:n, n:0)
yy <- c(c(0,cumsum(stats::rnorm(n))), rev(c(0,cumsum(stats::rnorm(n)))))
plot (xx, yy, type="n", xlab="Time", ylab="Distance")
polygon(xx, yy, col="gray", border = "red")
title("Distance Between Brownian Motions")

Multiple polygons from NA values
and recycling of col, border, and lty
op <- par(mfrow=c(2,1))
plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,1,2,1,2,1),

rect 717

col=c("red", "blue"),
border=c("green", "yellow"),
lwd=3, lty=c("dashed", "solid"))

plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

col=c("red", "blue"),
border=c("green", "yellow"),
lwd=3, lty=c("dashed", "solid"))

par(op)

Line-shaded polygons
plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

density=c(10, 20), angle=c(-45, 45))

rect Draw One or More Rectangles

Description

rect draws a rectangle (or sequence of rectangles) with the given coordinates, fill and border
colors.

Usage

rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
col = NA, border = NULL, lty = par("lty"), lwd = par("lwd"),
...)

Arguments

xleft a vector (or scalar) of left x positions.

ybottom a vector (or scalar) of bottom y positions.

xright a vector (or scalar) of right x positions.

ytop a vector (or scalar) of top y positions.

density the density of shading lines, in lines per inch. The default value ofNULLmeans
that no shading lines are drawn. A zero value ofdensity means no shading
lines whereas negative values (andNA) suppress shading (and so allow color
filling).

angle angle (in degrees) of the shading lines.

col color(s) to fill or shade the rectangle(s) with. The defaultNA (or alsoNULL)
means do not fill, i.e., draw transparent rectangles, unlessdensity is specified.

border color for rectangle border(s). The default meanspar("fg") . Useborder
= NAto omit borders. If there are shading lines,border = TRUE means use
the same colour for the border as for the shading lines.

lty line type for borders and shading; defaults to"solid" .

lwd line width for borders and shading.

... graphical parameters such asxpd , lend , ljoin andlmitre can be given as
arguments.

718 rug

Details

The positions supplied, i.e.,xleft, ... , are relative to the current plotting region. If the x-axis
goes from 100 to 200 thenxleft must be larger than 100 andxright must be less than 200.

It is a primitive function used inhist , barplot , legend , etc.

See Also

box for the standard box around the plot;polygon andsegments for flexible line drawing.

par for how to specify colors.

Examples

require(grDevices)
set up the plot region:
op <- par(bg = "thistle")
plot(c(100, 250), c(300, 450), type = "n", xlab="", ylab="",

main = "2 x 11 rectangles; 'rect(100+i,300+i, 150+i,380+i)'")
i <- 4*(0:10)
draw rectangles with bottom left (100, 300)+i
and top right (150, 380)+i
rect(100+i, 300+i, 150+i, 380+i, col=rainbow(11, start=.7,end=.1))
rect(240-i, 320+i, 250-i, 410+i, col=heat.colors(11), lwd=i/5)
Background alternating (transparent / "bg") :
j <- 10*(0:5)
rect(125+j, 360+j, 141+j, 405+j/2, col = c(NA,0),

border = "gold", lwd = 2)
rect(125+j, 296+j/2, 141+j, 331+j/5, col = c(NA,"midnightblue"))
mtext("+ 2 x 6 rect(*, col = c(NA,0)) and col = c(NA,\"m..blue\"))")

an example showing colouring and shading
plot(c(100, 200), c(300, 450), type= "n", xlab="", ylab="")
rect(100, 300, 125, 350) # transparent
rect(100, 400, 125, 450, col="green", border="blue") # coloured
rect(115, 375, 150, 425, col=par("bg"), border="transparent")
rect(150, 300, 175, 350, density=10, border="red")
rect(150, 400, 175, 450, density=30, col="blue",

angle=-30, border="transparent")

legend(180, 450, legend=1:4, fill=c(NA, "green", par("fg"), "blue"),
density=c(NA, NA, 10, 30), angle=c(NA, NA, 30, -30))

par(op)

rug Add a Rug to a Plot

Description

Adds arug representation (1-d plot) of the data to the plot.

Usage

rug(x, ticksize = 0.03, side = 1, lwd = 0.5, col = par("fg"),
quiet = getOption("warn") < 0, ...)

screen 719

Arguments

x A numeric vector

ticksize The length of the ticks making up the ‘rug’. Positive lengths give inwards ticks.

side On which side of the plot box the rug will be plotted. Normally 1 (bottom) or 3
(top).

lwd The line width of the ticks.

col The colour the ticks are plotted in.

quiet logical indicating if there should be a warning about clipped values.

... further arguments, passed toaxis , such asline or pos for specifying the
location of the rug.

Details

Because of the wayrug is implemented, only values ofx that fall within the plot region are in-
cluded. There will be a warning if any finite values are omitted, but non-finite values are omitted
silently.

Because of the way colours are done the axis itself is redrawn in the same colour,lty andlwd as
the ticks. You can replot the box if you don’t like this feature.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

jitter which you may want for ties inx .

Examples

require(stats)# both 'density' and its default method
with(faithful, {

plot(density(eruptions, bw = 0.15))
rug(eruptions)
rug(jitter(eruptions, amount = 0.01), side = 3, col = "light blue")

})

screen Creating and Controlling Multiple Screens on a Single Device

Description

split.screen defines a number of regions within the current device which can, to some extent,
be treated as separate graphics devices. It is useful for generating multiple plots on a single device.
Screens can themselves be split, allowing for quite complex arrangements of plots.

screen is used to select which screen to draw in.

erase.screen is used to clear a single screen, which it does by filling with the background
colour.

close.screen removes the specified screen definition(s).

720 screen

Usage

split.screen(figs, screen, erase = TRUE)
screen(n = , new = TRUE)
erase.screen(n =)
close.screen(n, all.screens = FALSE)

Arguments

figs A two-element vector describing the number of rows and the number of columns
in a screen matrixor a matrix with 4 columns. If a matrix, then each row de-
scribes a screen with values for the left, right, bottom, and top of the screen (in
that order) in NDC units, that is 0 at the lower left corner of the device surface,
and 1 at the upper right corner.

screen A number giving the screen to be split. It defaults to the current screen if there
is one, otherwise the whole device region.

erase logical: should be selected screen be cleared?

n A number indicating which screen to prepare for drawing (screen), erase
(erase.screen), or close (close.screen). (close.screen will ac-
cept a vector of screen numbers.)

new A logical value indicating whether the screen should be erased as part of the
preparation for drawing in the screen.

all.screens A logical value indicating whether all of the screens should be closed.

Details

The first call tosplit.screen placesR into split-screen mode. The other split-screen functions
only work within this mode. While in this mode, certain other commands should be avoided (see
the Warnings section below). Split-screen mode is exited by the commandclose.screen(all
= TRUE).

If the current screen is closed,close.screen sets the current screen to be the next larger screen
number if there is one, otherwise to the first available screen.

Value

split.screen returns a vector of screen numbers for the newly-created screens. With no argu-
ments,split.screen returns a vector of valid screen numbers.

screen invisibly returns the number of the selected screen. With no arguments,screen returns
the number of the current screen.

close.screen returns a vector of valid screen numbers.

screen , erase.screen , andclose.screen all return FALSE if R is not in split-screen
mode.

Warnings

The recommended way to use these functions is to completely draw a plot and all additions (i.e.
points and lines) to the base plot, prior to selecting and plotting on another screen. The behavior
associated with returning to a screen to add to an existing plot is unpredictable and may result in
problems that are not readily visible.

These functions are totally incompatible with the other mechanisms for arranging plots on a device:
par (mfrow) , par(mfcol) andlayout () .

segments 721

The functions are also incompatible with some plotting functions, such ascoplot , which make
use of these other mechanisms.

erase.screen will appear not to work if the background colour is transparent (as it is by default
on most devices).

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

par , layout , Devices , dev.*

Examples

if (interactive()) {
par(bg = "white") # default is likely to be transparent
split.screen(c(2,1)) # split display into two screens
split.screen(c(1,3), screen = 2) # now split the bottom half into 3
screen(1) # prepare screen 1 for output
plot(10:1)
screen(4) # prepare screen 4 for output
plot(10:1)
close.screen(all = TRUE) # exit split-screen mode

split.screen(c(2,1)) # split display into two screens
split.screen(c(1,2),2) # split bottom half in two
plot(1:10) # screen 3 is active, draw plot
erase.screen() # forgot label, erase and redraw
plot(1:10, ylab= "ylab 3")
screen(1) # prepare screen 1 for output
plot(1:10)
screen(4) # prepare screen 4 for output
plot(1:10, ylab="ylab 4")
screen(1, FALSE) # return to screen 1, but do not clear
plot(10:1, axes=FALSE, lty=2, ylab="") # overlay second plot
axis(4) # add tic marks to right-hand axis
title("Plot 1")
close.screen(all = TRUE) # exit split-screen mode
}

segments Add Line Segments to a Plot

Description

Draw line segments between pairs of points.

Usage

segments(x0, y0, x1, y1,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
...)

722 spineplot

Arguments

x0, y0 coordinates of pointsfrom which to draw.

x1, y1 coordinates of pointsto which to draw.

col, lty, lwd
usual graphical parameters as inpar , possibly vectors.NAvalues incol cause
the segment to be omitted.

... further graphical parameters (frompar), such asxpd and the line characteris-
tics lend , ljoin andlmitre .

Details

For eachi , a line segment is drawn between the point(x0[i], y0[i]) and the point(x1[i],
y1[i]) .

The graphical parameterscol , lty andlwd can be vectors of length greater than one and will be
recycled if necessary.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

arrows , polygon for slightly easier and less flexible line drawing, andlines for the usual
polygons.

Examples

x <- stats::runif(12); y <- stats::rnorm(12)
i <- order(x,y); x <- x[i]; y <- y[i]
plot(x, y, main="arrows(.) and segments(.)")
draw arrows from point to point :
s <- seq(length(x)-1)# one shorter than data
arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)
s <- s[-length(s)]
segments(x[s], y[s], x[s+2], y[s+2], col= 'pink')

spineplot Spine Plots and Spinograms

Description

Spine plots are a special cases of mosaic plots, and can be seen as a generalization of stacked (or
highlighted) bar plots. Analogously, spinograms are an extension of histograms.

spineplot 723

Usage

spineplot(x, ...)

Default S3 method:
spineplot(x, y = NULL,

breaks = NULL, tol.ylab = 0.05, off = NULL,
ylevels = NULL, col = NULL,
main = "", xlab = NULL, ylab = NULL,
xaxlabels = NULL, yaxlabels = NULL,
xlim = NULL, ylim = c(0, 1), ...)

S3 method for class 'formula':
spineplot(formula, data = list(),

breaks = NULL, tol.ylab = 0.05, off = NULL,
ylevels = NULL, col = NULL,
main = "", xlab = NULL, ylab = NULL,
xaxlabels = NULL, yaxlabels = NULL,
xlim = NULL, ylim = c(0, 1), ...,
subset = NULL)

Arguments

x an object, the default method expects either a single variable (interpreted to be
the explanatory variable) or a 2-way table. See details.

y a "factor" interpreted to be the dependent variable

formula a"formula" of typey ~ x with a single dependent"factor" and a single
explanatory variable.

data an optional data frame.

breaks if the explanatory variable is numeric, this controls how it is discretized.
breaks is passed tohist and can be a list of arguments.

tol.ylab convenience tolerance parameter for y-axis annotation. If the distance between
two labels drops under this threshold, they are plotted equidistantly.

off vertical offset between the bars (in per cent). It is fixed to0 for spinograms and
defaults to2 for spine plots.

ylevels a character or numeric vector specifying in which order the levels of the depen-
dent variable should be plotted.

col a vector of fill colors of the same length aslevels(y) . The default is to call
gray.colors .

main, xlab, ylab
character strings for annotation

xaxlabels, yaxlabels
character vectors for annotation of x and y axis. Default tolevels(y) and
levels(x) , respectively for the spine plot. Forxaxlabels in the spino-
gram, the breaks are used.

xlim, ylim the range of x and y values with sensible defaults.

... additional arguments passed torect .

subset an optional vector specifying a subset of observations to be used for plotting.

724 spineplot

Details

spineplot creates either a spinogram or a spine plot. It can be called viaspineplot(x,
y) or spineplot(y ~ x) wherey is interpreted to be the dependent variable (and has to be
categorical) andx the explanatory variable.x can be either categorical (then a spine plot is created)
or numerical (then a spinogram is plotted). Additionally,spineplot can also be called with only
a single argument which then has to be a 2-way table, interpreted to correspond totable(x, y) .

Both, spine plots and spinograms, are essentially mosaic plots with special formatting of spacing
and shading. Conceptually, they plotP (y|x) againstP (x). For the spine plot (where bothx and
y are categorical), both quantities are approximated by the corresponding empirical relative fre-
quencies. For the spinogram (wherex is numerical),x is first discretized (by callinghist with
breaks argument) and then empirical relative frequencies are taken.

Thus, spine plots can also be seen as a generalization of stacked bar plots where not the heights
but the widths of the bars corresponds to the relative frequencies ofx . The heights of the bars then
correspond to the conditional relative frequencies ofy in everyx group. Analogously, spinograms
extend stacked histograms.

Value

The table visualized is returned invisibly.

Author(s)

Achim Zeileis〈Achim.Zeileis@R-project.org〉

References

Friendly, M. (1994), Mosaic displays for multi-way contingency tables.Journal of the American
Statistical Association, 89, 190–200.

Hartigan, J.A., and Kleiner, B. (1984), A mosaic of television ratings.The American Statistician,
38, 32–35.

Hofmann, H., Theus, M. (2005),Interactive graphics for visualizing conditional distributions, Un-
published Manuscript.

Hummel, J. (1996), Linked bar charts: Analysing categorical data graphically.Computational
Statistics, 11, 23–33.

See Also

mosaicplot , hist , cdplot

Examples

treatment and improvement of patients with rheumatoid arthritis
treatment <- factor(rep(c(1, 2), c(43, 41)), levels = c(1, 2),

labels = c("placebo", "treated"))
improved <- factor(rep(c(1, 2, 3, 1, 2, 3), c(29, 7, 7, 13, 7, 21)),

levels = c(1, 2, 3),
labels = c("none", "some", "marked"))

(dependence on a categorical variable)
(spineplot(improved ~ treatment))

applications and admissions by department at UC Berkeley

stars 725

(two-way tables)
(spineplot(margin.table(UCBAdmissions, c(3, 2)),

main = "Applications at UCB"))
(spineplot(margin.table(UCBAdmissions, c(3, 1)),

main = "Admissions at UCB"))

NASA space shuttle o-ring failures
fail <- factor(c(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1,

1, 1, 1, 2, 1, 1, 1, 1, 1),
levels = c(1, 2), labels = c("no", "yes"))

temperature <- c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70,
70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

(dependence on a numerical variable)
(spineplot(fail ~ temperature))
(spineplot(fail ~ temperature, breaks = 3))
(spineplot(fail ~ temperature, breaks = quantile(temperature)))

highlighting for failures
spineplot(fail ~ temperature, ylevels = 2:1)

stars Star (Spider/Radar) Plots and Segment Diagrams

Description

Draw star plots or segment diagrams of a multivariate data set. With one single location, also draws
‘spider’ (or ‘radar’) plots.

Usage

stars(x, full = TRUE, scale = TRUE, radius = TRUE,
labels = dimnames(x)[[1]], locations = NULL,
nrow = NULL, ncol = NULL, len = 1,
key.loc = NULL, key.labels = dimnames(x)[[2]],
key.xpd = TRUE,
xlim = NULL, ylim = NULL, flip.labels = NULL,
draw.segments = FALSE,
col.segments = 1:n.seg, col.stars = NA,
axes = FALSE, frame.plot = axes,
main = NULL, sub = NULL, xlab = "", ylab = "",
cex = 0.8, lwd = 0.25, lty = par("lty"), xpd = FALSE,
mar = pmin(par("mar"),

1.1+ c(2*axes+ (xlab != ""),
2*axes+ (ylab != ""), 1,0)),

add = FALSE, plot = TRUE, ...)

Arguments

x matrix or data frame of data. One star or segment plot will be produced for each
row of x . Missing values (NA) are allowed, but they are treated as if they were 0
(after scaling, if relevant).

726 stars

full logical flag: if TRUE, the segment plots will occupy a full circle. Otherwise,
they occupy the (upper) semicircle only.

scale logical flag: ifTRUE, the columns of the data matrix are scaled independently so
that the maximum value in each column is 1 and the minimum is 0. IfFALSE,
the presumption is that the data have been scaled by some other algorithm to the
range[0, 1].

radius logical flag: inTRUE, the radii corresponding to each variable in the data will
be drawn.

labels vector of character strings for labeling the plots. Unlike the S functionstars ,
no attempt is made to construct labels iflabels = NULL .

locations Either two column matrix with the x and y coordinates used to place each of the
segment plots; or numeric of length 2 when all plots should be superimposed
(for a ‘spider plot’). By default,locations = NULL , the segment plots will
be placed in a rectangular grid.

nrow, ncol integers giving the number of rows and columns to use whenlocations is
NULL. By default,nrow == ncol , a square layout will be used.

len scale factor for the length of radii or segments.

key.loc vector with x and y coordinates of the unit key.

key.labels vector of character strings for labeling the segments of the unit key. If omitted,
the second component ofdimnames(x) is used, if available.

key.xpd clipping switch for the unit key (drawing and labeling), seepar ("xpd") .

xlim vector with the range of x coordinates to plot.

ylim vector with the range of y coordinates to plot.

flip.labels logical indicating if the label locations should flip up and down from diagram to
diagram. Defaults to a somewhat smart heuristic.

draw.segments
logical. If TRUEdraw a segment diagram.

col.segments color vector (integer or character, seepar), each specifying a color for one of
the segments (variables). Ignored ifdraw.segments = FALSE .

col.stars color vector (integer or character, seepar), each specifying a color for one of
the stars (cases). Ignored ifdraw.segments = TRUE .

axes logical flag: ifTRUEaxes are added to the plot.

frame.plot logical flag: ifTRUE, the plot region is framed.

main a main title for the plot.

sub a sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

cex character expansion factor for the labels.

lwd line width used for drawing.

lty line type used for drawing.

xpd logical or NA indicating if clipping should be done, seepar (xpd = .) .

mar argument topar (mar = *) , typically choosing smaller margins than by de-
fault.

... further arguments, passed to the first call ofplot() , seeplot.default and
to box () if frame.plot is true.

add logical, if TRUEaddstars to current plot.

plot logical, if FALSE, nothing is plotted.

stars 727

Details

Missing values are treated as 0.

Each star plot or segment diagram represents one row of the inputx . Variables (columns) start on
the right and wind counterclockwise around the circle. The size of the (scaled) column is shown by
the distance from the center to the point on the star or the radius of the segment representing the
variable.

Only one page of output is produced.

Note

This code started life as spatial star plots by David A. Andrews. Seehttp://www.udallas.
edu:8080/~andrews/software/software.html .

Prior to 1.4.1, scaling only shifted the maximum to 1, although documented as here.

Author(s)

Thomas S. Dye

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

symbols for another way to draw stars and other symbols.

Examples

require(grDevices)
stars(mtcars[, 1:7], key.loc = c(14, 2),

main = "Motor Trend Cars : stars(*, full = F)", full = FALSE)
stars(mtcars[, 1:7], key.loc = c(14, 1.5),

main = "Motor Trend Cars : full stars()",flip.labels=FALSE)

'Spider' or 'Radar' plot:
stars(mtcars[, 1:7], locations = c(0,0), radius = FALSE,

key.loc=c(0,0), main="Motor Trend Cars", lty = 2)

Segment Diagrams:
palette(rainbow(12, s = 0.6, v = 0.75))
stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 1.5),

main = "Motor Trend Cars", draw.segments = TRUE)
stars(mtcars[, 1:7], len = 0.6, key.loc = c(1.5, 0),

main = "Motor Trend Cars", draw.segments = TRUE,
frame.plot=TRUE, nrow = 4, cex = .7)

scale linearly (not affinely) to [0, 1]
USJudge <- apply(USJudgeRatings, 2, function(x) x/max(x))
Jnam <- row.names(USJudgeRatings)
Snam <- abbreviate(substring(Jnam,1,regexpr("[,.]",Jnam) - 1), 7)
stars(USJudge, labels = Jnam, scale = FALSE,

key.loc = c(13, 1.5), main = "Judge not ...", len = 0.8)
stars(USJudge, labels = Snam, scale = FALSE,

http://www.udallas.edu:8080/~andrews/software/software.html
http://www.udallas.edu:8080/~andrews/software/software.html

728 stem

key.loc = c(13, 1.5), radius = FALSE)

loc <- stars(USJudge, labels = NULL, scale = FALSE,
radius = FALSE, frame.plot = TRUE,
key.loc = c(13, 1.5), main = "Judge not ...", len = 1.2)

text(loc, Snam, col = "blue", cex = 0.8, xpd = TRUE)

'Segments':
stars(USJudge, draw.segments = TRUE, scale = FALSE, key.loc = c(13,1.5))

'Spider':
stars(USJudgeRatings, locations=c(0,0), scale=FALSE,radius = FALSE,

col.stars=1:10, key.loc = c(0,0), main="US Judges rated")
'Radar-Segments'
stars(USJudgeRatings[1:10,], locations = 0:1, scale=FALSE,

draw.segments = TRUE, col.segments=0, col.stars=1:10,key.loc= 0:1,
main="US Judges 1-10 ")

palette("default")
stars(cbind(1:16,10*(16:1)),draw.segments=TRUE,

main = "A Joke -- do *not* use symbols on 2D data!")

stem Stem-and-Leaf Plots

Description

stem produces a stem-and-leaf plot of the values inx . The parameterscale can be used to
expand the scale of the plot. A value ofscale=2 will cause the plot to be roughly twice as long
as the default.

Usage

stem(x, scale = 1, width = 80, atom = 1e-08)

Arguments

x a numeric vector.

scale This controls the plot length.

width The desired width of plot.

atom a tolerance.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

stem(islands)
stem(log10(islands))

stripchart 729

stripchart 1-D Scatter Plots

Description

stripchart produces one dimensional scatter plots (or dot plots) of the given data. These plots
are a good alternative toboxplot s when sample sizes are small.

Usage

stripchart(x, method = "overplot", jitter = 0.1, offset = 1/3,
vertical = FALSE, group.names, add = FALSE,
at = NULL, xlim = NULL, ylim = NULL,
main = "", ylab = "", xlab = "",
log = "", pch = 0, col = par("fg"), cex = par("cex"))

Arguments

x the data from which the plots are to be produced. The data can be specified as
a single numeric vector, or as list of numeric vectors, each corresponding to a
component plot. Alternatively a symbolic specification of the formx ~ g can
be given, indicating the observations in the vectorx are to be grouped according
to the levels of the factorg. NAs are allowed in the data.

method the method to be used to separate coincident points. The default method
"overplot" causes such points to be overplotted, but it is also possible to
specify "jitter" to jitter the points, or"stack" have coincident points
stacked. The last method only makes sense for very granular data.

jitter whenmethod="jitter" is used,jitter gives the amount of jittering ap-
plied.

offset when stacking is used, points are stacked this many line-heights (symbol widths)
apart.

vertical when vertical isTRUEthe plots are drawn vertically rather than the default hor-
izontal.

group.names group labels which will be printed alongside (or underneath) each plot.

add logical, if trueadd the chart to the current plot.

at numeric vector giving the locations where the charts should be drawn, particu-
larly whenadd = TRUE; defaults to1:n wheren is the number of boxes.

main, ylab, xlab
labels: seetitle .

xlim, ylim plot limits: seeplot.window .

log, pch, col, cex
Graphical parameters: seepar .

Details

Extensive examples of the use of this kind of plot can be found in Box, Hunter and Hunter or Seber
and Wild.

730 strwidth

Examples

x <- stats::rnorm(50)
xr <- round(x, 1)
stripchart(x) ; m <- mean(par("usr")[1:2])
text(m, 1.04, "stripchart(x, \"overplot\")")
stripchart(xr, method = "stack", add = TRUE, at = 1.2)
text(m, 1.35, "stripchart(round(x,1), \"stack\")")
stripchart(xr, method = "jitter", add = TRUE, at = 0.7)
text(m, 0.85, "stripchart(round(x,1), \"jitter\")")

with(OrchardSprays,
stripchart(decrease ~ treatment,

main = "stripchart(Orchardsprays)", ylab = "decrease",
vertical = TRUE, log = "y"))

with(OrchardSprays,
stripchart(decrease ~ treatment, at = c(1:8)^2,

main = "stripchart(Orchardsprays)", ylab = "decrease",
vertical = TRUE, log = "y"))

strwidth Plotting Dimensions of Character Strings and Math Expressions

Description

These functions compute the width or height, respectively, of the given strings or mathematical
expressionss[i] on the current plotting device inusercoordinates,inchesor as fraction of the
figure widthpar("fin") .

Usage

strwidth(s, units = "user", cex = NULL)
strheight(s, units = "user", cex = NULL)

Arguments

s a character orexpressionvector whose dimensions are to be determined. Other
objects are coerced byas.graphicsAnnot .

units character indicating in which unitss is measured; should be one of"user" ,
"inches" , "figure" ; partial matching is performed.

cex numericcharacterexpansion factor; multiplied bypar ("cex") yields the fi-
nal character size; the defaultNULL is equivalent to1.

Details

Where an element ofs is a multi-line string (that is, contains newlines\n), the width and height
are of an enclosing rectangle of the string as plotted bytext in the current font. The inter-line
spacing is controlled bycex , par ("lheight") and the ‘point size’ (but not the actual font in
use).

sunflowerplot 731

Value

Numeric vector with the same length ass , giving the width or height for eachs[i] . NAstrings are
given width and height 0 (as they are not plotted).

See Also

text , nchar

Examples

str.ex <- c("W","w","I",".","WwI.")
op <- par(pty='s'); plot(1:100,1:100, type="n")
sw <- strwidth(str.ex); sw
all.equal(sum(sw[1:4]), sw[5])
#- since the last string contains the others

sw.i <- strwidth(str.ex, "inches"); 25.4 * sw.i # width in [mm]
unique(sw / sw.i)
constant factor: 1 value
mean(sw.i / strwidth(str.ex, "fig")) / par('fin')[1] # = 1: are the same

See how letters fall in classes
-- depending on graphics device and font!
all.lett <- c(letters, LETTERS)
shL <- strheight(all.lett, units = "inches") * 72 # 'big points'
table(shL) # all have same heights ...
mean(shL)/par("cin")[2] # around 0.6

(swL <- strwidth(all.lett, units="inches") * 72) # 'big points'
split(all.lett, factor(round(swL, 2)))

sumex <- expression(sum(x[i], i=1,n), e^{i * pi} == -1)
strwidth(sumex)
strheight(sumex)

par(op)#- reset to previous setting

sunflowerplot Produce a Sunflower Scatter Plot

Description

Multiple points are plotted as ‘sunflowers’ with multiple leaves (‘petals’) such that overplotting is
visualized instead of accidental and invisible.

Usage

sunflowerplot(x, y = NULL, number, log = "", digits = 6,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
add = FALSE, rotate = FALSE,
pch = 16, cex = 0.8, cex.fact = 1.5,
col = par("col"), bg = NA, size = 1/8, seg.col = 2,
seg.lwd = 1.5, ...)

732 sunflowerplot

Arguments

x numeric vector ofx -coordinates of lengthn, say, or another valid plotting struc-
ture, as forplot.default , see alsoxy.coords .

y numeric vector ofy -coordinates of lengthn.

number integer vector of lengthn. number[i] = number of replicates for
(x[i],y[i]) , may be 0.
Default (missing(number)): compute the exact multiplicity of the points
x[],y[] , via xyTable () .

log character indicating log coordinate scale, seeplot.default .

digits whennumber is computed (i.e., not specified),x andy are rounded todigits
significant digits before multiplicities are computed.

xlab,ylab character label for x-, or y-axis, respectively.

xlim,ylim numeric(2) limiting the extents of the x-, or y-axis.

add logical; should the plot be added on a previous one ? Default isFALSE.

rotate logical; if TRUE, randomly rotate the sunflowers (preventing artefacts).

pch plotting character to be used for points (number[i]==1) and center of sun-
flowers.

cex numeric; character size expansion of center points (s.pch).

cex.fact numericshrinkingfactor to be used for the center pointswhen there are flower
leaves, i.e.,cex / cex.fact is used for these.

col, bg colors for the plot symbols, passed toplot.default .

size of sunflower leaves in inches, 1[in] := 2.54[cm]. Default: 1/8,̈ approximately
3.2mm.

seg.col color to be used for thesegments which make the sunflowers leaves, see
par (col=) ; col = "gold" reminds of real sunflowers.

seg.lwd numeric; the line width for the leaves’ segments.

... further arguments toplot [if add=FALSE].

Details

For number[i]==1 , a (slightly enlarged) usual plotting symbol (pch) is drawn. For
number[i] > 1 , a small plotting symbol is drawn andnumber[i] equi-angular ‘rays’ em-
anate from it.

If rotate=TRUE andnumber[i] >= 2 , a random direction is chosen (instead of the y-axis)
for the first ray. The goal is tojitter the orientations of the sunflowers in order to prevent
artefactual visual impressions.

Value

A list with three components of same length,

x x coordinates

y y coordinates

number number

UsexyTable () (from packagegrDevices) if you are only interested in this return value.

symbols 733

Side Effects

A scatter plot is drawn with ‘sunflowers’ as symbols.

Author(s)

Andreas Ruckstuhl, Werner Stahel, Martin Maechler, Tim Hesterberg, 1989–1993. Port toR by
Martin Maechler〈maechler@stat.math.ethz.ch〉.

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983)Graphical Methods for Data
Analysis.Wadsworth.

Schilling, M. F. and Watkins, A. E. (1994) A suggestion for sunflower plots.The American Statis-
tician, 48, 303–305.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

density , xyTable

Examples

require(stats)
require(grDevices)

'number' is computed automatically:
sunflowerplot(iris[, 3:4])
Imitating Chambers et al., p.109, closely:
sunflowerplot(iris[, 3:4], cex=.2, cex.fact=1, size=.035, seg.lwd=.8)

sunflowerplot(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),
main = "Sunflower Plot of Rounded N(0,1)")

Similarly using a "xyTable" argument:
xyT <- xyTable(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),

digits=3)
utils::str(xyT, vec.len=20)
sunflowerplot(xyT, main = "2nd Sunflower Plot of Rounded N(0,1)")

A 'marked point process' {explicit 'number' argument}:
sunflowerplot(rnorm(100), rnorm(100), number = rpois(n=100,lambda=2),

main="Sunflower plot (marked point process)",
rotate=TRUE, col = "blue4")

symbols Draw Symbols (Circles, Squares, Stars, Thermometers, Boxplots) on a
Plot

Description

This function draws symbols on a plot. One of six symbols;circles, squares, rectangles, stars,
thermometers, and boxplots, can be plotted at a specified set of x and y coordinates. Specific
aspects of the symbols, such as relative size, can be customized by additional parameters.

734 symbols

Usage

symbols(x, y = NULL, circles, squares, rectangles, stars,
thermometers, boxplots, inches = TRUE, add = FALSE,
fg = par("col"), bg = NA,
xlab = NULL, ylab = NULL, main = NULL,
xlim = NULL, ylim = NULL, ...)

Arguments

x, y the x and y co-ordinates for the centres of the symbols. They can be specified in
any way which is accepted byxy.coords .

circles a vector giving the radii of the circles.

squares a vector giving the length of the sides of the squares.

rectangles a matrix with two columns. The first column gives widths and the second the
heights of rectangles.

stars a matrix with three or more columns giving the lengths of the rays from the
center of the stars.NAvalues are replaced by zeroes.

thermometers a matrix with three or four columns. The first two columns give the width and
height of the thermometer symbols. If there are three columns, the third is taken
as a proportion: the thermometers are filled (using colourfg) from their base
to this proportion of their height. If there are four columns, the third and fourth
columns are taken as proportions and the thermometers are filled between these
two proportions of their heights. The part of the box not filled infg will be
filled in the background colour (default transparent) given bybg .

boxplots a matrix with five columns. The first two columns give the width and height of
the boxes, the next two columns give the lengths of the lower and upper whiskers
and the fifth the proportion (with a warning if not in [0,1]) of the way up the box
that the median line is drawn.

inches TRUE, FALSEor a positive number. See ‘Details’.

add if add is TRUE, the symbols are added to an existing plot, otherwise a new plot
is created.

fg colour(s) the symbols are to be drawn in.

bg if specified, the symbols are filled with colour(s), the vectorbg being recycled
to the number of symbols. The default is to leave the symbols unfilled.

xlab the x label of the plot ifadd is not true. Defaults to thedeparse d expression
used forx .

ylab the y label of the plot. Unused ifadd = TRUE.

main a main title for the plot. Unused ifadd = TRUE.

xlim numeric vector of length 2 giving the x limits for the plot. Unused ifadd =
TRUE.

ylim numeric vector of length 2 giving the y limits for the plot. Unused ifadd =
TRUE.

... graphics parameters can also be passed to this function, as can the plot aspect
ratioasp (seeplot.window).

symbols 735

Details

Observations which have missing coordinates or missing size parameters are not plotted. The ex-
ception to this isstars. In that case, the length of any ray which isNAis reset to zero.

Argumentinches controls the sizes of the symbols. IfTRUE(the default), the symbols are scaled
so that the largest dimension of any symbol is one inch. If a positive number is given the symbols
are scaled to make largest dimension this size in inches (soTRUEand1 are equivalent). Ifinches
is FALSE, the units are taken to be those of the appropriate axes. (For circles, squares and stars the
units of the x axis are used. For boxplots, the lengths of the whiskers are regarded as dimensions
alongside width and height when scaling byinches , and are otherwise interpreted in the units of
the y axis.)

Circles of radius zero are plotted at radius one pixel (which is device-dependent).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

W. S. Cleveland (1985)The Elements of Graphing Data.Monterey, California: Wadsworth.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

stars for drawingstarswith a bit more flexibility.

If you are thinking about doing ‘bubble plots’ bysymbols(*, circles=*) , you shouldreally
consider usingsunflowerplot instead.

Examples

require(stats); require(grDevices)
x <- 1:10
y <- sort(10*runif(10))
z <- runif(10)
z3 <- cbind(z, 2*runif(10), runif(10))
symbols(x, y, thermometers=cbind(.5, 1, z), inches=.5, fg = 1:10)
symbols(x, y, thermometers = z3, inches=FALSE)
text(x,y, apply(format(round(z3, digits=2)), 1, paste, collapse = ","),

adj = c(-.2,0), cex = .75, col = "purple", xpd=NA)

Note that example(trees) shows more sensible plots!
N <- nrow(trees)
with(trees, {
Girth is diameter in inches
symbols(Height, Volume, circles=Girth/24, inches=FALSE,

main="Trees' Girth")# xlab and ylab automatically
Colours too:
palette(rainbow(N, end = 0.9))
symbols(Height, Volume, circles=Girth/16, inches=FALSE, bg = 1:N,

fg="gray30", main="symbols(*, circles=Girth/16, bg = 1:N)")
palette("default")
})

736 text

text Add Text to a Plot

Description

text draws the strings given in the vectorlabels at the coordinates given byx andy . y may be
missing sincexy.coords (x,y) is used for construction of the coordinates.

Usage

text(x, ...)

Default S3 method:
text (x, y = NULL, labels = seq_along(x), adj = NULL,

pos = NULL, offset = 0.5, vfont = NULL,
cex = 1, col = NULL, font = NULL, ...)

Arguments

x, y numeric vectors of coordinates where the textlabels should be written. If the
length ofx andy differs, the shorter one is recycled.

labels a character vector orexpressionspecifying thetext to be written. An attempt
is made to coerce other language objects (names and calls) to expressions, and
vectors and other classed objects to character vectors byas.character . If
labels is longer thanx andy , the coordinates are recycled to the length of
labels .

adj one or two values in[0, 1] which specify the x (and optionally y) adjustment of
the labels. On most devices values outside that interval will also work.

pos a position specifier for the text. If specified this overrides anyadj value given.
Values of1, 2, 3 and4, respectively indicate positions below, to the left of,
above and to the right of the specified coordinates.

offset whenpos is specified, this value gives the offset of the label from the specified
coordinate in fractions of a character width.

vfont NULL for the current font family, or a character vector of length 2 for Hershey
vector fonts. The first element of the vector selects a typeface and the second
element selects a style. Ignored iflabels is an expression.

cex numericcharacterexpansion factor; multiplied bypar ("cex") yields the fi-
nal character size.NULLandNAare equivalent to1.0 .

col, font the color and (ifvfont = NULL) font to be used, possibly vectors. These
default to the values of the global graphical parameters inpar () .

... further graphical parameters (frompar), such assrt , family andxpd .

Details

labels must be of typecharacter or expression (or be coercible to such a type). In the
latter case, quite a bit of mathematical notation is available such as sub- and superscripts, greek
letters, fractions, etc.

adj allows adjustment of the text with respect to(x,y) . Values of 0, 0.5, and 1 specify
left/bottom, middle and right/top, respectively. The default is for centered text, i.e.,adj =

text 737

c(0.5, 0.5) . Accurate vertical centering needs character metric information on individual char-
acters, which is only available on some devices.

Thepos andoffset arguments can be used in conjunction with values returned byidentify
to recreate an interactively labelled plot.

Text can be rotated by using graphical parameterssrt (seepar); this rotates about the centre set
by adj .

Graphical parameterscol , cex andfont can be vectors and will then be applied cyclically to the
labels (and extra values will be ignored).NAvalues offont are replaced bypar("font") .

Labels whosex , y , labels , cex or col value isNAare omitted from the plot.

Euro symbol

The Euro symbol was introduced relatively recently, and may not be available in older fonts. In
recent versions of Adobe symbol fonts it is character 160, sotext(x, y, "\xA0", font =
5) will work. People using Western European locales on Unix-alikes can probably select ISO-
8895-15 (Latin-9) which has the Euro as character 165: this can also be used forpostscript
andpdf .

The Euro should be rendered correctly byX11 in UTF-8 locales, but the corresponding single-byte
encoding inpostscript andpdf will be to be selected asISOLatin9.enc .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

See Also

mtext , title , Hershey for details on Hershey vector fonts,plotmath for details and more
examples on mathematical annotation.

Examples

plot(-1:1,-1:1, type = "n", xlab = "Re", ylab = "Im")
K <- 16; text(exp(1i * 2 * pi * (1:K) / K), col = 2)

The following two examples use latin1 characters: these may not
appear correctly (or be omitted entirely).
plot(1:10, 1:10, main = "text(...) examples\n~~~~~~~~~~~~~~",

sub = "R is GNU ©, but not ® ...")
mtext("«Latin-1 accented chars»: éè øØ å<Å æ<Æ", side=3)
points(c(6,2), c(2,1), pch = 3, cex = 4, col = "red")
text(6, 2, "the text is CENTERED around (x,y) = (6,2) by default",

cex = .8)
text(2, 1, "or Left/Bottom - JUSTIFIED at (2,1) by 'adj = c(0,0)'",

adj = c(0,0))
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .75)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

Two more latin1 examples
text(5,10.2,

738 title

"Le français, c'est façile: Règles, Liberté, Egalité, Fraternité...")
text(5,9.8,

"Jetz no chli züritüütsch: (noch ein bißchen Zürcher deutsch)")

title Plot Annotation

Description

This function can be used to add labels to a plot. Its first four principal arguments can also be
used as arguments in most high-level plotting functions. They must be of typecharacter or
expression . In the latter case, quite a bit of mathematical notation is available such as sub- and
superscripts, greek letters, fractions, etc: seeplotmath

Usage

title(main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
line = NA, outer = FALSE, ...)

Arguments

main The main title (on top) using font and size (character expansion)
par("font.main") and colorpar("col.main") .

sub Sub-title (at bottom) using font and sizepar("font.sub") and color
par("col.sub") .

xlab X axis label using font and character expansionpar("font.lab") and color
par("col.lab") .

ylab Y axis label, same font attributes asxlab .

line specifying a value forline overrides the default placement of labels, and places
them this many lines outwards from the plot edge.

outer a logical value. IfTRUE, the titles are placed in the outer margins of the plot.

... further graphical parameters frompar . Use e.g.,col.main or cex.sub
instead of justcol or cex . xpd can be used to set the clipping region: this de-
faults to the figure region unlessouter = TRUE , otherwise the device region
and can only be increased.mgpcontrols the default placing of the axis titles.

Details

The labels passed totitle can be a character strings or language objects (names, calls or expres-
sions), or a list containing the string to be plotted, and a selection of the optional modifying graphi-
cal parameterscex= , col= andfont= . Other objects will be coerced byas.graphicsAnnot .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

mtext , text ; plotmath for details on mathematical annotation.

units 739

Examples

plot(cars, main = "") # here, could use main directly
title(main = "Stopping Distance versus Speed")

plot(cars, main = "")
title(main = list("Stopping Distance versus Speed", cex=1.5,

col="red", font=3))

Specifying "..." :
plot(1, col.axis = "sky blue", col.lab = "thistle")
title("Main Title", sub = "sub title",

cex.main = 2, font.main= 4, col.main= "blue",
cex.sub = 0.75, font.sub = 3, col.sub = "red")

x <- seq(-4, 4, len = 101)
y <- cbind(sin(x), cos(x))
matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",
plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
labels = expression(-pi, -pi/2, 0, pi/2, pi))

abline(h = 0, v = pi/2 * c(-1,1), lty = 2, lwd = .1, col = "gray70")

units Graphical Units

Description

xinch andyinch convert the specified number of inches given as their arguments into the correct
units for plotting with graphics functions. Usually, this only makes sense when normal coordinates
are used, i.e.,no log scale (see thelog argument topar).

xyinch does the same for a pair of numbersxy , simultaneously.

Usage

xinch(x = 1, warn.log = TRUE)
yinch(y = 1, warn.log = TRUE)
xyinch(xy = 1, warn.log = TRUE)

Arguments

x,y numeric vector

xy numeric of length 1 or 2.

warn.log logical; if TRUE, a warning is printed in case of active log scale.

740 xspline

Examples

all(c(xinch(),yinch()) == xyinch()) # TRUE
xyinch()
xyinch #- to see that is really delta{"usr"} / "pin"

plot labels offset 0.12 inches to the right
of plotted symbols in a plot
with(mtcars, {

plot(mpg, disp, pch=19, main= "Motor Trend Cars")
text(mpg + xinch(0.12), disp, row.names(mtcars),

adj = 0, cex = .7, col = 'blue')
})

xspline Draw an X-spline

Description

Draw an X-spline, a curve drawn relative to control points.

Usage

xspline(x, y = NULL, shape = 0, open = TRUE, repEnds = TRUE, draw = TRUE,
border = par("fg"), col = NA, ...)

Arguments

x,y vectors containing the coordinates of the vertices of the polygon. See
xy.coords for alternatives.

shape A numeric vector of values between -1 and 1, which control the shape of the
spline relative to the control points.

open A logical value indicating whether the spline is an open or a closed shape.

repEnds For open X-splines, a logical value indicating whether the first and last control
points should be replicated for drawing the curve. Ignored for closed X-splines.

draw logical: should the X-spline be drawn? If false, a set of line segments to draw
the curve is returned, and nothing is drawn.

border the color to draw the curve. The default,NULL, means to usepar ("fg") . Use
border = NA to omit borders.

col the color for filling the shape. The default,NA, is to leave unfilled.

... graphical parameters such aslty , xpd , lend , ljoin and lmitre can be
given as arguments.

Details

An X-spline is a line drawn relative to control points. For each control point, the line may pass
through (interpolate) the control point or it may only approach (approximate) the control point; the
behaviour is determined by a shape parameter for each control point.

If the shape parameter is greater than zero, the spline approximates the control points (and is very
similar to a cubic B-spline when the shape is 1). If the shape parameter is less than zero, the spline

xspline 741

interpolates the control points (and is very similar to a Catmull-Rom spline when the shape is -1).
If the shape parameter is 0, the spline forms a sharp corner at that control point.

For open X-splines, the start and end control points must have a shape of 0 (and non-zero values are
silently converted to zero without warning).

For open X-splines, by default the start and end control points are actually replicated before the
curve is drawn. A curve is drawn between (interpolating or approximating) the second and third of
each set of four control points, so this default behaviour ensures that the resulting curve starts at the
first control point you have specified and ends at the last control point. The default behaviour can
be turned off via therepEnds argument.

Value

If draw = TRUE, NULLotherwise a list with elementsx andy which could be passed tolines ,
polygon and so on.

Invisible in both cases.

References

Blanc, C. and Schlick, C. (1995),X-splines : A Spline Model Designed for the End User, in Pro-
ceedings of SIGGRAPH 95, pp. 377–386. http://dept-info.labri.fr/~schlick/
DOC/sig1.html

See Also

polygon .

par for how to specify colors.

Examples

based on examples in ?grid.xspline

xsplineTest <- function(s, open = TRUE,
x = c(1,1,3,3)/4,
y = c(1,3,3,1)/4, ...) {

plot(c(0,1), c(0,1), type="n", axes=FALSE, xlab="", ylab="")
points(x, y, pch=19)
xspline(x, y, s, open, ...)
text(x+0.05*c(-1,-1,1,1), y+0.05*c(-1,1,1,-1), s)

}
op <- par(mfrow=c(3,3), mar=rep(0,4), oma=c(0,0,2,0))
xsplineTest(c(0, -1, -1, 0))
xsplineTest(c(0, -1, 0, 0))
xsplineTest(c(0, -1, 1, 0))
xsplineTest(c(0, 0, -1, 0))
xsplineTest(c(0, 0, 0, 0))
xsplineTest(c(0, 0, 1, 0))
xsplineTest(c(0, 1, -1, 0))
xsplineTest(c(0, 1, 0, 0))
xsplineTest(c(0, 1, 1, 0))
title("Open X-splines", outer=TRUE)

par(mfrow=c(3,3), mar=rep(0,4), oma=c(0,0,2,0))
xsplineTest(c(0, -1, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, -1, 0, 0), FALSE, col="grey80")

http://dept-info.labri.fr/~schlick/DOC/sig1.html
http://dept-info.labri.fr/~schlick/DOC/sig1.html

742 xspline

xsplineTest(c(0, -1, 1, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, 0, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, 1, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, 0, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, 1, 0), FALSE, col="grey80")
title("Closed X-splines", outer=TRUE)

par(op)

x <- sort(stats::rnorm(5))
y <- sort(stats::rnorm(5))
plot(x, y, pch=19)
res <- xspline(x, y, 1, draw=FALSE)
lines(res)
the end points may be very close together,
so use last few for direction
nr <- length(res$x)
arrows(res$x[1], res$y[1], res$x[4], res$y[4], code=1, length=0.1)
arrows(res$x[nr-3], res$y[nr-3], res$x[nr], res$y[nr],

code = 2, length = 0.1)

Chapter 5

The grid package

grid-package The Grid Graphics Package

Description

A rewrite of the graphics layout capabilities, plus some support for interaction.

Details

This package contains a graphics system which supplements S-style graphics (see thegraphics
package).

Further information is available in the followingvignettes:

grid Introduction togrid (../doc/grid.pdf)
displaylist Display Lists ingrid (../doc/displaylist.pdf)
frame Frames and packing grobs (../doc/frame.pdf)
grobs Working withgrid grobs (../doc/grobs.pdf)
interactive Editinggrid Graphics (../doc/interactive.pdf)
locndimn Locations versus Dimensions (../doc/locndimn.pdf)
moveline Demonstrating move-to and line-to (../doc/moveline.pdf)
nonfinite How grid responds to non-finite values (../doc/nonfinite.pdf)
plotexample Writing grid Code (../doc/plotexample.pdf)
rotated Rotated Viewports (../doc/rotated.pdf)
saveload Persistent representations (../doc/saveload.pdf)
sharing Modifying multiple grobs simultaneously (../doc/sharing.pdf)
viewports Working withgrid viewports (../doc/viewports.pdf)

For a complete list of functions with individual help pages, uselibrary(help="grid") .

Author(s)

Paul Murrell〈paul@stat.auckland.ac.nz〉

Maintainer: R Core Team〈R-core@r-project.org〉

743

../doc/grid.pdf
../doc/displaylist.pdf
../doc/frame.pdf
../doc/grobs.pdf
../doc/interactive.pdf
../doc/locndimn.pdf
../doc/moveline.pdf
../doc/nonfinite.pdf
../doc/plotexample.pdf
../doc/rotated.pdf
../doc/saveload.pdf
../doc/sharing.pdf
../doc/viewports.pdf

744 absolute.size

References

Murrell, P. (2005)R Graphics. Chapman & Hall/CRC Press.

absolute.size Absolute Size of a Grob

Description

This function converts a unit object into absolute units. Absolute units are unaffected, but non-
absolute units are converted into"null" units.

Usage

absolute.size(unit)

Arguments

unit An object of class"unit" .

Details

Absolute units are things like"inches" , "cm" , and"lines" . Non-absolute units are"npc"
and"native" .

This function is designed to be used inwidthDetails andheightDetails methods.

Value

An object of class"unit" .

Author(s)

Paul Murrell

See Also

widthDetails andheightDetails methods.

arrow 745

arrow Describe arrows to add to a line.

Description

Produces a description of what arrows to add to a line. The result can be passed to a function that
draws a line, e.g.,grid.lines .

Usage

arrow(angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open")

Arguments

angle The angle of the arrow head in degrees (smaller numbers produce narrower,
pointier arrows). Essentially describes the width of the arrow head.

length A unit specifying the length of the arrow head (from tip to base).

ends One of"last" , "first" , or "both" , indicating which ends of the line to
draw arrow heads.

type One of"open" or "closed" indicating whether the arrow head should be a
closed triangle.

Examples

arrow()

convertNative Convert a Unit Object to Native units

Description

This function is deprecated in grid version 0.8 and will be made defunct in grid version 1.9

You should use theconvertUnit() function or one of its close allies instead.

This function returns a numeric vector containing the specified x or y locations or dimensions,
converted to "user" or "data" units, relative to the current viewport.

Usage

convertNative(unit, dimension="x", type="location")

Arguments

unit A unit object.

dimension Either "x" or "y".

type Either "location" or "dimension".

746 dataViewport

Value

A numeric vector.

WARNING

If you draw objects based on output from these conversion functions, then resize your device, the
objects will be drawn incorrectly – the base R display list will not recalculate these conversions.
This means that you can only rely on the results of these calculations if the size of your device is
fixed.

Author(s)

Paul Murrell

See Also

grid.convert , unit

Examples

grid.newpage()
pushViewport(viewport(width=unit(.5, "npc"),

height=unit(.5, "npc")))
grid.rect()
w <- convertNative(unit(1, "inches"))
h <- convertNative(unit(1, "inches"), "y")
This rectangle starts off life as 1in square, but if you
resize the device it will no longer be 1in square
grid.rect(width=unit(w, "native"), height=unit(h, "native"),

gp=gpar(col="red"))
popViewport(1)

How to use grid.convert(), etc instead
convertNative(unit(1, "inches")) ==

convertX(unit(1, "inches"), "native", valueOnly=TRUE)
convertNative(unit(1, "inches"), "y", "dimension") ==

convertHeight(unit(1, "inches"), "native", valueOnly=TRUE)

dataViewport Create a Viewport with Scales based on Data

Description

This is a convenience function for producing a viewport with x- and/or y-scales based on numeric
values passed to the function.

Usage

dataViewport(xData = NULL, yData = NULL, xscale = NULL,
yscale = NULL, extension = 0.05, ...)

drawDetails 747

Arguments

xData A numeric vector of data.

yData A numeric vector of data.

xscale A numeric vector (length 2).

yscale A numeric vector (length 2).

extension A numeric. If length greater than 1, then first value is used to extend the xscale
and second value is used to extend the yscale.

... All other arguments will be passed to a call to theviewport() function.

Details

If xscale is not specified then the values inx are used to generate an x-scale based on the range
of x , extended by the proportion specified inextension . Similarly for the y-scale.

Value

A grid viewport object.

Author(s)

Paul Murrell

See Also

viewport andplotViewport .

drawDetails Customising grid Drawing

Description

These generic hook functions are called whenever a grid grob is drawn. They provide an opportunity
for customising the drawing of a new class derived from grob (or gTree).

Usage

drawDetails(x, recording)
draw.details(x, recording)
preDrawDetails(x)
postDrawDetails(x)

Arguments

x A grid grob.

recording A logical value indicating whether a grob is being added to the display list or
redrawn from the display list.

748 editDetails

Details

These functions are called by thegrid.draw methods for grobs and gTrees.

preDrawDetails is called first during the drawing of a grob. This is where any additional
viewports should be pushed (see, for example,grid:::preDrawDetails.frame). Note that
the default behaviour for grobs is to push any viewports in thevp slot, and for gTrees is to also
push and up any viewports in thechildrenvp slot so there is typically nothing to do here.

drawDetails is called next and is where any additional calculations and graphical output should
occur (see, for example,grid:::drawDetails.xaxis . Note that the default behaviour for
gTrees is to draw all grobs in thechildren slot so there is typically nothing to do here.

postDrawDetails is called last and should reverse anything done inpreDrawDetails
(i.e., pop or up any viewports that were pushed; again, see, for example,
grid:::postDrawDetails.frame). Note that the default behaviour for grobs is to
pop any viewports that were pushed so there is typically nothing to do here.

Note thatpreDrawDetails and postDrawDetails are also called in the calculation of
"grobwidth" and"grobheight" units.

Value

None of these functions are expected to return a value.

Author(s)

Paul Murrell

See Also

grid.draw

editDetails Customising grid Editing

Description

This generic hook function is called whenever a grid grob is edited viagrid.edit or editGrob .
This provides an opportunity for customising the editing of a new class derived from grob (or gTree).

Usage

editDetails(x, specs)

Arguments

x A grid grob.

specs A list of named elements. The names indicate the grob slots to modify and the
values are the new values for the slots.

gEdit 749

Details

This function is called bygrid.edit andeditGrob . A method should be written for classes
derived from grob or gTree if a change in a slot has an effect on other slots in the grob or children
of a gTree (e.g., seegrid:::editDetails.xaxis).

Note that the slot already has the new value.

Value

The function MUST return the modified grob.

Author(s)

Paul Murrell

See Also

grid.edit

gEdit Create and Apply Edit Objects

Description

The functionsgEdit andgEditList create objects representing an edit operation (essentially a
list of arguments toeditGrob).

The functionsapplyEdit andapplyEdits apply one or more edit operations to a graphical
object.

These functions are most useful for developers creating new graphical functions and objects.

Usage

gEdit(...)
gEditList(...)
applyEdit(x, edit)
applyEdits(x, edits)

Arguments

... one or more arguments to theeditGrob function (forgEdit) or one or more
"gEdit" objects (forgEditList).

x a grob (grid graphical object).

edit a "gEdit" object.

edits either a"gEdit" object or a"gEditList" object.

Value

gEdit returns an object of class"gEdit" .

gEditList returns an object of class"gEditList" .

applyEdit andapplyEditList return the modified grob.

750 gpar

Author(s)

Paul Murrell

See Also

grob editGrob

Examples

grid.rect(gp=gpar(col="red"))
same thing, but more verbose
grid.draw(applyEdit(rectGrob(), gEdit(gp=gpar(col="red"))))

getNames List the names of grobs on the display list

Description

Returns a character vector containing the names of all top-level grobs on the display list.

Usage

getNames()

Value

A character vector.

Author(s)

Paul Murrell

Examples

grid.grill()
getNames()

gpar Handling Grid Graphical Parameters

Description

gpar() should be used to create a set of graphical parameter settings. It returns an object of class
"gpar" . This is basically a list of name-value pairs.

get.gpar() can be used to query the current graphical parameter settings.

Usage

gpar(...)
get.gpar(names = NULL)

gpar 751

Arguments

... Any number of named arguments.

names A character vector of valid graphical parameter names.

Details

All grid viewports and (predefined) graphical objects have a slot calledgp , which contains a
"gpar" object. When a viewport is pushed onto the viewport stack and when a graphical ob-
ject is drawn, the settings in the"gpar" object are enforced. In this way, the graphical output is
modified by thegp settings until the graphical object has finished drawing, or until the viewport is
popped off the viewport stack, or until some other viewport or graphical object is pushed or begins
drawing.

Valid parameter names are:

col Colour for lines and borders.
fill Colour for filling rectangles, polygons, ...
alpha Alpha channel for transparency
lty Line type
lwd Line width
lex Multiplier applied to line width
lineend Line end style (round, butt, square)
linejoin Line join style (round, mitre, bevel)
linemitre Line mitre limit (number greater than 1)
fontsize The size of text (in points)
cex Multiplier applied to fontsize
fontfamily The font family
fontface The font face (bold, italic, ...)
lineheight The height of a line as a multiple of the size of text
font Font face (alias for fontface; for backward compatibility)

Thealpha setting is combined with the alpha channel for individual colours by multiplying (with
both alpha settings normalised to the range 0 to 1).

The size of text isfontsize *cex . The size of a line isfontsize *cex * lineheight .

Thecex setting is cumulative; if a viewport is pushed with acex of 0.5 then another viewport is
pushed with acex of 0.5, the effectivecex is 0.25.

Thealpha andlex settings are also cumulative.

Changes to thefontfamily may be ignored by some devices, but is supported by PostScript,
PDF, X11, Windows, and Quartz. Thefontfamily may be used to specify one of the Hershey
Font families (e.g.,HersheySerif) and this specification will be honoured on all devices.

The specification offontface can be an integer or a string. If an integer, then it follows the R
base graphics standard: 1 = plain, 2 = bold, 3 = italic, 4 = bold italic. If a string, then valid values
are:"plain" , "bold" , "italic" , "oblique" , and"bold.italic" . For the special case
of the HersheySerif font family,"cyrillic" , "cyrillic.oblique" , and"EUC" are also
available.

Specifying the valueNULL for a parameter is the same as not specifying any value for that param-
eter, except forcol and fill , whereNULL indicates not to draw a border or not to fill an area
(respectively).

All parameter values can be vectors of multiple values. (This will not always make sense – for
example, viewports will only take notice of the first parameter value.)

752 gPath

Thegammaparameter is deprecated.

get.gpar() returns all current graphical parameter settings.

Value

An object of class"gpar" .

Author(s)

Paul Murrell

See Also

Hershey .

Examples

gp <- get.gpar()
utils::str(gp)
These *do* nothing but produce a "gpar" object:
gpar(col = "red")
gpar(col = "blue", lty = "solid", lwd = 3, fontsize = 16)
get.gpar(c("col", "lty"))
grid.newpage()
vp <- viewport(w = .8, h = .8, gp = gpar(col="blue"))
grid.draw(gTree(children=gList(rectGrob(gp = gpar(col="red")),

textGrob(paste("The rect is its own colour (red)",
"but this text is the colour",
"set by the gTree (green)",
sep = "\n"))),

gp = gpar(col="green"), vp = vp))
grid.text("This text is the colour set by the viewport (blue)",

y = 1, just = c("center", "bottom"),
gp = gpar(fontsize=20), vp = vp)

grid.newpage()
example with multiple values for a parameter
pushViewport(viewport())
grid.points(1:10/11, 1:10/11, gp = gpar(col=1:10))
popViewport()

gPath Concatenate Grob Names

Description

This function can be used to generate a grob path for use ingrid.edit and friends.

A grob path is a list of nested grob names.

Usage

gPath(...)

Grid 753

Arguments

... Character values which are grob names.

Details

Grob names must only be unique amongst grobs which share the same parent in a gTree.

This function can be used to generate a specification for a grob that includes the grob’s parent’s
name (and the name of its parent and so on).

For interactive use, it is possible to directly specify a path, but it is strongly recommended that this
function is used otherwise in case the path separator is changed in future versions of grid.

Value

A gPath object.

See Also

grob , editGrob , addGrob , removeGrob , getGrob , setGrob

Examples

gPath("g1", "g2")

Grid Grid Graphics

Description

General information about the grid graphics package.

Details

Grid graphics provides an alternative to the standard R graphics. The user is able to define arbitrary
rectangular regions (calledviewports) on the graphics device and define a number of coordinate sys-
tems for each region. Drawing can be specified to occur in any viewport using any of the available
coordinate systems.

Grid graphics and standard R graphics do not mix!

Type library(help = grid) to see a list of (public) Grid graphics functions.

Author(s)

Paul Murrell

See Also

viewport , grid.layout , andunit .

754 Grid Viewports

Examples

Diagram of a simple layout
grid.show.layout(grid.layout(4,2,

heights=unit(rep(1, 4),
c("lines", "lines", "lines", "null")),

widths=unit(c(1, 1), "inches")))
Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
A flash plotting example
grid.multipanel(vp=viewport(0.5, 0.5, 0.8, 0.8))

Grid Viewports Create a Grid Viewport

Description

These functions create viewports, which describe rectangular regions on a graphics device and
define a number of coordinate systems within those regions.

Usage

viewport(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
default.units = "npc", just = "centre",
gp = gpar(), clip = "inherit",
xscale = c(0, 1), yscale = c(0, 1),
angle = 0,
layout = NULL,
layout.pos.row = NULL, layout.pos.col = NULL,
name = NULL)

vpList(...)
vpStack(...)
vpTree(parent, children)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.
default.units

A string indicating the default units to use ifx , y , width , or height are only
given as numeric vectors.

just A string or numeric vector specifying the justification of the viewport relative
to its (x, y) location. If there are two values, the first value specifies horizontal
justification and the second value specifies vertical justification. Possible string
values are:"left" , "right" , "centre" , "center" , "bottom" , and
"top" . For numeric values, 0 means left alignment and 1 means right align-
ment.

Grid Viewports 755

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

clip One of "on" , "inherit" , or "off" , indicating whether to clip to the ex-
tent of this viewport, inherit the clipping region from the parent viewport, or
turn clipping off altogether. For back-compatibility, a logical value ofTRUE
corresponds to"on" andFALSEcorresponds to"inherit" .

xscale A numeric vector of length two indicating the minimum and maximum on the
x-scale.

yscale A numeric vector of length two indicating the minimum and maximum on the
y-scale.

angle A numeric value indicating the angle of rotation of the viewport. Positive values
indicate the amount of rotation, in degrees, anticlockwise from the positive x-
axis.

layout A Grid layout object which splits the viewport into subregions.
layout.pos.row

A numeric vector giving the rows occupied by this viewport in its parent’s lay-
out.

layout.pos.col
A numeric vector giving the columns occupied by this viewport in its parent’s
layout.

name A character value to uniquely identify the viewport once it has been pushed onto
the viewport tree.

... Any number of grid viewport objects.

parent A grid viewport object.

children A vpList object.

Details

The location and size of a viewport are relative to the coordinate systems defined by the view-
port’s parent (either a graphical device or another viewport). The location and size can be specified
in a very flexible way by specifying them with unit objects. When specifying the location of a
viewport, specifying bothlayout.pos.row and layout.pos.col asNULL indicates that
the viewport ignores its parent’s layout and specifies its own location and size (via itslocn). If
only one oflayout.pos.row andlayout.pos.col is NULL, this means occupy ALL of the
appropriate row(s)/column(s). For example,layout.pos.row = 1 and layout.pos.col
= NULL means occupy all of row 1. Specifying non-NULL values for bothlayout.pos.row
andlayout.pos.col means occupy the intersection of the appropriate rows and columns. If a
vector of length two is specified forlayout.pos.row or layout.pos.col , this indicates
a range of rows or columns to occupy. For example,layout.pos.row = c(1, 3) and
layout.pos.col = c(2, 4) means occupy cells in the intersection of rows 1, 2, and 3,
and columns, 2, 3, and 4.

Clipping obeys only the most recent viewport clip setting. For example, if you clip to viewport1,
then clip to viewport2, the clipping region is determined wholly by viewport2, the size and shape
of viewport1 is irrelevant (until viewport2 is popped of course).

If a viewport is rotated (because of its ownangle setting or because it is within another viewport
which is rotated) then theclip flag is ignored.

Viewport names need not be unique. When pushed, viewports sharing the same parent must have
unique names, which means that if you push a viewport with the same name as an existing viewport,
the existing viewport will be replaced in the viewport tree. A viewport name can be any string, but

756 Grid Viewports

grid uses the reserved name"ROOT" for the top-level viewport. Also, when specifying a viewport
name indownViewport andseekViewport , it is possible to provide a viewport path, which
consists of several names concatenated using the separator (currently::). Consequently, it is not
advisable to use this separator in viewport names.

The viewports in avpList are pushed in parallel. The viewports in avpStack are pushed
in series. When avpTree is pushed, the parent is pushed first, then the children are pushed in
parallel.

Value

An R object of classviewport .

Author(s)

Paul Murrell

See Also

Grid, pushViewport , popViewport , downViewport , seekViewport , upViewport ,
unit , grid.layout , grid.show.layout .

Examples

Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
Demonstrate viewport clipping
clip.demo <- function(i, j, clip1, clip2) {

pushViewport(viewport(layout.pos.col=i,
layout.pos.row=j))

pushViewport(viewport(width=0.6, height=0.6, clip=clip1))
grid.rect(gp=gpar(fill="white"))
grid.circle(r=0.55, gp=gpar(col="red", fill="pink"))
popViewport()
pushViewport(viewport(width=0.6, height=0.6, clip=clip2))
grid.polygon(x=c(0.5, 1.1, 0.6, 1.1, 0.5, -0.1, 0.4, -0.1),

y=c(0.6, 1.1, 0.5, -0.1, 0.4, -0.1, 0.5, 1.1),
gp=gpar(col="blue", fill="light blue"))

popViewport(2)
}

grid.newpage()
grid.rect(gp=gpar(fill="grey"))
pushViewport(viewport(layout=grid.layout(2, 2)))
clip.demo(1, 1, FALSE, FALSE)
clip.demo(1, 2, TRUE, FALSE)
clip.demo(2, 1, FALSE, TRUE)
clip.demo(2, 2, TRUE, TRUE)
popViewport()
Demonstrate turning clipping off
grid.newpage()
pushViewport(viewport(w=.5, h=.5, clip="on"))
grid.rect()
grid.circle(r=.6, gp=gpar(lwd=10))
pushViewport(viewport(clip="inherit"))
grid.circle(r=.6, gp=gpar(lwd=5, col="grey"))

grid.add 757

pushViewport(viewport(clip="off"))
grid.circle(r=.6)
popViewport(3)
Demonstrate vpList, vpStack, and vpTree
grid.newpage()
tree <- vpTree(viewport(w=0.8, h=0.8, name="A"),

vpList(vpStack(viewport(x=0.1, y=0.1, w=0.5, h=0.5,
just=c("left", "bottom"), name="B"),

viewport(x=0.1, y=0.1, w=0.5, h=0.5,
just=c("left", "bottom"), name="C"),

viewport(x=0.1, y=0.1, w=0.5, h=0.5,
just=c("left", "bottom"), name="D")),

viewport(x=0.5, w=0.4, h=0.9,
just="left", name="E")))

pushViewport(tree)
for (i in LETTERS[1:5]) {

seekViewport(i)
grid.rect()
grid.text(current.vpTree(FALSE),

x=unit(1, "mm"), y=unit(1, "npc") - unit(1, "mm"),
just=c("left", "top"),
gp=gpar(fontsize=8))

}

grid.add Add a Grid Graphical Object

Description

Add a grob to a gTree or a descendant of a gTree.

Usage

grid.add(gPath, child, strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

addGrob(gTree, child, gPath = NULL, strict = FALSE, grep = FALSE,
global = FALSE)

setChildren(x, children)

Arguments

gTree, x A gTree object.

gPath A gPath object. Forgrid.add this specifies a gTree on the display list. For
addGrob this specifies a descendant of the specified gTree.

child A grob object.

children A gList object.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether thegPath should be treated as a regular ex-
pression. Values are recycled across elements of thegPath (e.g.,c(TRUE,
FALSE) means that every odd element of thegPath will be treated as a regu-
lar expression).

758 grid.arrows

global A boolean indicating whether the function should affect just the first match of
thegPath , or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

redraw A logical value to indicate whether to redraw the grob.

Details

addGrob copies the specified grob and returns a modified grob.

grid.add destructively modifies a grob on the display list. Ifredraw is TRUEit then redraws
everything to reflect the change.

setChildren is a basic function for setting all children of a gTree at once (instead of repeated
calls toaddGrob).

Value

addGrob returns a grob object;grid.add returnsNULL.

Author(s)

Paul Murrell

See Also

grob , getGrob , addGrob , removeGrob .

grid.arrows Draw Arrows

Description

Functions to create and draw arrows at either end of a line, or at either end of a line.to, lines, or
segments grob.

These functions have been deprecated in favour ofarrow arguments to the line-related primitives.

Usage

grid.arrows(x = c(0.25, 0.75), y = 0.5, default.units = "npc",
grob = NULL,
angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open", name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

arrowsGrob(x = c(0.25, 0.75), y = 0.5, default.units = "npc",
grob = NULL,
angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open", name = NULL,
gp = gpar(), vp = NULL)

grid.arrows 759

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.
default.units

A string indicating the default units to use ifx or y are only given as numeric
vectors.

grob A grob to add arrows to; currently can only be a line.to, lines, or segments grob.

angle A numeric specifying (half) the width of the arrow head (in degrees).

length A unit object specifying the length of the arrow head.

ends One of "first" , "last" , or "both" , indicating which end of the line to
add arrow heads.

type Either"open" or "closed" to indicate the type of arrow head.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create an arrows grob (a graphical object describing arrows), but only
grid.arrows() draws the arrows (and then only ifdraw is TRUE).

If the grob argument is specified, this overrides any x and/or y arguments.

Value

An arrows grob.grid.arrows() returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport , grid.line.to , grid.lines , grid.segments

Examples

Not run:
to avoid lots of deprecation warnings
pushViewport(viewport(layout=grid.layout(2, 4)))
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows()
popViewport()
pushViewport(viewport(layout.pos.col=2,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(angle=15, type="closed")

760 grid.arrows

popViewport()
pushViewport(viewport(layout.pos.col=3,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(angle=5, length=unit(0.1, "npc"),

type="closed", gp=gpar(fill="white"))
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(x=unit(0:80/100, "npc"),

y=unit(1 - (0:80/100)^2, "npc"))
popViewport()
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
grid.arrows(ends="both")
popViewport()
pushViewport(viewport(layout.pos.col=2,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Recycling arguments
grid.arrows(x=unit(1:10/11, "npc"), y=unit(1:3/4, "npc"))
popViewport()
pushViewport(viewport(layout.pos.col=3,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Drawing arrows on a segments grob
gs <- segmentsGrob(x0=unit(1:4/5, "npc"),

x1=unit(1:4/5, "npc"))
grid.arrows(grob=gs, length=unit(0.1, "npc"),

type="closed", gp=gpar(fill="white"))
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Arrows on a lines grob
Name these because going to grid.edit them later
gl <- linesGrob(name="curve", x=unit(0:80/100, "npc"),

y=unit((0:80/100)^2, "npc"))
grid.arrows(name="arrowOnLine", grob=gl, angle=15, type="closed",

gp=gpar(fill="black"))
popViewport()
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=2))
grid.move.to(x=0.5, y=0.8)
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=1))
Arrows on a line.to grob
glt <- lineToGrob(x=0.5, y=0.2, gp=gpar(lwd=3))
grid.arrows(grob=glt, ends="first", gp=gpar(lwd=3))
popViewport(2)
grid.edit(gPath("arrowOnLine", "curve"), y=unit((0:80/100)^3, "npc"))
End(Not run)

grid.circle 761

grid.circle Draw a Circle

Description

Functions to create and draw a circle.

Usage

grid.circle(x=0.5, y=0.5, r=0.5, default.units="npc", name=NULL,
gp=gpar(), draw=TRUE, vp=NULL)

circleGrob(x=0.5, y=0.5, r=0.5, default.units="npc", name=NULL,
gp=gpar(), vp=NULL)

Arguments

x A numeric vector or unit object specifying x-locations.

y A numeric vector or unit object specifying y-locations.

r A numeric vector or unit object specifying radii.

default.units
A string indicating the default units to use ifx , y , width , or height are only
given as numeric vectors.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a circle grob (a graphical object describing a circle), but only
grid.circle() draws the circle (and then only ifdraw is TRUE).

The radius may be given in any units; if the units arerelative (e.g.,"npc" or "native") then
the radius will be different depending on whether it is interpreted as a width or as a height. In such
cases, the smaller of these two values will be the result. To see the effect, typegrid.circle()
and adjust the size of the window.

Value

A circle grob.grid.circle() returns the value invisibly.

Warning

Negative values for the radius are silently converted to their absolute value.

Author(s)

Paul Murrell

762 grid.clip

See Also

Grid, viewport

grid.clip Set the Clipping Region

Description

These functions set the clipping region within the current viewportwithout altering the current
coordinate system.

Usage

grid.clip(...)
clipGrob(x = unit(0.5, "npc"), y = unit(0.5, "npc"),

width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL, vp = NULL)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

just The justification of the clip rectangle relative to its (x, y) location. If there are
two values, the first value specifes horizontal justification and the second value
specifies vertical justification. Possible string values are:"left" , "right" ,
"centre" , "center" , "bottom" , and "top" . For numeric values, 0
means left alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

default.units
A string indicating the default units to use ifx , y , width , or height are only
given as numeric vectors.

name A character identifier.

vp A Grid viewport object (or NULL).

... Arguments passed toclipGrob .

Details

Both functions create a clip rectangle (a graphical object describing a clip rectangle), but only
grid.clip enforces the clipping.

Pushing or popping a viewportalwaysoverrides the clip region set by a clip grob, regardless of
whether that viewport explicitly enforces a clipping region.

grid.collection 763

Value

clipGrob returns a clip grob.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

draw across entire viewport, but clipped
grid.clip(x = 0.3, width = 0.1)
grid.lines(gp=gpar(col="green", lwd=5))
draw across entire viewport, but clipped (in different place)
grid.clip(x = 0.7, width = 0.1)
grid.lines(gp=gpar(col="red", lwd=5))
Viewport sets new clip region
pushViewport(viewport(width=0.5, height=0.5, clip=TRUE))
grid.lines(gp=gpar(col="grey", lwd=3))
Return to original viewport; get
clip region from previous grid.clip()
(NOT from previous viewport clip region)
popViewport()
grid.lines(gp=gpar(col="black"))

grid.collection Create a Coherent Group of Grid Graphical Objects

Description

This function is deprecated; please usegTree .

This function creates a graphical object which contains several other graphical objects. When it is
drawn, it draws all of its children.

It may be convenient to name the elements of the collection.

Usage

grid.collection(..., gp=gpar(), draw=TRUE, vp=NULL)

Arguments

... Zero or more objects of class"grob" .

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value to indicate whether to produce graphical output.

vp A Grid viewport object (or NULL).

764 grid.convert

Value

A collection grob.

Author(s)

Paul Murrell

See Also

grid.grob .

grid.convert Convert Between Different grid Coordinate Systems

Description

These functions take a unit object and convert it to an equivalent unit object in a different coordinate
system.

Usage

convertX(x, unitTo, valueOnly = FALSE)
convertY(x, unitTo, valueOnly = FALSE)
convertWidth(x, unitTo, valueOnly = FALSE)
convertHeight(x, unitTo, valueOnly = FALSE)
convertUnit(x, unitTo,

axisFrom = "x", typeFrom = "location",
axisTo = axisFrom, typeTo = typeFrom,
valueOnly = FALSE)

grid.convertX(x, unitTo, valueOnly = FALSE)
grid.convertY(x, unitTo, valueOnly = FALSE)
grid.convertWidth(x, unitTo, valueOnly = FALSE)
grid.convertHeight(x, unitTo, valueOnly = FALSE)
grid.convert(x, unitTo,

axisFrom = "x", typeFrom = "location",
axisTo = axisFrom, typeTo = typeFrom,
valueOnly = FALSE)

Arguments

x A unit object.

unitTo The coordinate system to convert the unit to. See theunit function for valid
coordinate systems.

axisFrom Either "x" or "y" to indicate whether the unit object represents a value in the
x- or y-direction.

typeFrom Either "location" or "dimension" to indicate whether the unit object
represents a location or a length.

axisTo Same asaxisFrom , but applies to the unit object that is to be created.

typeTo Same astypeFrom , but applies to the unit object that is to be created.

valueOnly A logical indicating. IfTRUEthen the function does not return a unit object, but
rather only the converted numeric values.

grid.convert 765

Details

TheconvertUnit function allows for general-purpose conversions. The other four functions are
just more convenient front-ends to it for the most common conversions.

The conversions occur within the current viewport.

It is not currently possible to convert to all valid coordinate systems (e.g., "strwidth" or "grob-
width"). I’m not sure if all of these are impossible, they just seem implausible at this stage.

In normal usage of grid, these functions should not be necessary. If you want to express a location
or dimension in inches rather than user coordinates then you should simply do something like
unit(1, "inches") rather than something likeunit(0.134, "native") .

In some cases, however, it is necessary for the user to perform calculations on a unit value and this
function becomes necessary. In such cases, please take note of the warning below.

The grid.* versions are just previous incarnations which have been deprecated.

Value

A unit object in the specified coordinate system (unlessvalueOnly is TRUEin which case the
returned value is a numeric).

Warning

The conversion is only valid for the current device size. If the device is resized then at least
some conversions will become invalid. For example, suppose that I create a unit object as fol-
lows: oneinch <- convertUnit(unit(1, "inches"), "native" . Now if I resize
the device, the unit object in oneinch no longer corresponds to a physical length of 1 inch.

Author(s)

Paul Murrell

See Also

unit

Examples

A tautology
convertX(unit(1, "inches"), "inches")
The physical units
convertX(unit(2.54, "cm"), "inches")
convertX(unit(25.4, "mm"), "inches")
convertX(unit(72.27, "points"), "inches")
convertX(unit(1/12*72.27, "picas"), "inches")
convertX(unit(72, "bigpts"), "inches")
convertX(unit(1157/1238*72.27, "dida"), "inches")
convertX(unit(1/12*1157/1238*72.27, "cicero"), "inches")
convertX(unit(65536*72.27, "scaledpts"), "inches")
convertX(unit(1/2.54, "inches"), "cm")
convertX(unit(1/25.4, "inches"), "mm")
convertX(unit(1/72.27, "inches"), "points")
convertX(unit(1/(1/12*72.27), "inches"), "picas")
convertX(unit(1/72, "inches"), "bigpts")
convertX(unit(1/(1157/1238*72.27), "inches"), "dida")
convertX(unit(1/(1/12*1157/1238*72.27), "inches"), "cicero")

766 grid.copy

convertX(unit(1/(65536*72.27), "inches"), "scaledpts")

pushViewport(viewport(width=unit(1, "inches"),
height=unit(2, "inches"),
xscale=c(0, 1),
yscale=c(1, 3)))

Location versus dimension
convertY(unit(2, "native"), "inches")
convertHeight(unit(2, "native"), "inches")
From "x" to "y" (the conversion is via "inches")
convertUnit(unit(1, "native"), "native",

axisFrom="x", axisTo="y")
Convert several values at once
convertX(unit(c(0.5, 2.54), c("npc", "cm")),

c("inches", "native"))
popViewport()
Convert a complex unit
convertX(unit(1, "strwidth", "Hello"), "native")

grid.copy Make a Copy of a Grid Graphical Object

Description

This function is redundant and will disappear in future versions.

Usage

grid.copy(grob)

Arguments

grob A grob object.

Value

A copy of the grob object.

Author(s)

Paul Murrell

See Also

grid.grob .

grid.curve 767

grid.curve Draw a Curve Between Locations

Description

These functions create and draw a curve from one location to another.

Usage

grid.curve(...)
curveGrob(x1, y1, x2, y2, default.units = "npc",

curvature = 1, angle = 90, ncp = 1, shape = 0.5,
square = TRUE, squareShape = 1,
inflect = FALSE, arrow = NULL, open = TRUE,
debug = FALSE,
name = NULL, gp = gpar(), vp = NULL)

arcCurvature(theta)

Arguments

x1 A numeric vector or unit object specifying the x-location of the start point.

y1 A numeric vector or unit object specifying the y-location of the start point.

x2 A numeric vector or unit object specifying the x-location of the end point.

y2 A numeric vector or unit object specifying the y-location of the end point.
default.units

A string indicating the default units to use ifx1 , y1 , x2 or y2 are only given as
numeric values.

curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

angle A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

ncp The number of control points used to draw the curve. More control points creates
a smoother curve.

shape A numeric vector of values between -1 and 1, which control the shape of the
curve relative to its control points. Seegrid.xspline for more details.

square A logical value that controls whether control points for the curve are created
city-block fashion or obliquely. Whenncp is 1 andangle is 90, this is typ-
ically TRUE, otherwise this should probably be set toFALSE (see Examples
below).

squareShape A shape value to control the behaviour of the curve relative to any additional
control point that is inserted ifsquare is TRUE.

inflect A logical value specifying whether the curve should be cut in half and inverted
(see Examples below).

arrow A list describing arrow heads to place at either end of the curve, as produced by
thearrow function.

768 grid.curve

open A logical value indicating whether to close the curve (connect the start and end
points).

debug A logical value indicating whether debugging information should be drawn.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments to be passed tocurveGrob .

theta An angle (in degrees).

Details

Both functions create a curve grob (a graphical object describing an curve), but onlygrid.curve
draws the curve.

ThearcCurvature function can be used to calculate acurvature such that control points are
generated on an arc corresponding to angletheta . This is typically used in conjunction with a
largencp to produce a curve corresponding to the desired arc.

Value

A grob object.

See Also

Grid, viewport , grid.xspline , arrow

Examples

curveTest <- function(i, j, ...) {
pushViewport(viewport(layout.pos.col=j, layout.pos.row=i))
do.call("grid.curve", c(list(x1=.25, y1=.25, x2=.75, y2=.75),

if (is.null(...)) NULL else list(...)))
grid.text(sub("list", "", deparse(substitute(list(...)))),

y=unit(1, "npc"))
popViewport()

}
grid.newpage()
pushViewport(plotViewport(c(0, 0, 1, 0),

layout=grid.layout(2, 1, heights=c(2, 1))))
pushViewport(viewport(layout.pos.row=1,

layout=grid.layout(3, 3, respect=TRUE)))
curveTest(1, 1, NULL)
curveTest(1, 2, inflect=TRUE)
curveTest(1, 3, angle=135)
curveTest(2, 1, arrow=arrow())
curveTest(2, 2, ncp=8)
curveTest(2, 3, shape=0)
curveTest(3, 1, curvature=-1)
curveTest(3, 2, square=FALSE)
curveTest(3, 3, debug=TRUE)
popViewport()
pushViewport(viewport(layout.pos.row=2,

layout=grid.layout(3, 3)))

grid.display.list 769

curveTest(1, 1, NULL)
curveTest(1, 2, inflect=TRUE)
curveTest(1, 3, angle=135)
curveTest(2, 1, arrow=arrow())
curveTest(2, 2, ncp=8)
curveTest(2, 3, shape=0)
curveTest(3, 1, curvature=-1)
curveTest(3, 2, square=FALSE)
curveTest(3, 3, debug=TRUE)
popViewport(2)

grid.display.list Control the Grid Display List

Description

Turn the Grid display list on or off.

Usage

grid.display.list(on=TRUE)
engine.display.list(on=TRUE)

Arguments

on A logical value to indicate whether the display list should be on or off.

Details

All drawing and viewport-setting operations are (by default) recorded in the Grid display list. This
allows redrawing to occur following an editing operation.

This display list could get very large so it may be useful to turn it off in some cases; this will of
course disable redrawing.

All graphics output is also recorded on the main display list of the R graphics engine (by default).
This supports redrawing following a device resize and allows copying between devices.

Turning off this display list means that grid will redraw from its own display list for device resizes
and copies. This will be slower than using the graphics engine display list.

Value

None.

WARNING

Turning the display list on causes the display list to be erased!

Turning off both the grid display list and the graphics engine display list will result in no redrawing
whatsoever.

Author(s)

Paul Murrell

770 grid.draw

grid.draw Draw a grid grob

Description

Produces graphical output from a graphical object.

Usage

grid.draw(x, recording=TRUE)

Arguments

x An object of class"grob" or NULL.

recording A logical value to indicate whether the drawing operation should be recorded on
the Grid display list.

Details

This is a generic function with methods for grob and gTree objects.

The grob and gTree methods automatically push any viewports in avp slot and automatically apply
anygpar settings in agp slot. In addition, the gTree method pushes and ups any viewports in a
childrenvp slot and automatically callsgrid.draw for any grobs in achildren slot.

The methods for grob and gTree call the generic hook functionspreDrawDetails ,
drawDetails , andpostDrawDetails to allow classes derived from grob or gTree to perform
additional viewport pushing/popping and produce additional output beyond the default behaviour
for grobs and gTrees.

Value

None.

Author(s)

Paul Murrell

See Also

grob .

Examples

grid.newpage()
Create a graphical object, but don't draw it
l <- linesGrob()
Draw it
grid.draw(l)

grid.edit 771

grid.edit Edit the Description of a Grid Graphical Object

Description

Changes the value of one of the slots of a grob and redraws the grob.

Usage

grid.edit(gPath, ..., strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

grid.gedit(..., grep = TRUE, global = TRUE)

editGrob(grob, gPath = NULL, ..., strict = FALSE, grep = FALSE,
global = FALSE)

Arguments

grob A grob object.

... Zero or more named arguments specifying new slot values.

gPath A gPath object. Forgrid.edit this specifies a grob on the display list. For
editGrob this specifies a descendant of the specified grob.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether thegPath should be treated as a regular ex-
pression. Values are recycled across elements of thegPath (e.g.,c(TRUE,
FALSE) means that every odd element of thegPath will be treated as a regu-
lar expression).

global A boolean indicating whether the function should affect just the first match of
thegPath , or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

redraw A logical value to indicate whether to redraw the grob.

Details

editGrob copies the specified grob and returns a modified grob.

grid.edit destructively modifies a grob on the display list. Ifredraw is TRUEit then redraws
everything to reflect the change.

Both functions call editDetails to allow a grob to perform custom actions and
validDetails to check that the modified grob is still coherent.

grid.gedit (g for global) is just a convenience wrapper forgrid.edit with different defaults.

Value

editGrob returns a grob object;grid.edit returnsNULL.

772 grid.frame

Author(s)

Paul Murrell

See Also

grob , getGrob , addGrob , removeGrob .

Examples

grid.newpage()
grid.xaxis(name = "xa", vp = viewport(width=.5, height=.5))
grid.edit("xa", gp = gpar(col="red"))
won't work because no ticks (at is NULL)
try(grid.edit(gPath("xa", "ticks"), gp = gpar(col="green")))
grid.edit("xa", at = 1:4/5)
Now it should work
try(grid.edit(gPath("xa", "ticks"), gp = gpar(col="green")))

grid.frame Create a Frame for Packing Objects

Description

These functions, together withgrid.pack , grid.place , packGrob , andplaceGrob are
part of a GUI-builder-like interface to constructing graphical images. The idea is that you create a
frame with this function then usegrid.pack or whatever to pack/place objects into the frame.

Usage

grid.frame(layout=NULL, name=NULL, gp=gpar(), vp=NULL, draw=TRUE)
frameGrob(layout=NULL, name=NULL, gp=gpar(), vp=NULL)

Arguments

layout A Grid layout, or NULL. This can be used to initialise the frame with a number
of rows and columns, with initial widths and heights, etc.

name A character identifier.

vp An object of classviewport , or NULL.

gp An object of classgpar ; typically the output from a call to the functiongpar .

draw Should the frame be drawn.

Details

Both functions create a frame grob (a graphical object describing a frame), but only
grid.frame() draws the frame (and then only ifdraw is TRUE). Nothing will actually be
drawn, but it will put the frame on the display list, which means that the output will be dynamically
updated as objects are packed into the frame. Possibly useful for debugging.

Value

A frame grob.grid.frame() returns the value invisibly.

grid.get 773

Author(s)

Paul Murrell

See Also

grid.pack

Examples

grid.newpage()
grid.frame(name="gf", draw=TRUE)
grid.pack("gf", rectGrob(gp=gpar(fill="grey")), width=unit(1, "null"))
grid.pack("gf", textGrob("hi there"), side="right")

grid.get Get a Grid Graphical Object

Description

Retrieve a grob or a descendant of a grob.

Usage

grid.get(gPath, strict = FALSE, grep = FALSE, global = FALSE,
allDevices = FALSE)

grid.gget <- function(..., grep = TRUE, global = TRUE)

getGrob(gTree, gPath, strict = FALSE, grep = FALSE, global = FALSE)

Arguments

gTree A gTree object.

gPath A gPath object. Forgrid.get this specifyies a grob on the display list. For
getGrob this specifies a descendant of the specified gTree.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether thegPath should be treated as a regular ex-
pression. Values are recycled across elements of thegPath (e.g.,c(TRUE,
FALSE) means that every odd element of thegPath will be treated as a regu-
lar expression).

global A boolean indicating whether the function should affect just the first match of
thegPath , or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

Details

grid.gget (g for global) is just a convenience wrapper forgrid.get with different defaults.

774 grid.grab

Value

A grob object.

Author(s)

Paul Murrell

See Also

grob , getGrob , addGrob , removeGrob .

Examples

grid.xaxis(name="xa")
grid.get("xa")
grid.get(gPath("xa", "ticks"))

grid.draw(gTree(name="gt", children=gList(xaxisGrob(name="axis"))))
grid.get(gPath("gt", "axis", "ticks"))

grid.grab Grab the current grid output

Description

Creates a gTree object from the current grid display list or from a scene generated by user-specified
code.

Usage

grid.grab(warn = 2, wrap = FALSE, ...)
grid.grabExpr(expr, warn = 2, wrap = FALSE, ...)

Arguments

expr An expression to be evaluated. Typically, some calls to grid drawing functions.

warn An integer specifying the amount of warnings to emit. 0 means no warnings,
1 means warn when it is certain that the grab will not faithfully represent the
original scene. 2 means warn if there’s any possibility that the grab will not
faithfully represent the original scene.

wrap A logical indicating how the output should be captured. IfTRUE, each non-grob
element on the display list is captured by wrapping it in a grob.

... arguments passed to gTree, for example, a name and/or class for the gTree that
is created.

grid.grill 775

Details

There are four ways to capture grid output as a gTree.

There are two functions for capturing output: usegrid.grab to capture an existing drawing and
grid.grabExpr to capture the output from an expression (without drawing anything).

For each of these functions, the output can be captured in two ways. One way tries to be clever and
make a gTree with a childrenvp slot containing all viewports on the display list (including those that
are popped) and every grob on the display list as a child of the new gTree; each child has a vpPath
in the vp slot so that it is drawn in the appropriate viewport. In other words, the gTree contains all
elements on the display list, but in a slightly altered form.

The other way,wrap=TRUE, is to create a grob for every element on the display list (and make all
of those grobs children of the gTree).

The first approach creates a more compact and elegant gTree, which is more flexible to work with,
but is not guaranteed to faithfully replicate all possible grid output. The second approach is more
brute force, and harder to work with, but should always faithfully replicate the original output.

Value

A gTree object.

See Also

gTree

Examples

pushViewport(viewport(w=.5, h=.5))
grid.rect()
grid.points(stats::runif(10), stats::runif(10))
popViewport()
grab <- grid.grab()
grid.newpage()
grid.draw(grab)

grid.grill Draw a Grill

Description

This function draws a grill within a Grid viewport.

Usage

grid.grill(h = unit(seq(0.25, 0.75, 0.25), "npc"),
v = unit(seq(0.25, 0.75, 0.25), "npc"),
default.units = "npc", gp=gpar(col = "grey"), vp = NULL)

776 grid.grob

Arguments

h A numeric vector or unit object indicating the horizontal location of the vertical
grill lines.

v A numeric vector or unit object indicating the vertical location of the horizontal
grill lines.

default.units
A string indicating the default units to use ifh or v are only given as numeric
vectors.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

vp A Grid viewport object.

Value

None.

Author(s)

Paul Murrell

See Also

Grid, viewport .

grid.grob Create a Grid Graphical Object

Description

These functions create grid graphical objects.

Usage

grid.grob(list.struct, cl = NULL, draw = TRUE)
grob(..., name = NULL, gp = NULL, vp = NULL, cl = NULL)
gTree(..., name = NULL, gp = NULL, vp = NULL, children = NULL,

childrenvp = NULL, cl = NULL)
childNames(gTree)
gList(...)

Arguments

... For grob and gTree , the named slots describing important features of the
graphical object. ForgList , a series of grob objects.

list.struct A list (preferably with each element named).

name A character identifier for the grob. Used to find the grob on the display list
and/or as a child of another grob.

children A gList object.

childrenvp A viewport object (orNULL).

grid.layout 777

gp A gpar object, typically the output from a call to the functiongpar . This is
basically a list of graphical parameter settings.

vp A viewport object (orNULL).

cl A string giving the class attribute for thelist.struct

draw A logical value to indicate whether to produce graphical output.

gTree A gTree object.

Details

These functions can be used to create a basic grob, gTree, or gList object, or a new class derived
from one of these.

A grid graphical object (grob) is a description of a graphical item. These basic classes provide
default behaviour for validating, drawing, and modifying graphical objects. Both call the function
validDetails to check that the object returned is coherent.

A gTree can have other grobs as children; when a gTree is drawn, it draws all of its children.
Before drawing its children, a gTree pushes its childrenvp slot and then navigates back up (calls
upViewport) so that the children can specify their location within the childrenvp via a vpPath.

Grob names need not be unique in general, but all children of a gTree must have different names.
A grob name can be any string, though it is not advisable to use the gPath separator (currently::)
in grob names.

The functionchildNames returns the names of the grobs which are children of a gTree.

All grid primitives (grid.lines , grid.rect , ...) and some higher-level grid components (e.g.,
grid.xaxis andgrid.yaxis) are derived from these classes.

grid.grob is deprecated.

Value

A grob object.

Author(s)

Paul Murrell

See Also

grid.draw , grid.edit , grid.get .

grid.layout Create a Grid Layout

Description

This function returns a Grid layout, which describes a subdivision of a rectangular region.

778 grid.layout

Usage

grid.layout(nrow = 1, ncol = 1,
widths = unit(rep(1, ncol), "null"),
heights = unit(rep(1, nrow), "null"),
default.units = "null", respect = FALSE,
just="centre")

Arguments

nrow An integer describing the number of rows in the layout.

ncol An integer describing the number of columns in the layout.

widths A numeric vector or unit object describing the widths of the columns in the
layout.

heights A numeric vector or unit object describing the heights of the rows in the layout.

default.units
A string indicating the default units to use ifwidths or heights are only
given as numeric vectors.

respect A logical value or a numeric matrix. If a logical, this indicates whether row
heights and column widths should respect each other. If a matrix, non-zero
values indicate that the corresponding row and column should be respected (see
examples below).

just A string vector indicating how the layout should be justified if it is not the same
size as its parent viewport. If there are two values, the first value specifies hori-
zontal justification and the second value specifies vertical justification. Possible
values are:"left" , "right" , "centre" , "center" , "bottom" , and
"top" . NOTE that in this context,"left" , for example, means align the left
edge of the left-most layout column with the left edge of the parent viewport.

Details

The unit objects given for thewidths andheights of a layout may use a specialunits that
only has meaning for layouts. This is the"null" unit, which indicates what relative fraction of
the available width/height the column/row occupies. See the reference for a better description of
relative widths and heights in layouts.

Value

A Grid layout object.

WARNING

This function must NOT be confused with the base R graphics functionlayout . In particular, do
not uselayout in combination with Grid graphics. The documentation forlayout may provide
some useful information and this function should behave identically in comparable situations. The
grid.layout function hasaddedthe ability to specify a broader range of units for row heights
and column widths, and allows for nested layouts (seeviewport).

Author(s)

Paul Murrell

grid.lines 779

References

Murrell, P. R. (1999), Layouts: A Mechanism for Arranging Plots on a Page,Journal of Computa-
tional and Graphical Statistics, 8, 121–134.

See Also

Grid, grid.show.layout , viewport , layout

Examples

A variety of layouts (some a bit mid-bending ...)
layout.torture()
Demonstration of layout justification
grid.newpage()
testlay <- function(just="centre") {

pushViewport(viewport(layout=grid.layout(1, 1, widths=unit(1, "inches"),
heights=unit(0.25, "npc"),
just=just)))

pushViewport(viewport(layout.pos.col=1, layout.pos.row=1))
grid.rect()
grid.text(paste(just, collapse="-"))
popViewport(2)

}
testlay()
testlay(c("left", "top"))
testlay(c("right", "top"))
testlay(c("right", "bottom"))
testlay(c("left", "bottom"))
testlay(c("left"))
testlay(c("right"))
testlay(c("bottom"))
testlay(c("top"))

grid.lines Draw Lines in a Grid Viewport

Description

These functions create and draw a series of lines.

Usage

grid.lines(x = unit(c(0, 1), "npc"),
y = unit(c(0, 1), "npc"),
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), draw = TRUE, vp = NULL)

linesGrob(x = unit(c(0, 1), "npc"),
y = unit(c(0, 1), "npc"),
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), vp = NULL)

grid.polyline(...)

780 grid.lines

polylineGrob(x = unit(c(0, 1), "npc"),
y = unit(c(0, 1), "npc"),
id=NULL, id.lengths=NULL,
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

default.units
A string indicating the default units to use ifx or y are only given as numeric
vectors.

arrow A list describing arrow heads to place at either end of the line, as produced by
thearrow function.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

id A numeric vector used to separate locations inx andy into multiple lines. All
locations with the sameid belong to the same line.

id.lengths A numeric vector used to separate locations inx andy into multiple lines. Spec-
ifies consecutive blocks of locations which make up separate lines.

... Arguments passed topolylineGrob .

Details

The first two functions create a lines grob (a graphical object describing lines), andgrid.lines
draws the lines (ifdraw is TRUE).

The second two functions create or draw a polyline grob, which is just like a lines grob, except that
there can be multiple distinct lines drawn.

Value

A lines grob or a polyline grob.grid.lines returns a lines grob invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport , arrow

grid.locator 781

Examples

grid.lines()
Using id (NOTE: locations are not in consecutive blocks)
grid.newpage()
grid.polyline(x=c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),

y=c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),
id=rep(1:5, 4),
gp=gpar(col=1:5, lwd=3))

Using id.lengths
grid.newpage()
grid.polyline(x=outer(c(0, .5, 1, .5), 5:1/5),

y=outer(c(.5, 1, .5, 0), 5:1/5),
id.lengths=rep(4, 5),
gp=gpar(col=1:5, lwd=3))

grid.locator Capture a Mouse Click

Description

Allows the user to click the mouse once within the current graphics device and returns the location
of the mouse click within the current viewport, in the specified coordinate system.

Usage

grid.locator(unit = "native")

Arguments

unit The coordinate system in which to return the location of the mouse click. See
theunit function for valid coordinate systems.

Details

This function is modal (like the graphics package functionlocator) so the command line and
graphics drawing is blocked until the use has clicked the mouse in the current device.

Value

A unit object representing the location of the mouse click within the current viewport, in the speci-
fied coordinate system.

If the user did not click mouse button 1, the function (invisibly) returnsNULL.

Author(s)

Paul Murrell

See Also

viewport , unit , locator in packagegraphics, and for an application seetrellis.focus
andpanel.identify in packagelattice.

782 grid.ls

Examples

if (interactive()) {
Need to write a more sophisticated unit as.character method
unittrim <- function(unit) {

sub("^([0-9]+|[0-9]+[.][0-9])[0-9]*", "\\1", as.character(unit))
}
do.click <- function(unit) {

click.locn <- grid.locator(unit)
grid.segments(unit.c(click.locn$x, unit(0, "npc")),

unit.c(unit(0, "npc"), click.locn$y),
click.locn$x, click.locn$y,
gp=gpar(lty="dashed", col="grey"))

grid.points(click.locn$x, click.locn$y, pch=16, size=unit(1, "mm"))
clickx <- unittrim(click.locn$x)
clicky <- unittrim(click.locn$y)
grid.text(paste("(", clickx, ", ", clicky, ")", sep=""),

click.locn$x + unit(2, "mm"), click.locn$y,
just="left")

}
do.click("inches")
pushViewport(viewport(width=0.5, height=0.5,

xscale=c(0, 100), yscale=c(0, 10)))
grid.rect()
grid.xaxis()
grid.yaxis()
do.click("native")
popViewport()

}

grid.ls List the names of grobs or viewports

Description

Returns a listing of the names of grobs or viewports.

This is a generic function with methods for grobs (including gTrees) and viewports (including
vpTrees).

Usage

grid.ls(x=NULL, grobs=TRUE, viewports=FALSE, fullNames=FALSE,
recursive=TRUE, print=TRUE, flatten=TRUE, ...)

nestedListing(x, gindent=" ", vpindent=gindent)
pathListing(x, gvpSep=" | ", gAlign=TRUE)
grobPathListing(x, ...)

Arguments

x A grob or viewport orNULL. If NULL, the current grid display list is listed.

For print functions, this should be the result of a call togrid.ls .

grobs A logical value indicating whether to list grobs.

grid.ls 783

viewports A logical value indicating whether to list viewports.

fullNames A logical value indicating whether to embellish object names with information
about the object type.

recursive A logical value indicating whether recursive structures should also list their chil-
dren.

print A logical indicating whether to print the listing or a function that will print the
listing.

flatten A logical value indicating whether to flatten the listing. Otherwise a more com-
plex hierarchical object is produced.

gindent The indent used to show nesting in the output for grobs.

vpindent The indent used to show nesting in the output for viewports.

gvpSep The string used to separate viewport paths from grob paths.

gAlign Logical indicating whether to align the left hand edge of all grob paths.

... Arguments passed to theprint function.

Details

If the argumentx is NULL, the current contents of the grid display list are listed (both viewports
and grobs). In other words, all objects representing the current scene are listed.

Otherwise,x should be a grob or a viewport.

The default behaviour of this function is to print information about the grobs in the current scene.
It is also possible to add information about the viewports in the scene. By default, the listing is
recursive, so all children of gTrees and all nested viewports are reported.

The format of the information can be controlled via theprint argument, which can be given
a function to perform the formatting. ThenestedListing function produces a line per
grob or viewport, with indenting used to show nesting. ThepathListing function produces
a line per grob or viewport, with viewport paths and grob paths used to show nesting. The
grobPathListing is a simple derivation that only shows lines for grobs. The user can define
new functions.

Value

The result of this function is either a"gridFlatListing" object (if flatten is TRUE) or a
"gridListing" object.

The former is a simple (flat) list of vectors. This is convenient, for example, for working program-
matically with the list of grob and viewport names, or for writing a new display function for the
listing.

The latter is a more complex heiararchical object (list of lists), but it does contain more detailed
information so may be of use for more advanced customisations.

Author(s)

Paul Murrell

See Also

grob viewport

784 grid.move.to

Examples

A gTree, called "parent", with childrenvp vpTree (vp2 within vp1)
and child grob, called "child", with vp vpPath (down to vp2)
sampleGTree <- gTree(name="parent",

children=gList(grob(name="child", vp="vp1::vp2")),
childrenvp=vpTree(parent=viewport(name="vp1"),

children=vpList(viewport(name="vp2"))))
grid.ls(sampleGTree)
Show viewports too
grid.ls(sampleGTree, view=TRUE)
Only show viewports
grid.ls(sampleGTree, view=TRUE, grob=FALSE)
Alternate displays
nested listing, custom indent
grid.ls(sampleGTree, view=TRUE, print=nestedListing, gindent="--")
path listing
grid.ls(sampleGTree, view=TRUE, print=pathListing)
path listing, without grobs aligned
grid.ls(sampleGTree, view=TRUE, print=pathListing, gAlign=FALSE)
grob path listing
grid.ls(sampleGTree, view=TRUE, print=grobPathListing)
path listing, grobs only
grid.ls(sampleGTree, print=pathListing)
path listing, viewports only
grid.ls(sampleGTree, view=TRUE, grob=FALSE, print=pathListing)
raw flat listing
str(grid.ls(sampleGTree, view=TRUE, print=FALSE))

grid.move.to Move or Draw to a Specified Position

Description

Grid has the notion of a current location. These functions sets that location.

Usage

grid.move.to(x = 0, y = 0, default.units = "npc", name = NULL,
draw = TRUE, vp = NULL)

moveToGrob(x = 0, y = 0, default.units = "npc", name = NULL, vp = NULL)

grid.line.to(x = 1, y = 1, default.units = "npc",
arrow = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

lineToGrob(x = 1, y = 1, default.units = "npc", arrow = NULL,
name = NULL, gp = gpar(), vp = NULL)

Arguments

x A numeric value or a unit object specifying an x-value.

y A numeric value or a unit object specifying a y-value.

grid.newpage 785

default.units
A string indicating the default units to use ifx or y are only given as numeric
values.

arrow A list describing arrow heads to place at either end of the line, as produced by
thearrow function.

name A character identifier.

draw A logical value indicating whether graphics output should be produced.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Details

Both functions create a move.to/line.to grob (a graphical object describing a move-to/line-to), but
only grid.move.to/line.to() draws the move.to/line.to (and then only ifdraw is TRUE).

Value

A move.to/line.to grob.grid.move.to/line.to() returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport , arrow

Examples

grid.newpage()
grid.move.to(0.5, 0.5)
grid.line.to(1, 1)
grid.line.to(0.5, 0)
pushViewport(viewport(x=0, y=0, w=0.25, h=0.25, just=c("left", "bottom")))
grid.rect()
grid.grill()
grid.line.to(0.5, 0.5)
popViewport()

grid.newpage Move to a New Page on a Grid Device

Description

This function erases the current device or moves to a new page.

Usage

grid.newpage(recording = TRUE)

786 grid.pack

Arguments

recording A logical value to indicate whether the new-page operation should be saved onto
the Grid display list.

Details

There is a hook called"grid.newpage" (seesetHook) which is used in the testing code to
annotate the new page. The hook function(s) are called with no argument. (If the value is a character
string,get is called on it from within thegrid name space.)

Value

None.

Author(s)

Paul Murrell

See Also

Grid

grid.pack Pack an Object within a Frame

Description

This functions, together withgrid.frame andframeGrob are part of a GUI-builder-like inter-
face to constructing graphical images. The idea is that you create a frame withgrid.frame or
frameGrob then use this functions to pack objects into the frame.

Usage

grid.pack(gPath, grob, redraw = TRUE, side = NULL,
row = NULL, row.before = NULL, row.after = NULL,
col = NULL, col.before = NULL, col.after = NULL,
width = NULL, height = NULL,
force.width = FALSE, force.height = FALSE, border = NULL,
dynamic = FALSE)

packGrob(frame, grob, side = NULL,
row = NULL, row.before = NULL, row.after = NULL,
col = NULL, col.before = NULL, col.after = NULL,
width = NULL, height = NULL,
force.width = FALSE, force.height = FALSE, border = NULL,
dynamic = FALSE)

grid.pack 787

Arguments

gPath A gPath object, which specifies a frame on the display list.

frame An object of classframe , typically the output from a call togrid.frame .

grob An object of classgrob . The object to be packed.

redraw A boolean indicating whether the output should be updated.

side One of"left" , "top" , "right" , "bottom" to indicate which side to pack
the object on.

row Which row to add the object to. Must be between 1 and the-number-of-rows-
currently-in-the-frame + 1, orNULL in which case the object occupies all rows.

row.before Add the object to a new row just before this row.

row.after Add the object to a new row just after this row.

col Which col to add the object to. Must be between 1 and the-number-of-cols-
currently-in-the-frame + 1, orNULL in which case the object occupies all cols.

col.before Add the object to a new col just before this col.

col.after Add the object to a new col just after this col.

width Specifies the width of the column that the object is added to (rather than allowing
the width to be taken from the object).

height Specifies the height of the row that the object is added to (rather than allowing
the height to be taken from the object).

force.width A logical value indicating whether the width of the column that the grob is being
packed into should be EITHER the width specified in the call togrid.pack
OR the maximum of that width and the pre-existing width.

force.height A logical value indicating whether the height of the column that the grob is being
packed into should be EITHER the height specified in the call togrid.pack
OR the maximum of that height and the pre-existing height.

border A unit object of length 4 indicating the borders around the object.

dynamic If the width/height is taken from the grob being packed, this boolean flag in-
dicates whether the grobwidth/height unit refers directly to the grob, or uses a
gPath to the grob. In the latter case, changes to the grob will trigger a recalcula-
tion of the width/height.

Details

packGrob modifies the given frame grob and returns the modified frame grob.

grid.pack destructively modifies a frame grob on the display list (and redraws the display list if
redraw is TRUE).

These are (meant to be) very flexible functions. There are many different ways to specify where the
new object is to be added relative to the objects already in the frame. The function checks that the
specification is not self-contradictory.

NOTE that the width/height of the row/col that the object is added to is taken from the object itself
unless thewidth /height is specified.

Value

packGrob returns a frame grob, butgrid.pack returnsNULL.

788 grid.place

Author(s)

Paul Murrell

See Also

grid.frame , grid.place , grid.edit , andgPath .

grid.place Place an Object within a Frame

Description

These functions provide a simpler (and faster) alternative to thegrid.pack() andpackGrob
functions. They can be used to place objects within the existing rows and columns of a frame
layout. They do not provide the ability to add new rows and columns nor do they affect the heights
and widths of the rows and columns.

Usage

grid.place(gPath, grob, row = 1, col = 1, redraw = TRUE)
placeGrob(frame, grob, row = NULL, col = NULL)

Arguments

gPath A gPath object, which specifies a frame on the display list.

frame An object of classframe , typically the output from a call togrid.frame .

grob An object of classgrob . The object to be placed.

row Which row to add the object to. Must be between 1 and the-number-of-rows-
currently-in-the-frame.

col Which col to add the object to. Must be between 1 and the-number-of-cols-
currently-in-the-frame.

redraw A boolean indicating whether the output should be updated.

Details

placeGrob modifies the given frame grob and returns the modified frame grob.

grid.place destructively modifies a frame grob on the display list (and redraws the display list
if redraw is TRUE).

Value

placeGrob returns a frame grob, butgrid.place returnsNULL.

Author(s)

Paul Murrell

See Also

grid.frame , grid.pack , grid.edit , andgPath .

grid.plot.and.legend 789

grid.plot.and.legend
A Simple Plot and Legend Demo

Description

This function is just a wrapper for a simple demonstration of how a basic plot and legend can be
drawn from scratch using grid.

Usage

grid.plot.and.legend()

Author(s)

Paul Murrell

Examples

grid.plot.and.legend()

grid.points Draw Data Symbols

Description

These functions create and draw data symbols.

Usage

grid.points(x = stats::runif(10),
y = stats::runif(10),
pch = 1, size = unit(1, "char"),
default.units = "native", name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

pointsGrob(x = stats::runif(10),
y = stats::runif(10),
pch = 1, size = unit(1, "char"),
default.units = "native", name = NULL,
gp = gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

pch A numeric or character vector indicating what sort of plotting symbol to use.
Seepoints for the interpretation of these values.

size A unit object specifying the size of the plotting symbols.

790 grid.polygon

default.units
A string indicating the default units to use ifx or y are only given as numeric
vectors.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a points grob (a graphical object describing points), but onlygrid.points
draws the points (and then only ifdraw is TRUE).

Value

A points grob.grid.points returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

grid.polygon Draw a Polygon

Description

These functions create and draw a polygon. The final point will automatically be connected to the
initial point.

Usage

grid.polygon(x=c(0, 0.5, 1, 0.5), y=c(0.5, 1, 0.5, 0),
id=NULL, id.lengths=NULL,
default.units="npc", name=NULL,
gp=gpar(), draw=TRUE, vp=NULL)

polygonGrob(x=c(0, 0.5, 1, 0.5), y=c(0.5, 1, 0.5, 0),
id=NULL, id.lengths=NULL,
default.units="npc", name=NULL,
gp=gpar(), vp=NULL)

grid.polygon 791

Arguments

x A numeric vector or unit object specifying x-locations.

y A numeric vector or unit object specifying y-locations.

id A numeric vector used to separate locations inx andy into multiple polygons.
All locations with the sameid belong to the same polygon.

id.lengths A numeric vector used to separate locations inx andy into multiple polygons.
Specifies consecutive blocks of locations which make up separate polygons.

default.units
A string indicating the default units to use ifx , y , width , or height are only
given as numeric vectors.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a polygon grob (a graphical object describing a polygon), but only
grid.polygon draws the polygon (and then only ifdraw is TRUE).

Value

A grob object.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.polygon()
Using id (NOTE: locations are not in consecutive blocks)
grid.newpage()
grid.polygon(x=c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),

y=c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),
id=rep(1:5, 4),
gp=gpar(fill=1:5))

Using id.lengths
grid.newpage()
grid.polygon(x=outer(c(0, .5, 1, .5), 5:1/5),

y=outer(c(.5, 1, .5, 0), 5:1/5),
id.lengths=rep(4, 5),
gp=gpar(fill=1:5))

792 grid.prompt

grid.pretty Generate a Sensible Set of Breakpoints

Description

Produces a pretty set of breakpoints within the range given.

Usage

grid.pretty(range)

Arguments

range A numeric vector

Value

A numeric vector of breakpoints.

Author(s)

Paul Murrell

grid.prompt Prompt before new page

Description

This function can be used to control whether the user is prompted before starting a new page of
output.

Usage

grid.prompt(ask)

Arguments

ask a logical value. IfTRUE, the user is prompted before a new page of output is
started.

Value

The current prompt settingbeforeany new setting is applied.

Author(s)

Paul Murrell

See Also

grid.newpage

grid.record 793

grid.record Encapsulate calculations and drawing

Description

Evaluates an expression that includes both calculations and drawing that depends on the calculations
so that both the calculations and the drawing will be rerun when the scene is redrawn (e.g., device
resize or editing).

Intendedonly for expert use.

Usage

recordGrob(expr, list, name=NULL, gp=NULL, vp=NULL)
grid.record(expr, list, name=NULL, gp=NULL, vp=NULL)

Arguments

expr object of modeexpression or call or an unevaluated expression.

list a list defining the environment in whichexpr is to be evaluated.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Details

A grob is created of special class"recordedGrob" (and drawn, in the case ofgrid.record).
ThedrawDetails method for this class evaluates the expression with the list as the evaluation
environment (and the grid Namespace as the parent of that environment).

Note

This functionmustbe used instead of the functionrecordGraphics ; all of the dire warnings
about usingrecordGraphics responsibly also apply here.

Author(s)

Paul Murrell

See Also

recordGraphics

Examples

grid.record({
w <- convertWidth(unit(1, "inches"), "npc")

grid.rect(width=w)
},
list())

794 grid.rect

grid.rect Draw rectangles

Description

These functions create and draw rectangles.

Usage

grid.rect(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL,
gp=gpar(), draw = TRUE, vp = NULL)

rectGrob(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL,
gp=gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

just The justification of the rectangle relative to its (x, y) location. If there are
two values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are:"left" , "right" ,
"centre" , "center" , "bottom" , and "top" . For numeric values, 0
means left alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

default.units
A string indicating the default units to use ifx , y , width , or height are only
given as numeric vectors.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a rect grob (a graphical object describing rectangles), but onlygrid.rect
draws the rectangles (and then only ifdraw is TRUE).

grid.refresh 795

Value

A rect grob.grid.rect returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

grid.refresh Refresh the current grid scene

Description

Replays the current grid display list.

Usage

grid.refresh()

Author(s)

Paul Murrell

grid.remove Remove a Grid Graphical Object

Description

Remove a grob from a gTree or a descendant of a gTree.

Usage

grid.remove(gPath, warn = TRUE, strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

grid.gremove <- function(..., grep = TRUE, global = TRUE)

removeGrob(gTree, gPath, strict = FALSE, grep = FALSE,
global = FALSE, warn = TRUE)

796 grid.segments

Arguments

gTree A gTree object.

gPath A gPath object. Forgrid.remove this specifies a gTree on the display list.
For removeGrob this specifies a descendant of the specified gTree.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether thegPath should be treated as a regular ex-
pression. Values are recycled across elements of thegPath (e.g.,c(TRUE,
FALSE) means that every odd element of thegPath will be treated as a regu-
lar expression).

global A boolean indicating whether the function should affect just the first match of
thegPath , or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

warn A logical to indicate whether failing to find the specified grob should trigger an
error.

redraw A logical value to indicate whether to redraw the grob.

Details

removeGrob copies the specified grob and returns a modified grob.

grid.remove destructively modifies a grob on the display list. Ifredraw is TRUE it then
redraws everything to reflect the change.

grid.gremove (g for global) is just a convenience wrapper forgrid.remove with different
defaults.

Value

removeGrob returns a grob object;grid.remove returnsNULL.

Author(s)

Paul Murrell

See Also

grob , getGrob , removeGrob , removeGrob .

grid.segments Draw Line Segments

Description

These functions create and draw line segments.

grid.segments 797

Usage

grid.segments(x0 = unit(0, "npc"), y0 = unit(0, "npc"),
x1 = unit(1, "npc"), y1 = unit(1, "npc"),
default.units = "npc",
arrow = NULL,
name = NULL, gp = gpar(), draw = TRUE, vp = NULL)

segmentsGrob(x0 = unit(0, "npc"), y0 = unit(0, "npc"),
x1 = unit(1, "npc"), y1 = unit(1, "npc"),
default.units = "npc",
arrow = NULL, name = NULL, gp = gpar(), vp = NULL)

Arguments

x0 Numeric indicating the starting x-values of the line segments.

y0 Numeric indicating the starting y-values of the line segments.

x1 Numeric indicating the stopping x-values of the line segments.

y1 Numeric indicating the stopping y-values of the line segments.

default.units
A string.

arrow A list describing arrow heads to place at either end of the line segments, as
produced by thearrow function.

name A character identifier.

gp An object of classgpar .

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a segments grob (a graphical object describing segments), but only
grid.segments draws the segments (and then only ifdraw is TRUE).

Value

A segments grob.grid.segments returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport , arrow

798 grid.set

grid.set Set a Grid Graphical Object

Description

Replace a grob or a descendant of a grob.

Usage

grid.set(gPath, newGrob, strict = FALSE, grep = FALSE,
redraw = TRUE)

setGrob(gTree, gPath, newGrob, strict = FALSE, grep = FALSE)

Arguments

gTree A gTree object.

gPath A gPath object. Forgrid.set this specifyies a grob on the display list. For
setGrob this specifies a descendant of the specified gTree.

newGrob A grob object.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether thegPath should be treated as a regular ex-
pression. Values are recycled across elements of thegPath (e.g.,c(TRUE,
FALSE) means that every odd element of thegPath will be treated as a regu-
lar expression).

redraw A logical value to indicate whether to redraw the grob.

Details

setGrob copies the specified grob and returns a modified grob.

grid.set destructively replaces a grob on the display list. Ifredraw is TRUEit then redraws
everything to reflect the change.

These functions should not normally be called by the user.

Value

setGrob returns a grob object;grid.set returnsNULL.

Author(s)

Paul Murrell

See Also

grid.grob .

grid.show.layout 799

grid.show.layout Draw a Diagram of a Grid Layout

Description

This function uses Grid graphics to draw a diagram of a Grid layout.

Usage

grid.show.layout(l, newpage=TRUE, bg = "light grey",
cell.border = "blue", cell.fill = "light blue",
cell.label = TRUE, label.col = "blue",
unit.col = "red", vp = NULL)

Arguments

l A Grid layout object.

newpage A logical value indicating whether to move on to a new page before drawing the
diagram.

bg The colour used for the background.

cell.border The colour used to draw the borders of the cells in the layout.

cell.fill The colour used to fill the cells in the layout.

cell.label A logical indicating whether the layout cells should be labelled.

label.col The colour used for layout cell labels.

unit.col The colour used for labelling the widths/heights of columns/rows.

vp A Grid viewport object (or NULL).

Details

A viewport is created withinvp to provide a margin for annotation, and the layout is drawn within
that new viewport. The margin is filled with light grey, the new viewport is filled with white and
framed with a black border, and the layout regions are filled with light blue and framed with a blue
border. The diagram is annotated with the widths and heights (including units) of the columns and
rows of the layout using red text. (All colours are defaults and may be customised via function
arguments.)

Value

None.

Author(s)

Paul Murrell

See Also

Grid, viewport , grid.layout

800 grid.show.viewport

Examples

Diagram of a simple layout
grid.show.layout(grid.layout(4,2,

heights=unit(rep(1, 4),
c("lines", "lines", "lines", "null")),

widths=unit(c(1, 1), "inches")))

grid.show.viewport Draw a Diagram of a Grid Viewport

Description

This function uses Grid graphics to draw a diagram of a Grid viewport.

Usage

grid.show.viewport(v, parent.layout = NULL, newpage = TRUE,
border.fill="light grey",
vp.col="blue", vp.fill="light blue",
scale.col="red",
vp = NULL)

Arguments

v A Grid viewport object.
parent.layout

A grid layout object. If this is not NULL and the viewport given inv has its
location specified relative to the layout, then the diagram shows the layout and
which cellsv occupies within the layout.

newpage A logical value to indicate whether to move to a new page before drawing the
diagram.

border.fill Colour to fill the border margin.

vp.col Colour for the border of the viewport region.

vp.fill Colour to fill the viewport region.

scale.col Colour to draw the viewport axes.

vp A Grid viewport object (or NULL).

Details

A viewport is created withinvp to provide a margin for annotation, and the diagram is drawn within
that new viewport. By default, the margin is filled with light grey, the new viewport is filled with
white and framed with a black border, and the viewport region is filled with light blue and framed
with a blue border. The diagram is annotated with the width and height (including units) of the
viewport, the (x, y) location of the viewport, and the x- and y-scales of the viewport, using red lines
and text.

Value

None.

grid.text 801

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
grid.show.viewport(viewport(layout.pos.row=2, layout.pos.col=2:3),

grid.layout(3, 4))

grid.text Draw Text

Description

These functions create and draw text andplotmathexpressions.

Usage

grid.text(label, x = unit(0.5, "npc"), y = unit(0.5, "npc"),
just = "centre", hjust = NULL, vjust = NULL, rot = 0,
check.overlap = FALSE, default.units = "npc",
name = NULL, gp = gpar(), draw = TRUE, vp = NULL)

textGrob(label, x = unit(0.5, "npc"), y = unit(0.5, "npc"),
just = "centre", hjust = NULL, vjust = NULL, rot = 0,
check.overlap = FALSE, default.units = "npc",
name = NULL, gp = gpar(), vp = NULL)

Arguments

label A character or expression vector. Other objects are coerced by
as.graphicsAnnot .

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

just The justification of the text relative to its (x, y) location. If there are two val-
ues, the first value specifies horizontal justification and the second value spec-
ifies vertical justification. Possible string values are:"left" , "right" ,
"centre" , "center" , "bottom" , and "top" . For numeric values, 0
means left alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

rot The angle to rotate the text.

802 grid.text

check.overlap
A logical value to indicate whether to check for and omit overlapping text.

default.units
A string indicating the default units to use ifx or y are only given as numeric
vectors.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a text grob (a graphical object describing text), but onlygrid.text draws
the text (and then only ifdraw is TRUE).

If the label argument is an expression, the output is formatted as a mathematical annotation, as
for base graphics text.

Value

A text grob.grid.text returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.newpage()
x <- stats::runif(20)
y <- stats::runif(20)
rot <- stats::runif(20, 0, 360)
grid.text("SOMETHING NICE AND BIG", x=x, y=y, rot=rot,

gp=gpar(fontsize=20, col="grey"))
grid.text("SOMETHING NICE AND BIG", x=x, y=y, rot=rot,

gp=gpar(fontsize=20), check=TRUE)
grid.newpage()
draw.text <- function(just, i, j) {

grid.text("ABCD", x=x[j], y=y[i], just=just)
grid.text(deparse(substitute(just)), x=x[j], y=y[i] + unit(2, "lines"),

gp=gpar(col="grey", fontsize=8))
}
x <- unit(1:4/5, "npc")
y <- unit(1:4/5, "npc")
grid.grill(h=y, v=x, gp=gpar(col="grey"))
draw.text(c("bottom"), 1, 1)
draw.text(c("left", "bottom"), 2, 1)
draw.text(c("right", "bottom"), 3, 1)
draw.text(c("centre", "bottom"), 4, 1)
draw.text(c("centre"), 1, 2)

grid.xaxis 803

draw.text(c("left", "centre"), 2, 2)
draw.text(c("right", "centre"), 3, 2)
draw.text(c("centre", "centre"), 4, 2)
draw.text(c("top"), 1, 3)
draw.text(c("left", "top"), 2, 3)
draw.text(c("right", "top"), 3, 3)
draw.text(c("centre", "top"), 4, 3)
draw.text(c(), 1, 4)
draw.text(c("left"), 2, 4)
draw.text(c("right"), 3, 4)
draw.text(c("centre"), 4, 4)

grid.xaxis Draw an X-Axis

Description

These functions create and draw an x-axis.

Usage

grid.xaxis(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

xaxisGrob(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), vp = NULL)

Arguments

at A numeric vector of x-value locations for the tick marks.

label A logical value indicating whether to draw the labels on the tick marks, or an
expression or character vector which specify the labels to use. If not logical,
must be the same length as theat argument.

main A logical value indicating whether to draw the axis at the bottom (TRUE) or at
the top (FALSE) of the viewport.

edits A gEdit or gEditList containing edit operations to apply (to the children of the
axis) when the axis is first created and during redrawing wheneverat is NULL.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport obect (orNULL).

Details

Both functions create an xaxis grob (a graphical object describing an xaxis), but onlygrid.xaxis
draws the xaxis (and then only ifdraw is TRUE).

804 grid.xspline

Value

An xaxis grob.grid.xaxis returns the value invisibly.

Children

If the at slot of an xaxis grob is notNULL then the xaxis will have the following children:

major representing the line at the base of the tick marks.

ticks representing the tick marks.

labels representing the tick labels.

If the at slot isNULL then there are no children and ticks are drawn based on the current viewport
scale.

Author(s)

Paul Murrell

See Also

Grid, viewport , grid.yaxis

grid.xspline Draw an Xspline

Description

These functions create and draw an xspline, a curve drawn relative to control points.

Usage

grid.xspline(...)
xsplineGrob(x = c(0, 0.5, 1, 0.5), y = c(0.5, 1, 0.5, 0),

id = NULL, id.lengths = NULL,
default.units = "npc",
shape = 0, open = TRUE, arrow = NULL, repEnds = TRUE,
name = NULL, gp = gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-locations of spline control points.

y A numeric vector or unit object specifying y-locations of spline control points.

id A numeric vector used to separate locations inx andy into multiple xsplines.
All locations with the sameid belong to the same xspline.

id.lengths A numeric vector used to separate locations inx andy into multiple xspline.
Specifies consecutive blocks of locations which make up separate xsplines.

default.units
A string indicating the default units to use ifx or y are only given as numeric
vectors.

grid.xspline 805

shape A numeric vector of values between -1 and 1, which control the shape of the
spline relative to the control points.

open A logical value indicating whether the spline is a line or a closed shape.

arrow A list describing arrow heads to place at either end of the xspline, as produced
by thearrow function.

repEnds A logical value indicating whether the first and last control points should be
replicated for drawing the curve (see Details below).

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments to be passed toxsplineGrob .

Details

Both functions create an xspline grob (a graphical object describing an xspline), but only
grid.xspline draws the xspline.

An xspline is a line drawn relative to control points. For each control point, the line may pass
through (interpolate) the control point or it may only approach (approximate) the control point; the
behaviour is determined by a shape parameter for each control point.

If the shape parameter is greater than zero, the spline approximates the control points (and is very
similar to a cubic B-spline when the shape is 1). If the shape parameter is less than zero, the spline
interpolates the control points (and is very similar to a Catmull-Rom spline when the shape is -1).
If the shape parameter is 0, the spline forms a sharp corner at that control point.

For open xsplines, the start and end control points must have a shape of 0 (and non-zero values are
silently converted to zero without warning).

For open xsplines, by default the start and end control points are actually replicated before the curve
is drawn. A curve is drawn between (interpolating or approximating) the second and third of each
set of four control points, so this default behaviour ensures that the resulting curve starts at the first
control point you have specified and ends at the last control point. The default behaviour can be
turned off via therepEnds argument, in which case the curve that is drawn starts (approximately)
at the second control point and ends (approximately) at the first and second-to-last control point.

TherepEnds argument is ignored for closed xsplines.

Missing values are not allowed forx andy (i.e., it is not valid for a control point to be missing).

For closed xsplines, a curve is automatically drawn between the final control point and the initial
control point.

Value

A grob object.

References

Blanc, C. and Schlick, C. (1995), "X-splines : A Spline Model Designed for the End User", in
Proceedings of SIGGRAPH 95, pp. 377–386.http://dept-info.labri.fr/~schlick/
DOC/sig1.html

http://dept-info.labri.fr/~schlick/DOC/sig1.html
http://dept-info.labri.fr/~schlick/DOC/sig1.html

806 grid.xspline

See Also

Grid, viewport , arrow .

xspline .

Examples

x <- c(0.25, 0.25, 0.75, 0.75)
y <- c(0.25, 0.75, 0.75, 0.25)

xsplineTest <- function(s, i, j, open) {
pushViewport(viewport(layout.pos.col=j, layout.pos.row=i))
grid.points(x, y, default.units="npc", pch=16, size=unit(2, "mm"))
grid.xspline(x, y, shape=s, open=open, gp=gpar(fill="grey"))
grid.text(s, gp=gpar(col="grey"),

x=unit(x, "npc") + unit(c(-1, -1, 1, 1), "mm"),
y=unit(y, "npc") + unit(c(-1, 1, 1, -1), "mm"),
hjust=c(1, 1, 0, 0),
vjust=c(1, 0, 0, 1))

popViewport()
}

pushViewport(viewport(width=.5, x=0, just="left",
layout=grid.layout(3, 3, respect=TRUE)))

pushViewport(viewport(layout.pos.row=1))
grid.text("Open Splines", y=1, just="bottom")
popViewport()
xsplineTest(c(0, -1, -1, 0), 1, 1, TRUE)
xsplineTest(c(0, -1, 0, 0), 1, 2, TRUE)
xsplineTest(c(0, -1, 1, 0), 1, 3, TRUE)
xsplineTest(c(0, 0, -1, 0), 2, 1, TRUE)
xsplineTest(c(0, 0, 0, 0), 2, 2, TRUE)
xsplineTest(c(0, 0, 1, 0), 2, 3, TRUE)
xsplineTest(c(0, 1, -1, 0), 3, 1, TRUE)
xsplineTest(c(0, 1, 0, 0), 3, 2, TRUE)
xsplineTest(c(0, 1, 1, 0), 3, 3, TRUE)
popViewport()
pushViewport(viewport(width=.5, x=1, just="right",

layout=grid.layout(3, 3, respect=TRUE)))
pushViewport(viewport(layout.pos.row=1))
grid.text("Closed Splines", y=1, just="bottom")
popViewport()
xsplineTest(c(-1, -1, -1, -1), 1, 1, FALSE)
xsplineTest(c(-1, -1, 0, -1), 1, 2, FALSE)
xsplineTest(c(-1, -1, 1, -1), 1, 3, FALSE)
xsplineTest(c(0, 0, -1, 0), 2, 1, FALSE)
xsplineTest(c(0, 0, 0, 0), 2, 2, FALSE)
xsplineTest(c(0, 0, 1, 0), 2, 3, FALSE)
xsplineTest(c(1, 1, -1, 1), 3, 1, FALSE)
xsplineTest(c(1, 1, 0, 1), 3, 2, FALSE)
xsplineTest(c(1, 1, 1, 1), 3, 3, FALSE)
popViewport()

grid.yaxis 807

grid.yaxis Draw a Y-Axis

Description

These functions create and draw a y-axis.

Usage

grid.yaxis(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

yaxisGrob(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), vp = NULL)

Arguments

at A numeric vector of y-value locations for the tick marks.

label A logical value indicating whether to draw the labels on the tick marks, or an
expression or character vector which specify the labels to use. If not logical,
must be the same length as theat argument.

main A logical value indicating whether to draw the axis at the left (TRUE) or at the
right (FALSE) of the viewport.

edits A gEdit or gEditList containing edit operations to apply (to the children of the
axis) when the axis is first created and during redrawing wheneverat is NULL.

name A character identifier.

gp An object of classgpar , typically the output from a call to the functiongpar .
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (orNULL).

Details

Both functions create a yaxis grob (a graphical object describing a yaxis), but onlygrid.yaxis
draws the yaxis (and then only ifdraw is TRUE).

Value

A yaxis grob.grid.yaxis returns the value invisibly.

Children

If the at slot of an xaxis grob is notNULL then the xaxis will have the following children:

major representing the line at the base of the tick marks.

ticks representing the tick marks.

labels representing the tick labels.

If the at slot isNULL then there are no children and ticks are drawn based on the current viewport
scale.

808 grobWidth

Author(s)

Paul Murrell

See Also

Grid, viewport , grid.xaxis

grobName Generate a Name for a Grob

Description

This function generates a unique (within-session) name for a grob, based on the grob’s class.

Usage

grobName(grob = NULL, prefix = "GRID")

Arguments

grob A grob object orNULL.

prefix The prefix part of the name.

Value

A character string of the formprefix.class(grob).index

Author(s)

Paul Murrell

grobWidth Create a Unit Describing the Width of a Grob

Description

These functions create a unit object describing the width or height of a grob. They are generic.

Usage

grobWidth(x)
grobHeight(x)

Arguments

x A grob object.

Value

A unit object.

grobX 809

Author(s)

Paul Murrell

See Also

unit andstringWidth

grobX Create a Unit Describing a Grob Boundary Location

Description

These functions create a unit object describing a location somewhere on the boundary of a grob.
They are generic.

Usage

grobX(x, theta)
grobY(x, theta)

Arguments

x A grob, or gList, or gTree, or gPath.

theta An angle indicating where the location is on the grob boundary. Can be one of
"east" , "north" , "west" , or "south" , which correspond to angles 0, 90,
180, and 270, respectively.

Details

The angle is anti-clockwise with zero corresponding to a line with an origin centred between the
extreme points of the shape, and pointing at 3 o’clock.

If the grob describes a single shape, the boundary value should correspond to the exact edge of the
shape.

If the grob describes multiple shapes, in most cases, the boundary value will correspond to the edge
of a bounding box around all of the shapes. The exception to this is a polygon grob describing
multiple polygons; in that case, the edge corresponds to a convex hull around all points of all
polygons described by the grob.

Value

A unit object.

Author(s)

Paul Murrell

See Also

unit andgrobWidth

810 pop.viewport

plotViewport Create a Viewport with a Standard Plot Layout

Description

This is a convenience function for producing a viewport with the common S-style plot layout – i.e.,
a central plot region surrounded by margins given in terms of a number of lines of text.

Usage

plotViewport(margins=c(5.1, 4.1, 4.1, 2.1), ...)

Arguments

margins A numeric vector interpreted in the same way aspar(mar) in base graphics.

... All other arguments will be passed to a call to theviewport() function.

Value

A grid viewport object.

Author(s)

Paul Murrell

See Also

viewport anddataViewport .

pop.viewport Pop a Viewport off the Grid Viewport Stack

Description

Grid maintains a viewport stack — a list of nested drawing contexts.

This function makes the parent of the specified viewport the new default viewport.

Usage

pop.viewport(n=1, recording=TRUE)

Arguments

n An integer giving the number of viewports to pop. Defaults to 1.

recording A logical value to indicate whether the set-viewport operation should be
recorded on the Grid display list.

Value

None.

push.viewport 811

Warning

This function has been deprecated. Please usepopViewport instead.

Author(s)

Paul Murrell

See Also

push.viewport .

push.viewport Push a Viewport onto the Grid Viewport Stack

Description

Grid maintains a viewport stack — a list of nested drawing contexts.

This function makes the specified viewport the default viewport and makes its parent the previous
default viewport (i.e., nests the specified context within the previous default context).

Usage

push.viewport(..., recording=TRUE)

Arguments

... One or more objects of class"viewport" , or NULL.

recording A logical value to indicate whether the set-viewport operation should be
recorded on the Grid display list.

Value

None.

Warning

This function has been deprecated. Please usepushViewport instead.

Author(s)

Paul Murrell

See Also

pop.viewport .

812 Querying the Viewport Tree

Querying the Viewport Tree
Get the Current Grid Viewport (Tree)

Description

current.viewport() returns the viewport that Grid is going to draw into.

current.vpTree returns the entire Grid viewport tree.

current.vpPath returns the viewport path to the current viewport.

current.transform returns the transformation matrix for the current viewport.

Usage

current.viewport(vp=NULL)
current.vpTree(all=TRUE)
current.vpPath()
current.transform()

Arguments

vp A Grid viewport object. Use of this argument has been deprecated.

all A logical value indicating whether the entire viewport tree should be returned.

Details

If all is FALSEthencurrent.vpTree only returns the subtree below the current viewport.

Value

A Grid viewport object fromcurrent.viewport or current.vpTree .

current.transform returns a 4x4 transformation matrix.

The viewport path returned bycurrent.vpPath is NULL if the current viewport is theROOT
viewport

Author(s)

Paul Murrell

See Also

viewport

Examples

grid.newpage()
pushViewport(viewport(width=0.8, height=0.8, name="A"))
pushViewport(viewport(x=0.1, width=0.3, height=0.6,

just="left", name="B"))
upViewport(1)
pushViewport(viewport(x=0.5, width=0.4, height=0.8,

just="left", name="C"))

stringWidth 813

pushViewport(viewport(width=0.8, height=0.8, name="D"))
current.vpPath()
upViewport(1)
current.vpPath()
current.vpTree()
current.viewport()
current.vpTree(all=FALSE)
popViewport(0)

stringWidth Create a Unit Describing the Width of a String

Description

These functions create a unit object describing the width or height of a string.

Usage

stringWidth(string)
stringHeight(string)

Arguments

string A character vector.

Value

A unit object.

Author(s)

Paul Murrell

See Also

unit andgrobWidth

unit Function to Create a Unit Object

Description

This function creates a unit object — a vector of unit values. A unit value is typically just a single
numeric value with an associated unit.

Usage

unit(x, units, data=NULL)

814 unit

Arguments

x A numeric vector.

units A character vector specifying the units for the corresponding numeric values.

data This argument is used to supply extra information for specialunit types.

Details

Unit objects allow the user to specify locations and dimensions in a large number of different coor-
dinate systems. All drawing occurs relative to a viewport and theunits specifies what coordinate
system to use within that viewport.

Possibleunits (coordinate systems) are:

"npc" Normalised Parent Coordinates (the default). The origin of the viewport is (0, 0) and the
viewport has a width and height of 1 unit. For example, (0.5, 0.5) is the centre of the viewport.

"cm" Centimetres.

"inches" Inches. 1 in = 2.54 cm.

"mm" Millimetres. 10 mm = 1 cm.

"points" Points. 72.27 pt = 1 in.

"picas" Picas. 1 pc = 12 pt.

"bigpts" Big Points. 72 bp = 1 in.

"dida" Dida. 1157 dd = 1238 pt.

"cicero" Cicero. 1 cc = 12 dd.

"scaledpts" Scaled Points. 65536 sp = 1 pt.

"lines" Lines of text. Locations and dimensions are in terms of multiples of the default text size
of the viewport (as specified by the viewport’sfontsize andlineheight).

"char" Multiples of nominal font height of the viewport (as specified by the viewport’s
fontsize).

"native" Locations and dimensions are relative to the viewport’sxscale andyscale .

"snpc" Square Normalised Parent Coordinates. Same as Normalised Parent Coordinates, except
gives the same answer for horizontal and vertical locations/dimensions. It uses thelesserof
npc-width and npc-height. This is useful for making things which are a proportion of the
viewport, but have to be square (or have a fixed aspect ratio).

"strwidth" Multiples of the width of the string specified in thedata argument. The font size
is determined by the pointsize of the viewport.

"strheight" Multiples of the height of the string specified in thedata argument. The font
size is determined by the pointsize of the viewport.

"grobwidth" Multiples of the width of the grob specified in thedata argument.

"grobheight" Multiples of the height of the grob specified in thedata argument.

A specialunits value of"null" is also allowed, but only makes sense when used in specifying
widths of columns or heights of rows in grid layouts (seegrid.layout).

The data argument must be a list when theunit.length() is greater than 1. For exam-
ple,unit(rep(1, 3), c("npc", "strwidth", "inches"), data=list(NULL,
"my string", NULL)) .

It is possible to subset unit objects in the normal way (e.g.,unit(1:5, "npc")[2:4]), but a
special functionunit.c is provided for combining unit objects.

unit.c 815

Certain arithmetic and summary operations are defined for unit objects. In particular, it is possible
to add and subtract unit objects (e.g.,unit(1, "npc") - unit(1, "inches")), and to
specify the minimum or maximum of a list of unit objects (e.g.,min(unit(0.5, "npc"),
unit(1, "inches"))).

Value

An object of class"unit" .

WARNING

There is a special functionunit.c for concatenating several unit objects.

Thec function will not give the right answer.

There used to be"mylines" , "mychar" , "mystrwidth" , "mystrheight" units. These
will still be accepted, but work exactly the same as"lines" , "char" , "strwidth" ,
"strheight" .

Author(s)

Paul Murrell

See Also

unit.c

Examples

unit(1, "npc")
unit(1:3/4, "npc")
unit(1:3/4, "npc") + unit(1, "inches")
min(unit(0.5, "npc"), unit(1, "inches"))
unit.c(unit(0.5, "npc"), unit(2, "inches") + unit(1:3/4, "npc"),

unit(1, "strwidth", "hi there"))

unit.c Combine Unit Objects

Description

This function produces a new unit object by combining the unit objects specified as arguments.

Usage

unit.c(...)

Arguments

... An arbitrary number of unit objects.

Value

An object of classunit .

816 unit.length

Author(s)

Paul Murrell

See Also

unit .

unit.length Length of a Unit Object

Description

The length of a unit object is defined as the number of unit values in the unit object.

This function has been deprecated in favour of a unit method for the genericlength function.

Usage

unit.length(unit)

Arguments

unit A unit object.

Value

An integer value.

Author(s)

Paul Murrell

See Also

unit

Examples

length(unit(1:3, "npc"))
length(unit(1:3, "npc") + unit(1, "inches"))
length(max(unit(1:3, "npc") + unit(1, "inches")))
length(max(unit(1:3, "npc") + unit(1, "strwidth", "a"))*4)
length(unit(1:3, "npc") + unit(1, "strwidth", "a")*4)

unit.pmin 817

unit.pmin Parallel Unit Minima and Maxima

Description

Returns a unit object whose i’th value is the minimum (or maximum) of the i’th values of the
arguments.

Usage

unit.pmin(...)
unit.pmax(...)

Arguments

... One or more unit objects.

Details

The length of the result is the maximum of the lengths of the arguments; shorter arguments are
recycled in the usual manner.

Value

A unit object.

Author(s)

Paul Murrell

Examples

max(unit(1:3, "cm"), unit(0.5, "npc"))
unit.pmax(unit(1:3, "cm"), unit(0.5, "npc"))

unit.rep Replicate Elements of Unit Objects

Description

Replicates the units according to the values given intimes andlength.out .

This function has been deprecated in favour of a unit method for the genericrep function.

Usage

unit.rep(x, ...)

Arguments

x An object of class"unit" .

... arguments to be passed torep such astimes andlength.out .

818 validDetails

Value

An object of class"unit" .

Author(s)

Paul Murrell

See Also

rep

Examples

rep(unit(1:3, "npc"), 3)
rep(unit(1:3, "npc"), 1:3)
rep(unit(1:3, "npc") + unit(1, "inches"), 3)
rep(max(unit(1:3, "npc") + unit(1, "inches")), 3)
rep(max(unit(1:3, "npc") + unit(1, "strwidth", "a"))*4, 3)
rep(unit(1:3, "npc") + unit(1, "strwidth", "a")*4, 3)

validDetails Customising grid grob Validation

Description

This generic hook function is called whenever a grid grob is created or edited viagrob , gTree ,
grid.edit or editGrob . This provides an opportunity for customising the validation of a new
class derived from grob (or gTree).

Usage

validDetails(x)

Arguments

x A grid grob.

Details

This function is called bygrob , gTree , grid.edit and editGrob . A method should be
written for classes derived from grob or gTree to validate the values of slots specific to the new
class. (e.g., seegrid:::validDetails.axis).

Note that the standard slots for grobs and gTrees are automatically validated (e.g.,vp , gp slots for
grobs and, in addition,children , andchildrenvp slots for gTrees) so only slots specific to a
new class need to be addressed.

Value

The function MUST return the validated grob.

Author(s)

Paul Murrell

vpPath 819

See Also

grid.edit

vpPath Concatenate Viewport Names

Description

This function can be used to generate a viewport path for use indownViewport or
seekViewport .

A viewport path is a list of nested viewport names.

Usage

vpPath(...)

Arguments

... Character values which are viewport names.

Details

Viewport names must only be unique amongst viewports which share the same parent in the view-
port tree.

This function can be used to generate a specification for a viewport that includes the viewport’s
parent’s name (and the name of its parent and so on).

For interactive use, it is possible to directly specify a path, but it is strongly recommended that this
function is used otherwise in case the path separator is changed in future versions of grid.

Value

A vpPath object.

See Also

viewport , pushViewport , popViewport , downViewport , seekViewport ,
upViewport

Examples

vpPath("vp1", "vp2")

820 Working with Viewports

widthDetails Width and Height of a grid grob

Description

These generic functions are used to determine the size of grid grobs.

Usage

widthDetails(x)
heightDetails(x)

Arguments

x A grid grob.

Details

These functions are called in the calculation of"grobwidth" and"grobheight" units. Meth-
ods should be written for classes derived from grob or gTree where the size of the grob can be
determined (see, for examplegrid:::widthDetails.frame).

Value

A unit object.

Author(s)

Paul Murrell

See Also

absolute.size .

Working with Viewports
Maintaining and Navigating the Grid Viewport Tree

Description

Grid maintains a tree of viewports — nested drawing contexts.

These functions provide ways to add or remove viewports and to navigate amongst viewports in the
tree.

Usage

pushViewport(..., recording=TRUE)
popViewport(n, recording=TRUE)
downViewport(name, strict=FALSE, recording=TRUE)
seekViewport(name, recording=TRUE)
upViewport(n, recording=TRUE)

Working with Viewports 821

Arguments

... One or more objects of class"viewport" .

n An integer value indicating how many viewports to pop or navigate up. The spe-
cial value0 indicates to pop or navigate viewports right up to the root viewport.

name A character value to identify a viewport in the tree.

strict A boolean indicating whether the vpPath must be matched exactly.

recording A logical value to indicate whether the viewport operation should be recorded
on the Grid display list.

Details

Objects created by theviewport() function are only descriptions of a drawing context. A view-
port object must be pushed onto the viewport tree before it has any effect on drawing.

The viewport tree always has a single root viewport (created by the system) which corresponds to
the entire device (and default graphical parameter settings). Viewports may be added to the tree
usingpushViewport() and removed from the tree usingpopViewport() .

There is only ever one current viewport, which is the current position within the viewport tree. All
drawing and viewport operations are relative to the current viewport. When a viewport is pushed it
becomes the current viewport. When a viewport is popped, the parent viewport becomes the current
viewport. UseupViewport to navigate to the parent of the current viewport, without removing
the current viewport from the viewport tree. UsedownViewport to navigate to a viewport further
down the viewport tree andseekViewport to navigate to a viewport anywhere else in the tree.

If a viewport is pushed and it has the samename as a viewport at the same level in the tree, then it
replaces the existing viewport in the tree.

Value

downViewport returns the number of viewports it went down.

This can be useful for returning to your starting point by doing something likedepth <-
downViewport() thenupViewport(depth) .

Author(s)

Paul Murrell

See Also

viewport andvpPath .

Examples

push the same viewport several times
grid.newpage()
vp <- viewport(width=0.5, height=0.5)
pushViewport(vp)
grid.rect(gp=gpar(col="blue"))
grid.text("Quarter of the device",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="blue"))
pushViewport(vp)
grid.rect(gp=gpar(col="red"))
grid.text("Quarter of the parent viewport",

822 Working with Viewports

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="red"))
popViewport(2)
push several viewports then navigate amongst them
grid.newpage()
grid.rect(gp=gpar(col="grey"))
grid.text("Top-level viewport",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="grey"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(width=0.8, height=0.7, name="A"))
grid.rect(gp=gpar(col="blue"))
grid.text("1. Push Viewport A",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(x=0.1, width=0.3, height=0.6,

just="left", name="B"))
grid.rect(gp=gpar(col="red"))
grid.text("2. Push Viewport B (in A)",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="red"))
if (interactive()) Sys.sleep(1.0)
upViewport(1)
grid.text("3. Up from B to A",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(x=0.5, width=0.4, height=0.8,

just="left", name="C"))
grid.rect(gp=gpar(col="green"))
grid.text("4. Push Viewport C (in A)",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="green"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(width=0.8, height=0.6, name="D"))
grid.rect()
grid.text("5. Push Viewport D (in C)",

y=unit(1, "npc") - unit(1, "lines"))
if (interactive()) Sys.sleep(1.0)
upViewport(0)
grid.text("6. Up from D to top-level",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="grey"))
if (interactive()) Sys.sleep(1.0)
downViewport("D")
grid.text("7. Down from top-level to D",

y=unit(1, "npc") - unit(2, "lines"))
if (interactive()) Sys.sleep(1.0)
seekViewport("B")
grid.text("8. Seek from D to B",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="red"))
pushViewport(viewport(width=0.9, height=0.5, name="A"))
grid.rect()
grid.text("9. Push Viewport A (in B)",

y=unit(1, "npc") - unit(1, "lines"))
if (interactive()) Sys.sleep(1.0)
seekViewport("A")
grid.text("10. Seek from B to A (in ROOT)",

y=unit(1, "npc") - unit(3, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
seekViewport(vpPath("B", "A"))
grid.text("11. Seek from\nA (in ROOT)\nto A (in B)")
popViewport(0)

xDetails 823

xDetails Boundary of a grid grob

Description

These generic functions are used to determine a location on the boundary of a grid grob.

Usage

xDetails(x, theta)
yDetails(x, theta)

Arguments

x A grid grob.

theta A numeric angle, in degrees, measured anti-clockwise from the 3 o’clockor one
of the following character strings:"north" , "east" , "west" , "south" .

Details

The location on the grob boundary is determined by taking a line from the centre of the grob at the
angletheta and intersecting it with the convex hull of the grob (for the basic grob primitives, the
centre is determined as half way between the minimum and maximum values in x and y directions).

These functions are called in the calculation of"grobx" and"groby" units as produced by the
grobX andgrobY functions. Methods should be written for classes derived from grob or gTree
where the boundary of the grob can be determined.

Value

A unit object.

Author(s)

Paul Murrell

See Also

grobX , grobY .

824 xDetails

Chapter 6

The methods package

methods-package Formal Methods and Classes

Description

Formally defined methods and classes for R objects, plus other programming tools, as described in
the references.

Details

This package provides the ‘S4’ or ‘S version 4’ approach to methods and classes in a functional
language.

For a complete list of functions and classes, uselibrary(help="methods") .

Author(s)

R Development Core Team

Maintainer: R Core Team〈R-core@r-project.org〉

References

TheR packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, theR software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently inR. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

825

826 as

.BasicFunsList List of Builtin and Special Functions

Description

A named list providing instructions for turning builtin and special functions into generic functions.

Functions in R that are defined as.Primitive(<name>) are not suitable for formal methods,
because they lack the basic reflectance property. You can’t find the argument list for these functions
by examining the function object itself.

Future versions of R may fix this by attaching a formal argument list to the corresponding function.
While generally the names of arguments are not checked by the internal code implementing the
function, the number of arguments frequently is.

In any case, some definition of a formal argument list is needed if users are to define methods for
these functions. In particular, if methods are to be merged from multiple packages, the different
sets of methods need to agree on the formal arguments.

In the absence of reflectance, this list provides the relevant information via a dummy function
associated with each of the known specials for which methods are allowed.

At the same, the list flags those specials for which methods are meaningless (e.g.,for) or just a
very bad idea (e.g.,.Primitive).

A generic function created viasetMethod , for example, for one of these special functions will
have the argument list from.BasicFunsList . If no entry exists, the argument list(x, ...)
is assumed.

as Force an Object to Belong to a Class

Description

These functions manage the relations that allow coercing an object to a given class.

Usage

as(object, Class, strict=TRUE, ext)

as(object, Class) <- value

setAs(from, to, def, replace, where = topenv(parent.frame()))

Arguments

object anyR object.

Class the name of the class to whichobject should be coerced.

as 827

strict logical flag. If TRUE, the returned object must be strictly from the target class
(unless that class is a virtual class, in which case the object will be from the
closest actual class (often the original object, if that class extends the virtual
class directly).
If strict = FALSE , any simple extension of the target class will be returned,
without further change. A simple extension is, roughly, one that just adds slots
to an existing class.

value The value to use to modifyobject (see the discussion below). You should
supply an object with classClass ; some coercion is done, but you’re unwise
to rely on it.

from, to The classes between whichdef performs coercion.
(In the case of thecoerce function these are objects from the classes, not the
names of the classes, but you’re not expected to callcoerce directly.)

def function of one argument. It will get an object from classfrom and had better
return an object of classto . (If you want to savesetAs a little work, make
the name of the argumentfrom , but don’t worry about it,setAs will do the
conversion.)

replace if supplied, the function to use as a replacement method.

where the position or environment in which to store the resulting method forcoerce .

ext the optional object defining howClass is extended by the class of the object
(as returned bypossibleExtends). This argument is used internally (to
provide essential information for non-public classes), but you are unlikely to
want to use it directly.

Summary of Functions

as : Returns the version of this object coerced to be the givenClass .
If the correspondingis(object, Class) relation is true, it will be used. In particular,
if the relation has a coerce method, the method will be invoked onobject . However, if
the object’s class extendsClass in a simple way (e.g, by including the superclass in the
definition, then the actual coercion will be done only ifstrict is TRUE(non-strict coercion,
is used in passing objects to methods).
Coerce methods are pre-defined for basic classes (including all the types of vectors, functions
and a few others). SeeshowMethods(coerce) for a list of these.
Beyond these two sources of methods, further methods are defined by calls to thesetAs
function.

coerce : Coercefrom to be of the same class asto .
Not a function you should usually call explicitly. The functionsetAs creates methods for
coerce for theas function to use.

setAs : The function supplied as the third argument is to be called to implementas(x, to)
whenx has classfrom . Need we add that the function should return a suitable object with
classto .

How Functions ‘as’ and ‘setAs’ Work

The functionas contrives to turnobject into an object with classClass . In doing so, it uses
information about classes and methods, but in a somewhat special way. Keep in mind that objects
from one class can turn into objects from another class either automatically or by an explicit call
to theas function. Automatic conversion is special, and comes from the designer of one class of
objects asserting that this class extends another class (seesetClass andsetIs).

828 as

Because inheritance is a powerful assertion, it should be used sparingly (otherwise your computa-
tions may produce unexpected, and perhaps incorrect, results). But objects can also be converted
explicitly, by callingas , and that conversion is designed to use any inheritance information, as well
as explicit methods.

As a first step in conversion, theas function determines whetheris(object, Class) is TRUE.
This can be the case either because the class definition ofobject includesClass as a ‘super
class’ (directly or indirectly), or because a call tosetIs established the relationship.

Either way, the inheritance relation defines a method to coerceobject to Class . In the most
common case, the method is just to extract fromobject the slots needed forClass , but it’s also
possible to specify a method explicitly in asetIs call.

So, if inheritance applies, theas function calls the appropriate method. If inheritance does not
apply, andcoerceFlag is FALSE, NULL is returned.

By default,coerceFlag is TRUE. In this case theas function goes on to look for a method for
the functioncoerce for the signaturec(from = class(object), to = Class) .

Method selection is used in theas function in two special ways.
First, inheritance is applied for the argumentfrom but not for the argumentto (if you think
about it, you’ll probably agree that you wouldn’t want the result to be from some class other
than theClass specified). Hence, you would typically useselectMethod("coerce",
sig, useInherited= c(from=TRUE, to= FALSE)) for inspection of method selection
of as() .
Second, the function tries to use inheritance information to convert the object indirectly, by first
converting it to an inherited class. It does this by examining the classes that thefrom class extends,
to see if any of them has an explicit conversion method. Suppose class"by" does: Then theas
function implicitly computesas(as(object, "by"), Class) .

With this explanation as background, the functionsetAs does a fairly obvious computation: It
constructs and sets a method for the functioncoerce with signaturec(from, to) , using the
def argument to define the body of the method. The function supplied asdef can have one
argument (interpreted as an object to be coerced) or two arguments (thefrom object and theto
class). Either way,setAs constructs a function of two arguments, with the second defaulting to
the name of theto class. The method will be called fromas with the object as the only argument:
The default for the second argument is provided so the method can know the intendedto class.

The functioncoerce exists almost entirely as a repository for such methods, to be selected as
described above by theas function. In fact, it would usually be a bad idea to callcoerce directly,
since then you would get inheritance on theto argument; as mentioned, this is not likely to be what
you want.

The Function ’as’ Used in Replacements

Whenas appears on the left of an assignment, the intuitive meaning is “Replace the part ofobject
that was inherited fromClass by thevalue on the right of the assignment.”

This usually has a straightforward interpretation, but you can control explicitly what happens, and
sometimes you should to avoid possible corruption of objects.

Whenobject inherits fromClass in the usual way, by including the slots ofClass , the default
as method is to set the corresponding slots inobject to those invalue .

The default computation may be reasonable, but usually only if allother slots in object are
unrelated to the slots being changed. Often, however, this is not the case. The class ofobject
may have extendedClass with a new slot whose value depends on the inherited slots. In this
case, you may want to define a method for replacing the inherited information that recomputes all
the dependent information. Or, you may just want to prohibit replacing the inherited information
directly .

as 829

The way to control such replacements is through thereplace argument to functionsetIs . This
argument is a method that functionas calls when used for replacement. It can do whatever you
like, including callingstop if you want to prohibit replacements. It should return a modified object
with the same class as theobject argument toas .

In R, you can also explicitly supply a replacement method, even in the case that inheritance does
not apply, through thereplace argument tosetAs . It works essentially the same way, but in
this case by constructing a method for"coerce<-" . (Replace methods for coercion without
inheritance are not in the original description and so may not be compatible with S-Plus, at least not
yet.)

When inheritance does apply, coerce and replace methods can be specified through eithersetIs
or setAs ; the effect is essentially the same.

Basic Coercion Methods

Methods are pre-defined for coercing any object to one of the basic datatypes. For example,as(x,
"numeric") uses the existingas.numeric function. These built-in methods can be listed by
showMethods("coerce") .

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

If you think of usingtry(as(x, cl)) , considercanCoerce (x, cl) instead.

Examples

using the definition of class "track" from Classes

setAs("track", "numeric", function(from) from@y)

t1 <- new("track", x=1:20, y=(1:20)^2)

as(t1, "numeric")

The next example shows:
1. A virtual class to define setAs for several classes at once.
2. as() using inherited information

setClass("ca", representation(a = "character", id = "numeric"))

setClass("cb", representation(b = "character", id = "numeric"))

setClass("id")

830 BasicClasses

setIs("ca", "id")
setIs("cb", "id")

setAs("id", "numeric", function(from) from@id)

CA <- new("ca", a = "A", id = 1)
CB <- new("cb", b = "B", id = 2)

setAs("cb", "ca", function(from, to)new(to, a=from@b, id = from@id))

as(CB, "numeric")

BasicClasses Classes Corresponding to Basic Data Types

Description

Formal classes exist corresponding to the basic R data types, allowing these types to be used in
method signatures, as slots in class definitions, and to be extended by new classes.

Usage

The following are all basic vector classes.
They can appear as class names in method signatures,
in calls to as(), is(), and new().
"character"
"complex"
"double"
"expression"
"integer"
"list"
"logical"
"numeric"
"single"
"raw"

the class
"vector"
is a virtual class, extended by all the above

The following are additional basic classes
"NULL" # NULL objects
"function" # function objects, including primitives
"externalptr" # raw external pointers for use in C code

"ANY" # virtual classes used by the methods package itself
"VIRTUAL"
"missing"

callNextMethod 831

Objects from the Classes

Objects can be created by calls of the formnew(Class, ...) , whereClass is the quoted
class name, and the remaining arguments if any are objects to be interpreted as vectors of this class.
Multiple arguments will be concatenated.

The class"expression" is slightly odd, in that the . . . arguments willnotbe evaluated; therefore,
don’t enclose them in a call toquote() .

Extends

Class"vector" , directly.

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the correspond-
ing basic function, for example,as(x, "numeric") callsas.numeric(x) .

callNextMethod Call an Inherited Method

Description

A call to callNextMethod can only appear inside a method definition. It then results in a call to
the first inherited method after the current method, with the arguments to the current method passed
down to the next method. The value of that method call is the value ofcallNextMethod .

Usage

callNextMethod(...)

Arguments

... Optionally, the arguments to the function in its next call (but note that the dis-
patch is as in the detailed description below; the arguments have no effect on
selecting the next method.)

If no arguments are included in the call tocallNextMethod , the effect is
to call the method with the current arguments. See the detailed description for
what this really means.

Calling with no arguments is often the natural way to usecallNextMethod ;
see the examples.

Details

The ‘next’ method (i.e., the first inherited method) is defined to be that method whichwould have
been called if the current method did not exist. This is more-or-less literally what happens: The
current method (to be precise, the method with signature given by thedefined slot of the method
from which callNextMethod is called) is deleted from a copy of the methods for the current
generic, andselectMethod is called to find the next method (the result is cached in a special
object, so the search only typically happens once per session per combination of argument classes).

Note that the preceding definition means that the next method is defined uniquely when
setMethod inserts the method containing thecallNextMethod call, given the definitions of

832 callNextMethod

the classes in the signature. The choice does not depend on the path that gets us to that method
(for example, through inheritance or from anothercallNextMethod call). This definition was
not enforced in versions ofR prior to 2.3.0, where the method was selected based on the target
signature, and so could vary depending on the actual arguments.

It is also legal, and often useful, for the method called bycallNextMethod to itself have a
call to callNextMethod . This generally works as you would expect, but for completeness be
aware that it is possible to have ambiguous inheritance in the S structure, in the sense that the same
two classes can appear as superclassesin the opposite orderin two other class definitions. In this
case the effect of a nested instance ofcallNextMethod is not well defined. Such inconsistent
class hierarchies are both rare and nearly always the result of bad design, but they are possible, and
currently undetected.

The statement that the method is called with the current arguments is more precisely as follows.
Arguments that were missing in the current call are still missing (remember that"missing" is
a valid class in a method signature). For a formal argument, sayx , that appears in the original
call, there is a corresponding argument in the next method call equivalent tox = x . In effect, this
means that the next method sees the same actual arguments, but arguments are evaluated only once.

Value

The value returned by the selected method.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

Methodsfor the general behavior of method dispatch

Examples

some class definitions with simple inheritance
setClass("B0" , representation(b0 = "numeric"))

setClass("B1", representation(b1 = "character"), contains = "B0")

setClass("B2", representation(b2 = "logical"), contains = "B1")

and a rather silly function to illustrate callNextMethod

f <- function(x) class(x)

setMethod("f", "B0", function(x) c(x@b0^2, callNextMethod()))
setMethod("f", "B1", function(x) c(paste(x@b1,":"), callNextMethod()))
setMethod("f", "B2", function(x) c(x@b2, callNextMethod()))

canCoerce 833

b1 <- new("B1", b0 = 2, b1 = "Testing")

b2 <- new("B2", b2 = FALSE, b1 = "More testing", b0 = 10)

f(b2)

f(b1)

canCoerce Can an Object be Coerced to a Certain S4 Class?

Description

Test if an object can be coerced to a given S4 class. Maybe useful insideif() to ensure that calling
as(object, Class) will find a method.

Usage

canCoerce(object, Class)

Arguments

object anyR object, typically of a formal S4 class.

Class an S4 class (seeisClass).

Value

a scalar logical,TRUEif there is acoerce method (as defined bysetAs , e.g.) for the signature
(from = class(object), to = Class) .

See Also

as , setAs , selectMethod , setClass ,

Examples

m <- matrix(pi, 2,3)
canCoerce(m, "numeric") # TRUE
canCoerce(m, "array") # TRUE

834 cbind2

cbind2 Combine two Objects by Columns or Rows

Description

Combine two matrix-likeR objects by columns (cbind2) or rows (rbind2). These are (S4)
generic functions with default methods.

Usage

cbind2(x, y)
rbind2(x, y)

Arguments

x anyR object, typically matrix-like.

y anyR object, typically similar tox , or missing completely.

Details

The main use ofcbind2 (rbind2) is to be called bycbind () (rbind()) if these are acti-
vated. This allowscbind (rbind) to work for formally classed (aka ‘S4’) objects by providing
S4 methods for these objects. Currently, a call
methods:::bind_activation(TRUE)
is needed to install acbind2 -calling version ofcbind (into thebase name space) and the same
for rbind .
methods:::bind_activation(FALSE) reverts to the previous internal version ofcbind
which does not build oncbind2 , see the examples.

Value

A matrix (or matrix like object) combining the columns (or rows) ofx andy .

Methods

x = "ANY", y = "ANY" the default method usingR’s internal code.

x = "ANY", y = "missing" the default method for one argument usingR’s internal code.

See Also

cbind , rbind .

Examples

cbind2(1:3, 4)
m <- matrix(3:8, 2,3, dimnames=list(c("a","b"), LETTERS[1:3]))
cbind2(1:2, m) # keeps dimnames from m

Note: Use the following activation if you want cbind() to work
---- on S4 objects -- be careful otherwise!

methods:::bind_activation(on = TRUE)

Classes 835

trace("cbind2")
cbind(a=1:3)# no call to cbind2()
cbind(a=1:3, four=4, 7:9)# calling cbind2() twice
untrace("cbind2")

The following fails currently,
since cbind() works recursively from the tail:
try(cbind(m, a=1, b=3))

turn off the `special cbind()' :
methods:::bind_activation(FALSE)

Classes Class Definitions

Description

Class definitions are objects that contain the formal definition of a class of R objects, usually
referred to as an S4 class, to distinguish them from the informal S3 classes. This document
gives an overview of S4 classes; for details of the class representation objects themselves, see
class?classRepresentation (classRepresentation-class).

Details

When a class is defined, an object is stored that contains the information about that class, including:

Slots: The data contained in an object from an S4 class is defined by theslotsin the class definition.

Each slot in an object is a component of the object; like components (that is, elements) of a
list, these may be extracted and set, using the functionslot () or more often the operator
" @" . However, they differ from list components in important ways. First, slots can only be
referred to by name, not by position, and there is no partial matching of names as with list
elements.

All the objects from a particular class have the same set of slot names; specifically, the slot
names that are contained in the class definition. Each slot in each object always has the same
class; again, this is defined by the overall class definition. The phrase “has the same class”
means that the class of the object in the slot must be the same as the class specified in the
definition, or some class that extends the one in the definition.

One class name is special,.Data . This stands for the ‘data part’ of the object. Any class
that contains one of the basic data types inR, has implicitly a corresponding.Data slot of
that type, allowing computations to extract or replace the data part while leaving other slots
unchanged. The.Data slot also determines the type of the object; ifx has a.Data slot, the
type of the slot is the type of the object (that is, the value oftypeof (x) . Otherwise the type
of the object is"S4" . Extending a basic type this way allows objects to use old-style code for
the corresponding type as well as S4 methods. Any basic type can be used for.Data , with the
exception of a few that do not behave like ordinary objects; namely,"NULL" , environments,
and external pointers.

Classes exist for which there are no actual objects, thevirtual classes, in fact a very important
programming tool. They are used to group together ordinary classes that want to share some

836 Classes

programming behavior, without necessarily restricting how the behavior is implemented. Vir-
tual class definitions may if you want include slots (to provide some common behavior without
fully defining the object—seetraceable-classfor an example).
A simple and useful form of virtual class is theclass union, a virtual class that is defined in a
call to setClassUnion by listing one or more of subclasses (classes that extend the class
union). Class unions can include as subclasses basic data types (whose definition is otherwise
sealed).

Superclasses:The definition of a class includes thesuperclasses—the classes that this class ex-
tends. A classFancy , say, extends a classSimple if an object from theFancy class has
all the capabilities of theSimple class (and probably some more as well). In particular, and
very usefully, any method defined to work for aSimple object can be applied to aFancy
object as well.
This relationship is expressed equivalently by saying thatSimple is a superclass ofFancy ,
or thatFancy is a subclass ofSimple .
The direct superclasses of a class are those superclasses explicitly defined. Direct superclasses
can be defined in three ways. Most commonly, the superclasses are listed in thecontains=
argument in the call tosetClass that creates the subclass. In this case the subclass will
contain all the slots of the superclass, and the relation between the class is calledsimple, as
it in fact is. Superclasses can also be defined explicitly by a call tosetIs ; in this case, the
relation requires methods to be specified to go from subclass to superclass. Thirdly, a class
union is a superclass of all the members of the union. In this case too the relation is simple,
but notice that the relation is defined when the superclass is created, not when the subclass is
created as with thecontains= mechanism.
The definition of a superclass will also potentially contain its own direct superclasses. These
are considered (and shown) as superclasses at distance 2 from the original class; their direct
superclasses are at distance 3, and so on. All these are legitimate superclasses for purposes
such as method selection.
When superclasses are defined by including the names of superclasses in thecontains=
argument tosetClass , an object from the class will have all the slots defined for its own
classandall the slots defined for all its superclasses as well.
The information about the relation between a class and a particular superclass is encoded as an
object of class"SClassExtension" (seeSClassExtension-class). A list of such objects
for the superclasses (and sometimes for the subclasses) is included in the metadata object
defining the class. If you need to compute with these objects (for example, to compare the
distances), call the functionextends with argumentfullInfo=TRUE .

Objects: The objects from a class, typically created by a call tonew or by assigning another object
from the class, are defined by theprototypeobject for the class and by additional arguments in
the call tonew, which are passed to a method for that class for the functioninitialize .
Each class definition contains a prototype object for the class. This must have values for all
the slots defined by the class definition. By default, these are the prototypes of all the slot
classes, if those are not virtual classes. However, the definition of the class can specify any
valid object for any of the slots.
There are a number of ‘basic’ classes, corresponding to the ordinary kinds of data occurring
in R. For example,"numeric" is a class corresponding to numeric vectors. There are also
basic classes corresponding to objects in the language, such as"function" and"call" ,
and for specialized objects, such as"environment" These classes are predefined and can
then be used as slots or as superclasses for any other class definitions. The prototypes for the
vector classes are vectors of length 0 of the corresponding type. Notice that basic classes are
unusual in that the prototype object is from the class itself.
There are also a few basic virtual classes, the most important being"vector" , grouping
together all the vector classes; and"language" , grouping together all the types of objects

classRepresentation-class 837

making up the R language.

References

The functions in this package emulate the facility for classes and methods described inProgram-
ming with Data(John M. Chambers, Springer, 1998). See this book for further details and examples.

See Also

Methods , setClass , is , as , new, slot

classRepresentation-class
Class Objects

Description

These are the objects that hold the definition of classes of objects. They are constructed and stored
as meta-data by calls to the functionsetClass . Don’t manipulate them directly, except perhaps
to look at individual slots.

Details

Class definitions are stored as metadata in various packages. Additional metadata supplies infor-
mation on inheritance (the result of calls tosetIs). Inheritance information implied by the class
definition itself (because the class contains one or more other classes) is also constructed automati-
cally.

When a class is to be used in an R session, this information is assembled to complete the class
definition. The completion is a second object of class"classRepresentation" , cached for
the session or until something happens to change the information. A call togetClass returns
the completed definition of a class; a call togetClassDef returns the stored definition (uncom-
pleted).

In particular, completion fills in the upward- and downward-pointing inheritance information for
the class, in slotscontains andsubclasses respectively. It’s in principle important to note
that this information can depend on which packages are installed, since these may define additional
subclasses or superclasses.

Slots

slots : A named list of the slots in this class; the elements of the list are the classes to which the
slots must belong (or extend), and the names of the list gives the corresponding slot names.

contains : A named list of the classes this class ‘contains’; the elements of the list are objects of
SClassExtension-class . The list may be only the direct extensions or all the currently
known extensions (see the details).

virtual : Logical flag, set toTRUEif this is a virtual class.

prototype : The object that represents the standard prototype for this class; i.e., the data and
slots returned by a call tonew for this class with no special arguments. Don’t mess with the
prototype object directly.

validity : Optionally, a function to be used to test the validity of objects from this class. See
validObject .

838 Documentation

access : Access control information. Not currently used.

className : The character string name of the class.

package : The character string name of the package to which the class belongs. Nearly always the
package on which the metadata for the class is stored, but in operations such as constructing
inheritance information, the internal package name rules.

subclasses : A named list of the classes known to extend this class’; the elements of the list are
objects ofSClassExtension-class . The list is currently only filled in when completing
the class definition (see the details).

versionKey : Object of class"externalptr" ; eventually will perhaps hold some versioning
information, but not currently used.

sealed : Object of class"logical" ; is this class sealed? If so, no modifications are allowed.

See Also

See functionsetClass to supply the information in the class definition. SeeClassesfor a more
basic discussion of class information.

Documentation Using and Creating On-line Documentation for Classes and Methods

Description

Special documentation can be supplied to describe the classes and methods that are created by the
software in the methods package. Techniques to access this documentation and to create it in R help
files are described here.

Getting documentation on classes and methods

You can ask for on-line help for class definitions, for specific methods for a generic function, and
for general discussion of methods for a generic function. These requests use the? operator (see
help for a general description of the operator). Of course, you are at the mercy of the implementer
as to whether thereis any documentation on the corresponding topics.

Documentation on a class uses the argumentclass on the left of the?, and the name of the class
on the right; for example,

class ? genericFunction

to ask for documentation on the class"genericFunction" .

When you want documentation for the methods defined for a particular function, you can ask either
for a general discussion of the methods or for documentation of a particular method (that is, the
method that would be selected for a particular set of actual arguments).

Overall methods documentation is requested by calling the? operator withmethods as the left-
side argument and the name of the function as the right-side argument. For example,

methods ? initialize

asks for documentation on the methods for theinitialize function.

Asking for documentation on a particular method is done by giving a function call expression as the
right-hand argument to the"?" operator. There are two forms, depending on whether you prefer to
give the class names for the arguments or expressions that you intend to use in the actual call.

Documentation 839

If you planned to evaluate a function call, saymyFun(x, sqrt(wt)) and wanted to find out
something about the method that would be used for this call, put the call on the right of the"?"
operator:

?myFun(x, sqrt(wt))

A method will be selected, as it would be for the call itself, and documentation for that method will
be requested. IfmyFun is not a generic function, ordinary documentation for the function will be
requested.

If you know the actual classes for which you would like method documentation, you can supply
these explicitly in place of the argument expressions. In the example above, if you want method
documentation for the first argument having class"maybeNumber" and the second"logical" ,
call the"?" operator, this time with a left-side argumentmethod , and with a function call on the
right using the class names as arguments:

method ? myFun("maybeNumber", "logical")

Once again, a method will be selected, this time corresponding to the specified classes, and method
documentation will be requested. This version only works with generic functions.

The two forms each have advantages. The version with actual arguments doesn’t require you to
figure out (or guess at) the classes of the arguments. On the other hand, evaluating the arguments
may take some time, depending on the example. The version with class names does require you to
pick classes, but it’s otherwise unambiguous. It has a subtler advantage, in that the classes supplied
may be virtual classes, in which case no actual argument will have specifically this class. The class
"maybeNumber" , for example, might be a class union (see the example forsetClassUnion).

In either form, methods will be selected as they would be in actual computation, including use
of inheritance and group generic functions. SeeselectMethod for the details, since it is the
function used to find the appropriate method.

Writing Documentation for Methods

The on-line documentation for methods and classes uses some extensions to the R documentation
format to implement the requests for class and method documentation described above. See the
documentWriting R Extensionsfor the available markup commands (you should have consulted
this document already if you are at the stage of documenting your software).

In addition to the specific markup commands to be described, you can create an initial, overall file
with a skeleton of documentation for the methods defined for a particular generic function:

promptMethods("myFun")

will create a file, ‘myFun-methods.Rd’ with a skeleton of documentation for the methods defined
for functionmyFun. The output frompromptMethods is suitable if you want to describe all or
most of the methods for the function in one file, separate from the documentation of the generic
function itself. Once the file has been filled in and moved to the ‘man’ subdirectory of your source
package, requests for methods documentation will use that file, both for specific methods documen-
tation as described above, and for overall documentation requested by

methods ? myFun

You are not required to usepromptMethods , and if you do, you may not want to use the entire
file created:

• If you want to document the methods in the file containing the documentation for the generic
function itself, you can cut-and-paste to move the\alias lines and theMethods section
from the file created bypromptMethods to the existing file.

840 fixPre1.8

• On the other hand, if these are auxiliary methods, and you only want to document the added
or modified software, you should strip out all but the relevant\alias lines for the meth-
ods of interest, and remove all but the corresponding\item entries in theMethods sec-
tion. Note that in this case you will usually remove the first\alias line as well, since
that is the marker for general methods documentation on this function (in the example,
\alias{myfun-methods}).

If you simply want to direct documentation for one or more methods to a particular R documentation
file, insert the appropriate alias.

environment-class Class "environment"

Description

A formal class for R environments.

Objects from the Class

Objects can be created by calls of the formnew("environment", ...) . The arguments in
. . . , if any, should be named and will be assigned to the newly created environment.

Methods

coerce signature(from = "ANY", to = "environment") : calls
as.environment .

initialize signature(object = "environment") : Implements the assignments in the
new environment. Note that theobject argument is ignored; a new environment isalways
created, since environments are not protected by copying.

See Also

new.env

fixPre1.8 Fix Objects Saved from R Versions Previous to 1.8

Description

Beginning with R version 1.8.0, the class of an object contains the identification of the package
in which the class is defined. The functionfixPre1.8 fixes and re-assigns objects missing that
information (typically because they were loaded from a file saved with a previous version of R.)

Usage

fixPre1.8(names, where)

genericFunction-class 841

Arguments

names Character vector of the names of all the objects to be fixed and re-assigned.

where The environment from which to look for the objects, and for class definitions.
Defaults to the top environment of the call tofixPre1.8 , the global environ-
ment if the function is used interactively.

Details

The named object will be saved where it was found. Its class attribute will be changed to the full
form required by R 1.8; otherwise, the contents of the object should be unchanged.

Objects will be fixed and re-assigned only if all the following conditions hold:

1. The named object exists.

2. It is from a defined class (not a basic datatype which has no actual class attribute).

3. The object appears to be from an earlier version of R.

4. The class is currently defined.

5. The object is consistent with the current class definition.

If any condition except the second fails, a warning message is generated.

Note thatfixPre1.8 currently fixesonly the change in class attributes. In particular, it will not fix
binary versions of packages installed with earlier versions of R if these use incompatible features.
Such packages must be re-installed from source, which is the wise approach always when major
version changes occur in R.

Value

The names of all the objects that were in fact re-assigned.

genericFunction-class
Generic Function Objects

Description

Generic functions (objects from or extending classgenericFunction) are extended function
objects, containing information used in creating and dispatching methods for this function. They
also identify the package associated with the function and its methods.

Objects from the Class

Generic functions are created and assigned bysetGeneric or setGroupGeneric and, indi-
rectly, bysetMethod .

As you might expectsetGeneric and setGroupGeneric create objects of class
"genericFunction" and"groupGenericFunction" respectively.

842 GenericFunctions

Slots

.Data : Object of class"function" , the function definition of the generic, usually created au-
tomatically as a call tostandardGeneric .

generic : Object of class"character" , the name of the generic function.

package : Object of class"character" , the name of the package to which the function def-
inition belongs (andnot necessarily where the generic function is stored). If the package is
not specified explicitly in the call tosetGeneric , it is usually the package on which the
corresponding non-generic function exists.

group : Object of class"list" , the group or groups to which this generic function belongs.
Empty by default.

valueClass : Object of class"character" ; if not an empty character vector, identifies one or
more classes. It is asserted that all methods for this function return objects from these class
(or from classes that extend them).

signature : Object of class"character" , the vector of formal argument names that can ap-
pear in the signature of methods for this generic function. By default, it is all the formal
arguments, except for Order matters for efficiency: the most commonly used arguments
in specifying methods should come first.

default : Object of class"OptionalMethods" , the default method for this function. Gener-
ated automatically and used to initialize method dispatch.

skeleton : Object of class"call" , a slot used internally in method dispatch. Don’t expect to
use it directly.

Extends

Class"function" , from data part.
Class"OptionalMethods" , by class"function" .
Class"PossibleMethod" , by class"function" .

Methods

Generic function objects are used in the creation and dispatch of formal methods; information from
the object is used to create methods list objects and to merge or update the existing methods for this
generic.

GenericFunctions Tools for Managing Generic Functions

Description

The functions documented here manage collections of methods associated with a generic function,
as well as providing information about the generic functions themselves.

Usage

isGeneric(f, where, fdef, getName = FALSE)
isGroup(f, where, fdef)
removeGeneric(f, where)

dumpMethod(f, signature, file, where, def)

GenericFunctions 843

findFunction(f, generic = TRUE, where = topenv(parent.frame()))
dumpMethods(f, file, signature, methods, where)
signature(...)

removeMethods(f, where = topenv(parent.frame()), all = TRUE)
setReplaceMethod(f, ..., where = topenv(parent.frame()))

getGenerics(where, searchForm = FALSE)
allGenerics(where, searchForm = FALSE)
callGeneric(...)

Arguments

f The character string naming the function.

where The environment, namespace, or search-list position from which to search for
objects. By default, start at the top-level environment of the calling function,
typically the global environment (i.e., use the search list), or the namespace of a
package from which the call came. It is important to supply this argument when
calling any of these functions indirectly. With package namespaces, the default
is likely to be wrong in such calls.

signature The class signature of the relevant method. A signature is a named or unnamed
vector of character strings. If named, the names must be formal argument names
for the generic function. Ifsignature is unnamed, the default is to use the
first length(signature) formal arguments of the function.

file The file on which to dump method definitions.

def The function object defining the method; if omitted, the current method defini-
tion corresponding to the signature.

... Named or unnamed arguments to form a signature.

generic In testing or finding functions, should generic functions be included. Supply as
FALSEto get only non-generic functions.

fdef Optional, the generic function definition.
Usually omitted in calls toisGeneric

getName If TRUE, isGeneric returns the name of the generic. By default, it returns
TRUE.

methods The methods object containing the methods to be dumped. By default, the meth-
ods defined for this generic (optionally on the specifiedwhere location).

all in removeMethods , logical indicating if all (default) or only the first method
found should be removed.

searchForm In getGenerics , if TRUE, the package slot of the returned result is in
the form used bysearch() , otherwise as the simple package name (e.g,
"package:base" vs "base").

Summary of Functions

isGeneric : Is there a function namedf , and if so, is it a generic?
ThegetName argument allows a function to find the name from a function definition. If it
is TRUEthen the name of the generic is returned, orFALSE if this is not a generic function
definition.
The behavior ofisGeneric andgetGeneric for primitive functions is slightly different.
These functions don’t exist as formal function objects (for efficiency and historical reasons),

844 GenericFunctions

regardless of whether methods have been defined for them. A call toisGeneric tells you
whether methods have been defined for this primitive function, anywhere in the current search
list, or in the specified positionwhere . In contrast, a call togetGeneric will return what
the generic for that function would be, even if no methods have been currently defined for it.

removeGeneric , removeMethods : Remove all the methods for the generic function of this
name. In addition,removeGeneric removes the function itself;removeMethods re-
stores the non-generic function which was the default method. If there was no default method,
removeMethods leaves a generic function with no methods.

standardGeneric : Dispatches a method from the current function call for the generic function
f . It is an error to callstandardGeneric anywhere except in the body of the correspond-
ing generic function.

Note thatstandardGeneric is a primitive function in thebasepackage for efficiency
reasons, but rather documented here where it belongs naturally.

dumpMethod : Dump the method for this generic function and signature.

findFunction : return a list of either the positions on the search list, or the current top-level
environment, on which a function object forname exists. The returned value isalwaysa list,
use the first element to access the first visible version of the function. See the example.

NOTE: Use this rather thanfind with mode="function" , which is not as meaningful,
and has a few subtle bugs from its use of regular expressions. Also,findFunction works
correctly in the code for a package when attaching the package via a call tolibrary .

dumpMethods : Dump all the methods for this generic.

signature : Returns a named list of classes to be matched to arguments of a generic function.

getGenerics : Returns the names of the generic functions that have methods defined onwhere ;
this argument can be an environment or an index into the search list. By default, the whole
search list is used.

The methods definitions are stored with package qualifiers; for example, methods for function
"initialize" might refer to two different functions of that name, on different packages.
The package names corresponding to the method list object are contained in the slotpackage
of the returned object. The form of the returned name can be plain (e.g.,"base"), or in the
form used in the search list ("package:base") according to the value ofsearchForm

callGeneric : In the body of a method, this function will make a call to the current generic
function. If no arguments are passed tocallGeneric , the arguments to the current call are
passed down; otherwise, the arguments are interpreted as in a call to the generic function. If
the generic is a primitive then arguments must be supplied.

Details

setGeneric : If there is already a non-generic function of this name, it will be used to define the
generic unlessdef is supplied, and the current function will become the default method for
the generic.

If def is supplied, this defines the generic function, and no default method will exist (often a
good feature, if the function should only be available for a meaningful subset of all objects).

Argumentsgroup andvalueClass are retained for consistency with S-Plus, but are cur-
rently not used.

isGeneric : If the fdef argument is supplied, take this as the definition of the generic, and test
whether it is really a generic, withf as the name of the generic. (This argument is not available
in S-Plus.)

removeGeneric : If where supplied, just remove the version on this element of the search list;
otherwise, removes the first version encountered.

GenericFunctions 845

standardGeneric : Generic functions should usually have a call tostandardGeneric as
their entire body. They can, however, do any other computations as well.
The usualsetGeneric (directly or through callingsetMethod) creates a function with a
call tostandardGeneric .

dumpMethod : The resulting source file will recreate the method.

findFunction : If generic is FALSE, ignore generic functions.

dumpMethods : If signature is supplied only the methods matching this initial signature are
dumped. (This feature is not found in S-Plus: don’t use it if you want compatibility.)

signature : The advantage of usingsignature is to provide a check on which arguments
you meant, as well as clearer documentation in your method specification. In addition,
signature checks that each of the elements is a single character string.

removeMethods : ReturnsTRUEif f was a generic function,FALSE(silently) otherwise.
If there is a default method, the function will be re-assigned as a simple function with this
definition. Otherwise, the generic function remains but with no methods (so any call to it
will generate an error). In either case, a following call tosetMethod will consistently re-
establish the same generic function as before.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

getMethod (also forselectMethod), setGeneric , setClass , showMethods

Examples

require(stats) # for lm

get the function "myFun" -- throw an error if 0 or > 1 versions visible:
findFuncStrict <- function(fName) {

allF <- findFunction(fName)
if(length(allF) == 0)

stop("No versions of ",fName," visible")
else if(length(allF) > 1)

stop(fName," is ambiguous: ", length(allF), " versions")
else

get(fName, allF[[1]])
}

try(findFuncStrict("myFun"))# Error: no version
lm <- function(x) x+1
try(findFuncStrict("lm"))# Error: 2 versions
findFuncStrict("findFuncStrict")# just 1 version
rm(lm)

846 getClass

getClass Get Class Definition

Description

Get the definition of a class.

Usage

getClass(Class, .Force = FALSE, where)
getClassDef(Class, where, package)

Arguments

Class the character-string name of the class.

.Force if TRUE, returnNULL if the class is undefined; otherwise, an undefined class
results in an error.

where environment from which to begin the search for the definition; by default, start
at the top-level (global) environment and proceed through the search list.

package the name of the package asserted to hold the definition. Supplied instead of
where , with the distinction that the package need not be currently attached.

Details

A call to getClass returns the complete definition of the class supplied as a string, including all
slots, etc. in classes that this class extends. A call togetClassDef returns the definition of the
class from the environmentwhere , unadorned. It’s usuallygetClass you want.

If you really want to know whether a class is formally defined, callisClass .

Value

The object defining the class. This is an object of class"classRepEnvironment" . However,
do notdeal with the contents of the object directly unless you are very sure you know what you’re
doing. Even then, it is nearly always better practice to use functions such assetClass and
setIs . Messing up a class object will cause great confusion.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

getMethod 847

See Also

Classes, setClass , isClass .

Examples

getClass("numeric") ## a built in class

cld <- getClass("thisIsAnUndefinedClass", .Force = TRUE)
cld ## a NULL prototype
If you are really curious:
utils::str(cld)
Whereas these generate errors:
try(getClass("thisIsAnUndefinedClass"))
try(getClassDef("thisIsAnUndefinedClass"))

getMethod Get or Test for the Definition of a Method

Description

The functionsgetMethod andselectMethod get the definition of a particular method; the
functionsexistsMethod and hasMethod test for the existence of a method. In both cases
the first function only gets direct definitions and the second uses inheritance. The function
findMethod returns the package(s) in the search list (or in the packages specified by thewhere
argument) that contain a method for this function and signature.

The other functions are support functions: see the details below.

Usage

getMethod(f, signature=character(), where, optional = FALSE,
mlist, fdef)

findMethod(f, signature, where)

getMethods(f, where)

existsMethod(f, signature = character(), where)

hasMethod(f, signature=character(), where)

selectMethod(f, signature, optional = FALSE, useInherited = TRUE,
mlist = (if (is.null(fdef)) NULL else

getMethodsForDispatch(f, fdef)),
fdef = getGeneric(f, !optional), verbose = FALSE)

MethodsListSelect(f, env, mlist, fEnv, finalDefault, evalArgs,
useInherited, fdef, resetAllowed)

848 getMethod

Arguments

f The character-string name of the generic function.

signature the signature of classes to match to the arguments off . See the details below.
For selectMethod , the signature can optionally be an environment with
classes assigned to the names of the corresponding arguments. Note: the names
correspond to the names of the classes,not to the objects supplied in a call to
the generic function. (You are not likely to find this approach convenient, but it
is used internally and is marginally more efficient.)

where The position or environment in which to look for the method(s): by default,
anywhere in the current search list.

optional If the selection does not produce a unique result, an error is generated, unless this
argument isTRUE. In that case, the value returned is either aMethodsList
object, if more than one method matches this signature, orNULL if no method
matches.

mlist Optionally, the list of methods in which to search. By default, the func-
tion finds the methods for the corresponding generic function. To restrict the
search to a particular package or environment, e.g., supply this argument as
getMethodsMetaData(f,where) . ForselectMethod , see the discus-
sion of argumentfdef .

fdef Optionally, the generic function from which the method is to be retrieved. (Un-
likely to be used, except internally in the package source.)

verbose logical indicating if method selection should print some info about its progress.

env The environment in which argument evaluations are done in
MethodsListSelect . Currently must be supplied, but should usually
be sys.frame(sys.parent()) when calling the function explicitly for
debugging purposes.

fEnv, finalDefault, evalArgs, useInherited, resetAllowed
Internal-use arguments for the function’s environment, the method to use as the
overall default, whether to evaluate arguments, which arguments should use in-
heritance, and whether the cached methods are allowed to be reset.

Details

Thesignature argument specifies classes, in an extended sense, corresponding to formal argu-
ments of the generic function. As supplied, the argument may be a vector of strings identifying
classes, and may be named or not. Names, if supplied, match the names of those formal arguments
included in the signature of the generic. That signature is normally all the arguments except
However, generic functions can be specified with only a subset of the arguments permitted, or with
the signature taking the arguments in a different order.

It’s a good idea to name the arguments in the signature to avoid confusion, if you’re dealing with
a generic that does something special with its signature. In any case, the elements of the signature
are matched to the formal signature by the same rules used in matching arguments in function calls
(seematch.call).

The strings in the signature may be class names,"missing" or "ANY" . SeeMethodsfor the
meaning of these in method selection. Arguments not supplied in the signature implicitly cor-
respond to class"ANY" ; in particular, giving an empty signature means to look for the default
method.

A call to getMethod returns the method for a particular function and signature. As with other
get functions, argumentwhere controls where the function looks (by default anywhere in the

getMethod 849

search list) and argumentoptional controls whether the function returnsNULLor generates an
error if the method is not found. The search for the method makes no use of inheritance.

The functionselectMethod also looks for a method given the function and signature, but makes
full use of the method dispatch mechanism; i.e., inherited methods and group generics are taken into
account just as they would be in dispatching a method for the corresponding signature, with the one
exception that conditional inheritance is not used. LikegetMethod , selectMethod returns
NULLor generates an error if the method is not found, depending on the argumentoptional .

The functionsexistsMethod andhasMethod returnTRUEor FALSE according to whether
a method is found, the first corresponding togetMethod (no inheritance) and the second to
selectMethod .

The functiongetMethods returns all the methods for a particular generic (in the form of a generic
function with the methods information in its environment). The function is called from the evaluator
to merge method information, and is not intended to be called directly. Note that it getsall the visible
methods for the specified functions. If you want only the methods defined explicitly in a particular
environment, use the functiongetMethodsMetaData instead.

The functionMethodsListSelect performs a full search (including all inheritance and group
generic information: see theMethodsdocumentation page for details on how this works). The
call returns a possibly revised methods list object, incorporating any method found as part of the
allMethods slot.

Normally you won’t callMethodsListSelect directly, but it is possible to use it for debugging
purposes (only for distinctly advanced users!).

Note that the statement thatMethodsListSelect corresponds to the selection done by the
evaluator is a fact, not an assertion, in the sense that the evaluator code constructs and executes a
call to MethodsListSelect when it does not already have a cached method for this generic
function and signature. (The value returned is stored by the evaluator so that the search is not
required next time.)

Value

The call toselectMethod or getMethod returns aMethodDefinition-class object,
the selected method, if a unique selection exists. (This class extendsfunction , so you can
use the result directly as a function if that is what you want.) Otherwise an error is thrown if
optional is FALSE. If optional is TRUE, the value returned isNULL if no method matched,
or aMethodsList object if multiple methods matched.

The call togetMethods returns theMethodsList object containing all the methods requested.
If there are none,NULL is returned:getMethods does not generate an error in this case.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

GenericFunctions

850 getPackageName

Examples

setGeneric("testFun", function(x)standardGeneric("testFun"))
setMethod("testFun", "numeric", function(x)x+1)
hasMethod("testFun", "numeric")
Not run: [1] TRUE
hasMethod("testFun", "integer") #inherited
Not run: [1] TRUE
existsMethod("testFun", "integer")
Not run: [1] FALSE
hasMethod("testFun") # default method
Not run: [1] FALSE
hasMethod("testFun", "ANY")
Not run: [1] FALSE

getPackageName The Name associated with a Given Package

Description

The functions below produce the package associated with a particular environment or position on
the search list, or of the package containing a particular function. They are primarily used to support
computations that need to differentiate objects on multiple packages.

Usage

getPackageName(where)

packageSlot(object)
packageSlot(object) <- value

Arguments

where the environment or position on the search list associated with the desired pack-
age.

object object providing a character string name, plus the package in which this object
is to be found.

value the name of the package.

Details

Package names are normally installed during loading of the package, by theINSTALL script or by
the library function. (Currently, the name is stored as the object.packageName but don’t
trust this for the future.)

Value

packageName return the character-string name of the package (without the extraneous
"package:" found in the search list).

packageSlot returns or sets the package name slot (currently an attribute, not a formal slot, but
this will likely change).

hasArg 851

See Also

search

Examples

both the following usually return "base"
getPackageName(length(search()))

hasArg Look for an Argument in the Call

Description

ReturnsTRUEif name corresponds to an argument in the call, either a formal argument to the
function, or a component of... , andFALSEotherwise.

Usage

hasArg(name)

Arguments

name The unquoted name of a potential argument.

Details

The expressionhasArg(x) , for example, is similar to!missing(x) , with two exceptions.
First, hasArg will look for an argument namedx in the call if x is not a formal argument to the
calling function, but... is. Second,hasArg never generates an error if given a name as an
argument, whereasmissing(x) generates an error ifx is not a formal argument.

Value

AlwaysTRUEor FALSEas described above.

See Also

missing

Examples

ftest <- function(x1, ...) c(hasArg(x1), hasArg(y2))

ftest(1) ## c(TRUE, FALSE)
ftest(1, 2) ## c(TRUE, FALSE)
ftest(y2=2) ## c(FALSE, TRUE)
ftest(y=2) ## c(FALSE, FALSE) (no partial matching)
ftest(y2 = 2, x=1) ## c(TRUE, TRUE) partial match x1

852 implicitGeneric

implicitGeneric Manage Implicit Versions of Generic Functions

Description

Create or access implicit generic functions, used to enforce consistent generic versions of func-
tions that are not currently generic. FunctionimplicitGeneric() returns the implicit generic
version,setGenericImplicit() turns a generic implicit,prohibitGeneric() prevents
your function from being made generic, andregisterImplicitGenerics() saves a set of
implicit generic definitions in the cached table of the current session.

Usage

implicitGeneric(name, where, generic)
setGenericImplicit(name, where, restore = TRUE)
prohibitGeneric(name, where)
registerImplicitGenerics(what, where)

Arguments

name Character string name of the function.

where Package or environment in which to register the implicit generics. When using
the functions from the top level of your own package source, this argument can
usually be omitted (and should be).

generic Optionally, the generic function definition to be cached, but usually omitted. See
Details section.

restore Should the non-generic version of the function be restored after the current.

what ForregisterImplicitGenerics() , Optional table of the implicit gener-
ics to register, but nearly always omitted. See Details section.

Details

Multiple packages may define methods for the same function, using the version of a function stored
in one package. All these methods should be marshaled and dispatched consistently when a user
calls the function. For consistency, the generic version of the function must have a unique definition
(the same arguments allowed in methods signatures, the same values for optional slots such as the
value class, and the same standard or non-standard definition of the function itself).

If the original function is already an S4 generic, there is no problem. The implicit generic mecha-
nism enforces consistency when the version in the package owning the function isnot generic. If a
call to setGeneric () attempts to turn a function in another package into a generic, the mecha-
nism compares the proposed new generic function to the implicit generic version of that function.
If the two agree, all is well. If not, and if the function belongs to another package, then the new
generic will not be associated with that package. Instead, a warning is issued and a separate generic
function is created, with its package slot set to the current package, not the one that owns the non-
generic version of the function. The effect is that the new package can still define methods for this
function, but it will not share the methods in other packages, since it is forcing a different definition
of the generic function.

The right way to proceed in nearly all cases is to callsetGeneric ("foo") , giving only the
name of the function; this will automatically use the implicit generic version. If you don’t like that

implicitGeneric 853

version, the best solution is to convince the owner of the other package to agree with you and to
insert code to define the non-default properties of the function (even if the owner does not want
foo() to be a generic by default).

For any function, the implicit generic form is a standard generic in which all formal arguments,
except for... , are allowed in the signature of methods. If that is the suitable generic for a function,
no action is needed. If not, the best mechanism is to set up the generic in the code of the package
owning the function, and to then callsetGenericImplicit() to record the implicit generic
and restore the non-generic version. See the example.

Note that the package can define methods for the implicit generic as well; when the implicit generic
is made a real generic, those methods will be included.

Other than predefining methods, the usual reason for having a non-default implicit generic is to
provide a non-default signature, and the usual reason forthat is to allow lazy evaluation of some
arguments. See the example. All arguments in the signature of a generic function must be evaluated
at the time the function needs to select a method. (But those arguments can be missing, with
or without a default expression being defined; you can always examinemissing(x) even for
arguments in the signature.)

If you want to completely prohibit anyone from turning your function into a generic, call
prohibitGeneric() .

Value

FunctionimplicitGeneric() returns the implicit generic definition (and caches that definition
the first time if it has to construct it).

The other functions exist for their side effect and return nothing useful.

See Also

setGeneric

Examples

How we would make the function with() into a generic:

Since the second argument, 'expr' is used literally, we want
with() to only have "data" in the signature.

Note that 'methods'-internal code now has already extended with()
to do the equivalent of the following
Not run:
setGeneric("with", signature = "data")
Now we could predefine methods for "with" if we wanted to.

When ready, we store the generic as implicit, and restore the original
setGenericImplicit("with")

(This example would only work if we "owned" function with(),
but it is in base.)## End(Not run)

implicitGeneric("with")

854 initialize-methods

initialize-methods Methods to Initialize New Objects from a Class

Description

The arguments to functionnew to create an object from a particular class can be interpreted spe-
cially for that class, by the definition of a method for functioninitialize for the class. This
documentation describes some existing methods, and also outlines how to write new ones.

Methods

.Object = "ANY" The default method forinitialize takes either named or unnamed argu-
ments. Argument names must be the names of slots in this class definition, and the corre-
sponding arguments must be valid objects for the slot (that is, have the same class as specified
for the slot, or some superclass of that class). If the object comes from a superclass, it is
not coerced strictly, so normally it will retain its current class (specifically,as (object,
Class, strict = FALSE)).

Unnamed arguments must be objects of this class, of one of its superclasses, or one of its
subclasses (from the class, from a class this class extends, or from a class that extends this
class). If the object is from a superclass, this normally defines some of the slots in the object.
If the object is from a subclass, the new object is that argument, coerced to the current class.

Unnamed arguments are processed first, in the order they appear. Then named arguments
are processed. Therefore, explicit values for slots always override any values inferred from
superclass or subclass arguments.

.Object = "traceable" Objects of a class that extendstraceable are used to implement debug
tracing (seetraceable-classandtrace).

The initialize method for these classes takes special argumentsdef, tracer,
exit, at, print . The first of these is the object to use as the original definition (e.g., a
function). The others correspond to the arguments totrace .

.Object = "environment" The initialize method for environments takes a named list of ob-
jects to be used to initialize the environment.

.Object = "signature" This is a method for internal use only. It takes an optionalfunctionDef
argument to provide a generic function with asignature slot to define the argument names.
SeeMethodsfor details.

Writing Initialization Methods

Initialization methods provide a general mechanism corresponding to generator functions in other
languages.

The arguments toinitialize are .Object and Nearly always,initialize is called
from new, not directly. The.Object argument is then the prototype object from the class.

Two techniques are often appropriate forinitialize methods: special argument names and
callNextMethod .

You may want argument names that are more natural to your users than the (default) slot names.
These will be the formal arguments to your method definition, in addition to.Object (always)
and . . . (optionally). For example, the method for class"traceable" documented above would
be created by a call tosetMethod of the form:

is 855

setMethod("initialize", "traceable",
function(.Object, def, tracer, exit, at, print) ...

)

In this example, no other arguments are meaningful, and the resulting method will throw an error if
other names are supplied.

When your new class extends another class, you may want to call the initialize method for this
superclass (either a special method or the default). For example, suppose you want to define a
method for your class, with special argumentx , but you also want users to be able to set slots
specifically. If you wantx to override the slot information, the beginning of your method definition
might look something like this:

function(.Object, x, ...) {
Object <- callNextMethod(.Object, ...)
if(!missing(x)) { # do something with x

You could also choose to have the inherited method override, by first interpretingx , and then calling
the next method.

is Is an Object from a Class

Description

is : With two arguments, tests whetherobject can be treated as fromclass2 .

With one argument, returns all the super-classes of this object’s class.

extends : Does the first class extend the second class? Returnsmaybe if the extension includes a
test.

setIs : Definesclass1 to be an extension ofclass2 .

Usage

is(object, class2)

extends(class1, class2, maybe=TRUE, fullInfo = FALSE)

setIs(class1, class2, test=NULL, coerce=NULL, replace=NULL,
by = character(), where = topenv(parent.frame()), classDef =,
extensionObject = NULL, doComplete = TRUE)

Arguments

object anyR object.
class1, class2

the names of the classes between whichis relations are to be defined.
maybe, fullInfo

In a call to extends , maybe is a flag to include/exclude conditional re-
lations, andfullInfo is a flag, which ifTRUEcauses object(s) of class
classExtension to be returned, rather than just the names of the classes
or a logical value. See the details below.

856 is

extensionObject
alternative to thetest, coerce, replace, by arguments; an object
from classSClassExtension describing the relation. (Used in internal
calls.)

doComplete whenTRUE, the class definitions will be augmented with indirect relations as
well. (Used in internal calls.)

test, coerce, replace
In a call tosetIs , functions optionally supplied to test whether the relation
is defined, to coerce the object toclass2 , and to alter the object so that
is(object, class2) is identical tovalue .

by In a call tosetIs , the name of an intermediary class. Coercion will proceed by
first coercing to this class and from there to the target class. (The intermediate
coercions have to be valid.)

where In a call tosetIs , where to store the metadata defining the relationship. Default
is the global environment.

classDef Optional class definition forclass , required internally whensetIs is called
during the initial definition of the class by a call tosetClass . Don’t use this
argument, unless you really know why you’re doing so.

Details

extends : Given two class names,extends by default says whether the first class extends the
second; that is, it does for class names whatis does for an object and a class. Given one class
name, it returns all the classes that class extends (the ‘superclasses’ of that class), including
the class itself. If the flagfullInfo is TRUE, the result is a list, each element of which is
an object describing the relationship; otherwise, and by default, the value returned is only the
names of the classes.

setIs : This function establishes an inheritance relation between two classes, by some means
other than having one class contain the other. It shouldnot be used for ordinary relationships:
either include the second class in thecontains= argument tosetClass if the class is
contained in the usual way, or considersetClassUnion to define a virtual class that is
extended by several ordinary classes. A call tosetIs makes sense, for example, if one class
ought to be automatically convertible into a second class, but they have different representa-
tions, so that the conversion must be done by an explicit computation, not just be inheriting
slots, for example. In this case, you will typically need to provide both acoerce= and
replace= argument tosetIs .

Thecoerce , replace , andby arguments behave as described for thesetAs function. It’s
unlikely you would use theby argument directly, but it is used in defining cached information
about classes. The value returned (invisibly) bysetIs is the extension information, as a list.

Thecoerce argument is a function that turns aclass1 object into aclass2 object. The
replace argument is a function of two arguments that modifies aclass1 object (the first
argument) to replace the part of it that corresponds toclass2 (supplied asvalue , the second
argument). It then returns the modified object as the value of the call. In other words, it acts as
a replacement method to implement the expressionas(object, class2) <- value .

The easiest way to think of thecoerce andreplace functions is by thinking of the case
thatclass1 containsclass2 in the usual sense, by including the slots of the second class.
(To repeat, in this situation you would not callsetIs , but the analogy shows what happens
when you do.)

Thecoerce function in this case would just make aclass2 object by extracting the cor-
responding slots from theclass1 object. Thereplace function would replace in the

is 857

class1 object the slots corresponding toclass2 , and return the modified object as its
value.
The relationship can also be conditional, if a function is supplied as thetest argument.
This should be a function of one argument that returnsTRUEor FALSEaccording to whether
the object supplied satisfies the relationis(object, class2) . If you worry about such
things, conditional relations between classes are slightly deprecated because they cannot be
implemented as efficiently as ordinary relations and because they sometimes can lead to con-
fusion (in thinking about what methods are dispatched for a particular function, for example).
But they can correspond to useful distinctions, such as when two classes have the same repre-
sentation, but only one of them obeys certain additional constraints.
Because only global environment information is saved, it rarely makes sense to give a value
other than the default for argumentwhere . One exception iswhere=0 , which modifies the
cached (i.e., session-scope) information about the class. Class completion computations use
this version, but don’t use it yourself unless you are quite sure you know what you’re doing.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

Examples

a class definition (see setClass for the example)
setClass("trackCurve",

representation("track", smooth = "numeric"))
A class similar to "trackCurve", but with different structure
allowing matrices for the "y" and "smooth" slots
setClass("trackMultiCurve",

representation(x="numeric", y="matrix", smooth="matrix"),
prototype = structure(list(), x=numeric(), y=matrix(0,0,0),

smooth= matrix(0,0,0)))
Automatically convert an object from class "trackCurve" into
"trackMultiCurve", by making the y, smooth slots into 1-column matrices
setIs("trackCurve",

"trackMultiCurve",
coerce = function(obj) {

new("trackMultiCurve",
x = obj@x,
y = as.matrix(obj@y),
curve = as.matrix(obj@smooth))

},
replace = function(obj, value) {

obj@y <- as.matrix(value@y)
obj@x <- value@x
obj@smooth <- as.matrix(value@smooth)
obj})

858 isSealedMethod

Automatically convert the other way, but ONLY
if the y data is one variable.
setIs("trackMultiCurve",

"trackCurve",
test = function(obj) {ncol(obj@y) == 1},
coerce = function(obj) {

new("trackCurve",
x = slot(obj, "x"),
y = as.numeric(obj@y),
smooth = as.numeric(obj@smooth))

},
replace = function(obj, value) {

obj@y <- matrix(value@y, ncol=1)
obj@x <- value@x
obj@smooth <- value@smooth
obj})

isSealedMethod Check for a Sealed Method or Class

Description

These functions check for either a method or a class that has beensealedwhen it was defined, and
which therefore cannot be re-defined.

Usage

isSealedMethod(f, signature, fdef, where)
isSealedClass(Class, where)

Arguments

f The quoted name of the generic function.

signature The class names in the method’s signature, as they would be supplied to
setMethod .

fdef Optional, and usually omitted: the generic function definition forf .

Class The quoted name of the class.

where where to search for the method or class definition. By default, searches from
the top environment of the call toisSealedMethod or isSealedClass ,
typically the global environment or the namespace of a package containing a
call to one of the functions.

Details

In theR implementation of classes and methods, it is possible to seal the definition of either a class
or a method. The basic classes (numeric and other types of vectors, matrix and array data) are
sealed. So also are the methods for the primitive functions on those data types. The effect is that
programmers cannot re-define the meaning of these basic data types and computations. More pre-
cisely, for primitive functions that depend on only one data argument, methods cannot be specified
for basic classes. For functions (such as the arithmetic operators) that depend on two arguments,
methods can be specified ifoneof those arguments is a basic class, but not if both are.

language-class 859

Programmers can seal other class and method definitions by using thesealed argument to
setClass or setMethod .

Value

The functions returnFALSE if the method or class is not sealed (including the case that it is not
defined);TRUEif it is.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

Examples

these are both TRUE
isSealedMethod("+", c("numeric", "character"))
isSealedClass("matrix")

setClass("track",
representation(x="numeric", y="numeric"))

but this is FALSE
isSealedClass("track")
and so is this
isSealedClass("A Name for an undefined Class")
and so are these, because only one of the two arguments is basic
isSealedMethod("+", c("track", "numeric"))
isSealedMethod("+", c("numeric", "track"))

language-class Classes to Represent Unevaluated Language Objects

Description

The virtual class"language" and the specific classes that extend it represent unevaluated objects,
as produced for example by the parser or by functions such asquote .

Usage

each of these classes corresponds to an unevaluated object
in the S language.
The class name can appear in method signatures,
and in a few other contexts (such as some calls to as()).

860 LinearMethodsList-class

"("
"<-"
"call"
"for"
"if"
"repeat"
"while"
"name"
"{"

Each of the classes above extends the virtual class

"language"

Objects from the Class

"language" is a virtual class; no objects may be created from it.

Objects from the other classes can be generated by a call tonew(Class, ...) , whereClass
is the quoted class name, and the . . . arguments are either empty or asingleobject that is from this
class (or an extension).

Methods

coerce signature(from = "ANY", to = "call") . A method exists foras(object,
"call") , callingas.call() .

LinearMethodsList-class
Class "LinearMethodsList"

Description

A version of methods lists that has been ‘linearized’ for producing summary information. The
actual objects from class"MethodsList" used for method dispatch are defined recursively over
the arguments involved.

Objects from the Class

The functionlinearizeMlist converts an ordinary methods list object into the linearized form.

Slots

methods : Object of class"list" , the method definitions.

arguments : Object of class"list" , the corresponding formal arguments, namely as many of
the arguments in the signature of the generic function as are active in the relevant method
table.

classes : Object of class"list" , the corresponding classes in the signatures.

generic : Object of class"genericFunction" ; the generic function to which the methods
correspond.

makeClassRepresentation 861

Future Note

The current version oflinearizeMlist does not take advantage of theMethodDefinition
class, and therefore does more work for less effect than it could. In particular, we may move to
redefine both the function and the class to take advantage of the stored signatures. Don’t write code
depending precisely on the present form, although all the current information will be obtainable in
the future.

See Also

FunctionlinearizeMlist for the computation, andMethodsList-class for the original,
recursive form.

makeClassRepresentation
Create a Class Definition

Description

Constructs aclassRepresentation-class object to describe a particular class. Mostly a
utility function, but you can call it to create a class definition without assigning it, assetClass
would do.

Usage

makeClassRepresentation(name, slots=list(), superClasses=character(),
prototype=NULL, package, validity, access,
version, sealed, virtual=NA, where)

Arguments

name character string name for the class

slots named list of slot classes as would be supplied tosetClass , but without the
unnamed arguments for superClasses if any.

superClasses what classes does this class extend

prototype an object providing the default data for the class, e.g, the result of a call to
prototype .

package The character string name for the package in which the class will be stored; see
getPackageName .

validity Optional validity method. SeevalidObject , and the discussion of validity
methods in the reference.

access Access information. Not currently used.

version Optional version key for version control. Currently generated, but not used.

sealed Is the class sealed? SeesetClass .

virtual Is this known to be a virtual class?

where The environment from which to look for class definitions needed (e.g., for slots
or superclasses). See the discussion of this argument underGenericFunctions.

862 method.skeleton

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

setClass

method.skeleton Create a Skeleton File for a New Method

Description

This function writes a source file containing a call tosetMethod to define a method for the generic
function and signature supplied. By default the method definition is in line in the call, but can be
made an external function assigned in the same source file.

Usage

method.skeleton(generic, signature, file, external = FALSE, where)

Arguments

generic the character string name of the generic function, or the generic function itself.
In the first case, the function need not currently be a generic, as it would not for
the resulting call tosetMethod .

signature the method signature, as it would be given tosetMethod

file a character string name for the output file, or a writable connection. By default
the generic function name and the classes in the signature are concatenated, with
separating underscore characters. The file name should normally end in".R" .

external flag to control whether the function definition for the method should be a sepa-
rate external object assigned in the source file, or included in line in the call to
setMethod . If supplied as a character string, this will be used as the name for
the external function; by default the name concatenates the generic and signature
names, with separating underscores.

where The environment in which to look for the function; by default, the top-level
environment of the call tomethod.skeleton .

Value

Thefile argument, invisibly, but the function is used for its side effect.

MethodDefinition-class 863

See Also

setMethod , package.skeleton

Examples

Not run:
setClass("track", representation(x ="numeric", y="numeric"))
method.skeleton("show", "track") ## writes show_track.R
method.skeleton("Ops", c("track", "track")) ##writes "Ops_track_track.R"
write multiple method skeletons to one file
con = file("./Math_track.R", "w")
method.skeleton("Math", "track", con)
method.skeleton("exp", "track", con)
method.skeleton("log", "track", con)
close(con)
End(Not run)

MethodDefinition-class
Classes to Represent Method Definitions

Description

These classes extend the basic class"function" when functions are to be stored and used as
method definitions.

Details

Method definition objects are functions with additional information defining how the function is
being used as a method. Thetarget slot is the class signature for which the method will be
dispatched, and thedefined slot the signature for which the method was originally specified (that
is, the one that appeared in some call tosetMethod).

Objects from the Class

The action of setting a method by a call tosetMethod creates an object of this class. It’s unwise
to create them directly.

The class"SealedMethodDefinition" is created by a call tosetMethod with argument
sealed = TRUE . It has the same representation as"MethodDefinition" .

Slots

.Data : Object of class"function" ; the data part of the definition.

target : Object of class"signature" ; the signature for which the method was wanted.

defined : Object of class"signature" ; the signature for which a method was found. If the
method was inherited, this will not be identical totarget .

generic : Object of class"character" ; the function for which the method was created.

864 Methods

Extends

Class"function" , from data part.
Class"PossibleMethod" , directly.
Class"OptionalMethods" , by class"function" .

See Also

classMethodsList-class for the objects defining sets of methods associated with a partic-
ular generic function. The individual method definitions stored in these objects are from class
MethodDefinition , or an extension.MethodWithNext-class for an extension used by
callNextMethod .

Methods General Information on Methods

Description

This documentation section covers some general topics on how methods work and how themethods
package interacts with the rest of R. The information is usually not needed to get started with
methods and classes, but may be helpful for moderately ambitious projects, or when something
doesn’t work as expected.

The sectionHow Methods Work describes the underlying mechanism;Dispatch and Method
Selectionprovides more details on how class definitions determine which methods are used. For
additional information specifically about class definitions, see?Classes .

How Methods Work

A generic function is a function that has associated with it a collection of other functions (the
methods), all of which agree in formal arguments with the generic.

Each R package will include methods metadata objects corresponding to each generic function for
which methods have been defined in that package. When the package is loaded into an R session,
the methods for each generic function arecached, that is, stored in the environment of the generic
function along with the methods from previously loaded packages. This merged table of methods
is used to dispatch or select methods from the generic, using class inheritance and possibly group
generic functions (seeS4groupGeneric) to find an applicable method. See theDispatchsection
below. The caching computations ensure that only one version of each generic function is visible
globally; although different attached packages may contain a copy of the generic function, these are
in fact identical.

The methods for a generic are stored according to the correspondingsignature for which the
method was defined, in a call tosetMethod . The signature associates one class name with each of
a subset of the formal arguments to the generic function. Which formal arguments are available, and
the order in which they appear, are determined by the"signature" slot of the generic function.
By default, the signature of the generic consists of all the formal arguments except . . . , in the order
they appear in the function definition.

Trailing arguments in the signature will beinactiveif no method has yet been specified that included
those arguments. Inactive arguments are not needed or used in labeling the cached methods. (The
distinction does not change which methods are dispatched, but ignoring inactive arguments does
improve the efficiency of dispatch. Thus, defining the generic signature to contain the most useful
arguments first can help efficiency somewhat.)

Methods 865

All arguments in the signature of the generic function will be evaluated when the function is called,
rather than using the traditional lazy evaluation rules of S. Therefore, it’s important toexcludefrom
the signature any arguments that need to be dealt with symbolically (such as the first argument to
function substitute). Note that only actual arguments are evaluated, not default expressions.
A missing argument enters into the method selection as class"missing" and non-missing argu-
ments according to their actual class.

As of version 2.4.0 of R, the cached methods are stored in an environment object. The names used
for assignment are a concatenation of the class names for the arguments in the active signature.

Dispatch and Method Selection

When a call to a generic function is evaluated, a method is selected corresponding to the classes of
the actual arguments in the signature. First, the cached methods table is searched for adirectmatch;
that is, a method stored under the direct class names. The direct class is the value ofclass(x)
for each non-missing argument, and class"missing" for each missing argument. If no method is
found directly for the actual arguments in a call to a generic function, an attempt is made to match
the available methods to the arguments by usinginheritance.

Each class definition potentially includes the names of one or more classes that the new class con-
tains. (These are sometimes called thesuperclassesof the new class.) The S language has an
additional, explicit mechanism for defining superclasses, thesetIs mechanism. Also, a call to
setClassUnion makes the union class a superclass of each of the members of the union. All
three mechanisms are treated equivalently for purposes of inheritance: they define thedirect super-
classes of a particular class.

The direct superclasses themselves may contain other classes. Putting all this information together
produces the full list of superclasses for this class. The superclass list is included in the definition
of the class that is cached during the R session. Each element of the list describes the nature of the
relationship (seeSClassExtension-classfor details). Included in the element is adistance slot
giving a numeric distance between the two classes. The distance currently is the path length for the
relationship:1 for direct superclasses (regardless of which mechanism defined them), then2 for the
direct superclasses of those classes, and so on. In addition, any class implicitly has class"ANY" as
a superclass. The distance to"ANY" is treated as larger than the distance to any actual class. The
special class"missing" corresponding to missing arguments has only"ANY" as a superclass,
while "ANY" has no superclasses.

The information about superclasses is summarized when a class definition is printed.

When a method is to be selected by inheritance, a search is made in the table for all methods directly
corresponding to a combination of either the direct class or one of its superclasses, for each argu-
ment in the active signature. For an example, suppose there is only one argument in the signature
and that the class of the corresponding object was"dgeMatrix" (from theMatrix package on
CRAN). This class has two direct superclasses and through these 4 additional superclasses. Method
selection finds all the methods in the table of directly specified methods labeled by one of these
classes, or by"ANY" .

When there are multiple arguments in the signature, each argument will generate a similar list of
inherited classes. The possible matches are now all the combinations of classes from each argument
(think of the functionouter generating an array of all possible combinations). The search now
finds all the methods matching any of this combination of classes. The computation of distances
also has to combine distances for the individual arguments. There are many ways to combine the
distances; the current implementation simply adds them. The result of the search is then a list of
zero, one or more methods, and a parallel vector of distances between the target signature and the
available methods.

If the list has more than one matching method, only those corresponding to the minimum distance
are considered. There may still be multiple best methods. The dispatch software considers this an

866 MethodsList-class

ambiguous case and warns the user (only on the first call for this selection). The method occurring
first in the list of superclasses is selected. By the mechanism of producing the extension information,
this orders the direct superclasses by the order they appeared in the original call tosetClass ,
followed by classes specified insetIs calls, in the order those calls were evaluated, followed
by classes specified in unions. Then the superclasses of those classes are appended (note that
only the ordering of classes within a particular generation of superclasses counts, because only
these will have the same distance). For further discussion of method selection, see the document
http://developer.r-project.org/howMethodsWork.pdf .

All this detail about selection is less important than the realization that having ambiguous method
selection usually means that you need to be more specific about intentions. It is likely that some
consideration other than the ordering of superclasses in the class definition is more important in
determining which methodshouldbe selected, and the preference may well be different for differ-
ent generic functions. Where ambiguities arise, the best approach is usually to provide a specific
method for the subclass.

When the inherited method has been selected, the selection is cached in the generic function so that
future calls with the same class will not require repeating the search. Cached non-direct selections
are not themselves used in inheritance searches, since that could result in invalid selections.

Besides being initiated through calls to the generic function, method selection can be done explicitly
by calling the functionselectMethod .

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference.

See Also

setGeneric , setClass and the documenthttp://developer.r-project.org/
howMethodsWork.pdf .

MethodsList-class Class MethodsList, Representation of Methods for a Generic Function

Description

Objects from this class are generated and revised by the definition of methods for a generic function.

Details

Suppose a functionf has formal argumentsx andy . The methods list object for that function has
the objectas.name("x") as itsargument slot. An element of the methods named"track"
is selected if the actual argument corresponding tox is an object of class"track" . If there is such
an element, it can generally be either a function or another methods list object.

http://developer.r-project.org/howMethodsWork.pdf
http://developer.r-project.org/howMethodsWork.pdf
http://developer.r-project.org/howMethodsWork.pdf

MethodWithNext-class 867

In the first case, the function defines the method to use for any call in whichx is of class"track" .
In the second case, the new methods list object defines the available methods depending on the
remaining formal arguments, in this example,y .

Each method corresponds conceptually to asignature; that is a named list of classes, with names
corresponding to some or all of the formal arguments. In the previous example, if selecting
class"track" for x , finding that the selection was another methods list and then selecting class
"numeric" for y would produce a method associated with the signaturex = "track", y =
"numeric" .

You can see the methods arranged by signature by calling the functionshowMethods , A methods
list can be converted into an ordinary list with the methods arranged this way (in two different
forms) by calling the functionslistFromMlist andlinearizeMlist .

Slots

argument : Object of class"name" . The name of the argument being used for dispatch at this
level.

methods : A named list of the methods (and method lists) definedexplicitly for this argument.
The names are the names of classes, and the corresponding element defines the method or
methods to be used if the corresponding argument has that class. See the details below.

allMethods : A named list, contains all the directly defined methods from themethods slot,
plus any inherited methods. Ignored when methods tables are used for dispatch (seeMethods

Extends

Class"OptionalMethods" , directly.

MethodWithNext-class
Class MethodWithNext

Description

Class of method definitions set up for callNextMethod

Objects from the Class

Objects from this class are generated as a side-effect of calls tocallNextMethod .

Slots

.Data : Object of class"function" ; the actual function definition.

nextMethod : Object of class"PossibleMethod" the method to use in response to a
callNextMethod () call.

excluded : Object of class"list" ; one or more signatures excluded in finding the next method.

target : Object of class"signature" , from class"MethodDefinition"

defined : Object of class"signature" , from class"MethodDefinition"

generic : Object of class"character" ; the function for which the method was created.

868 new

Extends

Class"MethodDefinition" , directly.
Class"function" , from data part.
Class"PossibleMethod" , by class"MethodDefinition" .
Class"OptionalMethods" , by class"MethodDefinition" .

Methods

findNextMethod signature(method = "MethodWithNext") : used internally by
method dispatch.

loadMethod signature(method = "MethodWithNext") : used internally by method
dispatch.

show signature(object = "MethodWithNext")

See Also

callNextMethod , andMethodDefinition-class .

new Generate an Object from a Class

Description

Given the name or the definition of a class, plus optionally data to be included in the object,new
returns an object from that class.

Usage

new(Class, ...)

initialize(.Object, ...)

Arguments

Class Either the name of a class (the usual case) or the object describing the class (e.g.,
the value returned bygetClass).

... Data to include in the new object. Named arguments correspond to slots in the
class definition. Unnamed arguments must be objects from classes that this class
extends.

.Object An object: see the Details section.

Details

The functionnew begins by copying the prototype object from the class definition. Then informa-
tion is inserted according to the... arguments, if any. As of version 2.4 of R, the type of the
prototype object, and therefore of all objects returned bynew() , is "S4" except for classes that
extend one of the basic types, where the prototype has that basic type. User functions that depend
on typeof (object) should be careful to handle"S4" as a possible type.

The interpretation of the... arguments can be specialized to particular classes, if an appro-
priate method has been defined for the generic function"initialize" . The new function

new 869

calls initialize with the object generated from the prototype as the.Object argument to
initialize .

By default, unnamed arguments in the... are interpreted as objects from a superclass, and named
arguments are interpreted as objects to be assigned into the correspondingly named slots. Thus,
explicit slots override inherited information for the same slot, regardless of the order in which the
arguments appear.

The initialize methods do not have to have... as their second argument (see the examples),
and generally it is better designnot to have... as a formal argument, if only a fixed set of
arguments make sense.

For examples ofinitialize methods, seeinitialize-methods for existing methods for
classes"traceable" and"environment" , among others.

Note that the basic vector classes,"numeric" , etc. are implicitly defined, so one can usenew for
these classes.

References

The functions in this package emulate the facility for classes and methods described inProgram-
ming with Data(John M. Chambers, Springer, 1998). See this book for further details and examples.

See Also

Classes

Examples

using the definition of class "track" from Classes

a new object with two slots specified
t1 <- new("track", x = seq_along(ydata), y = ydata)

a new object including an object from a superclass, plus a slot
t2 <- new("trackCurve", t1, smooth = ysmooth)

define a method for initialize, to ensure that new objects have
equal-length x and y slots.

setMethod("initialize",
"track",
function(.Object, x = numeric(0), y = numeric(0)) {

if(nargs() > 1) {
if(length(x) != length(y))

stop("specified x and y of different lengths")
.Object@x <- x
.Object@y <- y

}
.Object

})

the next example will cause an error (x will be numeric(0)),
because we didn't build in defaults for x,
although we could with a more elaborate method for initialize

870 ObjectsWithPackage-class

try(new("track", y = sort(stats::rnorm(10))))

a better way to implement the previous initialize method.
Why? By using callNextMethod to call the default initialize method
we don't inhibit classes that extend "track" from using the general
form of the new() function. In the previous version, they could only
use x and y as arguments to new, unless they wrote their own
initialize method.

setMethod("initialize", "track", function(.Object, ...) {
.Object <- callNextMethod()
if(length(.Object@x) != length(.Object@y))

stop("specified x and y of different lengths")
.Object

})

ObjectsWithPackage-class
A Vector of Object Names, with associated Package Names

Description

This class of objects is used to represent ordinary character string object names, extended with a
package slot naming the package associated with each object.

Objects from the Class

The functiongetGenerics returns an object of this class.

Slots

.Data : Object of class"character" : the object names.

package : Object of class"character" the package names.

Extends

Class"character" , from data part.
Class"vector" , by class"character" .

See Also

Methods for general background.

promptClass 871

promptClass Generate a Shell for Documentation of a Formal Class

Description

Assembles all relevant slot and method information for a class, with minimal markup for Rd pro-
cessing; no QC facilities at present.

Usage

promptClass(clName, filename = NULL, type = "class",
keywords = "classes", where = topenv(parent.frame()))

Arguments

clName a character string naming the class to be documented.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name is the topic name for the class documentation, followed by".Rd" .
Can also beNA(see below).

type the documentation type to be declared in the output file.

keywords the keywords to include in the shell of the documentation. The keyword
"classes" should be one of them.

where where to look for the definition of the class and of methods that use it.

Details

The class definition is found on the search list. Using that definition, information about classes
extended and slots is determined.

In addition, the currently available generics with methods for this class are found (using
getGenerics). Note that these methods need not be in the same environment as the class defini-
tion; in particular, this part of the output may depend on which packages are currently in the search
list.

As with other prompt-style functions, unlessfilename is NA, the documentation shell is written
to a file, and a message about this is given. The file will need editing to give information about
the meaningof the class. The output ofpromptClass can only contain information from the
metadata about the formal definition and how it is used.

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts tocat(unlist(x), file = filename, sep
= "\n") , wherex is the list-style representation.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of
the file written to is returned invisibly.

Author(s)

VJ Carey〈stvjc@channing.harvard.edu〉 and John Chambers

872 promptMethods

References

The functions in this package emulate the facility for classes and methods described inProgram-
ming with Data(John M. Chambers, Springer, 1998). See this book for further details and examples.

See Also

prompt for documentation of functions,promptMethods for documentation of method defini-
tions.

For processing of the edited documentation, either useR CMDRdconv , or include the edited file
in the ‘man’ subdirectory of a package.

Examples

Not run:
> promptClass("track")
A shell of class documentation has been written to the
file "track-class.Rd".
End(Not run)

promptMethods Generate a Shell for Documentation of Formal Methods

Description

Generates a shell of documentation for the methods of a generic function.

Usage

promptMethods(f, filename = NULL, methods)

Arguments

f a character string naming the generic function whose methods are to be docu-
mented.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to the coded
topic name for these methods (currently,f followed by "-methods.Rd").
Can also beFALSEor NA(see below).

methods Optional methods list object giving the methods to be documented. By default,
the first methods object for this generic is used (for example, if the current global
environment has some methods forf , these would be documented).

If this argument is supplied, it is likely to begetMethods(f, where) , with
where some package containing methods forf .

representation 873

Details

If filename is FALSE, the text created is returned, presumably to be inserted some other docu-
mentation file, such as the documentation of the generic function itself (seeprompt).

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts tocat(unlist(x), file = filename, sep
= "\n") , wherex is the list-style representation.

Otherwise, the documentation shell is written to the file specified byfilename .

Value

If filename is FALSE, the text generated; iffilename is NA, a list-style representation of the
documentation shell. Otherwise, the name of the file written to is returned invisibly.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

prompt andpromptClass

representation Construct a Representation or a Prototype for a Class Definition

Description

In calls tosetClass , these two functions construct, respectively, therepresentation and
prototype arguments. They do various checks and handle special cases. You’re encouraged
to use them when defining classes that, for example, extend other classes as a data part or have
multiple superclasses, or that combine extending a class and slots.

Usage

representation(...)
prototype(...)

Arguments

... The call to representation takes arguments that are single character strings. Un-
named arguments are classes that a newly defined class extends; named argu-
ments name the explicit slots in the new class, and specify what class each slot
should have.

874 representation

In the call toprototype , if an unnamed argument is supplied, it uncondition-
ally forms the basis for the prototype object. Remaining arguments are taken to
correspond to slots of this object. It is an error to supply more than one unnamed
argument.

Details

Therepresentation function applies tests for the validity of the arguments. Each must specify
the name of a class.

The classes named don’t have to exist whenrepresentation is called, but if they do, then the
function will check for any duplicate slot names introduced by each of the inherited classes.

The arguments toprototype are usually named initial values for slots, plus an optional first
argument that gives the object itself. The unnamed argument is typically useful if there is a data
part to the definition (see the examples below).

Value

The value pfrepresentation is just the list of arguments, after these have been checked for
validity.

The value ofprototype is the object to be used as the prototype. Slots will have been set
consistently with the arguments, but the construction doesnotuse the class definition to test validity
of the contents (it hardly can, since the prototype object is usually supplied to create the definition).

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

setClass

Examples

representation for a new class with a directly define slot "smooth"
which should be a "numeric" object, and extending class "track"
representation("track", smooth ="numeric")

setClass("Character",representation("character"))
setClass("TypedCharacter",representation("Character",type="character"),

prototype(character(0),type="plain"))
ttt <- new("TypedCharacter", "foo", type = "character")

setClass("num1", representation(comment = "character"),
contains = "numeric",

S4groupGeneric 875

prototype = prototype(pi, comment = "Start with pi"))

S4groupGeneric S4 Group Generic Functions

Description

Methods can be defined for groups of functions known asgroup generic functions. These exist in
both S3 (seeS3groupGeneric) and S4 flavours, with different groups.

Methods are defined for the group of functions as a whole. A method defined for an individual
member of the group takes precedence over a method defined for the group as a whole.

When packagemethodsis attached there are objects visible with the names of the group generics:
these functions should never be called directly (a suitable error message will result if they are).

Usage

S4 group generics:
Arith(e1, e2)
Compare(e1, e2)
Ops(e1, e2)
Logic(e1, e2)
Math(x)
Math2(x, digits)
Summary(x, ..., na.rm = FALSE)
Complex(z)

Arguments

x, z, e1, e2 objects.

digits number of digits to be used inround or signif .

... further arguments passed to or from methods.

na.rm logical: should missing values be removed?

Details

When packagemethods is attached (which it is by default), formal (S4) methods can be defined
for the group generic functions (which areR objects which should never be called directly – a
suitable error message will result if they are). There are also S3 groupsMath , Ops, Summary and
Complex , see?S3groupGeneric , with no correspondingR objects.

The functions belonging to the various groups are as follows:

Arith "+" , "-" , "*" , "^" , "%%", "%/%" , "/"

Compare "==" , ">" , "<" , "!=" , "<=" , ">="

Logic "&" , "|" , but not "!" since that has only one argument. Note that this is contrary to
Chambers(1998), on purpose.

Ops "Arith" , "Compare" , "Logic"

876 S4groupGeneric

Math "abs" , "sign" , "sqrt" , "ceiling" , "floor" , "trunc" , "cummax" ,
"cummin" , "cumprod" , "cumsum" , "log" , "log10" , "log2" , "log1p" , "acos" ,
"acosh" , "asin" , "asinh" , "atan" , "atanh" , "exp" , "expm1" , "cos" ,
"cosh" , "sin" , "sinh" , "tan" , "tanh" , "gamma" , "lgamma" , "digamma" ,
"trigamma"

Math2 "round" , "signif"

Summary "max" , "min" , "range" , "prod" , "sum" , "any" , "all"

Complex "Arg" , "Conj" , "Im" , "Mod" , "Re"

Note thatOps merely consists of three sub groups. Functions with the group names exist in the
methodspackage but should not be called directly.

All the functions in these groups (other than the group generics themselves) are basic functions
in R. They are not by default S4 generic functions, and many of them are defined as primitives,
meaning that they do not have formal arguments. However, you can still define formal methods for
them. The effect of doing so is to create an S4 generic function with the appropriate arguments, in
the environment where the method definition is to be stored. It all works more or less as you might
expect, admittedly via a bit of trickery in the background.

Note that two members of theMath group, log and trunc , have more than one argument: S4
group dispatch will always pass only one argument to the method so if you want to handlebase in
log , set a specific method as well.

References

Appendix A,Classes and Methodsof
Chambers, J. M. and Hastie, T. J. eds (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

Chambers, J. M. (1998)Programming with Data.Springer, pp. 352–4.

See Also

S3groupGenericfor S3 group generics.

Examples

setClass("testComplex", representation(zz = "complex"))
method for whole group "Complex"
setMethod("Complex", "testComplex",

function(z) c("groupMethod", callGeneric(z@zz)))
exception for Arg() :
setMethod("Arg", "testComplex",

function(z) c("ArgMethod", Arg(z@zz)))
z1 <- 1+2i
z2 <- new("testComplex", zz = z1)
stopifnot(identical(Mod(z2), c("groupMethod", Mod(z1))))
stopifnot(identical(Arg(z2), c("ArgMethod", Arg(z1))))

SClassExtension-class 877

SClassExtension-class
Class to Represent Inheritance (Extension) Relations

Description

An object from this class represents a single ‘is’ relationship; lists of these objects are used to
represent all the extensions (superclasses) and subclasses for a given class. The object contains
information about how the relation is defined and methods to coerce, test, and replace correspond-
ingly.

Objects from the Class

Objects from this class are generated bysetIs , from direct calls and from thecontains= in-
formation in a call tosetClass , and from class unions created bysetClassUnion . In the
last case, the information is stored in defining thesubclassesof the union class (allowing unions to
contain sealed classes).

Slots

subClass,superClass : The classes being extended: corresponding to thefrom , and to
arguments tosetIs .

package : The package to which that class belongs.

coerce : A function to carry out the as() computation implied by the relation. Note that these
functions shouldnotbe used directly. They only deal with thestrict=TRUE calls to theas
function, with the full method constructed from this mechanically.

test : The function that would test whether the relation holds. Except for explicitly specified
test arguments tosetIs , this function is trivial.

replace : The method used to implementas(x, Class) <- value .

simple : A "logical" flag, TRUEif this is a simple relation, either because one class is con-
tained in the definition of another, or because a class has been explicitly stated to extend a
virtual class. For simple extensions, the three methods are generated automatically.

by : If this relation has been constructed transitively, the first intermediate class from the subclass.

dataPart : A "logical" flag,TRUEif the extended class is in fact the data part of the subclass.
In this case the extended class is a basic class (i.e., a type).

distance : The distance between the two classes, 1 for directly contained classes, plus the num-
ber of generations between otherwise.

Methods

No methods defined with class"SClassExtension" in the signature.

See Also

is , as , andclassRepresentation-class .

878 seemsS4Object

seemsS4Object Heuristic test for an object from an S4 class

Description

ReturnsTRUEif object has been generated from a formally defined (‘S4’) class. DEPRECATED:
useisS4(object) instead.

Usage

seemsS4Object(object)

Arguments

object Any object.

Details

The class of the object is examined for the"package" attribute included when objects are
generated from an S4 class. The test in this function has been superseded by an internal bit set
when S4 objects are generated.

TheseemsS4Object function is deprecated and will be removed.

The test can be fooled in at least two ways:

1. It will give TRUEincorrectly if someone puts a"package" string attribute on the class of
an S3 object. Presumably unlikely.

2. It will give FALSE incorrectly for class definitions and certain other objects for packages that
have not beenINSTALL ed since theseemsS4Object was added to R. See the Warning
below.

Value

AlwaysTRUEor FALSEfor any object.

Warnings

One motivation for this function is to prevent standard S3 vector operations from being applied to
S4 objects that are not vectors. Note thatseemsS4Object() alone isnot that test. One also
needs to check that the object does not inherit from class"vector" . See the examples.

The existence of a class definition for the object’s class is also not equivalent. S4 class definitions
are recorded for S3 classes registered viasetOldClass , but registering does not change the class
of such objects, so they are not judged to be S4 objects (and should not be).

Certain other S4 objects used to be generated without the"package" attribute in earlier builds
of R, notably class definitions. Packages using S4 objectsmustbe reinstalled with a version of R
recent enough to contain theseemsS4Object function (e.g.,R 2.3.0 or later).

setClass 879

Examples

Not run: ## this is deprecated
seemsS4Object(1) # FALSE

seemsS4Object(getClass(class(1))) #TRUE

how to test for an S4 object that is not a vector

S4NotVector <-
function(object) seemsS4Object(object) && !is(object, "vector")

setClass("classNotNumeric", representation(x="numeric", y="numeric"))

setClass("classWithNumeric", representation(y="numeric"),
contains = "numeric")

obj1 <- new("classNotNumeric", x=1, y=2)

obj2 <- new("classWithNumeric", 1, y=2)

seemsS4Object(obj1); seemsS4Object(obj2) # TRUE, TRUE
S4NotVector(obj1); S4NotVector(obj2) # TRUE, FALSE

removeClass("classNotNumeric")
removeClass("classWithNumeric")
End(Not run)

setClass Create a Class Definition

Description

Functions to create (setClass) and manipulate class definitions.

Usage

setClass(Class, representation, prototype, contains=character(),
validity, access, where, version, sealed, package)

removeClass(Class, where)

isClass(Class, formal=TRUE, where)

getClasses(where, inherits = missing(where))

findClass(Class, where, unique = "")

resetClass(Class, classDef, where)

sealClass(Class, where)

880 setClass

Arguments

Class character string name for the class. Other thansetClass , the functions will
usually take a class definition instead of the string (allowing the caller to identify
the class uniquely).

representation
the slots that the new class should have and/or other classes that this class ex-
tends. Usually a call to therepresentation function.

prototype an object (usually a list) providing the default data for the slots specified in the
representation.

contains what classes does this class extend? (These are calledsuperclassesin some
languages.) When these classes have slots, all their slots will be contained in the
new class as well.

where For setClass andremoveClass , the environment in which to store or re-
move the definition. Defaults to the top-level environment of the calling function
(the global environment for ordinary computations, but the environment or name
space of a package when loading that package).

For other functions,where defines where to do the search for the class defini-
tion, and the default is to search from the top-level environment or name space
of the caller to this function.

unique if findClass expects a unique location for the class,unique is a character
string explaining the purpose of the search (and is used in warning and error
messages). By default, multiple locations are possible and the function always
returns a list.

inherits in a call togetClasses , should the value returned include all parent envi-
ronments ofwhere , or that environment only? Defaults toTRUEif where is
omitted, and toFALSEotherwise.

validity if supplied, should be a validity-checking method for objects from this class (a
function that returnsTRUEif its argument is a valid object of this class and
one or more strings describing the failures otherwise). SeevalidObject for
details.

access Access list for the class. Saved in the definition, but not currently used.

version A version indicator for this definition. Saved in the definition, but not currently
used.

sealed If TRUE, the class definition will be sealed, so that another call tosetClass
will fail on this class name.

package An optional package name for the class. By default (and usually) the package
where the class definition is assigned will be used.

formal Should a formal definition be required?

classDef For removeClass , the optional class definition (but usually it’s better for
Class to be the class definition, and to omitclassDef).

Details

These are the functions that create and manipulate formal class definitions. Brief documentation is
provided below. See the references for an introduction and for more details.

setClass : Define Class to be an S-style class. The effect is to create an object, of class
"classRepEnvironment" , and store this (hidden) in the specified environment or

setClass 881

database. Objects can be created from the class (e.g., by callingnew), manipulated (e.g.,
by accessing the object’s slots), and methods may be defined including the class name in the
signature (seesetMethod).

removeClass : Remove the definition of this class, from the environmentwhere if this argu-
ment is supplied; if not,removeClass will search for a definition, starting in the top-level
environment of the call toremoveClass , and remove the (first) definition found.

isClass : Is this the name of a formally defined class? (Argumentformal is for compatibility
and is ignored.)

getClasses : The names of all the classes formally defined onwhere . If called with no ar-
gument, all the classes visible from the calling function (if called from the top-level, all the
classes in any of the environments on the search list). Theinherits argument can be used
to search a particular environment and all its parents, but usually the default setting is what
you want.

findClass : The list of environments or positions on the search list in which a class definition of
Class is found. If where is supplied, this is an environment (or name space) from which
the search takes place; otherwise the top-level environment of the caller is used. Ifunique
is supplied as a character string,findClass returns a single environment or position. By
default, it always returns a list. The calling function should select, say, the first element as a
position or environment for functions such asget .
If unique is supplied as a character string,findClass will warn if there is more than one
definition visible (using the string to identify the purpose of the call), and will generate an
error if no definition can be found.

resetClass : Reset the internal definition of a class. Causes the complete definition of the class
to be re-computed, from the representation and superclasses specified in the original call to
setClass .
This function is called when aspects of the class definition are changed. You would need to
call it explicitly if you changed the definition of a class that this class extends (but doing that
in the middle of a session is living dangerously, since it may invalidate existing objects).

sealClass : Seal the current definition of the specified class, to prevent further changes. It is
possible to seal a class in the call tosetClass , but sometimes further changes have to be
made (e.g., by calls tosetIs). If so, call sealClass after all the relevant changes have
been made.

Inheritance and Prototypes

Defining new classes that inherit from (‘extend’) other classes is a powerful technique, but has to be
used carefully and not over-used. Otherwise, you will often get unintended results when you start
to compute with objects from the new class.

As shown in the examples below, the simplest and safest form of inheritance is to start with an
explicit class, with some slots, that does not extend anything else. It only does what we say it does.

Then extensions will add some new slots and new behavior.

Another variety of extension starts with one of the built-in data types, perhaps with the intention of
modifying R’s standard behavior for that class. In this case, the new class inherits the built-in data
type as its ‘data’ part. See the"numWithId" example below.

When such a class definition is printed, the data part shows up as a pseudo-slot named.Data .

S3 Classes

Earlier, informal classes of objects (usually referred to as ‘S3’ classes) are used by many R func-
tions. It is natural to consider including them as the class for a slot in a formal class, or even as

882 setClass

a class to be extended by the new class. This isn’t prohibited but there are some disadvantages,
and if you do want to include S3 classes, they should be declared by including them in a call to
setOldClass . Here are some considerations:

• Using S3 classes somewhat defeats the purpose of defining a formal class: An important
advantage to your users is that a formal class provides guarantees of what the object contains
(minimally, the classes of the slots and therfore what data they contain; optionally, any other
requirements imposed by a validity method).
But there is no guarantee whatever about the data in an object from an S3 class. It’s entirely up
to the functions that create or modify such objects. If you want to provide guarantees to your
users, you will need a valdity method that explicitly checks the contents of S3-class objects.

• To get the minimal guarantee (that the object in a slot has, or extends, the class for the slot) you
should ensure that the S3 classes are known tobeS3 classes, with the possible inheritance. To
do this, include a call tosetOldClass for the S3 classes used.
Otherwise, the S3 class is undefined (and the code used bysetClass will issue a warning).
Slot assignments, for example, will not then check for possible errors.

• These caveats apply to S3 classes; that is, objects with a class assigned by some R function
but without a formal class definition. In contrast, the built-in data types (numeric , list ,
etc.) are generally fine as slots or forcontains= classes (see the previous section). These
data types don’t have formal slots, but the base code in the system essentially forces them to
contain the type of data they claim to have.
The data typesmatrix andarray are somewhat in between. They do not have an explicit
S3 class, but do have one or two attributes. There is no general problem in having these as
slots, but because there is no guarantee of a dimnames slot, they don’t work as formal classes.
Thets class is treated as a formal class, extending classvector .

Note

Certain slot names are not allowed in the current implementation, as they correspond toattributes
which are treated specially. These areclass , comment , dim , dimnames , names, row.names
andtsp .

References

TheR packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, theR software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently inR. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

setClassUnion , Methods , makeClassRepresentation

Examples

A simple class with two slots
setClass("track",

representation(x="numeric", y="numeric"))

setClassUnion 883

A class extending the previous, adding one more slot
setClass("trackCurve",

representation("track", smooth = "numeric"))
A class similar to "trackCurve", but with different structure
allowing matrices for the "y" and "smooth" slots
setClass("trackMultiCurve",

representation(x="numeric", y="matrix", smooth="matrix"),
prototype = list(x=numeric(), y=matrix(0,0,0),

smooth= matrix(0,0,0)))
##
Suppose we want trackMultiCurve to be like trackCurve when there's
only one column.
First, the wrong way.
try(setIs("trackMultiCurve", "trackCurve",

test = function(obj) {ncol(slot(obj, "y")) == 1}))

Why didn't that work? You can only override the slots "x", "y",
and "smooth" if you provide an explicit coerce function to correct
any inconsistencies:

setIs("trackMultiCurve", "trackCurve",
test = function(obj) {ncol(slot(obj, "y")) == 1},
coerce = function(obj) {

new("trackCurve",
x = slot(obj, "x"),
y = as.numeric(slot(obj,"y")),
smooth = as.numeric(slot(obj, "smooth")))

})

A class that extends the built-in data type "numeric"

setClass("numWithId", representation(id = "character"),
contains = "numeric")

new("numWithId", 1:3, id = "An Example")

setClassUnion Classes Defined as the Union of Other Classes

Description

A class may be defined as theunionof other classes; that is, as a virtual class defined as a superclass
of several other classes. Class unions are useful in method signatures or as slots in other classes,
when we want to allow one of several classes to be supplied.

Usage

setClassUnion(name, members, where)
isClassUnion(Class)

884 setClassUnion

Arguments

name the name for the new union class.

members the classes that should be members of this union.

where where to save the new class definition; by default, the environment of the pack-
age in which thesetClassUnion call appears, or the global environment if
called outside of the source of a package.

Class the name or definition of a class.

Details

The classes inmembers must be defined before creating the union. However, members can be
added later on to an existing union, as shown in the example below. Class unions can be members
of other class unions.

Class unions are the only way to create a class that is extended by a class whose definition is sealed
(for example, the basic datatypes or other classes defined in the base or methods package in R are
sealed). You cannot saysetIs("function", "other") unless"other" is a class union.
In general, asetIs call of this form changes the definition of the first class mentioned (adding
"other" to the list of superclasses contained in the definition of"function").

Class unions get around this by not modifying the first class definition, relying instead on storing
information in the subclasses slot of the class union. In order for this technique to work, the internal
computations for expressions such asextends (class1, class2) work differently for class
unions than for regular classes; specifically, they test whether any class is in common between the
superclasses ofclass1 and the subclasses ofclass2 .

The different behavior for class unions is made possible because the class definition object for
class unions has itself a special class,"ClassUnionRepresentation" , an extension of
"classRepresentation" (seeclassRepresentation-class).

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

Examples

a class for either numeric or logical data
setClassUnion("maybeNumber", c("numeric", "logical"))

use the union as the data part of another class
setClass("withId", representation("maybeNumber", id = "character"))

w1 <- new("withId", 1:10, id = "test 1")
w2 <- new("withId", sqrt(w1)%%1 < .01, id = "Perfect squares")

add class "complex" to the union "maybeNumber"
setIs("complex", "maybeNumber")

setGeneric 885

w3 <- new("withId", complex(real = 1:10, imaginary = sqrt(1:10)))

a class union containing the existing class union "OptionalFunction"
setClassUnion("maybeCode",

c("expression", "language", "OptionalFunction"))

is(quote(sqrt(1:10)), "maybeCode") ## TRUE

setGeneric Define a New Generic Function

Description

Create a new generic function of the given name, for which formal methods can then be defined.
Typically, an existing non-generic function becomes the default method, but there is much optional
control. See the details section.

Usage

setGeneric(name, def= , group=list(), valueClass=character(),
where= , package= , signature= , useAsDefault= ,
genericFunction=)

setGroupGeneric(name, def= , group=list(), valueClass=character(),
knownMembers=list(), package= , where=)

Arguments

name The character string name of the generic function. In the simplest and most
common case, a function of this name is already defined. The existing function
may be non-generic or already a generic (see the details).

def An optional function object, defining the generic. This argument is usually only
needed (and is then required) if there is no current function of this name. In
that case, the formal arguments and default values for the generic are taken from
def . You can also supply this argument if you want the generic function to do
something other than just dispatch methods (an advanced topic best left alone
unless you are sure you want it).

Note thatdef is not the default method; use argumentuseAsDefault if you
want to specify the default separately.

group Optionally, a character string giving the group of generic functions to which
this function belongs. Methods can be defined for the corresponding group
generic, and these will then define methods for this specific generic function,
if no method has been explicitly defined for the corresponding signature. See
the references for more discussion.

valueClass An optional character vector or unevaluated expression. The value returned by
the generic function must have (or extend) this class, or one of the classes; other-
wise, an error is generated. See the details section for supplying an expression.

886 setGeneric

package The name of the package with which this function is associated. Usually deter-
mined automatically (as the package containing the non-generic version if there
is one, or else the package where this generic is to be saved).

where Where to store the resulting initial methods definition, and possibly the generic
function; by default, stored into the top-level environment.

signature Optionally, the signature of arguments in the function that can be used in meth-
ods for this generic. By default, all arguments other than... can be used.
The signature argument can prohibit methods from using some arguments. The
argument, if provided, is a vector of formal argument names.

genericFunction
The object to be used as a (nonstandard) generic function definition. Supply this
explicitly only if you know what you are doing!

useAsDefault Override the usual choice of default argument (an existing non-generic function
or no default if there is no such function). ArgumentuseAsDefault can be
supplied, either as a function to use for the default, or as a logical value.FALSE
says not to have a default method at all, so that an error occurs if there is not an
explicit or inherited method for a call.TRUEsays to use the existing function as
default, unconditionally (hardly ever needed as an explicit argument). See the
section on details.

knownMembers (For setGroupGeneric only.) The names of functions that are known to be
members of this group. This information is used to reset cached definitions of
the member generics when information about the group generic is changed.

Details

ThesetGeneric function is called to initialize a generic function in an environment (usually the
global environment), as preparation for defining some methods for that function.

The simplest and most common situation is thatname is already an ordinary non-generic non-
primitive function, and you now want to turn this function into a generic. In this case you will most
often supply onlyname. The existing function becomes the default method, and the specialgroup
andvalueClass properties remain unspecified.

A second situation is that you want to create a new, generic function, unrelated to any exist-
ing function. In this case, you need to supply a skeleton of the function definition, to define
the arguments for the function. The body of a generic function is usually a standard form,
standardGeneric(name) wherename is the quoted name of the generic function.

When callingsetGeneric in this form, you would normally supply thedef argument as a
function of this form. If not told otherwise,setGeneric will try to find a non-generic ver-
sion of the function to use as a default. If you don’t want this to happen, supply the argument
useAsDefault . That argument can be the function you want to be the default method. You can
supply the argument asFALSE to force no default (i.e., to cause an error if there is not direct or
inherited method on call to the function).

The same no-default situation occurs if there is no non-generic form of the function, and
useAsDefault=FALSE . Remember, though, you can also just assign the default you want (even
one that generates an error) rather than relying on the prior situation.

You cannot (and never need to) create an explicit generic for the primitive functions in the base
package. Those which are generic are dispatched from C code for efficiency and the others cannot
be made generic. If you want to define a generic with the same name as a primitive but unrelated to
it, you must specify bothdef anduseAsDefault (as a function orFALSE).

As mentioned, the body of a generic function usually does nothing except for dispatching methods
by a call tostandardGeneric . Under some circumstances you might just want to do some

setGeneric 887

additional computation in the generic function itself. As long as your function eventually calls
standardGeneric that is permissible (though perhaps not a good idea, in that it makes the
behavior of your function different from the usual S model). If your explicit definition of the generic
function doesnot call standardGeneric you are in trouble, because none of the methods for
the function will ever be dispatched.

By default, the generic function can return any object. IfvalueClass is supplied, it should be
a vector of class names; the value returned by a method is then required to satisfyis(object,
Class) for one of the specified classes. An empty (i.e., zero length) vector of classes means any-
thing is allowed. Note that more complicated requirements on the result can be specified explicitly,
by defining a non-standard generic function.

The setGroupGeneric function behaves likesetGeneric except that it constructs a group
generic function, differing in two ways from an ordinary generic function. First, this function cannot
be called directly, and the body of the function created will contain a stop call with this information.
Second, the group generic function contains information about the known members of the group,
used to keep the members up to date when the group definition changes, through changes in the
search list or direct specification of methods, etc.

Value

ThesetGeneric function exists for its side effect: saving the generic function to allow methods
to be specified later. It returnsname.

Generic Functions and Primitive Functions

A number of the basicR functions are specially implemented as primitive functions, to be evaluated
directly in the underlying C code rather than by evaluating anR language definition. Most have
implicit generics (seeimplicitGeneric), and become generic as soon as methods (including
group methods) are defined on them. Others cannot be made generic.

Currently those with implicit generics are those which areinternal generic(which includes all mem-
bers of the group generics) and%*%.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

Methods for a discussion of other functions to specify and manipulate the methods of generic
functions.

Examples

A non-standard generic function. It insists that the methods
return a non-empty character vector (a stronger requirement than

888 setMethod

valueClass = "character" in the call to setGeneric)

setGeneric("authorNames",
function(text) {

value <- standardGeneric("authorNames")
if(!(is(value, "character") && any(nchar(value)>0)))

stop("authorNames methods must return non-empty strings")
value
})

An example of group generic methods, using the class
"track"; see the documentation of setClass for its definition

define a method for the Arith group

setMethod("Arith", c("track", "numeric"),
function(e1, e2) {

e1@y <- callGeneric(e1@y , e2)
e1

})

setMethod("Arith", c("numeric", "track"),
function(e1, e2) {

e2@y <- callGeneric(e1, e2@y)
e2

})

now arithmetic operators will dispatch methods:

t1 <- new("track", x=1:10, y=sort(stats::rnorm(10)))

t1 - 100
1/t1

setMethod Create and Save a Method

Description

Create and save a formal method for a given function and list of classes.

Usage

setMethod(f, signature=character(), definition,
where = topenv(parent.frame()),
valueClass = NULL, sealed = FALSE)

removeMethod(f, signature, where)

setMethod 889

Arguments

f A generic function or the character-string name of the function.

signature A match of formal argument names forf with the character-string names of
corresponding classes. This argument can also just be the vector of class names,
in which case the first name corresponds to the first formal argument, the next
to the second formal argument, etc.

definition A function definition, which will become the method called when the arguments
in a call tof match the classes insignature , directly or through inheritance.

where the database in which to store the definition of the method;

For removeMethod , the default is the location of the (first) instance of the
method for this signature.

valueClass If supplied, this argument asserts that the method will return a value of this class.
(At present this argument is stored but not explicitly used.)

sealed If TRUE, the method so defined cannot be redefined by another call to
setMethod (although it can be removed and then re-assigned). Note that this
argument is an extension to the definition ofsetMethod in the reference.

Details

R methods for a particular generic function are stored in an object of classMethodsList . The
effect of callingsetMethod is to storedefinition in a MethodsList object on database
where . If f doesn’t exist as a generic function, but there is an ordinary function of the same
name and the same formal arguments, a new generic function is created, and the previous non-
generic version off becomes the default method. This is equivalent to the programmer calling
setGeneric for the same function; it’s better practice to do the call explicitly, since it shows that
you intend to turnf into a generic function.

Methods are stored in a hierarchical structure: seeMethodsfor how the objects are used to select a
method, andMethodsList for functions that manipulate the objects.

The class names in the signature can be any formal class, plus predefined basic classes such as
"numeric" , "character" , and"matrix" . Two additional special class names can appear:
"ANY" , meaning that this argument can have any class at all; and"missing" , meaning that
this argumentmust notappear in the call in order to match this signature. Don’t confuse these
two: if an argument isn’t mentioned in a signature, it corresponds implicitly to class"ANY" , not
to "missing" . See the example below. Old-style (‘S3’) classes can also be used, if you need
compatibility with these, but you should definitely declare these classes by callingsetOldClass
if you want S3-style inheritance to work.

While f can correspond to methods defined on several packages or environments, the underlying
model is that these together make up the definition for a single generic function. When R proceeds
to select and evaluate methods forf , the methods on the current search list are merged to form a
single generic function and associated methods list. Whenf is called and a method is dispatched,
the evaluator matches the classes of the actual arguments to the signatures of the available methods.
When a match is found, the body of the corresponding method is evaluated, but without rematching
the arguments tof . Aside from not rematching the arguments, the computation proceeds as if the
call had been to the method. In particular, the lexical scope of the method is used.

Method definitions can have default expressions for arguments. If those arguments are then missing
in the call to the generic function, the default expression in the method is used. If the method
definition has no default for the argument, then the expression (if any) supplied in the definition of
the generic function itself is used. But note that this expression will be evaluated in the environment
defined by the method.

890 setMethod

It is possible to have some differences between the formal arguments to a method supplied to
setMethod and those of the generic. Roughly, if the generic has . . . as one of its arguments,
then the method may have extra formal arguments, which will be matched from the arguments
matching . . . in the call tof . (What actually happens is that a local function is created inside the
method, with its formal arguments, and the method is re-defined to call that local function.)

Method dispatch tries to match the class of the actual arguments in a call to the available methods
collected forf . Roughly, for each formal argument in turn, we look for the best match (the exact
same class or the nearest element in the value ofextends for that class) for which there is any
possible method matching the remaining arguments. SeeMethodsfor more details.

Value

These functions exist for their side-effect, in setting or removing a method in the object defining
methods for the specified generic.

The value returned byremoveMethod is TRUEif a method was found to be removed.

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details and ongoing development, see?Methods
and the pointers from that documentation..

See Also

method.skeleton, which is the recommended way to generate a skeleton of the call tosetMethod ,
with the correct formal arguments and other details.

Methods, MethodsList for details of the implementation

Examples

require(graphics)
methods for plotting track objects (see the example for setClass)
##
First, with only one object as argument:
setMethod("plot", signature(x="track", y="missing"),

function(x, y, ...) plot(slot(x, "x"), slot(x, "y"), ...)
)
Second, plot the data from the track on the y-axis against anything
as the x data.
setMethod("plot", signature(y = "track"),

function(x, y, ...) plot(x, slot(y, "y"), ...)
)
and similarly with the track on the x-axis (using the short form of
specification for signatures)
setMethod("plot", "track",

function(x, y, ...) plot(slot(x, "y"), y, ...)
)

setOldClass 891

t1 <- new("track", x=1:20, y=(1:20)^2)
tc1 <- new("trackCurve", t1)
slot(tc1, "smooth") <- smooth.spline(slot(tc1, "x"), slot(tc1, "y"))$y #$
plot(t1)
plot(qnorm(ppoints(20)), t1)
An example of inherited methods, and of conforming method arguments
(note the dotCurve argument in the method, which will be pulled out
of ... in the generic.
setMethod("plot", c("trackCurve", "missing"),
function(x, y, dotCurve = FALSE, ...) {

plot(as(x, "track"))
if(length(slot(x, "smooth") > 0))

lines(slot(x, "x"), slot(x, "smooth"),
lty = if(dotCurve) 2 else 1)

}
)
the plot of tc1 alone has an added curve; other uses of tc1
are treated as if it were a "track" object.
plot(tc1, dotCurve = TRUE)
plot(qnorm(ppoints(20)), tc1)

defining methods for a special function.
Although "[" and "length" are not ordinary functions
methods can be defined for them.
setMethod("[", "track",

function(x, i, j, ..., drop) {
x@x <- x@x[i]; x@y <- x@y[i]
x

})
plot(t1[1:15])

setMethod("length", "track", function(x)length(x@y))
length(t1)

methods can be defined for missing arguments as well
setGeneric("summary") ## make the function into a generic

A method for summary()
The method definition can include the arguments, but
if they're omitted, class "missing" is assumed.

setMethod("summary", "missing", function() "<No Object>")

setOldClass Specify Names for Old-Style Classes

Description

Register an old-style (a.k.a. ‘S3’) class as a formally defined class. TheClasses argument is the
character vector used as theclass attribute; in particular, if there is more than one string, old-
style class inheritance is mimicked. Registering viasetOldClass allows S3 classes to appear in
method signatures, and as a slot in an S4 class if a prototype is included.

892 setOldClass

Usage

setOldClass(Classes, prototype, where, test = FALSE)

Arguments

Classes A character vector, giving the names for old-style classes, as they would appear
on the right side of an assignment of theclass attribute.

prototype An optional object to use as the prototype. This should be provided as the default
S3 object for the class, if you plan to use the class as a slot in an S4 class. See
the details section.

where Where to store the class definitions, the global or top-level environment by de-
fault. (When either function is called in the source for a package, the class
definitions will be included in the package’s environment by default.)

test flag, if TRUE, inheritance must be tested explicitly for each object, needed if the
S3 class can have a different set of class strings, with the same first string. See
the details below.

Details

Each of the names will be defined as an S4 class, extending the remaining classes inClasses ,
and the classoldClass , which is the ‘root’ of all old-style classes. S3 classes have no formal
definition, and therefore no formally defined slots. If aprototype argument is supplied in the
call to setOldClass() , objects from the class can be generated. If the S3 class is to be a slot
in an S4 class, providing a prototype is recommended. Otherwise, the class will be created as a
virtual S4 class; method dispatch will still work and inheritance will follow the S3 class hierarchy,
but actions that require a prototype object from the class will not. For example, using the class as
a slot in an S4 class definition will set the corresponding slot toNULL in the prototype for the S4
class.

Providing a prototype allows the functionnew() to be called for this class, but optional arguments
in this call are not meaningful, since the class has no formal slots. Extending an S3 class with an
S4 class is formally legal, but discouraged. Since the S4 subclass will have a single character string
in its class() , S3 inheritance will not work. Also, there is no safe way for a general object from
the S3 class to be inserted when an object is generated from the subclass.

See Methods for the details of method dispatch and inheritance. See the sectionRegister
or Convert? for comments on the alternative of defining ‘real’ S4 classes rather than using
setOldClass .

Some S3 classes cannot be represented as an ordinary combination of S4 classes and superclasses,
because objects from the S3 class can have a variable set of strings in the class. It is still possible
to register such classes as S4 classes, but now the inheritance has to be verified for each object, and
you must callsetOldClass with argumenttest=TRUE once for each superclass.

For example, ordered factorsalwayshave the S3 classc("ordered", "factor") . This is
proper behavior, and maps simply into two S4 classes, with"ordered" extending"factor" .

But objects whose class attribute has"POSIXt" as the first string may have either (or neither) of
"POSIXct" or "POSIXlt" as the second string. This behavior can be mapped into S4 classes
but now to evaluateis(x, "POSIXlt") , for example, requires checking the S3 class attribute
on each object. Supplying thetest=TRUE argument tosetOldClass causes an explicit test to
be included in the class definitions. It’s never wrong to have this test, but since it adds significant
overhead to methods defined for the inherited classes, you should only supply this argument if it’s
known that object-specific tests are needed.

setOldClass 893

The list .OldClassesList contains the old-style classes that are defined by the methods pack-
age. Each element of the list is an old-style list, with multiple character strings if inheritance is
included. Each element of the list was passed tosetOldClass when creating themethodspack-
age; therefore, these classes can be used insetMethod calls, with the inheritance as implied by
the list.

Register or Convert?

A call to setOldClass creates formal classes corresponding to S3 classes, allows these to be
used as slots in other classes or in a signature insetMethod , and mimics the S3 inheritance.

Supplying theprototype and optionally thegenerator arguments allows the S4 class created
to be non-virtual, making it a candidate to be a slot in S4 class definitions and to be extended by
S4 classes. The class still does not have formally defined slots. Because R implements slots as
attributes, an S3 class that uses attributes (factor , for example) can in principle be defined as an
S4 class with slots. However, a class such aslm that uses components of a list in a similar role
cannot have formal slots. The slots would not be interpreted by S3 code written forlm objects.

If your class does in fact have a consistent set of attributes, so that every object from the class has
the same structure, you may prefer to take some extra time to write down a specific definition in
a call tosetClass to convert the class to a fully functional formal class. On the other hand, if
the actual contents of the class vary from one object to another, such a definition will not generally
be possible. You should still register the class viasetOldClass , unless its class attribute is
hopelessly unpredictable.

An S3 class has consistent structure if each object has the same set of attributes, both the names
and the classes of the attributes being the same for every object in the class. In practice, you can
convert classes that are slightly less well behaved. If a few attributes appear in some but not all
objects, you can include these optional attributes as slots thatalwaysappear in the objects, if you
can supply a default value that is equivalent to the attribute being missing. SometimesNULLcan be
that value: A slot (but not an attribute) can have the valueNULL. If version , for example, was an
optional attribute, the old testis.null(attr(x,"version") for a missing version attribute
could turn intois.null(x@version) for the formal class.

The requirement that slots have a fixed class can be satisfied indirectly as well. Slotscanbe specified
with class"ANY" , allowing an arbitrary object. However, this eliminates an important benefit of
formal class definitions; namely, automatic validation of objects assigned to a slot. If just a few
different classes are possible, consider usingsetClassUnion to define valid objects for a slot.

See Also

setClass , setMethod

Examples

require(stats)
setOldClass(c("mlm", "lm"))
setGeneric("dfResidual", function(model)standardGeneric("dfResidual"))
setMethod("dfResidual", "lm", function(model)model$df.residual)

dfResidual will work on mlm objects as well as lm objects
myData <- data.frame(time = 1:10, y = (1:10)^.5)
myLm <- lm(cbind(y, y^3) ~ time, myData)

894 show

rm(myData, myLm)
removeGeneric("dfResidual")
Not run: setOldClass("data.frame", prototoype = data.frame())

End(Not run)

show Show an Object

Description

Display the object, by printing, plotting or whatever suits its class. This function exists to be
specialized by methods. The default method callsshowDefault .

Formal methods forshow will usually be invoked for automatic printing (see the details).

Usage

show(object)

Arguments

object Any R object

Details

Themethodspackage overrides the base definition ofprint.default to arrange for automatic
printing to honor methods for the functionshow. This does not quite manage to override old-
style printing methods, since the automatic printing in the evaluator will look first for the old-style
method.

If you have a classmyClass and want to define a method forshow, all will be well unless there
is already a function namedprint.myClass . In that case, to get your method dispatched for
automatic printing, it will have to be a method forprint . A slight cheat is to override the function
print.myClass yourself, and then call that function also in the method forshow with signature
"myClass" .

Value

show returns an invisibleNULL.

See Also

showMethods prints all the methods for one or more functions;showMlist prints individual
methods lists;showClass prints class definitions. Neither of the latter two normally needs to be
called directly.

showMethods 895

Examples

following the example shown in the setMethod documentation ...
setClass("track",

representation(x="numeric", y="numeric"))
setClass("trackCurve",

representation("track", smooth = "numeric"))

t1 <- new("track", x=1:20, y=(1:20)^2)

tc1 <- new("trackCurve", t1)

setMethod("show", "track",
function(object)print(rbind(x = object@x, y=object@y))

)
The method will now be used for automatic printing of t1

t1

Not run:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 2 3 4 5 6 7 8 9 10 11 12
y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
x 13 14 15 16 17 18 19 20
y 169 196 225 256 289 324 361 400
End(Not run)
and also for tc1, an object of a class that extends "track"
tc1

Not run:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 2 3 4 5 6 7 8 9 10 11 12
y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
x 13 14 15 16 17 18 19 20
y 169 196 225 256 289 324 361 400
End(Not run)

showMethods Show all the methods for the specified function(s)

Description

Show a summary of the methods for one or more generic functions, possibly restricted to those
involving specified classes.

Usage

showMethods(f = character(), where = topenv(parent.frame()),
classes = NULL, includeDefs = FALSE,
inherited = !includeDefs,
showEmpty, printTo = stdout())

896 showMethods

Arguments

f one or more function names. If omitted, all functions will be shown that match
the other arguments.

where Used only whenf is missing, or length 0, to determine which generic func-
tions to examine. Ifwhere is supplied, only the generic functions returned by
getGenerics(where) are eligible for printing. Ifwhere is also missing,
all the cached generic functions are considered.

classes If argumentclasses is supplied, it is a vector of class names that restricts
the displayed results to those methods whose signatures include one or more of
those classes.

includeDefs If includeDefs is TRUE, include the definitions of the individual methods in
the printout.

inherited logical indicating if methods that have been found by inheritance, so far in
the session, will be included and marked as inherited. Note that an inher-
ited method will not usually appear until it has been used in this session. See
selectMethod if you want to know what method is dispatched for particular
classes of arguments.

showEmpty logical indicating whether methods with no defined methods matching the other
criteria should be shown at all. By default,TRUEif and only if argumentf is
not missing.

printTo The connection on which the printed information will be written; by default,
standard output. IfprintTo is FALSE, the output will be collected as a char-
acter vector and returned as the value of the call toshowMethod . Seeshow.

Details

The name and package of the generic are followed by the list of signatures for which methods
are currently defined, according to the criteria determined by the various arguments. Note that the
package refers to the source of the generic function. Individual methods for that generic can come
from other packages as well.

Value

If printTo is FALSE, the character vector that would have been printed is returned; otherwise the
value is the connection or filename, viainvisible .

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. SeeMethods and references from there.

See Also

setMethod , andGenericFunctions for other tools involving methods;selectMethod
will show you the method dispatched for a particular function and signature of classes for the
arguments.

signature-class 897

Examples

require(graphics)

Assuming the methods for plot
are set up as in the example of help(setMethod),
print (without definitions) the methods that involve class "track":
showMethods("plot", classes = "track")
Not run:
Function "plot":
x = ANY, y = track
x = track, y = missing
x = track, y = ANY
End(Not run)

not.there <- !any("package:stats4" == search())
if(not.there) library(stats4)
showMethods(classes = "mle")
if(not.there) detach("package:stats4")

signature-class Class "signature" For Method Definitions

Description

This class represents the mapping of some of the formal arguments of a function onto the names of
some classes. It is used as one of two slots in theMethodDefinition-class .

Objects from the Class

Objects can be created by calls of the formnew("signature", functionDef, ...) . The
functionDef argument, if it is supplied as a function object, defines the formal names. The other
arguments define the classes.

Slots

.Data : Object of class"character" the classes.

names: Object of class"character" the corresponding argument names.

Extends

Class"character" , from data part. Class"vector" , by class "character".

Methods

initialize signature(object = "signature") : see the discussion of objects from the
class, above.

See Also

MethodDefinition-class for the use of this class

898 slot

slot The Slots in an Object from a Formal Class

Description

These functions return or set information about the individual slots in an object.

Usage

object@name
object@name <- value

slot(object, name)
slot(object, name, check = TRUE) <- value

slotNames(x)

Arguments

object An object from a formally defined class.

name The character-string name of the slot. The name must be a valid slot name: see
Details below.

value A new value for the named slot. The value must be valid for this slot in this
object’s class.

x Either the name of a class or an object from that class. Print
getClass (class) to see the full description of the slots.

check If TRUE, check the assigned value for validity as the value of this slot. You
should never set this toFALSE in normal use, since the result can create invalid
objects.

Details

The"@" operator and theslot function extract or replace the formally defined slots for the object.
The operator takes a fixed name, which can be unquoted if it is syntactically a name in the language.
A slot name can be any non-empty string, but if the name is not made up of letters, numbers, and. ,
it needs to be quoted (by backticks or single or double quotes).

In the case of theslot function, name can be any expression that evaluates to a valid slot in
the class definition. Generally, the only reason to use the functional form rather than the simpler
operator isbecausethe slot name has to be computed.

The definition of the class contains the names of all slots directly and indirectly defined. Each slot
has a name and an associated class. Extracting a slot returns an object from that class. Setting a slot
first coerces the value to the specified slot and then stores it.

Unlike attributes, slots are not partially matched, and asking for (or trying to set) a slot with an
invalid name for that class generates an error.

Note that currently,slotNames() behaves particularly for class representation objects – this is
considered bogus and likely to be changed.

Currently the@extraction operator andslot function do no checking, neither thatobject has
a formal class nor thatname is a valid slot name for the class. (They will extract the attribute
of the given name if it exists from anyR object.) The replacement forms do check (at least if
check=TRUE).

StructureClasses 899

References

The R packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

@, Classes , Methods , getClass

Examples

setClass("track", representation(x="numeric", y="numeric"))
myTrack <- new("track", x = -4:4, y = exp(-4:4))
slot(myTrack, "x")
slot(myTrack, "y") <- log(slot(myTrack, "y"))
utils::str(myTrack)

slotNames("track") # is the same as
slotNames(myTrack)

StructureClasses Classes Corresponding to Basic Structures

Description

The virtual classstructure and classes that extend it are formal classes analogous to S language
structures such as arrays and time-series.

Usage

The following class names can appear in method signatures,
as the class in as() and is() expressions, and, except for
the classes commented as VIRTUAL, in calls to new()

"matrix"
"array"
"ts"

"structure" ## VIRTUAL

900 TraceClasses

Objects from the Classes

Objects can be created by calls of the formnew(Class, ...) , whereClass is the quoted
name of the specific class (e.g.,"matrix"), and the other arguments, if any, are interpreted as
arguments to the corresponding function, e.g., to functionmatrix() . There is no particular ad-
vantage over calling those functions directly, unless you are writing software designed to work for
multiple classes, perhaps with the class name and the arguments passed in.

Extends

The specific classes all extend class"structure" , directly, and class"vector" , by class
"structure" .

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the correspond-
ing basic function, for example,as(x, "matrix") callsas.matrix(x) .

Ops, Math Group methods (see, e.g.,S4groupGeneric) are defined for combinations of struc-
tures and vectors (including special cases for array and matrix), implementing the concept of
vector structures as in the reference.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Examples

showClass("structure")

explore a bit :
showClass("ts")
(ts0 <- new("ts"))
str(ts0)

showMethods("Ops") # six methods from these classes, but maybe many more

TraceClasses Classes Used Internally to Control Tracing

Description

The classes described here are used by the R functiontrace to create versions of functions and
methods including browser calls, etc., and also tountrace the same objects.

Usage

Objects from the following classes are generated
by calling trace() on an object from the corresponding
class without the "WithTrace" in the name.

"functionWithTrace"
"MethodDefinitionWithTrace"

validObject 901

"MethodWithNextWithTrace"
"genericFunctionWithTrace"
"groupGenericFunctionWithTrace"

the following is a virtual class extended by each of the
classes above

"traceable"

Objects from the Class

Objects will be created from these classes by calls totrace . (There is aninitialize method
for class"traceable" , but you are unlikely to need it directly.)

Slots

.Data : The data part, which will be"function" for class"functionWithTrace" , and
similarly for the other classes.

original : Object of the original class; e.g., "function" for class
"functionWithTrace" .

Extends

Each of the classes extends the corresponding untraced class, from the data part; e.g.,
"functionWithTrace" extends "function" . Each of the specific classes extends
"traceable" , directly, and class"VIRTUAL" , by class"traceable" .

Methods

The point of the specific classes is that objects generated from them, by functiontrace() , remain
callable or dispatchable, in addition to their new trace information.

See Also

functiontrace

validObject Test the Validity of an Object

Description

The validity of object related to its class definition is tested. If the object is valid,TRUEis
returned; otherwise, either a vector of strings describing validity failures is returned, or an error
is generated (according to whethertest is TRUE). Optionally, all slots in the object can also be
validated.

The functionsetValidity sets the validity method of a class (but more normally, this method
will be supplied as thevalidity argument tosetClass). The method should be a function of
one object that returnsTRUEor a description of the non-validity.

902 validObject

Usage

validObject(object, test = FALSE, complete = FALSE)

setValidity(Class, method, where = topenv(parent.frame()))

Arguments

object any object, but not much will happen unless the object’s class has a formal defi-
nition.

test logical; if TRUEand validity fails, the function returns a vector of strings de-
scribing the problems. Iftest is FALSE(the default) validity failure generates
an error.

complete logical; if TRUE, validity methods will be applied recursively to any of the slots
that have such methods.

Class the name or class definition of the class whose validity method is to be set.

method a validity method; that is, eitherNULLor a function of one argument (object).
Like validObject , the function should returnTRUEif the object is valid,
and one or more descriptive strings if any problems are found. Unlike
validObject , it should never generate an error.

where the modified class definition will be stored in this environment.

Note that validity methods do not have to check validity of superclasses: the logic of
validObject ensures these tests are done once only. As a consequence, if one validity method
wants to use another, it should extract and call the method from the other definition of the other
class by callinggetValidity : it shouldnot call validObject .

Details

Validity testing takes place ‘bottom up’: Optionally, ifcomplete=TRUE , the validity of the ob-
ject’s slots, if any, is tested. Then, in all cases, for each of the classes that this class extends (the
‘superclasses’), the explicit validity method of that class is called, if one exists. Finally, the validity
method ofobject ’s class is called, if there is one.

Testing generally stops at the first stage of finding an error, except that all the slots will be examined
even if a slot has failed its validity test.

The standard validity test (withcomplete=FALSE) is applied when an object is created vianew
with any optional arguments (without the extra arguments the result is just the class prototype
object).

An attempt is made to fix up the definition of a validity method if its argument is notobject .

Value

validObject returnsTRUEif the object is valid. Otherwise a vector of strings describing prob-
lems found, except that iftest is FALSE, validity failure generates an error, with the correspond-
ing strings in the error message.

References

TheR packagemethodsimplements, with a few exceptions, the programming interface for classes
and methods in the bookProgramming with Data(John M. Chambers, Springer, 1998), in particular
sections 1.6, 2.7, 2.8, and chapters 7 and 8.

validObject 903

While the programming interface for themethodspackage follows the reference, the R software
is an original implementation, so details in the reference that reflect the S4 implementation may
appear differently in R. Also, there are extensions to the programming interface developed more
recently than the reference. For a discussion of details see?Methods and the links from that
documentation.

See Also

setClass .

Examples

setClass("track",
representation(x="numeric", y = "numeric"))

t1 <- new("track", x=1:10, y=sort(stats::rnorm(10)))
A valid "track" object has the same number of x, y values
validTrackObject <- function(object) {

if(length(object@x) == length(object@y)) TRUE
else paste("Unequal x,y lengths: ", length(object@x), ", ",

length(object@y), sep="")
}
assign the function as the validity method for the class
setValidity("track", validTrackObject)
t1 should be a valid "track" object
validObject(t1)
Now we do something bad
t2 <- t1
t2@x <- 1:20
This should generate an error
Not run: try(validObject(t2))

setClass("trackCurve",
representation("track", smooth = "numeric"))

all superclass validity methods are used when validObject
is called from initialize() with arguments, so this fails
Not run: trynew("trackCurve", t2)

setClass("twoTrack", representation(tr1 = "track", tr2 ="track"))

validity tests are not applied recursively by default,
so this object is created (invalidly)
tT <- new("twoTrack", tr2 = t2)

A stricter test detects the problem
Not run: try(validObject(tT, complete = TRUE))

904 validObject

Chapter 7

The stats package

stats-package The R Stats Package

Description

R statistical functions

Details

This package contains functions for statistical calculations and random number generation.

For a complete list of functions, uselibrary(help="stats") .

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team〈R-core@r-project.org〉

.checkMFClasses Functions to Check the Type of Variables passed to Model Frames

Description

.checkMFClasses checks if the variables used in a predict method agree in type with those used
for fitting.

.MFclass categorizes variables for this purpose.

Usage

.checkMFClasses(cl, m, ordNotOK = FALSE)

.MFclass(x)

.getXlevels(Terms, m)

905

906 acf

Arguments

cl a character vector of class descriptions to match.

m a model frame.

x anyR object.

ordNotOK logical: are ordered factors different?

Terms a terms object.

Details

For applications involvingmodel.matrix such as linear models we do not need to differentiate
between ordered factors and factors as although these affect the coding, the coding used in the fit
is already recorded and imposed during prediction. However, other applications may treat ordered
factors differently:rpart does, for example.

Value

.MFclass returns a character string, one of"logical" , "ordered" , "factor" ,
"numeric" , "nmatrix.*" (a numeric matrix with a number of columns appended) or
"other" .

.getXlevels returns a named character vector, orNULL.

acf Auto- and Cross- Covariance and -Correlation Function Estimation

Description

The functionacf computes (and by default plots) estimates of the autocovariance or autocorrela-
tion function. Functionpacf is the function used for the partial autocorrelations. Functionccf
computes the cross-correlation or cross-covariance of two univariate series.

Usage

acf(x, lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE, na.action = na.fail, demean = TRUE, ...)

pacf(x, lag.max, plot, na.action, ...)

Default S3 method:
pacf(x, lag.max = NULL, plot = TRUE, na.action = na.fail,

...)

ccf(x, y, lag.max = NULL, type = c("correlation", "covariance"),
plot = TRUE, na.action = na.fail, ...)

S3 method for class 'acf':
x[i, j]

acf 907

Arguments

x, y a univariate or multivariate (notccf) numeric time series object or a numeric
vector or matrix, or an"acf" object.

lag.max maximum lag at which to calculate the acf. Default is10 log10(N/m) whereN
is the number of observations andm the number of series. Will be automatically
limited to one less than the number of observations in the series.

type character string giving the type of acf to be computed. Allowed values are
"correlation" (the default),"covariance" or "partial" .

plot logical. If TRUE(the default) the acf is plotted.

na.action function to be called to handle missing values.na.pass can be used.

demean logical. Should the covariances be about the sample means?

... further arguments to be passed toplot.acf .

i a set of lags (time differences) to retain.

j a set of series (names or numbers) to retain.

Details

For type = "correlation" and"covariance" , the estimates are based on the sample co-
variance. (The lag 0 autocorrelation is fixed at 1 by convention.)

By default, no missing values are allowed. If thena.action function passes through missing
values (asna.pass does), the covariances are computed from the complete cases. This means
that the estimate computed may well not be a valid autocorrelation sequence, and may contain
missing values. Missing values are not allowed when computing the PACF of a multivariate time
series.

The partial correlation coefficient is estimated by fitting autoregressive models of successively
higher orders up tolag.max .

The generic functionplot has a method for objects of class"acf" .

The lag is returned and plotted in units of time, and not numbers of observations.

There areprint and subsetting methods for objects of class"acf" .

Value

An object of class"acf" , which is a list with the following elements:

lag A three dimensional array containing the lags at which the acf is estimated.

acf An array with the same dimensions aslag containing the estimated acf.

type The type of correlation (same as thetype argument).

n.used The number of observations in the time series.

series The name of the seriesx .

snames The series names for a multivariate time series.

The lagk value returned byccf(x,y) estimates the correlation betweenx[t+k] andy[t] .

The result is returned invisibly ifplot is TRUE.

Author(s)

Original: Paul Gilbert, Martyn Plummer. Extensive modifications and univariate case ofpacf by
B.D. Ripley.

908 acf2AR

See Also

plot.acf , ARMAacf for the exact autocorrelations of a given ARMA process.

Examples

require(graphics)

Examples from Venables & Ripley
acf(lh)
acf(lh, type = "covariance")
pacf(lh)

acf(ldeaths)
acf(ldeaths, ci.type = "ma")
acf(ts.union(mdeaths, fdeaths))
ccf(mdeaths, fdeaths, ylab="cross-correlation")
(just the cross-correlations)

presidents # contains missing values
acf(presidents, na.action = na.pass)
pacf(presidents, na.action = na.pass)

acf2AR Compute an AR Process Exactly Fitting an ACF

Description

Compute an AR process exactly fitting an autocorrelation function.

Usage

acf2AR(acf)

Arguments

acf An autocorrelation or autocovariance sequence.

Value

A matrix, with one row for the computed AR(p) coefficients for1 <= p <= length(acf) .

See Also

ARMAacf, ar.yw which does this from an empirical ACF.

Examples

(Acf <- ARMAacf(c(0.6, 0.3, -0.2)))
acf2AR(Acf)

add1 909

add1 Add or Drop All Possible Single Terms to a Model

Description

Compute all the single terms in thescope argument that can be added to or dropped from the
model, fit those models and compute a table of the changes in fit.

Usage

add1(object, scope, ...)

Default S3 method:
add1(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

S3 method for class 'lm':
add1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)

S3 method for class 'glm':
add1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)

drop1(object, scope, ...)

Default S3 method:
drop1(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

S3 method for class 'lm':
drop1(object, scope, scale = 0, all.cols = TRUE,

test = c("none", "Chisq", "F"), k = 2, ...)

S3 method for class 'glm':
drop1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

k = 2, ...)

Arguments

object a fitted model object.

scope a formula giving the terms to be considered for adding or dropping.

scale an estimate of the residual mean square to be used in computingCp. Ignored if
0 or NULL.

test should the results include a test statistic relative to the original model? The F
test is only appropriate forlm andaov models or perhaps forglm fits with esti-
mated dispersion. Theχ2 test can be an exact test (lm models with known scale)
or a likelihood-ratio test or a test of the reduction in scaled deviance depending
on the method.

k the penalty constant in AIC /Cp.

910 add1

trace if TRUE, print out progress reports.

x a model matrix containing columns for the fitted model and all terms in the upper
scope. Useful ifadd1 is to be called repeatedly.Warning: no checks are done
on its validity.

all.cols (Provided for compatibility with S.) Logical to specify whether all columns of
the design matrix should be used. IfFALSE then non-estimable columns are
dropped, but the result is not usually statistically meaningful.

... further arguments passed to or from other methods.

Details

For drop1 methods, a missingscope is taken to be all terms in the model. The hierarchy is
respected when considering terms to be added or dropped: all main effects contained in a second-
order interaction must remain, and so on.

In ascope formula. means ‘what is already there’.

The methods forlm andglm are more efficient in that they do not recompute the model matrix and
call thefit methods directly.

The default output table gives AIC, defined as minus twice log likelihood plus2pwherep is the rank
of the model (the number of effective parameters). This is only defined up to an additive constant
(like log-likelihoods). For linear Gaussian models with fixed scale, the constant is chosen to give
Mallows’ Cp, RSS/scale + 2p − n. WhereCp is used, the column is labelled asCp rather than
AIC .

The F tests for the"glm" methods are based on analysis of deviance tests, so if the dispersion is
estimated it is based on the residual deviance, unlike the F tests ofanova.glm .

Value

An object of class"anova" summarizing the differences in fit between the models.

Warning

The model fitting must apply the models to the same dataset. Most methods will attempt to use a
subset of the data with no missing values for any of the variables ifna.action=na.omit , but
this may give biased results. Only use these functions with data containing missing values with
great care.

Note

These are not fully equivalent to the functions in S. There is nokeep argument, and the methods
used are not quite so computationally efficient.

Their authors’ definitions of Mallows’Cp and Akaike’s AIC are used, not those of the authors of
the models chapter of S.

Author(s)

The design was inspired by the S functions of the same names described in Chambers (1992).

References

Chambers, J. M. (1992)Linear models.Chapter 4 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

addmargins 911

See Also

step , aov , lm , extractAIC , anova

Examples

require(graphics); require(utils)
example(step)#-> swiss
add1(lm1, ~ I(Education^2) + .^2)
drop1(lm1, test="F") # So called 'type II' anova

example(glm)
drop1(glm.D93, test="Chisq")
drop1(glm.D93, test="F")

addmargins Puts Arbitrary Margins on Multidimensional Tables or Arrays

Description

For a given table one can specify which of the classifying factors to expand by one or more levels to
hold margins to be calculated. One may for example form sums and means over the first dimension
and medians over the second. The resulting table will then have two extra levels for the first dimen-
sion and one extra level for the second. The default is to sum over all margins in the table. Other
possibilities may give results that depend on the order in which the margins are computed. This is
flagged in the printed output from the function.

Usage

addmargins(A, margin = 1:length(dim(A)), FUN = sum, quiet = FALSE)

Arguments

A table or array. The function uses the presence of the"dim" and"dimnames"
attributes ofA.

margin vector of dimensions over which to form margins. Margins are formed in the
order in which dimensions are specified inmargin .

FUN list of the same length asmargin , each element of the list being either a func-
tion or a list of functions. Names of the list elements will appear as levels in
dimnames of the result. Unnamed list elements will have names constructed:
the name of a function or a constructed name based on the position in the table.

quiet logical which suppresses the message telling the order in which the margins
were computed.

Details

If the functions used to form margins are not commutative the result depends on the order in which
margins are computed. Annotation of margins is done via naming theFUNlist.

912 addmargins

Value

A table or array with the same number of dimensions asA, but with extra levels of the dimensions
mentioned inmargin . The number of levels added to each dimension is the length of the entries
in FUN. A message with the order of computation of margins is printed.

Author(s)

Bendix Carstensen, Steno Diabetes Center & Department of Biostatistics, University of Copen-
hagen,http://www.biostat.ku.dk/~bxc , autumn 2003. Margin naming enhanced by
Duncan Murdoch.

See Also

table , ftable , margin.table .

Examples

Aye <- sample(c("Yes", "Si", "Oui"), 177, replace = TRUE)
Bee <- sample(c("Hum", "Buzz"), 177, replace = TRUE)
Sea <- sample(c("White", "Black", "Red", "Dead"), 177, replace = TRUE)
(A <- table(Aye, Bee, Sea))
addmargins(A)

ftable(A)
ftable(addmargins(A))

Non-commutative functions - note differences between resulting tables:
ftable(addmargins(A, c(1,3),

FUN = list(Sum = sum, list(Min = min, Max = max))))
ftable(addmargins(A, c(3,1),

FUN = list(list(Min = min, Max = max), Sum = sum)))

Weird function needed to return the N when computing percentages
sqsm <- function(x) sum(x)^2/100
B <- table(Sea, Bee)
round(sweep(addmargins(B, 1, list(list(All = sum, N = sqsm))), 2,

apply(B, 2, sum)/100, "/"), 1)
round(sweep(addmargins(B, 2, list(list(All = sum, N = sqsm))), 1,

apply(B, 1, sum)/100, "/"), 1)

A total over Bee requires formation of the Bee-margin first:
mB <- addmargins(B, 2, FUN = list(list(Total = sum)))
round(ftable(sweep(addmargins(mB, 1, list(list(All = sum, N = sqsm))), 2,

apply(mB,2,sum)/100, "/")), 1)

Zero.Printing table+margins:
set.seed(1)
x <- sample(1:7, 20, replace=TRUE)
y <- sample(1:7, 20, replace=TRUE)
tx <- addmargins(table(x, y))
print(tx, zero.print = ".")

http://www.biostat.ku.dk/~bxc

aggregate 913

aggregate Compute Summary Statistics of Data Subsets

Description

Splits the data into subsets, computes summary statistics for each, and returns the result in a conve-
nient form.

Usage

aggregate(x, ...)

Default S3 method:
aggregate(x, ...)

S3 method for class 'data.frame':
aggregate(x, by, FUN, ...)

S3 method for class 'ts':
aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,

ts.eps = getOption("ts.eps"), ...)

Arguments

x an R object.

by a list of grouping elements, each as long as the variables inx .

FUN a scalar function to compute the summary statistics which can be applied to all
data subsets.

nfrequency new number of observations per unit of time; must be a divisor of the frequency
of x .

ndeltat new fraction of the sampling period between successive observations; must be a
divisor of the sampling interval ofx .

ts.eps tolerance used to decide ifnfrequency is a sub-multiple of the original fre-
quency.

... further arguments passed to or used by methods.

Details

aggregate is a generic function with methods for data frames and time series.

The default methodaggregate.default uses the time series method ifx is a time series, and
otherwise coercesx to a data frame and calls the data frame method.

aggregate.data.frame is the data frame method. Ifx is not a data frame, it is coerced to
one. Then, each of the variables (columns) inx is split into subsets of cases (rows) of identical
combinations of the components ofby , andFUNis applied to each such subset with further argu-
ments in... passed to it. (I.e.,tapply(VAR, by, FUN, ..., simplify = FALSE) is
done for each variableVARin x , conveniently wrapped into one call tolapply() .) Empty subsets
are removed, and the result is reformatted into a data frame containing the variables inby andx .
The ones arising fromby contain the unique combinations of grouping values used for determining
the subsets, and the ones arising fromx the corresponding summary statistics for the subset of the

914 aggregate

respective variables inx . Rows with missing values in any of theby variables will be omitted from
the result.

aggregate.ts is the time series method. Ifx is not a time series, it is coerced to one. Then, the
variables inx are split into appropriate blocks of lengthfrequency(x) / nfrequency , and
FUNis applied to each such block, with further (named) arguments in... passed to it. The result
returned is a time series with frequencynfrequency holding the aggregated values. Note that
this make most sense for a quarterly or yearly result when the original series covers a whole number
of quarters or years: in particular aggregating a monthly series to quarters starting in February does
not give a conventional quarterly series.

Value

For the time series method, a time series of class"ts" or classc("mts", "ts") .

For the data frame method, a data frame with columns corresponding to the grouping variables in
by followed by aggregated columns fromx . If the by has names, the non-empty times are used
to label the columns in the results, with unnamed grouping variables being namedGroup. i for
by[[i]] .

Note: prior to R 2.6.0 the grouping variables were reported as factors with levels in alphabetical
order in the current locale. Now the variable in the result is found by subsetting the original variable.

Author(s)

Kurt Hornik

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply , lapply , tapply .

Examples

Compute the averages for the variables in 'state.x77', grouped
according to the region (Northeast, South, North Central, West) that
each state belongs to.
aggregate(state.x77, list(Region = state.region), mean)

Compute the averages according to region and the occurrence of more
than 130 days of frost.
aggregate(state.x77,

list(Region = state.region,
Cold = state.x77[,"Frost"] > 130),

mean)
(Note that no state in 'South' is THAT cold.)

example with character variables and NAs
testDF <- data.frame(v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),

v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99))
by1 <- c("red","blue",1,2,NA,"big",1,2,"red",1,NA,12)
by2 <- c("wet","dry",99,95,NA,"damp",95,99,"red",99,NA,NA)
aggregate(x = testDF, by = list(by1, by2), FUN = "mean")

AIC 915

and if you want to treat NAs as a group
fby1 <- factor(by1, exclude = "")
fby2 <- factor(by2, exclude = "")
aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean")

Compute the average annual approval ratings for American presidents.
aggregate(presidents, nfrequency = 1, FUN = mean)
Give the summer less weight.
aggregate(presidents, nfrequency = 1,

FUN = weighted.mean, w = c(1, 1, 0.5, 1))

AIC Akaike’s An Information Criterion

Description

Generic function calculating the Akaike information criterion for one or several fitted model objects
for which a log-likelihood value can be obtained, according to the formula−2log-likelihood+
knpar, wherenpar represents the number of parameters in the fitted model, andk = 2 for the
usual AIC, ork = log(n) (n the number of observations) for the so-called BIC or SBC (Schwarz’s
Bayesian criterion).

Usage

AIC(object, ..., k = 2)

Arguments

object a fitted model object, for which there exists alogLik method to extract the
corresponding log-likelihood, or an object inheriting from classlogLik .

... optionally more fitted model objects.

k numeric, thepenaltyper parameter to be used; the defaultk = 2 is the classical
AIC.

Details

The default method forAIC , AIC.default() entirely relies on the existence of alogLik
method computing the log-likelihood for the given class.

When comparing fitted objects, the smaller the AIC, the better the fit.

The log-likelihood and hence the AIC is only defined up to an additive constant. Different con-
stants have conventionally be used for different purposes and soextractAIC andAIC may give
different values (and do for models of class"lm" : see the help forextractAIC).

Value

If just one object is provided, returns a numeric value with the corresponding AIC (or BIC, or . . . ,
depending onk); if multiple objects are provided, returns adata.frame with rows corresponding
to the objects and columns representing the number of parameters in the model (df) and the AIC.

916 alias

Author(s)

Jose Pinheiro and Douglas Bates

References

Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986).Akaike Information Criterion Statistics. D.
Reidel Publishing Company.

See Also

extractAIC , logLik .

Examples

lm1 <- lm(Fertility ~ . , data = swiss)
AIC(lm1)
stopifnot(all.equal(AIC(lm1),

AIC(logLik(lm1))))
a version of BIC or Schwarz' BC :
AIC(lm1, k = log(nrow(swiss)))

alias Find Aliases (Dependencies) in a Model

Description

Find aliases (linearly dependent terms) in a linear model specified by a formula.

Usage

alias(object, ...)

S3 method for class 'formula':
alias(object, data, ...)

S3 method for class 'lm':
alias(object, complete = TRUE, partial = FALSE,

partial.pattern = FALSE, ...)

Arguments

object A fitted model object, for example fromlm or aov , or a formula for
alias.formula .

data Optionally, a data frame to search for the objects in the formula.

complete Should information on complete aliasing be included?

partial Should information on partial aliasing be included?
partial.pattern

Should partial aliasing be presented in a schematic way? If this is done, the
results are presented in a more compact way, usually giving the deciles of the
coefficients.

... further arguments passed to or from other methods.

anova 917

Details

Although the main method is for class"lm" , alias is most useful for experimental designs and
so is used with fits fromaov . Complete aliasing refers to effects in linear models that cannot be
estimated independently of the terms which occur earlier in the model and so have their coefficients
omitted from the fit. Partial aliasing refers to effects that can be estimated less precisely because of
correlations induced by the design.

Value

A list (of class "listof") containing components

Model Description of the model; usually the formula.

Complete A matrix with columns corresponding to effects that are linearly dependent on
the rows.

Partial The correlations of the estimable effects, with a zero diagonal. An object of
class"mtable" which has its ownprint method.

Note

The aliasing pattern may depend on the contrasts in use: Helmert contrasts are probably most useful.

The defaults are different from those in S.

Author(s)

The design was inspired by the S function of the same name described in Chamberset al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992)Analysis of variance; designed experi-
ments. Chapter 5 ofStatistical Models in Seds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

Examples

From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")

op <- options(contrasts=c("contr.helmert", "contr.poly"))
npk.aov <- aov(yield ~ block + N*P*K, npk)
alias(npk.aov)
options(op)# reset

anova Anova Tables

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage

anova(object, ...)

918 anova.glm

Arguments

object an object containing the results returned by a model fitting function (e.g.,lm or
glm).

... additional objects of the same type.

Value

This (generic) function returns an object of classanova . These objects represent analysis-of-
variance and analysis-of-deviance tables. When given a single argument it produces a table which
tests whether the model terms are significant.

When given a sequence of objects,anova tests the models against one another in the order speci-
fied.

The print method foranova objects prints tables in a ‘pretty’ form.

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values andR’s default ofna.action = na.omit
is used.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S, Wadsworth & Brooks/Cole.

See Also

coefficients , effects , fitted.values , residuals , summary , drop1 , add1 .

anova.glm Analysis of Deviance for Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more generalized linear model fits.

Usage

S3 method for class 'glm':
anova(object, ..., dispersion = NULL, test = NULL)

Arguments

object, ... objects of classglm , typically the result of a call toglm , or a list ofobjects
for the"glmlist" method.

dispersion the dispersion parameter for the fitting family. By default it is obtained from the
object(s).

test a character string, (partially) matching one of"Chisq" , "F" or "Cp" . See
stat.anova .

anova.glm 919

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That is, the
reductions in the residual deviance as each term of the formula is added in turn are given in as the
rows of a table, plus the residual deviances themselves.

If more than one object is specified, the table has a row for the residual degrees of freedom and
deviance for each model. For all but the first model, the change in degrees of freedom and deviance
is also given. (This only makes statistical sense if the models are nested.) It is conventional to list
the models from smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in deviance
for the row to the residuals. For models with known dispersion (e.g., binomial and Poisson fits)
the chi-squared test is most appropriate, and for those with dispersion estimated by moments (e.g.,
gaussian , quasibinomial andquasipoisson fits) the F test is most appropriate. Mal-
lows’ Cp statistic is the residual deviance plus twice the estimate ofσ2 times the residual degrees
of freedom, which is closely related to AIC (and a multiple of it if the dispersion is known).

The dispersion estimate will be taken from the largest model, using the value returned by
summary.glm . As this will in most cases use a Chisquared-based estimate, the F tests are not
based on the residual deviance in the analysis of deviance table shown.

Value

An object of class"anova" inheriting from class"data.frame" .

Warning

The comparison between two or more models byanova or anova.glmlist will only be valid if
they are fitted to the same dataset. This may be a problem if there are missing values andR’s default
of na.action = na.omit is used, andanova.glmlist will detect this with an error.

References

Hastie, T. J. and Pregibon, D. (1992)Generalized linear models.Chapter 6 ofStatistical Models in
Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm , anova .

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting their
hierarchy.

Examples

--- Continuing the Example from '?glm':

anova(glm.D93)
anova(glm.D93, test = "Cp")
anova(glm.D93, test = "Chisq")

920 anova.lm

anova.lm ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

S3 method for class 'lm':
anova(object, ...)

anova.lmlist(object, ..., scale = 0, test = "F")

Arguments

object, ... objects of classlm , usually, a result of a call tolm .

test a character string specifying the test statistic to be used. Can be one of"F" ,
"Chisq" or "Cp" , with partial matching allowed, orNULL for no test.

scale numeric. An estimate of the noise varianceσ2. If zero this will be estimated
from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the
reductions in the residual sum of squares as each term of the formula is added in turn are given in
as the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the
residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum
of squares for each model. For all but the first model, the change in degrees of freedom and sum of
squares is also given. (This only make statistical sense if the models are nested.) It is conventional
to list the models from smallest to largest, but this is up to the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate, which
compares the mean square for a row to the residual sum of squares for the largest model considered.
If scale is specified chi-squared tests can be used. Mallows’Cp statistic is the residual sum of
squares plus twice the estimate ofσ2 times the residual degrees of freedom.

Value

An object of class"anova" inheriting from class"data.frame" .

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values andR’s default ofna.action = na.omit
is used, andanova.lmlist will detect this with an error.

anova.mlm 921

Note

Versions ofR prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour can still be
obtained by a direct call toanovalist.lm .

References

Chambers, J. M. (1992)Linear models.Chapter 4 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting functionlm , anova .

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting their
hierarchy.

Examples

sequential table
fit <- lm(sr ~ ., data = LifeCycleSavings)
anova(fit)

same effect via separate models
fit0 <- lm(sr ~ 1, data = LifeCycleSavings)
fit1 <- update(fit0, . ~ . + pop15)
fit2 <- update(fit1, . ~ . + pop75)
fit3 <- update(fit2, . ~ . + dpi)
fit4 <- update(fit3, . ~ . + ddpi)
anova(fit0, fit1, fit2, fit3, fit4, test="F")

anova(fit4, fit2, fit0, test="F") # unconventional order

anova.mlm Comparisons between Multivariate Linear Models

Description

Compute a (generalized) analysis of variance table for one or more multivariate linear models.

Usage

S3 method for class 'mlm':
anova(object, ...,

test =
c("Pillai", "Wilks", "Hotelling-Lawley", "Roy", "Spherical"),

Sigma = diag(nrow = p), T = Thin.row(proj(M) - proj(X)),
M = diag(nrow = p), X = ~0,

idata = data.frame(index = seq_len(p)))

922 anova.mlm

Arguments

object an object of class"mlm" .

... further objects of class"mlm" .

test choice of test statistic (see below).

Sigma (only relevant iftest == "Spherical"). Covariance matrix assumed pro-
portional toSigma .

T transformation matrix. By default computed fromMandX.

M formula or matrix describing the outer projection (see below).

X formula or matrix describing the inner projection (see below).

idata data frame describing intra-block design.

Details

The anova.mlm method uses either a multivariate test statistic for the summary table, or a test
based on sphericity assumptions (i.e. that the covariance is proportional to a given matrix).

For the multivariate test, Wilks’ statistic is most popular in the literature, but the default Pillai–
Bartlett statistic is recommended by Hand and Taylor (1987). Seesummary.manova for further
details.

For the"Spherical" test, proportionality is usually with the identity matrix but a different matrix
can be specified usingSigma). Corrections for asphericity known as the Greenhouse–Geisser,
respectively Huynh–Feldt, epsilons are given and adjustedF tests are performed.

It is common to transform the observations prior to testing. This typically involves transformation
to intra-block differences, but more complicated within-block designs can be encountered, making
more elaborate transformations necessary. A transformation matrixT can be given directly or spec-
ified as the difference between two projections onto the spaces spanned byMandX, which in turn
can be given as matrices or as model formulas with respect toidata (the tests will be invariant to
parametrization of the quotient spaceM/X).

As with anova.lm , all test statistics use the SSD matrix from the largest model considered as the
(generalized) denominator.

Contrary to otheranova methods, the intercept is not excluded from the display in the single-
model case. When contrast transformations are involved, it often makes good sense to test for a
zero intercept.

Value

An object of class"anova" inheriting from class"data.frame"

Note

The Huynh–Feldt epsilon differs from that calculated by SAS (as of v. 8.2) except when the DF is
equal to the number of observations minus one. This is believed to be a bug in SAS, not inR.

References

Hand, D. J. and Taylor, C. C. (1987)Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

See Also

summary.manova

ansari.test 923

Examples

require(graphics)
utils::example(SSD) # Brings in the mlmfit and reacttime objects

mlmfit0 <- update(mlmfit, ~0)

Traditional tests of intrasubj. contrasts
Using MANOVA techniques on contrasts:
anova(mlmfit, mlmfit0, X=~1)

Assuming sphericity
anova(mlmfit, mlmfit0, X=~1, test="Spherical")

tests using intra-subject 3x2 design
idata <- data.frame(deg=gl(3,1,6,labels=c(0,4,8)),

noise=gl(2,3,6,labels=c("A","P")))

anova(mlmfit, mlmfit0, X = ~ deg + noise,
idata = idata, test = "Spherical")

anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ noise,
idata = idata, test="Spherical")

anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ deg,
idata = idata, test="Spherical")

f <- factor(rep(1:2,5)) # bogus, just for illustration
mlmfit2 <- update(mlmfit, ~f)
anova(mlmfit2, mlmfit, mlmfit0, X = ~1, test = "Spherical")
anova(mlmfit2, X = ~1, test = "Spherical")
one-model form, eqiv. to previous

There seems to be a strong interaction in these data
plot(colMeans(reacttime))

ansari.test Ansari-Bradley Test

Description

Performs the Ansari-Bradley two-sample test for a difference in scale parameters.

Usage

ansari.test(x, ...)

Default S3 method:
ansari.test(x, y,

alternative = c("two.sided", "less", "greater"),
exact = NULL, conf.int = FALSE, conf.level = 0.95,
...)

S3 method for class 'formula':
ansari.test(formula, data, subset, na.action, ...)

924 ansari.test

Arguments

x numeric vector of data values.

y numeric vector of data values.

alternative indicates the alternative hypothesis and must be one of"two.sided" ,
"greater" or "less" . You can specify just the initial letter.

exact a logical indicating whether an exactp-value should be computed.

conf.int a logical,indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the formlhs ~ rhs wherelhs is a numeric variable giving the
data values andrhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

Details

Suppose thatx andy are independent samples from distributions with densitiesf((t − m)/s)/s
andf(t −m), respectively, wherem is an unknown nuisance parameter ands, the ratio of scales,
is the parameter of interest. The Ansari-Bradley test is used for testing the null thats equals 1, the
two-sided alternative being thats 6= 1 (the distributions differ only in variance), and the one-sided
alternatives beings > 1 (the distribution underlyingx has a larger variance,"greater") or s < 1
("less").

By default (if exact is not specified), an exactp-value is computed if both samples contain less
than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally, a nonparametric confidence interval and an estimator fors are computed. If exactp-
values are available, an exact confidence interval is obtained by the algorithm described in Bauer
(1972), and the Hodges-Lehmann estimator is employed. Otherwise, the returned confidence inter-
val and point estimate are based on normal approximations.

Note that mid-ranks are used in the case of ties rather than average scores as employed in Hollander
& Wolfe (1973). See, e.g., Hajek, Sidak and Sen (1999), pages 131ff, for more information.

Value

A list with class"htest" containing the following components:

statistic the value of the Ansari-Bradley test statistic.

p.value thep-value of the test.

null.value the ratio of scaless under the null, 1.

alternative a character string describing the alternative hypothesis.

method the string"Ansari-Bradley test" .

data.name a character string giving the names of the data.

conf.int a confidence interval for the scale parameter. (Only present if argument
conf.int = TRUE .)

estimate an estimate of the ratio of scales. (Only present if argumentconf.int =
TRUE.)

aov 925

Note

To compare results of the Ansari-Bradley test to those of the F test to compare two variances (under
the assumption of normality), observe thats is the ratio of scales and hences2 is the ratio of
variances (provided they exist), whereas for the F test the ratio of variances itself is the parameter
of interest. In particular, confidence intervals are fors in the Ansari-Bradley test but fors2 in the F
test.

References

David F. Bauer (1972), Constructing confidence sets using rank statistics.Journal of the American
Statistical Association67, 687–690.

Jaroslav Hajek, Zbynek Sidak & Pranab K. Sen (1999),Theory of Rank Tests. San Diego, London:
Academic Press.

Myles Hollander & Douglas A. Wolfe (1973),Nonparametric Statistical Methods.New York: John
Wiley & Sons. Pages 83–92.

See Also

fligner.test for a rank-based (nonparametric)k-sample test for homogeneity of vari-
ances;mood.test for another rank-based two-sample test for a difference in scale parameters;
var.test andbartlett.test for parametric tests for the homogeneity in variance.

ansari_test in packagecoin for exact and approximateconditionalp-values for the Ansari-
Bradley test, as well as different methods for handling ties.

Examples

Hollander & Wolfe (1973, p. 86f):
Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
ansari.test(ramsay, jung.parekh)

ansari.test(rnorm(10), rnorm(10, 0, 2), conf.int = TRUE)

try more points - failed in 2.4.1
ansari.test(rnorm(100), rnorm(100, 0, 2), conf.int = TRUE)

aov Fit an Analysis of Variance Model

Description

Fit an analysis of variance model by a call tolm for each stratum.

Usage

aov(formula, data = NULL, projections = FALSE, qr = TRUE,
contrasts = NULL, ...)

926 aov

Arguments

formula A formula specifying the model.

data A data frame in which the variables specified in the formula will be found. If
missing, the variables are searched for in the standard way.

projections Logical flag: should the projections be returned?

qr Logical flag: should the QR decomposition be returned?

contrasts A list of contrasts to be used for some of the factors in the formula. These are
not used for anyError term, and supplying contrasts for factors only in the
Error term will give a warning.

... Arguments to be passed tolm , such assubset or na.action .

Details

This provides a wrapper tolm for fitting linear models to balanced or unbalanced experimental
designs.

The main difference fromlm is in the wayprint , summary and so on handle the fit: this is
expressed in the traditional language of the analysis of variance rather than that of linear models.

If the formula contains a singleError term, this is used to specify error strata, and appropriate
models are fitted within each error stratum.

The formula can specify multiple responses.

Weights can be specified by aweights argument, but should not be used with anError term,
and are incompletely supported (e.g., not bymodel.tables).

Value

An object of classc("aov", "lm") or for multiple responses of classc("maov", "aov",
"mlm", "lm") or for multiple error strata of class"aovlist" . There areprint and
summary methods available for these.

Note

aov is designed for balanced designs, and the results can be hard to interpret without balance:
beware that missing values in the response(s) will likely lose the balance. If there are two or more
error strata, the methods used are statistically inefficient without balance, and it may be better to
uselme .

Balance can be checked with thereplications function.

The default ‘contrasts’ inR are not orthogonal contrasts, andaov and its helper functions will work
better with such contrasts: see the examples for how to select these.

Author(s)

The design was inspired by the S function of the same name described in Chamberset al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992)Analysis of variance; designed experi-
ments. Chapter 5 ofStatistical Models in Seds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

approxfun 927

See Also

lm , summary.aov , replications , alias , proj , model.tables , TukeyHSD

Examples

From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")

Set orthogonal contrasts.
op <- options(contrasts=c("contr.helmert", "contr.poly"))
(npk.aov <- aov(yield ~ block + N*P*K, npk))
summary(npk.aov)
coefficients(npk.aov)

to show the effects of re-ordering terms contrast the two fits
aov(yield ~ block + N * P + K, npk)
aov(terms(yield ~ block + N * P + K, keep.order=TRUE), npk)

as a test, not particularly sensible statistically
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
npk.aovE
summary(npk.aovE)
options(op)# reset to previous

approxfun Interpolation Functions

Description

Return a list of points which linearly interpolate given data points, or a function performing the
linear (or constant) interpolation.

Usage

approx (x, y = NULL, xout, method="linear", n=50,
yleft, yright, rule = 1, f = 0, ties = mean)

approxfun(x, y = NULL, method="linear",
yleft, yright, rule = 1, f = 0, ties = mean)

Arguments

x, y vectors giving the coordinates of the points to be interpolated. Alternatively a
single plotting structure can be specified: seexy.coords .

xout an optional set of values specifying where interpolation is to take place.

method specifies the interpolation method to be used. Choices are"linear" or
"constant" .

n If xout is not specified, interpolation takes place atn equally spaced points
spanning the interval [min(x) , max(x)].

yleft the value to be returned when inputx values are less thanmin(x) . The default
is defined by the value ofrule given below.

928 approxfun

yright the value to be returned when inputx values are greater thanmax(x) . The
default is defined by the value ofrule given below.

rule an integer describing how interpolation is to take place outside the interval
[min(x) , max(x)]. If rule is 1 thenNAs are returned for such points and if
it is 2, the value at the closest data extreme is used.

f For method="constant" a number between 0 and 1 inclusive, indicating a
compromise between left- and right-continuous step functions. Ify0 andy1 are
the values to the left and right of the point then the value isy0*(1-f)+y1*f
so thatf=0 is right-continuous andf=1 is left-continuous.

ties Handling of tiedx values. Either a function with a single vector argument re-
turning a single number result or the string"ordered" .

Details

The inputs can contain missing values which are deleted, so at least two complete(x, y) pairs
are required (formethod = "linear" , one otherwise). If there are duplicated (tied)x values
andties is a function it is applied to they values for each distinctx value. Useful functions in
this context includemean, min , andmax. If ties="ordered" the x values are assumed to
be already ordered. The firsty value will be used for interpolation to the left and the last one for
interpolation to the right.

Value

approx returns a list with componentsx andy , containingn coordinates which interpolate the
given data points according to themethod (andrule) desired.

The functionapproxfun returns a function performing (linear or constant) interpolation of the
given data points. For a given set ofx values, this function will return the corresponding interpolated
values. This is often more useful thanapprox .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

spline andsplinefun for spline interpolation.

Examples

require(graphics)

x <- 1:10
y <- rnorm(10)
par(mfrow = c(2,1))
plot(x, y, main = "approx(.) and approxfun(.)")
points(approx(x, y), col = 2, pch = "*")
points(approx(x, y, method = "constant"), col = 4, pch = "*")

f <- approxfun(x, y)
curve(f(x), 0, 10, col = "green")
points(x, y)
is.function(fc <- approxfun(x, y, method = "const")) # TRUE
curve(fc(x), 0, 10, col = "darkblue", add = TRUE)

ar 929

Show treatment of 'ties' :

x <- c(2,2:4,4,4,5,5,7,7,7)
y <- c(1:6, 5:4, 3:1)
approx(x,y, xout=x)$y # warning
(ay <- approx(x,y, xout=x, ties = "ordered")$y)
stopifnot(ay == c(2,2,3,6,6,6,4,4,1,1,1))
approx(x,y, xout=x, ties = min)$y
approx(x,y, xout=x, ties = max)$y

ar Fit Autoregressive Models to Time Series

Description

Fit an autoregressive time series model to the data, by default selecting the complexity by AIC.

Usage

ar(x, aic = TRUE, order.max = NULL,
method=c("yule-walker", "burg", "ols", "mle", "yw"),
na.action, series, ...)

ar.burg(x, ...)
Default S3 method:
ar.burg(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

S3 method for class 'mts':
ar.burg(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

ar.yw(x, ...)
Default S3 method:
ar.yw(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series, ...)
S3 method for class 'mts':
ar.yw(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

ar.mle(x, aic = TRUE, order.max = NULL, na.action = na.fail,
demean = TRUE, series, ...)

S3 method for class 'ar':
predict(object, newdata, n.ahead = 1, se.fit = TRUE, ...)

930 ar

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to
choose the order of the autoregressive model. IfFALSE, the model of order
order.max is fitted.

order.max Maximum order (or order) of model to fit. Defaults to the smaller of
N − 1 and 10 log10(N) whereN is the number of observations except for
method="mle" where it is the minimum of this quantity and 12.

method Character string giving the method used to fit the model. Must be one of the
strings in the default argument (the first few characters are sufficient). Defaults
to "yule-walker" .

na.action function to be called to handle missing values.

demean should a mean be estimated during fitting?

series names for the series. Defaults todeparse(substitute(x)) .

var.method the method to estimate the innovations variance (see ‘Details’).

... additional arguments for specific methods.

object a fit fromar .

newdata data to which to apply the prediction.

n.ahead number of steps ahead at which to predict.

se.fit logical: return estimated standard errors of the prediction error?

Details

For definiteness, note that the AR coefficients have the sign in

xt − µ = a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

ar is just a wrapper for the functionsar.yw , ar.burg , ar.ols andar.mle .

Order selection is done by AIC ifaic is true. This is problematic, as of the methods here only
ar.mle performs true maximum likelihood estimation. The AIC is computed as if the variance
estimate were the MLE, omitting the determinant term from the likelihood. Note that this is not
the same as the Gaussian likelihood evaluated at the estimated parameter values. Inar.yw the
variance matrix of the innovations is computed from the fitted coefficients and the autocovariance
of x .

ar.burg allows two methods to estimate the innovations variance and hence AIC. Method 1 is
to use the update given by the Levinson-Durbin recursion (Brockwell and Davis, 1991, (8.2.6) on
page 242), and follows S-PLUS. Method 2 is the mean of the sum of squares of the forward and
backward prediction errors (as in Brockwell and Davis, 1996, page 145). Percival and Walden
(1998) discuss both. In the multivariate case the estimated coefficients will depend (slightly) on the
variance estimation method.

Remember thatar includes by default a constant in the model, by removing the overall mean ofx
before fitting the AR model, or (ar.mle) estimating a constant to subtract.

ar 931

Value

For ar and its methods a list of class"ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE , otherwise it isorder.max .

ar Estimated autoregression coefficients for the fitted model.

var.pred The prediction variance: an estimate of the portion of the variance of the time
series that is not explained by the autoregressive model.

x.mean The estimated mean of the series used in fitting and for use in prediction.

x.intercept (ar.ols only.) The intercept in the model forx - x.mean .

aic The value of theaic argument.

n.used The number of observations in the time series.

order.max The value of theorder.max argument.

partialacf The estimate of the partial autocorrelation function up to lagorder.max .

resid residuals from the fitted model, conditioning on the firstorder observations.
The firstorder residuals are set toNA. If x is a time series, so isresid .

method The value of themethod argument.

series The name(s) of the time series.

frequency The frequency of the time series.

call The matched call.

asy.var.coef (univariate case,order > 0 .) The asymptotic-theory variance matrix of the
coefficient estimates.

For predict.ar , a time series of predictions, or ifse.fit = TRUE , a list with components
pred , the predictions, andse , the estimated standard errors. Both components are time series.

Note

Only the univariate case ofar.mle is implemented.

Fitting bymethod="mle" to long series can be very slow.

Author(s)

Martyn Plummer. Univariate case ofar.yw , ar.mle and C code for univariate case ofar.burg
by B. D. Ripley.

References

Brockwell, P. J. and Davis, R. A. (1991)Time Series and Forecasting Methods.Second edition.
Springer, New York. Section 11.4.

Brockwell, P. J. and Davis, R. A. (1996)Introduction to Time Series and Forecasting.Springer,
New York. Sections 5.1 and 7.6.

Percival, D. P. and Walden, A. T. (1998)Spectral Analysis for Physical Applications.Cambridge
University Press.

Whittle, P. (1963) On the fitting of multivariate autoregressions and the approximate canonical
factorization of a spectral density matrix.Biometrika40, 129–134.

932 ar.ols

See Also

ar.ols , arima0 for ARMA models;acf2AR , for AR construction from the ACF.

Examples

ar(lh)
ar(lh, method="burg")
ar(lh, method="ols")
ar(lh, FALSE, 4) # fit ar(4)

(sunspot.ar <- ar(sunspot.year))
predict(sunspot.ar, n.ahead=25)
try the other methods too

ar(ts.union(BJsales, BJsales.lead))
Burg is quite different here, as is OLS (see ar.ols)
ar(ts.union(BJsales, BJsales.lead), method="burg")

ar.ols Fit Autoregressive Models to Time Series by OLS

Description

Fit an autoregressive time series model to the data by ordinary least squares, by default selecting
the complexity by AIC.

Usage

ar.ols(x, aic = TRUE, order.max = NULL, na.action = na.fail,
demean = TRUE, intercept = demean, series, ...)

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to
choose the order of the autoregressive model. IfFALSE, the model of order
order.max is fitted.

order.max Maximum order (or order) of model to fit. Defaults to10 log10(N) whereN is
the number of observations.

na.action function to be called to handle missing values.

demean should the AR model be forx minus its mean?

intercept should a separate intercept term be fitted?

series names for the series. Defaults todeparse(substitute(x)) .

... further arguments to be passed to or from methods.

ar.ols 933

Details

ar.ols fits the general AR model to a possibly non-stationary and/or multivariate system of series
x . The resulting unconstrained least squares estimates are consistent, even if some of the series are
non-stationary and/or co-integrated. For definiteness, note that the AR coefficients have the sign in

xt − µ = a0 + a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

wherea0 is zero unlessintercept is true, andµ is the sample mean ifdemean is true, zero
otherwise.

Order selection is done by AIC ifaic is true. This is problematic, asar.ols does not perform
true maximum likelihood estimation. The AIC is computed as if the variance estimate (computed
from the variance matrix of the residuals) were the MLE, omitting the determinant term from the
likelihood. Note that this is not the same as the Gaussian likelihood evaluated at the estimated
parameter values.

Some care is needed ifintercept is true anddemean is false. Only use this is the series are
roughly centred on zero. Otherwise the computations may be inaccurate or fail entirely.

Value

A list of class"ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE , otherwise it isorder.max .

ar Estimated autoregression coefficients for the fitted model.

var.pred The prediction variance: an estimate of the portion of the variance of the time
series that is not explained by the autoregressive model.

x.mean The estimated mean (or zero ifdemean is false) of the series used in fitting and
for use in prediction.

x.intercept The intercept in the model forx - x.mean , or zero ifintercept is false.

aic The value of theaic argument.

n.used The number of observations in the time series.

order.max The value of theorder.max argument.

partialacf NULL. For compatibility withar .

resid residuals from the fitted model, conditioning on the firstorder observations.
The firstorder residuals are set toNA. If x is a time series, so isresid .

method The character string"Unconstrained LS" .

series The name(s) of the time series.

frequency The frequency of the time series.

call The matched call.

asy.se.coef The asymptotic-theory standard errors of the coefficient estimates.

Author(s)

Adrian Trapletti, Brian Ripley.

References

Luetkepohl, H. (1991):Introduction to Multiple Time Series Analysis.Springer Verlag, NY, pp.
368–370.

934 arima

See Also

ar

Examples

ar(lh, method="burg")
ar.ols(lh)
ar.ols(lh, FALSE, 4) # fit ar(4)

ar.ols(ts.union(BJsales, BJsales.lead))

x <- diff(log(EuStockMarkets))
ar.ols(x, order.max=6, demean=FALSE, intercept=TRUE)

arima ARIMA Modelling of Time Series

Description

Fit an ARIMA model to a univariate time series.

Usage

arima(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE,
transform.pars = TRUE,
fixed = NULL, init = NULL,
method = c("CSS-ML", "ML", "CSS"),
n.cond, optim.control = list(), kappa = 1e6)

Arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three com-
ponents(p, d, q) are the AR order, the degree of differencing, and the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period (which
defaults tofrequency(x)). This should be a list with componentsorder
andperiod , but a specification of just a numeric vector of length 3 will be
turned into a suitable list with the specification as theorder .

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows asx .

include.mean Should the ARMA model include a mean/intercept term? The default isTRUE
for undifferenced series, and it is ignored for ARIMA models with differencing.

transform.pars
Logical. If true, the AR parameters are transformed to ensure that they remain
in the region of stationarity. Not used formethod = "CSS" .

arima 935

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, onlyNAentries infixed will be varied. transform.pars =
TRUEwill be overridden (with a warning) if any AR parameters are fixed. It may
be wise to settransform.pars = FALSE when fixing MA parameters,
especially near non-invertibility.

init optional numeric vector of initial parameter values. Missing values will be filled
in, by zeroes except for regression coefficients. Values already specified in
fixed will be ignored.

method Fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-
squares to find starting values, then maximum likelihood.

n.cond Only used if fitting by conditional-sum-of-squares: the number of initial obser-
vations to ignore. It will be ignored if less than the maximum lag of an AR
term.

optim.control
List of control parameters foroptim .

kappa the prior variance (as a multiple of the innovations variance) for the past obser-
vations in a differenced model. Do not reduce this.

Details

Different definitions of ARMA models have different signs for the AR and/or MA coefficients. The
definition used here has

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, ifinclude.mean is
true (the default for an ARMA model), this formula applies toX −m rather thanX. For ARIMA
models with differencing, the differenced series follows a zero-mean ARMA model. If amxreg
term is included, a linear regression (with a constant term ifinclude.mean is true and there is
no differencing) is fitted with an ARMA model for the error term.

The variance matrix of the estimates is found from the Hessian of the log-likelihood, and so may
only be a rough guide.

Optimization is done byoptim . It will work best if the columns inxreg are roughly scaled to
zero mean and unit variance, but does attempt to estimate suitable scalings.

Value

A list of class"Arima" with components:

coef a vector of AR, MA and regression coefficients, which can be extracted by the
coef method.

sigma2 the MLE of the innovations variance.

var.coef the estimated variance matrix of the coefficientscoef , which can be extracted
by thevcov method.

loglik the maximized log-likelihood (of the differenced data), or the approximation to
it used.

arma A compact form of the specification, as a vector giving the number of AR, MA,
seasonal AR and seasonal MA coefficients, plus the period and the number of
non-seasonal and seasonal differences.

936 arima

aic the AIC value corresponding to the log-likelihood. Only valid formethod =
"ML" fits.

residuals the fitted innovations.

call the matched call.

series the name of the seriesx .

code the convergence value returned byoptim .

n.cond the number of initial observations not used in the fitting.

model A list representing the Kalman Filter used in the fitting. SeeKalmanLike .

Fitting methods

The exact likelihood is computed via a state-space representation of the ARIMA process, and the
innovations and their variance found by a Kalman filter. The initialization of the differenced ARMA
process uses stationarity and is based on Gardneret al. (1980). For a differenced process the non-
stationary components are given a diffuse prior (controlled bykappa). Observations which are still
controlled by the diffuse prior (determined by having a Kalman gain of at least1e4) are excluded
from the likelihood calculations. (This gives comparable results toarima0 in the absence of
missing values, when the observations excluded are precisely those dropped by the differencing.)

Missing values are allowed, and are handled exactly in method"ML" .

If transform.pars is true, the optimization is done using an alternative parametrization which
is a variation on that suggested by Jones (1980) and ensures that the model is stationary. For
an AR(p) model the parametrization is via the inverse tanh of the partial autocorrelations: the
same procedure is applied (separately) to the AR and seasonal AR terms. The MA terms are not
constrained to be invertible during optimization, but they will be converted to invertible form after
optimization iftransform.pars is true.

Conditional sum-of-squares is provided mainly for expositional purposes. This computes the sum
of squares of the fitted innovations from observationn.cond on, (wheren.cond is at least the
maximum lag of an AR term), treating all earlier innovations to be zero. Argumentn.cond can
be used to allow comparability between different fits. The ‘part log-likelihood’ is the first term,
half the log of the estimated mean square. Missing values are allowed, but will cause many of the
innovations to be missing.

When regressors are specified, they are orthogonalized prior to fitting unless any of the coefficients
is fixed. It can be helpful to roughly scale the regressors to zero mean and unit variance.

Note

The results are likely to be different from S-PLUS’sarima.mle , which computes a conditional
likelihood and does not include a mean in the model. Further, the convention used byarima.mle
reverses the signs of the MA coefficients.

arima is very similar toarima0 for ARMA models or for differenced models without missing
values, but handles differenced models with missing values exactly. It is somewhat slower than
arima0 , particularly for seasonally differenced models.

References

Brockwell, P. J. and Davis, R. A. (1996)Introduction to Time Series and Forecasting.Springer,
New York. Sections 3.3 and 8.3.

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.

arima.sim 937

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm for exact
maximum likelihood estimation of autoregressive-moving average models by means of Kalman
filtering. Applied Statistics29, 311–322.

Harvey, A. C. (1993)Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

Jones, R. H. (1980) Maximum likelihood fitting of ARMA models to time series with missing
observations.Technometrics20389–395.

See Also

predict.Arima , arima.sim for simulating from an ARIMA model,tsdiag , arima0 , ar

Examples

arima(lh, order = c(1,0,0))
arima(lh, order = c(3,0,0))
arima(lh, order = c(1,0,1))

arima(lh, order = c(3,0,0), method = "CSS")

arima(USAccDeaths, order = c(0,1,1), seasonal = list(order=c(0,1,1)))
arima(USAccDeaths, order = c(0,1,1), seasonal = list(order=c(0,1,1)),

method = "CSS") # drops first 13 observations.
for a model with as few years as this, we want full ML

arima(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)

presidents contains NAs
graphs in example(acf) suggest order 1 or 3
require(graphics)
(fit1 <- arima(presidents, c(1, 0, 0)))
tsdiag(fit1)
(fit3 <- arima(presidents, c(3, 0, 0))) # smaller AIC
tsdiag(fit3)

arima.sim Simulate from an ARIMA Model

Description

Simulate from an ARIMA model.

Usage

arima.sim(model, n, rand.gen = rnorm, innov = rand.gen(n, ...),
n.start = NA, start.innov = rand.gen(n.start, ...),
...)

Arguments

model A list with componentar and/ormagiving the AR and MA coefficients respec-
tively. Optionally a componentorder can be used. An empty list gives an
ARIMA(0, 0, 0) model, that is white noise.

938 arima0

n length of output series, before un-differencing.

rand.gen optional: a function to generate the innovations.

innov an optional times series of innovations. If not provided,rand.gen is used.

n.start length of ‘burn-in’ period. IfNA, the default, a reasonable value is computed.

start.innov an optional times series of innovations to be used for the burn-in period. If
supplied there must be at leastn.start values (andn.start is by default
computed inside the function).

... additional arguments forrand.gen . Most usefully, the standard deviation of
the innovations generated byrnorm can be specified bysd .

Details

Seearima for the precise definition of an ARIMA model.

The ARMA model is checked for stationarity.

ARIMA models are specified via theorder component ofmodel , in the same way as forarima .
Other aspects of theorder component are ignored, but inconsistent specifications of the MA and
AR orders are detected. The un-differencing assumes previous values of zero, and to remind the
user of this, those values are returned.

Random inputs for the ‘burn-in’ period are generated by callingrand.gen .

Value

A time-series object of class"ts" .

See Also

arima

Examples

require(graphics)

arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),
sd = sqrt(0.1796))

mildly long-tailed
arima.sim(n = 63, list(ar=c(0.8897, -0.4858), ma=c(-0.2279, 0.2488)),

rand.gen = function(n, ...) sqrt(0.1796) * rt(n, df = 5))

An ARIMA simulation
ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 200)
ts.plot(ts.sim)

arima0 ARIMA Modelling of Time Series – Preliminary Version

Description

Fit an ARIMA model to a univariate time series, and forecast from the fitted model.

arima0 939

Usage

arima0(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE, delta = 0.01,
transform.pars = TRUE, fixed = NULL, init = NULL,
method = c("ML", "CSS"), n.cond, optim.control = list())

S3 method for class 'arima0':
predict(object, n.ahead = 1, newxreg, se.fit = TRUE, ...)

Arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three com-
ponents(p, d, q) are the AR order, the degree of differencing, and the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period (which
defaults tofrequency(x)). This should be a list with componentsorder
andperiod , but a specification of just a numeric vector of length 3 will be
turned into a suitable list with the specification as theorder .

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows asx .

include.mean Should the ARIMA model include a mean term? The default isTRUEfor un-
differenced series,FALSE for differenced ones (where a mean would not affect
the fit nor predictions).

delta A value to indicate at which point ‘fast recursions’ should be used. See the
‘Details’ section.

transform.pars
Logical. If true, the AR parameters are transformed to ensure that they remain
in the region of stationarity. Not used formethod = "CSS" .

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, onlyNAentries infixed will be varied. transform.pars =
TRUEwill be overridden (with a warning) if any ARMA parameters are fixed.

init optional numeric vector of initial parameter values. Missing values will be filled
in, by zeroes except for regression coefficients. Values already specified in
fixed will be ignored.

method Fitting method: maximum likelihood or minimize conditional sum-of-squares.

n.cond Only used if fitting by conditional-sum-of-squares: the number of initial obser-
vations to ignore. It will be ignored if less than the maximum lag of an AR
term.

optim.control
List of control parameters foroptim .

object The result of anarima0 fit.

newxreg New values ofxreg to be used for prediction. Must have at leastn.ahead
rows.

n.ahead The number of steps ahead for which prediction is required.

se.fit Logical: should standard errors of prediction be returned?

... arguments passed to or from other methods.

940 arima0

Details

Different definitions of ARMA models have different signs for the AR and/or MA coefficients. The
definition here has

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, ifinclude.mean is
true, this formula applies toX − m rather thanX. For ARIMA models with differencing, the
differenced series follows a zero-mean ARMA model.

The variance matrix of the estimates is found from the Hessian of the log-likelihood, and so may
only be a rough guide, especially for fits close to the boundary of invertibility.

Optimization is done byoptim . It will work best if the columns inxreg are roughly scaled to
zero mean and unit variance, but does attempt to estimate suitable scalings.

Finite-history prediction is used. This is only statistically efficient if the MA part of the fit is
invertible, sopredict.arima0 will give a warning for non-invertible MA models.

Value

For arima0 , a list of class"arima0" with components:

coef a vector of AR, MA and regression coefficients,

sigma2 the MLE of the innovations variance.

var.coef the estimated variance matrix of the coefficientscoef .

loglik the maximized log-likelihood (of the differenced data), or the approximation to
it used.

arma A compact form of the specification, as a vector giving the number of AR, MA,
seasonal AR and seasonal MA coefficients, plus the period and the number of
non-seasonal and seasonal differences.

aic the AIC value corresponding to the log-likelihood. Only valid formethod =
"ML" fits.

residuals the fitted innovations.

call the matched call.

series the name of the seriesx .

convergence the value returned byoptim .

n.cond the number of initial observations not used in the fitting.

For predict.arima0 , a time series of predictions, or ifse.fit = TRUE , a list with com-
ponentspred , the predictions, andse , the estimated standard errors. Both components are time
series.

Fitting methods

The exact likelihood is computed via a state-space representation of the ARMA process, and the
innovations and their variance found by a Kalman filter based on Gardneret al. (1980). This has the
option to switch to ‘fast recursions’ (assume an effectively infinite past) if the innovations variance
is close enough to its asymptotic bound. The argumentdelta sets the tolerance: at its default
value the approximation is normally negligible and the speed-up considerable. Exact computations
can be ensured by settingdelta to a negative value.

arima0 941

If transform.pars is true, the optimization is done using an alternative parametrization which
is a variation on that suggested by Jones (1980) and ensures that the model is stationary. For
an AR(p) model the parametrization is via the inverse tanh of the partial autocorrelations: the
same procedure is applied (separately) to the AR and seasonal AR terms. The MA terms are also
constrained to be invertible during optimization by the same transformation iftransform.pars
is true. Note that the MLE for MA terms does sometimes occur for MA polynomials with unit
roots: such models can be fitted by usingtransform.pars = FALSE and specifying a good
set of initial values (often obtainable from a fit withtransform.pars = TRUE).

As from R 1.5.0 missing values are allowed, but any missing values will forcedelta to be ig-
nored and full recursions used. Note that missing values will be propagated by differencing, so the
procedure used in this function is not fully efficient in that case.

Conditional sum-of-squares is provided mainly for expositional purposes. This computes the sum
of squares of the fitted innovations from observationn.cond on, (wheren.cond is at least the
maximum lag of an AR term), treating all earlier innovations to be zero. Argumentn.cond can
be used to allow comparability between different fits. The ‘part log-likelihood’ is the first term,
half the log of the estimated mean square. Missing values are allowed, but will cause many of the
innovations to be missing.

When regressors are specified, they are orthogonalized prior to fitting unless any of the coefficients
is fixed. It can be helpful to roughly scale the regressors to zero mean and unit variance.

Note

This is a preliminary version, and will be replaced byarima .

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA model and
the regression coefficients.

The results are likely to be different from S-PLUS’sarima.mle , which computes a conditional
likelihood and does not include a mean in the model. Further, the convention used byarima.mle
reverses the signs of the MA coefficients.

References

Brockwell, P. J. and Davis, R. A. (1996)Introduction to Time Series and Forecasting.Springer,
New York. Sections 3.3 and 8.3.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm for exact
maximum likelihood estimation of autoregressive-moving average models by means of Kalman
filtering. Applied Statistics29, 311–322.

Harvey, A. C. (1993)Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes.Applied Statistics31, 180–187.

Jones, R. H. (1980) Maximum likelihood fitting of ARMA models to time series with missing
observations.Technometrics20389–395.

See Also

arima , ar , tsdiag

Examples

Not run: arima0(lh, order = c(1,0,0))
arima0(lh, order = c(3,0,0))
arima0(lh, order = c(1,0,1))

942 ARMAacf

predict(arima0(lh, order = c(3,0,0)), n.ahead = 12)

arima0(lh, order = c(3,0,0), method = "CSS")

for a model with as few years as this, we want full ML
(fit <- arima0(USAccDeaths, order = c(0,1,1),

seasonal = list(order=c(0,1,1)), delta = -1))
predict(fit, n.ahead = 6)

arima0(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)
Not run:
presidents contains NAs
graphs in example(acf) suggest order 1 or 3
(fit1 <- arima0(presidents, c(1, 0, 0), delta = -1)) # avoid warning
tsdiag(fit1)
(fit3 <- arima0(presidents, c(3, 0, 0), delta = -1)) # smaller AIC
tsdiag(fit3)
End(Not run)

ARMAacf Compute Theoretical ACF for an ARMA Process

Description

Compute the theoretical autocorrelation function or partial autocorrelation function for an ARMA
process.

Usage

ARMAacf(ar = numeric(0), ma = numeric(0), lag.max = r, pacf = FALSE)

Arguments

ar numeric vector of AR coefficients

ma numeric vector of MA coefficients

lag.max integer. Maximum lag required. Defaults tomax(p, q+1) , wherep, q are
the numbers of AR and MA terms respectively.

pacf logical. Should the partial autocorrelations be returned?

Details

The methods used follow Brockwell & Davis (1991, section 3.3). Their equations (3.3.8) are solved
for the autocovariances at lags0, . . . ,max(p, q + 1), and the remaining autocorrelations are given
by a recursive filter.

Value

A vector of (partial) autocorrelations, named by the lags.

References

Brockwell, P. J. and Davis, R. A. (1991)Time Series: Theory and Methods, Second Edition.
Springer.

ARMAtoMA 943

See Also

arima , ARMAtoMA, acf2AR for inverting part ofARMAacf; furtherfilter .

Examples

ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10)

Example from Brockwell & Davis (1991, pp.92-4)
answer 2^(-n) * (32/3 + 8 * n) /(32/3)
n <- 1:10; 2^(-n) * (32/3 + 8 * n) /(32/3)
ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10, pacf = TRUE)
ARMAacf(c(1.0, -0.25), lag.max = 10, pacf = TRUE)

Cov-Matrix of length-7 sub-sample of AR(1) example:
toeplitz(ARMAacf(0.8, lag.max = 7))

ARMAtoMA Convert ARMA Process to Infinite MA Process

Description

Convert ARMA process to infinite MA process.

Usage

ARMAtoMA(ar = numeric(0), ma = numeric(0), lag.max)

Arguments

ar numeric vector of AR coefficients

ma numeric vector of MA coefficients

lag.max Largest MA(Inf) coefficient required.

Value

A vector of coefficients.

References

Brockwell, P. J. and Davis, R. A. (1991)Time Series: Theory and Methods, Second Edition.
Springer.

See Also

arima , ARMAacf.

Examples

ARMAtoMA(c(1.0, -0.25), 1.0, 10)
Example from Brockwell & Davis (1991, p.92)
answer (1 + 3*n)*2^(-n)
n <- 1:10; (1 + 3*n)*2^(-n)

944 as.hclust

as.hclust Convert Objects to Class hclust

Description

Converts objects from other hierarchical clustering functions to class"hclust" .

Usage

as.hclust(x, ...)

Arguments

x Hierarchical clustering object

... further arguments passed to or from other methods.

Details

Currently there is only support for converting objects of class"twins" as produced by the func-
tions diana andagnes from the packagecluster. The default method throws an error unless
passed an"hclust" object.

Value

An object of class"hclust" .

See Also

hclust , diana , agnes

Examples

x <- matrix(rnorm(30), ncol=3)
hc <- hclust(dist(x), method="complete")

if(require(cluster, quietly=TRUE)) {# is a recommended package
ag <- agnes(x, method="complete")
hcag <- as.hclust(ag)
The dendrograms order slightly differently:
op <- par(mfrow=c(1,2))
plot(hc) ; mtext("hclust", side=1)
plot(hcag); mtext("agnes", side=1)

}

asOneSidedFormula 945

asOneSidedFormula Convert to One-Sided Formula

Description

Names, expressions, numeric values, and character strings are converted to one-sided formulae. If
object is a formula, it must be one-sided, in which case it is returned unaltered.

Usage

asOneSidedFormula(object)

Arguments

object a one-sided formula, an expression, a numeric value, or a character string.

Value

a one-sided formula representingobject

Author(s)

Jose Pinheiro and Douglas Bates

See Also

formula

Examples

asOneSidedFormula("age")
asOneSidedFormula(~ age)

ave Group Averages Over Level Combinations of Factors

Description

Subsets ofx[] are averaged, where each subset consist of those observations with the same factor
levels.

Usage

ave(x, ..., FUN = mean)

Arguments

x A numeric.

... Grouping variables, typically factors, all of the samelength asx .

FUN Function to apply for each factor level combination.

946 bandwidth

Value

A numeric vector, sayy of length length(x) . If ... is g1,g2 , e.g., y[i] is equal to
FUN(x[j] , for all j with g1[j] == g1[i] andg2[j] == g2[i]) .

See Also

mean, median .

Examples

require(graphics)

ave(1:3)# no grouping -> grand mean

attach(warpbreaks)
ave(breaks, wool)
ave(breaks, tension)
ave(breaks, tension, FUN = function(x)mean(x, trim=.1))
plot(breaks, main =

"ave(Warpbreaks) for wool x tension combinations")
lines(ave(breaks, wool, tension), type='s', col = "blue")
lines(ave(breaks, wool, tension, FUN=median), type='s', col = "green")
legend(40,70, c("mean","median"), lty=1,col=c("blue","green"), bg="gray90")
detach()

bandwidth Bandwidth Selectors for Kernel Density Estimation

Description

Bandwidth selectors for gaussian windows indensity .

Usage

bw.nrd0(x)

bw.nrd(x)

bw.ucv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax)

bw.bcv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax)

bw.SJ(x, nb = 1000, lower = 0.1 * hmax, upper = hmax,
method = c("ste", "dpi"))

Arguments

x A data vector.

nb number of bins to use.

lower, upper Range over which to minimize. The default is almost always satisfactory.hmax
is calculated internally from a normal reference bandwidth.

method Either"ste" ("solve-the-equation") or"dpi" ("direct plug-in").

bandwidth 947

Details

bw.nrd0 implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density
estimator. It defaults to 0.9 times the minimum of the standard deviation and the interquartile range
divided by 1.34 times the sample size to the negative one-fifth power (= Silverman’s ‘rule of thumb’,
Silverman (1986, page 48, eqn (3.31))unlessthe quartiles coincide when a positive result will be
guaranteed.

bw.nrd is the more common variation given by Scott (1992), using factor 1.06.

bw.ucv andbw.bcv implement unbiased and biased cross-validation respectively.

bw.SJ implements the methods of Sheather & Jones (1991) to select the bandwidth using pilot
estimation of derivatives.
The algorithm solves an equation (viauniroot) and because of that, enlarges the interval
c(lower,upper) when the boundaries were not user-specified and do not bracket the root.

Value

A bandwidth on a scale suitable for thebw argument ofdensity .

References

Scott, D. W. (1992)Multivariate Density Estimation: Theory, Practice, and Visualization.Wiley.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation.Journal of the Royal Statistical Society series B, 53, 683–690.

Silverman, B. W. (1986)Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S. Springer.

See Also

density .

bandwidth.nrd , ucv , bcv and width.SJ in packageMASS, which are all scaled to the
width argument ofdensity and so give answers four times as large.

Examples

require(graphics)

plot(density(precip, n = 1000))
rug(precip)
lines(density(precip, bw="nrd"), col = 2)
lines(density(precip, bw="ucv"), col = 3)
lines(density(precip, bw="bcv"), col = 4)
lines(density(precip, bw="SJ-ste"), col = 5)
lines(density(precip, bw="SJ-dpi"), col = 6)
legend(55, 0.035,

legend = c("nrd0", "nrd", "ucv", "bcv", "SJ-ste", "SJ-dpi"),
col = 1:6, lty = 1)

948 bartlett.test

bartlett.test Bartlett Test of Homogeneity of Variances

Description

Performs Bartlett’s test of the null that the variances in each of the groups (samples) are the same.

Usage

bartlett.test(x, ...)

Default S3 method:
bartlett.test(x, g, ...)

S3 method for class 'formula':
bartlett.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors representing the
respective samples, or fitted linear model objects (inheriting from class"lm").

g a vector or factor object giving the group for the corresponding elements ofx .
Ignored ifx is a list.

formula a formula of the formlhs ~ rhs wherelhs gives the data values andrhs
the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

Details

If x is a list, its elements are taken as the samples or fitted linear models to be compared for
homogeneity of variances. In this case, the elements must either all be numeric data vectors or
fitted linear model objects,g is ignored, and one can simply usebartlett.test(x) to perform
the test. If the samples are not yet contained in a list, usebartlett.test(list(x, ...)) .

Otherwise,x must be a numeric data vector, andg must be a vector or factor object of the same
length asx giving the group for the corresponding elements ofx .

Value

A list of class"htest" containing the following components:

statistic Bartlett’s K-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

Beta 949

p.value the p-value of the test.

method the character string "Bartlett test of homogeneity of
variances" .

data.name a character string giving the names of the data.

References

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests.Proceedings of the Royal
Society of London Series A160, 268–282.

See Also

var.test for the special case of comparing variances in two samples from normal distributions;
fligner.test for a rank-based (nonparametric)k-sample test for homogeneity of variances;
ansari.test andmood.test for two rank based two-sample tests for difference in scale.

Examples

require(graphics)

plot(count ~ spray, data = InsectSprays)
bartlett.test(InsectSprays$count, InsectSprays$spray)
bartlett.test(count ~ spray, data = InsectSprays)

Beta The Beta Distribution

Description

Density, distribution function, quantile function and random generation for the Beta distribution
with parametersshape1 andshape2 (and optional non-centrality parameterncp).

Usage

dbeta(x, shape1, shape2, ncp = 0, log = FALSE)
pbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qbeta(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rbeta(n, shape1, shape2, ncp = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

shape1, shape2
positive parameters of the Beta distribution.

ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

950 Beta

Details

The Beta distribution with parametersshape1 = a andshape2 = b has density

f(x) =
Γ(a+ b)
Γ(a)Γ(b)

xa(1− x)b

for a > 0, b > 0 and0 ≤ x ≤ 1 where the boundary values atx = 0 or x = 1 are defined as by
continuity (as limits).
The mean isa/(a+ b) and the variance isab/((a+ b)2(a+ b+ 1)).

pbeta is closely related to the incomplete beta function. As defined by Abramowitz and Stegun
6.6.1

Bx(a, b) =
∫ x

0

ta−1(1− t)b−1dt,

and 6.6.2Ix(a, b) = Bx(a, b)/B(a, b) whereB(a, b) = B1(a, b) is the Beta function (beta).

Ix(a, b) is pbeta(x,a,b) .

The non-central Beta distribution is defined (Johnson et al, 1995, pp. 502) as the distribution of
X/(X + Y) whereX ∼ χ2

2a(λ) andY ∼ χ2
2b.

Value

dbeta gives the density,pbeta the distribution function,qbeta the quantile function, and
rbeta generates random deviates.

Invalid arguments will result in return valueNaN, with a warning.

Source

The centraldbeta is based on a binomial probability, using code contributed by Catherine Loader
(seedbinom) if either shape parameter is larger than one, otherwise directly from the definition.
The non-central case is based on the derivation as a Poisson mixture of betas (Johnsonet al, 1995,
pp. 502–3).

The centralpbeta uses a C translation of

Didonato, A. and Morris, A., Jr, (1992) Algorithm 708: Significant digit computation of the incom-
plete beta function ratios,ACM Transactions on Mathematical Software, 18, 360–373. (See also
Brown, B. and Lawrence Levy, L. (1994) Certification of algorithm 708: Significant digit compu-
tation of the incomplete beta,ACM Transactions on Mathematical Software, 20, 393–397.)

The non-centralpbeta uses a C translation of

Lenth, R. V. (1987) Algorithm AS226: Computing noncentral beta probabilities.Appl. Statist, 36,
241–244,
incorporating AS R84 (1990),Appl. Statist, 39, 311–2.

qbeta is based on a C translation of

Cran, G. W., K. J. Martin and G. E. Thomas (1977). Remark AS R19 and Algorithm AS 109,
Applied Statistics, 26, 111–114, and subsequent remarks (AS83 and correction).

rbeta is based on a C translation of

R. C. H. Cheng (1978). Generating beta variates with nonintegral shape parameters.Communica-
tions of the ACM, 21, 317–322.

binom.test 951

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Abramowitz, M. and Stegun, I. A. (1972)Handbook of Mathematical Functions.New York: Dover.
Chapter 6: Gamma and Related Functions.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
2, especially chapter 25. Wiley, New York.

See Also

beta for the Beta function, anddgammafor the Gamma distribution.

Examples

x <- seq(0, 1, length=21)
dbeta(x, 1, 1)
pbeta(x, 1, 1)

binom.test Exact Binomial Test

Description

Performs an exact test of a simple null hypothesis about the probability of success in a Bernoulli
experiment.

Usage

binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

Arguments

x number of successes, or a vector of length 2 giving the numbers of successes
and failures, respectively.

n number of trials; ignored ifx has length 2.

p hypothesized probability of success.

alternative indicates the alternative hypothesis and must be one of"two.sided" ,
"greater" or "less" . You can specify just the initial letter.

conf.level confidence level for the returned confidence interval.

Details

Confidence intervals are obtained by a procedure first given in Clopper and Pearson (1934). This
guarantees that the confidence level is at leastconf.level , but in general does not give the
shortest-length confidence intervals.

952 Binomial

Value

A list with class"htest" containing the following components:

statistic the number of successes.

parameter the number of trials.

p.value the p-value of the test.

conf.int a confidence interval for the probability of success.

estimate the estimated probability of success.

null.value the probability of success under the null,p.

alternative a character string describing the alternative hypothesis.

method the character string"Exact binomial test" .

data.name a character string giving the names of the data.

References

Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the
case of the binomial.Biometrika, 26, 404–413.

William J. Conover (1971),Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 97–104.

Myles Hollander & Douglas A. Wolfe (1973),Nonparametric Statistical Methods.New York: John
Wiley & Sons. Pages 15–22.

See Also

prop.test for a general (approximate) test for equal or given proportions.

Examples

Conover (1971), p. 97f.
Under (the assumption of) simple Mendelian inheritance, a cross
between plants of two particular genotypes produces progeny 1/4 of
which are "dwarf" and 3/4 of which are "giant", respectively.
In an experiment to determine if this assumption is reasonable, a
cross results in progeny having 243 dwarf and 682 giant plants.
If "giant" is taken as success, the null hypothesis is that p =
3/4 and the alternative that p != 3/4.
binom.test(c(682, 243), p = 3/4)
binom.test(682, 682 + 243, p = 3/4) # The same.
=> Data are in agreement with the null hypothesis.

Binomial The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial distribution
with parameterssize andprob .

Binomial 953

Usage

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

size number of trials (zero or more).

prob probability of success on each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

The binomial distribution withsize = n andprob = p has density

p(x) =
(
n

x

)
px(1− p)n−x

for x = 0, . . . , n.

If an element ofx is not integer, the result ofdbinom is zero, with a warning.p(x) is computed
using Loader’s algorithm, see the reference below.

The quantile is defined as the smallest valuex such thatF (x) ≥ p, whereF is the distribution
function.

Value

dbinom gives the density,pbinom gives the distribution function,qbinom gives the quantile
function andrbinom generates random deviates.

If size is not an integer,NaNis returned.

Source

For dbinom a saddle-point expansion is used: see

Catherine Loader (2000).Fast and Accurate Computation of Binomial Probabilities; available from
http://www.herine.net/stat/software/dbinom.html .

pbinom usespbeta .

qbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal approxi-
mation, followed by a search.

rbinom (for size < .Machine$integer.max) is based on

Kachitvichyanukul, V. and Schmeiser, B. W. (1988) Binomial random variate generation.Commu-
nications of the ACM, 31, 216–222.

http://www.herine.net/stat/software/dbinom.html

954 biplot

See Also

dnbinom for the negative binomial, anddpois for the Poisson distribution.

Examples

require(graphics)
Compute P(45 < X < 55) for X Binomial(100,0.5)
sum(dbinom(46:54, 100, 0.5))

Using "log = TRUE" for an extended range :
n <- 2000
k <- seq(0, n, by = 20)
plot (k, dbinom(k, n, pi/10, log=TRUE), type='l', ylab="log density",

main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")
lines(k, log(dbinom(k, n, pi/10)), col='red', lwd=2)
extreme points are omitted since dbinom gives 0.
mtext("dbinom(k, log=TRUE)", adj=0)
mtext("extended range", adj=0, line = -1, font=4)
mtext("log(dbinom(k))", col="red", adj=1)

biplot Biplot of Multivariate Data

Description

Plot a biplot on the current graphics device.

Usage

biplot(x, ...)

Default S3 method:
biplot(x, y, var.axes = TRUE, col, cex = rep(par("cex"), 2),

xlabs = NULL, ylabs = NULL, expand = 1,
xlim = NULL, ylim = NULL, arrow.len = 0.1,
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x Thebiplot , a fitted object. Forbiplot.default , the first set of points (a
two-column matrix), usually associated with observations.

y The second set of points (a two-column matrix), usually associated with vari-
ables.

var.axes If TRUEthe second set of points have arrows representing them as (unscaled)
axes.

col A vector of length 2 giving the colours for the first and second set of points
respectively (and the corresponding axes). If a single colour is specified it will be
used for both sets. If missing the default colour is looked for in thepalette : if
there it and the next colour as used, otherwise the first two colours of the palette
are used.

biplot.princomp 955

cex The character expansion factor used for labelling the points. The labels can be
of different sizes for the two sets by supplying a vector of length two.

xlabs A vector of character strings to label the first set of points: the default is to use
the row dimname ofx , or 1:n is the dimname isNULL.

ylabs A vector of character strings to label the second set of points: the default is to
use the row dimname ofy , or 1:n is the dimname isNULL.

expand An expansion factor to apply when plotting the second set of points relative to
the first. This can be used to tweak the scaling of the two sets to a physically
comparable scale.

arrow.len The length of the arrow heads on the axes plotted invar.axes is true. The
arrow head can be suppressed byarrow.len = 0 .

xlim, ylim Limits for the x and y axes in the units of the first set of variables.

main, sub, xlab, ylab, ...
graphical parameters.

Details

A biplot is plot which aims to represent both the observations and variables of a matrix of multivari-
ate data on the same plot. There are many variations on biplots (see the references) and perhaps the
most widely used one is implemented bybiplot.princomp . The functionbiplot.default
merely provides the underlying code to plot two sets of variables on the same figure.

Graphical parameters can also be given tobiplot : the size ofxlabs andylabs is controlled
by cex .

Side Effects

a plot is produced on the current graphics device.

References

K. R. Gabriel (1971). The biplot graphical display of matrices with application to principal compo-
nent analysis.Biometrika58, 453–467.

J.C. Gower and D. J. Hand (1996).Biplots. Chapman & Hall.

See Also

biplot.princomp , also for examples.

biplot.princomp Biplot for Principal Components

Description

Produces a biplot (in the strict sense) from the output ofprincomp or prcomp

956 biplot.princomp

Usage

S3 method for class 'prcomp':
biplot(x, choices = 1:2, scale = 1, pc.biplot = FALSE, ...)

S3 method for class 'princomp':
biplot(x, choices = 1:2, scale = 1, pc.biplot = FALSE, ...)

Arguments

x an object of class"princomp" .

choices length 2 vector specifying the components to plot. Only the default is a biplot in
the strict sense.

scale The variables are scaled bylambda ^ scale and the observations are scaled
by lambda ^ (1-scale) wherelambda are the singular values as com-
puted byprincomp . Normally 0 <= scale <= 1 , and a warning will be
issued if the specifiedscale is outside this range.

pc.biplot If true, use what Gabriel (1971) refers to as a "principal component biplot", with
lambda = 1 and observations scaled up by sqrt(n) and variables scaled down
by sqrt(n). Then inner products between variables approximate covariances and
distances between observations approximate Mahalanobis distance.

... optional arguments to be passed tobiplot.default .

Details

This is a method for the generic functionbiplot . There is considerable confusion over the precise
definitions: those of the original paper, Gabriel (1971), are followed here. Gabriel and Odoroff
(1990) use the same definitions, but their plots actually correspond topc.biplot = TRUE .

Side Effects

a plot is produced on the current graphics device.

References

Gabriel, K. R. (1971). The biplot graphical display of matrices with applications to principal com-
ponent analysis.Biometrika, 58, 453–467.

Gabriel, K. R. and Odoroff, C. L. (1990). Biplots in biomedical research.Statistics in Medicine, 9,
469–485.

See Also

biplot , princomp .

Examples

require(graphics)
biplot(princomp(USArrests))

birthday 957

birthday Probability of coincidences

Description

Computes approximate answers to a generalisedbirthday paradoxproblem. pbirthday com-
putes the probability of a coincidence andqbirthday computes the number of observations
needed to have a specified probability of coincidence.

Usage

qbirthday(prob = 0.5, classes = 365, coincident = 2)
pbirthday(n, classes = 365, coincident = 2)

Arguments

classes How many distinct categories the people could fall into

prob The desired probability of coincidence

n The number of people

coincident The number of people to fall in the same category

Details

The birthday paradox is that a very small number of people, 23, suffices to have a 50-50 chance that
two of them have the same birthday. This function generalises the calculation to probabilities other
than 0.5, numbers of coincident events other than 2, and numbers of classes other than 365.

This formula is approximate, as the example below shows. Forcoincident=2 the exact compu-
tation is straightforward and may be preferable.

Value

qbirthday Number of people needed for a probabilityprob thatk of them have the same
one out ofclasses equiprobable labels.

pbirthday Probability of the specified coincidence

References

Diaconis, P. and Mosteller F. (1989) Methods for studying coincidences. J. American Statistical
Association,84, 853-861.

Examples

require(graphics)

the standard version
qbirthday()

same 4-digit PIN number
qbirthday(classes=10^4)

0.9 probability of three coincident birthdays
qbirthday(coincident=3, prob=0.9)
Chance of 4 coincident birthdays in 150 people

958 Box.test

pbirthday(150,coincident=4)
100 coincident birthdays in 1000 people: *very* rare:
pbirthday(1000, coincident=100)

Accuracy compared to exact calculation
x1<- sapply(10:100, pbirthday)
x2<- 1-sapply(10:100, function(n)prod((365:(365-n+1))/rep(365,n)))
par(mfrow=c(2,2))
plot(x1, x2, xlab="approximate", ylab="exact")
abline(0,1)
plot(x1, x1-x2, xlab="approximate", ylab="error")
abline(h=0)
plot(x1, x2, log="xy", xlab="approximate", ylab="exact")
abline(0,1)
plot(1-x1, 1-x2, log="xy", xlab="approximate", ylab="exact")
abline(0,1)

Box.test Box-Pierce and Ljung-Box Tests

Description

Compute the Box–Pierce or Ljung–Box test statistic for examining the null hypothesis of indepen-
dence in a given time series.

Usage

Box.test(x, lag = 1, type = c("Box-Pierce", "Ljung-Box"))

Arguments

x a numeric vector or univariate time series.

lag the statistic will be based onlag autocorrelation coefficients.

type test to be performed: partial matching is used.

Value

A list with class"htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method a character string indicating which type of test was performed.

data.name a character string giving the name of the data.

Note

Missing values are not handled.

C 959

Author(s)

A. Trapletti

References

Box, G. E. P. and Pierce, D. A. (1970), Distribution of residual correlations in autoregressive-
integrated moving average time series models.Journal of the American Statistical Association, 65,
1509–1526.

Ljung, G. M. and Box, G. E. P. (1978), On a measure of lack of fit in time series models.Biometrika
65, 553–564.

Harvey, A. C. (1993)Time Series Models. 2nd Edition, Harvester Wheatsheaf, NY, pp. 44, 45.

Examples

x <- rnorm (100)
Box.test (x, lag = 1)
Box.test (x, lag = 1, type="Ljung")

C Sets Contrasts for a Factor

Description

Sets the"contrasts" attribute for the factor.

Usage

C(object, contr, how.many, ...)

Arguments

object a factor or ordered factor

contr which contrasts to use. Can be a matrix with one row for each level of the factor
or a suitable function likecontr.poly or a character string giving the name
of the function

how.many the number of contrasts to set, by default one less thannlevels(object) .

... additional arguments for the functioncontr .

Details

For compatibility with S,contr can betreatment , helmert , sum or poly (without quotes)
as shorthand forcontr.treatment and so on.

Value

The factorobject with the"contrasts" attribute set.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical models.Chapter 2 ofStatistical Models in Seds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

960 cancor

See Also

contrasts , contr.sum , etc.

Examples

reset contrasts to defaults
options(contrasts=c("contr.treatment", "contr.poly"))
tens <- with(warpbreaks, C(tension, poly, 1))
attributes(tens)
tension SHOULD be an ordered factor, but as it is not we can use
aov(breaks ~ wool + tens + tension, data=warpbreaks)

show the use of ... The default contrast is contr.treatment here
summary(lm(breaks ~ wool + C(tension, base=2), data=warpbreaks))

following on from help(esoph)
model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +

C(alcgp, , 1), data = esoph, family = binomial())
summary(model3)

cancor Canonical Correlations

Description

Compute the canonical correlations between two data matrices.

Usage

cancor(x, y, xcenter = TRUE, ycenter = TRUE)

Arguments

x numeric matrix (n× p1), containing the x coordinates.

y numeric matrix (n× p2), containing the y coordinates.

xcenter logical or numeric vector of lengthp1, describing any centering to be done on
the x values before the analysis. IfTRUE(default), subtract the column means.
If FALSE, do not adjust the columns. Otherwise, a vector of values to be sub-
tracted from the columns.

ycenter analogous toxcenter , but for the y values.

Details

The canonical correlation analysis seeks linear combinations of they variables which are well ex-
plained by linear combinations of thex variables. The relationship is symmetric as ‘well explained’
is measured by correlations.

case/variable.names 961

Value

A list containing the following components:

cor correlations.

xcoef estimated coefficients for thex variables.

ycoef estimated coefficients for they variables.

xcenter the values used to adjust thex variables.

ycenter the values used to adjust thex variables.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Hotelling H. (1936). Relations between two sets of variables.Biometrika, 28, 321–327.

Seber, G. A. F. (1984).Multivariate Observations. New York: Wiley, p. 506f.

See Also

qr , svd .

Examples

pop <- LifeCycleSavings[, 2:3]
oec <- LifeCycleSavings[, -(2:3)]
cancor(pop, oec)

x <- matrix(rnorm(150), 50, 3)
y <- matrix(rnorm(250), 50, 5)
(cxy <- cancor(x, y))
all(abs(cor(x %*% cxy$xcoef,

y %*% cxy$ycoef)[,1:3] - diag(cxy $ cor)) < 1e-15)
all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15)
all(abs(cor(y %*% cxy$ycoef) - diag(5)) < 1e-15)

case/variable.names
Case and Variable Names of Fitted Models

Description

Simple utilities returning (non-missing) case names, and (non-eliminated) variable names.

Usage

case.names(object, ...)
S3 method for class 'lm':
case.names(object, full = FALSE, ...)

variable.names(object, ...)
S3 method for class 'lm':
variable.names(object, full = FALSE, ...)

962 Cauchy

Arguments

object anR object, typically a fitted model.

full logical; if TRUE, all names (including zero weights, . . .) are returned.

... further arguments passed to or from other methods.

Value

A character vector.

See Also

lm ; further,all.names , all.vars for functions with a similar name but only slightly related
purpose.

Examples

x <- 1:20
y <- x + (x/4 - 2)^3 + rnorm(20, sd=3)
names(y) <- paste("O",x,sep=".")
ww <- rep(1,20); ww[13] <- 0
summary(lmxy <- lm(y ~ x + I(x^2)+I(x^3) + I((x-10)^2),

weights = ww), cor = TRUE)
variable.names(lmxy)
variable.names(lmxy, full= TRUE)# includes the last
case.names(lmxy)
case.names(lmxy, full = TRUE)# includes the 0-weight case

Cauchy The Cauchy Distribution

Description

Density, distribution function, quantile function and random generation for the Cauchy distribution
with location parameterlocation and scale parameterscale .

Usage

dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

location, scale
location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

chisq.test 963

Details

If location or scale are not specified, they assume the default values of0 and1 respectively.

The Cauchy distribution with locationl and scales has density

f(x) =
1
πs

(
1 +

(
x− l

s

)2
)−1

for all x.

Value

dcauchy , pcauchy , andqcauchy are respectively the density, distribution function and quan-
tile function of the Cauchy distribution.rcauchy generates random deviates from the Cauchy.

Source

dcauchy , pcauchy and qcauchy are all calculated from numerically stable versions of the
definitions.

rcauchy uses inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
1, chapter 16. Wiley, New York.

See Also

dt for the t distribution which generalizesdcauchy(*, l = 0, s = 1) .

Examples

dcauchy(-1:4)

chisq.test Pearson’s Chi-squared Test for Count Data

Description

chisq.test performs chi-squared contingency table tests and goodness-of-fit tests.

Usage

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000)

964 chisq.test

Arguments

x a vector or matrix.

y a vector; ignored ifx is a matrix.

correct a logical indicating whether to apply continuity correction when computing the
test statistic for 2x2 tables: one half is subtracted from all|O − E| differences.
No correction is done ifsimulate.p.value = TRUE .

p a vector of probabilities of the same length ofx . An error is given if any entry
of p is negative.

rescale.p a logical scalar; if TRUE thenp is rescaled (if necessary) to sum to 1. If
rescale.p is FALSE, andp does not sum to 1, an error is given.

simulate.p.value
a logical indicating whether to compute p-values by Monte Carlo simulation.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

If x is a matrix with one row or column, or ifx is a vector andy is not given, then agoodness-of-fit
test is performed (x is treated as a one-dimensional contingency table). The entries ofx must be
non-negative integers. In this case, the hypothesis tested is whether the population probabilities
equal those inp, or are all equal ifp is not given.

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional contingency
table. Again, the entries ofx must be non-negative integers. Otherwise,x andy must be vectors
or factors of the same length; incomplete cases are removed, the objects are coerced into factor
objects, and the contingency table is computed from these. Then, Pearson’s chi-squared test of the
null hypothesis that the joint distribution of the cell counts in a 2-dimensional contingency table is
the product of the row and column marginals is performed.

If simulate.p.value is FALSE, the p-value is computed from the asymptotic chi-squared
distribution of the test statistic; continuity correction is only used in the 2-by-2 case (ifcorrect
is TRUE, the default). Otherwise the p-value is computed for a Monte Carlo test (Hope, 1968) with
B replicates.

In the contingency table case simulation is done by random sampling from the set of all contingency
tables with given marginals, and works only if the marginals are strictly positive. (A C translation
of the algorithm of Patefield (1981) is used.) Continuity correction is never used, and the statistic
is quoted without it. Note that this is not the usual sampling situation for the chi-squared test but
rather that for Fisher’s exact test.

In the goodness-of-fit case simulation is done by random sampling from the discrete distribution
specified byp, each sample being of sizen = sum(x) . This simulation is done inRand may be
slow.

Value

A list with class"htest" containing the following components:

statistic the value the chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic,NAif the p-value is computed by Monte Carlo simulation.

p.value the p-value for the test.

method a character string indicating the type of test performed, and whether Monte Carlo
simulation or continuity correction was used.

chisq.test 965

data.name a character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.

residuals the Pearson residuals, (observed - expected) /
sqrt(expected) .

References

Hope, A. C. A. (1968) A simplified Monte Carlo significance test procedure.J. Roy, Statist. Soc. B
30, 582–598.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals.Applied Statistics30, 91–97.

Examples

Not really a good example
chisq.test(InsectSprays$count > 7, InsectSprays$spray)

Prints test summary
chisq.test(InsectSprays$count > 7, InsectSprays$spray)$observed

Counts observed
chisq.test(InsectSprays$count > 7, InsectSprays$spray)$expected

Counts expected under the null

Effect of simulating p-values
x <- matrix(c(12, 5, 7, 7), ncol = 2)
chisq.test(x)$p.value # 0.4233
chisq.test(x, simulate.p.value = TRUE, B = 10000)$p.value

around 0.29!

Testing for population probabilities
Case A. Tabulated data
x <- c(A = 20, B = 15, C = 25)
chisq.test(x)
chisq.test(as.table(x)) # the same
x <- c(89,37,30,28,2)
p <- c(40,20,20,15,5)
try(
chisq.test(x, p = p) # gives an error
)
chisq.test(x, p = p, rescale.p = TRUE)

works
p <- c(0.40,0.20,0.20,0.19,0.01)

Expected count in category 5
is 1.86 < 5 ==> chi square approx.

chisq.test(x, p = p) # maybe doubtful, but is ok!
chisq.test(x, p = p,simulate.p.value = TRUE)

Case B. Raw data
x <- trunc(5 * runif(100))
chisq.test(table(x)) # NOT 'chisq.test(x)'!

966 Chisquare

Chisquare The (non-central) Chi-Squared Distribution

Description

Density, distribution function, quantile function and random generation for the chi-squared (χ2)
distribution withdf degrees of freedom and optional non-centrality parameterncp .

Usage

dchisq(x, df, ncp=0, log = FALSE)
pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp=0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

df degrees of freedom (non-negative, but can be non-integer).

ncp non-centrality parameter (non-negative).

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

The chi-squared distribution withdf = n ≥ 0 degrees of freedom has density

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

for x > 0. The mean and variance aren and2n.

The non-central chi-squared distribution withdf = n degrees of freedom and non-centrality param-
eterncp = λ has density

f(x) = e−λ/2
∞∑

r=0

(λ/2)r

r!
fn+2r(x)

for x ≥ 0. For integern, this is the distribution of the sum of squares ofn normals each with
variance one,λ being the sum of squares of the normal means; further,
E(X) = n+ λ, V ar(X) = 2(n+ 2 ∗ λ), andE((X − E(X))3) = 8(n+ 3 ∗ λ).

Note that the degrees of freedomdf = n, can be non-integer, and evenn = 0, which is relevant for
non-centralityλ > 0, see Johnson et al. (1995, chapter 29).

Note thatncp values larger than about 1e5 may give inaccurate results with many warnings for
pchisq andqchisq .

Chisquare 967

Value

dchisq gives the density,pchisq gives the distribution function,qchisq gives the quantile
function, andrchisq generates random deviates.

Invalid arguments will result in return valueNaN, with a warning.

Source

The central cases are computed via the gamma distribution.

The non-centraldchisq andrchisq are computed as a Poisson mixture central of chi-squares
(Johnson et al, 1995, p.436).

The non-centralpchisq is for ncp < 80 computed from the Poisson mixture of central chi-
squares and for largerncp based on a C translation of

Ding, C. G. (1992) Algorithm AS275: Computing the non-central chi-squared distribution function.
Appl.Statist., 41478–482.

which computes the lower tail only (so the upper tail suffers from cancellation).

The non-centralqchisq is based on inversion ofpchisq .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, chapters
18 (volume 1) and 29 (volume 2). Wiley, New York.

See Also

A central chi-squared distribution withn degrees of freedom is the same as a Gamma distribution
with shape α = n/2 andscale σ = 2. Hence, seedgammafor the Gamma distribution.

Examples

require(graphics)

dchisq(1, df=1:3)
pchisq(1, df= 3)
pchisq(1, df= 3, ncp = 0:4)# includes the above

x <- 1:10
Chi-squared(df = 2) is a special exponential distribution
all.equal(dchisq(x, df=2), dexp(x, 1/2))
all.equal(pchisq(x, df=2), pexp(x, 1/2))

non-central RNG -- df=0 is ok for ncp > 0: Z0 has point mass at 0!
Z0 <- rchisq(100, df = 0, ncp = 2.)
graphics::stem(Z0)

Not run:
visual testing
do P-P plots for 1000 points at various degrees of freedom
L <- 1.2; n <- 1000; pp <- ppoints(n)
op <- par(mfrow = c(3,3), mar= c(3,3,1,1)+.1, mgp= c(1.5,.6,0),

oma = c(0,0,3,0))

968 clearNames

for(df in 2^(4*rnorm(9))) {
plot(pp, sort(pchisq(rr <- rchisq(n,df=df, ncp=L), df=df, ncp=L)),

ylab="pchisq(rchisq(.),.)", pch=".")
mtext(paste("df = ",formatC(df, digits = 4)), line= -2, adj=0.05)
abline(0,1,col=2)

}
mtext(expression("P-P plots : Noncentral "*

chi^2 *"(n=1000, df=X, ncp= 1.2)"),
cex = 1.5, font = 2, outer=TRUE)

par(op)
End(Not run)

"analytical" test
lam <- seq(0,100, by=.25)
p00 <- pchisq(0, df=0, ncp=lam)
p.0 <- pchisq(1e-300, df=0, ncp=lam)
stopifnot(all.equal(p00, exp(-lam/2)),

all.equal(p.0, exp(-lam/2)))

clearNames Remove the Names from an Object

Description

This function sets thenames attribute ofobject to NULLand returns the object.

Usage

clearNames(object)

Arguments

object an object that may have anames attribute

Value

An object similar toobject but without names.

Author(s)

Douglas Bates and Saikat DebRoy

See Also

setNames

Examples

lapply(women, mean) # has a names attribute
clearNames(lapply(women, mean)) # removes the names

cmdscale 969

cmdscale Classical (Metric) Multidimensional Scaling

Description

Classical multidimensional scaling of a data matrix. Also known asprincipal coordinates analysis
(Gower, 1966).

Usage

cmdscale(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE)

Arguments

d a distance structure such as that returned bydist or a full symmetric matrix
containing the dissimilarities.

k the dimension of the space which the data are to be represented in; must be in
{1, 2, . . . , n− 1}.

eig indicates whether eigenvalues should be returned.

add logical indicating if an additive constantc∗ should be computed, and added to
the non-diagonal dissimilarities such that alln−1 eigenvalues are non-negative.

x.ret indicates whether the doubly centred symmetric distance matrix should be re-
turned.

Details

Multidimensional scaling takes a set of dissimilarities and returns a set of points such that the
distances between the points are approximately equal to the dissimilarities.

The functionsisoMDS andsammonin packageMASS provide alternative ordination techniques.

Whenadd = TRUE, an additive constantc∗ is computed, and the dissimilaritiesdij + c∗ are used
instead of the originaldij ’s.

Whereas S (Beckeret al., 1988) computes this constant using an approximation suggested by Torg-
erson,R uses the analytical solution of Cailliez (1983), see also Cox and Cox (1994).

Value

If eig = FALSE andx.ret = FALSE (default), a matrix withk columns whose rows give the
coordinates of the points chosen to represent the dissimilarities.

Otherwise, a list containing the following components.

points a matrix withk columns whose rows give the coordinates of the points chosen
to represent the dissimilarities.

eig then− 1 eigenvalues computed during the scaling process ifeig is true.

x the doubly centered distance matrix ifx.ret is true.

GOF a numeric vector of length 2, equal to say(g1, g2), where gi =
(
∑k

j=1 λj)/(
∑n

j=1 Ti(λj)), whereλj are the eigenvalues (sorted decreasingly),
T1(v) = |v|, andT2(v) = max(v, 0).

970 coef

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Cailliez, F. (1983) The analytical solution of the additive constant problem.Psychometrika48,
343–349.

Cox, T. F. and Cox, M. A. A. (1994)Multidimensional Scaling. Chapman and Hall.

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate
analysis.Biometrika53, 325–328.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 ofMultivariate Analysis, London:
Academic Press.

Seber, G. A. F. (1984).Multivariate Observations. New York: Wiley.

Torgerson, W. S. (1958).Theory and Methods of Scaling. New York: Wiley.

See Also

dist . Also isoMDS andsammonin packageMASS.

Examples

require(graphics)

loc <- cmdscale(eurodist)
x <- loc[,1]
y <- -loc[,2]
plot(x, y, type="n", xlab="", ylab="", main="cmdscale(eurodist)")
text(x, y, rownames(loc), cex=0.8)

cmdsE <- cmdscale(eurodist, k=20, add = TRUE, eig = TRUE, x.ret = TRUE)
utils::str(cmdsE)

coef Extract Model Coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by modeling
functions.coefficients is analias for it.

Usage

coef(object, ...)
coefficients(object, ...)

Arguments

object an object for which the extraction of model coefficients is meaningful.

... other arguments.

complete.cases 971

Details

All object classes which are returned by model fitting functions should provide acoef method or
use the default one. (Note that the method is forcoef and notcoefficients .)

Class"aov" has acoef method that does not report aliased coefficients (seealias).

Value

Coefficients extracted from the model objectobject .

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

fitted.values andresiduals for related methods;glm , lm for model fitting.

Examples

x <- 1:5; coef(lm(c(1:3,7,6) ~ x))

complete.cases Find Complete Cases

Description

Return a logical vector indicating which cases are complete, i.e., have no missing values.

Usage

complete.cases(...)

Arguments

... a sequence of vectors, matrices and data frames.

Value

A logical vector specifying which observations/rows have no missing values across the entire se-
quence.

See Also

is.na , na.omit , na.fail .

972 confint

Examples

x <- airquality[, -1] # x is a regression design matrix
y <- airquality[, 1] # y is the corresponding response

stopifnot(complete.cases(y) != is.na(y))
ok <- complete.cases(x,y)
sum(!ok) # how many are not "ok" ?
x <- x[ok,]
y <- y[ok]

confint Confidence Intervals for Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted model. There is a default and
a method for objects inheriting from class" lm " .

Usage

confint(object, parm, level = 0.95, ...)

Arguments

object a fitted model object.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

... additional argument(s) for methods.

Details

confint is a generic function. The default method assumes asymptotic normality, and needs
suitablecoef andvcov methods to be available. The default method can be called directly for
comparison with other methods.

For objects of class"lm" the direct formulae based ont values are used.

There are stub methods for classes"glm" and"nls" which invoke those in packageMASS which
are based on profile likelihoods.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%).

See Also

confint.glm andconfint.nls in packageMASS.

constrOptim 973

Examples

fit <- lm(100/mpg ~ disp + hp + wt + am, data=mtcars)
confint(fit)
confint(fit, "wt")

from example(glm) (needs MASS to be present on the system)
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9); treatment <- gl(3,3)
glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
confint(glm.D93)
confint.default(glm.D93) # based on asymptotic normality

constrOptim Linearly constrained optimisation

Description

Minimise a function subject to linear inequality constraints using an adaptive barrier algorithm.

Usage

constrOptim(theta, f, grad, ui, ci, mu = 1e-04, control = list(),
method = if(is.null(grad)) "Nelder-Mead" else "BFGS",
outer.iterations = 100, outer.eps = 1e-05, ...)

Arguments

theta Starting value: must be in the feasible region.

f Function to minimise (see below).

grad Gradient off , or NULL(see below).

ui Constraints (see below).

ci Constraints (see below).

mu (Small) tuning parameter.

control Passed tooptim .

method Passed tooptim .
outer.iterations

Iterations of the barrier algorithm.

outer.eps Criterion for relative convergence of the barrier algorithm.

... Other arguments passed tooptim , which will pass them tof andgrad if it
does not use them.

Details

The feasible region is defined byui %*% theta - ci >= 0 . The starting value must be in
the interior of the feasible region, but the minimum may be on the boundary.

A logarithmic barrier is added to enforce the constraints and thenoptim is called. The barrier
function is chosen so that the objective function should decrease at each outer iteration. Minima
in the interior of the feasible region are typically found quite quickly, but a substantial number of
outer iterations may be needed for a minimum on the boundary.

974 constrOptim

The tuning parametermumultiplies the barrier term. Its precise value is often relatively unimpor-
tant. Asmu increases the augmented objective function becomes closer to the original objective
function but also less smooth near the boundary of the feasible region.

Any optim method that permits infinite values for the objective function may be used (currently
all but "L-BFGS-B").

The objective functionf takes as first argument the vector of parameters over which minimisation
is to take place. It should return a scalar result. Optional arguments... will be passed tooptim
and then (if not used byoptim) to f . As withoptim , the default is to minimise, but maximisation
can be performed by settingcontrol$fnscale to a negative value.

The gradient functiongrad must be supplied except withmethod="Nelder-Mead" . It should
take arguments matching those off and return a vector containing the gradient.

Value

As for optim , but with two extra components:barrier.value giving the value of the barrier
function at the optimum andouter.iterations gives the number of outer iterations (calls to
optim)

References

K. LangeNumerical Analysis for Statisticians.Springer 2001, p185ff

See Also

optim , especiallymethod="L-BFGS-B" which does box-constrained optimisation.

Examples

from optim
fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}

optim(c(-1.2,1), fr, grr)
#Box-constraint, optimum on the boundary
constrOptim(c(-1.2,0.9), fr, grr, ui=rbind(c(-1,0),c(0,-1)), ci=c(-1,-1))
x<=0.9, y-x>0.1
constrOptim(c(.5,0), fr, grr, ui=rbind(c(-1,0),c(1,-1)), ci=c(-0.9,0.1))

Solves linear and quadratic programming problems
but needs a feasible starting value
#
from example(solve.QP) in 'quadprog'
no derivative
fQP <- function(b) {-sum(c(0,5,0)*b)+0.5*sum(b*b)}
Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
bvec <- c(-8,2,0)

contrast 975

constrOptim(c(2,-1,-1), fQP, NULL, ui=t(Amat),ci=bvec)
derivative
gQP <- function(b) {-c(0,5,0)+b}
constrOptim(c(2,-1,-1), fQP, gQP, ui=t(Amat), ci=bvec)

Now with maximisation instead of minimisation
hQP <- function(b) {sum(c(0,5,0)*b)-0.5*sum(b*b)}
constrOptim(c(2,-1,-1), hQP, NULL, ui=t(Amat), ci=bvec,

control=list(fnscale=-1))

contrast Contrast Matrices

Description

Return a matrix of contrasts.

Usage

contr.helmert(n, contrasts = TRUE)
contr.poly(n, scores = 1:n, contrasts = TRUE)
contr.sum(n, contrasts = TRUE)
contr.treatment(n, base = 1, contrasts = TRUE)
contr.SAS(n, contrasts = TRUE)

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

scores the set of values over which orthogonal polynomials are to be computed.

base an integer specifying which group is considered the baseline group. Ignored if
contrasts is FALSE.

Details

These functions are used for creating contrast matrices for use in fitting analysis of variance and
regression models. The columns of the resulting matrices contain contrasts which can be used
for coding a factor withn levels. The returned value contains the computed contrasts. If the
argumentcontrasts is FALSEa square indicator matrix (the dummy coding) is returnedexcept
for contr.poly (which include the 0-degree, i.e. constant, polynomial whencontrasts =
FALSE).

cont.helmert returns Helmert contrasts, which contrast the second level with the first, the third
with the average of the first two, and so on.contr.poly returns contrasts based on orthogonal
polynomials.contr.sum uses ‘sum to zero contrasts’.

contr.treatment contrasts each level with the baseline level (specified bybase): the baseline
level is omitted. Note that this does not produce ‘contrasts’ as defined in the standard theory for
linear models as they are not orthogonal to the intercept.

contr.SAS is a wrapper forcontr.treatment that sets the base level to be the last level
of the factor. The coefficients produced when using these contrasts should be equivalent to those
produced by many (but not all) SAS procedures.

976 contrasts

Value

A matrix with n rows andk columns, with k=n-1 if contrasts is TRUE and k=n if
contrasts is FALSE.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical models.Chapter 2 ofStatistical Models in Seds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts , C, andaov , glm , lm .

Examples

(cH <- contr.helmert(4))
apply(cH, 2,sum) # column sums are 0!
crossprod(cH) # diagonal -- columns are orthogonal
contr.helmert(4, contrasts = FALSE) # just the 4 x 4 identity matrix

(cT <- contr.treatment(5))
all(crossprod(cT) == diag(4)) # TRUE: even orthonormal

(cT. <- contr.SAS(5))
all(crossprod(cT.) == diag(4))# TRUE

(cP <- contr.poly(3)) # Linear and Quadratic
zapsmall(crossprod(cP), digits=15) # orthonormal up to fuzz

contrasts Get and Set Contrast Matrices

Description

Set and view the contrasts associated with a factor.

Usage

contrasts(x, contrasts = TRUE)
contrasts(x, how.many) <- value

Arguments

x a factor or a logical variable.

contrasts logical. See ‘Details’.

how.many How many contrasts should be made. Defaults to one less than the number of
levels ofx . This need not be the same as the number of columns ofctr .

value either a numeric matrix whose columns give coefficients for contrasts in the
levels ofx , or the (quoted) name of a function which computes such matrices.

convolve 977

Details

If contrasts are not set for a factor the default functions fromoptions ("contrasts") are used.

A logical vectorx is converted into a two-level factor with levelsc(FALSE, TRUE) (regardless
of which levels occur in the variable).

The argumentcontrasts is ignored ifx has a matrixcontrasts attribute set. Otherwise if
contrasts = TRUE it is passed to a contrasts function such ascontr.treatment and if
contrasts = FALSE an identity matrix is returned.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical models.Chapter 2 ofStatistical Models in Seds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

C, contr.helmert , contr.poly , contr.sum , contr.treatment ; glm , aov , lm .

Examples

utils::example(factor)
fff <- ff[, drop=TRUE] # reduce to 5 levels.
contrasts(fff) # treatment contrasts by default
contrasts(C(fff, sum))
contrasts(fff, contrasts = FALSE) # the 5x5 identity matrix

contrasts(fff) <- contr.sum(5); contrasts(fff) # set sum contrasts
contrasts(fff, 2) <- contr.sum(5); contrasts(fff) # set 2 contrasts
supply 2 contrasts, compute 2 more to make full set of 4.
contrasts(fff) <- contr.sum(5)[,1:2]; contrasts(fff)

convolve Fast Convolution

Description

Use the Fast Fourier Transform to compute the several kinds of convolutions of two sequences.

Usage

convolve(x, y, conj = TRUE, type = c("circular", "open", "filter"))

Arguments

x,y numeric sequencesof the same lengthto be convolved.

conj logical; if TRUE, take the complexconjugatebefore back-transforming (default,
and used for usual convolution).

type character; one of"circular" , "open" , "filter" (beginning of word is
ok). Forcircular , the two sequences are treated ascircular, i.e., periodic.
For open andfilter , the sequences are padded with0s (from left and right)
first; "filter" returns the middle sub-vector of"open" , namely, the result
of running a weighted mean ofx with weightsy .

978 convolve

Details

The Fast Fourier Transform,fft , is used for efficiency.

The input sequencesx andy must have the same length ifcircular is true.

Note that the usual definition of convolution of two sequencesx andy is given byconvolve(x,
rev(y), type = "o") .

Value

If r <- convolve(x,y, type = "open") and n <- length(x) , m <-
length(y) , then

rk =
∑

i

xk−m+iyi

where the sum is over all valid indicesi, for k = 1, . . . , n+m− 1

If type == "circular" , n = m is required, and the above is true fori, k = 1, . . . , n when
xj := xn+j for j < 1.

References

Brillinger, D. R. (1981)Time Series: Data Analysis and Theory, Second Edition. San Francisco:
Holden-Day.

See Also

fft , nextn , and particularlyfilter (from thestatspackage) which may be more appropriate.

Examples

require(graphics)

x <- c(0,0,0,100,0,0,0)
y <- c(0,0,1, 2 ,1,0,0)/4
zapsmall(convolve(x,y)) # *NOT* what you first thought.
zapsmall(convolve(x, y[3:5], type="f")) # rather
x <- rnorm(50)
y <- rnorm(50)
Circular convolution *has* this symmetry:
all.equal(convolve(x,y, conj = FALSE), rev(convolve(rev(y),x)))

n <- length(x <- -20:24)
y <- (x-10)^2/1000 + rnorm(x)/8

Han <- function(y) # Hanning
convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using convolve(.) for Hanning filters")
lines(x[-c(1 , n)], Han(y), col="red")
lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")

cophenetic 979

cophenetic Cophenetic Distances for a Hierarchical Clustering

Description

Computes the cophenetic distances for a hierarchical clustering.

Usage

cophenetic(x)
Default S3 method:
cophenetic(x)
S3 method for class 'dendrogram':
cophenetic(x)

Arguments

x an R object representing a hierarchical clustering. For the default method, an
object of classhclust or with a method foras.hclust () such asagnes .

Details

The cophenetic distance between two observations that have been clustered is defined to be the
intergroup dissimilarity at which the two observations are first combined into a single cluster. Note
that this distance has many ties and restrictions.

It can be argued that a dendrogram is an appropriate summary of some data if the correlation be-
tween the original distances and the cophenetic distances is high. Otherwise, it should simply be
viewed as the description of the output of the clustering algorithm.

cophenetic is a generic function. Support for classes which represent hierarchical cluster-
ings (total indexed hierarchies) can be added by providing anas.hclust () or, more directly,
acophenetic() method for such a class.

The method for objects of class" dendrogram " requires that all leaves of the dendrogram object
have non-null labels.

Value

An object of classdist .

Author(s)

Robert Gentleman

References

Sneath, P.H.A. and Sokal, R.R. (1973)Numerical Taxonomy: The Principles and Practice of Nu-
merical Classification, p. 278 ff; Freeman, San Francisco.

See Also

dist , hclust

980 cor

Examples

require(graphics)

d1 <- dist(USArrests)
hc <- hclust(d1, "ave")
d2 <- cophenetic(hc)
cor(d1,d2) # 0.7659

Example from Sneath & Sokal, Fig. 5-29, p.279
d0 <- c(1,3.8,4.4,5.1, 4,4.2,5, 2.6,5.3, 5.4)
attributes(d0) <- list(Size = 5, diag=TRUE)
class(d0) <- "dist"
names(d0) <- letters[1:5]
d0
utils::str(upgma <- hclust(d0, method = "average"))
plot(upgma, hang = -1)
#
(d.coph <- cophenetic(upgma))
cor(d0, d.coph) # 0.9911

cor Correlation, Variance and Covariance (Matrices)

Description

var , cov andcor compute the variance ofx and the covariance or correlation ofx andy if these
are vectors. Ifx andy are matrices then the covariances (or correlations) between the columns of
x and the columns ofy are computed.

cov2cor scales a covariance matrix into the corresponding correlation matrixefficiently.

Usage

var(x, y = NULL, na.rm = FALSE, use)

cov(x, y = NULL, use = "all.obs",
method = c("pearson", "kendall", "spearman"))

cor(x, y = NULL, use = "all.obs",
method = c("pearson", "kendall", "spearman"))

cov2cor(V)

Arguments

x a numeric vector, matrix or data frame.

y NULL(default) or a vector, matrix or data frame with compatible dimensions to
x . The default is equivalent toy = x (but more efficient).

na.rm logical. Should missing values be removed?

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be (an abbreviation of) one of the strings
"all.obs" , "complete.obs" or "pairwise.complete.obs" .

cor 981

method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of"pearson" (default),"kendall" , or "spearman" ,
can be abbreviated.

V symmetric numeric matrix, usually positive definite such as a covariance matrix.

Details

For cov andcor one musteithergive a matrix or data frame forx or give bothx andy .

var is just another interface tocov , wherena.rm is used to determine the default foruse when
that is unspecified. Ifna.rm is TRUEthen the complete observations (rows) are used (use =
"complete") to compute the variance. Otherwise (use = "all"), var will give an error if
there are missing values.

If use is "all.obs" , then the presence of missing observations will produce an error. Ifuse
is "complete.obs" then missing values are handled by casewise deletion. Finally, ifuse has
the value"pairwise.complete.obs" then the correlation between each pair of variables is
computed using all complete pairs of observations on those variables. This can result in covariance
or correlation matrices which are not positive semi-definite."pairwise.complete.obs" only
works with the"pearson" method forcov andvar .

The denominatorn − 1 is used which gives an unbiased estimator of the (co)variance for i.i.d.
observations. These functions returnNAwhen there is only one observation (whereas S-PLUS has
been returningNaN), and fail if x has length zero.

Forcor() , if method is "kendall" or "spearman" , Kendall’sτ or Spearman’sρ statistic is
used to estimate a rank-based measure of association. These are more robust and have been recom-
mended if the data do not necessarily come from a bivariate normal distribution.
For cov() , a non-Pearson method is unusual but available for the sake of completeness. Note
that "spearman" basically computescor(R(x), R(y)) (or cov(.,.)) whereR(u) :=
rank(u, na.last="keep") . In the case of missing values, the ranks are calculated depend-
ing on the value ofuse , either based on complete observations, or based on pairwise completeness
with reranking for each pair.

Scaling a covariance matrix into a correlation one can be achieved in many ways, mathematically
most appealing by multiplication with a diagonal matrix from left and right, or more efficiently by
usingsweep(.., FUN = "/") twice. Thecov2cor function is even a bit more efficient, and
provided mostly for didactical reasons.

Value

For r <- cor(*, use = "all.obs") , it is now guaranteed thatall(r <= 1) .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

cor.test for confidence intervals (and tests).

cov.wt for weightedcovariance computation.

sd for standard deviation (vectors).

982 cor.test

Examples

var(1:10)# 9.166667

var(1:5,1:5)# 2.5

Two simple vectors
cor(1:10,2:11)# == 1

Correlation Matrix of Multivariate sample:
(Cl <- cor(longley))
Graphical Correlation Matrix:
symnum(Cl) # highly correlated

Spearman's rho and Kendall's tau
symnum(clS <- cor(longley, method = "spearman"))
symnum(clK <- cor(longley, method = "kendall"))
How much do they differ?
i <- lower.tri(Cl)
cor(cbind(P = Cl[i], S = clS[i], K = clK[i]))

cov2cor() scales a covariance matrix by its diagonal
to become the correlation matrix.
cov2cor # see the function definition {and learn ..}
stopifnot(all.equal(Cl, cov2cor(cov(longley))),

all.equal(cor(longley, method="kendall"),
cov2cor(cov(longley, method="kendall"))))

##--- Missing value treatment:
C1 <- cov(swiss)
range(eigen(C1, only.values=TRUE)$values) # 6.19 1921
swM <- swiss
swM[1,2] <- swM[7,3] <- swM[25,5] <- NA # create 3 "missing"
try(cov(swM)) # Error: missing obs...
C2 <- cov(swM, use = "complete")
range(eigen(C2, only.values=TRUE)$values) # 6.46 1930
C3 <- cov(swM, use = "pairwise")
range(eigen(C3, only.values=TRUE)$values) # 6.19 1938

symnum(cor(swM, method = "kendall", use = "complete"))
Kendall's tau doesn't change much:
symnum(cor(swiss, method = "kendall"))

cor.test Test for Association/Correlation Between Paired Samples

Description

Test for association between paired samples, using one of Pearson’s product moment correlation
coefficient, Kendall’sτ or Spearman’sρ.

Usage

cor.test(x, ...)

cor.test 983

Default S3 method:
cor.test(x, y,

alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"),
exact = NULL, conf.level = 0.95, ...)

S3 method for class 'formula':
cor.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values.x andy must have the same length.

alternative indicates the alternative hypothesis and must be one of"two.sided" ,
"greater" or "less" . You can specify just the initial letter."greater"
corresponds to positive association,"less" to negative association.

method a character string indicating which correlation coefficient is to be used for the
test. One of"pearson" , "kendall" , or "spearman" , can be abbreviated.

exact a logical indicating whether an exact p-value should be computed. Used for
Kendall’s τ and Spearman’sρ. See ‘Details’ for the meaning ofNULL (the
default).

conf.level confidence level for the returned confidence interval. Currently only used for the
Pearson product moment correlation coefficient if there are at least 4 complete
pairs of observations.

formula a formula of the form~ u + v , where each ofu andv are numeric variables
giving the data values for one sample. The samples must be of the same length.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

Details

The three methods each estimate the association between paired samples and compute a test of
the value being zero. They use different measures of association, all in the range[−1, 1] with 0
indicating no association. These are sometimes referred to as tests of nocorrelation, but that term
is often confined to the default method.

If method is "pearson" , the test statistic is based on Pearson’s product moment correlation co-
efficientcor(x, y) and follows a t distribution withlength(x)-2 degrees of freedom if the
samples follow independent normal distributions. If there are at least 4 complete pairs of observa-
tion, an asymptotic confidence interval is given based on Fisher’s Z transform.

If method is "kendall" or "spearman" , Kendall’s τ or Spearman’sρ statistic is used to
estimate a rank-based measure of association. These tests may be used if the data do not necessarily
come from a bivariate normal distribution.

For Kendall’s test, by default (ifexact is NULL), an exact p-value is computed if there are less
than 50 paired samples containing finite values and there are no ties. Otherwise, the test statistic is
the estimate scaled to zero mean and unit variance, and is approximately normally distributed.

For Spearman’s test, p-values are computed using algorithm AS 89.

984 cor.test

Value

A list with class"htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the test statistic in the case that it follows a t distribu-
tion.

p.value the p-value of the test.

estimate the estimated measure of association, with name"cor" , "tau" , or "rho"
corresponding to the method employed.

null.value the value of the association measure under the null hypothesis, always0.

alternative a character string describing the alternative hypothesis.

method a character string indicating how the association was measured.

data.name a character string giving the names of the data.

conf.int a confidence interval for the measure of association. Currently only given for
Pearson’s product moment correlation coefficient in case of at least 4 complete
pairs of observations.

References

D. J. Best & D. E. Roberts (1975), Algorithm AS 89: The Upper Tail Probabilities of Spearman’s
ρ. Applied Statistics, 24, 377–379.

Myles Hollander & Douglas A. Wolfe (1973),Nonparametric Statistical Methods.New York: John
Wiley & Sons. Pages 185–194 (Kendall and Spearman tests).

Examples

Hollander & Wolfe (1973), p. 187f.
Assessment of tuna quality. We compare the Hunter L measure of
lightness to the averages of consumer panel scores (recoded as
integer values from 1 to 6 and averaged over 80 such values) in
9 lots of canned tuna.

x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y <- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

The alternative hypothesis of interest is that the
Hunter L value is positively associated with the panel score.

cor.test(x, y, method = "kendall", alternative = "greater")
=> p=0.05972

cor.test(x, y, method = "kendall", alternative = "greater",
exact = FALSE) # using large sample approximation

=> p=0.04765

Compare this to
cor.test(x, y, method = "spearm", alternative = "g")
cor.test(x, y, alternative = "g")

Formula interface.
require(graphics)
pairs(USJudgeRatings)
cor.test(~ CONT + INTG, data = USJudgeRatings)

cov.wt 985

cov.wt Weighted Covariance Matrices

Description

Returns a list containing estimates of the weighted covariance matrix and the mean of the data, and
optionally of the (weighted) correlation matrix.

Usage

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE,
method = c("unbiased", "ML"))

Arguments

x a matrix or data frame. As usual, rows are observations and columns are vari-
ables.

wt a non-negative and non-zero vector of weights for each observation. Its length
must equal the number of rows ofx .

cor a logical indicating whether the estimated correlation weighted matrix will be
returned as well.

center either a logical or a numeric vector specifying the centers to be used when com-
puting covariances. IfTRUE, the (weighted) mean of each variable is used, if
FALSE, zero is used. Ifcenter is numeric, its length must equal the number
of columns ofx .

method string specifying how the result is scaled, see ‘Details’ below.

Details

By default,method = "unbiased" , The covariance matrix is divided by one minus the sum of
squares of the weights, so if the weights are the default (1/n) the conventional unbiased estimate of
the covariance matrix with divisor(n− 1) is obtained. This differs from the behaviour in S-PLUS
which corresponds tomethod = "ML" and does not divide.

Value

A list containing the following named components:

cov the estimated (weighted) covariance matrix

center an estimate for the center (mean) of the data.

n.obs the number of observations (rows) inx .

wt the weights used in the estimation. Only returned if given as an argument.

cor the estimated correlation matrix. Only returned ifcor is TRUE.

See Also

cov andvar .

986 cpgram

Examples

(xy <- cbind(x = 1:10, y = c(1:3, 8:5, 8:10)))
w1 <- c(0,0,0,1,1,1,1,1,0,0)
cov.wt(xy, wt = w1) # i.e. method = "unbiased"
cov.wt(xy, wt = w1, method = "ML", cor = TRUE)

cpgram Plot Cumulative Periodogram

Description

Plots a cumulative periodogram.

Usage

cpgram(ts, taper = 0.1,
main = paste("Series: ", deparse(substitute(ts))),
ci.col = "blue")

Arguments

ts a univariate time series

taper proportion tapered in forming the periodogram

main main title

ci.col colour for confidence band.

Value

None.

Side Effects

Plots the cumulative periodogram in a square plot.

Note

From packageMASS.

Author(s)

B.D. Ripley

Examples

require(graphics)

par(pty = "s", mfrow = c(1,2))
cpgram(lh)
lh.ar <- ar(lh, order.max = 9)
cpgram(lh.ar$resid, main = "AR(3) fit to lh")

cpgram(ldeaths)

cutree 987

cutree Cut a tree into groups of data

Description

Cuts a tree, e.g., as resulting fromhclust , into several groups either by specifying the desired
number(s) of groups or the cut height(s).

Usage

cutree(tree, k = NULL, h = NULL)

Arguments

tree a tree as produced byhclust . cutree() only expects a list with components
merge , height , andlabels , of appropriate content each.

k an integer scalar or vector with the desired number of groups

h numeric scalar or vector with heights where the tree should be cut.

At least one ofk or h must be specified,k overridesh if both are given.

Value

cutree returns a vector with group memberships ifk orh are scalar, otherwise a matrix with group
memberships is returned where each column corresponds to the elements ofk or h, respectively
(which are also used as column names).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

hclust , dendrogram for cutting trees themselves.

Examples

hc <- hclust(dist(USArrests))

cutree(hc, k=1:5)#k = 1 is trivial
cutree(hc, h=250)

Compare the 2 and 3 grouping:
g24 <- cutree(hc, k = c(2,4))
table(g24[,"2"], g24[,"4"])

988 decompose

decompose Classical Seasonal Decomposition by Moving Averages

Description

Decompose a time series into seasonal, trend and irregular components using moving averages.
Deals with additive or multiplicative seasonal component.

Usage

decompose(x, type = c("additive", "multiplicative"), filter = NULL)

Arguments

x A time series.

type The type of seasonal component.

filter A vector of filter coefficients in reverse time order (as for AR or MA coeffi-
cients), used for filtering out the seasonal component. IfNULL, a moving aver-
age with symmetric window is performed.

Details

The additive model used is:

Y[t] = T[t] + S[t] + e[t]

The multiplicative model used is:

Y[t] = T[t] * S[t] + e[t]

Value

An object of class"decomposed.ts" with following components:

seasonal The seasonal component (i.e., the repeated seasonal figure)

figure The estimated seasonal figure only

trend The trend component

random The remainder part

type The value oftype

Note

The functionstl provides a much more sophisticated decomposition.

Author(s)

David Meyer〈David.Meyer@wu-wien.ac.at〉

See Also

stl

delete.response 989

Examples

require(graphics)

m <- decompose(co2)
m$figure
plot(m)

delete.response Modify Terms Objects

Description

delete.response returns aterms object for the same model but with no response variable.

drop.terms removes variables from the right-hand side of the model. There is also a
"[.terms" method to perform the same function (withkeep.response=TRUE).

reformulate creates a formula from a character vector.

Usage

delete.response(termobj)

reformulate(termlabels, response = NULL)

drop.terms(termobj, dropx = NULL, keep.response = FALSE)

Arguments

termobj A terms object

termlabels character vector giving the right-hand side of a model formula. Cannot be zero-
length.

response character string, symbol or call giving the left-hand side of a model formula, or
NULL.

dropx vector of positions of variables to drop from the right-hand side of the model.

keep.response
Keep the response in the resulting object?

Value

delete.response anddrop.terms return aterms object.

reformulate returns aformula .

See Also

terms

990 dendrapply

Examples

ff <- y ~ z + x + w
tt <- terms(ff)
tt
delete.response(tt)
drop.terms(tt, 2:3, keep.response = TRUE)
tt[-1]
tt[2:3]
reformulate(attr(tt, "term.labels"))

keep LHS :
reformulate("x*w", ff[[2]])
fS <- surv(ft, case) ~ a + b
reformulate(c("a", "b*f"), fS[[2]])

stopifnot(identical(~ var, reformulate("var")),
identical(~ a + b + c, reformulate(letters[1:3])),
identical(y ~ a + b, reformulate(letters[1:2], "y"))

)

dendrapply Apply a Function to All Nodes of a Dendrogram

Description

Apply functionFUNto each node of adendrogram recursively. Wheny <- dendrapply(x,
fn) , theny is a dendrogram of the same graph structure asx and each for each node,y.node[j]
<- FUN(x.node[j], ...) (wherey.node[j] is an (invalid!) notation for the j-th node
of y.

Usage

dendrapply(X, FUN, ...)

Arguments

X an object of class" dendrogram " .

FUN anR function to be applied to each dendrogram node, typically working on its
attributes alone, returning an altered version of the same node.

... potential further arguments passed toFUN.

Value

Usually a dendrogram of the same (graph) structure asX. For that, the function must be conceptually
of the formFUN <- function(X) { attributes(X) <-; X } , i.e. returning
the node with some attributes added or changed.

Note

this is still somewhat experimental, and suggestions for enhancements (or nice examples of usage)
are very welcome.

dendrogram 991

Author(s)

Martin Maechler

See Also

as.dendrogram , lapply for applying a function to each component of alist .

Examples

require(graphics)

a smallish simple dendrogram
dhc <- as.dendrogram(hc <- hclust(dist(USArrests), "ave"))
(dhc21 <- dhc[[2]][[1]])

too simple:
dendrapply(dhc21, function(n) utils::str(attributes(n)))

toy example to set colored leaf labels :
local({

colLab <<- function(n) {
if(is.leaf(n)) {

a <- attributes(n)
i <<- i+1
attr(n, "nodePar") <-

c(a$nodePar, list(lab.col = mycols[i], lab.font= i%%3))
}
n

}
mycols <- grDevices::rainbow(attr(dhc21,"members"))
i <- 0

})
dL <- dendrapply(dhc21, colLab)
op <- par(mfrow=2:1)

plot(dhc21)
plot(dL) ## --> colored labels!

par(op)

dendrogram General Tree Structures

Description

Class"dendrogram" provides general functions for handling tree-like structures. It is intended
as a replacement for similar functions in hierarchical clustering and classification/regression trees,
such that all of these can use the same engine for plotting or cutting trees.

The code is still in testing stage and the API may change in the future.

Usage

as.dendrogram(object, ...)
S3 method for class 'hclust':
as.dendrogram(object, hang = -1, ...)

992 dendrogram

S3 method for class 'dendrogram':
plot(x, type = c("rectangle", "triangle"),

center = FALSE,
edge.root = is.leaf(x) || !is.null(attr(x,"edgetext")),
nodePar = NULL, edgePar = list(),
leaflab = c("perpendicular", "textlike", "none"),
dLeaf = NULL, xlab = "", ylab = "", xaxt = "n", yaxt = "s",
horiz = FALSE, frame.plot = FALSE, ...)

S3 method for class 'dendrogram':
cut(x, h, ...)

S3 method for class 'dendrogram':
print(x, digits, ...)

S3 method for class 'dendrogram':
rev(x)

S3 method for class 'dendrogram':
str(object, max.level = NA, digits.d = 3,

give.attr = FALSE, wid = getOption("width"),
nest.lev = 0, indent.str = "", stem = "--", ...)

is.leaf(object)

Arguments

object anyR object that can be made into one of class"dendrogram" .

x object of class"dendrogram" .

hang numeric scalar indicating how theheightof leaves should be computed from the
heights of their parents; seeplot.hclust .

type type of plot.

center logical; if TRUE, nodes are plotted centered with respect to the leaves in the
branch. Otherwise (default), plot them in the middle of all direct child nodes.

edge.root logical; if true, draw an edge to the root node.

nodePar a list of plotting parameters to use for the nodes (seepoints) or NULL
by default which does not draw symbols at the nodes. The list may contain
components namedpch , cex , col , and/orbg each of which can have length
two for specifying separate attributes forinner nodes andleaves.

edgePar a list of plotting parameters to use for the edgesegments and labels (if
there’s anedgetext). The list may contain components namedcol , lty and
lwd (for the segments),p.col , p.lwd , andp.lty (for thepolygon around
the text) andt.col for the text color. As withnodePar , each can have length
two for differentiating leaves and inner nodes.

leaflab a string specifying how leaves are labeled. The default"perpendicular"
write text vertically (by default).
"textlike" writes text horizontally (in a rectangle), and
"none" suppresses leaf labels.

dLeaf a number specifying thedistance in user coordinates between the tip of a leaf
and its label. IfNULLas per default, 3/4 of a letter width or height is used.

dendrogram 993

horiz logical indicating if the dendrogram should be drawnhorizontallyor not.

frame.plot logical indicating if a box around the plot should be drawn, see
plot.default .

h height at which the tree is cut.
..., xlab, ylab, xaxt, yaxt

graphical parameters, or arguments for other methods.

digits integer specifying the precision for printing, seeprint.default .
max.level, digits.d, give.attr, wid, nest.lev, indent.str

arguments tostr , seestr.default () . Note thatgive.attr = FALSE
still showsheight andmembers attributes for each node.

stem a string used forstr() specifying thestemto use for each dendrogram branch.

Details

Warning: This documentation is preliminary.

The dendrogram is directly represented as a nested list where each component corresponds to a
branch of the tree. Hence, the first branch of treez is z[[1]] , the second branch of the corre-
sponding subtree isz[[1]][[2]] etc.. Each node of the tree carries some information needed for
efficient plotting or cutting as attributes, of which onlymembers, height and leaf for leaves
are compulsory:

members total number of leaves in the branch

height numeric non-negative height at which the node is plotted.

midpoint numeric horizontal distance of the node from the left border (the leftmost leaf) of the
branch (unit 1 between all leaves). This is used forplot(*, center=FALSE) .

label character; the label of the node

x.member for cut()$upper , the number offormer members; more generally a substitute for
the members component used for ‘horizontal’ (whenhoriz = FALSE , else ‘vertical’)
alignment.

edgetext character; the label for the edge leading to the node

nodePar a named list (of length-1 components) specifying node-specific attributes forpoints
plotting, see thenodePar argument above.

edgePar a named list (of length-1 components) specifying attributes forsegments plotting of
the edge leading to the node, and drawing of theedgetext if available, see theedgePar
argument above.

leaf logical, if TRUE, the node is a leaf of the tree.

cut.dendrogram() returns a list with components$upper and$lower , the first is a trun-
cated version of the original tree, also of classdendrogram , the latter a list with the branches
obtained from cutting the tree, each adendrogram .

There are[[, print , andstr methods for"dendrogram" objects where the first one (extrac-
tion) ensures that selecting sub-branches keeps the class.

Objects of class"hclust" can be converted to class"dendrogram" using method
as.dendrogram .

rev.dendrogram simply returns the dendrogramx with reversed nodes, see also
reorder.dendrogram .

is.leaf(object) is logical indicating ifobject is a leaf (the most simple dendrogram).
plotNode() andplotNodeLimit() are helper functions.

994 dendrogram

Warning

Some operations on dendrograms (including plotting) make use of recursion. For very deep trees It
may be necessary to increaseoptions ("expressions") : if you do you are likely to need to
set the C stack size larger than the OS default if possible (which it is not on Windows).

Note

When usingtype = "triangle" , center = TRUE often looks better.

See Also

order.dendrogram also on thelabels method for dendrograms.

Examples

require(graphics); require(utils)

hc <- hclust(dist(USArrests), "ave")
(dend1 <- as.dendrogram(hc)) # "print()" method
str(dend1) # "str()" method
str(dend1, max = 2) # only the first two sub-levels

op <- par(mfrow= c(2,2), mar = c(5,2,1,4))
plot(dend1)
"triangle" type and show inner nodes:
plot(dend1, nodePar=list(pch = c(1,NA), cex=0.8, lab.cex = 0.8),

type = "t", center=TRUE)
plot(dend1, edgePar=list(col = 1:2, lty = 2:3),

dLeaf=1, edge.root = TRUE)
plot(dend1, nodePar=list(pch = 2:1,cex=.4*2:1, col = 2:3),

horiz=TRUE)

dend2 <- cut(dend1, h=70)
plot(dend2$upper)
leafs are wrong horizontally:
plot(dend2$upper, nodePar=list(pch = c(1,7), col = 2:1))
dend2$lower is *NOT* a dendrogram, but a list of .. :
plot(dend2$lower[[3]], nodePar=list(col=4), horiz = TRUE, type = "tr")
"inner" and "leaf" edges in different type & color :
plot(dend2$lower[[2]], nodePar=list(col=1),# non empty list

edgePar = list(lty=1:2, col=2:1), edge.root=TRUE)
par(op)
str(d3 <- dend2$lower[[2]][[2]][[1]])

nP <- list(col=3:2, cex=c(2.0, 0.75), pch= 21:22,
bg= c("light blue", "pink"),
lab.cex = 0.75, lab.col = "tomato")

plot(d3, nodePar= nP, edgePar = list(col="gray", lwd=2), horiz = TRUE)
addE <- function(n) {

if(!is.leaf(n)) {
attr(n, "edgePar") <- list(p.col="plum")
attr(n, "edgetext") <- paste(attr(n,"members"),"members")

}
n

}
d3e <- dendrapply(d3, addE)

density 995

plot(d3e, nodePar= nP)
plot(d3e, nodePar= nP, leaflab = "textlike")

density Kernel Density Estimation

Description

The (S3) generic functiondensity computes kernel density estimates. Its default method does so
with the given kernel and bandwidth for univariate observations.

Usage

density(x, ...)
Default S3 method:
density(x, bw = "nrd0", adjust = 1,

kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight",
"cosine", "optcosine"),

weights = NULL, window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE, ...)

Arguments

x the data from which the estimate is to be computed.

bw the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel. (Note this differs from the reference
books cited below, and from S-PLUS.)

bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd .

The specified (or computed) value ofbw is multiplied byadjust .

adjust the bandwidth used is actuallyadjust*bw . This makes it easy to specify
values like ‘half the default’ bandwidth.

kernel, window
a character string giving the smoothing kernel to be used. This must be one of
"gaussian" , "rectangular" , "triangular" , "epanechnikov" ,
"biweight" , "cosine" or "optcosine" , with default "gaussian" ,
and may be abbreviated to a unique prefix (single letter).

"cosine" is smoother than"optcosine" , which is the usual ‘cosine’ ker-
nel in the literature and almost MSE-efficient. However,"cosine" is the ver-
sion used by S.

weights numeric vector of non-negative observation weights, hence of same length asx .
The defaultNULL is equivalent toweights = rep(1/nx, nx) wherenx
is the length of (the finite entries of)x[] .

width this exists for compatibility with S; if given, andbw is not, will setbw to width
if this is a character string, or to a kernel-dependent multiple ofwidth if this is
numeric.

996 density

give.Rkern logical; if true, no density is estimated, and the ‘canonical bandwidth’ of the
chosenkernel is returned instead.

n the number of equally spaced points at which the density is to be estimated.
Whenn > 512 , it is rounded up to the next power of 2 for efficiency reasons
(fft).

from,to the left and right-most points of the grid at which the density is to be estimated.

cut by default, the values ofleft and right are cut bandwidths beyond the
extremes of the data. This allows the estimated density to drop to approximately
zero at the extremes.

na.rm logical; if TRUE, missing values are removed fromx . If FALSE any missing
values cause an error.

... further arguments for (non-default) methods.

Details

The algorithm used indensity.default disperses the mass of the empirical distribution func-
tion over a regular grid of at least 512 points and then uses the fast Fourier transform to convolve
this approximation with a discretized version of the kernel and then uses linear approximation to
evaluate the density at the specified points.

The statistical properties of a kernel are determined byσ2
K =

∫
t2K(t)dt which is always

= 1 for our kernels (and hence the bandwidthbw is the standard deviation of the kernel) and
R(K) =

∫
K2(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional toσKR(K) which is scale in-
variant and for our kernels equal toR(K). This value is returned whengive.Rkern = TRUE .
See the examples for using exact equivalent bandwidths.

Infinite values inx are assumed to correspond to a point mass at+/-Inf and the density estimate
is of the sub-density on(-Inf, +Inf) .

Value

If give.Rkern is true, the numberR(K), otherwise an object with class"density" whose
underlying structure is a list containing the following components.

x then coordinates of the points where the density is estimated.

y the estimated density values. These will be non-negative, but can be zero.

bw the bandwidth used.

n the sample size after elimination of missing values.

call the call which produced the result.

data.name the deparsed name of thex argument.

has.na logical, for compatibility (alwaysFALSE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole (for S version).

Scott, D. W. (1992)Multivariate Density Estimation. Theory, Practice and Visualization. New
York: Wiley.

Sheather, S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation.J. Roy. Statist. Soc.B, 683–690.

density 997

Silverman, B. W. (1986)Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S. New York: Springer.

See Also

bw.nrd , plot.density , hist .

Examples

require(graphics)

plot(density(c(-20,rep(0,98),20)), xlim = c(-4,4))# IQR = 0

The Old Faithful geyser data
d <- density(faithful$eruptions, bw = "sj")
d
plot(d)

plot(d, type = "n")
polygon(d, col = "wheat")

Missing values:
x <- xx <- faithful$eruptions
x[i.out <- sample(length(x), 10)] <- NA
doR <- density(x, bw = 0.15, na.rm = TRUE)
lines(doR, col = "blue")
points(xx[i.out], rep(0.01, 10))

Weighted observations:
fe <- sort(faithful$eruptions) # has quite a few non-unique values
use 'counts / n' as weights:
dw <- density(unique(fe), weights = table(fe)/length(fe), bw = d$bw)
utils::str(dw) ## smaller n: only 126, but identical estimate:
stopifnot(all.equal(d[1:3], dw[1:3]))

simulation from a density() fit:
a kernel density fit is an equally-weighted mixture.
fit <- density(xx)
N <- 1e6
x.new <- rnorm(N, sample(xx, size = N, replace = TRUE), fit$bw)
plot(fit)
lines(density(x.new), col="blue")

(kernels <- eval(formals(density.default)$kernel))

show the kernels in the R parametrization
plot (density(0, bw = 1), xlab = "",

main="R's density() kernels with bw = 1")
for(i in 2:length(kernels))

lines(density(0, bw = 1, kernel = kernels[i]), col = i)
legend(1.5,.4, legend = kernels, col = seq(kernels),

lty = 1, cex = .8, y.intersp = 1)

show the kernels in the S parametrization
plot(density(0, from=-1.2, to=1.2, width=2, kernel="gaussian"), type="l",

ylim = c(0, 1), xlab="", main="R's density() kernels with width = 1")
for(i in 2:length(kernels))

998 deriv

lines(density(0, width = 2, kernel = kernels[i]), col = i)
legend(0.6, 1.0, legend = kernels, col = seq(kernels), lty = 1)

##-------- Semi-advanced theoretic from here on -------------

(RKs <- cbind(sapply(kernels,
function(k) density(kernel = k, give.Rkern = TRUE))))

100*round(RKs["epanechnikov",]/RKs, 4) ## Efficiencies

bw <- bw.SJ(precip) ## sensible automatic choice
plot(density(precip, bw = bw),

main = "same sd bandwidths, 7 different kernels")
for(i in 2:length(kernels))

lines(density(precip, bw = bw, kernel = kernels[i]), col = i)

Bandwidth Adjustment for "Exactly Equivalent Kernels"
h.f <- sapply(kernels, function(k)density(kernel = k, give.Rkern = TRUE))
(h.f <- (h.f["gaussian"] / h.f)^ .2)
-> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..

plot(density(precip, bw = bw),
main = "equivalent bandwidths, 7 different kernels")

for(i in 2:length(kernels))
lines(density(precip, bw = bw, adjust = h.f[i], kernel = kernels[i]),

col = i)
legend(55, 0.035, legend = kernels, col = seq(kernels), lty = 1)

deriv Symbolic and Algorithmic Derivatives of Simple Expressions

Description

Compute derivatives of simple expressions, symbolically.

Usage

D (expr, name)
deriv(expr, ...)

deriv3(expr, ...)

Default S3 method:
deriv(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = FALSE, ...)
S3 method for class 'formula':
deriv(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = FALSE, ...)

Default S3 method:
deriv3(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = TRUE, ...)
S3 method for class 'formula':
deriv3(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = TRUE, ...)

deriv 999

Arguments

expr A expression or call or (exceptD) a formula with no lhs.

name,namevec character vector, giving the variable names (only one forD()) with respect to
which derivatives will be computed.

function.arg If specified and non-NULL, a character vector of arguments for a function return,
or a function (with empty body) orTRUE, the latter indicating that a function
with argument namesnamevec should be used.

tag character; the prefix to be used for the locally created variables in result.

hessian a logical value indicating whether the second derivatives should be calculated
and incorporated in the return value.

... arguments to tbe passed to or from methods.

Details

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is agenericfunction with a default and aformula method. It returns acall for comput-
ing theexpr and its (partial) derivatives, simultaneously. It uses so-calledalgorithmic derivatives.
If function.arg is a function, its arguments can have default values, see thefx example below.

Currently,deriv.formula just callsderiv.default after extracting the expression to the
right of ~.

deriv3 and its methods are equivalent toderiv and its methods except thathessian defaults
to TRUEfor deriv3 .

The internal code knows about the arithmetic operators+, - , * , / and^ , and the single-variable
functionsexp , log , sin , cos , tan , sinh , cosh , sqrt , pnorm , dnorm , asin , acos , atan ,
gammaandlgamma. (Note that only the standard normal distribution is considered.)

Value

D returns a call and therefore can easily be iterated for higher derivatives.

deriv andderiv3 normally return anexpression object whose evaluation returns the func-
tion values with a"gradient" attribute containing the gradient matrix. Ifhessian is TRUE
the evaluation also returns a"hessian" attribute containing the Hessian array.

If function.arg is not NULL, deriv and deriv3 return a function with those arguments
rather than an expression.

References

Griewank, A. and Corliss, G. F. (1991)Automatic Differentiation of Algorithms: Theory, Implemen-
tation, and Application. SIAM proceedings, Philadelphia.

Bates, D. M. and Chambers, J. M. (1992)Nonlinear models.Chapter 10 ofStatistical Models in S
eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

nlm andoptim for numeric minimization which could make use of derivatives,

1000 deviance

Examples

formula argument :
dx2x <- deriv(~ x^2, "x") ; dx2x
Not run:
expression({

.value <- x^2

.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))

.grad[, "x"] <- 2 * x
attr(.value, "gradient") <- .grad
.value

})
End(Not run)
mode(dx2x)
x <- -1:2
eval(dx2x)

Something 'tougher':
trig.exp <- expression(sin(cos(x + y^2)))
(D.sc <- D(trig.exp, "x"))
all.equal(D(trig.exp[[1]], "x"), D.sc)

(dxy <- deriv(trig.exp, c("x", "y")))
y <- 1
eval(dxy)
eval(D.sc)

function returned:
deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)

function with defaulted arguments:
(fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

function(b0, b1, th, x = 1:7){}))
fx(2,3,4)

Higher derivatives
deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

c("b0", "b1", "th", "x"))

Higher derivatives:
DD <- function(expr,name, order = 1) {

if(order < 1) stop("'order' must be >= 1")
if(order == 1) D(expr,name)
else DD(D(expr, name), name, order - 1)

}
DD(expression(sin(x^2)), "x", 3)
showing the limits of the internal "simplify()" :
Not run:
-sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *

2) * (2 * x) + sin(x^2) * (2 * x) * 2)
End(Not run)

deviance Model Deviance

df.residual 1001

Description

Returns the deviance of a fitted model object.

Usage

deviance(object, ...)

Arguments

object an object for which the deviance is desired.

... additional optional argument.

Details

This is a generic function which can be used to extract deviances for fitted models. Consult the
individual modeling functions for details on how to use this function.

Value

The value of the deviance extracted from the objectobject .

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

df.residual , extractAIC , glm , lm .

df.residual Residual Degrees-of-Freedom

Description

Returns the residual degrees-of-freedom extracted from a fitted model object.

Usage

df.residual(object, ...)

Arguments

object an object for which the degrees-of-freedom are desired.

... additional optional arguments.

Details

This is a generic function which can be used to extract residual degrees-of-freedom for fitted models.
Consult the individual modeling functions for details on how to use this function.

The default method just extracts thedf.residual component.

1002 diffinv

Value

The value of the residual degrees-of-freedom extracted from the objectx .

See Also

deviance , glm , lm .

diffinv Discrete Integration: Inverse of Differencing

Description

Computes the inverse function of the lagged differences functiondiff .

Usage

diffinv(x, ...)

Default S3 method:
diffinv(x, lag = 1, differences = 1, xi, ...)
S3 method for class 'ts':
diffinv(x, lag = 1, differences = 1, xi, ...)

Arguments

x a numeric vector, matrix, or time series.

lag a scalar lag parameter.

differences an integer representing the order of the difference.

xi a numeric vector, matrix, or time series containing the initial values for the inte-
grals. If missing, zeros are used.

... arguments passed to or from other methods.

Details

diffinv is a generic function with methods for class"ts" anddefault for vectors and matri-
ces.

Missing values are not handled.

Value

A numeric vector, matrix, or time series (the latter for the"ts" method) representing the discrete
integral ofx .

Author(s)

A. Trapletti

See Also

diff

dist 1003

Examples

s <- 1:10
d <- diff(s)
diffinv(d, xi = 1)

dist Distance Matrix Computation

Description

This function computes and returns the distance matrix computed by using the specified distance
measure to compute the distances between the rows of a data matrix.

Usage

dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

as.dist(m, diag = FALSE, upper = FALSE)
Default S3 method:
as.dist(m, diag = FALSE, upper = FALSE)

S3 method for class 'dist':
print(x, diag = NULL, upper = NULL,

digits = getOption("digits"), justify = "none",
right = TRUE, ...)

S3 method for class 'dist':
as.matrix(x, ...)

Arguments

x a numeric matrix, data frame or"dist" object.

method the distance measure to be used. This must be one of"euclidean" ,
"maximum" , "manhattan" , "canberra" , "binary" or
"minkowski" . Any unambiguous substring can be given.

diag logical value indicating whether the diagonal of the distance matrix should be
printed byprint.dist .

upper logical value indicating whether the upper triangle of the distance matrix should
be printed byprint.dist .

p The power of the Minkowski distance.

m An object with distance information to be converted to a"dist" object. For
the default method, a"dist" object, or a matrix (of distances) or an object
which can be coerced to such a matrix usingas.matrix () . (Only the lower
triangle of the matrix is used, the rest is ignored).

digits, justify
passed toformat inside ofprint() .

right, ... further arguments, passed to other methods.

1004 dist

Details

Available distance measures are (written for two vectorsx andy):

euclidean : Usual square distance between the two vectors (2 norm).

maximum: Maximum distance between two components ofx andy (supremum norm)

manhattan : Absolute distance between the two vectors (1 norm).

canberra :
∑

i |xi−yi|/|xi +yi|. Terms with zero numerator and denominator are omitted from
the sum and treated as if the values were missing.

binary : (akaasymmetric binary): The vectors are regarded as binary bits, so non-zero elements
are ‘on’ and zero elements are ‘off’. The distance is theproportionof bits in which only one
is on amongst those in which at least one is on.

minkowski : The p norm, thepth root of the sum of thepth powers of the differences of the
components.

Missing values are allowed, and are excluded from all computations involving the rows within
which they occur. Further, whenInf values are involved, all pairs of values are excluded when
their contribution to the distance gaveNaNor NA.
If some columns are excluded in calculating a Euclidean, Manhattan, Canberra or Minkowski dis-
tance, the sum is scaled up proportionally to the number of columns used. If all pairs are excluded
when calculating a particular distance, the value isNA.

The "dist" method ofas.matrix() andas.dist() can be used for conversion between
objects of class"dist" and conventional distance matrices.

as.dist() is a generic function. Its default method handles objects inheriting from class
"dist" , or coercible to matrices usingas.matrix () . Support for classes representing distances
(also known as dissimilarities) can be added by providing anas.matrix () or, more directly, an
as.dist method for such a class.

Value

dist returns an object of class"dist" .

The lower triangle of the distance matrix stored by columns in a vector, saydo . If n is the number of
observations, i.e.,n <- attr(do, "Size") , then fori < j <= n, the dissimilarity between
(row) i and j isdo[n*(i-1) - i*(i-1)/2 + j-i] . The length of the vector isn∗(n−1)/2,
i.e., of ordern2.

The object has the following attributes (besides"class" equal to"dist"):

Size integer, the number of observations in the dataset.

Labels optionally, contains the labels, if any, of the observations of the dataset.

Diag, Upper logicals corresponding to the argumentsdiag andupper above, specifying
how the object should be printed.

call optionally, thecall used to create the object.

method optionally, the distance method used; resulting fromdist () , the
(match.arg () ed)method argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979)Multivariate Analysis.Academic Press.

Borg, I. and Groenen, P. (1997)Modern Multidimensional Scaling. Theory and Applications.
Springer.

dist 1005

See Also

daisy in thecluster package with more possibilities in the case ofmixed(continuous / categorical)
variables.hclust .

Examples

require(graphics)

x <- matrix(rnorm(100), nrow=5)
dist(x)
dist(x, diag = TRUE)
dist(x, upper = TRUE)
m <- as.matrix(dist(x))
d <- as.dist(m)
stopifnot(d == dist(x))

Use correlations between variables "as distance"
dd <- as.dist((1 - cor(USJudgeRatings))/2)
round(1000 * dd) # (prints more nicely)
plot(hclust(dd)) # to see a dendrogram of clustered variables

example of binary and canberra distances.
x <- c(0, 0, 1, 1, 1, 1)
y <- c(1, 0, 1, 1, 0, 1)
dist(rbind(x,y), method= "binary")
answer 0.4 = 2/5
dist(rbind(x,y), method= "canberra")
answer 2 * (6/5)

To find the names
labels(eurodist)

Examples involving "Inf" :
1)
x[6] <- Inf
(m2 <- rbind(x,y))
dist(m2, method="binary")# warning, answer 0.5 = 2/4
These all give "Inf":
stopifnot(Inf == dist(m2, method= "euclidean"),

Inf == dist(m2, method= "maximum"),
Inf == dist(m2, method= "manhattan"))

"Inf" is same as very large number:
x1 <- x; x1[6] <- 1e100
stopifnot(dist(cbind(x ,y), method="canberra") ==

print(dist(cbind(x1,y), method="canberra")))

2)
y[6] <- Inf #-> 6-th pair is excluded
dist(rbind(x,y), method="binary") # warning; 0.5
dist(rbind(x,y), method="canberra") # 3
dist(rbind(x,y), method="maximum") # 1
dist(rbind(x,y), method="manhattan")# 2.4

1006 dummy.coef

dummy.coef Extract Coefficients in Original Coding

Description

This extracts coefficients in terms of the original levels of the coefficients rather than the coded
variables.

Usage

dummy.coef(object, ...)

S3 method for class 'lm':
dummy.coef(object, use.na = FALSE, ...)

S3 method for class 'aovlist':
dummy.coef(object, use.na = FALSE, ...)

Arguments

object a linear model fit.

use.na logical flag for coefficients in a singular model. Ifuse.na is true, undeter-
mined coefficients will be missing; if false they will get one possible value.

... arguments passed to or from other methods.

Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in num-
ber than the number of levels. This function re-expresses the coefficients in the original coding;
as the coefficients will have been fitted in the reduced basis, any implied constraints (e.g., zero
sum forcontr.helmert or contr.sum will be respected. There will be little point in using
dummy.coef for contr.treatment contrasts, as the missing coefficients are by definition
zero.

The method used has some limitations, and will give incomplete results for terms such aspoly(x,
2)) . However, it is adequate for its main purpose,aov models.

Value

A list giving for each term the values of the coefficients. For a multistratumaov model, such a list
for each stratum.

Warning

This function is intended for human inspection of the output: it should not be used for calculations.
Use coded variables for all calculations.

The results differ from S for singular values, where S can be incorrect.

See Also

aov , model.tables

ecdf 1007

Examples

options(contrasts=c("contr.helmert", "contr.poly"))
From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")
npk.aov <- aov(yield ~ block + N*P*K, npk)
dummy.coef(npk.aov)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
dummy.coef(npk.aovE)

ecdf Empirical Cumulative Distribution Function

Description

Compute or plot an empirical cumulative distribution function.

Usage

ecdf(x)

S3 method for class 'ecdf':
plot(x, ..., ylab="Fn(x)", verticals = FALSE,

col.01line = "gray70")

S3 method for class 'ecdf':
print(x, digits= getOption("digits") - 2, ...)

Arguments

x numeric vector of the observations forecdf ; for the methods, an object inher-
iting from class"ecdf" .

... arguments to be passed to subsequent methods, i.e.,plot.stepfun for the
plot method.

ylab label for the y-axis.

verticals seeplot.stepfun .

col.01line numeric or character specifying the color of the horizontal lines at y = 0 and 1,
seecolors .

digits number of significant digits to use, seeprint .

Details

The e.c.d.f. (empirical cumulative distribution function)Fn is a step function with jumpsi/n at
observation values, wherei is the number of tied observations at that value. Missing values are
ignored.

For observationsx= (x1, x2, . . .xn), Fn is the fraction of observations less or equal tot, i.e.,

Fn(t) = #{xi ≤ t} /n =
1
n

n∑
i=1

1[xi≤t].

The functionplot.ecdf which implements theplot method forecdf objects, is implemented
via a call toplot.stepfun ; see its documentation.

1008 ecdf

Value

For ecdf , a function of class"ecdf" , inheriting from the" stepfun " class.

Author(s)

Martin Maechler,〈maechler@stat.math.ethz.ch〉.
Corrections by R-core.

See Also

stepfun , the more general class of step functions,approxfun andsplinefun .

Examples

##-- Simple didactical ecdf example:
Fn <- ecdf(rnorm(12))
Fn
tt <- seq(-2,2, by = 0.1)
12* Fn(tt) # Fn is a 'simple' function {with values k/12}
summary(Fn)
knots(Fn)# the unique data values {12 of them if there were no ties}

y <- round(rnorm(12),1); y[3] <- y[1]
Fn12 <- ecdf(y)
Fn12
knots(Fn12)# unique values (always less than 12!)
summary(Fn12)
summary.stepfun(Fn12)

Advanced: What's inside the function closure?
print(ls.Fn12 <- ls(environment(Fn12)))
##[1] "f" "method" "n" "x" "y" "yleft" "yright"
utils::ls.str(environment(Fn12))

###----------------- Plotting --------------------------
require(graphics)

op <- par(mfrow=c(3,1), mgp=c(1.5, 0.8,0), mar= .1+c(3,3,2,1))

F10 <- ecdf(rnorm(10))
summary(F10)

plot(F10)
plot(F10, verticals= TRUE, do.points = FALSE)

plot(Fn12 , lwd = 2) ; mtext("lwd = 2", adj=1)
xx <- unique(sort(c(seq(-3, 2, length=201), knots(Fn12))))
lines(xx, Fn12(xx), col='blue')
abline(v=knots(Fn12),lty=2,col='gray70')

plot(xx, Fn12(xx), type='o', cex=.1)#- plot.default {ugly}
plot(Fn12, col.hor='red', add= TRUE) #- plot method
abline(v=knots(Fn12),lty=2,col='gray70')
luxury plot
plot(Fn12, verticals=TRUE, col.points='blue',

col.hor='red', col.vert='bisque')

eff.aovlist 1009

##-- this works too (automatic call to ecdf(.)):
plot.ecdf(rnorm(24))
title("via simple plot.ecdf(x)", adj=1)

par(op)

eff.aovlist Compute Efficiencies of Multistratum Analysis of Variance

Description

Computes the efficiencies of fixed-effect terms in an analysis of variance model with multiple strata.

Usage

eff.aovlist(aovlist)

Arguments

aovlist The result of a call toaov with anError term.

Details

Fixed-effect terms in an analysis of variance model with multiple strata may be estimable in more
than one stratum, in which case there is less than complete information in each. The efficiency for a
term is the fraction of the maximum possible precision (inverse variance) obtainable by estimating
in just that stratum. Under the assumption of balance, this is the same for all contrasts involving
that term.

This function is used to pick strata in which to estimate terms inmodel.tables.aovlist and
se.contrast.aovlist .

In many cases terms will only occur in one stratum, when all the efficiencies will be one: this is
detected and no further calculations are done.

The calculation used requires orthogonal contrasts for each term, and will throw an error if non-
orthogonal contrasts (e.g. treatment contrasts or an unbalanced design) are detected.

Value

A matrix giving for each non-pure-error stratum (row) the efficiencies for each fixed-effect term in
the model.

References

Heiberger, R. M. (1989)Computation for the Analysis of Designed Experiments. Wiley.

See Also

aov , model.tables.aovlist , se.contrast.aovlist

1010 effects

Examples

An example from Yates (1932),
a 2^3 design in 2 blocks replicated 4 times

Block <- gl(8, 4)
A <- factor(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1))
B <- factor(c(0,0,1,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0,1,1,

0,0,1,1,0,0,1,1,0,0,1,1))
C <- factor(c(0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,

1,0,1,0,0,0,1,1,1,1,0,0))
Yield <- c(101, 373, 398, 291, 312, 106, 265, 450, 106, 306, 324, 449,

272, 89, 407, 338, 87, 324, 279, 471, 323, 128, 423, 334,
131, 103, 445, 437, 324, 361, 302, 272)

aovdat <- data.frame(Block, A, B, C, Yield)

old <- getOption("contrasts")
options(contrasts=c("contr.helmert", "contr.poly"))
(fit <- aov(Yield ~ A*B*C + Error(Block), data = aovdat))
eff.aovlist(fit)
options(contrasts = old)

effects Effects from Fitted Model

Description

Returns (orthogonal) effects from a fitted model, usually a linear model. This is a generic function,
but currently only has a methods for objects inheriting from classes"lm" and"glm" .

Usage

effects(object, ...)

S3 method for class 'lm':
effects(object, set.sign = FALSE, ...)

Arguments

object anR object; typically, the result of a model fitting function such aslm .

set.sign logical. If TRUE, the sign of the effects corresponding to coefficients in the
model will be set to agree with the signs of the corresponding coefficients, oth-
erwise the sign is arbitrary.

... arguments passed to or from other methods.

Details

For a linear model fitted bylm or aov , the effects are the uncorrelated single-degree-of-freedom
values obtained by projecting the data onto the successive orthogonal subspaces generated by the
QR decomposition during the fitting process. The firstr (the rank of the model) are associated with
coefficients and the remainder span the space of residuals (but are not associated with particular
residuals).

Empty models do not have effects.

embed 1011

Value

A (named) numeric vector of the same length asresiduals , or a matrix if there were multiple
responses in the fitted model, in either case of class"coef" .

The firstr rows are labelled by the corresponding coefficients, and the remaining rows are unla-
belled. Note that in rank-deficient models the corresponding coefficients will be in a different order
if pivoting occurred.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

coef

Examples

y <- c(1:3,7,5)
x <- c(1:3,6:7)
(ee <- effects(lm(y ~ x)))
c(round(ee - effects(lm(y+10 ~ I(x-3.8))), 3))
just the first is different

embed Embedding a Time Series

Description

Embeds the time seriesx into a low-dimensional Euclidean space.

Usage

embed (x, dimension = 1)

Arguments

x a numeric vector, matrix, or time series.

dimension a scalar representing the embedding dimension.

Details

Each row of the resulting matrix consists of sequencesx[t] , x[t-1] , . . . , x[t-
dimension+1] , wheret is the original index ofx . If x is a matrix, i.e.,x contains more than
one variable, thenx[t] consists of thet th observation on each variable.

Value

A matrix containing the embedded time seriesx .

Author(s)

A. Trapletti, B.D. Ripley

1012 expand.model.frame

Examples

x <- 1:10
embed (x, 3)

expand.model.frame Add new variables to a model frame

Description

Evaluates new variables as if they had been part of the formula of the specified model. This ensures
that the samena.action andsubset arguments are applied and allows, for example,x to be
recovered for a model usingsin(x) as a predictor.

Usage

expand.model.frame(model, extras,
envir = environment(formula(model)),
na.expand = FALSE)

Arguments

model a fitted model

extras one-sided formula or vector of character strings describing new variables to be
added

envir an environment to evaluate things in

na.expand logical; see below

Details

If na.expand=FALSE thenNAvalues in the extra variables will be passed to thena.action
function used inmodel . This may result in a shorter data frame (withna.omit) or an error (with
na.fail). If na.expand=TRUE the returned data frame will have precisely the same rows as
model.frame(model) , but the columns corresponding to the extra variables may containNA.

Value

A data frame.

See Also

model.frame ,predict

Examples

model <- lm(log(Volume) ~ log(Girth) + log(Height), data=trees)
expand.model.frame(model, ~ Girth) # prints data.frame like

dd <- data.frame(x=1:5, y=rnorm(5), z=c(1,2,NA,4,5))
model <- glm(y ~ x, data=dd, subset=1:4, na.action=na.omit)
expand.model.frame(model, "z", na.expand=FALSE) # = default
expand.model.frame(model, "z", na.expand=TRUE)

Exponential 1013

Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distri-
bution with raterate (i.e., mean1/rate).

Usage

dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

rate vector of rates.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

If rate is not specified, it assumes the default value of1.

The exponential distribution with rateλ has density

f(x) = λe−λx

for x ≥ 0.

Value

dexp gives the density,pexp gives the distribution function,qexp gives the quantile function,
andrexp generates random deviates.

Note

The cumulative hazardH(t) = − log(1−F (t)) is -pexp(t, r, lower = FALSE, log =
TRUE).

Source

dexp , pexp andqexp are all calculated from numerically stable versions of the definitions.

rexp uses

Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the exponential and
normal distributions.Communications of the ACM, 15, 873–882.

1014 extractAIC

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
1, chapter 19. Wiley, New York.

See Also

exp for the exponential function,dgamma for the gamma distribution anddweibull for the
Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #-> 0

extractAIC Extract AIC from a Fitted Model

Description

Computes the (generalized) AkaikeAn InformationCriterion for a fitted parametric model.

Usage

extractAIC(fit, scale, k = 2, ...)

Arguments

fit fitted model, usually the result of a fitter likelm .

scale optional numeric specifying the scale parameter of the model, seescale in
step . Currently only used in the"lm" method, wherescale specifies the es-
timate of the error variance, andscale = 0 indicates that it is to be estimated
by maximum likelihood.

k numeric specifying the ‘weight’ of theequivalent degrees of freedom(≡ edf)
part in the AIC formula.

... further arguments (currently unused in baseR).

Details

This is a generic function, with methods in baseR for "aov" , "coxph" , "glm" , "lm" ,
"negbin" and"survreg" classes.

The criterion used is
AIC = −2 logL+ k × edf,

whereL is the likelihood andedf the equivalent degrees of freedom (i.e., the number of free
parameters for usual parametric models) offit .

For linear models with unknown scale (i.e., forlm and aov), −2 logL is computed from the
devianceand uses a different additive constant tologLik and henceAIC . If RSS denotes the
(weighted) residual sum of squares thenextractAIC uses for−2 logL the formulaeRSS/s−n
(corresponding to Mallows’Cp) in the case of known scales andn log(RSS/n) for unknown scale.

factanal 1015

AIC only handles unknown scale and uses the formulan log(RSS/n) − n + n log 2π −
∑

logw
wherew are the weights.

For glm fits the family’saic() function to compute the AIC: see the note underlogLik about
the assumptions this makes.

k = 2 corresponds to the traditional AIC, usingk = log(n) provides the BIC (Bayesian IC)
instead.

Value

A numeric vector of length 2, giving

edf the ‘equivalentdegrees offreedom’ for the fitted modelfit .

AIC the (generalized) Akaike Information Criterion forfit .

Note

This function is used inadd1 , drop1 andstep and similar functions in packageMASS from
which it was adopted.

Author(s)

B. D. Ripley

References

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S.New York: Springer
(4th ed).

See Also

AIC , deviance , add1 , step

Examples

utils::example(glm)
extractAIC(glm.D93)#>> 5 15.129

factanal Factor Analysis

Description

Perform maximum-likelihood factor analysis on a covariance matrix or data matrix.

Usage

factanal(x, factors, data = NULL, covmat = NULL, n.obs = NA,
subset, na.action, start = NULL,
scores = c("none", "regression", "Bartlett"),
rotation = "varimax", control = NULL, ...)

1016 factanal

Arguments

x A formula or a numeric matrix or an object that can be coerced to a numeric
matrix.

factors The number of factors to be fitted.

data An optional data frame (or similar: seemodel.frame), used only ifx is a
formula. By default the variables are taken fromenvironment(formula) .

covmat A covariance matrix, or a covariance list as returned bycov.wt . Of course,
correlation matrices are covariance matrices.

n.obs The number of observations, used ifcovmat is a covariance matrix.

subset A specification of the cases to be used, ifx is used as a matrix or formula.

na.action Thena.action to be used ifx is used as a formula.

start NULLor a matrix of starting values, each column giving an initial set of unique-
nesses.

scores Type of scores to produce, if any. The default is none,"regression"
gives Thompson’s scores,"Bartlett" given Bartlett’s weighted least-squares
scores. Partial matching allows these names to be abbreviated.

rotation character."none" or the name of a function to be used to rotate the factors:
it will be called with first argument the loadings matrix, and should return a
list with componentloadings giving the rotated loadings, or just the rotated
loadings.

control A list of control values,

nstart The number of starting values to be tried ifstart = NULL . Default
1.

trace logical. Output tracing information? DefaultFALSE.
lower The lower bound for uniquenesses during optimization. Should be > 0.

Default 0.005.
opt A list of control values to be passed tooptim ’s control argument.
rotate a list of additional arguments for the rotation function.

... Components ofcontrol can also be supplied as named arguments to
factanal .

Details

The factor analysis model is
x = Λf + e

for a p–element row-vectorx, a p × k matrix of loadings, a k–element vector ofscoresand ap–
element vector of errors. None of the components other thanx is observed, but the major restriction
is that the scores be uncorrelated and of unit variance, and that the errors be independent with
variancesΦ, theuniquenesses. Thus factor analysis is in essence a model for the covariance matrix
of x,

Σ = Λ′Λ + Ψ

There is still some indeterminacy in the model for it is unchanged ifΛ is replaced byGΛ for any
orthogonal matrixG. Such matricesG are known asrotations(although the term is applied also to
non-orthogonal invertible matrices).

If covmat is supplied it is used. Otherwisex is used if it is a matrix, or a formulax is used with
data to construct a model matrix, and that is used to construct a covariance matrix. (It makes no
sense for the formula to have a response, and all the variables must be numeric.) Once a covariance

factanal 1017

matrix is found or calculated fromx , it is converted to a correlation matrix for analysis. The
correlation matrix is returned as componentcorrelation of the result.

The fit is done by optimizing the log likelihood assuming multivariate normality over the unique-
nesses. (The maximizing loadings for given uniquenesses can be found analytically: Lawley &
Maxwell (1971, p. 27).) All the starting values supplied instart are tried in turn and the best fit
obtained is used. Ifstart = NULL then the first fit is started at the value suggested by Jöreskog
(1963) and given by Lawley & Maxwell (1971, p. 31), and thencontrol$nstart - 1 other
values are tried, randomly selected as equal values of the uniquenesses.

The uniquenesses are technically constrained to lie in[0, 1], but near-zero values are problematical,
and the optimization is done with a lower bound ofcontrol$lower , default 0.005 (Lawley &
Maxwell, 1971, p. 32).

Scores can only be produced if a data matrix is supplied and used. The first method is the regression
method of Thomson (1951), the second the weighted least squares method of Bartlett (1937, 8).
Both are estimates of the unobserved scoresf . Thomson’s method regresses (in the population) the
unknownf onx to yield

f̂ = Λ′Σ−1x

and then substitutes the sample estimates of the quantities on the right-hand side. Bartlett’s method
minimizes the sum of squares of standardized errors over the choice off , given (the fitted)Λ.

If x is a formula then the standard NA-handling is applied to the scores (if requested): see
napredict .

Value

An object of class"factanal" with components

loadings A matrix of loadings, one column for each factor. The factors are ordered in
decreasing order of sums of squares of loadings, and given the sign that will
make the sum of the loadings positive.

uniquenesses The uniquenesses computed.

correlation The correlation matrix used.

criteria The results of the optimization: the value of the negative log-likelihood and
information on the iterations used.

factors The argumentfactors .

dof The number of degrees of freedom of the factor analysis model.

method The method: always"mle" .

scores If requested, a matrix of scores.napredict is applied to handle the treatment
of values omitted by thena.action .

n.obs The number of observations if available, orNA.

call The matched call.

na.action If relevant.
STATISTIC, PVAL

The significance-test statistic and P value, if if can be computed.

Note

There are so many variations on factor analysis that it is hard to compare output from different
programs. Further, the optimization in maximum likelihood factor analysis is hard, and many other
examples we compared had less good fits than produced by this function. In particular, solutions
which are Heywood cases (with one or more uniquenesses essentially zero) are much often common
than most texts and some other programs would lead one to believe.

1018 factor.scope

References

Bartlett, M. S. (1937) The statistical conception of mental factors.British Journal of Psychology,
28, 97–104.

Bartlett, M. S. (1938) Methods of estimating mental factors.Nature, 141, 609–610.

Jöreskog, K. G. (1963)Statistical Estimation in Factor Analysis.Almqvist and Wicksell.

Lawley, D. N. and Maxwell, A. E. (1971)Factor Analysis as a Statistical Method.Second edition.
Butterworths.

Thomson, G. H. (1951)The Factorial Analysis of Human Ability.London University Press.

See Also

print.loadings , varimax , princomp , ability.cov , Harman23.cor ,
Harman74.cor

Examples

A little demonstration, v2 is just v1 with noise,
and same for v4 vs. v3 and v6 vs. v5
Last four cases are there to add noise
and introduce a positive manifold (g factor)
v1 <- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6)
v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5)
v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,5,4,6)
v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4)
v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5)
v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4)
m1 <- cbind(v1,v2,v3,v4,v5,v6)
cor(m1)
factanal(m1, factors=3) # varimax is the default
factanal(m1, factors=3, rotation="promax")
The following shows the g factor as PC1
prcomp(m1)

formula interface
factanal(~v1+v2+v3+v4+v5+v6, factors = 3,

scores = "Bartlett")$scores

a realistic example from Barthlomew (1987, pp. 61-65)
utils::example(ability.cov)

factor.scope Compute Allowed Changes in Adding to or Dropping from a Formula

Description

add.scope anddrop.scope compute those terms that can be individually added to or dropped
from a model while respecting the hierarchy of terms.

family 1019

Usage

add.scope(terms1, terms2)

drop.scope(terms1, terms2)

factor.scope(factor, scope)

Arguments

terms1 the terms or formula for the base model.

terms2 the terms or formula for the upper (add.scope) or lower (drop.scope)
scope. If missing fordrop.scope it is taken to be the null formula, so all
terms (except any intercept) are candidates to be dropped.

factor the"factor" attribute of the terms of the base object.

scope a list with one or both componentsdrop andadd giving the"factor" at-
tribute of the lower and upper scopes respectively.

Details

factor.scope is not intended to be called directly by users.

Value

For add.scope anddrop.scope a character vector of terms labels. Forfactor.scope , a
list with componentsdrop andadd , character vectors of terms labels.

See Also

add1 , drop1 , aov , lm

Examples

add.scope(~ a + b + c + a:b, ~ (a + b + c)^3)
[1] "a:c" "b:c"
drop.scope(~ a + b + c + a:b)
[1] "c" "a:b"

family Family Objects for Models

Description

Family objects provide a convenient way to specify the details of the models used by functions such
asglm . See the documentation forglm for the details on how such model fitting takes place.

1020 family

Usage

family(object, ...)

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")

Arguments

link a specification for the model link function. This can be a name/expression, a lit-
eral character string, a length-one character vector or an object of class" link-
glm " (provided it is not specified via one of the standard names given next).

The gaussian family accepts the links"identity" , "log" and
"inverse" ; the binomial family the links "logit" , "probit" ,
"cauchit" , (corresponding to logistic, normal and Cauchy CDFs respec-
tively) "log" and "cloglog" (complementary log-log); theGammafam-
ily the links "inverse" , "identity" and "log" ; the poisson family
the links"log" , "identity" , and"sqrt" and theinverse.gaussian
family the links"1/mu^2" , "inverse" , "identity" and"log" .

The quasi family accepts the links"logit" , "probit" , "cloglog" ,
"identity" , "inverse" , "log" , "1/mu^2" and"sqrt" , and the func-
tion power can be used to create a power link function.

variance for all families other thanquasi , the variance function is determined by the
family. The quasi family will accept the literal character string (or un-
quoted as a name/expression) specifications"constant" , "mu(1-mu)" ,
"mu" , "mu^2" and"mu^3" , a length-one character vector taking one of those
values, or a list containing componentsvarfun , validmu , dev.resids ,
initialize andname.

object the functionfamily accesses thefamily objects which are stored within
objects created by modelling functions (e.g.,glm).

... further arguments passed to methods.

Details

family is a generic function with methods for classes"glm" and "lm" (the latter returning
gaussian()).

Thequasibinomial andquasipoisson families differ from thebinomial andpoisson
families only in that the dispersion parameter is not fixed at one, so they can model over-dispersion.
For the binomial case see McCullagh and Nelder (1989, pp. 124–8). Although they show that there
is (under some restrictions) a model with variance proportional to mean as in the quasi-binomial
model, note thatglm does not compute maximum-likelihood estimates in that model. The be-
haviour of S is closer to the quasi- variants.

Value

An object of class"family" (which has a concise print method). This is a list with elements

family 1021

family character: the family name.

link character: the link name.

linkfun function: the link.

linkinv function: the inverse of the link function.

variance function: the variance as a function of the mean.

dev.resids function giving the deviance residuals as a function of(y, mu, wt) .

aic function giving the AIC value if appropriate (butNAfor the quasi- families). See
logLik for the assumptions made about the dispersion parameter.

mu.eta function: derivativefunction(eta) dµ/dη.

initialize expression. This needs to set up whatever data objects are needed for the family
as well asn (needed for AIC in the binomial family) andmustart (seeglm .

valid.mu logical function. ReturnsTRUEif a mean vectormu is within the domain of
variance .

valid.eta logical function. ReturnsTRUEif a linear predictoreta is within the domain
of linkinv .

Note

The link andvariance arguments have rather awkward semantics for back-compatibility. The
recommended way is to supply them is as quoted character strings, but they can also be supplied
unquoted (as names or expressions). In addition, they can also be supplied as a length-one character
vector giving the name of one of the options, or as a list (forlink , of class"link-glm").

This is potentially ambiguous: supplyinglink=logit could mean the unquoted name of a link
or the value of objectlogit . It is interpreted if possible as the name of an allowed link, then as an
object. (You can force the interpretation to always be the value of an object vialogit[1] .)

Author(s)

The design was inspired by S functions of the same names described in Hastie & Pregibon (1992)
(exceptquasibinomial andquasipoisson).

References

McCullagh P. and Nelder, J. A. (1989)Generalized Linear Models.London: Chapman and Hall.

Dobson, A. J. (1983)An Introduction to Statistical Modelling.London: Chapman and Hall.

Cox, D. R. and Snell, E. J. (1981).Applied Statistics; Principles and Examples.London: Chapman
and Hall.

Hastie, T. J. and Pregibon, D. (1992)Generalized linear models.Chapter 6 ofStatistical Models in
Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm , power , make.link .

1022 family

Examples

require(utils) # for str

nf <- gaussian()# Normal family
nf
str(nf)# internal STRucture

gf <- Gamma()
gf
str(gf)
gf$linkinv
gf$variance(-3:4) #- == (.)^2

quasipoisson. compare with example(glm)
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
d.AD <- data.frame(treatment, outcome, counts)
glm.qD93 <- glm(counts ~ outcome + treatment, family=quasipoisson())
glm.qD93
anova(glm.qD93, test="F")
summary(glm.qD93)
for Poisson results use
anova(glm.qD93, dispersion = 1, test="Chisq")
summary(glm.qD93, dispersion = 1)

Example of user-specified link, a logit model for p^days
See Shaffer, T. 2004. Auk 121(2): 526-540.
logexp <- function(days = 1)
{

linkfun <- function(mu) qlogis(mu^(1/days))
linkinv <- function(eta) plogis(eta)^days
mu.eta <- function(eta) days * plogis(eta)^(days-1) *

.Call("logit_mu_eta", eta, PACKAGE = "stats")
valideta <- function(eta) TRUE
link <- paste("logexp(", days, ")", sep="")
structure(list(linkfun = linkfun, linkinv = linkinv,

mu.eta = mu.eta, valideta = valideta, name = link),
class = "link-glm")

}
binomial(logexp(3))
in practice this would be used with a vector of 'days', in
which case use an offset of 0 in the corresponding formula
to get the null deviance right.

tests of quasi
x <- rnorm(100)
y <- rpois(100, exp(1+x))
glm(y ~x, family=quasi(variance="mu", link="log"))
which is the same as
glm(y ~x, family=poisson)
glm(y ~x, family=quasi(variance="mu^2", link="log"))
Not run: glm(y ~x, family=quasi(variance="mu^3", link="log")) # fails
y <- rbinom(100, 1, plogis(x))
needs to set a starting value for the next fit
glm(y ~x, family=quasi(variance="mu(1-mu)", link="logit"), start=c(0,1))

FDist 1023

FDist The F Distribution

Description

Density, distribution function, quantile function and random generation for the F distribution with
df1 anddf2 degrees of freedom (and optional non-centrality parameterncp).

Usage

df(x, df1, df2, ncp, log = FALSE)
pf(q, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
qf(p, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2, ncp)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

df1, df2 degrees of freedom.Inf is allowed.

ncp non-centrality parameter. If omitted the central F is assumed.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

The F distribution withdf1 = n1 anddf2 = n2 degrees of freedom has density

f(x) =
Γ(n1/2 + n2/2)
Γ(n1/2)Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.

It is the distribution of the ratio of the mean squares ofn1 andn2 independent standard normals, and
hence of the ratio of two independent chi-squared variates each divided by its degrees of freedom.
Since the ratio of a normal and the root mean-square ofm independent normals has a Student’stm
distribution, the square of atm variate has a F distribution on 1 andm degrees of freedom.

The non-central F distribution is again the ratio of mean squares of independent normals of unit
variance, but those in the numerator are allowed to have non-zero means andncp is the sum of
squares of the means. SeeChisquarefor further details on non-central distributions.

Value

df gives the density,pf gives the distribution functionqf gives the quantile function, andrf
generates random deviates.

Invalid arguments will result in return valueNaN, with a warning.

1024 fft

Source

For df , and ncp == 0 , computed via a binomial probability, code contributed by Catherine
Loader (seedbinom); for ncp != 0 , computed via adbeta , code contributed by Peter Ruck-
deschel.

For pf , via pbeta (or for largedf2 , via pchisq).

For qf , via qchisq for largedf2 , else viaqbeta .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
2, chapters 27 and 30. Wiley, New York.

See Also

dchisq for chi-squared anddt for Student’s t distributions.

Examples

the density of the square of a t_m is 2*dt(x, m)/(2*x)
check this is the same as the density of F_{1,m}
x <- seq(0.001, 5, len=100)
all.equal(df(x^2, 1, 5), dt(x, 5)/x)

Identity: qf(2*p - 1, 1, df)) == qt(p, df)^2) for p >= 1/2
p <- seq(1/2, .99, length=50); df <- 10
rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y))))
quantile(rel.err(qf(2*p - 1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9

fft Fast Discrete Fourier Transform

Description

Performs the Fast Fourier Transform of an array.

Usage

fft(z, inverse = FALSE)
mvfft(z, inverse = FALSE)

Arguments

z a real or complex array containing the values to be transformed.

inverse if TRUE, the unnormalized inverse transform is computed (the inverse has a+ in
the exponent ofe, but here, we donot divide by1/length(x)).

filter 1025

Value

When z is a vector, the value computed and returned byfft is the unnormalized univariate
Fourier transform of the sequence of values inz . Whenz contains an array,fft computes and
returns the multivariate (spatial) transform. Ifinverse is TRUE, the (unnormalized) inverse
Fourier transform is returned, i.e., ify <- fft(z) , thenz is fft(y, inverse = TRUE)
/ length(y) .

By contrast,mvfft takes a real or complex matrix as argument, and returns a similar shaped matrix,
but with each column replaced by its discrete Fourier transform. This is useful for analyzing vector-
valued series.

The FFT is fastest when the length of the series being transformed is highly composite (i.e., has
many factors). If this is not the case, the transform may take a long time to compute and will use a
large amount of memory.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Singleton, R. C. (1979) Mixed Radix Fast Fourier Transforms, inPrograms for Digital Signal Pro-
cessing, IEEE Digital Signal Processing Committee eds. IEEE Press.

See Also

convolve , nextn .

Examples

x <- 1:4
fft(x)
fft(fft(x), inverse = TRUE)/length(x)

filter Linear Filtering on a Time Series

Description

Applies linear filtering to a univariate time series or to each series separately of a multivariate time
series.

Usage

filter(x, filter, method = c("convolution", "recursive"),
sides = 2, circular = FALSE, init)

Arguments

x a univariate or multivariate time series.

filter a vector of filter coefficients in reverse time order (as for AR or MA coefficients).

method Either "convolution" or "recursive" (and can be abbreviated). If
"convolution" a moving average is used: if"recursive" an autore-
gression is used.

1026 filter

sides for convolution filters only. Ifsides=1 the filter coefficients are for past values
only; if sides=2 they are centred around lag 0. In this case the length of the
filter should be odd, but if it is even, more of the filter is forward in time than
backward.

circular for convolution filters only. IfTRUE, wrap the filter around the ends of the series,
otherwise assume external values are missing (NA).

init for recursive filters only. Specifies the initial values of the time series just prior
to the start value, in reverse time order. The default is a set of zeros.

Details

Missing values are allowed inx but not in filter (where they would lead to missing values
everywhere in the output).

Note that there is an implied coefficient 1 at lag 0 in the recursive filter, which gives

yi = xi + f1yi−1 + · · ·+ fpyi−p

No check is made to see if recursive filter is invertible: the output may diverge if it is not.

The convolution filter is

yi = f1xi+o + · · ·+ fpxi+o−(p−1)

whereo is the offset: seesides for how it is determined.

Value

A time series object.

Note

convolve (, type="filter") uses the FFT for computations and somaybe faster for long
filters on univariate series, but it does not return a time series (and so the time alignment is unclear),
nor does it handle missing values.filter is faster for a filter of length 100 on a series of length
1000, for example.

See Also

convolve , arima.sim

Examples

x <- 1:100
filter(x, rep(1, 3))
filter(x, rep(1, 3), sides = 1)
filter(x, rep(1, 3), sides = 1, circular = TRUE)

filter(presidents, rep(1,3))

fisher.test 1027

fisher.test Fisher’s Exact Test for Count Data

Description

Performs Fisher’s exact test for testing the null of independence of rows and columns in a contin-
gency table with fixed marginals.

Usage

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor object.

y a factor object; ignored ifx is a matrix.

workspace an integer specifying the size of the workspace used in the network algorithm. In
units of 4 bytes. Only used for non-simulated p-values larger than2× 2 tables.

hybrid a logical. Only used for larger than2 × 2 tables, in which cases it indi-
cated whether the exact probabilities (default) or a hybrid approximation thereof
should be computed. See ‘Details’.

control a list with named components for low level algorithm control. At present the
only one used is"mult" , a positive integer>= 2 with default 30 used only for
larger than2 × 2 tables. This says how many times as much space should be
allocated to paths as to keys: see file ‘fexact.c’ in the sources of this package.

or the hypothesized odds ratio. Only used in the2× 2 case.

alternative indicates the alternative hypothesis and must be one of"two.sided" ,
"greater" or "less" . You can specify just the initial letter. Only used
in the2× 2 case.

conf.int logical indicating if a confidence interval should be computed (and returned).

conf.level confidence level for the returned confidence interval. Only used in the2×2 case
if conf.int = TRUE .

simulate.p.value
a logical indicating whether to compute p-values by Monte Carlo simulation, in
larger than2× 2 tables.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, bothx andy must be vectors of the same length. Incomplete cases
are removed, the vectors are coerced into factor objects, and the contingency table is computed from
these.

1028 fisher.test

For 2 × 2 cases, p-values are obtained directly using the (central or non-central) hypergeomet-
ric distribution. Otherwise, computations are based on a C version of the FORTRAN subrou-
tine FEXACT which implements the network developed by Mehta and Patel (1986) and im-
proved by Clarkson, Fan and Joe (1993). The FORTRAN code can be obtained fromhttp:
//www.netlib.org/toms/643 . Note this fails (with an error message) when the entries of
the table are too large. (It transposes the table if necessary so it has no more rows than columns.
One constraint is that the product of the row marginals be less than231 − 1.)

For 2 × 2 tables, the null of conditional independence is equivalent to the hypothesis that the odds
ratio equals one. ‘Exact’ inference can be based on observing that in general, given all marginal
totals fixed, the first element of the contingency table has a non-central hypergeometric distribution
with non-centrality parameter given by the odds ratio (Fisher, 1935). The alternative for a one-sided
test is based on the odds ratio, soalternative = "greater" is a test of the odds ratio being
bigger thanor .

Two-sided tests are based on the probabilities of the tables, and take as ‘more extreme’ all tables
with probabilities less than or equal to that of the observed table, the p-value being the sum of such
probabilities.

For larger than2 × 2 tables andhybrid = TRUE , asymptotic chi-squared probabilities are only
used if the ‘Cochran conditions’ are satisfied, that is if no cell has count zero, and more than 80%
of the cells have counts at least 5.

Simulation is done conditional on the row and column marginals, and works only if the marginals
are strictly positive. (A C translation of the algorithm of Patefield (1981) is used.)

Value

A list with class"htest" containing the following components:

p.value the p-value of the test.

conf.int a confidence interval for the odds ratio. Only present in the2×2 case if argument
conf.int = TRUE .

estimate an estimate of the odds ratio. Note that theconditionalMaximum Likelihood
Estimate (MLE) rather than the unconditional MLE (the sample odds ratio) is
used. Only present in the2× 2 case.

null.value the odds ratio under the null,or . Only present in the2× 2 case.

alternative a character string describing the alternative hypothesis.

method the character string"Fisher’s Exact Test for Count Data" .

data.name a character string giving the names of the data.

References

Agresti, A. (1990)Categorical data analysis. New York: Wiley. Pages 59–66.

Fisher, R. A. (1935) The logic of inductive inference.Journal of the Royal Statistical Society Series
A 98, 39–54.

Fisher, R. A. (1962) Confidence limits for a cross-product ratio.Australian Journal of Statistics4,
41.

Fisher, R. A. (1970)Statistical Methods for Research Workers.Oliver & Boyd.

Mehta, C. R. and Patel, N. R. (1986) Algorithm 643. FEXACT: A Fortran subroutine for Fisher’s
exact test on unorderedr ∗ c contingency tables.ACM Transactions on Mathematical Software, 12,
154–161.

http://www.netlib.org/toms/643
http://www.netlib.org/toms/643

fitted 1029

Clarkson, D. B., Fan, Y. and Joe, H. (1993) A Remark on Algorithm 643: FEXACT: An Algorithm
for Performing Fisher’s Exact Test inr×cContingency Tables.ACM Transactions on Mathematical
Software, 19, 484–488.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals.Applied Statistics30, 91–97.

See Also

chisq.test

Examples

Agresti (1990), p. 61f, Fisher's Tea Drinker
A British woman claimed to be able to distinguish whether milk or
tea was added to the cup first. To test, she was given 8 cups of
tea, in four of which milk was added first. The null hypothesis
is that there is no association between the true order of pouring
and the woman's guess, the alternative that there is a positive
association (that the odds ratio is greater than 1).
TeaTasting <-
matrix(c(3, 1, 1, 3),

nrow = 2,
dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))
fisher.test(TeaTasting, alternative = "greater")
=> p=0.2429, association could not be established

Fisher (1962, 1970), Criminal convictions of like-sex twins
Convictions <-
matrix(c(2, 10, 15, 3),

nrow = 2,
dimnames =
list(c("Dizygotic", "Monozygotic"),

c("Convicted", "Not convicted")))
Convictions
fisher.test(Convictions, alternative = "less")
fisher.test(Convictions, conf.int = FALSE)
fisher.test(Convictions, conf.level = 0.95)$conf.int
fisher.test(Convictions, conf.level = 0.99)$conf.int

A r x c table Agresti (2002, p. 57) Job Satisfaction
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,
dimnames = list(income=c("< 15k", "15-25k", "25-40k", "> 40k"),

satisfaction=c("VeryD", "LittleD", "ModerateS", "VeryS")))
fisher.test(Job)
fisher.test(Job, simulate.p.value=TRUE, B=1e5)

fitted Extract Model Fitted Values

1030 fivenum

Description

fitted is a generic function which extracts fitted values from objects returned by modeling func-
tions. fitted.values is an alias for it.

All object classes which are returned by model fitting functions should provide afitted method.
(Note that the generic isfitted and notfitted.values .)

Methods can make use ofnapredict methods to compensate for the omission of missing values.
The default andnls methods do.

Usage

fitted(object, ...)
fitted.values(object, ...)

Arguments

object an object for which the extraction of model fitted values is meaningful.

... other arguments.

Value

Fitted values extracted from the objectx .

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

coefficients , glm , lm , residuals .

fivenum Tukey Five-Number Summaries

Description

Returns Tukey’s five number summary (minimum, lower-hinge, median, upper-hinge, maximum)
for the input data.

Usage

fivenum(x, na.rm = TRUE)

Arguments

x numeric, maybe includingNAs and±Inf s.

na.rm logical; if TRUE, all NA andNaNs are dropped, before the statistics are com-
puted.

fligner.test 1031

Value

A numeric vector of length 5 containing the summary information. Seeboxplot.stats for
more details.

See Also

IQR, boxplot.stats , median , quantile , range .

Examples

fivenum(c(rnorm(100),-1:1/0))

fligner.test Fligner-Killeen Test of Homogeneity of Variances

Description

Performs a Fligner-Killeen (median) test of the null that the variances in each of the groups (sam-
ples) are the same.

Usage

fligner.test(x, ...)

Default S3 method:
fligner.test(x, g, ...)

S3 method for class 'formula':
fligner.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements ofx .
Ignored ifx is a list.

formula a formula of the formlhs ~ rhs wherelhs gives the data values andrhs
the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

1032 fligner.test

Details

If x is a list, its elements are taken as the samples to be compared for homogeneity of variances,
and hence have to be numeric data vectors. In this case,g is ignored, and one can simply use
fligner.test(x) to perform the test. If the samples are not yet contained in a list, use
fligner.test(list(x, ...)) .

Otherwise,x must be a numeric data vector, andg must be a vector or factor object of the same
length asx giving the group for the corresponding elements ofx .

The Fligner-Killeen (median) test has been determined in a simulation study as one of the many
tests for homogeneity of variances which is most robust against departures from normality, see
Conover, Johnson & Johnson (1981). It is ak-sample simple linear rank which uses the ranks of the
absolute values of the centered samples and weightsa(i) = qnorm((1+i/(n+1))/2). The version
implemented here uses median centering in each of the samples (F-K:medX2 in the reference).

Value

A list of class"htest" containing the following components:

statistic the Fligner-Killeen:medX2 test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string"Fligner-Killeen test of homogeneity of
variances" .

data.name a character string giving the names of the data.

References

William J. Conover & Mark E. Johnson & Myrle M. Johnson (1981). A comparative study of
tests for homogeneity of variances, with applications to the outer continental shelf bidding data.
Technometrics23, 351–361.

See Also

ansari.test andmood.test for rank-based two-sample test for a difference in scale param-
eters;var.test andbartlett.test for parametric tests for the homogeneity of variances.

Examples

require(graphics)

plot(count ~ spray, data = InsectSprays)
fligner.test(InsectSprays$count, InsectSprays$spray)
fligner.test(count ~ spray, data = InsectSprays)
Compare this to bartlett.test()

formula 1033

formula Model Formulae

Description

The generic functionformula and its specific methods provide a way of extracting formulae
which have been included in other objects.

as.formula is almost identical, additionally preserving attributes whenobject already inherits
from "formula" . The default value of theenv argument is used only when the formula would
otherwise lack an environment.

Usage

formula(x, ...)
as.formula(object, env = parent.frame())

Arguments

x, object R object.

... further arguments passed to or from other methods.

env the environment to associate with the result.

Details

The models fit by, e.g., thelm andglm functions are specified in a compact symbolic form. The
~ operator is basic in the formation of such models. An expression of the formy ~ model is
interpreted as a specification that the responsey is modelled by a linear predictor specified symbol-
ically by model . Such a model consists of a series of terms separated by+ operators. The terms
themselves consist of variable and factor names separated by: operators. Such a term is interpreted
as the interaction of all the variables and factors appearing in the term.

In addition to+ and: , a number of other operators are useful in model formulae. The* operator
denotes factor crossing:a*b interpreted asa+b+a:b . The ^ operator indicates crossing to the
specified degree. For example(a+b+c)^2 is identical to(a+b+c)*(a+b+c) which in turn
expands to a formula containing the main effects fora, b andc together with their second-order
interactions. The%in%operator indicates that the terms on its left are nested within those on the
right. For examplea + b %in% a expands to the formulaa + a:b . The- operator removes
the specified terms, so that(a+b+c)^2 - a:b is identical toa + b + c + b:c + a:c . It
can also used to remove the intercept term:y ~ x - 1 is a line through the origin. A model with
no intercept can be also specified asy ~ x + 0 or y ~ 0 + x .

While formulae usually involve just variable and factor names, they can also involve arithmetic
expressions. The formulalog(y) ~ a + log(x) is quite legal. When such arithmetic expres-
sions involve operators which are also used symbolically in model formulae, there can be confusion
between arithmetic and symbolic operator use.

To avoid this confusion, the functionI () can be used to bracket those portions of a model formula
where the operators are used in their arithmetic sense. For example, in the formulay ~ a +
I(b+c) , the termb+c is to be interpreted as the sum ofb andc .

Variable names can be quoted by backticks‘like this‘ in formulae, although there is no guar-
antee that all code using formulae will accept such non-syntactic names.

1034 formula

Whenformula is called on a fitted model object, either a specific method is used (such as that for
class"nls") or the default method. The default first looks for a"formula" component of the
object (and evaluates it), then a"terms" component, then aformula parameter of the call (and
evaluates its value) and finally a"formula" attribute.

There is a method for data frames. If there is only one column this forms the RHS with an empty
LHS. For more columns, the first column is the LHS of the formula and the remaining columns
separated by+ form the RHS.

Value

All the functions above produce an object of class"formula" which contains a symbolic model
formula.

Environments

A formula object has an associated environment, and this environment (rather than the parent envi-
ronment) is used bymodel.frame to evaluate variables that are not found in the supplieddata
argument.

Formulas created with the~ operator use the environment in which they were created. Formulas
created withas.formula will use theenv argument for their environment. Pre-existing formulas
extracted withas.formula will only have their environment changed ifenv is given explicitly.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical models.Chapter 2 ofStatistical Models in Seds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I .

For formula manipulation:terms , andall.vars ; for typical use:lm , glm , andcoplot .

Examples

class(fo <- y ~ x1*x2) # "formula"
fo
typeof(fo)# R internal : "language"
terms(fo)

environment(fo)
environment(as.formula("y ~ x"))
environment(as.formula("y ~ x", env=new.env()))

Create a formula for a model with a large number of variables:
xnam <- paste("x", 1:25, sep="")
(fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+"))))

formula.nls 1035

formula.nls Extract Model Formula from nls Object

Description

Returns the model used to fitobject .

Usage

S3 method for class 'nls':
formula(x, ...)

Arguments

x an object inheriting from class"nls" , representing a nonlinear least squares
fit.

... further arguments passed to or from other methods.

Value

a formula representing the model used to obtainobject .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , formula

Examples

fm1 <- nls(circumference ~ A/(1+exp((B-age)/C)), Orange,
start = list(A=160, B=700, C = 350))

formula(fm1)

friedman.test Friedman Rank Sum Test

Description

Performs a Friedman rank sum test with unreplicated blocked data.

Usage

friedman.test(y, ...)

Default S3 method:
friedman.test(y, groups, blocks, ...)

S3 method for class 'formula':
friedman.test(formula, data, subset, na.action, ...)

1036 friedman.test

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements ofy if this is a vector;
ignored ify is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements ofy if this is a vector;
ignored ify is a matrix. If not a factor object, it is coerced to one.

formula a formula of the forma ~ b | c , wherea, b andc give the data values and
corresponding groups and blocks, respectively.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

Details

friedman.test can be used for analyzing unreplicated complete block designs (i.e., there is
exactly one observation iny for each combination of levels ofgroups andblocks) where the
normality assumption may be violated.

The null hypothesis is that apart from an effect ofblocks , the location parameter ofy is the same
in each of thegroups .

If y is a matrix,groups andblocks are obtained from the column and row indices, respectively.
NA’s are not allowed ingroups or blocks ; if y containsNA’s, corresponding blocks are removed.

Value

A list with class"htest" containing the following components:

statistic the value of Friedman’s chi-squared statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string"Friedman rank sum test" .

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973),Nonparametric Statistical Methods.New York: John
Wiley & Sons. Pages 139–146.

See Also

quade.test .

ftable 1037

Examples

Hollander & Wolfe (1973), p. 140ff.
Comparison of three methods ("round out", "narrow angle", and
"wide angle") for rounding first base. For each of 18 players
and the three method, the average time of two runs from a point on
the first base line 35ft from home plate to a point 15ft short of
second base is recorded.
RoundingTimes <-
matrix(c(5.40, 5.50, 5.55,

5.85, 5.70, 5.75,
5.20, 5.60, 5.50,
5.55, 5.50, 5.40,
5.90, 5.85, 5.70,
5.45, 5.55, 5.60,
5.40, 5.40, 5.35,
5.45, 5.50, 5.35,
5.25, 5.15, 5.00,
5.85, 5.80, 5.70,
5.25, 5.20, 5.10,
5.65, 5.55, 5.45,
5.60, 5.35, 5.45,
5.05, 5.00, 4.95,
5.50, 5.50, 5.40,
5.45, 5.55, 5.50,
5.55, 5.55, 5.35,
5.45, 5.50, 5.55,
5.50, 5.45, 5.25,
5.65, 5.60, 5.40,
5.70, 5.65, 5.55,
6.30, 6.30, 6.25),

nrow = 22,
byrow = TRUE,
dimnames = list(1 : 22,

c("Round Out", "Narrow Angle", "Wide Angle")))
friedman.test(RoundingTimes)
=> strong evidence against the null that the methods are equivalent
with respect to speed

wb <- aggregate(warpbreaks$breaks,
by = list(w = warpbreaks$wool,

t = warpbreaks$tension),
FUN = mean)

wb
friedman.test(wbx, wbw, wb$t)
friedman.test(x ~ w | t, data = wb)

ftable Flat Contingency Tables

Description

Create ‘flat’ contingency tables.

1038 ftable

Usage

ftable(x, ...)

Default S3 method:
ftable(..., exclude = c(NA, NaN), row.vars = NULL,

col.vars = NULL)

Arguments

x, ... R objects which can be interpreted as factors (including character strings), or a
list (or data frame) whose components can be so interpreted, or a contingency
table object of class"table" or "ftable" .

exclude values to use in the exclude argument offactor when interpreting non-factor
objects.

row.vars a vector of integers giving the numbers of the variables, or a character vector
giving the names of the variables to be used for the rows of the flat contingency
table.

col.vars a vector of integers giving the numbers of the variables, or a character vector giv-
ing the names of the variables to be used for the columns of the flat contingency
table.

Details

ftable creates ‘flat’ contingency tables. Similar to the usual contingency tables, these contain
the counts of each combination of the levels of the variables (factors) involved. This information
is then re-arranged as a matrix whose rows and columns correspond to unique combinations of the
levels of the row and column variables (as specified byrow.vars andcol.vars , respectively).
The combinations are created by looping over the variables in reverse order (so that the levels of
the left-most variable vary the slowest). Displaying a contingency table in this flat matrix form (via
print.ftable , the print method for objects of class"ftable") is often preferable to showing
it as a higher-dimensional array.

ftable is a generic function. Its default method,ftable.default , first creates a contingency
table in array form from all arguments exceptrow.vars andcol.vars . If the first argument
is of class"table" , it represents a contingency table and is used as is; if it is a flat table of
class"ftable" , the information it contains is converted to the usual array representation using
as.ftable . Otherwise, the arguments should beR objects which can be interpreted as factors
(including character strings), or a list (or data frame) whose components can be so interpreted,
which are cross-tabulated usingtable . Then, the argumentsrow.vars andcol.vars are used
to collapse the contingency table into flat form. If neither of these two is given, the last variable is
used for the columns. If both are given and their union is a proper subset of all variables involved,
the other variables are summed out.

When the arguments areR expressions interpreted as factors, additional arguments will be passed
to table to control how the variable names are displayed; see the last example below.

Functionftable.formula provides a formula method for creating flat contingency tables.

There are methods foras.table andas.data.frame .

Value

ftable returns an object of class"ftable" , which is a matrix with counts of each combina-
tion of the levels of variables with information on the names and levels of the (row and columns)
variables stored as attributes"row.vars" and"col.vars" .

ftable.formula 1039

See Also

ftable.formula for the formula interface (which allows adata = . argument);
read.ftable for information on reading, writing and coercing flat contingency tables;table
for ordinary cross-tabulation;xtabs for formula-based cross-tabulation.

Examples

Start with a contingency table.
ftable(Titanic, row.vars = 1:3)
ftable(Titanic, row.vars = 1:2, col.vars = "Survived")
ftable(Titanic, row.vars = 2:1, col.vars = "Survived")

Start with a data frame.
x <- ftable(mtcars[c("cyl", "vs", "am", "gear")])
x
ftable(x, row.vars = c(2, 4))

Start with expressions, use table()'s "dnn" to change labels
ftable(mtcars$cyl, mtcars$vs, mtcars$am, mtcars$gear, row.vars = c(2, 4),

dnn = c("Cylinders", "V/S", "Transmission", "Gears"))

ftable.formula Formula Notation for Flat Contingency Tables

Description

Produce or manipulate a flat contingency table using formula notation.

Usage

S3 method for class 'formula':
ftable(formula, data = NULL, subset, na.action, ...)

Arguments

formula a formula object with both left and right hand sides specifying the column and
row variables of the flat table.

data a data frame, list or environment (or similar: seemodel.frame) containing
the variables to be cross-tabulated, or a contingency table (see below).

subset an optional vector specifying a subset of observations to be used. Ignored if
data is a contingency table.

na.action a function which indicates what should happen when the data containNAs. Ig-
nored ifdata is a contingency table.

... further arguments to the default ftable method may also be passed as arguments,
seeftable.default .

1040 GammaDist

Details

This is a method of the generic functionftable .

The left and right hand side offormula specify the column and row variables, respectively, of the
flat contingency table to be created. Only the+ operator is allowed for combining the variables. A
. may be used once in the formula to indicate inclusion of all the remaining variables.

If data is an object of class"table" or an array with more than 2 dimensions, it is taken as
a contingency table, and hence all entries should be nonnegative. Otherwise, if it is not a flat
contingency table (i.e., an object of class"ftable"), it should be a data frame or matrix, list or
environment containing the variables to be cross-tabulated. In this case,na.action is applied to
the data to handle missing values, and, after possibly selecting a subset of the data as specified by
thesubset argument, a contingency table is computed from the variables.

The contingency table is then collapsed to a flat table, according to the row and column variables
specified byformula .

Value

A flat contingency table which contains the counts of each combination of the levels of the variables,
collapsed into a matrix for suitably displaying the counts.

See Also

ftable , ftable.default ; table .

Examples

Titanic
x <- ftable(Survived ~ ., data = Titanic)
x
ftable(Sex ~ Class + Age, data = x)

GammaDist The Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Gamma distribution
with parametersshape andscale .

Usage

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)

GammaDist 1041

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

rate an alternative way to specify the scale.

shape, scale shape and scale parameters. Must be strictly positive.

log, log.p logical; if TRUE, probabilities/densitiesp are returned aslog(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

If scale is omitted, it assumes the default value of1.

The Gamma distribution with parametersshape = α andscale = σ has density

f(x) =
1

σαΓ(α)
xα−1e−x/σ

for x ≥ 0, α > 0 andσ > 0. (HereΓ(α) is the function implemented byR’s gamma() and defined
in its help.)

The mean and variance areE(X) = ασ andV ar(X) = ασ2.

The cumulative hazardH(t) = − log(1 − F (t)) is -pgamma(t, ..., lower = FALSE,
log = TRUE) .

Note that for smallish values ofshape (and moderate scale) a large parts of the mass of the Gamma
distribution is on values ofx so near zero that they will be represented as zero in computer arith-
metic. Sorgamma can well return values which will be represented as zero. (This will also happen
for very large values ofscale since the actual generation is done forscale=1 .)

Value

dgammagives the density,pgammagives the distribution function,qgammagives the quantile
function, andrgamma generates random deviates.

Invalid arguments will result in return valueNaN, with a warning.

Note

The S parametrization is viashape andrate : S has noscale parameter.

pgamma is closely related to the incomplete gamma function. As defined by Abramowitz and
Stegun 6.5.1 (and by ‘Numerical Recipes’) this is

P (a, x) =
1

Γ(a)

∫ x

0

ta−1e−tdt

P (a, x) is pgamma(x, a) . Other authors (for example Karl Pearson in his 1922 tables) omit the
normalizing factor, defining the incomplete gamma function aspgamma(x, a) * gamma(a) .
A few use the ‘upper’ incomplete gamma function, the integral fromx to ∞ which can be com-
puted bypgamma(x, a, lower=FALSE) * gamma(a) , or its normalized version. See also
http://en.wikipedia.org/wiki/Incomplete_gamma_function .

http://en.wikipedia.org/wiki/Incomplete_gamma_function

1042 GammaDist

Source

dgamma is computed via the Poisson density, using code contributed by Catherine Loader (see
dbinom).

pgammauses an unpublished (and not otherwise documented) algorithm ‘mainly by Morten Welin-
der’.

qgammais based on a C translation of

Best, D. J. and D. E. Roberts (1975). Algorithm AS91. Percentage points of the chi-squared
distribution.Applied Statistics, 24, 385–388.

plus a final Newton step to improve the approximation.

rgamma for shape >= 1 uses

Ahrens, J. H. and Dieter, U. (1982). Generating gamma variates by a modified rejection technique.
Communications of the ACM, 25, 47–54,

and for0 < shape < 1 uses

Ahrens, J. H. and Dieter, U. (1974). Computer methods for sampling from gamma, beta, Poisson
and binomial distributions.Computing, 12, 223–246.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Shea, B. L. (1988) Algorithm AS 239, Chi-squared and incomplete Gamma integral,Applied Statis-
tics (JRSS C)37, 466–473.

Abramowitz, M. and Stegun, I. A. (1972)Handbook of Mathematical Functions.New York: Dover.
Chapter 6: Gamma and Related Functions.

See Also

gammafor the gamma function,dbeta for the Beta distribution anddchisq for the chi-squared
distribution which is a special case of the Gamma distribution.

Examples

-log(dgamma(1:4, shape=1))
p <- (1:9)/10
pgamma(qgamma(p,shape=2), shape=2)
1 - 1/exp(qgamma(p, shape=1))

even for shape = 0.001 about half the mass is on numbers
that cannot be represented accurately (and most of those as zero)
pgamma(.Machine$double.xmin, 0.001)
pgamma(5e-324, 0.001) # on most machines this is the smallest

representable non-zero number
table(rgamma(1e4, 0.001) == 0)/1e4

Geometric 1043

Geometric The Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the geometric distribu-
tion with parameterprob .

Usage

dgeom(x, prob, log = FALSE)
pgeom(q, prob, lower.tail = TRUE, log.p = FALSE)
qgeom(p, prob, lower.tail = TRUE, log.p = FALSE)
rgeom(n, prob)

Arguments

x, q vector of quantiles representing the number of failures in a sequence of Bernoulli
trials before success occurs.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

prob probability of success in each trial.0 < prob <= 1 .

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

The geometric distribution withprob = p has density

p(x) = p(1− p)x

for x = 0, 1, 2, . . ., 0 < p ≤ 1.

If an element ofx is not integer, the result ofpgeom is zero, with a warning.

The quantile is defined as the smallest valuex such thatF (x) ≥ p, whereF is the distribution
function.

Value

dgeom gives the density,pgeom gives the distribution function,qgeom gives the quantile function,
andrgeom generates random deviates.

Invalid prob will result in return valueNaN, with a warning.

Source

dgeom computes viadbinom , using code contributed by Catherine Loader (seedbinom).

pgeom andqgeom are based on the closed-form formulae.

rgeom uses the derivation as an exponential mixture of Poissons, see

Devroye, L. (1986)Non-Uniform Random Variate Generation.Springer-Verlag, New York. Page
480.

1044 getInitial

See Also

dnbinom for the negative binomial which generalizes the geometric distribution.

Examples

qgeom((1:9)/10, prob = .2)
Ni <- rgeom(20, prob = 1/4); table(factor(Ni, 0:max(Ni)))

getInitial Get Initial Parameter Estimates

Description

This function evaluates initial parameter estimates for a nonlinear regression model. Ifdata is a
parameterized data frame orpframe object, itsparameters attribute is returned. Otherwise the
object is examined to see if it contains a call to aselfStart object whoseinitial attribute
can be evaluated.

Usage

getInitial(object, data, ...)

Arguments

object a formula or aselfStart model that defines a nonlinear regression model

data a data frame in which the expressions in the formula or arguments to the
selfStart model can be evaluated

... optional additional arguments

Value

A named numeric vector or list of starting estimates for the parameters. The construction of many
selfStart models is such that these "starting" estimates are, in fact, the converged parameter
estimates.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart , selfStart.default , selfStart.formula

Examples

PurTrt <- Puromycin[Puromycin$state == "treated",]
getInitial(rate ~ SSmicmen(conc, Vm, K), PurTrt)

glm 1045

glm Fitting Generalized Linear Models

Description

glm is used to fit generalized linear models, specified by giving a symbolic description of the linear
predictor and a description of the error distribution.

Usage

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart,
offset, control = glm.control(...), model = TRUE,
method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,
...)

glm.fit(x, y, weights = rep(1, nobs),
start = NULL, etastart = NULL, mustart = NULL,
offset = rep(0, nobs), family = gaussian(),
control = glm.control(), intercept = TRUE)

S3 method for class 'glm':
weights(object, type = c("prior", "working"), ...)

Arguments

formula an object of class" formula " (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under ‘Details’.

family a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or
the result of a call to a family function. (Seefamily for details of family
functions.)

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If
not found indata , the variables are taken fromenvironment(formula) ,
typically the environment from whichglm is called.

weights an optional vector of weights to be used in the fitting process. Should beNULL
or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data containNAs. The
default is set by thena.action setting ofoptions , and isna.fail if that
is unset. The ‘factory-fresh’ default isna.omit . Another possible value is
NULL, no action. Valuena.exclude can be useful.

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

1046 glm

offset this can be used to specify ana priori known component to be included in the
linear predictor during fitting. This should beNULL or a numeric vector of
length either one or equal to the number of cases. One or moreoffset terms
can be included in the formula instead or as well, and if both are specified their
sum is used. Seemodel.offset .

control a list of parameters for controlling the fitting process. See the documentation for
glm.control for details.

model a logical value indicating whethermodel frameshould be included as a compo-
nent of the returned value.

method the method to be used in fitting the model. The default method"glm.fit"
uses iteratively reweighted least squares (IWLS). The only current alternative is
"model.frame" which returns the model frame and does no fitting.

x, y For glm : logical values indicating whether the response vector and model ma-
trix used in the fitting process should be returned as components of the returned
value.

For glm.fit : x is a design matrix of dimensionn * p , andy is a vector of
observations of lengthn.

contrasts an optional list. See thecontrasts.arg of model.matrix.default .

intercept logical. Should an intercept be included in thenull model?

object an object inheriting from class"glm" .

type character, partial matching allowed. Type of weights to extract from the fitted
model object.

... For glm : arguments to be passed by default toglm.control : see argument
control .

Forweights : further arguments passed to or from other methods.

Details

A typical predictor has the formresponse ~ terms whereresponse is the (numeric) re-
sponse vector andterms is a series of terms which specifies a linear predictor forresponse .
For binomial andquasibinomial families the response can also be specified as afactor
(when the first level denotes failure and all others success) or as a two-column matrix with the
columns giving the numbers of successes and failures. A terms specification of the formfirst +
second indicates all the terms infirst together with all the terms insecond with duplicates
removed. The terms in the formula will be re-ordered so that main effects come first, followed by
the interactions, all second-order, all third-order and so on: to avoid this pass aterms object as the
formula.

A specification of the formfirst:second indicates the the set of terms obtained by tak-
ing the interactions of all terms infirst with all terms in second . The specification
first*second indicates thecrossof first and second . This is the same asfirst +
second + first:second .

glm.fit is the workhorse function.

If more than one ofetastart , start andmustart is specified, the first in the list will be used.
It is often advisable to supply starting values for aquasi family, and also for families with unusual
links such asgaussian("log") .

All of weights , subset , offset , etastart andmustart are evaluated in the same way as
variables informula , that is first indata and then in the environment offormula .

glm 1047

Value

glm returns an object of class inheriting from"glm" which inherits from the class"lm" . See later
in this section.

The functionsummary (i.e., summary.glm) can be used to obtain or print a summary of the
results and the functionanova (i.e.,anova.glm) to produce an analysis of variance table.

The generic accessor functionscoefficients , effects , fitted.values and
residuals can be used to extract various useful features of the value returned byglm .

weights extracts a vector of weights, one for each case in the fit (after subsetting and
na.action).

An object of class"glm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals theworking residuals, that is the residuals in the final iteration of the IWLS fit.
Since cases with zero weights are omitted, their working residuals areNA.

fitted.values
the fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

rank the numeric rank of the fitted linear model.

family thefamily object used.
linear.predictors

the linear fit on link scale.

deviance up to a constant, minus twice the maximized log-likelihood. Where sensible, the
constant is chosen so that a saturated model has deviance zero.

aic Akaike’s An Information Criterion, minus twice the maximized log-likelihood
plus twice the number of coefficients (so assuming that the dispersion is known).

null.deviance
The deviance for the null model, comparable withdeviance . The null model
will include the offset, and an intercept if there is one in the model. Note that
this will be incorrect if the link function depends on the data other than through
the fitted mean: specify a zero offset to force a correct calculation.

iter the number of iterations of IWLS used.

weights theworkingweights, that is the weights in the final iteration of the IWLS fit.
prior.weights

the case weights initially supplied.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y they vector used. (It is a vector even for a binomial model.)

converged logical. Was the IWLS algorithm judged to have converged?

boundary logical. Is the fitted value on the boundary of the attainable values?

call the matched call.

formula the formula supplied.

terms theterms object used.

data thedata argument .

offset the offset vector used.

1048 glm

control the value of thecontrol argument used.

method the name of the fitter function used, currently always"glm.fit" .

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

In addition, non-empty fits will have componentsqr , Randeffects relating to the final weighted
linear fit.

Objects of class"glm" are normally of classc("glm", "lm") , that is inherit from class"lm" ,
and well-designed methods for class"lm" will be applied to the weighted linear model at the
final iteration of IWLS. However, care is needed, as extractor functions for class"glm" such as
residuals andweights donot just pick out the component of the fit with the same name.

If a binomial glm model was specified by giving a two-column response, the weights returned
by prior.weights are the total numbers of cases (factored by the supplied case weights) and
the componenty of the result is the proportion of successes.

Author(s)

The originalR implementation ofglm was written by Simon Davies working for Ross Ihaka at the
University of Auckland, but has since been extensively re-written by members of the R Core team.

The design was inspired by the S function of the same name described in Hastie & Pregibon (1992).

References

Dobson, A. J. (1990)An Introduction to Generalized Linear Models.London: Chapman and Hall.

Hastie, T. J. and Pregibon, D. (1992)Generalized linear models.Chapter 6 ofStatistical Models in
Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989)Generalized Linear Models.London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S.New York: Springer.

See Also

anova.glm , summary.glm , etc. for glm methods, and the generic functionsanova ,
summary , effects , fitted.values , andresiduals .

lm for non-generalizedlinear models (which SAS calls GLMs, for ‘general’ linear models).

loglin andloglm for fitting log-linear models (which binomial and Poisson GLMs are) to con-
tingency tables.

bigglm in packagebiglm for an alternative way to fit GLMs to large datasets (especially those
with many cases).

esoph , infert andpredict.glm have examples of fitting binomial glms.

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
anova(glm.D93)
summary(glm.D93)

glm.control 1049

an example with offsets from Venables & Ripley (2002, p.189)
utils::data(anorexia, package="MASS")

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian, data = anorexia)

summary(anorex.1)

A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

summary(glm(lot1 ~ log(u), data=clotting, family=Gamma))
summary(glm(lot2 ~ log(u), data=clotting, family=Gamma))

Not run:
for an example of the use of a terms object as a formula
demo(glm.vr)
End(Not run)

glm.control Auxiliary for Controlling GLM Fitting

Description

Auxiliary function as user interface forglm fitting. Typically only used when callingglm or
glm.fit .

Usage

glm.control(epsilon = 1e-8, maxit = 25, trace = FALSE)

Arguments

epsilon positive convergence toleranceε; the iterations converge when|dev −
devold|/(|dev|+ 0.1) < ε.

maxit integer giving the maximal number of IWLS iterations.

trace logical indicating if output should be produced for each iteration.

Details

If epsilon is small, it is also used as the tolerance for the least squares solution.

When trace is true, calls tocat produce the output for each IWLS iteration. Hence,
options (digits = *) can be used to increase the precision, see the example.

Value

A list with the arguments as components.

1050 glm.summaries

References

Hastie, T. J. and Pregibon, D. (1992)Generalized linear models.Chapter 6 ofStatistical Models in
Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm.fit , the fitting procedure used byglm .

Examples

A variation on example(glm) :

Annette Dobson's example ...
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
oo <- options(digits = 12) # to see more when tracing :
glm.D93X <- glm(counts ~ outcome + treatment, family=poisson(),

trace = TRUE, epsilon = 1e-14)
options(oo)
coef(glm.D93X) # the last two are closer to 0 than in ?glm's glm.D93

glm.summaries Accessing Generalized Linear Model Fits

Description

These functions are allmethods for classglm or summary.glm objects.

Usage

S3 method for class 'glm':
family(object, ...)

S3 method for class 'glm':
residuals(object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)

Arguments

object an object of classglm , typically the result of a call toglm .

type the type of residuals which should be returned. The alternatives are:
"deviance" (default), "pearson" , "working" , "response" , and
"partial" .

... further arguments passed to or from other methods.

hclust 1051

Details

The references define the types of residuals: Davison & Snell is a good reference for the usages of
each.

The partial residuals are a matrix of working residuals, with each column formed by omitting a term
from the model.

How residuals treats cases with missing values in the original fit is determined by the
na.action argument of that fit. Ifna.action = na.omit omitted cases will not appear
in the residuals, whereas ifna.action = na.exclude they will appear, with residual value
NA. See alsonaresid .

For fits done withy = FALSE the response values are computed from other components.

References

Davison, A. C. and Snell, E. J. (1991)Residuals and diagnostics.In: Statistical Theory and Mod-
elling. In Honour of Sir David Cox, FRS, eds. Hinkley, D. V., Reid, N. and Snell, E. J., Chapman
& Hall.

Hastie, T. J. and Pregibon, D. (1992)Generalized linear models.Chapter 6 ofStatistical Models in
Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989)Generalized Linear Models.London: Chapman and Hall.

See Also

glm for computing glm.obj , anova.glm ; the corresponding generic functions,
summary.glm , coef , deviance , df.residual , effects , fitted , residuals .

influence.measuresfor deletion diagnostics, including standardized (rstandard) and studentized
(rstudent) residuals.

hclust Hierarchical Clustering

Description

Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

Usage

hclust(d, method = "complete", members=NULL)

S3 method for class 'hclust':
plot(x, labels = NULL, hang = 0.1,

axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "Cluster Dendrogram",
sub = NULL, xlab = NULL, ylab = "Height", ...)

plclust(tree, hang = 0.1, unit = FALSE, level = FALSE, hmin = 0,
square = TRUE, labels = NULL, plot. = TRUE,
axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "", sub = NULL, xlab = NULL, ylab = "Height")

1052 hclust

Arguments

d a dissimilarity structure as produced bydist .

method the agglomeration method to be used. This should be (an unambiguous ab-
breviation of) one of"ward" , "single" , "complete" , "average" ,
"mcquitty" , "median" or "centroid" .

members NULLor a vector with length size ofd. See the ‘Details’ section.

x,tree an object of the type produced byhclust .

hang The fraction of the plot height by which labels should hang below the rest of the
plot. A negative value will cause the labels to hang down from 0.

labels A character vector of labels for the leaves of the tree. By default the row names
or row numbers of the original data are used. Iflabels=FALSE no labels at
all are plotted.

axes, frame.plot, ann
logical flags as inplot.default .

main, sub, xlab, ylab
character strings fortitle . sub andxlab have a non-NULL default when
there’s atree$call .

... Further graphical arguments.

unit logical. If true, the splits are plotted at equally-spaced heights rather than at the
height in the object.

hmin numeric. All heights less thanhmin are regarded as beinghmin : this can be
used to suppress detail at the bottom of the tree.

level, square, plot.
as yet unimplemented arguments ofplclust for S-PLUS compatibility.

Details

This function performs a hierarchical cluster analysis using a set of dissimilarities for then objects
being clustered. Initially, each object is assigned to its own cluster and then the algorithm pro-
ceeds iteratively, at each stage joining the two most similar clusters, continuing until there is just
a single cluster. At each stage distances between clusters are recomputed by the Lance–Williams
dissimilarity update formula according to the particular clustering method being used.

A number of different clustering methods are provided.Ward’sminimum variance method aims at
finding compact, spherical clusters. Thecomplete linkagemethod finds similar clusters. Thesingle
linkagemethod (which is closely related to the minimal spanning tree) adopts a ‘friends of friends’
clustering strategy. The other methods can be regarded as aiming for clusters with characteristics
somewhere between the single and complete link methods. Note however, that methods"median"
and"centroid" arenot leading to amonotone distancemeasure, or equivalently the resulting
dendrograms can have so calledinversions(which are hard to interpret).

If members!=NULL , thend is taken to be a dissimilarity matrix between clusters instead of dis-
similarities between singletons andmembers gives the number of observations per cluster. This
way the hierarchical cluster algorithm can be ‘started in the middle of the dendrogram’, e.g., in order
to reconstruct the part of the tree above a cut (see examples). Dissimilarities between clusters can
be efficiently computed (i.e., withouthclust itself) only for a limited number of distance/linkage
combinations, the simplest one being squared Euclidean distance and centroid linkage. In this case
the dissimilarities between the clusters are the squared Euclidean distances between cluster means.

In hierarchical cluster displays, a decision is needed at each merge to specify which subtree should
go on the left and which on the right. Since, forn observations there aren − 1 merges, there are

hclust 1053

2(n−1) possible orderings for the leaves in a cluster tree, or dendrogram. The algorithm used in
hclust is to order the subtree so that the tighter cluster is on the left (the last, i.e., most recent,
merge of the left subtree is at a lower value than the last merge of the right subtree). Single observa-
tions are the tightest clusters possible, and merges involving two observations place them in order
by their observation sequence number.

Value

An object of classhclust which describes the tree produced by the clustering process. The object is
a list with components:

merge ann−1 by 2 matrix. Rowi of merge describes the merging of clusters at stepi
of the clustering. If an elementj in the row is negative, then observation−j was
merged at this stage. Ifj is positive then the merge was with the cluster formed
at the (earlier) stagej of the algorithm. Thus negative entries inmerge indicate
agglomerations of singletons, and positive entries indicate agglomerations of
non-singletons.

height a set ofn − 1 non-decreasing real values. The clusteringheight: that is, the
value of the criterion associated with the clusteringmethod for the particular
agglomeration.

order a vector giving the permutation of the original observations suitable for plotting,
in the sense that a cluster plot using this ordering and matrixmerge will not
have crossings of the branches.

labels labels for each of the objects being clustered.

call the call which produced the result.

method the cluster method that has been used.

dist.method the distance that has been used to created (only returned if the distance object
has a"method" attribute).

There are print , plot and identify (see identify.hclust) methods and the
rect.hclust () function forhclust objects. Theplclust() function is basically the same
as the plot method,plot.hclust , primarily for back compatibility with S-plus. Its extra argu-
ments are not yet implemented.

Author(s)

Thehclust function is based on Fortran code contributed to STATLIB by F. Murtagh.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (S version.)

Everitt, B. (1974).Cluster Analysis. London: Heinemann Educ. Books.

Hartigan, J. A. (1975).Clustering Algorithms. New York: Wiley.

Sneath, P. H. A. and R. R. Sokal (1973).Numerical Taxonomy. San Francisco: Freeman.

Anderberg, M. R. (1973).Cluster Analysis for Applications. Academic Press: New York.

Gordon, A. D. (1999).Classification. Second Edition. London: Chapman and Hall / CRC

Murtagh, F. (1985). “Multidimensional Clustering Algorithms”, inCOMPSTAT Lectures 4.
Wuerzburg: Physica-Verlag (for algorithmic details of algorithms used).

McQuitty, L.L. (1966). Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data.
Educational and Psychological Measurement, 26, 825–831.

1054 heatmap

See Also

identify.hclust , rect.hclust , cutree , dendrogram , kmeans .

For the Lance–Williams formula and methods that apply it generally, seeagnes from package
cluster.

Examples

require(graphics)

hc <- hclust(dist(USArrests), "ave")
plot(hc)
plot(hc, hang = -1)

Do the same with centroid clustering and squared Euclidean distance,
cut the tree into ten clusters and reconstruct the upper part of the
tree from the cluster centers.
hc <- hclust(dist(USArrests)^2, "cen")
memb <- cutree(hc, k = 10)
cent <- NULL
for(k in 1:10){

cent <- rbind(cent, colMeans(USArrests[memb == k, , drop = FALSE]))
}
hc1 <- hclust(dist(cent)^2, method = "cen", members = table(memb))
opar <- par(mfrow = c(1, 2))
plot(hc, labels = FALSE, hang = -1, main = "Original Tree")
plot(hc1, labels = FALSE, hang = -1, main = "Re-start from 10 clusters")
par(opar)

heatmap Draw a Heat Map

Description

A heat map is a false color image (basicallyimage (t(x))) with a dendrogram added to the left
side and to the top. Typically, reordering of the rows and columns according to some set of values
(row or column means) within the restrictions imposed by the dendrogram is carried out.

Usage

heatmap(x, Rowv=NULL, Colv=if(symm)"Rowv" else NULL,
distfun = dist, hclustfun = hclust,
reorderfun = function(d,w) reorder(d,w),
add.expr, symm = FALSE, revC = identical(Colv, "Rowv"),
scale=c("row", "column", "none"), na.rm = TRUE,
margins = c(5, 5), ColSideColors, RowSideColors,
cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc),
labRow = NULL, labCol = NULL, main = NULL,
xlab = NULL, ylab = NULL,
keep.dendro = FALSE, verbose = getOption("verbose"), ...)

heatmap 1055

Arguments

x numeric matrix of the values to be plotted.

Rowv determines if and how therow dendrogram should be computed and reordered.
Either adendrogram or a vector of values used to reorder the row dendrogram
or NAto suppress any row dendrogram (and reordering) or by default,NULL, see
‘Details’ below.

Colv determines if and how thecolumndendrogram should be reordered. Has the
same options as theRowv argument above andadditionallywhenx is a square
matrix,Colv = "Rowv" means that columns should be treated identically to
the rows.

distfun function used to compute the distance (dissimilarity) between both rows and
columns. Defaults todist .

hclustfun function used to compute the hierarchical clustering whenRowv or Colv are
not dendrograms. Defaults tohclust . Should take as argument a result of
distfun and return an object to whichas.dendrogram can be applied.

reorderfun function(d,w) of dendrogram and weights for reordering the row and column
dendrograms. The default usesreorder.dendrogram .

add.expr expression that will be evaluated after the call toimage . Can be used to add
components to the plot.

symm logical indicating ifx should be treatedsymmetrically; can only be true when
x is a square matrix.

revC logical indicating if the column order should berev ersed for plotting, such that
e.g., for the symmetric case, the symmetry axis is as usual.

scale character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. The default is"row" if symmfalse,
and"none" otherwise.

na.rm logical indicating whetherNA’s should be removed.

margins numeric vector of length 2 containing the margins (seepar (mar= *)) for
column and row names, respectively.

ColSideColors
(optional) character vector of lengthncol(x) containing the color names for
a horizontal side bar that may be used to annotate the columns ofx .

RowSideColors
(optional) character vector of lengthnrow(x) containing the color names for
a vertical side bar that may be used to annotate the rows ofx .

cexRow, cexCol
positive numbers, used ascex.axis in for the row or column axis labeling.
The defaults currently only use number of rows or columns, respectively.

labRow, labCol
character vectors with row and column labels to use; these default to
rownames(x) or colnames(x) , respectively.

main, xlab, ylab
main, x- and y-axis titles; defaults to none.

keep.dendro logical indicating if the dendrogram(s) should be kept as part of the result (when
Rowv and/orColv are not NA).

verbose logical indicating if information should be printed.

... additional arguments passed on toimage , e.g.,col specifying the colors.

1056 heatmap

Details

If eitherRowvor Colv are dendrograms they are honored (and not reordered). Otherwise, dendro-
grams are computed asdd <- as.dendrogram(hclustfun(distfun(X))) whereX is
eitherx or t(x) .

If either is a vector (of ‘weights’) then the appropriate dendrogram is reordered according to the sup-
plied values subject to the constraints imposed by the dendrogram, byreorder (dd, Rowv) , in
the row case. If either is missing, as by default, then the ordering of the corresponding dendrogram
is by the mean value of the rows/columns, i.e., in the case of rows,Rowv <- rowMeans(x,
na.rm=na.rm) . If either isNULL, no reorderingwill be done for the corresponding side.

By default (scale = "row") the rows are scaled to have mean zero and standard deviation one.
There is some empirical evidence from genomic plotting that this is useful.

The default colors are not pretty. Consider using enhancements such as theRCol-
orBrewer package,http://cran.r-project.org/src/contrib/PACKAGES.html#
RColorBrewer .

Value

Invisibly, a list with components

rowInd row index permutation vector as returned byorder.dendrogram .

colInd column index permutation vector.

Rowv the row dendrogram; only if inputRowv was not NA andkeep.dendro is
true.

Colv the column dendrogram; only if inputColv was not NA andkeep.dendro
is true.

Note

UnlessRowv = NA(or Colw = NA), the original rows and columns are reorderedin any case
to match the dendrogram, e.g., the rows byorder.dendrogram (Rowv) whereRowv is the
(possiblyreorder () ed) row dendrogram.

heatmap() useslayout and draws theimage in the lower right corner of a 2x2 layout. Con-
sequentially, it cannot be used in a multi column/row layout, i.e., whenpar (mfrow= *) or
(mfcol= *) has been called.

Author(s)

Andy Liaw, original; R. Gentleman, M. Maechler, W. Huber, revisions.

See Also

image , hclust

Examples

require(graphics); require(grDevices)
x <- as.matrix(mtcars)
rc <- rainbow(nrow(x), start=0, end=.3)
cc <- rainbow(ncol(x), start=0, end=.3)
hv <- heatmap(x, col = cm.colors(256), scale="column",

RowSideColors = rc, ColSideColors = cc, margins=c(5,10),
xlab = "specification variables", ylab= "Car Models",

http://cran.r-project.org/src/contrib/PACKAGES.html#RColorBrewer
http://cran.r-project.org/src/contrib/PACKAGES.html#RColorBrewer

HoltWinters 1057

main = "heatmap(<Mtcars data>, ..., scale = \"column\")")
utils::str(hv) # the two re-ordering index vectors

no column dendrogram (nor reordering) at all:
heatmap(x, Colv = NA, col = cm.colors(256), scale="column",

RowSideColors = rc, margins=c(5,10),
xlab = "specification variables", ylab= "Car Models",
main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

"no nothing"
heatmap(x, Rowv = NA, Colv = NA, scale="column",

main = "heatmap(*, NA, NA) ~= image(t(x))")

round(Ca <- cor(attitude), 2)
symnum(Ca) # simple graphic
heatmap(Ca, symm = TRUE, margins=c(6,6))# with reorder()
heatmap(Ca, Rowv=FALSE, symm = TRUE, margins=c(6,6))# _NO_ reorder()

For variable clustering, rather use distance based on cor():
symnum(cU <- cor(USJudgeRatings))

hU <- heatmap(cU, Rowv = FALSE, symm = TRUE, col = topo.colors(16),
distfun = function(c) as.dist(1 - c), keep.dendro = TRUE)

The Correlation matrix with same reordering:
round(100 * cU[hU[[1]], hU[[2]]])
The column dendrogram:
utils::str(hU$Colv)

HoltWinters Holt-Winters Filtering

Description

Computes Holt-Winters Filtering of a given time series. Unknown parameters are determined by
minimizing the squared prediction error.

Usage

HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL,
seasonal = c("additive", "multiplicative"),
start.periods = 3, l.start = NULL, b.start = NULL,
s.start = NULL,
optim.start = c(alpha = 0.3, beta = 0.1, gamma = 0.1),
optim.control = list())

Arguments

x An object of classts

alpha alpha parameter of Holt-Winters Filter

beta beta parameter of Holt-Winters Filter. If set to 0, the function will do exponen-
tial smoothing.

gamma gamma parameter used for the seasonal component. If set to 0, an non-seasonal
model is fitted.

1058 HoltWinters

seasonal Character string to select an"additive" (the default) or
"multiplicative" seasonal model. The first few characters are suf-
ficient. (Only takes effect ifgammais non-zero).

start.periods
Start periods used in the autodetection of start values. Must be at least 3.

l.start Start value for level (a[0]).

b.start Start value for trend (b[0]).

s.start Vector of start values for the seasonal component (s1[0]...sp[0])

optim.start Vector with named componentsalpha , beta , andgammacontaining the start-
ing values for the optimizer. Only the values needed must be specified.

optim.control
Optional list with additional control parameters passed tooptim .

Details

The additive Holt-Winters prediction function (for time series with period length p) is

Ŷ [t+ h] = a[t] + hb[t] + s[t+ 1 + (h− 1) mod p],

wherea[t], b[t] ands[t] are given by

a[t] = α(Y [t]− s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]− a[t]) + (1− γ)s[t− p]

The multiplicative Holt-Winters prediction function (for time series with period length p) is

Ŷ [t+ h] = (a[t] + hb[t])× s[t+ 1 + (h− 1) mod p].

wherea[t], b[t] ands[t] are given by

a[t] = α(Y [t]/s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]/a[t]) + (1− γ)s[t− p]

The function tries to find the optimal values ofα and/orβ and/orγ by minimizing the squared
one-step prediction error if they are omitted.

For seasonal models, start values fora, b ands are detected by performing a simple decompo-
sition in trend and seasonal component using moving averages (see functiondecompose) on the
start.periods first periods (a simple linear regression on the trend component is used for start-
ing level and trend.). For level/trend-models (no seasonal component), start values for a and b are
x[2] and x[2] - x[1], respectively. For level-only models (ordinary exponential smoothing), the start
value for a is x[1].

HoltWinters 1059

Value

An object of class"HoltWinters" , a list with components:

fitted A multiple time series with one column for the filtered series as well as for the
level, trend and seasonal components, estimated contemporaneously (that is at
time t and not at the end of the series).

x The original series

alpha alpha used for filtering

beta beta used for filtering

coefficients A vector with named componentsa, b, s1, ..., sp containing the esti-
mated values for the level, trend and seasonal components

seasonal The specifiedseasonal -parameter

SSE The final sum of squared errors achieved in optimizing

call The call used

Author(s)

David Meyer〈David.Meyer@wu-wien.ac.at〉

References

C. C. Holt (1957) Forecasting seasonals and trends by exponentially weighted moving averages,
ONR Research Memorandum, Carnigie Institute 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages,Management
Science6, 324–342.

See Also

predict.HoltWinters ,optim

Examples

require(graphics)

Seasonal Holt-Winters
(m <- HoltWinters(co2))
plot(m)
plot(fitted(m))

(m <- HoltWinters(AirPassengers, seasonal = "mult"))
plot(m)

Non-Seasonal Holt-Winters
x <- uspop + rnorm(uspop, sd = 5)
m <- HoltWinters(x, gamma = 0)
plot(m)

Exponential Smoothing
m2 <- HoltWinters(x, gamma = 0, beta = 0)
lines(fitted(m2)[,1], col = 3)

1060 Hypergeometric

Hypergeometric The Hypergeometric Distribution

Description

Density, distribution function, quantile function and random generation for the hypergeometric dis-
tribution.

Usage

dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(nn, m, n, k)

Arguments

x, q vector of quantiles representing the number of white balls drawn without re-
placement from an urn which contains both black and white balls.

m the number of white balls in the urn.

n the number of black balls in the urn.

k the number of balls drawn from the urn.

p probability, it must be between 0 and 1.

nn number of observations. Iflength(nn) > 1 , the length is taken to be the
number required.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

The hypergeometric distribution is used for samplingwithout replacement. The density of this
distribution with parametersm, n andk (namedNp, N −Np, andn, respectively in the reference
below) is given by

p(x) =
(
m

x

)(
n

k − x

)/(
m+ n

k

)
for x = 0, . . . , k.

Value

dhyper gives the density,phyper gives the distribution function,qhyper gives the quantile
function, andrhyper generates random deviates.

Invalid arguments will result in return valueNaN, with a warning.

identify.hclust 1061

Source

dhyper computes via binomial probabilities, using code contributed by Catherine Loader (see
dbinom).

phyper is based on calculatingdhyper andphyper(...)/dhyper(...) (as a summation),
based on ideas of Ian Smith and Morten Welinder.

qhyper is based on inversion.

rhyper is based on a corrected version of

Kachitvichyanukul, V. and Schmeiser, B. (1985). Computer generation of hypergeometric random
variates.Journal of Statistical Computation and Simulation, 22, 127–145.

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992)Univariate Discrete Distributions, Second Edi-
tion. New York: Wiley.

Examples

m <- 10; n <- 7; k <- 8
x <- 0:(k+1)
rbind(phyper(x, m, n, k), dhyper(x, m, n, k))
all(phyper(x, m, n, k) == cumsum(dhyper(x, m, n, k)))# FALSE
but error is very small:
signif(phyper(x, m, n, k) - cumsum(dhyper(x, m, n, k)), digits=3)

identify.hclust Identify Clusters in a Dendrogram

Description

identify.hclust reads the position of the graphics pointer when the (first) mouse button is
pressed. It then cuts the tree at the vertical position of the pointer and highlights the cluster con-
taining the horizontal position of the pointer. Optionally a function is applied to the index of data
points contained in the cluster.

Usage

S3 method for class 'hclust':
identify(x, FUN = NULL, N = 20, MAXCLUSTER = 20, DEV.FUN = NULL,

...)

Arguments

x an object of the type produced byhclust .

FUN (optional) function to be applied to the index numbers of the data points in a
cluster (see ‘Details’ below).

N the maximum number of clusters to be identified.

MAXCLUSTER the maximum number of clusters that can be produced by a cut (limits the effec-
tive vertical range of the pointer).

DEV.FUN (optional) integer scalar. If specified, the corresponding graphics device is made
active beforeFUNis applied.

... further arguments toFUN.

1062 influence.measures

Details

By default clusters can be identified using the mouse and aninvisible list of indices of the
respective data points is returned.

If FUNis notNULL, then the index vector of data points is passed to this function as first argument,
see the examples below. The active graphics device forFUNcan be specified usingDEV.FUN.

The identification process is terminated by pressing any mouse button other than the first, see also
identify .

Value

Either a list of data point index vectors or a list of return values ofFUN.

See Also

hclust , rect.hclust

Examples

Not run:
require(graphics)

hca <- hclust(dist(USArrests))
plot(hca)
(x <- identify(hca)) ## Terminate with 2nd mouse button !!

hci <- hclust(dist(iris[,1:4]))
plot(hci)
identify(hci, function(k) print(table(iris[k,5])))

open a new device (one for dendrogram, one for bars):
get(getOption("device"))() # << make that narrow (& small)

and *beside* 1st one
nD <- dev.cur() # to be for the barplot
dev.set(dev.prev())# old one for dendrogram
plot(hci)
select subtrees in dendrogram and "see" the species distribution:
identify(hci, function(k) barplot(table(iris[k,5]),col=2:4), DEV.FUN = nD)
End(Not run)

influence.measures Regression Deletion Diagnostics

Description

This suite of functions can be used to compute some of the regression (leave-one-out deletion)
diagnostics for linear and generalized linear models discussed in Belsley, Kuh and Welsch (1980),
Cook and Weisberg (1982), etc.

influence.measures 1063

Usage

influence.measures(model)

rstandard(model, ...)
S3 method for class 'lm':
rstandard(model, infl = lm.influence(model, do.coef = FALSE),

sd = sqrt(deviance(model)/df.residual(model)), ...)
S3 method for class 'glm':
rstandard(model, infl = lm.influence(model, do.coef = FALSE),

...)

rstudent(model, ...)
S3 method for class 'lm':
rstudent(model, infl = lm.influence(model, do.coef = FALSE),

res = infl$wt.res, ...)
S3 method for class 'glm':
rstudent(model, infl = influence(model, do.coef = FALSE), ...)

dffits(model, infl = , res =)

dfbeta(model, ...)
S3 method for class 'lm':
dfbeta(model, infl = lm.influence(model, do.coef = TRUE), ...)

dfbetas(model, ...)
S3 method for class 'lm':
dfbetas(model, infl = lm.influence(model, do.coef = TRUE), ...)

covratio(model, infl = lm.influence(model, do.coef = FALSE),
res = weighted.residuals(model))

cooks.distance(model, ...)
S3 method for class 'lm':
cooks.distance(model, infl = lm.influence(model, do.coef = FALSE),

res = weighted.residuals(model),
sd = sqrt(deviance(model)/df.residual(model)),
hat = infl$hat, ...)

S3 method for class 'glm':
cooks.distance(model, infl = influence(model, do.coef = FALSE),

res = infl$pear.res,
dispersion = summary(model)$dispersion,
hat = infl$hat, ...)

hatvalues(model, ...)
S3 method for class 'lm':
hatvalues(model, infl = lm.influence(model, do.coef = FALSE), ...)

hat(x, intercept = TRUE)

Arguments

model anR object, typically returned bylm or glm .

1064 influence.measures

infl influence structure as returned bylm.influence or influence (the latter
only for theglm method ofrstudent andcooks.distance).

res (possibly weighted) residuals, with proper default.

sd standard deviation to use, see default.

dispersion dispersion (forglm objects) to use, see default.

hat hat valuesHii, see default.

x theX or design matrix.

intercept should an intercept column be prepended tox?

... further arguments passed to or from other methods.

Details

The primary high-level function isinfluence.measures which produces a class"infl"
object tabular display showing the DFBETAS for each model variable, DFFITS, covariance ratios,
Cook’s distances and the diagonal elements of the hat matrix. Cases which are influential with
respect to any of these measures are marked with an asterisk.

The functionsdfbetas , dffits , covratio andcooks.distance provide direct access to
the corresponding diagnostic quantities. Functionsrstandard andrstudent give the standard-
ized and Studentized residuals respectively. (These re-normalize the residuals to have unit variance,
using an overall and leave-one-out measure of the error variance respectively.)

Values for generalized linear models are approximations, as described in Williams (1987) (except
that Cook’s distances are scaled asF rather than as chi-square values). The approximations can be
poor when some cases have large influence.

The optional infl , res and sd arguments are there to encourage the use of these di-
rect access functions, in situations where, e.g., the underlying basic influence measures (from
lm.influence or the genericinfluence) are already available.

Note that cases withweights == 0 aredroppedfrom all these functions, but that if a linear
model has been fitted withna.action = na.exclude , suitable values are filled in for the
cases excluded during fitting.

The function hat() exists mainly for S (version 2) compatibility; we recommend using
hatvalues() instead.

Note

For hatvalues , dfbeta , anddfbetas , the method for linear models also works for general-
ized linear models.

Author(s)

Several R core team members and John Fox, originally in his ‘car’ package.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980)Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982)Residuals and Influence in Regression. London: Chapman
and Hall.

Williams, D. A. (1987) Generalized linear model diagnostics using the deviance and single case
deletions.Applied Statistics36, 181–191.

Fox, J. (1997)Applied Regression, Linear Models, and Related Methods. Sage.

integrate 1065

Fox, J. (2002)An R and S-Plus Companion to Applied Regression. Sage Publ.;http://www.
socsci.mcmaster.ca/jfox/Books/Companion/ .

See Also

influence (containinglm.influence).

‘plotmath’ for the use ofhat in plot annotation.

Examples

require(graphics)

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

inflm.SR <- influence.measures(lm.SR)
which(apply(inflm.SR$is.inf, 1, any))
which observations 'are' influential
summary(inflm.SR) # only these
inflm.SR # all
plot(rstudent(lm.SR) ~ hatvalues(lm.SR)) # recommended by some

The 'infl' argument is not needed, but avoids recomputation:
rs <- rstandard(lm.SR)
iflSR <- influence(lm.SR)
identical(rs, rstandard(lm.SR, infl = iflSR))
to "see" the larger values:
1000 * round(dfbetas(lm.SR, infl = iflSR), 3)

Huber's data [Atkinson 1985]
xh <- c(-4:0, 10)
yh <- c(2.48, .73, -.04, -1.44, -1.32, 0)
summary(lmH <- lm(yh ~ xh))
(im <- influence.measures(lmH))
plot(xh,yh, main = "Huber's data: L.S. line and influential obs.")
abline(lmH); points(xh[im$is.inf], yh[im$is.inf], pch=20, col=2)

integrate Integration of One-Dimensional Functions

Description

Adaptive quadrature of functions of one variable over a finite or infinite interval.

Usage

integrate(f, lower, upper, ..., subdivisions=100,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)

http://www.socsci.mcmaster.ca/jfox/Books/Companion/
http://www.socsci.mcmaster.ca/jfox/Books/Companion/

1066 integrate

Arguments

f anR function taking a numeric first argument and returning a numeric vector of
the same length. Returning a non-finite element will generate an error.

lower, upper the limits of integration. Can be infinite.

... additional arguments to be passed tof .

subdivisions the maximum number of subintervals.

rel.tol relative accuracy requested.

abs.tol absolute accuracy requested.

stop.on.error
logical. If true (the default) an error stops the function. If false some errors will
give a result with a warning in themessage component.

keep.xy unused. For compatibility with S.

aux unused. For compatibility with S.

Details

Note that arguments after... must be matched exactly.

If one or both limits are infinite, the infinite range is mapped onto a finite interval.

For a finite interval, globally adaptive interval subdivision is used in connection with extrapolation
by the Epsilon algorithm.

rel.tol cannot be less thanmax(50*.Machine$double.eps, 0.5e-28) if abs.tol
<= 0.

Value

A list of class"integrate" with components

value the final estimate of the integral.

abs.error estimate of the modulus of the absolute error.

subdivisions the number of subintervals produced in the subdivision process.

message "OK" or a character string giving the error message.

call the matched call.

Note

Like all numerical integration routines, these evaluate the function on a finite set of points. If the
function is approximately constant (in particular, zero) over nearly all its range it is possible that the
result and error estimate may be seriously wrong.

When integrating over infinite intervals do so explicitly, rather than just using a large number as
the endpoint. This increases the chance of a correct answer – any function whose integral over an
infinite interval is finite must be near zero for most of that interval.

f must accept a vector of inputs and produce a vector of function evaluations at those points. The
Vectorize function may be helpful to convertf to this form.

interaction.plot 1067

References

Based on QUADPACK routinesdqags anddqagi by R. Piessens and E. deDoncker-Kapenga,
available from Netlib.

See
R. Piessens, E. deDoncker-Kapenga, C. Uberhuber, D. Kahaner (1983)Quadpack: a Subroutine
Package for Automatic Integration; Springer Verlag.

See Also

The functionadapt in theadapt package on CRAN, for multivariate integration.

Examples

integrate(dnorm, -1.96, 1.96)
integrate(dnorm, -Inf, Inf)

a slowly-convergent integral
integrand <- function(x) {1/((x+1)*sqrt(x))}
integrate(integrand, lower = 0, upper = Inf)

don't do this if you really want the integral from 0 to Inf
integrate(integrand, lower = 0, upper = 10)
integrate(integrand, lower = 0, upper = 100000)
integrate(integrand, lower = 0, upper = 1000000, stop.on.error = FALSE)

some functions do not handle vector input properly
f <- function(x) 2
try(integrate(f, 0, 1))
integrate(Vectorize(f), 0, 1) ## correct
integrate(function(x) rep(2, length(x)), 0, 1) ## correct

integrate can fail if misused
integrate(dnorm,0,2)
integrate(dnorm,0,20)
integrate(dnorm,0,200)
integrate(dnorm,0,2000)
integrate(dnorm,0,20000) ## fails on many systems
integrate(dnorm,0,Inf) ## works

interaction.plot Two-way Interaction Plot

Description

Plots the mean (or other summary) of the response for two-way combinations of factors, thereby
illustrating possible interactions.

Usage

interaction.plot(x.factor, trace.factor, response, fun = mean,
type = c("l", "p", "b"), legend = TRUE,
trace.label = deparse(substitute(trace.factor)),
fixed = FALSE,

1068 interaction.plot

xlab = deparse(substitute(x.factor)),
ylab = ylabel,
ylim = range(cells, na.rm=TRUE),
lty = nc:1, col = 1, pch = c(1:9, 0, letters),
xpd = NULL, leg.bg = par("bg"), leg.bty = "n",
xtick = FALSE, xaxt = par("xaxt"), axes = TRUE,
...)

Arguments

x.factor a factor whose levels will form the x axis.

trace.factor another factor whose levels will form the traces.

response a numeric variable giving the response

fun the function to compute the summary. Should return a single real value.

type the type of plot: lines or points.

legend logical. Should a legend be included?

trace.label overall label for the legend.

fixed logical. Should the legend be in the order of the levels oftrace.factor or
in the order of the traces at their right-hand ends?

xlab,ylab the x and y label of the plot each with a sensible default.

ylim numeric of length 2 giving the y limits for the plot.

lty line type for the lines drawn, with sensible default.

col the color to be used for plotting.

pch a vector of plotting symbols or characters, with sensible default.

xpd determines clipping behaviour for thelegend used, seepar (xpd) . Per de-
fault, the legend isnot clipped at the figure border.

leg.bg, leg.bty
arguments passed tolegend () .

xtick logical. Should tick marks be used on the x axis?
xaxt, axes, ...

graphics parameters to be passed to the plotting routines.

Details

By default the levels ofx.factor are plotted on the x axis in their given order, with extra space
left at the right for the legend (if specified). Ifx.factor is an ordered factor and the levels are
numeric, these numeric values are used for the x axis.

The response and hence its summary can contain missing values. If so, the missing values and the
line segments joining them are omitted from the plot (and this can be somewhat disconcerting).

The graphics parametersxlab , ylab , ylim , lty , col andpch are given suitable defaults (and
xlim andxaxs are set and cannot be overridden). The defaults are to cycle through the line types,
use the foreground colour, and to use the symbols 1:9, 0, and the capital letters to plot the traces.

Note

Some of the argument names and the precise behaviour are chosen for S-compatibility.

IQR 1069

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992)Analysis of variance; designed experi-
ments. Chapter 5 ofStatistical Models in Seds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

Examples

require(graphics)

with(ToothGrowth, {
interaction.plot(dose, supp, len, fixed=TRUE)
dose <- ordered(dose)
interaction.plot(dose, supp, len, fixed=TRUE, col = 2:3, leg.bty = "o")
interaction.plot(dose, supp, len, fixed=TRUE, col = 2:3, type = "p")
})

with(OrchardSprays, {
interaction.plot(treatment, rowpos, decrease)
interaction.plot(rowpos, treatment, decrease, cex.axis=0.8)
order the rows by their mean effect
rowpos <- factor(rowpos,

levels = sort.list(tapply(decrease, rowpos, mean)))
interaction.plot(rowpos, treatment, decrease, col = 2:9, lty = 1)

})

with(esoph, {
interaction.plot(agegp, alcgp, ncases/ncontrols, main = "'esoph' Data")
interaction.plot(agegp, tobgp, ncases/ncontrols, trace.label="tobacco",

fixed=TRUE, xaxt = "n")
})
deal with NAs:
esoph[66,] # second to last age group: 65-74
esophNA <- esoph; esophNA$ncases[66] <- NA
with(esophNA, {

interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5)
doesn't show *last* group either

interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5, type = "b")
alternative take non-NA's {"cheating"}
interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5,

fun = function(x) mean(x, na.rm=TRUE),
sub = "function(x) mean(x, na.rm=TRUE)")

})
rm(esophNA) # to clear up

IQR The Interquartile Range

Description

computes interquartile range of thex values.

Usage

IQR(x, na.rm = FALSE)

1070 is.empty.model

Arguments

x a numeric vector.

na.rm logical. Should missing values be removed?

Details

Note that this function computes the quartiles using thequantile function rather than following
Tukey’s recommendations, i.e.,IQR(x) = quantile(x,3/4) - quantile(x,1/4) .

For normallyN(m, 1) distributedX, the expected value ofIQR(X) is 2*qnorm(3/4) =
1.3490 , i.e., for a normal-consistent estimate of the standard deviation, useIQR(x) / 1.349 .

References

Tukey, J. W. (1977).Exploratory Data Analysis.Reading: Addison-Wesley.

See Also

fivenum , madwhich is more robust,range , quantile .

Examples

IQR(rivers)

is.empty.model Check if a Model is Empty

Description

R model notation allows models with no intercept and no predictors. These require special handling
internally. is.empty.model() checks whether an object describes an empty model.

Usage

is.empty.model(x)

Arguments

x A terms object or an object with aterms method.

Value

TRUEif the model is empty

See Also

lm ,glm

Examples

y <- rnorm(20)
is.empty.model(y ~ 0)
is.empty.model(y ~ -1)
is.empty.model(lm(y ~ 0))

isoreg 1071

isoreg Isotonic / Monotone Regression

Description

Compute the isotonic (monotonely increasing nonparametric) least squares regression which is
piecewise constant.

Usage

isoreg(x, y = NULL)

Arguments

x, y coordinate vectors of the regression points. Alternatively a single plotting struc-
ture can be specified: seexy.coords .

Details

The algorithm determines the convex minorantm(x) of the cumulativedata (i.e.,cumsum(y))
which is piecewise linear and the result ism′(x), a step function with level changes at locations
where the convexm(x) touches the cumulative data polygon and changes slope.
as.stepfun () returns astepfun object which can be more parsimonious.

Value

isoreg() returns an object of classisoreg which is basically a list with components

x original (constructed) abscissa valuesx .

y corresponding y values.

yf fitted values corresponding toorderedx values.

yc cumulative y values corresponding toorderedx values.

iKnots integer vector giving indices where the fitted curve jumps, i.e., where the convex
minorant has kinks.

isOrd logical indicating if original x values were ordered increasingly already.

ord if(!isOrd) : integer permutationorder (x) of original x .

call thecall to isoreg() used.

Note

The code should be improved to acceptweightsadditionally and solve the corresponding weighted
least squares problem.
‘Patches are welcome!’

References

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972)Statistical inference
under order restrictions; Wiley, London.

Robertson, T., Wright,F. T. and Dykstra, R. L. (1988)Order Restricted Statistical Inference; Wiley,
New York.

1072 KalmanLike

See Also

the plotting methodplot.isoreg with more examples;isoMDS() from theMASS package
internally uses isotonic regression.

Examples

require(graphics)

(ir <- isoreg(c(1,0,4,3,3,5,4,2,0)))
plot(ir, plot.type = "row")

(ir3 <- isoreg(y3 <- c(1,0,4,3,3,5,4,2, 3)))# last "3", not "0"
(fi3 <- as.stepfun(ir3))
(ir4 <- isoreg(1:10, y4 <- c(5, 9, 1:2, 5:8, 3, 8)))
cat(sprintf("R^2 = %.2f\n",

1 - sum(residuals(ir4)^2) / ((10-1)*var(y4))))

KalmanLike Kalman Filtering

Description

Use Kalman Filtering to find the (Gaussian) log-likelihood, or for forecasting or smoothing.

Usage

KalmanLike(y, mod, nit = 0, fast=TRUE)
KalmanRun(y, mod, nit = 0, fast=TRUE)
KalmanSmooth(y, mod, nit = 0)
KalmanForecast(n.ahead = 10, mod, fast=TRUE)
makeARIMA(phi, theta, Delta, kappa = 1e6)

Arguments

y a univariate time series.

mod A list describing the state-space model: see ‘Details’.

nit The time at which the initialization is computed.nit = 0 implies that the
initialization is for a one-step prediction, soPn should not be computed at the
first step.

n.ahead The number of steps ahead for which prediction is required.

phi, theta numeric vectors of length≥ 0 giving AR and MA parameters.

Delta vector of differencing coefficients, so an ARMA model is fitted toy[t] -
Delta[1]*y[t-1] -

kappa the prior variance (as a multiple of the innovations variance) for the past obser-
vations in a differenced model.

fast If TRUEthemodobject may be modified.

KalmanLike 1073

Details

These functions work with a general univariate state-space model with state vectora, transitionsa
<- T a + R e , e ∼ N (0, κQ) and observation equationy = Z’a + eta , (eta ≡ η), η ∼
N (0, κh). The likelihood is a profile likelihood after estimation ofκ.

The model is specified as a list with at least components

T the transition matrix

Z the observation coefficients

h the observation variance

V RQR’

a the current state estimate

P the current estimate of the state uncertainty matrix

Pn the estimate at timet− 1 of the state uncertainty matrix

KalmanSmooth is the workhorse function fortsSmooth .

makeARIMAconstructs the state-space model for an ARIMA model.

Value

For KalmanLike , a list with componentsLik (the log-likelihood less some constants) ands2 ,
the estimate of ofκ.

For KalmanRun , a list with componentsvalues , a vector of length 2 giving the output of
KalmanLike , resid (the residuals) andstates , the contemporaneous state estimates, a matrix
with one row for each time.

ForKalmanSmooth , a list with two components. Componentsmooth is an by p matrix of state
estimates based on all the observations, with one row for each time. Componentvar is an by p by
p array of variance matrices.

For KalmanForecast , a list with componentspred , the predictions, andvar , the unscaled
variances of the prediction errors (to be multiplied bys2).

For makeARIMA, a model list including components for its arguments.

Warning

These functions are designed to be called from other functions which check the validity of the
arguments passed, so very little checking is done.

In particular,KalmanLike alters the objects passed as the elementsa, P andPn of mod, so these
should not be shared. Usefast=FALSE to prevent this.

References

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.

See Also

arima , StructTS . tsSmooth .

1074 kernapply

kernapply Apply Smoothing Kernel

Description

kernapply computes the convolution between an input sequence and a specific kernel.

Usage

kernapply(x, ...)

Default S3 method:
kernapply(x, k, circular = FALSE, ...)
S3 method for class 'ts':
kernapply(x, k, circular = FALSE, ...)
S3 method for class 'vector':
kernapply(x, k, circular = FALSE, ...)

S3 method for class 'tskernel':
kernapply(x, k, ...)

Arguments

x an input vector, matrix, time series or kernel to be smoothed.

k smoothing"tskernel" object.

circular a logical indicating whether the input sequence to be smoothed is treated as
circular, i.e., periodic.

... arguments passed to or from other methods.

Value

A smoothed version of the input sequence.

Author(s)

A. Trapletti

See Also

kernel , convolve , filter , spectrum

Examples

see 'kernel' for examples

kernel 1075

kernel Smoothing Kernel Objects

Description

The"tskernel" class is designed to represent discrete symmetric normalized smoothing kernels.
These kernels can be used to smooth vectors, matrices, or time series objects.

There areprint , plot and[methods for these kernel objects.

Usage

kernel(coef, m, r, name)

df.kernel(k)
bandwidth.kernel(k)
is.tskernel(k)
S3 method for class 'tskernel':
plot(x, type = "h", xlab = "k", ylab = "W[k]",

main = attr(x,"name"), ...)

Arguments

coef the upper half of the smoothing kernel coefficients (including coefficient zero)
or the name of a kernel (currently"daniell" , "dirichlet" , "fejer" or
"modified.daniell" .

m the kernel dimension(s). Whenmhas length larger than one, it means the con-
volution of kernels of dimensionm[j] , for j in 1:length(m) . Currently
this is supported only for the named "*daniell" kernels.

name the name the kernel will be called.

r the kernel order for a Fejer kernel.

k,x a "tskernel" object.

type, xlab, ylab, main, ...
arguments passed toplot.default .

Details

kernel is used to construct a general kernel or named specific kernels. The modified Daniell
kernel halves the end coefficients (as used by S-PLUS).

The [method allows natural indexing of kernel objects with indices in(-m) : m . The normal-
ization is such that fork <- kernel(*) , sum(k[-k$m : k$m]) is one.

df.kernel returns the ‘equivalent degrees of freedom’ of a smoothing kernel as defined in Brock-
well and Davis (1991), page 362, andbandwidth.kernel returns the equivalent bandwidth as
defined in Bloomfield (1976), p. 201, with a continuity correction.

Value

kernel() returns an object of class"tskernel" which is basically a list with the two compo-
nentscoef and the kernel dimensionm. An additional attribute is"name" .

1076 kmeans

Author(s)

A. Trapletti; modifications by B.D. Ripley

References

Bloomfield, P. (1976)Fourier Analysis of Time Series: An Introduction.Wiley.

Brockwell, P.J. and Davis, R.A. (1991)Time Series: Theory and Methods.Second edition. Springer,
pp. 350–365.

See Also

kernapply

Examples

require(graphics)

Demonstrate a simple trading strategy for the
financial time series German stock index DAX.
x <- EuStockMarkets[,1]
k1 <- kernel("daniell", 50) # a long moving average
k2 <- kernel("daniell", 10) # and a short one
plot(k1)
plot(k2)
x1 <- kernapply(x, k1)
x2 <- kernapply(x, k2)
plot(x)
lines(x1, col = "red") # go long if the short crosses the long upwards
lines(x2, col = "green") # and go short otherwise

More interesting kernels
kd <- kernel("daniell", c(3,3))
kd # note the unusual indexing
kd[-2:2]
plot(kernel("fejer", 100, r=6))
plot(kernel("modified.daniell", c(7,5,3)))

Reproduce example 10.4.3 from Brockwell and Davis (1991)
spectrum(sunspot.year, kernel=kernel("daniell", c(11,7,3)), log="no")

kmeans K-Means Clustering

Description

Perform k-means clustering on a data matrix.

Usage

kmeans(x, centers, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",

"MacQueen"))

kmeans 1077

Arguments

x A numeric matrix of data, or an object that can be coerced to such a matrix (such
as a numeric vector or a data frame with all numeric columns).

centers Either the number of clusters or a set of initial (distinct) cluster centres. If a
number, a random set of (distinct) rows inx is chosen as the initial centres.

iter.max The maximum number of iterations allowed.

nstart If centers is a number, how many random sets should be chosen?

algorithm character: may be abbreviated.

Details

The data given byx is clustered by thek-means method, which aims to partition the points intok
groups such that the sum of squares from points to the assigned cluster centres is minimized. At the
minimum, all cluster centres are at the mean of their Voronoi sets (the set of data points which are
nearest to the cluster centre).

The algorithm of Hartigan and Wong (1979) is used by default. Note that some authors usek-means
to refer to a specific algorithm rather than the general method: most commonly the algorithm given
by MacQueen (1967) but sometimes that given by Lloyd (1957) and Forgy (1965). The Hartigan–
Wong algorithm generally does a better job than either of those, but trying several random starts is
often recommended.

Except for the Lloyd–Forgy method,k clusters will always be returned if a number is specified. If
an initial matrix of centres is supplied, it is possible that no point will be closest to one or more
centres, which is currently an error for the Hartigan–Wong method.

Value

An object of class"kmeans" which is a list with components:

cluster A vector of integers indicating the cluster to which each point is allocated.

centers A matrix of cluster centres.

withinss The within-cluster sum of squares for each cluster.

size The number of points in each cluster.

There is aprint method for this class.

References

Forgy, E. W. (1965) Cluster analysis of multivariate data: efficiency vs interpretability of classifica-
tions.Biometrics21, 768–769.

Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm.Applied Statistics28,
100–108.

Lloyd, S. P. (1957, 1982) Least squares quantization in PCM. Technical Note, Bell Laboratories.
Published in 1982 inIEEE Transactions on Information Theory28, 128–137.

MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M.
Le Cam & J. Neyman,1, pp. 281–297. Berkeley, CA: University of California Press.

1078 kruskal.test

Examples

require(graphics)

a 2-dimensional example
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
(cl <- kmeans(x, 2))
plot(x, col = cl$cluster)
points(cl$centers, col = 1:2, pch = 8, cex=2)

random starts do help here with too many clusters
(cl <- kmeans(x, 5, nstart = 25))
plot(x, col = cl$cluster)
points(cl$centers, col = 1:5, pch = 8)

kruskal.test Kruskal-Wallis Rank Sum Test

Description

Performs a Kruskal-Wallis rank sum test.

Usage

kruskal.test(x, ...)

Default S3 method:
kruskal.test(x, g, ...)

S3 method for class 'formula':
kruskal.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements ofx .
Ignored ifx is a list.

formula a formula of the formlhs ~ rhs wherelhs gives the data values andrhs
the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

kruskal.test 1079

Details

kruskal.test performs a Kruskal-Wallis rank sum test of the null that the location parameters
of the distribution ofx are the same in each group (sample). The alternative is that they differ in at
least one.

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric
data vectors. In this case,g is ignored, and one can simply usekruskal.test(x) to perform
the test. If the samples are not yet contained in a list, usekruskal.test(list(x, ...)) .

Otherwise,x must be a numeric data vector, andg must be a vector or factor object of the same
length asx giving the group for the corresponding elements ofx .

Value

A list with class"htest" containing the following components:

statistic the Kruskal-Wallis rank sum statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string"Kruskal-Wallis rank sum test" .

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973),Nonparametric Statistical Methods.New York: John
Wiley & Sons. Pages 115–120.

See Also

The Wilcoxon rank sum test (wilcox.test) as the special case for two samples;lm together with
anova for performing one-way location analysis under normality assumptions; with Student’s t test
(t.test) as the special case for two samples.

Examples

Hollander & Wolfe (1973), 116.
Mucociliary efficiency from the rate of removal of dust in normal
subjects, subjects with obstructive airway disease, and subjects
with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
kruskal.test(list(x, y, z))
Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",
"Subjects with obstructive airway disease",
"Subjects with asbestosis"))

kruskal.test(x, g)

Formula interface.
require(graphics)
boxplot(Ozone ~ Month, data = airquality)
kruskal.test(Ozone ~ Month, data = airquality)

1080 ks.test

ks.test Kolmogorov-Smirnov Tests

Description

Performs one or two sample Kolmogorov-Smirnov tests.

Usage

ks.test(x, y, ...,
alternative = c("two.sided", "less", "greater"),
exact = NULL)

Arguments

x a numeric vector of data values.

y either a numeric vector of data values, or a character string naming a distribution
function.

... parameters of the distribution specified (as a character string) byy .

alternative indicates the alternative hypothesis and must be one of"two.sided" (de-
fault), "less" , or "greater" . You can specify just the initial letter of the
value, but the argument name must be give in full. See ‘Details’ for the meanings
of the possible values.

exact NULLor a logical indicating whether an exact p-value should be computed. See
‘Details’ for the meaning ofNULL. Not used for the one-sided two-sample case.

Details

If y is numeric, a two-sample test of the null hypothesis thatx andy were drawn from the same
continuousdistribution is performed.

Alternatively,y can be a character string naming a continuous distribution function. In this case, a
one-sample test is carried out of the null that the distribution function which generatedx is distri-
butiony with parameters specified by... .

The presence of ties generates a warning, since continuous distributions do not generate them.

The possible values"two.sided" , "less" and"greater" of alternative specify the
null hypothesis that the true distribution function ofx is equal to, not less than or not greater than
the hypothesized distribution function (one-sample case) or the distribution function ofy (two-
sample case), respectively. This is a comparison of cumulative distribution functions, and the test
statistic is the maximum difference in value, with the statistic in the"greater" alternative being
D+ = maxu[Fx(u) − Fy(u)]. Thus in the two-sample casealternative="greater" in-
cludes distributions for whichx is stochasticallysmallerthany (the CDF ofx lies above and hence
to the left of that fory), in contrast tot.test or wilcox.test .

Exact p-values are not available for the one-sided two-sample case, or in the case of ties. Ifexact
= NULL (the default), an exact p-value is computed if the sample size is less than 100 in the one-
sample case, and if the product of the sample sizes is less than 10000 in the two-sample case.
Otherwise, asymptotic distributions are used whose approximations may be inaccurate in small
samples. In the one-sample two-sided case, exact p-values are obtained as described in Marsaglia,
Tsang & Wang (2003). The formula of Birnbaum & Tingey (1951) is used for the one-sample
one-sided case.

ks.test 1081

If a single-sample test is used, the parameters specified in... must be pre-specified and not esti-
mated from the data. There is some more refined distribution theory for the KS test with estimated
parameters (see Durbin, 1973), but that is not implemented inks.test .

Value

A list with class"htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

References

Z. W. Birnbaum & Fred H. Tingey (1951), One-sided confidence contours for probability distribu-
tion functions.The Annals of Mathematical Statistics, 22/4, 592–596.

William J. Conover (1971),Practical Nonparametric Statistics. New York: John Wiley & Sons.
Pages 295–301 (one-sample Kolmogorov test), 309–314 (two-sample Smirnov test).

Durbin, J. (1973)Distribution theory for tests based on the sample distribution function. SIAM.

George Marsaglia, Wai Wan Tsang & Jingbo Wang (2003), Evaluating Kolmogorov’s distribution.
Journal of Statistical Software, 8/18. http://www.jstatsoft.org/v08/i18/ .

See Also

shapiro.test which performs the Shapiro-Wilk test for normality.

Examples

require(graphics)

x <- rnorm(50)
y <- runif(30)
Do x and y come from the same distribution?
ks.test(x, y)
Does x come from a shifted gamma distribution with shape 3 and rate 2?
ks.test(x+2, "pgamma", 3, 2) # two-sided, exact
ks.test(x+2, "pgamma", 3, 2, exact = FALSE)
ks.test(x+2, "pgamma", 3, 2, alternative = "gr")

test if x is stochastically larger than x2
x2 <- rnorm(50, -1)
plot(ecdf(x), xlim=range(c(x, x2)))
plot(ecdf(x2), add=TRUE, lty="dashed")
t.test(x, x2, alternative="g")
wilcox.test(x, x2, alternative="g")
ks.test(x, x2, alternative="l")

http://www.jstatsoft.org/v08/i18/

1082 ksmooth

ksmooth Kernel Regression Smoother

Description

The Nadaraya–Watson kernel regression estimate.

Usage

ksmooth(x, y, kernel = c("box", "normal"), bandwidth = 0.5,
range.x = range(x),
n.points = max(100, length(x)), x.points)

Arguments

x input x values

y input y values

kernel the kernel to be used.

bandwidth the bandwidth. The kernels are scaled so that their quartiles (viewed as proba-
bility densities) are at± 0.25*bandwidth .

range.x the range of points to be covered in the output.

n.points the number of points at which to evaluate the fit.

x.points points at which to evaluate the smoothed fit. If missing,n.points are chosen
uniformly to coverrange.x .

Value

A list with components

x values at which the smoothed fit is evaluated. Guaranteed to be in increasing
order.

y fitted values corresponding tox .

Note

This function is implemented purely for compatibility with S, although it is nowhere near as slow
as the S function. Better kernel smoothers are available in other packages.

Examples

require(graphics)

with(cars, {
plot(speed, dist)
lines(ksmooth(speed, dist, "normal", bandwidth=2), col=2)
lines(ksmooth(speed, dist, "normal", bandwidth=5), col=3)

})

lag 1083

lag Lag a Time Series

Description

Compute a lagged version of a time series, shifting the time base back by a given number of obser-
vations.

Usage

lag(x, ...)

Default S3 method:
lag(x, k = 1, ...)

Arguments

x A vector or matrix or univariate or multivariate time series

k The number of lags (in units of observations).

... further arguments to be passed to or from methods.

Details

Vector or matrix argumentsx are coerced to time series.

lag is a generic function; this page documents its default method.

Value

A time series object.

Note

Note the sign ofk : a series lagged by a positivek startsearlier.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff , deltat

Examples

lag(ldeaths, 12) # starts one year earlier

1084 lag.plot

lag.plot Time Series Lag Plots

Description

Plot time series against lagged versions of themselves. Helps visualizing ‘auto-dependence’ even
when auto-correlations vanish.

Usage

lag.plot(x, lags = 1, layout = NULL, set.lags = 1:lags,
main = NULL, asp = 1,
diag = TRUE, diag.col = "gray", type = "p", oma = NULL,
ask = NULL, do.lines = (n <= 150), labels = do.lines,
...)

Arguments

x time-series (univariate or multivariate)

lags number of lag plots desired, see argset.lags .

layout the layout of multiple plots, basically themfrow par () argument. The default
uses about a square layout (seen2mfrow such that all plots are on one page.

set.lags vector of positive integers allowing specification of the set of lags used; defaults
to 1:lags .

main character with a main header title to be done on the top of each page.

asp Aspect ratio to be fixed, seeplot.default .

diag logical indicating if the x=y diagonal should be drawn.

diag.col color to be used for the diagonalif(diag) .

type plot type to be used, but seeplot.ts about its restricted meaning.

oma outer margins, seepar .

ask logical orNULL; if true, the user is asked to confirm before a new page is started.

do.lines logical indicating if lines should be drawn.

labels logical indicating if labels should be used.

... Further arguments toplot.ts . Several graphical parameters are set in
this function and so cannot be changed: these includexlab , ylab , mgp,
col.lab and font.lab : this also applies to the argumentsxy.labels
andxy.lines .

Details

If just one plot is produced, this is a conventional plot. If more than one plot is to be produced,
par(mfrow) and several other graphics parameters will be set, so it is not (easily) possible to mix
such lag plots with other plots on the same page.

If ask = NULL , par(ask = TRUE) will be called if more than one page of plots is to be
produced and the device is interactive.

line 1085

Note

It is more flexible and has different default behaviour than the S version. We usemain = instead
of head = for internal consistency.

Author(s)

Martin Maechler

See Also

plot.ts which is the basic work horse.

Examples

require(graphics)

lag.plot(nhtemp, 8, diag.col = "forest green")
lag.plot(nhtemp, 5, main="Average Temperatures in New Haven")
ask defaults to TRUE when we have more than one page:
lag.plot(nhtemp, 6, layout = c(2,1), asp = NA,

main = "New Haven Temperatures", col.main = "blue")

Multivariate (but non-stationary! ...)
lag.plot(freeny.x, lags = 3)
Not run:
no lines for long series :
lag.plot(sqrt(sunspots), set = c(1:4, 9:12), pch = ".", col = "gold")
End(Not run)

line Robust Line Fitting

Description

Fit a line robustly as recommended inExploratory Data Analysis.

Usage

line(x, y)

Arguments

x,y the arguments can be any way of specifying x-y pairs.

Value

An object of class"tukeyline" .

Methods are available for the generic functionscoef , residuals , fitted , andprint .

References

Tukey, J. W. (1977).Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

1086 lm

See Also

lm .

Examples

require(graphics)

plot(cars)
(z <- line(cars))
abline(coef(z))
Tukey-Anscombe Plot :
plot(residuals(z) ~ fitted(z), main = deparse(z$call))

lm Fitting Linear Models

Description

lm is used to fit linear models. It can be used to carry out regression, single stratum analysis of
variance and analysis of covariance (althoughaov may provide a more convenient interface for
these).

Usage

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

Arguments

formula an object of class" formula " (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under ‘Details’.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If
not found indata , the variables are taken fromenvironment(formula) ,
typically the environment from whichlm is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Should be
NULL or a numeric vector. If non-NULL, weighted least squares is used with
weights weights (that is, minimizingsum(w*e^2)); otherwise ordinary
least squares is used.

na.action a function which indicates what should happen when the data containNAs. The
default is set by thena.action setting ofoptions , and isna.fail if that
is unset. The ‘factory-fresh’ default isna.omit . Another possible value is
NULL, no action. Valuena.exclude can be useful.

method the method to be used; for fitting, currently onlymethod = "qr" is sup-
ported;method = "model.frame" returns the model frame (the same as
with model = TRUE, see below).

lm 1087

model, x, y, qr
logicals. IfTRUEthe corresponding components of the fit (the model frame, the
model matrix, the response, the QR decomposition) are returned.

singular.ok logical. If FALSE(the default in S but not inR) a singular fit is an error.

contrasts an optional list. See thecontrasts.arg of model.matrix.default .

offset this can be used to specify ana priori known component to be included in the
linear predictor during fitting. This should beNULL or a numeric vector of
length either one or equal to the number of cases. One or moreoffset terms
can be included in the formula instead or as well, and if both are specified their
sum is used. Seemodel.offset .

... additional arguments to be passed to the low level regression fitting functions
(see below).

Details

Models for lm are specified symbolically. A typical model has the formresponse ~ terms
whereresponse is the (numeric) response vector andterms is a series of terms which specifies a
linear predictor forresponse . A terms specification of the formfirst + second indicates all
the terms infirst together with all the terms insecond with duplicates removed. A specification
of the form first:second indicates the set of terms obtained by taking the interactions of all
terms infirst with all terms insecond . The specificationfirst*second indicates thecross
of first andsecond . This is the same asfirst + second + first:second .

If the formula includes anoffset , this is evaluated and subtracted from the response.

If response is a matrix a linear model is fitted separately by least-squares to each column of the
matrix.

Seemodel.matrix for some further details. The terms in the formula will be re-ordered so that
main effects come first, followed by the interactions, all second-order, all third-order and so on: to
avoid this pass aterms object as the formula (seeaov anddemo(glm.vr) for an example).

A formula has an implied intercept term. To remove this use eithery ~ x - 1 or y ~ 0 + x .
Seeformula for more details of allowed formulae.

lm calls the lower level functionslm.fit , etc, see below, for the actual numerical computations.
For programming only, you may consider doing likewise.

All of weights , subset andoffset are evaluated in the same way as variables informula ,
that is first indata and then in the environment offormula .

Value

lm returns an object ofclass "lm" or for multiple responses of classc("mlm", "lm") .

The functionssummary and anova are used to obtain and print a summary and analysis
of variance table of the results. The generic accessor functionscoefficients , effects ,
fitted.values andresiduals extract various useful features of the value returned bylm .

An object of class"lm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values.
fitted.values

the fitted mean values.

rank the numeric rank of the fitted linear model.

weights (only for weighted fits) the specified weights.

1088 lm

df.residual the residual degrees of freedom.

call the matched call.

terms theterms object used.

contrasts (only where relevant) the contrasts used.

xlevels (only where relevant) a record of the levels of the factors used in fitting.

offset the offset used (missing if none were used).

y if requested, the response used.

x if requested, the model matrix used.

model if requested (the default), the model frame used.

In addition, non-null fits will have componentsassign , effects and (unless not requested)qr
relating to the linear fit, for use by extractor functions such assummary andeffects .

Using time series

Considerable care is needed when usinglm with time series.

Unlessna.action = NULL , the time series attributes are stripped from the variables before the
regression is done. (This is necessary as omittingNAs would invalidate the time series attributes,
and ifNAs are omitted in the middle of the series the result would no longer be a regular time series.)

Even if the time series attributes are retained, they are not used to line up series, so that the time
shift of a lagged or differenced regressor would be ignored. It is good practice to prepare adata
argument byts.intersect (..., dframe = TRUE) , then apply a suitablena.action
to that data frame and calllm with na.action = NULL so that residuals and fitted values are
time series.

Note

Offsets specified byoffset will not be included in predictions bypredict.lm , whereas those
specified by an offset term in the formula will be.

Author(s)

The design was inspired by the S function of the same name described in Chambers (1992). The
implementation of model formula by Ross Ihaka was based on Wilkinson & Rogers (1973).

References

Chambers, J. M. (1992)Linear models.Chapter 4 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for analysis
of variance.Applied Statistics, 22, 392–9.

See Also

summary.lm for summaries andanova.lm for the ANOVA table;aov for a different interface.

The generic functionscoef , effects , residuals , fitted , vcov .

predict.lm (via predict) for prediction, including confidence and prediction intervals;
confint for confidence intervals ofparameters.

lm.influence for regression diagnostics, andglm for generalizedlinear models.

lm.fit 1089

The underlying low level functions,lm.fit for plain, andlm.wfit for weighted regression
fitting.

More lm() examples are available e.g., inanscombe , attitude , freeny ,
LifeCycleSavings , longley , stackloss , swiss .

biglm in packagebiglm for an alternative way to fit linear models to large datasets (especially
those with many cases).

Examples

require(graphics)

Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
anova(lm.D9 <- lm(weight ~ group))
summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept
summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(lm.D9, las = 1) # Residuals, Fitted, ...
par(opar)

model frame :
stopifnot(identical(lm(weight ~ group, method = "model.frame"),

model.frame(lm.D9)))

less simple examples in "See Also" above

lm.fit Fitter Functions for Linear Models

Description

These are the basic computing engines called bylm used to fit linear models. These should usually
not be used directly unless by experienced users.

Usage

lm.fit (x, y, offset = NULL, method = "qr", tol = 1e-7,
singular.ok = TRUE, ...)

lm.wfit(x, y, w, offset = NULL, method = "qr", tol = 1e-7,
singular.ok = TRUE, ...)

Arguments

x design matrix of dimensionn * p .

y vector of observations of lengthn, or a matrix withn rows.

1090 lm.fit

w vector of weights (lengthn) to be used in the fitting process for thewfit func-
tions. Weighted least squares is used with weightsw, i.e.,sum(w * e^2) is
minimized.

offset numeric of lengthn). This can be used to specify ana priori known component
to be included in the linear predictor during fitting.

method currently, onlymethod="qr" is supported.

tol tolerance for theqr decomposition. Default is 1e-7.

singular.ok logical. If FALSE, a singular model is an error.

... currently disregarded.

Value

a list with components

coefficients p vector

residuals n vector or matrix

fitted.values
n vector or matrix

effects (not null fits)n vector of orthogonal single-df effects. The firstrank of them
correspond to non-aliased coeffcients, and are named accordingly.

weights n vector —only for the*wfit* functions.

rank integer, giving the rank

df.residual degrees of freedom of residuals

qr (not null fits) the QR decomposition, seeqr .

See Also

lm which you should use for linear least squares regression, unless you know better.

Examples

require(utils)
set.seed(129)
n <- 7 ; p <- 2
X <- matrix(rnorm(n * p), n,p) # no intercept!
y <- rnorm(n)
w <- rnorm(n)^2

str(lmw <- lm.wfit(x=X, y=y, w=w))

str(lm. <- lm.fit (x=X, y=y))

lm.influence 1091

lm.influence Regression Diagnostics

Description

This function provides the basic quantities which are used in forming a wide variety of diagnostics
for checking the quality of regression fits.

Usage

influence(model, ...)
S3 method for class 'lm':
influence(model, do.coef = TRUE, ...)
S3 method for class 'glm':
influence(model, do.coef = TRUE, ...)

lm.influence(model, do.coef = TRUE)

Arguments

model an object as returned bylm or glm .

do.coef logical indicating if the changedcoefficients (see below) are desired.
These needO(n2p) computing time.

... further arguments passed to or from other methods.

Details

The influence.measures () and other functions listed inSee Alsoprovide a more user ori-
ented way of computing a variety of regression diagnostics. These all build onlm.influence .
Note that for GLMs (other than the Gaussian family with identity link) these are based on one-step
approximations which may be inadequate if a case has high influence.

An attempt is made to ensure that computed hat values that are probably one are treated as one, and
the corresponding rows insigma andcoefficients areNaN. (Dropping such a case would
normally result in a variable being dropped, so it is not possible to give simple drop-one diagnos-
tics.)

naresid is applied to the results and so will fill in withNAs it the fit hadna.action =
na.exclude .

Value

A list containing the following components of the same length or number of rowsn, which is the
number of non-zero weights. Cases omitted in the fit are omitted unless ana.action method
was used (such asna.exclude) which restores them.

hat a vector containing the diagonal of the ‘hat’ matrix.

coefficients (unlessdo.coef is false) a matrix whose i-th row contains the change in the
estimated coefficients which results when the i-th case is dropped from the re-
gression. Note that aliased coefficients are not included in the matrix.

1092 lm.summaries

sigma a vector whose i-th element contains the estimate of the residual standard devi-
ation obtained when the i-th case is dropped from the regression. (The approxi-
mations needed for GLMs can result in this beingNaN.)

wt.res a vector ofweighted(or for classglm ratherdeviance) residuals.

Note

Thecoefficients returned by theR version oflm.influence differ from those computed
by S. Rather than returning the coefficients which result from dropping each case, we return the
changes in the coefficients. This is more directly useful in many diagnostic measures.
Since these needO(n2p) computing time, they can be omitted bydo.coef = FALSE .

Note that cases withweights == 0 aredropped(contrary to the situation in S).

If a model has been fitted withna.action=na.exclude (seena.exclude), cases excluded
in the fitareconsidered here.

References

See the list in the documentation forinfluence.measures .

Chambers, J. M. (1992)Linear models.Chapter 4 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

summary.lm for summary and related methods;
influence.measures ,
hat for the hat matrix diagonals,
dfbetas , dffits , covratio , cooks.distance , lm .

Examples

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
summary(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi,

data = LifeCycleSavings),
corr = TRUE)

utils::str(lmI <- lm.influence(lm.SR))

For more "user level" examples, use example(influence.measures)

lm.summaries Accessing Linear Model Fits

Description

All these functions aremethods for class"lm" objects.

lm.summaries 1093

Usage

S3 method for class 'lm':
family(object, ...)

S3 method for class 'lm':
formula(x, ...)

S3 method for class 'lm':
residuals(object,

type = c("working", "response", "deviance", "pearson",
"partial"),

...)

S3 method for class 'lm':
labels(object, ...)

weights(object, ...)

Arguments

object, x an object inheriting from classlm , usually the result of a call tolm or aov .

... further arguments passed to or from other methods.

type the type of residuals which should be returned.

Details

The generic accessor functionscoef , effects , fitted andresiduals can be used to extract
various useful features of the value returned bylm .

The working and response residuals are ‘observed - fitted’. The deviance and pearson residu-
als are weighted residuals, scaled by the square root of the weights used in fitting. The partial
residuals are a matrix with each column formed by omitting a term from the model. In all these,
zero weight cases are never omitted (as opposed to the standardizedrstudent residuals, and the
weighted.residuals).

How residuals treats cases with missing values in the original fit is determined by the
na.action argument of that fit. Ifna.action = na.omit omitted cases will not appear
in the residuals, whereas ifna.action = na.exclude they will appear, with residual value
NA. See alsonaresid .

The"lm" method for genericlabels returns the term labels for estimable terms, that is the names
of the terms with an least one estimable coefficient.

References

Chambers, J. M. (1992)Linear models.Chapter 4 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting functionlm , anova.lm .

coef , deviance , df.residual , effects , fitted , glm for generalized linear mod-
els, influence (etc on that page) for regression diagnostics,weighted.residuals ,
residuals , residuals.glm , summary.lm .

1094 loadings

influence.measuresfor deletion diagnostics, including standardized (rstandard) and studentized
(rstudent) residuals.

Examples

##-- Continuing the lm(.) example:
coef(lm.D90)# the bare coefficients

The 2 basic regression diagnostic plots [plot.lm(.) is preferred]
plot(resid(lm.D90), fitted(lm.D90))# Tukey-Anscombe's
abline(h=0, lty=2, col = 'gray')

qqnorm(residuals(lm.D90))

loadings Print Loadings in Factor Analysis

Description

Extract or print loadings in factor analysis (or principal components analysis).

Usage

loadings(x)

S3 method for class 'loadings':
print(x, digits = 3, cutoff = 0.1, sort = FALSE, ...)

S3 method for class 'factanal':
print(x, digits = 3, ...)

Arguments

x an object of class"factanal" or "princomp" or theloadings compo-
nent of such an object.

digits number of decimal places to use in printing uniquenesses and loadings.

cutoff loadings smaller than this (in absolute value) are suppressed.

sort logical. If true, the variables are sorted by their importance on each factor. Each
variable with any loading larger than 0.5 (in modulus) is assigned to the factor
with the largest loading, and the variables are printed in the order of the factor
they are assigned to, then those unassigned.

... further arguments for other methods, such ascutoff and sort for
print.factanal .

See Also

factanal , princomp

loess 1095

loess Local Polynomial Regression Fitting

Description

Fit a polynomial surface determined by one or more numerical predictors, using local fitting.

Usage

loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)

Arguments

formula a formula specifying the numeric response and one to four numeric predictors
(best specified via an interaction, but can also be specified additively). Will be
coerced to a formula if necessary.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If
not found indata , the variables are taken fromenvironment(formula) ,
typically the environment from whichloess is called.

weights optional weights for each case.

subset an optional specification of a subset of the data to be used.

na.action the action to be taken with missing values in the response or predictors. The
default is given bygetOption("na.action") .

model should the model frame be returned?

span the parameterα which controls the degree of smoothing.

enp.target an alternative way to specifyspan , as the approximate equivalent number of
parameters to be used.

degree the degree of the polynomials to be used, up to 2.

parametric should any terms be fitted globally rather than locally? Terms can be specified
by name, number or as a logical vector of the same length as the number of
predictors.

drop.square for fits with more than one predictor anddegree=2 , should the quadratic term
(and cross-terms) be dropped for particular predictors? Terms are specified in
the same way as forparametric .

normalize should the predictors be normalized to a common scale if there is more than one?
The normalization used is to set the 10% trimmed standard deviation to one. Set
to false for spatial coordinate predictors and others know to be a common scale.

family if "gaussian" fitting is by least-squares, and if"symmetric" a re-
descending M estimator is used with Tukey’s biweight function.

method fit the model or just extract the model frame.

control control parameters: seeloess.control .

... control parameters can also be supplied directly.

1096 loess

Details

Fitting is done locally. That is, for the fit at pointx, the fit is made using points in a neighbourhood
of x, weighted by their distance fromx (with differences in ‘parametric’ variables being ignored
when computing the distance). The size of the neighbourhood is controlled byα (set byspan or
enp.target). Forα < 1, the neighbourhood includes proportionα of the points, and these have
tricubic weighting (proportional to(1 − (dist/maxdist)3)3. Forα > 1, all points are used, with
the ‘maximum distance’ assumed to beα1/p times the actual maximum distance forp explanatory
variables.

For the default family, fitting is by (weighted) least squares. Forfamily="symmetric" a few
iterations of an M-estimation procedure with Tukey’s biweight are used. Be aware that as the initial
value is the least-squares fit, this need not be a very resistant fit.

It can be important to tune the control list to achieve acceptable speed. Seeloess.control for
details.

Value

An object of class"loess" .

Note

As this is based on thecloess package available atnetlib , it is similar to but not identical to
the loess function of S. In particular, conditioning is not implemented.

The memory usage of this implementation ofloess is roughly quadratic in the number of points,
with 1000 points taking about 10Mb.

Author(s)

B.D. Ripley, based on thecloess package of Cleveland, Grosse and Shyu available athttp:
//www.netlib.org/a/ .

References

W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chapter 8 ofStatistical
Models in Seds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.

See Also

loess.control , predict.loess .

lowess , the ancestor ofloess (with different defaults!).

Examples

cars.lo <- loess(dist ~ speed, cars)
predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)
to allow extrapolation
cars.lo2 <- loess(dist ~ speed, cars,

control = loess.control(surface = "direct"))
predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)

http://www.netlib.org/a/
http://www.netlib.org/a/

loess.control 1097

loess.control Set Parameters for Loess

Description

Set control parameters forloess fits.

Usage

loess.control(surface = c("interpolate", "direct"),
statistics = c("approximate", "exact"),
trace.hat = c("exact", "approximate"),
cell = 0.2, iterations = 4, ...)

Arguments

surface should be fitted surface be computed exactly or via interpolation from a kd tree?

statistics should the statistics be computed exactly or approximately? Exact computation
can be very slow.

trace.hat should the trace of the smoother matrix be computed exactly or approximately?
It is recommended to use the approximation for more than about 1000 data
points.

cell if interpolation is used this controls the accuracy of the approximation via the
maximum number of points in a cell in the kd tree. Cells with more than
floor(n*span*cell) points are subdivided.

iterations the number of iterations used in robust fitting.

... further arguments which are ignored.

Value

A list with components

surface

statistics

trace.hat

cell

iterations

with meanings as explained under ‘Arguments’.

See Also

loess

1098 Logistic

Logistic The Logistic Distribution

Description

Density, distribution function, quantile function and random generation for the logistic distribution
with parameterslocation andscale .

Usage

dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

location, scale
location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

If location or scale are omitted, they assume the default values of0 and1 respectively.

The Logistic distribution withlocation = µ andscale = σ has distribution function

F (x) =
1

1 + e−(x−µ)/σ

and density

f(x) =
1
σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with meanµ and varianceπ2/3σ2.

Value

dlogis gives the density,plogis gives the distribution function,qlogis gives the quantile
function, andrlogis generates random deviates.

Note

qlogis(p) is the same as the well known ‘logit’ function, logit(p) = log(p/(1 − p)), and
plogis(x) has consequently been called the ‘inverse logit’.

The distribution function is a rescaled hyperbolic tangent,plogis(x) == (1+
tanh (x/2))/2 , and it is called asigmoid functionin contexts such as neural networks.

logLik 1099

Source

[dpr]logis are calculated directly from the definitions.

rlogis uses inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
2, chapter 23. Wiley, New York.

Examples

var(rlogis(4000, 0, scale = 5))# approximately (+/- 3)
pi^2/3 * 5^2

logLik Extract Log-Likelihood

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include:glm , lm , nls , Arima andgls ,
lme and others in packagenlme.

Usage

logLik(object, ...)

S3 method for class 'lm':
logLik(object, REML = FALSE, ...)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-
likelihood value, can be extracted.

... some methods for this generic function require additional arguments.

REML an optional logical value. IfTRUEthe restricted log-likelihood is returned, else,
if FALSE, the log-likelihood is returned. Defaults toFALSE.

Details

For a"glm" fit the family does not have to specify how to calculate the log-likelihood, so this
is based on the family’saic() function to compute the AIC. For thegaussian , Gammaand
inverse.gaussian families it assumed that the dispersion of the GLM is estimated has been
counted as a parameter in the AIC value, and for all other families it is assumed that the dispersion
is known.

Note that this procedure is not completely accurate for the gamma and inverse gaussian families, as
the estimate of dispersion used is not the MLE.

For "lm" fits it is assumed that the scale has been estimated (by maximum likelihood or REML),
and all the constants in the log-likelihood are included.

1100 loglin

Value

Returns an object, sayr , of classlogLik which is a number with attributes,attr(r, "df")
(degrees offreedom) giving the number of (estimated) parameters in the model. There is a simple
print method forlogLik objects.

The details depend on the method function used; see the appropriate documentation.

Author(s)

Jose Pinheiro and Douglas Bates

References

For logLik.lm :

Harville, D.A. (1974). Bayesian inference for variance components using only error contrasts.
Biometrika, 61, 383–385.

See Also

logLik.gls , logLik.lme , in packagenlme, etc.

Examples

x <- 1:5
lmx <- lm(x ~ 1)
logLik(lmx) # using print.logLik() method
utils::str(logLik(lmx))

lm method
(fm1 <- lm(rating ~ ., data = attitude))
logLik(fm1)
logLik(fm1, REML = TRUE)

res <- try(utils::data(Orthodont, package="nlme"))
if(!inherits(res, "try-error")) {

fm1 <- lm(distance ~ Sex * age, Orthodont)
print(logLik(fm1))
print(logLik(fm1, REML = TRUE))

}

loglin Fitting Log-Linear Models

Description

loglin is used to fit log-linear models to multidimensional contingency tables by Iterative Pro-
portional Fitting.

Usage

loglin(table, margin, start = rep(1, length(table)), fit = FALSE,
eps = 0.1, iter = 20, param = FALSE, print = TRUE)

loglin 1101

Arguments

table a contingency table to be fit, typically the output fromtable .

margin a list of vectors with the marginal totals to be fit.
(Hierarchical) log-linear models can be specified in terms of these marginal to-
tals which give the ‘maximal’ factor subsets contained in the model. For exam-
ple, in a three-factor model,list(c(1, 2), c(1, 3)) specifies a model
which contains parameters for the grand mean, each factor, and the 1-2 and 1-3
interactions, respectively (but no 2-3 or 1-2-3 interaction), i.e., a model where
factors 2 and 3 are independent conditional on factor 1 (sometimes represented
as ‘[12][13]’).
The names of factors (i.e.,names(dimnames(table))) may be used rather
than numeric indices.

start a starting estimate for the fitted table. This optional argument is important for
incomplete tables with structural zeros intable which should be preserved in
the fit. In this case, the corresponding entries instart should be zero and the
others can be taken as one.

fit a logical indicating whether the fitted values should be returned.

eps maximum deviation allowed between observed and fitted margins.

iter maximum number of iterations.

param a logical indicating whether the parameter values should be returned.

print a logical. IfTRUE, the number of iterations and the final deviation are printed.

Details

The Iterative Proportional Fitting algorithm as presented in Haberman (1972) is used for fitting the
model. At mostiter iterations are performed, convergence is taken to occur when the maximum
deviation between observed and fitted margins is less thaneps . All internal computations are done
in double precision; there is no limit on the number of factors (the dimension of the table) in the
model.

Assuming that there are no structural zeros, both the Likelihood Ratio Test and Pearson test statistics
have an asymptotic chi-squared distribution withdf degrees of freedom.

PackageMASS containsloglm , a front-end tologlin which allows the log-linear model to be
specified and fitted in a formula-based manner similar to that of other fitting functions such aslm
or glm .

Value

A list with the following components.

lrt the Likelihood Ratio Test statistic.

pearson the Pearson test statistic (X-squared).

df the degrees of freedom for the fitted model. There is no adjustment for structural
zeros.

margin list of the margins that were fit. Basically the same as the inputmargin , but
with numbers replaced by names where possible.

fit An array liketable containing the fitted values. Only returned iffit is TRUE.

param A list containing the estimated parameters of the model. The ‘standard’ con-
straints of zero marginal sums (e.g., zero row and column sums for a two factor
parameter) are employed. Only returned ifparam is TRUE.

1102 Lognormal

Author(s)

Kurt Hornik

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Haberman, S. J. (1972) Log-linear fit for contingency tables—Algorithm AS51.Applied Statistics,
21, 218–225.

Agresti, A. (1990)Categorical data analysis. New York: Wiley.

See Also

table .

loglm in packageMASS for a user-friendly wrapper.

glm for another way to fit log-linear models.

Examples

Model of joint independence of sex from hair and eye color.
fm <- loglin(HairEyeColor, list(c(1, 2), c(1, 3), c(2, 3)))
fm
1 - pchisq(fmlrt, fmdf)
Model with no three-factor interactions fits well.

Lognormal The Log Normal Distribution

Description

Density, distribution function, quantile function and random generation for the log normal distribu-
tion whose logarithm has mean equal tomeanlog and standard deviation equal tosdlog .

Usage

dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

meanlog, sdlog
mean and standard deviation of the distribution on the log scale with default
values of0 and1 respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

lowess 1103

Details

The log normal distribution has density

f(x) =
1√

2πσx
e−(log(x)−µ)2/2σ2

whereµ andσ are the mean and standard deviation of the logarithm. The mean isE(X) = exp(µ+
1/2σ2), and the varianceV ar(X) = exp(2µ + σ2)(exp(σ2) − 1) and hence the coefficient of
variation is

√
exp(σ2)− 1 which is approximatelyσ when that is small (e.g.,σ < 1/2).

Value

dlnorm gives the density,plnorm gives the distribution function,qlnorm gives the quantile
function, andrlnorm generates random deviates.

Note

The cumulative hazardH(t) = − log(1−F (t)) is -plnorm(t, r, lower = FALSE, log
= TRUE).

Source

dlnorm is calculated from the definition (in ‘Details’).[pqr]lnorm are based on the relation-
ship to the normal.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
1, chapter 14. Wiley, New York.

See Also

dnorm for the normal distribution.

Examples

dlnorm(1) == dnorm(0)

lowess Scatter Plot Smoothing

Description

This function performs the computations for theLOWESSsmoother which uses locally-weighted
polynomial regression (see the references).

Usage

lowess(x, y = NULL, f = 2/3, iter = 3,
delta = 0.01 * diff(range(xy$x[o])))

1104 lowess

Arguments

x, y vectors giving the coordinates of the points in the scatter plot. Alternatively a
single plotting structure can be specified.

f the smoother span. This gives the proportion of points in the plot which influ-
ence the smooth at each value. Larger values give more smoothness.

iter the number of ‘robustifying’ iterations which should be performed. Using
smaller values ofiter will make lowess run faster.

delta See ‘Details’. Defaults to 1/100th of the range ofx .

Details

lowess is defined by a complex algorithm, the Ratfor original of which (by W. S. Cleveland) can
be found in theR sources as file ‘src/appl/lowess.doc’. Normally a local linear polynomial fit
is used, but under some circumstances (see the file) a local constant fit can be used. ‘Local’ is
defined by the distance to thefloor(f*n) th nearest neighbour, and tricubic weighting is used
for x which fall within the neighbourhood.

The initial fit is done using weighted least squares. Ifiter > 0 , further weighted fits are done
using the product of the weights from the proximity of thex values and case weights derived from
the residuals at the previous iteration. Specifically, the case weight is Tukey’s biweight, with cutoff
6 times the MAD of the residuals. (The currentR implementation differs from the original in
stopping iteration if the MAD is effectively zero since the algorithm is highly unstable in that case.)

delta is used to speed up computation: instead of computing the local polynomial fit at each data
point it is not computed for points withindelta of the last computed point, and linear interpolation
is used to fill in the fitted values for the skipped points.

Value

lowess returns a list containing componentsx andy which give the coordinates of the smooth.
The smooth can be added to a plot of the original points with the functionlines : see the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots.J. Amer.
Statist. Assoc.74, 829–836.

Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots by robust locally weighted
regression.The American Statistician, 35, 54.

See Also

loess , a newer formula based version oflowess (with different defaults!).

Examples

require(graphics)

plot(cars, main = "lowess(cars)")
lines(lowess(cars), col = 2)
lines(lowess(cars, f=.2), col = 3)
legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

ls.diag 1105

ls.diag Compute Diagnostics for ‘lsfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression coefficients.

Usage

ls.diag(ls.out)

Arguments

ls.out Typically the result oflsfit ()

Value

A list with the following numeric components.

std.dev The standard deviation of the errors, an estimate ofσ.

hat diagonal entrieshii of the hat matrixH

std.res standardized residuals

stud.res studentized residuals

cooks Cook’s distances

dfits DFITS statistics

correlation correlation matrix

std.err standard errors of the regression coefficients

cov.scaled Scaled covariance matrix of the coefficients

cov.unscaled Unscaled covariance matrix of the coefficients

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980)Regression Diagnostics.New York: Wiley.

See Also

hat for the hat matrix diagonals,ls.print , lm.influence , summary.lm , anova .

Examples

##-- Using the same data as the lm(.) example:
lsD9 <- lsfit(x = as.numeric(gl(2, 10, 20)), y = weight)
dlsD9 <- ls.diag(lsD9)
utils::str(dlsD9, give.attr=FALSE)
abs(1 - sum(dlsD9$hat) / 2) < 10*.Machine$double.eps # sum(h.ii) = p
plot(dlsD9$hat, dlsD9$stud.res, xlim=c(0,0.11))
abline(h = 0, lty = 2, col = "lightgray")

1106 lsfit

ls.print Print ‘lsfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression coefficients
and prints them ifprint.it is TRUE.

Usage

ls.print(ls.out, digits = 4, print.it = TRUE)

Arguments

ls.out Typically the result oflsfit ()

digits The number of significant digits used for printing

print.it a logical indicating whether the result should also be printed

Value

A list with the components

summary The ANOVA table of the regression

coef.table matrix with regression coefficients, standard errors, t- and p-values

Note

Usually, you’d rather usesummary(lm(...)) andanova(lm(...)) for obtaining similar
output.

See Also

ls.diag , lsfit , also for examples;lm , lm.influence which usually are preferable.

lsfit Find the Least Squares Fit

Description

The least squares estimate ofβ in the model

Y = Xβ + ε

is found.

Usage

lsfit(x, y, wt = NULL, intercept = TRUE, tolerance = 1e-07,
yname = NULL)

lsfit 1107

Arguments

x a matrix whose rows correspond to cases and whose columns correspond to
variables.

y the responses, possibly a matrix if you want to fit multiple left hand sides.

wt an optional vector of weights for performing weighted least squares.

intercept whether or not an intercept term should be used.

tolerance the tolerance to be used in the matrix decomposition.

yname names to be used for the response variables.

Details

If weights are specified then a weighted least squares is performed with the weight given to thejth
case specified by thejth entry inwt .

If any observation has a missing value in any field, that observation is removed before the analysis
is carried out. This can be quite inefficient if there is a lot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for multiple
left-hand sides.

Value

A list with the following named components:

coef the least squares estimates of the coefficients in the model (β as stated above).

residuals residuals from the fit.

intercept indicates whether an intercept was fitted.

qr the QR decomposition of the design matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

lm which usually is preferable;ls.print , ls.diag .

Examples

##-- Using the same data as the lm(.) example:
lsD9 <- lsfit(x = unclass(gl(2,10)), y = weight)
ls.print(lsD9)

1108 mad

mad Median Absolute Deviation

Description

Compute the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations from
the median, and (by default) adjust by a factor for asymptotically normal consistency.

Usage

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE,
low = FALSE, high = FALSE)

Arguments

x a numeric vector.

center Optionally, the centre: defaults to the median.

constant scale factor.

na.rm if TRUEthenNAvalues are stripped fromx before computation takes place.

low if TRUE, compute the ‘lo-median’, i.e., for even sample size, do not average the
two middle values, but take the smaller one.

high if TRUE, compute the ‘hi-median’, i.e., take the larger of the two middle values
for even sample size.

Details

The actual value calculated isconstant * cMedian(abs(x - center)) with the default
value ofcenter beingmedian(x) , andcMedian being the usual, the ‘low’ or ‘high’ median,
see the arguments description forlow andhigh above.

The defaultconstant = 1.4826 (approximately1/Φ−1(3
4) = 1/qnorm(3/4)) ensures con-

sistency, i.e.,
E[mad(X1, . . . , Xn)] = σ

for Xi distributed asN(µ, σ2) and largen.

If na.rm is TRUEthenNAvalues are stripped fromx before computation takes place. If this is not
done then anNAvalue inx will causemad to returnNA.

See Also

IQR which is simpler but less robust,median , var .

Examples

mad(c(1:9))
print(mad(c(1:9), constant=1)) ==

mad(c(1:8,100), constant=1) # = 2 ; TRUE
x <- c(1,2,3, 5,7,8)
sort(abs(x - median(x)))
c(mad(x, constant=1),

mad(x, constant=1, low = TRUE),
mad(x, constant=1, high = TRUE))

mahalanobis 1109

mahalanobis Mahalanobis Distance

Description

Returns the squared Mahalanobis distance of all rows inx and the vectorµ =center with respect
to Σ =cov . This is (for vectorx) defined as

D2 = (x− µ)′Σ−1(x− µ)

Usage

mahalanobis(x, center, cov, inverted=FALSE, ...)

Arguments

x vector or matrix of data with, say,p columns.

center mean vector of the distribution or second data vector of lengthp.

cov covariance matrix (p× p) of the distribution.

inverted logical. If TRUE, cov is supposed to contain theinverseof the covariance ma-
trix.

... passed tosolve for computing the inverse of the covariance matrix (if
inverted is false).

See Also

cov , var

Examples

require(graphics)

ma <- cbind(1:6, 1:3)
(S <- var(ma))
mahalanobis(c(0,0), 1:2, S)

x <- matrix(rnorm(100*3), ncol = 3)
stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x))

##- Here, D^2 = usual squared Euclidean distances

Sx <- cov(x)
D2 <- mahalanobis(x, colMeans(x), Sx)
plot(density(D2, bw=.5),

main="Squared Mahalanobis distances, n=100, p=3") ; rug(D2)
qqplot(qchisq(ppoints(100), df=3), D2,

main = expression("Q-Q plot of Mahalanobis" * ~D^2 *
" vs. quantiles of" * ~ chi[3]^2))

abline(0, 1, col = 'gray')

1110 make.link

make.link Create a Link for GLM Families

Description

This function is used with thefamily functions inglm () . Given the name of a link, it returns a
link function, an inverse link function, the derivativedµ/dη and a function for domain checking.

Usage

make.link(link)

Arguments

link character or numeric; one of"logit" , "probit" , "cloglog" ,
"identity" , "log" , "sqrt" , "1/mu^2" , "inverse" , or (deprecated)
a non-negative number, sayλ resulting inpower link = µλ. Also (deprecated)
a string like"power(0.5)" to indicate a call topower .

Value

A object of class"link-glm" , a list with components

linkfun Link function function(mu)

linkinv Inverse link functionfunction(eta)

mu.eta Derivativefunction(eta) dµ/dη

valideta function(eta) { TRUEif eta is in the domain oflinkinv }.

name a name to be used for the link

.

See Also

power , glm , family .

Examples

utils::str(make.link("logit"))

makepredictcall 1111

makepredictcall Utility Function for Safe Prediction

Description

A utility to help model.frame.default create the right matrices when predicting from models
with terms likepoly or ns .

Usage

makepredictcall(var, call)

Arguments

var A variable.

call The term in the formula, as a call.

Details

This is a generic function with methods forpoly , bs andns : the default method handlesscale .
If model.frame.default encounters such a term when creating a model frame, it modifies the
predvars attribute of the terms supplied to replace the term with one that will work for predicting
new data. For examplemakepredictcall.ns adds arguments for the knots and intercept.

To make use of this, have your model-fitting function return theterms attribute of the model frame,
or copy thepredvars attribute of theterms attribute of the model frame to yourterms object.

To extend this, make sure the term creates variables with a class, and write a suitable method for
that class.

Value

A replacement forcall for thepredvars attribute of the terms.

See Also

model.frame , poly , scale ; bs andns in packagesplines, cars

Examples

require(graphics)

using poly: this did not work in R < 1.5.0
fm <- lm(weight ~ poly(height, 2), data = women)
plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
ht <- seq(57, 73, len = 200)
lines(ht, predict(fm, data.frame(height=ht)))

see also example(cars)

see bs and ns for spline examples.

1112 manova

manova Multivariate Analysis of Variance

Description

A class for the multivariate analysis of variance.

Usage

manova(...)

Arguments

... Arguments to be passed toaov .

Details

Class"manova" differs from class"aov" in selecting a differentsummary method. Function
manova callsaov and then add class"manova" to the result object for each stratum.

Value

Seeaov and the comments in ‘Details’ here.

Note

manova does not support multistratum analysis of variance, so the formula should not include an
Error term.

References

Krzanowski, W. J. (1988)Principles of Multivariate Analysis. A User’s Perspective.Oxford.

Hand, D. J. and Taylor, C. C. (1987)Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

See Also

aov , summary.manova , the latter containing examples.

mantelhaen.test 1113

mantelhaen.test Cochran-Mantel-Haenszel Chi-Squared Test for Count Data

Description

Performs a Cochran-Mantel-Haenszel chi-squared test of the null that two nominal variables are
conditionally independent in each stratum, assuming that there is no three-way interaction.

Usage

mantelhaen.test(x, y = NULL, z = NULL,
alternative = c("two.sided", "less", "greater"),
correct = TRUE, exact = FALSE, conf.level = 0.95)

Arguments

x either a 3-dimensional contingency table in array form where each dimension is
at least 2 and the last dimension corresponds to the strata, or a factor object with
at least 2 levels.

y a factor object with at least 2 levels; ignored ifx is an array.

z a factor object with at least 2 levels identifying to which stratum the correspond-
ing elements inx andy belong; ignored ifx is an array.

alternative indicates the alternative hypothesis and must be one of"two.sided" ,
"greater" or "less" . You can specify just the initial letter. Only used
in the 2 by 2 byK case.

correct a logical indicating whether to apply continuity correction when computing the
test statistic. Only used in the 2 by 2 byK case.

exact a logical indicating whether the Mantel-Haenszel test or the exact conditional
test (given the strata margins) should be computed. Only used in the 2 by 2 by
K case.

conf.level confidence level for the returned confidence interval. Only used in the 2 by 2 by
K case.

Details

If x is an array, each dimension must be at least 2, and the entries should be nonnegative integers.
NA’s are not allowed. Otherwise,x , y andz must have the same length. Triples containingNA’s
are removed. All variables must take at least two different values.

Value

A list with class"htest" containing the following components:

statistic Only present if no exact test is performed. In the classical case of a 2 by 2 by
K table (i.e., of dichotomous underlying variables), the Mantel-Haenszel chi-
squared statistic; otherwise, the generalized Cochran-Mantel-Haenszel statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic (1 in the classical case). Only present if no exact test is performed.

p.value the p-value of the test.

1114 mantelhaen.test

conf.int a confidence interval for the common odds ratio. Only present in the 2 by 2 by
K case.

estimate an estimate of the common odds ratio. If an exact test is performed, the condi-
tional Maximum Likelihood Estimate is given; otherwise, the Mantel-Haenszel
estimate. Only present in the 2 by 2 byK case.

null.value the common odds ratio under the null of independence,1. Only present in the 2
by 2 byK case.

alternative a character string describing the alternative hypothesis. Only present in the 2 by
2 byK case.

method a character string indicating the method employed, and whether or not continuity
correction was used.

data.name a character string giving the names of the data.

Note

The asymptotic distribution is only valid if there is no three-way interaction. In the classical 2
by 2 byK case, this is equivalent to the conditional odds ratios in each stratum being identical.
Currently, no inference on homogeneity of the odds ratios is performed.

See also the example below.

References

Alan Agresti (1990).Categorical data analysis. New York: Wiley. Pages 230–235.

Alan Agresti (2002).Categorical data analysis(second edition). New York: Wiley.

Examples

Agresti (1990), pages 231--237, Penicillin and Rabbits
Investigation of the effectiveness of immediately injected or 1.5
hours delayed penicillin in protecting rabbits against a lethal
injection with beta-hemolytic streptococci.
Rabbits <-
array(c(0, 0, 6, 5,

3, 0, 3, 6,
6, 2, 0, 4,
5, 1, 6, 0,
2, 5, 0, 0),

dim = c(2, 2, 5),
dimnames = list(

Delay = c("None", "1.5h"),
Response = c("Cured", "Died"),
Penicillin.Level = c("1/8", "1/4", "1/2", "1", "4")))

Rabbits
Classical Mantel-Haenszel test
mantelhaen.test(Rabbits)
=> p = 0.047, some evidence for higher cure rate of immediate
injection
Exact conditional test
mantelhaen.test(Rabbits, exact = TRUE)
=> p - 0.040
Exact conditional test for one-sided alternative of a higher
cure rate for immediate injection
mantelhaen.test(Rabbits, exact = TRUE, alternative = "greater")

mauchly.test 1115

=> p = 0.020

UC Berkeley Student Admissions
mantelhaen.test(UCBAdmissions)
No evidence for association between admission and gender
when adjusted for department. However,
apply(UCBAdmissions, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
This suggests that the assumption of homogeneous (conditional)
odds ratios may be violated. The traditional approach would be
using the Woolf test for interaction:
woolf <- function(x) {

x <- x + 1 / 2
k <- dim(x)[3]
or <- apply(x, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
w <- apply(x, 3, function(x) 1 / sum(1 / x))
1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w)) ^ 2), k - 1)

}
woolf(UCBAdmissions)
=> p = 0.003, indicating that there is significant heterogeneity.
(And hence the Mantel-Haenszel test cannot be used.)

Agresti (2002), p. 287f and p. 297.
Job Satisfaction example.
Satisfaction <-

as.table(array(c(1, 2, 0, 0, 3, 3, 1, 2,
11, 17, 8, 4, 2, 3, 5, 2,
1, 0, 0, 0, 1, 3, 0, 1,
2, 5, 7, 9, 1, 1, 3, 6),

dim = c(4, 4, 2),
dimnames =
list(Income =

c("<5000", "5000-15000",
"15000-25000", ">25000"),

"Job Satisfaction" =
c("V_D", "L_S", "M_S", "V_S"),
Gender = c("Female", "Male"))))

(Satisfaction categories abbreviated for convenience.)
ftable(. ~ Gender + Income, Satisfaction)
Table 7.8 in Agresti (2002), p. 288.
mantelhaen.test(Satisfaction)
See Table 7.12 in Agresti (2002), p. 297.

mauchly.test Mauchly’s Test of Sphericity

Description

Tests whether a Wishart-distributed covariance matrix (or transformation thereof) is proportional to
a given matrix.

Usage

mauchly.test(object, Sigma = diag(nrow = p),
T = Thin.row(proj(M) - proj(X)), M = diag(nrow = p), X = ~0,
idata = data.frame(index = seq_len(p)), ...)

1116 mauchly.test

Arguments

object object of classSSDor mlm.

Sigma matrix to be proportional to.

T transformation matrix. By default computed fromMandX.

M formula or matrix describing the outer projection (see below).

X formula or matrix describing the inner projection (see below).

idata data frame describing intra-block design.

... arguments to be passed to or from other methods.

Details

Mauchly’s test test for whether a covariance matrix can be assumed to be proportional to a given
matrix.

It is common to transform the observations prior to testing. This typically involves transformation
to intra-block differences, but more complicated within-block designs can be encountered, making
more elaborate transformations necessary. A transformation matrixT can be given directly or spec-
ified as the difference between two projections onto the spaces spanned byMandX, which in turn
can be given as matrices or as model formulas with respect toidata (the tests will be invariant to
parametrization of the quotient spaceM/X).

The common use of this test is in repeated measurements designs, withX=~1. This is almost, but
not quite the same as testing for compound symmetry in the untransformed covariance matrix.

This is a generic function with methods for classes"mlm" and" SSD" .

Value

An object of class"htest"

Note

The p-value differs slightly from that of SAS because a second order term is included in the asymp-
totic approximation inR.

References

T. W. Anderson (1958).An Introduction to Multivariate Statistical Analysis.Wiley.

See Also

SSD, anova.mlm

Examples

utils::example(SSD) # Brings in the mlmfit and reacttime objects

traditional test of intrasubj. contrasts
mauchly.test(mlmfit, X=~1)

tests using intra-subject 3x2 design
idata <- data.frame(deg=gl(3,1,6, labels=c(0,4,8)),

noise=gl(2,3,6, labels=c("A","P")))
mauchly.test(mlmfit, X = ~ deg + noise, idata = idata)
mauchly.test(mlmfit, M = ~ deg + noise, X = ~ noise, idata=idata)

mcnemar.test 1117

mcnemar.test McNemar’s Chi-squared Test for Count Data

Description

Performs McNemar’s chi-squared test for symmetry of rows and columns in a two-dimensional
contingency table.

Usage

mcnemar.test(x, y = NULL, correct = TRUE)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor object.

y a factor object; ignored ifx is a matrix.

correct a logical indicating whether to apply continuity correction when computing the
test statistic.

Details

The null is that the probabilities of being classified into cells[i,j] and[j,i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, bothx andy must be vectors of the same length. Incomplete cases
are removed, the vectors are coerced into factor objects, and the contingency table is computed from
these.

Continuity correction is only used in the 2-by-2 case ifcorrect is TRUE.

Value

A list with class"htest" containing the following components:

statistic the value of McNemar’s statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method a character string indicating the type of test performed, and whether continuity
correction was used.

data.name a character string giving the name(s) of the data.

References

Alan Agresti (1990).Categorical data analysis. New York: Wiley. Pages 350–354.

1118 median

Examples

Agresti (1990), p. 350.
Presidential Approval Ratings.
Approval of the President's performance in office in two surveys,
one month apart, for a random sample of 1600 voting-age Americans.
Performance <-
matrix(c(794, 86, 150, 570),

nrow = 2,
dimnames = list("1st Survey" = c("Approve", "Disapprove"),

"2nd Survey" = c("Approve", "Disapprove")))
Performance
mcnemar.test(Performance)
=> significant change (in fact, drop) in approval ratings

median Median Value

Description

Compute the sample median.

Usage

median(x, na.rm = FALSE)

Arguments

x an object for which a method has been defined, or a numeric vector containing
the values whose median is to be computed.

na.rm a logical value indicating whetherNAvalues should be stripped before the com-
putation proceeds.

Details

This is a generic function for which methods can be written. However, the default method makes
use ofsort andmean, both of which are generic, and so the default method will work for most
classes (e.g." Date ") for which a median is a reasonable concept.

Value

The default method returns a length-one object of the same type asx , except whenx is integer of
even length, when the result will be double.

If there are no values or ifna.rm = FALSE and there areNAvalues the result isNAof the same
type asx (or more generally the result ofx[FALSE][NA]).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

quantile for general quantiles.

medpolish 1119

Examples

median(1:4)# = 2.5 [even number]
median(c(1:3,100,1000))# = 3 [odd, robust]

medpolish Median Polish of a Matrix

Description

Fits an additive model using Tukey’smedian polishprocedure.

Usage

medpolish(x, eps = 0.01, maxiter = 10, trace.iter = TRUE,
na.rm = FALSE)

Arguments

x a numeric matrix.

eps real number greater than 0. A tolerance for convergence: see ‘Details’.

maxiter the maximum number of iterations

trace.iter logical. Should progress in convergence be reported?

na.rm logical. Should missing values be removed?

Details

The model fitted is additive (constant + rows + columns). The algorithm works by alternately
removing the row and column medians, and continues until the proportional reduction in the sum
of absolute residuals is less thaneps or until there have beenmaxiter iterations. The sum of
absolute residuals is printed at each iteration of the fitting process, iftrace.iter is TRUE. If
na.rm is FALSE the presence of anyNAvalue inx will cause an error, otherwiseNAvalues are
ignored.

medpolish returns an object of classmedpolish (see below). There are printing and plotting
methods for this class, which are invoked via by the genericsprint andplot .

Value

An object of classmedpolish with the following named components:

overall the fitted constant term.

row the fitted row effects.

col the fitted column effects.

residuals the residuals.

name the name of the dataset.

References

Tukey, J. W. (1977).Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

1120 model.extract

See Also

median ; aov for ameaninstead ofmediandecomposition.

Examples

require(graphics)

Deaths from sport parachuting; from ABC of EDA, p.224:
deaths <-

rbind(c(14,15,14),
c(7, 4, 7),
c(8, 2,10),
c(15, 9,10),
c(0, 2, 0))

dimnames(deaths) <- list(c("1-24", "25-74", "75-199", "200++", "NA"),
paste(1973:1975))

deaths
(med.d <- medpolish(deaths))
plot(med.d)
Check decomposition:
all(deaths ==

med.d$overall + outer(med.d$row,med.d$col, "+") + med.d$residuals)

model.extract Extract Components from a Model Frame

Description

Returns the response, offset, subset, weights or other special components of a model frame passed
as optional arguments tomodel.frame .

Usage

model.extract(frame, component)
model.offset(x)
model.response(data, type = "any")
model.weights(x)

Arguments

frame, x, data
A model frame.

component literal character string or name. The name of a component to extract, such as
"weights" , "subset" .

type One of"any" , "numeric" , "double" . Using either of latter two coerces
the result to have storage mode"double" .

model.frame 1121

Details

model.extract is provided for compatibility with S, which does not have the more specific
functions. It is also useful to extract e.g. theetastart andmustart components of aglm fit.

model.offset andmodel.response are equivalent tomodel.extract(, "offset")
andmodel.extract(, "response") respectively.model.offset sums any terms spec-
ified by offset terms in the formula or byoffset arguments in the call producing the model
frame: it does check that the offset is numeric.

model.weights is slightly different frommodel.frame(, "weights") in not naming the
vector it returns.

Value

The specified component of the model frame, usually a vector.

See Also

model.frame , offset

Examples

a <- model.frame(cbind(ncases,ncontrols) ~ agegp+tobgp+alcgp, data=esoph)
model.extract(a, "response")
stopifnot(model.extract(a, "response") == model.response(a))

a <- model.frame(ncases/(ncases+ncontrols) ~ agegp+tobgp+alcgp,
data = esoph, weights = ncases+ncontrols)

model.response(a)
model.extract(a, "weights")

a <- model.frame(cbind(ncases,ncontrols) ~ agegp,
something = tobgp, data = esoph)

names(a)
stopifnot(model.extract(a, "something") == esoph$tobgp)

model.frame Extracting the “Environment” of a Model Formula

Description

model.frame (a generic function) and its methods return adata.frame with the variables
needed to useformula and any... arguments.

Usage

model.frame(formula, ...)

Default S3 method:
model.frame(formula, data = NULL,

subset = NULL, na.action = na.fail,
drop.unused.levels = FALSE, xlev = NULL, ...)

1122 model.frame

S3 method for class 'aovlist':
model.frame(formula, data = NULL, ...)

S3 method for class 'glm':
model.frame(formula, ...)

S3 method for class 'lm':
model.frame(formula, ...)

get_all_vars(formula, data, ...)

Arguments

formula a modelformula or terms object or anR object.

data a data.frame, list or environment (or object coercible byas.data.frame to
a data.frame), containing the variables informula . Neither a matrix nor an
array will be accepted.

subset a specification of the rows to be used: defaults to all rows. This can be any valid
indexing vector (see[.data.frame) for the rows ofdata or if that is not
supplied, a data frame made up of the variables used informula .

na.action how NAs are treated. The default is first, anyna.action attribute ofdata ,
second ana.action setting ofoptions , and thirdna.fail if that is unset.
The ‘factory-fresh’ default isna.omit . Another possible value isNULL.

drop.unused.levels
should factors have unused levels dropped? Defaults toFALSE.

xlev a named list of character vectors giving the full set of levels to be assumed for
each factor.

... further arguments such asdata , na.action , subset . Any additional argu-
ments such asoffset andweights which reach the default method are used
to create further columns in the model frame, with parenthesised names such as
"(offset)" .

Details

Exactly what happens depends on the class and attributes of the objectformula . If this is an
object of fitted-model class such as"lm" , the method will either returned the saved model frame
used when fitting the model (if any, often selected by argumentmodel = TRUE) or pass the
call used when fitting on to the default method. The default method itself can cope with rather
standard model objects such as those of class" lqs " from packageMASS if no other arguments
are supplied.

The rest of this section applies only to the default method.

If either formula or data is already a model frame (a data frame with a"terms" attribute
and the other is missing, the model frame is returned. Unlessformula is a terms object,
as.formula and thenterms is called on it. (If you wish to use thekeep.order argument of
terms.formula , pass a terms object rather than a formula.)

Row names for the model frame are taken from thedata argument if present, then from the names
of the response in the formula (or rownames if it is a matrix), if there is one.

All the variables informula , subset and in... are looked for first indata and then in the
environment offormula (see the help forformula () for further details) and collected into a
data frame. Then thesubset expression is evaluated, and it is is used as a row index to the data

model.matrix 1123

frame. Then thena.action function is applied to the data frame (and may well add attributes).
The levels of any factors in the data frame are adjusted according to thedrop.unused.levels
andxlev arguments.

Unlessna.action = NULL , time-series attributes will be removed from the variables found
(since they will be wrong ifNAs are removed).

Note thatall the variables in the formula are included in the data frame, even those preceded by- .

Only variables whose type is raw, logical, integer, real, complex or character can be included in a
model frame: this includes classed variables such as factors (whose underlying type is integer), but
excludes lists.

get_all_vars returns adata.frame containing the variables used informula plus those
specified... . Unlike model.frame.default , it returns the input variables and not those
resulting from function calls informula .

Value

A data.frame containing the variables used informula plus those specified... .

References

Chambers, J. M. (1992)Data for models.Chapter 3 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.matrix for the ‘design matrix’,formula for formulas andexpand.model.frame
for model.frame manipulation.

Examples

data.class(model.frame(dist ~ speed, data = cars))

model.matrix Construct Design Matrices

Description

model.matrix creates a design matrix.

Usage

model.matrix(object, ...)

Default S3 method:
model.matrix(object, data = environment(object),

contrasts.arg = NULL, xlev = NULL, ...)

1124 model.matrix

Arguments

object an object of an appropriate class. For the default method, a model formula or
terms object.

data a data frame created withmodel.frame . If another sort of object,
model.frame is called first.

contrasts.arg
A list, whose entries are contrasts suitable for input to thecontrasts replace-
ment function and whose names are the names of columns ofdata containing
factor s.

xlev to be used as argument ofmodel.frame if data has no"terms" attribute.

... further arguments passed to or from other methods.

Details

model.matrix creates a design matrix from the description given interms(object) , using
the data indata which must contain variables with the same names as would be created by a
call to model.frame(object) or, more precisely, by evaluatingattr(terms(object),
"variables") . If it is a data frame, there may be other columns and the order of columns is not
important. Any character variables are coerced to factors, with a warning. After coercion, all the
variables used in RHD of the formula must be logical, integer, numeric or factor.

If contrasts.arg is specified for a factor it overrides the default factor coding for that variable
and any"contrasts" attribute set byCor contrasts .

In an interaction term, the variable whose levels vary fastest is the first one to appear in the formula
(and not in the term), so in~ a + b + b:a the interaction will havea varying fastest.

By convention, if the response variable also appears on the right-hand side of the formula it is
dropped (with a warning), although interactions involving the term are retained.

Value

The design matrix for a regression model with the specified formula and data.

There is an attribute"assign" , an integer vector with an entry for each column in the matrix
giving the term in the formula which gave rise to the column. Value0 corresponds to the intercept
(if any), and positive values to terms in the order given by theterms.labels attribute of the
terms structure corresponding toobject .

If there are any factors in terms in the model, there is an attribute"contrasts" , a named list
with an entry for each factor. This specifies the contrasts that would be used in terms in which the
factor is coded by contrasts (in some terms dummy coding may be used), either as a character vector
naming a function or as a numeric matrix.

References

Chambers, J. M. (1992)Data for models.Chapter 3 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.frame , model.extract , terms

model.tables 1125

Examples

ff <- log(Volume) ~ log(Height) + log(Girth)
utils::str(m <- model.frame(ff, trees))
mat <- model.matrix(ff, m)

dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way
options("contrasts")
model.matrix(~ a + b, dd)
model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
model.matrix(~ a + b, dd, contrasts = list(a="contr.sum", b="contr.poly"))
m.orth <- model.matrix(~a+b, dd, contrasts = list(a="contr.helmert"))
crossprod(m.orth)# m.orth is ALMOST orthogonal

model.tables Compute Tables of Results from an Aov Model Fit

Description

Computes summary tables for model fits, especially complexaov fits.

Usage

model.tables(x, ...)

S3 method for class 'aov':
model.tables(x, type = "effects", se = FALSE, cterms, ...)

S3 method for class 'aovlist':
model.tables(x, type = "effects", se = FALSE, ...)

Arguments

x a model object, usually produced byaov

type type of table: currently only"effects" and"means" are implemented.

se should standard errors be computed?

cterms A character vector giving the names of the terms for which tables should be
computed. The default is all tables.

... further arguments passed to or from other methods.

Details

For type = "effects" give tables of the coefficients for each term, optionally with standard
errors.

For type = "means" give tables of the mean response for each combinations of levels of the
factors in a term.

The"aov" method cannot be applied to components of a"aovlist" fit.

1126 monthplot

Value

An object of class"tables.aov" , as list which may contain components

tables A list of tables for each requested term.

n The replication information for each term.

se Standard error information.

Warning

The implementation is incomplete, and only the simpler cases have been tested thoroughly.

Weightedaov fits are not supported.

See Also

aov , proj , replications , TukeyHSD, se.contrast

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

options(contrasts=c("contr.helmert", "contr.treatment"))
npk.aov <- aov(yield ~ block + N*P*K, npk)
model.tables(npk.aov, "means", se = TRUE)

as a test, not particularly sensible statistically
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
model.tables(npk.aovE, se=TRUE)
model.tables(npk.aovE, "means")

monthplot Plot a Seasonal or other Subseries from a Time Series

Description

These functions plot seasonal (or other) subseries of a time series. For each season (or other cate-
gory), a time series is plotted.

Usage

monthplot(x, ...)

S3 method for class 'stl':
monthplot(x, labels = NULL, ylab = choice, choice = "seasonal",

...)

monthplot 1127

S3 method for class 'StructTS':
monthplot(x, labels = NULL, ylab = choice, choice = "sea", ...)

S3 method for class 'ts':
monthplot(x, labels = NULL, times = time(x), phase = cycle(x),

ylab = deparse(substitute(x)), ...)

Default S3 method:
monthplot(x, labels = 1:12,

ylab = deparse(substitute(x)),
times = 1:length(x),
phase = (times - 1)%%length(labels) + 1, base = mean,
axes = TRUE, type = c("l", "h"), box = TRUE,
add = FALSE, ...)

Arguments

x Time series or related object.

labels Labels to use for each ‘season’.

ylab y label.

times Time of each observation.

phase Indicator for each ‘season’.

base Function to use for reference line for subseries.

choice Which series of anstl or StructTS object?

... Arguments to be passed to the default method or graphical parameters.

axes Should axes be drawn (ignored ifadd=TRUE)?

type Type of plot. The default is to join the points with lines, and"h" is for
histogram-like vertical lines.

box Should a box be drawn (ignored ifadd=TRUE?

add Should thus just add on an existing plot.

Details

These functions extract subseries from a time series and plot them all in one frame. Thets , stl ,
andStructTS methods use the internally recorded frequency and start and finish times to set the
scale and the seasons. The default method assumes observations come in groups of 12 (though this
can be changed).

If the labels are not given but thephase is given, then thelabels default to the unique values
of thephase . If both are given, then thephase values are assumed to be indices into thelabels
array, i.e., they should be in the range from 1 tolength(labels) .

Value

These functions are executed for their side effect of drawing a seasonal subseries plot on the current
graphical window.

Author(s)

Duncan Murdoch

1128 mood.test

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

ts , stl , StructTS

Examples

require(graphics)

The CO2 data
fit <- stl(log(co2), s.window = 20, t.window = 20)
plot(fit)
op <- par(mfrow = c(2,2))
monthplot(co2, ylab = "data", cex.axis = 0.8)
monthplot(fit, choice = "seasonal", cex.axis = 0.8)
monthplot(fit, choice = "trend", cex.axis = 0.8)
monthplot(fit, choice = "remainder", type = "h", cex.axis = 0.8)
par(op)

The CO2 data, grouped quarterly
quarter <- (cycle(co2) - 1) %/% 3
monthplot(co2, phase = quarter)

see also JohnsonJohnson

mood.test Mood Two-Sample Test of Scale

Description

Performs Mood’s two-sample test for a difference in scale parameters.

Usage

mood.test(x, ...)

Default S3 method:
mood.test(x, y,

alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'formula':
mood.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values.

alternative indicates the alternative hypothesis and must be one of"two.sided" (de-
fault), "greater" or "less" all of which can be abbreviated.

mood.test 1129

formula a formula of the formlhs ~ rhs wherelhs is a numeric variable giving the
data values andrhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

Details

The underlying model is that the two samples are drawn fromf(x− l) andf((x− l)/s)/s, respec-
tively, wherel is a common location parameter ands is a scale parameter.

The null hypothesis iss = 1.

There are more useful tests for this problem.

Value

A list with class"htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method the character string"Mood two-sample test of scale" .

data.name a character string giving the names of the data.

References

William J. Conover (1971),Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 234f.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
ansari.test for another rank-based two-sample test for a difference in scale parameters;
var.test andbartlett.test for parametric tests for the homogeneity in variance.

Examples

Same data as for the Ansari-Bradley test:
Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
mood.test(ramsay, jung.parekh)
Compare this to ansari.test(ramsay, jung.parekh)

1130 Multinomial

Multinomial The Multinomial Distribution

Description

Generate multinomially distributed random number vectors and compute multinomial probabilities.

Usage

rmultinom(n, size, prob)
dmultinom(x, size = NULL, prob, log = FALSE)

Arguments

x vector of lengthK of integers in0:size .

n number of random vectors to draw.

size integer, sayN , specifying the total number of objects that are put intoK boxes
in the typical multinomial experiment. Fordmultinom , it defaults tosum(x) .

prob numeric non-negative vector of lengthK, specifying the probability for theK
classes; is internally normalized to sum 1.

log logical; if TRUE, log probabilities are computed.

Details

If x is aK-component vector,dmultinom(x, prob) is the probability

P (X1 = x1, . . . , XK = xk) = C ×
K∏

j=1

π
xj

j

whereC is the ‘multinomial coefficient’C = N !/(x1! · · ·xK !) andN =
∑K

j=1 xj .
By definition, each componentXj is binomially distributed asBin(size, prob[j]) for j =
1, . . . ,K.

Thermultinom() algorithm draws binomials fromBin(nj , Pj) sequentially, wheren1 = N (N
:= size), P1 = π1 (π is prob scaled to sum 1), and forj ≥ 2, recursivelynj = N −

∑j−1
k=1 nk

andPj = πj/(1−
∑j−1

k=1 πk).

Value

For rmultinom() , an integerK x n matrix where each column is a random vector generated
according to the desired multinomial law, and hence summing tosize . Whereas thetransposed
result would seem more natural at first, the returned matrix is more efficient because of columnwise
storage.

Note

dmultinom is currentlynot vectorizedat all and has no C interface (API); this may be amended
in the future.

na.action 1131

See Also

rbinom which is a special case conceptually.

Examples

rmultinom(10, size = 12, prob=c(0.1,0.2,0.8))

pr <- c(1,3,6,10) # normalization not necessary for generation
rmultinom(10, 20, prob = pr)

all possible outcomes of Multinom(N = 3, K = 3)
X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3]
X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL)
X
round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)

na.action NA Action

Description

na.action is a generic function, andna.action.default its default method (which extracts
the"na.action" attribute).

Usage

na.action(object, ...)

Arguments

object any object whoseNAaction is given.

... further arguments special methods could require.

Value

The action which will be applied toobject wheneverNAs are not desired.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

options ("na.action") , na.omit , na.fail , also forna.exclude , na.pass .

Examples

na.action(c(1, NA))

1132 na.fail

na.contiguous Find Longest Contiguous Stretch of non-NAs

Description

Find the longest consecutive stretch of non-missing values in a time series object. (In the event of a
tie, the first such stretch.)

Usage

na.contiguous(object, ...)

Arguments

object a univariate or multivariate time series.

... further arguments passed to or from other methods.

Value

A time series without missing values. The class ofobject will be preserved.

See Also

na.omit andna.omit.ts ; na.fail

Examples

na.contiguous(presidents)

na.fail Handle Missing Values in Objects

Description

These generic functions are useful for dealing withNAs in e.g., data frames.na.fail returns the
object if it does not contain any missing values, and signals an error otherwise.na.omit returns
the object with incomplete cases removed.na.pass returns the object unchanged.

Usage

na.fail(object, ...)
na.omit(object, ...)
na.exclude(object, ...)
na.pass(object, ...)

Arguments

object anR object, typically a data frame

... further arguments special methods could require.

naprint 1133

Details

At present these will handle vectors, matrices and data frames comprising vectors and matrices
(only).

If na.omit removes cases, the row numbers of the cases form the"na.action" attribute of the
result, of class"omit" .

na.exclude differs from na.omit only in the class of the"na.action" attribute of the
result, which is"exclude" . This gives different behaviour in functions making use ofnaresid
and napredict : when na.exclude is used the residuals and predictions are padded to the
correct length by insertingNAs for cases omitted byna.exclude .

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

na.action ; options with argumentna.action for setting NA actions; andlm andglm for
functions using these.na.contiguous as alternative for time series.

Examples

DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))
na.omit(DF)
m <- as.matrix(DF)
na.omit(m)
stopifnot(all(na.omit(1:3) == 1:3)) # does not affect objects with no NA's
try(na.fail(DF))#> Error: missing values in ...

options("na.action")

naprint Adjust for Missing Values

Description

Use missing value information to report the effects of anna.action .

Usage

naprint(x, ...)

Arguments

x An object produced by anna.action function.

... further arguments passed to or from other methods.

Details

This is a generic function, and the exact information differs by method.naprint.omit reports
the number of rows omitted:naprint.default reports an empty string.

1134 naresid

Value

A character string providing information on missing values, for example the number.

naresid Adjust for Missing Values

Description

Use missing value information to adjust residuals and predictions.

Usage

naresid(omit, x, ...)
napredict(omit, x, ...)

Arguments

omit an object produced by anna.action function, typically the"na.action"
attribute of the result ofna.omit or na.exclude .

x a vector, data frame, or matrix to be adjusted based upon the missing value
information.

... further arguments passed to or from other methods.

Details

These are utility functions used to allowpredict , fitted andresiduals methods for mod-
elling functions to compensate for the removal ofNAs in the fitting process. They are used by the
default,"lm" , "glm" and"nls" methods, and by further methods in packagesMASS, rpart and
survival. Also used for the scores returned byfactanal , prcomp andprincomp .

The default methods do nothing. The default method for thena.exclude action is to pad the
object withNAs in the correct positions to have the same number of rows as the original data frame.

Currentlynaresid andnapredict are identical, but future methods need not be.naresid is
used for residuals, andnapredict for fitted values and predictions.

Value

These return a similar object tox .

Note

Packagesrpart and survival5 used to contain versions of these functions that had an
na.omit action equivalent to that now used forna.exclude .

NegBinomial 1135

NegBinomial The Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the negative binomial
distribution with parameterssize andprob .

Usage

dnbinom(x, size, prob, mu, log = FALSE)
pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
rnbinom(n, size, prob, mu)

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive.

prob probability of success in each trial.0 < prob <= 1 .

mu alternative parametrization via mean: see ‘Details’.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

The negative binomial distribution withsize = n andprob = p has density

p(x) =
Γ(x+ n)
Γ(n)x!

pn(1− p)x

for x = 0, 1, 2, . . ., n > 0 and0 < p ≤ 1.

This represents the number of failures which occur in a sequence of Bernoulli trials before a target
number of successes is reached.

A negative binomial distribution can arise as a mixture of Poisson distributions with mean dis-
tributed as aΓ (pgamma) distribution with scale parameter(1 - prob)/prob and shape pa-
rametersize . (This definition allows non-integer values ofsize .) In this modelprob =
scale/(1+scale) , and the mean issize * (1 - prob)/prob .

The alternative parametrization (often used in ecology) is by themeanmu, andsize , thedisper-
sion parameter, whereprob = size/(size+mu) . The variance ismu + mu^2/size in this
parametrization orn(1− p)/p2 in the first one.

If an element ofx is not integer, the result ofdnbinom is zero, with a warning.

The quantile is defined as the smallest valuex such thatF (x) ≥ p, whereF is the distribution
function.

1136 NegBinomial

Value

dnbinom gives the density,pnbinom gives the distribution function,qnbinom gives the quantile
function, andrnbinom generates random deviates.

Invalid size or prob will result in return valueNaN, with a warning.

Source

dnbinom computes via binomial probabilities, using code contributed by Catherine Loader (see
dbinom).

pnbinom usespbeta .

qnbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal approx-
imation, followed by a search.

rnbinom uses the derivation as a gamma mixture of Poissons, see

Devroye, L. (1986)Non-Uniform Random Variate Generation.Springer-Verlag, New York. Page
480.

See Also

dbinom for the binomial,dpois for the Poisson anddgeom for the geometric distribution, which
is a special case of the negative binomial.

Examples

require(graphics)
x <- 0:11
dnbinom(x, size = 1, prob = 1/2) * 2^(1 + x) # == 1
126 / dnbinom(0:8, size = 2, prob = 1/2) #- theoretically integer

Cumulative ('p') = Sum of discrete prob.s ('d'); Relative error :
summary(1 - cumsum(dnbinom(x, size = 2, prob = 1/2)) /

pnbinom(x, size = 2, prob = 1/2))

x <- 0:15
size <- (1:20)/4
persp(x,size, dnb <- outer(x, size, function(x,s) dnbinom(x,s, prob= 0.4)),

xlab = "x", ylab = "s", zlab="density", theta = 150)
title(tit <- "negative binomial density(x,s, pr = 0.4) vs. x & s")

image (x,size, log10(dnb), main= paste("log [",tit,"]"))
contour(x,size, log10(dnb),add=TRUE)

Alternative parametrization
x1 <- rnbinom(500, mu = 4, size = 1)
x2 <- rnbinom(500, mu = 4, size = 10)
x3 <- rnbinom(500, mu = 4, size = 100)
h1 <- hist(x1, breaks = 20, plot = FALSE)
h2 <- hist(x2, breaks = h1$breaks, plot = FALSE)
h3 <- hist(x3, breaks = h1$breaks, plot = FALSE)
barplot(rbind(h1$counts, h2$counts, h3$counts),

beside = TRUE, col = c("red","blue","cyan"),
names.arg = round(h1$breaks[-length(h1$breaks)]))

nextn 1137

nextn Highly Composite Numbers

Description

nextn returns the smallest integer, greater than or equal ton, which can be obtained as a product
of powers of the values contained infactors . nextn is intended to be used to find a suitable
length to zero-pad the argument offft to so that the transform is computed quickly. The default
value forfactors ensures this.

Usage

nextn(n, factors = c(2,3,5))

Arguments

n an integer.

factors a vector of positive integer factors.

See Also

convolve , fft .

Examples

nextn(1001) # 1024
table(sapply(599:630, nextn))

nlm Non-Linear Minimization

Description

This function carries out a minimization of the functionf using a Newton-type algorithm. See the
references for details.

Usage

nlm(f, p, ..., hessian = FALSE, typsize = rep(1, length(p)),
fscale = 1, print.level = 0, ndigit = 12, gradtol = 1e-6,
stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000),
steptol = 1e-6, iterlim = 100, check.analyticals = TRUE)

1138 nlm

Arguments

f the function to be minimized. If the function value has an attribute called
gradient or bothgradient andhessian attributes, these will be used
in the calculation of updated parameter values. Otherwise, numerical deriva-
tives are used.deriv returns a function with suitablegradient attribute.
This should be a function of a vector of the length ofp followed by any other
arguments specified by the... argument.

p starting parameter values for the minimization.

... additional arguments tof .

hessian if TRUE, the hessian off at the minimum is returned.

typsize an estimate of the size of each parameter at the minimum.

fscale an estimate of the size off at the minimum.

print.level this argument determines the level of printing which is done during the mini-
mization process. The default value of0 means that no printing occurs, a value
of 1 means that initial and final details are printed and a value of 2 means that
full tracing information is printed.

ndigit the number of significant digits in the functionf .

gradtol a positive scalar giving the tolerance at which the scaled gradient is considered
close enough to zero to terminate the algorithm. The scaled gradient is a measure
of the relative change inf in each directionp[i] divided by the relative change
in p[i] .

stepmax a positive scalar which gives the maximum allowable scaled step length.
stepmax is used to prevent steps which would cause the optimization func-
tion to overflow, to prevent the algorithm from leaving the area of interest in
parameter space, or to detect divergence in the algorithm.stepmax would be
chosen small enough to prevent the first two of these occurrences, but should be
larger than any anticipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

iterlim a positive integer specifying the maximum number of iterations to be performed
before the program is terminated.

check.analyticals
a logical scalar specifying whether the analytic gradients and Hessians, if they
are supplied, should be checked against numerical derivatives at the initial pa-
rameter values. This can help detect incorrectly formulated gradients or Hes-
sians.

Details

Note that arguments after... must be matched exactly.

If a gradient or hessian is supplied but evaluates to the wrong mode or length, it will be ignored if
check.analyticals = TRUE (the default) with a warning. The hessian is not even checked
unless the gradient is present and passes the sanity checks.

From the three methods available in the original source, we always use method “1” which is line
search.

The functions supplied must always return finite (including notNAand notNaN) values.

nlm 1139

Value

A list containing the following components:

minimum the value of the estimated minimum off .

estimate the point at which the minimum value off is obtained.

gradient the gradient at the estimated minimum off .

hessian the hessian at the estimated minimum off (if requested).

code an integer indicating why the optimization process terminated.

1: relative gradient is close to zero, current iterate is probably solution.
2: successive iterates within tolerance, current iterate is probably solution.
3: last global step failed to locate a point lower thanestimate . Either

estimate is an approximate local minimum of the function orsteptol
is too small.

4: iteration limit exceeded.
5: maximum step sizestepmax exceeded five consecutive times. Either the

function is unbounded below, becomes asymptotic to a finite value from
above in some direction orstepmax is too small.

iterations the number of iterations performed.

References

Dennis, J. E. and Schnabel, R. B. (1983)Numerical Methods for Unconstrained Optimization and
Nonlinear Equations.Prentice-Hall, Englewood Cliffs, NJ.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985) A modular system of algorithms for uncon-
strained minimization.ACM Trans. Math. Software, 11, 419–440.

See Also

optim andnlminb .

constrOptim for constrained optimization,optimize for one-dimensional minimization and
uniroot for root finding.deriv to calculate analytical derivatives.

For nonlinear regression,nls may be better.

Examples

f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))
nlm(f, c(10,10), print.level = 2)
utils::str(nlm(f, c(5), hessian = TRUE))

f <- function(x, a) sum((x-a)^2)
nlm(f, c(10,10), a=c(3,5))
f <- function(x, a)
{

res <- sum((x-a)^2)
attr(res, "gradient") <- 2*(x-a)
res

}
nlm(f, c(10,10), a=c(3,5))

more examples, including the use of derivatives.
Not run: demo(nlm)

1140 nlminb

nlminb Optimization using PORT routines

Description

Unconstrained and constrained optimization using PORT routines.

Usage

nlminb(start, objective, gradient = NULL, hessian = NULL, ...,
scale = 1, control = list(), lower = -Inf, upper = Inf)

Arguments

start numeric vector, initial values for the parameters to be optimized.

objective Function to be minimized. Must return a scalar value (possibly NA/Inf). The
first argument toobjective is the vector of parameters to be optimized,
whose initial values are supplied throughstart . Further arguments (fixed dur-
ing the course of the optimization) toobjective may be specified as well
(see...).

gradient Optional function that takes the same arguments asobjective and evaluates
the gradient ofobjective at its first argument. Must return a vector as long
asstart .

hessian Optional function that takes the same arguments asobjective and evaluates
the hessian ofobjective at its first argument. Must return a square matrix of
orderlength(start) . Only the lower triangle is used.

... Further arguments to be supplied toobjective .

scale See PORT documentation (or leave alone).

control A list of control parameters. See below for details.

lower, upper vectors of lower and upper bounds, replicated to be as long asstart . If un-
specified, all parameters are assumed to be unconstrained.

Details

The PORT documentation is athttp://netlib.bell-labs.com/cm/cs/cstr/153.
pdf .

Value

A list with components:

par The best set of parameters found.

objective The value ofobjective corresponding topar .

convergence An integer code.0 indicates successful convergence.

message A character string giving any additional information returned by the optimizer,
or NULL. For details, see PORT documentation.

iterations Number of iterations performed.

evaluations Number of objective function and gradient function evaluations

http://netlib.bell-labs.com/cm/cs/cstr/153.pdf
http://netlib.bell-labs.com/cm/cs/cstr/153.pdf

nlminb 1141

Control parameters

Possible names in thecontrol list and their default values are:

eval.max Maximum number of evaluations of the objective function allowed. Defaults to 200.

iter.max Maximum number of iterations allowed. Defaults to 150.

trace The value of the objective function and the parameters is printed every trace’th iteration.
Defaults to 0 which indicates no trace information is to be printed.

abs.tol Absolute tolerance. Defaults to1e-20 .

rel.tol Relative tolerance. Defaults to1e-10 .

x.tol X tolerance. Defaults to1.5e-8 .

step.min Minimum step size. Defaults to2.2e-14 .

Author(s)

(of R port) Douglas Bates and Deepayan Sarkar.

References

http://netlib.bell-labs.com/netlib/port/

See Also

optim andnlm .

optimize for one-dimensional minimization andconstrOptim for constrained optimization.

Examples

x <- rnbinom(100, mu = 10, size = 10)
hdev <- function(par) {

-sum(dnbinom(x, mu = par[1], size = par[2], log = TRUE))
}
nlminb(c(9, 12), hdev)
nlminb(c(20, 20), hdev, lower = 0, upper = Inf)
nlminb(c(20, 20), hdev, lower = 0.001, upper = Inf)

slightly modified from the S-PLUS help page for nlminb
this example minimizes a sum of squares with known solution y
sumsq <- function(x, y) {sum((x-y)^2)}
y <- rep(1,5)
x0 <- rnorm(length(y))
nlminb(start = x0, sumsq, y = y)
now use bounds with a y that has some components outside the bounds
y <- c(0, 2, 0, -2, 0)
nlminb(start = x0, sumsq, lower = -1, upper = 1, y = y)
try using the gradient
sumsq.g <- function(x,y) 2*(x-y)
nlminb(start = x0, sumsq, sumsq.g,

lower = -1, upper = 1, y = y)
now use the hessian, too
sumsq.h <- function(x,y) diag(2, nrow = length(x))
nlminb(start = x0, sumsq, sumsq.g, sumsq.h,

lower = -1, upper = 1, y = y)

http://netlib.bell-labs.com/netlib/port/

1142 nls

Rest lifted from optim help page

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}
nlminb(c(-1.2,1), fr)
nlminb(c(-1.2,1), fr, grr)

flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

25-dimensional box constrained
par[24] is *not* at boundary
nlminb(rep(3, 25), flb,

lower=rep(2, 25),
upper=rep(4, 25))

nls Nonlinear Least Squares

Description

Determine the nonlinear (weighted) least-squares estimates of the parameters of a nonlinear model.

Usage

nls(formula, data, start, control, algorithm,
trace, subset, weights, na.action, model,
lower, upper, ...)

Arguments

formula a nonlinear modelformulaincluding variables and parameters. Will be coerced
to a formula if necessary.

data an optional data frame in which to evaluate the variables informula . Can also
be a list or an environment, but not a matrix.

start a named list or named numeric vector of starting estimates. Whenstart
is missing, a very cheap guess forstart is tried (if algorithm !=
"plinear").

control an optional list of control settings. Seenls.control for the names of the
settable control values and their effect.

algorithm character string specifying the algorithm to use. The default algorithm is a
Gauss-Newton algorithm. Other possible values are"plinear" for the Golub-
Pereyra algorithm for partially linear least-squares models and"port" for the
‘nl2sol’ algorithm from the Port package.

nls 1143

trace logical value indicating if a trace of the iteration progress should be printed. De-
fault isFALSE. If TRUEthe residual (weighted) sum-of-squares and the parame-
ter values are printed at the conclusion of each iteration. When the"plinear"
algorithm is used, the conditional estimates of the linear parameters are printed
after the nonlinear parameters. When the"port" algorithm is used the objec-
tive function value printed is half the residual (weighted) sum-of-squares.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares.

na.action a function which indicates what should happen when the data containNAs. The
default is set by thena.action setting ofoptions , and isna.fail if that
is unset. The ‘factory-fresh’ default isna.omit . Valuena.exclude can be
useful.

model logical. If true, the model frame is returned as part of the object. Default is
FALSE.

lower, upper vectors of lower and upper bounds, replicated to be as long asstart . If un-
specified, all parameters are assumed to be unconstrained. Bounds can only be
used with the"port" algorithm. They are ignored, with a warning, if given for
other algorithms.

... Additional optional arguments. None are used at present.

Details

An nls object is a type of fitted model object. It has methods for the generic functionsanova ,
coef , confint , deviance , df.residual , fitted , formula , logLik , predict ,
print , profile , residuals , summary , vcov andweights .

Variables informula are looked for first indata , then the environment offormula and finally
along the search path. Functions informula are searched for first in the environment offormula
and then along the search path.

Value

A list of

m annlsModel object incorporating the model.

data the expression that was passed tonls as the data argument. The actual data
values are present in the environment of themcomponent.

call the matched call with several components, notablyalgorithm .

na.action the"na.action" attribute (if any) of the model frame.

dataClasses the"dataClasses" attribute (if any) of the"terms" attribute of the model
frame.

model if model = TRUE, the model frame.

weights if weights is supplied, the weights.

convInfo whenalgorithm is not "port", a list with convergence information.

control the controllist used, see thecontrol argument.
convergence, message

for an algorithm = "port" fit only, a convergence code (0 for conver-
gence) and message.

1144 nls

Note that settingwarnOnly = TRUE in thecontrol argument (seenls.control) returns a
non-converged object (sinceR version 2.5.0) which might be useful for further convergence analy-
sis,butnot for inference.

Warning

Do not usenls on artificial "zero-residual" data.

Thenls function uses a relative-offset convergence criterion that compares the numerical impreci-
sion at the current parameter estimates to the residual sum-of-squares. This performs well on data
of the form

y = f(x, θ) + ε

(with var(eps) > 0). It fails to indicate convergence on data of the form

y = f(x, θ)

because the criterion amounts to comparing two components of the round-off error. If you wish to
testnls on artificial data please add a noise component, as shown in the example below.

Thealgorithm = "port" code appears unfinished, and does not even check that the starting
value is within the bounds. Use with caution, especially where bounds are supplied.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D. M. and Watts, D. G. (1988)Nonlinear Regression Analysis and Its Applications, Wiley

Bates, D. M. and Chambers, J. M. (1992)Nonlinear models.Chapter 10 ofStatistical Models in S
eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

http://netlib.bell-labs.com/netlib/port/ for the Port library documentation.

See Also

summary.nls , predict.nls , profile.nls .

Examples

require(graphics)

DNase1 <- subset(DNase, Run == 1)

using a selfStart model
fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
summary(fm1DNase1)
the coefficients only:
coef(fm1DNase1)
including their SE, etc:
coef(summary(fm1DNase1))

using conditional linearity
fm2DNase1 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(xmid = 0, scal = 1),
algorithm = "plinear", trace = TRUE)

http://netlib.bell-labs.com/netlib/port/

nls 1145

summary(fm2DNase1)

without conditional linearity
fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1),
trace = TRUE)

summary(fm3DNase1)

using Port's nl2sol algorithm
fm4DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1),
trace = TRUE, algorithm = "port")

summary(fm4DNase1)

weighted nonlinear regression
Treated <- Puromycin[Puromycin$state == "treated",]
weighted.MM <- function(resp, conc, Vm, K)
{

Purpose: exactly as white book p. 451 -- RHS for nls()
Weighted version of Michaelis-Menten model
--
Arguments: 'y', 'x' and the two parameters (see book)
--
Author: Martin Maechler, Date: 23 Mar 2001

pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)

}

Pur.wt <- nls(~ weighted.MM(rate, conc, Vm, K), data = Treated,
start = list(Vm = 200, K = 0.1),
trace = TRUE)

summary(Pur.wt)

Passing arguments using a list that can not be coerced to a data.frame
lisTreat <- with(Treated,

list(conc1 = conc[1], conc.1 = conc[-1], rate = rate))

weighted.MM1 <- function(resp, conc1, conc.1, Vm, K)
{

conc <- c(conc1, conc.1)
pred <- (Vm * conc)/(K + conc)

(resp - pred) / sqrt(pred)
}
Pur.wt1 <- nls(~ weighted.MM1(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1))
stopifnot(all.equal(coef(Pur.wt), coef(Pur.wt1)))

Chambers and Hastie (1992) Statistical Models in S (p. 537):
If the value of the right side [of formula] has an attribute called
'gradient' this should be a matrix with the number of rows equal
to the length of the response and one column for each parameter.

weighted.MM.grad <- function(resp, conc1, conc.1, Vm, K)
{

1146 nls.control

conc <- c(conc1, conc.1)

K.conc <- K+conc
dy.dV <- conc/K.conc
dy.dK <- -Vm*dy.dV/K.conc
pred <- Vm*dy.dV
pred.5 <- sqrt(pred)
dev <- (resp - pred) / pred.5
Ddev <- -0.5*(resp+pred)/(pred.5*pred)
attr(dev, "gradient") <- Ddev * cbind(Vm = dy.dV, K = dy.dK)
dev

}

Pur.wt.grad <- nls(~ weighted.MM.grad(rate, conc1, conc.1, Vm, K),
data = lisTreat, start = list(Vm = 200, K = 0.1))

rbind(coef(Pur.wt), coef(Pur.wt1), coef(Pur.wt.grad))

In this example, there seems no advantage to providing the gradient.
In other cases, there might be.

The two examples below show that you can fit a model to
artificial data with noise but not to artificial data
without noise.
x <- 1:10
y <- 2*x + 3 # perfect fit
yeps <- y + rnorm(length(y), sd = 0.01) # added noise
nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321),

trace = TRUE)
Not run:
terminates in an error, because convergence cannot be confirmed:
nls(y ~ a + b*x, start = list(a = 0.12345, b = 0.54321),

trace = TRUE)
End(Not run)

the nls() internal cheap guess for starting values can be sufficient:

x <- -(1:100)/10
y <- 100 + 10 * exp(x / 2) + rnorm(x)/10
nlmod <- nls(y ~ Const + A * exp(B * x), trace=TRUE)

plot(x,y, main = "nls(*), data, true function and fit, n=100")
curve(100 + 10 * exp(x / 2), col=4, add = TRUE)
lines(x, predict(nlmod), col=2)

nls.control Control the Iterations in nls

Description

Allow the user to set some characteristics of thenls nonlinear least squares algorithm.

Usage

nls.control(maxiter = 50, tol = 1e-05, minFactor = 1/1024,
printEval = FALSE, warnOnly = FALSE)

nls.control 1147

Arguments

maxiter A positive integer specifying the maximum number of iterations allowed.

tol A positive numeric value specifying the tolerance level for the relative offset
convergence criterion.

minFactor A positive numeric value specifying the minimum step-size factor allowed on
any step in the iteration. The increment is calculated with a Gauss-Newton
algorithm and successively halved until the residual sum of squares has been
decreased or until the step-size factor has been reduced below this limit.

printEval a logical specifying whether the number of evaluations (steps in the gradient
direction taken each iteration) is printed.

warnOnly a logical specifying whethernls () should return instead of signalling an error
in the case of termination before convergence. Termination before convergence
happens upon completion ofmaxiter iterations, in the case of a singular gra-
dient, and in the case that the step-size factor is reduced belowminFactor .

Value

A list with exactly five components:

maxiter

tol

minFactor

printEval

warnOnly

with meanings as explained under ‘Arguments’.

Author(s)

Douglas Bates and Saikat DebRoy

References

Bates and Watts (1988),Nonlinear Regression Analysis and Its Applications, Wiley.

See Also

nls

Examples

nls.control(minFactor = 1/2048)

1148 NLSstClosestX

NLSstAsymptotic Fit the Asymptotic Regression Model

Description

Fits the asymptotic regression model, in the formb0 + b1*(1-exp(-exp(lrc) * x) to the
xy data. This can be used as a building block in determining starting estimates for more complicated
models.

Usage

NLSstAsymptotic(xy)

Arguments

xy asortedXyData object

Value

A numeric value of length 3 with components labelledb0 , b1 , and lrc . b0 is the estimated
intercept on they -axis,b1 is the estimated difference between the asymptote and they -intercept,
andlrc is the estimated logarithm of the rate constant.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

SSasymp

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
NLSstAsymptotic(sortedXyData(expression(age), expression(height), Lob.329))

NLSstClosestX Inverse Interpolation

Description

Use inverse linear interpolation to approximate thex value at which the function represented byxy
is equal toyval .

Usage

NLSstClosestX(xy, yval)

NLSstLfAsymptote 1149

Arguments

xy asortedXyData object

yval a numeric value on they scale

Value

A single numeric value on thex scale.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData , NLSstLfAsymptote , NLSstRtAsymptote , selfStart

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstClosestX(DN.srt, 1.0)

NLSstLfAsymptote Horizontal Asymptote on the Left Side

Description

Provide an initial guess at the horizontal asymptote on the left side (i.e., small values ofx) of the
graph ofy versusx from thexy object. Primarily used withininitial functions for self-starting
nonlinear regression models.

Usage

NLSstLfAsymptote(xy)

Arguments

xy asortedXyData object

Value

A single numeric value estimating the horizontal asymptote for smallx .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData , NLSstClosestX , NLSstRtAsymptote , selfStart

1150 NLSstRtAsymptote

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstLfAsymptote(DN.srt)

NLSstRtAsymptote Horizontal Asymptote on the Right Side

Description

Provide an initial guess at the horizontal asymptote on the right side (i.e., large values ofx) of the
graph ofy versusx from thexy object. Primarily used withininitial functions for self-starting
nonlinear regression models.

Usage

NLSstRtAsymptote(xy)

Arguments

xy asortedXyData object

Value

A single numeric value estimating the horizontal asymptote for largex .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData , NLSstClosestX , NLSstRtAsymptote , selfStart

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstRtAsymptote(DN.srt)

Normal 1151

Normal The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal distribution
with mean equal tomean and standard deviation equal tosd .

Usage

dnorm(x, mean=0, sd=1, log = FALSE)
pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean=0, sd=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

mean vector of means.

sd vector of standard deviations.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

If mean or sd are not specified they assume the default values of0 and1, respectively.

The normal distribution has density

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

whereµ is the mean of the distribution andσ the standard deviation.

qnorm is based on Wichura’s algorithm AS 241 which provides precise results up to about 16
digits.

Value

dnorm gives the density,pnorm gives the distribution function,qnorm gives the quantile function,
andrnorm generates random deviates.

1152 Normal

Source

For pnorm , based on

Cody, W. D. (1993) Algorithm 715: SPECFUN – A portable FORTRAN package of special function
routines and test drivers.ACM Transactions on Mathematical Software19, 22–32.

For qnorm , the code is a C translation of

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of the Normal Distribution.Ap-
plied Statistics, 37, 477–484.

For rnorm , seeRNGfor how to select the algorithm and for references to the supplied methods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
1, chapter 13. Wiley, New York.

See Also

runif and.Random.seed about random number generation, anddlnorm for theLognormal
distribution.

Examples

require(graphics)

dnorm(0) == 1/ sqrt(2*pi)
dnorm(1) == exp(-1/2)/ sqrt(2*pi)
dnorm(1) == 1/ sqrt(2*pi*exp(1))

Using "log = TRUE" for an extended range :
par(mfrow=c(2,1))
plot(function(x) dnorm(x, log=TRUE), -60, 50,

main = "log { Normal density }")
curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)
mtext("dnorm(x, log=TRUE)", adj=0)
mtext("log(dnorm(x))", col="red", adj=1)

plot(function(x) pnorm(x, log.p=TRUE), -50, 10,
main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)
mtext("pnorm(x, log=TRUE)", adj=0)
mtext("log(pnorm(x))", col="red", adj=1)

if you want the so-called 'error function'
erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1
(see Abramowitz and Stegun 29.2.29)
and the so-called 'complementary error function'
erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE)

numericDeriv 1153

numericDeriv Evaluate derivatives numerically

Description

numericDeriv numerically evaluates the gradient of an expression.

Usage

numericDeriv(expr, theta, rho = parent.frame(), dir = 1)

Arguments

expr The expression to be differentiated. The value of this expression should be a
numeric vector.

theta A character vector of names of numeric variables used inexpr .

rho An environment containing all the variables needed to evaluateexpr .

dir A numeric vector of directions to use for the finite differences.

Details

This is a front end to the C functionnumeric_deriv , which is described inWriting R Extensions.

The numeric variables must be of typereal and notinteger .

Value

The value ofeval(expr, envir = rho) plus a matrix attribute calledgradient . The
columns of this matrix are the derivatives of the value with respect to the variables listed intheta .

Author(s)

Saikat DebRoy〈saikat@stat.wisc.edu〉

Examples

myenv <- new.env()
assign("mean", 0., envir = myenv)
assign("sd", 1., envir = myenv)
assign("x", seq(-3., 3., len = 31), envir = myenv)
numericDeriv(quote(pnorm(x, mean, sd)), c("mean", "sd"), myenv)

1154 oneway.test

offset Include an Offset in a Model Formula

Description

An offset is a term to be added to a linear predictor, such as in a generalised linear model, with
known coefficient 1 rather than an estimated coefficient.

Usage

offset(object)

Arguments

object An offset to be included in a model frame

Details

There can be more than one offset in a model formula, but- is not supported foroffset terms
(and is equivalent to+).

Value

The input value.

See Also

model.offset , model.frame .

For examples seeglm andInsurance in packageMASS.

oneway.test Test for Equal Means in a One-Way Layout

Description

Test whether two or more samples from normal distributions have the same means. The variances
are not necessarily assumed to be equal.

Usage

oneway.test(formula, data, subset, na.action, var.equal = FALSE)

oneway.test 1155

Arguments

formula a formula of the formlhs ~ rhs wherelhs gives the sample values andrhs
the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

var.equal a logical variable indicating whether to treat the variances in the samples as
equal. If TRUE, then a simple F test for the equality of means in a one-way
analysis of variance is performed. IfFALSE, an approximate method of Welch
(1951) is used, which generalizes the commonly known 2-sample Welch test to
the case of arbitrarily many samples.

Value

A list with class"htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the exact or approximate F distribution of the test
statistic.

p.value the p-value of the test.

method a character string indicating the test performed.

data.name a character string giving the names of the data.

References

B. L. Welch (1951), On the comparison of several mean values: an alternative approach.
Biometrika, 38, 330–336.

See Also

The standard t test (t.test) as the special case for two samples; the Kruskal-Wallis test
kruskal.test for a nonparametric test for equal location parameters in a one-way layout.

Examples

Not assuming equal variances
oneway.test(extra ~ group, data = sleep)
Assuming equal variances
oneway.test(extra ~ group, data = sleep, var.equal = TRUE)
which gives the same result as
anova(lm(extra ~ group, data = sleep))

1156 optim

optim General-purpose Optimization

Description

General-purpose optimization based on Nelder–Mead, quasi-Newton and conjugate-gradient algo-
rithms. It includes an option for box-constrained optimization and simulated annealing.

Usage

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return the gradient for the"BFGS" , "CG" and "L-BFGS-B"
methods. If it isNULL, a finite-difference approximation will be used.
For the "SANN" method it specifies a function to generate a new candidate
point. If it is NULLa default Gaussian Markov kernel is used.

... Further arguments to be passed tofn andgr .

method The method to be used. See ‘Details’.

lower, upper Bounds on the variables for the"L-BFGS-B" method.

control A list of control parameters. See ‘Details’.

hessian Logical. Should a numerically differentiated Hessian matrix be returned?

Details

Note that arguments after... must be matched exactly.

By default this function performs minimization, but it will maximize ifcontrol$fnscale is
negative.

The default method is an implementation of that of Nelder and Mead (1965), that uses only func-
tion values and is robust but relatively slow. It will work reasonably well for non-differentiable
functions.

Method"BFGS" is a quasi-Newton method (also known as a variable metric algorithm), specifi-
cally that published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno. This uses
function values and gradients to build up a picture of the surface to be optimized.

Method"CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964) (but
with the option of Polak–Ribiere or Beale–Sorenson updates). Conjugate gradient methods will
generally be more fragile than the BFGS method, but as they do not store a matrix they may be
successful in much larger optimization problems.

Method "L-BFGS-B" is that of Byrdet. al. (1995) which allowsbox constraints, that is each
variable can be given a lower and/or upper bound. The initial value must satisfy the constraints.

optim 1157

This uses a limited-memory modification of the BFGS quasi-Newton method. If non-trivial bounds
are supplied, this method will be selected, with a warning.

Nocedal and Wright (1999) is a comprehensive reference for the previous three methods.

Method"SANN" is by default a variant of simulated annealing given in Belisle (1992). Simulated-
annealing belongs to the class of stochastic global optimization methods. It uses only function
values but is relatively slow. It will also work for non-differentiable functions. This implementation
uses the Metropolis function for the acceptance probability. By default the next candidate point
is generated from a Gaussian Markov kernel with scale proportional to the actual temperature. If
a function to generate a new candidate point is given, method"SANN" can also be used to solve
combinatorial optimization problems. Temperatures are decreased according to the logarithmic
cooling schedule as given in Belisle (1992, p. 890); specifically, the temperature is set totemp
/ log(((t-1) %/% tmax)*tmax + exp(1)) , wheret is the current iteration step and
temp andtmax are specifiable viacontrol , see below. Note that the"SANN" method depends
critically on the settings of the control parameters. It is not a general-purpose method but can be
very useful in getting to a good value on a very rough surface.

Functionfn can returnNAor Inf if the function cannot be evaluated at the supplied value, but the
initial value must have a computable finite value offn . (Except for method"L-BFGS-B" where
the values should always be finite.)

optim can be used recursively, and for a single parameter as well as many. It also accepts a
zero-lengthpar , and just evaluates the function with that argument.

Thecontrol argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the optimization is
produced. Higher values may produce more tracing information: for method"L-BFGS-B"
there are six levels of tracing. (To understand exactly what these do see the source code:
higher levels give more detail.)

fnscale An overall scaling to be applied to the value offn and gr during optimization. If
negative, turns the problem into a maximization problem. Optimization is performed on
fn(par)/fnscale .

parscale A vector of scaling values for the parameters. Optimization is performed on
par/parscale and these should be comparable in the sense that a unit change in any ele-
ment produces about a unit change in the scaled value.

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to1e-3 .

maxit The maximum number of iterations. Defaults to100 for the derivative-based methods,
and500 for "Nelder-Mead" . For "SANN" maxit gives the total number of function
evaluations. There is no other stopping criterion. Defaults to10000 .

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a toler-
ance for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the
value by a factor ofreltol * (abs(val) + reltol) at a step. Defaults to
sqrt(.Machine$double.eps) , typically about1e-8 .

alpha , beta , gamma Scaling parameters for the"Nelder-Mead" method.alpha is the re-
flection factor (default 1.0),beta the contraction factor (0.5) andgammathe expansion factor
(2.0).

REPORTThe frequency of reports for the"BFGS" and "L-BFGS-B" methods if
control$trace is positive. Defaults to every 10 iterations.

type for the conjugate-gradients method. Takes value1 for the Fletcher–Reeves update,2 for
Polak–Ribiere and3 for Beale–Sorenson.

1158 optim

lmm is an integer giving the number of BFGS updates retained in the"L-BFGS-B" method, It
defaults to5.

factr controls the convergence of the"L-BFGS-B" method. Convergence occurs when the
reduction in the objective is within this factor of the machine tolerance. Default is1e7 , that
is a tolerance of about1e-8 .

pgtol helps control the convergence of the"L-BFGS-B" method. It is a tolerance on the pro-
jected gradient in the current search direction. This defaults to zero, when the check is sup-
pressed.

temp controls the"SANN" method. It is the starting temperature for the cooling schedule. De-
faults to10 .

tmax is the number of function evaluations at each temperature for the"SANN" method. Defaults
to 10 .

Any names given topar will be copied to the vectors passed tofn andgr .

Value

A list with components:

par The best set of parameters found.

value The value offn corresponding topar .

counts A two-element integer vector giving the number of calls tofn andgr respec-
tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls tofn to compute a finite-difference approximation to the gradient.

convergence An integer code.0 indicates successful convergence. Error codes are

1 indicates that the iteration limitmaxit had been reached.
10 indicates degeneracy of the Nelder–Mead simplex.
51 indicates a warning from the"L-BFGS-B" method; see component

message for further details.
52 indicates an error from the"L-BFGS-B" method; see component

message for further details.

message A character string giving any additional information returned by the optimizer,
or NULL.

hessian Only if argumenthessian is true. A symmetric matrix giving an estimate of
the Hessian at the solution found. Note that this is the Hessian of the uncon-
strained problem even if the box constraints are active.

Note

optim will work with one-dimensionalpar s, but the default method does not work well (and will
warn). Useoptimize instead.

Source

The code for methods"Nelder-Mead" , "BFGS" and"CG" was based originally on Pascal code
in Nash (1990) that was translated byp2c and then hand-optimized. Dr Nash has agreed that the
code can be made freely available.

The code for method"L-BFGS-B" is based on Fortran code by Zhu, Byrd, Lu-Chen and Nocedal
obtained from Netlib (file ‘opt/lbfgs_bcm.shar’: another version is in ‘toms/778’).

The code for method"SANN" was contributed by A. Trapletti.

optim 1159

References

Belisle, C. J. P. (1992) Convergence theorems for a class of simulated annealing algorithms onRd.
J Applied Probability, 29, 885–895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory algorithm for bound con-
strained optimization.SIAM J. Scientific Computing, 16, 1190–1208.

Fletcher, R. and Reeves, C. M. (1964) Function minimization by conjugate gradients.Computer
Journal7, 148–154.

Nash, J. C. (1990)Compact Numerical Methods for Computers. Linear Algebra and Function
Minimisation.Adam Hilger.

Nelder, J. A. and Mead, R. (1965) A simplex algorithm for function minimization.Computer
Journal7, 308–313.

Nocedal, J. and Wright, S. J. (1999)Numerical Optimization. Springer.

See Also

nlm , nlminb .

optimize for one-dimensional minimization andconstrOptim for constrained optimization.

Examples

require(graphics)

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}
optim(c(-1.2,1), fr)
optim(c(-1.2,1), fr, grr, method = "BFGS")
optim(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)
optim(c(-1.2,1), fr, grr, method = "CG")
optim(c(-1.2,1), fr, grr, method = "CG", control=list(type=2))
optim(c(-1.2,1), fr, grr, method = "L-BFGS-B")

flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

25-dimensional box constrained
optim(rep(3, 25), flb, NULL, method = "L-BFGS-B",

lower=rep(2, 25), upper=rep(4, 25)) # par[24] is *not* at boundary

"wild" function , global minimum at about -15.81515
fw <- function (x)

10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
plot(fw, -50, 50, n=1000, main = "optim() minimising 'wild function'")

res <- optim(50, fw, method="SANN",
control=list(maxit=20000, temp=20, parscale=20))

1160 optimize

res
Now improve locally
(r2 <- optim(res$par, fw, method="BFGS"))
points(r2$par, r2$value, pch = 8, col = "red", cex = 2)

Combinatorial optimization: Traveling salesman problem
library(stats) # normally loaded

eurodistmat <- as.matrix(eurodist)

distance <- function(sq) { # Target function
sq2 <- embed(sq, 2)
return(sum(eurodistmat[cbind(sq2[,2],sq2[,1])]))

}

genseq <- function(sq) { # Generate new candidate sequence
idx <- seq(2, NROW(eurodistmat)-1, by=1)
changepoints <- sample(idx, size=2, replace=FALSE)
tmp <- sq[changepoints[1]]
sq[changepoints[1]] <- sq[changepoints[2]]
sq[changepoints[2]] <- tmp
return(sq)

}

sq <- c(1,2:NROW(eurodistmat),1) # Initial sequence
distance(sq)

set.seed(2222) # chosen to get a good soln quickly
res <- optim(sq, distance, genseq, method="SANN",

control = list(maxit=6000, temp=2000, trace=TRUE))
res # Near optimum distance around 12842

loc <- cmdscale(eurodist)
rx <- range(x <- loc[,1])
ry <- range(y <- -loc[,2])
tspinit <- loc[sq,]
tspres <- loc[res$par,]
s <- seq(NROW(tspres)-1)

plot(x, y, type="n", asp=1, xlab="", ylab="",
main="initial solution of traveling salesman problem")

arrows(tspinit[s,1], -tspinit[s,2], tspinit[s+1,1], -tspinit[s+1,2],
angle=10, col="green")

text(x, y, labels(eurodist), cex=0.8)

plot(x, y, type="n", asp=1, xlab="", ylab="",
main="optim() 'solving' traveling salesman problem")

arrows(tspres[s,1], -tspres[s,2], tspres[s+1,1], -tspres[s+1,2],
angle=10, col="red")

text(x, y, labels(eurodist), cex=0.8)

optimize One Dimensional Optimization

optimize 1161

Description

The functionoptimize searches the interval fromlower to upper for a minimum or maximum
of the functionf with respect to its first argument.

optimise is an alias foroptimize .

Usage

optimize(f = , interval = , ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)

optimise(f = , interval = , ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)

Arguments

f the function to be optimized. The function is either minimized or maximized
over its first argument depending on the value ofmaximum.

interval a vector containing the end-points of the interval to be searched for the mini-
mum.

... additional named or unnamed arguments to be passed tof .

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

maximum logical. Should we maximize or minimize (the default)?

tol the desired accuracy.

Details

Note that arguments after... must be matched exactly.

The method used is a combination of golden section search and successive parabolic interpolation,
and was designed for use with continuous functions. Convergence is never much slower than that
for a Fibonacci search. Iff has a continuous second derivative which is positive at the minimum
(which is not atlower or upper), then convergence is superlinear, and usually of the order of
about 1.324.

The function f is never evaluated at two points closer together thanε|x0| + (tol/3),
where ε is approximatelysqrt(.Machine $double.eps) and x0 is the final abscissa
optimize()$minimum .
If f is a unimodal function and the computed values off are always unimodal when separated by at
leastε |x|+ (tol/3), thenx0 approximates the abscissa of the global minimum off on the interval
lower,upper with an error less thanε|x0|+ tol.
If f is not unimodal, thenoptimize() may approximate a local, but perhaps non-global, mini-
mum to the same accuracy.

The first evaluation off is always atx1 = a+(1−φ)(b−a) where(a,b) = (lower, upper)
andφ = (

√
5− 1)/2 = 0.61803.. is the golden section ratio. Almost always, the second evaluation

is atx2 = a+ φ(b− a). Note that a local minimum inside[x1, x2] will be found as solution, even
whenf is constant in there, see the last example.

f will be called asf(x, ...) for a numeric value ofx.

1162 order.dendrogram

Value

A list with componentsminimum (or maximum) andobjective which give the location of the
minimum (or maximum) and the value of the function at that point.

Source

A C translation of Fortran codehttp://www.netlib.org/fmm/fmin.f based on the Algol
60 procedurelocalmin given in the reference.

References

Brent, R. (1973)Algorithms for Minimization without Derivatives.Englewood Cliffs N.J.: Prentice-
Hall.

See Also

nlm , uniroot .

Examples

require(graphics)

f <- function (x,a) (x-a)^2
xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)
xmin

See where the function is evaluated:
optimize(function(x) x^2*(print(x)-1), lower=0, upper=10)

"wrong" solution with unlucky interval and piecewise constant f():
f <- function(x) ifelse(x > -1, ifelse(x < 4, exp(-1/abs(x - 1)), 10), 10)
fp <- function(x) { print(x); f(x) }

plot(f, -2,5, ylim = 0:1, col = 2)
optimize(fp, c(-4, 20))# doesn't see the minimum
optimize(fp, c(-7, 20))# ok

order.dendrogram Ordering or Labels of the Leaves in a Dendrogram

Description

Theses functions return the order (index) or the"label" attribute for the leaves in a dendrogram.
These indices can then be used to access the appropriate components of any additional data.

Usage

order.dendrogram(x)

S3 method for class 'dendrogram':
labels(object, ...)

http://www.netlib.org/fmm/fmin.f

p.adjust 1163

Arguments

x, object a dendrogram (seeas.dendrogram).

... additional arguments

Details

The indices or labels for the leaves in left to right order are retrieved.

Value

A vector with length equal to the number of leaves in the dendrogram is returned. Fromr <-
order.dendrogram() , each element is the index into the original data (from which the den-
drogram was computed).

Author(s)

R. Gentleman (order.dendrogram and Martin Maechler (labels.dendrogram).

See Also

reorder , dendrogram .

Examples

set.seed(123)
x <- rnorm(10)
hc <- hclust(dist(x))
hc$order
dd <- as.dendrogram(hc)
order.dendrogram(dd) ## the same :
stopifnot(hc$order == order.dendrogram(dd))

d2 <- as.dendrogram(hclust(dist(USArrests)))
labels(d2) ## in this case the same as
stopifnot(labels(d2) == rownames(USArrests)[order.dendrogram(d2)])

p.adjust Adjust P-values for Multiple Comparisons

Description

Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

p.adjust(p, method = p.adjust.methods, n = length(p))

p.adjust.methods
c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "none")

1164 p.adjust

Arguments

p vector of p-values (possibly withNAs).

method correction method

n number of comparisons, must be at leastlength(p) ; only set this (to non-
default) when you know what you are doing!

Details

The adjustment methods include the Bonferroni correction ("bonferroni") in which the p-
values are multiplied by the number of comparisons. Less conservative corrections are also included
by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"), Hommel (1988) ("hommel"),
Benjamini & Hochberg (1995) ("BH"), and Benjamini & Yekutieli (2001) ("BY"), respectively.
A pass-through option ("none") is also included. The set of methods are contained in the
p.adjust.methods vector for the benefit of methods that need to have the method as an option
and pass it on top.adjust .

The first four methods are designed to give strong control of the family wise error rate. There seems
no reason to use the unmodified Bonferroni correction because it is dominated by Holm’s method,
which is also valid under arbitrary assumptions.

Hochberg’s and Hommel’s methods are valid when the hypothesis tests are independent or when
they are non-negatively associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel’s method is
more powerful than Hochberg’s, but the difference is usually small and the Hochberg p-values are
faster to compute.

The"BH" and"BY" method of Benjamini, Hochberg, and Yekutieli control the false discovery rate,
the expected proportion of false discoveries amongst the rejected hypotheses. The false discovery
rate is a less stringent condition than the family wise error rate, so these methods are more powerful
than the others.

Note that you can setn larger thanlength(p) which means the unobserved p-values are assumed
to be greater than all the observed p for"bonferroni" and"holm" methods and equal to 1 for
the other methods.

Value

A vector of corrected p-values (same length asp).

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing.Journal of the Royal Statistical Society SeriesB, 57, 289–300.

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
under dependency.Annals of Statistics29, 1165–1188.

Holm, S. (1979). A simple sequentially rejective multiple test procedure.Scandinavian Journal of
Statistics, 6, 65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni
test.Biometrika, 75, 383–386.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance.Biometrika,
75, 800–803.

Shaffer, J. P. (1995). Multiple hypothesis testing.Annual Review of Psychology, 46, 561–576. (An
excellent review of the area.)

pairwise.prop.test 1165

Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a proof of
Simes conjecture.Annals of Statistics, 26, 494–504.

Sarkar, S., and Chang, C. K. (1997). Simes’ method for multiple hypothesis testing with positively
dependent test statistics.Journal of the American Statistical Association, 92, 1601–1608.

Wright, S. P. (1992). Adjusted P-values for simultaneous inference.Biometrics, 48, 1005–1013.
(Explains the adjusted P-value approach.)

See Also

pairwise.* functions such aspairwise.t.test .

Examples

require(graphics)

set.seed(123)
x <- rnorm(50, mean=c(rep(0,25),rep(3,25)))
p <- 2*pnorm(sort(-abs(x)))

round(p, 3)
round(p.adjust(p), 3)
round(p.adjust(p,"BH"), 3)

or all of them at once (dropping the "fdr" alias):
p.adjust.M <- p.adjust.methods[p.adjust.methods != "fdr"]
p.adj <- sapply(p.adjust.M, function(meth) p.adjust(p, meth))
round(p.adj, 3)
or a bit nicer:
noquote(apply(p.adj, 2, format.pval, digits = 3))

and a graphic:
matplot(p, p.adj, ylab="p.adjust(p, meth)", type = "l", asp=1, lty=1:6,

main = "P-value adjustments")
legend(.7,.6, p.adjust.M, col=1:6, lty=1:6)

Can work with NA's:
pN <- p; iN <- c(46,47); pN[iN] <- NA
pN.a <- sapply(p.adjust.M, function(meth) p.adjust(pN, meth))
The smallest 20 P-values all affected by the NA's :
round((pN.a / p.adj)[1:20,] , 4)

pairwise.prop.test Pairwise comparisons for proportions

Description

Calculate pairwise comparisons between pairs of proportions with correction for multiple testing

Usage

pairwise.prop.test(x, n, p.adjust.method = p.adjust.methods, ...)

1166 pairwise.t.test

Arguments

x Vector of counts of successes or a matrix with 2 columns giving the counts of
successes and failures, respectively.

n Vector of counts of trials; ignored ifx is a matrix.
p.adjust.method

Method for adjusting p values (seep.adjust)

... Additional arguments to pass toprop.test

Value

Object of class"pairwise.htest"

See Also

prop.test , p.adjust

Examples

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
pairwise.prop.test(smokers, patients)

pairwise.t.test Pairwise t tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing

Usage

pairwise.t.test(x, g, p.adjust.method = p.adjust.methods,
pool.sd = TRUE, ...)

Arguments

x Response vector

g Grouping vector or factor
p.adjust.method

Method for adjusting p values (seep.adjust)

pool.sd Switch to allow/disallow the use of a pooled SD

... Additional arguments to pass tot.test

Value

Object of class"pairwise.htest"

See Also

t.test , p.adjust

pairwise.table 1167

Examples

attach(airquality)
Month <- factor(Month, labels = month.abb[5:9])
pairwise.t.test(Ozone, Month)
pairwise.t.test(Ozone, Month, p.adj = "bonf")
pairwise.t.test(Ozone, Month, pool.sd = FALSE)
detach()

pairwise.table Tabulate p values for pairwise comparisons

Description

Creates table of p values for pairwise comparisons with corrections for multiple testing.

Usage

pairwise.table(compare.levels, level.names, p.adjust.method)

Arguments

compare.levels
Function to compute (raw) p value given indicesi andj

level.names Names of the group levels

p.adjust.method
Method for multiple testing adjustment

Details

Functions that do multiple group comparisons create separatecompare.levels functions (as-
sumed to be symmetrical ini andj) and passes them to this function.

Value

Table of p values in lower triangular form.

See Also

pairwise.t.test , et al.

1168 plot.acf

pairwise.wilcox.test
Pairwise Wilcoxon rank sum tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing.

Usage

pairwise.wilcox.test(x, g, p.adjust.method = p.adjust.methods,
...)

Arguments

x Response vector

g Grouping vector or factor

p.adjust.method
Method for adjusting p values (seep.adjust)

... Additional arguments to pass towilcox.test .

Value

Object of class"pairwise.htest"

See Also

wilcox.test , p.adjust

Examples

attach(airquality)
Month <- factor(Month, labels = month.abb[5:9])
These give warnings because of ties :
pairwise.wilcox.test(Ozone, Month)
pairwise.wilcox.test(Ozone, Month, p.adj = "bonf")
detach()

plot.acf Plot Autocovariance and Autocorrelation Functions

Description

Plot method for objects of class"acf" .

plot.acf 1169

Usage

S3 method for class 'acf':
plot(x, ci = 0.95, type = "h", xlab = "Lag", ylab = NULL,

ylim = NULL, main = NULL,
ci.col = "blue", ci.type = c("white", "ma"),
max.mfrow = 6, ask = Npgs > 1 && dev.interactive(),
mar = if(nser > 2) c(3,2,2,0.8) else par("mar"),
oma = if(nser > 2) c(1,1.2,1,1) else par("oma"),
mgp = if(nser > 2) c(1.5,0.6,0) else par("mgp"),
xpd = par("xpd"),
cex.main = if(nser > 2) 1 else par("cex.main"),
verbose = getOption("verbose"),
...)

Arguments

x an object of class"acf" .

ci coverage probability for confidence interval. Plotting of the confidence interval
is suppressed ifci is zero or negative.

type the type of plot to be drawn, default to histogram like vertical lines.

xlab the x label of the plot.

ylab the y label of the plot.

ylim numeric of length 2 giving the y limits for the plot.

main overall title for the plot.

ci.col colour to plot the confidence interval lines.

ci.type should the confidence limits assume a white noise input or for lagk an MA(k−1)
input?

max.mfrow positive integer; for multivariatex indicating how many rows and columns of
plots should be put on one page, usingpar (mfrow = c(m,m)) .

ask logical; if TRUE, the user is asked before a new page is started.

mar, oma, mgp, xpd, cex.main
graphics parameters as inpar (*) , by default adjusted to use smaller than de-
fault margins for multivariatex only.

verbose logical. ShouldR report extra information on progress?

... graphics parameters to be passed to the plotting routines.

Note

The confidence interval plotted inplot.acf is based on anuncorrelatedseries and should be
treated with appropriate caution. Usingci.type = "ma" may be less potentially misleading.

See Also

acf which callsplot.acf by default.

1170 plot.HoltWinters

Examples

require(graphics)

z4 <- ts(matrix(rnorm(400), 100, 4), start=c(1961, 1), frequency=12)
z7 <- ts(matrix(rnorm(700), 100, 7), start=c(1961, 1), frequency=12)
acf(z4)
acf(z7, max.mfrow = 7)# squeeze on 1 page
acf(z7) # multi-page

plot.density Plot Method for Kernel Density Estimation

Description

Theplot method for density objects.

Usage

S3 method for class 'density':
plot(x, main = NULL, xlab = NULL, ylab = "Density", type = "l",

zero.line = TRUE, ...)

Arguments

x a "density" object.

main, xlab, ylab, type
plotting parameters with useful defaults.

... further plotting parameters.

zero.line logical; if TRUE, add a base line aty = 0

Value

None.

See Also

density .

plot.HoltWinters Plot function for HoltWinters objects

Description

Produces a chart of the original time series along with the fitted values. Optionally, predicted values
(and their confidence bounds) can also be plotted.

plot.HoltWinters 1171

Usage

S3 method for class 'HoltWinters':
plot(x, predicted.values = NA, intervals = TRUE,

separator = TRUE, col = 1, col.predicted = 2,
col.intervals = 4, col.separator = 1, lty = 1,
lty.predicted = 1, lty.intervals = 1, lty.separator = 3,
ylab = "Observed / Fitted",
main = "Holt-Winters filtering",
ylim = NULL, ...)

Arguments

x Object of class"HoltWinters"

predicted.values
Predicted values as returned bypredict.HoltWinters

intervals If TRUE, the prediction intervals are plotted (default).

separator If TRUE, a separating line between fitted and predicted values is plotted (de-
fault).

col, lty Color/line type of original data (default: black solid).

col.predicted, lty.predicted
Color/line type of fitted and predicted values (default: red solid).

col.intervals, lty.intervals
Color/line type of prediction intervals (default: blue solid).

col.separator, lty.separator
Color/line type of observed/predicted values separator (default: black dashed).

ylab Label of the y-axis.

main Main title.

ylim Limits of the y-axis. IfNULL, the range is chosen such that the plot contains the
original series, the fitted values, and the predicted values if any.

... Other graphics parameters.

Author(s)

David Meyer〈David.Meyer@wu-wien.ac.at〉

References

C. C. Holt (1957) Forecasting seasonals and trends by exponentially weighted moving averages,
ONR Research Memorandum, Carnigie Institute 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages,Management
Science6, 324–342.

See Also

HoltWinters , predict.HoltWinters

1172 plot.isoreg

plot.isoreg Plot Method for isoreg Objects

Description

Theplot andlines method forR objects of classisoreg .

Usage

S3 method for class 'isoreg':
plot(x, plot.type = c("single", "row.wise", "col.wise"),

main = paste("Isotonic regression", deparse(x$call)),
main2 = "Cumulative Data and Convex Minorant",
xlab = "x0", ylab = "x$y",
par.fit = list(col = "red", cex = 1.5, pch = 13, lwd = 1.5),
mar = if (both) 0.1 + c(3.5, 2.5, 1, 1) else par("mar"),
mgp = if (both) c(1.6, 0.7, 0) else par("mgp"),
grid = length(x$x) < 12, ...)

S3 method for class 'isoreg':
lines(x, col = "red", lwd = 1.5,

do.points = FALSE, cex = 1.5, pch = 13, ...)

Arguments

x an isoreg object.

plot.type character indicating which type of plot is desired. The first (default) only draws
the data and the fit, where the others add a plot of the cumulative data and fit.

main main title of plot, seetitle .

main2 title for second (cumulative) plot.

xlab, ylab x- and y- axis annotation.

par.fit a list of arguments (forpoints andlines) for drawing the fit.

mar, mgp graphical parameters, seepar , mainly for the case of two plots.

grid logical indicating if grid lines should be drawn. If true,grid () is used for the
first plot, where as vertical lines are drawn at ‘touching’ points for the cumula-
tive plot.

do.points for lines() : logical indicating if the step points should be drawn as well (and
as they are drawn inplot()).

col, lwd, cex, pch
graphical arguments forlines() , wherecex andpch are only used when
do.points is TRUE.

... further arguments passed to and from methods.

See Also

isoreg for computation ofisoreg objects.

plot.lm 1173

Examples

require(graphics)

utils::example(isoreg) # for the examples there

plot(y3, main = "simple plot(.) + lines(<isoreg>)")
lines(ir3)

'same' plot as above, "proving" that only ranks of 'x' are important
plot(isoreg(2^(1:9), c(1,0,4,3,3,5,4,2,0)), plot.type = "row", log = "x")

plot(ir3, plot.type = "row", ylab = "y3")
plot(isoreg(y3 - 4), plot.t="r", ylab = "y3 - 4")
plot(ir4, plot.type = "ro", ylab = "y4", xlab = "x = 1:n")

experiment a bit with these (C-c C-j):
plot(isoreg(sample(9), y3), plot.type="row")
plot(isoreg(sample(9), y3), plot.type="col.wise")

plot(ir <- isoreg(sample(10), sample(10, replace = TRUE)),
plot.type = "r")

plot.lm Plot Diagnostics for an lm Object

Description

Six plots (selectable bywhich) are currently available: a plot of residuals against fitted values,
a Scale-Location plot of

√
|residuals| against fitted values, a Normal Q-Q plot, a plot of Cook’s

distances versus row labels, a plot of residuals against leverages, and a plot of Cook’s distances
against leverage/(1-leverage). By default, the first three and5 are provided.

Usage

S3 method for class 'lm':
plot(x, which = c(1:3,5),

caption = c("Residuals vs Fitted", "Normal Q-Q",
"Scale-Location", "Cook's distance",
"Residuals vs Leverage", "Cook's distance vs Leverage"),

panel = if(add.smooth) panel.smooth else points,
sub.caption = NULL, main = "",
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...,
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75,
qqline = TRUE, cook.levels = c(0.5, 1.0),
add.smooth = getOption("add.smooth"), label.pos = c(4,2),
cex.caption = 1)

Arguments

x lm object, typically result oflm or glm .

which if a subset of the plots is required, specify a subset of the numbers1:6 .

1174 plot.lm

caption captions to appear above the plots

panel panel function. The useful alternative topoints , panel.smooth can be
chosen byadd.smooth = TRUE .

sub.caption common title—above figures if there are multiple; used assub (s.title)
otherwise. If NULL, as by default, a possible shortened version of
deparse(x$call) is used.

main title to each plot—in addition to the abovecaption .

ask logical; if TRUE, the user isasked before each plot, seepar (ask=.) .

... other parameters to be passed through to plotting functions.

id.n number of points to be labelled in each plot, starting with the most extreme.

labels.id vector of labels, from which the labels for extreme points will be chosen.NULL
uses observation numbers.

cex.id magnification of point labels.

qqline logical indicating if aqqline () should be added to the normal Q-Q plot.

cook.levels levels of Cook’s distance at which to draw contours.

add.smooth logical indicating if a smoother should be added to most plots; see alsopanel
above.

label.pos positioning of labels, for the left half and right half of the graph respectively, for
plots 1-3.

cex.caption controls the size ofcaption .

Details

sub.caption —by default the function call—is shown as a subtitle (under the x-axis title) on
each plot when plots are on separate pages, or as a subtitle in the outer margin (if any) when there
are multiple plots per page.

The ‘Scale-Location’ plot, also called ‘Spread-Location’ or ‘S-L’ plot, takes the square root of the
absolute residuals in order to diminish skewness (

√
|E| is much less skewed than|E| for Gaussian

zero-meanE).

The ‘S-L’, the Q-Q, and the Residual-Leverage plot, usestandardizedresiduals which have identical
variance (under the hypothesis). They are given asRi/(s ×

√
1− hii) wherehii are the diagonal

entries of the hat matrix,influence ()$hat , see alsohat .

The Residual-Leverage plot shows contours of equal Cook’s distance, for values ofcook.levels
(by default 0.5 and 1) and omits cases with leverage one. If the leverages are constant (as is typically
the case in a balancedaov situation) the plot uses factor level combinations instead of the leverages
for the x-axis. (The factor levels are ordered by mean fitted value.)

In the Cook’s distance vs leverage/(1-leverage) plot, contours of standardized residuals that are
equal in magnitude are lines through the origin. The contour lines are labelled with the magnitudes.

Author(s)

John Maindonald and Martin Maechler.

plot.ppr 1175

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980)Regression Diagnostics.New York: Wiley.

Cook, R. D. and Weisberg, S. (1982)Residuals and Influence in Regression.London: Chapman
and Hall.

Firth, D. (1991) Generalized Linear Models. In Hinkley, D. V. and Reid, N. and Snell, E. J., eds: Pp.
55-82 in Statistical Theory and Modelling. In Honour of Sir David Cox, FRS. London: Chapman
and Hall.

Hinkley, D. V. (1975) On power transformations to symmetry.Biometrika62, 101–111.

McCullagh, P. and Nelder, J. A. (1989)Generalized Linear Models.London: Chapman and Hall.

See Also

termplot , lm.influence , cooks.distance , hatvalues .

Examples

require(graphics)

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
plot(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings))

4 plots on 1 page;
allow room for printing model formula in outer margin:
par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))
plot(lm.SR)
plot(lm.SR, id.n = NULL) # no id's
plot(lm.SR, id.n = 5, labels.id = NULL)# 5 id numbers

Was default in R <= 2.1.x:
Cook's distances instead of Residual-Leverage plot
plot(lm.SR, which = 1:4)

Fit a smooth curve, where applicable:
plot(lm.SR, panel = panel.smooth)
Gives a smoother curve
plot(lm.SR, panel = function(x,y) panel.smooth(x, y, span = 1))

par(mfrow=c(2,1))# same oma as above
plot(lm.SR, which = 1:2, sub.caption = "Saving Rates, n=50, p=5")

plot.ppr Plot Ridge Functions for Projection Pursuit Regression Fit

Description

Plot ridge functions for projection pursuit regression fit.

1176 plot.profile.nls

Usage

S3 method for class 'ppr':
plot(x, ask, type = "o", ...)

Arguments

x A fit of class"ppr" as produced by a call toppr .

ask the graphics parameterask : seepar for details. If set toTRUEwill ask be-
tween the plot of each cross-section.

type the type of line to draw

... further graphical parameters

Value

None

Side Effects

A series of plots are drawn on the current graphical device, one for each term in the fit.

See Also

ppr , par

Examples

require(graphics)

with(rock, {
area1 <- area/10000; peri1 <- peri/10000
par(mfrow=c(3,2))# maybe: , pty="s")
rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)
plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")
plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")
plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")
})

plot.profile.nls Plot a profile.nls Object

Description

Displays a series of plots of the profile t function and interpolated confidence intervals for the param-
eters in a nonlinear regression model that has been fit withnls and profiled withprofile.nls .

Usage

S3 method for class 'profile.nls':
plot(x, levels, conf= c(99, 95, 90, 80, 50)/100,

nseg = 50, absVal =TRUE, ...)

plot.spec 1177

Arguments

x an object of class"profile.nls"

levels levels, on the scale of the absolute value of a t statistic, at which to interpolate
intervals. Usuallyconf is used instead of givinglevels explicitly.

conf a numeric vector of confidence levels for profile-based confidence intervals on
the parameters. Defaults toc(0.99, 0.95, 0.90, 0.80, 0.50).

nseg an integer value giving the number of segments to use in the spline interpolation
of the profile t curves. Defaults to 50.

absVal a logical value indicating whether or not the plots should be on the scale of the
absolute value of the profile t. Defaults toTRUE.

... other arguments to theplot function can be passed here.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988),Nonlinear Regression Analysis and Its Applications, Wiley
(chapter 6)

See Also

nls , profile , profile.nls

Examples

require(graphics)

obtain the fitted object
fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
get the profile for the fitted model
pr1 <- profile(fm1)
opar <- par(mfrow = c(2,2), oma = c(1.1, 0, 1.1, 0), las = 1)
plot(pr1, conf = c(95, 90, 80, 50)/100)
plot(pr1, conf = c(95, 90, 80, 50)/100, absVal = FALSE)
mtext("Confidence intervals based on the profile sum of squares",

side = 3, outer = TRUE)
mtext("BOD data - confidence levels of 50%, 80%, 90% and 95%",

side = 1, outer = TRUE)
par(opar)

plot.spec Plotting Spectral Densities

Description

Plotting method for objects of class"spec" . For multivariate time series it plots the marginal
spectra of the series or pairs plots of the coherency and phase of the cross-spectra.

1178 plot.spec

Usage

S3 method for class 'spec':
plot(x, add = FALSE, ci = 0.95, log = c("yes", "dB", "no"),

xlab = "frequency", ylab = NULL, type = "l",
ci.col = "blue", ci.lty = 3,
main = NULL, sub = NULL,
plot.type = c("marginal", "coherency", "phase"),
...)

plot.spec.phase(x, ci = 0.95,
xlab = "frequency", ylab = "phase",
ylim = c(-pi, pi), type = "l",
main = NULL, ci.col = "blue", ci.lty = 3, ...)

plot.spec.coherency(x, ci = 0.95,
xlab = "frequency",
ylab = "squared coherency",
ylim = c(0, 1), type = "l",
main = NULL, ci.col = "blue", ci.lty = 3, ...)

Arguments

x an object of class"spec" .

add logical. If TRUE, add to already existing plot. Only valid forplot.type =
"marginal" .

ci coverage probability for confidence interval. Plotting of the confidence
bar/limits is omitted unlessci is strictly positive.

log If "dB" , plot on log10 (decibel) scale (as S-PLUS), otherwise use conventional
log scale or linear scale. Logical values are also accepted. The default is"yes"
unlessoptions(ts.S.compat = TRUE) has been set, when it is"dB" .
Only valid forplot.type = "marginal" .

xlab the x label of the plot.

ylab the y label of the plot. If missing a suitable label will be constructed.

type the type of plot to be drawn, defaults to lines.

ci.col colour for plotting confidence bar or confidence intervals for coherency and
phase.

ci.lty line type for confidence intervals for coherency and phase.

main overall title for the plot. If missing, a suitable title is constructed.

sub a sub title for the plot. Only used forplot.type = "marginal" . If miss-
ing, a description of the smoothing is used.

plot.type For multivariate time series, the type of plot required. Only the first character is
needed.

ylim, ... Graphical parameters.

See Also

spectrum

plot.stepfun 1179

plot.stepfun Plot Step Functions

Description

Method of the genericplot for stepfun objects and utility for plotting piecewise constant func-
tions.

Usage

S3 method for class 'stepfun':
plot(x, xval, xlim, ylim,

xlab = "x", ylab = "f(x)", main = NULL,
add = FALSE, verticals = TRUE, do.points = TRUE,
pch = par("pch"),
col.points = par("col"), cex.points = par("cex"),
col.hor = par("col"), col.vert = par("col"),
lty = par("lty"), lwd = par("lwd"), ...)

S3 method for class 'stepfun':
lines(x, ...)

Arguments

x anR object inheriting from"stepfun" .

xval numeric vector of abscissa values at which to evaluatex . Defaults to
knots (x) restricted toxlim .

xlim,ylim numeric(2) each; range ofx or y values to use. Both have sensible defaults.

xlab,ylab labels of x and y axis.

main main title.

add logical; if TRUEonly add to an existing plot.

verticals logical; if TRUE, draw vertical lines at steps.

do.points logical; if true , also draw points at the (xlim restricted) knot locations.

pch character; point character ifdo.points .

col.points character or integer code; color of points ifdo.points .

cex.points numeric; character expansion factor ifdo.points .

col.hor color of horizontal lines.

col.vert color of vertical lines.

lty, lwd line type and thickness for all lines.

... further arguments ofplot (.) , or if(add) segments (.) .

Value

A list with two components

t abscissa (x) values, including the two outermost ones.

y y values ‘in between’ thet[] .

1180 plot.ts

Author(s)

Martin Maechler〈maechler@stat.math.ethz.ch〉, 1990, 1993; ported toR, 1997.

See Also

ecdf for empirical distribution functions as special step functions,approxfun andsplinefun .

Examples

require(graphics)

y0 <- c(1,2,4,3)
sfun0 <- stepfun(1:3, y0, f = 0)
sfun.2 <- stepfun(1:3, y0, f = .2)
sfun1 <- stepfun(1:3, y0, right = TRUE)

tt <- seq(0,3, by=0.1)
op <- par(mfrow=c(2,2))
plot(sfun0); plot(sfun0, xval=tt, add=TRUE, col.hor="bisque")
plot(sfun.2);plot(sfun.2,xval=tt, add=TRUE, col.hor="orange")
plot(sfun1);lines(sfun1, xval=tt, col.hor="coral")
##-- This is revealing :
plot(sfun0, verticals= FALSE,

main = "stepfun(x, y0, f=f) for f = 0, .2, 1")
for(i in 1:3)

lines(list(sfun0,sfun.2,stepfun(1:3,y0,f = 1))[[i]],
col.hor=i, col.vert=i)

legend(2.5, 1.9, paste("f =", c(0,0.2,1)), col=1:3, lty=1, y.intersp=1)
par(op)

Extend and/or restrict 'viewport':
plot(sfun0, xlim = c(0,5), ylim = c(0, 3.5),

main = "plot(stepfun(*), xlim= . , ylim = .)")

##-- this works too (automatic call to ecdf(.)):
plot.stepfun(rt(50, df=3), col.vert = "gray20")

plot.ts Plotting Time-Series Objects

Description

Plotting method for objects inheriting from class"ts" .

Usage

S3 method for class 'ts':
plot(x, y = NULL, plot.type = c("multiple", "single"),

xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE,
mar.multi = c(0, 5.1, 0, if(yax.flip) 5.1 else 2.1),
oma.multi = c(6, 0, 5, 0), axes = TRUE, ...)

S3 method for class 'ts':
lines(x, ...)

plot.ts 1181

Arguments

x, y time series objects, usually inheriting from class"ts" .

plot.type for multivariate time series, should the series by plotted separately (with a com-
mon time axis) or on a single plot?

xy.labels logical, indicating iftext () labels should be used for an x-y plot,or character,
supplying a vector of labels to be used. The default is to label for up to 150
points, and not for more.

xy.lines logical, indicating if lines should be drawn for an x-y plot. Defaults to the
value ofxy.labels if that is logical, otherwise toTRUE.

panel a function(x, col, bg, pch, type, ...) which gives the action
to be carried out in each panel of the display forplot.type="multiple" .
The default islines .

nc the number of columns to use whentype="multiple" . Defaults to 1 for up
to 4 series, otherwise to 2.

yax.flip logical indicating if the y-axis (ticks and numbering) should flip from side 2
(left) to 4 (right) from series to series whentype="multiple" .

mar.multi, oma.multi
the (default)par settings forplot.type="multiple" . Modify with care!

axes logical indicating if x- and y- axes should be drawn.

... additional graphical arguments, seeplot , plot.default andpar .

Details

If y is missing, this function creates a time series plot, for multivariate series of one of two kinds
depending onplot.type .

If y is present, bothx andy must be univariate, and a scatter ploty ~ x will be drawn, enhanced
by usingtext if xy.labels is TRUEor character , andlines if xy.lines is TRUE.

See Also

ts for basic time series construction and access functionality.

Examples

require(graphics)

Multivariate
z <- ts(matrix(rt(200 * 8, df = 3), 200, 8),

start = c(1961, 1), frequency = 12)
plot(z, yax.flip = TRUE)
plot(z, axes = FALSE, ann = FALSE, frame.plot = TRUE,

mar.multi = c(0,0,0,0), oma.multi = c(1,1,5,1))
title("plot(ts(..), axes=FALSE, ann=FALSE, frame.plot=TRUE, mar..., oma...)")

z <- window(z[,1:3], end = c(1969,12))
plot(z, type = "b") # multiple
plot(z, plot.type="single", lty=1:3, col=4:2)

A phase plot:
plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

1182 Poisson

a clearer way to do this would be
Not run:
plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")
End(Not run)

xy.lines and xy.labels are FALSE for large series:
plot(lag(sunspots, 1), sunspots, pch = ".")

SMI <- EuStockMarkets[, "SMI"]
plot(lag(SMI, 1), SMI, pch = ".")
plot(lag(SMI, 20), SMI, pch = ".", log = "xy",

main = "4 weeks lagged SMI stocks -- log scale", xy.lines= TRUE)

Poisson The Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the Poisson distribution
with parameterlambda .

Usage

dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of random values to return.

lambda vector of (non-negative) means.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

The Poisson distribution has density

p(x) =
λxe−λ

x!
for x = 0, 1, 2, The mean and variance areE(X) = V ar(X) = λ.

If an element ofx is not integer, the result ofdpois is zero, with a warning.p(x) is computed
using Loader’s algorithm, see the reference indbinom .

The quantile is left continuous:qgeom(q, prob) is the largest integerx such thatP (X ≤ x) <
q.

Setting lower.tail = FALSE allows to get much more precise results when the default,
lower.tail = TRUE would return 1, see the example below.

poly 1183

Value

dpois gives the (log) density,ppois gives the (log) distribution function,qpois gives the quan-
tile function, andrpois generates random deviates.

Invalid lambda will result in return valueNaN, with a warning.

Source

dpois uses C code contributed by Catherine Loader (seedbinom).

ppois usespgamma.

qpois uses the Cornish–Fisher Expansion to include a skewness correction to a normal approxi-
mation, followed by a search.

rpois uses

Ahrens, J. H. and Dieter, U. (1982). Computer generation of Poisson deviates from modified normal
distributions.ACM Transactions on Mathematical Software, 8, 163–179.

See Also

dbinom for the binomial anddnbinom for the negative binomial distribution.

Examples

require(graphics)

-log(dpois(0:7, lambda=1) * gamma(1+ 0:7)) # == 1
Ni <- rpois(50, lambda = 4); table(factor(Ni, 0:max(Ni)))

1 - ppois(10*(15:25), lambda=100) # becomes 0 (cancellation)
ppois(10*(15:25), lambda=100, lower.tail=FALSE) # no cancellation

par(mfrow = c(2, 1))
x <- seq(-0.01, 5, 0.01)
plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF")
plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(x)",

main="Binomial(100, 0.01) CDF")

poly Compute Orthogonal Polynomials

Description

Returns or evaluates orthogonal polynomials of degree 1 todegree over the specified set of points
x . These are all orthogonal to the constant polynomial of degree 0. Alternatively, evaluate raw
polynomials.

Usage

poly(x, ..., degree = 1, coefs = NULL, raw = FALSE)
polym(..., degree = 1, raw = FALSE)

S3 method for class 'poly':
predict(object, newdata, ...)

1184 poly

Arguments

x, newdata a numeric vector at which to evaluate the polynomial.x can also be a matrix.
Missing values are not allowed inx .

degree the degree of the polynomial

coefs for prediction, coefficients from a previous fit.

raw if true, use raw and not orthogonal polynomials.

object an object inheriting from class"poly" , normally the result of a call topoly
with a single vector argument.

... poly, polym : further vectors.
predict.poly : arguments to be passed to or from other methods.

Details

Although formallydegree should be named (as it follows...), an unnamed second argument of
length 1 will be interpreted as the degree.

The orthogonal polynomial is summarized by the coefficients, which can be used to evaluate it via
the three-term recursion given in Kennedy & Gentle (1980, pp. 343–4), and used in thepredict
part of the code.

Value

For poly with a single vector argument:
A matrix with rows corresponding to points inx and columns corresponding to the degree, with at-
tributes"degree" specifying the degrees of the columns and (unlessraw = TRUE) "coefs"
which contains the centering and normalization constants used in constructing the orthogonal poly-
nomials. The matrix has given classc("poly", "matrix") .

Other cases ofpoly andpolym , andpredict.poly : a matrix.

Note

This routine is intended for statistical purposes such ascontr.poly : it does not attempt to or-
thogonalize to machine accuracy.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

Kennedy, W. J. Jr and Gentle, J. E. (1980)Statistical ComputingMarcel Dekker.

See Also

contr.poly .

cars for an example of polynomial regression.

Examples

(z <- poly(1:10, 3))
predict(z, seq(2, 4, 0.5))
poly(seq(4, 6, 0.5), 3, coefs = attr(z, "coefs"))

polym(1:4, c(1, 4:6), degree=3) # or just poly()
poly(cbind(1:4, c(1, 4:6)), degree=3)

power 1185

power Create a Power Link Object

Description

Creates a link object based on the link functionη = µλ.

Usage

power(lambda = 1)

Arguments

lambda a real number.

Details

If lambda is non-positive, it is taken as zero, and the log link is obtained. The defaultlambda =
1 gives the identity link.

Value

A list with componentslinkfun , linkinv , mu.eta , andvalideta . Seemake.link for
information on their meaning.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S.Wadsworth & Brooks/Cole.

See Also

make.link , family

To raise a number to a power, seeArithmetic .

To calculate the power of a test, see various functions in thestatspackage, e.g.,power.t.test .

Examples

power()
quasi(link=power(1/3))[c("linkfun", "linkinv")]

1186 power.anova.test

power.anova.test Power calculations for balanced one-way analysis of variance tests

Description

Compute power of test or determine parameters to obtain target power.

Usage

power.anova.test(groups = NULL, n = NULL,
between.var = NULL, within.var = NULL,
sig.level = 0.05, power = NULL)

Arguments

groups Number of groups

n Number of observations (per group)

between.var Between group variance

within.var Within group variance

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

Details

Exactly one of the parametersgroups , n, between.var , power , within.var , and
sig.level must be passed as NULL, and that parameter is determined from the others. No-
tice thatsig.level has non-NULL default so NULL must be explicitly passed if you want it
computed.

Value

Object of class"power.htest" , a list of the arguments (including the computed one) augmented
with method andnote elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Claus Ekstrøm

See Also

anova , lm , uniroot

power.prop.test 1187

Examples

power.anova.test(groups=4, n=5, between.var=1, within.var=3)
Power = 0.3535594

power.anova.test(groups=4, between.var=1, within.var=3,
power=.80)

n = 11.92613

Assume we have prior knowledge of the group means:
groupmeans <- c(120, 130, 140, 150)
power.anova.test(groups = length(groupmeans),

between.var=var(groupmeans),
within.var=500, power=.90) # n = 15.18834

power.prop.test Power calculations two sample test for proportions

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.prop.test(n = NULL, p1 = NULL, p2 = NULL, sig.level = 0.05,
power = NULL,
alternative = c("two.sided", "one.sided"),
strict = FALSE)

Arguments

n Number of observations (per group)

p1 probability in one group

p2 probability in other group

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

alternative One- or two-sided test

strict Use strict interpretation in two-sided case

Details

Exactly one of the parametersn, p1 , p2 , power , andsig.level must be passed as NULL, and
that parameter is determined from the others. Notice thatsig.level has a non-NULL default so
NULL must be explicitly passed if you want it computed.

If strict = TRUE is used, the power will include the probability of rejection in the opposite
direction of the true effect, in the two-sided case. Without this the power will be half the significance
level if the true difference is zero.

1188 power.t.test

Value

Object of class"power.htest" , a list of the arguments (including the computed one) augmented
with method andnote elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given. If one of them is computedp1
< p2 will hold, although this is not enforced when both are specified.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

See Also

prop.test , uniroot

Examples

power.prop.test(n = 50, p1 = .50, p2 = .75)
power.prop.test(p1 = .50, p2 = .75, power = .90)
power.prop.test(n = 50, p1 = .5, power = .90)

power.t.test Power calculations for one and two sample t tests

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"),
strict = FALSE)

Arguments

n Number of observations (per group)

delta True difference in means

sd Standard deviation

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

type Type of t test

alternative One- or two-sided test

strict Use strict interpretation in two-sided case

PP.test 1189

Details

Exactly one of the parametersn, delta , power , sd , andsig.level must be passed as NULL,
and that parameter is determined from the others. Notice that the last two have non-NULL defaults
so NULL must be explicitly passed if you want to compute them.

If strict = TRUE is used, the power will include the probability of rejection in the opposite
direction of the true effect, in the two-sided case. Without this the power will be half the significance
level if the true difference is zero.

Value

Object of class"power.htest" , a list of the arguments (including the computed one) augmented
with method andnote elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

See Also

t.test , uniroot

Examples

power.t.test(n = 20, delta = 1)
power.t.test(power = .90, delta = 1)
power.t.test(power = .90, delta = 1, alternative = "one.sided")

PP.test Phillips-Perron Test for Unit Roots

Description

Computes the Phillips-Perron test for the null hypothesis thatx has a unit root against a stationary
alternative.

Usage

PP.test(x, lshort = TRUE)

Arguments

x a numeric vector or univariate time series.

lshort a logical indicating whether the short or long version of the truncation lag pa-
rameter is used.

1190 ppoints

Details

The general regression equation which incorporates a constant and a linear trend is used and the
corrected t-statistic for a first order autoregressive coefficient equals one is computed. To estimate
sigma^2 the Newey-West estimator is used. Iflshort is TRUE, then the truncation lag param-
eter is set totrunc(4*(n/100)^0.25) , otherwisetrunc(12*(n/100)^0.25) is used.
Thep-values are interpolated from Table 4.2, page 103 of Banerjeeet al. (1993).

Missing values are not handled.

Value

A list with class"htest" containing the following components:

statistic the value of the test statistic.

parameter the truncation lag parameter.

p.value thep-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

Author(s)

A. Trapletti

References

A. Banerjee, J. J. Dolado, J. W. Galbraith, and D. F. Hendry (1993)Cointegration, Error Correction,
and the Econometric Analysis of Non-Stationary Data, Oxford University Press, Oxford.

P. Perron (1988) Trends and random walks in macroeconomic time series.Journal of Economic
Dynamics and Control12, 297–332.

Examples

x <- rnorm(1000)
PP.test(x)
y <- cumsum(x) # has unit root
PP.test(y)

ppoints Ordinates for Probability Plotting

Description

Generates the sequence of probability points(1:m - a)/(m + (1-a)-a) wherem is either
n, if length(n)==1 , or length(n) .

Usage

ppoints(n, a = ifelse(n <= 10, 3/8, 1/2))

ppr 1191

Arguments

n either the number of points generated or a vector of observations.

a the offset fraction to be used; typically in(0, 1).

Details

If 0 < a < 1, the resulting values are within(0, 1) (excluding boundaries). In any case, the resulting
sequence is symmetric in[0, 1], i.e.,p + rev(p) == 1 .

ppoints() is used inqqplot and qqnorm to generate the set of probabilities at which to
evaluate the inverse distribution.

The choice ofa follows the documentation of the function of the same name in Beckeret al (1988),
and appears to have been motivated by results from Blom (1958) on approximations to expect
normal order statistics (see alsoquantile).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Blom, G. (1958)Statistical Estimates and Transformed Beta Variables.Wiley

See Also

qqplot , qqnorm .

Examples

ppoints(4) # the same as ppoints(1:4)
ppoints(10)
ppoints(10, a=1/2)

ppr Projection Pursuit Regression

Description

Fit a projection pursuit regression model.

Usage

ppr(x, ...)

S3 method for class 'formula':
ppr(formula, data, weights, subset, na.action,

contrasts = NULL, ..., model = FALSE)

Default S3 method:
ppr(x, y, weights = rep(1,n),

ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
sm.method = c("supsmu", "spline", "gcvspline"),
bass = 0, span = 0, df = 5, gcvpen = 1, ...)

1192 ppr

Arguments

formula a formula specifying one or more numeric response variables and the explana-
tory variables.

x numeric matrix of explanatory variables. Rows represent observations, and
columns represent variables. Missing values are not accepted.

y numeric matrix of response variables. Rows represent observations, and
columns represent variables. Missing values are not accepted.

nterms number of terms to include in the final model.

data a data frame (or similar: seemodel.frame) from which variables specified in
formula are preferentially to be taken.

weights a vector of weightsw_i for eachcase.

ww a vector of weights for eachresponse, so the fit criterion is the sum over casei
and responsesj of w_i ww_j (y_ij - fit_ij)^2 divided by the sum
of w_i .

subset an index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action a function to specify the action to be taken ifNAs are found. The default action
is given bygetOption("na.action") . (NOTE: If given, this argument
must be named.)

contrasts the contrasts to be used when any factor explanatory variables are coded.

max.terms maximum number of terms to choose from when building the model.

optlevel integer from 0 to 3 which determines the thoroughness of an optimization rou-
tine in the SMART program. See the ‘Details’ section.

sm.method the method used for smoothing the ridge functions. The default is to use Fried-
man’s super smoothersupsmu . The alternatives are to use the smoothing spline
code underlyingsmooth.spline , either with a specified (equivalent) degrees
of freedom for each ridge functions, or to allow the smoothness to be chosen by
GCV.

bass super smoother bass tone control used with automatic span selection (see
supsmu); the range of values is 0 to 10, with larger values resulting in increased
smoothing.

span super smoother span control (seesupsmu). The default,0, results in automatic
span selection by local cross validation.span can also take a value in(0, 1] .

df if sm.method is "spline" specifies the smoothness of each ridge term via
the requested equivalent degrees of freedom.

gcvpen if sm.method is "gcvspline" this is the penalty used in the GCV selection
for each degree of freedom used.

... arguments to be passed to or from other methods.

model logical. If true, the model frame is returned.

Details

The basic method is given by Friedman (1984), and is essentially the same code used by S-PLUS’s
ppreg . This code is extremely sensitive to the compiler used.

The algorithm first adds up tomax.terms ridge terms one at a time; it will use less if it is unable
to find a term to add that makes sufficient difference. It then removes the least important term at
each step untilnterms terms are left.

ppr 1193

The levels of optimization (argumentoptlevel) differ in how thoroughly the models are refitted
during this process. At level 0 the existing ridge terms are not refitted. At level 1 the projection
directions are not refitted, but the ridge functions and the regression coefficients are. Levels 2 and
3 refit all the terms and are equivalent for one response; level 3 is more careful to re-balance the
contributions from each regressor at each step and so is a little less likely to converge to a saddle
point of the sum of squares criterion.

Value

A list with the following components, many of which are for use by the method functions.

call the matched call

p the number of explanatory variables (after any coding)

q the number of response variables

mu the argumentnterms

ml the argumentmax.terms

gof the overall residual (weighted) sum of squares for the selected model

gofn the overall residual (weighted) sum of squares against the number of terms, up
to max.terms . Will be invalid (and zero) for less thannterms .

df the argumentdf

edf if sm.method is "spline" or "gcvspline" the equivalent number of de-
grees of freedom for each ridge term used.

xnames the names of the explanatory variables

ynames the names of the response variables

alpha a matrix of the projection directions, with a column for each ridge term

beta a matrix of the coefficients applied for each response to the ridge terms: the rows
are the responses and the columns the ridge terms

yb the weighted means of each response

ys the overall scale factor used: internally the responses are divided byys to have
unit total weighted sum of squares.

fitted.values
the fitted values, as a matrix ifq > 1 .

residuals the residuals, as a matrix ifq > 1 .

smod internal work array, which includes the ridge functions evaluated at the training
set points.

model (only if model=TRUE) the model frame.

References

Friedman, J. H. and Stuetzle, W. (1981) Projection pursuit regression.Journal of the American
Statistical Association, 76, 817–823.

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics, Stanford
University Technical Report No. 1.

Venables, W. N. & Ripley, B. D. (2002)Modern Applied Statistics with S.Springer.

See Also

plot.ppr , supsmu , smooth.spline

1194 prcomp

Examples

require(graphics)

Note: your numerical values may differ
attach(rock)
area1 <- area/10000; peri1 <- peri/10000
rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)
rock.ppr
Call:
ppr.formula(formula = log(perm) ~ area1 + peri1 + shape, data = rock,
nterms = 2, max.terms = 5)
#
Goodness of fit:
2 terms 3 terms 4 terms 5 terms
8.737806 5.289517 4.745799 4.490378

summary(rock.ppr)
..... (same as above)
.....
#
Projection direction vectors:
term 1 term 2
area1 0.34357179 0.37071027
peri1 -0.93781471 -0.61923542
shape 0.04961846 0.69218595
#
Coefficients of ridge terms:
term 1 term 2
1.6079271 0.5460971

par(mfrow=c(3,2))# maybe: , pty="s")
plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")
plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")
plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")
cbind(perm=rock$perm, prediction=round(exp(predict(rock.ppr)), 1))
detach()

prcomp Principal Components Analysis

Description

Performs a principal components analysis on the given data matrix and returns the results as an
object of classprcomp .

Usage

prcomp(x, ...)

S3 method for class 'formula':
prcomp(formula, data = NULL, subset, na.action, ...)

prcomp 1195

Default S3 method:
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,

tol = NULL, ...)

S3 method for class 'prcomp':
predict(object, newdata, ...)

Arguments

formula a formula with no response variable, referring only to numeric variables.

data an optional data frame (or similar: seemodel.frame) containing the vari-
ables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector used to select rows (observations) of the data matrixx .

na.action a function which indicates what should happen when the data containNAs. The
default is set by thena.action setting ofoptions , and isna.fail if that
is unset. The ‘factory-fresh’ default isna.omit .

... arguments passed to or from other methods. Ifx is a formula one might specify
scale. or tol .

x a numeric or complex matrix (or data frame) which provides the data for the
principal components analysis.

retx a logical value indicating whether the rotated variables should be returned.

center a logical value indicating whether the variables should be shifted to be zero
centered. Alternately, a vector of length equal the number of columns ofx can
be supplied. The value is passed toscale .

scale. a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default isFALSE for consistency
with S, but in general scaling is advisable. Alternatively, a vector of length equal
the number of columns ofx can be supplied. The value is passed toscale .

tol a value indicating the magnitude below which components should be omitted.
(Components are omitted if their standard deviations are less than or equal to
tol times the standard deviation of the first component.) With the default null
setting, no components are omitted. Other settings for tol could betol = 0
or tol = sqrt(.Machine$double.eps) , which would omit essentially
constant components.

object Object of class inheriting from"prcomp"

newdata An optional data frame or matrix in which to look for variables with which to
predict. If omitted, the scores are used. If the original fit used a formula or a
data frame or a matrix with column names,newdata must contain columns
with the same names. Otherwise it must contain the same number of columns,
to be used in the same order.

Details

The calculation is done by a singular value decomposition of the (centered and possibly scaled) data
matrix, not by usingeigen on the covariance matrix. This is generally the preferred method for
numerical accuracy. Theprint method for these objects prints the results in a nice format and the
plot method produces a scree plot.

Note thatscale = TRUE cannot be used if there are zero or constant (forcenter = TRUE)
variables.

1196 prcomp

Value

prcomp returns a list with class"prcomp" containing the following components:

sdev the standard deviations of the principal components (i.e., the square roots of
the eigenvalues of the covariance/correlation matrix, though the calculation is
actually done with the singular values of the data matrix).

rotation the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). The functionprincomp returns this in the elementloadings .

x if retx is true the value of the rotated data (the centred (and scaled if requested)
data multiplied by therotation matrix) is returned. Hence,cov(x) is the
diagonal matrixdiag(sdev^2) . For the formula method,napredict is
applied to handle the treatment of values omitted by thena.action .

center, scale
the centering and scaling used, orFALSE.

Note

The signs of the columns of the rotation matrix are arbitrary, and so may differ between different
programs for PCA, and even between different builds ofR.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979)Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002)Modern Applied Statistics with S, Springer-Verlag.

See Also

biplot.prcomp , screeplot , princomp , cor , cov , svd , eigen .

Examples

require(graphics)

the variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
prcomp(USArrests) # inappropriate
prcomp(USArrests, scale = TRUE)
prcomp(~ Murder + Assault + Rape, data = USArrests, scale = TRUE)
plot(prcomp(USArrests))
summary(prcomp(USArrests, scale = TRUE))
biplot(prcomp(USArrests, scale = TRUE))

predict 1197

predict Model Predictions

Description

predict is a generic function for predictions from the results of various model fitting functions.
The function invokes particularmethodswhich depend on theclass of the first argument.

Usage

predict (object, ...)

Arguments

object a model object for which prediction is desired.

... additional arguments affecting the predictions produced.

Details

Most prediction methods which similar to fitting linear models have an argumentnewdata speci-
fiying the first place to look for explanatory variables to be used for prediction. Some considerable
attempts are made to match up the columns innewdata to those used for fitting, for example that
they are of comparable types and that any factors have the same level set in the same order (or can
be transformed to be so).

Time series prediction methods in packagestatshave an argumentn.ahead specifying how many
time steps ahead to predict.

Many methods have a logical argumentse.fit saying if standard errors are to returned.

Value

The form of the value returned bypredict depends on the class of its argument. See the docu-
mentation of the particular methods for details of what is produced by that method.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

predict.glm , predict.lm , predict.loess , predict.nls , predict.poly ,
predict.princomp , predict.smooth.spline .

For time-series prediction, predict.ar , predict.Arima , predict.arima0 ,
predict.HoltWinters , predict.StructTS .

1198 predict.Arima

Examples

require(utils)

All the "predict" methods found
NB most of the methods in the standard packages are hidden.
for(fn in methods("predict"))

try({
f <- eval(substitute(getAnywhere(fn)$objs[[1]], list(fn = fn)))
cat(fn, ":\n\t", deparse(args(f)), "\n")
}, silent = TRUE)

predict.Arima Forecast from ARIMA fits

Description

Forecast from models fitted byarima .

Usage

S3 method for class 'Arima':
predict(object, n.ahead = 1, newxreg = NULL,

se.fit = TRUE, ...)

Arguments

object The result of anarima fit.

n.ahead The number of steps ahead for which prediction is required.

newxreg New values ofxreg to be used for prediction. Must have at leastn.ahead
rows.

se.fit Logical: should standard errors of prediction be returned?

... arguments passed to or from other methods.

Details

Finite-history prediction is used, viaKalmanForecast . This is only statistically efficient if the
MA part of the fit is invertible, sopredict.Arima will give a warning for non-invertible MA
models.

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA model and
the regression coefficients. According to Harvey (1993, pp. 58–9) the effect is small.

Value

A time series of predictions, or ifse.fit = TRUE , a list with componentspred , the predictions,
andse , the estimated standard errors. Both components are time series.

predict.glm 1199

References

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes.Applied Statistics31, 180–187.

Harvey, A. C. (1993)Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

See Also

arima

Examples

predict(arima(lh, order = c(3,0,0)), n.ahead = 12)

(fit <- arima(USAccDeaths, order = c(0,1,1),
seasonal = list(order=c(0,1,1))))

predict(fit, n.ahead = 6)

predict.glm Predict Method for GLM Fits

Description

Obtains predictions and optionally estimates standard errors of those predictions from a fitted gen-
eralized linear model object.

Usage

S3 method for class 'glm':
predict(object, newdata = NULL,

type = c("link", "response", "terms"),
se.fit = FALSE, dispersion = NULL, terms = NULL,
na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from"glm" .

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of the linear predic-
tors; the alternative"response" is on the scale of the response variable. Thus
for a default binomial model the default predictions are of log-odds (probabili-
ties on logit scale) andtype = "response" gives the predicted probabili-
ties. The"terms" option returns a matrix giving the fitted values of each term
in the model formula on the linear predictor scale.
The value of this argument can be abbreviated.

se.fit logical switch indicating if standard errors are required.

dispersion the dispersion of the GLM fit to be assumed in computing the standard errors.
If omitted, that returned bysummary applied to the object is used.

1200 predict.glm

terms with type="terms" by default all terms are returned. A character vector
specifies which terms are to be returned

na.action function determining what should be done with missing values innewdata .
The default is to predictNA.

... further arguments passed to or from other methods.

Details

If newdata is omitted the predictions are based on the data used for the fit. In that case how cases
with missing values in the original fit is determined by thena.action argument of that fit. If
na.action = na.omit omitted cases will not appear in the residuals, whereas ifna.action
= na.exclude they will appear (in predictions and standard errors), with residual valueNA. See
alsonapredict .

Value

If se = FALSE, a vector or matrix of predictions. Ifse = TRUE, a list with components

fit Predictions

se.fit Estimated standard errors
residual.scale

A scalar giving the square root of the dispersion used in computing the standard
errors.

Note

Variables are first looked for innewdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those innewdata if it was supplied.

See Also

glm , SafePrediction

Examples

require(graphics)

example from Venables and Ripley (2002, pp. 190-2.)
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
summary(budworm.lg)

plot(c(1,32), c(0,1), type = "n", xlab = "dose",
ylab = "prob", log = "x")

text(2^ldose, numdead/20, as.character(sex))
ld <- seq(0, 5, 0.1)
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("M", length(ld)), levels=levels(sex))),
type = "response"))

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
sex=factor(rep("F", length(ld)), levels=levels(sex))),

predict.HoltWinters 1201

type = "response"))

predict.HoltWinters
prediction function for fitted Holt-Winters models

Description

Computes predictions and prediction intervals for models fitted by the Holt-Winters method.

Usage

S3 method for class 'HoltWinters':
predict(object, n.ahead=1, prediction.interval = FALSE,

level = 0.95, ...)

Arguments

object An object of classHoltWinters .

n.ahead Number of future periods to predict.

prediction.interval
logical. If TRUE, the lower and upper bounds of the corresponding prediction
intervals are computed.

level Confidence level for the prediction interval.

... arguments passed to or from other methods.

Value

A time series of the predicted values. If prediction intervals are requested, a multiple time series is
returned with columnsfit , lwr andupr for the predicted values and the lower and upper bounds
respectively.

Author(s)

David Meyer〈David.Meyer@wu-wien.ac.at〉

References

C. C. Holt (1957) Forecasting seasonals and trends by exponentially weighted moving averages,
ONR Research Memorandum, Carnigie Institute 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages,Management
Science6, 324–342.

See Also

HoltWinters

1202 predict.lm

Examples

require(graphics)

m <- HoltWinters(co2)
p <- predict(m, 50, prediction.interval = TRUE)
plot(m, p)

predict.lm Predict method for Linear Model Fits

Description

Predicted values based on linear model object.

Usage

S3 method for class 'lm':
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,

interval = c("none", "confidence", "prediction"),
level = 0.95, type = c("response", "terms"),
terms = NULL, na.action = na.pass,
pred.var = res.var/weights, weights = 1, ...)

Arguments

object Object of class inheriting from"lm"

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

se.fit A switch indicating if standard errors are required.

scale Scale parameter for std.err. calculation

df Degrees of freedom for scale

interval Type of interval calculation.

level Tolerance/confidence level

type Type of prediction (response or model term).

terms If type="terms" , which terms (default is all terms)

na.action function determining what should be done with missing values innewdata .
The default is to predictNA.

pred.var the variance(s) for future observations to be assumed for prediction intervals.
See ‘Details’.

weights variance weights for prediction. This can be a numeric vector or a one-sided
model formula. In the latter case, it is interpreted as an expression evaluated in
newdata

... further arguments passed to or from other methods.

predict.lm 1203

Details

predict.lm produces predicted values, obtained by evaluating the regression function in the
framenewdata (which defaults tomodel.frame(object) . If the logicalse.fit is TRUE,
standard errors of the predictions are calculated. If the numeric argumentscale is set (with op-
tional df), it is used as the residual standard deviation in the computation of the standard errors,
otherwise this is extracted from the model fit. Settingintervals specifies computation of con-
fidence or prediction (tolerance) intervals at the specifiedlevel , sometimes referred to as narrow
vs. wide intervals.

If the fit is rank-deficient, some of the columns of the design matrix will have been dropped. Predic-
tion from such a fit only makes sense ifnewdata is contained in the same subspace as the original
data. That cannot be checked accurately, so a warning is issued.

If newdata is omitted the predictions are based on the data used for the fit. In that case how cases
with missing values in the original fit is determined by thena.action argument of that fit. If
na.action = na.omit omitted cases will not appear in the residuals, whereas ifna.action
= na.exclude they will appear (in predictions, standard errors or interval limits), with residual
valueNA. See alsonapredict .

The prediction intervals are for a single observation at each case innewdata (or by default, the
data used for the fit) with error variance(s)pred.var . This can be a multiple ofres.var , the
estimated value ofσ2: the default is to assume that future observations have the same error variance
as those used for fitting. Ifweights is supplied, the inverse of this is used as a scale factor. For a
weighted fit, if the prediction is for the original data frame,weights defaults to the weights used
for the model fit, with a warning since it might not be the intended result. If the fit was weighted
and newdata is given, the default is to assume constant prediction variance, with a warning.

Value

predict.lm produces a vector of predictions or a matrix of predictions and bounds with column
namesfit , lwr , andupr if interval is set. If se.fit is TRUE, a list with the following
components is returned:

fit vector or matrix as above

se.fit standard error of predicted means

residual.scale
residual standard deviations

df degrees of freedom for residual

Note

Variables are first looked for innewdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those innewdata if it was supplied.

Offsets specified byoffset in the fit by lm will not be included in predictions, whereas those
specified by an offset term in the formula will be.

Notice that prediction variances and prediction intervals always refer tofutureobservations, possi-
bly corresponding to the same predictors as used for the fit. The variance of theresidualswill be
smaller.

Strictly speaking, the formula used for prediction limits assumes that the degrees of freedom for
the fit are the same as those for the residual variance. This may not be the case ifres.var is not
obtained from the fit.

1204 predict.loess

See Also

The model fitting functionlm , predict , SafePrediction

Examples

require(graphics)

Predictions
x <- rnorm(15)
y <- x + rnorm(15)
predict(lm(y ~ x))
new <- data.frame(x = seq(-3, 3, 0.5))
predict(lm(y ~ x), new, se.fit = TRUE)
pred.w.plim <- predict(lm(y ~ x), new, interval="prediction")
pred.w.clim <- predict(lm(y ~ x), new, interval="confidence")
matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]),

lty=c(1,2,2,3,3), type="l", ylab="predicted y")

Prediction intervals, special cases
The first three of these throw warnings
w <- 1 + x^2
fit <- lm(y ~ x)
wfit <- lm(y ~ x, weights = w)
predict(fit, interval = "prediction")
predict(wfit, interval = "prediction")
predict(wfit, new, interval = "prediction")
predict(wfit, new, interval = "prediction", weights = (new$x)^2)
predict(wfit, new, interval = "prediction", weights = ~x^2)

predict.loess Predict Loess Curve or Surface

Description

Predictions from aloess fit, optionally with standard errors.

Usage

S3 method for class 'loess':
predict(object, newdata = NULL, se = FALSE, ...)

Arguments

object an object fitted byloess .

newdata an optional data frame in which to look for variables with which to predict. If
missing, the original data points are used.

se should standard errors be computed?

... arguments passed to or from other methods.

predict.loess 1205

Details

The standard errors calculation is slower than prediction.

When the fit was made usingsurface="interpolate" (the default),predict.loess will
not extrapolate – so points outside an axis-aligned hypercube enclosing the original data will have
missing (NA) predictions and standard errors.

Value

If se = FALSE, a vector giving the prediction for each row ofnewdata (or the original data). If
se = TRUE, a list containing components

fit the predicted values.

se an estimated standard error for each predicted value.

residual.scale
the estimated scale of the residuals used in computing the standard errors.

df an estimate of the effective degrees of freedom used in estimating the residual
scale, intended for use with t-based confidence intervals.

If newdata was the result of a call toexpand.grid , the predictions (and s.e.’s if requested) will
be an array of the appropriate dimensions.

Note

Variables are first looked for innewdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those innewdata if it was supplied.

Author(s)

B.D. Ripley, based on thecloess package of Cleveland, Grosse and Shyu.

See Also

loess

Examples

cars.lo <- loess(dist ~ speed, cars)
predict(cars.lo, data.frame(speed=seq(5, 30, 1)), se=TRUE)
to get extrapolation
cars.lo2 <- loess(dist ~ speed, cars,

control=loess.control(surface="direct"))
predict(cars.lo2, data.frame(speed=seq(5, 30, 1)), se=TRUE)

1206 predict.nls

predict.nls Predicting from Nonlinear Least Squares Fits

Description

predict.nls produces predicted values, obtained by evaluating the regression function in the
framenewdata . If the logicalse.fit is TRUE, standard errors of the predictions are calculated.
If the numeric argumentscale is set (with optionaldf), it is used as the residual standard deviation
in the computation of the standard errors, otherwise this is extracted from the model fit. Setting
intervals specifies computation of confidence or prediction (tolerance) intervals at the specified
level .

At presentse.fit andinterval are ignored.

Usage

S3 method for class 'nls':
predict(object, newdata , se.fit = FALSE, scale = NULL, df = Inf,

interval = c("none", "confidence", "prediction"),
level = 0.95, ...)

Arguments

object An object that inherits from classnls .

newdata A named list or data frame in which to look for variables with which to predict.
If newdata is missing the fitted values at the original data points are returned.

se.fit A logical value indicating if the standard errors of the predictions should be
calculated. Defaults toFALSE. At present this argument is ignored.

scale A numeric scalar. If it is set (with optionaldf), it is used as the residual standard
deviation in the computation of the standard errors, otherwise this information
is extracted from the model fit. At present this argument is ignored.

df A positive numeric scalar giving the number of degrees of freedom for the
scale estimate. At present this argument is ignored.

interval A character string indicating if prediction intervals or a confidence interval on
the mean responses are to be calculated. At present this argument is ignored.

level A numeric scalar between 0 and 1 giving the confidence level for the intervals
(if any) to be calculated. At present this argument is ignored.

... Additional optional arguments. At present no optional arguments are used.

Value

predict.nls produces a vector of predictions. When implemented,interval will produce a
matrix of predictions and bounds with column namesfit , lwr , andupr . When implemented, if
se.fit is TRUE, a list with the following components will be returned:

fit vector or matrix as above

se.fit standard error of predictions
residual.scale

residual standard deviations

df degrees of freedom for residual

predict.smooth.spline 1207

Note

Variables are first looked for innewdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those innewdata if it was supplied.

See Also

The model fitting functionnls , predict .

Examples

require(graphics)

fm <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
predict(fm) # fitted values at observed times
Form data plot and smooth line for the predictions
opar <- par(las = 1)
plot(demand ~ Time, data = BOD, col = 4,

main = "BOD data and fitted first-order curve",
xlim = c(0,7), ylim = c(0, 20))

tt <- seq(0, 8, length = 101)
lines(tt, predict(fm, list(Time = tt)))
par(opar)

predict.smooth.spline
Predict from Smoothing Spline Fit

Description

Predict a smoothing spline fit at new points, return the derivative if desired. The predicted fit is
linear beyond the original data.

Usage

S3 method for class 'smooth.spline':
predict(object, x, deriv = 0, ...)

Arguments

object a fit fromsmooth.spline .

x the new values of x.

deriv integer; the order of the derivative required.

... further arguments passed to or from other methods.

Value

A list with components

x The inputx .

y The fitted values or derivatives atx .

1208 preplot

See Also

smooth.spline

Examples

require(graphics)

attach(cars)
cars.spl <- smooth.spline(speed, dist, df=6.4)

"Proof" that the derivatives are okay, by comparing with approximation
diff.quot <- function(x,y) {

Difference quotient (central differences where available)
n <- length(x); i1 <- 1:2; i2 <- (n-1):n
c(diff(y[i1]) / diff(x[i1]), (y[-i1] - y[-i2]) / (x[-i1] - x[-i2]),

diff(y[i2]) / diff(x[i2]))
}

xx <- unique(sort(c(seq(0,30, by = .2), kn <- unique(speed))))
i.kn <- match(kn, xx)# indices of knots within xx
op <- par(mfrow = c(2,2))
plot(speed, dist, xlim = range(xx), main = "Smooth.spline & derivatives")
lines(pp <- predict(cars.spl, xx), col = "red")
points(kn, pp$y[i.kn], pch = 3, col="dark red")
mtext("s(x)", col = "red")
for(d in 1:3){

n <- length(pp$x)
plot(pp$x, diff.quot(pp$x,pp$y), type = 'l', xlab="x", ylab="",

col = "blue", col.main = "red",
main= paste("s",paste(rep("'",d), collapse=""),"(x)", sep=""))

mtext("Difference quotient approx.(last)", col = "blue")
lines(pp <- predict(cars.spl, xx, deriv = d), col = "red")

points(kn, pp$y[i.kn], pch = 3, col="dark red")
abline(h=0, lty = 3, col = "gray")

}
detach(); par(op)

preplot Pre-computations for a Plotting Objeect

Description

Compute an object to be used for plots relating to the given model object.

Usage

preplot(object, ...)

Arguments

object a fitted model object.

... additional arguments for specific methods.

princomp 1209

Details

Only the generic function is currently provided in baseR, but some add-on packages have methods.
Principally here for S compatibility.

Value

An object set up to make a plot that describesobject .

princomp Principal Components Analysis

Description

princomp performs a principal components analysis on the given numeric data matrix and returns
the results as an object of classprincomp .

Usage

princomp(x, ...)

S3 method for class 'formula':
princomp(formula, data = NULL, subset, na.action, ...)

Default S3 method:
princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,

subset = rep(TRUE, nrow(as.matrix(x))), ...)

S3 method for class 'princomp':
predict(object, newdata, ...)

Arguments

formula a formula with no response variable, referring only to numeric variables.

data an optional data frame (or similar: seemodel.frame) containing the vari-
ables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector used to select rows (observations) of the data matrixx .

na.action a function which indicates what should happen when the data containNAs. The
default is set by thena.action setting ofoptions , and isna.fail if that
is unset. The ‘factory-fresh’ default isna.omit .

x a numeric matrix or data frame which provides the data for the principal com-
ponents analysis.

cor a logical value indicating whether the calculation should use the correlation ma-
trix or the covariance matrix. (The correlation matrix can only be used if there
are no constant variables.)

scores a logical value indicating whether the score on each principal component should
be calculated.

1210 princomp

covmat a covariance matrix, or a covariance list as returned bycov.wt (andcov.mve
or cov.mcd from packageMASS). If supplied, this is used rather than the
covariance matrix ofx .

... arguments passed to or from other methods. Ifx is a formula one might specify
cor or scores .

object Object of class inheriting from"princomp"

newdata An optional data frame or matrix in which to look for variables with which to
predict. If omitted, the scores are used. If the original fit used a formula or a
data frame or a matrix with column names,newdata must contain columns
with the same names. Otherwise it must contain the same number of columns,
to be used in the same order.

Details

princomp is a generic function with"formula" and"default" methods.

The calculation is done usingeigen on the correlation or covariance matrix, as determined by
cor . This is done for compatibility with the S-PLUS result. A preferred method of calculation is
to usesvd onx , as is done inprcomp .

Note that the default calculation uses divisorN for the covariance matrix.

The print method for these objects prints the results in a nice format and theplot method
produces a scree plot (screeplot). There is also abiplot method.

If x is a formula then the standard NA-handling is applied to the scores (if requested): see
napredict .

princomp only handles so-called R-mode PCA, that is feature extraction of variables. If a data
matrix is supplied (possibly via a formula) it is required that there are at least as many units as
variables. For Q-mode PCA useprcomp .

Value

princomp returns a list with class"princomp" containing the following components:

sdev the standard deviations of the principal components.

loadings the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). This is of class"loadings" : seeloadings for its print method.

center the means that were subtracted.

scale the scalings applied to each variable.

n.obs the number of observations.

scores if scores = TRUE , the scores of the supplied data on the principal compo-
nents. These are non-null only ifx was supplied, and ifcovmat was also
supplied if it was a covariance list. For the formula method,napredict is
applied to handle the treatment of values omitted by thena.action .

call the matched call.

na.action If relevant.

Note

The signs of the columns of the loadings and scores are arbitrary, and so may differ between differ-
ent programs for PCA, and even between different builds ofR.

print.power.htest 1211

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979).Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002).Modern Applied Statistics with S, Springer-Verlag.

See Also

summary.princomp , screeplot , biplot.princomp , prcomp , cor , cov , eigen .

Examples

require(graphics)

The variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
(pc.cr <- princomp(USArrests)) # inappropriate
princomp(USArrests, cor = TRUE) # =^= prcomp(USArrests, scale=TRUE)
Similar, but different:
The standard deviations differ by a factor of sqrt(49/50)

summary(pc.cr <- princomp(USArrests, cor = TRUE))
loadings(pc.cr) ## note that blank entries are small but not zero
plot(pc.cr) # shows a screeplot.
biplot(pc.cr)

Formula interface
princomp(~ ., data = USArrests, cor = TRUE)
NA-handling
USArrests[1, 2] <- NA
pc.cr <- princomp(~ Murder + Assault + UrbanPop,

data = USArrests, na.action=na.exclude, cor = TRUE)
pc.cr$scores

print.power.htest Print method for power calculation object

Description

Print object of class"power.htest" in nice layout.

Usage

S3 method for class 'power.htest':
print(x, ...)

Arguments

x Object of class"power.htest" .

... further arguments to be passed to or from methods.

1212 print.ts

Details

A power.htest object is just a named list of numbers and character strings, supplemented with
method andnote elements. Themethod is displayed as a title, thenote as a footnote, and the
remaining elements are given in an aligned ‘name = value’ format.

Value

none

Author(s)

Peter Dalgaard

See Also

power.t.test , power.prop.test

print.ts Printing Time-Series Objects

Description

Print method for time series objects.

Usage

S3 method for class 'ts':
print(x, calendar, ...)

Arguments

x a time series object.

calendar enable/disable the display of information about month names, quarter names or
year when printing. The default isTRUEfor a frequency of 4 or 12,FALSE
otherwise.

... additional arguments toprint .

Details

This is theprint methods for objects inheriting from class"ts" .

See Also

print , ts .

Examples

print(ts(1:10, frequency = 7, start = c(12, 2)), calendar = TRUE)

printCoefmat 1213

printCoefmat Print Coefficient Matrices

Description

Utility function to be used in higher-levelprint methods, such asprint.summary.lm ,
print.summary.glm and print.anova . The goal is to provide a flexible interface with
smart defaults such that often, onlyx needs to be specified.

Usage

printCoefmat(x, digits=max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
signif.legend = signif.stars,
dig.tst = max(1, min(5, digits - 1)),
cs.ind = 1:k, tst.ind = k + 1, zap.ind = integer(0),
P.values = NULL,
has.Pvalue = nc >= 4 &&

substr(colnames(x)[nc],1,3) == "Pr(",
eps.Pvalue = .Machine$double.eps,
na.print = "NA", ...)

Arguments

x a numeric matrix like object, to be printed.

digits minimum number of significant digits to be used for most numbers.

signif.stars logical; if TRUE, P-values are additionally encoded visually as ‘significance
stars’ in order to help scanning of long coefficient tables. It defaults to the
show.signif.stars slot ofoptions .

signif.legend
logical; if TRUE, a legend for the ‘significance stars’ is printed provided
signif.stars=TRUE .

dig.tst minimum number of significant digits for the test statistics, seetst.ind .

cs.ind indices (integer) of column numbers which are (like)coefficients andstandard
errors to be formatted together.

tst.ind indices (integer) of column numbers for test statistics.

zap.ind indices (integer) of column numbers which should be formatted byzapsmall ,
i.e., by ‘zapping’ values close to 0.

P.values logical orNULL; if TRUE, the last column ofx is formatted byformat.pval
as P values. IfP.values = NULL , the default, it is set toTRUEonly if
options ("show.coef.Pvalue") is TRUEand x has at least 4 columns
and the last column name ofx starts with"Pr(" .

has.Pvalue logical; if TRUE, the last column ofx contains P values; in that case, it is printed
if and only if P.values (above) is true.

eps.Pvalue number,..

na.print a character string to codeNAvalues in printed output.

... further arguments forprint .

1214 profile

Value

Invisibly returns its argument,x .

Author(s)

Martin Maechler

See Also

print.summary.lm , format.pval , format .

Examples

cmat <- cbind(rnorm(3, 10), sqrt(rchisq(3, 12)))
cmat <- cbind(cmat, cmat[,1]/cmat[,2])
cmat <- cbind(cmat, 2*pnorm(-cmat[,3]))
colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")
printCoefmat(cmat[,1:3])
printCoefmat(cmat)
options(show.coef.Pvalues = FALSE)
printCoefmat(cmat, digits=2)
printCoefmat(cmat, digits=2, P.values = TRUE)
options(show.coef.Pvalues = TRUE)# revert

profile Generic Function for Profiling Models

Description

Investigates behavior of objective function near the solution represented byfitted .

See documentation on method functions for further details.

Usage

profile(fitted, ...)

Arguments

fitted the original fitted model object.

... additional parameters. See documentation on individual methods.

Value

A list with an element for each parameter being profiled. See the individual methods for further
details.

See Also

profile.nls , profile.glm in packageMASS, . . .

For profiling R code, seeRprof .

profile.nls 1215

profile.nls Method for Profiling nls Objects

Description

Investigates the profile log-likelihood function for a fitted model of class"nls" .

Usage

S3 method for class 'nls':
profile(fitted, which = 1:npar, maxpts = 100, alphamax = 0.01,

delta.t = cutoff/5, ...)

Arguments

fitted the original fitted model object.

which the original model parameters which should be profiled. This can be a numeric
or character vector. By default, all non-linear parameters are profiled.

maxpts maximum number of points to be used for profiling each parameter.

alphamax maximum significance level allowed for the profile t-statistics.

delta.t suggested change on the scale of the profile t-statistics. Default value chosen to
allow profiling at about 10 parameter values.

... further arguments passed to or from other methods.

Details

The profile t-statistics is defined as the square root of change in sum-of-squares divided by residual
standard error with an appropriate sign.

Value

A list with an element for each parameter being profiled. The elements are data-frames with two
variables

par.vals a matrix of parameter values for each fitted model.

tau the profile t-statistics.

Author(s)

Of the original version, Douglas M. Bates and Saikat DebRoy

References

Bates, D. M. and Watts, D. G. (1988),Nonlinear Regression Analysis and Its Applications, Wiley
(chapter 6).

See Also

nls , profile , plot.profile.nls

1216 proj

Examples

obtain the fitted object
fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
get the profile for the fitted model
pr1 <- profile(fm1)
profiled values for the two parameters
pr1$A
pr1$lrc

proj Projections of Models

Description

proj returns a matrix or list of matrices giving the projections of the data onto the terms of a linear
model. It is most frequently used foraov models.

Usage

proj(object, ...)

S3 method for class 'aov':
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

S3 method for class 'aovlist':
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

Default S3 method:
proj(object, onedf = TRUE, ...)

S3 method for class 'lm':
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

Arguments

object An object of class"lm" or a class inheriting from it, or an object with a similar
structure including in particular componentsqr andeffects .

onedf A logical flag. IfTRUE, a projection is returned for all the columns of the model
matrix. If FALSE, the single-column projections are collapsed by terms of the
model (as represented in the analysis of variance table).

unweighted.scale
If the fit producingobject used weights, this determines if the projections
correspond to weighted or unweighted observations.

... Swallow and ignore any other arguments.

Details

A projection is given for each stratum of the object, so foraov models with anError term the
result is a list of projections.

proj 1217

Value

A projection matrix or (for multi-stratum objects) a list of projection matrices.

Each projection is a matrix with a row for each observations and either a column for each term
(onedf = FALSE) or for each coefficient (onedf = TRUE). Projection matrices from the de-
fault method have orthogonal columns representing the projection of the response onto the column
space of the Q matrix from the QR decomposition. The fitted values are the sum of the projections,
and the sum of squares for each column is the reduction in sum of squares from fitting that column
(after those to the left of it).

The methods forlm andaov models add a column to the projection matrix giving the residuals
(the projection of the data onto the orthogonal complement of the model space).

Strictly, whenonedf = FALSE the result is not a projection, but the columns represent sums of
projections onto the columns of the model matrix corresponding to that term. In this case the matrix
does not depend on the coding used.

Author(s)

The design was inspired by the S function of the same name described in Chamberset al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992)Analysis of variance; designed experi-
ments. Chapter 5 ofStatistical Models in Seds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

See Also

aov , lm , model.tables

Examples

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)
proj(npk.aov)

as a test, not particularly sensible
options(contrasts=c("contr.helmert", "contr.treatment"))
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
proj(npk.aovE)

1218 prop.test

prop.test Test of Equal or Given Proportions

Description

prop.test can be used for testing the null that the proportions (probabilities of success) in several
groups are the same, or that they equal certain given values.

Usage

prop.test(x, n, p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

Arguments

x a vector of counts of successes or a matrix with 2 columns giving the counts of
successes and failures, respectively.

n a vector of counts of trials; ignored ifx is a matrix.

p a vector of probabilities of success. The length ofp must be the same as the
number of groups specified byx , and its elements must be greater than 0 and
less than 1.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default),"greater" or "less" . You can specify just the
initial letter. Only used for testing the null that a single proportion equals a given
value, or that two proportions are equal; ignored otherwise.

conf.level confidence level of the returned confidence interval. Must be a single number
between 0 and 1. Only used when testing the null that a single proportion equals
a given value, or that two proportions are equal; ignored otherwise.

correct a logical indicating whether Yates’ continuity correction should be applied.

Details

Only groups with finite numbers of successes and failures are used. Counts of successes and failures
must be nonnegative and hence not greater than the corresponding numbers of trials which must be
positive. All finite counts should be integers.

If p is NULL and there is more than one group, the null tested is that the proportions in each
group are the same. If there are two groups, the alternatives are that the probability of success in
the first group is less than, not equal to, or greater than the probability of success in the second
group, as specified byalternative . A confidence interval for the difference of proportions
with confidence level as specified byconf.level and clipped to[−1, 1] is returned. Continuity
correction is used only if it does not exceed the difference of the sample proportions in absolute
value. Otherwise, if there are more than 2 groups, the alternative is always"two.sided" , the
returned confidence interval isNULL, and continuity correction is never used.

If there is only one group, then the null tested is that the underlying probability of success isp, or
.5 if p is not given. The alternative is that the probability of success if less than, not equal to, or
greater thanp or 0.5, respectively, as specified byalternative . A confidence interval for the
underlying proportion with confidence level as specified byconf.level and clipped to[0, 1] is

prop.test 1219

returned. Continuity correction is used only if it does not exceed the difference between sample and
null proportions in absolute value. The confidence interval is computed by inverting the score test.

Finally, if p is given and there are more than 2 groups, the null tested is that the underlying prob-
abilities of success are those given byp. The alternative is always"two.sided" , the returned
confidence interval isNULL, and continuity correction is never used.

Value

A list with class"htest" containing the following components:

statistic the value of Pearson’s chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

estimate a vector with the sample proportionsx/n .

conf.int a confidence interval for the true proportion if there is one group, or for the
difference in proportions if there are 2 groups andp is not given, orNULLoth-
erwise. In the cases where it is notNULL, the returned confidence interval has an
asymptotic confidence level as specified byconf.level , and is appropriate
to the specified alternative hypothesis.

null.value the value ofp if specified by the null, orNULLotherwise.

alternative a character string describing the alternative.

method a character string indicating the method used, and whether Yates’ continuity
correction was applied.

data.name a character string giving the names of the data.

References

Wilson, E.B. (1927) Probable inference, the law of succession, and statistical inference.J. Am. Stat.
Assoc., 22, 209–212.

Newcombe R.G. (1998) Two-Sided Confidence Intervals for the Single Proportion: Comparison of
Seven Methods.Statistics in Medicine17, 857–872.

Newcombe R.G. (1998) Interval Estimation for the Difference Between Independent Proportions:
Comparison of Eleven Methods.Statistics in Medicine17, 873–890.

See Also

binom.test for anexacttest of a binomial hypothesis.

Examples

heads <- rbinom(1, size=100, prob = .5)
prop.test(heads, 100) # continuity correction TRUE by default
prop.test(heads, 100, correct = FALSE)

Data from Fleiss (1981), p. 139.
H0: The null hypothesis is that the four populations from which
the patients were drawn have the same true proportion of smokers.
A: The alternative is that this proportion is different in at
least one of the populations.

1220 prop.trend.test

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
prop.test(smokers, patients)

prop.trend.test Test for trend in proportions

Description

Performs chi-squared test for trend in proportions, i.e., a test asymptotically optimal for local al-
ternatives where the log odds vary in proportion withscore . By default,score is chosen as the
group numbers.

Usage

prop.trend.test(x, n, score = 1:length(x))

Arguments

x Number of events

n Number of trials

score Group score

Value

An object of class"htest" with title, test statistic, p-value, etc.

Note

This really should get integrated withprop.test

Author(s)

Peter Dalgaard

See Also

prop.test

Examples

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
prop.test(smokers, patients)
prop.trend.test(smokers, patients)
prop.trend.test(smokers, patients,c(0,0,0,1))

qqnorm 1221

qqnorm Quantile-Quantile Plots

Description

qqnorm is a generic function the default method of which produces a normal QQ plot of the values
in y . qqline adds a line to a normal quantile-quantile plot which passes through the first and third
quartiles.

qqplot produces a QQ plot of two datasets.

Graphical parameters may be given as arguments toqqnorm , qqplot andqqline .

Usage

qqnorm(y, ...)
Default S3 method:
qqnorm(y, ylim, main = "Normal Q-Q Plot",

xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
plot.it = TRUE, datax = FALSE, ...)

qqline(y, datax = FALSE, ...)

qqplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...)

Arguments

x The first sample forqqplot .

y The second or only data sample.
xlab, ylab, main

plot labels. Thexlab andylab refer to the y and x axes respectively ifdatax
= TRUE.

plot.it logical. Should the result be plotted?

datax logical. Should data values be on the x-axis?

ylim, ... graphical parameters.

Value

For qqnorm andqqplot , a list with components

x The x coordinates of the points that were/would be plotted

y The originaly vector, i.e., the corresponding y coordinatesincludingNAs.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

ppoints , used byqqnorm to generate approximations to expected order statistics for a normal
distribution.

1222 quade.test

Examples

require(graphics)

y <- rt(200, df = 5)
qqnorm(y); qqline(y, col = 2)
qqplot(y, rt(300, df = 5))

qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")

quade.test Quade Test

Description

Performs a Quade test with unreplicated blocked data.

Usage

quade.test(y, ...)

Default S3 method:
quade.test(y, groups, blocks, ...)

S3 method for class 'formula':
quade.test(formula, data, subset, na.action, ...)

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements ofy if this is a vector;
ignored ify is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements ofy if this is a vector;
ignored ify is a matrix. If not a factor object, it is coerced to one.

formula a formula of the forma ~ b | c , wherea, b andc give the data values and
corresponding groups and blocks, respectively.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

quade.test 1223

Details

quade.test can be used for analyzing unreplicated complete block designs (i.e., there is exactly
one observation iny for each combination of levels ofgroups andblocks) where the normality
assumption may be violated.

The null hypothesis is that apart from an effect ofblocks , the location parameter ofy is the same
in each of thegroups .

If y is a matrix,groups andblocks are obtained from the column and row indices, respectively.
NA’s are not allowed ingroups or blocks ; if y containsNA’s, corresponding blocks are removed.

Value

A list with class"htest" containing the following components:

statistic the value of Quade’s F statistic.

parameter a vector with the numerator and denominator degrees of freedom of the approx-
imate F distribution of the test statistic.

p.value the p-value of the test.

method the character string"Quade test" .

data.name a character string giving the names of the data.

References

D. Quade (1979), Using weighted rankings in the analysis of complete blocks with additive block
effects.Journal of the American Statistical Association, 74, 680–683.

William J. Conover (1999),Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 373–380.

See Also

friedman.test .

Examples

Conover (1999, p. 375f):
Numbers of five brands of a new hand lotion sold in seven stores
during one week.
y <- matrix(c(5, 4, 7, 10, 12,

1, 3, 1, 0, 2,
16, 12, 22, 22, 35,

5, 4, 3, 5, 4,
10, 9, 7, 13, 10,
19, 18, 28, 37, 58,
10, 7, 6, 8, 7),

nrow = 7, byrow = TRUE,
dimnames =
list(Store = as.character(1:7),

Brand = LETTERS[1:5]))
y
quade.test(y)

1224 quantile

quantile Sample Quantiles

Description

The generic functionquantile produces sample quantiles corresponding to the given probabili-
ties. The smallest observation corresponds to a probability of 0 and the largest to a probability of
1.

Usage

quantile(x, ...)

Default S3 method:
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,

names = TRUE, type = 7, ...)

Arguments

x numeric vectors whose sample quantiles are wanted. Missing values are ignored.

probs numeric vector of probabilities with values in[0, 1].
na.rm logical; if true, anyNAandNaN’s are removed fromx before the quantiles are

computed.

names logical; if true, the result has anames attribute. Set toFALSEfor speedup with
manyprobs .

type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed
below to be used.

... further arguments passed to or from other methods.

Details

A vector of lengthlength(probs) is returned; ifnames = TRUE, it has anames attribute.

NAandNaNvalues inprobs are propagated to the result.

Types

quantile returns estimates of underlying distribution quantiles based on one or two order statis-
tics from the supplied elements inx at probabilities inprobs . One of the nine quantile algorithms
discussed in Hyndman and Fan (1996), selected bytype , is employed.

Sample quantiles of typei are defined by

Qi(p) = (1− γ)xj + γxj+1

where1 ≤ i ≤ 9, j−m
n ≤ p < j−m+1

n , xj is the jth order statistic,n is the sample size, and
m is a constant determined by the sample quantile type. Hereγ depends on the fractional part of
g = np+m− j.

For the continuous sample quantile types (4 through 9), the sample quantiles can be obtained by
linear interpolation between thekth order statistic andp(k):

p(k) =
k − α

n− α− β + 1

quantile 1225

whereα andβ are constants determined by the type. Further,m = α+ p (1− α− β), andγ = g.

Discontinuous sample quantile types 1, 2, and 3

Type 1 Inverse of empirical distribution function.

Type 2 Similar to type 1 but with averaging at discontinuities.

Type 3 SAS definition: nearest even order statistic.

Continuous sample quantile types 4 through 9

Type 4 p(k) = k
n . That is, linear interpolation of the empirical cdf.

Type 5 p(k) = k−0.5
n . That is a piecewise linear function where the knots are the values midway

through the steps of the empirical cdf. This is popular amongst hydrologists.

Type 6 p(k) = k
n+1 . Thusp(k) = E[F (xk)]. This is used by Minitab and by SPSS.

Type 7 p(k) = k−1
n−1 . In this case,p(k) = mode[F (xk)]. This is used by S.

Type 8 p(k) = k− 1
3

n+ 1
3

. Thenp(k) ≈ median[F (xk)]. The resulting quantile estimates are approxi-

mately median-unbiased regardless of the distribution ofx .

Type 9 p(k) = k− 3
8

n+ 1
4

. The resulting quantile estimates are approximately unbiased for the expected

order statistics ifx is normally distributed.

Hyndman and Fan (1996) recommend type 8. The default method is type 7, as used by S and byR
< 2.0.0.

Author(s)

of the version used inR >= 2.0.0, Ivan Frohne and Rob J Hyndman.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages,American Statistician,
50, 361–365.

See Also

ecdf for empirical distributions of whichquantile is an inverse;boxplot.stats and
fivenum for computing other versions of quartiles, etc.

Examples

quantile(x <- rnorm(1001))# Extremes & Quartiles by default
quantile(x, probs=c(.1,.5,1,2,5,10,50, NA)/100)

Compare different types
p <- c(0.1,0.5,1,2,5,10,50)/100
res <- matrix(as.numeric(NA), 9, 7)
for(type in 1:9) res[type,] <- y <- quantile(x, p, type=type)
dimnames(res) <- list(1:9, names(y))
round(res, 3)

1226 r2dtable

r2dtable Random 2-way Tables with Given Marginals

Description

Generate random 2-way tables with given marginals using Patefield’s algorithm.

Usage

r2dtable(n, r, c)

Arguments

n a non-negative numeric giving the number of tables to be drawn.

r a non-negative vector of length at least 2 giving the row totals, to be coerced to
integer . Must sum to the same asc .

c a non-negative vector of length at least 2 giving the column totals, to be coerced
to integer .

Value

A list of lengthn containing the generated tables as its components.

References

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals.Applied Statistics30, 91–97.

Examples

Fisher's Tea Drinker data.
TeaTasting <-
matrix(c(3, 1, 1, 3),

nrow = 2,
dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))
Simulate permutation test for independence based on the maximum
Pearson residuals (rather than their sum).
rowTotals <- rowSums(TeaTasting)
colTotals <- colSums(TeaTasting)
nOfCases <- sum(rowTotals)
expected <- outer(rowTotals, colTotals, "*") / nOfCases
maxSqResid <- function(x) max((x - expected) ^ 2 / expected)
simMaxSqResid <-

sapply(r2dtable(1000, rowTotals, colTotals), maxSqResid)
sum(simMaxSqResid >= maxSqResid(TeaTasting)) / 1000
Fisher's exact test gives p = 0.4857 ...

read.ftable 1227

read.ftable Manipulate Flat Contingency Tables

Description

Read, write and coerce ‘flat’ contingency tables.

Usage

read.ftable(file, sep = "", quote = "\"",
row.var.names, col.vars, skip = 0)

write.ftable(x, file = "", quote = TRUE, append = FALSE,
digits = getOption("digits"))

S3 method for class 'ftable':
format(x, quote = TRUE, digits = getOption("digits"), ...)

Arguments

file either a character string naming a file or a connection which the data are to be
read from or written to."" indicates input from the console for reading and
output to the console for writing.

sep the field separator string. Values on each line of the file are separated by this
string.

quote a character string giving the set of quoting characters forread.ftable ; to
disable quoting altogether, usequote="" . For write.table , a logical in-
dicating whether strings in the data will be surrounded by double quotes.

row.var.names
a character vector with the names of the row variables, in case these cannot be
determined automatically.

col.vars a list giving the names and levels of the column variables, in case these cannot
be determined automatically.

skip the number of lines of the data file to skip before beginning to read data.

x an object of class"ftable" .

append logical. If TRUEand file is the name of a file (and not a connection or
"|cmd"), the output fromwrite.ftable is appended to the file. IfFALSE,
the contents offile will be overwritten.

digits an integer giving the number of significant digits to use for (the cell entries of)
x .

... further arguments to be passed to or from methods.

Details

read.ftable reads in a flat-like contingency table from a file. If the file contains the written
representation of a flat table (more precisely, a header with all information on names and levels of
column variables, followed by a line with the names of the row variables), no further arguments are
needed. Similarly, flat tables with only one column variable the name of which is the only entry
in the first line are handled automatically. Other variants can be dealt with by skipping all header

1228 read.ftable

information usingskip , and providing the names of the row variables and the names and levels
of the column variable usingrow.var.names andcol.vars , respectively. See the examples
below.

Note that flat tables are characterized by their ‘ragged’ display of row (and maybe also column)
labels. If the full grid of levels of the row variables is given, one should instead useread.table
to read in the data, and create the contingency table from this usingxtabs .

write.ftable writes a flat table to a file, which is useful for generating ‘pretty’ ASCII repre-
sentations of contingency tables.

References

Agresti, A. (1990)Categorical data analysis. New York: Wiley.

See Also

ftable for more information on flat contingency tables.

Examples

Agresti (1990), page 157, Table 5.8.
Not in ftable standard format, but o.k.
file <- tempfile()
cat(" Intercourse\n",

"Race Gender Yes No\n",
"White Male 43 134\n",
" Female 26 149\n",
"Black Male 29 23\n",
" Female 22 36\n",
file = file)

file.show(file)
ft <- read.ftable(file)
ft
unlink(file)

Agresti (1990), page 297, Table 8.16.
Almost o.k., but misses the name of the row variable.
file <- tempfile()
cat(" \"Tonsil Size\"\n",

" \"Not Enl.\" \"Enl.\" \"Greatly Enl.\"\n",
"Noncarriers 497 560 269\n",
"Carriers 19 29 24\n",
file = file)

file.show(file)
ft <- read.ftable(file, skip = 2,

row.var.names = "Status",
col.vars = list("Tonsil Size" =

c("Not Enl.", "Enl.", "Greatly Enl.")))
ft
unlink(file)

ft22 <- ftable(Titanic, row.vars = 2:1, col.vars = 4:3)
write.ftable(ft22, quote = FALSE)

rect.hclust 1229

rect.hclust Draw Rectangles Around Hierarchical Clusters

Description

Draws rectangles around the branches of a dendrogram highlighting the corresponding clusters.
First the dendrogram is cut at a certain level, then a rectangle is drawn around selected branches.

Usage

rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,
border = 2, cluster = NULL)

Arguments

tree an object of the type produced byhclust .

k, h Scalar. Cut the dendrogram such that either exactlyk clusters are produced or
by cutting at heighth.

which, x A vector selecting the clusters around which a rectangle should be drawn.
which seleccts clusters by number (from left to right in the tree),x selects
clusters containing the respective horizontal coordinates. Default iswhich =
1:k .

border Vector with border colors for the rectangles.

cluster Optional vector with cluster memberships as returned by
cutree(hclust.obj, k = k) , can be specified for efficiency if
already computed.

Value

(Invisibly) returns a list where each element contains a vector of data points contained in the re-
spective cluster.

See Also

hclust , identify.hclust .

Examples

require(graphics)

hca <- hclust(dist(USArrests))
plot(hca)
rect.hclust(hca, k=3, border="red")
x <- rect.hclust(hca, h=50, which=c(2,7), border=3:4)
x

1230 reorder.dendrogram

relevel Reorder Levels of Factor

Description

The levels of a factor are re-ordered so that the level specified byref is first and the others are
moved down. This is useful forcontr.treatment contrasts which take the first level as the
reference.

Usage

relevel(x, ref, ...)

Arguments

x An unordered factor.

ref The reference level.

... Additional arguments for future methods.

Value

A factor of the same length asx .

See Also

factor , contr.treatment , levels , reorder .

Examples

warpbreaks$tension <- relevel(warpbreaks$tension, ref="M")
summary(lm(breaks ~ wool + tension, data=warpbreaks))

reorder.dendrogram Reorder a Dendrogram

Description

A method for the generic functionreorder .

There are many different orderings of a dendrogram that are consistent with the structure imposed.
This function takes a dendrogram and a vector of values and reorders the dendrogram in the order
of the supplied vector, maintaining the constraints on the dendrogram.

Usage

S3 method for class 'dendrogram':
reorder(x, wts, agglo.FUN = sum, ...)

reorder.factor 1231

Arguments

x the (dendrogram) object to be reordered

wts numeric weights (arbitrary values) for reordering.

agglo.FUN a function for weights agglomeration, see below.

... additional arguments

Details

Using the weightswts , the leaves of the dendrogram are reordered so as to be in an order as
consistent as possible with the weights. At each node, the branches are ordered in increasing weights
where the weight of a branch is defined asf(wj) wheref is agglo.FUN andwj is the weight of
thej-th sub branch).

Value

A dendrogram where each node has a further attributevalue with its corresponding weight.

Author(s)

R. Gentleman and M. Maechler

See Also

reorder .

rev.dendrogram which simply reverses the nodes’ order;heatmap , cophenetic .

Examples

require(graphics)

set.seed(123)
x <- rnorm(10)
hc <- hclust(dist(x))
dd <- as.dendrogram(hc)
dd.reorder <- reorder(dd, 10:1)
plot(dd, main = "random dendrogram 'dd'")

op <- par(mfcol = 1:2)
plot(dd.reorder, main = "reorder(dd, 10:1)")
plot(reorder(dd,10:1, agglo.FUN= mean),

main = "reorder(dd, 10:1, mean)")
par(op)

reorder.factor Reorder Levels of a Factor

Description

reorder is a generic function. Its"factor" method reorders the levels of a factor depending
on values of a second variable, usually numeric.

1232 reorder.factor

Usage

reorder(x, ...)

S3 method for class 'factor':
reorder(x, X, FUN = mean, ...,

order = is.ordered(x))

Arguments

x a factor (possibly ordered) whose levels will be reordered.

X a vector of the same length asx , whose subset of values for each unique level of
x determines the eventual order of that level.

FUN a function whose first argument is a vector and returns a scalar, to be applied to
each subset ofX determined by the levels ofx .

... optional: extra arguments supplied toFUN

order logical, whether return value will be an ordered factor rather than a factor.

Value

A factor or an ordered factor (depending on the value oforder), with the order of the levels
determined byFUNapplied toX grouped byx . The levels are ordered such that the values returned
by FUNare in increasing order.

Additionally, the values ofFUNapplied to the subsets ofX (in the original order of the levels ofx)
is returned as the"scores" attribute.

Author(s)

Deepayan Sarkar〈deepayan@stat.wisc.edu〉

See Also

reorder.dendrogram , levels , relevel .

Examples

require(graphics)

bymedian <- with(InsectSprays, reorder(spray, count, median))
boxplot(count ~ bymedian, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",
main = "InsectSprays data", varwidth = TRUE,
col = "lightgray")

replications 1233

replications Number of Replications of Terms

Description

Returns a vector or a list of the number of replicates for each term in the formula.

Usage

replications(formula, data=NULL, na.action)

Arguments

formula a formula or a terms object or a data frame.

data a data frame used to find the objects informula .

na.action function for handling missing values. Defaults to ana.action attribute of
data , then a setting of the optionna.action , or na.fail if that is not set.

Details

If formula is a data frame anddata is missing,formula is used fordata with the formula~
. .

Value

A vector or list with one entry for each term in the formula giving the number(s) of replications for
each level. If all levels are balanced (have the same number of replications) the result is a vector,
otherwise it is a list with a component for each terms, as a vector, matrix or array as required.

A test for balance is!is.list(replications(formula,data)) .

Author(s)

The design was inspired by the S function of the same name described in Chamberset al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992)Analysis of variance; designed experi-
ments. Chapter 5 ofStatistical Models in Seds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

See Also

model.tables

1234 reshape

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

replications(~ . - yield, npk)

reshape Reshape Grouped Data

Description

This function reshapes a data frame between ‘wide’ format with repeated measurements in separate
columns of the same record and ‘long’ format with the repeated measurements in separate records.

Usage

reshape(data, varying = NULL, v.names = NULL, timevar = "time",
idvar = "id", ids = 1:NROW(data),
times = seq_along(varying[[1]]),
drop = NULL, direction, new.row.names = NULL,
sep = ".",
split = if (sep==""){

list(regexp="[A-Za-z][0-9]",include=TRUE)
} else {

list(regexp=sep, include= FALSE, fixed=TRUE)}
)

Arguments

data a data frame

varying names of sets of variables in the wide format that correspond to single variables
in long format (‘time-varying’). This is canonically a list of vectors of variable
names, but it can optionally be a matrix of names, or a single vector of names.
In each case, the names can be replaced by indexes which are interpreted as
referring tonames(data) . See below for more details and options.

v.names names of variables in the long format that correspond to multiple variables in
the wide format. See below for details.

timevar the variable in long format that differentiates multiple records from the same
group or individual.

idvar Names of one or more variables in long format that identify multiple records
from the same group/individual. These variables may also be present in wide
format

ids the values to use for a newly createdidvar variable in long format.

reshape 1235

times the values to use for a newly createdtimevar variable in long format. See
below for details.

drop a vector of names of variables to drop before reshaping

direction character string, either"wide" to reshape to wide format, or"long" to re-
shape to long format.

new.row.names
logical; if TRUEand direction="wide" , create new row names in long
format from the values of the id and time variables.

sep

split A list with three components,regexp , include , and (optionally)fixed .
This allows an extended interface to variable name splitting. See below for
details.

Details

The arguments to this function are described in terms of longitudinal data, as that is the application
motivating the functions. A ‘wide’ longitudinal dataset will have one record for each individual
with some time-constant variables that occupy single columns and some time-varying variables
that occupy a column for each time point. In ‘long’ format there will be multiple records for each
individual, with some variables being constant across these records and others varying across the
records. A ‘long’ format dataset also needs a ‘time’ variable identifying which time point each
record comes from and an ‘id’ variable showing which records refer to the same person.

If the data frame resulted from a previousreshape then the operation can be reversed simply
by reshape(a) . Thedirection argument is optional and the other arguments are stored as
attributes on the data frame.

If direction="wide" and novarying or v.names arguments are supplied it is assumed that
all variables exceptidvar andtimevar are time-varying. They are all expanded into multiple
variables in wide format.

If direction="long" the varying argument can be a vector of column names (or a corre-
sponding index). The function will attempt to guess thev.names andtimes from these names.
The default is variable names likex.1 , x.2 , wheresep="." specifies to split at the dot and drop
it from the name. To have alphabetic followed by numeric times usesep="" .

Variable name splitting as described above is only attempted in the case wherevarying is an
atomic vector, if it is a list or a matrix,v.names andtimes will generally need to be specified,
although they will default to, respectively, the first variable name in each set, and sequential times.

Also, guessing is not attempted ifv.names is given explicitly. Notice that the order of variables
in varying is like x.1 ,y.1 ,x.2 ,y.2 .

Thesplit argument should not usually be necessary. Thesplit$regexp component is passed
to eitherstrsplit() or regexp() , where the latter is used ifsplit$include is TRUE, in
which case the splitting occurs after the first character of the matched string. In thestrsplit()
case, the separator is not included in the result, and it is possible to specify fixed-string matching
usingsplit$fixed .

Value

The reshaped data frame with added attributes to simplify reshaping back to the original form.

See Also

stack , aperm ; relist for reshaping the result ofunlist .

1236 residuals

Examples

summary(Indometh)
wide <- reshape(Indometh, v.names="conc", idvar="Subject",

timevar="time", direction="wide")
wide

reshape(wide, direction="long")
reshape(wide, idvar="Subject", varying=list(2:12),

v.names="conc", direction="long")

times need not be numeric
df <- data.frame(id=rep(1:4,rep(2,4)),

visit=I(rep(c("Before","After"),4)),
x=rnorm(4), y=runif(4))

df
reshape(df, timevar="visit", idvar="id", direction="wide")
warns that y is really varying
reshape(df, timevar="visit", idvar="id", direction="wide", v.names="x")

unbalanced 'long' data leads to NA fill in 'wide' form
df2 <- df[1:7,]
df2
reshape(df2, timevar="visit", idvar="id", direction="wide")

Alternative regular expressions for guessing names
df3 <- data.frame(id=1:4, age=c(40,50,60,50), dose1=c(1,2,1,2),

dose2=c(2,1,2,1), dose4=c(3,3,3,3))
reshape(df3, direction="long", varying=3:5, sep="")

an example that isn't longitudinal data
state.x77 <- as.data.frame(state.x77)
long <- reshape(state.x77, idvar="state", ids=row.names(state.x77),

times=names(state.x77), timevar="Characteristic",
varying=list(names(state.x77)), direction="long")

reshape(long, direction="wide")

reshape(long, direction="wide", new.row.names=unique(long$state))

multiple id variables
df3 <- data.frame(school=rep(1:3,each=4), class=rep(9:10,6),

time=rep(c(1,1,2,2),3),
score=rnorm(12))
wide <- reshape(df3, idvar=c("school","class"), direction="wide")
wide
transform back
reshape(wide)

residuals Extract Model Residuals

runmed 1237

Description

residuals is a generic function which extracts model residuals from objects returned by model-
ing functions.

The abbreviated formresid is an alias forresiduals . It is intended to encourage users to
access object components through an accessor function rather than by directly referencing an object
slot.

All object classes which are returned by model fitting functions should provide aresiduals
method. (Note that the method is for ‘residuals ’ and not ‘resid ’.)

Methods can make use ofnaresid methods to compensate for the omission of missing values.
The default,nls andsmooth.spline methods do.

Usage

residuals(object, ...)
resid(object, ...)

Arguments

object an object for which the extraction of model residuals is meaningful.

... other arguments.

Value

Residuals extracted from the objectobject .

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

coefficients , fitted.values , glm , lm .

influence.measuresfor standardized (rstandard) and studentized (rstudent) residuals.

runmed Running Medians – Robust Scatter Plot Smoothing

Description

Compute running medians of odd span. This is the ‘most robust’ scatter plot smoothing possible.
For efficiency (and historical reason), you can use one of two different algorithms giving identical
results.

Usage

runmed(x, k, endrule = c("median", "keep", "constant"),
algorithm = NULL, print.level = 0)

1238 runmed

Arguments

x numeric vector, the ‘dependent’ variable to be smoothed.

k integer width of median window; must be odd. Turlach had a default ofk <- 1
+ 2 * min((n-1)%/% 2, ceiling(0.1*n)) . Usek = 3 for ‘mini-
mal’ robust smoothing eliminating isolated outliers.

endrule character string indicating how the values at the beginning and the end (of the
data) should be treated.

"keep" keeps the first and lastk2 values at both ends, wherek2 is the half-
bandwidthk2 = k %/% 2, i.e.,y[j] = x[j] for j ∈ {1, . . . , k2;n−
k2 + 1, . . . , n};

"constant" copiesmedian(y[1:k2]) to the first values and analogously
for the last ones making the smoothed endsconstant;

"median" the default, smooths the ends by using symmetrical medians of
subsequently smaller bandwidth, but for the very first and last value where
Tukey’s robust end-point rule is applied, seesmoothEnds .

algorithm character string (partially matching"Turlach" or "Stuetzle") or the de-
fault NULL, specifying which algorithm should be applied. The default choice
depends onn = length(x) and k where "Turlach" will be used for
larger problems.

print.level integer, indicating verboseness of algorithm; should rarely be changed by aver-
age users.

Details

Apart from the end values, the resulty = runmed(x, k) simply has y[j] =
median(x[(j-k2):(j+k2)]) (k = 2*k2+1), computed very efficiently.

The two algorithms are internally entirely different:

"Turlach" is the Härdle-Steiger algorithm (see Ref.) as implemented by Berwin Turlach. A
tree algorithm is used, ensuring performanceO(n log k) wheren <- length(x) which
is asymptotically optimal.

"Stuetzle" is the (older) Stuetzle-Friedman implementation which makes use of medianupdating
when one observation enters and one leaves the smoothing window. While this performs as
O(n× k) which is slower asymptotically, it is considerably faster for smallk or n.

Value

vector of smoothed values of the same length asx with anattr ibutek containing (the ‘oddified’)
k .

Author(s)

Martin Maechler〈maechler@stat.math.ethz.ch〉, based on Fortran code from Werner Stuetzle and
S-plus and C code from Berwin Turlach.

References

Härdle, W. and Steiger, W. (1995) [Algorithm AS 296] Optimal median smoothing,Applied Statis-
tics 44, 258–264.

Jerome H. Friedman and Werner Stuetzle (1982)Smoothing of Scatterplots; Report, Dep. Statistics,
Stanford U., Project Orion 003.

scatter.smooth 1239

Martin Maechler (2003) Fast Running Medians: Finite Sample and Asymptotic Optimality; work-
ing paper available from the author.

See Also

smoothEnds which implements Tukey’s end point rule and is called by default fromrunmed(*,
endrule = "median") . smooth uses running medians of 3 for its compound smoothers.

Examples

require(graphics)

utils::example(nhtemp)
myNHT <- as.vector(nhtemp)
myNHT[20] <- 2 * nhtemp[20]
plot(myNHT, type="b", ylim = c(48,60), main = "Running Medians Example")
lines(runmed(myNHT, 7), col = "red")

special: multiple y values for one x
plot(cars, main = "'cars' data and runmed(dist, 3)")
lines(cars, col = "light gray", type = "c")
with(cars, lines(speed, runmed(dist, k = 3), col = 2))

nice quadratic with a few outliers
y <- ys <- (-20:20)^2
y [c(1,10,21,41)] <- c(150, 30, 400, 450)
all(y == runmed(y, 1)) # 1-neighbourhood <==> interpolation
plot(y) ## lines(y, lwd=.1, col="light gray")
lines(lowess(seq(y),y, f = .3), col = "brown")
lines(runmed(y, 7), lwd=2, col = "blue")
lines(runmed(y,11), lwd=2, col = "red")

Lowess is not robust
y <- ys ; y[21] <- 6666 ; x <- seq(y)
col <- c("black", "brown","blue")
plot(y, col=col[1])
lines(lowess(x,y, f = .3), col = col[2])
lines(runmed(y, 7), lwd=2, col = col[3])
legend(length(y),max(y), c("data", "lowess(y, f = 0.3)", "runmed(y, 7)"),

xjust = 1, col = col, lty = c(0, 1,1), pch = c(1,NA,NA))

scatter.smooth Scatter Plot with Smooth Curve Fitted by Loess

Description

Plot and add a smooth curve computed byloess to a scatter plot.

Usage

scatter.smooth(x, y = NULL, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"),
xlab = NULL, ylab = NULL,
ylim = range(y, prediction$y, na.rm = TRUE),

1240 scatter.smooth

evaluation = 50, ...)

loess.smooth(x, y, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"), evaluation = 50, ...)

Arguments

x,y the x and y arguments provide the x and y coordinates for the plot. Any
reasonable way of defining the coordinates is acceptable. See the function
xy.coords for details.

span smoothness parameter forloess .

degree degree of local polynomial used.

family if "gaussian" fitting is by least-squares, and iffamily="symmetric" a
re-descending M estimator is used.

xlab label for x axis.

ylab label for y axis.

ylim the y limits of the plot.

evaluation number of points at which to evaluate the smooth curve.

... graphical parameters.

Details

loess.smooth is an auxiliary function which evaluates theloess smooth atevaluation
equally spaced points covering the range ofx .

Value

For scatter.smooth , none.

For loess.smooth , a list with two components,x (the grid of evaluation points) andy (the
smoothed values at the grid points).

See Also

loess

Examples

require(graphics)

with(cars, scatter.smooth(speed, dist))

screeplot 1241

screeplot Screeplots

Description

screeplot.default plots the variances against the number of the principal component. This
is also theplot method for classes"princomp" and"prcomp" .

Usage

Default S3 method:
screeplot(x, npcs = min(10, length(x$sdev)),

type = c("barplot", "lines"),
main = deparse(substitute(x)), ...)

Arguments

x an object containing asdev component, such as that returned byprincomp ()
andprcomp () .

npcs the number of components to be plotted.

type the type of plot.

main, ... graphics parameters.

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979).Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002).Modern Applied Statistics with S, Springer-Verlag.

See Also

princomp andprcomp .

Examples

require(graphics)

The variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
(pc.cr <- princomp(USArrests, cor = TRUE)) # inappropriate
screeplot(pc.cr)

fit <- princomp(covmat=Harman74.cor)
screeplot(fit)
screeplot(fit, npcs=24, type="lines")

1242 se.contrast

sd Standard Deviation

Description

This function computes the standard deviation of the values inx . If na.rm is TRUEthen missing
values are removed before computation proceeds. Ifx is a matrix or a data frame, a vector of the
standard deviation of the columns is returned.

Usage

sd(x, na.rm = FALSE)

Arguments

x a numeric vector, matrix or data frame.

na.rm logical. Should missing values be removed?

See Also

var for its square, andmad, the most robust alternative.

Examples

sd(1:2) ^ 2

se.contrast Standard Errors for Contrasts in Model Terms

Description

Returns the standard errors for one or more contrasts in anaov object.

Usage

se.contrast(object, ...)
S3 method for class 'aov':
se.contrast(object, contrast.obj,

coef = contr.helmert(ncol(contrast))[, 1],
data = NULL, ...)

Arguments

object A suitable fit, usually fromaov .

contrast.obj The contrasts for which standard errors are requested. This can be specified
via a list or via a matrix. A single contrast can be specified by a list of logical
vectors giving the cells to be contrasted. Multiple contrasts should be specified
by a matrix, each column of which is a numerical contrast vector (summing to
zero).

se.contrast 1243

coef used whencontrast.obj is a list; it should be a vector of the same length
as the list with zero sum. The default value is the first Helmert contrast, which
contrasts the first and second cell means specified by the list.

data The data frame used to evaluatecontrast.obj .

... further arguments passed to or from other methods.

Details

Contrasts are usually used to test if certain means are significantly different; it can be easier to use
se.contrast than compute them directly from the coefficients.

In multistratum models, the contrasts can appear in more than one stratum, in which case the stan-
dard errors are computed in the lowest stratum and adjusted for efficiencies and comparisons be-
tween strata. (See the comments in the note in the help foraov about using orthogonal contrasts.)
Such standard errors are often conservative.

Suitable matrices for use withcoef can be found by callingcontrasts and indexing the columns
by a factor.

Value

A vector giving the standard errors for each contrast.

See Also

contrasts , model.tables

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),
K = factor(K), yield = yield)

Set suitable contrasts.
options(contrasts=c("contr.helmert", "contr.poly"))
npk.aov1 <- aov(yield ~ block + N + K, data=npk)
se.contrast(npk.aov1, list(N == "0", N == "1"), data=npk)
or via a matrix
cont <- matrix(c(-1,1), 2, 1, dimnames=list(NULL, "N"))
se.contrast(npk.aov1, cont[N, , drop=FALSE]/12, data=npk)

test a multi-stratum model
npk.aov2 <- aov(yield ~ N + K + Error(block/(N + K)), data=npk)
se.contrast(npk.aov2, list(N == "0", N == "1"))

an example looking at an interaction contrast
Dataset from R.E. Kirk (1995)
'Experimental Design: procedures for the behavioral sciences'
score <- c(12, 8,10, 6, 8, 4,10,12, 8, 6,10,14, 9, 7, 9, 5,11,12,

7,13, 9, 9, 5,11, 8, 7, 3, 8,12,10,13,14,19, 9,16,14)
A <- gl(2, 18, labels=c("a1", "a2"))

1244 selfStart

B <- rep(gl(3, 6, labels=c("b1", "b2", "b3")), 2)
fit <- aov(score ~ A*B)
cont <- c(1, -1)[A] * c(1, -1, 0)[B]
sum(cont) # 0
sum(cont*score) # value of the contrast
se.contrast(fit, as.matrix(cont))
(t.stat <- sum(cont*score)/se.contrast(fit, as.matrix(cont)))
summary(fit, split=list(B=1:2), expand.split = TRUE)
t.stat^2 is the F value on the A:B: C1 line (with Helmert contrasts)
Now look at all three interaction contrasts
cont <- c(1, -1)[A] * cbind(c(1, -1, 0), c(1, 0, -1), c(0, 1, -1))[B,]
se.contrast(fit, cont) # same, due to balance.
rm(A,B,score)

multi-stratum example where efficiencies play a role
utils::example(eff.aovlist)
fit <- aov(Yield ~ A + B * C + Error(Block), data = aovdat)
cont1 <- c(-1, 1)[A]/32 # Helmert contrasts
cont2 <- c(-1, 1)[B] * c(-1, 1)[C]/32
cont <- cbind(A=cont1, BC=cont2)
colSums(cont*Yield) # values of the contrasts
se.contrast(fit, as.matrix(cont))
Not run:
comparison with lme
library(nlme)
fit2 <- lme(Yield ~ A + B*C, random = ~1 | Block, data = aovdat)
summary(fit2)$tTable # same estimates, similar (but smaller) se's.
End(Not run)

selfStart Construct Self-starting Nonlinear Models

Description

Construct self-starting nonlinear models.

Usage

selfStart(model, initial, parameters, template)

Arguments

model a function object defining a nonlinear model or a nonlinear formula object of the
form ~expression .

initial a function object, taking three arguments:mCall , data , andLHS, represent-
ing, respectively, a matched call to the functionmodel , a data frame in which to
interpret the variables inmCall , and the expression from the left-hand side of
the model formula in the call tonls . This function should return initial values
for the parameters inmodel .

parameters a character vector specifying the terms on the right hand side ofmodel for
which initial estimates should be calculated. Passed as thenamevec argument
to thederiv function.

selfStart 1245

template an optional prototype for the calling sequence of the returned object, passed as
the function.arg argument to thederiv function. By default, a template
is generated with the covariates inmodel coming first and the parameters in
model coming last in the calling sequence.

Details

This function is generic; methods functions can be written to handle specific classes of objects.

Value

a function object of class"selfStart" , for theformula method obtained by applyingderiv
to the right hand side of themodel formula. An initial attribute (defined by theinitial
argument) is added to the function to calculate starting estimates for the parameters in the model
automatically.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls

Examples

self-starting logistic model

SSlogis <- selfStart(~ Asym/(1 + exp((xmid - x)/scal)),
function(mCall, data, LHS)
{

xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 4) {

stop("Too few distinct x values to fit a logistic")
}
z <- xy[["y"]]
if (min(z) <= 0) { z <- z + 0.05 * max(z) } # avoid zeroes
z <- z/(1.05 * max(z)) # scale to within unit height
xy[["z"]] <- log(z/(1 - z)) # logit transformation
aux <- coef(lm(x ~ z, xy))
parameters(xy) <- list(xmid = aux[1], scal = aux[2])
pars <- as.vector(coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)),

data = xy, algorithm = "plinear")))
value <- c(pars[3], pars[1], pars[2])
names(value) <- mCall[c("Asym", "xmid", "scal")]
value

}, c("Asym", "xmid", "scal"))

'first.order.log.model' is a function object defining a first order
compartment model
'first.order.log.initial' is a function object which calculates initial
values for the parameters in 'first.order.log.model'

self-starting first order compartment model
Not run:
SSfol <- selfStart(first.order.log.model, first.order.log.initial)

1246 setNames

End(Not run)

setNames Set the Names in an Object

Description

This is a convenience function that sets the names on an object and returns the object. It is most
useful at the end of a function definition where one is creating the object to be returned and would
prefer not to store it under a name just so the names can be assigned.

Usage

setNames(object, nm)

Arguments

object an object for which anames attribute will be meaningful

nm a character vector of names to assign to the object

Value

An object of the same sort asobject with the new names assigned.

Author(s)

Douglas M. Bates and Saikat DebRoy

See Also

clearNames

Examples

setNames(1:3, c("foo", "bar", "baz"))
this is just a short form of
tmp <- 1:3
names(tmp) <- c("foo", "bar", "baz")
tmp

shapiro.test 1247

shapiro.test Shapiro-Wilk Normality Test

Description

Performs the Shapiro-Wilk test of normality.

Usage

shapiro.test(x)

Arguments

x a numeric vector of data values. Missing values are allowed, but the number of
non-missing values must be between 3 and 5000.

Value

A list with class"htest" containing the following components:

statistic the value of the Shapiro-Wilk statistic.

p.value an approximate p-value for the test. This is said in Royston (1995) to be ade-
quate forp.value < 0.1 .

method the character string"Shapiro-Wilk normality test" .

data.name a character string giving the name(s) of the data.

Source

The algorithm used is a C translation of the Fortran code described in Royston (1995) and found
at http://lib.stat.cmu.edu/apstat/R94 . The calculation of the p value is exact for
n = 3, otherwise approximations are used, separately for4 ≤ n ≤ 11 andn ≥ 12.

References

Patrick Royston (1982) An extension of Shapiro and Wilk’sW test for normality to large samples.
Applied Statistics, 31, 115–124.

Patrick Royston (1982) Algorithm AS 181: TheW test for Normality.Applied Statistics, 31, 176–
180.

Patrick Royston (1995) Remark AS R94: A remark on Algorithm AS 181: TheW test for normality.
Applied Statistics, 44, 547–551.

See Also

qqnorm for producing a normal quantile-quantile plot.

Examples

shapiro.test(rnorm(100, mean = 5, sd = 3))
shapiro.test(runif(100, min = 2, max = 4))

http://lib.stat.cmu.edu/apstat/R94

1248 SignRank

SignRank Distribution of the Wilcoxon Signed Rank Statistic

Description

Density, distribution function, quantile function and random generation for the distribution of the
Wilcoxon Signed Rank statistic obtained from a sample with sizen.

Usage

dsignrank(x, n, log = FALSE)
psignrank(q, n, lower.tail = TRUE, log.p = FALSE)
qsignrank(p, n, lower.tail = TRUE, log.p = FALSE)
rsignrank(nn, n)

Arguments

x,q vector of quantiles.

p vector of probabilities.

nn number of observations. Iflength(nn) > 1 , the length is taken to be the
number required.

n number(s) of observations in the sample(s). A positive integer, or a vector of
such integers.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

This distribution is obtained as follows. Letx be a sample of sizen from a continuous distribution
symmetric about the origin. Then the Wilcoxon signed rank statistic is the sum of the ranks of
the absolute valuesx[i] for which x[i] is positive. This statistic takes values between0 and
n(n+ 1)/2, and its mean and variance aren(n+ 1)/4 andn(n+ 1)(2n+ 1)/24, respectively.

If either of the first two arguments is a vector, the recycling rule is used to do the calculations for
all combinations of the two up to the length of the longer vector.

Value

dsignrank gives the density,psignrank gives the distribution function,qsignrank gives
the quantile function, andrsignrank generates random deviates.

Author(s)

Kurt Hornik

See Also

wilcox.test to calculate the statistic from data, find p values and so on.

dwilcox etc, for the distribution oftwo-sampleWilcoxon rank sum statistic.

simulate 1249

Examples

require(graphics)

par(mfrow=c(2,2))
for(n in c(4:5,10,40)) {

x <- seq(0, n*(n+1)/2, length=501)
plot(x, dsignrank(x,n=n), type='l', main=paste("dsignrank(x,n=",n,")"))

}

simulate Simulate Responses

Description

Simulate one or more response vectors from the theoretical distribution corresponding to a fitted
model object.

Usage

simulate(object, nsim, seed, ...)

Arguments

object an object representing a fitted model.

nsim number of response vectors to simulate. Defaults to 1.

seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’).
For the "lm" method, eitherNULL or an integer that will be used in a call to
set.seed before simulating the response vectors. If set, the value is saved as
the"seed" attribute of the returned value. The default,NULLwill not change
the random generator state, and return.Random.seed as"seed" attribute,
see below.

... additional optional arguments.

Details

This is a generic function with a method forlm objects. Consult the individual modeling functions
for details on how to use this function.

Value

Typically, a list of lengthnsim of simulated response vectors. When appropriate the result can be
a data frame (which is a special type of list).

For the"lm" method, the result is a data frame with an attribute"seed" containing theseed
argument andas.list(RNGkind ()) if seed was notNULL, or the value of.Random.seed
before the simulation was started whenseed was NULL as by default.

See Also

fitted.values andresiduals for related methods;glm , lm for model fitting.

1250 smooth

Examples

x <- 1:5
mod1 <- lm(c(1:3,7,6) ~ x)
S1 <- simulate(mod1, nsim = 4)
repeat the simulation:
.Random.seed <- attr(S1, "seed")
identical(S1, simulate(mod1, nsim = 4))

S2 <- simulate(mod1, nsim = 200, seed = 101)
rowMeans(S2) # should be about
fitted(mod1)

repeat identically:
(sseed <- attr(S2, "seed")) # seed; RNGkind as attribute
stopifnot(identical(S2, simulate(mod1, nsim = 200, seed = sseed)))

To be sure about the proper RNGkind, e.g., after
RNGversion("1.0.0")
first set the RNG kind, then simulate
do.call(RNGkind, attr(sseed, "kind"))
identical(S2, simulate(mod1, nsim = 200, seed = sseed))

smooth Tukey’s (Running Median) Smoothing

Description

Tukey’s smoothers,3RS3R, 3RSS, 3R, etc.

Usage

smooth(x, kind = c("3RS3R", "3RSS", "3RSR", "3R", "3", "S"),
twiceit = FALSE, endrule = "Tukey", do.ends = FALSE)

Arguments

x a vector or time series

kind a character string indicating the kind of smoother required; defaults to
"3RS3R" .

twiceit logical, indicating if the result should be ‘twiced’. Twicing a smootherS(y)
meansS(y) + S(y − S(y)), i.e., adding smoothed residuals to the smoothed
values. This decreases bias (increasing variance).

endrule a character string indicating the rule for smoothing at the boundary. Either
"Tukey" (default) or"copy" .

do.ends logical, indicating if the 3-splitting of ties should also happen at the boundaries
(ends). This is only used forkind = "S" .

smooth 1251

Details

3 is Tukey’s short notation for runningmedian s of length3,
3R stands forRepeated3 until convergence, and
S for Splitting of horizontal stretches of length 2 or 3.

Hence,3RS3Ris a concatenation of3R, S and3R, 3RSSsimilarly, whereas3RSRmeans first3R
and then(S and 3) Repeated until convergence – which can be bad.

Value

An object of class"tukeysmooth" (which hasprint andsummary methods) and is a vector
or time series containing the smoothed values with additional attributes.

Note

S and S-PLUS use a different (somewhat better) Tukey smoother insmooth(*) . Note that there
are other smoothing methods which provide rather better results. These were designed for hand
calculations and may be used mainly for didactical purposes.

SinceR version 1.2,smooth doesreally implement Tukey’s end-point rule correctly (see argument
endrule).

kind = "3RSR" has been the default tillR-1.1, but it can have very bad properties, see the
examples.

Note that repeated application ofsmooth(*) doessmooth more, for the"3RS*" kinds.

References

Tukey, J. W. (1977).Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

lowess ; loess , supsmu andsmooth.spline .

Examples

require(graphics)

see also demo(smooth) !

x1 <- c(4, 1, 3, 6, 6, 4, 1, 6, 2, 4, 2) # very artificial
(x3R <- smooth(x1, "3R")) # 2 iterations of "3"
smooth(x3R, kind = "S")

sm.3RS <- function(x, ...)
smooth(smooth(x, "3R", ...), "S", ...)

y <- c(1,1, 19:1)
plot(y, main = "misbehaviour of \"3RSR\"", col.main = 3)
lines(sm.3RS(y))
lines(smooth(y))
lines(smooth(y, "3RSR"), col = 3, lwd = 2)# the horror

x <- c(8:10,10, 0,0, 9,9)
plot(x, main = "breakdown of 3R and S and hence 3RSS")
matlines(cbind(smooth(x,"3R"),smooth(x,"S"), smooth(x,"3RSS"),smooth(x)))

1252 smooth.spline

presidents[is.na(presidents)] <- 0 # silly
summary(sm3 <- smooth(presidents, "3R"))
summary(sm2 <- smooth(presidents,"3RSS"))
summary(sm <- smooth(presidents))

all.equal(c(sm2),c(smooth(smooth(sm3, "S"), "S"))) # 3RSS === 3R S S
all.equal(c(sm), c(smooth(smooth(sm3, "S"), "3R")))# 3RS3R === 3R S 3R

plot(presidents, main = "smooth(presidents0, *) : 3R and default 3RS3R")
lines(sm3,col = 3, lwd = 1.5)
lines(sm, col = 2, lwd = 1.25)

smooth.spline Fit a Smoothing Spline

Description

Fits a cubic smoothing spline to the supplied data.

Usage

smooth.spline(x, y = NULL, w = NULL, df, spar = NULL,
cv = FALSE, all.knots = FALSE, nknots = NULL,
keep.data = TRUE, df.offset = 0, penalty = 1,
control.spar = list())

Arguments

x a vector giving the values of the predictor variable, or a list or a two-column
matrix specifying x and y.

y responses. Ify is missing, the responses are assumed to be specified byx .

w optional vector of weights of the same length asx ; defaults to all 1.

df the desired equivalent number of degrees of freedom (trace of the smoother ma-
trix).

spar smoothing parameter, typically (but not necessarily) in(0, 1]. The coefficientλ
of the integral of the squared second derivative in the fit (penalized log likeli-
hood) criterion is a monotone function ofspar , see the details below.

cv ordinary (TRUE) or ‘generalized’ cross-validation (GCV) whenFALSE.

all.knots if TRUE, all distinct points inx are used as knots. IfFALSE (default), a subset
of x[] is used, specificallyx[j] where thenknots indices are evenly spaced
in 1:n , see also the next argumentnknots .

nknots integer giving the number of knots to use whenall.knots=FALSE . Per de-
fault, this is less thann, the number of uniquex values forn > 49.

keep.data logical specifying if the input data should be kept in the result. IfTRUE(as per
default), fitted values and residuals are available from the result.

df.offset allows the degrees of freedom to be increased bydf.offset in the GCV
criterion.

penalty the coefficient of the penalty for degrees of freedom in the GCV criterion.

smooth.spline 1253

control.spar optional list with named components controlling the root finding when the
smoothing parameterspar is computed, i.e., missing orNULL, see below.
Note that this is partlyexperimentaland may change with general spar compu-
tation improvements!

low: lower bound forspar ; defaults to -1.5 (used to implicitly default to 0 in
R versions earlier than 1.4).

high: upper bound forspar ; defaults to +1.5.
tol: the absolute precision (tolerance) used; defaults to 1e-4 (formerly 1e-3).
eps: the relative precision used; defaults to 2e-8 (formerly 0.00244).
trace: logical indicating if iterations should be traced.
maxit: integer giving the maximal number of iterations; defaults to 500.

Note thatspar is only searched for in the interval[low, high].

Details

Thex vector should contain at least four distinct values.Distincthere means ‘distinct after rounding
to 6 significant digits’, i.e.,x will be transformed tounique(sort(signif(x, 6))) , andy
andware pooled accordingly.

The computationalλ used (as a function ofs = spar) is λ = r ∗ 2563s−1 where r =
tr(X ′WX)/tr(Σ), Σ is the matrix given byΣij =

∫
B′′

i (t)B′′
j (t)dt,X is given byXij = Bj(xi),

W is the diagonal matrix of weights (scaled such that its trace isn, the original number of observa-
tions) andBk(.) is thek-th B-spline.

Note that with these definitions,fi = f(xi), and the B-spline basis representationf = Xc (i.e., c
is the vector of spline coefficients), the penalized log likelihood isL = (y− f)′W (y− f)+λc′Σc,
and hencec is the solution of the (ridge regression)(X ′WX + λΣ)c = X ′Wy.

If spar is missing orNULL, the value ofdf is used to determine the degree of smoothing. If
both are missing, leave-one-out cross-validation (ordinary or ‘generalized’ as determined bycv) is
used to determineλ. Note that from the above relation,spar is s = s0 + 0.0601 ∗ log λ, which
is intentionallydifferent from the S-plus implementation ofsmooth.spline (wherespar is
proportional toλ). In R’s (log λ) scale, it makes more sense to varyspar linearly.

Note however that currently the results may become very unreliable forspar values smaller than
about -1 or -2. The same may happen for values larger than 2 or so. Don’t think of settingspar or
the controlslow andhigh outside such a safe range, unless you know what you are doing!

The ‘generalized’ cross-validation method will work correctly when there are duplicated points in
x . However, it is ambiguous what leave-one-out cross-validation means with duplicated points,
and the internal code uses an approximation that involves leaving out groups of duplicated points.
cv=TRUE is best avoided in that case.

Value

An object of class"smooth.spline" with components

x thedistinctx values in increasing order, see the ‘Details’ above.

y the fitted values corresponding tox .

w the weights used at the unique values ofx .

yin the y values used at the uniquey values.

data only if keep.data = TRUE : itself a list with componentsx , y andw of
the same length. These are the original(xi, yi, wi), i = 1, . . . , n, values where
data$x may have repeated values and hence be longer than the abovex com-
ponent; see details.

1254 smooth.spline

lev leverages, the diagonal values of the smoother matrix.

cv.crit cross-validation score, ‘generalized’ or true, depending oncv .

pen.crit penalized criterion

crit the criterion value minimized in the underlying.Fortran routine ‘sslvrg’.

df equivalent degrees of freedom used. Note that (currently) this value may become
quite unprecise when the truedf is between and 1 and 2.

spar the value ofspar computed or given.

lambda the value ofλ corresponding tospar , see the details above.

iparms named integer(3) vector where..$ipars["iter"] gives number of spar
computing iterations used.

fit list for use bypredict.smooth.spline , with components

knot: the knot sequence (including the repeated boundary knots).

nk: number of coefficients or number of ‘proper’ knots plus 2.

coef: coefficients for the spline basis used.

min, range: numbers giving the corresponding quantities ofx .

call the matched call.

Note

The defaultall.knots = FALSE andnknots = NULL entails using onlyO(n0.2) knots in-
stead ofn for n > 49. This cuts speed and memory requirements, but not drastically anymore since
R version 1.5.1 where it is onlyO(nk) +O(n) wherenk is the number of knots. In this case where
not all uniquex values are used as knots, the result is not a smoothing spline in the strict sense, but
very close unless a small smoothing parameter (or largedf) is used.

Author(s)

R implementation by B. D. Ripley and Martin Maechler (spar/lambda , etc).

This function is based on code in theGAMFIT Fortran program by T. Hastie and R. Tibshi-
rani (http://lib.stat.cmu.edu/general/), which makes use of spline code by Finbarr
O’Sullivan. Its design parallels thesmooth.spline function of Chambers & Hastie (1992).

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical Models in S, Wadsworth & Brooks/Cole.

Green, P. J. and Silverman, B. W. (1994)Nonparametric Regression and Generalized Linear Mod-
els: A Roughness Penalty Approach.Chapman and Hall.

Hastie, T. J. and Tibshirani, R. J. (1990)Generalized Additive Models.Chapman and Hall.

See Also

predict.smooth.spline for evaluating the spline and its derivatives.

http://lib.stat.cmu.edu/general/

smoothEnds 1255

Examples

require(graphics)

attach(cars)
plot(speed, dist, main = "data(cars) & smoothing splines")
cars.spl <- smooth.spline(speed, dist)
(cars.spl)
This example has duplicate points, so avoid cv=TRUE

lines(cars.spl, col = "blue")
lines(smooth.spline(speed, dist, df=10), lty=2, col = "red")
legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),

"s(* , df = 10)"), col = c("blue","red"), lty = 1:2,
bg='bisque')

detach()

Residual (Tukey Anscombe) plot:
plot(residuals(cars.spl) ~ fitted(cars.spl))
abline(h = 0, col="gray")

consistency check:
stopifnot(all.equal(cars$dist,

fitted(cars.spl) + residuals(cars.spl)))

##-- artificial example
y18 <- c(1:3,5,4,7:3,2*(2:5),rep(10,4))
xx <- seq(1,length(y18), len=201)
(s2 <- smooth.spline(y18)) # GCV
(s02 <- smooth.spline(y18, spar = 0.2))
plot(y18, main=deparse(s2$call), col.main=2)
lines(s2, col = "gray"); lines(predict(s2, xx), col = 2)
lines(predict(s02, xx), col = 3); mtext(deparse(s02$call), col = 3)

The following shows the problematic behavior of 'spar' searching:
(s2 <- smooth.spline(y18, control = list(trace=TRUE,tol=1e-6, low= -1.5)))
(s2m <- smooth.spline(y18, cv = TRUE,

control = list(trace=TRUE,tol=1e-6, low= -1.5)))
both above do quite similarly (Df = 8.5 +- 0.2)

smoothEnds End Points Smoothing (for Running Medians)

Description

Smooth end points of a vectory using subsequently smaller medians and Tukey’s end point rule at
the very end. (of odd span),

Usage

smoothEnds(y, k = 3)

1256 smoothEnds

Arguments

y dependent variable to be smoothed (vector).

k width of largest median window; must be odd.

Details

smoothEnds is used to only do the ‘end point smoothing’, i.e., change at most the observations
closer to the beginning/end than half the windowk . The first and last value are computed using
Tukey’s end point rule, i.e.,sm[1] = median(y[1], sm[2], 3*sm[2] - 2*sm[3]) .

Value

vector of smoothed values, the same length asy .

Author(s)

Martin Maechler

References

John W. Tukey (1977)Exploratory Data Analysis, Addison.

Velleman, P.F., and Hoaglin, D.C. (1981)ABC of EDA (Applications, Basics, and Computing of
Exploratory Data Analysis); Duxbury.

See Also

runmed (*, endrule = "median") which callssmoothEnds() .

Examples

require(graphics)

y <- ys <- (-20:20)^2
y [c(1,10,21,41)] <- c(100, 30, 400, 470)
s7k <- runmed(y,7, endrule = "keep")
s7. <- runmed(y,7, endrule = "const")
s7m <- runmed(y,7)
col3 <- c("midnightblue","blue","steelblue")
plot(y, main = "Running Medians -- runmed(*, k=7, end.rule = X)")
lines(ys, col = "light gray")
matlines(cbind(s7k,s7.,s7m), lwd= 1.5, lty = 1, col = col3)
legend(1,470, paste("endrule",c("keep","constant","median"),sep=" = "),

col = col3, lwd = 1.5, lty = 1)

stopifnot(identical(s7m, smoothEnds(s7k, 7)))

sortedXyData 1257

sortedXyData Create a sortedXyData object

Description

This is a constructor function for the class ofsortedXyData objects. These objects are mostly
used in theinitial function for a self-starting nonlinear regression model, which will be of the
selfStart class.

Usage

sortedXyData(x, y, data)

Arguments

x a numeric vector or an expression that will evaluate indata to a numeric vector

y a numeric vector or an expression that will evaluate indata to a numeric vector

data an optional data frame in which to evaluate expressions forx andy , if they are
given as expressions

Value

A sortedXyData object. This is a data frame with exactly two numeric columns, namedx and
y . The rows are sorted so thex column is in increasing order. Duplicatex values are eliminated by
averaging the correspondingy values.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart , NLSstClosestX , NLSstLfAsymptote , NLSstRtAsymptote

Examples

DNase.2 <- DNase[DNase$Run == "2",]
sortedXyData(expression(log(conc)), expression(density), DNase.2)

spec.ar Estimate Spectral Density of a Time Series from AR Fit

Description

Fits an AR model tox (or uses the existing fit) and computes (and by default plots) the spectral
density of the fitted model.

Usage

spec.ar(x, n.freq, order = NULL, plot = TRUE, na.action = na.fail,
method = "yule-walker", ...)

1258 spec.ar

Arguments

x A univariate (not yet:or multivariate) time series or the result of a fit byar .

n.freq The number of points at which to plot.

order The order of the AR model to be fitted. If omitted, the order is chosen by AIC.

plot Plot the periodogram?

na.action NAaction function.

method method for ar fit.

... Graphical arguments passed toplot.spec .

Value

An object of class"spec" . The result is returned invisibly ifplot is true.

Warning

Some authors, for example Thomson (1990), warn strongly that AR spectra can be misleading.

Note

The multivariate case is not yet implemented.

References

Thompson, D.J. (1990) Time series analysis of Holocene climate data.Phil. Trans. Roy. Soc. A
330, 601–616.

Venables, W.N. and Ripley, B.D. (2002)Modern Applied Statistics with S.Fourth edition. Springer.
(Especially page 402.)

See Also

ar , spectrum .

Examples

require(graphics)

spec.ar(lh)

spec.ar(ldeaths)
spec.ar(ldeaths, method="burg")

spec.pgram 1259

spec.pgram Estimate Spectral Density of a Time Series by a Smoothed Peri-
odogram

Description

spec.pgram calculates the periodogram using a fast Fourier transform, and optionally smooths
the result with a series of modified Daniell smoothers (moving averages giving half weight to the
end values).

Usage

spec.pgram(x, spans = NULL, kernel, taper = 0.1,
pad = 0, fast = TRUE, demean = FALSE, detrend = TRUE,
plot = TRUE, na.action = na.fail, ...)

Arguments

x univariate or multivariate time series.

spans vector of odd integers giving the widths of modified Daniell smoothers to be
used to smooth the periodogram.

kernel alternatively, a kernel smoother of class"tskernel" .

taper specifies the proportion of data to taper. A split cosine bell taper is applied to
this proportion of the data at the beginning and end of the series.

pad proportion of data to pad. Zeros are added to the end of the series to increase its
length by the proportionpad .

fast logical; if TRUE, pad the series to a highly composite length.

demean logical. If TRUE, subtract the mean of the series.

detrend logical. If TRUE, remove a linear trend from the series. This will also remove
the mean.

plot plot the periodogram?

na.action NAaction function.

... graphical arguments passed toplot.spec .

Details

The raw periodogram is not a consistent estimator of the spectral density, but adjacent values are
asymptotically independent. Hence a consistent estimator can be derived by smoothing the raw
periodogram, assuming that the spectral density is smooth.

The series will be automatically padded with zeros until the series length is a highly composite
number in order to help the Fast Fourier Transform. This is controlled by thefast and not the
pad argument.

The periodogram at zero is in theory zero as the mean of the series is removed (but this may be
affected by tapering): it is replaced by an interpolation of adjacent values during smoothing, and no
value is returned for that frequency.

1260 spec.pgram

Value

A list object of class"spec" (seespectrum) with the following additional components:

kernel Thekernel argument, or the kernel constructed fromspans .

df The distribution of the spectral density estimate can be approximated by a
(scaled) chi square distribution withdf degrees of freedom.

bandwidth The equivalent bandwidth of the kernel smoother as defined by Bloomfield
(1976, page 201).

taper The value of thetaper argument.

pad The value of thepad argument.

detrend The value of thedetrend argument.

demean The value of thedemean argument.

The result is returned invisibly ifplot is true.

Author(s)

Originally Martyn Plummer; kernel smoothing by Adrian Trapletti, synthesis by B.D. Ripley

References

Bloomfield, P. (1976)Fourier Analysis of Time Series: An Introduction.Wiley.

Brockwell, P.J. and Davis, R.A. (1991)Time Series: Theory and Methods.Second edition. Springer.

Venables, W.N. and Ripley, B.D. (2002)Modern Applied Statistics with S.Fourth edition. Springer.
(Especially pp. 392–7.)

See Also

spectrum , spec.taper , plot.spec , fft

Examples

require(graphics)

Examples from Venables & Ripley
spectrum(ldeaths)
spectrum(ldeaths, spans = c(3,5))
spectrum(ldeaths, spans = c(5,7))
spectrum(mdeaths, spans = c(3,3))
spectrum(fdeaths, spans = c(3,3))

bivariate example
mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths), spans = c(3,3))
plots marginal spectra: now plot coherency and phase
plot(mfdeaths.spc, plot.type = "coherency")
plot(mfdeaths.spc, plot.type = "phase")

now impose a lack of alignment
mfdeaths.spc <- spec.pgram(ts.intersect(mdeaths, lag(fdeaths, 4)),

spans = c(3,3), plot = FALSE)
plot(mfdeaths.spc, plot.type = "coherency")
plot(mfdeaths.spc, plot.type = "phase")

spec.taper 1261

stocks.spc <- spectrum(EuStockMarkets, kernel("daniell", c(30,50)),
plot = FALSE)

plot(stocks.spc, plot.type = "marginal") # the default type
plot(stocks.spc, plot.type = "coherency")
plot(stocks.spc, plot.type = "phase")

sales.spc <- spectrum(ts.union(BJsales, BJsales.lead),
kernel("modified.daniell", c(5,7)))

plot(sales.spc, plot.type = "coherency")
plot(sales.spc, plot.type = "phase")

spec.taper Taper a Time Series by a Cosine Bell

Description

Apply a cosine-bell taper to a time series.

Usage

spec.taper(x, p = 0.1)

Arguments

x A univariate or multivariate time series

p The proportion to be tapered at each end of the series, either a scalar (giving the
proportion for all series) or a vector of the length of the number of series (giving
the proportion for each series..

Details

The cosine-bell taper is applied to the first and lastp[i] observations of time seriesx[, i] .

Value

A new time series object.

See Also

spec.pgram , cpgram

1262 spectrum

spectrum Spectral Density Estimation

Description

Thespectrum function estimates the spectral density of a time series.

Usage

spectrum(x, ..., method = c("pgram", "ar"))

Arguments

x A univariate or multivariate time series.

method String specifying the method used to estimate the spectral density. Allowed
methods are"pgram" (the default) and"ar" .

... Further arguments to specific spec methods orplot.spec .

Details

spectrum is a wrapper function which calls the methodsspec.pgram andspec.ar .

The spectrum here is defined with scaling1/frequency(x) , following S-PLUS. This makes
the spectral density a density over the range(-frequency(x)/2, +frequency(x)/2] ,
whereas a more common scaling is2π and range(−0.5, 0.5] (e.g., Bloomfield) or 1 and range
(−π, π].

If available, a confidence interval will be plotted byplot.spec : this is asymmetric, and the width
of the centre mark indicates the equivalent bandwidth.

Value

An object of class"spec" , which is a list containing at least the following components:

freq vector of frequencies at which the spectral density is estimated. (Possibly ap-
proximate Fourier frequencies.) The units are the reciprocal of cycles per unit
time (and not per observation spacing): see ‘Details’ below.

spec Vector (for univariate series) or matrix (for multivariate series) of estimates of
the spectral density at frequencies corresponding tofreq .

coh NULL for univariate series. For multivariate time series, a matrix containing the
squaredcoherency between different series. Columni + (j − 1) ∗ (j − 2)/2
of coh contains the squared coherency between columnsi andj of x , where
i < j.

phase NULL for univariate series. For multivariate time series a matrix containing the
cross-spectrum phase between different series. The format is the same ascoh .

series The name of the time series.

snames For multivariate input, the names of the component series.

method The method used to calculate the spectrum.

The result is returned invisibly ifplot is true.

splinefun 1263

Note

The default plot for objects of class"spec" is quite complex, including an error bar and default
title, subtitle and axis labels. The defaults can all be overridden by supplying the appropriate graph-
ical parameters.

Author(s)

Martyn Plummer, B.D. Ripley

References

Bloomfield, P. (1976)Fourier Analysis of Time Series: An Introduction.Wiley.

Brockwell, P. J. and Davis, R. A. (1991)Time Series: Theory and Methods.Second edition.
Springer.

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S-PLUS.Fourth edition.
Springer. (Especially pages 392–7.)

See Also

spec.ar , spec.pgram ; plot.spec .

Examples

require(graphics)

Examples from Venables & Ripley
spec.pgram
par(mfrow=c(2,2))
spectrum(lh)
spectrum(lh, spans=3)
spectrum(lh, spans=c(3,3))
spectrum(lh, spans=c(3,5))

spectrum(ldeaths)
spectrum(ldeaths, spans=c(3,3))
spectrum(ldeaths, spans=c(3,5))
spectrum(ldeaths, spans=c(5,7))
spectrum(ldeaths, spans=c(5,7), log="dB", ci=0.8)

for multivariate examples see the help for spec.pgram

spec.ar
spectrum(lh, method="ar")
spectrum(ldeaths, method="ar")

splinefun Interpolating Splines

Description

Perform cubic spline interpolation of given data points, returning either a list of points obtained by
the interpolation or a function performing the interpolation.

1264 splinefun

Usage

splinefun(x, y = NULL, method = "fmm", ties = mean)

spline(x, y = NULL, n = 3*length(x), method = "fmm",
xmin = min(x), xmax = max(x), ties = mean)

Arguments

x,y vectors giving the coordinates of the points to be interpolated. Alternatively a
single plotting structure can be specified: seexy.coords .

method specifies the type of spline to be used. Possible values are"fmm" , "natural"
and"periodic" .

n interpolation takes place atn equally spaced points spanning the interval [xmin ,
xmax].

xmin left-hand endpoint of the interpolation interval.

xmax right-hand endpoint of the interpolation interval.

ties Handling of tiedx values. Either a function with a single vector argument re-
turning a single number result or the string"ordered" .

Details

The inputs can contain missing values which are deleted, so at least one complete(x, y) pair is
required. Ifmethod = "fmm" , the spline used is that of Forsythe, Malcolm and Moler (an exact
cubic is fitted through the four points at each end of the data, and this is used to determine the end
conditions). Natural splines are used whenmethod = "natural" , and periodic splines when
method = "periodic" .

These interpolation splines can also be used for extrapolation, that is prediction at points outside the
range ofx . Extrapolation makes little sense formethod = "fmm" ; for natural splines it is linear
using the slope of the interpolating curve at the nearest data point.

Value

spline returns a list containing componentsx andy which give the ordinates where interpolation
took place and the interpolated values.

splinefun returns a function with formal argumentsx andderiv , the latter defaulting to zero.
This function can be used to evaluate the interpolating cubic spline (deriv =0), or its derivatives
(deriv =1,2,3) at the pointsx , where the spline function interpolates the data points originally
specified. This is often more useful thanspline .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977)Computer Methods for Mathematical
Computations.

SSasymp 1265

See Also

approx andapproxfun for constant and linear interpolation.

Packagesplines, especiallyinterpSpline andperiodicSpline for interpolation splines.
That package also generates spline bases that can be used for regression splines.

smooth.spline for smoothing splines.

Examples

require(graphics)

op <- par(mfrow = c(2,1), mgp = c(2,.8,0), mar = .1+c(3,3,3,1))
n <- 9
x <- 1:n
y <- rnorm(n)
plot(x, y, main = paste("spline[fun](.) through", n, "points"))
lines(spline(x, y))
lines(spline(x, y, n = 201), col = 2)

y <- (x-6)^2
plot(x, y, main = "spline(.) -- 3 methods")
lines(spline(x, y, n = 201), col = 2)
lines(spline(x, y, n = 201, method = "natural"), col = 3)
lines(spline(x, y, n = 201, method = "periodic"), col = 4)
legend(6,25, c("fmm","natural","periodic"), col=2:4, lty=1)

y <- sin((x-0.5)*pi)
f <- splinefun(x, y)
ls(envir = environment(f))
splinecoef <- get("z", envir = environment(f))
curve(f(x), 1, 10, col = "green", lwd = 1.5)
points(splinecoef, col = "purple", cex = 2)
curve(f(x, deriv=1), 1, 10, col = 2, lwd = 1.5)
curve(f(x, deriv=2), 1, 10, col = 2, lwd = 1.5, n = 401)
curve(f(x, deriv=3), 1, 10, col = 2, lwd = 1.5, n = 401)
par(op)

An example with ties (non-unique x values):
set.seed(1); x <- round(rnorm(30), 1); y <- sin(pi * x) + rnorm(30)/10
plot(x,y, main="spline(x,y) when x has ties")
lines(spline(x,y, n= 201), col = 2)
visualizes the non-unique ones:
tx <- table(x); mx <- as.numeric(names(tx[tx > 1]))
ry <- matrix(unlist(tapply(y, match(x,mx), range, simplify=FALSE)),

ncol=2, byrow=TRUE)
segments(mx, ry[,1], mx, ry[,2], col = "blue", lwd = 2)

SSasymp Asymptotic Regression Model

Description

This selfStart model evaluates the asymptotic regression function and its gradient. It has an
initial attribute that will evaluate initial estimates of the parametersAsym, R0, andlrc for a
given set of data.

1266 SSasympOff

Usage

SSasymp(input, Asym, R0, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very large values ofinput).

R0 a numeric parameter representing the response wheninput is zero.

lrc a numeric parameter representing the natural logarithm of the rate constant.

Value

a numeric vector of the same length asinput . It is the value of the expressionAsym+(R0-
Asym)*exp(-exp(lrc)*input) . If all of the argumentsAsym, R0, and lrc are names
of objects, the gradient matrix with respect to these names is attached as an attribute named
gradient .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
SSasymp(Lob.329$age, 100, -8.5, -3.2) # response only
Asym <- 100
resp0 <- -8.5
lrc <- -3.2
SSasymp(Lob.329$age, Asym, resp0, lrc) # response and gradient
getInitial(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)
Initial values are in fact the converged values
fm1 <- nls(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)
summary(fm1)

SSasympOff Asymptotic Regression Model with an Offset

Description

ThisselfStart model evaluates an alternative parametrization of the asymptotic regression func-
tion and the gradient with respect to those parameters. It has aninitial attribute that creates
initial estimates of the parametersAsym, lrc , andc0 .

Usage

SSasympOff(input, Asym, lrc, c0)

SSasympOrig 1267

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very large values ofinput).

lrc a numeric parameter representing the natural logarithm of the rate constant.

c0 a numeric parameter representing theinput for which the response is zero.

Value

a numeric vector of the same length asinput . It is the value of the expressionAsym*(1 -
exp(-exp(lrc)*(input - c0))) . If all of the argumentsAsym, lrc , andc0 are names
of objects, the gradient matrix with respect to these names is attached as an attribute named
gradient .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart

Examples

CO2.Qn1 <- CO2[CO2$Plant == "Qn1",]
SSasympOff(CO2.Qn1$conc, 32, -4, 43) # response only
Asym <- 32; lrc <- -4; c0 <- 43
SSasympOff(CO2.Qn1$conc, Asym, lrc, c0) # response and gradient
getInitial(uptake ~ SSasymp(conc, Asym, lrc, c0), data = CO2.Qn1)
Initial values are in fact the converged values
fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0), data = CO2.Qn1)
summary(fm1)

SSasympOrig Asymptotic Regression Model through the Origin

Description

This selfStart model evaluates the asymptotic regression function through the origin and its
gradient. It has aninitial attribute that will evaluate initial estimates of the parametersAsym
andlrc for a given set of data.

Usage

SSasympOrig(input, Asym, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote.

lrc a numeric parameter representing the natural logarithm of the rate constant.

1268 SSbiexp

Value

a numeric vector of the same length asinput . It is the value of the expressionAsym*(1 -
exp(-exp(lrc)*input)) . If all of the argumentsAsym and lrc are names of objects, the
gradient matrix with respect to these names is attached as an attribute namedgradient .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
SSasympOrig(Lob.329$age, 100, -3.2) # response only
Asym <- 100; lrc <- -3.2
SSasympOrig(Lob.329$age, Asym, lrc) # response and gradient
getInitial(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)
Initial values are in fact the converged values
fm1 <- nls(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)
summary(fm1)

SSbiexp Biexponential model

Description

This selfStart model evaluates the biexponential model function and its gradient. It has an
initial attribute that creates initial estimates of the parametersA1, lrc1 , A2, andlrc2 .

Usage

SSbiexp(input, A1, lrc1, A2, lrc2)

Arguments

input a numeric vector of values at which to evaluate the model.

A1 a numeric parameter representing the multiplier of the first exponential.

lrc1 a numeric parameter representing the natural logarithm of the rate constant of
the first exponential.

A2 a numeric parameter representing the multiplier of the second exponential.

lrc2 a numeric parameter representing the natural logarithm of the rate constant of
the second exponential.

SSD 1269

Value

a numeric vector of the same length asinput . It is the value of the expressionA1*exp(-
exp(lrc1)*input)+A2*exp(-exp(lrc2)*input) . If all of the argumentsA1, lrc1 ,
A2, andlrc2 are names of objects, the gradient matrix with respect to these names is attached as
an attribute namedgradient .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart

Examples

Indo.1 <- Indometh[Indometh$Subject == 1,]
SSbiexp(Indo.1$time, 3, 1, 0.6, -1.3) # response only
A1 <- 3; lrc1 <- 1; A2 <- 0.6; lrc2 <- -1.3
SSbiexp(Indo.1$time, A1, lrc1, A2, lrc2) # response and gradient
getInitial(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)
Initial values are in fact the converged values
fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)
summary(fm1)

SSD SSD Matrix and Estimated Variance Matrix in Multivariate Models

Description

Functions to compute matrix of residual sums of squares and products, or the estimated variance
matrix for multivariate linear models.

Usage

S3 method for class 'mlm'
SSD(object, ...)

S3 methods for class 'SSD' and 'mlm'
estVar(object, ...)

Arguments

object object of class"mlm" , or "SSD" in the case ofestVar .

... Unused

1270 SSfol

Value

SSD() returns a list of class"SSD" containing the following components

SSD The residual sums of squares and products matrix

df Degrees of freedom

call Copied fromobject

estVar returns a matrix with the estimated variances and covariances.

See Also

mauchly.test , anova.mlm

Examples

Lifted from Baron+Li:
"Notes on the use of R for psychology experiments and questionnaires"
Maxwell and Delaney, p. 497
reacttime <- matrix(c(
420, 420, 480, 480, 600, 780,
420, 480, 480, 360, 480, 600,
480, 480, 540, 660, 780, 780,
420, 540, 540, 480, 780, 900,
540, 660, 540, 480, 660, 720,
360, 420, 360, 360, 480, 540,
480, 480, 600, 540, 720, 840,
480, 600, 660, 540, 720, 900,
540, 600, 540, 480, 720, 780,
480, 420, 540, 540, 660, 780),
ncol = 6, byrow = TRUE,
dimnames=list(subj=1:10,

cond=c("deg0NA", "deg4NA", "deg8NA",
"deg0NP", "deg4NP", "deg8NP")))

mlmfit <- lm(reacttime~1)
SSD(mlmfit)
estVar(mlmfit)

SSfol First-order Compartment Model

Description

This selfStart model evaluates the first-order compartment function and its gradient. It has an
initial attribute that creates initial estimates of the parameterslKe , lKa , andlCl .

Usage

SSfol(Dose, input, lKe, lKa, lCl)

SSfpl 1271

Arguments

Dose a numeric value representing the initial dose.

input a numeric vector at which to evaluate the model.

lKe a numeric parameter representing the natural logarithm of the elimination rate
constant.

lKa a numeric parameter representing the natural logarithm of the absorption rate
constant.

lCl a numeric parameter representing the natural logarithm of the clearance.

Value

a numeric vector of the same length asinput , which is the value of the expressionDose *
exp(lKe+lKa-lCl) * (exp(-exp(lKe)*input)-exp(-exp(lKa)*input)) /
(exp(lKa)-exp(lKe)) .

If all of the argumentslKe , lKa , andlCl are names of objects, the gradient matrix with respect
to these names is attached as an attribute namedgradient .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart

Examples

Theoph.1 <- Theoph[Theoph$Subject == 1,]
SSfol(Theoph.1$Dose, Theoph.1$Time, -2.5, 0.5, -3) # response only
lKe <- -2.5; lKa <- 0.5; lCl <- -3
SSfol(Theoph.1$Dose, Theoph.1$Time, lKe, lKa, lCl) # response and gradient
getInitial(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
Initial values are in fact the converged values
fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
summary(fm1)

SSfpl Four-parameter Logistic Model

Description

This selfStart model evaluates the four-parameter logistic function and its gradient. It has an
initial attribute that will evaluate initial estimates of the parametersA, B, xmid , andscal for
a given set of data.

Usage

SSfpl(input, A, B, xmid, scal)

1272 SSgompertz

Arguments

input a numeric vector of values at which to evaluate the model.

A a numeric parameter representing the horizontal asymptote on the left side (very
small values ofinput).

B a numeric parameter representing the horizontal asymptote on the right side
(very large values ofinput).

xmid a numeric parameter representing theinput value at the inflection point of the
curve. The value ofSSfpl will be midway betweenA andB atxmid .

scal a numeric scale parameter on theinput axis.

Value

a numeric vector of the same length asinput . It is the value of the expressionA+(B-
A)/(1+exp((xmid-input)/scal)) . If all of the argumentsA, B, xmid , andscal are
names of objects, the gradient matrix with respect to these names is attached as an attribute named
gradient .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart

Examples

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]
SSfpl(Chick.1$Time, 13, 368, 14, 6) # response only
A <- 13; B <- 368; xmid <- 14; scal <- 6
SSfpl(Chick.1$Time, A, B, xmid, scal) # response and gradient
getInitial(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)
summary(fm1)

SSgompertz Gompertz Growth Model

Description

This selfStart model evaluates the Gompertz growth model and its gradient. It has an
initial attribute that creates initial estimates of the parametersAsym, b2 , andb3 .

Usage

SSgompertz(x, Asym, b2, b3)

SSlogis 1273

Arguments

x a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the asymptote.

b2 a numeric parameter related to the value of the function atx = 0

b3 a numeric parameter related to the scale thex axis.

Value

a numeric vector of the same length asinput . It is the value of the expressionAsym*exp(-
b2*b3^x) . If all of the argumentsAsym, b2 , andb3 are names of objects the gradient matrix
with respect to these names is attached as an attribute namedgradient .

Author(s)

Douglas Bates

See Also

nls , selfStart

Examples

DNase.1 <- subset(DNase, Run == 1)
SSlogis(log(DNase.1$conc), 4.5, 2.3, 0.7) # response only
Asym <- 4.5; b2 <- 2.3; b3 <- 0.7
SSgompertz(log(DNase.1$conc), Asym, b2, b3) # response and gradient
getInitial(density ~ SSgompertz(log(conc), Asym, b2, b3),

data = DNase.1)
Initial values are in fact the converged values
fm1 <- nls(density ~ SSgompertz(log(conc), Asym, b2, b3),

data = DNase.1)
summary(fm1)

SSlogis Logistic Model

Description

This selfStart model evaluates the logistic function and its gradient. It has aninitial at-
tribute that creates initial estimates of the parametersAsym, xmid , andscal .

Usage

SSlogis(input, Asym, xmid, scal)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the asymptote.

xmid a numeric parameter representing thex value at the inflection point of the curve.
The value ofSSlogis will be Asym/2 atxmid .

scal a numeric scale parameter on theinput axis.

1274 SSmicmen

Value

a numeric vector of the same length asinput . It is the value of the expression
Asym/(1+exp((xmid-input)/scal)) . If all of the argumentsAsym, xmid , andscal
are names of objects the gradient matrix with respect to these names is attached as an attribute
namedgradient .

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart

Examples

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]
SSlogis(Chick.1$Time, 368, 14, 6) # response only
Asym <- 368; xmid <- 14; scal <- 6
SSlogis(Chick.1$Time, Asym, xmid, scal) # response and gradient
getInitial(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)
summary(fm1)

SSmicmen Michaelis-Menten Model

Description

This selfStart model evaluates the Michaelis-Menten model and its gradient. It has an
initial attribute that will evaluate initial estimates of the parametersVmandK

Usage

SSmicmen(input, Vm, K)

Arguments

input a numeric vector of values at which to evaluate the model.

Vm a numeric parameter representing the maximum value of the response.

K a numeric parameter representing theinput value at which half the maximum
response is attained. In the field of enzyme kinetics this is called the Michaelis
parameter.

Value

a numeric vector of the same length asinput . It is the value of the expression
Vm*input/(K+input) . If both the argumentsVmand K are names of objects, the gradient
matrix with respect to these names is attached as an attribute namedgradient .

SSweibull 1275

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls , selfStart

Examples

PurTrt <- Puromycin[Puromycin$state == "treated",]
SSmicmen(PurTrt$conc, 200, 0.05) # response only
Vm <- 200; K <- 0.05
SSmicmen(PurTrt$conc, Vm, K) # response and gradient
getInitial(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)
Initial values are in fact the converged values
fm1 <- nls(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)
summary(fm1)
Alternative call using the subset argument
fm2 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")
summary(fm2)

SSweibull Weibull growth curve model

Description

ThisselfStart model evaluates the Weibull model for growth curve data and its gradient. It has
an initial attribute that will evaluate initial estimates of the parametersAsym, Drop , lrc , and
pwr for a given set of data.

Usage

SSweibull(x, Asym, Drop, lrc, pwr)

Arguments

x a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very small values ofx).

Drop a numeric parameter representing the change fromAsym to they intercept.

lrc a numeric parameter representing the natural logarithm of the rate constant.

pwr a numeric parameter representing the power to whichx is raised.

Details

This model is a generalization of theSSasymp model in that it reduces toSSasymp whenpwr is
unity.

1276 start

Value

a numeric vector of the same length asx . It is the value of the expressionAsym-Drop*exp(-
exp(lrc)*x^pwr) . If all of the argumentsAsym, Drop , lrc , andpwr are names of objects,
the gradient matrix with respect to these names is attached as an attribute namedgradient .

Author(s)

Douglas Bates

References

Ratkowsky, David A. (1983),Nonlinear Regression Modeling, Dekker. (section 4.4.5)

See Also

nls , selfStart , SSasymp

Examples

Chick.6 <- subset(ChickWeight, (Chick == 6) & (Time > 0))
SSweibull(Chick.6$Time, 160, 115, -5.5, 2.5) # response only
Asym <- 160; Drop <- 115; lrc <- -5.5; pwr <- 2.5
SSweibull(Chick.6$Time, Asym, Drop, lrc, pwr) # response and gradient
getInitial(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)
summary(fm1)

start Encode the Terminal Times of Time Series

Description

Extract and encode the times the first and last observations were taken. Provided only for compati-
bility with S version 2.

Usage

start(x, ...)
end(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

... extra arguments for future methods.

Details

These are generic functions, which will use thetsp attribute ofx if it exists. Their default methods
decode the start time from the original time units, so that for a monthly series1995.5 is repre-
sented asc(1995, 7) . For a series of frequencyf , time n+i/f is presented asc(n, i+1)
(even fori = 0 andf = 1).

stat.anova 1277

Warning

The representation used bystart andend has no meaning unless the frequency is supplied.

See Also

ts , time , tsp .

stat.anova GLM Anova Statistics

Description

This is a utility function, used inlm andglm methods foranova (..., test != NULL) and
should not be used by the average user.

Usage

stat.anova(table, test = c("Chisq", "F", "Cp"), scale, df.scale, n)

Arguments

table numeric matrix as results fromanova.glm (..., test=NULL) .

test a character string, matching one of"Chisq" , "F" or "Cp" .

scale a residual mean square or other scale estimate to be used as the denominator in
an F test.

df.scale degrees of freedom corresponding toscale .

n number of observations.

Value

A matrix which is the originaltable , augmented by a column of test statistics, depending on the
test argument.

References

Hastie, T. J. and Pregibon, D. (1992)Generalized linear models.Chapter 6 ofStatistical Models in
Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

anova.lm , anova.glm .

Examples

##-- Continued from '?glm':

print(ag <- anova(glm.D93))
stat.anova(ag$table, test = "Cp",

scale = sum(resid(glm.D93, "pearson")^2)/4,
df.scale = 4, n = 9)

1278 step

stats-deprecated Deprecated Functions in Stats package

Description

These functions are provided for compatibility with older versions ofR only, and may be defunct
as soon as the next release.

Details

There are currently no deprecated functions in this package.

See Also

Deprecated

step Choose a model by AIC in a Stepwise Algorithm

Description

Select a formula-based model by AIC.

Usage

step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)

Arguments

object an object representing a model of an appropriate class (mainly"lm" and
"glm"). This is used as the initial model in the stepwise search.

scope defines the range of models examined in the stepwise search. This should be
either a single formula, or a list containing componentsupper and lower ,
both formulae. See the details for how to specify the formulae and how they are
used.

scale used in the definition of the AIC statistic for selecting the models, currently only
for lm , aov andglm models. The default value,0, indicates the scale should
be estimated: seeextractAIC .

direction the mode of stepwise search, can be one of"both" , "backward" , or
"forward" , with a default of"both" . If the scope argument is missing
the default fordirection is "backward" .

trace if positive, information is printed during the running ofstep . Larger values
may give more detailed information.

keep a filter function whose input is a fitted model object and the associatedAIC
statistic, and whose output is arbitrary. Typicallykeep will select a subset
of the components of the object and return them. The default is not to keep
anything.

step 1279

steps the maximum number of steps to be considered. The default is 1000 (essentially
as many as required). It is typically used to stop the process early.

k the multiple of the number of degrees of freedom used for the penalty. Onlyk
= 2 gives the genuine AIC:k = log(n) is sometimes referred to as BIC or
SBC.

... any additional arguments toextractAIC .

Details

step usesadd1 anddrop1 repeatedly; it will work for any method for which they work, and
that is determined by having a valid method forextractAIC . When the additive constant can be
chosen so that AIC is equal to Mallows’Cp, this is done and the tables are labelled appropriately.

The set of models searched is determined by thescope argument. The right-hand-side of its
lower component is always included in the model, and right-hand-side of the model is included
in theupper component. Ifscope is a single formula, it specifes theupper component, and the
lower model is empty. Ifscope is missing, the initial model is used as theupper model.

Models specified byscope can be templates to updateobject as used byupdate.formula .
So using. in ascope formula means ‘what is already there’, with.^2 indicating all interactions
of existing terms.

There is a potential problem in usingglm fits with a variablescale , as in that case the deviance is
not simply related to the maximized log-likelihood. The"glm" method for functionextractAIC
makes the appropriate adjustment for agaussian family, but may need to be amended for other
cases. (Thebinomial andpoisson families have fixedscale by default and do not correspond
to a particular maximum-likelihood problem for variablescale .)

Value

the stepwise-selected model is returned, with up to two additional components. There is an
"anova" component corresponding to the steps taken in the search, as well as a"keep" com-
ponent if thekeep= argument was supplied in the call. The"Resid. Dev" column of the
analysis of deviance table refers to a constant minus twice the maximized log likelihood: it will
be a deviance only in cases where a saturated model is well-defined (thus excludinglm , aov and
survreg fits, for example).

Warning

The model fitting must apply the models to the same dataset. This may be a problem if there are
missing values andR’s default ofna.action = na.omit is used. We suggest you remove the
missing values first.

Note

This function differs considerably from the function in S, which uses a number of approximations
and does not in general compute the correct AIC.

This is a minimal implementation. UsestepAIC in packageMASS for a wider range of object
classes.

Author(s)

B. D. Ripley: step is a slightly simplified version ofstepAIC in packageMASS (Venables &
Ripley, 2002 and earlier editions).

1280 stepfun

The idea of astep function follows that described in Hastie & Pregibon (1992); but the implemen-
tation inR is more general.

References

Hastie, T. J. and Pregibon, D. (1992)Generalized linear models.Chapter 6 ofStatistical Models in
Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S.New York: Springer
(4th ed).

See Also

stepAIC in MASS, add1 , drop1

Examples

utils::example(lm)
step(lm.D9)

summary(lm1 <- lm(Fertility ~ ., data = swiss))
slm1 <- step(lm1)
summary(slm1)
slm1$anova

stepfun Step Function Class

Description

Given the vectors(x1, . . . , xn) and (y0, y1, . . . , yn) (one value more!),stepfun(x,y,...)
returns an interpolating ‘step’ function, sayfn . I.e.,fn(t) = ci (constant) fort ∈ (xi, xi+1) and
at the abscissa values, if (by default)right = FALSE , fn(xi) = yi and forright = TRUE ,
fn(xi) = yi−1, for i = 1, . . . , n.

The value of the constantci above depends on the ‘continuity’ parameterf . For the default,right
= FALSE, f = 0 , fn is acadlagfunction, i.e., continuous at right, limit (‘the point’) at left. In
general,ci is interpolated in between the neighbouringy values,ci = (1−f)yi+f ·yi+1. Therefore,
for non-0 values off , fn may no longer be a proper step function, since it can be discontinuous
from both sides, unlessright = TRUE, f = 1 which is right-continuous.

Usage

stepfun(x, y, f = as.numeric(right), ties = "ordered",
right = FALSE)

is.stepfun(x)
knots(Fn, ...)
as.stepfun(x, ...)

S3 method for class 'stepfun':
print(x, digits = getOption("digits") - 2, ...)

S3 method for class 'stepfun':
summary(object, ...)

stepfun 1281

Arguments

x numeric vector giving the knots or jump locations of the step function for
stepfun() . For the other functions,x is asobject below.

y numeric vector one longer thanx , giving the heights of the function valuesbe-
tweenthe x values.

f a number between 0 and 1, indicating how interpolation outside the given x
values should happen. Seeapproxfun .

ties Handling of tiedx values. Either a function or the string"ordered" . See
approxfun .

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

Fn, object anR object inheriting from"stepfun" .

digits number of significant digits to use, seeprint .

... potentially further arguments (required by the generic).

Value

A function of class "stepfun" , say fn . There are methods available for sum-
marizing ("summary(.)"), representing ("print(.)") and plotting ("plot(.)" , see
plot.stepfun) "stepfun" objects.

Theenvironment of fn contains all the information needed;

"x","y" the original arguments

"n" number of knots (x values)

"f" continuity parameter
"yleft", "yright"

the function valuesoutsidethe knots

"method" (always== "constant" , from approxfun (.)).

The knots are also available viaknots (fn) .

Author(s)

Martin Maechler,〈maechler@stat.math.ethz.ch〉 with some basic code from Thomas Lumley.

See Also

ecdf for empirical distribution functions as special step functions andplot.stepfun for plot-
ting step functions.

approxfun andsplinefun .

Examples

y0 <- c(1,2,4,3)
sfun0 <- stepfun(1:3, y0, f = 0)
sfun.2 <- stepfun(1:3, y0, f = .2)
sfun1 <- stepfun(1:3, y0, f = 1)
sfun1c <- stepfun(1:3, y0, right=TRUE)# hence f=1
sfun0
summary(sfun0)

1282 stl

summary(sfun.2)

look at the internal structure:
unclass(sfun0)
ls(envir = environment(sfun0))

x0 <- seq(0.5,3.5, by = 0.25)
rbind(x=x0, f.f0 = sfun0(x0), f.f02= sfun.2(x0),

f.f1 = sfun1(x0), f.f1c = sfun1c(x0))
Identities :
stopifnot(identical(y0[-1], sfun0 (1:3)),# right = FALSE

identical(y0[-4], sfun1c(1:3)))# right = TRUE

stl Seasonal Decomposition of Time Series by Loess

Description

Decompose a time series into seasonal, trend and irregular components usingloess , acronym
STL.

Usage

stl(x, s.window, s.degree = 0,
t.window = NULL, t.degree = 1,
l.window = nextodd(period), l.degree = t.degree,
s.jump = ceiling(s.window/10),
t.jump = ceiling(t.window/10),
l.jump = ceiling(l.window/10),
robust = FALSE,
inner = if(robust) 1 else 2,
outer = if(robust) 15 else 0,
na.action = na.fail)

Arguments

x univariate time series to be decomposed. This should be an object of class"ts"
with a frequency greater than one.

s.window either the character string"periodic" or the span (in lags) of the loess win-
dow for seasonal extraction, which should be odd. This has no default.

s.degree degree of locally-fitted polynomial in seasonal extraction. Should be zero or
one.

t.window the span (in lags) of the loess window for trend extraction, which should be
odd. If NULL, the default,nextodd(ceiling((1.5*period) / (1-
(1.5/s.window)))) , is taken.

t.degree degree of locally-fitted polynomial in trend extraction. Should be zero or one.

l.window the span (in lags) of the loess window of the low-pass filter used for each
subseries. Defaults to the smallest odd integer greater than or equal to
frequency(x) which is recommended since it prevents competition between
the trend and seasonal components. If not an odd integer its given value is in-
creased to the next odd one.

stl 1283

l.degree degree of locally-fitted polynomial for the subseries low-pass filter. Must be 0
or 1.

s.jump, t.jump, l.jump
integers at least one to increase speed of the respective smoother. Linear inter-
polation happens between every*.jump th value.

robust logical indicating if robust fitting be used in theloess procedure.

inner integer; the number of ‘inner’ (backfitting) iterations; usually very few (2) iter-
ations suffice.

outer integer; the number of ‘outer’ robustness iterations.

na.action action on missing values.

Details

The seasonal component is found byloesssmoothing the seasonal sub-series (the series of all Jan-
uary values, . . .); ifs.window = "periodic" smoothing is effectively replaced by taking the
mean. The seasonal values are removed, and the remainder smoothed to find the trend. The overall
level is removed from the seasonal component and added to the trend component. This process is
iterated a few times. Theremainder component is the residuals from the seasonal plus trend fit.

Several methods for the resulting class"stl" objects, see,plot.stl .

Value

stl returns an object of class"stl" with components

time.series a multiple time series with columnsseasonal , trend andremainder .

weights the final robust weights (all one if fitting is not done robustly).

call the matched call.

win integer (length 3 vector) with the spans used for the"s" , "t" , and "l"
smoothers.

deg integer (length 3) vector with the polynomial degrees for these smoothers.

jump integer (length 3) vector with the ‘jumps’ (skips) used for these smoothers.

ni number ofinner iterations

no number ofouter robustness iterations

Note

This is similar to but not identical to thestl function in S-PLUS. Theremainder component
given by S-PLUS is the sum of thetrend andremainder series from this function.

Author(s)

B.D. Ripley; Fortran code by Clevelandet al. (1990) from ‘netlib’.

References

R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning (1990) STL: A Seasonal-Trend
Decomposition Procedure Based on Loess.Journal of Official Statistics, 6, 3–73.

1284 stlmethods

See Also

plot.stl for stl methods;loess in packagestats(which is not actually used instl).

StructTS for different kind of decomposition.

Examples

require(graphics)

plot(stl(nottem, "per"))
plot(stl(nottem, s.window = 4, t.window = 50, t.jump = 1))

plot(stllc <- stl(log(co2), s.window=21))
summary(stllc)
linear trend, strict period.
plot(stl(log(co2), s.window="per", t.window=1000))

Two STL plotted side by side :
stmd <- stl(mdeaths, s.window = "per") # non-robust

summary(stmR <- stl(mdeaths, s.window = "per", robust = TRUE))
op <- par(mar = c(0, 4, 0, 3), oma = c(5, 0, 4, 0), mfcol = c(4, 2))
plot(stmd, set.pars=NULL, labels = NULL,

main = "stl(mdeaths, s.w = \"per\", robust = FALSE / TRUE)")
plot(stmR, set.pars=NULL)
mark the 'outliers' :
(iO <- which(stmR $ weights < 1e-8)) # 10 were considered outliers
sts <- stmR$time.series
points(time(sts)[iO], 0.8* sts[,"remainder"][iO], pch = 4, col = "red")
par(op)# reset

stlmethods Methods for STL Objects

Description

Methods for objects of classstl , typically the result ofstl . Theplot method does a multiple
figure plot with some flexibility.

There are also (non-visible)print andsummary methods.

Usage

S3 method for class 'stl':
plot(x, labels = colnames(X),

set.pars = list(mar = c(0, 6, 0, 6), oma = c(6, 0, 4, 0),
tck = -0.01, mfrow = c(nplot, 1)),

main = NULL, range.bars = TRUE, ..., col.range = "light gray")

Arguments

x stl object.

labels character of length 4 giving the names of the component time-series.

set.pars settings forpar (.) when setting up the plot.

StructTS 1285

main plot main title.

range.bars logical indicating if each plot should have a bar at its right side which are of
equal heights in user coordinates.

... further arguments passed to or from other methods.

col.range colour to be used for the range bars, if plotted. Note this appears after... and
so cannot be abbreviated.

See Also

plot.ts andstl , particularly for examples.

StructTS Fit Structural Time Series

Description

Fit a structural model for a time series by maximum likelihood.

Usage

StructTS(x, type = c("level", "trend", "BSM"), init = NULL,
fixed = NULL, optim.control = NULL)

Arguments

x a univariate numeric time series. Missing values are allowed.

type the class of structural model. If omitted, a BSM is used for a time series with
frequency(x) > 1 , and a local trend model otherwise.

init initial values of the variance parameters.

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, onlyNAentries infixed will be varied. Probably most useful for
setting variances to zero.

optim.control
List of control parameters foroptim . Method"L-BFGS-B" is used.

Details

Structural time seriesmodels are (linear Gaussian) state-space models for (univariate) time series
based on a decomposition of the series into a number of components. They are specified by a set of
error variances, some of which may be zero.

The simplest model is thelocal levelmodel specified bytype = "level" . This has an under-
lying levelµt which evolves by

µt+1 = µt + ξt, ξt ∼ N(0, σ2
ξ)

The observations are
xt = µt + εt, εt ∼ N(0, σ2

ε)

There are two parameters,σ2
ξ andσ2

ε . It is an ARIMA(0,1,1) model, but with restrictions on the
parameter set.

1286 StructTS

Thelocal linear trend model, type = "trend" , has the same measurement equation, but with a
time-varying slope in the dynamics forµt, given by

µt+1 = µt + νt + ξt, ξt ∼ N(0, σ2
ξ)

νt+1 = νt + ζt, ζt ∼ N(0, σ2
ζ)

with three variance parameters. It is not uncommon to findσ2
ζ = 0 (which reduces to the local level

model) orσ2
ξ = 0, which ensures a smooth trend. This is a restricted ARIMA(0,2,2) model.

The basic structural model, type = "BSM" , is a local trend model with an additional seasonal
component. Thus the measurement equation is

xt = µt + γt + εt, εt ∼ N(0, σ2
ε)

whereγt is a seasonal component with dynamics

γt+1 = −γt + · · ·+ γt−s+2 + ωt, ωt ∼ N(0, σ2
ω)

The boundary caseσ2
ω = 0 corresponds to a deterministic (but arbitrary) seasonal pattern. (This is

sometimes known as the ‘dummy variable’ version of the BSM.)

Value

A list of class"StructTS" with components:

coef the estimated variances of the components.

loglik the maximized log-likelihood. Note that as all these models are non-stationary
this includes a diffuse prior for some observations and hence is not comparable
with arima nor different types of structural models.

data the time seriesx .

residuals the standardized residuals.

fitted a multiple time series with one component for the level, slope and seasonal
components, estimated contemporaneously (that is at timet and not at the end
of the series).

call the matched call.

series the name of the seriesx .

code theconvergence code returned byoptim .

model, model0
Lists representing the Kalman Filter used in the fitting. SeeKalmanLike .
model0 is the initial state of the filter,model its final state.

xtsp thetsp attributes ofx .

Note

Optimization of structural models is a lot harder than many of the references admit. For example,
theAirPassengers data are considered in Brockwell & Davis (1996): their solution appears to
be a local maximum, but nowhere near as good a fit as that produced byStructTS . It is quite
common to find fits with one or more variances zero, and this can includeσ2

ε .

summary.aov 1287

References

Brockwell, P. J. & Davis, R. A. (1996).Introduction to Time Series and Forecasting. Springer, New
York. Sections 8.2 and 8.5.

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.

Harvey, A. C. (1989)Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press.

Harvey, A. C. (1993)Time Series Models. 2nd Edition, Harvester Wheatsheaf.

See Also

KalmanLike , tsSmooth ; stl for different kind of (seasonal) decomposition.

Examples

see also JohnsonJohnson, Nile and AirPassengers
require(graphics)

trees <- window(treering, start=0)
(fit <- StructTS(trees, type = "level"))
plot(trees)
lines(fitted(fit), col = "green")
tsdiag(fit)

(fit <- StructTS(log10(UKgas), type = "BSM"))
par(mfrow = c(4, 1))
plot(log10(UKgas))
plot(cbind(fitted(fit), resids=resid(fit)), main = "UK gas consumption")

keep some parameters fixed; trace optimizer:
StructTS(log10(UKgas), type = "BSM", fixed = c(0.1,0.001,NA,NA),

optim.control = list(trace=TRUE))

summary.aov Summarize an Analysis of Variance Model

Description

Summarize an analysis of variance model.

Usage

S3 method for class 'aov':
summary(object, intercept = FALSE, split,

expand.split = TRUE, keep.zero.df = TRUE, ...)

S3 method for class 'aovlist':
summary(object, ...)

1288 summary.aov

Arguments

object An object of class"aov" or "aovlist" .

intercept logical: should intercept terms be included?

split an optional named list, with names corresponding to terms in the model. Each
component is itself a list with integer components giving contrasts whose con-
tributions are to be summed.

expand.split logical: should the split apply also to interactions involving the factor?

keep.zero.df logical: should terms with no degrees of freedom be included?

... Arguments to be passed to or from other methods, forsummary.aovlist
including those forsummary.aov .

Value

An object of classc("summary.aov", "listof") or "summary.aovlist" respectively.

For a fits with a single stratum the result will be a list of ANOVA tables, one for each response
(even if there is only one response): the tables are of class"anova" inheriting from class
"data.frame" . They have columns"Df" , "Sum Sq" , "Mean Sq" , as well as"F value"
and"Pr(>F)" if there are non-zero residual degrees of freedom. There is a row for each term in
the model, plus one for"Residuals" if there are any.

For multistratum fits the return value is a list of such summaries, one for each stratum.

Note

The use ofexpand.split = TRUE is little tested: it is always possible to set it toFALSEand
specify exactly all the splits required.

See Also

aov , summary , model.tables , TukeyHSD

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

(npk.aov <- aov(yield ~ block + N*P*K, npk))
summary(npk.aov)
coefficients(npk.aov)

Cochran and Cox (1957, p.164)
3x3 factorial with ordered factors, each is average of 12.
CC <- data.frame(

y = c(449, 413, 326, 409, 358, 291, 341, 278, 312)/12,
P = ordered(gl(3, 3)), N = ordered(gl(3, 1, 9))

)
CC.aov <- aov(y ~ N * P, data = CC , weights = rep(12, 9))

summary.glm 1289

summary(CC.aov)

Split both main effects into linear and quadratic parts.
summary(CC.aov, split = list(N = list(L = 1, Q = 2),

P = list(L = 1, Q = 2)))

Split only the interaction
summary(CC.aov, split = list("N:P" = list(L.L = 1, Q = 2:4)))

split on just one var
summary(CC.aov, split = list(P = list(lin = 1, quad = 2)))
summary(CC.aov, split = list(P = list(lin = 1, quad = 2)),

expand.split=FALSE)

summary.glm Summarizing Generalized Linear Model Fits

Description

These functions are allmethods for classglm or summary.glm objects.

Usage

S3 method for class 'glm':
summary(object, dispersion = NULL, correlation = FALSE,

symbolic.cor = FALSE, ...)

S3 method for class 'summary.glm':
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class"glm" , usually, a result of a call toglm .

x an object of class"summary.glm" , usually, a result of a call to
summary.glm .

dispersion the dispersion parameter for the family used. Either a single numerical value or
NULL(the default), when it is inferred fromobject (see ‘Details’).

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (seesymnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

1290 summary.glm

Details

print.summary.glm tries to be smart about formatting the coefficients, standard errors, etc.
and additionally gives ‘significance stars’ ifsignif.stars is TRUE. The coefficients
component of the result gives the estimated coefficients and their estimated standard errors, to-
gether with their ratio. This third column is labelledt ratio if the dispersion is estimated, and
z ratio if the dispersion is known (or fixed by the family). A fourth column gives the two-tailed
p-value corresponding to the t or z ratio based on a Student t or Normal reference distribution. (It is
possible that the dispersion is not known and there are no residual degrees of freedom from which
to estimate it. In that case the estimate isNaN.)

Aliased coefficients are omitted in the returned object but restored by theprint method.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

The dispersion of a GLM is not used in the fitting process, but it is needed to find standard errors.
If dispersion is not supplied orNULL, the dispersion is taken as1 for the binomial and
Poisson families, and otherwise estimated by the residual Chisquared statistic (calculated from
cases with non-zero weights) divided by the residual degrees of freedom.

summary can be used with Gaussianglm fits to handle the case of a linear regression with known
error variance, something not handled bysummary.lm .

Value

summary.glm returns an object of class"summary.glm" , a list with components

call the component fromobject .

family the component fromobject .

deviance the component fromobject .

contrasts the component fromobject .

df.residual the component fromobject .
null.deviance

the component fromobject .

df.null the component fromobject .
deviance.resid

the deviance residuals: seeresiduals.glm .

coefficients the matrix of coefficients, standard errors, z-values and p-values. Aliased coef-
ficients are omitted.

aliased named logical vector showing if the original coefficients are aliased.

dispersion either the supplied argument or the inferred/estimated dispersion if the latter is
NULL.

df a 3-vector of the rank of the model and the number of residual degrees of free-
dom, plus number of non-aliased coefficients.

cov.unscaled the unscaled (dispersion = 1) estimated covariance matrix of the esti-
mated coefficients.

cov.scaled ditto, scaled bydispersion .

correlation (only if correlation is true.) The estimated correlations of the estimated
coefficients.

symbolic.cor (only if correlation is true.) The value of the argumentsymbolic.cor .

summary.lm 1291

See Also

glm , summary .

Examples

--- Continuing the Example from '?glm':

summary(glm.D93)

summary.lm Summarizing Linear Model Fits

Description

summary method for class"lm" .

Usage

S3 method for class 'lm':
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class 'summary.lm':
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class"lm" , usually, a result of a call tolm .

x an object of class"summary.lm" , usually, a result of a call tosummary.lm .

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (seesymnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

Details

print.summary.lm tries to be smart about formatting the coefficients, standard errors, etc. and
additionally gives ‘significance stars’ ifsignif.stars is TRUE.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

1292 summary.lm

Value

The functionsummary.lm computes and returns a list of summary statistics of the fitted linear
model given inobject , using the components (list elements)"call" and "terms" from its
argument, plus

residuals the weightedresiduals, the usual residuals rescaled by the square root of the
weights specified in the call tolm .

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard error,
t-statistic and corresponding (two-sided) p-value. Aliased coefficients are omit-
ted.

aliased named logical vector showing if the original coefficients are aliased.

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p

∑
i

wiR
2
i ,

whereRi is thei-th residual,residuals[i] .

df degrees of freedom, a 3-vector(p, n− p, p∗), the last being the number of non-
aliased coefficients.

fstatistic (for models including non-intercept terms) a 3-vector with the value of the F-
statistic with its numerator and denominator degrees of freedom.

r.squared R2, the ‘fraction of variance explained by the model’,

R2 = 1−
∑

iR
2
i∑

i(yi − y∗)2
,

wherey∗ is the mean ofyi if there is an intercept and zero otherwise.
adj.r.squared

the aboveR2 statistic ‘adjusted’, penalizing for higherp.

cov.unscaled ap× p matrix of (unscaled) covariances of theβ̂j , j = 1, . . . , p.

correlation the correlation matrix corresponding to the abovecov.unscaled , if
correlation = TRUE is specified.

symbolic.cor (only if correlation is true.) The value of the argumentsymbolic.cor .

na.action from object , if present there.

See Also

The model fitting functionlm , summary .

Functioncoef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

##-- Continuing the lm(.) example:
coef(lm.D90)# the bare coefficients
sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept
sld90
coef(sld90)# much more

summary.manova 1293

summary.manova Summary Method for Multivariate Analysis of Variance

Description

A summary method for class"manova" .

Usage

S3 method for class 'manova':
summary(object,

test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),
intercept = FALSE, ...)

Arguments

object An object of class"manova" or anaov object with multiple responses.

test The name of the test statistic to be used. Partial matching is used so the name
can be abbreviated.

intercept logical. If TRUE, the intercept term is included in the table.

... further arguments passed to or from other methods.

Details

The summary.manova method uses a multivariate test statistic for the summary table. Wilks’
statistic is most popular in the literature, but the default Pillai–Bartlett statistic is recommended by
Hand and Taylor (1987).

The table gives a transformation of the test statistic which has approximately an F distribution. The
approximations used follow S-PLUS and SAS (the latter apart from some cases of the Hotelling–
Lawley statistic), but many other distributional approximations exist: see Anderson (1984) and
Krzanowski and Marriott (1994) for further references. All four approximate F statistics are the
same when the term being tested has one degree of freedom, but in other cases that for the Roy
statistic is an upper bound.

Value

A list with components

SS A named list of sums of squares and product matrices.

Eigenvalues A matrix of eigenvalues.

stats A matrix of the statistics, approximate F value, degrees of freedom and P value.

References

Anderson, T. W. (1994)An Introduction to Multivariate Statistical Analysis.Wiley.

Hand, D. J. and Taylor, C. C. (1987)Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

Krzanowski, W. J. (1988)Principles of Multivariate Analysis. A User’s Perspective.Oxford.

Krzanowski, W. J. and Marriott, F. H. C. (1994)Multivariate Analysis. Part I: Distributions, Ordi-
nation and Inference.Edward Arnold.

1294 summary.nls

See Also

manova, aov

Examples

Example on producing plastic film from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3,

6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)
gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9, 9.5, 9.4,

9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2)
opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7,

2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
Y <- cbind(tear, gloss, opacity)
rate <- factor(gl(2,10), labels=c("Low", "High"))
additive <- factor(gl(2, 5, length=20), labels=c("Low", "High"))

fit <- manova(Y ~ rate * additive)
summary.aov(fit) # univariate ANOVA tables
summary(fit, test="Wilks") # ANOVA table of Wilks' lambda
summary(fit) # same F statistics as single-df terms

summary.nls Summarizing Non-Linear Least-Squares Model Fits

Description

summary method for class"nls" .

Usage

S3 method for class 'nls':
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class 'summary.nls':
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class"nls" .

x an object of class"summary.nls" , usually the result of a call to
summary.nls .

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (seesymnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

summary.princomp 1295

Details

The distribution theory used to find the distribution of the standard errors and of the residual stan-
dard error (for t ratios) is based on linearization and is approximate, maybe very approximate.

print.summary.nls tries to be smart about formatting the coefficients, standard errors, etc.
and additionally gives ‘significance stars’ ifsignif.stars is TRUE.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

Value

The functionsummary.nls computes and returns a list of summary statistics of the fitted model
given inobject , using the component"formula" from its argument, plus

residuals the weightedresiduals, the usual residuals rescaled by the square root of the
weights specified in the call tonls .

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard error,
t-statistic and corresponding (two-sided) p-value.

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p

∑
i

R2
i ,

whereRi is thei-th weighted residual.

df degrees of freedom, a 2-vector(p, n − p). (Here and elsewheren omits obser-
vations with zero weights.)

cov.unscaled ap× p matrix of (unscaled) covariances of the parameter estimates.

correlation the correlation matrix corresponding to the abovecov.unscaled , if
correlation = TRUE is specified and there are a non-zero number of resid-
ual degrees of freedom.

symbolic.cor (only if correlation is true.) The value of the argumentsymbolic.cor .

See Also

The model fitting functionnls , summary .

Functioncoef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

summary.princomp Summary method for Principal Components Analysis

Description

Thesummary method for class"princomp" .

Usage

S3 method for class 'princomp':
summary(object, loadings = FALSE, cutoff = 0.1, ...)

S3 method for class 'summary.princomp':
print(x, digits = 3, loadings = x$print.loadings,

cutoff = x$cutoff, ...)

1296 supsmu

Arguments

object an object of class"princomp" , as fromprincomp() .

loadings logical. Should loadings be included?

cutoff numeric. Loadings below this cutoff in absolute value are shown as blank in the
output.

x an object of class "summary.princomp".

digits the number of significant digits to be used in listing loadings.

... arguments to be passed to or from other methods.

Value

object with additional componentscutoff andprint.loadings .

See Also

princomp

Examples

summary(pc.cr <- princomp(USArrests, cor=TRUE))
print(summary(princomp(USArrests, cor=TRUE),

loadings = TRUE, cutoff = 0.2), digits = 2)

supsmu Friedman’s SuperSmoother

Description

Smooth the (x, y) values by Friedman’s ‘super smoother’.

Usage

supsmu(x, y, wt, span = "cv", periodic = FALSE, bass = 0)

Arguments

x x values for smoothing

y y values for smoothing

wt case weights, by default all equal

span the fraction of the observations in the span of the running lines smoother, or
"cv" to choose this by leave-one-out cross-validation.

periodic if TRUE, the x values are assumed to be in[0, 1] and of period 1.

bass controls the smoothness of the fitted curve. Values of up to 10 indicate increas-
ing smoothness.

symnum 1297

Details

supsmu is a running lines smoother which chooses between three spans for the lines. The running
lines smoothers are symmetric, withk/2 data points each side of the predicted point, and values
of k as0.5 * n , 0.2 * n and0.05 * n , wheren is the number of data points. Ifspan is
specified, a single smoother with spanspan * n is used.

The best of the three smoothers is chosen by cross-validation for each prediction. The best spans are
then smoothed by a running lines smoother and the final prediction chosen by linear interpolation.

The FORTRAN code says: “For small samples (n < 40) or if there are substantial serial correla-
tions between observations close in x-value, then a pre-specified fixed span smoother (span > 0)
should be used. Reasonable span values are 0.2 to 0.4.”

Cases with non-finite values ofx , y or wt are dropped, with a warning.

Value

A list with components

x the input values in increasing order with duplicates removed.

y the corresponding y values on the fitted curve.

References

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics, Stanford
University Technical Report No. 1.

Friedman, J. H. (1984) A variable span scatterplot smoother. Laboratory for Computational Statis-
tics, Stanford University Technical Report No. 5.

See Also

ppr

Examples

require(graphics)

with(cars, {
plot(speed, dist)
lines(supsmu(speed, dist))
lines(supsmu(speed, dist, bass = 7), lty = 2)
})

symnum Symbolic Number Coding

Description

Symbolically encode a given numeric or logical vector or array. Particularly useful for visualization
of structured matrices, e.g., correlation, sparse, or logical ones.

1298 symnum

Usage

symnum(x, cutpoints = c(0.3, 0.6, 0.8, 0.9, 0.95),
symbols = if(numeric.x) c(" ", ".", ",", "+", "*", "B")

else c(".", "|"),
legend = length(symbols) >= 3,
na = "?", eps = 1e-5, numeric.x = is.numeric(x),
corr = missing(cutpoints) && numeric.x,
show.max = if(corr) "1", show.min = NULL,
abbr.colnames = has.colnames,
lower.triangular = corr && is.numeric(x) && is.matrix(x),
diag.lower.tri = corr && !is.null(show.max))

Arguments

x numeric or logical vector or array.

cutpoints numeric vector whose valuescutpoints[j] = cj (after augmentation, see
corr below) are used for intervals.

symbols character vector, one shorter than (theaugmented, see corr below)
cutpoints . symbols[j] = sj are used as ‘code’ for the (half open) in-
terval(cj , cj+1].
Whennumeric.x is FALSE, i.e., by default when argumentx is logical ,
the default isc(".","|") (graphical 0 / 1 s).

legend logical indicating if a"legend" attribute is desired.

na character or logical. HowNAs are coded. Ifna == FALSE, NAs are coded
invisibly, including the "legend" attribute below, which otherwise mentions
NA coding.

eps absolute precision to be used at left and right boundary.

numeric.x logical indicating ifx should be treated as numbers, otherwise as logical.

corr logical. If TRUE, x contains correlations. The cutpoints are augmented by0
and1 andabs(x) is coded.

show.max if TRUE, or of modecharacter , the maximal cutpoint is coded especially.

show.min if TRUE, or of modecharacter , the minimal cutpoint is coded especially.

abbr.colnames
logical, integer orNULLindicating how column names should be abbreviated (if
they are); ifNULL (or FALSEandx has no column names), the column names
will all be empty, i.e.,"" ; otherwise ifabbr.colnames is false, they are left
unchanged. IfTRUEor integer, existing column names will be abbreviated to
abbreviate (*, minlength = abbr.colnames) .

lower.triangular
logical. If TRUEandx is a matrix, only thelower triangularpart of the matrix
is coded as non-blank.

diag.lower.tri
logical. If lower.triangular and this areTRUE, thediagonalpart of the
matrix is shown.

Value

An atomic character object of classnoquote and the same dimensions asx .

symnum 1299

If legend is TRUE(as by default when there are more than two classes), the result has an attribute
"legend" containing a legend of the returned character codes, in the form

c1s1c2s2 . . . sncn+1

wherecj = cutpoints[j] andsj = symbols[j] .

Note

The optional (mostly logical) arguments all try to use smart defaults. Specifying them explicitly
may lead to considerably improved output in many cases.

Author(s)

Martin Maechler〈maechler@stat.math.ethz.ch〉

See Also

as.character ; image

Examples

ii <- 0:8; names(ii) <- ii
symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"))
symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"), show.max=TRUE)

symnum(1:12 %% 3 == 0)# --> "|" = TRUE, "." = FALSE for logical

Pascal's Triangle modulo 2 -- odd and even numbers:
N <- 38
pascal <- t(sapply(0:N, function(n) round(choose(n, 0:N - (N-n)%/%2))))
rownames(pascal) <- rep("", 1+N) # <-- to improve "graphic"
symnum(pascal %% 2, symbols = c(" ", "A"), numeric = FALSE)

##-- Symbolic correlation matrices:
symnum(cor(attitude), diag = FALSE)
symnum(cor(attitude), abbr.= NULL)
symnum(cor(attitude), abbr.= FALSE)
symnum(cor(attitude), abbr.= 2)

symnum(cor(rbind(1, rnorm(25), rnorm(25)^2)))
symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! --
symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n
symnum(cm1, diag=FALSE)
symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n
symnum(cm2, lower=FALSE)

NA's:
Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA
symnum(Cm, show.max=NULL)

Graphical P-values (aka "significance stars"):
pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))
symp <- symnum(pval, corr=FALSE,

cutpoints = c(0, .001,.01,.05, .1, 1),
symbols = c("***","**","*","."," "))

noquote(cbind(P.val = format(pval), Signif= symp))

1300 t.test

t.test Student’s t-Test

Description

Performs one and two sample t-tests on vectors of data.

Usage

t.test(x, ...)

Default S3 method:
t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

S3 method for class 'formula':
t.test(formula, data, subset, na.action, ...)

Arguments

x a (non-empty) numeric vector of data values.

y an optional (non-empty) numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default),"greater" or "less" . You can specify just the
initial letter.

mu a number indicating the true value of the mean (or difference in means if you
are performing a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal a logical variable indicating whether to treat the two variances as being equal.
If TRUEthen the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used.

conf.level confidence level of the interval.

formula a formula of the formlhs ~ rhs wherelhs is a numeric variable giving the
data values andrhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

t.test 1301

Details

The formula interface is only applicable for the 2-sample tests.

alternative = "greater" is the alternative thatx has a larger mean thany .

If paired is TRUEthen bothx andy must be specified and they must be the same length. Missing
values are removed (in pairs ifpaired is TRUE). If var.equal is TRUEthen the pooled esti-
mate of the variance is used. By default, ifvar.equal is FALSE then the variance is estimated
separately for both groups and the Welch modification to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is
generated.

Value

A list with class"htest" containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative hy-
pothesis.

estimate the estimated mean or difference in means depending on whether it was a one-
sample test or a two-sample test.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

See Also

prop.test

Examples

require(graphics)

t.test(1:10,y=c(7:20)) # P = .00001855
t.test(1:10,y=c(7:20, 200)) # P = .1245 -- NOT significant anymore

Classical example: Student's sleep data
plot(extra ~ group, data = sleep)
Traditional interface
with(sleep, t.test(extra[group == 1], extra[group == 2]))
Formula interface
t.test(extra ~ group, data = sleep)

1302 TDist

TDist The Student t Distribution

Description

Density, distribution function, quantile function and random generation for the t distribution with
df degrees of freedom (and optional non-centrality parameterncp).

Usage

dt(x, df, ncp, log = FALSE)
pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
qt(p, df, ncp, lower.tail = TRUE, log.p = FALSE)
rt(n, df, ncp)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

df degrees of freedom (> 0, maybe non-integer).df = Inf is allowed. Forqt
only values of at least one are currently supported.

ncp non-centrality parameterδ; currently except forrt() , only forabs(ncp) <=
37.62 . If omitted, use the central t distribution.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

Thet distribution withdf = ν degrees of freedom has density

f(x) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(1 + x2/ν)−(ν+1)/2

for all realx. It has mean0 (for ν > 1) and variance ν
ν−2 (for ν > 2).

The generalnon-centralt with parameters(ν, δ) = (df, ncp) is defined as the distribution of
Tν(δ) := (U + δ)/

√
V/ν whereU andV are independent random variables,U ∼ N (0, 1) and

V ∼ χ2
ν (seeChisquare).

The most used applications are power calculations fort-tests:
Let T = X̄−µ0

S/
√

n
whereX̄ is themeanandS the sample standard deviation (sd) ofX1, X2, . . . , Xn

which are i.i.d.N (µ, σ2) ThenT is distributed as non-centraltwith df = n−1 degrees of freedom
andnon-centralityparameterncp = (µ− µ0)

√
n/σ.

Value

dt gives the density,pt gives the distribution function,qt gives the quantile function, andrt
generates random deviates.

Invalid arguments will result in return valueNaN, with a warning.

TDist 1303

Note

Settingncp = 0 is not equivalent to omittingncp . R uses the non-centrality functionality when-
everncp is specified which provides continuous behavior atncp = 0.

Source

The centraldt is computed via an accurate formula provided by Catherine Loader (see the reference
in dbinom).

For the non-central case ofdt , contributed by Claus Ekstrøm based on the relationship (forx 6= 0)
to the cumulative distribution.

For the central case ofpt , a normal approximation in the tails, otherwise viapbeta .

For the non-central case ofpt based on a C translation of

Lenth, R. V. (1989).Algorithm AS 243— Cumulative distribution function of the non-centralt
distribution,Applied Statistics38, 185–189.

For centralqt , a C translation of

Hill, G. W. (1970) Algorithm 396: Student’s t-quantiles.Communications of the ACM, 13(10),
619–620.

altered to take account of

Hill, G. W. (1981) Remark on Algorithm 396,ACM Transactions on Mathematical Software, 7,
250–1.

The non-central case is done by inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole. (Except non-central versions.)

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
2, chapters 28 and 31. Wiley, New York.

See Also

df for the F distribution.

Examples

require(graphics)

1 - pt(1:5, df = 1)
qt(.975, df = c(1:10,20,50,100,1000))

tt <- seq(0,10, len=21)
ncp <- seq(0,6, len=31)
ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d))
t.tit <- "Non-central t - Probabilities"
image(tt,ncp,ptn, zlim=c(0,1), main = t.tit)
persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit,

xlab = "t", ylab = "non-centrality parameter",
zlab = "Pr(T <= t)")

plot(function(x) dt(x, df = 3, ncp = 2), -3, 11, ylim = c(0, 0.32),
main="Non-central t - Density", yaxs="i")

1304 termplot

termplot Plot regression terms

Description

Plots regression terms against their predictors, optionally with standard errors and partial residuals
added.

Usage

termplot(model, data = NULL, envir = environment(formula(model)),
partial.resid = FALSE, rug = FALSE,
terms = NULL, se = FALSE,
xlabs = NULL, ylabs = NULL, main = NULL,
col.term = 2, lwd.term = 1.5,
col.se = "orange", lty.se = 2, lwd.se = 1,
col.res = "gray", cex = 1, pch = par("pch"),
col.smth = "darkred", lty.smth = 2, span.smth = 2/3,
ask = dev.interactive() && nb.fig < n.tms,
use.factor.levels = TRUE, smooth = NULL, ylim = "common",
...)

Arguments

model fitted model object

data data frame in which variables inmodel can be found

envir environment in which variables inmodel can be found
partial.resid

logical; should partial residuals be plotted?

rug addrugplots (jittered 1-d histograms) to the axes?

terms which terms to plot (defaultNULLmeans all terms)

se plot pointwise standard errors?

xlabs vector of labels for the x axes

ylabs vector of labels for the y axes

main logical, or vector of main titles; ifTRUE, the model’s call is taken as main title,
NULLor FALSEmean no titles.

col.term, lwd.term
color and line width for the ‘term curve’, seelines .

col.se, lty.se, lwd.se
color, line type and line width for the ‘twice-standard-error curve’ whense =
TRUE.

col.res, cex, pch
color, plotting character expansion and type for partial residuals, when
partial.resid = TRUE , seepoints .

ask logical; if TRUE, the user isasked before each plot, seepar (ask=.) .
use.factor.levels

Should x-axis ticks use factor levels or numbers for factor terms?

terms 1305

smooth NULL or a function with the same arguments aspanel.smooth to draw a
smooth through the partial residuals for non-factor terms

lty.smth, col.smth, span.smth
Passed tosmooth

ylim an optional range for the y axis, or"common" when a range sufficient for all
the plot will be computed, or"free" when limits are computed for each plot.

... other graphical parameters.

Details

The model object must have apredict method that acceptstype=terms , egglm in thebase
package,coxph andsurvreg in thesurvival package.

For the partial.resid=TRUE option it must have aresiduals method that accepts
type="partial" , which lm andglm do.

The data argument should rarely be needed, but in some casestermplot may be unable to
reconstruct the original data frame. Usingna.action=na.exclude makes these problems less
likely.

Nothing sensible happens for interaction terms.

See Also

For (generalized) linear models,plot.lm andpredict.glm .

Examples

require(graphics)

had.splines <- "package:splines" %in% search()
if(!had.splines) rs <- require(splines)
x <- 1:100
z <- factor(rep(LETTERS[1:4],25))
y <- rnorm(100, sin(x/10)+as.numeric(z))
model <- glm(y ~ ns(x,6) + z)

par(mfrow=c(2,2)) ## 2 x 2 plots for same model :
termplot(model, main = paste("termplot(", deparse(model$call)," ...)"))
termplot(model, rug=TRUE)
termplot(model, partial.resid=TRUE, se = TRUE, main = TRUE)
termplot(model, partial.resid=TRUE, smooth=panel.smooth, span.smth=1/4)
if(!had.splines && rs) detach("package:splines")

terms Model Terms

Description

The functionterms is a generic function which can be used to extracttermsobjects from various
kinds ofR data objects.

Usage

terms(x, ...)

1306 terms.formula

Arguments

x object used to select a method to dispatch.

... further arguments passed to or from other methods.

Details

There are methods for classes"aovlist" , and"terms" "formula" (seeterms.formula):
the default method just extracts theterms component of the object (if any).

There areprint andlabels methods for class"terms" : the latter prints the term labels (see
terms.object).

Value

An object of classc("terms", "formula") which contains theterms representation of a
symbolic model. Seeterms.object for its structure.

References

Chambers, J. M. and Hastie, T. J. (1992)Statistical models.Chapter 2 ofStatistical Models in Seds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

terms.object , terms.formula , lm , glm , formula .

terms.formula Construct a terms Object from a Formula

Description

This function takes a formula and some optional arguments and constructs a terms object. The
terms object can then be used to construct amodel.matrix .

Usage

S3 method for class 'formula':
terms(x, specials = NULL, abb = NULL, data = NULL, neg.out = TRUE,

keep.order = FALSE, simplify = FALSE, ...,
allowDotAsName = FALSE)

Arguments

x a formula.

specials which functions in the formula should be marked as special in theterms object.

abb Not implemented inR.

data a data frame from which the meaning of the special symbol. can be inferred.
It is unused if there is no. in the formula.

neg.out Not implemented inR.

terms.object 1307

keep.order a logical value indicating whether the terms should keep their positions. If
FALSE the terms are reordered so that main effects come first, followed by
the interactions, all second-order, all third-order and so on. Effects of a given
order are kept in the order specified.

simplify should the formula be expanded and simplified, the pre-1.7.0 behaviour?

... further arguments passed to or from other methods.
allowDotAsName

normally . in a formula refers to the remaining variables contained indata .
Exceptionally,. can be treated as a name for non-standard uses of formulae.

Details

Not all of the options work in the same way that they do in S and not all are implemented.

Value

A terms.object object is returned. The object itself is the re-ordered (unlesskeep.order =
TRUE) formula. In all cases variables within an interaction term in the formula are re-ordered by
the ordering of the"variables" attribute, which is the order in which the variables occur in the
formula.

See Also

terms , terms.object

terms.object Description of Terms Objects

Description

An object of classterms holds information about a model. Usually the model was specified in
terms of aformula and that formula was used to determine the terms object.

Value

The object itself is simply the formula supplied to the call ofterms.formula . The object has a
number of attributes and they are used to construct the model frame:

factors A matrix of variables by terms showing which variables appear in which terms.
The entries are 0 if the variable does not occur in the term, 1 if it does occur and
should be coded by contrasts, and 2 if it occurs and should be coded via dummy
variables for all levels (as when an intercept or lower-order term is missing). If
there are no terms other than an intercept and offsets, this isnumeric(0) .

term.labels A character vector containing the labels for each of the terms in the model,
except for offsets. Non-syntactic names will be quoted by backticks. Note that
these are after possible re-ordering (unless argumentkeep.order was false).

variables A call to list of the variables in the model.

intercept Either 0, indicating no intercept is to be fit, or 1 indicating that an intercept is to
be fit.

1308 time

order A vector of the same length asterm.labels indicating the order of interac-
tion for each term.

response The index of the variable (in variables) of the response (the left hand side of the
formula). Zero, if there is no response.

offset If the model containsoffset terms there is anoffset attribute indicating
which variable(s) are offsets

specials If a specials argument was given toterms.formula there is a
specials attribute, a list of vectors (one for each specified special function)
giving numeric indices of the arguments of the list returned as thevariables
attribute which contain these special functions.

dataClasses optional. A named character vector giving the classes (as given by.MFclass)
of the variables used in a fit.

The object has classc("terms", "formula") .

Note

These objects are different from those found in S. In particular there is noformula attribute,
instead the object is itself a formula. Thus, the mode of a terms object is different as well.

Examples of thespecials argument can be seen in theaov andcoxph functions.

See Also

terms , formula .

Examples

use of specials (as used for gam() in packages mgcv and gam)
(tf <- terms(y ~ x + x:z + s(x), specials = "s"))
Note that the "factors" attribute has variables as row names
and term labels as column names, both as character vectors.
attr(tf, "specials") # index 's' variable(s)
rownames(attr(tf, "factors"))[attr(tf, "specials")$s]

we can keep the order by
terms(y ~ x + x:z + s(x), specials = "s", keep.order = TRUE)

time Sampling Times of Time Series

Description

time creates the vector of times at which a time series was sampled.

cycle gives the positions in the cycle of each observation.

frequency returns the number of samples per unit time anddeltat the time interval between
observations (seets).

toeplitz 1309

Usage

time(x, ...)
Default S3 method:
time(x, offset=0, ...)

cycle(x, ...)
frequency(x, ...)
deltat(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

offset can be used to indicate when sampling took place in the time unit.0 (the default)
indicates the start of the unit,0.5 the middle and1 the end of the interval.

... extra arguments for future methods.

Details

These are all generic functions, which will use thetsp attribute ofx if it exists. time andcycle
have methods for classts that coerce the result to that class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

ts , start , tsp , window .

date for clock time,system.time for CPU usage.

Examples

require(graphics)

cycle(presidents)
a simple series plot
plot(as.vector(time(presidents)), as.vector(presidents), type="l")

toeplitz Form Symmetric Toeplitz Matrix

Description

Forms a symmetric Toeplitz matrix given its first row.

Usage

toeplitz(x)

1310 ts

Arguments

x the first row to form the Toeplitz matrix.

Value

The Toeplitz matrix.

Author(s)

A. Trapletti

Examples

x <- 1:5
toeplitz (x)

ts Time-Series Objects

Description

The functionts is used to create time-series objects.

as.ts andis.ts coerce an object to a time-series and test whether an object is a time series.

Usage

ts(data = NA, start = 1, end = numeric(0), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class = , names =)

as.ts(x, ...)
is.ts(x)

Arguments

data a numeric vector or matrix of the observed time-series values. A data frame will
be coerced to a numeric matrix viadata.matrix .

start the time of the first observation. Either a single number or a vector of two
integers, which specify a natural time unit and a (1-based) number of samples
into the time unit. See the examples for the use of the second form.

end the time of the last observation, specified in the same way asstart .

frequency the number of observations per unit of time.

deltat the fraction of the sampling period between successive observations; e.g., 1/12
for monthly data. Only one offrequency or deltat should be provided.

ts.eps time series comparison tolerance. Frequencies are considered equal if their ab-
solute difference is less thants.eps .

class class to be given to the result, or none ifNULLor "none" . The default is"ts"
for a single series,c("mts", "ts") for multiple series.

names a character vector of names for the series in a multiple series: defaults to the
colnames ofdata , or Series 1 , Series 2 ,

x an arbitraryR object.

... arguments passed to methods (unused for the default method).

ts 1311

Details

The functionts is used to create time-series objects. These are vector or matrices with class
of "ts" (and additional attributes) which represent data which has been sampled at equispaced
points in time. In the matrix case, each column of the matrixdata is assumed to contain a single
(univariate) time series. Time series must have at least one observation, and although they need not
be numeric there is very limited support for non-numeric series.

Class"ts" has a number of methods. In particular arithmetic will attempt to align time axes,
and subsetting to extract subsets of series can be used (e.g.,EuStockMarkets[, "DAX"]).
However, subsetting the first (or only) dimension will return a matrix or vector, as will matrix
subsetting. Subassignment can be used to replace values but not to extend a series (seewindow).
There is a method fort that transposes the series as a matrix (a one-column matrix if a vector) and
hence returns a result that does not inherit from class"ts" .

The value of argumentfrequency is used when the series is sampled an integral number of times
in each unit time interval. For example, one could use a value of7 for frequency when the data
are sampled daily, and the natural time period is a week, or12 when the data are sampled monthly
and the natural time period is a year. Values of4 and12 are assumed in (e.g.)print methods to
imply a quarterly and monthly series respectively.

as.ts is generic. Its default method will use thetsp attribute of the object if it has one to set the
start and end times and frequency.

is.ts tests if an object is a time series. It is generic: you can write methods to handle specific
classes of objects, seeInternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

tsp , frequency , start , end , time , window ; print.ts , the print method for time series
objects;plot.ts , the plot method for time series objects.

Examples

require(graphics)

ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of 1959
print(ts(1:10, frequency = 7, start = c(12, 2)), calendar = TRUE)
print.ts(.)
Using July 1954 as start date:
gnp <- ts(cumsum(1 + round(rnorm(100), 2)),

start = c(1954, 7), frequency = 12)
plot(gnp) # using 'plot.ts' for time-series plot

Multivariate
z <- ts(matrix(rnorm(300), 100, 3), start=c(1961, 1), frequency=12)
class(z)
plot(z)
plot(z, plot.type="single", lty=1:3)

A phase plot:
plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

1312 ts-methods

a clearer way to do this would be
Not run:
plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")
End(Not run)

ts-methods Methods for Time Series Objects

Description

Methods for objects of class"ts" , typically the result ofts .

Usage

S3 method for class 'ts':
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'ts':
na.omit(object, ...)

Arguments

x an object of class"ts" containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

object a univariate or multivariate time series.

... further arguments to be passed to or from methods.

Details

Thena.omit method omits initial and final segments with missing values in one or more of the
series. ‘Internal’ missing values will lead to failure.

Value

For thena.omit method, a time series without missing values. The class ofobject will be
preserved.

See Also

diff ; na.omit , na.fail , na.contiguous .

ts.plot 1313

ts.plot Plot Multiple Time Series

Description

Plot several time series on a common plot. Unlikeplot.ts the series can have a different time
bases, but they should have the same frequency.

Usage

ts.plot(..., gpars = list())

Arguments

... one or more univariate or multivariate time series.

gpars list of named graphics parameters to be passed to the plotting functions. Those
commonly used can be supplied directly in... .

Value

None.

Note

Although this can be used for a single time series,plot is easier to use and is preferred.

See Also

plot.ts

Examples

require(graphics)

ts.plot(ldeaths, mdeaths, fdeaths,
gpars=list(xlab="year", ylab="deaths", lty=c(1:3)))

ts.union Bind Two or More Time Series

Description

Bind time series which have a common frequency.ts.union pads withNAs to the total time
coverage,ts.intersect restricts to the time covered by all the series.

Usage

ts.intersect(..., dframe = FALSE)
ts.union(..., dframe = FALSE)

1314 tsdiag

Arguments

... two or more univariate or multivariate time series, or objects which can coerced
to time series.

dframe logical; if TRUEreturn the result as a data frame.

Details

As a special case,... can contain vectors or matrices of the same length as the combined time
series of the time series present, as well as those of a single row.

Value

A time series object ifdframe is FALSE, otherwise a data frame.

See Also

cbind .

Examples

ts.union(mdeaths, fdeaths)
cbind(mdeaths, fdeaths) # same as the previous line
ts.intersect(window(mdeaths, 1976), window(fdeaths, 1974, 1978))

sales1 <- ts.union(BJsales, lead = BJsales.lead)
ts.intersect(sales1, lead3 = lag(BJsales.lead, -3))

tsdiag Diagnostic Plots for Time-Series Fits

Description

A generic function to plot time-series diagnostics.

Usage

tsdiag(object, gof.lag, ...)

Arguments

object a fitted time-series model

gof.lag the maximum number of lags for a Portmanteau goodness-of-fit test

... further arguments to be passed to particular methods

Details

This is a generic function. It will generally plot the residuals, often standardized, the autocorrelation
function of the residuals, and the p-values of a Portmanteau test for all lags up togof.lag .

The methods forarima and StructTS objects plots residuals scaled by the estimate of their
(individual) variance, and use the Ljung–Box version of the portmanteau test.

tsp 1315

Value

None. Diagnostics are plotted.

See Also

arima , StructTS , Box.test

Examples

Not run: require(graphics)

fit <- arima(lh, c(1,0,0))
tsdiag(fit)

see also examples(arima)

(fit <- StructTS(log10(JohnsonJohnson), type="BSM"))
tsdiag(fit)
End(Not run)

tsp Tsp Attribute of Time-Series-like Objects

Description

tsp returns thetsp attribute (orNULL). It is included for compatibility with S version 2.tsp<-
sets thetsp attribute.hasTsp ensuresx has atsp attribute, by adding one if needed.

Usage

tsp(x)
tsp(x) <- value
hasTsp(x)

Arguments

x a vector or matrix or univariate or multivariate time-series.

value a numeric vector of length 3 orNULL.

Details

The tsp attribute was previously described here asc(start(x), end(x),
frequency(x)) , but this is incorrect. It gives the start timein time units, the end time
and the frequency.

Assignments are checked for consistency.

AssigningNULLwhich removes thetsp attributeandany"ts" (or "mts") class ofx .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

1316 tsSmooth

See Also

ts , time , start .

tsSmooth Use Fixed-Interval Smoothing on Time Series

Description

Performs fixed-interval smoothing on a univariate time series via a state-space model. Fixed-interval
smoothing gives the best estimate of the state at each time point based on the whole observed series.

Usage

tsSmooth(object, ...)

Arguments

object a time-series fit. Currently only class" StructTS " is supported

... possible arguments for future methods.

Value

A time series, with as many dimensions as the state space and results at each time point of the
original series. (For seasonal models, only the current seasonal component is returned.)

Author(s)

B. D. Ripley

References

Durbin, J. and Koopman, S. J. (2001)Time Series Analysis by State Space Methods.Oxford Uni-
versity Press.

See Also

KalmanSmooth , StructTS .

For examples consultAirPassengers , JohnsonJohnson andNile .

Tukey 1317

Tukey The Studentized Range Distribution

Description

Functions of the distribution of the studentized range,R/s, whereR is the range of a standard
normal sample anddf × s2 is independently distributed as chi-squared withdf degrees of freedom,
seepchisq .

Usage

ptukey(q, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)
qtukey(p, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q vector of quantiles.

p vector of probabilities.

nmeans sample size for range (same for each group).

df degrees of freedom fors (see below).

nranges number ofgroupswhosemaximum range is considered.

log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

If ng =nranges is greater than one,R is themaximumof ng groups ofnmeans observations
each.

Value

ptukey gives the distribution function andqtukey its inverse, the quantile function.

Note

A Legendre 16-point formula is used for the integral ofptukey . The computations are relatively
expensive, especially forqtukey which uses a simple secant method for finding the inverse of
ptukey . qtukey will be accurate to the 4th decimal place.

References

Copenhaver, Margaret Diponzio and Holland, Burt S. (1988) Multiple comparisons of simple effects
in the two-way analysis of variance with fixed effects.Journal of Statistical Computation and
Simulation, 30, 1–15.

See Also

pnorm andqnorm for the corresponding functions for the normal distribution.

1318 TukeyHSD

Examples

if(interactive())
curve(ptukey(x, nm=6, df=5), from=-1, to=8, n=101)

(ptt <- ptukey(0:10, 2, df= 5))
(qtt <- qtukey(.95, 2, df= 2:11))
The precision may be not much more than about 8 digits:
summary(abs(.95 - ptukey(qtt,2, df = 2:11)))

TukeyHSD Compute Tukey Honest Significant Differences

Description

Create a set of confidence intervals on the differences between the means of the levels of a factor
with the specified family-wise probability of coverage. The intervals are based on the Studentized
range statistic, Tukey’s ‘Honest Significant Difference’ method. There is aplot method.

Usage

TukeyHSD(x, which, ordered = FALSE, conf.level = 0.95, ...)

Arguments

x A fitted model object, usually anaov fit.

which A character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to all the terms.

ordered A logical value indicating if the levels of the factor should be ordered accord-
ing to increasing average in the sample before taking differences. Ifordered
is true then the calculated differences in the means will all be positive. The
significant differences will be those for which thelwr end point is positive.

conf.level A numeric value between zero and one giving the family-wise confidence level
to use.

... Optional additional arguments. None are used at present.

Details

When comparing the means for the levels of a factor in an analysis of variance, a simple comparison
using t-tests will inflate the probability of declaring a significant difference when it is not in fact
present. This because the intervals are calculated with a given coverage probability for each interval
but the interpretation of the coverage is usually with respect to the entire family of intervals.

John Tukey introduced intervals based on the range of the sample means rather than the individual
differences. The intervals returned by this function are based on this Studentized range statistics.

Technically the intervals constructed in this way would only apply to balanced designs where there
are the same number of observations made at each level of the factor. This function incorporates an
adjustment for sample size that produces sensible intervals for mildly unbalanced designs.

If which specifies non-factor terms these will be dropped with a warning: if no terms are left this
is a an error.

Uniform 1319

Value

A list with one component for each term requested inwhich . Each component is a matrix with
columnsdiff giving the difference in the observed means,lwr giving the lower end point of the
interval, upr giving the upper end point andp adj giving the p-value after adjustment for the
multiple comparisons.

Author(s)

Douglas Bates

References

Miller, R. G. (1981)Simultaneous Statistical Inference. Springer.

Yandell, B. S. (1997)Practical Data Analysis for Designed Experiments. Chapman & Hall.

See Also

aov , qtukey , model.tables , simint

Examples

require(graphics)

summary(fm1 <- aov(breaks ~ wool + tension, data = warpbreaks))
TukeyHSD(fm1, "tension", ordered = TRUE)
plot(TukeyHSD(fm1, "tension"))

Uniform The Uniform Distribution

Description

These functions provide information about the uniform distribution on the interval frommin to
max. dunif gives the density,punif gives the distribution functionqunif gives the quantile
function andrunif generates random deviates.

Usage

dunif(x, min=0, max=1, log = FALSE)
punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
runif(n, min=0, max=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

min,max lower and upper limits of the distribution. Must be finite.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

1320 uniroot

Details

If min or max are not specified they assume the default values of0 and1 respectively.

The uniform distribution has density

f(x) =
1

max−min

for min ≤ x ≤ max.

For the case ofu := min == max, the limit case ofX ≡ u is assumed, although there is no
density in that case anddunif will return NaN(the error condition).

runif will not generate either of the extreme values unlessmax = min or max-min is small
compared tomin , and in particular not for the default arguments.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

.Random.seed about random number generation,rnorm , etc for other distributions.

Examples

u <- runif(20)

The following relations always hold :
punif(u) == u
dunif(u) == 1

var(runif(10000))#- ~ = 1/12 = .08333

uniroot One Dimensional Root (Zero) Finding

Description

The functionuniroot searches the interval fromlower to upper for a root (i.e., zero) of the
functionf with respect to its first argument.

Usage

uniroot(f, interval, ...,
lower = min(interval), upper = max(interval),
f.lower = f(lower, ...), f.upper = f(upper, ...),
tol = .Machine$double.eps^0.25, maxiter = 1000)

uniroot 1321

Arguments

f the function for which the root is sought.

interval a vector containing the end-points of the interval to be searched for the root.

... additional named or unnamed arguments to be passed tof

lower, upper the lower and upper end points of the interval to be searched.

f.lower, f.upper
the same asf(upper) and f(lower) , respectively. Passing these values
from the caller where they are often known is more economical as soon asf()
contains non-trivial computations.

tol the desired accuracy (convergence tolerance).

maxiter the maximum number of iterations.

Details

Note that arguments after... must be matched exactly.

Either interval or both lower and upper must be specified: the upper endpoint must be
strictly larger than the lower endpoint. The function values at the endpoints must be of opposite
signs (or zero).

The function uses Fortran subroutine ‘"zeroin"’ (from Netlib) based on algorithms given in the
reference below. They assume a continuous function (which then is known to have at least one root
in the interval).

Convergence is declared either iff(x) == 0 or the change inx for one step of the algorithm is
less thantol (plus an allowance for representation error inx).

If the algorithm does not converge inmaxiter steps, a warning is printed and the current approx-
imation is returned.

f will be called asf(x, ...) for a numeric value ofx.

Value

A list with four components:root andf.root give the location of the root and the value of the
function evaluated at that point.iter andestim.prec give the number of iterations used and an
approximate estimated precision forroot . (If the root occurs at one of the endpoints, the estimated
precision isNA.)

Source

Based on ‘zeroin.c’ in http://www.netlib.org/c/brent.shar .

References

Brent, R. (1973)Algorithms for Minimization without Derivatives.Englewood Cliffs, NJ: Prentice-
Hall.

See Also

polyroot for all complex roots of a polynomial;optimize , nlm .

http://www.netlib.org/c/brent.shar

1322 update

Examples

require(utils) # for str

f <- function (x,a) x - a
str(xmin <- uniroot(f, c(0, 1), tol = 0.0001, a = 1/3))
str(uniroot(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,

tol = 0.0001), dig = 10)
str(uniroot(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,

tol = 1e-10), dig = 10)

Find the smallest value x for which exp(x) > 0 (numerically):
r <- uniroot(function(x) 1e80*exp(x)-1e-300, c(-1000,0), tol = 1e-15)
str(r, digits= 15) ##> around -745, depending on the platform.

exp(r$root) # = 0, but not for r$root * 0.999...
minexp <- r$root * (1 - 10*.Machine$double.eps)
exp(minexp) # typically denormalized

update Update and Re-fit a Model Call

Description

update will update and (by default) re-fit a model. It does this by extracting the call stored in the
object, updating the call and (by default) evaluating that call. Sometimes it is useful to callupdate
with only one argument, for example if the data frame has been corrected.

Usage

update(object, ...)

Default S3 method:
update(object, formula., ..., evaluate = TRUE)

Arguments

object An existing fit from a model function such aslm , glm and many others.

formula. Changes to the formula – seeupdate.formula for details.

... Additional arguments to the call, or arguments with changed values. Use
name=NULLto remove the argumentname.

evaluate If true evaluate the new call else return the call.

Value

If evaluate = TRUE the fitted object, otherwise the updated call.

References

Chambers, J. M. (1992)Linear models.Chapter 4 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

update.formula 1323

See Also

update.formula

Examples

oldcon <- options(contrasts = c("contr.treatment", "contr.poly"))
Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
lm.D9
summary(lm.D90 <- update(lm.D9, . ~ . - 1))
options(contrasts = c("contr.helmert", "contr.poly"))
update(lm.D9)
options(oldcon)

update.formula Model Updating

Description

update.formula is used to update model formulae. This typically involves adding or dropping
terms, but updates can be more general.

Usage

S3 method for class 'formula':
update(old, new, ...)

Arguments

old a model formula to be updated.

new a formula giving a template which specifies how to update.

... further arguments passed to or from other methods.

Details

Either or both ofold andnew can be objects such as length-one character vectors which can be
coerced to a formula viaas.formula .

The function works by first identifying theleft-hand sideandright-hand sideof theold formula.
It then examines thenew formula and substitutes thelhs of theold formula for any occurrence of
‘.’ on the left of new, and substitutes therhs of theold formula for any occurrence of ‘.’ on the
right of new. The result is then simplifiedvia terms.formula (simplify = TRUE) .

Value

The updated formula is returned. The environment of the result will that ofold .

1324 var.test

See Also

terms , model.matrix .

Examples

update(y ~ x, ~ . + x2) #> y ~ x + x2
update(y ~ x, log(.) ~ .) #> log(y) ~ x

var.test F Test to Compare Two Variances

Description

Performs an F test to compare the variances of two samples from normal populations.

Usage

var.test(x, ...)

Default S3 method:
var.test(x, y, ratio = 1,

alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)

S3 method for class 'formula':
var.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values, or fitted linear model objects (inheriting from
class"lm").

ratio the hypothesized ratio of the population variances ofx andy .

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default),"greater" or "less" . You can specify just the
initial letter.

conf.level confidence level for the returned confidence interval.

formula a formula of the formlhs ~ rhs wherelhs is a numeric variable giving the
data values andrhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

Details

The null hypothesis is that the ratio of the variances of the populations from whichx andy were
drawn, or in the data to which the linear modelsx andy were fitted, is equal toratio .

varimax 1325

Value

A list with class"htest" containing the following components:

statistic the value of the F test statistic.

parameter the degrees of the freedom of the F distribution of the test statistic.

p.value the p-value of the test.

conf.int a confidence interval for the ratio of the population variances.

estimate the ratio of the sample variances ofx andy .

null.value the ratio of population variances under the null.

alternative a character string describing the alternative hypothesis.

method the character string"F test to compare two variances" .

data.name a character string giving the names of the data.

See Also

bartlett.test for testing homogeneity of variances in more than two samples from normal
distributions;ansari.test andmood.test for two rank based (nonparametric) two-sample
tests for difference in scale.

Examples

x <- rnorm(50, mean = 0, sd = 2)
y <- rnorm(30, mean = 1, sd = 1)
var.test(x, y) # Do x and y have the same variance?
var.test(lm(x ~ 1), lm(y ~ 1)) # The same.

varimax Rotation Methods for Factor Analysis

Description

These functions ‘rotate’ loading matrices in factor analysis.

Usage

varimax(x, normalize = TRUE, eps = 1e-5)
promax(x, m = 4)

Arguments

x A loadings matrix, withp rows andk < p columns

m The power used the target forpromax . Values of 2 to 4 are recommended.

normalize logical. Should Kaiser normalization be performed? If so the rows ofx are
re-scaled to unit length before rotation, and scaled back afterwards.

eps The tolerance for stopping: the relative change in the sum of singular values.

1326 vcov

Details

These seek a ‘rotation’ of the factorsx %*% Tthat aims to clarify the structure of the loadings
matrix. The matrixT is a rotation (possibly with reflection) forvarimax , but a general linear
transformation forpromax , with the variance of the factors being preserved.

Value

A list with components

loadings The ‘rotated’ loadings matrix,x %*% rotmat , of class"loadings" .

rotmat The ‘rotation’ matrix.

References

Hendrickson, A. E. and White, P. O. (1964) Promax: a quick method for rotation to orthogonal
oblique structure.British Journal of Statistical Psychology, 17, 65–70.

Horst, P. (1965)Factor Analysis of Data Matrices.Holt, Rinehart and Winston. Chapter 10.

Kaiser, H. F. (1958) The varimax criterion for analytic rotation in factor analysis.Psychometrika
23, 187–200.

Lawley, D. N. and Maxwell, A. E. (1971)Factor Analysis as a Statistical Method. Second edition.
Butterworths.

See Also

factanal , Harman74.cor .

Examples

varimax with normalize = TRUE is the default
fa <- factanal(~., 2, data = swiss)
varimax(loadings(fa), normalize = FALSE)
promax(loadings(fa))

vcov Calculate Variance-Covariance Matrix for a Fitted Model Object

Description

Returns the variance-covariance matrix of the main parameters of a fitted model object.

Usage

vcov(object, ...)

Arguments

object a fitted model object.

... additional arguments for method functions. For theglm method this can be
used to pass adispersion parameter.

Weibull 1327

Details

This is a generic function. Functions with names beginning invcov. will be methods for this
function. Classes with methods for this function include:lm , mlm, glm , nls , negbin , polr ,
rlm (in packageMASS), multinom (in packagennet) gls , lme (in packagenlme, coxph and
survreg (in packagesurvival).

Value

A matrix of the estimated covariances between the parameter estimates in the linear or non-linear
predictor of the model.

Weibull The Weibull Distribution

Description

Density, distribution function, quantile function and random generation for the Weibull distribution
with parametersshape andscale .

Usage

dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. Iflength(n) > 1 , the length is taken to be the
number required.

shape, scale shape and scale parameters, the latter defaulting to 1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

The Weibull distribution withshape parametera andscale parameterσ has density given by

f(x) = (a/σ)(x/σ)a−1 exp(−(x/σ)a)

for x ≥ 0. The cumulative distribution function isF (x) = 1− exp(−(x/σ)a) onx ≥ 0, the mean
isE(X) = σΓ(1 + 1/a), and theV ar(X) = σ2(Γ(1 + 2/a)− (Γ(1 + 1/a))2).

Value

dweibull gives the density,pweibull gives the distribution function,qweibull gives the
quantile function, andrweibull generates random deviates.

Invalid arguments will result in return valueNaN, with a warning.

1328 weighted.mean

Note

The cumulative hazardH(t) = − log(1 − F (t)) is -pweibull(t, a, b, lower =
FALSE, log = TRUE) which is justH(t) = (t/b)a.

Source

[dpq]weibull are calculated directly from the definitions.rweibull uses inversion.

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)Continuous Univariate Distributions, volume
1, chapter 21. Wiley, New York.

See Also

TheExponentialis a special case of the Weibull distribution.

Examples

x <- c(0,rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))
all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))
Cumulative hazard H():
all.equal(pweibull(x, 2.5, pi, lower.tail=FALSE, log.p=TRUE), -(x/pi)^2.5,

tol = 1e-15)
all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))

weighted.mean Weighted Arithmetic Mean

Description

Compute a weighted mean of a numeric vector.

Usage

weighted.mean(x, w, na.rm = FALSE)

Arguments

x a numeric vector containing the values whose mean is to be computed.

w a vector of weights the same length asx giving the weights to use for each
element ofx .

na.rm a logical value indicating whetherNAvalues inx should be stripped before the
computation proceeds.

Details

If w is missing then all elements ofx are given the same weight.

Missing values inware not handled.

weighted.residuals 1329

See Also

mean

Examples

GPA from Siegel 1994
wt <- c(5, 5, 4, 1)/15
x <- c(3.7,3.3,3.5,2.8)
xm <- weighted.mean(x,wt)

weighted.residuals Compute Weighted Residuals

Description

Computed weighted residuals from a linear model fit.

Usage

weighted.residuals(obj, drop0 = TRUE)

Arguments

obj R object, typically of classlm or glm .

drop0 logical. If TRUE, drop all cases withweights == 0.

Details

Weighted residuals are based on the deviance residuals, which for alm fit are the raw residualsRi

multiplied by
√
wi, wherewi are theweights as specified inlm ’s call.

Dropping cases with weights zero is compatible withinfluence and related functions.

Value

Numeric vector of lengthn′, wheren′ is the number of of non-0 weights (drop0 = TRUE) or the
number of observations, otherwise.

See Also

residuals , lm.influence , etc.

Examples

utils::example("lm")
all.equal(weighted.residuals(lm.D9),

residuals(lm.D9))
x <- 1:10
w <- 0:9
y <- rnorm(x)
weighted.residuals(lmxy <- lm(y ~ x, weights = w))
weighted.residuals(lmxy, drop0 = FALSE)

1330 wilcox.test

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests

Description

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also known as ‘Mann-
Whitney’ test.

Usage

wilcox.test(x, ...)

Default S3 method:
wilcox.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula':
wilcox.test(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values. Non-finite (e.g. infinite or missing) values will
be omitted.

y an optional numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default),"greater" or "less" . You can specify just the
initial letter.

mu a number specifying an optional parameter used to form the null hypothesis. See
‘Details’.

paired a logical indicating whether you want a paired test.

exact a logical indicating whether an exactp-value should be computed.

correct a logical indicating whether to apply continuity correction in the normal approx-
imation for thep-value.

conf.int a logical indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the formlhs ~ rhs wherelhs is a numeric variable giving the
data values andrhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs. De-
faults togetOption("na.action") .

... further arguments to be passed to or from methods.

wilcox.test 1331

Details

The formula interface is only applicable for the 2-sample tests.

If only x is given, or if bothx andy are given andpaired is TRUE, a Wilcoxon signed rank test
of the null that the distribution ofx (in the one sample case) or ofx - y (in the paired two sample
case) is symmetric aboutmuis performed.

Otherwise, if bothx andy are given andpaired is FALSE, a Wilcoxon rank sum test (equivalent
to the Mann-Whitney test: see the Note) is carried out. In this case, the null hypothesis is that the
distributions ofx andy differ by a location shift ofmuand the alternative is that they differ by some
other location shift (and the one-sided alternative"greater" is thatx is shifted to the right ofy).

By default (ifexact is not specified), an exactp-value is computed if the samples contain less than
50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally (if argumentconf.int is true), a nonparametric confidence interval and an estimator
for the pseudomedian (one-sample case) or for the difference of the location parametersx-y is
computed. (The pseudomedian of a distributionF is the median of the distribution of(u + v)/2,
whereu andv are independent, each with distributionF . If F is symmetric, then the pseudomedian
and median coincide. See Hollander & Wolfe (1973), page 34.) If exactp-values are available, an
exact confidence interval is obtained by the algorithm described in Bauer (1972), and the Hodges-
Lehmann estimator is employed. Otherwise, the returned confidence interval and point estimate are
based on normal approximations.

With small samples it may not be possible to achieve very high confidence interval coverages. If
this happens a warning will be given and an interval with lower coverage will be substituted.

Value

A list with class"htest" containing the following components:

statistic the value of the test statistic with a name describing it.

parameter the parameter(s) for the exact distribution of the test statistic.

p.value thep-value for the test.

null.value the location parametermu.

alternative a character string describing the alternative hypothesis.

method the type of test applied.

data.name a character string giving the names of the data.

conf.int a confidence interval for the location parameter. (Only present if argument
conf.int = TRUE .)

estimate an estimate of the location parameter. (Only present if argumentconf.int =
TRUE.)

Warning

This function can use large amounts of memory and stack (and even crashR if the stack limit is
exceeded) ifexact = TRUE and one sample is large (several thousands or more).

Note

The literature is not unanimous about the definitions of the Wilcoxon rank sum and Mann-Whitney
tests. The two most common definitions correspond to the sum of the ranks of the first sample with
the minimum value subtracted or not:R subtracts and S-PLUS does not, giving a value which is

1332 wilcox.test

larger bym(m + 1)/2 for a first sample of sizem. (It seems Wilcoxon’s original paper used the
unadjusted sum of the ranks but subsequent tables subtracted the minimum.)

R’s value can also be computed as the number of all pairs(x[i], y[j]) for whichy[j] is not
greater thanx[i] , the most common definition of the Mann-Whitney test.

References

David F. Bauer (1972), Constructing confidence sets using rank statistics.Journal of the American
Statistical Association67, 687–690.

Myles Hollander & Douglas A. Wolfe (1973),Nonparametric Statistical Methods.New York: John
Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample).
Or second edition (1999).

See Also

psignrank , pwilcox .

wilcox.exact in exactRankTestscovers much of the same ground, but also produces exact
p-values in the presence of ties.

wilcox_test in packagecoin for exact and approximateconditionalp-values for the Wilcoxon
tests.

kruskal.test for testing homogeneity in location parameters in the case of two or more sam-
ples;t.test for an alternative under normality assumptions [or large samples]

Examples

require(graphics)
One-sample test.
Hollander & Wolfe (1973), 29f.
Hamilton depression scale factor measurements in 9 patients with
mixed anxiety and depression, taken at the first (x) and second
(y) visit after initiation of a therapy (administration of a
tranquilizer).
x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
wilcox.test(x, y, paired = TRUE, alternative = "greater")
wilcox.test(y - x, alternative = "less") # The same.
wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample
approximation

Two-sample test.
Hollander & Wolfe (1973), 69f.
Permeability constants of the human chorioamnion (a placental
membrane) at term (x) and between 12 to 26 weeks gestational
age (y). The alternative of interest is greater permeability
of the human chorioamnion for the term pregnancy.
x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g") # greater
wilcox.test(x, y, alternative = "greater",

exact = FALSE, correct = FALSE) # H&W large sample
approximation

wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)

Wilcoxon 1333

Formula interface.
boxplot(Ozone ~ Month, data = airquality)
wilcox.test(Ozone ~ Month, data = airquality,

subset = Month %in% c(5, 8))

Wilcoxon Distribution of the Wilcoxon Rank Sum Statistic

Description

Density, distribution function, quantile function and random generation for the distribution of the
Wilcoxon rank sum statistic obtained from samples with sizemandn, respectively.

Usage

dwilcox(x, m, n, log = FALSE)
pwilcox(q, m, n, lower.tail = TRUE, log.p = FALSE)
qwilcox(p, m, n, lower.tail = TRUE, log.p = FALSE)
rwilcox(nn, m, n)

Arguments

x, q vector of quantiles.

p vector of probabilities.

nn number of observations. Iflength(nn) > 1 , the length is taken to be the
number required.

m, n numbers of observations in the first and second sample, respectively. Can be
vectors of positive integers.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities areP [X ≤ x], otherwise,P [X > x].

Details

This distribution is obtained as follows. Letx andy be two random, independent samples of sizem
andn. Then the Wilcoxon rank sum statistic is the number of all pairs(x[i], y[j]) for which
y[j] is not greater thanx[i] . This statistic takes values between0 andm * n, and its mean and
variance arem * n / 2 andm * n * (m + n + 1) / 12 , respectively.

If any of the first three arguments are vectors, the recycling rule is used to do the calculations for all
combinations of the three up to the length of the longest vector.

Value

dwilcox gives the density,pwilcox gives the distribution function,qwilcox gives the quantile
function, andrwilcox generates random deviates.

Warning

These functions can use large amounts of memory and stack (and even crashR if the stack limit is
exceeded and stack-checking is not in place) if one sample is large (several thousands or more).

1334 Wilcoxon

Note

S-PLUS uses a different (but equivalent) definition of the Wilcoxon statistic: seewilcox.test
for details.

Author(s)

Kurt Hornik

Source

These are calculated via recursion, based oncwilcox(k, m, n) , the number of choices with
statistick from samples of sizemandn, which is itself calculated recursively and the results cached.
Thendwilcox andpwilcox sum appropriate values ofcwilcox , andqwilcox is based on
inversion.

rwilcox generates a random permutation of ranks and evaluates the statistic.

See Also

wilcox.test to calculate the statistic from data, find p values and so on.

dsignrank etc, for the distribution of theone-sampleWilcoxon signed rank statistic.

Examples

require(graphics)

x <- -1:(4*6 + 1)
fx <- dwilcox(x, 4, 6)
Fx <- pwilcox(x, 4, 6)

layout(rbind(1,2), widths=1, heights=c(3,2))
plot(x, fx,type='h', col="violet",

main= "Probabilities (density) of Wilcoxon-Statist.(n=6,m=4)")
plot(x, Fx,type="s", col="blue",

main= "Distribution of Wilcoxon-Statist.(n=6,m=4)")
abline(h=0:1, col="gray20",lty=2)
layout(1)# set back

N <- 200
hist(U <- rwilcox(N, m=4,n=6), breaks=0:25 - 1/2,

border="red", col="pink", sub = paste("N =",N))
mtext("N * f(x), f() = true \"density\"", side=3, col="blue")

lines(x, N*fx, type='h', col='blue', lwd=2)
points(x, N*fx, cex=2)

Better is a Quantile-Quantile Plot
qqplot(U, qw <- qwilcox((1:N - 1/2)/N, m=4,n=6),

main = paste("Q-Q-Plot of empirical and theoretical quantiles",
"Wilcoxon Statistic, (m=4, n=6)",sep="\n"))

n <- as.numeric(names(print(tU <- table(U))))
text(n+.2, n+.5, labels=tU, col="red")

window 1335

window Time Windows

Description

window is a generic function which extracts the subset of the objectx observed between the times
start andend . If a frequency is specified, the series is then re-sampled at the new frequency.

Usage

window(x, ...)
S3 method for class 'ts':
window(x, ...)
Default S3 method:
window(x, start = NULL, end = NULL,

frequency = NULL, deltat = NULL, extend = FALSE, ...)

window(x, ...) <- value
S3 replacement method for class 'ts':
window(x, start, end, frequency, deltat, ...) <- value

Arguments

x a time-series (or other object if not replacing values).

start the start time of the period of interest.

end the end time of the period of interest.

frequency, deltat
the new frequency can be specified by either (or both if they are consistent).

extend logical. If true, thestart andend values are allowed to extend the series. If
false, attempts to extend the series give a warning and are ignored.

... further arguments passed to or from other methods.

value replacement values.

Details

The start and end times can be specified as forts . If there is no observation at the newstart or
end , the immediately following (start) or preceding (end) observation time is used.

The replacement function has a method forts objects, and is allowed to extend the series (with a
warning). There is no default method.

Value

The value depends on the method.window.default will return a vector or matrix with an
appropriatetsp attribute.

window.ts differs fromwindow.default only in ensuring the result is ats object.

If extend = TRUE the series will be padded withNAs if needed.

1336 xtabs

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

time , ts .

Examples

window(presidents, 1960, c(1969,4)) # values in the 1960's
window(presidents, deltat=1) # All Qtr1s
window(presidents, start=c(1945,3), deltat=1) # All Qtr3s
window(presidents, 1944, c(1979,2), extend=TRUE)

pres <- window(presidents, 1945, c(1949,4)) # values in the 1940's
window(pres, 1945.25, 1945.50) <- c(60, 70)
window(pres, 1944, 1944.75) <- 0 # will generate a warning
window(pres, c(1945,4), c(1949,4), frequency=1) <- 85:89
pres

xtabs Cross Tabulation

Description

Create a contingency table from cross-classifying factors, usually contained in a data frame, using
a formula interface.

Usage

xtabs(formula = ~., data = parent.frame(), subset, na.action,
exclude = c(NA, NaN), drop.unused.levels = FALSE)

Arguments

formula a formula object with the cross-classifying variables (separated by+) on the
right hand side (or an object which can be coerced to a formula). Interactions
are not allowed. On the left hand side, one may optionally give a vector or a
matrix of counts; in the latter case, the columns are interpreted as corresponding
to the levels of a variable. This is useful if the data have already been tabulated,
see the examples below.

data an optional matrix or data frame (or similar: seemodel.frame) containing
the variables in the formulaformula . By default the variables are taken from
environment(formula) .

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data containNAs.

exclude a vector of values to be excluded when forming the set of levels of the classifying
factors.

drop.unused.levels
a logical indicating whether to drop unused levels in the classifying factors. If
this isFALSEand there are unused levels, the table will contain zero marginals,
and a subsequent chi-squared test for independence of the factors will not work.

xtabs 1337

Details

There is asummary method for contingency table objects created bytable or xtabs , which
gives basic information and performs a chi-squared test for independence of factors (note that the
functionchisq.test currently only handles 2-d tables).

If a left hand side is given informula , its entries are simply summed over the cells corresponding
to the right hand side; this also works if the lhs does not give counts.

Value

A contingency table in array representation of classc("xtabs", "table") , with a "call"
attribute storing the matched call.

See Also

table for traditional cross-tabulation, andas.data.frame.table which is the inverse oper-
ation ofxtabs (see theDFexample below).

Examples

'esoph' has the frequencies of cases and controls for all levels of
the variables 'agegp', 'alcgp', and 'tobgp'.
xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)
Output is not really helpful ... flat tables are better:
ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))
In particular if we have fewer factors ...
ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))

This is already a contingency table in array form.
DF <- as.data.frame(UCBAdmissions)
Now 'DF' is a data frame with a grid of the factors and the counts
in variable 'Freq'.
DF
Nice for taking margins ...
xtabs(Freq ~ Gender + Admit, DF)
And for testing independence ...
summary(xtabs(Freq ~ ., DF))

Create a nice display for the warp break data.
warpbreaks$replicate <- rep(1:9, len = 54)
ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))

1338 xtabs

Chapter 8

The tools package

tools-package Tools for Package Development

Description

Tools for package development, administration and documentation

Details

This package contains tools for manipulating R packages and their documentation.

For a complete list of functions, uselibrary(help="tools") .

Author(s)

Kurt Hornik and Friedrich Leisch

Maintainer: R Core Team〈R-core@r-project.org〉

buildVignettes List and Build Package Vignettes

Description

RunSweave andtexi2dvi on all vignettes of a package.

Usage

buildVignettes(package, dir, lib.loc = NULL, quiet = TRUE)
pkgVignettes(package, dir, lib.loc = NULL)

1339

1340 charsets

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory ‘doc’.

dir a character string specifying the path to a package’s root source directory. This
subdirectory ‘inst/doc’ is searched for Sweave files.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. The specified library trees
are used to search forpackage .

quiet logical. RunSweave andtexi2dvi in quiet mode.

Value

buildVignettes is called for its side effect of creating the PDF versions of all vignettes.

pkgVignettes returns an object of class"pkgVignettes" .

charsets Conversion Tables between Character Sets

Description

charset_to_Unicode is a matrix of Unicode points with columns for the common 8-bit en-
codings.

Adobe_glyphs is a dataframe which gives Adobe glyph names for Unicode points. It has two
character columns,"adobe" and"unicode" (a 4-digit hex representation).

Usage

charset_to_Unicode

Adobe_glyphs

Details

charset_to_Unicode is an integer matrix of classc(" noquote ", " noquote ") so prints
in hexadecimal. The mappings are those used bylibiconv : there are differences in the way
quotes and minus/hyphen are mapped between sources (and the postscript encoding files use a
different mapping).

Adobe_glyphs include all the Adobe glyph names which correspond to single Uni-
code characters. It is sorted by Unicode point and within a point alphabetically on the
glyph(there can be more than one name for a Unicode point). The data are in the file
‘R_HOME/share/encodings/Adobe_glyphlist’.

Source

http://partners.adobe.com/public/developer/en/opentype/glyphlist.
txt

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt
http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

checkFF 1341

Examples

find Adobe names for ISOLatin2 chars.
latin2 <- charset_to_Unicode[, "ISOLatin2"]
aUnicode <- as.numeric(paste("0x", Adobe_glyphs$unicode, sep=""))
keep <- aUnicode %in% latin2
aUnicode <- aUnicode[keep]
aAdobe <- Adobe_glyphs[keep, 1]
first match
aLatin2 <- aAdobe[match(latin2, aUnicode)]
all matches
bLatin2 <- lapply(1:256, function(x) aAdobe[aUnicode == latin2[x]])
format(bLatin2, justify="none")

checkFF Check Foreign Function Calls

Description

Performs checks on calls to compiled code from R code. Currently only whether the interface
functions such as.C and.Fortran are called with a" NativeSymbolInfo " first argument or
with argumentPACKAGEspecified, which is highly recommended to avoid name clashes in foreign
function calls.

Usage

checkFF(package, dir, file, lib.loc = NULL,
verbose = getOption("verbose"))

Arguments

package a character string naming an installed package. If given, the installed R code of
the package is checked.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectory ‘R’ (for R code). Only used ifpackage is not
given.

file the name of a file containing R code to be checked. Used if neitherpackage
nordir are given.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. The specified library trees
are used to search forpackage .

verbose a logical. IfTRUE, additional diagnostics are printed (and the result is returned
invisibly).

Details

Note that we can only check if thename argument is a symbol or a character string, not what class
of object the symbol resolves to at run-time.

If the package has a namespace andif that contains auseDynLib directive, calls in top-level
functions in the package are not reported as their symbols will be preferentially looked up in the
DLL named in the firstuseDynLib directive.

1342 checkMD5sums

Value

An object of class"checkFF" , which currently is a list of the (parsed) foreign function calls with
a character first argument and noPACKAGEargument.

There is aprint method to display the information contained in such objects.

Warning

This function is still experimental. Both name and interface might change in future versions.

See Also

.C , .Fortran ; Foreign .

Examples

checkFF(package = "stats", verbose = TRUE)

checkMD5sums Check and Create MD5 Checksum Files

Description

checkMD5sums checks the files against a fileMD5.

Usage

checkMD5sums(package, dir)

Arguments

package the name of an installed package

dir the path to the top-level directory of an installed package.

Details

The file ‘MD5’ which is created is in a format which can be checked bymd5sum -c MD5 if a
suitable command-line version ofmd5sumis available. (One is supplied in the bundle athttp:
//www.murdoch-sutherland.com/Rtools/tools.zip .)

If dir is missing, an installed package of namepackage is searched for.

The private functiontools:::.installMD5sums is used to createMD5files in the Windows
build.

Value

checkMD5sums returns a logical,NAif there is no ‘MD5’ file to be checked.

See Also

md5sum

http://www.murdoch-sutherland.com/Rtools/tools.zip
http://www.murdoch-sutherland.com/Rtools/tools.zip

checkTnF 1343

checkTnF Check R Packages or Code for T/F

Description

Checks the specified R package or code file for occurrences ofT or F, and gathers the expression
containing these. This is useful as in RT andF are just variables which are set to the logicalsTRUE
andFALSEby default, but are not reserved words and hence can be overwritten by the user. Hence,
one should always useTRUEandFALSEfor the logicals.

Usage

checkTnF(package, dir, file, lib.loc = NULL)

Arguments

package a character string naming an installed package. If given, the installed R code
and the examples in the documentation files of the package are checked. R code
installed as an image file cannot be checked.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectory ‘R’ (for R code), and should also contain ‘man’
(for documentation). Only used ifpackage is not given. If used, the R code
files and the examples in the documentation files are checked.

file the name of a file containing R code to be checked. Used if neitherpackage
nordir are given.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. The specified library trees
are used to search forpackage .

Value

An object of class"checkTnF" which is a list containing, for each file where occurrences ofT
or F were found, a list with the expressions containing these occurrences. The names of the list are
the corresponding file names.

There is aprint method for nicely displaying the information contained in such objects.

Warning

This function is still experimental. Both name and interface might change in future versions.

1344 checkVignettes

checkVignettes Check Package Vignettes

Description

Check allSweave files of a package by runningSweave and/orStangle on them. All R source
code files found after the tangling step aresource ed to check whether all code can be executed
without errors.

Usage

checkVignettes(package, dir, lib.loc = NULL,
tangle = TRUE, weave = TRUE, latex = FALSE,
workdir = c("tmp", "src", "cur"),
keepfiles = FALSE)

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory ‘doc’.

dir a character string specifying the path to a package’s root source directory. This
subdirectory ‘inst/doc’ is searched for Sweave files.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. The specified library trees
are used to search forpackage .

tangle Perform a tangle andsource the extracted code?

weave Perform a weave?

latex logical: if tangle = weave = latex = TRUE and there is no
Makefile in the vignettes directory, run the tangled files throughpdflatex .

workdir Directory used as working directory while checking the vignettes. If"tmp"
then a temporary directory is created, this is the default. If"src" then the di-
rectory containing the vignettes itself is used, if"cur" then the current working
directory ofR is used.

keepfiles Delete file in temporary directory? This option is ignored when
workdir!="tmp" .

Value

An object of class"checkVignettes" which is a list with the error messages found during the
tangle and weave steps. There is aprint method for nicely displaying the information contained
in such objects.

codoc 1345

codoc Check Code/Documentation Consistency

Description

Find inconsistencies between actual and documented ‘structure’ ofR objects in a package.codoc
compares names and optionally also corresponding positions and default values of the arguments
of functions. codocClasses andcodocData compare slot names of S4 classes and variable
names of data sets, respectively.

Usage

codoc(package, dir, lib.loc = NULL,
use.values = NULL, verbose = getOption("verbose"))

codocClasses(package, lib.loc = NULL)
codocData(package, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectories ‘man’ with R documentation sources (in Rd
format) and ‘R’ with R code. Only used ifpackage is not given.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. The specified library trees
are used to search forpackage .

use.values if FALSE, do not use function default values when comparing code and docs.
Otherwise, compareall default values ifTRUE, and only the ones documented
in the usage otherwise (default).

verbose a logical. IfTRUE, additional diagnostics are printed.

Details

The purpose ofcodoc is to check whether the documented usage of function objects agrees with
their formal arguments as defined in theR code. This is not always straightforward, in particular
as the usage information for methods to generic functions often employs the name of the generic
rather than the method.

The following algorithm is used. If an installed package is used, it is loaded (unless it is thebase
package), after possibly detaching an already loaded version of the package. Otherwise, if the
sources are used, theR code files of the package are collected and sourced in a new environment.
Then, the usage sections of the Rd files are extracted and parsed ‘as much as possible’ to give the
formals documented. For interpreted functions in the code environment, the formals are compared
between code and documentation according to the values of the argumentuse.values . Synopsis
sections are used if present; their occurrence is reported ifverbose is true.

If a package has a name space both exported and unexported objects are checked, as well as regis-
tered S3 methods. (In the unlikely event of differences the order is exported objects in the package,
registered S3 methods and finally objects in the name space and only the first found is checked.)

Currently, the R documentation format has no high-level markup for the basic ‘structure’ of classes
and data sets (similar to the usage sections for function synopses). Variable names for data frames in

1346 delimMatch

documentation objects obtained by suitably editing ‘templates’ created byprompt are recognized
by codocData and used provided that the documentation object is for a single data frame (i.e.,
only has one alias).codocClasses analogously handles slot names for classes in documentation
objects obtained by editing shells created bypromptClass .

Help files named ‘pkgname-defunct.Rd’ for the appropriatepkgname are checked more loosely,
as they may have undocumented arguments.

Value

codoc returns an object of class"codoc" . Currently, this is a list which, for each Rd object in
the package where an inconsistency was found, contains an element with a list of the mismatches
(which in turn are lists with elementscode anddocs , giving the corresponding arguments ob-
tained from the function’s code and documented usage).

codocClasses and codocData return objects of class"codocClasses" and
"codocData" , respectively, with a structure similar to class"codoc" .

There areprint methods for nicely displaying the information contained in such objects.

Warning

Both codocClasses and codocData are still experimental. Names, interfaces and values
might change in future versions.

Note

The default foruse.values has been changed fromFALSE to NULL, for R versions 1.9.0 and
later.

See Also

undoc , QC

delimMatch Delimited Pattern Matching

Description

Match delimited substrings in a character vector, with proper nesting.

Usage

delimMatch(x, delim = c("{", "}"), syntax = "Rd")

Arguments

x a character vector.

delim a character vector of length 2 giving the start and end delimiters. Future versions
might allow for arbitrary regular expressions.

syntax currently, always the string ‘"Rd" ’ indicating Rd syntax (i.e., ‘%’ starts a com-
ment extending till the end of the line, and ‘\ ’ escapes). Future versions might
know about other syntaxes, perhaps via ‘syntax tables’ allowing to flexibly spec-
ify comment, escape, and quote characters.

encoded_text_to_latex 1347

Value

An integer vector of the same length asx giving the starting position (in characters) of the first
match, or−1 if there is none, with attribute"match.length" giving the length (in characters)
of the matched text (or−1 for no match).

See Also

regexpr for ‘simple’ pattern matching.

Examples

x <- c("\\value{foo}", "function(bar)")
delimMatch(x)
delimMatch(x, c("(", ")"))

encoded_text_to_latex
Translate non-ASCII Text to LaTeX Escapes

Description

Translate non-ASCII characters in text to LaTeX escape sequences.

Usage

encoded_text_to_latex(x,
encoding = c("latin1", "latin2", "latin9",

"UTF-8", "utf8"))

Arguments

x a character vector.

encoding the encoding to be assumed."latin9" is officially ISO-8859-15 or Latin-9,
but known as latin9 to LaTeX’sinputenc package.

Details

Non-ASCII characters inx are replaced by an appropriate LaTeX escape sequence, or? if there is
no appropriate sequence.

Even if there is an appropriate sequence, it may not be supported by the font in use. Hyphen is
mapped to\- .

Value

A character vector of the same length asx .

See Also

iconv

1348 fileutils

Examples

x <- "fa\xE7ile"
encoded_text_to_latex(x, "latin1")
Not run:
create a tex file to show the upper half of 8-bit charsets
x <- rawToChar(as.raw(160:255), multiple=TRUE)
(x <- matrix(x, ncol=16, byrow=TRUE))
xx <- x
xx[] <- encoded_text_to_latex(x, "latin1") # or latin2 or latin9
xx <- apply(xx, 1, paste, collapse="&")
con <- file("test-encoding.tex", "w")
header <- c(
"\\documentclass{article}",
"\\usepackage[T1]{fontenc}",
"\\usepackage{Rd}",
"\\begin{document}",
"\\HeaderA{test}{}{test}",
"\\begin{Details}\relax",
"\\Tabular{cccccccccccccccc}{")
trailer <- c("}", "\\end{Details}", "\\end{document}")
writeLines(header, con)
writeLines(paste(xx, "\\", sep=""), con)
writeLines(trailer, con)
close(con)
and some UTF_8 chars
x <- intToUtf8(as.integer(

c(160:383,0x0192,0x02C6,0x02C7,0x02CA,0x02D8,
0x02D9, 0x02DD, 0x200C, 0x2018, 0x2019, 0x201C,
0x201D, 0x2020, 0x2022, 0x2026, 0x20AC)),

multiple=TRUE)
x <- matrix(x, ncol=16, byrow=TRUE)
xx <- x
xx[] <- encoded_text_to_latex(x, "UTF-8")
xx <- apply(xx, 1, paste, collapse="&")
con <- file("test-utf8.tex", "w")
writeLines(header, con)
writeLines(paste(xx, "\\", sep=""), con)
writeLines(trailer, con)
close(con)
End(Not run)

fileutils File Utilities

Description

Utilities for testing and listing files, and manipulating file paths.

Usage

file_path_as_absolute(x)
file_path_sans_ext(x)

list_files_with_exts(dir, exts, all.files = FALSE,

fileutils 1349

full.names = TRUE)
list_files_with_type(dir, type, all.files = FALSE,

full.names = TRUE,
OS_subdirs = .OStype())

Arguments

x character vector giving file paths.

dir a character string with the path name to a directory.

exts a character vector of possible file extensions.

all.files a logical. IfFALSE(default), only visible files are considered; ifTRUE, all files
are used.

full.names a logical indicating whether the full paths of the files found are returned (de-
fault), or just the file names.

type a character string giving the ‘type’ of the files to be listed, as characterized by
their extensions. Currently, possible values are"code" (R code),"data"
(data sets),"demo" (demos),"docs" (R documentation), and"vignette"
(vignettes).

OS_subdirs a character vector with the names of OS-specific subdirectories to possibly
include in the listing of R code and documentation files. By default, the
value of the environment variableR_OSTYPE, or if this is empty, the value
of .Platform $OS.type , is used.

Details

file_path_as_absolute turns a possibly relative file path absolute, performing tilde expan-
sion if necessary. Currently, only a single existing path can be given.

file_path_sans_ext returns the file paths without extensions. (Only purely alphanumeric
extensions are recognized.)

list_files_with_exts returns the paths or names of the files in directorydir with extension
matching one of the elements ofexts . Note that by default, full paths are returned, and that only
visible files are used.

list_files_with_type returns the paths of the files indir of the given ‘type’, as determined
by the extensions recognized byR. When listing R code and documentation files, files in OS-specific
subdirectories are included if present according to the value ofOS_subdirs . Note that by default,
full paths are returned, and that only visible files are used.

See Also

file.path , file.info , list.files

Examples

dir <- file.path(R.home(), "library", "stats")
utils::file_test("-d", dir)
utils::file_test("-nt", file.path(dir, "R"), file.path(dir, "demo"))
list_files_with_exts(file.path(dir, "demo"), "R")
list_files_with_type(file.path(dir, "demo"), "demo") # the same
file_path_sans_ext(list.files(file.path(R.home(), "modules")))

1350 getDepList

getDepList Functions to Retrieve Dependency Information

Description

Given a dependency matrix, will create aDependsList object for that package which will include
the dependencies for that matrix, which ones are installed, which unresolved dependencies were
found online, which unresolved dependencies were not found online, and any R dependencies.

Usage

getDepList(depMtrx, instPkgs, recursive = TRUE, local = TRUE,
reduce = TRUE, lib.loc = NULL)

pkgDepends(pkg, recursive = TRUE, local = TRUE, reduce = TRUE,
lib.loc = NULL)

Arguments

depMtrx A dependency matrix as frompackage.dependencies

pkg The name of the package

instPkgs A matrix specifying all packages installed on the local system, as from
installed.packages

recursive Whether or not to include indirect dependencies

local Whether or not to search only locally

reduce Whether or not to collapse all sets of dependencies to a minimal value

lib.loc What libraries to use when looking for installed packages.NULL indicates all
library directories in the user’s.libPaths() .

Details

The functionpkgDepends is a convenience function which wrapsgetDepList and takes as
input a package name. It will then queryinstalled.packages and also generate a dependency
matrix, callinggetDepList with this information and returning the result.

These functions will retrieve information about the dependencies of the matrix, resulting in a
DependsList object. This is a list with four elements:

Depends A vector of the dependencies for this package.

Installed A vector of the dependencies which have been satisfied by the currently installed pack-
ages.

Found A list representing the dependencies which are not inInstalled but were found online.
This list has element names which are the URLs for the repositories in which packages were
found and the elements themselves are vectors of package names which were found in the
respective repositories. Iflocal=TRUE , theFound element will always be empty.

R Any R version dependencies.

installFoundDepends 1351

If recursive is TRUE, any package that is specified as a dependency will in turn have its depen-
dencies included (and so on), these are known as indirect dependencies. Ifrecursive is FALSE,
only the dependencies directly stated by the package will be used.

If local is TRUE, the system will only look at the user’s local install and not online to find
unresolved dependencies.

If reduce is TRUE, the system will collapse the fields in theDependsList object such that a
minimal set of dependencies are specified (for instance if there was (’foo’, ’foo (>= 1.0.0)’, ’foo
(>= 1.3.0)’), it would only return ’foo (>= 1.3.0)’).

Value

An object of classDependsList

Author(s)

Jeff Gentry

See Also

installFoundDepends

Examples

pkgDepends("tools", local = FALSE)

installFoundDepends
A function to install unresolved dependencies

Description

This function will take theFound element of apkgDependsList object and attempt to install
all of the listed packages from the specified repositories.

Usage

installFoundDepends(depPkgList, ...)

Arguments

depPkgList A Found element from apkgDependsList object

... Arguments to pass on toinstall.packages

Details

This function takes as input theFound list from apkgDependsList object. This list will have
element names being URLs corresponding to repositories and the elements will be vectors of pack-
age names. For each element,install.packages is called for that URL to install all packages
listed in the vector.

1352 makeLazyLoading

Author(s)

Jeff Gentry

See Also

pkgDepends , install.packages

Examples

Set up a temporary directory to install packages to
tmp <- tempfile()
dir.create(tmp)

pDL <- pkgDepends("tools",local=FALSE)
installFoundDepends(pDL$Found, destdir=tmp)

makeLazyLoading Lazy Loading of Packages

Description

Tools for lazy loading of packages from a database.

Usage

makeLazyLoading(package, lib.loc = NULL, compress = TRUE,
keep.source = getOption("keep.source.pkgs"))

Arguments

package package name string

lib.loc library trees, as inlibrary

keep.source logical; should sources be kept when saving from source

compress logical; whether to compress entries on the database.

Details

A tool to set up packages for lazy loading from a database. For packages other thanbaseyou can
usemakeLazyLoading(package) to convert them to use lazy loading.

Author(s)

Luke Tierney and Brian Ripley

Examples

set up package "splines" for lazy loading -- already done
Not run:
tools:::makeLazyLoading("splines")
End(Not run)

md5sum 1353

md5sum Compute MD5 Checksums

Description

Compute the 32-byte MD5 checksums of one or more files.

Usage

md5sum(files)

Arguments

files character. The paths of file(s) to be check-summed.

Value

A character vector of the same length asfiles , with names equal tofiles . The elements will
beNAfor non-existent or unreadable files, otherwise a 32-character string of hexadecimal digits.

On Windows all files are read in binary mode (as themd5sumutilities there do): on other OSes the
files are read in the default way.

See Also

checkMD5sums

Examples

md5sum(dir(R.home(), pattern="^COPY", full.names=TRUE))

package.dependencies
Check Package Dependencies

Description

Parses and checks the dependencies of a package against the currently installed version of R [and
other packages].

Usage

package.dependencies(x, check = FALSE,
depLevel = c("Depends", "Imports", "Suggests"))

Arguments

x A matrix of package descriptions as returned byavailable.packages .

check If TRUE, return logical vector of check results. IfFALSE, return parsed list of
dependencies.

depLevel Whether to look forDepends or Suggests level dependencies.

1354 QC

Details

Currently we only check if the package conforms with the currently running version of R. In the
future we might add checks for inter-package dependencies.

See Also

update.packages

QC QC Checks for R Code and/or Documentation

Description

Functions for performing various quality checks.

Usage

checkDocFiles(package, dir, lib.loc = NULL)
checkDocStyle(package, dir, lib.loc = NULL)
checkReplaceFuns(package, dir, lib.loc = NULL)
checkS3methods(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectories ‘R’ (for R code) and ‘man’ with R documen-
tation sources (in Rd format). Only used ifpackage is not given.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. The specified library trees
are used to search forpackage .

Details

checkDocFiles checks, for all Rd files in a package, whether all arguments shown in the usage
sections of the Rd file are documented in its arguments section. It also reports duplicated entries in
the arguments section, and ‘over-documented’ arguments which are given in the arguments section
but not in the usage. Note that the match is for the usage section and not a possibly existing synopsis
section, as the usage is what gets displayed.

checkDocStyle investigates how (S3) methods are shown in the usages of the Rd files in a
package. It reports the methods shown by their full name rather than using the Rd\method markup
for indicating S3 methods. Earlier versions ofR also reported about methods shown along with
their generic, which typically caused problems for the documentation of the primary argument in
the generic and its methods. With\method now being expanded in a way that class information is
preserved, joint documentation is no longer necessarily a problem. (The corresponding information
is still contained in the object returned bycheckDocStyle .)

checkReplaceFuns checks whether replacement functions or S3/S4 replacement methods in
the package R code have their final argument namedvalue .

checkS3methods checks whether all S3 methods defined in the package R code have all argu-
ments of the corresponding generic, with positional arguments of the generics in the same positions

Rdindex 1355

for the method. As an exception, the first argument of a formula methodmaybe calledformula
even if this is not the name used by the generic. The rules when... is involved are subtle: see
the source code. Functions recognized as S3 generics are those with a call toUseMethod in their
body, internal S3 generics (seeInternalMethods), and S3 group generics (seeMath). Possible dis-
patch under a different name is not taken into account. The generics are sought first in the given
package, then in thebasepackage and (currently) the packagesgraphics, stats, andutils added
in R 1.9.0 by splitting the formerbase, and, if an installed package is tested, also in the loaded
namespaces/packages listed in the package’s ‘DESCRIPTION’ Depends field.

If using an installed package, the checks needing access to all R objects of the package will load
the package (unless it is thebasepackage), after possibly detaching an already loaded version of
the package.

Value

The functions return objects of class the same as the respective function names containing the infor-
mation about problems detected. There areprint methods for nicely displaying the information
contained in such objects.

Warning

These functions are still experimental. Names, interfaces and values might change in future ver-
sions.

Rdindex Generate Index from Rd Files

Description

Print a 2-column index table with names and titles from given R documentation files to a given
output file or connection. The titles are nicely formatted between two column positions (typically
25 and 72, respectively).

Usage

Rdindex(RdFiles, outFile = "", type = NULL,
width = 0.9 * getOption("width"), indent = NULL)

Arguments

RdFiles a character vector specifying the Rd files to be used for creating the index, either
by giving the paths to the files, or the path to a single directory with the sources
of a package.

outFile a connection, or a character string naming the output file to print to."" (the
default) indicates output to the console.

type a character string giving the documentation type of the Rd files to be included
in the index, orNULL (the default). The type of an Rd file is typically specified
via the \docType tag; if type is "data" , Rd files whoseonly keyword is
datasets are included as well.

width a positive integer giving the target column for wrapping lines in the output.

indent a positive integer specifying the indentation of the second column. Must not be
greater thanwidth/2 , and defaults towidth/3 .

1356 Rdutils

Details

If a name is not a valid alias, the first alias (or the empty string if there is none) is used instead.

Rdutils Rd Utilities

Description

Utilities for computing on the information in Rd objects.

Usage

Rd_db(package, dir, lib.loc = NULL)
Rd_parse(file, text = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectory ‘man’ with R documentation sources (in Rd
format). Only used ifpackage is not given.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. The specified library trees
are used to search forpackage .

file a connection, or a character string giving the name of a file or a URL to read
documentation in Rd format from.

text character vector with documentation in Rd format. Elements are treated as if
they were lines of a file.

Details

Rd_db builds a simple database of all Rd sources in a package, as a list of character vectors with
the lines of the Rd files in the package. This is particularly useful for working on installed packages,
where the individual Rd files in the sources are no longer available.

Rd_parse is a simple top-level Rd parser/analyzer. It returns a list with components

meta a list containing the Rd metadata (aliases, concepts, keywords, and documentation type);

data a data frame with the names (tags) and corresponding text (vals) of the top-level sections
in the R documentation object;

rest top-level text not accounted for (currently, silently discarded by Rdconv, and hence usually
the indication of a problem).

Note that at least for the time being, only the top-level structure is analyzed.

Warning

These functions are still experimental. Names, interfaces and values might change in future ver-
sions.

read.00Index 1357

Examples

Build the Rd db for the (installed) base package.
db <- Rd_db("base")
Run Rd_parse on all entries in the Rd db.
db <- lapply(db, function(txt) Rd_parse(text = txt))
Extract the metadata.
meta <- lapply(db, "[[", "meta")

Keyword metadata per Rd file.
keywords <- lapply(meta, "[[", "keywords")
Tabulate the keyword entries.
kw_table <- sort(table(unlist(keywords)))
The 5 most frequent ones:
rev(kw_table)[1 : 5]
The "most informative" ones:
kw_table[kw_table == 1]

Concept metadata per Rd file.
concepts <- lapply(meta, "[[", "concepts")
How many files already have \concept metadata?
sum(sapply(concepts, length) > 0)
How many concept entries altogether?
length(unlist(concepts))

read.00Index Read 00Index-style Files

Description

Read item/description information from 00Index-style files. Such files are description lists rendered
in tabular form, and currently used for the ‘INDEX’ and ‘demo/00Index’ files of add-on packages.

Usage

read.00Index(file)

Arguments

file the name of a file to read data values from. If the specified file is"" , then input
is taken from the keyboard (in this case input can be terminated by a blank line).
Alternatively,file can be aconnection , which will be opened if necessary,
and if so closed at the end of the function call.

Value

a character matrix with 2 columns named"Item" and"Description" which hold the items
and descriptions.

See Also

formatDL for the inverse operation of creating a 00Index-style file from items and their descrip-
tions.

1358 tools-deprecated

texi2dvi Compile LaTeX Files

Description

Run latex and bibtex until all cross-references are resolved and create either a dvi or PDF file.

Usage

texi2dvi(file, pdf = FALSE, clean = FALSE, quiet = TRUE,
texi2dvi = getOption("texi2dvi"))

Arguments

file character. Name of LaTeX source file.

pdf logical. If TRUE, a PDF file is produced instead of the default dvi file
(texi2dvi command line option ‘--pdf ’).

clean logical. If TRUE, all auxiliary files are removed (texi2dvi command line
option ‘--clean ’). May not work on some platforms.

quiet logical. No output unless an error occurs.

texi2dvi character (orNULL). Script or program used to compile a TeX file to dvi or PDF,
respectively. The default (selected byNULL) is to look for an executable on the
search path and otherwise emulate the script withsystem calls.

Details

Despite the name, this is used inR to compile LaTeX files, specifically those generated from vi-
gnettes.

Author(s)

Achim Zeileis

tools-deprecated Deprecated Objects in Package tools

Description

The functions or variables listed here are provided for compatibility with older versions ofR only,
and may be defunct as soon as of the next release.

See Also

Deprecated , Defunct

undoc 1359

undoc Find Undocumented Objects

Description

Finds the objects in a package which are undocumented, in the sense that they are visible to the user
(or data objects or S4 classes provided by the package), but no documentation entry exists.

Usage

undoc(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectory ‘man’ with R documentation sources (in Rd for-
mat), and at least one of the ‘R’ or ‘ data’ subdirectories withR code or data
objects, respectively.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. The specified library trees
are used to search forpackage .

Details

This function is useful for package maintainers mostly. In principle,all user-levelR objects should
be documented.

Thebasepackage is special as it contains the primitives and these do not have definitions available at
code level. We provide equivalent closures in environments.ArgsEnv and.GenericArgsEnv
in the basepackage that are used for various purposes:undoc("base") checks that all the
primitives that are not language constructs are prototyped in those environments and no others are.

Value

An object of class"undoc" which is a list of character vectors containing the names of the undoc-
umented objects split according to documentation type. This representation is still experimental,
and might change in future versions.

There is aprint method for nicely displaying the information contained in such objects.

See Also

codoc , QC

Examples

undoc("tools") # Undocumented objects in 'tools'

1360 vignetteDepends

vignetteDepends Retrieve Dependency Information for a Vignette

Description

Given a vignette name, will create a DependsList object that reports information about the packages
the vignette depends on.

Usage

vignetteDepends(vignette, recursive = TRUE, reduce = TRUE,
local = TRUE, lib.loc = NULL)

Arguments

vignette The path to the vignette source

recursive Whether or not to include indirect dependencies

reduce Whether or not to collapse all sets of dependencies to a minimal value

local Whether or not to search only locally

lib.loc What libraries to search in locally

Details

If recursive is TRUE, any package that is specified as a dependency will in turn have its depen-
dencies included (and so on), these are known as indirect dependencies. If recursive isFALSE, only
the dependencies directly named by the vignette will be used.

If local is TRUE, the system will only look at the user’s local machine and not online to find
dependencies.

If reduce is TRUE, the system will collapse the fields in theDependsList to the minimal set of
dependencies (for instance if the dependencies were (’foo’, ’foo (>= 1.0.0)’, ’foo (>= 1.3.0)’), the
return value would be ’foo (>= 1.3.0)’).

Value

An object of classDependsList

Author(s)

Jeff Gentry

See Also

pkgDepends

Examples

gridEx <- system.file("doc", "grid.Snw", package = "grid")
vignetteDepends(gridEx)

write_PACKAGES 1361

write_PACKAGES Generate PACKAGES files

Description

Generate ‘PACKAGES’ and ‘PACKAGES.gz’ files for a repository of source or Mac/Windows
binary packages.

Usage

write_PACKAGES(dir, fields = NULL,
type = c("source", "mac.binary", "win.binary"),
verbose = FALSE, unpacked = FALSE)

Arguments

dir Character vector describing the location of the repository (directory in-
cluding source or binary packages) to generate the ‘PACKAGES’ and
‘PACKAGES.gz’ files from and write them to.

fields a character vector giving the fields to be used in the ‘PACKAGES’ and
‘PACKAGES.gz’ files in addition to the default ones, orNULL (default).
The default corresponds to the fields needed byavailable.packages :
"Package" , "Bundle" , "Priority" , "Version" , "Depends" ,
"Suggests" , "Imports" and"Contains" .

type Type of packages: currently source ‘.tar.gz’ archives, and Mac or Windows
binary (‘.tgz’ or ‘ .zip’, respectively) packages are supported. Defaults to
"win.binary" on Windows and to"source" otherwise.

verbose logical. Should packages be listed as they are processed?

unpacked a logical indicating whether the package contents are available in unpacked form
or not (default).

Details

type = "win.binary" usesunz connections to read all ‘DESCRIPTION’ files contained in
the (zipped) binary packages for Windows in the given directorydir , and builds ‘PACKAGES’
and ‘PACKAGES.gz’ files from this information.

Value

Invisibly returns the number of packages described in the resulting ‘PACKAGES’ and
‘PACKAGES.gz’ files. If 0, no packages were found and no files were written.

Note

Processing ‘.tar.gz’ archives to extract the ‘DESCRIPTION’ files is quite slow.

This function can be useful on other OSes to prepare a repository to be accessed by Windows
machines, sotype = "win.binary" should work on all OSes.

Author(s)

Uwe Ligges and R-core.

1362 xgettext

See Also

See read.dcf and write.dcf for reading ‘DESCRIPTION’ files and writing the
‘PACKAGES’ and ‘PACKAGES.gz’ files.

Examples

Not run:
write_PACKAGES("c:/myFolder/myRepository") # on Windows
write_PACKAGES("/pub/RWin/bin/windows/contrib/2.1",

type="win.binary") # on Linux
End(Not run)

xgettext Extract Translatable Messages from R Files in a Package

Description

For each file in the ‘R’ directory (including system-specific subdirectories) of a package, extract
the unique arguments passed tostop , warning , message , gettext andgettextf , or to
ngettext .

Usage

xgettext(dir, verbose = FALSE, asCall = TRUE)

xngettext(dir, verbose = FALSE)

xgettext2pot(dir, potFile)

Arguments

dir the directory of a source package.

verbose logical: should each file be listed as it is processed?

asCall logical: if TRUEeach argument is returned whole, otherwise the strings within
each argument are extracted.

potFile name ofpo template file to be produced. Defaults to"R- pkgname.pot"
wherepkgname is the basename ofdir .

Details

Leading and trailing white space (space, tab and linefeed) is removed for calls togettext ,
gettextf , stop , warning , andmessage , as it is by the internal code that passes strings
for translation.

We look to see if these functions were called withdomain = NA and if so omit the call ifasCall
= TRUE: note that the call might contain a call togettext which would be visible ifasCall
= FALSE.

xgettext2pot calls xgettext and thenxngettext , and writes a PO template file for use
with theGNU Gettext tools. This ensures that the strings for simple translation are unique in the
file (asGNU Gettext requires), but does not do so forngettext calls (and the rules are not stated
in the Gettext manual).

If applied to thebasepackage, this also looks in the ‘.R’ files in ‘R_HOME/share/R’.

xgettext 1363

Value

For xgettext , a list of objects of class"xgettext" (which has aprint method), one per
source file that potentially contains translatable strings.

For xngettext , a list of objects of class"xngettext" , which are themselves lists of length-2
character strings.

Examples

Not run:
in a source-directory build of R:
xgettext(file.path(R.home(), "src", "library", "splines"))
End(Not run)

1364 xgettext

Chapter 9

The utils package

utils-package The R Utils Package

Description

R utility functions

Details

This package contains a collection of utility functions.

For a complete list, uselibrary(help="utils") .

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team〈R-core@r-project.org〉

alarm Alert the user

Description

Gives an audible or visual signal to the user.

Usage

alarm()

Details

alarm() works by sending a"\a" character to the console. On most platforms this will ring a
bell, beep, or give some other signal to the user (unless standard output has been redirected).

1365

1366 apropos

Value

No useful value is returned.

Examples

alarm()

apropos Find Objects by (Partial) Name

Description

apropos() returns a character vector giving the names of all objects in the search list matching
what .

find() is a different user interface to the same task.

Usage

apropos(what, where = FALSE, ignore.case = TRUE, mode = "any")

find(what, mode = "any", numeric = FALSE, simple.words = TRUE)

Arguments

what character string with name of an object, or more generally aregular expression
to match against.

where, numeric
a logical indicating whether positions in the search list should also be returned

ignore.case logical indicating if the search should be case-insensitive,TRUEby default.
Note that inR versions prior to 2.5.0, the default was implicitlyignore.case
= FALSE.

mode character; if not"any" , only objects whosemode equalsmode are searched.

simple.words logical; if TRUE, thewhat argument is only searched as whole word.

Details

If mode != "any" only those objects which are of modemode are considered. Ifwhere is
TRUE, the positions in the search list are returned as the names attribute.

find is a different user interface for the same task asapropos . However, by default
(simple.words == TRUE), only full words are searched withgrep(fixed = TRUE) .

Note that in R versions prior to 2.5.0,what was allowed to be non-character, such that
find(cor) worked as it does in S. This possibility has been dropped in line with the aim of
minimizing all use of non-standard evaluation inR.

Value

For apropos character vector, sorted by name, possibly with names giving the (numerical) posi-
tions on the search path.

For find , either a character vector of environment names, or fornumeric = TRUE , a numerical
vector of positions on the search path, with names giving the names of the corresponding environ-
ments.

BATCH 1367

Author(s)

Kurt Hornik and Martin Maechler (May 1997).

See Also

glob2rx to convert wildcard patterns to regular expressions.

objects for listing objects from one place,help.search for searching the help system,
search for the search path.

Examples

require(stats)

Not run: apropos("lm")
apropos("GLM") # more than a dozen
that may include internal objects starting '.__C__' if
methods is attached
apropos("GLM", ignore.case = FALSE) # not one
apropos("lq")

cor <- 1:pi
find("cor") #> ".GlobalEnv" "package:stats"
find("cor", numeric=TRUE) # numbers with these names
find("cor", numeric=TRUE, mode="function")# only the second one
rm(cor)

Not run: apropos(".", mode="list") # a long list

need a DOUBLE backslash '\\' (in case you don't see it anymore)
apropos("\\[")

Not run: # everything
length(apropos("."))

those starting with 'pr'
apropos("^pr")

the 1-letter things
apropos("^.$")
the 1-2-letter things
apropos("^..?$")
the 2-to-4 letter things
apropos("^.{2,4}$")

the 8-and-more letter things
apropos("^.{8,}$")
table(nchar(apropos("^.{8,}$")))
End(Not run)

BATCH Batch Execution of R

1368 browseEnv

Description

RunR non-interactively with input frominfile and send output (stdout/stderr) to another file.

Usage

R CMD BATCH [options] infile [outfile]

Arguments

infile the name of a file withR code to be executed.

options a list of R command line options, e.g., for setting the amount of memory
available and controlling the load/save process. Ifinfile starts with a ‘- ’,
use ‘-- ’ as the final option. The default options are ‘--restore --save
--no-readline ’.

outfile the name of a file to which to write output. If not given, the name used is that of
infile , with a possible ‘.R’ extension stripped, and ‘.Rout’ appended.

Details

UseR CMD BATCH --help to be reminded of the usage.

By default, the input commands are printed along with the output. To suppress this behavior, add
options(echo = FALSE) at the beginning ofinfile , or use option ‘--slave ’.

The infile can have end of line marked by LF or CRLF (but not just CR), and files with an
incomplete last line (missing end of line (EOL) mark) are processed correctly.

A final expression ‘proc.time() ’ will be executed after the input script unless the latter calls
q(runLast=FALSE) or is aborted.

Additional options can be set by the environment variableR_BATCH_OPTIONS: these come after
‘ --restore --save --no-readline ’ and before any options given on the command line.

Note

Unlike Splus BATCH , this does not run theR process in the background. In most shells,R CMD
BATCH [options] infile [outfile] & will do so.

Report bugs to〈r-bugs@r-project.org〉.

browseEnv Browse Objects in Environment

Description

ThebrowseEnv function opens a browser with list of objects currently insys.frame() envi-
ronment.

Usage

browseEnv(envir = .GlobalEnv, pattern,
excludepatt = "^last\\.warning",
html = .Platform$OS.type != "mac",
expanded = TRUE, properties = NULL,
main = NULL, debugMe = FALSE)

browseEnv 1369

Arguments

envir anenvironment the objects of which are to be browsed.

pattern a regular expressionfor object subselection is passed to the internalls () call.

excludepatt a regular expression fordroppingobjects with matching names.

html is used on non Macintosh machines to display the workspace on a HTML page
in your favorite browser.

expanded whether to show one level of recursion. It can be useful to switch it toFALSE if
your workspace is large. This option is ignored ifhtml is set toFALSE.

properties a named list of global properties (of the objects chosen) to be showed in the
browser; whenNULL (as per default), user, date, and machine information is
used.

main a title string to be used in the browser; whenNULL (as per default) a title is
constructed.

debugMe logical switch; if true, some diagnostic output is produced.

Details

Very experimental code. Only allows one level of recursion into object structures. The HTML
version is not dynamic.

It can be generalized. See sources (‘..../library/base/R/databrowser.R’) for details.

wsbrowser() is currently just an internally used function; its argument list will certainly change.

Most probably, this should rather work through using the ‘tkWidget’ package (fromwww.
Bioconductor.org).

See Also

str , ls .

Examples

if(interactive()) {
create some interesting objects :
ofa <- ordered(4:1)
ex1 <- expression(1+ 0:9)
ex3 <- expression(u,v, 1+ 0:9)
example(factor, echo = FALSE)
example(table, echo = FALSE)
example(ftable, echo = FALSE)
example(lm, echo = FALSE, ask = FALSE)
example(str, echo = FALSE)

and browse them:
browseEnv()

a (simple) function's environment:
af12 <- approxfun(1:2, 1:2, method = "const")
browseEnv(envir = environment(af12))

}

www.Bioconductor.org
www.Bioconductor.org

1370 browseURL

browseURL Load URL into a WWW Browser

Description

Load a given URL into a WWW browser.

Usage

browseURL(url, browser = getOption("browser"))

Arguments

url a non-empty character string giving the URL to be loaded.

browser a non-empty character string giving the name of the program to be used as hy-
pertext browser. It should be in the PATH, or a full path specified.

Details

The default browser is set by option"browser" , in turn set by the environment variable
R_BROWSERwhich is by default set in file ‘R_HOME/etc/Renviron’ to a choice made manu-
ally or automatically whenR was configured. (SeeStartup for where to override that default
value.)

If browser supports remote control andR knows how to perform it, the URL is opened in any
already running browser or a new one if necessary. This mechanism currently is available for
browsers which support the"-remote openURL(...)" interface (which includes Opera 5/6,
Mozilla >= 0.9.5 and Mozilla Firefox), Galeon, KDE konqueror (via kfmclient) and the GNOME
interface to Mozilla. Netscape 7.0 and Opera 7 behave slightly differently, and you will need to
open them first. Note that the type of browser is determined from its name, so this mechanism will
only be used if the browser is installed under its canonical name.

Because"-remote" will use any browser displaying on the X server (whatever machine it is
running on), the remote control mechanism is only used ifDISPLAY points to the local host. This
may not allow displaying more than one URL at a time from a remote host.

It is the caller’s responsibility to encodeurl if necessary (seeURLencode). This can be tricky
for file URLs, where the format accepted can depend on the browser and OS.

Examples

Not run:
for KDE users who want to open files in a new tab
option(browser="kfmclient newTab")
browseURL("http://www.r-project.org")
End(Not run)

bug.report 1371

bug.report Send a Bug Report

Description

Invokes an editor to write a bug report and optionally mail it to the automated r-bugs repository at
〈r-bugs@r-project.org〉. Some standard information on the current version and configuration ofR
are included automatically.

Usage

bug.report(subject = "",
ccaddress = Sys.getenv("USER"),
method = getOption("mailer"),
address = "r-bugs@r-project.org",
file = "R.bug.report")

Arguments

subject Subject of the email. Please do not use single quotes (’) in the subject! File
separate bug reports for multiple bugs

ccaddress Optional email address for copies (default is current user). Useccaddress =
FALSEfor no copies.

method Submission method, one of"mailx" , "gnudoit" , "none" , or "ess" .

address Recipient’s email address.

file File to use for setting up the email (or storing it when method is"none" or
sending mail fails).

Details

Currently direct submission of bug reports works only on Unix systems. If the submission method
is "mailx" , then the default editor is used to write the bug report. Which editor is used can
be controlled usingoptions , type getOption("editor") to see what editor is currently
defined. Please use the help pages of the respective editor for details of usage. After saving the
bug report (in the temporary file opened) and exiting the editor the report is mailed using a Unix
command line mail utility such asmailx . A copy of the mail is sent to the current user.

If method is"gnudoit" , then an emacs mail buffer is opened and used for sending the email.

If method is"none" or NULL (and in every case on Windows systems), then only an editor is
opened to help writing the bug report. The report can then be copied to your favorite email program
and be sent to the r-bugs list.

If method is"ess" the body of the mail is simply sent to stdout.

Value

Nothing useful.

1372 bug.report

When is there a bug?

If R executes an illegal instruction, or dies with an operating system error message that indicates a
problem in the program (as opposed to something like “disk full”), then it is certainly a bug.

Taking forever to complete a command can be a bug, but you must make certain that it was really
R’s fault. Some commands simply take a long time. If the input was such that you KNOW it should
have been processed quickly, report a bug. If you don’t know whether the command should take a
long time, find out by looking in the manual or by asking for assistance.

If a command you are familiar with causes anR error message in a case where its usual definition
ought to be reasonable, it is probably a bug. If a command does the wrong thing, that is a bug. But
be sure you know for certain what it ought to have done. If you aren’t familiar with the command,
or don’t know for certain how the command is supposed to work, then it might actually be working
right. Rather than jumping to conclusions, show the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This is a very
important sort of problem, but it is also a matter of judgement. Also, it is easy to come to such a
conclusion out of ignorance of some of the existing features. It is probably best not to complain
about such a problem until you have checked the documentation in the usual ways, feel confident
that you understand it, and know for certain that what you want is not available. The mailing list
r-devel@r-project.org is a better place for discussions of this sort than the bug list.

If you are not sure what the command is supposed to do after a careful reading of the manual this
indicates a bug in the manual. The manual’s job is to make everything clear. It is just as important
to report documentation bugs as program bugs.

If the online argument list of a function disagrees with the manual, one of them must be wrong, so
report the bug.

How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a way which is
useful. What is most useful is an exact description of what commands you type, from when you
startR until the problem happens. Always include the version ofR, machine, and operating system
that you are using; typeversion in R to print this. To help us keep track of which bugs have been
fixed and which are still open please send a separate report for each bug.

The most important principle in reporting a bug is to report FACTS, not hypotheses or categoriza-
tions. It is always easier to report the facts, but people seem to prefer to strain to posit explanations
and report them instead. If the explanations are based on guesses about howR is implemented,
they will be useless; we will have to try to figure out what the facts must have been to lead to such
speculations. Sometimes this is impossible. But in any case, it is unnecessary work for us.

For example, suppose that on a data set which you know to be quite large the com-
mand data.frame(x, y, z, monday, tuesday) never returns. Do not report that
data.frame() fails for large data sets. Perhaps it fails when a variable name is a day of the
week. If this is so then when we got your report we would try out thedata.frame() command
on a large data set, probably with no day of the week variable name, and not see any problem. There
is no way in the world that we could guess that we should try a day of the week variable name.

Or perhaps the command fails because the last command you used was a[method that had a bug
causingR’s internal data structures to be corrupted and making thedata.frame() command fail
from then on. This is why we need to know what other commands you have typed (or read from
your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and somewhat
useful to find simple examples that might be expected to produce the bug but actually do not. If
you want to debug the problem and find exactly what caused it, that is wonderful. You should still
report the facts as well as any explanations or solutions.

capture.output 1373

Invoking R with the ‘--vanilla ’ option may help in isolating a bug. This ensures that the site
profile and saved data files are not read.

A bug report can be generated using thebug.report() function. This automatically includes
the version information and sends the bug to the correct address. Alternatively the bug report can be
emailed to〈r-bugs@r-project.org〉 or submitted to the Web page athttp://bugs.r-project.
org .

Bug reports oncontributed packagesshould be sent to the package maintainer rather than to r-
bugs.

Author(s)

This help page is adapted from the Emacs manual and the R FAQ

See Also

R FAQ, alsosessionInfo () from which you may add to the bug report.

capture.output Send output to a character string or file

Description

Evaluates its arguments with the output being returned as a character string or sent to a file. Related
to sink in the same way thatwith is related toattach .

Usage

capture.output(..., file = NULL, append = FALSE)

Arguments

... Expressions to be evaluated.

file A file name or a connection, orNULL to return the output as a character vector.
If the connection is not open, it will be opened initially and closed on exit.

append logical. If file a file name or unopened connection, append or overwrite?

Details

An attempt is made to write output as far as possible tofile if there is an error in evaluating the
expressions, but forfile = NULL all output will be lost.

Value

A character string (iffile=NULL), or invisibleNULL.

See Also

sink , textConnection

http://bugs.r-project.org
http://bugs.r-project.org

1374 chooseCRANmirror

Examples

require(stats)
glmout <- capture.output(example(glm))
glmout[1:5]
capture.output(1+1, 2+2)
capture.output({1+1; 2+2})
Not run:
on Unix with enscript available
ps <- pipe("enscript -o tempout.ps","w")
capture.output(example(glm), file=ps)
close(ps)
End(Not run)

chooseCRANmirror Select a CRAN Mirror

Description

Interact with the user to choose a CRAN mirror.

Usage

chooseCRANmirror(graphics = getOption("menu.graphics"))

getCRANmirrors(all = FALSE, local.only = FALSE)

Arguments

graphics Logical. If true andtcltk and an X server are available, use a Tk widget, or if
under the AQUA interface use a MacOS X widget, otherwise usemenu.

all Logical, get all known mirrors or only the ones flagged as OK.

local.only Logical, try to get most recent list from CRAN or use file on local disk only.

Details

A list of mirrors is stored in file ‘R_HOME/doc/CRAN_mirrors.csv’, but first an on-line list of
current mirrors is consulted, and the file copy used only if the on-line list is inaccessible.

This function was originally written to support a Windows GUI menu item, but is also called by
contrib.url if it finds the initial dummy value ofoptions ("repos") .

Value

None for chooseCRANmirror() , this function is invoked for its side effect of updating
options("repos") .

getCRANmirrors() returns a data frame with mirror information.

See Also

setRepositories , contrib.url .

citation 1375

citation Citing R and R Packages in Publications

Description

How to cite R and R packages in publications.

Usage

citation(package = "base", lib.loc = NULL)
S3 method for class 'citation':
toBibtex(object, ...)
S3 method for class 'citationList':
toBibtex(object, ...)

Arguments

package a character string with the name of a single package. An error occurs if more
than one package name is given.

lib.loc a character vector with path names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

object return object ofcitation .

... currently not used.

Details

The R core development team and the very active community of package authors have invested a
lot of time and effort in creating R as it is today. Please give credit where credit is due and cite R
and R packages when you use them for data analysis.

Execute functioncitation() for information on how to cite the base R system in publications.
If the name of a non-base package is given, the function either returns the information contained
in theCITATION file of the package or auto-generates citation information. In the latter case the
package ‘DESCRIPTION’ file is parsed, the resulting citation object may be arbitrarily bad, but is
quite useful (at least as a starting point) in most cases.

If only one reference is given, the print method shows both a text version and a BibTeX entry for
it, if a package has more than one reference then only the text versions are shown. The BibTeX
versions can be obtained using functiontoBibtex (see the examples below).

Value

An object of class"citationList" .

See Also

citEntry

1376 citEntry

Examples

the basic R reference
citation()

references for a package -- might not have these installed
if(nchar(system.file(package="lattice"))) citation("lattice")
if(nchar(system.file(package="foreign"))) citation("foreign")

extract the bibtex entry from the return value
x <- citation()
toBibtex(x)

citEntry Writing Package CITATION Files

Description

The ‘CITATION’ file of R packages contains an annotated list of references that should be used for
citing the packages.

Usage

citEntry(entry, textVersion, header = NULL, footer = NULL, ...)
citHeader(...)
citFooter(...)
readCitationFile(file)

Arguments

entry a character string with a BibTeX entry type

textVersion a character string with a text representation of the reference

header a character string with optional header text

footer a character string with optional footer text

file a file name

... see details below

Details

The ‘CITATION’ file of an R package should be placed in the ‘inst’ subdirectory of the package
source. The file is an R source file and may contain arbitrary R commands including conditionals
and computations. The file issource() ed by the R parser in a temporary environment and all
resulting objects of class"citation" (the return value ofcitEntry) are collected.

Typically the file will contain zero or more calls tocitHeader , then one or more calls to
citEntry , and finally zero or more calls tocitFooter . citHeader andcitFooter are
simply wrappers topaste , and their... argument is passed on topaste as is.

Value

citEntry returns an object of class"citation" , readCitationFile returns an object of
class"citationList" .

citEntry 1377

Entry Types

citEntry creates"citation" objects, which are modeled after BibTeX entries. The entry
should be a valid BibTeX entry type, e.g.,

article: An article from a journal or magazine.

book: A book with an explicit publisher.

inbook: A part of a book, which may be a chapter (or section or whatever) and/or a range of pages.

incollection: A part of a book having its own title.

inproceedings: An article in a conference proceedings.

manual: Technical documentation like a software manual.

mastersthesis:A Master’s thesis.

misc: Use this type when nothing else fits.

phdthesis: A PhD thesis.

proceedings: The proceedings of a conference.

techreport: A report published by a school or other institution, usually numbered within a series.

unpublished: A document having an author and title, but not formally published.

Entry Fields

The... argument ofcitEntry can be any number of BibTeX fields, including

address: The address of the publisher or other type of institution.

author: The name(s) of the author(s), either as a character string in the format described in the
LaTeX book, or apersonList object.

booktitle: Title of a book, part of which is being cited.

chapter: A chapter (or section or whatever) number.

editor: Name(s) of editor(s), same format asauthor .

institution: The publishing institution of a technical report.

journal: A journal name.

note: Any additional information that can help the reader. The first word should be capitalized.

number: The number of a journal, magazine, technical report, or of a work in a series.

pages: One or more page numbers or range of numbers.

publisher: The publisher’s name.

school: The name of the school where a thesis was written.

series: The name of a series or set of books.

title: The work’s title.

volume: The volume of a journal or multi-volume book.

year: The year of publication.

Examples

basecit <- system.file("CITATION", package="base")
source(basecit, echo=TRUE)
readCitationFile(basecit)

1378 combn

close.socket Close a Socket

Description

Closes the socket and frees the space in the file descriptor table. The port may not be freed imme-
diately.

Usage

close.socket(socket, ...)

Arguments

socket A socket object

... further arguments passed to or from other methods.

Value

logical indicating success or failure

Author(s)

Thomas Lumley

See Also

make.socket , read.socket

combn Generate All Combinations of n Elements, Taken m at a Time

Description

Generate all combinations of the elements ofx takenmat a time. Ifx is a positive integer, returns all
combinations of the elements ofseq(x) takenmat a time. If argumentFUNis notNULL, applies a
function given by the argument to each point. If simplify is FALSE, returns a list; otherwise returns
anarray , typically amatrix are passed unchanged to theFUNfunction, if specified.

Usage

combn(x, m, FUN = NULL, simplify = TRUE, ...)

combn 1379

Arguments

x vector source for combinations, or integern for x <- seq (n) .

m number of elements to choose.

FUN function to be applied to each combination; defaultNULL means the identity,
i.e., to return the combination (vector of lengthm).

simplify logical indicating if the result should be simplified to anarray (typically a
matrix); if FALSE, the function returns alist . Note that whensimplify
= TRUEas by default, the dimension of the result is simply determined from
FUN(\emph{<1st combination>}) , for efficiency reasons. This will
badly fail if FUN(u) is not of constant length.

... optionally, further arguments toFUN.

Value

a list or array (in nondegenerate cases), see thesimplify argument above.

Author(s)

Scott Chasalow wrote the original in 1994 for S; R packagecombinat and documentation by Vince
Carey〈stvjc@channing.harvard.edu〉; small changes by the R core team, notably to return an array
in all cases ofsimplify = TRUE , e.g., forcombn(5,5) .

References

Nijenhuis, A. and Wilf, H.S. (1978)Combinatorial Algorithms for Computers and Calculators;
Academic Press, NY.

See Also

choose for fast computation of thenumberof combinations.expand.grid for creating a data
frame from all combinations of factors or vectors.

Examples

combn(letters[1:4], 2)
(m <- combn(10, 5, min)) # minimum value in each combination
mm <- combn(15, 6, function(x) matrix(x, 2,3))
stopifnot(round(choose(10,5)) == length(m),

c(2,3, round(choose(15,6))) == dim(mm))

Different way of encoding points:
combn(c(1,1,1,1,2,2,2,3,3,4), 3, tabulate, nbins = 4)

Compute support points and (scaled) probabilities for a
Multivariate-Hypergeometric(n = 3, N = c(4,3,2,1)) p.f.:
table.mat(t(combn(c(1,1,1,1,2,2,2,3,3,4), 3, tabulate,nbins=4)))

1380 COMPILE

compareVersion Compare Two Package Version Numbers

Description

Compare two package version numbers to see which is later.

Usage

compareVersion(a, b)

Arguments

a, b Character strings representing package version numbers.

Details

R package version numbers are of the formx.y-z for integersx , y andz , with components after
x optionally missing (in which case the version number is older than those with the components
present).

Value

0 if the numbers are equal,-1 if b is later and1 if a is later (analogous to the C functionstrcmp).

See Also

package_version , library , packageStatus .

Examples

compareVersion("1.0", "1.0-1")
compareVersion("7.2-0","7.1-12")

COMPILE Compile Files for Use with R

Description

Compile given source files so that they can subsequently be collected into a shared library usingR
CMD SHLIBand be loaded into R usingdyn.load() .

Usage

R CMD COMPILE [options] srcfiles

count.fields 1381

Arguments

srcfiles A list of the names of source files to be compiled. Currently, C, C++, Objective
C, Objective C++ and FORTRAN are supported; the corresponding files should
have the extensions ‘.c’, ‘ .cc’ (or ‘ .cpp’ or ‘ .C’), ‘ .m’, ‘ .mm’ (or ‘ .M’) and ‘.f’,
respectively.

options A list of compile-relevant settings, such as special values forCFLAGSor
FFLAGS, or for obtaining information about usage and version of the utility.

Details

Note that Ratfor is not supported. If you have Ratfor source code, you need to convert it to FOR-
TRAN. On many Solaris systems mixing Ratfor and FORTRAN code will work.

Objective C and Objective C++ support is optional and will work only if the corresponding compil-
ers were available at R configure time.

Note

Some binary distributions ofR haveCOMPILEin a separate bundle, e.g. anR-devel RPM.

See Also

SHLIB , dyn.load ; the section on “Customizing compilation under Unix” in “R Administration
and Installation” (see the ‘doc/manual’ subdirectory of theR source tree).

count.fields Count the Number of Fields per Line

Description

count.fields counts the number of fields, as separated bysep , in each of the lines offile
read.

Usage

count.fields(file, sep = "", quote = "\"'", skip = 0,
blank.lines.skip = TRUE, comment.char = "#")

Arguments

file a character string naming an ASCII data file, or aconnection , which will be
opened if necessary, and if so closed at the end of the function call.

sep the field separator character. Values on each line of the file are separated by this
character. By default, arbitrary amounts of whitespace can separate fields.

quote the set of quoting characters

skip the number of lines of the data file to skip before beginning to read data.
blank.lines.skip

logical: if TRUEblank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character or an
empty string.

1382 data

Details

This used to be used byread.table and can still be useful in discovering problems in reading a
file by that function.

For the handling of comments, seescan .

Value

A vector with the numbers of fields found.

See Also

read.table

Examples

cat("NAME", "1:John", "2:Paul", file = "foo", sep = "\n")
count.fields("foo", sep = ":")
unlink("foo")

data Data Sets

Description

Loads specified data sets, or list the available data sets.

Usage

data(..., list = character(0), package = NULL, lib.loc = NULL,
verbose = getOption("verbose"), envir = .GlobalEnv)

Arguments

... a sequence of names or literal character strings.

list a character vector.

package a character vector giving the package(s) to look in for data sets, orNULL.

By default, all packages in the search path are used, then the ‘data’ subdirectory
(if present) of the current working directory.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known.

verbose a logical. IfTRUE, additional diagnostics are printed.

envir theenvironmentwhere the data should be loaded.

data 1383

Details

Currently, four formats of data files are supported:

1. files ending ‘.R’ or ‘ .r’ aresource () d in, with theR working directory changed temporarily
to the directory containing the respective file. (data ensures that theutils package is attached,
in case it had been runvia utils::data .)

2. files ending ‘.RData’ or ‘ .rda’ are load () ed.

3. files ending ‘.tab’, ‘ .txt’ or ‘ .TXT’ are read usingread.table (..., header =
TRUE), and hence result in a data frame.

4. files ending ‘.csv’ or ‘ .CSV’ are read usingread.table (..., header = TRUE,
sep = ";") , and also result in a data frame.

If more than one matching file name is found, the first on this list is used.

The data sets to be loaded can be specified as a sequence of names or character strings, or as the
character vectorlist , or as both.

For each given data set, the first two types (‘.R’ or ‘ .r’, and ‘.RData’ or ‘ .rda’ files) can create
several variables in the load environment, which might all be named differently from the data set.
The second two (‘.tab’, ‘ .txt’, or ‘ .TXT’, and ‘.csv’ or ‘ .CSV’ files) will always result in the
creation of a single variable with the same name as the data set.

If no data sets are specified,data lists the available data sets. It looks for a new-style data index
in the ‘Meta’ or, if this is not found, an old-style ‘00Index’ file in the ‘data’ directory of each
specified package, and uses these files to prepare a listing. If there is a ‘data’ area but no index,
available data files for loading are computed and included in the listing, and a warning is given:
such packages are incomplete. The information about available data sets is returned in an object
of class"packageIQR" . The structure of this class is experimental. Where the datasets have
a different name from the argument that should be used to retrieve them the index will have an
entry like beaver1 (beavers) which tells us that datasetbeaver1 can be retrieved by the
call data(beaver) .

If lib.loc andpackage are bothNULL (the default), the data sets are searched for in all the
currently loaded packages then in the ‘data’ directory (if any) of the current working directory.

If lib.loc = NULL butpackage is specified as a character vector, the specified package(s) are
searched for first amongst loaded packages and then in the default library/ies (see.libPaths).

If lib.loc is specified (and notNULL), packages are searched for in the specified library/ies, even
if they are already loaded from another library.

To just look in the ‘data’ directory of the current working directory, setpackage =
character(0) (andlib.loc = NULL , the default).

Value

a character vector of all data sets specified, or information about all available data sets in an object
of class"packageIQR" if none were specified.

Note

The data files can be many small files. On some file systems it is desirable to save space, and the
files in the ‘data’ directory of an installed package can be zipped up as a zip archive ‘Rdata.zip’.
You will need to provide a single-column file ‘filelist’ of file names in that directory.

One can take advantage of the search order and the fact that a ‘.R’ file will change directory. If
raw data are stored in ‘mydata.txt’ then one can set up ‘mydata.R’ to read ‘mydata.txt’ and pre-
process it, e.g., usingtransform . For instance one can convert numeric vectors to factors with

1384 dataentry

the appropriate labels. Thus, the ‘.R’ file can effectively contain a metadata specification for the
plaintext formats.

See Also

help for obtaining documentation on data sets,save for creatingthe second (‘.rda’) kind of data,
typically the most efficient one.

Examples

require(utils)
data() # list all available data sets
try(data(package = "rpart"))# list the data sets in the rpart package
data(USArrests, "VADeaths") # load the data sets 'USArrests' and 'VADeaths'
help(USArrests) # give information on data set 'USArrests'

dataentry Spreadsheet Interface for Entering Data

Description

A spreadsheet-like editor for entering or editing data.

Usage

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = list(), Names = NULL)

Arguments

... A list of variables: currently these should be numeric or character vectors or list
containing such vectors.

Modes The modes to be used for the variables.

Names The names to be used for the variables.

data A list of numeric and/or character vectors.

modes A list of length up to that ofdata giving the modes of (some of) the variables.
list() is allowed.

Details

The data entry editor is only available on some platforms and GUIs. Where available it provides a
means to visually edit a matrix or a collection of variables (including a data frame) as described in
the Notes section.

data.entry has side effects, any changes made in the spreadsheet are reflected in the variables.
The functionsde , de.ncols , de.setup andde.restore are designed to help achieve these
side effects. If the user passes in a matrix,X say, then the matrix is broken into columns before
dataentry is called. Then on return the columns are collected and glued back together and the
result assigned to the variableX. If you don’t want this behaviour use dataentry directly.

dataentry 1385

The primitive function isdataentry . It takes a list of vectors of possibly different lengths and
modes (the second argument) and opens a spreadsheet with these variables being the columns. The
columns of the dataentry window are returned as vectors in a list when the spreadsheet is closed.

de.ncols counts the number of columns which are supplied as arguments todata.entry .
It attempts to count columns in lists, matrices and vectors.de.setup sets things up so that
on return the columns can be regrouped and reassigned to the correct name. This is handled by
de.restore .

Value

de anddataentry return the edited value of their arguments.data.entry invisibly returns
a vector of variable names but its main value is its side effect of assigning new version of those
variables in the user’s workspace.

Resources

The data entry window responds to X resources of classR_dataentry . Resources
foreground , background andgeometry are utilized.

Note

The details of interface to the data grid may differ by platform and GUI. The following description
applies to the X11-based implementation under Unix.

You can navigate around the grid using the cursor keys or by clicking with the (left) mouse button
on any cell. The active cell is highlighted by thickening the surrounding rectangle. Moving to the
right or down will scroll the grid as needed: there is no constraint to the rows or columns currently
in use.

There are alternative ways to navigate using the keys. Return and (keypad) Enter and LineFeed all
move down. Tab moves right and Shift-Tab move left. Home moves to the top left.

PageDown or Control-F moves down a page, and PageUp or Control-B up by a page. End will show
the last used column and the last few rows used (in any column).

Using any other key starts an editing process on the currently selected cell: moving away from that
cell enters the edited value whereas Esc cancels the edit and restores the previous value. When the
editing process starts the cell is cleared. In numerical columns (the default) only letters making up
a valid number (including-.eE) are accepted, and entering an invalid edited value (such as blank)
entersNA in that cell. The last entered value can be deleted using the BackSpace or Del(ete) key.
Only a limited number of characters (currently 29) can be entered in a cell, and if necessary only
the start or end of the string will be displayed, with the omissions indicated by> or <. (The start is
shown except when editing.)

Entering a value in a cell further down a column than the last used cell extends the variable and fills
the gap (if any) byNAs (not shown on screen).

The column names can only be selected by clicking in them. This gives a popup menu to select
the column type (currently Real (numeric) or Character) or to change the name. Changing the type
converts the current contents of the column (and converting from Character to Real may generate
NAs.) If changing the name is selected the header cell becomes editable (and is cleared). As with
all cells, the value is entered by moving away from the cell by clicking elsewhere or by any of the
keys for moving down (only).

New columns are created by entering values in them (and not by just assigning a new name). The
mode of the column is auto-detected from the first value entered: if this is a valid number it gives a
numeric column. Unused columns are ignored, so adding data invar5 to a three-column grid adds
one extra variable, not two.

1386 debugger

The Copy button copies the currently selected cell:paste copies the last copied value to the
current cell, and right-clicking selects a cellandcopies in the value. Initially the value is blank, and
attempts to paste a blank value will have no effect.

Control-L will refresh the display, recalculating field widths to fit the current entries.

In the default mode the column widths are chosen to fit the contents of each column, with a de-
fault of 10 characters for empty columns. you can specify fixed column widths by setting option
de.cellwidth to the required fixed width (in characters). (set it to zero to return to variable
widths). The displayed width of any field is limited to 600 pixels (and by the window width).

See Also

vi , edit : edit usesdataentry to edit data frames.

Examples

call data entry with variables x and y
Not run: data.entry(x,y)

debugger Post-Mortem Debugging

Description

Functions to dump the evaluation environments (frames) and to examine dumped frames.

Usage

dump.frames(dumpto = "last.dump", to.file = FALSE)
debugger(dump = last.dump)

Arguments

dumpto a character string. The name of the object or file to dump to.

to.file logical. Should the dump be to anR object or to a file?

dump An R dump object created bydump.frames .

Details

To use post-mortem debugging, set the optionerror to be a call todump.frames . By default
this dumps to anR object"last.dump" in the workspace, but it can be set to dump to a file (a
dump of the object produced by a call tosave). The dumped object contain the call stack, the
active environments and the last error message as returned bygeterrmessage .

When dumping to file,dumpto gives the name of the dumped object and the file name has.rda
appended.

A dump object of class"dump.frames" can be examined by callingdebugger . This will give
the error message and a list of environments from which to select repeatedly. When an environment
is selected, it is copied and thebrowser called from within the copy.

If dump.frames is installed as the error handler, execution will continue even in non-interactive
sessions. See the examples for how to dump and then quit.

debugger 1387

Value

InvisibleNULL.

Note

Functions such assys.parent andenvironment applied to closures will not work correctly
insidedebugger .

If the error occurred when computing the default value of a formal argument the debugger will
report "recursive default argument reference" when trying to examine that environment.

Of course post-mortem debugging will not work ifR is too damaged to produce and save the dump,
for example if it has run out of workspace.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

options for settingerror options;recover is an interactive debugger working similarly to
debugger but directly after the error occurs.

Examples

Not run:
options(error=quote(dump.frames("testdump", TRUE)))

f <- function() {
g <- function() stop("test dump.frames")
g()

}
f() # will generate a dump on file "testdump.rda"
options(error=NULL)

possibly in another R session
load("testdump.rda")
debugger(testdump)
Available environments had calls:
1: f()
2: g()
3: stop("test dump.frames")

Enter an environment number, or 0 to exit
Selection: 1
Browsing in the environment with call:
f()
Called from: debugger.look(ind)
Browse[1]> ls()
[1] "g"
Browse[1]> g
function() stop("test dump.frames")
<environment: 759818>
Browse[1]>
Available environments had calls:
1: f()

1388 demo

2: g()
3: stop("test dump.frames")

Enter an environment number, or 0 to exit
Selection: 0

A possible setting for non-interactive sessions
options(error=quote({dump.frames(to.file=TRUE); q()}))
End(Not run)

demo Demonstrations of R Functionality

Description

demo is a user-friendly interface to running some demonstrationR scripts.demo() gives the list
of available topics.

Usage

demo(topic, package = NULL, lib.loc = NULL,
character.only = FALSE, verbose = getOption("verbose"))

Arguments

topic the topic which should be demonstrated, given as anameor literal charac-
ter string, or a character string, depending on whethercharacter.only is
FALSE(default) orTRUE. If omitted, the list of available topics is displayed.

package a character vector giving the packages to look into for demos, orNULL. By
default, all packages in the search path are used.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

character.only
logical; if TRUE, usetopic as character string.

verbose a logical. IfTRUE, additional diagnostics are printed.

Details

If no topics are given,demo lists the available demos. The corresponding information is returned in
an object of class"packageIQR" . The structure of this class is experimental. In earlier versions
of R, an empty character vector was returned along with listing available demos.

See Also

source which is called bydemo.

download.file 1389

Examples

demo() # for attached packages

All available demos:
demo(package = .packages(all.available = TRUE))

demo(lm.glm, package="stats")
Not run:

ch <- "scoping"
demo(ch, character = TRUE)

End(Not run)

download.file Download File from the Internet

Description

This function can be used to download a file from the Internet.

Usage

download.file(url, destfile, method, quiet = FALSE, mode = "w",
cacheOK = TRUE)

Arguments

url A character string naming the URL of a resource to be downloaded.

destfile A character string with the name where the downloaded file is saved. Tilde-
expansion is performed.

method Method to be used for downloading files. Currently download methods
"internal" , "wget" and "lynx" are available, and there is a value
"auto" : see ‘Details’. The method can also be set through the option
"download.file.method" : seeoptions () .

quiet If TRUE, suppress status messages (if any).

mode character. The mode with which to write the file. Useful values are"w" , "wb"
(binary),"a" (append) and"ab" . Only used for the"internal" method.

cacheOK logical. Is a server-side cached value acceptable? Implemented for the
"internal" and"wget" methods.

Details

The functiondownload.file can be used to download a single file as described byurl from
the internet and store it indestfile . Theurl must start with a scheme such as"http://" ,
"ftp://" or "file://" .

If method = "auto" is chosen (the default), the internal method is chosen for"file://"
URLs, and for the others providedcapabilities ("http/ftp") is true (which it almost al-
ways is). Otherwise methods"wget" and"lynx" are tried in turn.

cacheOK = FALSE is useful for"http://" URLs, and will attempt to get a copy directly
from the site rather than from an intermediate cache. (Not all platforms support it.) It is used by
available.packages .

1390 download.file

The remaining details apply to method"internal" only.

Note thathttps:// connections are not supported.

Seeurl for how "file://" URLs are interpreted, especially on Windows. This function does
decode encoded URLs.

The timeout for many parts of the transfer can be set by the optiontimeout which defaults to 60
seconds.

The level of detail provided during transfer can be set by thequiet argument and the
internet.info option. The details depend on the platform and scheme, but setting
internet.info to 0 gives all available details, including all server responses. Using 2 (the
default) gives only serious messages, and 3 or more suppresses all messages.

A progress bar tracks the transfer. If the file length is known, an equals represents 2% of the transfer
completed: otherwise a dot represents 10Kb.

Method"wget" can be used with proxy firewalls which require user/password authentication if
proper values are stored in the configuration file forwget .

Value

An (invisible) integer code,0 for success and non-zero for failure. For the"wget" and"lynx"
methods this is the status code returned by the external program. The"internal" method can
return1, but will in most cases throw an error.

Setting Proxies

This applies to the internal code only.

Proxies can be specified via environment variables. Setting"no_proxy" to "*" stops
any proxy being tried. Otherwise the setting of"http_proxy" or "ftp_proxy" (or
failing that, the all upper-case version) is consulted and if non-empty used as a proxy
site. For FTP transfers, the username and password on the proxy can be specified by
"ftp_proxy_user" and"ftp_proxy_password" . The form of"http_proxy" should
be "http://proxy.dom.com/" or "http://proxy.dom.com:8080/" where the port
defaults to 80 and the trailing slash may be omitted. For"ftp_proxy" use the form
"ftp://proxy.dom.com:3128/" where the default port is21 . These environment vari-
ables must be set before the download code is first used: they cannot be altered later by calling
Sys.setenv .

Usernames and passwords can be set for HTTP proxy transfers via environment variable
http_proxy_user in the formuser:passwd . Alternatively, http_proxy can be of the
form "http://user:pass@proxy.dom.com:8080/" for compatibility withwget . Only
the HTTP/1.0 basic authentication scheme is supported.

Note

Methods"wget" and"lynx" are for historical compatibility. They will block all other activity
on theR process.

For methods"wget" and"lynx" a system call is made to the tool given bymethod , and the
respective program must be installed on your system and be in the search path for executables.

See Also

options to set theHTTPUserAgent , timeout andinternet.info options.

url for a finer-grained way to read data from URLs.

url.show , available.packages , download.packages for applications

edit 1391

edit Invoke a Text Editor

Description

Invoke a text editor on anR object.

Usage

Default S3 method:
edit(name = NULL, file = "", title = NULL,

editor = getOption("editor"), ...)

vi(name = NULL, file = "")
emacs(name = NULL, file = "")
pico(name = NULL, file = "")
xemacs(name = NULL, file = "")
xedit(name = NULL, file = "")

Arguments

name a named object that you want to edit. If name is missing then the file specified
by file is opened for editing.

file a string naming the file to write the edited version to.

title a display name for the object being edited.

editor a string naming the text editor you want to use. On Unix the default is set from
the environment variablesEDITORor VISUAL if either is set, otherwisevi is
used. On Windows it defaults tonotepad .

... further arguments to be passed to or from methods.

Details

edit invokes the text editor specified byeditor with the objectname to be edited. It is a generic
function, currently with a default method and one for data frames and matrices.

data.entry can be used to edit data, and is used byedit to edit matrices and data frames on
systems for whichdata.entry is available.

It is important to realize thatedit does not change the object calledname. Instead, a copy of
name is made and it is that copy which is changed. Should you want the changes to apply to the
objectnameyou must assign the result ofedit to name. (Try fix if you want to make permanent
changes to an object.)

In the form edit(name) , edit deparsesname into a temporary file and invokes the editor
editor on this file. Quitting from the editor causesfile to be parsed and that value returned.
Should an error occur in parsing, possibly due to incorrect syntax, no value is returned. Calling
edit() , with no arguments, will result in the temporary file being reopened for further editing.

Note that deparsing is not perfect, and the object recreated after editing can differ in subtle ways
from that deparsed: seedput and.deparseOpts . (The deparse options used are the same as the
defaults fordump.) Editing a function will preserve its environment. Seeedit.data.frame
for further changes that can occur when editing a data frame or matrix.

Currently only the internal editor in Windows makes use of thetitle option; it displays the given
name in the window header.

1392 edit.data.frame

Note

The functionsvi , emacs, pico , xemacs , xedit rely on the corresponding editor being avail-
able and being on the path. This is system-dependent.

See Also

edit.data.frame , data.entry , fix .

Examples

Not run:
use xedit on the function mean and assign the changes
mean <- edit(mean, editor = "xedit")

use vi on mean and write the result to file mean.out
vi(mean, file = "mean.out")
End(Not run)

edit.data.frame Edit Data Frames and Matrices

Description

Use data editor on data frame or matrix contents.

Usage

S3 method for class 'data.frame':
edit(name, factor.mode = c("character", "numeric"),

edit.row.names = any(row.names(name) != 1:nrow(name)), ...)

S3 method for class 'matrix':
edit(name, edit.row.names = !is.null(dn[[1]]), ...)

Arguments

name A data frame or matrix.

factor.mode How to handle factors (as integers or using character levels) in a data frame.
edit.row.names

logical. Show the row names be displayed as a separate editable column?

... further arguments passed to or from other methods.

Details

At present, this only works on simple data frames containing numeric, logical or character vectors
and factors. Factors are represented in the spreadsheet as either numeric vectors (which is more
suitable for data entry) or character vectors (better for browsing). After editing, vectors are padded
with NA to have the same length and factor attributes are restored. The set of factor levels can not
be changed by editing in numeric mode; invalid levels are changed toNAand a warning is issued.
If new factor levels are introduced in character mode, they are added at the end of the list of levels
in the order in which they encountered.

example 1393

It is possible to use the data-editor’s facilities to select the mode of columns to swap between
numerical and factor columns in a data frame. Changing any column in a numerical matrix to
character will cause the result to be coerced to a character matrix. Changing the mode of logical
columns is not supported.

The columns are coerced on input to numeric unless logical, character or factor (which may well
not be what you want).

For a data frame, the row names will be taken from the original object ifedit.row.names =
FALSEand the number of rows is unchanged, and from the edited output ifedit.row.names
= TRUEand there are no duplicates. (If therow.names column is incomplete, it is extended by
entries likerow223 .) In all other cases the row names are replaced byseq(length=nrows) .

For a matrix, colnames will be added (of the formcol7) if needed. The rownames will be
taken from the original object ifedit.row.names = FALSE and the number of rows is un-
changed (otherwiseNULL), and from the edited output ifedit.row.names = TRUE . (If the
row.names column is incomplete, it is extended by entries likerow223 .)

Editing a matrix or data frame will lose all attributes apart from the row and column names.

Value

The edited data frame or matrix.

Note

fix(dataframe) works for in-place editing by calling this function.

If the data editor is not available, a dump of the object is presented for editing using the default
method ofedit .

At present the data editor is limited to 65535 rows.

Author(s)

Peter Dalgaard

See Also

data.entry , edit

Examples

Not run:
edit(InsectSprays)
edit(InsectSprays, factor.mode="numeric")
End(Not run)

example Run an Examples Section from the Online Help

Description

Run all theR code from theExamplespart of R’s online help topictopic with two possible
exceptions,dontrun anddontshow , see ‘Details’ below.

1394 example

Usage

example(topic, package = NULL, lib.loc = NULL,
local = FALSE, echo = TRUE,
verbose = getOption("verbose"),
setRNG = FALSE, ask = getOption("example.ask"),
prompt.prefix = abbreviate(topic, 6))

Arguments

topic name or literal character string: the onlinehelp topic the examples of which
should be run.

package a character vector giving the package names to look into for example code, or
NULL. By default, all packages in the search path are used.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

local logical: if TRUEevaluate locally, ifFALSEevaluate in the workspace.

echo logical; if TRUE, show theR input when sourcing.

verbose logical; if TRUE, show even more when running example code.

setRNG logical or expression; if notFALSE, the random number generator state is saved,
then initialized to a specified state, the example is run and the (saved) state
is restored. setRNG = TRUE sets the same state asR CMDcheck does
for running a package’s examples. This is currently equivalent tosetRNG =
{RNGkind("default", "default"); set.seed(1)} .

ask logical (or "default") indicating if par (ask=TRUE) should be called be-
fore graphical output happens from the example code. The value"default"
(the factory-fresh default) means to ask ifecho == TRUE and the graphics
device appears to be interactive. This parameter applies both to any currently
opened device and to any devices opened by the example code.

prompt.prefix
character; prefixes the prompt to be used ifecho = TRUE.

Details

If lib.loc is not specified, the packages are searched for amongst those already loaded, then in
the specified libraries. Iflib.loc is specified, they are searched for only in the specified libraries,
even if they are already loaded from another library.

An attempt is made to load the package before running the examples, but this will not replace a
package loaded from another location.

If local=TRUE objects are not created in the workspace and so not available for examination
afterexample completes: on the other hand they cannot clobber objects of the same name in the
workspace.

As detailed in the manualWriting R Extensions, the author of the help page can markup parts of
the examples for two exception rules

dontrun encloses code that should not be run.

dontshow encloses code that is invisible on help pages, but will be run both by the package
checking tools, and theexample() function. This was previouslytestonly , and that
form is still accepted.

file.edit 1395

If the examples file contains non-ASCII characters the encoding used will matter. If in a UTF-8
localeexample first tries UTF-8 and then Latin-1. (This can be overridden by setting the encoding
in the.Rd file.)

Value

The value of the last evaluated expression.

Note

The examples can be many small files. On some file systems it is desirable to save space, and the
files in the ‘R-ex’ directory of an installed package can be zipped up as a zip archive ‘Rex.zip’.

Author(s)

Martin Maechler and others

See Also

demo

Examples

example(InsectSprays)
force use of the standard package 'stats':
example("smooth", package="stats", lib.loc=.Library)

set RNG *before* example as when R CMD check is run:

r1 <- example(quantile, setRNG = TRUE)
x1 <- rnorm(1)
u <- runif(1)
identical random numbers
r2 <- example(quantile, setRNG = TRUE)
x2 <- rnorm(1)
stopifnot(identical(r1, r2))
but x1 and x2 differ since the RNG state from before example()
differs and is restored!
x1; x2

file.edit Edit One or More Files

Description

Edit one or more files in a text editor.

Usage

file.edit(..., title = file, editor = getOption("editor"))

1396 file_test

Arguments

... one or more character vectors containing the names of the files to be edited.

title the title to use in the editor; defaults to the filename.

editor the text editor to be used.

Details

The behaviour of this function is very system dependent. Currently files can be opened only one at
a time on Unix; on Windows, the internal editor allows multiple files to be opened, but has a limit
of 50 simultaneous edit windows.

Thetitle argument is used for the window caption in Windows, and is ignored on other platforms.

See Also

files , file.show , edit , fix ,

Examples

Not run:
open two R scripts for editing
file.edit("script1.R", "script2.R")
End(Not run)

file_test Shell-style Tests on Files

Description

Utility for testing files.

Usage

file_test(op, x, y)

Arguments

op a character string specifying the test to be performed. Unary tests (onlyx is
used) are"-f" (existence and not being a directory) and"-d" (existence and
directory); binary tests are"-nt" (newer than, using the modification dates)
and"-ot" .

x,y character vectors giving file paths.

Details

file_test performs shell-style file tests.

Note thatfile.exists only tests for existence (test -e on some systems) but not for not
being a directory.

See Also

file.path , file.info

fix 1397

Examples

dir <- file.path(R.home(), "library", "stats")
file_test("-d", dir)
file_test("-nt", file.path(dir, "R"), file.path(dir, "demo"))

fix Fix an Object

Description

fix invokesedit onx and then assigns the new (edited) version ofx in the user’s workspace.

Usage

fix(x, ...)

Arguments

x the name of anR object, as a name or a character string.

... arguments to pass to editor: seeedit .

Details

The name supplied asx need not exist as anR object, in which case a function with no arguments
and an empty body is supplied for editing.

Editing anR object may change it in ways other than are obvious: see the comment underedit .
Seeedit.data.frame for changes that can occur when editing a data frame or matrix.

See Also

edit , edit.data.frame

Examples

Not run:
Assume 'my.fun' is a user defined function :
fix(my.fun)
now my.fun is changed
Also,
fix(my.data.frame) # calls up data editor
fix(my.data.frame, factor.mode="char") # use of ...

End(Not run)

1398 format

flush.console Flush Output to A Console

Description

This does nothing except on console-based versions ofR. On the Mac OS X and Windows GUIs, it
ensures that the display of output in the console is current, even if output buffering is on.

Usage

flush.console()

format Format Unordered and Ordered Lists

Description

Format unordered (itemize) and ordered (enumerate) lists.

Usage

formatUL(x, label = "*", offset = 0,
width = 0.9 * getOption("width"))

formatOL(x, type = "arabic", offset = 0, start = 1,
width = 0.9 * getOption("width"))

Arguments

x a character vector of list items.

label a character string used for labelling the items.

offset a non-negative integer giving the offset (indentation) of the list.

width a positive integer giving the target column for wrapping lines in the output.

type a character string specifying the ‘type’ of the labels in the ordered list. If
"arabic" (default), arabic numerals are used. For"Alph" or "alph" , sin-
gle upper or lower case letters are employed (in this case, the number of the last
item must not exceed 26. Finally, for"Roman" or "roman" , the labels are
given as upper or lower case roman numerals (with the number of the last item
maximally 3899). type can be given as a unique abbreviation of the above,
or as one of theHTML style tokens"1" (arabic), "A" /"a" (alphabetic), or
"I" /"i" (roman), respectively.

start a positive integer specifying the starting number of the first item in an ordered
list.

Value

A character vector with the formatted entries.

getAnywhere 1399

See Also

formatDL for formatting description lists.

Examples

A simpler recipe.
x <- c("Mix dry ingredients thoroughly.",

"Pour in wet ingredients.",
"Mix for 10 minutes.",
"Bake for one hour at 300 degrees.")

Format and output as an unordered list.
writeLines(formatUL(x))
Format and output as an ordered list.
writeLines(formatOL(x))
Ordered list using lower case roman numerals.
writeLines(formatOL(x, type = "i"))
Ordered list using upper case letters and some offset.
writeLines(formatOL(x, type = "A", offset = 5))

getAnywhere Retrieve an R Object, Including from a Namespace

Description

These functions locates all objects with name matching its argument, whether visible on the search
path, registered as an S3 method or in a namespace but not exported.getAnywhere() returns
the objects andargsAnywhere() returns the arguments of any objects that are functions.

Usage

getAnywhere(x)
argsAnywhere(x)

Arguments

x a character string or name.

Details

The function looks at all loaded namespaces, whether or not they are associated with a package on
the search list.

Where functions are found as an S3 method, an attempt is made to find which namespace registered
them. This may not be correct, especially if a namespace is unloaded.

Value

For getAnywhere() an object of class"getAnywhere" . This is a list with components

name the name searched for.

objs a list of objects found

where a character vector explaining where the object(s) were found

1400 getFromNamespace

visible logical: is the object visible

dups logical: is the object identical to one earlier in the list.

Normally the structure will be hidden by theprint method. There is a[method to extract one or
more of the objects found.

For argsAnywhere() one or more argument lists as returned byargs .

See Also

get , getFromNamespace , args

Examples

getAnywhere("format.dist")
getAnywhere("simpleLoess") # not exported from stats
argsAnywhere(format.dist)

getFromNamespace Utility functions for Developing Namespaces

Description

Utility functions to access and replace the non-exported functions in a namespace, for use in devel-
oping packages with namespaces.

Usage

getFromNamespace(x, ns, pos = -1, envir = as.environment(pos))

assignInNamespace(x, value, ns, pos = -1,
envir = as.environment(pos))

fixInNamespace(x, ns, pos = -1, envir = as.environment(pos), ...)

Arguments

x an object name (given as a character string).

value anR object.

ns a namespace, or character string giving the namespace.

pos where to look for the object: seeget .

envir an alternative way to specify an environment to look in.

... arguments to pass to the editor: seeedit .

Details

The namespace can be specified in several ways. Using, for example,ns = "stats" is the most
direct, but a loaded package with a namespace can be specified via any of the methods used for
get : ns can also be the environment printed as<namespace:foo> .

getFromNamespace is similar to (but predates) the::: operator, but is more flexible in how
the namespace is specified.

fixInNamespace invokesedit on the object namedx and assigns the revised object in place
of the original object. For compatibility withfix , x can be unquoted.

getS3method 1401

Value

getFromNamespace returns the object found (or gives an error).

assignInNamespace andfixInNamespace are invoked for their side effect of changing the
object in the namespace.

Note

assignInNamespace andfixInNamespace change the copy in the namespace, but not any
copies already exported from the namespace, in particular an object of that name in the package (if
already attached) and any copies already imported into other namespaces. They are really intended
to be usedonly for objects which are not exported from the namespace. They do attempt to alter a
copy registered as an S3 method if one is found.

They can only be used to change the values of objects in the namespace, not to create new objects.

See Also

get , fix , getS3method

Examples

getFromNamespace("findGeneric", "utils")
Not run:
fixInNamespace("predict.ppr", "stats")
stats:::predict.ppr
getS3method("predict", "ppr")
alternatively
fixInNamespace("predict.ppr", pos = 3)
fixInNamespace("predict.ppr", pos = "package:stats")
End(Not run)

getS3method Get An S3 Method

Description

Get a method for an S3 generic, possibly from a namespace.

Usage

getS3method(f, class, optional = FALSE)

Arguments

f character: name of the generic.

class character: name of the class.

optional logical: should failure to find the generic or a method be allowed?

Details

S3 methods may be hidden in packages with namespaces, and will not then be found byget : this
function can retrieve such functions, primarily for debugging purposes.

1402 glob2rx

Value

The function found, orNULL if no function is found andoptional = TRUE .

See Also

methods , get

Examples

require(stats)
exists("predict.ppr") # false
getS3method("predict", "ppr")

glob2rx Change Wildcard or Globbing Pattern into Regular Expression

Description

Changewildcard akaglobbingpatterns into the corresponding regular expressions (regexp).

Usage

glob2rx(pattern, trim.head = FALSE, trim.tail = TRUE)

Arguments

pattern character vector

trim.head logical specifying if leading"^.*" should be trimmed from the result.

trim.tail logical specifying if trailing".*$" should be trimmed from the result.

Details

This takes a wildcard as used by most shells and returns an equivalent regular expression.? is
mapped to. (match a single character),* to .* (match any string, including an empty one), and
the pattern is anchored (it must start at the beginning and end at the end). Optionally, the resulting
regexp is simplified.

Value

A character vector of the same length as the inputpattern where each wildcard is translated to
the corresponding regular expression.

Author(s)

Martin Maechler, Unix/sed based version, 1991; current: 2004

See Also

regexp about regular expression,sub , etc about substitutions using regexps.

head 1403

Examples

stopifnot(glob2rx("abc.*") == "^abc\\.",
glob2rx("a?b.*") == "^a.b\\.",
glob2rx("a?b.*", trim.tail=FALSE) == "^a.b\\..*$",
glob2rx("*.doc") == "^.*\\.doc$",
glob2rx("*.doc", trim.head=TRUE) == "\\.doc$",
glob2rx("*.t*") == "^.*\\.t",
glob2rx("*.t??") == "^.*\\.t..$"

)

head Return the First or Last Part of an Object

Description

Returns the first or last parts of a vector, matrix, table, data frame or function. Sincehead() and
tail() are generic functions, they may also have been extended to other classes.

Usage

head(x, ...)
Default S3 method:
head(x, n = 6, ...)
S3 method for class 'data.frame':
head(x, n = 6, ...)
S3 method for class 'matrix':
head(x, n = 6, ...)
S3 method for class 'ftable':
head(x, n = 6, ...)
S3 method for class 'table':
head(x, n = 6, ...)
S3 method for class 'function':
head(x, n = 6, ...)

tail(x, ...)
Default S3 method:
tail(x, n = 6, ...)
S3 method for class 'data.frame':
tail(x, n = 6, ...)
S3 method for class 'matrix':
tail(x, n = 6, addrownums = TRUE, ...)
S3 method for class 'ftable':
tail(x, n = 6, addrownums = FALSE, ...)
S3 method for class 'table':
tail(x, n = 6, addrownums = TRUE, ...)
S3 method for class 'function':
tail(x, n = 6, ...)

1404 help

Arguments

x an object

n a single integer. If positive, size for the resulting object: number of elements for
a vector (including lists), rows for a matrix or data frame or lines for a function.
If negative, all but then last/first number of elements ofx .

addrownums if there are no row names, create them from the row numbers.

... arguments to be passed to or from other methods.

Details

For matrices, 2-dim tables and data frames,head() (tail()) returns the first (last)n rows when
n > 0 or all but the last (first)n rows whenn < 0 . head.matrix() andtail.matrix()
are exported. For functions, the lines of the deparsed function are returned as character strings.

If a matrix has no row names, thentail() will add row names of the form"[n,]" to the
result, so that it looks similar to the last lines ofx when printed. Settingaddrownums = FALSE
suppresses this behaviour.

Value

An object (usually) likex but generally smaller. Forftable objects x , a transformed
format(x) .

Author(s)

Patrick Burns, improved and corrected by R-Core. Negative argument added by Vincent Goulet.

Examples

head(letters)
head(letters, n = -6)

head(freeny.x, n = 10)
head(freeny.y)

tail(letters)
tail(letters, n = -6)

tail(freeny.x)
tail(freeny.y)

tail(library)

head(stats::ftable(Titanic))

help Documentation

Description

These functions provide access to documentation. Documentation on a topic with namename
(typically, anR object or a data set) can be displayed with eitherhelp("name") or ?name.

help 1405

Usage

help(topic, offline = FALSE, package = NULL,
lib.loc = NULL, verbose = getOption("verbose"),
try.all.packages = getOption("help.try.all.packages"),
chmhelp = getOption("chmhelp"),
htmlhelp = getOption("htmlhelp"),
pager = getOption("pager"))

?topic

type?topic

Arguments

topic usually, anameor character string specifying the topic for which help is sought.
A character string (enclosed in explicit single or double quotes) is always taken
as naming a topic.

For help , if the value of topic is a length-one character vector the topic
is taken to be the value of the only element. Any other argumenttopic is
regarded as a name anddeparsed to give the desired topic.

For ? the topic argument may also be a function call, to ask for documenta-
tion on a corresponding method: see the section on S4 method documentation.
Unlike help , all names are deparsed to give the desired topic.

See ‘Details’ for what happens if this is omitted forhelp .

offline a logical indicating whether documentation should be displayed on-line to the
screen (the default) or hardcopy of it should be produced.

package a name or character vector giving the packages to look into for documentation,
or NULL. By default, all packages in the search path are used.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

verbose logical; if TRUE, the file name is reported.

try.all.packages
logical; seeNote .

chmhelp logical (orNULL). Only relevant under Windows. IfTRUEthe Compiled HTML
version of the help on the topic will be shown in a help viewer. If none is
available, plain text help will be shown.

htmlhelp logical (orNULL). If TRUE(which is the default afterhelp.start has been
called), the HTML version (if available) of the help on the topic will be shown
in the browser specified byoptions("browser") . SeebrowseURL for
details of the browsers that are supported. Where possible an existing browser
window is re-used.

pager the pager to be used forfile.show .

type the special type of documentation to use for this topic; for example, if the type
is class , documentation is provided for the class with nametopic . The
functiontopicName returns the actual name used in this case. See the section
on method documentation for the uses oftype to get help on formal methods.

1406 help

Details

topic is not optional: if it is omittedR will give a hint as to suitable topics if a package is specified,
to available packages iflib.loc only is specified, and help onhelp itself if nothing is specified.
(In all cases this will be text help.)

Some topics need to be quoted (bybackticks) or given as a character string. There include those
which cannot syntactically appear on their own such as unary and binary operators,function and
control-flowreservedwords (includingif , else for , in , repeat , while , break andnext .
The otherreserved words can be used as if they were names, for exampleTRUE, NAandInf .

If multiple help files matchingtopic are found, in interactive use a menu is presented for the user
to choose one: otherwise the first on the search path is used. (The menu will be a graphical menu if
possible ifgetOption ("menu.graphics") is true, the default.)

HTML help works best ifhelp.start () has been called in the session. Otherwise there will
be a warning about ‘Using non-linked HTML file: hyperlinks may be incorrect’ and cross-library
links will most likely not be resolved.

If offline is TRUE, hardcopy of the documentation is produced by running the LaTeX version
of the help page throughlatex anddvips . Depending on yourdvips configuration, hardcopy
will be sent to the printer or saved in a file. If the programs are in non-standard locations and hence
were not found at compile time, you can either set the optionslatexcmd anddvipscmd , or
the environment variablesR_LATEXCMDandR_DVIPSCMDappropriately. The appearance of the
output can be customized through a file ‘Rhelp.cfg’ somewhere in your LaTeX search path. The
appearance of the output can be customized through a file ‘Rhelp.cfg’ somewhere in your LaTeX
search path.

If LaTeX versions of help pages were not built at the installation of the package, theprint method
will ask if conversion withR CMD Rdconv(which requires Perl) should be attempted.

S4 Method Documentation

The authors of formal (‘S4’) methods can provide documentation on specific methods, as well as
overall documentation on the methods of a particular function. The"?" operator allows access to
this documentation in three ways.

The expressionmethods ? f will look for the overall documentation methods for the function
f . Currently, this means the documentation file containing the aliasf-methods .

There are two different ways to look for documentation on a particular method. The first is to
supply thetopic argument in the form of a function call, omitting thetype argument. The effect
is to look for documentation on the method that would be used if this function call were actually
evaluated. See the examples below. If the function is not a generic (no S4 methods are defined for
it), the help reverts to documentation on the function name.

The "?" operator can also be called withtype supplied as"method" ; in this case also, the
topic argument is a function call, but the arguments are now interpreted as specifying the class
of the argument, not the actual expression that will appear in a real call to the function. See the
examples below.

The first approach will be tedious if the actual call involves complicated expressions, and may be
slow if the arguments take a long time to evaluate. The second approach avoids these difficulties,
but you do have to know what the classes of the actual arguments will be when they are evaluated.

Both approaches make use of any inherited methods; the signature of the method to be looked up is
found by usingselectMethod (see the documentation forgetMethod).

help 1407

Note

Unlesslib.loc is specified explicitly, the loaded packages are searched before those in the spec-
ified libraries. This ensures that if a library is loaded from a library not in the known library trees,
then the help from the loaded library is used. Iflib.loc is specified explicitly, the loaded pack-
ages arenot searched.

If this search fails and argumenttry.all.packages is TRUEand neitherpackages nor
lib.loc is specified, then all the packages in the known library trees are searched for help on
topic and a list of (any) packages where help may be found is printed (but no help is shown).
N.B. searching all packages can be slow.

The help files can be many small files. On some file systems it is desirable to save space, and the text
files in the ‘help’ directory of an installed package can be zipped up as a zip archive ‘Rhelp.zip’.
Ensure that file ‘AnIndex’ remains un-zipped. Similarly, all the files in the ‘latex’ directory can be
zipped to ‘Rhelp.zip’.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

help.search () for finding help pages on a vague topic;help.start () which opens the
HTML version of theR help pages;library () for listing available packages and the user-level
objects they contain;data () for listing available data sets;methods () .

Seeprompt () to get a prototype for writinghelp pages of private packages.

Examples

help()
help(help) # the same

help(lapply)
?lapply # the same

help("for") # or ?"for", but quotes/backticks are needed
?`+`

help(package="splines") # get help even when package is not loaded

data() # list all available data sets
?women # information about data set "women"

topi <- "women"
help(topi)

try(help("bs", try.all.packages=FALSE)) # reports not found (an error)
help("bs", try.all.packages=TRUE) # reports can be found

in package 'splines'

Not run:
require(methods)
define a S4 generic function and some methods
combo <- function(x, y) c(x, y)
setGeneric("combo")

1408 help.search

setMethod("combo", c("numeric", "numeric"), function(x, y) x+y)

assume we have written some documentation
for combo, and its methods

?combo ## produces the function documentation

methods?combo ## looks for the overall methods documentation

method?combo("numeric", "numeric") ## documentation for the method above

?combo(1:10, rnorm(10)) ## ... the same method, selected according to
the arguments (one integer, the other numeric)

?combo(1:10, letters) ## documentation for the default method
End(Not run)

help.search Search the Help System

Description

Allows for searching the help system for documentation matching a given character string in the
(file) name, alias, title, concept or keyword entries (or any combination thereof), using eitherfuzzy
matchingor regular expressionmatching. Names and titles of the matched help entries are displayed
nicely formatted.

Usage

help.search(pattern, fields = c("alias", "concept", "title"),
apropos, keyword, whatis, ignore.case = TRUE,
package = NULL, lib.loc = NULL,
help.db = getOption("help.db"),
verbose = getOption("verbose"),
rebuild = FALSE, agrep = NULL)

Arguments

pattern a character string to be matched in the specified fields. If this is given, the
argumentsapropos , keyword , andwhatis are ignored.

fields a character vector specifying the fields of the help data bases to be searched. The
entries must be abbreviations of"name" , "title" , "alias" , "concept" ,
and "keyword" , corresponding to the help page’s (file) name, its title, the
topics and concepts it provides documentation for, and the keywords it can be
classified to.

apropos a character string to be matched in the help page topics and title.

keyword a character string to be matched in the help page ‘keywords’. ‘Key-
words’ are really categories: the standard categories are listed in file
‘RHOME/doc/KEYWORDS’ (see also the example) and some package writers
have defined their own. Ifkeyword is specified,agrep defaults toFALSE.

whatis a character string to be matched in the help page topics.

help.search 1409

ignore.case a logical. IfTRUE, case is ignored during matching; ifFALSE, pattern matching
is case sensitive.

package a character vector with the names of packages to search through, orNULL in
which caseall available packages in the library trees specified bylib.loc are
searched.

lib.loc a character vector describing the location ofR library trees to search through, or
NULL. The default value ofNULLcorresponds to all libraries currently known.

help.db a character string giving the file path to a previously built and saved help data
base, orNULL.

verbose logical; if TRUE, the search process is traced.

rebuild a logical indicating whether the help data base should be rebuilt. This will be
done automatically iflib.loc or the search path is changed, or ifpackage
is used and a value is not found.

agrep if NULL (the default unlesskeyword is used) and the character string to be
matched consists of alphanumeric characters, whitespace or a dash only, ap-
proximate (fuzzy) matching viaagrep is used unless the string has fewer than
5 characters; otherwise, it is taken to contain aregular expressionto be matched
via grep . If FALSE, approximate matching is not used. Otherwise, one can
give a numeric or a list specifying the maximal distance for the approximate
match, see argumentmax.distance in the documentation foragrep .

Details

Upon installation of a package, a pre-built help.search index is serialized as ‘hsearch.rds’ in the
‘Meta’ directory (provided the package has any help pages). These files are used to create the data
base.

The argumentsapropos andwhatis play a role similar to the Unix commands with the same
names.

Searching withagrep = FALSE will be several times faster than the default.

If possible, the help data base is saved in memory or (if memory limits have been set: see
mem.limits) to a file in the session temporary directory for use by subsequent calls in the session.

Note that currently the aliases in the matching help files are not displayed.

Value

The results are returned in a list object of class"hsearch" , which has a print method for nicely
formatting the results of the query. This mechanism is experimental, and may change in future
versions ofR.

The internal format of the class is undocumented and subject to change.

See Also

help ; help.start for starting the hypertext (currently HTML) version ofR’s online documen-
tation, which offers a similar search mechanism.

RSiteSearch to access an on-line search ofR resources.

apropos uses regexps and has nice examples.

1410 help.start

Examples

help.search("linear models") # In case you forgot how to fit linear
models

help.search("non-existent topic")
Not run:
help.search("print") # All help pages with topics or title

matching 'print'
help.search(apropos = "print") # The same

help.search(keyword = "hplot") # All help pages documenting high-level
plots.

file.show(file.path(R.home(), "doc", "KEYWORDS")) # show all keywords

Help pages with documented topics starting with 'try'.
help.search("\\btry", fields = "alias")
End(Not run)

help.start Hypertext Documentation

Description

Start the hypertext (currently HTML) version ofR’s online documentation.

Usage

help.start(gui = "irrelevant", browser = getOption("browser"),
remote = NULL)

Arguments

gui just for compatibility with S-PLUS.

browser the name of the program to be used as hypertext browser. It should be in the
PATH, or a full path specified.

remote A character giving a valid URL for the ‘$R_HOME’ directory on a remote
location.

Details

All the packages in the known library trees are linked to directory ‘.R’ in the per-session tempo-
rary directory. The links are re-made each timehelp.start is run, which should be done after
packages are installed, updated or removed.

A side effect is to setoptions(htmlhelp = TRUE) so that future help requests (by default)
are sent to the browser.

If the browser named by thebrowser argument is different from the default browser as specified
by options("browser") , the default is changed to the given browser so that it gets used for
all future help requests.

index.search 1411

Note

There is a Java-based search facility available from the HTML page thathelp.start brings up.
Should this not work, please consult the ‘R Installation and Administration’ manual which is linked
from that page.

See Also

help () for on- and off-line help in ASCII/Editor or PostScript format.

browseURL for how the help file is displayed.

RSiteSearch to access an on-line search ofR resources.

Examples

Not run:
help.start()
End(Not run)

index.search Search Indices for Help Files

Description

Used to search the indices for help files, possibly under aliases.

Usage

index.search(topic, path, file="AnIndex", type = "help")

Arguments

topic The keyword to be searched for in the indices.

path The path(s) to the packages to be searched.

file The index file to be searched. Normally ‘"AnIndex"’.

type The type of file required.

Details

For each package inpath , examine the filefile in directory ‘type’, and look up the matching
file stem for topictopic , if any.

Value

A character vector of matching files, as if they are in directorytype of the corresponding package.
In the special cases oftype = "html" , "R-ex" and"latex" the file extensions".html" ,
".R" and".tex" are added.

See Also

help , example

1412 INSTALL

INSTALL Install Add-on Packages

Description

Utility for installing add-on packages.

Usage

R CMD INSTALL [options] [-l lib] pkgs

Arguments

pkgs A space-separated list with the path names of the packages to be installed.

lib the path name of theR library tree to install to.

options a space-separated list of options through which in particular the process for
building the help files can be controlled. Options should only be given once.
UseR CMD INSTALL --help for the current list of options.

Details

This will stop at the first error, so if you want all thepkgs to be tried, call this via a shellfor or
foreach loop.

If used asR CMD INSTALL pkgswithout explicitly specifyinglib , packages are installed into
the library tree rooted at the first directory in the library path which would be used byR run in the
current environment.

To install into the library treelib , useR CMD INSTALL -l lib pkgs . This prependslib
to R_LIBS for duration of the install, so required packages in the installation directory will be
found (and used in preference to those in other libraries).

Both lib and the elements ofpkgs may be absolute or relative path names of directories.pkgs
may also contain names of package/bundle archive files of the form ‘pkg_version.tar.gz’ as
obtained from CRAN: these are then extracted in a temporary directory. Finally, binary pack-
age/bundle archive files (as created byR CMD build --binary can be supplied.

Some package sources contain a ‘configure’ script that can be passed arguments or variables via
the option ‘--configure-args ’ and ‘--configure-vars ’, respectively, if necessary. The
latter is useful in particular if libraries or header files needed for the package are in non-system
directories. In this case, one can use the configure variablesLIBS andCPPFLAGSto specify these
locations (and set these via ‘--configure-vars ’), see section “Configuration variables” in “R
Installation and Administration” for more information. (If these are used more than once on the
command line, only the last instance is used.) One can bypass the configure mechanism using the
option ‘--no-configure ’.

If ‘ --no-docs ’ is given, no help files are built. Options ‘--no-text ’, ‘ --no-html ’, and
‘ --no-latex ’ suppress creating the text, HTML, and LaTeX versions, respectively. The default
is to build help files in all three versions.

If the attempt to install the package fails, leftovers are removed. If the package was already installed,
the old version is restored. This happens either if a command encounters an error or if the install is
interrupted from the keyboard: after cleaning up the script terminates.

UseR CMD INSTALL --help for more usage information.

installed.packages 1413

Packages using the methods package

Packages that require the methods package and make use functions such assetMethod or
setClass , should be installed using lazy-loading (or, deprecated, by creating a binary image):
use the fieldLazyLoad in the ‘DESCRIPTION’ file to ensure this.

See Also

REMOVEand library for information on using several library trees;update.packages for
automatic update of packages using the internet (or otherR level installation of packages, such as
by install.packages).

The section on “Add-on packages” in “R Installation and Administration” and the chapter on “Cre-
ating R packages” in “WritingR Extensions” (seeRShowDocand the ‘doc/manual’ subdirectory
of theR source tree).

installed.packages Find Installed Packages

Description

Find (or retrieve) details of all packages installed in the specified libraries.

Usage

installed.packages(lib.loc = NULL, priority = NULL,
noCache = FALSE, fields = NULL)

Arguments

lib.loc character vector describing the location ofR library trees to search through.

priority character vector orNULL (default). If non-null, used to select packages;
"high" is equivalent toc("base", "recommended") . To select all
packages without an assigned priority usepriority = "NA" .

noCache Do not use cached information.

fields a character vector giving the fields to extract from each package’s
DESCRIPTION file in addition to the default ones, orNULL (default). Un-
available fields result inNAvalues.

Details

installed.packages scans the ‘DESCRIPTION’ files of each package found along
lib.loc and returns a matrix of package names, library paths and version numbers.

Note: this works with package names, not bundle names, and for versioned installs with the name
under which the package is installed, in the stylemypkg_1.3-7 .

The information found is cached (by library) for theR session and specifiedfields argument,
and updated only if the top-level library directory has been altered, for example by installing or
removing a package. If the cached information becomes confused, it can be refreshed by running
installed.packages(noCache = TRUE) .

1414 LINK

Value

A matrix with one row per package, row names the package names and column
names"Package" , "LibPath" , "Version" , "Priority" , "Bundle" , "Contains" ,
"Depends" , "Suggests" , "Imports" and"Built" (the R version the package was built
under). Additional columns can be specified using thefields argument.

See Also

update.packages , INSTALL , REMOVE.

Examples

str(ip <- installed.packages(priority = "high"))
ip[, c(1,3:5)]
plic <- installed.packages(priority = "high", fields="License")
what licenses are there:
table(plic[,"License"])

LINK Create Executable Programs

Description

Front-end for creating executable programs.

Usage

R CMD LINK [options] linkcmd

Arguments

linkcmd a list of commands to link together suitable object files (include library objects)
to create the executable program.

options further options to control the linking, or for obtaining information about usage
and version.

Details

The linker front-end is useful in particular when linking against the R shared library, in which case
linkcmd must contain-lR but need not specify its library path.

Currently only works if the C compiler is used for linking, and no C++ code is used.

UseR CMD LINK --help for more usage information.

Note

Some binary distributions ofR haveLINK in a separate bundle, e.g. anR-devel RPM.

localeToCharset 1415

localeToCharset Select a Suitable Encoding Name from a Locale Name

Description

This functions aims to find a suitable coding for the locale named, by default the current locale, and
if it is a UTF-8 locale a suitable single-byte encoding.

Usage

localeToCharset(locale = Sys.getlocale("LC_CTYPE"))

Arguments

locale character string naming a locale.

Details

The operation differs by OS. Locale names are normaly likees_MX.iso88591 . If final com-
ponent indicates an encoding and it is notutf8 we just need to look up the equivalent encoding
name. Otherwise, the language (herees) is used to choose a primary or fallback encoding.

In theC locale the answer will be"ASCII" .

Value

A character vector naming an encoding and possibly a fallback single-encoding,NAif unknown.

Note

The encoding names are those used bylibiconv , and ought also to work withglibc but maybe
not with commercial Unixen.

See Also

Sys.getlocale , iconv .

Examples

localeToCharset()

1416 ls.str

ls.str List Objects and their Structure

Description

ls.str andlsf.str are variations ofls applyingstr () to each matched name: see section
Value.

Usage

ls.str(pos = 1, pattern, ..., envir = as.environment(pos),
mode = "any")

lsf.str(pos = 1, ..., envir = as.environment(pos))

S3 method for class 'ls_str':
print(x, max.level = 1, give.attr = FALSE, ...)

Arguments

pos integer indicatingsearch path position.

pattern aregular expressionpassed tols . Only names matchingpattern are consid-
ered.

max.level maximal level of nesting which is applied for displaying nested structures, e.g.,
a list containing sub lists. Default 0: Display all nesting levels.

give.attr logical; if TRUE(default), show attributes as sub structures.

envir environment to use, seels .

mode character specifying themode of objects to consider. Passed toexists and
get .

x an object of class"ls_str" .

... further arguments to pass. andlsf.str passes them tols.str which passes
them on tols . The (non-exported) print methodprint.ls_str passes them
to str .

Value

ls.str and lsf.str return an object of class"ls_str" , basically the character vector of
matching names (functions only forlsf.str), similarly to ls , with a print() method that
callsstr () on each object.

Author(s)

Martin Maechler

See Also

str , summary , args .

make.packages.html 1417

Examples

require(stats)

lsf.str()#- how do the functions look like which I am using?
ls.str(mode = "list") #- what are the structured objects I have defined?

create a few objects
example(glm, echo = FALSE)
ll <- as.list(LETTERS)
print(ls.str(), max.level = 0)# don't show details

which base functions have "file" in their name ?
lsf.str(pos = length(search()), pattern = "file")

make.packages.html Update HTML documentation files

Description

Functions to re-create the HTML documentation files to reflect all installed packages.

Usage

make.packages.html(lib.loc = .libPaths())

Arguments

lib.loc character vector. List of libraries to be included.

Details

This sets up the links from packages in libraries to the ‘.R’ subdirectory of the per-session directory
(seetempdir) and then creates the ‘packages.html’ and ‘index.txt’ files to point to those links.

If a package is available in more than one library tree, all the copies are linked, after the first with
suffix .1 etc.

Value

Logical, whether the function succeeded in recreating the files.

See Also

help.start

1418 make.socket

make.socket Create a Socket Connection

Description

With server = FALSE attempts to open a client socket to the specified port and host. With
server = TRUE listens on the specified port for a connection and then returns a server socket. It
is a good idea to useon.exit to ensure that a socket is closed, as you only get 64 of them.

Usage

make.socket(host = "localhost", port, fail = TRUE, server = FALSE)

Arguments

host name of remote host

port port to connect to/listen on

fail failure to connect is an error?

server a server socket?

Value

An object of class"socket" .

socket socket number. This is for internal use

port port number of the connection

host name of remote computer

Warning

I don’t know if the connecting host name returned whenserver = TRUE can be trusted. I
suspect not.

Author(s)

Thomas Lumley

References

Adapted from Luke Tierney’s code forXLISP-Stat , in turn based on code from Robbins and
Robbins "Practical UNIX Programming"

See Also

close.socket , read.socket

memory.size 1419

Examples

daytime <- function(host = "localhost"){
a <- make.socket(host, 13)
on.exit(close.socket(a))
read.socket(a)

}
Official time (UTC) from US Naval Observatory
Not run: daytime("tick.usno.navy.mil")

memory.size Report on Memory Allocation

Description

memory.size andmemory.limit are used to manage the total memory allocation on Win-
dows. On other platforms these are stubs which report infinity with a warning.

Usage

memory.size(max = FALSE)

memory.limit(size = NA)

Arguments

max logical. If true the maximum amount of memory obtained from the OS is re-
ported, otherwise the amount currently in use.

size numeric. IfNAreport the memory size, otherwise request a new limit, in Mb.

Details

To restrict memory usage on a Unix-alike use the facilities of the shell used to launchR, e.g.limit
or ulimit .

Value

Size in bytes: alwaysInf .

See Also

Memory-limitsfor other limits.

1420 menu

menu Menu Interaction Function

Description

menu presents the user with a menu of choices labelled from 1 to the number of choices. To exit
without choosing an item one can select ‘0’.

Usage

menu(choices, graphics = FALSE, title = "")

Arguments

choices a character vector of choices

graphics a logical indicating whether a graphics menu should be used if available.

title a character string to be used as the title of the menu.NULL is also accepted.

Details

If graphics = TRUE and a windowing system is available (Windows, MacOS X or X11via
Tcl/Tk) a listbox widget is used, otherwise a text menu.

Ten or fewer items will be displayed in a single column, more in multiple columns if possible within
the current display width.

No title is displayed iftitle is NULLor "" .

Value

The number corresponding to the selected item, or 0 if no choice was made.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

See Also

select.list , which is used to implement the graphical menu, and allows multiple selections.

Examples

Not run:
switch(menu(c("List letters", "List LETTERS")) + 1,

cat("Nothing done\n"), letters, LETTERS)
End(Not run)

methods 1421

methods List Methods for S3 Generic Functions or Classes

Description

List all available methods for an S3 generic function, or all methods for a class.

Usage

methods(generic.function, class)

Arguments

generic.function
a generic function, or a character string naming a generic function.

class a symbol or character string naming a class: only used if
generic.function is not supplied.

Details

Functionmethods can be used to find out about the methods for a particular generic function or
class. The functions listed are those whichare named like methodsand may not actually be methods
(known exceptions are discarded in the code). Note that the listed methods may not be user-visible
objects, but often help will be available for them.

If class is used, we check that a matching generic can be found for each user-visible object named.
If generic.function is given, there is a warning if it appears not to be a generic function. (The
check for being generic used can be fooled.)

Value

An object of class"MethodsFunction" , a character vector of function names with an"info"
attribute. There is aprint method which marks with an asterisk any methods which are not
visible: such functions can be examined bygetS3method or getAnywhere .

The "info" attribute is a data frame, currently with a logical column,visible and a factor
columnfrom (indicating where the methods were found).

Note

This scheme is calledS3 (S version 3). For new projects, it is recommended to use the more
flexible and robustS4scheme provided in themethodspackage. Functions can have both S3 and
S4 methods, and functionshowMethods will list the S4 methods (possibly none).

The originalmethods function was written by Martin Maechler.

References

Chambers, J. M. (1992)Classes and methods: object-oriented programming in S.Appendix A of
Statistical Models in Seds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

S3Methods , class , getS3method

1422 mirrorAdmin

Examples

require(stats)

methods(summary)
methods(class = "aov")
methods("[[") # uses C-internal dispatching
methods("$")
methods("$<-") # replacement function
methods("+") # binary operator
methods("Math") # group generic
require(graphics)
methods("axis") # looks like it has methods, but not generic
Not run:
methods(print) # over 100
End(Not run)

mirrorAdmin Managing Repository Mirrors

Description

Functions helping to maintain CRAN, some of them may also be useful for administrators of other
repository networks.

Usage

mirror2html(mirrors = NULL, file = "mirrors.html",
head = "mirrors-head.html", foot = "mirrors-foot.html")

checkCRAN(method)

Arguments

mirrors A data frame, by default the CRAN list of mirrors is used.

file A connection object or a character string.

head Name of optional header file.

foot Name of optional footer file.

method Download method, seedownload.file .

Details

mirror2html creates the HTML file for the CRAN list of mirrors and invisibly returns the HTML
text.

checkCRAN performs a sanity checks on all CRAN mirrors.

modifyList 1423

modifyList Recursively Modify Elements of a List

Description

Modifies a possibly nested list recursively by changing a subset of elements at each level to match
a second list.

Usage

modifyList(x, val)

Arguments

x a namedlist , possibly empty.

val a named list with components to replace corresponding components inx .

Value

A modified version ofx , with the modifications determined as follows (here, list elements are
identified by their names). Elements inval which are missing fromx are added tox . For
elements that are common to both but are not both lists themselves, the component inx is re-
placed by the one inval . For common elements that are both lists,x[[name]] is replaced by
modifyList(x[[name]], val[[name]]) .

Author(s)

Deepayan Sarkar〈Deepayan.Sarkar@R-project.org〉

Examples

foo <- list(a = 1, b = list(c = "a", d = FALSE))
bar <- modifyList(foo, list(e = 2, b = list(d = TRUE)))
str(foo)
str(bar)

normalizePath Express File Paths in Canonical Form

Description

Convert file paths to canonical form for the platform, to display them in a user-understandable form.

Usage

normalizePath(path)

Arguments

path character vector of file paths.

1424 nsl

Details

Where the platform supports it this turns paths into absolute paths in their canonical form (no./ ,
../ nor symbolic links).

If the path is not a real path the result is undefined but will most likely be the corresponding input
element.

Value

A character vector.

Examples

cat(normalizePath(c(R.home(), tempdir())), sep = "\n")

nsl Look up the IP Address by Hostname

Description

Interface togethostbyname .

Usage

nsl(hostname)

Arguments

hostname the name of the host.

Value

The IP address, as a character string, orNULL if the call fails.

Note

This was included as a test of internet connectivity, to fail if the node running R is not connected. It
will also returnNULL if BSD networking is not supported, including the header file ‘arpa/inet.h’.

Examples

Not run: nsl("www.r-project.org")

object.size 1425

object.size Report the Space Allocated for an Object

Description

Provides an estimate of the memory that is being used to store anR object.

Usage

object.size(x)

Arguments

x An R object.

Details

Exactly which parts of the memory allocation should be attributed to which object is not clear-
cut. This function merely provides a rough indication: it should be reasonably accurate for atomic
vectors, but does not detect if elements of a list are shared, for example. (Sharing amongst elements
of a character vector is taken into account, but not that between character vectors in a single object.)

The calculation is of the size of the object, and excludes the space needed to store its name in the
symbol table.

Associated space (e.g. the environment of a function and what the pointer in aEXTPTRSXPpoints
to) is not included in the calculation.

Object sizes are larger on 64-bit platforms than 32-bit ones, but will very likely be the same on
different platforms with the same word length and pointer size.

Value

An estimate of the memory allocation attributable to the object, in bytes.

See Also

Memory-limits for the design limitations on object size.

Examples

object.size(letters)
object.size(ls)
find the 10 largest objects in the base package
z <- sapply(ls("package:base"), function(x)

object.size(get(x, envir = baseenv())))
as.matrix(rev(sort(z))[1:10])

1426 package.skeleton

package.skeleton Create a Skeleton for a New Source Package

Description

package.skeleton automates some of the setup for a new source package. It creates directo-
ries, saves functions and data to appropriate places, and creates skeleton help files and a ‘Read-
and-delete-me’ file describing further steps in packaging.

Usage

package.skeleton(name = "anRpackage", list,
environment = .GlobalEnv,
path = ".", force = FALSE, namespace = FALSE,
code_files = character())

Arguments

name character string: the directory name for your package.

list character vector naming theR objects to put in the package. Defaults to the
non-hidden files inenvironment (those whose name does not start with.).

environment an environment where objects are looked for (unlesscode_files is used).

path path to put the package directory in.

force If FALSEwill not overwrite an existing directory.

namespace a logical indicating whether to add a name space for the package.

code_files a character vector with the paths to R code files to build the package around.
Used only iflist is missing.

Details

The package sources are placed in subdirectoryname of path .

This tries to create filenames valid for all OSes known to run R. Invalid characters are replaced
by ‘_’, invalid names are preceded by ‘zz ’, and finally the converted names are made unique by
make.unique (sep = "_") . This can be done for code and help files but not data files (which
are looked for by name). Also, the code and help files should have names starting with an ASCII
letter or digit, and this is checked and if necessaryz prepended.

If code_files are given, these are copied over to the package code directory (so that non-
function code objects are not converted to data sets), and the corresponding help files are generated.

When you are done, delete the ‘Read-and-delete-me’ file, as it should not be distributed.

Value

Used for its side-effects.

References

Read theWriting R Extensionsmanual for more details.

Once you have created asourcepackage you need to install it: see theR Installation and Adminis-
tration manual,INSTALL andinstall.packages .

packageDescription 1427

See Also

prompt

Examples

require(stats)
two functions and two "data sets" :
f <- function(x,y) x+y
g <- function(x,y) x-y
d <- data.frame(a=1, b=2)
e <- rnorm(1000)

package.skeleton(list=c("f","g","d","e"), name="mypkg")

packageDescription Package Description

Description

Parses and returns the ‘DESCRIPTION’ file of a package.

Usage

packageDescription(pkg, lib.loc = NULL, fields = NULL,
drop = TRUE, encoding = "")

Arguments

pkg a character string with the package name.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

fields a character vector giving the tags of fields to return (if other fields occur in the
file they are ignored).

drop If TRUEand the length offields is 1, then a single character string with
the value of the respective field is returned instead of an object of class
"packageDescription" .

encoding If there is anEncoding field, to what encoding should re-encoding be at-
tempted? IfNA, no re-encoding. The other values are as used byiconv , so
the default"" indicates the encoding of the current locale.

Details

A package will not be ‘found’ unless it has a ‘DESCRIPTION’ file which contains a valid
Version field. Different warnings are given when no package directory is found and when there
is a suitable directory but no valid ‘DESCRIPTION’ file.

An attached environment named to look like a package (e.g.package:utils2) will be ignored
as fromR 2.6.0.

1428 packageStatus

Value

If a ‘DESCRIPTION’ file for the given package is found and can successfully be read,
packageDescription returns an object of class"packageDescription" , which is a
named list with the values of the (given) fields as elements and the tags as names, unlessdrop
= TRUE.

If parsing the ‘DESCRIPTION’ file was not successful, it returns a named list ofNAs with the field
tags as names iffields is not null, andNAotherwise.

See Also

read.dcf

Examples

packageDescription("stats")
packageDescription("stats", fields = c("Package", "Version"))

packageDescription("stats", fields = "Version")
packageDescription("stats", fields = "Version", drop = FALSE)

packageStatus Package Management Tools

Description

Summarize information about installed packages and packages available at various repositories, and
automatically upgrade outdated packages.

Usage

packageStatus(lib.loc = NULL, repositories = NULL, method,
type = getOption("pkgType"))

S3 method for class 'packageStatus':
summary(object, ...)

S3 method for class 'packageStatus':
update(object, lib.loc = levels(object$inst$LibPath),

repositories = levels(object$avail$Repository), ...)

S3 method for class 'packageStatus':
upgrade(object, ask = TRUE, ...)

Arguments

lib.loc a character vector describing the location ofR library trees to search through, or
NULL. The default value ofNULLcorresponds to all libraries currently known.

repositories a character vector of URLs describing the location ofR package repositories on
the Internet or on the local machine.

method Download method, seedownload.file .

packageStatus 1429

type type of package distribution: seeinstall.packages .

object an object of class"packageStatus" as returned bypackageStatus .

ask if TRUE, the user is prompted which packages should be upgraded and which
not.

... currently not used.

Details

The URLs inrepositories should be full paths to the appropriate contrib sections of the repos-
itories. The default iscontrib.url(getOption("repos")) .

There areprint and summary methods for the"packageStatus" objects: theprint
method gives a brief tabular summary and thesummary method prints the results.

Theupdate method updates the"packageStatus" object. Theupgrade method is similar
to update.packages : it offers to install the current versions of those packages which are not
currently up-to-date.

Value

An object of class"packageStatus" . This is a list with two components

inst a data frame with columns as thematrix returned byinstalled.packages
plus "Status" , a factor with levelsc("ok", "upgrade") . Only the
newest version of each package is reported, in the first repository in which it
appears.

avail a data frame with columns as thematrix returned byavailable.packages
plus "Status" , a factor with levels c("installed", "not
installed", "unavailable") ..

See Also

installed.packages , available.packages

Examples

Not run:
x <- packageStatus()
print(x)
summary(x)
upgrade(x)
x <- update(x)
print(x)
End(Not run)

1430 person

page Invoke a Pager on an R Object

Description

Displays a representation of the object named byx in a pagervia file.show .

Usage

page(x, method = c("dput", "print"), ...)

Arguments

x An R object, or a character string naming an object.

method The default method is to dump the objectvia dput . An alternative is to use
print and capture the output to be shown in the pager.

... additional arguments fordput , print or file.show (such astitle).

Details

If x is a length-one character vector, it is used as the name of an object to look up in the environment
from whichpage is called. All other objects are displayed directly.

A default value oftitle is passed tofile.show if one is not supplied in... .

See Also

file.show , edit , fix .

To go to a new page when graphing, seeframe .

Examples

Not run:
four ways to look at the code of 'page'
page(page) # as an object
page("page") # a character string
v <- "page"; page(v) # a length-one character vector
page(utils::page) # a call
End(Not run)

person Person Names and Contact Information

Description

A class and utility methods for holding information about persons like name and email address.

PkgUtils 1431

Usage

person(first = "", last = "", middle = "", email = "")
personList(...)
as.person(x)
as.personList(x)

S3 method for class 'person':
as.character(x, ...)
S3 method for class 'personList':
as.character(x, ...)

S3 method for class 'person':
toBibtex(object, ...)
S3 method for class 'personList':
toBibtex(object, ...)

Arguments

first character string, first name

middle character string, middle name(s)

last character string, last name

email character string, email address

... for personList an arbitrary number ofperson objects

x a character string or an object of classperson or personList

object an object of classperson or personList

Examples

create a person object directly
p1 <- person("Karl", "Pearson", email = "pearson@stats.heaven")
p1

convert a string
p2 <- as.person("Ronald Aylmer Fisher")
p2

create one object holding both
p <- personList(p1, p2)
ps <- as.character(p)
ps
as.personList(ps)

convert to BibTeX author field
toBibtex(p)

PkgUtils Utilities for Building and Checking Add-on Packages

1432 prompt

Description

Utilities for checking whether the sources of anR add-on package work correctly, and for building
a source or binary package from them.

Usage

R CMD build [options] pkgdirs
R CMD check [options] pkgdirs

Arguments

pkgdirs a list of names of directories with sources ofR add-on packages.

options further options to control the processing, or for obtaining information about us-
age and version of the utility.

Details

R CMD checkchecksR add-on packages from their sources, performing a wide variety of diag-
nostic checks.

R CMD build buildsR source or binary packages from their sources. The name(s) of the pack-
ages are taken from the ‘DESCRIPTION’ files and not from the directory names.

UseR CMD foo --help to obtain usage information on utilityfoo .

Several of the options tobuild --binary are passed toINSTALL so consult its help for the
details.

See Also

The sections on “Checking and building packages” and “Processing Rd format” in “WritingR
Extensions” (see the ‘doc/manual’ subdirectory of theR source tree).

INSTALL is called bybuild --binary .

prompt Produce Prototype of an R Documentation File

Description

Facilitate the constructing of files documentingR objects.

Usage

prompt(object, filename = NULL, name = NULL, ...)

Default S3 method:
prompt(object, filename = NULL, name = NULL,

force.function = FALSE, ...)

S3 method for class 'data.frame':
prompt(object, filename = NULL, name = NULL, ...)

prompt 1433

Arguments

object anR object, typically a function for the default method.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name isname followed by".Rd" . Can also beNA(see below).

name a character string specifying the name of the object.

force.function
a logical. IfTRUE, treatobject as function in any case.

... further arguments passed to or from other methods.

Details

Unlessfilename is NA, a documentation shell forobject is written to the file specified by
filename , and a message about this is given. For function objects, this shell contains the proper
function and argument names. R documentation files thus created still need to be edited and moved
into the ‘man’ subdirectory of the package containing the object to be documented.

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts tocat(unlist(x), file = filename, sep
= "\n") , wherex is the list-style representation.

Whenprompt is used infor loops or scripts, the explicitname specification will be useful.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of
the file written to is returned invisibly.

Warning

The default filename may not be a valid filename under limited file systems (e.g. those on Windows).

Currently, callingprompt on a non-function object assumes that the object is in fact a data set and
hence documents it as such. This may change in future versions ofR. UsepromptData to create
documentation skeletons for data sets.

Note

The documentation file produced byprompt.data.frame does not have the same format as
many of the data frame documentation files in thebasepackage. We are trying to settle on a
preferred format for the documentation.

Author(s)

Douglas Bates forprompt.data.frame

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)The New S Language. Wadsworth &
Brooks/Cole.

1434 promptData

See Also

promptData , help and the chapter on “WritingR documentation” in “WritingR Extensions”
(see the ‘doc/manual’ subdirectory of theR source tree).

For creation of many help pages (for a package), seepackage.skeleton .

To prompt the user for input, seereadline .

Examples

require(graphics)
prompt(plot.default)
prompt(interactive, force.function = TRUE)
unlink("plot.default.Rd")
unlink("interactive.Rd")

prompt(women) # data.frame
unlink("women.Rd")

prompt(sunspots) # non-data.frame data
unlink("sunspots.Rd")

promptData Generate a Shell for Documentation of Data Sets

Description

Generates a shell of documentation for a data set.

Usage

promptData(object, filename = NULL, name = NULL)

Arguments

object anR object to be documented as a data set.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name isname followed by".Rd" . Can also beNA(see below).

name a character string specifying the name of the object.

Details

Unlessfilename is NA, a documentation shell forobject is written to the file specified by
filename , and a message about this is given.

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts tocat(unlist(x), file = filename, sep
= "\n") , wherex is the list-style representation.

Currently, only data frames are handled explicitly by the code.

promptPackage 1435

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of
the file written to is returned invisibly.

Warning

This function is still experimental. Both interface and value might change in future versions. In
particular, it may be preferable to use a character string naming the data set and optionally a speci-
fication of where to look for it instead of usingobject /name as we currently do. This would be
different fromprompt , but consistent with other prompt-style functions in packagemethods, and
also allow prompting for data set documentation without explicitly having to load the data set.

See Also

prompt

Examples

promptData(sunspots)
unlink("sunspots.Rd")

promptPackage Generate a Shell for Documentation of a Package

Description

Generates a shell of documentation for an installed or source package.

Usage

promptPackage(package, lib.loc = NULL, filename = NULL,
name = NULL, final = FALSE)

Arguments

package the name of aninstalledor sourcepackage to be documented.

lib.loc a character vector describing the location ofR library trees to search through, or
NULL. The default value ofNULLcorresponds to all libraries currently known.
For a source package this should specify the parent directory of the package’s
sources.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name isname followed by".Rd" . Can also beNA(see below).

name a character string specifying the name of the help topic, typically of the form
<pkg>-package .

final a logical value indicating whether to attempt to create a usable version of the
help topic, rather than just a shell.

1436 read.DIF

Details

Unlessfilename is NA, a documentation shell forpackage is written to the file specified by
filename , and a message about this is given.

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts tocat(unlist(x), file = filename, sep
= "\n") , wherex is the list-style representation.

If final is TRUE, the generated documentation will not include the place-holder slots for manual
editing, it will be usable as-is. In most cases a manually edited file is preferable (butfinal =
TRUEis certainly less work).

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of
the file written to is returned invisibly.

See Also

prompt

Examples

filename <- tempfile()
promptPackage("utils", filename = filename)
file.show(filename)
unlink(filename)

read.DIF Data Input from Spreadsheet

Description

Reads a file in Data Interchange Format (DIF) and creates a data frame from it. DIF is a format for
data matrices such as single spreadsheets.

Usage

read.DIF(file, header = FALSE,
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE,
blank.lines.skip = TRUE,
stringsAsFactors = default.stringsAsFactors())

Arguments

file the name of the file which the data are to be read from, or a connection, or a
complete URL.

read.DIF 1437

header a logical value indicating whether the spreadsheet contains the names of the
variables as its first line. If missing, the value is determined from the file format:
header is set toTRUEif and only if the first row contains only character values
and the top left cell is empty.

dec the character used in the file for decimal points.

row.names a vector of row names. This can be a vector giving the actual row names, or a
single number giving the column of the table which contains the row names, or
character string giving the name of the table column containing the row names.

If there is a header and the first row contains one fewer field than the number of
columns, the first column in the input is used for the row names. Otherwise if
row.names is missing, the rows are numbered.

Usingrow.names = NULL forces row numbering.

col.names a vector of optional names for the variables. The default is to use"V" followed
by the column number.

as.is the default behavior ofread.DIF is to convert character variables (which are
not converted to logical, numeric or complex) to factors. The variableas.is
controls the conversion of columns not otherwise specified bycolClasses .
Its value is either a vector of logicals (values are recycled if necessary), or a
vector of numeric or character indices which specify which columns should not
be converted to factors.

Note: to suppress all conversions including those of numeric columns, set
colClasses = "character" .

Note thatas.is is specified per column (not per variable) and so includes the
column of row names (if any) and any columns to be skipped.

na.strings a character vector of strings which are to be interpreted asNA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields.

colClasses character. A vector of classes to be assumed for the columns. Recycled as
necessary, or if the character vector is named, unspecified values are taken to be
NA.

Possible values areNA (when type.convert is used),"NULL" (when the
column is skipped), one of the atomic vector classes (logical, integer, numeric,
complex, character, raw), or"factor" , "Date" or "POSIXct" . Otherwise
there needs to be anas method (from packagemethods) for conversion from
"character" to the specified formal class.

Note thatcolClasses is specified per column (not per variable) and so in-
cludes the column of row names (if any).

nrows the maximum number of rows to read in. Negative values are ignored.

skip the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUEthen the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names. If necessary they are
adjusted (bymake.names) so that they are, and also to ensure that there are
no duplicates.

blank.lines.skip
logical: if TRUEblank lines in the input are ignored.

stringsAsFactors
logical: should character vectors be converted to factors?

1438 read.fortran

Value

A data frame (data.frame) containing a representation of the data in the file. Empty input is an
error unlesscol.names is specified, when a 0-row data frame is returned: similarly giving just a
header line ifheader = TRUE results in a 0-row data frame.

Note

The columns referred to inas.is andcolClasses include the column of row names (if any).

Less memory will be used ifcolClasses is specified as one of the six atomic vector classes.

References

The DIF format specification can be found by searching onhttp://www.wotsit.org/ ; the
optional header fields are ignored. See alsohttp://en.wikipedia.org/wiki/Data_
Interchange_Format .

The term is likely to lead to confusion: Windows will have a ‘Windows Data Interchange Format
(DIF) data format’ as part of its WinFX system, which may or may not be compatible.

See Also

TheR Data Import/Exportmanual.

scan , type.convert , read.fwf for readingf ixed width f ormatted input;read.table ;
data.frame .

read.fortran Read fixed-format data

Description

Read fixed-format data files using Fortran-style format specifications.

Usage

read.fortran(file, format, ..., as.is = TRUE, colClasses = NA)

Arguments

file File or connection to read from

format Character vector or list of vectors. See ‘Details’ below.

... Other arguments forread.table

as.is Keep characters as characters?

colClasses Variable classes to override defaults. Seeread.table for details.

http://www.wotsit.org/
http://en.wikipedia.org/wiki/Data_Interchange_Format
http://en.wikipedia.org/wiki/Data_Interchange_Format

read.fwf 1439

Details

The format for a field is of one of the following forms:rFl.d , rDl.d , rXl , rAl , rIl , where
l is the number of columns,d is the number of decimal places, andr is the number of repeats.F
andDare numeric formats,A is character,I is integer, andX indicates columns to be skipped. The
repeat coder and decimal place coded are always optional. The length codel is required except
for X formats whenr is present.

For a single-line record,format should be a character vector. For a multiline record it should be
a list with a character vector for each line.

Skipped (X) columns are not passed toread.table , socolClasses , col.names , and similar
arguments passed toread.table should not reference these columns.

Value

A data frame

See Also

read.fwf , read.csv

Examples

ff <- tempfile()
cat(file=ff, "123456", "987654", sep="\n")
read.fortran(ff, c("F2.1","F2.0","I2"))
read.fortran(ff, c("2F1.0","2X","2A1"))
unlink(ff)
cat(file=ff, "123456AB", "987654CD", sep="\n")
read.fortran(ff, list(c("2F3.1","A2"), c("3I2","2X")))
unlink(ff)

read.fwf Read Fixed Width Format Files

Description

Read a table offixedwidth formatted data into adata.frame .

Usage

read.fwf(file, widths, header = FALSE, sep = "\t", as.is = FALSE,
skip = 0, row.names, col.names, n = -1,
buffersize = 2000, ...)

Arguments

file the name of the file which the data are to be read from.

Alternatively,file can be aconnection , which will be opened if necessary,
and if so closed at the end of the function call.

widths integer vector, giving the widths of the fixed-width fields (of one line), or list of
integer vectors giving widths for multiline records.

1440 read.fwf

header a logical value indicating whether the file contains the names of the variables as
its first line. If present, the names must be delimited bysep .

sep character; the separator used internally; should be a character that does not occur
in the file (except in the header).

as.is seeread.table .

skip number of initial lines to skip; seeread.table .

row.names seeread.table .

col.names seeread.table .

n the maximum number of records (lines) to be read, defaulting to no limit.

buffersize Maximum number of lines to read at one time

... further arguments to be passed toread.table . Useful further arguments in-
cludena.strings , colClasses andstrip.white .

Details

Multiline records are concatenated to a single line before processing. Fields that are of zero-width
or are wholly beyond the end of the line infile are replaced byNA.

Negative-width fields are used to indicate columns to be skipped, eg-5 to skip 5 columns.
These fields are not seen byread.table and so should not be included in acol.names or
colClasses argument (nor in the header line, if present).

Reducing thebuffersize argument may reduce memory use when reading large files with long
lines. Increasingbuffersize may result in faster processing when enough memory is available.

Value

A data.frame as produced byread.table which is called internally.

Author(s)

Brian Ripley forR version: originalPerl by Kurt Hornik.

See Also

scan andread.table .

Examples

ff <- tempfile()
cat(file=ff, "123456", "987654", sep="\n")
read.fwf(ff, widths=c(1,2,3)) #> 1 23 456 \ 9 87 654
read.fwf(ff, widths=c(1,-2,3)) #> 1 456 \ 9 654
unlink(ff)
cat(file=ff, "123", "987654", sep="\n")
read.fwf(ff, widths=c(1,0, 2,3)) #> 1 NA 23 NA \ 9 NA 87 654
unlink(ff)
cat(file=ff, "123456", "987654", sep="\n")
read.fwf(ff, widths=list(c(1,0, 2,3), c(2,2,2))) #> 1 NA 23 456 98 76 54
unlink(ff)

read.socket 1441

read.socket Read from or Write to a Socket

Description

read.socket reads a string from the specified socket,write.socket writes to the specified
socket. There is very little error checking done by either.

Usage

read.socket(socket, maxlen = 256, loop = FALSE)
write.socket(socket, string)

Arguments

socket a socket object

maxlen maximum length of string to read

loop wait for ever if there is nothing to read?

string string to write to socket

Value

read.socket returns the string read.

Author(s)

Thomas Lumley

See Also

close.socket , make.socket

Examples

finger <- function(user, host = "localhost", port = 79, print = TRUE)
{

if (!is.character(user))
stop("user name must be a string")

user <- paste(user,"\r\n")
socket <- make.socket(host, port)
on.exit(close.socket(socket))
write.socket(socket, user)
output <- character(0)
repeat{

ss <- read.socket(socket)
if (ss == "") break
output <- paste(output, ss)

}
close.socket(socket)
if (print) cat(output)
invisible(output)

}

1442 read.table

Not run:
finger("root") ## only works if your site provides a finger daemon
End(Not run)

read.table Data Input

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to lines and
variables to fields in the file.

Usage

read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
encoding = "unknown")

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
fill = TRUE, comment.char="", ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",
fill = TRUE, comment.char="", ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",
fill = TRUE, comment.char="", ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",
fill = TRUE, comment.char="", ...)

Arguments

file the name of the file which the data are to be read from. Each row of the table
appears as one line of the file. If it does not contain anabsolutepath, the file
name isrelativeto the current working directory,getwd () . Tilde-expansion is
performed where supported.

Alternatively,file can be a readableconnection (which will be opened for
reading if necessary, and if soclose d (and hence destroyed) at the end of the
function call). (If stdin () is used, the prompts for lines may be somewhat
confusing. Terminate input with a blank line or an EOF signal,Ctrl-D on
Unix andCtrl-Z on Windows. Any pushback onstdin() will be cleared
before return.)

file can also be a complete URL.

read.table 1443

To read a data file not in the current encoding (for example a Latin-1 file in
a UTF-8 locale or conversely) use afile connection setting theencoding
argument.

header a logical value indicating whether the file contains the names of the variables as
its first line. If missing, the value is determined from the file format:header is
set toTRUEif and only if the first row contains one fewer field than the number
of columns.

sep the field separator character. Values on each line of the file are separated by this
character. Ifsep = "" (the default forread.table) the separator is ‘white
space’, that is one or more spaces, tabs, newlines or carriage returns.

quote the set of quoting characters. To disable quoting altogether, usequote = "" .
Seescan for the behaviour on quotes embedded in quotes. Quoting is only con-
sidered for columns read as character, which is all of them unlesscolClasses
is specified.

dec the character used in the file for decimal points.

row.names a vector of row names. This can be a vector giving the actual row names, or a
single number giving the column of the table which contains the row names, or
character string giving the name of the table column containing the row names.
If there is a header and the first row contains one fewer field than the number of
columns, the first column in the input is used for the row names. Otherwise if
row.names is missing, the rows are numbered.
Using row.names = NULL forces row numbering. Missing orNULL
row.names generate row names that are considered to be ‘automatic’ (and
not preserved byas.matrix).

col.names a vector of optional names for the variables. The default is to use"V" followed
by the column number.

as.is the default behavior ofread.table is to convert character variables (which
are not converted to logical, numeric or complex) to factors. The vari-
able as.is controls the conversion of columns not otherwise specified by
colClasses . Its value is either a vector of logicals (values are recycled if
necessary), or a vector of numeric or character indices which specify which
columns should not be converted to factors.
Note: to suppress all conversions including those of numeric columns, set
colClasses = "character" .
Note thatas.is is specified per column (not per variable) and so includes the
column of row names (if any) and any columns to be skipped.

na.strings a character vector of strings which are to be interpreted asNA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields.

colClasses character. A vector of classes to be assumed for the columns. Recycled as
necessary, or if the character vector is named, unspecified values are taken to be
NA.
Possible values areNA (when type.convert is used),"NULL" (when the
column is skipped), one of the atomic vector classes (logical, integer, numeric,
complex, character, raw), or"factor" , "Date" or "POSIXct" . Otherwise
there needs to be anas method (from packagemethods) for conversion from
"character" to the specified formal class.
Note thatcolClasses is specified per column (not per variable) and so in-
cludes the column of row names (if any).

1444 read.table

nrows integer: the maximum number of rows to read in. Negative and other invalid
values are ignored.

skip integer: the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUEthen the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names. If necessary they are
adjusted (bymake.names) so that they are, and also to ensure that there are
no duplicates.

fill logical. If TRUEthen in case the rows have unequal length, blank fields are
implicitly added. See ‘Details’.

strip.white logical. Used only whensep has been specified, and allows the stripping of
leading and trailing white space fromcharacter fields (numeric fields are
always stripped). Seescan for further details, remembering that the columns
may include the row names.

blank.lines.skip
logical: if TRUEblank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character or an
empty string. Use"" to turn off the interpretation of comments altogether.

allowEscapes logical. Should C-style escapes such as\n be processed or read verbatim (the
default)? Note that if not within quotes these could be interpreted as a delimiter
(but not as a comment character). For more details seescan .

flush logical: if TRUE, scan will flush to the end of the line after reading the last of
the fields requested. This allows putting comments after the last field.

stringsAsFactors
logical: should character vectors be converted to factors?

encoding encoding to be assumed for input strings. It is used to mark character strings as
known to be in Latin-1 or UTF-8: it is not used to re-encode the input. For an
example of how to do so, see the examples underfile .

... Further arguments to be passed toread.table .

Details

This function is the principal means of reading tabular data intoR.

A field or line is ‘blank’ if it contains nothing (except whitespace if no separator is specified) before
a comment character or the end of the field or line.

If row.names is not specified and the header line has one less entry than the number of columns,
the first column is taken to be the row names. This allows data frames to be read in from the format
in which they are printed. Ifrow.names is specified and does not refer to the first column, that
column is discarded from such files.

The number of data columns is determined by looking at the first five lines of input (or the whole file
if it has less than five lines), or from the length ofcol.names if it is specified and is longer. This
could conceivably be wrong iffill or blank.lines.skip are true, so specifycol.names
if necessary.

read.csv and read.csv2 are identical toread.table except for the defaults. They are
intended for reading ‘comma separated value’ files (‘.csv’) or (read.csv2) the variant used
in countries that use a comma as decimal point and a semicolon as field separator. Similarly,
read.delim and read.delim2 are for reading delimited files, defaulting to the TAB char-
acter for the delimiter. Notice thatheader = TRUE andfill = TRUE in these variants, and
that the comment character is disabled.

read.table 1445

The rest of the line after a comment character is skipped; quotes are not processed in comments.
Complete comment lines are allowed providedblank.lines.skip = TRUE ; however, com-
ment lines prior to the header must have the comment character in the first non-blank column.

Quoted fields with embedded newlines are supported except after a comment character.

Note that unlesscolClasses is specified, all columns are read as character columns and then
converted. This means that quotes are interpreted in all fields and that a column of values like
"42" will result in an integer column.

Value

A data frame (data.frame) containing a representation of the data in the file.

Empty input is an error unlesscol.names is specified, when a 0-row data frame is returned:
similarly giving just a header line ifheader = TRUE results in a 0-row data frame. Note that in
either case tthe columns will logical unlesscolClasses was supplied.

Character strings in the result (including factor levels) will have a declared encoding ifencoding
is "latin1" or "UTF-8" .

Note

The columns referred to inas.is andcolClasses include the column of row names (if any).

Less memory will be used ifcolClasses is specified as one of the sixatomicvector classes. This
can be particularly so when reading a column that takes many distinct numeric values, as storing
each distinct value as a character string can take up to 14 times as much memory as storing it as an
integer.

Usingnrows , even as a mild over-estimate, will help memory usage.

Usingcomment.char = "" will be appreciably faster than theread.table default.

read.table is not the right tool for reading large matrices, especially those with many columns:
it is designed to readdata frameswhich may have columns of very different classes. Usescan
instead.

References

Chambers, J. M. (1992)Data for models.Chapter 3 ofStatistical Models in Seds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

TheR Data Import/Exportmanual.

scan , type.convert , read.fwf for readingf ixed width f ormatted input;write.table ;
data.frame .

count.fields can be useful to determine problems with reading files which result in reports of
incorrect record lengths.

1446 readNEWS

readNEWS Read R’s NEWS file or a Similar One

Description

ReadR’s NEWS file or a similarly formatted one. This is an experimental feature, new in R 2.4.0
and may change in several ways.

Usage

readNEWS(file = file.path(R.home(), "NEWS"), trace = FALSE,
chop = c("first", "1", "par1", "keepAll"))

Arguments

file the name of the file which the data are to be read from. Alternatively,file
can be aconnection , which will be opened if necessary, and can also be a
complete URL. For more details, see thefile argument ofread.table .

trace logical indicating if the recursive reading should be traced, i.e., print what it is
doing.

chop a character string specifying how the news entries should bechopped; chop =
"keepAll" saves the full entries.

Value

An (S3) object of class"newsTree" ; effectively alist of lists which is a tree of NEWS entries.

Note that this is still experimental and may change in the future.

Examples

NEWStr <- readNEWS(trace = TRUE)# chop = "first" (= "first non-empty")
keep the full NEWS entry text i.e. "no chopping":
NEWStrA <- readNEWS(chop = "keepAll")
object.size(NEWStr)
object.size(NEWStrA) ## (no chopping) ==> about double the size

str(NEWStr, max = 3)

str(NEWStr[[c("2.3", "2.3.1")]], max=2, vec.len=1)

NEWStr [[c("2.3", "2.3.1", "NEW FEATURES")]]
NEWStrA[[c("2.4", "2.4.0", "NEW FEATURES")]]

recover 1447

recover Browsing after an Error

Description

This function allows the user to browse directly on any of the currently active function calls, and
is suitable as an error option. The expressionoptions(error=recover) will make this the
error option.

Usage

recover()

Details

When called,recover prints the list of current calls, and prompts the user to select one of them.
The standardR browser is then invoked from the corresponding environment; the user can type
ordinary S language expressions to be evaluated in that environment.

When finished browsing in this call, typec to return torecover from the browser. Type another
frame number to browse some more, or type0 to exit recover .

The use ofrecover largely supersedesdump.frames as an error option, unless you really
want to wait to look at the error. Ifrecover is called in non-interactive mode, it behaves like
dump.frames . For computations involving large amounts of data,recover has the advantage
that it does not need to copy out all the environments in order to browse in them. If you do decide
to quit interactive debugging, calldump.frames directly while browsing in any frame (see the
examples).

Value

Nothing useful is returned. However, youcan invoke recover directly from a function, rather
than through the error option shown in the examples. In this case, execution continues after you
type0 to exit recover .

Compatibility Note

TheR recover function can be used in the same way as the S-Plus function of the same name;
therefore, the error option shown is a compatible way to specify the error action. However, the
actual functions are essentially unrelated and interact quite differently with the user. The navigating
commandsup anddown do not exist in theR version; instead, exit the browser and select another
frame.

References

John M. Chambers (1998).Programming with Data; Springer.
See the compatibility note above, however.

See Also

browser for details about the interactive computations;options for setting the error option;
dump.frames to save the current environments for later debugging.

1448 relist

Examples

Not run:

options(error = recover) # setting the error option

Example of interaction

> myFit <- lm(y ~ x, data = xy, weights = w)
Error in lm.wfit(x, y, w, offset = offset, ...) :

missing or negative weights not allowed

Enter a frame number, or 0 to exit
1:lm(y ~ x, data = xy, weights = w)
2:lm.wfit(x, y, w, offset = offset, ...)
Selection: 2
Called from: eval(expr, envir, enclos)
Browse[1]> objects() # all the objects in this frame
[1] "method" "n" "ny" "offset" "tol" "w"
[7] "x" "y"
Browse[1]> w
[1] -0.5013844 1.3112515 0.2939348 -0.8983705 -0.1538642
[6] -0.9772989 0.7888790 -0.1919154 -0.3026882
Browse[1]> dump.frames() # save for offline debugging
Browse[1]> c # exit the browser

Enter a frame number, or 0 to exit
1:lm(y ~ x, data = xy, weights = w)
2:lm.wfit(x, y, w, offset = offset, ...)
Selection: 0 # exit recover
>

End(Not run)

relist Allow Re-Listing an unlisted() Object

Description

relist() is an S3 generic function with a few methods in order to allow easy inversion of
unlist (obj) when that is used with an objectobj of (S3) class"relistable" .

Usage

relist(flesh, skeleton)
Default S3 method:
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class 'factor':
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class 'list':
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class 'matrix':
relist(flesh, skeleton = attr(flesh, "skeleton"))

relist 1449

as.relistable(x)
is.relistable(x)

S3 method for class 'relistable':
unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

flesh

skeleton

x anR object, typically a list (or vector).

recursive logical. Should unlisting be applied to list components ofx?

use.names logical. Should names be preserved?

Details

Some functions need many parameters, which are most easily represented in complex structures.
Unfortunately, many mathematical functions inR, includingoptim andnlm can only operate on
functions whose domain is a vector.R hasunlist () to convert complex objects into a vector
representation.relist() , it’s methods and the functionality mentioned here provide the inverse
operation to convert vectors back to the convenient structural representation. This allows structured
functions (such asoptim()) to have simple mathematical interfaces.

For example, a likelihood function for a multivariate normal model needs a variance-covariance
matrix and a mean vector. It would be most convenient to represent it as a list containing a vector
and a matrix. A typical parameter might look like

list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0))).

However,optim cannot operate on functions that take lists as input; it only likes numeric vectors.
The solution is conversion:

ipar <- list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0)))
initial.param <- as.relistable(ipar)

ll <- function(param.vector)
{

param <- relist(param.vector)
-sum(dnorm(x, mean = param$mean, vcov = param$vcov,

log = TRUE))
NB: dnorm() has no vcov... you should get the point

}

optim(unlist(initial.param), ll)

relist takes two parameters: skeleton and flesh. Skeleton is a sample object that has the right
shape but the wrong content.flesh is a vector with the right content but the wrong shape.
Invoking

relist(flesh, skeleton)

1450 REMOVE

will put the content of flesh on the skeleton. You don’t need to specify skeleton explicitly if the
skeleton is stored as an attribute inside flesh. In particular, flesh was created from some object obj
with unlist(as.relistable(obj)) then the skeleton attribute is automatically set.

As long asskeleton has the right shape, it should be a precise inverse ofunlist . These
equalities hold:

relist(unlist(x), skeleton) == x
unlist(relist(y, skeleton)) == y

x <- as.relistable(x)
relist(unlist(x)) == x

Value

.....................

Author(s)

R Core, based on a code proposal by Andrew Clausen.

See Also

unlist

Examples

ipar <- list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0)))
initial.param <- as.relistable(ipar)
ul <- unlist(initial.param)
relist(ul)
stopifnot(identical(relist(ul), initial.param))

REMOVE Remove Add-on Packages

Description

Utility for removing add-on packages.

Usage

R CMD REMOVE [options] [-l lib] pkgs

Arguments

pkgs a list with the names of the packages to be removed.

lib the path name of theR library tree to remove from. May be absolute or relative.

options further options.

remove.packages 1451

Details

If used asR CMD REMOVE pkgswithout explicitly specifyinglib , packages are removed from
the library tree rooted at the first directory in the library path which would be used byR run in the
current environment.

To remove from the library treelib , useR CMD REMOVE -l lib pkgs .

UseR CMD REMOVE --helpfor more usage information.

Note

Some binary distributions ofR haveINSTALL in a separate bundle, e.g. anR-devel RPM.

See Also

INSTALL , remove.packages

remove.packages Remove Installed Packages

Description

Removes installed packages/bundles and updates index information as necessary.

Usage

remove.packages(pkgs, lib, version)

Arguments

pkgs a character vector with the names of the package(s) or bundle(s) to be removed.

lib a character vector giving the library directories to remove the packages from. If
missing, defaults to the first element in.libPaths () .

version A character vector specifying version(s) with versioned installs of the package(s)
to remove. If none is provided, the system will remove an unversioned install of
the package if one is found, otherwise the latest versioned install.

Details

If an element ofpkgs matches a bundle name, all the packages in the bundle will be removed. This
takes precedence over matching a package name.

pkgs andversion will be recycled if necessary to the length of the longer one.

See Also

REMOVEfor a command line version;install.packages for installing packages.

1452 roman

RHOME R Home Directory

Description

Returns the location of theR home directory, which is the root of the installedR tree.

Usage

R RHOME

roman Roman Numerals

Description

Manipulate integers as roman numerals.

Usage

as.roman(x)

Arguments

x a numeric vector, or a character vector of arabic or roman numerals.

Details

as.roman creates objects of class"roman" which are internally represented as integers, and
have suitable methods for printing, formatting, subsetting, and coercion tocharacter .

Only numbers between 1 and 3899 have a unique representation as roman numbers.

References

Wikipedia contributors (2006). Roman numerals. Wikipedia, The Free Encyclopedia.http://
en.wikipedia.org/w/index.php?title=Roman_numerals\&oldid=78252134 .
Accessed September 29, 2006.

Examples

First five roman 'numbers'.
(y <- as.roman(1 : 5))
Middle one.
y[3]
Current year as a roman number.
(y <- as.roman(format(Sys.Date(), "%Y")))
10 years ago ...
y - 10

http://en.wikipedia.org/w/index.php?title=Roman_numerals&oldid=78252134
http://en.wikipedia.org/w/index.php?title=Roman_numerals&oldid=78252134

Rprof 1453

Rprof Enable Profiling of R’s Execution

Description

Enable or disable profiling of the execution ofR expressions.

Usage

Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02,
memory.profiling=FALSE)

Arguments

filename The file to be used for recording the profiling results. Set toNULL or "" to
disable profiling.

append logical: should the file be over-written or appended to?

interval real: time interval between samples.

memory.profiling
logical: write memory use information to the file?

Details

Enabling profiling automatically disables any existing profiling to another or the same file.

Profiling works by writing out the call stack everyinterval seconds, to the file specified. Either
thesummaryRprof function or the Perl scriptR CMD Rprof can be used to process the output
file to produce a summary of the usage; useR CMD Rprof --help for usage information.

Note that the timing interval cannot be too small: once the timer goes off, the information is not
recorded until the next timing click (probably in the range 1–10msecs).

Note

Profiling is not available on all platforms. By default, it is attempted to compile support for profiling.
ConfigureR with ‘ --disable-R-profiling ’ to change this.

As R profiling uses the same mechanisms as C profiling, the two cannot be used together, so do not
useRprof in an executable built for profiling.

See Also

The chapter on “Tidying and profiling R code” in “WritingR Extensions” (see the ‘doc/manual’
subdirectory of theR source tree).

summaryRprof

tracemem , Rprofmem for other ways to track memory use.

1454 Rprofmem

Examples

Not run:
Rprof()
some code to be profiled
Rprof(NULL)
some code NOT to be profiled
Rprof(append=TRUE)
some code to be profiled
Rprof(NULL)
...
Now post-process the output as described in Details
End(Not run)

Rprofmem Enable Profiling of R’s Memory Use

Description

Enable or disable reporting of memory allocation in R.

Usage

Rprofmem(filename = "Rprofmem.out", append = FALSE, threshold = 0)

Arguments

filename The file to be used for recording the memory allocations. Set toNULLor "" to
disable reporting.

append logical: should the file be over-written or appended to?

threshold numeric: allocations on R’s "large vector" heap larger than this number of bytes
will be reported.

Details

Enabling profiling automatically disables any existing profiling to another or the same file.

Profiling writes the call stack to the specified file every timemalloc is called to allocate a large
vector object or to allocate a page of memory for small objects. The size of a page of memory and
the size above whichmalloc is used for vectors are compile-time constants, by default 2000 and
128 bytes respectively.

The profiler tracks allocations, some of which will be to previously used memory and will not
increase the total memory use of R.

Value

None

Note

The memory profiler slows down R even when not in use, and so is a compile-time option. The
memory profiler can be used at the same time as other R and C profilers.

Rscript 1455

See Also

The R sampling profiler,Rprof also collects memory information.

tracemem traces duplications of specific objects.

The "Writing R Extensions" manual section on "Tidying and profiling R code"

Examples

Not run:
not supported unless R is compiled to support it.
Rprofmem("Rprofmem.out", threshold=1000)
example(glm)
Rprofmem(NULL)
noquote(readLines("Rprofmem.out", n=5))
End(Not run)

Rscript Scripting Front-End for R

Description

This is an alternative front end for use in#! scripts and other scripting applications.

Usage

Rscript [options] [-e expression] file [args]

Arguments

options A list of options beginning with-- . These can be any of the options of the
standardR front-end, and also those described in the details.

expression aR expression.

file The name of a file containingR commands.- indicates ‘stdin’.

args Arguments to be passed to the script infile .

Details

Rscript --help gives details of usage, andRscript --version gives the version of
Rscript .

Other invocations invoke theR front-end with selected options. This front-end is convenient for
writing #! scripts since it is an executable and takesfile directly as an argument. Options
--slave --no-restore are always supplied: these imply--no-save .

Either one or more ‘-e ’ options orfile should be supplied.

Additional options accepted (beforefile or args) are

-verbose gives details of whatRscript is doing. Also passed on toR.

-default-packages=list where list is a comma-separated list of package names or
NULL. Sets the environment variableR_DEFAULT_PACKAGESwhich determines the pack-
ages loaded on startup. The default forRscript omitsmethodsas it takes about 60% of the
startup time.

1456 RShowDoc

Normally the version ofR is determined at installation, but this can be overridden by setting the
environment variableRHOME.

stdin () refers to the input file, andfile ("stdin") to thestdin file stream of the process.

Note

Rscript is only supported on systems with theexecv system call.

Examples

Not run:
Rscript -e 'date()' -e 'format(Sys.time(), "%a %b %d %X %Y")'

example #! script

#! /path/to/Rscript --vanilla --default-packages=utils
args <- commandArgs(TRUE)
res <- try(install.packages(args))
if(inherits(res, "try-error")) q(status=1) else q()

End(Not run)

RShowDoc Show R Manuals and Other Documentation

Description

Utility function to find and displayR documentation.

Usage

RShowDoc(what, type = c("pdf", "html", "txt"), package)

Arguments

what a character string: see ‘Details’.

type an optional character string giving the preferred format.

package an optional character string specifying the name of a package within which to
look for documentation.

Details

what can specify one of several different sources of documentation, including theR manuals (R-
admin , R-data , R-exts , R-intro , R-ints , R-lang), NEWS, COPYING(the GPL licence),
FAQ(also available asR-FAQ), and the files in ‘R_HOME/doc’.

If package is supplied, documentation is looked for in the ‘doc’ and top-level directories of an
installed package of that name.

If what is missing a brief usage message is printed.

The documentation types are tried in turn starting with the first specified intype (or "pdf" if
none is specified).

RSiteSearch 1457

Value

A invisible character string given the path to the file found.

Examples

Not run:
RShowDoc("R-lang")
RShowDoc("FAQ", type="html")
RShowDoc("frame", package="grid")
RShowDoc("changes.txt", package="grid")
RShowDoc("NEWS", package="MASS")
End(Not run)

RSiteSearch Search for Key Words or Phrases in the R-help Mailing List Archives
or Documentation

Description

Search for key words or phrases in the R-help mailing list archives, orR manuals and help pages,
using the search engine athttp://search.r-project.org and view them in a web browser.

Usage

RSiteSearch(string,
restrict = c("Rhelp02a", "functions", "docs"),
format = c("normal", "short"),
sortby = c("score", "date:late", "date:early",

"subject", "subject:descending",
"from", "from:descending",
"size", "size:descending"),

matchesPerPage = 20)

Arguments

string word(s) or phrase to search. If the words are to be searched as one entity, enclose
all words in braces (see example).

restrict a character vector, typically of length larger than one: What areas to search in:
Rhelp02a for R-help mailing list archive since 2002,Rhelp01 for mailing
list archive before 2002,docs for R manuals,functions for help pages.
R-devel for R-devel mailing list. Usec() to specify more than one.

format normal or short (no excerpts); can be abbreviated.

sortby character string (can be abbreviated) indicating how to sort the search results:
(score , date:late for sorting by date with latest results first,
date:early for earliest first, subject for subject in alphabeti-
cal order, subject:descending for reverse alphabetical order,
from or from:descending for sender (when applicable),size or
size:descending for size.)

matchesPerPage
How many items to show per page.

http://search.r-project.org

1458 Rtangle

Details

This function is designed to work with the search site athttp://search.r-project.org ,
and depends on that site continuing to be made available (thanks to Jonathan Baron and the School
of Arts and Sciences of the University of Pennslyvania).

Unique partial matches will work for all arguments. Each new browser window will stay open
unless you close it.

Value

(Invisibly) the complete URL passed to the browser, including the query string.

Author(s)

Andy Liaw and Jonathan Baron

See Also

help.search , help.start for local searches.

browseURL for how the help file is displayed.

Examples

Not run:
need Internet connection

RSiteSearch("{logistic regression}") # matches exact phrase
RSiteSearch("Baron Liaw", restr = "Rhelp02a")
Search in R-devel archive and documents (and store the query-string):
fullquery <- RSiteSearch("S4", restr = c("R-dev", "docs"))
fullquery # a string of ~ 116 characters
the latest purported bug reports
RSiteSearch("bug", restr = "R-devel", sortby = "date:late")
End(Not run)

Rtangle R Driver for Stangle

Description

A driver for Stangle that extracts R code chunks.

Usage

Rtangle()
RtangleSetup(file, syntax, output = NULL, annotate = TRUE,

split = FALSE, prefix = TRUE, quiet = FALSE)

http://search.r-project.org

RweaveLatex 1459

Arguments

file Name of Sweave source file.

syntax An object of classSweaveSyntax .

output Name of output file, default is to remove extension ‘.nw’, ‘ .Rnw’ or ‘ .Snw’ and
to add extension ‘.R’. Any directory names infile are also removed such that
the output is created in the current working directory.

annotate By default, code chunks are separated by comment lines specifying the names
and numbers of the code chunks. IfFALSE, only the code chunks without any
decorating comments are extracted.

split Split output in single files per code chunk?

prefix If split = TRUE , prefix the chunk labels by the basename of the input file to
get output file names?

quiet If TRUEall progress messages are suppressed.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

See Also

Sweave, RweaveLatex

RweaveLatex R/LaTeX Driver for Sweave

Description

A driver for Sweave that translates R code chunks in LaTeX files.

Usage

RweaveLatex()

RweaveLatexSetup(file, syntax, output = NULL, quiet = FALSE,
debug = FALSE, echo = TRUE, eval = TRUE,
keep.source = FALSE, split = FALSE,
stylepath = TRUE,
pdf = TRUE, eps = TRUE)

http://www.ci.tuwien.ac.at/~leisch/Sweave

1460 RweaveLatex

Arguments

file Name of Sweave source file.

syntax An object of classSweaveSyntax .

output Name of output file, default is to remove extension ‘.nw’, ‘ .Rnw’ or ‘ .Snw’ and
to add extension ‘.tex’. Any directory names infile are also removed such
that the output is created in the current working directory.

quiet If TRUEall progress messages are suppressed.

debug If TRUE, input and output of all code chunks is copied to the console.

stylepath If TRUE, a hard path to the file ‘Sweave.sty’ installed with this package is set,
if FALSE, only \usepackage{Sweave} is written. The hard path makes the
TeX file less portable, but avoids the problem of installing the current version of
‘Sweave.sty’ to some place in your TeX input path. The argument is ignored if
a \usepackage{Sweave} is already present in the Sweave source file.

echo set default for optionecho , see details below.

eval set default for optioneval , see details below.

keep.source set default for optionkeep.source , see details below.

split set default for optionsplit , see details below.

pdf set default for optionpdf , see details below.

eps set default for optioneps , see details below.

Supported Options

RweaveLatex supports the following options for code chunks (the values in parentheses show the
default values):

echo: logical (TRUE). Include S code in the output file?

keep.source: logical (FALSE). When echoing, ifkeep.source == TRUE the original source
is copied to the file. Otherwise, deparsed source is echoed.

eval: logical (TRUE). If FALSE, the code chunk is not evaluated, and hence no text or graphical
output produced.

results: character string (verbatim). If verbatim , the output of S commands is included in
the verbatim-like Soutput environment. Iftex , the output is taken to be already proper latex
markup and included as is. Ifhide then all output is completely suppressed (but the code
executed during the weave).

print: logical (FALSE) If TRUE, each expression in the code chunk is wrapped into aprint()
statement before evaluation, such that the values of all expressions become visible.

term: logical (TRUE). If TRUE, visibility of values emulates an interactive R session: values of
assignments are not printed, values of single objects are printed. IfFALSE, output comes
only from explicitprint or cat statements.

split: logical (FALSE). If TRUE, text output is written to separate files for each code chunk.

strip.white: character string (false). If true , blank lines at the beginning and end of output are
removed. Ifall , then all blank lines are removed from the output.

prefix: logical (TRUE). If TRUEgenerated filenames of figures and output have a common prefix.

prefix.string: a character string, default is the name of the ‘.Snw’ source file.

include: logical (TRUE), indicating whether input statements for text output and includegraph-
ics statements for figures should be auto-generated. Useinclude = FALSE if the output
should appear in a different place than the code chunk (by placing the input line manually).

savehistory 1461

fig: logical (FALSE), indicating whether the code chunk produces graphical output. Note that only
one figure per code chunk can be processed this way.

eps: logical (TRUE), indicating whether EPS figures shall be generated. Ignored iffig =
FALSE.

pdf: logical (TRUE), indicating whether PDF figures shall be generated. Ignored iffig =
FALSE.

width: numeric (6), width of figures in inch.

height: numeric (6), height of figures in inch.

expand: logical (TRUE). Expand references to other chunks so that only R code appears in the
output file. If FALSE, the chunk reference (e.g.<<chunkname>>) will appear. The
expand=FALSE option requireskeep.source = TRUE or it will have no effect.

concordance: logical (FALSE). Write a concordance file to link the input line numbers to the
output line numbers. This is an experimental feature; see the source code for the output
format, which is subject to change in future releases.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

See Also

Sweave, Rtangle

savehistory Load or Save or Display the Commands History

Description

Load or save or display the commands history.

Usage

loadhistory(file = ".Rhistory")
savehistory(file = ".Rhistory")

history(max.show = 25, reverse = FALSE, pattern, ...)

timestamp(stamp = date(),
prefix = "##------ ", suffix = " ------##",
quiet = FALSE)

http://www.ci.tuwien.ac.at/~leisch/Sweave

1462 savehistory

Arguments

file The name of the file in which to save the history, or from which to load it. The
path is relative to the current working directory.

max.show The maximum number of lines to show.Inf will give all of the currently avail-
able history.

reverse logical. If true, the lines are shown in reverse order. Note: this is not useful
when there are continuation lines.

pattern A character string to be matched against the lines of the history

... Arguments to be passed togrep when doing the matching.

stamp A value or vector of values to be written into the history.

prefix A prefix to apply to each line.

suffix A suffix to apply to each line.

quiet If TRUE, suppress printing timestamp to the console.

Details

There are several history mechanisms available for the differentR consoles, which work in similar
but not identical ways. Other uses ofR, in particular embedded uses, may have no history. This
works under thereadline and GNOME and MacOS X consoles, but not otherwise (for example,
in batch use or in an embedded application).

The readline history mechanism is controlled by two environment variables:R_HISTSIZE
controls the number of lines that are saved (default 512), andR_HISTFILE sets the filename used
for the loading/saving of history if requested at the beginning/end of a session (but not the default
for these functions). There is no limit on the number of lines of history retained during a session,
so settingR_HISTSIZE to a large value has no penalty unless a large file is actually generated.

These variables are read at the time of saving, so can be altered within a session by the use of
Sys.setenv .

history shows only unique matching lines ifpattern is supplied.

The timestamp function writes a timestamp (or other message) into the history and echos it to
the console. On platforms that do not support a history mechanism (where the mechanism does not
yet support timestamps) only the console message is printed.

Note

If you want to save the history (almost) every session, you can put a call tosavehistory() in
.Last . See the examples.

Examples

Not run:
.Last <- function()

if(interactive()) try(savehistory("~/.Rhistory"))
End(Not run)

select.list 1463

select.list Select Items from a List

Description

Select item(s) from a character vector.

Usage

select.list(list, preselect = NULL, multiple = FALSE, title = NULL)

Arguments

list character. A list of items.

preselect a character vector, orNULL. If non-null and if the string(s) appear in the list, the
item(s) are selected initially.

multiple logical: can more than one item be selected?

title optional character string for window title.

Details

Under the AQUA interface for MacOS X this brings up a modal dialog box with a (scrollable) list
of items, which can be selected by the mouse.

Otherwise it displays a text list from which the user can choose by number(s). Themultiple
= FALSE case usesmenu. Preselection is only supported formultiple = TRUE , where it is
indicated by a"+" preceding the item.

Value

A character vector of selected items. Ifmultiple is false and no item was selected (orCancel
was used),"" is returned. Ifmultiple is true and no item was selected (orCancel was used)
then a character vector of length 0 is returned.

See Also

menu, tk_select.list for a graphical version using Tcl/Tk.

Examples

Not run:
select.list(sort(.packages(all.available = TRUE)))
End(Not run)

1464 setRepositories

sessionInfo Collect Information About the Current R Session

Description

Print version information aboutR and attached or loaded packages.

Usage

sessionInfo(package=NULL)
S3 method for class 'sessionInfo':
print(x, ...)
S3 method for class 'sessionInfo':
toLatex(object, ...)

Arguments

package a character vector naming installed packages. By default all attached packages
are used.

x an object of class"sessionInfo" .

object an object of class"sessionInfo" .

... currently not used.

See Also

R.version

Examples

sessionInfo()
toLatex(sessionInfo())

setRepositories Select Package Repositories

Description

Interact with the user to choose the package repositories to be used.

Usage

setRepositories(graphics = getOption("menu.graphics"), ind = NULL)

Arguments

graphics Logical. If true andtcltk and an X server are available, use a Tk widget, or if
under the AQUA interface use a MacOS X widget, otherwise use a text list in
the console.

ind NULLor a vector of integer indices, which have the same effect as if they were
entered at the prompt forgraphics=FALSE .

SHLIB 1465

Details

The default list of known repositories is stored in the file ‘R_HOME/etc/repositories’. That file
can be edited for a site, or a user can have a personal copy in ‘HOME/.R/repositories’ which will
take precedence.

The items that are preselected are those that are currently inoptions("repos") plus those
marked as default in the list of known repositories.

Value

This function is invoked mainly for its side effect of updatingoptions("repos") . It returns
(invisibly) the previousrepos options setting (as alist with componentrepos) or NULL if no
changes were applied.

See Also

chooseCRANmirror , install.packages .

SHLIB Build Shared Library for Dynamic Loading

Description

Compile the given source files and then link all specified object files into a shared library which can
be loaded intoR usingdyn.load or library.dynam .

Usage

R CMD SHLIB [options] [-o libname] files

Arguments

files a list specifying the object files to be included in the shared library. You can also
include the name of source files (for which the object files are automagically
made from their sources) and library linking commands.

libname the full name of the shared library to be built, including the extension (typically
‘ .so’ on Unix systems). If not given, the name of the library is taken from the
first file.

options Further options to control the processing. UseR CMD SHLIB --help for a
current list.

Details

R CMD SHLIBis the mechanism used byINSTALL to compile source code in packages. Please
consult section ‘Creating shared objects’ in the manual ‘Writing R Extensions’ for how to customize
it (for example to addcpp flags and to add libraries to the link step) and for details of some of its
quirks.

Items in files with extensions.c , .cpp , .cc , .C , .f , .f90 , f95 , .m , .M and .mm are re-
garded as source files, and those with extension.o as object files. All other items are passed to the
linker.

1466 stack

Note

Some binary distributions ofR haveSHLIB in a separate bundle, e.g. anR-devel RPM.

See Also

COMPILE, dyn.load , library.dynam .

The section on “Customizing compilation under Unix” in “R Administration and Installation” (see
the ‘doc/manual’ subdirectory of theR source tree).

The ‘R Installation and Administration’ and ‘Writing R Extensions’ manuals.

Examples

Not run:
R CMD SHLIB -o mylib.so a.f b.f -L/opt/acml3.5.0/gnu64/lib -lacml
End(Not run)

stack Stack or Unstack Vectors from a Data Frame or List

Description

Stacking vectors concatenates multiple vectors into a single vector along with a factor indicating
where each observation originated. Unstacking reverses this operation.

Usage

stack(x, ...)
Default S3 method:
stack(x, ...)
S3 method for class 'data.frame':
stack(x, select, ...)

unstack(x, ...)
Default S3 method:
unstack(x, form, ...)
S3 method for class 'data.frame':
unstack(x, form, ...)

Arguments

x object to be stacked or unstacked

select expression, indicating variables to select from a data frame

form a two-sided formula whose left side evaluates to the vector to be unstacked and
whose right side evaluates to the indicator of the groups to create. Defaults to
formula(x) in unstack.data.frame .

... further arguments passed to or from other methods.

str 1467

Details

Thestack function is used to transform data available as separate columns in a data frame or list
into a single column that can be used in an analysis of variance model or other linear model. The
unstack function reverses this operation.

Value

unstack produces a list of columns according to the formulaform . If all the columns have the
same length, the resulting list is coerced to a data frame.

stack produces a data frame with two columns

values the result of concatenating the selected vectors inx

ind a factor indicating from which vector inx the observation originated

Author(s)

Douglas Bates

See Also

lm , reshape

Examples

require(stats)
formula(PlantGrowth) # check the default formula
pg <- unstack(PlantGrowth) # unstack according to this formula
pg
stack(pg) # now put it back together
stack(pg, select = -ctrl) # omitting one vector

str Compactly Display the Structure of an Arbitrary R Object

Description

Compactly display the internalstructure of anR object, a diagnostic function and an alternative to
summary (and to some extent,dput). Ideally, only one line for each ‘basic’ structure is displayed.
It is especially well suited to compactly display the (abbreviated) contents of (possibly nested) lists.
The idea is to give reasonable output forany R object. It callsargs for (non-primitive) function
objects.

strOptions() is a convenience function for settingoptions (str = .) , see the examples.

Usage

str(object, ...)

S3 method for class 'data.frame':
str(object, ...)

Default S3 method:

1468 str

str(object, max.level = NA,
vec.len = strO$vec.len, digits.d = strO$digits.d,
nchar.max = 128, give.attr = TRUE,
give.head = TRUE, give.length = give.head,
width = getOption("width"), nest.lev = 0,
indent.str = paste(rep.int(" ", max(0, nest.lev + 1)),

collapse = ".."),
comp.str="$ ", no.list = FALSE, envir = baseenv(),
strict.width = strO$strict.width, ...)

strOptions(strict.width = "no", digits.d = 3, vec.len = 4)

Arguments

object anyR object about which you want to have some information.

max.level maximal level of nesting which is applied for displaying nested structures, e.g.,
a list containing sub lists. Default NA: Display all nesting levels.

vec.len numeric (>= 0) indicating how many ‘first few’ elements are displayed of each
vector. The number is multiplied by different factors (from .5 to 3) depending
on the kind of vector. Defaults to thevec.len component of option"str"
(seeoptions) which defaults to 4.

digits.d number of digits for numerical components (as forprint). Defaults to the
digits.d component of option"str" which defaults to 3.

nchar.max maximal number of characters to show forcharacter strings. Longer strings
are truncated, seelongch example below.

give.attr logical; if TRUE(default), show attributes as sub structures.

give.length logical; if TRUE(default), indicate length (as[1:...]).

give.head logical; if TRUE(default), give (possibly abbreviated) mode/class and length (as
<type>[1:...]).

width the page width to be used. The default is the currently active
options ("width") ; note that this has only a weak effect, unless
strict.width is not"no" .

nest.lev current nesting level in the recursive calls tostr .

indent.str the indentation string to use.

comp.str string to be used for separating list components.

no.list logical; if true, no ‘list of . . . ’ nor the class are printed.

envir the environment to be used forpromise(seedelayedAssign) objects only.

strict.width string indicating if thewidth argument’s specification should be followed
strictly, one of the valuesc("no", "cut", "wrap") . Defaults to the
strict.width component of option"str" (see options) which de-
faults to "no" for back compatibility reasons;"wrap" usesstrwrap (*,
width=width) whereas"cut" cuts directly towidth . Note that a small
vec.length may be better than settingstrict.width = "wrap" .

... potential further arguments (required for Method/Generic reasons).

Value

str does not return anything, for efficiency reasons. The obvious side effect is output to the
terminal.

str 1469

Author(s)

Martin Maechler〈maechler@stat.math.ethz.ch〉 since 1990.

See Also

ls.str for listing objects with their structure;summary , args .

Examples

require(stats); require(grDevices); require(graphics)
The following examples show some of 'str' capabilities
str(1:12)
str(ls)
str(args) #- more useful than args(args) !
str(freeny)
str(str)
str(.Machine, digits = 20)
str(lsfit(1:9,1:9))
str(lsfit(1:9,1:9), max = 1)
str(lsfit(1:9,1:9), width = 60, strict.width = "cut")
str(lsfit(1:9,1:9), width = 60, strict.width = "wrap")
op <- options(); str(op) # save first;

otherwise internal options() is used.
need.dev <-

!exists(".Device") || is.null(.Device) || .Device == "null device"
{ if(need.dev) postscript()

str(par())
if(need.dev) graphics.off()

}
ch <- letters[1:12]; is.na(ch) <- 3:5
str(ch) # character NA's

nchar(longch <- paste(rep(letters,100), collapse=""))
str(longch)
str(longch, nchar.max = 52)

str(longch, strict.width = "wrap")

Settings for narrow transcript :
op <- options(width = 60,

str = strOptions(strict.width = "wrap"))
str(lsfit(1:9,1:9))
str(options())
reset to previous:
options(op)

str(quote({ A+B; list(C,D) }))

S4 classes :
require(stats4)
x <- 0:10; y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
ll <- function(ymax=15, xh=6)

-sum(dpois(y, lambda=ymax/(1+x/xh), log=TRUE))
fit <- mle(ll)

1470 summaryRprof

str(fit)

summaryRprof Summarise Output of R Sampling Profiler

Description

Summarise the output of theRprof function to show the amount of time used by differentR
functions.

Usage

summaryRprof(filename = "Rprof.out", chunksize = 5000,
memory=c("none","both","tseries","stats"),
index=2, diff=TRUE, exclude=NULL)

Arguments

filename Name of a file produced byRprof()

chunksize Number of lines to read at a time

memory Summaries for memory information. See ‘Details’ below

index How to summarize the stack trace for memory information. See ‘Details’ below.

diff If TRUEmemory summaries use change in memory rather than current memory

exclude Functions to exclude when summarizing the stack trace for memory summaries

Details

This function is an alternative toR CMD Rprof. It provides the convenience of an all-R imple-
mentation but will be slower for large files.

As the profiling output file could be larger than available memory, it is read in blocks of
chunksize lines. Increasingchunksize will make the function run faster if sufficient memory
is available.

When called withmemory.profiling=TRUE , the profiler writes information on three aspects
of memory use: vector memory in small blocks on the R heap, vector memory in large blocks
(from malloc), memory in nodes on the R heap. It also records the number of calls to the internal
functionduplicate in the time interval.duplicate is called by C code when arguments need
to be copied. Note that the profiler does not track which function actually allocated the memory.

With memory="both" the change in total memory (truncated at zero) is reported in addition to
timing data.

With memory="tseries" or memory="stats" the index argument specifies how to
summarize the stack trace. A positive number specifies that many calls from the bottom of
the stack; a negative number specifies the number of calls from the top of the stack. With
memory="tseries" the index is used to construct labels and may be a vector to give mul-
tiple sets of labels. Withmemory="stats" the index must be a single number and speci-
fies how to aggregate the data to the maximum and average of the memory statistics. With both
memory="tseries" andmemory="stats" the argumentdiff=TRUE asks for summaries
of the increase in memory use over the sampling interval anddiff=FALSE asks for the memory
use at the end of the interval.

Sweave 1471

Value

If memory="none" ,a list with components

by.self Timings sorted by ‘self’ time

by.total Timings sorted by ‘total’ time

sampling.time
Total length of profiling run

If memory="both" the same list but with memory consumption in Mb in addition to the timings.

If memory="tseries" a data frame giving memory statistics over time

If memory="stats" aby object giving memory statistics by function.

See Also

The chapter on “Tidying and profiling R code” in “WritingR Extensions” (see the ‘doc/manual’
subdirectory of theR source tree).

Rprof

tracemem traces copying of an object via the C functionduplicate .

Rprofmem is a non-sampling memory use profiler.

http://developer.r-project.org/memory-profiling.html

Examples

Not run:
Rprof() is not available on all platforms
Rprof(tmp <- tempfile())
example(glm)
Rprof()
summaryRprof(tmp)
unlink(tmp)
End(Not run)

Sweave Automatic Generation of Reports

Description

Sweave provides a flexible framework for mixing text and S code for automatic report generation.
The basic idea is to replace the S code with its output, such that the final document only contains
the text and the output of the statistical anlysis.

Usage

Sweave(file, driver = RweaveLatex(),
syntax = getOption("SweaveSyntax"), ...)

Stangle(file, driver = Rtangle(),
syntax = getOption("SweaveSyntax"), ...)

http://developer.r-project.org/memory-profiling.html

1472 Sweave

Arguments

file Name of Sweave source file.

driver The actual workhorse, see details below.

syntax An object of class SweaveSyntax or a character string with its
name. The default installation providesSweaveSyntaxNoweb and
SweaveSyntaxLatex .

... Further arguments passed to the driver’s setup function.

Details

Automatic generation of reports by mixing word processing markup (like latex) and S code. The S
code gets replaced by its output (text or graphs) in the final markup file. This allows to re-generate
a report if the input data change and documents the code to reproduce the analysis in the same file
that also produces the report.

Sweave combines the documentation and code chunks together (or their output) into a single
document. Stangle extracts only the code from the Sweave file creating a valid S source file
(that can be run usingsource). Code inside\Sexpr{} statements is ignored byStangle .

Stangle is just a frontend toSweave using a simple driver by default, which discards the docu-
mentation and concatenates all code chunks the current S engine understands.

Hook Functions

Before each code chunk is evaluated, a number of hook functions can be executed. If
getOption("SweaveHooks") is set, it is taken to be a collection of hook functions. For
each logical option of a code chunk (echo , print , . . .) a hook can be specified, which is ex-
ecuted if and only if the respective option isTRUE. Hooks must be named elements of the list
returned bygetOption("SweaveHooks") and be functions taking no arguments. E.g., if op-
tion "SweaveHooks" is defined aslist(fig = foo) , andfoo is a function, then it would
be executed before the code in each figure chunk. This is especially useful to set defaults for the
graphical parameters in a series of figure chunks.

Note that the user is free to define new Sweave options and associate arbitrary hooks with them.
E.g., one could define a hook function for optionclean that removes all objects in the global
environment. Then all code chunks withclean = TRUE would start operating on an empty
workspace.

Syntax Definition

Sweave allows a very flexible syntax framework for marking documentation and text chunks. The
default is a noweb-style syntax, as alternative a latex-style syntax can be used. See the user manual
for details.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

Friedrich Leisch: Dynamic generation of statistical reports using literate data analysis. In W. Härdle
and B. Rönz, editors, Compstat 2002 - Proceedings in Computational Statistics, pages 575–580.
Physika Verlag, Heidelberg, Germany, 2002. ISBN 3-7908-1517-9.

http://www.ci.tuwien.ac.at/~leisch/Sweave

SweaveSyntConv 1473

See Also

RweaveLatex , Rtangle

Examples

testfile <- system.file("Sweave", "Sweave-test-1.Rnw", package = "utils")

enforce par(ask=FALSE)
options(par.ask.default=FALSE)

create a LaTeX file
Sweave(testfile)

create an S source file from the code chunks
Stangle(testfile)
which can be simply sourced
source("Sweave-test-1.R")

SweaveSyntConv Convert Sweave Syntax

Description

This function converts the syntax of files inSweave format to another Sweave syntax definition.

Usage

SweaveSyntConv(file, syntax, output = NULL)

Arguments

file Name of Sweave source file.

syntax An object of classSweaveSyntax or a character string with its name giving
the target syntax to which the file is converted.

output Name of output file, default is to remove the extension from the input file and to
add the default extension of the target syntax. Any directory names infile are
also removed such that the output is created in the current working directory.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

See Also

RweaveLatex , Rtangle

http://www.ci.tuwien.ac.at/~leisch/Sweave

1474 toLatex

Examples

testfile <- system.file("Sweave", "Sweave-test-1.Rnw", package = "utils")

convert the file to latex syntax
SweaveSyntConv(testfile, SweaveSyntaxLatex)

and run it through Sweave
Sweave("Sweave-test-1.Stex")

toLatex Converting R Objects to BibTeX or LaTeX

Description

These methods convert R objects to character vectors with BibTeX or LaTeX markup.

Usage

toBibtex(object, ...)
toLatex(object, ...)
S3 method for class 'Bibtex':
print(x, prefix="", ...)
S3 method for class 'Latex':
print(x, prefix="", ...)

Arguments

object object of a class for which atoBibtex or toLatex method exists.

x object of class"Bibtex" or "Latex" .

prefix a character string which is printed at the beginning of each line, mostly used to
insert whitespace for indentation.

... currently not used in the print methods.

Details

Objects of class"Bibtex" or "Latex" are simply character vectors where each element holds
one line of the corresponding BibTeX or LaTeX file.

See Also

citEntry andsessionInfo for examples

type.convert 1475

type.convert Type Conversion on Character Variables

Description

Convert a character vector to logical, integer, numeric, complex or factor as appropriate.

Usage

type.convert(x, na.strings = "NA", as.is = FALSE, dec = ".")

Arguments

x a character vector.

na.strings a vector of strings which are to be interpreted asNAvalues. Blank fields are also
considered to be missing values in logical, integer, numeric or complex vectors.

as.is logical. See ‘Details’.

dec the character to be assumed for decimal points.

Details

This is principally a helper function forread.table . Given a character vector, it attempts to
convert it to logical, integer, numeric or complex, and failing that converts it to factor unlessas.is
= TRUE. The first type that can accept all the non-missing values is chosen.

Vectors which are entirely missing values are converted to logical, sinceNAis primarily logical.

Value

A vector of the selected class, or a factor.

See Also

read.table

update.packages Download Packages from CRAN-like repositories

Description

These functions can be used to automatically compare the version numbers of installed packages
with the newest available version on the repositories and update outdated packages on the fly.

1476 update.packages

Usage

update.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, instlib = NULL,
ask = TRUE, available = NULL,
..., checkBuilt = FALSE,
type = getOption("pkgType"))

available.packages(contriburl = contrib.url(getOption("repos")),
method, fields = NULL)

old.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos),
method, available = NULL, checkBuilt = FALSE)

new.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, available = NULL, ask = FALSE, ...,
type = getOption("pkgType"))

download.packages(pkgs, destdir, available = NULL,
repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, type = getOption("pkgType"))

install.packages(pkgs, lib, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, available = NULL, destdir = NULL,
installWithVers = FALSE, dependencies = NA,
type = getOption("pkgType"),
configure.args = character(0),
clean = FALSE)

contrib.url(repos, type = getOption("pkgType"))

Arguments

lib.loc character vector describing the location of R library trees to search through (and
update packages therein).

repos character vector, the base URL(s) of the repositories to use, i.e., the URL of
the CRAN master such as"http://cran.r-project.org" or its Statlib
mirror, "http://lib.stat.cmu.edu/R/CRAN" . Can beNULLto install
from local ‘.tar.gz’ files.

contriburl URL(s) of the contrib sections of the repositories. Use this argument only if
your repository mirror is incomplete, e.g., because you burned only the ‘contrib’
section on a CD. Overrides argumentrepos . Can also beNULL to install from
local ‘.tar.gz’ files.

method Download method, seedownload.file .

pkgs character vector of the short names of packages/bundles whose current versions
should be downloaded from the repositories. Ifrepos = NULL , a charac-
ter vector of file paths of ‘.tar.gz’ files. These can be source archives or bi-

update.packages 1477

nary package/bundle archive files (as created byR CMD build --binary).
Tilde-expansion will be done on the file paths. If this is a zero-length character
vector, a listbox of available packages (including those contained in bundles) is
presented where possible.

destdir directory where downloaded packages are stored.

available an object listing packages available at the repositories as returned by
available.packages .

lib character vector giving the library directories where to install the packages. Re-
cycled as needed. If missing, defaults to.libPaths ()[1] .

ask logical indicating whether to ask user before packages are actually downloaded
and installed, or the character string"graphics" , which brings up a widget
to allow the user to (de-)select from the list of packages which could be updated.
The latter only works on systems with a GUI version ofselect.list , and is
otherwise equivalent toask = TRUE.

installWithVers
If TRUE, will invoke the install of the package such that it can be referenced by
package version.

checkBuilt If TRUE, a package built under an earlier minor version ofR is considered to be
‘old’.

instlib character string giving the library directory where to install the packages.

dependencies logical indicating to also install uninstalled packages on which these packages
depend/suggest/import (and so on recursively). Not used ifrepos = NULL .
Can also be a character vector, a subset ofc("Depends", "Imports",
"Suggests") .

Only supported iflib is of length one (or missing), so it is unambiguous where
to install the dependent packages.

The default,NA, meansc("Depends", "Imports") if lib is unambigu-
ous, andFALSEotherwise.

configure.args
a character vector or a named list. If a character vector with no names is sup-
plied, the elements are concatenated into a single string (separated by a space)
and used as the value for the--configure-args flag in the call toR CMD
INSTALL . If the character vector has names, these are assumed to identify val-
ues for --configure-args for individual packages. This allows one to
specify settings for an entire collection of packages which will be used if any
of those packages are installed. These settings can therefore be reused and act
as default settings. A named list can be used also to the same effect, and that
allows multi-element character strings for each package which are concatenated
to a single string to be used as the value for--configure-args .

... (for update.packages). Arguments such as destdir ,
installWithVers and dependencies to be passed to
install.packages .

(for new.packages). Arguments such asdestdir anddependencies
to be passed toinstall.packages .

type character, indicating the type of package to download and install. Possible val-
ues are"source" (the default except under the CRAN Mac OS X build),
"mac.binary" and"win.binary" (which can be downloaded but not in-
stalled).

1478 update.packages

clean a logical value indicating whether to specify to add the--clean flag to the call
to R CMD INSTALL. This is sometimes used to perform additional operations
at the end of the package installation in addition to removing intermediate files.

fields a character vector giving the fields to extract from thePACKAGESfile(s) in
addition to the default ones, orNULL (default). Unavailable fields result inNA
values.

Details

All of these functions work with the names of a package or bundle (and not the component packages
of a bundle, except forinstall.packages if the repository provides the necessary informa-
tion).

available.packages returns a matrix of details corresponding to packages/bundles currently
available at one or more repositories. The current list of packages is downloaded over the internet
(or copied from a local mirror). It returns only packages whose version requirements are met by the
running version ofR.

old.packages compares the information fromavailable.packages with that from
installed.packages and reports installed packages/bundles that have newer versions on the
repositories or, ifcheckBuilt = TRUE , that were built under an earlier minor version ofR (for
example built under 2.0.x when runningR 2.1.1).

new.packages does the same comparison but reports uninstalled packages/bundles that are avail-
able at the repositories. It will also give warnings about incompletely installed bundles (provided
the information is available) and bundles whose contents has changed. Ifask != FALSE it asks
which packages should be installed in the first element oflib.loc . NB: versioned installs are not
installs of a named package.

download.packages takes a list of package/bundle names and a destination directory, down-
loads the newest versions and saves them indestdir . If the list of available packages is not
given as argument, it is obtained from repositories. If a repository is local, i.e. the URL starts
with "file:" , then the packages are not downloaded but used directly. Both"file:" and
"file:///" are allowed as prefixes to a file path. Use the latter only for URLs: seeurl for their
interpretation. (Other forms of"file://" URLs are not supported.)

The main function of the set isupdate.packages . First a list of all packages/bundles found in
lib.loc is created and compared with those available at the repositories. Ifask = TRUE (the
default) packages/bundles with a newer version are reported and for each one the user can specify if
it should be updated. If so, the package sources are downloaded from the repositories and installed
in the respective library path (orinstlib if specified) using theR INSTALL mechanism.

install.packages can be used to install new packages/bundles. It takes a vector of names and
a destination library, downloads the packages from the repositories and installs them. (If the library
is omitted it defaults to the first directory in.libPaths() , with a warning if there is more than
one.) If lib is omitted or is of length one and is not a (group) writeable directory, the code offers to
create a personal library tree (the first element ofSys.getenv("R_LIBS_USER")) and install
there.

If a repository is used (rather than local ‘.tar.gz’ files), an attempt is made to install the packages
in an order that respects their dependencies. This does assume that all the entries inlib are on the
default library path for installs (set byR_LIBS).

contrib.url adds the appropriate type-specific path within a repository to each URL inrepos .

For install.packages , destdir is the directory to which packages will be downloaded. If
it is NULL (the default) a directorydownloaded_packages of the session temporary directory
will be used (and the files will be deleted at the end of the session).

update.packages 1479

If repos or contriburl is a vector of length greater than one, the newest version of the package
compatible with this version ofR is fetched from the first repository on the list within which it is
found.

Value

Foravailable.packages , a matrix with one row per package/bundle, row names the package
names and column names"Package" , "Version" , "Priority" , "Bundle" , "Depends" ,
"Imports" , "Suggests" "Contains" and "Repository" . Additional columns can be
specified using thefields argument.

Forold.packages , NULLor a matrix with one row per package/bundle, row names the package
names and column names"Package" , "LibPath" , "Installed" (the version),"Built"
(the version built under),"ReposVer" and"Repository" .

For new.packages a character vector of package/bundle names,after any have been installed.

For download.packages , a two-column matrix of names and destination file names, for those
packages/bundles successfully downloaded. If packages are not available or there is a problem with
the download, suitable warnings are given.

install.packages andupdate.packages have no return value.

Warning

Take care when usingdependencies with update.packages , for it is unclear where new
dependencies should be installed. The current implementation will only allow it if all the packages
to be updated are in a single library, when that library will be used.

Note

Some binary distributions ofR have INSTALL in a separate bundle, e.g. anR-devel RPM.
install.packages will give an error if called on such a system.

See Also

installed.packages , remove.packages

Seedownload.file for how to handle proxies and other options to monitor file transfers.

INSTALL , REMOVE, library , .packages , read.dcf

The ‘R Installation and Administration’ manual for how to set up a repository.

Examples

Not run:
install.packages(

c("XML_0.99-5.tar.gz",
"../../Interfaces/Perl/RSPerl_0.8-0.tar.gz"),

repos = NULL,
configure.args = c(XML = '--with-xml-config=xml-config',

RSPerl = "--with-modules='IO Fcntl'"))
End(Not run)

1480 URLencode

url.show Display a text URL

Description

Extension offile.show to display text files from a remote server.

Usage

url.show(url, title = url, file = tempfile(),
delete.file = TRUE, method, ...)

Arguments

url The URL to read from.

title Title for the browser.

file File to copy to.

delete.file Delete the file afterwards?

method File transfer method: seedownload.file

... Arguments to pass tofile.show .

See Also

url , file.show , download.file

Examples

Not run: url.show("http://lib.stat.cmu.edu/datasets/csb/ch3a.txt")

URLencode Encode or Decode a (partial) URL

Description

Functions to encode or decode characters in URLs.

Usage

URLencode(URL, reserved = FALSE)
URLdecode(URL)

Arguments

URL A character string.

reserved should reserved characters be encoded? See ‘Details’.

utils-deprecated 1481

Details

Characters in a URL other than the English alphanumeric characters and$ - _ . + ! * ’
() , should be encoded as%plus a two-digit hexadecimal representation, and any single-byte
character can be so encoded. (Multi-byte characters are encoded as byte-by-byte.)

In addition,; / ? : @ = & are reserved characters, and should be encoded unless used in
their reserved sense, which is scheme specific. The default inURLencode is to leave them alone,
which is appropriate forfile:// URLs, but probably not forhttp:// ones.

Value

A character string.

References

RFC1738,http://www.rfc-editor.org/rfc/rfc1738.txt

Examples

(y <- URLencode("a url with spaces and / and @"))
URLdecode(y)
(y <- URLencode("a url with spaces and / and @", reserved=TRUE))
URLdecode(y)
URLdecode("ab%20cd")

utils-deprecated Deprecated Functions in Package utils

Description

These functions are provided for compatibility with older versions ofR only, and may be defunct
as soon as of the next release.

Usage

CRAN.packages(CRAN = getOption("repos"), method,
contriburl = contrib.url(CRAN))

Arguments

CRAN character, an earlier way to specify a repository.

method Download method, seedownload.file .

contriburl URL(s) of the contrib section of the repositories. Use this argument only if your
CRAN mirror is incomplete, e.g., because you burned only the ‘contrib’ section
on a CD. Overrides argumentrepos .

See Also

Deprecated , Defunct

http://www.rfc-editor.org/rfc/rfc1738.txt

1482 vignette

View Invoke a Data Viewer

Description

Invoke a spreadsheet-style data viewer on a matrix-likeR object.

Usage

View(x, title)

Arguments

x an R object which can be coerced to a data frame with non-zero numbers of
rows and columns.

title title for viewer window. Defaults to name ofx .

Details

Objectx is coerced (if possible) to a data frame, and all non-numeric columns are then coerced
to character. The object is then viewed in a spreadsheet-like data viewer, a read-only version of
data.entry .

If there are row names on the data frame that are not1:nrow , they are displayed in a separate first
column calledrow.names .

Objects with zero columns or zero rows are not accepted.

The array of cells can be navigated by the cursor keys and Home, End, Page Up and Page Down
(where supported by X11) as well as Enter and Tab.

Value

Invisible NULL. The functions puts up a window and returns immediately: the window can be
closed via its controls or menus.

See Also

edit.data.frame , data.entry .

vignette View or List Vignettes

Description

View a specified vignette, or list the available ones.

vignette 1483

Usage

vignette(topic, package = NULL, lib.loc = NULL, all = TRUE)

S3 method for class 'vignette':
print(x, ...)
S3 method for class 'vignette':
edit(name, ...)

Arguments

topic a character string giving the (base) name of the vignette to view. If omitted, all
vignettes from all installed packages are listed.

package a character vector with the names of packages to search through, orNULL in
which "all" packages (as defined by argumentall) are searched.

lib.loc a character vector of directory names ofR libraries, orNULL. The default value
of NULLcorresponds to all libraries currently known.

all logical; if TRUEsearch all available packages in the library trees specified by
lib.loc , and ifFALSE, search only attached packages.

x, name Object of classvignette .

... Ignored by theprint method, passed on tofile.edit by theedit method.

Details

Functionvignette returns an object of the same class, the print method opens a viewer for
it. Currently, only PDF versions of vignettes can be viewed. The program specified by the
pdfviewer option is used for this. If several vignettes have PDF versions with base name identi-
cal totopic , the first one found is used.

If no topics are given, all available vignettes are listed. The corresponding information is returned
in an object of class"packageIQR" .

Theedit method extracts theR code from the vignette to a temporary file and opens the file in an
editor (seeedit). This makes it very easy to execute the commands line by line, modify them in
any way you want to help you test variants, etc.. An alternative way of extracting theR code from
the vignette is to runStangle on the source code of the vignette, see the examples below.

Examples

List vignettes from all *attached* packages
vignette(all = FALSE)

List vignettes from all *installed* packages (can take a long time!):
vignette(all = TRUE)

Not run:
Open the grid intro vignette
vignette("grid")

The same
v1 <- vignette("grid")
print(v1)

Now let us have a closer look at the code
edit(v1)

1484 withVisible

An alternative way of extracting the code,
R file is written to current working directory
Stangle(v1$file)

A package can have more than one vignette (package grid has several):
vignette(package="grid")
vignette("rotated")
The same, but without searching for it:
vignette("rotated", package="grid")
End(Not run)

withVisible Return both a value and its visibility

Description

This function evaluates an expression, returning it in a two element list containing its value and a
flag showing whether it would automatically print.

Usage

withVisible(x)

Arguments

x An expression to be evaluated.

Details

The argument is evaluated in the caller’s context.

Value

value The value ofx after evaluation.

visible logical; whether the value would auto-print.

See Also

invisible , eval

Examples

x <- 1
withVisible(x <- 1)
x
withVisible(x)

Wrap the call in evalq() for special handling

df <- data.frame(a=1:5, b=1:5)
evalq(withVisible(a + b), envir=df)

write.table 1485

write.table Data Output

Description

write.table prints its required argumentx (after converting it to a data frame if it is not one
nor a matrix) to a file or connection.

Usage

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"))

write.csv(...)
write.csv2(...)

Arguments

x the object to be written, preferably a matrix or data frame. If not, it is attempted
to coercex to a data frame.

file either a character string naming a file or a connection open for writing.""
indicates output to the console.

append logical. Only relevant iffile is a character string. IfTRUE, the output is
appended to the file. IfFALSE, any existing file of the name is destroyed.

quote a logical value (TRUEor FALSE) or a numeric vector. IfTRUE, any character
or factor columns will be surrounded by double quotes. If a numeric vector, its
elements are taken as the indices of columns to quote. In both cases, row and
column names are quoted if they are written. IfFALSE, nothing is quoted.

sep the field separator string. Values within each row ofx are separated by this
string.

eol the character(s) to print at the end of each line (row). For example,
eol="\r\n" will produce Windows’ line endings on a Unix-alike OS, and
eol="\r" will produce files as expected by MacOS Excel 2004.

na the string to use for missing values in the data.

dec the string to use for decimal points in numeric or complex columns: must be a
single character.

row.names either a logical value indicating whether the row names ofx are to be written
along withx , or a character vector of row names to be written.

col.names either a logical value indicating whether the column names ofx are to be written
along with x , or a character vector of column names to be written. See the
section on ‘CSV files’ for the meaning ofcol.names = NA .

qmethod a character string specifying how to deal with embedded double quote characters
when quoting strings. Must be one of"escape" (default), in which case the
quote character is escaped in C style by a backslash, or"double" , in which
case it is doubled. You can specify just the initial letter.

... arguments towrite.table : col.names , sep , dec andqmethod cannot
be altered.

1486 write.table

Details

If the table has no columns the rownames will be written only ifrow.names=TRUE , andvice
versa.

Real and complex numbers are written to the maximal possible precision.

If a data frame has matrix-like columns these will be converted to multiple columns in the result (via
as.matrix) and so a charactercol.names or a numericquote should refer to the columns in
the result, not the input. Such matrix-like columns are unquoted by default.

Any columns in a data frame which are lists or have a class (e.g. dates) will be converted by the
appropriateas.character method: such columns are unquoted by default. On the other hand,
any class information for a matrix is discarded and non-atomic (e.g. list) matrices are coerced to
character.

Only columns which have been converted to character will be quoted if specified byquote .

Thedec argument only applies to columns that are not subject to conversion to character because
they have a class or are part of a matrix-like column (or matrix), in particular to columns protected
by I () . Useoptions ("OutDec") to control such conversions.

In almost all cases the conversion of numeric quantities is governed by the option"scipen" (see
options), but with the internal equivalent ofdigits=15 . For finer control, useformat to
make a character matrix/data frame, and callwrite.table on that.

These functions check for a user interrupt every 1000 lines of output.

If file is not open for writing, an attempt is made to open it and then close it after use.

CSV files

By default there is no column name for a column of row names. Ifcol.names = NA and
row.names = TRUE a blank column name is added, which is the convention used for CSV
files to be read by spreadsheets.

write.csv andwrite.csv2 provide convenience wrappers for writing CSV files. They set
sep , dec andqmethod , andcol.names to NAif row.names = TRUE andTRUEotherwise.

write.csv uses"." for the decimal point and a comma for the separator.

write.csv2 uses a comma for the decimal point and a semicolon for the separator, the Excel
convention for CSV files in some Western European locales.

These wrappers are deliberately inflexible: they are designed to ensure that the correct conventions
are used to write a valid file. Attempts to changecol.names , sep , dec or qmethod are ignored,
with a warning.

Note

write.table can be slow for data frames with large numbers (hundreds or more) of columns:
this is inevitable as each column could be of a different class and so must be handled separately. If
they are all of the same class, consider using a matrix instead.

See Also

The ‘R Data Import/Export’ manual.

read.table , write .

write.matrix in packageMASS.

zip.file.extract 1487

Examples

Not run:
To write a CSV file for input to Excel one might use
x <- data.frame(a = I("a \" quote"), b = pi)
write.table(x, file = "foo.csv", sep = ",", col.names = NA,

qmethod = "double")
and to read this file back into R one needs
read.table("foo.csv", header = TRUE, sep = ",", row.names = 1)
NB: you do need to specify a separator if qmethod = "double".

Alternatively
write.csv(x, file = "foo.csv")
read.csv("foo.csv", row.names = 1)
or without row names
write.csv(x, file = "foo.csv", row.names = FALSE)
read.csv("foo.csv")
End(Not run)

zip.file.extract Extract File from a Zip Archive

Description

This will extract the file namedfile from the zip archive, if possible, and write it in a temporary
location.

Usage

zip.file.extract(file, zipname = "R.zip",
unzip = getOption("unzip"))

Arguments

file A file name. (If a path is given, see ‘Note’.)

zipname The file name (not path) of azip archive, including the".zip" extension if
required.

unzip character string: the method to be used, an empty string indicates
"internal" .

Details

All platforms support an"internal" unzip: this is the default under Windows and the fall-back
under Unix if nounzip program was found during configuration andR_UNZIPCMDis not set.

The file will be extracted if it is in the archive and any requiredunzip utility is available. It will
be extracted to the directory given bytempdir , overwriting any existing file of that name.

Value

The name of the original or extracted file. Success is indicated by returning a different name.

1488 zip.file.extract

Note

The"internal" method is very simple, and will not set file dates.

This is a helper function forhelp , example and data . As such, it handles file paths in an
unusual way. Any path component ofzipname is ignored, and the path tofile is used only to
determine the directory within which to findzipname .

Index

! (Logic), 237
!= (Comparison), 65
∗Topic NA

complete.cases , 971
factor , 145
NA, 266
na.action , 1131
na.fail , 1132
naprint , 1133
naresid , 1134

∗Topic algebra
backsolve , 33
chol , 56
chol2inv , 58
colSums , 62
crossprod , 82
eigen , 123
matrix , 254
qr , 314
QR.Auxiliaries , 316
solve , 381
svd , 417

∗Topic aplot
abline , 625
arrows , 627
Axis , 630
axis , 631
box , 639
bxp , 643
contour , 647
coplot , 650
filled.contour , 655
frame , 659
grid , 660
Hershey , 578
image , 668
Japanese , 582
legend , 672
lines , 676
matplot , 678
mtext , 683
persp , 695
plot.window , 711

plot.xy , 712
plotmath , 593
points , 713
polygon , 715
rect , 717
rect.hclust , 1229
rug , 718
screen , 719
segments , 721
symbols , 733
text , 736
title , 738
xspline , 740

∗Topic arith
all.equal , 10
approxfun , 927
Arithmetic , 17
colSums , 62
cumsum, 83
diff , 107
Extremes , 143
findInterval , 153
gl , 187
matmult , 253
ppoints , 1190
prod , 311
range , 327
roman , 1452
Round, 352
sign , 377
sort , 383
sum, 415
tabulate , 439

∗Topic array
addmargins , 911
aggregate , 913
aperm , 13
apply , 15
array , 19
backsolve , 33
cbind , 49
cbind2 , 834
chol , 56

1489

1490 INDEX

chol2inv , 58
col , 60
colSums , 62
contrast , 975
cor , 980
crossprod , 82
data.matrix , 90
det , 103
diag , 105
dim , 109
dimnames , 110
drop , 116
eigen , 123
expand.grid , 133
Extract , 135
Extract.data.frame , 139
isSymmetric , 211
kronecker , 214
lm.fit , 1089
lower.tri , 240
margin.table , 246
mat.or.vec , 247
matmult , 253
matplot , 678
matrix , 254
maxCol , 256
merge , 261
nrow , 275
outer , 294
prop.table , 312
qr , 314
QR.Auxiliaries , 316
row , 354
row/colnames , 356
scale , 362
slice.index , 379
svd , 417
sweep , 419
t , 436

∗Topic attribute
attr , 29
attributes , 30
call , 44
comment , 64
length , 219
mode, 265
name, 267
names, 269
NULL, 280
numeric , 280
structure , 409
typeof , 460

which , 474
∗Topic category

aggregate , 913
by , 42
cut , 84
Extract.factor , 142
factor , 145
ftable , 1037
ftable.formula , 1039
gl , 187
interaction , 201
levels , 220
loglin , 1100
nlevels , 272
plot.table , 710
read.ftable , 1227
split , 389
table , 437
tapply , 440
xtabs , 1336

∗Topic character
abbreviate , 6
agrep , 7
char.expand , 51
character , 52
charmatch , 53
chartr , 54
delimMatch , 1346
Encoding , 126
format , 160
format.info , 164
formatC , 166
gettext , 184
glob2rx , 1402
grep , 187
iconv , 196
make.names , 242
make.unique , 243
nchar , 271
paste , 298
pmatch , 300
regex , 342
sprintf , 391
sQuote , 394
strsplit , 406
strtrim , 408
strwidth , 730
strwrap , 410
substr , 414
symnum, 1297
utf8Conversion , 469

∗Topic chron

INDEX 1491

as.POSIX* , 23
axis.POSIXct , 633
cut.POSIXt , 86
Dates , 92
DateTimeClasses , 93
difftime , 108
format.Date , 162
hist.POSIXt , 664
Ops.Date , 286
rep , 347
round.POSIXt , 353
seq.Date , 370
seq.POSIXt , 371
strptime , 402
Sys.time , 431
weekdays , 473

∗Topic classes
as , 826
as.data.frame , 20
BasicClasses , 830
callNextMethod , 831
canCoerce , 833
character , 52
class , 59
Classes , 835
classRepresentation-class ,

837
data.class , 87
data.frame , 88
Documentation , 838
double , 113
environment-class , 840
fixPre1.8 , 840
genericFunction-class , 841
GenericFunctions , 842
getClass , 846
getMethod , 847
integer , 200
is , 855
is.object , 207
is.recursive , 209
is.single , 210
isSealedMethod , 858
language-class , 859
LinearMethodsList-class , 860
logical , 239
makeClassRepresentation , 861
MethodDefinition-class , 863
Methods , 864
MethodsList-class , 866
MethodWithNext-class , 867
new, 868

numeric , 280
ObjectsWithPackage-class , 870
promptClass , 871
raw , 331
rawConversion , 332
real , 340
representation , 873
row.names , 355
SClassExtension-class , 877
seemsS4Object , 878
setClass , 879
setClassUnion , 883
setMethod , 888
signature-class , 897
slot , 898
StructureClasses , 899
TraceClasses , 900
validObject , 901
vector , 469

∗Topic cluster
as.hclust , 944
cophenetic , 979
cutree , 987
dist , 1003
hclust , 1051
identify.hclust , 1061
kmeans , 1076
rect.hclust , 1229

∗Topic color
col2rgb , 558
colorRamp , 559
colors , 561
convertColor , 563
gray , 574
gray.colors , 575
hcl , 576
hsv , 581
make.rgb , 583
palette , 586
Palettes , 587
rgb , 611
rgb2hsv , 612

∗Topic complex
complex , 66

∗Topic connection
cat , 47
connections , 72
dput , 115
dump, 117
gzcon , 193
parse , 297
pushBack , 313

1492 INDEX

read.00Index , 1357
read.DIF , 1436
read.fortran , 1438
read.fwf , 1439
read.table , 1442
readBin , 334
readChar , 336
readLines , 339
scan , 363
seek , 367
showConnections , 374
sink , 378
socketSelect , 381
source , 385
textConnection , 447
write , 478
writeLines , 479

∗Topic datagen
simulate , 1249

∗Topic datasets
ability.cov , 483
airmiles , 484
AirPassengers , 485
airquality , 486
anscombe , 487
attenu , 488
attitude , 489
austres , 490
beavers , 490
BJsales , 491
BOD, 492
cars , 493
charsets , 1340
ChickWeight , 494
chickwts , 495
CO2, 496
co2 , 497
crimtab , 497
data , 1382
discoveries , 499
DNase, 500
esoph , 501
euro , 502
eurodist , 503
EuStockMarkets , 503
faithful , 504
Formaldehyde , 505
freeny , 506
HairEyeColor , 507
Harman23.cor , 508
Harman74.cor , 508
Indometh , 509

infert , 510
InsectSprays , 511
iris , 511
islands , 513
JohnsonJohnson , 513
LakeHuron , 514
lh , 514
LifeCycleSavings , 515
Loblolly , 516
longley , 516
lynx , 517
morley , 518
mtcars , 519
nhtemp , 519
Nile , 520
nottem , 521
Orange , 522
OrchardSprays , 523
PlantGrowth , 524
precip , 524
presidents , 525
pressure , 526
Puromycin , 526
quakes , 528
randu , 528
rivers , 529
rock , 530
sleep , 530
stackloss , 531
state , 532
sunspot.month , 533
sunspot.year , 534
sunspots , 535
swiss , 535
Theoph , 536
Titanic , 538
ToothGrowth , 539
treering , 539
trees , 540
UCBAdmissions , 541
UKDriverDeaths , 542
UKgas, 543
UKLungDeaths , 544
USAccDeaths , 544
USArrests , 545
USJudgeRatings , 545
USPersonalExpenditure , 546
uspop , 547
VADeaths , 547
volcano , 548
warpbreaks , 549
women, 550

INDEX 1493

WorldPhones , 550
WWWusage, 551

∗Topic data
apropos , 1366
as.environment , 21
assign , 25
assignOps , 27
attach , 28
autoload , 32
bquote , 40
delayedAssign , 98
deparse , 99
detach , 104
environment , 127
eval , 129
exists , 131
force , 155
get , 175
getAnywhere , 1399
getFromNamespace , 1400
getS3method , 1401
libPaths , 221
library , 223
library.dynam , 227
ns-load , 278
search , 366
substitute , 412
sys.parent , 425
with , 476
zpackages , 480

∗Topic debugging
recover , 1447
srcfile , 396
trace , 450

∗Topic design
contrast , 975
contrasts , 976
TukeyHSD, 1318

∗Topic device
.Device , 1
dev.interactive , 565
dev.xxx , 566
dev2 , 567
Devices , 570
embedFonts , 571
grDevices-package , 553
pdf , 588
pictex , 591
png , 596
postscript , 598
postscriptFonts , 603
ps.options , 606

quartz , 607
quartzFonts , 608
recordGraphics , 609
screen , 719
Type1Font , 615
x11 , 616
X11Fonts , 618
xfig , 619

∗Topic distribution
bandwidth , 946
Beta , 949
Binomial , 952
birthday , 957
Cauchy , 962
chisq.test , 963
Chisquare , 966
density , 995
Exponential , 1013
FDist , 1023
fivenum , 1030
GammaDist , 1040
Geometric , 1043
hist , 661
Hypergeometric , 1060
IQR, 1069
Logistic , 1098
Lognormal , 1102
Multinomial , 1130
NegBinomial , 1135
Normal , 1151
Poisson , 1182
ppoints , 1190
qqnorm , 1221
r2dtable , 1226
Random, 322
Random.user , 325
sample , 358
SignRank , 1248
stem , 728
TDist , 1302
Tukey , 1317
Uniform , 1319
Weibull , 1327
Wilcoxon , 1333

∗Topic documentation
apropos , 1366
args , 16
buildVignettes , 1339
checkTnF , 1343
checkVignettes , 1344
codoc , 1345
data , 1382

1494 INDEX

Defunct , 98
demo, 1388
Deprecated , 102
Documentation , 838
example , 1393
help , 1404
help.search , 1408
help.start , 1410
NotYet , 274
NumericConstants , 282
prompt , 1432
promptData , 1434
promptPackage , 1435
QC, 1354
Quotes , 319
Rdindex , 1355
Rdutils , 1356
readNEWS, 1446
Reserved , 350
RShowDoc, 1456
RSiteSearch , 1457
str , 1467
Syntax , 421
tools-package , 1339
undoc , 1359
vignette , 1482

∗Topic dplot
absolute.size , 744
approxfun , 927
arrow , 745
axTicks , 635
boxplot.stats , 554
cm, 558
col2rgb , 558
colors , 561
contourLines , 562
convertNative , 745
convolve , 977
dataViewport , 746
drawDetails , 747
ecdf , 1007
editDetails , 748
expression , 134
extendrange , 572
fft , 1024
gEdit , 749
getNames , 750
gpar , 750
gPath , 752
Grid , 753
Grid Viewports , 754
grid.add , 757

grid.arrows , 758
grid.circle , 761
grid.clip , 762
grid.collection , 763
grid.convert , 764
grid.copy , 766
grid.curve , 767
grid.display.list , 769
grid.draw , 770
grid.edit , 771
grid.frame , 772
grid.get , 773
grid.grab , 774
grid.grill , 775
grid.grob , 776
grid.layout , 777
grid.lines , 779
grid.locator , 781
grid.ls , 782
grid.move.to , 784
grid.newpage , 785
grid.pack , 786
grid.place , 788
grid.plot.and.legend , 789
grid.points , 789
grid.polygon , 790
grid.pretty , 792
grid.prompt , 792
grid.record , 793
grid.rect , 794
grid.refresh , 795
grid.remove , 795
grid.segments , 796
grid.set , 798
grid.show.layout , 799
grid.show.viewport , 800
grid.text , 801
grid.xaxis , 803
grid.xspline , 804
grid.yaxis , 807
grobName , 808
grobWidth , 808
grobX , 809
hcl , 576
hist , 661
hist.POSIXt , 664
hsv , 581
jitter , 212
layout , 670
n2mfrow , 584
Palettes , 587
panel.smooth , 687

INDEX 1495

par , 688
plot.density , 1170
plotViewport , 810
pop.viewport , 810
ppoints , 1190
pretty , 303
push.viewport , 811
Querying the Viewport Tree ,

812
rgb2hsv , 612
screen , 719
splinefun , 1263
stepfun , 1280
stringWidth , 813
strwidth , 730
trans3d , 614
unit , 813
unit.c , 815
unit.length , 816
unit.pmin , 817
unit.rep , 817
units , 739
validDetails , 818
vpPath , 819
widthDetails , 820
Working with Viewports , 820
xDetails , 823
xy.coords , 620
xyTable , 622
xyz.coords , 623

∗Topic environment
apropos , 1366
as.environment , 21
browser , 40
commandArgs , 63
debug , 97
eapply , 122
gc , 172
gctorture , 175
interactive , 202
is.R , 208
layout , 670
ls , 241
Memory, 258
Memory-limits , 259
options , 286
par , 688
quit , 317
R.Version , 321
reg.finalizer , 341
remove , 346
Startup , 397

stop , 400
stopifnot , 401
Sys.getenv , 422
Sys.setenv , 428
taskCallback , 441
taskCallbackManager , 443
taskCallbackNames , 445

∗Topic error
bug.report , 1371
conditions , 68
debugger , 1386
options , 286
stop , 400
stopifnot , 401
warning , 471
warnings , 472

∗Topic file
.Platform , 4
basename , 34
browseURL , 1370
cat , 47
connections , 72
count.fields , 1381
dataentry , 1384
dcf , 95
dput , 115
dump, 117
file.access , 147
file.choose , 148
file.info , 149
file.path , 150
file.show , 151
file_test , 1396
files , 152
fileutils , 1348
glob2rx , 1402
gzcon , 193
list.files , 231
load , 232
package.skeleton , 1426
parse , 297
path.expand , 299
read.00Index , 1357
read.DIF , 1436
read.fortran , 1438
read.fwf , 1439
read.table , 1442
readBin , 334
readChar , 336
readLines , 339
readNEWS, 1446
save , 360

1496 INDEX

scan , 363
seek , 367
sink , 378
source , 385
Sys.glob , 423
sys.source , 430
system , 432
system.file , 434
tempfile , 446
textConnection , 447
unlink , 462
url.show , 1480
write , 478
write.table , 1485
write_PACKAGES , 1361
writeLines , 479
zip.file.extract , 1487

∗Topic graphs
chull , 557

∗Topic hplot
assocplot , 628
barplot , 636
biplot , 954
biplot.princomp , 955
boxplot , 640
cdplot , 645
contour , 647
coplot , 650
cpgram , 986
curve , 653
dendrogram , 991
dotchart , 654
ecdf , 1007
filled.contour , 655
fourfoldplot , 658
heatmap , 1054
hist , 661
hist.POSIXt , 664
image , 668
interaction.plot , 1067
lag.plot , 1084
matplot , 678
monthplot , 1126
mosaicplot , 680
pairs , 685
panel.smooth , 687
persp , 695
pie , 698
plot , 700
plot.acf , 1168
plot.data.frame , 701
plot.default , 702

plot.design , 705
plot.factor , 706
plot.formula , 707
plot.histogram , 708
plot.isoreg , 1172
plot.lm , 1173
plot.ppr , 1175
plot.spec , 1177
plot.stepfun , 1179
plot.table , 710
plot.ts , 1180
qqnorm , 1221
spineplot , 722
stars , 725
stripchart , 729
sunflowerplot , 731
symbols , 733
termplot , 1304

∗Topic htest
ansari.test , 923
bartlett.test , 948
binom.test , 951
chisq.test , 963
cor.test , 982
fisher.test , 1027
fligner.test , 1031
friedman.test , 1035
kruskal.test , 1078
ks.test , 1080
mantelhaen.test , 1113
mauchly.test , 1115
mcnemar.test , 1117
mood.test , 1128
oneway.test , 1154
p.adjust , 1163
pairwise.prop.test , 1165
pairwise.t.test , 1166
pairwise.table , 1167
pairwise.wilcox.test , 1168
power.anova.test , 1186
power.prop.test , 1187
power.t.test , 1188
print.power.htest , 1211
prop.test , 1218
prop.trend.test , 1220
quade.test , 1222
shapiro.test , 1247
t.test , 1300
var.test , 1324
wilcox.test , 1330

∗Topic interface
.Script , 5

INDEX 1497

browseEnv , 1368
dyn.load , 120
getDLLRegisteredRoutines , 178
getLoadedDLLs , 179
getNativeSymbolInfo , 180
getNumCConverters , 182
Internal , 202
Primitive , 304
system , 432

∗Topic iplot
dev.xxx , 566
frame , 659
getGraphicsEvent , 573
identify , 665
identify.hclust , 1061
layout , 670
locator , 677
par , 688
plot.histogram , 708
recordPlot , 610

∗Topic iteration
apply , 15
by , 42
combn, 1378
Control , 80
dendrapply , 990
eapply , 122
identical , 197
lapply , 216
rapply , 329
sweep , 419
tapply , 440

∗Topic list
clearNames , 968
eapply , 122
Extract , 135
lapply , 216
list , 229
NULL, 280
rapply , 329
relist , 1448
setNames , 1246
unlist , 463

∗Topic loess
loess , 1095
loess.control , 1097

∗Topic logic
all , 8
all.equal , 10
any , 12
Comparison , 65
complete.cases , 971

Control , 80
duplicated , 118
identical , 197
ifelse , 199
Logic , 237
logical , 239
match , 247
NA, 266
unique , 460
which , 474

∗Topic manip
addmargins , 911
append , 14
c , 43
cbind , 49
cbind2 , 834
Colon , 61
cut.POSIXt , 86
deparse , 99
dimnames , 110
duplicated , 118
expand.model.frame , 1012
getInitial , 1044
head , 1403
list , 229
mapply , 244
match , 247
merge , 261
model.extract , 1120
NA, 266
NLSstAsymptotic , 1148
NLSstClosestX , 1148
NLSstLfAsymptote , 1149
NLSstRtAsymptote , 1150
NULL, 280
order , 292
order.dendrogram , 1162
relist , 1448
reorder.dendrogram , 1230
rep , 347
replace , 349
reshape , 1234
rev , 350
rle , 351
row/colnames , 356
rowsum , 357
seq , 368
seq.Date , 370
seq.POSIXt , 371
sequence , 372
slotOp , 380
sort , 383

1498 INDEX

sortedXyData , 1257
stack , 1466
structure , 409
subset , 411
transform , 456
type.convert , 1475
unique , 460
unlist , 463

∗Topic math
.Machine , 2
Bessel , 35
convolve , 977
deriv , 998
fft , 1024
Hyperbolic , 195
integrate , 1065
is.finite , 204
kappa , 213
log , 236
Math , 252
nextn , 1137
poly , 1183
polyroot , 301
Special , 387
splinefun , 1263
Trig , 457

∗Topic methods
.BasicFunsList , 826
as , 826
as.data.frame , 20
callNextMethod , 831
canCoerce , 833
class , 59
Classes , 835
data.class , 87
data.frame , 88
Documentation , 838
GenericFunctions , 842
getMethod , 847
groupGeneric , 190
implicitGeneric , 852
initialize-methods , 854
InternalMethods , 203
is , 855
is.object , 207
isSealedMethod , 858
method.skeleton , 862
Methods , 864
methods , 1421
methods-package , 825
MethodsList-class , 866
na.action , 1131

noquote , 273
plot.data.frame , 701
predict , 1197
promptMethods , 872
row.names , 355
S4groupGeneric , 875
setClass , 879
setGeneric , 885
setMethod , 888
setOldClass , 891
showMethods , 895
summary , 416
UseMethod , 465

∗Topic misc
base-deprecated , 34
citation , 1375
citEntry , 1376
close.socket , 1378
contributors , 79
copyright , 81
license , 228
make.socket , 1418
mirrorAdmin , 1422
person , 1430
read.socket , 1441
sessionInfo , 1464
sets , 373
stats-deprecated , 1278
toLatex , 1474
tools-deprecated , 1358
url.show , 1480
utils-deprecated , 1481

∗Topic models
add1 , 909
AIC , 915
alias , 916
anova , 917
anova.glm , 918
anova.lm , 920
anova.mlm , 921
aov , 925
AsIs , 24
asOneSidedFormula , 945
C, 959
case/variable.names , 961
coef , 970
confint , 972
deviance , 1000
df.residual , 1001
dummy.coef , 1006
eff.aovlist , 1009
effects , 1010

INDEX 1499

expand.grid , 133
extractAIC , 1014
factor.scope , 1018
family , 1019
fitted , 1029
formula , 1033
formula.nls , 1035
getInitial , 1044
glm , 1045
glm.control , 1049
glm.summaries , 1050
is.empty.model , 1070
labels , 216
lm.summaries , 1092
logLik , 1099
loglin , 1100
make.link , 1110
makepredictcall , 1111
manova, 1112
mauchly.test , 1115
model.extract , 1120
model.frame , 1121
model.matrix , 1123
model.tables , 1125
naprint , 1133
naresid , 1134
nls , 1142
nls.control , 1146
numericDeriv , 1153
offset , 1154
plot.profile.nls , 1176
power , 1185
predict.glm , 1199
predict.nls , 1206
preplot , 1208
profile , 1214
profile.nls , 1215
proj , 1216
relevel , 1230
replications , 1233
residuals , 1236
se.contrast , 1242
selfStart , 1244
simulate , 1249
SSasymp, 1265
SSasympOff , 1266
SSasympOrig , 1267
SSbiexp , 1268
SSD, 1269
SSfol , 1270
SSfpl , 1271
SSgompertz , 1272

SSlogis , 1273
SSmicmen, 1274
SSweibull , 1275
stat.anova , 1277
step , 1278
summary.aov , 1287
summary.glm , 1289
summary.lm , 1291
summary.manova , 1293
summary.nls , 1294
terms , 1305
terms.formula , 1306
terms.object , 1307
tilde , 449
TukeyHSD, 1318
update , 1322
update.formula , 1323
vcov , 1326

∗Topic multivariate
anova.mlm , 921
as.hclust , 944
biplot , 954
biplot.princomp , 955
cancor , 960
cmdscale , 969
cophenetic , 979
cor , 980
cov.wt , 985
cutree , 987
dendrogram , 991
dist , 1003
factanal , 1015
hclust , 1051
kmeans , 1076
loadings , 1094
mahalanobis , 1109
mauchly.test , 1115
prcomp , 1194
princomp , 1209
screeplot , 1241
SSD, 1269
stars , 725
summary.princomp , 1295
symbols , 733
varimax , 1325

∗Topic nonlinear
deriv , 998
getInitial , 1044
nlm , 1137
nls , 1142
nls.control , 1146
optim , 1156

1500 INDEX

plot.profile.nls , 1176
predict.nls , 1206
profile.nls , 1215
vcov , 1326

∗Topic nonparametric
sunflowerplot , 731

∗Topic optimize
constrOptim , 973
glm.control , 1049
nlm , 1137
nlminb , 1140
optim , 1156
optimize , 1160
uniroot , 1320

∗Topic package
base-package , 1
datasets-package , 483
graphics-package , 625
grDevices-package , 553
grid-package , 743
methods-package , 825
stats-package , 905
tools-package , 1339
utils-package , 1365

∗Topic print
cat , 47
dcf , 95
format , 160, 1398
format.info , 164
format.pval , 165
formatC , 166
formatDL , 168
hexmode , 194
labels , 216
loadings , 1094
ls.str , 1416
noquote , 273
octmode , 284
options , 286
plot.isoreg , 1172
print , 305
print.data.frame , 306
print.default , 307
printCoefmat , 1213
prmatrix , 309
sprintf , 391
str , 1467
write.table , 1485

∗Topic programming
.BasicFunsList , 826
.Machine , 2
all.equal , 10

all.names , 11
as , 826
as.function , 22
autoload , 32
body , 39
bquote , 40
browser , 40
call , 44
callCC , 46
callNextMethod , 831
check.options , 556
checkFF , 1341
Classes , 835
commandArgs , 63
conditions , 68
Control , 80
debug , 97
delayedAssign , 98
delete.response , 989
deparse , 99
deparseOpts , 101
do.call , 112
Documentation , 838
dput , 115
environment , 127
eval , 129
expression , 134
fixPre1.8 , 840
force , 155
Foreign , 156
formals , 159
format.info , 164
function , 169
funprog , 171
GenericFunctions , 842
getCallingDLL , 177
getClass , 846
getMethod , 847
getNumCConverters , 182
getPackageName , 850
hasArg , 851
identical , 197
ifelse , 199
implicitGeneric , 852
initialize-methods , 854
interactive , 202
invisible , 204
is , 855
is.finite , 204
is.function , 206
is.language , 207
is.recursive , 209

INDEX 1501

isS4 , 210
isSealedMethod , 858
Last.value , 218
makeClassRepresentation , 861
match.arg , 249
match.call , 250
match.fun , 251
menu, 1420
message , 262
method.skeleton , 862
Methods , 864
missing , 264
model.extract , 1120
name, 267
nargs , 270
new, 868
ns-dblcolon , 276
ns-topenv , 279
on.exit , 285
Paren , 296
parse , 297
promptClass , 871
promptMethods , 872
R.Version , 321
Recall , 341
recover , 1447
reg.finalizer , 341
representation , 873
Reserved , 350
seemsS4Object , 878
setClass , 879
setClassUnion , 883
setGeneric , 885
setMethod , 888
setOldClass , 891
show, 894
slot , 898
source , 385
stop , 400
stopifnot , 401
substitute , 412
switch , 420
Syntax , 421
sys.parent , 425
tools-package , 1339
trace , 450
traceback , 454
try , 458
utils-package , 1365
validObject , 901
warning , 471
warnings , 472

with , 476
withVisible , 1484

∗Topic regression
anova , 917
anova.glm , 918
anova.lm , 920
anova.mlm , 921
aov , 925
case/variable.names , 961
coef , 970
contrast , 975
contrasts , 976
df.residual , 1001
effects , 1010
expand.model.frame , 1012
fitted , 1029
glm , 1045
glm.summaries , 1050
influence.measures , 1062
isoreg , 1071
line , 1085
lm , 1086
lm.fit , 1089
lm.influence , 1091
lm.summaries , 1092
ls.diag , 1105
ls.print , 1106
lsfit , 1106
nls , 1142
nls.control , 1146
plot.lm , 1173
plot.profile.nls , 1176
ppr , 1191
predict.glm , 1199
predict.lm , 1202
predict.nls , 1206
profile.nls , 1215
residuals , 1236
stat.anova , 1277
summary.aov , 1287
summary.glm , 1289
summary.lm , 1291
summary.nls , 1294
termplot , 1304
weighted.residuals , 1329

∗Topic robust
fivenum , 1030
IQR, 1069
line , 1085
mad, 1108
median , 1118
medpolish , 1119

1502 INDEX

runmed , 1237
smooth , 1250
smoothEnds , 1255

∗Topic smooth
bandwidth , 946
density , 995
isoreg , 1071
ksmooth , 1082
loess , 1095
loess.control , 1097
lowess , 1103
predict.loess , 1204
predict.smooth.spline , 1207
runmed , 1237
scatter.smooth , 1239
smooth , 1250
smooth.spline , 1252
smoothEnds , 1255
sunflowerplot , 731
supsmu , 1296

∗Topic sysdata
.Machine , 2
colors , 561
commandArgs , 63
Constants , 78
NULL, 280
palette , 586
R.Version , 321
Random, 322
Random.user , 325

∗Topic tree
dendrogram , 991

∗Topic ts
acf , 906
acf2AR , 908
ar , 929
ar.ols , 932
arima , 934
arima.sim , 937
arima0 , 938
ARMAacf, 942
ARMAtoMA, 943
Box.test , 958
cpgram , 986
decompose , 988
diffinv , 1002
embed, 1011
filter , 1025
HoltWinters , 1057
KalmanLike , 1072
kernapply , 1074
kernel , 1075

lag , 1083
lag.plot , 1084
monthplot , 1126
na.contiguous , 1132
plot.acf , 1168
plot.HoltWinters , 1170
plot.spec , 1177
plot.ts , 1180
PP.test , 1189
predict.Arima , 1198
predict.HoltWinters , 1201
print.ts , 1212
spec.ar , 1257
spec.pgram , 1259
spec.taper , 1261
spectrum , 1262
start , 1276
stl , 1282
stlmethods , 1284
StructTS , 1285
time , 1308
toeplitz , 1309
ts , 1310
ts-methods , 1312
ts.plot , 1313
ts.union , 1313
tsdiag , 1314
tsp , 1315
tsSmooth , 1316
window , 1335

∗Topic univar
ave , 945
cor , 980
Extremes , 143
fivenum , 1030
IQR, 1069
mad, 1108
mean, 257
median , 1118
nclass , 585
order , 292
quantile , 1224
range , 327
rank , 328
sd , 1242
sort , 383
stem , 728
weighted.mean , 1328

∗Topic utilities
.Platform , 4
.checkMFClasses , 905
alarm , 1365

INDEX 1503

all.equal , 10
as.graphicsAnnot , 553
as.POSIX* , 23
axis.POSIXct , 633
BATCH, 1367
bindenv , 37
bug.report , 1371
buildVignettes , 1339
builtins , 41
capabilities , 46
capture.output , 1373
check.options , 556
checkFF , 1341
checkMD5sums , 1342
checkTnF , 1343
checkVignettes , 1344
chooseCRANmirror , 1374
combn, 1378
compareVersion , 1380
COMPILE, 1380
conflicts , 71
Cstack_info , 83
dataentry , 1384
date , 91
Dates , 92
DateTimeClasses , 93
debugger , 1386
Defunct , 98
demo, 1388
Deprecated , 102
dev2bitmap , 569
difftime , 108
download.file , 1389
edit , 1391
edit.data.frame , 1392
encoded_text_to_latex , 1347
encodeString , 125
Encoding , 126
example , 1393
file.edit , 1395
findInterval , 153
fix , 1397
flush.console , 1398
format.Date , 162
gc.time , 174
getDepList , 1350
getpid , 184
gettext , 184
getwd , 186
glob2rx , 1402
grep , 187
iconv , 196

index.search , 1411
INSTALL , 1412
installed.packages , 1413
installFoundDepends , 1351
integrate , 1065
is.R , 208
isSymmetric , 211
jitter , 212
l10n_info , 215
LINK , 1414
localeconv , 233
locales , 234
localeToCharset , 1415
ls.str , 1416
make.packages.html , 1417
makeLazyLoading , 1352
manglePackageName , 244
mapply , 244
maxCol , 256
md5sum, 1353
memory.profile , 260
memory.size , 1419
menu, 1420
modifyList , 1423
n2mfrow , 584
noquote , 273
normalizePath , 1423
NotYet , 274
ns-hooks , 277
ns-load , 278
nsl , 1424
numeric_version , 283
object.size , 1425
Ops.Date , 286
package.dependencies , 1353
package.skeleton , 1426
packageDescription , 1427
packageStatus , 1428
page , 1430
PkgUtils , 1431
pos.to.env , 302
proc.time , 310
QC, 1354
R.home , 320
Rdindex , 1355
RdUtils , 333
Rdutils , 1356
readline , 338
relevel , 1230
REMOVE, 1450
remove.packages , 1451
reorder.factor , 1231

1504 INDEX

RHOME, 1452
Rprof , 1453
Rprofmem , 1454
Rscript , 1455
RSiteSearch , 1457
Rtangle , 1458
RweaveLatex , 1459
savehistory , 1461
select.list , 1463
setRepositories , 1464
SHLIB , 1465
shQuote , 375
Signals , 377
srcfile , 396
str , 1467
strptime , 402
strtrim , 408
summaryRprof , 1470
Sweave, 1471
SweaveSyntConv , 1473
symnum, 1297
Sys.getenv , 422
Sys.glob , 423
Sys.info , 424
Sys.setenv , 428
Sys.sleep , 429
sys.source , 430
Sys.time , 431
Sys.which , 432
system , 432
system.file , 434
system.time , 435
texi2dvi , 1358
toString , 449
tracemem , 455
unname, 464
update.packages , 1475
URLencode , 1480
UserHooks , 467
utf8Conversion , 469
View , 1482
vignetteDepends , 1360
which.min , 475
write_PACKAGES , 1361
xgettext , 1362
zutils , 481

’ (Quotes), 319
* (Arithmetic), 17
*.difftime (difftime), 108
+ (Arithmetic), 17
+.Date (Ops.Date), 286
+.POSIXt (DateTimeClasses), 93

- (Arithmetic), 17
-.Date (Ops.Date), 286
-.POSIXt (DateTimeClasses), 93
-> (assignOps), 27
->> (assignOps), 27
.AutoloadEnv (autoload), 32
.Autoloaded (autoload), 32
.BaseNamespaceEnv (environment),

127
.BasicFunsList , 826
.C , 114, 120, 122, 177, 178, 180–183, 1342
.C (Foreign), 156
.Call , 120, 122, 177, 178, 180–182, 454
.Call (Foreign), 156
.Class (UseMethod), 465
.Defunct (Defunct), 98
.Deprecated (Deprecated), 102
.Device , 1, 565, 607
.Devices (.Device), 1
.External , 120, 122, 177, 178, 180–182,

203
.External (Foreign), 156
.First , 202, 318
.First (Startup), 397
.First.lib , 122, 227, 228, 277
.First.lib (library), 223
.Fortran , 114, 120–122, 177, 178,

180–182, 1342
.Fortran (Foreign), 156
.Generic (UseMethod), 465
.GlobalEnv , 366, 413, 426
.GlobalEnv (environment), 127
.Group (groupGeneric), 190
.InitTraceFunctions

(TraceClasses), 900
.Internal , 41, 304, 305, 466
.Internal (Internal), 202
.Last , 377, 398, 399, 1462
.Last (quit), 317
.Last.lib , 227, 277
.Last.lib (library), 223
.Last.value (Last.value), 218
.Library (libPaths), 221
.MFclass , 1308
.MFclass (.checkMFClasses), 905
.Machine , 2, 4, 335, 1161
.Method (UseMethod), 465
.NotYetImplemented (NotYet), 274
.NotYetUsed (NotYet), 274
.OldClassesList (setOldClass), 891
.OptRequireMethods (Startup), 397
.Options (options), 286

INDEX 1505

.Pars (par), 688

.Platform , 3, 4, 47, 322, 425, 434, 1349

.Primitive , 203, 296

.Primitive (Primitive), 304

.Random.seed , 1152, 1249, 1320

.Random.seed (Random), 322

.Renviron (Startup), 397

.Rprofile , 287

.Rprofile (Startup), 397

.S3PrimitiveGenerics
(InternalMethods), 203

.Script , 5

.Traceback (traceback), 454

.__H__.cbind (cbind), 49

.__H__.rbind (cbind), 49

.checkMFClasses , 905

.decode_numeric_version
(numeric_version), 283

.deparseOpts , 100, 115, 117, 1391

.deparseOpts (deparseOpts), 101

.doTrace (trace), 450

.doTracePrint (TraceClasses), 900

.dynLibs (library.dynam), 227

.encode_numeric_version
(numeric_version), 283

.expand_R_libs_env_var
(libPaths), 221

.getXlevels (.checkMFClasses), 905

.handleSimpleError (conditions),
68

.isOpen (srcfile), 396

.leap.seconds (DateTimeClasses),
93

.libPaths , 226, 228, 480, 1383, 1451, 1477

.libPaths (libPaths), 221

.makeMessage (message), 262

.makeTracedFunction
(TraceClasses), 900

.make_numeric_version
(numeric_version), 283

.noGenerics (library), 223

.onAttach , 279

.onAttach (ns-hooks), 277

.onLoad , 224, 227, 278

.onLoad (ns-hooks), 277

.onUnload , 227, 279

.onUnload (ns-hooks), 277

.packageStartupMessage (message),
262

.packages , 226, 228, 367, 1479

.packages (zpackages), 480

.primTrace (trace), 450

.primUntrace (trace), 450

.ps.prolog (postscript), 598

.row_names_info , 356

.setOldIs (setOldClass), 891

.signalSimpleWarning
(conditions), 68

.slotNames (slot), 898

.standard_regexps (zutils), 481

.untracedFunction (TraceClasses),
900

.userHooksEnv (UserHooks), 467
/ (Arithmetic), 17
/.difftime (difftime), 108
: , 201, 202, 369
: (Colon), 61
:: (ns-dblcolon), 276
::: , 1400
::: (ns-dblcolon), 276
< (Comparison), 65
<- , 26
<- (assignOps), 27
<-class (language-class), 859
<= (Comparison), 65
<<- , 28
<<- (assignOps), 27
= (assignOps), 27
==, 11
== (Comparison), 65
> (Comparison), 65
>= (Comparison), 65
? (help), 1404
[, 116, 139, 203, 284, 412, 1075
[(Extract), 135
[.AsIs (AsIs), 24
[.Date (Dates), 92
[.POSIXct (DateTimeClasses), 93
[.POSIXlt (DateTimeClasses), 93
[.acf (acf), 906
[.data.frame , 90, 136–138, 1122
[.data.frame

(Extract.data.frame), 139
[.difftime (difftime), 108
[.factor , 136, 138, 146, 147
[.factor (Extract.factor), 142
[.formula (formula), 1033
[.getAnywhere (getAnywhere), 1399
[.hexmode (hexmode), 194
[.noquote (noquote), 273
[.numeric_version

(numeric_version), 283
[.octmode (octmode), 284
[.simple.list (Extract), 135

1506 INDEX

[.terms (delete.response), 989
[.ts (ts), 1310
[<- , 203
[<- (Extract), 135
[<-.Date (Dates), 92
[<-.POSIXct (DateTimeClasses), 93
[<-.POSIXlt (DateTimeClasses), 93
[<-.data.frame

(Extract.data.frame), 139
[<-.factor (Extract.factor), 142
[[, 203, 993
[[(Extract), 135
[[.Date (Dates), 92
[[.POSIXct (DateTimeClasses), 93
[[.data.frame

(Extract.data.frame), 139
[[.dendrogram (dendrogram), 991
[[.factor (Extract.factor), 142
[[.numeric_version

(numeric_version), 283
[[<- , 203
[[<- (Extract), 135
[[<-.data.frame

(Extract.data.frame), 139
[[<-.numeric_version

(numeric_version), 283
$, 203
$ (Extract), 135
$.DLLInfo (getLoadedDLLs), 179
$.package_version

(numeric_version), 283
$<- , 203
$<- (Extract), 135
$<-.data.frame

(Extract.data.frame), 139
%*%, 18, 82, 215, 295, 887
%*%(matmult), 253
%/%(Arithmetic), 17
%%(Arithmetic), 17
%in%, 373
%in%(match), 247
%o%, 82
%o%(outer), 294
%x%(kronecker), 214
& (Logic), 237
&& (Logic), 237
__ClassMetaData (Classes), 835
^ (Arithmetic), 17
~ (tilde), 449
‘ (Quotes), 319
| (Logic), 237

abbreviate , 6, 1298

ability.cov , 483, 1018
abline , 625, 660, 661, 677, 689, 716
abs , 377
abs (Math), 252
absolute.size , 744, 820
acf , 906, 1169
acf2AR , 908, 932, 943
acos , 195
acos (Trig), 457
acosh (Hyperbolic), 195
adapt , 1067
add.scope (factor.scope), 1018
add1 , 909, 918, 1015, 1019, 1279, 1280
addGrob , 753, 758, 772, 774
addGrob (grid.add), 757
addmargins , 247, 438, 911
addTaskCallback , 442, 444, 445
addTaskCallback (taskCallback),

441
Adobe_glyphs (charsets), 1340
aggregate , 15, 358, 441, 913
agnes , 944, 979, 1054
agrep , 7, 189, 1409
AIC , 915, 1014, 1015
airmiles , 484
AirPassengers , 485, 1286, 1316
airquality , 486
alarm , 1365
alias , 916, 927, 971
alist , 22, 39, 159
alist (list), 229
all , 8, 11, 13, 239, 401
all.equal , 10, 66, 198, 211
all.equal.numeric , 211
all.equal.POSIXct

(DateTimeClasses), 93
all.names , 11, 962
all.vars , 962, 1034
all.vars (all.names), 11
allGenerics (GenericFunctions),

842
anova , 417, 911, 917, 919, 921, 1047, 1048,

1079, 1087, 1105, 1143, 1186, 1277
anova-class (setOldClass), 891
anova.glm , 910, 918, 1047, 1048, 1051,

1277
anova.glm-class (setOldClass), 891
anova.glm.null-class

(setOldClass), 891
anova.glmlist (anova.glm), 918
anova.lm , 920, 1088, 1093, 1277
anova.lmlist (anova.lm), 920

INDEX 1507

anova.mlm , 921, 1116, 1270
anova.mlmlist (anova.mlm), 921
ansari.test , 923, 949, 1032, 1129, 1325
ansari_test , 925
anscombe , 487, 1089
any , 9, 12, 239
ANY-class (BasicClasses), 830
aov , 290, 705, 909, 911, 925, 976, 977, 1006,

1009, 1010, 1014, 1019, 1086–1088,
1093, 1112, 1120, 1126, 1174, 1216,
1217, 1243, 1278, 1288, 1294, 1308,
1318, 1319

aov-class (setOldClass), 891
aperm , 13, 20, 436, 1235
append , 14
apply , 15, 62, 63, 119, 217, 251, 419, 441,

914
applyEdit (gEdit), 749
applyEdits (gEdit), 749
approx , 154, 1265
approx (approxfun), 927
approxfun , 927, 1008, 1180, 1265, 1281
apropos , 189, 241, 346, 1366, 1409
ar , 929, 934, 937, 941, 1258
ar.burg (ar), 929
ar.mle (ar), 929
ar.ols , 930, 932, 932
ar.yw , 908
ar.yw (ar), 929
arcCurvature (grid.curve), 767
Arg (complex), 66
args , 16, 39, 159, 170, 270, 1400, 1416,

1467, 1469
argsAnywhere (getAnywhere), 1399
arima , 934, 938, 941, 943, 1073, 1198, 1199,

1286, 1314, 1315
arima.sim , 937, 937, 1026
arima0 , 932, 936, 937, 938
Arith , 18
Arith (S4groupGeneric), 875
Arithmetic , 17, 205, 237, 253, 254, 388,

422, 1185
ARMAacf, 908, 942, 943
ARMAtoMA, 943, 943
array , 19, 111, 116, 138, 275, 440, 474,

1378, 1379
array-class (StructureClasses),

899
arrow , 745, 768, 780, 785, 797, 806
arrows , 627, 689, 722
arrowsGrob (grid.arrows), 758
as , 60, 470, 826, 833, 837, 854, 877

as.array (array), 19
as.call (call), 44
as.character , 6, 48, 53, 54, 100, 111, 125,

161, 162, 188, 196, 203, 230, 271,
299, 300, 357, 392, 408, 410, 414,
554, 648, 666, 736, 1299

as.character (character), 52
as.character.condition

(conditions), 68
as.character.Date (format.Date),

162
as.character.error (conditions),

68
as.character.hexmode (hexmode),

194
as.character.numeric_version

(numeric_version), 283
as.character.octmode (octmode),

284
as.character.person (person), 1430
as.character.personList (person),

1430
as.character.POSIXt (strptime),

402
as.character.srcref (srcfile), 396
as.complex , 203
as.complex (complex), 66
as.data.frame , 20, 25, 89, 141, 1038,

1045, 1086, 1095, 1122
as.data.frame.Date (Dates), 92
as.data.frame.numeric_version

(numeric_version), 283
as.data.frame.POSIXct

(DateTimeClasses), 93
as.data.frame.POSIXlt

(DateTimeClasses), 93
as.data.frame.table , 21, 1337
as.data.frame.table (table), 437
as.Date , 286
as.Date (format.Date), 162
as.dendrogram , 991, 1055, 1163
as.dendrogram (dendrogram), 991
as.difftime (difftime), 108
as.dist (dist), 1003
as.double , 203, 281, 340, 392
as.double (double), 113
as.double.difftime (difftime), 108
as.double.POSIXlt (as.POSIX*), 23
as.environment , 21, 28, 840
as.expression (expression), 134
as.factor , 390, 440
as.factor (factor), 145

1508 INDEX

as.formula , 1323
as.formula (formula), 1033
as.function , 22
as.graphicsAnnot , 553, 631, 672, 673,

684, 699, 730, 738, 801
as.hclust , 944, 979
as.integer , 80, 135, 139, 203, 353
as.integer (integer), 200
as.list , 217, 464
as.list (list), 229
as.list.numeric_version

(numeric_version), 283
as.logical , 203
as.logical (logical), 239
as.matrix , 89, 91, 253, 356, 436, 1003,

1004, 1443, 1486
as.matrix (matrix), 254
as.matrix.dist (dist), 1003
as.matrix.noquote (noquote), 273
as.matrix.POSIXlt

(DateTimeClasses), 93
as.name , 209
as.name (name), 267
as.null (NULL), 280
as.numeric , 303
as.numeric (numeric), 280
as.numeric_version

(numeric_version), 283
as.ordered (factor), 145
as.package_version

(numeric_version), 283
as.pairlist (list), 229
as.person (person), 1430
as.personList (person), 1430
as.POSIX* , 23
as.POSIXct , 93, 95
as.POSIXct (as.POSIX*), 23
as.POSIXlt , 95, 234, 402, 403, 431, 474
as.POSIXlt (as.POSIX*), 23
as.qr (qr), 314
as.raw , 203
as.raw (raw), 331
as.real (real), 340
as.relistable (relist), 1448
as.roman (roman), 1452
as.single , 157
as.single (double), 113
as.stepfun , 1071
as.stepfun (stepfun), 1280
as.symbol , 134
as.symbol (name), 267
as.table , 1038

as.table (table), 437
as.ts (ts), 1310
as.vector , 15, 44, 52, 67, 80, 114, 201,

203, 230, 240, 268, 373
as.vector (vector), 469
as<- (as), 826
asin , 195
asin (Trig), 457
asinh (Hyperbolic), 195
AsIs , 24, 161
asOneSidedFormula , 945
asp (plot.window), 711
asS4 (isS4), 210
assign , 25, 27, 28, 176, 177, 477, 556
assignInNamespace

(getFromNamespace), 1400
assignOps , 27
assoc , 629
assocplot , 628, 683
atan , 195
atan (Trig), 457
atan2 (Trig), 457
atanh (Hyperbolic), 195
atomic , 1445
atomic (vector), 469
atop (plotmath), 593
attach , 26, 28, 104, 105, 226, 366, 367, 477,

1373, 1427
attachNamespace (ns-load), 278
attenu , 488
attitude , 489, 1089
attr , 29, 31, 65, 288, 289, 356, 409, 1238
attr.all.equal (all.equal), 10
attr<- (attr), 29
attributes , 10, 30, 30, 64, 65, 111, 136,

143, 266, 269, 409, 556, 882, 990
attributes<- (attributes), 30
austres , 490
autoload , 32, 226
autoloader (autoload), 32
Autoloads (autoload), 32
available.packages , 1353, 1361, 1389,

1390, 1429
available.packages

(update.packages), 1475
ave , 945
Axis , 630, 633, 648
axis , 593, 595, 630, 631, 634, 635, 637, 644,

662, 689, 693, 719
axis.Date (axis.POSIXct), 633
axis.POSIXct , 630, 633, 665
axTicks , 304, 632, 633, 635, 660, 693

INDEX 1509

backquote , 170
backquote (Quotes), 319
backsolve , 33, 57, 382
backtick , 27, 135, 1406
backtick (Quotes), 319
bandwidth , 946
bandwidth.kernel (kernel), 1075
bandwidth.nrd , 947
bar (plotmath), 593
barplot , 636, 663, 674, 706, 707, 718
barplot.default , 575
bartlett.test , 925, 948, 1032, 1129,

1325
base , 553
base (base-package), 1
base-defunct , 34
base-deprecated , 102
base-deprecated , 34
base-package , 1
baseenv (environment), 127
basename , 34, 153, 300
BasicClasses , 830
BATCH, 64, 1367
bcv , 947
beaver1 (beavers), 490
beaver2 (beavers), 490
beavers , 490
Bessel , 35, 388
bessel (Bessel), 35
besselI (Bessel), 35
besselJ (Bessel), 35
besselK (Bessel), 35
besselY (Bessel), 35
Beta , 949
beta , 36, 950, 951
beta (Special), 387
bgroup (plotmath), 593
bindenv , 37
bindingIsActive (bindenv), 37
bindingIsLocked (bindenv), 37
bindtextdomain (gettext), 184
binom.test , 951, 1219
Binomial , 952
binomial , 1048
binomial (family), 1019
biplot , 954, 956, 1210
biplot.default , 956
biplot.prcomp , 1196
biplot.prcomp (biplot.princomp),

955
biplot.princomp , 955, 955, 1211
birthday , 957

bitmap , 570, 571, 597
bitmap (dev2bitmap), 569
BJsales , 491
BOD, 492
body , 39, 159, 170
body<- (body), 39
body<-,MethodDefinition-method

(MethodsList-class), 866
bold (plotmath), 593
bolditalic (plotmath), 593
box , 639, 643, 648, 656, 689, 690, 710, 716,

718, 726
Box.test , 958, 1315
boxplot , 555, 630, 640, 643, 706–708, 729
boxplot.stats , 554, 640, 642, 1031, 1225
bquote , 40, 413, 595
break , 350
break (Control), 80
browseEnv , 346, 1368
browser , 40, 97, 287, 450, 452, 453, 1447
browseURL , 1370, 1405, 1411, 1458
bs , 1111
bug.report , 288, 1371
build (PkgUtils), 1431
buildVignettes , 1339
builtins , 41
bw.bcv (bandwidth), 946
bw.nrd , 995, 997
bw.nrd (bandwidth), 946
bw.nrd0 (bandwidth), 946
bw.SJ (bandwidth), 946
bw.ucv (bandwidth), 946
bxp , 555, 640–642, 643
by , 42, 262, 441
bzfile (connections), 72

C, 147, 959, 976, 977, 1124
c , 43, 51, 94, 203, 230, 273, 464, 470
c.Date (Dates), 92
c.noquote (noquote), 273
c.numeric_version

(numeric_version), 283
c.POSIXct (DateTimeClasses), 93
c.POSIXlt (DateTimeClasses), 93
call , 22, 44, 112, 129, 134, 137, 207, 250,

251, 265, 268, 341, 999, 1004, 1071
call-class (language-class), 859
callCC , 46
callGeneric (GenericFunctions),

842
callNextMethod , 831, 864, 867, 868
canCoerce , 829, 833
cancor , 960

1510 INDEX

capabilities , 46, 76, 196, 571, 597, 1389
capture.output , 379, 448, 1373
cars , 493, 1111, 1184
case.names , 357
case.names (case/variable.names),

961
case/variable.names , 961
casefold (chartr), 54
cat , 47, 289, 299, 306, 472, 478, 479, 1049,

1460
Cauchy , 962
cbind , 49, 203, 262, 834, 1314
cbind.ts (ts), 1310
cbind2 , 834
cbind2,ANY,ANY-method (cbind2),

834
cbind2,ANY,missing-method

(cbind2), 834
cbind2-methods (cbind2), 834
ccf (acf), 906
cdplot , 645, 724
ceiling (Round), 352
char.expand , 51
character , 52, 146, 243, 273, 299, 307,

321, 433, 736, 738, 1468
character-class (BasicClasses),

830
charmatch , 52, 53, 189, 248, 300, 301
charset_to_Unicode (charsets),

1340
charsets , 1340
charToRaw , 331
charToRaw (rawConversion), 332
chartr , 53, 54, 189
check , 1394
check (PkgUtils), 1431
check.options , 556, 602, 606
check_tzones (DateTimeClasses), 93
checkCRAN (mirrorAdmin), 1422
checkDocFiles (QC), 1354
checkDocStyle (QC), 1354
checkFF , 1341
checkMD5sums , 1342, 1353
checkReplaceFuns (QC), 1354
checkS3methods (QC), 1354
checkTnF , 1343
checkVignettes , 1344
ChickWeight , 494
chickwts , 495
childNames (grid.grob), 776
chisq.test , 438, 507, 629, 963, 1029,

1337

Chisquare , 966, 1023, 1302
chol , 33, 56, 58, 124
chol2inv , 57, 58, 382
choose , 1379
choose (Special), 387
chooseCRANmirror , 291, 1374, 1465
chron , 23, 163
chull , 557
CIDFont , 601, 603, 605
CIDFont (Type1Font), 615
circleGrob (grid.circle), 761
CITATION , 1375
CITATION (citEntry), 1376
citation , 1375
citEntry , 1375, 1376, 1474
citFooter (citEntry), 1376
citHeader (citEntry), 1376
class , 30, 31, 59, 88, 114, 192, 207, 241,

273, 274, 281, 305, 330, 416, 438,
467, 661, 708, 878, 917, 1087, 1197,
1421

class<- (class), 59
Classes , 835, 838, 847, 864, 869, 899
classRepresentation-class , 835,

861, 877
classRepresentation-class , 837,

884
ClassUnionRepresentation-class

(setClassUnion), 883
clearNames , 968, 1246
clipboard (connections), 72
clipGrob (grid.clip), 762
close , 1442
close (connections), 72
close.screen (screen), 719
close.socket , 1378, 1418, 1441
close.srcfile (srcfile), 396
closeAllConnections

(showConnections), 374
cm, 558
cm.colors (Palettes), 587
cmdscale , 969
co.intervals (coplot), 650
CO2, 496
co2 , 497
codoc , 1345, 1359
codocClasses (codoc), 1345
codocData (codoc), 1345
coef , 626, 935, 970, 972, 1011, 1051, 1088,

1093, 1143, 1292, 1295
coefficients , 918, 1030, 1047, 1237
coefficients (coef), 970

INDEX 1511

coerce (as), 826
coerce,ANY,array-method (as), 826
coerce,ANY,call-method (as), 826
coerce,ANY,character-method (as),

826
coerce,ANY,complex-method (as),

826
coerce,ANY,environment-method

(as), 826
coerce,ANY,expression-method

(as), 826
coerce,ANY,function-method (as),

826
coerce,ANY,integer-method (as),

826
coerce,ANY,list-method (as), 826
coerce,ANY,logical-method (as),

826
coerce,ANY,matrix-method (as), 826
coerce,ANY,name-method (as), 826
coerce,ANY,NULL-method (as), 826
coerce,ANY,numeric-method (as),

826
coerce,ANY,single-method (as), 826
coerce,ANY,ts-method (as), 826
coerce,ANY,vector-method (as), 826
coerce-methods (as), 826
coerce<- (as), 826
col , 60, 355, 369, 380
col2rgb , 558, 562, 564, 587, 588, 611–613
colMeans (colSums), 62
colnames , 111, 498
colnames (row/colnames), 356
colnames<- (row/colnames), 356
Colon , 61
colorConverter , 563
colorConverter (make.rgb), 583
colorRamp , 559, 587
colorRampPalette (colorRamp), 559
colors , 558, 559, 561, 564, 587, 588, 694,

695, 712, 1007
colorspaces (convertColor), 563
colours (colors), 561
colSums , 62, 358
combn, 133, 388, 1378
commandArgs , 63, 399
comment , 30, 31, 64
comment<- (comment), 64
Compare , 66
Compare (S4groupGeneric), 875
compareVersion , 283, 1380

Comparison , 65, 146, 198, 293, 331, 384,
422

COMPILE, 1380, 1466
complete.cases , 267, 971
Complex , 67
Complex (S4groupGeneric), 875
Complex (groupGeneric), 190
complex , 66, 252, 282, 302
complex-class (BasicClasses), 830
computeRestarts (conditions), 68
condition (conditions), 68
conditionCall (conditions), 68
conditionMessage (conditions), 68
conditions , 68, 263
confint , 972, 1088, 1143
confint.glm , 972
confint.nls , 972
conflicts , 28, 71, 223
Conj (complex), 66
connection , 363, 1357, 1381, 1439, 1442,

1446
connection (connections), 72
connections , 72, 287, 289, 313, 335, 337,

339, 368, 375, 448, 479
Constants , 78
constrOptim , 973, 1139, 1141, 1159
contour , 288, 563, 578, 580, 630, 647, 657,

669, 689, 697
contourLines , 288, 562, 649
contourplot , 649, 657
contr.helmert , 977
contr.helmert (contrast), 975
contr.poly , 977, 1184
contr.poly (contrast), 975
contr.SAS (contrast), 975
contr.sum , 960, 977
contr.sum (contrast), 975
contr.treatment , 977, 1230
contr.treatment (contrast), 975
contrast , 975
contrasts , 142, 290, 960, 976, 976, 1124,

1243
contrasts<- (contrasts), 976
contrib.url , 1374
contrib.url (update.packages),

1475
contributors , 79, 81
Control , 80, 422
convertColor , 563, 583
convertHeight (grid.convert), 764
convertNative , 745
convertUnit (grid.convert), 764

1512 INDEX

convertWidth (grid.convert), 764
convertX (grid.convert), 764
convertY (grid.convert), 764
convolve , 977, 1025, 1026, 1074, 1137
cooks.distance , 1092, 1175
cooks.distance

(influence.measures), 1062
cophenetic , 979, 1231
coplot , 630, 650, 687, 688, 721, 1034
copyright , 81
copyrights (copyright), 81
cor , 980, 1196, 1210, 1211
cor.test , 981, 982
cos , 195
cos (Trig), 457
cosh (Hyperbolic), 195
count.fields , 1381, 1445
cov , 985, 1109, 1196, 1211
cov (cor), 980
cov.mcd , 1210
cov.mve , 1210
cov.wt , 981, 985, 1016, 1210
cov2cor (cor), 980
covratio , 1092
covratio (influence.measures),

1062
coxph , 1305, 1308
cpgram , 986, 1261
CRAN.packages (utils-deprecated),

1481
crimtab , 497
crossprod , 82
Cstack_info , 83
cummax(cumsum), 83
cummin (cumsum), 83
cumprod , 312
cumprod (cumsum), 83
cumsum, 83, 312
current.transform (Querying the

Viewport Tree), 812
current.viewport (Querying the

Viewport Tree), 812
current.vpPath (Querying the

Viewport Tree), 812
current.vpTree (Querying the

Viewport Tree), 812
curve , 653
curveGrob (grid.curve), 767
cut , 84, 86, 87, 390, 669
cut.Date , 92
cut.Date (cut.POSIXt), 86
cut.dendrogram (dendrogram), 991

cut.POSIXt , 86, 95
cut2 , 85
cutree , 987, 1054
cycle (time), 1308

D (deriv), 998
daisy , 1005
data , 78, 79, 226, 361, 1382, 1407, 1488
data.class , 87
data.entry , 1392, 1393, 1482
data.entry (dataentry), 1384
data.frame , 21, 25, 49–51, 64, 88, 91, 104,

110, 111, 141, 191, 243, 255, 262,
289, 307, 356, 366, 436, 457, 464,
621, 623, 701, 702, 1121, 1123,
1438–1440, 1445

data.frame-class (setOldClass),
891

data.matrix , 90, 255, 356, 685, 702
dataentry , 290, 1384
datasets (datasets-package), 483
datasets-package , 483
dataViewport , 746, 810
Date , 92, 107, 163, 191, 281, 286, 354, 370,

404, 431, 474, 1118
Date (Dates), 92
date , 23, 91, 108, 163, 234, 431, 1309
date-time , 108
date-time (DateTimeClasses), 93
Dates , 92, 95, 634
DateTimeClasses , 24, 79, 92, 93, 109,

150, 354, 372, 405, 431, 474, 634
dbeta , 1024, 1042
dbeta (Beta), 949
dbinom , 950, 1024, 1042, 1043, 1061, 1136,

1182, 1183, 1303
dbinom (Binomial), 952
dcauchy (Cauchy), 962
dcf , 95
dchisq , 1024, 1042
dchisq (Chisquare), 966
de (dataentry), 1384
debug , 41, 97, 170
debugger , 1386
decompose , 988
default.stringsAsFactors

(data.frame), 88
Defunct , 98, 102, 274, 1358, 1481
delayedAssign , 32, 98, 117, 413, 1468
delete.response , 989
delimMatch , 1346
deltat , 1083
deltat (time), 1308

INDEX 1513

demo, 387, 580, 582, 1388, 1395
dendrapply , 330, 990
dendrogram , 350, 979, 987, 990, 991, 1054,

1055, 1163
density , 646, 647, 663, 701, 709, 733, 946,

947, 995, 1170
density-class (setOldClass), 891
deparse , 53, 99, 101, 102, 116, 117, 271,

298, 320, 413, 734, 1405
deparseOpts , 101
Deprecated , 34, 98, 102, 274, 1278, 1358,

1481
deriv , 998, 1138, 1139
deriv3 (deriv), 998
det , 103, 124, 315
detach , 29, 104, 224–226, 279, 367, 468
determinant (det), 103
dev.control , 565
dev.control (dev2), 567
dev.copy (dev2), 567
dev.copy2eps (dev2), 567
dev.cur , 1, 568, 571
dev.cur (dev.xxx), 566
dev.interactive , 565, 571
dev.list (dev.xxx), 566
dev.next (dev.xxx), 566
dev.off (dev.xxx), 566
dev.prev (dev.xxx), 566
dev.print , 571, 597
dev.print (dev2), 567
dev.set (dev.xxx), 566
dev.xxx , 566
dev2 , 567
dev2bitmap , 569, 571
deviance , 1000, 1002, 1015, 1051, 1093,

1143
device (Devices), 570
deviceIsInteractive

(dev.interactive), 565
Devices , 565, 567, 570, 572, 590, 592, 597,

602, 607, 618, 620, 721
dexp (Exponential), 1013
df , 1303
df (FDist), 1023
df.kernel (kernel), 1075
df.residual , 1001, 1001, 1051, 1093,

1143
dfbeta (influence.measures), 1062
dfbetas , 1092
dfbetas (influence.measures), 1062
dffits , 1092
dffits (influence.measures), 1062

dgamma, 951, 967, 1014
dgamma(GammaDist), 1040
dgeom, 1136
dgeom (Geometric), 1043
dget , 118
dget (dput), 115
dhyper (Hypergeometric), 1060
diag , 105, 240, 254
diag<- (diag), 105
diana , 944
diff , 107, 1002, 1083, 1312
diff.ts , 107
diff.ts (ts-methods), 1312
diffinv , 107, 1002
difftime , 94, 95, 108, 191, 286, 370, 371
digamma (Special), 387
dim , 19, 20, 30, 31, 109, 143, 203, 255, 275,

440, 474
dim<- , 203
dim<- (dim), 109
dimnames , 19, 20, 30, 31, 82, 110, 110, 135,

203, 254, 269, 309, 356, 357, 440,
461, 464, 710

dimnames<- , 203
dimnames<- (dimnames), 110
dir (list.files), 231
dir.create (files), 152
dirname (basename), 34
discoveries , 499
displaystyle (plotmath), 593
dist , 970, 979, 1003, 1004, 1055
dlnorm , 1152
dlnorm (Lognormal), 1102
dlogis (Logistic), 1098
dmultinom (Multinomial), 1130
DNase, 500
dnbinom , 954, 1044, 1183
dnbinom (NegBinomial), 1135
dnorm , 1103
dnorm (Normal), 1151
do.call , 45, 112, 341
Documentation , 838
Documentation-class

(Documentation), 838
Documentation-methods

(Documentation), 838
dot (plotmath), 593
dotchart , 638, 654, 700
double , 113, 114, 143, 200, 281, 340, 623
double-class (BasicClasses), 830
download.file , 47, 74, 232, 287, 289,

1389, 1428, 1476, 1479–1481

1514 INDEX

download.packages , 1390
download.packages

(update.packages), 1475
downViewport , 756, 819
downViewport (Working with

Viewports), 820
dpois , 954, 1136
dpois (Poisson), 1182
dput , 101, 102, 115, 118, 361, 1391, 1430,

1467
dQuote , 413
dQuote (sQuote), 394
draw.details (drawDetails), 747
drawDetails , 747
drop , 116, 253
drop.scope (factor.scope), 1018
drop.terms (delete.response), 989
drop1 , 116, 918, 919, 921, 1015, 1019, 1279,

1280
drop1 (add1), 909
dsignrank , 1334
dsignrank (SignRank), 1248
dt , 963, 1024
dt (TDist), 1302
dummy.coef , 1006
dump, 101, 102, 116, 117, 361
dump.frames , 287, 1447
dump.frames (debugger), 1386
dump.frames-class (setOldClass),

891
dumpMethod (GenericFunctions), 842
dumpMethods (GenericFunctions),

842
dunif (Uniform), 1319
duplicated , 118, 462
duplicated.POSIXlt

(DateTimeClasses), 93
dweibull , 1014
dweibull (Weibull), 1327
dwilcox , 1248
dwilcox (Wilcoxon), 1333
dyn.load , 4, 120, 157, 158, 178, 182, 227,

228, 1381, 1466
dyn.unload , 228
dyn.unload (dyn.load), 120

eapply , 122, 217
ecdf , 154, 1007, 1180, 1225, 1281
edit , 101, 291, 451, 452, 1386, 1391, 1393,

1396, 1397, 1400, 1430, 1483
edit.data.frame , 1391, 1392, 1392,

1397, 1482

edit.matrix (edit.data.frame),
1392

edit.vignette (vignette), 1482
editDetails , 748
editGrob , 750, 753
editGrob (grid.edit), 771
eff.aovlist , 1009
effects , 918, 1010, 1048, 1051, 1088, 1093
eigen , 123, 211, 315, 418, 1196, 1210, 1211
else , 350
else (Control), 80
emacs (edit), 1391
embed, 1011
embedFonts , 571, 590, 601, 604
emptyenv (environment), 127
encoded_text_to_latex , 1347
encodeString , 48, 125, 162, 272, 309
Encoding , 126, 332
Encoding<- (Encoding), 126
end , 1311
end (start), 1276
engine.display.list

(grid.display.list), 769
env.profile (environment), 127
environment , 22, 25–27, 29, 101, 127, 129,

130, 132, 176, 217, 230, 241, 346,
347, 425, 556, 609, 1281, 1369,
1382, 1387

environment-class , 840
environment<- (environment), 127
environmentIsLocked (bindenv), 37
environmentName (environment), 127
erase.screen (screen), 719
Error (aov), 925
esoph , 501, 1048
estVar (SSD), 1269
euro , 502
eurodist , 503
EuStockMarkets , 503
eval , 128, 129, 134, 218, 298, 387, 413, 427,

609, 1484
evalq , 477
evalq (eval), 129
example , 291, 1393, 1411, 1488
exists , 26, 128, 131, 177, 1416
existsMethod (getMethod), 847
exp , 1014
exp (log), 236
expand.grid , 133, 1205, 1379
expand.model.frame , 1012, 1123
expm1 (log), 236
Exponential , 1013, 1328

INDEX 1515

expression , 45, 80, 100, 129, 130, 134,
137, 207, 298, 413, 609, 641, 672,
684, 730, 736, 738, 793, 801, 999

expression-class (BasicClasses),
830

extendrange , 328, 572
extends , 836, 884, 890
extends (is), 855
externalptr-class (BasicClasses),

830
Extract , 135, 141, 142, 380, 422
Extract.data.frame , 139
Extract.factor , 142
extractAIC , 911, 915, 916, 1001, 1014,

1278, 1279
Extremes , 143

F (logical), 239
factanal , 1015, 1094, 1134, 1326
factor , 61, 66, 85, 114, 136, 142, 145, 187,

191, 202, 220, 240, 273, 417, 437,
439, 641, 651, 705, 706, 1046, 1124,
1230

factor-class (setOldClass), 891
factor.scope , 1018
factorial (Special), 387
faithful , 504
FALSE, 350
FALSE(logical), 239
family , 1019, 1045, 1047, 1099, 1110, 1185
family.glm (glm.summaries), 1050
family.lm (lm.summaries), 1092
fdeaths (UKLungDeaths), 544
FDist , 1023
fft , 978, 996, 1024, 1137, 1260
fifo (connections), 72
file , 197, 335, 337, 339, 363, 364, 375, 386,

396, 448, 479, 1443, 1444, 1456
file (connections), 72
file.access , 147, 150, 152, 153, 231
file.append (files), 152
file.choose , 148, 231
file.copy (files), 152
file.create (files), 152
file.edit , 1395, 1483
file.exists , 1396
file.exists (files), 152
file.info , 148, 149, 153, 231, 284, 1349,

1396
file.path , 35, 150, 153, 1349, 1396
file.remove , 462, 463
file.remove (files), 152
file.rename (files), 152

file.show , 151, 153, 288, 1396, 1405,
1430, 1480

file.symlink (files), 152
file_path_as_absolute

(fileutils), 1348
file_path_sans_ext (fileutils),

1348
file_test , 153, 1396
files , 150, 151, 152, 231, 1396
fileutils , 1348
filled.contour , 548, 630, 649, 655, 669,

689
Filter (funprog), 171
filter , 943, 978, 1025, 1074
find , 241, 844
find (apropos), 1366
findClass (setClass), 879
findFunction (GenericFunctions),

842
findInterval , 85, 153, 248
findMethod (getMethod), 847
findRestart (conditions), 68
finite (is.finite), 204
fisher.test , 1027
fitted , 1029, 1051, 1088, 1093, 1134, 1143
fitted.values , 918, 971, 1048, 1237,

1249
fivenum , 555, 1030, 1070, 1225
fix , 1391, 1392, 1396, 1397, 1401, 1430
fixInNamespace

(getFromNamespace), 1400
fixPre1.8 , 840
fligner.test , 925, 949, 1031, 1129
floor (Round), 352
flush (connections), 72
flush.console , 1398
for , 350, 1433
for (Control), 80
for-class (language-class), 859
force , 130, 155
Foreign , 156, 1342
Formaldehyde , 505
formals , 16, 17, 159, 229, 230, 270
formals<- (formals), 159
format , 48, 52, 160, 164, 165, 167, 168, 255,

305–307, 417, 449, 450, 1003, 1214,
1398, 1486

format.Date , 92, 161, 162
format.difftime (difftime), 108
format.dist (dist), 1003
format.ftable (read.ftable), 1227
format.hexmode (hexmode), 194

1516 INDEX

format.info , 162, 164
format.octmode (octmode), 284
format.POSIXct , 24, 161
format.POSIXct (strptime), 402
format.POSIXlt , 24
format.POSIXlt (strptime), 402
format.pval , 165, 1213, 1214
formatC , 162, 165, 166, 393
formatDL , 168, 1357, 1399
formatOL (format), 1398
formatUL (format), 1398
formula , 25, 62, 127, 320, 449, 649, 705,

707, 945, 999, 1033, 1035, 1045,
1086, 1087, 1095, 1122, 1123, 1142,
1143, 1306–1308, 1336

formula-class (setOldClass), 891
formula.lm (lm.summaries), 1092
formula.nls , 1035
forwardsolve (backsolve), 33
fourfoldplot , 658
frac (plotmath), 593
frame , 659, 1430
frameGrob (grid.frame), 772
freeny , 506, 1089
frequency , 1311
frequency (time), 1308
friedman.test , 1035, 1223
ftable , 438, 912, 1037, 1040, 1228, 1404
ftable.default , 1039, 1040
ftable.formula , 1038, 1039, 1039
function , 22, 39, 45, 127, 134, 159, 169,

204, 350, 651, 701
function-class (BasicClasses), 830
functionWithTrace-class

(TraceClasses), 900
funprog , 171
fuzzy matching , 1408
fuzzy matching (agrep), 7

Gamma, 1099
Gamma(family), 1019
gamma, 35, 36, 1041, 1042
gamma(Special), 387
gammaCody, 388
gammaCody(Bessel), 35
GammaDist , 1040
gaussian , 1099
gaussian (family), 1019
gc , 172, 174, 259, 260, 342, 435
gc.time , 174, 311
gcinfo , 259
gcinfo (gc), 172
gctorture , 173, 175

gEdit , 749
gEditList (gEdit), 749
genericFunction-class , 841
GenericFunctions , 842, 849, 861, 896
genericFunctionWithTrace-class

(TraceClasses), 900
Geometric , 1043
get , 26, 128, 132, 175, 252, 276, 302, 556,

881, 1400–1402, 1416
get.gpar (gpar), 750
get_all_vars (model.frame), 1121
getAllConnections

(showConnections), 374
getAnywhere , 1399, 1421
getCallingDLL , 177
getCallingDLLe (getCallingDLL),

177
getCConverterDescriptions

(getNumCConverters), 182
getCConverterStatus

(getNumCConverters), 182
getClass , 837, 846, 898, 899
getClassDef , 837
getClassDef (getClass), 846
getClasses (setClass), 879
getConnection (showConnections),

374
getCRANmirrors

(chooseCRANmirror), 1374
getDepList , 1350
getDLLRegisteredRoutines , 178, 180,

182
geterrmessage , 459, 1386
geterrmessage (stop), 400
getFromNamespace , 1400, 1400
getGeneric , 843, 844
getGenerics , 870, 871
getGenerics (GenericFunctions),

842
getGraphicsEvent , 573
getGrob , 753, 758, 772, 774, 796
getGrob (grid.get), 773
getHook (UserHooks), 467
getInitial , 1044
getLoadedDLLs , 121, 178, 179, 179, 228
getMethod , 845, 847, 1406
getMethods (getMethod), 847
getMethodsMetaData , 849
getNames , 750
getNativeSymbolInfo , 180, 180
getNumCConverters , 182

INDEX 1517

getOption , 89, 160, 164, 307, 308, 404,
471, 565, 566, 1406

getOption (options), 286
getPackageName , 850, 861
getpid , 184
getRversion , 322
getRversion (numeric_version), 283
getS3method , 467, 1401, 1401, 1421
getSrcLines (srcfile), 396
getTaskCallbackNames , 442, 444
getTaskCallbackNames

(taskCallbackNames), 445
gettext , 184, 263, 391, 393, 400, 471, 472,

1362
gettextf , 1362
gettextf (sprintf), 391
getValidity , 902
getwd , 186, 231, 363, 423, 1442
gl , 147, 187, 372
gList (grid.grob), 776
glm , 417, 909, 910, 918, 919, 971, 976, 977,

1001, 1002, 1019, 1021, 1030, 1033,
1034, 1045, 1049–1051, 1063, 1064,
1070, 1088, 1091, 1093, 1102, 1110,
1121, 1133, 1154, 1173, 1200, 1237,
1249, 1278, 1279, 1289, 1291, 1305,
1306, 1326, 1329

glm-class (setOldClass), 891
glm.control , 1046, 1049
glm.fit , 1049, 1050
glm.null-class (setOldClass), 891
glm.summaries , 1050
glob2rx , 189, 231, 241, 346, 1367, 1402
globalenv , 22
globalenv (environment), 127
gpar , 600, 603, 618, 750
gPath , 752, 788
graphics (graphics-package), 625
graphics-package , 625
graphics.off , 571
graphics.off (dev.xxx), 566
gray , 562, 574, 575, 581, 587, 588, 611, 694
gray.colors , 575, 646, 723
grDevices (grDevices-package), 553
grDevices-package , 553
gregexpr (grep), 187
grep , 8, 53, 54, 187, 241, 301, 342, 346, 407,

1409, 1462
grey , 560
grey (gray), 574
grey.colors (gray.colors), 575

Grid , 753, 756, 759, 762, 763, 768, 776, 779,
780, 785, 786, 790, 791, 795, 797,
799, 801, 802, 804, 806, 808

grid , 553, 625, 660, 1172
Grid Viewports , 754
grid-package , 743
grid.add , 757
grid.arrows , 758
grid.circle , 761
grid.clip , 762
grid.collection , 763
grid.convert , 746, 764
grid.convertHeight

(grid.convert), 764
grid.convertWidth (grid.convert),

764
grid.convertX (grid.convert), 764
grid.convertY (grid.convert), 764
grid.copy , 766
grid.curve , 767
grid.display.list , 769
grid.draw , 748, 770, 777
grid.edit , 749, 771, 777, 788, 819
grid.frame , 772, 788
grid.gedit (grid.edit), 771
grid.get , 773, 777
grid.gget (grid.get), 773
grid.grab , 774
grid.grabExpr (grid.grab), 774
grid.gremove (grid.remove), 795
grid.grill , 775
grid.grob , 764, 766, 776, 798
grid.layout , 753, 756, 777, 799, 814
grid.line.to , 759
grid.line.to (grid.move.to), 784
grid.lines , 759, 779
grid.locator , 781
grid.ls , 782
grid.move.to , 784
grid.newpage , 785, 792
grid.pack , 773, 786, 788
grid.place , 788, 788
grid.plot.and.legend , 789
grid.points , 789
grid.polygon , 790
grid.polyline (grid.lines), 779
grid.pretty , 792
grid.prompt , 792
grid.record , 793
grid.rect , 794
grid.refresh , 795
grid.remove , 795

1518 INDEX

grid.segments , 759, 796
grid.set , 798
grid.show.layout , 756, 779, 799
grid.show.viewport , 800
grid.text , 801
grid.xaxis , 803, 808
grid.xspline , 768, 804
grid.yaxis , 804, 807
grob , 750, 753, 758, 770, 772, 774, 783, 796
grob (grid.grob), 776
grobHeight (grobWidth), 808
grobName , 808
grobPathListing (grid.ls), 782
grobWidth , 808, 809, 813
grobX , 809, 823
grobY , 823
grobY (grobX), 809
group (plotmath), 593
group generic , 60, 146, 203, 466
group generic (groupGeneric), 190
groupGeneric , 190
groupGenericFunction-class

(genericFunction-class),
841

groupGenericFunctionWithTrace-class
(TraceClasses), 900

gsub , 55
gsub (grep), 187
gTree , 775
gTree (grid.grob), 776
gzcon , 74, 76, 193
gzfile , 193
gzfile (connections), 72

HairEyeColor , 507
Harman23.cor , 508, 1018
Harman74.cor , 508, 1018, 1326
hasArg , 851
hasMethod (getMethod), 847
hasTsp (tsp), 1315
hat , 1092, 1105, 1174
hat (influence.measures), 1062
hat (plotmath), 593
hatvalues , 1175
hatvalues (influence.measures),

1062
hcl , 562, 575, 576, 581, 588, 611, 694
hclust , 944, 979, 987, 1005, 1051, 1055,

1056, 1062, 1229
head , 1403
heat.colors , 560, 562, 668, 669
heat.colors (Palettes), 587
heatmap , 669, 1054, 1231

heightDetails , 744
heightDetails (widthDetails), 820
help , 17, 151, 291, 838, 1384, 1394, 1404,

1409, 1411, 1434, 1488
help.search , 346, 1367, 1407, 1408, 1458
help.start , 290, 1405–1407, 1409, 1410,

1417, 1458
Hershey , 578, 582, 649, 690, 737, 752
hexmode , 194, 284
hist , 586, 638, 661, 664, 665, 708, 709, 711,

718, 723, 724, 997
hist.Date , 92
hist.Date (hist.POSIXt), 664
hist.default , 665
hist.POSIXt , 664
history (savehistory), 1461
HoltWinters , 1057, 1171, 1201
hsearch-class (setOldClass), 891
hsv , 562, 575–577, 581, 587, 588, 611–613,

616, 669, 691, 694
Hyperbolic , 195
Hypergeometric , 1060

I , 21, 89, 90, 1033, 1034, 1486
I (AsIs), 24
iconv , 47, 75, 126, 196, 619, 1347, 1415,

1427
iconvlist , 396
iconvlist (iconv), 196
identical , 10, 11, 66, 197, 205
identify , 665, 678, 1062
identify.hclust , 1053, 1054, 1061,

1229
if , 199, 238, 296, 350
if (Control), 80
if-class (language-class), 859
ifelse , 81, 199
Im (complex), 66
image , 570, 571, 649, 657, 668, 689, 697,

711, 1054–1056, 1299
implicitGeneric , 852, 887
in (Control), 80
index.search , 1411
Indometh , 509
Inf , 18, 154, 156, 282, 350, 1030
Inf (is.finite), 204
inf (plotmath), 593
infert , 510, 1048
influence , 1064, 1065, 1093, 1174, 1329
influence (lm.influence), 1091
influence.measures , 1051, 1062, 1091,

1092, 1094, 1237
inherits (class), 59

INDEX 1519

initialize , 836, 838, 854, 901
initialize (new), 868
initialize,ANY-method

(initialize-methods), 854
initialize,data.frame-method

(setOldClass), 891
initialize,environment-method

(initialize-methods), 854
initialize,factor-method

(setOldClass), 891
initialize,ordered-method

(setOldClass), 891
initialize,signature-method

(initialize-methods), 854
initialize,summary.table-method

(setOldClass), 891
initialize,table-method

(setOldClass), 891
initialize,traceable-method

(initialize-methods), 854
initialize-methods , 869
initialize-methods , 854
InsectSprays , 511
INSTALL , 225, 226, 850, 1412, 1414, 1426,

1432, 1451, 1465, 1478, 1479
install.packages , 225, 226, 291, 1351,

1352, 1426, 1429, 1451, 1465
install.packages

(update.packages), 1475
installed.packages , 224, 226, 1350,

1413, 1429, 1478, 1479
installFoundDepends , 1351, 1351
Insurance , 1154
integer , 61, 88, 110, 114, 143, 164, 200,

219, 252, 275, 281, 282, 323, 476,
498

integer-class (BasicClasses), 830
integral (plotmath), 593
integrate , 1065
integrate-class (setOldClass), 891
interaction , 61, 62, 201
interaction.plot , 706, 1067
interactive , 202, 288
Internal , 202
internal generic , 60, 192, 210, 465,

466, 887
internal generic

(InternalMethods), 203
InternalGenerics , 466
InternalGenerics

(InternalMethods), 203

InternalMethods , 19, 52, 136, 146, 203,
205, 219, 255, 267, 281, 463, 1311,
1355

interpSpline , 1265
intersect (sets), 373
intToBits (rawConversion), 332
intToUtf8 (utf8Conversion), 469
inverse.gaussian , 1099
inverse.gaussian (family), 1019
inverse.rle (rle), 351
invisible , 170, 204, 305, 586, 896, 1062,

1484
invokeRestart (conditions), 68
invokeRestartInteractively

(conditions), 68
IQR, 585, 1031, 1069, 1108
iris , 511
iris3 (iris), 511
is , 60, 470, 837, 855, 877
is.array , 203
is.array (array), 19
is.atomic , 365
is.atomic (is.recursive), 209
is.call (call), 44
is.character (character), 52
is.complex (complex), 66
is.data.frame (as.data.frame), 20
is.double , 281
is.double (double), 113
is.element , 248
is.element (sets), 373
is.empty.model , 1070
is.environment (environment), 127
is.expression (expression), 134
is.factor (factor), 145
is.finite , 204
is.function , 206
is.infinite (is.finite), 204
is.integer (integer), 200
is.language , 45, 207, 209, 268
is.leaf (dendrogram), 991
is.list , 209, 470
is.list (list), 229
is.loaded , 180, 182
is.loaded (dyn.load), 120
is.logical (logical), 239
is.matrix , 203
is.matrix (matrix), 254
is.mts (ts), 1310
is.na , 146, 203, 971
is.na (NA), 266

1520 INDEX

is.na.POSIXlt (DateTimeClasses),
93

is.na<- (NA), 266
is.na<-.factor (factor), 145
is.name (name), 267
is.nan , 203, 267
is.nan (is.finite), 204
is.null (NULL), 280
is.numeric , 203, 359, 470
is.numeric (numeric), 280
is.numeric_version

(numeric_version), 283
is.object , 60, 203, 207, 465, 467, 554
is.ordered (factor), 145
is.package_version

(numeric_version), 283
is.pairlist (list), 229
is.primitive (is.function), 206
is.qr (qr), 314
is.R , 208
is.raw (raw), 331
is.real (real), 340
is.recursive , 136, 209
is.relistable (relist), 1448
is.single , 210
is.stepfun (stepfun), 1280
is.symbol , 50
is.symbol (name), 267
is.table (table), 437
is.ts (ts), 1310
is.tskernel (kernel), 1075
is.unsorted (sort), 383
is.vector (vector), 469
isClass , 833, 846, 847
isClass (setClass), 879
isClassUnion (setClassUnion), 883
isGeneric (GenericFunctions), 842
isGroup (GenericFunctions), 842
isIncomplete , 447
isIncomplete (connections), 72
islands , 513
ISOdate (strptime), 402
ISOdatetime (strptime), 402
isoMDS , 970, 1072
isOpen (connections), 72
isoreg , 1071, 1172
isRestart (conditions), 68
isS4 , 207, 210, 460
isSealedClass (isSealedMethod),

858
isSealedMethod , 858
isSeekable (seek), 367

isSymmetric , 211
isTRUE , 11, 198
isTRUE (Logic), 237
italic (plotmath), 593

Japanese , 580, 582
jitter , 212, 719, 732
JohnsonJohnson , 513, 1316
jpeg , 47, 570, 571
jpeg (png), 596
julian (weekdays), 473

KalmanForecast , 1198
KalmanForecast (KalmanLike), 1072
KalmanLike , 936, 1072, 1286, 1287
KalmanRun (KalmanLike), 1072
KalmanSmooth , 1316
KalmanSmooth (KalmanLike), 1072
kappa , 213
kernapply , 1074, 1076
kernel , 1074, 1075
kmeans , 1054, 1076
knots , 1179, 1281
knots (stepfun), 1280
kronecker , 214, 295
kruskal.test , 1078, 1155, 1332
ks.test , 1080
ksmooth , 1082

l10n_info , 215, 235
La.svd (svd), 417
labels , 216, 994, 1093, 1306
labels.dendrogram

(order.dendrogram), 1162
labels.dist (dist), 1003
labels.lm (lm.summaries), 1092
labels.terms (terms), 1305
lag , 1083
lag.plot , 1084
LakeHuron , 514
language-class , 859
lapply , 15, 122, 216, 251, 329, 330, 441,

914, 991
Last.value , 218
last.warning (warnings), 472
layout , 567, 585, 670, 692, 695, 720, 721,

779, 1056
lbeta (Special), 387
lchoose (Special), 387
lcm (layout), 670
ldeaths (UKLungDeaths), 544
legend , 134, 593, 672, 718, 1068
length , 203, 219

INDEX 1521

length<- , 203
length<- (length), 219
LETTERS(Constants), 78
letters (Constants), 78
levelplot , 649, 657, 669
levels , 30, 31, 147, 220, 240, 273, 1230,

1232
levels<- , 203
levels<- (levels), 220
lfactorial (Special), 387
lgamma (Special), 387
lh , 514
libPaths , 221
library , 28, 29, 32, 104, 105, 222, 223, 228,

277, 278, 288, 366, 430, 468, 480,
844, 850, 1380, 1407, 1413, 1479

library.dynam , 121, 122, 178, 224, 226,
227, 1466

library.dynam.unload , 105, 121
libraryIQR-class (setOldClass),

891
licence (license), 228
license , 81, 228
LifeCycleSavings , 515, 1089
limitedLabels (recover), 1447
line , 1085
linearizeMlist , 860, 861, 867
LinearMethodsList-class , 860
lines , 621, 626, 653, 661, 676, 679, 680,

688–690, 692, 697, 701, 708, 709,
712, 714, 716, 722, 741, 1172, 1181,
1304

lines.formula (plot.formula), 707
lines.histogram (plot.histogram),

708
lines.isoreg (plot.isoreg), 1172
lines.stepfun (plot.stepfun), 1179
lines.ts (plot.ts), 1180
linesGrob (grid.lines), 779
lineToGrob (grid.move.to), 784
LINK , 1414
link-glm , 1020
list , 104, 138, 176, 229, 267, 287, 315, 321,

363, 440, 457, 1172, 1253, 1379,
1423, 1446, 1465

list-class (BasicClasses), 830
list.files , 149–151, 153, 186, 231, 346,

434, 1349
list_files_with_exts (fileutils),

1348
list_files_with_type (fileutils),

1348

listFromMlist , 867
lm , 290, 417, 463, 909–911, 920, 921, 927,

962, 971, 972, 976, 977, 1001, 1002,
1010, 1014, 1019, 1030, 1033, 1034,
1048, 1063, 1070, 1079, 1086, 1086,
1089–1093, 1106, 1107, 1133, 1173,
1186, 1203, 1204, 1217, 1237, 1249,
1278, 1291, 1292, 1305, 1306, 1329,
1467

lm-class (setOldClass), 891
lm.fit , 315, 1087, 1089, 1089
lm.influence , 1064, 1065, 1088, 1091,

1105, 1106, 1175, 1329
lm.summaries , 1092
lm.wfit , 1089
lm.wfit (lm.fit), 1089
lme , 926
load , 28, 232, 361, 1383
loadedNamespaces , 367
loadedNamespaces (ns-load), 278
loadhistory (savehistory), 1461
loadings , 1094, 1210
loadNamespace , 277, 468
loadNamespace (ns-load), 278
Loblolly , 516
local , 341, 398
local (eval), 129
localeconv , 216, 233
locales , 65, 163, 234, 343, 405
localeToCharset , 197, 386, 1415
locator , 667, 672, 677
lockBinding , 26, 447
lockBinding (bindenv), 37
lockEnvironment , 347
lockEnvironment (bindenv), 37
loess , 1095, 1097, 1104, 1205, 1240, 1251,

1284
loess.control , 1095, 1096, 1097
loess.smooth (scatter.smooth),

1239
log , 236, 253, 876
log10 (log), 236
log1p (log), 236
log2 (log), 236
logb (log), 236
Logic , 237, 331, 422, 475
Logic (S4groupGeneric), 875
logical , 239, 239, 252, 401, 474
logical-class (BasicClasses), 830
Logistic , 1098
logLik , 915, 916, 1014, 1021, 1099, 1143
logLik-class (setOldClass), 891

1522 INDEX

logLik.gls , 1100
logLik.lme , 1100
loglin , 507, 681, 683, 1048, 1100
loglm , 1048, 1102
Lognormal , 1102
longley , 516, 1089
lower.tri , 106, 240
lowess , 621, 688, 1096, 1103, 1251
lqs , 1122
ls , 128, 241, 302, 346, 347, 1369, 1416
ls.diag , 1105, 1106, 1107
ls.print , 1105, 1106, 1107
ls.str , 128, 241, 1416, 1469
lsf.str (ls.str), 1416
lsfit , 315, 316, 1105, 1106, 1106
lynx , 517

mad, 585, 1070, 1108, 1242
mahalanobis , 1109
make.link , 1021, 1110, 1185
make.names , 89, 90, 242, 243, 1437, 1444
make.packages.html , 1417
make.rgb , 563, 564, 583
make.socket , 47, 1378, 1418, 1441
make.unique , 140, 242, 243, 243, 1426
makeActiveBinding (bindenv), 37
makeARIMA(KalmanLike), 1072
makeClassRepresentation , 861, 882
makeLazyLoading , 1352
makepredictcall , 1111
makepredictcall.poly (poly), 1183
manglePackageName , 244
manova, 1112, 1294
mantelhaen.test , 1113
maov-class (setOldClass), 891
Map (funprog), 171
mapply , 171, 217, 244, 441
margin.table , 246, 312, 438, 912
mat.or.vec , 247
match , 54, 140, 189, 247, 301, 475
match.arg , 248, 249, 251, 252, 301, 1004
match.call , 249, 250, 301, 848
match.fun , 15, 122, 217, 245, 249, 251,

251, 295, 301, 419
Math , 84, 146, 195, 236, 237, 252, 252, 253,

352, 353, 377, 388, 458, 1355
Math (S4groupGeneric), 875
Math (groupGeneric), 190
Math,structure-method

(StructureClasses), 899
Math.data.frame , 90
Math.Date (Dates), 92
Math.difftime (difftime), 108

Math.factor (factor), 145
Math.POSIXlt (DateTimeClasses), 93
Math.POSIXt (DateTimeClasses), 93
Math2 , 353
Math2 (S4groupGeneric), 875
matlines (matplot), 678
matmult , 253
matplot , 512, 678
matpoints (matplot), 678
matrix , 20, 91, 106, 111, 138, 211, 240, 254,

254, 275, 652, 680, 1378, 1379
matrix-class (StructureClasses),

899
mauchly.test , 1115, 1270
max, 328, 475, 476, 928
max (Extremes), 143
max.col , 476
max.col (maxCol), 256
maxCol , 256
mcnemar.test , 1117
md5sum, 1342, 1353
mdeaths (UKLungDeaths), 544
mean, 63, 257, 928, 946, 1302, 1329
mean.Date (Dates), 92
mean.difftime (difftime), 108
mean.POSIXct , 257
mean.POSIXct (DateTimeClasses), 93
mean.POSIXlt (DateTimeClasses), 93
median , 946, 1031, 1108, 1118, 1120, 1251
medpolish , 1119
mem.limits , 1409
mem.limits (Memory), 258
Memory, 173, 258, 259, 288, 342, 399
Memory-limits , 259, 1425
Memory-limits , 259, 1419
memory.limit (memory.size), 1419
memory.profile , 259, 260
memory.size , 1419
menu, 1374, 1420, 1463
merge , 261
message , 262, 378, 472, 1362
method.skeleton , 862, 890
MethodDefinition-class , 849, 868,

897
MethodDefinition-class , 863
MethodDefinitionWithTrace-class

(TraceClasses), 900
Methods , 97, 328, 825, 829, 832, 837, 845,

846, 848, 849, 854, 857, 859, 862,
864, 867, 873, 874, 882, 884, 887,
889, 890, 892, 896, 899, 903

INDEX 1523

methods , 10, 192, 203, 207, 241, 274, 306,
416, 465, 467, 1050, 1092, 1289,
1402, 1407, 1421

methods-package , 825
MethodsList , 889, 890
MethodsList-class , 861, 864
MethodsList-class , 866
MethodsListSelect (getMethod), 847
MethodWithNext-class , 864
MethodWithNext-class , 867
MethodWithNextWithTrace-class

(TraceClasses), 900
mget (get), 175
min , 328, 475, 928
min (Extremes), 143
mirror2html (mirrorAdmin), 1422
mirrorAdmin , 1422
missing , 264, 413, 851
missing-class (BasicClasses), 830
mlm-class (setOldClass), 891
Mod, 10, 252
Mod (complex), 66
mode, 11, 59, 114, 132, 176, 265, 281, 373,

413, 460, 465, 1366, 1416
mode<- (mode), 265
model.extract , 1120, 1124
model.frame , 924, 948, 983, 1012, 1016,

1031, 1034, 1036, 1039, 1078, 1111,
1120, 1121, 1121, 1124, 1129, 1154,
1155, 1192, 1195, 1209, 1222, 1300,
1324, 1330, 1336

model.frame.default , 1111
model.matrix , 20, 89, 1087, 1123, 1123,

1306, 1324
model.matrix.default , 1087
model.offset , 1046, 1087, 1154
model.offset (model.extract), 1120
model.response (model.extract),

1120
model.tables , 926, 927, 1006, 1125, 1217,

1233, 1243, 1288, 1319
model.tables.aovlist , 1009
model.weights (model.extract),

1120
modifyList , 1423
month.abb (Constants), 78
month.name (Constants), 78
monthplot , 1126
months (weekdays), 473
mood.test , 925, 949, 1032, 1128, 1325
morley , 518
mosaic , 682

mosaicplot , 507, 629, 659, 680, 710, 724
mostattributes<- (attributes), 30
moveToGrob (grid.move.to), 784
mtable-class (setOldClass), 891
mtcars , 519
mtext , 593, 595, 652, 683, 689, 691, 737, 738
mts-class (setOldClass), 891
Multinomial , 1130
mvfft (fft), 1024

n2mfrow , 584, 1084
NA, 65, 107, 145, 146, 154, 156, 205, 219, 238,

240, 264, 266, 290, 305, 307, 327,
328, 350, 364, 438, 474, 554, 558,
620, 623, 640, 660, 981, 1030, 1055,
1131, 1132, 1164, 1192, 1213, 1221,
1224, 1298, 1437, 1443, 1475

na.action , 267, 1091, 1131, 1133, 1134
na.contiguous , 1132, 1133, 1312
na.exclude , 1045, 1086, 1091, 1092, 1134,

1143
na.exclude (na.fail), 1132
na.fail , 267, 971, 1012, 1045, 1086, 1122,

1131, 1132, 1132, 1143, 1195, 1209,
1312

na.omit , 267, 971, 1012, 1045, 1086, 1122,
1131, 1132, 1134, 1143, 1195, 1209,
1312

na.omit (na.fail), 1132
na.omit.ts , 1132
na.omit.ts (ts-methods), 1312
na.pass (na.fail), 1132
NA_character_ , 299, 350
NA_character_ (NA), 266
NA_complex_ , 350
NA_complex_ (NA), 266
NA_integer_ , 18, 350
NA_integer_ (NA), 266
NA_real_ , 198, 350
NA_real_ (NA), 266
name, 48, 129, 135, 207, 223, 267, 1388, 1405
name-class (language-class), 859
names, 10, 19, 30, 31, 82, 90, 106, 111, 135,

138, 143, 203, 217, 243, 269, 356,
357, 461, 464, 1224

names<- , 203
names<- (names), 269
NaN, 18, 65, 156, 198, 267, 282, 350, 554,

1030, 1224
NaN(is.finite), 204
napredict , 1017, 1030, 1133, 1200, 1203,

1210
napredict (naresid), 1134

1524 INDEX

naprint , 1133
naresid , 1051, 1091, 1093, 1133, 1134,

1237
nargs , 270
NativeSymbol , 156
NativeSymbol

(getNativeSymbolInfo), 180
NativeSymbolInfo , 156, 1341
NativeSymbolInfo

(getNativeSymbolInfo), 180
nchar , 161, 271, 299, 407, 415, 450, 731
nclass , 585
nclass.FD , 663
nclass.scott , 663
nclass.Sturges , 663
NCOL, 357
NCOL(nrow), 275
ncol , 110
ncol (nrow), 275
NegBinomial , 1135
nestedListing (grid.ls), 782
new, 836, 837, 854, 868, 881, 902
new.env , 840
new.env (environment), 127
new.packages (update.packages),

1475
next , 350
next (Control), 80
NextMethod , 60
NextMethod (UseMethod), 465
nextn , 978, 1025, 1137
ngettext , 1362
ngettext (gettext), 184
nhtemp , 519
Nile , 520, 1316
nlevels , 147, 220, 272
nlm , 999, 1137, 1141, 1159, 1162, 1321, 1449
nlminb , 1139, 1140, 1159
nls , 182, 1030, 1035, 1044, 1139, 1142,

1147, 1177, 1207, 1215, 1237, 1245,
1266–1269, 1271–1276, 1295

nls.control , 1142, 1144, 1146
NLSstAsymptotic , 1148
NLSstClosestX , 1148, 1149, 1150, 1257
NLSstLfAsymptote , 1149, 1149, 1257
NLSstRtAsymptote , 1149, 1150, 1150,

1257
noquote , 273, 306, 309, 1298, 1340
Normal , 1151
normalizePath , 1423
nottem , 521
NotYet , 274

NotYetImplemented (NotYet), 274
NotYetUsed (NotYet), 274
NROW, 357
NROW(nrow), 275
nrow , 110, 275
ns , 1111
ns-dblcolon , 276
ns-hooks , 277
ns-load , 278
ns-topenv , 279
nsl , 1424
NULL, 275, 280, 350, 401, 612, 1055, 1056,

1465
NULL-class (BasicClasses), 830
numeric , 61, 114, 201, 280, 281, 327
numeric-class (BasicClasses), 830
numeric_version , 283
NumericConstants , 79, 282, 422
numericDeriv , 1153
nzchar (nchar), 271

object.size , 259, 260, 1425
objects , 29, 105, 226, 347, 367, 1367
objects (ls), 241
ObjectsWithPackage-class , 870
octmode , 194, 284
offset , 1046, 1087, 1121, 1154, 1308
old.packages (update.packages),

1475
oldClass , 192
oldClass (class), 59
oldClass-class (setOldClass), 891
oldClass<- (class), 59
on.exit , 285, 377, 426, 1418
oneway.test , 1154
open (connections), 72
open.srcfile (srcfile), 396
open.srcfilecopy (srcfile), 396
Ops, 18, 65, 109, 146, 238, 286, 467
Ops (S4groupGeneric), 875
Ops (groupGeneric), 190
Ops,array,array-method

(StructureClasses), 899
Ops,array,structure-method

(StructureClasses), 899
Ops,structure,array-method

(StructureClasses), 899
Ops,structure,structure-method

(StructureClasses), 899
Ops,structure,vector-method

(StructureClasses), 899
Ops,vector,structure-method

(StructureClasses), 899

INDEX 1525

Ops.Date , 92, 286
Ops.difftime (difftime), 108
Ops.factor (factor), 145
Ops.numeric_version

(numeric_version), 283
Ops.ordered (factor), 145
Ops.POSIXt (DateTimeClasses), 93
Ops.ts (ts), 1310
optim , 935, 936, 939, 940, 973, 974, 999,

1016, 1059, 1139, 1141, 1156, 1285,
1286, 1449

optimise (optimize), 1160
optimize , 1139, 1141, 1158, 1159, 1160,

1321
options , 4, 30, 41, 48, 89, 94, 121, 138, 161,

224, 235, 286, 306, 309, 339, 364,
386, 387, 395, 398, 400, 402, 430,
459, 471, 472, 563, 568, 570, 616,
649, 666, 678, 695, 977, 994, 1045,
1049, 1086, 1122, 1131, 1133, 1143,
1195, 1209, 1213, 1371, 1374, 1387,
1389, 1390, 1447, 1467, 1468, 1486

Orange , 522
OrchardSprays , 523
order , 292, 329, 383, 384, 1071
order.dendrogram , 994, 1056, 1162
ordered , 191, 306
ordered (factor), 145
ordered-class (setOldClass), 891
outer , 215, 245, 251, 294
over (plotmath), 593

p.adjust , 1163, 1166, 1168
pacf (acf), 906
package.dependencies , 1353
package.skeleton , 863, 1426, 1434
package_version , 191, 1380
package_version

(numeric_version), 283
packageDescription , 1427
packageEvent (UserHooks), 467
packageInfo-class (setOldClass),

891
packageIQR-class (setOldClass),

891
packageSlot (getPackageName), 850
packageSlot<- (getPackageName),

850
packageStartupMessage (message),

262
packageStatus , 1380, 1428
packBits (rawConversion), 332
packGrob (grid.pack), 786

page , 151, 1430
pairlist , 1, 80, 159, 280
pairlist (list), 229
pairs , 630, 652, 685, 687, 688, 702
pairwise.prop.test , 1165
pairwise.t.test , 1165, 1166, 1167
pairwise.table , 1167
pairwise.wilcox.test , 1168
palette , 559, 562, 575, 586, 588, 657, 694,

712, 954
Palettes , 587
panel.identify , 781
panel.smooth , 652, 687, 1174, 1305
par , 290, 362, 575, 578, 580, 584, 585, 600,

603, 611, 618, 626, 627, 631–633,
635, 637, 639, 644, 652, 655, 666,
668, 669, 671, 676–681, 684, 685,
688, 688, 697, 700, 701, 703, 705,
707, 711, 713–716, 718, 720–722,
726, 729, 730, 732, 736–741, 1055,
1056, 1068, 1084, 1169, 1172, 1174,
1176, 1181, 1284, 1304, 1394

Paren , 81, 296, 422
parent.env (environment), 127
parent.env<- (environment), 127
parent.frame , 128–130
parent.frame (sys.parent), 425
parse , 100, 126, 134, 297, 385, 387
paste , 48, 53, 162, 272, 298, 393, 407, 415,

1376
path.expand , 34, 35, 148, 149, 151–153,

221, 299, 423, 424
pathListing (grid.ls), 782
pbeta , 953, 1024, 1136, 1303
pbeta (Beta), 949
pbinom (Binomial), 952
pbirthday (birthday), 957
pcauchy (Cauchy), 962
pchisq , 1024, 1317
pchisq (Chisquare), 966
pdf , 568–570, 588, 603, 605, 606, 611, 615,

616, 713, 737
pdfFonts , 590, 616
pdfFonts (postscriptFonts), 603
periodicSpline , 1265
person , 1430
personList , 1377
personList (person), 1430
persp , 468, 614, 695
pexp (Exponential), 1013
pf (FDist), 1023
pgamma, 388, 1135

1526 INDEX

pgamma(GammaDist), 1040
pgeom (Geometric), 1043
phantom (plotmath), 593
phyper (Hypergeometric), 1060
pi (Constants), 78
pico (edit), 1391
pictex , 570, 591
pie , 698
pipe (connections), 72
pkgDepends , 1352, 1360
pkgDepends (getDepList), 1350
PkgUtils , 1431
pkgVignettes (buildVignettes),

1339
placeGrob (grid.place), 788
plain (plotmath), 593
PlantGrowth , 524
plclust (hclust), 1051
plnorm (Lognormal), 1102
plogis , 195
plogis (Logistic), 1098
plot , 620, 638, 661, 663, 668, 674, 677, 679,

680, 685, 700, 701, 703–707,
710–712, 714, 732, 1007, 1053,
1075, 1119, 1172, 1179, 1181, 1210

plot.acf , 908, 1168
plot.data.frame , 90, 701
plot.Date , 92
plot.Date (axis.POSIXct), 633
plot.decomposed.ts (decompose),

988
plot.default , 621, 630, 634, 637, 643,

648, 653, 656, 660, 676, 679, 689,
690, 694, 695, 701, 702, 702, 705,
707, 708, 710–713, 726, 732, 993,
1052, 1075, 1084, 1181

plot.dendrogram (dendrogram), 991
plot.density , 997, 1170
plot.design , 705
plot.ecdf (ecdf), 1007
plot.factor , 706, 708, 710
plot.formula , 701, 707, 707
plot.function (curve), 653
plot.hclust , 992
plot.hclust (hclust), 1051
plot.histogram , 661, 662, 708
plot.HoltWinters , 1170
plot.isoreg , 1072, 1172
plot.lm , 287, 1173, 1305
plot.mlm (plot.lm), 1173
plot.new , 468, 692, 711
plot.new (frame), 659

plot.POSIXct (axis.POSIXct), 633
plot.POSIXlt (axis.POSIXct), 633
plot.ppr , 1175, 1193
plot.prcomp (prcomp), 1194
plot.princomp (princomp), 1209
plot.profile.nls , 1176, 1215
plot.spec , 290, 1177, 1258, 1260, 1263
plot.stepfun , 1007, 1179, 1281
plot.stl , 1283, 1284
plot.stl (stlmethods), 1284
plot.table , 710
plot.ts , 1084, 1085, 1180, 1285, 1311,

1313
plot.tskernel (kernel), 1075
plot.TukeyHSD (TukeyHSD), 1318
plot.window , 632, 637, 644, 648, 655, 656,

660, 668, 689, 693, 701, 703, 704,
711, 729, 734

plot.xy , 677, 679, 711, 712, 714
plotmath , 144, 230, 253, 268, 299, 312,

373, 416, 554, 578, 592, 593, 615,
641, 673, 685, 737, 738, 801, 1065

plotViewport , 747, 810
pmatch , 52, 54, 138, 189, 248, 249, 251, 300
pmax (Extremes), 143
pmin (Extremes), 143
pnbinom (NegBinomial), 1135
png , 47, 568, 570, 571, 596
pnorm , 1317
pnorm (Normal), 1151
points , 621, 652, 661, 667, 673, 677, 679,

680, 688–690, 693, 697, 701, 703,
708, 712, 713, 789, 992, 993, 1172,
1174, 1304

points.default , 712
points.formula (plot.formula), 707
pointsGrob (grid.points), 789
Poisson , 1182
poisson (family), 1019
poly , 1111, 1183
polygamma (Special), 387
polygon , 557, 689, 699, 715, 718, 722, 741,

992
polygonGrob (grid.polygon), 790
polylineGrob (grid.lines), 779
polym (poly), 1183
polyroot , 301, 1321
pop.viewport , 810, 811
popViewport , 756, 819
popViewport (Working with

Viewports), 820
pos.to.env , 302

INDEX 1527

POSIXct , 20, 163, 404
POSIXct (DateTimeClasses), 93
POSIXct-class (setOldClass), 891
POSIXlt , 20, 163, 404
POSIXlt (DateTimeClasses), 93
POSIXlt-class (setOldClass), 891
POSIXt , 107, 191, 281
POSIXt (DateTimeClasses), 93
POSIXt-class (setOldClass), 891
possibleExtends , 827
postDrawDetails (drawDetails), 747
postscript , 288, 567–570, 589, 590, 592,

596, 598, 603–606, 615, 616, 619,
620, 695, 713, 737

postscriptFonts , 572, 600, 602, 603,
615, 616

power , 1020, 1021, 1110, 1185
power.anova.test , 1186
power.prop.test , 1187, 1212
power.t.test , 1185, 1188, 1212
PP.test , 1189
ppoints , 1190, 1221
ppois (Poisson), 1182
ppr , 1176, 1191, 1297
prcomp , 955, 1134, 1194, 1210, 1211, 1241
precip , 524
predict , 133, 1012, 1088, 1134, 1143, 1197,

1204, 1207
predict.ar , 1197
predict.ar (ar), 929
predict.Arima , 937, 1197, 1198
predict.arima0 , 1197
predict.arima0 (arima0), 938
predict.glm , 1048, 1197, 1199, 1305
predict.HoltWinters , 1059, 1171,

1197, 1201
predict.lm , 1088, 1197, 1202
predict.loess , 1096, 1197, 1204
predict.mlm (predict.lm), 1202
predict.nls , 1144, 1197, 1206
predict.poly , 1197
predict.poly (poly), 1183
predict.prcomp (prcomp), 1194
predict.princomp , 1197
predict.princomp (princomp), 1209
predict.smooth.spline , 1197, 1207,

1254
predict.StructTS , 1197
predict.StructTS (StructTS), 1285
preDrawDetails (drawDetails), 747
preplot , 1208
presidents , 525

pressure , 526
pretty , 303, 572, 633, 635
prettyNum , 161
prettyNum (formatC), 166
Primitive , 304
primitive , 466
primitive (Primitive), 304
princomp , 955, 956, 1018, 1094, 1134,

1196, 1209, 1241, 1296
print , 47, 48, 64, 162, 273, 274, 288, 305,

307, 309, 310, 397, 917, 926, 993,
1007, 1053, 1075, 1119, 1143, 1210,
1212, 1213, 1281, 1306, 1430, 1460,
1468

print.anova , 1213
print.anova (anova), 917
print.aov (aov), 925
print.aovlist (aov), 925
print.ar (ar), 929
print.arima0 (arima0), 938
print.AsIs (AsIs), 24
print.Bibtex (toLatex), 1474
print.by (by), 42
print.checkDocFiles (QC), 1354
print.checkDocStyle (QC), 1354
print.checkFF (checkFF), 1341
print.checkReplaceFuns (QC), 1354
print.checkS3methods (QC), 1354
print.checkTnF (checkTnF), 1343
print.checkVignettes

(checkVignettes), 1344
print.codoc (codoc), 1345
print.codocClasses (codoc), 1345
print.codocData (codoc), 1345
print.condition (conditions), 68
print.connection (connections), 72
print.data.frame , 90, 306
print.Date (Dates), 92
print.default , 48, 64, 125, 161, 287,

305, 306, 307, 307, 310, 319, 397,
632, 993

print.dendrogram (dendrogram), 991
print.density (density), 995
print.difftime (difftime), 108
print.dist (dist), 1003
print.DLLInfo (getLoadedDLLs), 179
print.DLLInfoList

(getLoadedDLLs), 179
print.DLLRegisteredRoutines

(getDLLRegisteredRoutines),
178

print.ecdf (ecdf), 1007

1528 INDEX

print.factanal (loadings), 1094
print.family (family), 1019
print.formula (formula), 1033
print.ftable (ftable), 1037
print.getAnywhere (getAnywhere),

1399
print.glm (glm), 1045
print.hclust (hclust), 1051
print.hexmode (hexmode), 194
print.hsearch (help.search), 1408
print.infl (influence.measures),

1062
print.integrate (integrate), 1065
print.kmeans (kmeans), 1076
print.Latex (toLatex), 1474
print.libraryIQR (library), 223
print.lm (lm), 1086
print.loadings , 1018
print.loadings (loadings), 1094
print.logLik (logLik), 1099
print.ls_str (ls.str), 1416
print.MethodsFunction (methods),

1421
print.NativeRoutineList

(getDLLRegisteredRoutines),
178

print.noquote (noquote), 273
print.numeric_version

(numeric_version), 283
print.octmode (octmode), 284
print.packageDescription

(packageDescription), 1427
print.packageInfo (library), 223
print.packageIQR (data), 1382
print.packageStatus

(packageStatus), 1428
print.POSIXct (DateTimeClasses),

93
print.POSIXlt (DateTimeClasses),

93
print.power.htest , 1211
print.prcomp (prcomp), 1194
print.princomp (princomp), 1209
print.proc_time (proc.time), 310
print.recordedplot (recordPlot),

610
print.restart (conditions), 68
print.rle (rle), 351
print.sessionInfo (sessionInfo),

1464
print.simple.list (print), 305
print.socket (make.socket), 1418

print.srcfile (srcfile), 396
print.srcref (srcfile), 396
print.stepfun (stepfun), 1280
print.StructTS (StructTS), 1285
print.summary.aov (summary.aov),

1287
print.summary.aovlist

(summary.aov), 1287
print.summary.glm , 1213
print.summary.glm (summary.glm),

1289
print.summary.lm , 165, 1213, 1214
print.summary.lm (summary.lm),

1291
print.summary.manova

(summary.manova), 1293
print.summary.nls (summary.nls),

1294
print.summary.prcomp (prcomp),

1194
print.summary.princomp

(summary.princomp), 1295
print.summary.table (table), 437
print.table (print), 305
print.terms (terms), 1305
print.ts , 1212, 1311
print.TukeyHSD (TukeyHSD), 1318
print.undoc (undoc), 1359
print.vignette (vignette), 1482
print.warnings (warnings), 472
print.xtabs (xtabs), 1336
printCoefmat , 290, 1213
prmatrix , 309
proc.time , 174, 310, 431, 435
prod , 311
profile , 1143, 1177, 1214, 1215
profile.glm , 1214
profile.nls , 1144, 1177, 1214, 1215
prohibitGeneric

(implicitGeneric), 852
proj , 927, 1126, 1216
promax (varimax), 1325
promise , 129
promise (delayedAssign), 98
promises , 155, 361
promises (delayedAssign), 98
prompt , 872, 873, 1346, 1407, 1427, 1432,

1435, 1436
promptClass , 871, 873, 1346
promptData , 1433, 1434, 1434
promptMethods , 872, 872
promptPackage , 1435

INDEX 1529

prop.table , 247, 312, 438
prop.test , 952, 1166, 1188, 1218, 1220,

1301
prop.trend.test , 1220
prototype , 861
prototype (representation), 873
ps.options , 556, 589, 598, 599, 602, 606,

619, 620
psigamma (Special), 387
psignrank , 1332
psignrank (SignRank), 1248
pt (TDist), 1302
ptukey (Tukey), 1317
punif (Uniform), 1319
Puromycin , 526
push.viewport , 811, 811
pushBack , 74, 76, 313, 448
pushBackLength (pushBack), 313
pushViewport , 756, 819
pushViewport (Working with

Viewports), 820
pweibull (Weibull), 1327
pwilcox , 1332
pwilcox (Wilcoxon), 1333

q, 360, 400, 1368
q (quit), 317
qbeta , 1024
qbeta (Beta), 949
qbinom (Binomial), 952
qbirthday (birthday), 957
QC, 1346, 1354, 1359
qcauchy (Cauchy), 962
qchisq , 1024
qchisq (Chisquare), 966
qexp (Exponential), 1013
qf (FDist), 1023
qgamma(GammaDist), 1040
qgeom (Geometric), 1043
qhyper (Hypergeometric), 1060
qlnorm (Lognormal), 1102
qlogis (Logistic), 1098
qnbinom (NegBinomial), 1135
qnorm , 323, 1317
qnorm (Normal), 1151
qpois (Poisson), 1182
qqline , 1174
qqline (qqnorm), 1221
qqnorm , 1191, 1221, 1247
qqplot , 1191
qqplot (qqnorm), 1221
qr , 33, 57, 124, 213, 214, 314, 316, 317, 418,

961, 1090

QR.Auxiliaries , 316
qr.Q , 315
qr.Q (QR.Auxiliaries), 316
qr.qy , 317
qr.R , 315
qr.R (QR.Auxiliaries), 316
qr.solve , 382
qr.X , 315
qr.X (QR.Auxiliaries), 316
qsignrank (SignRank), 1248
qt (TDist), 1302
qtukey , 1319
qtukey (Tukey), 1317
quade.test , 1036, 1222
quakes , 528
quantile , 85, 554, 1031, 1070, 1118, 1191,

1224
quarters (weekdays), 473
quartz , 607, 608, 666, 678
quartzFont (quartzFonts), 608
quartzFonts , 607, 608
quasi , 1046
quasi (family), 1019
quasibinomial (family), 1019
quasipoisson (family), 1019
Querying the Viewport Tree , 812
quit , 317
qunif (Uniform), 1319
quote , 40, 112, 130, 452, 453, 595, 859
quote (substitute), 412
Quotes , 79, 282, 308, 319, 422, 424
qweibull (Weibull), 1327
qwilcox (Wilcoxon), 1333

R.home , 320, 434
R.Version , 321
R.version , 4, 208, 283, 424, 425, 1464
R.version (R.Version), 321
r2dtable , 1226
R_HOME(R.home), 320
R_LIBS (libPaths), 221
R_LIBS_SITE (libPaths), 221
R_LIBS_USER(libPaths), 221
R_system_version

(numeric_version), 283
rainbow , 562, 575, 581, 587, 611, 668, 669,

694
rainbow (Palettes), 587
Random, 322
Random.user , 323, 325
randu , 528
range , 144, 327, 572, 652, 1031, 1070
rank , 293, 328, 384

1530 INDEX

rapply , 217, 329
raw , 331
raw-class (BasicClasses), 830
rawConversion , 332
rawShift , 331
rawShift (rawConversion), 332
rawToBits (rawConversion), 332
rawToChar , 331
rawToChar (rawConversion), 332
rbeta (Beta), 949
rbind , 203, 834
rbind (cbind), 49
rbind2 (cbind2), 834
rbind2,ANY,ANY-method (cbind2),

834
rbind2,ANY,missing-method

(cbind2), 834
rbind2-methods (cbind2), 834
rbinom , 1131
rbinom (Binomial), 952
rcauchy (Cauchy), 962
rchisq (Chisquare), 966
Rd2dvi (RdUtils), 333
Rd2txt (RdUtils), 333
Rd_db (Rdutils), 1356
Rd_parse (Rdutils), 1356
Rdconv , 872
Rdconv (RdUtils), 333
Rdindex , 1355
RdUtils , 333
Rdutils , 1356
Re (complex), 66
read.00Index , 1357
read.csv , 1439
read.csv (read.table), 1442
read.csv2 (read.table), 1442
read.dcf , 1362, 1428, 1479
read.dcf (dcf), 95
read.delim (read.table), 1442
read.delim2 (read.table), 1442
read.DIF , 1436
read.fortran , 1438
read.ftable , 1039, 1227
read.fwf , 1438, 1439, 1439, 1445
read.socket , 1378, 1418, 1441
read.table , 90, 126, 289, 319, 366, 1382,

1383, 1438, 1440, 1442, 1446, 1475,
1486

readBin , 4, 76, 334, 337, 339, 366
readChar , 335, 336, 366
readCitationFile (citEntry), 1376
readline , 338, 1434

readLines , 75, 76, 126, 313, 335, 337, 338,
339, 365, 366, 479

readNEWS, 1446
real , 114, 281, 340
Recall , 45, 341
recordedplot-class (setOldClass),

891
recordGraphics , 609, 793
recordGrob (grid.record), 793
recordPlot , 610
recover , 97, 287, 450, 452, 453, 1387, 1447
rect , 639, 689, 709, 716, 717, 723
rect.hclust , 1053, 1054, 1062, 1229
rectGrob (grid.rect), 794
Reduce (funprog), 171
reformulate (delete.response), 989
reg.finalizer , 173, 341
regex , 342
regexp , 189, 1402
regexp (regex), 342
regexpr , 54, 1347
regexpr (grep), 187
registerImplicitGenerics

(implicitGeneric), 852
regular expression , 188, 189, 231,

241, 406, 407, 1366, 1369, 1408,
1409, 1416

regular expression (regex), 342
relevel , 220, 1230, 1232
relist , 463, 464, 1235, 1448
REMOVE, 226, 1413, 1414, 1450, 1451, 1479
remove , 346
remove.packages , 1451, 1451, 1479
removeCConverter

(getNumCConverters), 182
removeClass (setClass), 879
removeGeneric (GenericFunctions),

842
removeGrob , 753, 758, 772, 774, 796
removeGrob (grid.remove), 795
removeMethod (setMethod), 888
removeMethods (GenericFunctions),

842
removeTaskCallback , 444, 445
removeTaskCallback

(taskCallback), 441
Renviron (Startup), 397
reorder , 220, 1056, 1163, 1230, 1231
reorder (reorder.factor), 1231
reorder.dendrogram , 993, 1055, 1230,

1232
reorder.factor , 1231

INDEX 1531

rep , 140, 203, 295, 304, 347, 369, 372, 620,
623, 817, 818

repeat , 350
repeat (Control), 80
repeat-class (language-class), 859
replace , 349
replayPlot (recordPlot), 610
replicate , 349
replicate (lapply), 216
replications , 926, 927, 1126, 1233
representation , 873, 880
require , 210, 288, 398
require (library), 223
Reserved , 350, 422
reserved , 80, 239, 266, 280, 1406
reserved (Reserved), 350
resetClass (setClass), 879
reshape , 1234, 1467
resid (residuals), 1236
residuals , 918, 971, 1011, 1030, 1048,

1051, 1088, 1093, 1134, 1143, 1236,
1249, 1305, 1329

residuals.glm , 1093, 1290
residuals.glm (glm.summaries),

1050
residuals.lm (lm.summaries), 1092
residuals.tukeyline (line), 1085
restartDescription (conditions),

68
restartFormals (conditions), 68
retracemem (tracemem), 455
return , 204, 296
return (function), 169
rev , 350, 1055
rev.dendrogram , 1231
rev.dendrogram (dendrogram), 991
rexp (Exponential), 1013
rf (FDist), 1023
rgamma (GammaDist), 1040
rgb , 559, 562, 575–577, 581, 588, 611, 613,

694
rgb2hsv , 581, 612
rgeom (Geometric), 1043
RHOME, 320, 1452
rhyper (Hypergeometric), 1060
ring (plotmath), 593
rivers , 529
rle , 351, 462
rle-class (setOldClass), 891
rlnorm (Lognormal), 1102
rlogis (Logistic), 1098
rm (remove), 346

rmultinom (Multinomial), 1130
rnbinom (NegBinomial), 1135
RNG, 1152
RNG(Random), 322
RNGkind , 326, 1249
RNGkind (Random), 322
RNGversion (Random), 322
rnorm , 325, 1320
rnorm (Normal), 1151
rock , 530
roman , 1452
Round, 352
round , 109, 201, 354
round (Round), 352
round.Date , 92
round.Date (round.POSIXt), 353
round.difftime (difftime), 108
round.POSIXt , 95, 353
row , 61, 354, 369, 380
row.names , 30, 31, 90, 111, 355, 357
row.names<- (row.names), 355
row/colnames , 356
rowMeans (colSums), 62
rownames , 90, 111, 255, 356, 498
rownames (row/colnames), 356
rownames<- (row/colnames), 356
rowsum , 63, 357
rowSums, 358
rowSums (colSums), 62
rpart , 906
rpois (Poisson), 1182
Rprof , 399, 1214, 1453, 1455, 1470, 1471
Rprofile (Startup), 397
Rprofmem , 260, 456, 1453, 1454, 1471
Rscript , 1455
RShowDoc, 1413, 1456
rsignrank (SignRank), 1248
RSiteSearch , 1409, 1411, 1457
rstandard , 1051, 1094, 1237
rstandard (influence.measures),

1062
rstudent , 1051, 1093, 1094, 1237
rstudent (influence.measures),

1062
rt (TDist), 1302
Rtangle , 1458, 1461, 1473
RtangleSetup (Rtangle), 1458
rug , 213, 630, 718, 1304
runif , 325, 1152
runif (Uniform), 1319
runmed , 1237, 1256
RweaveLatex , 1459, 1459, 1473

1532 INDEX

RweaveLatexSetup (RweaveLatex),
1459

rweibull (Weibull), 1327
rwilcox (Wilcoxon), 1333

S3groupGeneric , 875, 876
S3groupGeneric (groupGeneric), 190
S3Methods , 1421
S3Methods (UseMethod), 465
S4groupGeneric , 192, 864, 875, 900
SafePrediction , 1200, 1204
SafePrediction (makepredictcall),

1111
sammon, 970
sample , 358
sapply , 244, 245, 441
sapply (lapply), 216
save , 28, 117, 118, 232, 288, 360, 478, 1384,

1386
savehistory , 1461
scale , 362, 419, 1111, 1195
scan , 126, 147, 298, 313, 319, 339, 363, 387,

478, 1382, 1438, 1440, 1443–1445
scatter.smooth , 1239
SClassExtension-class , 836–838, 865,

877
screen , 719
screeplot , 1196, 1210, 1211, 1241
scriptscriptstyle (plotmath), 593
scriptstyle (plotmath), 593
sd , 981, 1242, 1302
Sd2Rd (RdUtils), 333
se.contrast , 1126, 1242
se.contrast.aovlist , 1009
sealClass (setClass), 879
SealedMethodDefinition-class

(MethodDefinition-class),
863

search , 22, 26, 28, 29, 71, 104, 105, 132,
176, 223, 225, 226, 241, 347, 366,
556, 851, 1367, 1416

searchpaths (search), 366
Seatbelts (UKDriverDeaths), 542
seek , 76, 367
seekViewport , 756, 819
seekViewport (Working with

Viewports), 820
seemsS4Object , 878
segments , 626, 628, 689, 716, 718, 721,

992, 993, 1179
segmentsGrob (grid.segments), 796
select.list , 1420, 1463, 1477
selectMethod , 831, 833, 839, 866, 896

selectMethod (getMethod), 847
selfStart , 1044, 1149, 1150, 1244, 1257,

1266–1269, 1271–1276
selfStart.default , 1044
selfStart.formula , 1044
seq , 62, 349, 350, 368, 370–372, 1379
seq.Date , 87, 92, 369, 370
seq.int , 203
seq.POSIXt , 87, 95, 369, 370, 371, 665
seq_along (seq), 368
seq_len , 372
seq_len (seq), 368
sequence , 349, 369, 372
sessionInfo , 322, 1373, 1464, 1474
set.seed (Random), 322
setAs , 827, 833, 856
setAs (as), 826
setCConverterStatus

(getNumCConverters), 182
setChildren (grid.add), 757
setClass , 827, 833, 836–838, 845–847,

856, 859, 861, 862, 866, 873, 874,
877, 879, 893, 901, 903, 1413

setClassUnion , 836, 839, 865, 877, 882,
883, 893

setdiff (sets), 373
setequal (sets), 373
setGeneric , 841, 845, 852, 853, 866, 885,

889
setGenericImplicit

(implicitGeneric), 852
setGrob , 753
setGrob (grid.set), 798
setGroupGeneric , 841
setGroupGeneric (setGeneric), 885
setHook , 225, 278, 660, 697, 786
setHook (UserHooks), 467
setIs , 827, 828, 836, 837, 846, 865, 866, 877
setIs (is), 855
setMethod , 452, 826, 841, 854, 858, 859,

862–864, 881, 888, 893, 896, 1413
setNames , 968, 1246
setOldClass , 878, 882, 889, 891
setPackageName (getPackageName),

850
setReplaceMethod

(GenericFunctions), 842
setRepositories , 291, 1374, 1464
sets , 373
setValidity (validObject), 901
setwd , 428
setwd (getwd), 186

INDEX 1533

shapiro.test , 1081, 1247
SHLIB , 122, 228, 1381, 1465
show, 288, 308, 894, 896
show,ANY-method (show), 894
show,classRepresentation-method

(show), 894
show,genericFunction-method

(show), 894
show,MethodDefinition-method

(show), 894
show,MethodWithNext-method

(show), 894
show,ObjectsWithPackage-method

(show), 894
show,signature-method

(signature-class), 897
show,traceable-method (show), 894
show-methods (show), 894
showClass , 894
showConnections , 76, 374, 448
showDefault , 894
showMethods , 845, 867, 894, 895, 1421
showMlist , 894
shQuote , 320, 375, 395, 433
sign , 377
signalCondition , 400
signalCondition (conditions), 68
Signals , 377
signature (GenericFunctions), 842
signature-class , 897
signif , 160, 166, 307, 417, 622
signif (Round), 352
SignRank , 1248
simint , 1319
simpleCondition (conditions), 68
simpleError (conditions), 68
simpleMessage (conditions), 68
simpleWarning (conditions), 68
simulate , 1249
sin , 195, 253
sin (Trig), 457
single , 157
single (double), 113
single-class (BasicClasses), 830
sinh (Hyperbolic), 195
sink , 48, 374, 375, 378, 1373
sleep , 530
slice.index , 379
slot , 380, 835, 837, 898
slot<- (slot), 898
slotNames (slot), 898
slotOp , 380

smooth , 1239, 1250
smooth.spline , 1193, 1208, 1237, 1251,

1252, 1265
smoothEnds , 1238, 1239, 1255
socket-class (setOldClass), 891
socketConnection (connections), 72
socketSelect , 381
solve , 33, 58, 315, 381, 1109
solve.qr , 382
solve.qr (qr), 314
sort , 234, 293, 329, 350, 383
sort.list (order), 292
sortedXyData , 1149, 1150, 1257
source , 117, 126, 202, 297, 298, 385, 430,

1344, 1383, 1388, 1472
spec (spectrum), 1262
spec.ar , 1257, 1262, 1263
spec.pgram , 1259, 1261–1263
spec.taper , 1260, 1261
Special , 18, 253, 387
spectrum , 1074, 1178, 1258, 1260, 1262
spineplot , 646, 647, 706, 707, 722
spline , 928
spline (splinefun), 1263
splinefun , 653, 928, 1008, 1180, 1263,

1281
split , 85, 389
split.screen , 671, 692, 695
split.screen (screen), 719
split<- (split), 389
sprintf , 162, 168, 185, 299, 391, 589, 600,

620
sqrt , 18, 237, 388
sqrt (Math), 252
sQuote , 289, 320, 376, 394, 413
srcfile , 297, 396
srcfile-class (srcfile), 396
srcfilecopy , 297
srcfilecopy (srcfile), 396
srcfilecopy-class (srcfile), 396
srcref , 298
srcref (srcfile), 396
srcref-class (srcfile), 396
SSasymp, 1148, 1265, 1275, 1276
SSasympOff , 1266
SSasympOrig , 1267
SSbiexp , 1268
SSD, 1116, 1269
SSfol , 537, 1270
SSfpl , 1271
SSgompertz , 1272
SSlogis , 1273

1534 INDEX

SSmicmen, 1274
SSweibull , 1275
stack , 1235, 1466
stack.loss (stackloss), 531
stack.x (stackloss), 531
stackloss , 531, 1089
standardGeneric , 842, 844
Stangle , 1344, 1458, 1483
Stangle (Sweave), 1471
stars , 725, 735
start , 1276, 1309, 1311, 1316
Startup , 64, 287, 397, 428, 1370
stat.anova , 918, 1277
state , 532, 545
stats (stats-package), 905
stats-deprecated , 1278
stats-package , 905
stderr , 263, 378
stderr (showConnections), 374
stdin , 313, 339, 363, 374, 1442, 1456
stdin (showConnections), 374
stdout , 378, 379
stdout (showConnections), 374
stem , 663, 709, 728
step , 911, 1014, 1015, 1278
stepAIC , 1279, 1280
stepfun , 1008, 1071, 1179, 1280
stl , 988, 1127, 1128, 1282, 1284, 1285, 1287
stlmethods , 1284
stop , 185, 263, 287, 378, 400, 401, 472, 1362
stopifnot , 9, 400, 401
storage.mode , 114, 201, 281, 460
storage.mode (mode), 265
storage.mode<- (mode), 265
str , 241, 993, 1369, 1416, 1467
str.default , 993
str.dendrogram (dendrogram), 991
str.logLik (logLik), 1099
str.POSIXt (DateTimeClasses), 93
strftime , 94, 163, 287
strftime (strptime), 402
strheight , 691
strheight (strwidth), 730
stringHeight (stringWidth), 813
stringWidth , 809, 813
stripchart , 630, 642, 702, 729
strOptions (str), 1467
strptime , 23, 24, 95, 108, 234, 235, 402,

634, 665
strsplit , 53, 272, 299, 342, 346, 406, 415
strtrim , 408, 415

StructTS , 1073, 1127, 1128, 1284, 1285,
1314–1316

structure , 409
structure-class

(StructureClasses), 899
StructureClasses , 899
strwidth , 272, 673, 690, 730
strwrap , 410, 1468
sub , 53, 55, 407, 1402
sub (grep), 187
Subscript (Extract), 135
subset , 141, 411, 457
substitute , 40, 99, 100, 112, 264, 412,

452, 453, 595, 865
substr , 7, 53, 272, 299, 407, 408, 414
substr<- (substr), 414
substring (substr), 414
substring<- (substr), 414
sum, 63, 312, 415
Summary, 9, 12, 143, 144, 146, 311, 312, 327,

328, 416
Summary (S4groupGeneric), 875
Summary (groupGeneric), 190
summary , 416, 918, 926, 1047, 1048, 1092,

1143, 1288, 1291, 1292, 1295, 1416,
1467, 1469

summary.aov , 927, 1287
summary.aovlist (summary.aov),

1287
summary.connection (connections),

72
Summary.Date (Dates), 92
summary.Date (Dates), 92
Summary.difftime (difftime), 108
Summary.factor (factor), 145
summary.glm , 417, 919, 1047, 1048, 1051,

1289
summary.infl

(influence.measures), 1062
summary.lm , 417, 1088, 1092, 1093, 1105,

1290, 1291
summary.manova , 922, 1112, 1293
summary.mlm (summary.lm), 1291
summary.nls , 1144, 1294
Summary.numeric_version

(numeric_version), 283
summary.packageStatus

(packageStatus), 1428
Summary.POSIXct

(DateTimeClasses), 93
summary.POSIXct

(DateTimeClasses), 93

INDEX 1535

Summary.POSIXlt
(DateTimeClasses), 93

summary.POSIXlt
(DateTimeClasses), 93

summary.prcomp (prcomp), 1194
summary.princomp , 1211, 1295
summary.stepfun (stepfun), 1280
summary.table (table), 437
summary.table-class

(setOldClass), 891
summaryRprof , 1453, 1470
sunflowerplot , 622, 731, 735
sunspot.month , 533, 535
sunspot.year , 534
sunspots , 534, 535
sup (plotmath), 593
suppressMessages (message), 262
suppressPackageStartupMessages ,

224
suppressPackageStartupMessages

(message), 262
suppressWarnings (warning), 471
supsmu , 1193, 1251, 1296
survival , 23, 163
survreg , 1305
svd , 57, 124, 214, 315, 417, 961, 1196, 1210
Sweave, 291, 1339, 1340, 1344, 1459, 1461,

1471, 1473
SweaveSyntaxLatex (Sweave), 1471
SweaveSyntaxNoweb (Sweave), 1471
SweaveSyntConv , 1473
sweep , 15, 251, 362, 419, 981
swiss , 535, 1089
switch , 81, 420
symbol (plotmath), 593
symbols , 689, 727, 733
symnum, 1289, 1291, 1294, 1297
Syntax , 18, 66, 81, 138, 238, 239, 282, 296,

320, 421
sys.call , 129, 251, 270
sys.call (sys.parent), 425
sys.calls (sys.parent), 425
Sys.Date , 92
Sys.Date (Sys.time), 431
sys.frame , 26, 130, 132, 176, 241, 347
sys.frame (sys.parent), 425
sys.frames (sys.parent), 425
sys.function (sys.parent), 425
Sys.getenv , 422, 428
Sys.getlocale , 216, 423, 1415
Sys.getlocale (locales), 234
Sys.getpid (getpid), 184

Sys.glob , 221, 231, 423, 462
Sys.info , 4, 424
Sys.localeconv , 234, 235
Sys.localeconv (localeconv), 233
sys.nframe (sys.parent), 425
sys.on.exit , 285
sys.on.exit (sys.parent), 425
sys.parent , 425, 1387
sys.parents (sys.parent), 425
Sys.putenv , 423
Sys.putenv (base-deprecated), 34
Sys.setenv , 34, 428, 1390, 1462
Sys.setlocale , 233
Sys.setlocale (locales), 234
Sys.sleep , 429
sys.source , 28, 128, 279, 289, 387, 430
sys.status (sys.parent), 425
Sys.time , 92, 95, 431
Sys.timezone (Sys.time), 431
Sys.unsetenv (Sys.setenv), 428
Sys.which , 432
system , 4, 5, 208, 432
system.file , 434
system.time , 310, 311, 435, 1309

T (logical), 239
t , 13, 436, 1311
t.test , 1079, 1080, 1155, 1166, 1189, 1300,

1332
t.ts (ts), 1310
table , 85, 306, 437, 439, 498, 710, 912,

1038–1040, 1102, 1337
table-class (setOldClass), 891
tabulate , 85, 438, 439
tail (head), 1403
tan , 195
tan (Trig), 457
tanh , 1098
tanh (Hyperbolic), 195
tapply , 15, 42, 217, 358, 440, 914
taskCallback , 441
taskCallbackManager , 441, 442, 443,

445
taskCallbackNames , 445
tcrossprod (crossprod), 82
TDist , 1302
tempdir , 1417
tempdir (tempfile), 446
tempfile , 446
termplot , 1175, 1304
terms , 705, 989, 1034, 1047, 1088, 1122,

1124, 1305, 1307, 1308, 1324
terms.formula , 1306, 1306–1308, 1323

1536 INDEX

terms.object , 1306, 1307, 1307
terrain.colors , 560, 587, 668, 669
terrain.colors (Palettes), 587
texi2dvi , 1339, 1340, 1358
text , 134, 578, 580, 582, 593, 595, 601, 648,

649, 667, 674, 684, 685, 689–691,
693, 730, 731, 736, 738, 1181

textConnection , 76, 447, 1373
textConnectionValue

(textConnection), 447
textGrob (grid.text), 801
textstyle (plotmath), 593
Theoph , 536
tilde , 449
time , 435, 621, 1277, 1308, 1311, 1316, 1336
timestamp (savehistory), 1461
Titanic , 538
title , 595, 637, 644, 648, 652, 655, 656,

662, 679, 685, 689, 696, 701, 703,
705, 729, 737, 738, 1052, 1172, 1174

tk_select.list , 1463
toBibtex (toLatex), 1474
toBibtex.citation (citation), 1375
toBibtex.citationList (citation),

1375
toBibtex.person (person), 1430
toBibtex.personList (person), 1430
toeplitz , 1309
toLatex , 1474
toLatex.sessionInfo

(sessionInfo), 1464
tolower , 189
tolower (chartr), 54
tools (tools-package), 1339
tools-deprecated , 1358
tools-package , 1339
ToothGrowth , 539
topenv , 289, 430
topenv (ns-topenv), 279
topo.colors , 560, 562, 668, 669
topo.colors (Palettes), 587
toString , 161, 162, 449
toupper , 189
toupper (chartr), 54
trace , 97, 450, 455, 456, 854, 900, 901
traceable-class , 836, 854
traceable-class (TraceClasses),

900
traceback , 41, 97, 287, 400, 454
TraceClasses , 900
tracemem , 260, 455, 1453, 1455, 1471
tracingState , 455

tracingState (trace), 450
trans3d , 614, 697
transform , 412, 456, 477
treering , 539
trees , 540
trellis.focus , 781
Trig , 237, 457
trigamma (Special), 387
TRUE, 239, 350, 401, 1181
TRUE(logical), 239
truehist , 586, 663
trunc , 200, 876
trunc (Round), 352
trunc.Date (round.POSIXt), 353
trunc.POSIXt , 95
trunc.POSIXt (round.POSIXt), 353
truncate (seek), 367
try , 148, 225, 288, 400, 454, 458, 468
tryCatch , 454
tryCatch (conditions), 68
ts , 107, 191, 290, 1127, 1128, 1181, 1212,

1277, 1308, 1309, 1310, 1312, 1316,
1335, 1336

ts-class (StructureClasses), 899
ts-methods , 1312
ts.intersect , 1088
ts.intersect (ts.union), 1313
ts.plot , 1313
ts.union , 1313
tsdiag , 937, 941, 1314
tsp , 18, 30, 31, 238, 1276, 1277, 1309, 1311,

1315, 1335
tsp<- (tsp), 1315
tsSmooth , 1073, 1287, 1316
Tukey , 1317
TukeyHSD, 927, 1126, 1288, 1318
type , 114, 201, 281
type (typeof), 460
type.convert , 1437, 1438, 1443, 1445,

1475
Type1Font , 601, 603, 605, 615
typeof , 18, 176, 206, 260, 265, 266, 268,

282, 460, 835, 868

UCBAdmissions , 541
ucv , 947
UKDriverDeaths , 542
UKgas, 543
UKLungDeaths , 544
unclass , 147
unclass (class), 59
undebug (debug), 97
underline (plotmath), 593

INDEX 1537

undoc , 1346, 1359
Uniform , 1319
union (sets), 373
unique , 119, 460
unique.POSIXlt (DateTimeClasses),

93
uniroot , 302, 947, 1139, 1162, 1186, 1188,

1189, 1320
unit , 746, 753, 756, 764, 765, 781, 809, 813,

813, 816
unit.c , 815, 815
unit.length , 816
unit.pmax (unit.pmin), 817
unit.pmin , 817
unit.rep , 817
units , 739
units (difftime), 108
units<- (difftime), 108
unix.time (system.time), 435
unlink , 153, 446, 462
unlist , 44, 161, 203, 217, 230, 463, 1235,

1448–1450
unlist.relistable (relist), 1448
unloadNamespace , 105, 224, 277
unloadNamespace (ns-load), 278
unlockBinding (bindenv), 37
unname, 256, 464
unsplit (split), 389
unstack (stack), 1466
untrace , 900
untrace (trace), 450
untracemem (tracemem), 455
unz , 1361
unz (connections), 72
update , 1322
update.formula , 1279, 1323, 1323
update.packages , 291, 1354, 1413, 1414,

1429, 1475
update.packageStatus

(packageStatus), 1428
upgrade (packageStatus), 1428
upper.tri , 106
upper.tri (lower.tri), 240
upViewport , 756, 819
upViewport (Working with

Viewports), 820
url , 47, 232, 1390, 1478, 1480
url (connections), 72
url.show , 1390, 1480
URLdecode , 74
URLdecode (URLencode), 1480
URLencode , 1370, 1480

USAccDeaths , 544
USArrests , 545
UseMethod , 50, 60, 192, 465
UserHooks , 467
USJudgeRatings , 545
USPersonalExpenditure , 546
uspop , 547
utf8Conversion , 469
utf8ToInt (utf8Conversion), 469
utils (utils-package), 1365
utils-deprecated , 1481
utils-package , 1365

VADeaths , 547
validDetails , 818
validObject , 837, 861, 880, 901
var , 985, 1108, 1109, 1242
var (cor), 980
var.test , 925, 949, 1032, 1129, 1324
variable.names , 357
variable.names

(case/variable.names), 961
varimax , 1018, 1325
vcov , 935, 972, 1088, 1143, 1326
vector , 49, 119, 164, 230, 461, 469
vector-class (BasicClasses), 830
Vectorize , 295, 1066
Vectorize (mapply), 244
version , 222
version (R.Version), 321
vi , 1386
vi (edit), 1391
View , 1482
viewport , 747, 753, 759, 762, 763, 768,

776, 779–781, 783, 785, 790, 791,
795, 797, 799, 801, 802, 804, 806,
808, 810, 812, 819, 821

viewport (Grid Viewports), 754
vignette , 1482
vignetteDepends , 1360
vignettes , 743
vignettes (vignette), 1482
VIRTUAL-class (BasicClasses), 830
volcano , 548
vpList (Grid Viewports), 754
vpPath , 819, 821
vpStack (Grid Viewports), 754
vpTree (Grid Viewports), 754

warning , 18, 49, 185, 238, 263, 287, 378,
400, 401, 471, 473, 1362

warnings , 289, 471, 472, 472
warpbreaks , 549

1538 INDEX

weekdays , 92, 473
weekdays.POSIXt , 95
Weibull , 1327
weighted.mean , 257, 1328
weighted.residuals , 1093, 1329
weights , 1143, 1329
weights (lm.summaries), 1092
weights.glm (glm), 1045
which , 474, 476
which.is.max , 476
which.max , 256
which.max (which.min), 475
which.min , 144, 475, 475
while , 350
while (Control), 80
while-class (language-class), 859
widehat (plotmath), 593
widetilde (plotmath), 593
width.SJ , 947
widthDetails , 744, 820
wilcox.exact , 1332
wilcox.test , 1079, 1080, 1168, 1248,

1330, 1334
wilcox_test , 1332
Wilcoxon , 1333
window , 1309, 1311, 1335
window<- (window), 1335
with , 29, 476, 1373
withCallingHandlers (conditions),

68
within (with), 476
withRestarts (conditions), 68
withVisible , 204, 1484
women, 550
Working with Viewports , 820
WorldPhones , 550
write , 116, 118, 306, 366, 478, 1486
write.csv (write.table), 1485
write.csv2 (write.table), 1485
write.dcf , 1362
write.dcf (dcf), 95
write.ftable (read.ftable), 1227
write.matrix , 1486
write.socket (read.socket), 1441
write.table , 96, 478, 1445, 1485
write_PACKAGES , 1361
writeBin , 76, 337, 479
writeBin (readBin), 334
writeChar , 335, 479
writeChar (readChar), 336
writeLines , 76, 335, 337, 339, 479
wsbrowser (browseEnv), 1368

WWWusage, 551

X11, 290, 570, 571, 597, 618, 619, 666, 678,
737

X11 (x11), 616
x11 , 616, 695
X11Font (X11Fonts), 618
X11Fonts , 618, 618
xaxisGrob (grid.xaxis), 803
xDetails , 823
xedit (edit), 1391
xemacs (edit), 1391
xfig , 570, 606, 619, 713
xgettext , 185, 1362
xgettext2pot (xgettext), 1362
xinch (units), 739
xngettext (xgettext), 1362
xor (Logic), 237
xspline , 740, 806
xsplineGrob (grid.xspline), 804
xtabs , 438, 549, 1039, 1228, 1336
xy.coords , 557, 620, 622, 624, 666, 672,

673, 677, 703, 704, 711–713, 716,
732, 734, 736, 740, 927, 1071, 1240,
1264

xyinch (units), 739
xyTable , 622, 732, 733
xyz.coords , 623

yaxisGrob (grid.yaxis), 807
yDetails (xDetails), 823
yinch (units), 739

zapsmall , 1213
zapsmall (Round), 352
zip.file.extract , 1487
zpackages , 480
zutils , 481

	Contents
	The base package
	base-package
	.Device
	.Machine
	.Platform
	.Script
	abbreviate
	agrep
	all
	all.equal
	all.names
	any
	aperm
	append
	apply
	args
	Arithmetic
	array
	as.data.frame
	as.environment
	as.function
	as.POSIX*
	AsIs
	assign
	assignOps
	attach
	attr
	attributes
	autoload
	backsolve
	base-deprecated
	basename
	Bessel
	bindenv
	body
	bquote
	browser
	builtins
	by
	c
	call
	callCC
	capabilities
	cat
	cbind
	char.expand
	character
	charmatch
	chartr
	chol
	chol2inv
	class
	col
	Colon
	colSums
	commandArgs
	comment
	Comparison
	complex
	conditions
	conflicts
	connections
	Constants
	contributors
	Control
	copyright
	crossprod
	Cstack_info
	cumsum
	cut
	cut.POSIXt
	data.class
	data.frame
	data.matrix
	date
	Dates
	DateTimeClasses
	dcf
	debug
	Defunct
	delayedAssign
	deparse
	deparseOpts
	Deprecated
	det
	detach
	diag
	diff
	difftime
	dim
	dimnames
	do.call
	double
	dput
	drop
	dump
	duplicated
	dyn.load
	eapply
	eigen
	encodeString
	Encoding
	environment
	eval
	exists
	expand.grid
	expression
	Extract
	Extract.data.frame
	Extract.factor
	Extremes
	factor
	file.access
	file.choose
	file.info
	file.path
	file.show
	files
	findInterval
	force
	Foreign
	formals
	format
	format.Date
	format.info
	format.pval
	formatC
	formatDL
	function
	funprog
	gc
	gc.time
	gctorture
	get
	getCallingDLL
	getDLLRegisteredRoutines
	getLoadedDLLs
	getNativeSymbolInfo
	getNumCConverters
	getpid
	gettext
	getwd
	gl
	grep
	groupGeneric
	gzcon
	hexmode
	Hyperbolic
	iconv
	identical
	ifelse
	integer
	interaction
	interactive
	Internal
	InternalMethods
	invisible
	is.finite
	is.function
	is.language
	is.object
	is.R
	is.recursive
	is.single
	isS4
	isSymmetric
	jitter
	kappa
	kronecker
	l10n_info
	labels
	lapply
	Last.value
	length
	levels
	libPaths
	library
	library.dynam
	license
	list
	list.files
	load
	localeconv
	locales
	log
	Logic
	logical
	lower.tri
	ls
	make.names
	make.unique
	manglePackageName
	mapply
	margin.table
	mat.or.vec
	match
	match.arg
	match.call
	match.fun
	Math
	matmult
	matrix
	maxCol
	mean
	Memory
	Memory-limits
	memory.profile
	merge
	message
	missing
	mode
	NA
	name
	names
	nargs
	nchar
	nlevels
	noquote
	NotYet
	nrow
	ns-dblcolon
	ns-hooks
	ns-load
	ns-topenv
	NULL
	numeric
	NumericConstants
	numeric_version
	octmode
	on.exit
	Ops.Date
	options
	order
	outer
	Paren
	parse
	paste
	path.expand
	pmatch
	polyroot
	pos.to.env
	pretty
	Primitive
	print
	print.data.frame
	print.default
	prmatrix
	proc.time
	prod
	prop.table
	pushBack
	qr
	QR.Auxiliaries
	quit
	Quotes
	R.home
	R.Version
	Random
	Random.user
	range
	rank
	rapply
	raw
	rawConversion
	RdUtils
	readBin
	readChar
	readline
	readLines
	real
	Recall
	reg.finalizer
	regex
	remove
	rep
	replace
	Reserved
	rev
	rle
	Round
	round.POSIXt
	row
	row.names
	row/colnames
	rowsum
	sample
	save
	scale
	scan
	search
	seek
	seq
	seq.Date
	seq.POSIXt
	sequence
	sets
	showConnections
	shQuote
	sign
	Signals
	sink
	slice.index
	slotOp
	socketSelect
	solve
	sort
	source
	Special
	split
	sprintf
	sQuote
	srcfile
	Startup
	stop
	stopifnot
	strptime
	strsplit
	strtrim
	structure
	strwrap
	subset
	substitute
	substr
	sum
	summary
	svd
	sweep
	switch
	Syntax
	Sys.getenv
	Sys.glob
	Sys.info
	sys.parent
	Sys.setenv
	Sys.sleep
	sys.source
	Sys.time
	Sys.which
	system
	system.file
	system.time
	t
	table
	tabulate
	tapply
	taskCallback
	taskCallbackManager
	taskCallbackNames
	tempfile
	textConnection
	tilde
	toString
	trace
	traceback
	tracemem
	transform
	Trig
	try
	typeof
	unique
	unlink
	unlist
	unname
	UseMethod
	UserHooks
	utf8Conversion
	vector
	warning
	warnings
	weekdays
	which
	which.min
	with
	write
	writeLines
	zpackages
	zutils

	The datasets package
	datasets-package
	ability.cov
	airmiles
	AirPassengers
	airquality
	anscombe
	attenu
	attitude
	austres
	beavers
	BJsales
	BOD
	cars
	ChickWeight
	chickwts
	CO2
	co2
	crimtab
	discoveries
	DNase
	esoph
	euro
	eurodist
	EuStockMarkets
	faithful
	Formaldehyde
	freeny
	HairEyeColor
	Harman23.cor
	Harman74.cor
	Indometh
	infert
	InsectSprays
	iris
	islands
	JohnsonJohnson
	LakeHuron
	lh
	LifeCycleSavings
	Loblolly
	longley
	lynx
	morley
	mtcars
	nhtemp
	Nile
	nottem
	Orange
	OrchardSprays
	PlantGrowth
	precip
	presidents
	pressure
	Puromycin
	quakes
	randu
	rivers
	rock
	sleep
	stackloss
	state
	sunspot.month
	sunspot.year
	sunspots
	swiss
	Theoph
	Titanic
	ToothGrowth
	treering
	trees
	UCBAdmissions
	UKDriverDeaths
	UKgas
	UKLungDeaths
	USAccDeaths
	USArrests
	USJudgeRatings
	USPersonalExpenditure
	uspop
	VADeaths
	volcano
	warpbreaks
	women
	WorldPhones
	WWWusage

	The grDevices package
	grDevices-package
	as.graphicsAnnot
	boxplot.stats
	check.options
	chull
	cm
	col2rgb
	colorRamp
	colors
	contourLines
	convertColor
	dev.interactive
	dev.xxx
	dev2
	dev2bitmap
	Devices
	embedFonts
	extendrange
	getGraphicsEvent
	gray
	gray.colors
	hcl
	Hershey
	hsv
	Japanese
	make.rgb
	n2mfrow
	nclass
	palette
	Palettes
	pdf
	pictex
	plotmath
	png
	postscript
	postscriptFonts
	ps.options
	quartz
	quartzFonts
	recordGraphics
	recordPlot
	rgb
	rgb2hsv
	trans3d
	Type1Font
	x11
	X11Fonts
	xfig
	xy.coords
	xyTable
	xyz.coords

	The graphics package
	graphics-package
	abline
	arrows
	assocplot
	Axis
	axis
	axis.POSIXct
	axTicks
	barplot
	box
	boxplot
	bxp
	cdplot
	contour
	coplot
	curve
	dotchart
	filled.contour
	fourfoldplot
	frame
	grid
	hist
	hist.POSIXt
	identify
	image
	layout
	legend
	lines
	locator
	matplot
	mosaicplot
	mtext
	pairs
	panel.smooth
	par
	persp
	pie
	plot
	plot.data.frame
	plot.default
	plot.design
	plot.factor
	plot.formula
	plot.histogram
	plot.table
	plot.window
	plot.xy
	points
	polygon
	rect
	rug
	screen
	segments
	spineplot
	stars
	stem
	stripchart
	strwidth
	sunflowerplot
	symbols
	text
	title
	units
	xspline

	The grid package
	grid-package
	absolute.size
	arrow
	convertNative
	dataViewport
	drawDetails
	editDetails
	gEdit
	getNames
	gpar
	gPath
	Grid
	Grid Viewports
	grid.add
	grid.arrows
	grid.circle
	grid.clip
	grid.collection
	grid.convert
	grid.copy
	grid.curve
	grid.display.list
	grid.draw
	grid.edit
	grid.frame
	grid.get
	grid.grab
	grid.grill
	grid.grob
	grid.layout
	grid.lines
	grid.locator
	grid.ls
	grid.move.to
	grid.newpage
	grid.pack
	grid.place
	grid.plot.and.legend
	grid.points
	grid.polygon
	grid.pretty
	grid.prompt
	grid.record
	grid.rect
	grid.refresh
	grid.remove
	grid.segments
	grid.set
	grid.show.layout
	grid.show.viewport
	grid.text
	grid.xaxis
	grid.xspline
	grid.yaxis
	grobName
	grobWidth
	grobX
	plotViewport
	pop.viewport
	push.viewport
	Querying the Viewport Tree
	stringWidth
	unit
	unit.c
	unit.length
	unit.pmin
	unit.rep
	validDetails
	vpPath
	widthDetails
	Working with Viewports
	xDetails

	The methods package
	methods-package
	.BasicFunsList
	as
	BasicClasses
	callNextMethod
	canCoerce
	cbind2
	Classes
	classRepresentation-class
	Documentation
	environment-class
	fixPre1.8
	genericFunction-class
	GenericFunctions
	getClass
	getMethod
	getPackageName
	hasArg
	implicitGeneric
	initialize-methods
	is
	isSealedMethod
	language-class
	LinearMethodsList-class
	makeClassRepresentation
	method.skeleton
	MethodDefinition-class
	Methods
	MethodsList-class
	MethodWithNext-class
	new
	ObjectsWithPackage-class
	promptClass
	promptMethods
	representation
	S4groupGeneric
	SClassExtension-class
	seemsS4Object
	setClass
	setClassUnion
	setGeneric
	setMethod
	setOldClass
	show
	showMethods
	signature-class
	slot
	StructureClasses
	TraceClasses
	validObject

	The stats package
	stats-package
	.checkMFClasses
	acf
	acf2AR
	add1
	addmargins
	aggregate
	AIC
	alias
	anova
	anova.glm
	anova.lm
	anova.mlm
	ansari.test
	aov
	approxfun
	ar
	ar.ols
	arima
	arima.sim
	arima0
	ARMAacf
	ARMAtoMA
	as.hclust
	asOneSidedFormula
	ave
	bandwidth
	bartlett.test
	Beta
	binom.test
	Binomial
	biplot
	biplot.princomp
	birthday
	Box.test
	C
	cancor
	case/variable.names
	Cauchy
	chisq.test
	Chisquare
	clearNames
	cmdscale
	coef
	complete.cases
	confint
	constrOptim
	contrast
	contrasts
	convolve
	cophenetic
	cor
	cor.test
	cov.wt
	cpgram
	cutree
	decompose
	delete.response
	dendrapply
	dendrogram
	density
	deriv
	deviance
	df.residual
	diffinv
	dist
	dummy.coef
	ecdf
	eff.aovlist
	effects
	embed
	expand.model.frame
	Exponential
	extractAIC
	factanal
	factor.scope
	family
	FDist
	fft
	filter
	fisher.test
	fitted
	fivenum
	fligner.test
	formula
	formula.nls
	friedman.test
	ftable
	ftable.formula
	GammaDist
	Geometric
	getInitial
	glm
	glm.control
	glm.summaries
	hclust
	heatmap
	HoltWinters
	Hypergeometric
	identify.hclust
	influence.measures
	integrate
	interaction.plot
	IQR
	is.empty.model
	isoreg
	KalmanLike
	kernapply
	kernel
	kmeans
	kruskal.test
	ks.test
	ksmooth
	lag
	lag.plot
	line
	lm
	lm.fit
	lm.influence
	lm.summaries
	loadings
	loess
	loess.control
	Logistic
	logLik
	loglin
	Lognormal
	lowess
	ls.diag
	ls.print
	lsfit
	mad
	mahalanobis
	make.link
	makepredictcall
	manova
	mantelhaen.test
	mauchly.test
	mcnemar.test
	median
	medpolish
	model.extract
	model.frame
	model.matrix
	model.tables
	monthplot
	mood.test
	Multinomial
	na.action
	na.contiguous
	na.fail
	naprint
	naresid
	NegBinomial
	nextn
	nlm
	nlminb
	nls
	nls.control
	NLSstAsymptotic
	NLSstClosestX
	NLSstLfAsymptote
	NLSstRtAsymptote
	Normal
	numericDeriv
	offset
	oneway.test
	optim
	optimize
	order.dendrogram
	p.adjust
	pairwise.prop.test
	pairwise.t.test
	pairwise.table
	pairwise.wilcox.test
	plot.acf
	plot.density
	plot.HoltWinters
	plot.isoreg
	plot.lm
	plot.ppr
	plot.profile.nls
	plot.spec
	plot.stepfun
	plot.ts
	Poisson
	poly
	power
	power.anova.test
	power.prop.test
	power.t.test
	PP.test
	ppoints
	ppr
	prcomp
	predict
	predict.Arima
	predict.glm
	predict.HoltWinters
	predict.lm
	predict.loess
	predict.nls
	predict.smooth.spline
	preplot
	princomp
	print.power.htest
	print.ts
	printCoefmat
	profile
	profile.nls
	proj
	prop.test
	prop.trend.test
	qqnorm
	quade.test
	quantile
	r2dtable
	read.ftable
	rect.hclust
	relevel
	reorder.dendrogram
	reorder.factor
	replications
	reshape
	residuals
	runmed
	scatter.smooth
	screeplot
	sd
	se.contrast
	selfStart
	setNames
	shapiro.test
	SignRank
	simulate
	smooth
	smooth.spline
	smoothEnds
	sortedXyData
	spec.ar
	spec.pgram
	spec.taper
	spectrum
	splinefun
	SSasymp
	SSasympOff
	SSasympOrig
	SSbiexp
	SSD
	SSfol
	SSfpl
	SSgompertz
	SSlogis
	SSmicmen
	SSweibull
	start
	stat.anova
	stats-deprecated
	step
	stepfun
	stl
	stlmethods
	StructTS
	summary.aov
	summary.glm
	summary.lm
	summary.manova
	summary.nls
	summary.princomp
	supsmu
	symnum
	t.test
	TDist
	termplot
	terms
	terms.formula
	terms.object
	time
	toeplitz
	ts
	ts-methods
	ts.plot
	ts.union
	tsdiag
	tsp
	tsSmooth
	Tukey
	TukeyHSD
	Uniform
	uniroot
	update
	update.formula
	var.test
	varimax
	vcov
	Weibull
	weighted.mean
	weighted.residuals
	wilcox.test
	Wilcoxon
	window
	xtabs

	The tools package
	tools-package
	buildVignettes
	charsets
	checkFF
	checkMD5sums
	checkTnF
	checkVignettes
	codoc
	delimMatch
	encoded_text_to_latex
	fileutils
	getDepList
	installFoundDepends
	makeLazyLoading
	md5sum
	package.dependencies
	QC
	Rdindex
	Rdutils
	read.00Index
	texi2dvi
	tools-deprecated
	undoc
	vignetteDepends
	write_PACKAGES
	xgettext

	The utils package
	utils-package
	alarm
	apropos
	BATCH
	browseEnv
	browseURL
	bug.report
	capture.output
	chooseCRANmirror
	citation
	citEntry
	close.socket
	combn
	compareVersion
	COMPILE
	count.fields
	data
	dataentry
	debugger
	demo
	download.file
	edit
	edit.data.frame
	example
	file.edit
	file_test
	fix
	flush.console
	format
	getAnywhere
	getFromNamespace
	getS3method
	glob2rx
	head
	help
	help.search
	help.start
	index.search
	INSTALL
	installed.packages
	LINK
	localeToCharset
	ls.str
	make.packages.html
	make.socket
	memory.size
	menu
	methods
	mirrorAdmin
	modifyList
	normalizePath
	nsl
	object.size
	package.skeleton
	packageDescription
	packageStatus
	page
	person
	PkgUtils
	prompt
	promptData
	promptPackage
	read.DIF
	read.fortran
	read.fwf
	read.socket
	read.table
	readNEWS
	recover
	relist
	REMOVE
	remove.packages
	RHOME
	roman
	Rprof
	Rprofmem
	Rscript
	RShowDoc
	RSiteSearch
	Rtangle
	RweaveLatex
	savehistory
	select.list
	sessionInfo
	setRepositories
	SHLIB
	stack
	str
	summaryRprof
	Sweave
	SweaveSyntConv
	toLatex
	type.convert
	update.packages
	url.show
	URLencode
	utils-deprecated
	View
	vignette
	withVisible
	write.table
	zip.file.extract

	Index

