4tH, the friendly Forth compiler

J.L. Bezemer

25th January 2008

Contents

1 What’s new 13
1.1 What’s new in version 3.5¢c,release 2. 13

1.2 What’snewinversion3.5¢c 15

1.3 What’s new in version 3.5b,release 2 16

1.4 What'snewinversion3.5b oo 17

1.5 What’snew in version 3.5a,release 2. 18

1.6 What'snewinversion3.5a 19

1.7 What’s new in version 3.3d,release 2 23

1.8 What'snewinversion3.3d 24

1.9 What'snewinversion3.3c 27
1.10 What’snewinversion3.3a, 28
1.11 What'snew in version3.2e 30
1.12 What’snewinversion3.1d 32

I Getting Started 36
2 Overview 37
2.1 Introduction e 37

2.2 HiStOry o e e e e e e e 37

2.3 Applications L. 38
24 Architectureo e e e e e e 38
24.1 Thed4tHlanguage 40

242 H-code 41

243 H-codecompiler Lo oL 42

244 Errorhandling 0oL 0oL 43

245 InterfacingwithC 43

CONTENTS

3 Installation Guide

I

3.1 Aboutthispackage
3.1.1 Examplecode.
3.1.2 Mainprogram
3.1.3 Unixpackage
3.1.4 Linuxpackage
3.1.5 MS-DOSpackage
3.1.6 MS-Windowspackage
3.2 Nowwhat? e
3.3 Pedigree
3.4 QuUestionS e e e
341 4tHWebsite
342 4tHGooglegroup
343 Newsgroup
A guided tour
4.1 4tHinteractive.
42 Startingup4tHo
43 Runningaprogram
4.4 Starting an editing session Lo e
4.5 Writing your first 4tH program 000
4.6 A more complex programot e
4.7 Advancedfeatures.
4.8 Suspendingaprogram
49 Calculatormode
410 Epilogue
Primer
Introduction
4tH fundamentals
6.1 Making calculations without parenthesis
6.2 Manipulatingthestack oo
6.3 Deep stack manipulators
6.4 Passing arguments to functionso o oL
6.5 Makingyourownwords
6.6 Addingcomment Lo

44
44
44
44
45
46
48
48
49
50
50
50
50
51

52
52
52
53
53
54
58
62
70
71
72

73

74

CONTENTS 3

7

6.7 Text-formatof 4tHsource. 79
6.8 Displaying string literals Lo 80
6.9 Declaring variables 80
6.10 Using variables e 80
6.11 Built-in variables L 81
6.12 Whatisacell?. e 81
6.13 What s a literal expression? 81
6.14 Declaring arrays of numbers oL 81
6.15 Using arraysof numberso 82
6.16 Declaring and using constants 82
6.17 Built-inconstants L 83
6.18 Usingbooleans e 83
6.19 TF-ELSE constructs i i ittt 83
6.20 FOR-NEXT constructs vt i .. 84
6.21 WHILE-DOconstructs 85
6.22 REPEAT-UNTIL constructs 85
6.23 Infiniteloopso 85
6.24 Including sourcefiles oL Lo 86
6.25 Getting a number from the keyboard 000 86
4tH arrays 87
7.1 Aligningnumbers L oL 87
7.2 Creating arraysofconstants 87
7.3 Usingarraysof constantso 87
74 Usingvalues. L 88
7.5 Creating Strings 89
7.6 Whatisanaddress? 89
7.7 Stringliterals 90
7.8 Stringconstantso 90
7.9 Initializing string variables oL Lo 91
7.10 Getting the length of a string variable 91
7.11 Printing astring variableo 91
7.12 Copyingastring variable oL 00 92
7.13 The string terminator 92
7.14 SHcing Stringso 92
7.15 Appending stringso 94
7.16 Comparing Strings 94

CONTENTS 4

7.17 Finding asubstring o L 95
7.18 Replacing substrings 96
7.19 Deleting substrings 97
7.20 Removing trailing spaces oo 97
7.21 Removing leadingspaces o 98
7.22 Upperandlowercase 98
7.23 String literals and string variables 000 99
7.24 Printing individual characterso 99
7.25 Distinguishing characters Lo 99
7.26 Getting ASCIIvalues 100
7.27 Printing SPaces i e e e e e e e e e e e e e e e 100
7.28 Fetching individual characters 101
7.29 Storing individual characterso 102
7.30 Getting a string from the keyboard00 103
8 Character Segment 104
8.1 The Character Segment 104
82 Whatisthe TIB? 105
83 Whatisthe PAD? 105
84 HowdoluseTIBand PAD? 105
85 Simpleparsing 106
8.6 Convertingastringtoanumber. 107
8.7 Controllingtheradix 107
8.8 Pictured numericoutput. 110
8.9 Convertinganumbertoastring. 113
8.10 Abortingaprogramo 113
8.11 Openingafile 114
8.12 Reading and writing from/toafile 114
8.13 Closingafile 115
8.14 Writing text-files L o 115
8.15 Reading text-files 116
8.16 Readinglonglines 116
8.17 Reading binary files oo 117
8.18 Writing binary files o oL 118
8.19 Reading and writing block files 0. 118
8.20 Parsingtextfiles 119
8.21 Parsingbinaryfiles oo L 120

CONTENTS 5

8.22 Parsing comma-delimitedfiles 0000 121
8.23 Advancedparsing 123
8.24 Appendingto existingfiles o oL 123
825 Using pipes 124
8.26 Opening a fileinread/writemode 125
8.27 Usingrandomaccessfiles. 125
8.28 Thelayoutofthe I/Osystem 127
8.29 Speechsynthesis o 128
8.30 Usingaprinter v v i v e e e e 128
8.31 The layout of the Character Segment 129
9 Integer Segment and Code Segment 130
9.1 TheCodeSegmentuu.eo.. 130
9.2 The address of a colon-definition 130
9.3 Vectoredexecution 131
9.4 ThelInteger Segment 132
9.5 A portable way to access application variables 133
9.6 Returning a result to the host program 133
9.7 Using commandline arguments 134
9.8 The layout of the Variable Area 134
9.9 Thestacks 135
9.10 Saving temporary values 136
9.11 The Return Stack and the DO.LOOP 137
9.12 Other Return Stack manipulations 138
9.13 Altering the flow with the Return Stack 139
9.14 Leaving a colon-definition 140
9.15 The layoutof the Stack Area 141
9.16 Booleans and numbers Lo 141
9.17 Using > withothernames 143
0.18 ASSEItioNS« v vt e e e 144
9.19 Breakpoints 146
9.20 Randomnumbers L 147
921 TIMEIS o o ot e e e 147
922 Time & Date e 148
9.23 Whatisnotimplemented 149
9.24 Known bugs and limitations 150

CONTENTS 6

10 Advanced programming 151
10.1 Compiletime calculations 151
10.2 Conditional compilation 153
10.3 Checking the environment at compiletime 155
10.4 Checking a definition at compiletime 156
10.5 EXceptions. o it e e e e e e e 156
10.6 Mixing character and numberdata 159
10.7 Enumerations Lo e e 161
10.8 Dynamic memory allocation 161
10.9 Tweaking dynamicmemory v v v v v e 163
10.10Applicationstacks oL 164
10.11Forward declarations 165
10.12Recursion 167
10.13Lookup tables with integerkeys 167
10.14Lookup tables with stringkeys 0oL, 171
10.15Lookup tables with multiplekeys 172
10.16Lookup tables with duplicatekeys 173
10.17Interpreters e e 174
10.18Adding yourown library oL 0oL 176
10.19Adding templates e 177
10.20Private declarations 179
10.21TALHases« . o e e e 179
10.22Changing behaviourof data L., 180
10.23Multidimensional arrays 181
10.24Binary string constantso 182
10.25Records and structures e e e e e 182
10.26Fixed point calculation 184
10.27Double numbers Lo 186
10.28Complex control structures 188
10.29S0rting oL 189
10.30Tokenizing Strings 190
10.31Regular expressionsol 192
10.32Running 4tH programs from the Unix shell 192
10.33Embedding 4tH programs ina batchfile 193

10.34Thisistheend e 193

CONTENTS
III Reference guide
11 Glossary

12 Editor manual
12.1 Introduction L e e
12.2 Selecting a screen and inputoftext
12.3 Lineediting o e e e e
12.4 Line editing commands Lo
12.5 Screen editing commandso
12.6 Cursor control and string editing
12.7 Commands to position the cursor
12.8 String editingcommands 0oL oL L.
129 Savingandexiting oo

12.10Calculatormode e

13 Shell manual
13.1 Introduction
13.2 Loadingandsaving
13.3 Taskmanagemento
134 Scripting
13.5 Stack, I/O and arithmetic

14 ANS Forth statement
14.1 ANS-Forth Label
14.2 Unsupported COREwords
14.3 Supported ANS Forth wordsets
14.3.1 Core Extensionswordset.
14.3.2 Blockwordset
14.3.3 Block Extensions wordset
14.3.4 Double numberwordset
14.3.5 Double number Extensions wordset
14.3.6 Facility Extensionswordset
14.3.7 File-Accesswordset
14.3.8 File-Access Extensionswordset
14.3.9 Programming-Toolswordset.
14.3.10 Programming-Tools Extensions wordset

14311 Stringwordset oL

194

195

266
266
266
266
267
267
267
267
268
268
268

270
270
271
271
271
272

CONTENTS

15 Errors guide
15.1 Howtousethismanual
15.2 Interpreter (exec_4th)
15.3 Compiler (comp_4th) oo
15.4 Loader (load_4th)
15.5 Saver (save_4th)

16 Porting guide
16.1 Introduction
16.2 General guidelines o oL
16.3 Differences between 4tH and ANS-Forth
16.3.1 Strings
16.3.2 Doublenumbers
1633 Booleans
16.3.4 CREATE.DOES>
1635 HERE
16.3.6 Interpretation and compilationmode
16.3.7 BEGIN.WHILE.REPEAT
16.3.8 DO.LOOP
1639 T/O
164 Easy4tH
16.4.1 Disabling DOES>
16.4.2 Enabling the String Space
16.4.3 Thestructureof Easy4tH
16.5 Converting ANS-Forth programsto4tH

IV Development guide

17 Compiling the source
17.1 Introduction L e e
17.2 Recommended and preferred compilers
17.3 Compiling4th e
17.4 Compiling thelibrary L.
17.5 Using thelibraryo oL

17.6 Optimizations 0 v i e e e e e e

279
279
279
284
289
290

291
291
291
292
292
292
292
294
294
295
295
296
297
298
299
299
300
300

302

CONTENTS

18 Using the 4tH API
18.1 Introduction L
18.2 Asampleprogram. e e
18.3 Afirstlookatopen_4th()
184 AcloserlookatH-code
18.5 Afirstlookatcomp_4th().
18.6 Afirstlookatexec_4th()
18.7 Afirstlook atfree_4th()
18.8 Afirstlookatsave_4th()
18.9 Afirstlookatload 4th()
18.10A first look at error-trappingo e
18.11A first look at dump_4th()
18.12A first look atcgen_4th() oo
18.13Converting HX-files o oL
18.14A first look at fetch_4th()
18.15A first look at store_4th(),
18.16Examples of embedded HX code
18.17Suspended execution o

18.18Useful variables

19 Modifying 4tH
19.1 Introduction L e e
19.2 Acloserlookatcomp_4th()
19.3 Addingaconstant e e
194 Addingaword
19.5 Acloserlook atexec_4th()
19.6 Afirstlookatname 4th().
19.7 Extending thecompiler oo
19.8 Making aliases
19.9 Giving a name to an application variable
19.10Adding new variables
19.11Resizing the 4tH environment
19.12Tuning pipe failure detection
19.13Adding new error messages w e e e e
19.14Sizing the Code Segment
19.15Adding inline macros e e e
19.16Adding string words oL

307
307
307
309
310
310
311
314
316
317
317
319
321
323
323
324
325
327
333

CONTENTS 10

19.17Adding words with arguments L., 359
19.18Adding conditionals 360
19.19Extending the [/O subsystem 365
19.20Using the symboltable 366
19.21Using variables and datatypes 369
19.220thertools 371
19.23Patching 4tH 371
19.23.1Tokens 371
19232Wordso 372
19.23.3The virtual machine 373
19.23.4Immediatewords oo 373
19.23.5 Applying thepatches L. 374

19.23.6 Error messages e e e e e 375

List of Figures

2.1 Integersegmentlayout 39
2.2 Character segmentlayout oL oL 40
23 Hcodestructure 42
4.1 Editor architecture 54
8.1 Charactersegment 104
82 ThedtHI/Osystem ittt et 128
9.1 Integersegment 133
18.1 Heodestructure e e e 310

11

List of Tables

1.1 Forth-79to ANS conversion 32
7.1 Charactertypingwords oL 100
10.1 NELL equivalents ittt it 160
10.2 Fractionwords e 186
10.3 Examples of single and double number counterparts 187
122 DCcommands e e 269
13.1 4tshcommands e 272
16.1 Dumbwords. e e 295
17.1 Listof compilers e 304
18.1 APIfunctions 307
19.1 comp_4th() variables L 335
19.2 exec_4th()basic API 340
19.3 comp_4th()basic APT 344
19.4 Examplesofaliases 345
19.5 Mapping between 4tH and C variables 346
19.6 Mapping between 4tH and C variablenames 347
19.7 Accessing 4tH datafromC 359
19.8 exec_4th()dataaccess API 360
19.9 Exampleexecutionplano 362
19.10Branchresolving APT oL 363
19.11Members of Stream|[] structure 366
19.12Device Status MAaCTOS . . .« v v v v v v v v e e e e e e e e e e e 366
19.13Symboltable API 367
19.14Table search APT, 368

Chapter 1

What’s new

1.1 What’s new in version 3.5¢, release 2

Words

e None.

Functionality

e A default 4tH directory can be defined by setting an environment variable.
e Support for creating custom 4tH implementations.

e 4tsh is scriptable now.

Bugfixes

e None.

Developer

e The library files concerning ANS Core Extensions, table searching and interpretation
have been rewritten or replaced.

e A superfluous #define was removed from 4th.h.

Documentation

e All documentation now reflects the functionality of the current version.

Hints
Porting your V3.5¢ programs to release 2 shouldn’t be any problem. All executables will

run without recompilation. However, you might have to change a few source files in order
to make them compile properly.

13

CHAPTER 1. WHAT’S NEW 14

Library reorganization

Some words have been moved to another library file, so you might have to change your
includes according to the following table:

| Word | v3.5¢ | v3.5¢, release 2
WITHIN anscext.4th | ranges.4th
BETWEEN comus.4th ranges.4th
SAVE-INPUT anscext.4th | evaluate.4th
RESTORE-INPUT | anscext.4th | evaluate.4th

Interpreter

The inclusion of interprt.4th has to be done at the very beginning of the program, like
all other include files. ”NotFound” now always uses the same stack diagram: it leaves
the address/count string on the stack that could not be interpreted. "NotFound” is now a
deferred word with default behaviour, so defining it is optional. Either remove the definition
or change it from, e.g.:

: NotFound type ." 1s not defined" cr ;
To:
:noname type ." 1is not defined" cr ; is NotFound
The “dictionary” table used to be mandatory. Change it frome.g.:
create dictionary
To:
create wordlist
After you’ve completely defined the table add this line:
wordlist to dictionary
Your program should compile and run correctly now.

Table search

Both find. 4th and lookup. 4th have been superseded by row. 4th. Since "ROW” works
slightly different, you might have to do some rewriting. Please consult the primer if you’re
unsure how. If you’re not willing to do that, there are two options:

1. Usethe find.4th and lookup.4th from a previous version of 4th;

2. Use the following definitions:

CHAPTER 1. WHAT’S NEW 15

: find
['] skey= is key= >r row
if nip nip r> cells + @c true
else r> drop drop false
then

: lookup
['] nkey= is key= >r row
if nip r> cells + Qc true
else r> drop drop false
then

Reserved words
In order to prepare your programs for other changes, we strongly advise you not to use

any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed')
ANS-Forth standard, except for porting purposes.

1.2 What’s new in version 3.5¢

Words

e The words ’C,” and ’OFFSET’ have been added.

Functionality

e Binary string constants can be defined.

Bugfixes

e None.

Developer

e MakeSymbol() has been added to comp_4th().

Documentation

e All documentation now reflects the functionality of the current version.

Hints

Porting your V3.5b, release 2 programs to V3.5¢ shouldn’t be any problem. Most of them
will only need recompilation. There is one thing to consider:

' A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 1. WHAT’S NEW 16

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are *C,” and ’OFFSET".

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed?)
ANS-Forth standard, except for porting purposes.

1.3 What’s new in version 3.5b, release 2

Words

e Renamed "FIELD’ to *+FIELD’. The words '[NEGATE]’, ’CHOP’ and ’/STRING’
have been added.

Functionality

e None.

Bugfixes

e The word ’->’ allocated slightly more memory than needed. This has been fixed.

Developer

e The function hgen_4th() has been removed from the API.

e The library files have been updated and expanded.

Documentation

e All documentation now reflects the functionality of the current version. A section on
the 4tH shell (4tsh) has been added.

Hints
Porting your V3.5b programs to release 2 shouldn’t be any problem. All executables will

run without recompilation. However, you might have to change a few source files in order
to make them compile properly. There are two things to consider:

Renamed words

If you used "FIELD’ in your programs, you’ll have to replace it by *+FIELD’. No other
changes are necessary.

2 A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 1. WHAT’S NEW 17

New reserved words
If you used the any of the new reserved words in your program as a name, you should

replace those names by another. The new reserved words are '[NEGATE]’, ’"CHOP’ and
/ISTRING’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed)
ANS-Forth standard, except for porting purposes.

1.4 What’s new in version 3.5b

Words

e The words ’.I” and ’'SYNC’ have been added.

Functionality

e Output buffers can be flushed.

Bugfixes

e None.

Developer
e The CODE() and NEXT macros have been added to allow easy modification of
exec_4th().
Documentation

e All documentation now reflects the functionality of the current version.

Hints

Porting your V3.5a release 2 programs to V3.5b shouldn’t be any problem. Most of them
will only need recompilation. There is one thing to consider:

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are .I” and "'SYNC”.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed®)
ANS-Forth standard, except for porting purposes.

3 A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

4 A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 1. WHAT’S NEW 18

1.5 What’s new in version 3.5a, release 2

Words

e Renamed *SLEEP’ to "'PAUSE’. The word "FILES’ has been added.

Functionality

e None.

Bugfixes

e A bad mode string disabled pipes in the Unix version. This has been fixed.

Developer

e None.

Documentation

e All documentation now reflects the functionality of the current version.

Hints

Porting your V3.5a programs to release 2 shouldn’t be any problem. All executables will
run without recompilation. However, you might have to change a few source files in order
to make them compile properly. There are two things to consider:

Renamed words

If you used *SLEEP’ in your programs, you’ll have to replace it by 'PAUSE’. No other
changes are necessary.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved word is "FILES’

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed?)
ANS-Forth standard, except for porting purposes.

5 A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 1. WHAT’S NEW 19

1.6 What’s new in version 3.5a
Words
e The words "WORD?’, 7, "TOKEN’, "COPY’, "TEXT’ and "WAIT’ have been dis-
carded.
e The words 'NUMBER’, "ARGS’, ’IS’, 'REPEAT’, "AGAIN’ and "UNTIL’ have
been changed.
e Renamed’ @ to’@C’, SKIP’ to ’OMIT” and "RESULT’ to "OUT’.
e The words *@GOTO’, ’+CONSTANT’, ’'SOURCE-ID’, "CIN, *COUT’, "PARSE-
WORD’,’IMMEDIATE’,”NOT’,”INCLUDE’, [UNDEFINED]’, ’4TH#’, ’SLEEP”,
), 2DUP?, "2DROP’, "2SWAP’, °2>R’, ’2R>’,°SP, °,I’, ’+PLACE’, ’-ROT’, "BOUNDS’,
’2R@’,’R’@’,”UNLOOP’,’SOURCE’, ’SOURCE!’, "'DEFER@’, "'DEFER!’, ">BODY’,
’SCONSTANT’, *:THIS’, "'DOES>’, *'STRUCT’, ’END-STRUCT’, ’->’, "FIELD’,
"ENUM’, *SEEK’, "TELL’, ’AKA’, ’ALIAS’ and "HIDE’ have been added.
Functionality
e The execution of a 4tH program can be suspended.
e A suspended 4tH program can be saved and reloaded.
o A 4tH program can be embedded in a MS batch file.
e User defined words can be made private.
e User defined words can be aliased.
e User defined terminal input buffers are supported.
e Complete, ANS-Forth compatible redesign of all string handling words.
e Multiple WHILEs are supported with REPEAT, AGAIN and UNTIL.
e Support for structures and enumerations has been added.
e Files can now be opened in read/write mode.
¢ File pointers can be interrogated and repositioned.
e Limited DOES> support has been added.
e More ANS-Forth, COMUS and TOOLKIT words have been added.
Bugfixes

Several small bugs in the editor were fixed.
A small bug in "FILL’ was fixed.
A bug in hgen_4th.c that caused SEGFAULT was fixed.

A security vulnerability in 4th.c was fixed.

CHAPTER 1. WHAT’S NEW 20

Developer

e Several changes in exec_4th(), comp_4th(), save_4th() and load_4th() to support sus-
pension.

e The function inst_4th() has been renamed to fetch_4th().
e The function store_4th() has been added.

e The Hcode structure has been expanded with the members CellSeg, UnitSeg and
Offset.

e PAD has been converted to a circular buffer for temporary strings.

e Most of the string handling and all file functions in exec_4th() have been rewritten.
e The entire virtual machine was rewritten and its performance significantly improved.
o All internal 4tH variables are now located in a hidden area of the Integer Segment.
o The performance of "MOVE’ has been significantly improved.

e The library files have been updated and significantly expanded.

Documentation

e All documentation now reflects the functionality of the current version.

e There is now one single manual.

Hints

Porting your V3.3d release 2 programs to V3.5a may require some effort. In previous
versions, string support was quite a mess (IMHO), requiring awkward words like ’COPY’.
Some words returned or expected an address, others an address/count pair. With version
3.5a string support was completely redesigned. Consequently, source files using strings or
arrays of string constants will have to be partially rewritten in order to make them compile
and run properly. There are several things to consider:

Strings

There has been a conversion to the format recommended by the ANS-Forth standard. All
strings are now represented by an address/count pair, with the exception of string vari-
ables and string addresses returned by *@C’. For this purpose, "WORD’ has been replaced
by 'PARSE-WORD’. 'NUMBER’ and ’ARGS’ now return an address/count pair. Parsed
strings are no longer copied to PAD, but remain in TIB and are not zero-terminated. How-
ever, since parsed strings are now represented by an address/count pair this should not be a
problem.

Most programs we examined used constructions like this:

[char] ; word count type
s" 567" drop number
1 args count my_variable place

CHAPTER 1. WHAT’S NEW 21
Those can easily be converted to:

[char] ; parse-word type
s" 567" number
1 args my_variable place

As a rule of the thumb, we advise you to use ’"COUNT’ only on string variables and string
addresses returned by *@C’. You might find after a while, that these are the only situations
where "COUNT" is actually required. In all other situations, you use the count on the
stack. Special operators like *2DUP’, 2DROP’ and *2SWAP’ have been added to make
manipulation of address/count pairs easier.

Please note that ’OPEN’ already required an address/count pair, but simply discarded the
count. In version 3.5a the count is required. If you didn’t program properly, this might
cause errors now. Well designed programs will continue to function properly.

We advise against the use of "MOVE’ or "CMOVE’ for moving strings. Most of these
constructions will continue to work, but some may fail. In any case, they are not portable.
Use 'PLACE’ and *+PLACE’ wherever you can.

PAD

PAD has been converted into a circular string buffer. Because some routines directly inter-
face with their C counterparts, temporary zero-terminated strings are stored in PAD. When
the buffer overflows it wraps around, overwriting whatever is there. Some previously cor-
rectly running programs may corrupt the PAD this way. If this happens, you can solve this
by storing the overwritten string into a string variable. The reason for all this is that this
now works:

s" This is not overwritten" s" By this string" compare

Number representations are not clobbered unless you use extremely long number formats.

Arrays of string constants

Consider this construction:

16 string weekday

create weekdays
Monday" ,

" Tuesday" ,

" Wednesday" ,
" Thursday" ,
Friday"
Saturday" ,
Sunday" ,

weekdays 4 th @' weekday copy count type cr

CHAPTER 1. WHAT’S NEW 22

’@” returns an address in the String Segment. ’COPY” is the only word in pre-3.5a versions
that can access the String Segment. It copies the string from the String Segment to an
address in the Character Segment and returns that address . In version 3.5a and up, ’@”
has been replaced by *@C’.” @C’ is a lot smarter. It copies the zero-terminated string from
the String Segment to PAD and returns that address. A ’COUNT" is still needed, but since
all temporary strings in PAD are zero-terminated, this can safely be done:

create weekdays

;" Monday"
;" Tuesday"
, " Wednesday"
;" Thursday"
," Friday"
;" Saturday"
;" Sunday"

weekdays 4 th @c count type cr

Note that the string variable is no longer needed and the resulting code is much cleaner!
String constants are now declared by a simple ’,"’. ””” has been discarded. > @C’ also works
for integer constants and behaves like * @”.

Deferred words

Deferred words are now fully COMUS compatible. You have to change your programs
only slightly:

defer my-vector

: do-nothing ;
" do-nothing is my-vector
my-vector execute

Just remove the ’EXECUTE’:

defer my-vector

: do-nothing ;
" do-nothing is my-vector
my-vector

Please note that IS’ is no longer an alias for *"TO’. If you have used illegal constructions
like that, you’ll have to correct them.

Library files

Note the library files have been revised and expanded. Some words have been renamed
or placed into another file. Note that the "toolbelt.4th’ and ’comus.4th’ library files are
primarily intented for porting purposes. The ’easy.4th’ library file is intended to port 4tH
programs to other Forth compilers. Note that this only works for ANS-Forth compliant
programs.

CHAPTER 1. WHAT’S NEW 23

Dropped words

"WAIT’ has been dropped and replaced by "MS’. You’ll have to ’INCLUDE’ the library
file "ansfacil.4th’ in order to use it. Note that this implementation is very crude and may
vary between 0 and +1999 milliseconds®.

"TOKEN’ has been replaced by "PARSE’, which returns an address/count pair. "WORD’
has been replaced by "PARSE-WORD?’, which returns an address/count pair. ’"COPY” has
been incorporated into * @C’.

"TEXT’ has been dropped. If you treat a file as a text file, it will be handled as a text file.
Just remove *"TEXT’:

s" textfile.txt" input text + open
So now it reads:

s" textfile.txt" input open

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are *@C’, *OMIT’, *OUT”,
’@GOTO’, "+CONSTANT’, ’SOURCE-ID’, "CIN, "COUT’, 'PARSE-WORD’, 'IMME-
DIATE’,’NOT’,’INCLUDE’, ’[UNDEFINEDY]’, ’4TH#’, ’SLEEP’,’,”*, ’2DUP’, "2DROP”’,
2SWAP’, ’2>R’, 2R>’, °SP, °I’, "+PLACE’, ’-ROT’, ’BOUNDS’, "2R@’, 'R’ @’, "UN-
LOOP’, 'SOURCE’, "SOURCE!’, 'DEFER@’, "DEFER!’, ">BODY’, "SCONSTANT’,
:THIS’,’DOES>’, ’STRUCT’, ’END-STRUCT", ’->’, "FIELD’, "ENUM’, 'SEEK’, "TELL’,
"AKA’,’ALIAS’ and "HIDE’.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed’)
ANS-Forth standard, except for porting purposes.

1.7 What’s new in version 3.3d, release 2

Words

e The word C”’ has been discarded. The words '[NEEDS’ and '[DEFINED]’ have
been added.

Functionality

e Source files can be included at compile time.

e The existence of words in the dictionary can be checked at compile time.
e More COMUS words have been added.

e The 4tH program allows you to enter parameters in the menu.

e The Linux module ’binfmt_misc’ is supported.

The ”Forth Programmers Handbook” states that "MS’ should be at least the duration plus twice the resolution
of the system (which is one second in 4tH).

7 A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

CHAPTER 1. WHAT’S NEW 24

Bugfixes

e None.

Developer

e Function open_4th() has been rewritten.

e The parser in comp_4th() has been changed significantly and is now much more
transparant.

e There is an extra option in the menu of 4th.c

Documentation

e All documentation now reflects the functionality of the current version.

Hints

Porting your V3.3d programs to release 2 shouldn’t be any problem. All executables will
run without recompilation. However, you might have to change a few source files in order
to make them compile properly. There are two things to consider:

Dropped words

If you used C”’ in your programs, you’ll have to replace it by ””. No other changes are
necessary.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’[NEEDS’ and ’[DEFINED]’

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list or ANS-Forth standard, except for
porting purposes.

1.8 What’s new in version 3.3d

Words
e The words "FILE’ and "TTY’ have been discarded. The words 'FILE’, ’AS’, "USE’,
"DEFER’, °IS’, ’STDIN’ and *STDOUT’ have been added. The words *INPUT’,
’OUTPUT’, ’OPEN’ and ’CLOSE’ have been changed.

Functionality

e Multiple files can be opened concurrently.

e More COMUS words have been added.

CHAPTER 1. WHAT’S NEW 25

Bugfixes

e A segment violation was caused in 4th.c when an invalid sequence of commands was
issued. This has been fixed.

e Better errorhandling when a pipe cannot be opened.

Developer

e The file support in function exec_4th() has been rewritten.

e Added DolnitValue().

Documentation

e All documentation now reflects the functionality of the current version.

Hints

Porting your V3.3c programs to V3.3d shouldn’t be any problem. Most of them will only
require recompilation, except when files are manipulated. There are three things to con-
sider:

Using files

The new 4tH file handling module adds the concepts of streams and channels. You have
two channels, an input channel and an output channel. In (standard) 4tH you have eight
streams (you can increase this when you compile 4tH), two are already taken by the system
(stdin and stdout). At startup the stdin stream is connected to the input channel and the
stdout stream is connected to the output channel.

You can open additional streams by using the ’"OPEN’ word:
OPEN (a n fmod -- handle)

E.g.
s" 1s" input pipe + open

This is not a significant deviation from V3.3c in which ’OPEN’ returned only a flag. You
can still interpret the handle as a flag since ’OPEN’ returns zero when it failed.

To use the handle you only have to connect it to the appropriate channel. In V3.3c this was
done by using:

input file

In V3.3d, you use the word "USE’. "USE’ takes a handle and connects the stream to the
appropriate channel.

CHAPTER 1. WHAT’S NEW 26

file 1s
s" 1s" input pipe + open dup as ls
0= abort" Cannot open pipe"

1s use
In V3.3c you had to close a file by closing the channel, while the stream was still connected:

s" 1s" input pipe + open
0= abort" Cannot open pipe"

input file
input close

In V3.3d you have to close the stream:

file 1s

s" 1s" input pipe + open dup as ls
0= abort" Cannot open pipe"

1s use
1s close

The default stream is reconnected to the channel, even if another stream was currently
connected to that channel. We give you an example how 4tH now handles files in respect
to the previous version:

VERSION 3.3C

s" hello.txt" output text + open
0= abort" Cannot open file"
output file

." Hello world" cr

output close

VERSION 3.3D

file hello

s" hello.txt" output text + open dup as hello
0= abort" Cannot open file"

hello use

." Hello world" cr

hello close

I'hope you can appreciate the extended possibilities of 4tH and the way we tried to minimize
breaking existing code.

CHAPTER 1. WHAT’S NEW 27

Using ’INPUT’ and ’OUTPUT’

Two new constants have been added to 4tH: *STDIN’ and *’STDOUT”. Before you could
use 'INPUT’ and ’OUTPUT’ as follows:

input file
output tty

Using "INPUT’ and ’"OUTPUT" this way is depreciated and should be replaced by:

stdin wuse
stdout use

Please use "INPUT’ and ’'OUTPUT’ only as flags for OPEN.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are AS’, "USE’, " DEFER’, ’IS’,
’STDIN’ and ’STDOUT”?

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

1.9 What’s new in version 3.3c

Words

e The word +UNDER’ has been discarded. The words 'PIPE’, 'PLACE’, "'TOKEN’,
’SKIP’, "PARSE’, ’/CELL’, ’/CHAR’, ’ABORT””’, '[ABORT]’ and ’[=]" have been
added.

Functionality

e A complete mini-IDE has been added.

e Parsing has been enhanced significantly.
e The Unix version now supports pipes.

e More CORE words implemented.

e Some environmental dependancies can be checked at compiletime.

Bugfixes

e Reentry of several 4tH functions was seriously flawed, most notoriously in ’comp_4th()’.
This has been fixed.

CHAPTER 1. WHAT’S NEW 28

Developer

e Several new functions have been added, most significantly in the area of C source
generation.

e The loading of sourcefiles is now done by open_4th(); fload() can still be used, but is
no longer supported.

e The function save_4th() has been optimized. HX files are up to 50% smaller com-
pared to those created by previous versions.

e The function dump_4th() has two extra arguments, allowing partial decompilation.

e The file support in function exec_4th() has been rewritten and now supports popen()
and pclose().

e The demonstration program 4th.c has been completely rewritten.

Documentation

e All documentation now reflects the functionality of the current version.
e A document describing a sample session in 4tH interactive mode has been added.

e Several documents have been merged.

Hints

Porting your V3.3a programs to V3.3c shouldn’t be any problem. Most of them will only
require recompilation. There are two things to consider:

Programs using ’+UNDER’

Which is no longer supported. If you have such programs, just add this definition at the
top:

: +UNDER ROT + SWAP ;

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are 'PIPE’, 'PLACE’, "TOKEN’,
"PARSE’, ’SKIP’, ’/CELL’, ’/CHAR’, ’ABORT””’, ’[ABORTT’, and ’[=].

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

1.10 'What’s new in version 3.3a

Words

e The words ’APPEND’, "TEXT’,’S"’, ’[*]’, ’[+]’, '[NOT] and ’#!” have been added.
e The word ’OPEN’ has been changed.

CHAPTER 1. WHAT’S NEW 29

Functionality

e An output file can now be opened in "append" and "text" mode.
e A 4tH program can now be run from the shell.
e More CORE words implemented.

e Compiletime calculation is possible now.

Bugfixes

e When reallocation of the segments during compilation fails, resources are freed.

e When memory allocation of the header during the loading of an HX file fails, the file
is closed.

Developer

e Dropped the EasyC syntax.

Added the proper ’int main()’ declarations.

Modern prototypes, local include files and no stricmp() function are now the default
behaviour.

Dropped stricmp() from the distribution and added MatchName() to comp_4th().

Added CompileString().

Documentation

e All documentation now reflects the functionality of the current version.

e The Developers Guide has been enhanced.

Hints

Porting your V3.2e programs to V3.3a shouldn’t be any problem. Most of them will only
require recompilation. There are two things to consider.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are "#!”,’S"’, ’APPEND’, *[*]’,
‘[+]°, "[NOT]’ and *'TEXT".

CHAPTER 1. WHAT’S NEW 30

Changed words

The word ’OPEN’ now takes an extra value from the stack. If you used an construction like
this:

64 string filename
" myfile.dat" filename copy
input open

Change it to this:
s" myfile.dat" input open
If you used a construction like this:

refill drop
bl word
input open

Change it to this:

refill drop
bl word count
input open

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

1.11 What’s new in version 3.2¢

Words
e The words 'I”, 'R’, ’QUERY”, ’ENDIF’, ’END’, "MINUS’, "NOT’, *ASCII’, *2+’
and ’2-’ have been discarded.

e The words :NONAME’, *?DO’, " BLANK’, ’ERASE’, "CMOVE>’, '"NIP’, 'TUCK”,
’+UNDER’ "REFILL’, °D>S’, 'RSHIFT’, ’"CATCH’ and "M AX-RAND’ have been
added.

e Renamed ’-TRAIL’ to ’-TRAILING’, *STACK’ to *STACK-CELLS’, '#PAD’ to
/PAD’, #T1IB’ to */TIB’ and "LIMIT’ to "MAX-N".

Functionality

o The Character Segment is now unsigned, so no more negative characters.
e Vectored execution has been enhanced.

e Better implementation of '/RECURSE’.

Better ANS-Forth compatibility by adding some commonly used words.

Compatibility with Forth-79 has been dropped.

CHAPTER 1. WHAT’S NEW 31

Bugfixes

e load_4th() closes the file when memory allocation failed.
e An error in GetImmediate(), GetConstant() and GetWord() has been fixed.

e DoRecurse() can now detect the use of '/RECURSE’ outside a colon definition.

Developer

e Complete redesign of the parser. The whole parser now consists of the functions:
ParseText(), ParseString() and ParseDirective(). Inline macros are supported.

e MoveString() does not require any arguments anymore.
e A textmode has been added to accept().
e Removed and added several tokens.

e The names of all internal words are now pointers instead of sized arrays, which
means name can have any length now.
Documentation

e All documentation now reflects the functionality of the current version.
e The Developers Guide has been enhanced.

e The Porting Guide has been enhanced.

Hints

Porting your V3.1d programs to V3.2e shouldn’t be any problem. There are three things to
consider.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are :NONAME’, *-TRAILING’,
>7DO’, ’BLANK’, ’JERASE’, "CMOVE>’, "NIP’, "TUCK’, ’+UNDER’, "REFILL’, 'D>S’,
"RSHIFT’, "CATCH’, ’/PAD’, ’/TIB’, 'STACK-CELLS’, ' MAX-N’ and "MAX-RAND’.
Most likely you have used these names for compatibility purposes, €.g.:

: rshift negate shift ;

In that case you can simply remove these definitions.

CHAPTER 1. WHAT’S NEW 32

Dropped words

The Forth-79 words °R’, 2", 2+, "QUERY’, ’ENDIF’,"END’, "MINUS’, "NOT", ASCII’
and 'I” are no longer supported. *-TRAIL’, #PAD’, "#TIB’, "LIMIT’” and *STACK"’ have
been renamed. If you have programs that use these words then either modify them or add
the following definitions:

c2- 2 -

: 1" r> r> r> dup >r rot rot >r >r ;
: r r> r> swap over >r >r ;

: query input tty refill drop ;
: minus negate ;

: not invert ;

: —trail -trailing ;

: #pad /pad ;

¢ #tib /tib ;

: limit max-n ;

. stack stack-cells ;

Unfortunately, you still have to replace the following words by their ANS-Forth equivalent,
since there is no colon definition available for them:

| CHANGE: | To: |
ASCII CHAR, [CHAR]
END AGAIN
ENDIF THEN

Table 1.1: Forth-79 to ANS conversion

Unsigned characters

If a character with an ASCII value greater than 127 was fetched from the Character Seg-
ment, it was converted to a negative value. ’C@’ will now return a positive value. This
means that you can remove patches like these:

: c@' c@ dup 0< if 256 + then ;

On the other hand, if you have programs that rely on this negative value (e.g. by storing
"-1" in a character), then you have to modify them.

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

1.12 What’s new in version 3.1d

Words

e The words AT’ and ’ALLOT’ have been discarded

e The words ’ARRAY’, "TABLE’, ’.(’, ’ABORT’, ’S>D’, *"’, 'RECURSE’, ’[IF]’,
’[THEN]’, ’ARGS’ and ’ARGN’ have been added.

CHAPTER 1. WHAT’S NEW 33

Functionality

e Better ANS-Forth compatibility (thank you, Wil Baden)
e Commandline arguments are now supported
e Nested assertions are now supported

e Conditional compilation is now supported.

Bugfixes

e ASCII bug has been fixed

e Several bugs in ParseText() and ParseStrings() have been fixed.

Developer
e Added SkipSource(), DecodeSymbol() and DecodeL.iteral()
e Added two more arguments to exec_4th()
e Added two more tokens to cmds_4th.h
e Moved <limits.h> to 4th.h

o Added an extra compilation option "LOCAL_H" for those who cannot access /usr/include.

Documentation

e All documentation now reflects the functionality of the current version
e A ’Porting Guide’ has been added

e A’ What’s New’ bulletin has been added

e The 'Developers Guide’ has been enhanced

e The ’Primer’ has been enhanced.

Hints

Porting your V3.1c programs to V3.1d shouldn’t be any problem. There are five things to
consider.

AT

AT’ has been discarded. Simply replace all occurences of AT’ by 'STRING’. If you used
the "CHARS’ keyword, you can leave right there since it doesn’t have any effect, except
when you are porting your program to Forth.

CHAPTER 1. WHAT’S NEW 34

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are ’ARRAY’, "TABLE’, °.(,
’ABORT’, ’S>D’, *"’, "RECURSE’, ’[IF]’, ’[THENY’, ’ARGS’ and ’ARGN’.

Using *’VALUE’ with ’ALLOT”’

If you ALLOTted any space to a VALUE, you should rewrite your code. Note that this is
bad practice anyway. Example:

10 value room 10 cells allot \ allotting space to a VALUE

20 to room \ changing ROOM

5 7 room first + 4 th ! \ accessing allotted space
Change this to:

11 array room \ define an ARRAY

10 room 0 th ! \ init 1st element of ROOM

20 room 0 th ! \ change 1lst element

5 room 4 th ! \ accessing allotted space

Using ’VARIABLE’ with ’ALLOT’

This should be common practice to define cell arrays. However, as Wil Baden pointed
out, this is not a common practice in ANS-Forth. Therefore, the word ’ARRAY’ has been
added, which can easily be implemented in both Forth-79 and ANS-Forth. All the programs
using the old syntax have to be modified, though. Example:

variable room 15 cells allot
Change this to:
16 array room

Special care must be taken of arrays that are sized using a constant, e.g. when the same
constant is used to check the range. Example:

15 constant size
variable room size cells allot

: room? \ is it a valid variable?
dup (nn)
size not and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit
then

Change this to:

CHAPTER 1. WHAT’S NEW 35

16 constant size
size array room

: room? \ is it a valid variable?
dup (n n)
size 1- not and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit
then

ANS-Forth compatibility

Sometimes it proved to be impossible to port a program to ANS-Forth since some construc-
tions could not be implemented. There is no such thing as a ’state’ in 4tH, which means
that compilation- and interpretation semantics are completely the same, e.g.

c" This is a string" value addr
." String address has been stored in ADDR" cr

This is perfectly valid in 4tH, but cannot be ported in any way to ANS-Forth. With the new
version, you can write:

" This is a string" value addr
.(String address has been stored in ADDR) cr

So if you have a 4tH program which you wanted to port to ANS-Forth, but couldn’t, study
the Porting Guide and try again. Note that no change is required if you do not intend to
port your program to Forth. Apart from the modifications already mentioned you do not
have to change a single line.

Our apologies for any inconvenience caused. It is certainly not our policy to change the
syntax with every single version, but we found the arguments in favor of this change so
strong that we didn’t see any other way.

In order to prepare your programs for other changes, we strongly advise you not to use any
names which are also mentioned in the ANS-Forth standard, except for porting purposes.

Part I

Getting Started

36

Chapter 2

Overview

2.1 Introduction

Like Forth, 4tH is a compiler and a interpreter. Unlike Forth you cannot switch between
the two. Like Forth, 4tH runs Forth-programs. Not all of them but some. But in a quite
different way.

Most things have already been written. There have been Forths written in a high level
language. There have been portable Forths. There have been Forths that could interface
with C. Different architectures have been used to implement Forth. There have been Forths
that were 16 kB or even less.

Well, all of that has been done. But here is a compiler/interpreter that’s all of the above.
And none of them either. It sounds like an ancient Greek riddle, but it isn’t. It’s 4tH.

2.2 History

To understand 4tH you have to know how it came to be. As most things in life, 4tH
developed slowly. Its predecessor is a C-function called strcalc(). This function is an
implementation of a RPN calculator in one very compact function (about 6 kB source).
It works with signed 32 bits integers and has about 20 commands and 20 variables. The
C-programmer can add additional variables.

Using it in a C-program is very easy too. Just pass the source as a string and add any
variables you need. It will return the result of that calculation.

Well, although primitive it can still be very useful. You can implement an interactive RPN
calculator in less than 5 lines of C. It can also be used to make calculations from sources
stored elsewhere, like in a file or an environment-variable. If you can store a string there,
you can store strcalc() source.

But we were not satisfied. We wanted to create some successor to strcalc() that could be
used to create applets, small applications that can be embedded in an application. Like
strcalc() it had to be fast and compact and easy to use. All these requirements and "Reverse
Polish Notation’. What language comes to mind first? Forth.

There were a few advantages and disadvantages to that approach. First, if it looked like
Forth, it had to be compatible with Forth up to a certain point. Second, if it looked like
Forth, we wouldn’t have to write thick manuals and explain how to use the language. Third,
if it looked like Forth, could we make it crash-proof?

37

CHAPTER 2. OVERVIEW 38

A user can easily crash a Forth-system. Store something at a wrong address and your
system hangs. We don’t like that, even when the user is at fault. So we had to make a few
concessions somewhere, since adding checks means the program will be less compact and
slower.

For a very long time we just didn’t get the right idea. Then on a dark night in October 1994,
it happened. The baby was called 4tH and could do everything strcalc() did.

It took quite a while before 4tH had successfully got away from its strcalc() roots. The very
first version was very buggy and little more than an RPN calculator with (incompatible)
flowcontrol and some string facilities. It required two passes to compile a source and the
resulting bytecode could not be saved. The I/O was C-based and very primitive. There was
no Character Segment.

The second version got string and file facilities. The I/O and flowcontrol was completely
rewritten, so they now were fully Forth-compatible. The second pass was discarded and
H-code could finally be saved. The first move to ANS-Forth was made.

The third version came to be when the H-code eXecutable was created. This fileformat
made it possible to port bytecode across platforms. At the same time, 4tH moved more and
more toward ANS-Forth. Exception-handling and assertions were introduced. And in the
spring of 1997, version 3.1c was released to the general public.

Of course, 4tH didn’t stop there. Since then, conditional compilation, enumerations, struc-
tures, forward declarations, inline-macros, pipes, source file inclusion, threads, private dec-
larations and a small IDE have been added. The compatibility with ANS-Forth has been
significantly improved. Neither the compactness nor the speed of 4tH have been compro-
mised. It uses less memory than previous versions and is 50% faster.

2.3 Applications

4tH is an excellent platform to learn Forth. It looks and behaves like a conventional com-
piler, but essentially is Forth. A Forth that detects virtually every error and reports what
was wrong and where it went wrong, but still is quite fast and compact.

But like any good teacher 4tH is quite strict. Forth allows constructions that should be
avoided. 4tH on the other hand, either does not implement these words or restricts their
usage.

Other Forth concepts are hard to handle, like the different wordsets for different kinds of
numbers. 4tH only uses signed 32 bit integers, which enables the programmer to make
a wide range of applications without being bothered by overflow. Pointers, integers and
characters are transparently converted.

That doesn’t mean that 4tH cannot be used as a scripting language anymore. There are
still excellent facilities in 4tH to do just that. They are just modified in order to allow
programmers to use 4tH as a stand-alone language. If you wonder how we did all that, here
is the answer.

2.4 Architecture

4tH is a segmented Forth. There are different segments for constant strings, characters,
cells and tokens. This shows you where each data-type is located:

e Return stack (Integer Segment)

CHAPTER 2. OVERVIEW 39

e Data stack (Integer Segment)
e Variables & values (Integer Segment)
e String variables (Character Segment)
e Temporary storage (Character Segment)
e Compiled code (Code Segment)
e Compiled constants (Code Segment)
e String constants (String Segment)
The return-stack, data-stack and variables are allocated in one large array of signed 32 bit

integers. On top of that 4tHs primitives check all parameters. This makes 4tH a very safe
environment.

4tH also propagates clean programming. E.g. storing and fetching of the data-stack is not
allowed. You can only store and fetch in the Variable Area.

In effect, as far as we know 4tH cannot be crashed by a user-program. The memory layout
of the Integer Segment looks like figure 2.1.

User variables

Variable Area

C variables

4tH variables

Read only variables

System variables System Area

!

Return stack

Stack Area

Data stack

1

Figure 2.1: Integer segment layout

The allocation of variables is totally transparent to the C-programmer. He can also transfer
C-variables to the user-program (application variables). These variables can be used like
any other variable.

Combining return- and data-stack means the C-programmer only has to worry about the
size of the stack and not the sizes of both stacks, thus allowing a wider range of user-
applications with different requirements.

CHAPTER 2. OVERVIEW 40

The Code Segment contains words. A word is a structure that contains a unsigned byte (the
token) and a signed long integer (the argument). Only the argument can be accessed by the
4tH programmer. He cannot change the program in memory, since we never really liked
self-modifying code.

True, this scheme has some redundancy, but a more elaborate scheme means a more code
to encode and decode the tokens and arguments. That means the memory-space we saved
by compacting the program-code will make the compiler and interpreter less compact. And
it certainly won’t run any faster!

The String Segment contains all string constants. The words which use strings contain an
offset to the ASCIIZ strings in the String Segment. The 4tH programmer can copy strings
from this segment, but cannot write any. Constants are constants.

Finally there is a chunk of memory the user can manipulate at will. It contains the TIB, the
PAD and all string variables (if any). The memory layout of the Character Segment looks
like figure 2.2.

User strings

PAD

TIB

Figure 2.2: Character segment layout

The 4tH programmer can store and fetch anything here. Since 4tH uses some C-functions
ASCIIZ strings are used. The words that act on counted strings take the same parameters
and deliver functionally the same results.

File I/O is supported too in a more Forth-like way than Forth itself. You can have six
concurrently open files and/or pipes. 4tH has threads too. A thread can be saved to disk
and reloaded. The only restriction is that all files are closed when the execution of a thread
is suspended.

2.4.1 The 4tH language

Most Forths use four different datatypes: signed 16 bit numbers, unsigned 16 bit numbers,
signed 32 bit numbers and unsigned 32 bit numbers. The latter two are usually called
"double numbers". Unlike C they all have their own operators. On top of that there are
mixed operators too. Highly confusing!

We never liked that in the first place. Application programmers want to make an applica-
tion. They don’t want to worry whether any intermediate result could possibly be larger
than 32767. So 4tH gets rid of most data- types and operators. It uses signed 32 bit num-
bers. That’s it. No mixed, double or unsigned operators.

Second, a Forth programmer has to know how much address-units a cell takes. Since
every data-type in 4tH has its own segment, the address-unit of a segment is always one,
regardless the data-type. Consequently, ANS- Forth words like "CELLS’ and ’"CHARS’
are "NOOP’s. Which fits 4tH nicely.

CHAPTER 2. OVERVIEW 41

Although 4tH has different words for storing and fetching different data- types, most of its
vocabulary is still compatible with Forth. E.g. the word "C!" takes an address in the Char-
acter Segment and "!" takes an address in the Integer Segment. Since the Code Segment
and String Segment do not allow any writing, there is no need for such operators.

Each segment has its own allocation operators too. "VARIABLE’,”ARRAY” and *’VALUE’
allocate space in the Integer Area. 'STRING’ allocates space in the Character Area. Other
words like ”” and "CREATE’ have restricted functionality and compatibility with Forth.

4tH was originally loosely based on the Forth-79 standard, but now it supports most of the
CORE wordset of ANS-Forth. Note that compatibility never had the highest priority. 4tH
was designed to write applets, not to be the next "fully ANS-Forth compatible compiler
with a little difference". If that is what you want, 4tH is not for you.

2.4.2 H-code

Long before the dawn of the original IBM-XT there was a language called UCSD Pascal.
Like Forth, it was a compiler and an interpreter. In fact, it didn’t compile source into object-
code for some silicon-based processor. Instead it made P-code. So if you wanted to execute
it, you needed a P-code interpreter for your system.

Such an interpreter can run faster than an ordinary interpreter since it doesn’t interpret
source-statements with all of its symbolic labels intact, but optimized P-code. It seems
to have been discovered again, since Java and previous versions of Visual Basic work the
same way. Visual Basic hides the interpreter in a DLL, but basically it doesn’t work any
different.

The 4tH uses the same basic architecture. First the source is compiled into H-code. Then
the H-code interpreter is run. A token is a very simple structure. It’s got a single byte
instruction and an argument. Here’s a sample of disassembled H-code:

[62] CR (0)

[63] VARIABLE (2)

[64] @ (0)

[65] 1- (0)

[66] DUP (0)

[67] VARIABLE (2)

(e8] ! (0)

[69] OBRANCH (62)

BTW, building a decompiler for tokenized code is quite simple. There is one for Visual Ba-
sic and it seems like one emerged for Java too. The H- code was the result after compiling
this little piece of source code:

cr begin times @ 1- dup times ! until

You can clearly see that everything is actually compiled. Flow-statements are compiled
into BRANCH and OBRANCH instructions pointing to addresses in the Code Segment.

Compiled H-code can be used on its own. It can be kept in memory, loaded, saved, decom-
piled and executed. H-code is a combination of the String Segment, the Code Segment and
a header (figure 2.3). The header contains all the information to set up the runtime environ-
ment and some information on the String- and the Code Segments. The Integer Segment
and the Character Segment are created at runtime.

Although speed was an issue when 4tH was designed, it is beaten by some other Forths.
There are several possible explanations.

CHAPTER 2. OVERVIEW 42

'H°°dH| Hcode header |
L J I_.L., .Y,

:(_

~503Q@00 @35 -—=~0
~3503@0®w ©aoO0

~503©0® =-0@O0 ~3 —
~03Q0®M -~0~0m-pTO

Figure 2.3: Hcode structure

e 4tH uses 32 bit numbers, while most other Forths use only 16 bit numbers

e 4tH checks all parameters, while other Forths depend on signals or don’t do any
checking at all

e 4tH is written in C, while some other Forths are written in assembler

When 4tH is compiled with a 32-bit compiler it outruns Python, Perl and most other C-
based Forths (upto 4 times) or has a comparable performance (with the possible exception
of GCC optimized Forth compilers). In real life applications the difference is barely no-
ticeable.

To make compiled H-code portable, a separate scheme was developed: the Hcode-eXecutable.
Or HX-file for short. It contains all the information in the header, a compacted Code Seg-
ment, the String Segment and some additional information on compatibility and integrity.
Numbers are stored in an architecture-independant way.

2.4.3 H-code compiler

The H-code compiler looks a lot like any conventional compiler or assembler. Basically
it is a simple one-pass compiler. In order to understand the workings of 4tH you have to
know that not all H-code instructions are equal:

e Immediate words (flow control, declarations, etc.)
e Predefined constants (addresses, aliases, etc.)
e Simple words (do not require an argument)

e Symboltable entries (user-definitions)

To determine the initial size of both the Code Segment and the symbol- table the source
is parsed first and the actual number of words counted. This determines the initial size of
the Code Segment with a high degree of accuracy, so extending the Code Segment is never
necessairy. After compilation the Code Segment will be shrunk to its actual size.

The parser can distinguish between directives and string constants. The size of the symbol-
table is determined by simply counting all definitions. Every definition needs one symbol-
table entry. That makes determining the size of the symbol-table very easy.

CHAPTER 2. OVERVIEW 43

During compilation all simple words are compiled into tokens without a valid argument.
When a definition is encountered, like a colon-definition or a variable-declaration, a symbol
is added to the symbol-table.

There are four compiler directives which determine how a number is interpreted. ’[BI-
NARYT interprets numbers as binary numbers, '[HEX] interprets them as hexadecimal
numbers. '[DECIMALY] and '[OCTAL]’ are available too. The "simple words" "HEX’,
"DECIMAL’ and "OCTAL’ only act during execution and do not determine how a number
is interpreted during compilation.

During compilation the compiler also resolves all flow words. It simply matches the cor-
rect instruction and enters the jump-address into the argument of the ’'BRANCH’, *?DO’,
’LOOP’, *+LOOP’, "CALL’ or 'OBRANCH’ word. The way 4tH handles flow control is
almost completely identical to Forth.

It may sound strange, but colon-definitions are also treated like flow-words. The colon
simply compiles into a’BRANCH’ instruction that skips the colon definition.

When the user calls a colon definition, it simply compiles into a ’CALL’ instruction that
puts the current address on the return-stack and jumps inside the colon definition, after the
"BRANCH’. The semi-colon works like a RETURN instruction that pops the return address
from the return-stack. Yes, like a subroutine in BASIC or assembler!

2.4.4 Error handling

When 4tH finds an error during compilation or execution it stops and sets the H-code mem-
ber ErrNo. It works like "errno" in C. You can optionally link in an array of error-messages.
ErrNo is an index to this array, which makes issuing the correct error message very simple.
The instruction pointer is frozen at the point where the error occured, so it is very easy to
find out where the error occured.

2.4.5 Interfacing with C

A minimal compiler would take only a few lines of C-code. The C-programmer can send
C-variables to the interpreter, just like strcalc().

E.g. a compile takes a string-pointer as argument and returns a pointer to H-code:
object = comp_4th (source);

Executing H-code is easy too:

ReturnVal = exec_4th (object, argc, argv, 3, Varl, Var2, Var3);

Which would preload variables Varl, Var2 and Var3. You must specify how many variables
are preloaded. Also ’arge’ and ***argv’ are available from the 4tH program.

The value returned by exec_4th() and stored into ReturnVal is the value of the 4tH variable
’OUT’, which initially contains CELL_MIN. If an error occurs exec_4th() will always
return CELL_MIN, regardless the value stored in "OUT’.

Chapter 3

Installation Guide

3.1 About this package

4tH will compile ordinary text-files (MS-DOS and Unix) as well as block-files produced by
the 4tH editor. The user-interface of this line-editor is highly compatible with conventional
Forth block-editors.

4tHs special architecture almost forces you to write "clean" code, so you will learn Forth
the proper way. This does not mean that you can’t write portable code with 4tH. In fact,
because Forth is so flexible you can usually write a small interface to your well-written
4tH-code in a matter of minutes.

You can use 4tH in virtually every environment, from Linux to MS-Windows. You don’t
even have to recompile your applications since 4tH uses a special executable format, that
is interpreted by the 4tH virtual machine.

3.1.1 Example code

There are a lot of example programs, written in 4tH. From line-editors and calculators
to adventure-games. Not all have been especially written for 4tH. There are quite a few
programs from the hand of people like Professor C.H. Ting and Leo Brodie that started
their existence as Forth-programs.

Most are available in source. That means they have the extension ".4th’. You can examine
or edit them like any other source-file. Source-files written with the 4tH editor get the
extension ".scr’. They can only be edited with the 4tH editor or other Forth blockfile editors.
Executables have the extension ’.hx’ (Hcode eXecutable).

3.1.2 Main program

You will find a binary program within this package called 4tH. You can copy this binary
to any directory. 4tH is a small development system by itself. When you start it, it will
automatically enter interactive mode and show you a menu not unlike early versions of
Turbo Pascal. You can edit, compile, run and debug programs from the 4tH prompt. Please
read chapter 4 for more details.

You can also use 4tH from the commandline:

44

CHAPTER 3. INSTALLATION GUIDE 45
4th <commands> <file> [file | arqument .. argument]
It takes most combinations of these ten commands:

m enter interactive mode

e edit a 4tH screenfile

¢ load a sourcefile (.4th) and compile it
1 load an objectfile (.hx)

d decompile a 4tH program

g generate a C sourcefile (default: out.c)
s save a 4tH program (default: out.hx)

x execute a 4tH program

v enter verbose mode

q suppress copyright message
A few examples:

e To compile a 4tH program and save the objectcode: 4th csv <source.4th> [object.hx]
e To compile a 4tH program and execute it: 4th cx <source.4th>

o To decompile object code: 4th 1d <object.hx>

e To convert object code to C source: 4th 1g <object.hx> [source.c]

e To load and execute object code: 4th 1x <object.hx> [arguments]

o To load and execute object code without arguments: 4th <object.hx>

e To edit a 4tH screenfile: 4th e <source.scr>

e To enter interactive mode: 4th m <source.scr>

e To enter interactive mode (without loading a screenfile): 4th

Note: don’t include the "[]" and "<>" in your commandline. They are just there to show
whether an argument is optional ([arg]) or mandatory (<arg>).

3.1.3 Unix package
It is not possible for us to provide Unix binaries for all possible platforms, not now and not

in the future, simply because we don’t have access to them all. Here is a list of the Unix
(like) platforms that are known to compile 4tH:

e Intel - FreeBSD
e Intel - Coherent

e Intel - Linux

CHAPTER 3. INSTALLATION GUIDE 46

e Intel - BeOS
e RS/6000 - AIX
e Zaurus - Linux
e Sun - Solaris
e ARM - RISC/OS
e Apple - Linux
e Apple - OS/X
If your platform is not listed, give it a try anyway. The chances are it will compile flaw-

lessly, since we’ve never had a report of a Unix platform that refused to compile or run 4tH.
Please send us an email with your results, so we can add it (or remove it) from our list.

You have to compile 4tH yourself, which is not difficult if you read the *Developers Guide’.
Usually this will do the trick:

make
make install

If you have any special needs, feel free to edit the makefile.

3.1.4 Linux package

You will find Linux binaries in this package. They will run under most modern Linux
distributions for Intel. If the Linux binary doesn’t run, you can easily recompile it. Just
enter:

make
make install

You don’t have to run ’./configure’. If you have any special needs, feel free to edit the
makefile, e.g. compiling for the Zaurus means you have to add the *-DZAURUS’ option.

You’ll also find some icons for KDE or GNOME and a "'man’ page. However, you have to
install them manually. If you want to embed 4tH in KDE or GNOME you have to do that
manually as well. Please consult your KDE or GNOME documentation.

3.1.4.1 /etc/magic

If you want Linux to recognize your 4tH files, you have to add the following lines to your
/etc/magic file:

From hansoft@bigfoot.com
These are the magic numbers for 4tH HX files

0 belong 0x01020400 4tH eXecutable
>9 leshort x \b, version %x

E.g. if you enter:

CHAPTER 3. INSTALLATION GUIDE 47
file editor.hx
It will respond:

editor.hx: 4tH eXecutable, version 35c

3.1.4.2 Using binfmt_misc

There is a module in Linux that will allow you to execute 4tH programs from the prompt
without explicitly calling the 4tH interpreter. It is called ’binfmt_misc’. 4tH has built-in
support for this module. Just add the following lines to your *boot.local’! file:

insmod binfmt_misc
cd /proc/sys/fs/binfmt_misc
echo /:HX:M::\x01\x02\x04\x00\xff\xff\xff\x7f\x04\x5c\x03\x08::/usr/local/bin/4thx:’ >register

If you use a kernel version later than 2.4.13 you have to add these lines:

insmod binfmt_misc

mount -t binfmt_misc none /proc/sys/fs/binfmt_misc

cd /proc/sys/fs/binfmt_misc

echo :HX:M::\x01\x02\x04\x00\xff\xff\xff\x7f\x04\x5c\x03\x08::/usr/local/bin/4thx:’ >register

You can find out whether 4tH support has been properly installed by issuing:

cd /proc/sys/fs/binfmt_misc
cat HX

And Linux should answer:

enabled

interpreter /usr/local/bin/4thx
offset 0

magic 01020400f£££££7£045c0308

Finally, you should go to the directory where 4tH has been installed (usually /ust/local/bin)
and enter:

In -s 4th 4thx

Now, after you’ve compiled a program you should make it executable and it will run like it
is a native executable, e.g.:

4th cs asc2html.4th asc2html
chmod 755 asc2html
asc2html ascii7.4th ascii7.html

Note you have to be root in order to run some of these commands!

'On SuSE "boot.local’ is located in the /sbin/init.d directory.

CHAPTER 3. INSTALLATION GUIDE 48

3.1.4.3 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot be
found in the current directory, 4tH will try to get it here. You can set this environment
variable in your .profile or .bashrc file. Simply login into your default user account
and type:

cd
vi .profile

or:

cd
vi .bashrc

This will launch the editor and allow you to edit the appropriate file. In this example your
default 4tH directory is /home/joe/4th:

export DIR4TH=/home/joe/4th/

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore. 4th, it will try to load /home/joe/4th/lib/anscore.4th.
Do not forget to add the trailing slash. If you do, it will not work properly.

3.1.5 MS-DOS package

The "4th.exe" that is included in the MS-DOS package is a 32-bit MS-DOS version of the
main Unix utility. It will only run on 80386 class machines and up. It allows you to compile
and run very large 4tH programs. It requires CWSDPMI.LEXE somewhere in your path. It
is also available as "4th86.exe", which will run on any IBM-PC with 256 KB memory. This
version is a bit slower and you may experience some memory restrictions.

3.1.5.1 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot be
found in the current directory, 4tH will try to get it here. You can set this environment
variable in your autoexec.bat file. In this example your default 4tH directory is C:\4th:

set DIR4TH=C:\4th\

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore.4th, it will try toload C:\4th\lib\anscore.4th.
Do not forget to add the trailing backslash. If you do, it will not work properly.

3.1.6 MS-Windows package
Run "setup.exe" to install the package. It runs with Windows 95 OSR2 and up, Windows
NT 4.0, Windows 2000, Windows XP and Windows Vista.

You can launch Explorer and double-click an HX-file. Windows will complain it doesn’t
recognize the file and tell you what to do. Browse to "4th.exe" and select it. After that you

CHAPTER 3. INSTALLATION GUIDE 49

can click on an HX-file and it will be executed. You can even add HX-files to your desktop
where they will start and run like ordinary Windows applications.

This is a true 32-bit version, so it does take long filenames, but you can’t run it with Win-
dows V3.x and early versions of Windows 95. It is a console application, so you’ll need
an MS-DOS box to run and use it. Note that it will exit immediately once a program has
halted. We recommend you run 4tH from the MS-DOS prompt when you’re using 4tH as
a development environment.

3.1.6.1 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot be
found in the current directory, 4tH will try to get it here. In this example your default 4tH
directory is C:\4th:

set DIR4TH=C:\4th\

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore. 4th, it will try toload C: \4th\lib\anscore.4th.
Do not forget to add the trailing backslash. If you do, it will not work properly.

MS-Windows 9x While it is possible to set environment variables in the same way as for
MS-DOS by editing autoexec.bat, it is easier to use msconfig. First runmsconfig from
the task bar by selecting ”Run .

Select the "Autoexec.bat" pane, then go to the bottom of the window, select the last entry
and click the "New" button. A small input window appears below the last entry, and in this
you should type a new entry with the exact syntax as shown in the example above. Then
click "OK" and a small pen appears against the entry, indicating that autoexec.bat will
be modified. You may have to reboot afterwards.

MS-Windows NT Click on the "My computer” icon or the ”Start” menu, then click on
the ”Control panel”. Click on the "System" icon to get the "System Properties" dialog box.
For Windows NT use the "Environment" tab instead of the "Advanced" tab. Click on the
"Environment Variables" button and select "New”. Enter the DIR4TH and its value in the
boxes and then click "OK".

If there are several users on the PC, it is probably better to set the variables as "System
variables", rather than "User variables" since they will then automatically be accessible for
all users. You will need to have Administrator rights to do this.

3.2 Now what?

After you’ve installed and played around with the utilities, we suggest you either click the
4tH icon on your desktop or start an interactive session by entering:

4th m sessionl.scr

And start reading the Primer. When you’ve thoroughly read and understood the very first
section you’re ready to go on. Start up your favourite editor (or use the built-in editor if
you don’t have one) and make your own very first 4tH program. If you don’t know how to
use the built-in editor, read chapter 4.

If you encounter an error during compilation or execution, refer to the ’Errors Guide’ for a
detailled description what it means, what probable causes are and how you can fix it.

CHAPTER 3. INSTALLATION GUIDE 50
3.3 Pedigree

4tH is basically an original work. However, some concepts have been derived from the
work of other, much smarter people.

e The interpreter is taken from strcalc() and modified.

e The pictured numeric output and flow-control routines are based on Abersoft Forth.
o The exception handler is based on the dpANS-6 implementation.

o The enumerations are based on the Swift-Forth implementation.

e The structures are based on the GForth implementation.

e The ’ASSERT(’ and ’)’ words are based on an idea implemented in GForth.

e The implementation of '[DECIMALY]’, '[HEX]’, '[OCTAL] and ’'[BINARY] was
suggested by William Tanksley.

e The HX-format was suggested by Mikael Cardell.
4tH was discussed in Volume XVIII, Number 3 of Forth Dimensions. Thank you, Marlin

Ouverson for giving me that opportunity.

3.4 Questions

We tried to provide you with all the documentation you’ll probably ever need. That doesn’t

mean that you’ll never have any questions. NEVER EMAIL THE PEOPLE WHOSE SITE

YOU GOT THIS FROM! THEY DON’T KNOW EITHER! INSTEAD, MAIL TO:
hansoft@bigfoot.com

You’ll usually get fast answers, although when your question is very complex ("how do I

add floating point to 4tH?") we’ll probably give you just some general directions. We have
to stress that any comment is welcome, always.

3.4.1 4tH Website

You can visit our website, which is dedicated to 4tH. You will find all the latest information
there, including additions and bugfixes (service packs):

http://hansoft.come.to

3.4.2 4tH Google group

We’ve got a Google group for discussions about 4tH. If you want to interact with other 4tH
users, we recommend you subscribe to this group. You will also have to become a Google
member if you are not already, e.g. when you already have a gmail account:

http://groups.google.com/group/4th-compiler

Important! Your posts will not be accepted by the server if you don’t subscribe first!

CHAPTER 3. INSTALLATION GUIDE 51

3.4.2.1 Conditions of use

This group has been created as a service to, and in support of, the 4tH (and Forth) commu-
nity. As in most discussion groups, there are a few rules to ensure the survivability of the
group for the future.

1. This group is for discussions of 4tH problems, 4tH questions and answers. It is not
to be used for non-4tH discussions.

2. This is not an 4tH advocacy group. Stick to 4tH questions and problem-solving or
move your discussion to an appropriate channel. i.e. alternative site or private e-mail.

3. Flames, insults, foul language will not be tolerated. You will be unsubscribed and
barred from re-subscribing under your present e-mail address.

3.4.2.2 What to discuss?

Well, Problems, wishes, needs, solutions (how you did something) basically anything 4tH
related.

3.4.3 Newsgroup

There is no special newsgroup for 4tH. However, comp.lang.forth will prove to be able to
answer most of your questions.

Chapter 4

A guided tour

4.1 4tH interactive

4tH’s interactive mode was introduced with version 3.3c, but it is still fully compatible
with previous versions, so you can still use all your external IDE’s and script files. The
interactive mode is especially useful when you are using an environment where other tools
are not available or impossible to use. This document shows you how to use interactive
mode and get the most out of it.

4.2 Starting up 4tH

You can enter 4tH’s interactive mode by just clicking the icon (when you are using MS-
Windows) or by issuing this command on the Unix or MS-DOS commandline:

4th
4tH will respond by showing you this screen:

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rquments

(Q)uit (G)enerate (B)uild (D)ecompile

This is the main menu. It is slightly reminiscent to the earlier versions of Turbo Pascal. At
the bottom is the prompt. Just press the appropriate key and hit enter, e.g. "S", which stands
for the name of the screenfile. 4tH will now prompt you for the name of the screenfile. Note
that 4tH is not case sensitive, so both "s" and "S" will do.

52

CHAPTER 4. A GUIDED TOUR 53
4.3 Running a program

We assume you’ve installed 4tH according to the instructions. If not, this might not work.
Now press ’S” and hit enter. 4tH will prompt you for the name of a screenfile:

Screen file name:
Answer by typing “examples/romans.scr”! and hit answer. 4tH will return to the menu:

Screen file name: examples/romans.scr

(S)creen file: examples/romans.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

Now hit "R” and press enter. What now appears is your program that is actually running:

>r
Enter number: 2005
Roman number: MMV

After the program has ended, you will return to the menu. Well, that wasn’t too hard, was
it?

4.4 Starting an editing session

93 .99

We start by entering the editor mode. Just type “e” and hit enter. Ignore any file opening
errors. The ”OK” prompt shows you you’re now in the editor. Now type:

0 clear

This will erase the first screen and select it for editing. 4tH’s editor is a typical Forth editor.
Forth organizes its mass storage into "screens" of 1024 characters. Forth may have one

screen in memory at a time for storing text. The screens are numbered, starting with screen
0.

Each screen is organized as 16 lines with 64 characters. The Forth screens are merely an
arrangement of virtual memory and do not correspond to the screen format of the target
machine.

Depending on memory model and operating system, you have either 28, 32 or 64 screens
available. This will be sufficient in most situations. These screens correspond to a region
in memory, which acts like a RAM drive.

The actual editing is done in an area that is called the *workspace’. With the word ’clear’
you wipe all information in the workspace. With the word ’list’ you can select a certain
screen for editing and load its information from the RAM disk into the workspace. The

CHAPTER 4. A GUIDED TOUR 54

Screen 1

flush wite
> >

Workspace Screen 2 File

list | ¢ (editor)
o — <

Screen n

Figure 4.1: Editor architecture

figure below shows you how to transfer information between the screenfile, the RAM disk
and the workspace (figure 4.1).

When you enter the editor the file is automatically loaded into the RAM disk. With ’list’
you transfer the source from a screen in the RAM disk into the workspace. Since we started
anew file (that’s why you got the error message) all screens are empty. That why we cleared
screen 0 and selected it for editing. You can quit the editor without changes by pressing
”q” and hitting the enter key.

4.5 Writing your first 4tH program

We start our program by giving it a name. Press ”’s”” and enter “hello.scr”. Now we’re going

99 .99

to enter the source text, so we start up the editor by pressing ’e” (you know by now you
have to press the enter key afterwards). Then we select screen O for editing by entering:

0 clear

If you want to know what you’ve entered so far you can list the editing screen by entering:

The editor will now show you a full listing:

Scr # 0
0

P O W 0 J O U b= W DN

I

!"This works for both Windows and Unix type Operating Systems.

CHAPTER 4. A GUIDED TOUR 55

12
13
14
15

The first line will tell you which screen you’re working on, which is screen 0. Then all
sixteen lines are listed, all blank of course. Finally it will show you the current line, which
is line 0. The ”*” is the cursor, which is at the beginning of the line. You can move the
cursor around with the ”m” command. Try:

10 m

The editor will respond with:

» 0 OK

And shows you this way that the cursor has moved 10 positions. If you want to move the
cursor backwards, you can do that too. Just enter a negative value, like:

-5m

And the cursor will move back five positions:

» 0 OK
If you enter a larger value, that is perfectly acceptable too:

128 m
Note that every line is 64 characters long, so the editor will tell you you’ve just moved to
line 2:

A 2 OK

Don’t be afraid that you’ll do something wrong and lose your source. Note that this is 4tH,
not Forth. If you try something funny like entering a very large value, the editor will just
issue an error message:

1024 m
Off screen OK

You just tried to go beyond the workspace and the editor won’t allow you to do that. Okay,
we’ve moved around enough. How about writing that program? You can enter text with
the ”p” command, which stands for "PUT”. Just provide the editor with the appropriate
linenumber and the text:

0 OK

CHAPTER 4. A GUIDED TOUR 56

0 p ." Hello world!"™ cr

Let’s list our screen:

Scr # 0
0 ." Hello world!" cr

O -3 O U W W DN

O

10
11
12
13
14
15

A" Hello world!" cr

That’s it. That’s it? What about all that red tape like "Program Hello” or ”int main()”,
opening parenthesis or closing braces? Hey, this is Forth?, not C or something. You’ve just
told the compiler it has to print the text “Hello world!” and write a newline. Isn’t that what
you wanted?

According to the figure in section 3, we first have to save the workspace in the RAM disk by
entering “flush”, then save it to disk by entering "write” and subsequently leave the editor

by entering ”q”. Although perfectly correct, it is a lot of typing for just saving and exiting.
You can do that a lot faster by just entering “wq”, which stands for ”Write and Quit”.

Now we’re back in the main menu and we want to see our program run. Just hit "R and
press enter. Don’t we have to compile it first? Sure, but 4tH will notice your program hasn’t
been compiled yet and will compile it automatically for you. If you get an error message
like this:

Compiling; Word 0: Undefined name

Then you know you’ve just made a classical beginners error: there is a space between .”
and the text. You’ll have to go back to the editor to correct it. Reload screen O by entering:

0 list

Scr # 0
0 ."Hello world!"™ cr
1

2If you are not familiar with Forth and want to learn it, please read the primer. Everything you want to know
is explained there in detail.

0 CK

CHAPTER 4. A GUIDED TOUR 57

O 1 O U b W DN

9
10
11
12
13
14
15

OK

Now let’s see where our cursor is:

0m

A "Hello world!" cr 0 OK

Now we know we have to move our cursor two positions and enter a space. Entering text at
the cursor position is done by the ”c” command, which stands for "COPY”. Note that you
have to add a space after each command, so adding a space at the cursor position is done

93 99

by entering a ”’c” with two spaces:

2 m

.""Hello world!" cr 0 OK

." "Hello world!" cr 0 OK

Now we can exit the editor again and rerun our program. Yes, 4tH will know you’ve
changed the text and recompile your program automatically:

wq

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>r
Hello world!

That’s it! You’ve just successfully entered, compiled and ran your very first 4tH program!

CHAPTER 4. A GUIDED TOUR 58
4.6 A more complex program

Note that this is not a tutorial on Forth. If you do not know the language you’ll probably
won’t understand the statements we’re going to enter. You don’t have to, but if you need to
please refer to our highly acclaimed 4tH primer.

Okay, let’s presume you’re looking at your 4tH prompt. We want to write a program which
converts Unix ASCII files to DOS ASCII files. Unix ASCII files use a single linefeed to
signify the end of a line while DOS ASCII files use an carriage return/linefeed pair for that

purpose.

First, we need to name our program, SO we press to enter the name of the screen file.
We’ll call it "convert.scr”. Then we enter the editor by pressing ’e” and are greeted by the
”OK” prompt. First we’ll define a word (that’s what a subroutine is called in Forth) that

converts a file:

99,99
S

clear
: ProcessFile
begin
refill
while
0 parse-word
type 13 emit 10 emit
repeat

O U W N OO
'O 'o ' ' 'O 'O 'O 'O

r

Note that 4tH confirms you after each line that everything is "OK”, but we left those mes-
sages out. When we list our program it looks like this:

1
Scr #
0 : ProcessFile
1 begin
2 refill
3 while
4 0 parse-word
5 type 13 emit 10 emit
6 repeat
T
8
9
10
11
12
13
14
15

~: ProcessFile

It is a good custom to start each screen with a comment line, so others will know what
we’ve been doing. However, line 0 is already taken. To insert a blank line we use the ’s”
command, which stands for "SPREAD”. All lines following it will move down. If you
happen to use line 15 you’re in trouble since that one will be lost:

OK

CHAPTER 4. A GUIDED TOUR 59

0s0sl
Scr # 0

0

1

2 : ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9 i

10

11

12

13

14

15

» 0 OK

Yes, as long as you’re not entering a command with a trailing text parameter, you can enter
multiple commands on a single line. So this one tells the editor ”spread at line 0, spread at
line 0, list”. Now we’re going to enter our comment line:

0 p (Conversion from UNIX ASCII files to DOS ASCII files - I)

OK
1
Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - I)

1

2 : ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9

10

11

12

13

14

15

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

That will do nicely. Although this word will do the job, we still have to open the input- and
the output file. Since we want to test our program quickly we make a quick and dirty word
that will do the job:

CHAPTER 4. A GUIDED TOUR 60

11 p : test s" code.txt" inpud open s" out.txt" outpud open
12 p over 0= over 0= or abort" Error!" use use;

13 p ttest ProcessFile

wq

95 99

When we try to compile this program by entering ’c”, it doesn’t work:
Compiling; Word 17: Undefined name

Oops, we’ve obviously made an error, but where? Word 17?7 Where is word 17?7 We can
find that out by decompiling the program and see where it went wrong. Just press ’d”:

Object size: 17 words
String size: 9 chars

Variables : 0 cells
Strings : 0 chars
Reliable : No

[8] type (0)
[9] literal (13)
[10] emit (0)
[11] literal (10)
[12] emit (0)
[13] branch (0)
[14] exit (0)
[15] branch (0)
[16] s" (0) code.txt

The last thing it compiled was the start of the "TEST’ definition. It must have gone wrong
right after that one. So we go back to the editor and find out. Sure, ”inpud” must be ’input”.
We can even find out it we made more errors like this:

f pud

: test s" code.txt" inpud” open s" out.txt" outpud open 11 OK
n

: test s" code.txt" inpud open s" out.txt" outpud” open 11 OK
n

Not found OK

And yes, we did. On lines eleven and twelve to be exact. With the ’f” command (which
stand for "FIND”) we can find a string. By entering “n” (which stands for "NEXT”) we
can find the same text again. Now we have to correct it. We’ll get back to the top of the
screen and find the offending word:

top f pud
: test s" code.txt" inpud” open s" out.txt" outpud open 11 OK

Note that the cursor is positioned at the end of ”input”. We only have to wipe one character
and insert the correct one:

CHAPTER 4. A GUIDED TOUR 61

lwecet
test s" code.txt" inpu” open s" out.txt" outpud open 11
test s" code.txt" input” open s" out.txt" outpud open 11 OK

With the command ”1 w” we destructively backup the cursor by one position. Then we
enter the ’t” at the cursor position by using the ’c” command. However, there is a quicker
way to do this:

x pud

test s" code.txt" input open s" out.txt" out” open 11 OK
Cc put

test s" code.txt" input open s" out.txt" output” open 11 OK

The ”x” command works very much like ”f”, but it does not only find the string, it also
deletes it. Still, there are other errors left in the source:

f test

ttest” ProcessFile 13 OK
b

t"test ProcessFile 13 OK
1w

99499
t

Yes, “’test” has an extra ’t”. So we find the next occurrance of “’test”. Note that a search is
always performed from the cursor position, so the definition of test” is not found. The ’b”
command will move the cursor backwards up to the point where “test” begins and we can
delete the superfluous ’t” with the command 1 w”. The final typo we have to correct is a
lacking space between “then” and the semicolon. That can be fixed pretty quickly:

top f use

over 0= over 0= or abort" Error!" use” use; 12 OK
n

over 0= over 0= or abort" Error!" use use”; 12 OK
till ;

over 0= over 0= or abort" Error!" use use” 12 OK
c

over 0= over 0= or abort" Error!" use use ;" 12 OK

Now the cursor is positioned right after then. The till” command deletes everything from
the current cursor position (indicated by the caret, remember?) to the end of the following
string. In this case the semicolon but you can use any string. Finally, we copy the correct
string into the text, which is a space followed by a semicolon. Four errors corrected. Let’s
write the screen back to RAM disk and see what we have got:

CHAPTER 4. A GUIDED TOUR 62

flush 1
Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - 1I)

1

2 : ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9

10

11 : test s" code.txt" input open s" out.txt" output open
12 over 0= over 0= or abort" Error!" use use ;

13 test ProcessFile

14

15

“test ProcessFile 13 OK

Seems to be okay. Let’s go back to the main 4tH screen by issuing the "wq” command. We
recompile the source by pressing ’c” and presto: we got a program! Simply hit ”r” to run
it. After we’ve run the program we find a file named “out.txt” in our working directory and

examine it with a hex editor:

4261 6445 7865 6375 7465 2028 202d 2d20
2920 2d34 2045 5845 4355 5445 203b 0d0a
3a20 4261 6441 6464 7265 7373 2028 202d
2d20 2920 2d34 2040 2044 524f 5020 3b0d
0a3a 2042 6164 416¢c 6967 6e20 2820 2d2d
2029 2031 2040 2044 524f 5020 3b0d Oa

It seems our program is working perfectly. However, it doesn’t seem very practical to copy

a textfile to your working directory, rename it, start up 4tH, load your program and finally
run it. That can be fixed. How? Well, you’ll read that in the next section.

4.7 Advanced features

What we actually want is a program we can run from the prompt, something like:
convert in.txt out.txt

And if you do not provide the required parameters it has to issue an error message:
Usage: convert infile outfile

We will get there, but we still have some coding to do. First of all, we have to structure our
program. We already have a working word? called “ProcessFile”. It seems like a good idea
to define two others, one that opens the files and one that closes the files. And we have to
get rid of our “’test” word. So let’s fire up the editor and take care of that right now:

3 A subroutine in Forth is called a ”word”, remember?

CHAPTER 4. A GUIDED TOUR 63

OK
0 list
Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - 1I)

1

2 : ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9

10

11 : test s" code.txt" input open s" out.txt" output open
12 over 0= over 0= or abort" Error!" use use ;
13 test ProcessFile

14
15
OK
11 d1
Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9
10

11 over 0= over 0= or abort" Error!" use use ;
12 test ProcessFile

13

14

15

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

You can remove lines with the ”’d” command, which stands for "DELETE”. This will re-
move the line and move all remaining lines up. Line 15 becomes blank. But there is another
way to get rid of unwanted lines:

11 el

Scr # 0
0 (Convert UNIX ASCII files to DOS ASCII files - I)
1

2 : ProcessFile

CHAPTER 4. A GUIDED TOUR 64

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit
8 repeat

9
10
11
12 test ProcessFile
13
14
15
~(Convert UNIX ASCII files to DOS ASCII files - I) 0 OK

The ”e” command, which stands for "TERASE”, will leave every line at exactly the same
position. It just blanks that line. Let’s finish this:

11 p : Convert OpenFiles ProcessFile ;

OK
12 e
OK
13 p Convert
OK
1
Scr # 0

0 (Convert UNIX ASCII files to DOS ASCII files - I)

1

2 : ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9

10

11 : Convert OpenFiles ProcessFile ;

12

13 Convert

14

15

~(Convert UNIX ASCII files to DOS ASCII files - I) 0 OK

Seems neat enough, but we still haven’t got a "OpenFiles” word. This has to be defined
before ”Convert”, but do we have still have room for that on screen 0? No, we haven’t.
Fortunately, you can insert screens with the 4tH editor*. Don’t forget to flush. That is not
only a good practice when you’ve visited the bathroom, but also when you’re working with
a Forth editor:

#Note that this command is usually not available in other Forth editors!

CHAPTER 4. A GUIDED TOUR 65

flush 0 insert
OK

We start our screen with a comment of course. We’ll use the same comment as in our
previous screen, so why not copy it?

1 1ist 0 h 0 1list 0 r 1

Scr # 0
0 (Convert UNIX ASCII files to DOS ASCII files - 1I)

O 3 O U W W DN

e W S Sy S Gy
G WP O W

~(Convert UNIX ASCII files to DOS ASCII files - 1I) 0 OK

What did we do here? First, we switched to screen 1, which is our previous screen 0. Then
we used the ”h”> command, which copied line 0 into PAD. PAD is a buffer, which is able
to hold the contents of a single line. Note that line O of screen 1 remains intact. It is only
copied.

Then we switched back to screen 0 and issued the ”’r” command, which stands for ”RE-
PLACE”. It replaces whatever is there with the contents of the PAD. Finally, we listed the
screen. Let’s play around a little with this PAD thing:

lrlt

~(Convert UNIX ASCII files to DOS ASCII files - I) 1 OK

Yes, the line we copied was still in PAD! We also used the command ”t” to "TYPE” line 1.
This command is very similar to ’h”, since it copies line 1 to PAD. But is also moves the
cursor to the beginning of the line and types it. Let’s see if you can explain this one:

1d2r 2t

~(Convert UNIX ASCII files to DOS ASCII files - I) 2 OK

Sure, the ”d” command not only deletes the line, it also copies it to PAD. So when the 1"
command is issued, it replaces line 2 with the contents of the line we deleted. Let’s do one
final test:

51n case you wondered, ”h” stands for "THOLD”.

CHAPTER 4. A GUIDED TOUR 66

01i1

Convert UNIX ASCII files to DOS ASCII files - I)

Scr # 0
(
(Convert UNIX ASCII files to DOS ASCII files - I)

(Convert UNIX ASCII files to DOS ASCII files - I)

O 3 O U W N O

e e T S S S S S
G WP O

A 2OK

Here we used the ”i” command, which stands for "INSERT”. It inserted the contents of
PAD at line 0 and moved all the remaining lines down. Note that the cursor didn’t move a
bit. That’s enough play for one day, let’s get back to work:

1l e3e2p : OpenFile

OK
3 p args 2dup 2>r rot open dup
OK
4 p 0= if
OK
5p drop ." Cannot open " 2r> type cr abort
OK
6 p else
OK
Tp dup use 2r> 2drop
OK
8 p then
OK
9p i
OK
1
Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 : OpenFile
3 args 2dup 2>r rot open dup
4 0= if
5 drop ." Cannot open " 2r> type cr abort
6 else
7 dup use 2r> 2drop

CHAPTER 4. A GUIDED TOUR 67

8 then
9

10

11

12

13

14

15

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

Hmm, it seems like we’re going to need another screen. It is always wise to leave some
room for future extensions, so this screen is full enough. But don’t forget the commentline.
We don’t want to enter that one again, so let’s store it in PAD:

0 h flush 1 insert 0 r 1

Scr # 1
0 (Convert UNIX ASCII files to DOS ASCII files - I)

O -1 O U W W DN

[e e S O
G W NP O W

A 2 OK

Hold the line in PAD, flush the screen, insert screen 1 and replace line 0 with the contents
in PAD. But the commentline is not entirely correct, so let’s fix it:

top x I)

(Convert UNIX ASCII files to DOS ASCII files - % 0 OK
c II)

(Convert UNIX ASCII files to DOS ASCII files - II)" 0 OK

The cursor is still on line 2, so we move it to the top again. Then we find and delete "’1)”.
Finally we copy in ”II)”. We can do that since the cursor is at the right position. Now let’s
enter our final word:

2 p : OpenFiles

CHAPTER 4. A GUIDED TOUR 68

OK
3 p argn 3 < abort" Usage: convert infile outfile"
OK
4 p input 1 OpenFile
OK
5 p output 2 Openfile
OK
6p;
OK
1
Scr # 1

0 (Conversion from UNIX ASCII files to DOS ASCII files - II)

1

2 : OpenFiles

3 argn 3 < abort" Usage: convert infile outfile"

4 input 1 OpenFile

5 output 2 Openfile

6 ;

7

8

9

10

11

12

13

14

15

~(Conversion from UNIX ASCII files to DOS ASCII files - II)
Almost there! We just have to fix the commentline in screen 2:

flush 2 list
OK
top x I)

(Convert UNIX ASCII files to DOS ASCII files - %
c III)

(Convert UNIX ASCII files to DOS ASCII files - III)"

The current screen is flushed, then screen 2 is listed. We position the cursor at the top, find
and delete ’I)” and copy “’III)” in at the cursor position. Done! Let’s leave the editor and
see what we have got. It compiles cleanly and when we run it it answers:

Usage: convert infile outfile

Sure, but what we actually want is to convert a file. Well, you can do that too without
leaving 4tH. Just press ”a” and enter the filenames, just like you would do at the prompt:

(S)creen file: convert.scr

0

0

0

OK

OK

OK

CHAPTER 4. A GUIDED TOUR 69

(O)bject file: out
(E)dit (C)ompile (R)un (A)rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>a
Arguments: code.txt out.txt

9999

When you press ”r”” now, the arguments entered will be passed to your 4tH program, just

like they would at the prompt. To clear the arguments, press “a” again and just hit enter
when prompted for arguments.

But how do we run it from the prompt? Easy, just press ”0” and enter “convert.hx” at the
prompt. Now press ’b”:

(S)creen file: convert.scr
(O)bject file: convert.hx

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile
>b

If 4tH has nothing to complain about, it doesn’t complain, so you can safely assume that
everything is okay. Now we can go to the prompt® and run it:

user@linux:~ > 4th lxqg convert.hx code out.txt
Cannot open code
user@linux:~ >

That was to be expected. Our file was called “code.txt”, not “code”. It is always a good
idea to test all exceptions as well. There could be a bug in that code too.

user@linux:~ > 4th 1xqg convert.hx code.txt out.txt
user@linux:~ >

Well, it seems to work.. But what we really want is a standalone program. One that can
be run without invoking 4tH and shared with our friends and families. Why this ”.hx”
thing? HX-files do have their merits. First of all, it is very small, less than 200 bytes. But
most importantly, you can take this file and run it on a Windows NT, MS-DOS or other
Unix machine without modification or recompilation, provided a 4tH is available for that
platform.

If you still want a standalone program, startup 4tH and reload “convert.sct”. Then press
”0” and enter “convert.c”. Isn’t that the extension of a C-program? Yes, it is. 4tH is
able to generate C code. Just press ”’g” and you’ve created a C program. You don’t even
have to know C. If you know how to compile a C program that’s more than enough’. We
assume you’ve installed the 4tH library and header files, since those are needed to compile

»convert.c”8:

5Windows users can do this by starting an MS-DOS session.

"Windows users need to consult the documentation that came with their C compiler. Some Windows compilers
may not be able to compile standard C programs. MS-DOS users are encouraged to use the "'DJGPP’ compiler,
which is free.

8Read the “Developers Guide” if you are not sure how to do this.

CHAPTER 4. A GUIDED TOUR 70

user@linux:~ > cc -o convert convert.c -1l4th
user@linux:~ > convert

Usage: convert infile outfile

user@linux:~ >

Is that all? No that’s not all 4tH can do. We have a few surprises left.

4.8 Suspending a program

We’ve entered this program:

Scr # 0
0 ." Is everybody in? The ceremony is about to begin.." cr
1 44596 36 base !
2 pause
3 ." Wake up! Do you remember where it was?" cr
4 ." Has this dream stopped? " . cr
5
6
7
8
9
10
11
12
13
14
15

The first line is simply a string we print to screen. The next line, we push a number on the
stack and we change the radix. Then we go to sleep. After that, we wake up again, print a
few lines and retrieve the number on the stack. Let’s run it:

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>r
Is everybody in? The ceremony is about to begin..

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A)rguments

(Q)uit (G)enerate (B)uild (D)ecompile

CHAPTER 4. A GUIDED TOUR 71

At first, it seems like "PAUSE’ is nothing more than an alias for ’ABORT”, but that is not

9999

entirely true. Let’s save the executable and enter ”r”’ one more time:

>b

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>r
Wake up! Do you remember where it was?
Has this dream stopped? YES

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments

(Q)uit (G)enerate (B)uild (D)ecompile

Now the second part of the program is run, that is the part after 'PAUSE’. Note that both
the stack and the radix have remained intact. Every time ’PAUSE’ is invoked, it will return

you to the prompt. When you enter ”’r”” again, it will continue where it left off, until it meets
one of the following three conditions:

1. It encounters another "PAUSE’; entering ”r” will continue where it left off.
2. Itencounters ’ABORT’, ’QUIT’ or ’”ABORT"”’; entering ”r” will restart the program.

9999

3. There are no more instructions to execute; entering “’r”” will restart the program.
But why did we save an executable? We’ll have to go back to the shell to show you:

user@linux:~> 4th lxqg out

Wake up! Do you remember where it was?
Has this dream stopped? YES
user@linux:~>

Entering ’b” during suspension will save the program in its suspended state. When you run
the resulting executable, it will behave like you’ve entered ”r”. That’s neat, isn’t it?

4.9 Calculator mode

Startup 4tH and enter the editor. We’re going to show you this baby can do a lot more than
just editing:

CHAPTER 4. A GUIDED TOUR 72

OK

.(Hello world!) cr
Hello world!

OK

Hey, that is a lot like the very first program we ran! Yes, it is. You can enter a subset of
the 4tH language at the editor prompt, so you can test simple programs like this without
getting into the “edit-compile-run” cycle. You can even make some simple calculations:

OK
23 45 + .
68 OK

Simple? Aren’t the operators and operands entered in the wrong order? No, they aren’t.
4tH uses Reverse Polish Notation, which is also used by HP calculators and the Unix ’dc”
command. 4tH has even eight built-in variables in which you can store numbers:

23 45 + A.
OK

A. ?

68 OK

It even understands binary, hexadecimal and octal numbers:

23 45 + binary .

1000100 OK

1000011111 hex FACE octal 765 + + decimal
65250 OK

This is called the “calculator mode” and you don’t have to do anything if you want to use
it. It is part of the editor command set. You can mix editor commands and calculations® as
you like. Nice extra, isn’t it?

4.10 Epilogue

This concludes our tour of the 4tH interactive mode. We hope we’ve shown you what you
can do with it and how to use it. Of course, you don’t have to use 4tH’s interactive mode. It
will happily reside and cooperate with existing external IDE’s, editors and the like. But if
memory is tight and you have nothing else, 4tH will prove to be a completely selfcontained
environment.

If you’re still wondering what you can do with Forth and 4tH in particular, let me tell you
this: if you worked your way through this tour, you’ve been working with Forth all the
time. The entire editor is a 4tH program, embedded in the 4tH executable, taking up less
than 3 KB. It is run by the very same interpreter as your initial "Hello world!” program.
Have fun!

9The full calculator command set is listed in the “Editor reference guide”.

Part 11

Primer

73

Chapter 5

Introduction

Don’t you hate it? You’ve just got a new programming language and you’re trying to write
your first program. You want to use a certain feature (you know it’s got to be there) and
you can’t find it in the manual.

I’ve had that experience many times. So when I wrote 4tH I promised myself, that would
not happen to 4tH-users. In this manual you will find many short features on all kind of
topics. How to input a number from the keyboard, what a cell is, etc.

I hope this will enable you to get quickly on your way. If it didn’t, email me at "han-
soft@bigfoot.com’. You will not only get an answer, but you will help future 4tH users as
well.

You can use this manual two ways. You can either just get what you need or work your
way through. Every section builds on the knowledge you obtained in the previous sections.
All sections are grouped into levels. We advise you to use what you’ve learned after you’ve
worked your way through a level.

There are five levels. First, 4tH fundamentals. It assumes a working knowledge of pro-
gramming and covers the basics. Second, 4tH arrays. We’ll try to explain to you what an
address is and teach you basic string handling.

Third, 4tHs Character Segment. We’ll explain you how it is laid out and what you can do
with it. Fourth, 4tHs Integer Segment and Code Segment. We’ll explain you how it is laid
out and what you can do with it.

Finally, advanced programming techniques. We’ll teach you how to program multilevel
exits, write interpreters, use jump-tables, emulate floating point calculation and a lot more!!

I don’t think it is enough to teach you Forth, from which 4tH was derived, but you can
always get a good textbook on Forth, like "Starting Forth" by Leo Brodie. Have fun!

74

Chapter 6

4tH fundamentals

6.1 Making calculations without parenthesis

To use 4tH you must understand Reverse Polish Notation. This is a way to write arithmetic
expressions. The form is a bit tricky for people to understand, since it is geared towards
making it easy for the computer to perform calculations; however, most people can get used
to the notation with a bit of practice.

Reverse Polish Notation stores values in a stack. A stack of values is just like a stack of
books: one value is placed on top of another. When you want to perform a calculation,
the calculation uses the top numbers on the stack. For example, here’s a typical addition
operation:

12+

When 4tH reads a number, it just puts the value onto the stack. Thus 1 goes on the stack,
then 2 goes on the stack. When you put a value onto the stack, we say that you push it onto
the stack. When 4tH reads the operator ’+’, it takes the top two values off the stack, adds
them, then pushes the result back onto the stack. This means that the stack contains:

after the above addition. As another example, consider:
234+ %

(The **’ stands for multiplication.) 4tH begins by pushing the three numbers onto the stack.
When it finds the ’+’, it takes the top two numbers off the stack and adds them. (Taking a
value off the stack is called popping the stack.) 4tH then pushes the result of the addition
back onto the stack in place of the two numbers. Thus the stack contains:

When 4tH finds the **’ operator, it again pops the top two values off the stack. It multiplies
them, then pushes the result back onto the stack, leaving:

75

CHAPTER 6. 4TH FUNDAMENTALS 76
14

The following list gives a few more examples of Reverse Polish expressions. After each,
we show the contents of the stack, in parentheses.

T2 - (5)
27 - (-5)
12 3/ (4)
-12 3/ (-4)
45+ 2 % (18)
452 + % (28)
452 * - (6)

6.2 Manipulating the stack

You will often find that the items on the stack are not in the right order or that you need a
copy. There are stack-manipulators which can take care of that.

To display a number you use ’.’, pronounced "dot". It takes a number from the stack and
displays it. "'SWAP’ reverses the order of two items on the stack. If we enter

23 . .cr

4tH answers:

If you want to display the numbers in the same order as you entered them, you have to
enter:

2 3 swap . . Cr
In that case 4tH will answer:
2 3

You can duplicate a number using 'DUP’. If you enter:

4tH will complain that the stack is empty. However, if you enter:
2 dup . . cr
4tH will display:

22

CHAPTER 6. 4TH FUNDAMENTALS 77

Another way to duplicate a number is using ’'OVER’. In that case not the topmost number
of the stack is duplicated, but the number beneath. E.g.

23dup . . . cCr

will give you the following result:

332

But this one:

2 3 over . . . cCr

will give you:

232

Sometimes you want to discard a number, e.g. you duplicated it to check a condition, but
since the test failed, you don’t need it anymore. 'DROP’ is the word we use to discard
numbers. So this:

2 3 drop .

will give you "2" instead of "3", since we dropped the "3".

The final one I want to introduce is 'ROT’. Most users find 'ROT’ the most complex one
since it has its effects deep in the stack. The thirdmost item to be exact. This item is taken
from its place and put on top of the stack. It is ’rotated’, as this small program will show
you:

123
. Ccr

\ 1 is the thirdmost item
\ display all numbers
(This will display '3 2 1’ as expected)
123 \ same numbers stacked
rot \ performs a ’'ROT’
\ same operation
(This will display ’'1 3 2'!)

. Cr

6.3 Deep stack manipulators

No, there are no manipulators that can dig deeper into the stack. A stack is NOT an array!
So if there are some Forth-83 users out there, I can only tell you: learn Forth the proper
way. Programs that have so many items on the stack are just badly written. Leo Brodie
agrees with me.

If you are in ’deep’ trouble you can always use the returnstack manipulators. Check out
that section.

CHAPTER 6. 4TH FUNDAMENTALS 78
6.4 Passing arguments to functions

There is no easier way to pass arguments to functions as in 4tH. Functions have another
name in 4tH. We call them "words". Words take their "arguments" from the stack and leave
the "result" on the stack.

Other languages, like C, do exactly the same. But they hide the process from you. Because
passing data to the stack is made explicit in 4tH it has powerful capabilities. In other
languages, you can get back only one result. In 4tH you can get back several!

All words in 4tH have a stack-effect-diagram. It describes what data is passed to the stack
in what order and what is returned. The word **’ for instance takes numbers from the stack,
multiplies them and leaves the result on the stack. It’s stack-effect-diagram is:

nl n2 —-- n3

Meaning it takes number nl and n2 from the stack, multiplies them and leaves the product
(number n3) on the stack. The rightmost number is always on top of the stack, which means
it is the first number which will be taken from the stack. The word ’.” is described like this:

Which means it takes a number from the stack and leaves nothing. Now we get to the most
powerful feature of it all. Take this program:

(leaves a number on the stack)

(leaves a number on the stack on top of the 2)

(takes both from the stack and leaves the result)

(takes the result from the stack and displays it)

Note that all data between the words **’ and ’.” is passed implicitly! Like putting LEGO
stones on top of another. Isn’t it great?

6.5 Making your own words

Of course, every serious language has to have a capability to extend it. So has 4tH. The
only thing you have to do is to determine what name you want to give it. Let’s say you
want to make a word which multiplies two numbers and displays the result.

Well, that’s easy. We’ve already seen how you have to code it. The only words you need
are **” and ’.’. You can’t name it ’*’ because that name is already taken. You could name
it 'multiply’, but is that a word you want to type in forever? No, far too long.

Let’s call it **.. Is that a valid name? If you’ve programmed in other languages, you’ll
probably say it isn’t. But it is! The only characters you can’t use in a name are whitespace
characters (<CR>, <LF>, <space>, <TAB>). Note that 4tH is not case-sensitive!

So ’*. is okay. Now how do we turn it into a self-defined word. Just add a colon at the
beginning and a semi-colon at the end:

That’s it. Your word is ready for use. So instead of:

CHAPTER 6. 4TH FUNDAMENTALS 79

23 %,
We can type:

R

23 %,
And we can use our **.” over and over again. Hurray, you’ve just defined your first word in
4tH!

6.6 Adding comment

Adding comment is very simple. In fact, there are two ways to add comment in 4tH. That
is because we like programs with a lot of comments.

You’ve already encountered the first form. Let’s say we want to add comment to this little
program:
. * . *
2.3 *.
So we add our comment:
R This will multiply and print two numbers
2.3 *.
4tH will not understand this. It will desperately look for the words ’this’, *will’, etc. How-

ever the word ’\’ will mark everything up to the end of the line as comment. So this will
work:

R \ This will multiply and print two numbers

23 *.
There is another word called ’(” which will mark everything up to the next)’ as comment.
Yes, even multiple lines. Of course, these lines may not contain a ’)’ or you’ll make 4tH
very confused. So this comment will be recognized too:

R (This will multiply and print two numbers)

23 *.
Note that there is a whitespace-character after both *\” and ’(’. This is mandatory! However
the closing paren) does not have to have a leading blank space. It is optional.

6.7 Text-format of 4tH source

4tH source is a simple ASCII-file. And you can use any layout as long a this rule is fol-
lowed:

All words are separated by at least one whitespace character!
Well, in 4tH everything is a word or becoming a word. Yes, even ’\’ and ’(’ are words!

And you can add all the empty lines or spaces or tabs you like, 4tH won’t care and your
harddisk supplier either.

CHAPTER 6. 4TH FUNDAMENTALS 80
6.8 Displaying string literals

Displaying a string is as easy as adding a comment. Let’s say you want to make the ultimate
program, one that is displaying "Hello world!". Well, that’s almost the entire program. The
famous "hello world’ program is simply this in 4tH:

." Hello world!"

Compile this and it works. Yes, that’s it! No declaration that this is the main function and
it is beginning here and ending there. May be you think it looks funny on the display. Well,
you can add a carriage return by adding the word ’CR’. So now it looks like:

." Hello world!" cr

Still pretty simple, huh?

6.9 Declaring variables
One time or another you’re going to need variables. Declaring a variable is easy.
variable one

The same rules for declaring words apply for variables. You can’t use a name that already
has been taken. A variable is a word too! And whitespace characters are not allowed. Note
that 4tH is not case-sensitive!

6.10 Using variables

Of course variables are of little use when you could not assign values to them. This assigns
the number 6 to variable ’ONE’:

6 one !

We don’t call ’!” bang or something like that, we call it ’store’. Of course you don’t have
to put a number on the stack to use it, you can use a number that is already on the stack. To
retrieve the value stored in "ONE’ we use:

one @

The word * @’ is called ’fetch’ and it puts the number stored in ’one’ on the stack. To
display it you use ’.”:

one @ .

There is a shortcut for that, the word ’?’, which will fetch the number stored in ’ONE’ and
displays it:

one ?

CHAPTER 6. 4TH FUNDAMENTALS 81
6.11 Built-in variables

4tH has only three built-in variables. They are called " BASE’, >IN’ and ’OUT’. "BASFE’
controls the radix at run-time, >IN’ is used by "WORD’ and ’OUT"’ returns a value to the
host program.

6.12 Whatis a cell?

A cell is simply the space a number takes up. So the size of a variable is one cell. The size
of a cell is important since it determines the range 4tH can handle. It also helps make code
portable across machines with different cell sized, for example 16 bit and 32 big systems.
We’ll come to that further on.

6.13 What is a literal expression?

A literal expression is simply anything that compiles to a literal. All numbers, all defined
constants and some expressions are compiled to a literal. In the glossary you can find what
compiles to a literal, but we list them here too:

! <name>

["] <name>

CHAR <char>

[CHAR] <char>

<literal> [NOT]
<literal> <literal> [*]
<literal> <literal> [+]
<literal> <literal> [=]
[DEFINED] <name>
[UNDEFINED] <name>

6.14 Declaring arrays of numbers

You can make arrays of numbers very easily. It is very much like making a variable. Let’s
say we want an array of 16 numbers:

16 array sixteen

That’s it, we’re done! You must omit the word *CELLS’, since ’ARRAY’ implicates that
you want an array of numbers, not characters. The size is a literal expression. You can’t
take it from the stack or calculate it, so this is invalid:

3 5 * 1+ array sixteen

4tH will let you know that this is not a valid construction, but in case you wonder.. By the
way, 4tH allows you size an array just like that as we will learn later on.

CHAPTER 6. 4TH FUNDAMENTALS 82
6.15 Using arrays of numbers

You can use arrays of numbers just like variables. The array cells are numbered from 0 to
N, N being the size of the array minus one. Storing a value in the Oth cell is easy. It works
just like a simple variable:

5 sixteen 0 th !
Which will store ’5’ in the Oth cell. So storing °7’ in the 8th cell is done like this:
7 sixteen 8 th !

Of course when you want to store a value in the first, second or third cell you have to
use 'TH’ too, since it is a word. If you don’t like that try defining *ST’, 'ND’ and 'RD’
yourself:

: st th ;
: nd th ;
: rd th ;
4 sixteen 1 st !
5 sixteen 2 nd !
6 sixteen 3 rd !

Isn’t 4tH wonderful? Fetching is done the same of course:

sixteen 0 th @
sixteen 4 th @

Plain and easy.

6.16 Declaring and using constants

Declaring a simple constant is easy too. Let’s say we want to make a constant called
"FIVE’:

5 constant five
Now you can use "FIVE’ like you would ’5’. E.g. this will print five spaces:
five spaces

The same rules for declaring words apply for constants. You can’t use a name that already
has been taken. A constant is a word too! And whitespace characters are not allowed. Note
that 4tH is not case-sensitive. By the way, ’5’ is a literal expression. You can’t take it from
the stack or calculate it.

CHAPTER 6. 4TH FUNDAMENTALS 83

6.17 Built-in constants

There are several built-in constants. Of course, they are all literals in case you wonder.
Here’s a list. Refer to the glossary for a more detailed description:

/PAD
/TIB
/HOLD
/CELL
/CHAR
MAX-N
MAX-RAND
(ERROR)
BL
FALSE
LO

APP
PAD
STACK-CELLS
TIB
TRUE
VARS
WIDTH
INPUT
OUTPUT
STDOUT
STDIN
TEXT
APPEND
PIPE
FILES
4TH#

6.18 Using booleans

Booleans are expressions or values that are either true or false. They are used to condition-
ally execute parts of your program. In 4tH a value is false when it is zero and true when it
is non-zero. Most booleans come into existence when you do comparisons. This example
will determine whether the value in variable VAR’ is greater than 5. Try to predict whether
it will evaluate to true or false:

variable var
4 var !
var @ 5 > .

No, it wasn’t! But hey, you can print booleans as numbers. Well, they are numbers. But
with a special meaning as we will see in the next section.

6.19 IF-ELSE constructs

Like most other languages you can use IF-ELSE constructs. Let’s enhance our previous
example:

CHAPTER 6. 4TH FUNDAMENTALS 84

variable var

4 var !

var @ 5 >

if ." Greater" cr

else ." Less or equal" cr
then

So now our program tells you when it’s greater and when not. Note that contrary to other
languages the condition comes before the IF’ and "THEN’ ends the IF-clause. In other
words, whatever path the program takes, it always continues after the "THEN’. A tip: think
of "THEN’ as ’TENDIF’..

6.20 FOR-NEXT constructs

4tH has FOR-NEXT constructs as well. The number of iterations is known in this construct.
E.g. let’s print the numbers from 1 to 10:

11 1 do i . cr loop

The first number represents the limit. When the limit is reached or exceeded the loop
terminates. The second number presents the initial value of the index. That’s where it
starts off. So remember, this loop iterates at least once! You can use *?DO’ instead of
’DO’. That will not enter the loop if the limit and the index are the same to begin with:

0 0 ?2do i . cr loop

’1’ represents the index. It is not a variable or a constant, it is a predefined word, which puts
the index on the stack, so ’.” can get it from the stack and print it.

But what if I want to increase the index by two? Or want to count downwards? Is that
possible. Sure. There is another construct to do just that. Okay, let’s take the first question:

11 1 do i . cr 2 +loop

This one will produce exactly what you asked for. An increment by two. This one will
produce all negative numbers from -1 to -10:

-11 -1 do i1 . cr -1 +loop
Note that the step is not a literal expression. You can change the step if you want to, e.g.:
32767 1 do 1 . i +loop

This will print: 1, 2, 4, 8, all up to 16384. Pretty flexible, I guess. You can break out of a
loop by using "'LEAVE’. Note that 'LEAVE’ only sets the index to the value of the limit:
it doesn’t branch or anything. Make sure that there is no code left between "LEAVE’ and
’LOOP’ that you don’t want to execute. So this is okay:

10 0 do 1 dup 5 = if drop leave else . cr then loop
And this is not:
10 0 do 1 dup 5 = if drop leave then . cr loop

Since it will still get past the ’.” before leaving. In this case you will catch the error quickly,
because the stack is empty.

CHAPTER 6. 4TH FUNDAMENTALS 85
6.21 WHILE-DO constructs

A WHILE-DO construction is a construction that will perform zero or more iterations. First
a condition is checked, then the body is executed. Then it will branch back to the condition.
In 4tH it looks like this:

BEGIN <condition> WHILE <body> REPEAT

The condition will have to evaluate to TRUE in order to execute the body. If it evaluates to
FALSE it branches to just after the REPEAT. This example does a Fibbonaci test.

: fib 0 1
begin
dup >r rot dup r> > \ condition
while
rot rot dup rot + dup . \ body
repeat
drop drop drop ; \ after loop executed

You might not understand all of the commands, but we’ll get to that. If you enter "20 fib"
you will get:

123581321

This construct is particularly handy if you are not sure that all data will pass the condition.

6.22 REPEAT-UNTIL constructs

The counterpart of WHILE-DO constructs is the REPEAT-UNTIL construct. This executes
the body, then checks a condition at "UNTIL’. If the expression evaluates to FALSE, it
branches back to the top of the body (marked by " BEGIN’) again. It executes at least once.
This program calculates the largest common divisor.

: lcd
begin
swap over mod \ body
dup 0= \ condition

until drop . ;

If you enter "27 21 lcd" the programs will answer "3".

6.23 Infinite loops

In order to make an infinite loop one could write:

begin ." Diamonds are forever" cr 0 until
But there is a nicer way to do just that:

begin ." Diamonds are forever" cr again

This will execute until the end of times, unless you exit the program another way.

CHAPTER 6. 4TH FUNDAMENTALS 86
6.24 Including source files

4tH has a vocabulary of over 200 words. If you use them in one of your 4tH programs 4tH
will recognize them instantly. These words are internal.

But if you take a look at the glossary, you’ll find that there are a lot of other words too.
Words that 4tH will not recognize; they have to be included first. These words are external.

These words are defined in an include file. An include file is just an ordinary ASCII file
with 4tH source. You can read them if you want. In order to use these words, you have to
tell 4tH where it can find the include file.

This is done by the *'[NEEDS’ directive, which is equivalent to the COMUS word "IN-
CLUDE’ (which 4tH also supports). Everything up to the next ’]” is considered to be a
filename, so the path may contain embedded spaces. You can use absolute paths or rela-
tive paths, just make sure that you're starting 4tH from the proper directory. E.g. this one
includes additional ANS-Forth CORE-words from the directory just above lib>!:

[needs lib/anscore.4th]

include lib/anscore.4th

4tH comes with a rich library of words, which covers a large part of ANS-Forth and CO-
MUS? standard words and beyond. They are all located in the ’lib’ directory. In the next
level we’re going to need a lot of these words, so you’d better know how to include them.

6.25 Getting a number from the keyboard

The word to enter a number from the keyboard can be found in the ’lib’ directory and is
defined in the ’enter.4th’ file. To include it you have to tell 4tH. We assume your working
directory is just above the lib’ directory>:

[needs lib/enter.4th]

That’s all! Now you can use "TENTER’ just like any 4tH word. This will allow you to enter
a number and print it:

[needs lib/enter.4th]
enter . cr

By the way, this is the end of the first level. Take our advise and give it a try!

'If you’re not sure where that is, enter the ’lib’ directory and execute “cd ..”.

21n case you wonder, COMUS stands for COMmon USage.

3 As a matter of fact, we will always assume that! If you don’t know what we mean, execute “cd <path to lib
directory>" and then “’cd ..”. Now you’re there for sure!

Chapter 7

4tH arrays

7.1 Aligning numbers

You may find that printing numbers in columns (I prefer "right-aligned") can be pretty
hard. That is because the standard word to print numbers (’.”) prints the number and then a
trailing space. That is why *.R’ was added.

The word *.R’ works just like °.” but instead of just printing the number with a trailing
space *.R’ will print the number right-aligned in a field of N characters wide. Try this and
you will see the difference:

140 . cr
150 5 .r cr

In this example the field is five characters wide, so 150’ will be printed with two leading
spaces.

7.2 Creating arrays of constants

Making an array of constants is quite easy. First you have to define the name of the array
by using the word "TABLE’ or ’"CREATE’ (which is ANS-Forth). Then you specify all its
elements. Note that every element is a literal expression. All elements (even the last) are
terminated by the word ’,”. An example:

create sizes 18 , 21 , 24 , 27 , 30 , 255,

Please note that ’,” is a word! It has to be separated by spaces on both ends.

7.3 Using arrays of constants

Accessing an array of constants is very much like accessing an array of numbers. In an
array of numbers you access the Oth element like this:

sixteen 0 th @

87

CHAPTER 7. 4TH ARRAYS 88
When you access the first element of an array of constants you use this construction:
sizes 0 th Gc

The only difference is the word *@C’, which is exclusively used to access arrays of con-
stants.

7.4 Using values

A value is a cross-over between a variable and a constant. May be this example will give
you an idea:

declaration:

variable a (No initial value)

1 constant b (Literal expression assigned at compiletime)

2 b + value c (Expression assigned at runtime)
fetching:

a @ (Variable throws address on stack)

b (Constant throws value on stack)

c (Value throws value on stack)
storing:

2b+a! (Expression can be stored at runtime)

(Constant cannot be reassigned)
2b+ toc (Expression can be stored at runtime)

In many aspects, values behave like variables and can replace variables. The only thing you
cannot do is make arrays of values.

A value is not a literal expression either, so you can’t use them to size arrays. In fact, a
value is a variable that behaves in certain aspects like a constant.

Why use a value at all? Well, there are situations where a value can help:

e When converting Forth programs (replacing constants)

e When a constant can change during execution

Note that although >VALUE’ and *TO’ are aliases, it is more portable and more readable to
use "VALUE’ for declaration and TO’ for reassignment. Note that each *'TO’ or "VALUE’
consumes a little memory when compiling, so reassignments have to be rare. It is certainly
not a good idea to replace all variables by values.

CHAPTER 7. 4TH ARRAYS 89
7.5 Creating strings
In 4tH you have to define the maximum length of the string, like Pascal:

10 string name

You cannot add the ’CHARS’ keyword, since ’STRING’ already implies that you are cre-
ating an array of characters. Note that the string variable includes the terminator. That is a
special character that tells 4tH where the string ends (see section 7.13). You usually don’t
have to add that yourself because 4tH will do that for you. But you will have to reserve
space for it.

That means that the string "name" we just declared can contain up to nine characters AND
the terminator. These kind of strings are usually referred to as ASCIIZ strings.

E.g. when you want to define a string that has to contain "Hello!" (without the quotes) you
have to define a string that is at least 7 characters long:

7 string hello

7.6 Whatis an address?

An address is a location in memory. Usually, you don’t need to know addresses, because
4tH will take care of that. But if you want it, you can retrieve them as we will show you
later. Think of memory like a city. It has roads and houses and inhabitants. There are three
roads in 4tH city:

1. INTEGER SEGMENT, that is where the cells live;
2. CHARACTER SEGMENT, that is where the strings live;

3. CODE SEGMENT, that is where the instructions that form your program live.

If you want to visit a certain person, you go to the city where he lives, find the right street
and knock on the door. If you want to retrieve a certain string or integer, you do the same.

When you define a string, you actually create a constant with the address of that string.
When you later refer to the string you just defined its address is thrown on the stack. An
address is simply a number that refers to its location. As you will see you can work with
string-addresses without ever knowing what that number is. But because it is a number you
can manipulate it like any other number. E.g. this is perfectly valid:

16 string hello

hello \ address of string on stack
dup \ duplicate it
drop drop \ drop them both

Later, we will tell you how to get "Hello!" into the string.

CHAPTER 7. 4TH ARRAYS 90
7.7 String literals

In 4tH a string literal is created by the word ’S™’. The word ’S" is very much like *."’, but
instead of printing it to the screen you will just be defining a string literal.

s" This is a string"

4tH is a stack oriented language, so what does S’ leave on the stack? In 4tH, a string
is usually represented by on the stack by its address and its count. So in order to get its
length, you only have to get the first value on the stack. In order to get its address you have
to get the second value on the stack, which is demonstrated by this small program:

s" This is a string" \ create a temporary string
." Length : " . cr \ show the length
." Address: " . cr \ show the address

And what about string literals with quotes. Easy, there is an equivalent to ’S™’ that does the
same thing:

s| "This is a string with quotes"|
." Length : " . cr \ show the length

." Address: " . cr \ show the address

Instead of a quote, the string is delimited by a bar. And about a string literal that includes
them both? Sorry pal, in that case you’re out of luck!

7.8 String constants

String constants work the same way as numeric constants:

10 constant ten \ define a string constant
ten . cr \ equivalent to: 10 . cr

In fact, you give a name to a literal value. After that, you can refer to that literal throughout
your program by using its name. String constants do the same thing. Take a look at this
little piece of code:

s" This is a string" \ create a temporary string
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Now we do the same thing, but this time we define a string constant by using *SCON-
STANT’:

s" This is a string" sconstant mystring
\ define a string constant

mystring \ now we use the string constant
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Why use string constants? Well, first of all, if you use a string constant throughout your
program, it will save you some editing when you have to change your program for one
reason or another. Second, it will make your program a little smaller.

CHAPTER 7. 4TH ARRAYS 91
7.9 Initializing string variables

You can initialize a string with the ’S"” word. If you want the string to contain your first
name use this construction:

s" Hello!" name place

The word "PLACE’ copies the contents of a string literal into a string-variable.

If you still don’t understand it yet, don’t worry. As long as you use this construction, you’ll
get what you want. Just remember that assigning a string literal to a string that is too short
will result in an error or even worse, corrupt other strings.

7.10 Getting the length of a string variable

You get the length of a string variable by using the word ’"COUNT". It will not only return
the length of the string variable, but also the string address. It is illustrated by this short
program:

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to 'Hello!’
greeting count \ get string length

." String length: " . cr \ print the length

drop \ discard the address

Most string handling words return or take an address/count pair. One of the exceptions
is the string variable itself (see section 7.9). To copy the contents of an address/count
pair represented string into a string variable, we use "PLACE’. In order to convert a string
variable back to an address/count pair represented string, we use "COUNT”:

32 string my-string \ create a string variable
\ create an address/count
s" This is a string" \ pair represented string
my-string place \ copy it into the variable
my-string count \ convert it into an address/count pair
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Note that the contents of the string variable do not change by a ’COUNT” conversion!

7.11 Printing a string variable

Printing a string variable is pretty straight forward. The word that is required to print a
string variable is "TYPE’. It requires an address/count pair. Yes, that are the values that
are left on the stack by "TCOUNT’! So printing a string means issuing both ’"COUNT’ and
"TYPE’:

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’Hello!’
greeting count type cr \ print the string

CHAPTER 7. 4TH ARRAYS 92

If you don’t like this you can always define a word like "PRINT$’:

: print$ count type ;

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’Hello!’
greeting print$ cr \ print the string

7.12 Copying a string variable

You might want to copy one string variable to another. Let’s take a look at this example:

32 string one \ define the first string
32 string two \ define the second string

s" Greetings!" one place \ initialize string one

one count \ get the length of string one

two place \ and copy it into string two
\

two count type cr print string two

First we place the string ”Greetings!” into a string variable. *S’” will put an address/count
pair on the stack, that is consumed by "PLACE’. Variable "ONE” only puts its address
on the stack, that is converted into an address/count pair by "COUNT’. After it has been
consumed again by 'PLACE’ we need ’COUNT"’ again to provide "TYPE’ with an ad-
dress/count pair.

7.13 The string terminator

In order for ’'COUNT’ to work, it has to know where the string stops. So a special character
at the end of the string, the string terminator, is used to indicate the end of an ASCIIZ string.
It has nothing to do with Arnold Schwarzenegger obliterating innocent strings! It is simply
a character, having the ASCII value zero. It may also be referred to as the NULL-character.
Although most strings in 4tH will be terminated automatically it is considered bad style to
rely on that.

7.14 Slicing strings

Slicing strings is just like copying strings. We just don’t copy all of it and we don’t always
start copying at the beginning of a string. We’ll show you what we mean:

[needs lib/anstring.4th]

32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
one count 2dup type cr \ duplicate and print it
1 /string \ move one character forward
2dup type cr \ duplicate and print it again
1 /string \ move one character forward
2dup type cr \ duplicate and print it again
1 /string \ move one character forward

\

type cr print it for the last time

CHAPTER 7. 4TH ARRAYS 93

First it will print "Hans Bezemer", then "ans Bezemer", then "ns Bezemer" and finally
"s Bezemer". The word */STRING’ adjusts the address/count pair by a given number of
characters, in this case one character. It is part of the library member *anstring.4th’, so we
have to include that one. The word *2DUP’ is much like "'DUP’, but it copies the top two
values on the stack. It is functionally equivalent to:

over over
If we want to discard the first name at all we could even write:

[needs lib/anstring.4th]

32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
one count 5 /string type cr \ print sliced string

The five characters we want to skip are the first name (which is four characters) and a space
(which adds up to five). There is a special word for slicing strings in the library member
’slice.4th’. You call it with:

address count position-to-start position-to-end

Both positions start counting at zero. So this will copy the first name to string "two" and
print it:

[needs lib/slice.4th]

32 string one

32 string two

s" Hans Bezemer" one place
one count 0 3 slice

two place

two count type cr

declare string one
declare string two
initialize string one
slice the first name
copy it to string two
print string two

— -

This will slice the last name off and store it in string "two":

[needs lib/slice.4th]

32 string one

32 string two

s" Hans Bezemer" one place
one count 5 11 slice

two place

two count type cr

declare string one
declare string two
initialize string one
slice the last name
copy it to string two
print string two

— = = =

Since the last name is seven characters long and starts at position five (start counting with
zero!).

CHAPTER 7. 4TH ARRAYS 94

7.15 Appending strings

The word *+PLACE!” appends two strings. In this example string "one" holds the first

name. The second string literal is appended to string "one" to form the full name. Finally

string "one" is printed.
32 string one \ define string one

\ initialize first string

\ append ’Bezemer’ to string
\ print first string

s" Hans " one place
s" Bezemer" one +place
one count type cr

7.16 Comparing strings

If you ever sorted strings you know how indispensable comparing strings is. As we men-
tioned before, there are very few words in Forth that act on strings. Here is a word that can
compare two strings. It is located in the library member ’compare.4th’.

[needs lib/compare.4th]
compare two chars

32 string one
s" Hans Bezemer" one place
32 string two
s" HANS BEZEMER" two place

— = = =

define string one
initialize string one
define string two
initialize string two

one count two count compare \ compare two strings
if

." Strings differ" \ message: strings ok
else

." Strings are the same" \ message: strings not ok
then
cr \ send CR

Simply pass two strings (represented by their address/count pairs) to ’"COMPARE’ and it
will return a TRUE flag when the strings are different. This might seem a bit odd, but
strcmp() does exactly the same. If you don’t like that you can always add 0= to the end
of "COMPARE’ to reverse the flag.

You’ll soon find out that ANS-Forth’s ’"COMPARE’ is case sensitive. Lucky for you, you
can modify the behaviour of 4tH’s 'TCOMPARE’. Just define this before the '[NEEDS’
directive:

false constant ignorecase

[needs lib/compare.4th]

compare two chars
define string one
initialize string one
define string two
initialize string two

\
32 string one \
s" Hans Bezemer" one place \
32 string two \
s" HANS BEZEMER" two place \

"There is a COMUS word called ' APPEND’ which works exactly the same.

CHAPTER 7. 4TH ARRAYS 95

one count two count compare \ compare two strings

if

." Strings differ" \ message: strings ok
else

." Strings are the same" \ message: strings not ok
then
cr \ send CR

Now "COMPARE’ will do a case sensitive comparison.

7.17 Finding a substring

Sometimes you need to find a string within a string. ANS-Forth has defined a word for that
too. It is called 'SEARCH’. You need to include ’search.4th’ in order to use it. Now lets
find ”the” in this string:

[needs lib/search.4th]

s" How the cow catches the hare"
s" the" search \ search for ’the’
0= if ." not " then ." found: "
type \ print the result

"SEARCH’ always returns a flag and a address/count pair. If it returns true, the substring
was found; if it returns false, the substring was not found. Now that’s pretty straightfor-
ward, isn’t it? That means that the small program above will print:

found:
When the substring was found and:

not found:
When the substring was not found. But what kind of string does it return when the substring
was not found? Well, the entire string you fed it, so this would have been its output if we
had been looking for the substring "now” instead of ’the”:

not found: How the cow catches the hare

But in this specific example we are looking for ’the”. When found, ’'SEARCH’ returns the
string after the first occurrence of the substring we were looking for:

found: the cow catches the hare
Why that? Why not a position? Well, first of all, you can look for the same substring again:
[needs lib/search.4th]

s" How the cow catches the hare"

s" the" search drop \ drop the flag
2dup type \ print the string
s" the" search drop \ now search again

type \ print the string

CHAPTER 7. 4TH ARRAYS 96
This will print:

the cow catches the hare
the hare

But if you still want to see a position instead of a string, you can simply define this:

[needs lib/search.4th]

: position
2>r over swap 2r> search 0= >r drop swap - r> if 1- then

s" How the cow catches the hare"
s" the" position . cr

That will take care of your problems. If the substring was found, "POSITION” will return a
positive number. If it wasn’t found, it will return a negative number. Note that "'SEARCH’
can be persuaded to do a case-sensitive comparison, just like ’COMPARE’:

false constant ignorecase
[needs lib/search.4th]

Now 'SEARCH’ will do a case sensitive comparison, just like ’"COMPARE’.

7.18 Replacing substrings

Sometimes finding is not enough. You have replace it by something else. You can do that
very easily with 4tH. Just include “replace.4th”. It contains a word that will do all that.
Take this example:

[needs lib/replace.4th]

s" How the cow catches the hare" s" the" s" a"
replaceall type cr

It will print:
How a cow catches a hare

Yes, this one replaces all occurrences of “’the” by ”a”. Note that like ’"COMPARE’ and
"SEARCH?’ this one can be made case sensitive too:

false constant ignorecase
[needs lib/replaceall.4th]

CHAPTER 7. 4TH ARRAYS 97
7.19 Deleting substrings

Yes, we even got a word for ’search-and-destroy’ missions. You only have to include
“replace.4th™:

[needs lib/replace.4th]

s" How the cow catches the hare" s" the"
deleteall type cr

This will print:
How cow catches hare

Yes, it deletes all occurrences of ’the”. Note that like ’"COMPARE’, ’SEARCH’ and ’RE-
PLACEALL this one can be made case sensitive too:

false constant ignorecase
[needs lib/replaceall.4th]

7.20 Removing trailing spaces

You probably know the problem. The user of your well-made program types his name and
hits the spacebar before hitting the enter-key. There you go. His name will be stored in
your datafile with a space and nobody will ever find it.

In 4tH there is a special word called *~-TRAILING’ that removes the extra spaces at the end
with very little effort. Just paste it after ’COUNT’. Like we did in this example:

32 string one \ define a string

s" Hans Bezemer " \ string with trailing spaces
one place \ now copy it to string one
one dup \ save the address

T \ print a bracket
count type \ old method of printing
It er \ print bracket and newline

o \ print a bracket
count -trailing type \ new method of printing
I oer \ print a bracket and newline

You will see that the string is printed twice. First with the trailing spaces, second without
trailing spaces.

CHAPTER 7. 4TH ARRAYS 98
7.21 Removing leading spaces

And what about leading spaces? Patience, old chap. You’ve got a lot of ground to cover.
There is no built-in word for that, but we can use a library member like we did in this
example:

[needs lib/scanskip.4th]

32 string one \ define a string
s" Hans Bezemer" \ string with leading spaces
one place \ now copy it to string one
one dup \ save the address

o \ print a bracket
count type \ old method of printing
1" er \ print bracket and newline

o \ print a bracket
count -leading type \ new method of printing
1" er \ print a bracket and newline

You will see that the string is printed twice. First with the leading spaces, second without
leading spaces. Happy?

7.22 Upper and lower case

Sometimes you will have to convert a string to upper or lower case. 4tH has a library
member for that too. Just include:

[needs lib/ulcase.4th]

This will define several easy to use conversion words. E.g. in order to convert a string to
upper case, just enter:

s" Convert this!" s>upper \ convert addr/count string to uppercase
type cr \ type the string

Its lower case counterpart is:

s" Convert this!" s>lower \ convert addr/count string to lowercase
type cr \ type the string

Like most string words it takes and returns an address/count pair. Note that the string in
question is modified, so if you still need the original, copy it first. You can also convert an
individual character:

CHAPTER 7. 4TH ARRAYS 99

char A char>lower emit \ convert a character and show it

And consequently, its counterpart is:

char a char>upper emit \ convert a character and show it

These words take an ASCII value from the stack, convert it and put the converted ASCII
value back on the stack. If the value does not represent a alphabetic character, it is left
unchanged.

7.23 String literals and string variables

Most computer languages allow you to mix string literals and string variables. Not in 4tH.
In 4tH they are two distinct datatypes. To print a string literal you use the word ’."”. To
print a string variable you use the "COUNT TYPE’ construction.

There are only three different actions you can do with a string literal. First, you can define
one using ’S"’. Second, you can print one using "."’ Finally, you can compile a string into

EIRIE]

your program using ’,"’.

This may seem a bit mind-boggling to you now, but we’ll elaborate a bit further on this
subject later.

7.24 Printing individual characters

"[already know that!"

Sure you do. If you want to print "G" you simply write:
. n G n

Don’t you? But what if you want to use a TAB character (ASCII 9)? You can’t type in that
one so easily, huh? You may even find it doesn’t work at all!

Don’t ever use characters outside the ASCII range 32 to 127 decimal. It may or may not
work, but it won’t be portable anyway. the word ’EMIT’ may be of some help. If you want
to use the TAB-character simply write:

9 emit

That works!

7.25 Distinguishing characters

Like in a novel, not all characters are created equal. There are upper case characters, lower
case characters, control characters, whitespace, etc. Sometimes it is necessary to find out
what kind of character we are dealing with. Of course, 4tH can help you there. You need
to include ’istype.4th’ in order to use it:

CHAPTER 7. 4TH ARRAYS 100

char a is-lower . cr
char a is-upper . cr

4tH will first print a TRUE value (because ’a’ is a lower case character) and then a FALSE
value. This table tells you what words 4tH offers and the ranges of valid characters:

| WORD | RANGE (ASCII) | DESCRIPTION |
IS-ASCII 0-127 All 7-bit ASCII characters
IS-PRINT 32-127 As above, without control characters
IS-WHITE | 0-32 All control characters plus space
IS-DIGIT 0 - All digits
IS-LOWER | ’a’ -7’ All lower case characters
IS-UPPER A - All upper case characters
IS-ALPHA | ’a’-’z’,’A’ -7’ All alphabetic characters
IS-ALNUM | ’0’-"9’,’a’ -’z’,’A’ - ’Z’ | All alphanumeric characters

Table 7.1: Character typing words

7.26 Getting ASCII values

Ok, ’EMIT’ is a nice addition, but it has its drawbacks. What if you want to emit the
character "G". Do you have to look up the ASCII value in a table? No. 4tH has another
word that can help you with that. It is called "CHAR’. This will emit a "G":

char G emit

The word "CHAR’ looks up the ASCII-value of "G" and leave it on the stack. You can
also use [CHAR]’. It does exactly the same thing. It is included for compatibility with
ANS-Forth versions. Note that "CHAR’ only works with printable characters (ASCII 33 to
127 decimal).

7.27 Printing spaces
If you try to print a space by using this construction:
char emit

You will notice it won’t work. Sure, you can also use:

But that isn’t too elegant. You can use the built-in constant "BL’ which holds the ASCII-
value of a space:

bl emit

That is much better. But you can achieve the same thing by simply writing:

CHAPTER 7. 4TH ARRAYS 101
space

Which means that if you want to write two spaces you have to write:
space space

If you want to write ten spaces you either have to repeat the command *'SPACE’ ten times
or use a DO-LOOP construction, which is a bit cumbersome. Of course, 4tH has a more
elegant solution for that:

10 spaces

Which will output ten spaces. Need I say more?

7.28 Fetching individual characters
Take a look at this small program:

32 string one \ define string one
s" Hans" one place \ initialize string one

What is the second character of string "one"? Sure, its an "a". But how can you let your
program determine that? You can’t use *@’ because that word can only access variables.

Sure, you can do that in 4tH, but it requires a new word, called ’C@’. Think of a string as
an array of characters and you will find it much easier to picture the idea. Arrays in 4tH
always start with zero instead of one. So accessing the first character might be done with:

one 0 th c@

We do not recommend using this construction, although it will work perfectly. If you never
want to convert your program to Forth you might even choose to keep it that way. We
recommend the construction:

one 0 chars + c@

Which is slightly more wordy. 4tH will compile both constructions in exactly the same
way. Anyway, accessing the second character is easy now:

one 1 chars + c@

This is the complete program:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 1 chars + c@ \ get the second character

emit cr \ print it

CHAPTER 7. 4TH ARRAYS 102
7.29 Storing individual characters

Storing individual characters works just the same. Keep that array of characters in mind.
When we want to fetch a variable we write:

my_var @
When we want to store a value in a variable we write:
5 my_var !
Fetching only requires the address of the variable. Storing requires both the address of the

variable and the value we want to store. On top of the stack is the address of the variable,
below that is value we want to store. Keep that in mind, this is very important.

Let’s say we have this program:

32 string one \ define string one
s" Hans" one place \ initialize string one

Now we want to change "Hans" to "Hand". If we want to find out what the 4th character of
string "one" is we write:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 3 chars + c@ \ get the fourth character

Remember, we start counting from zero! If we want to store the character "d" in the fourth
character, we have to use a new word, and (yes, you guessed it right!) it is called *C!’:

32 string one \ define string one

s" Hans" one place \ initialize string one

one 3 chars + \ address of the fourth char
char d \ we want to store 'd’

swap \ get the order right

c! \ now store ’d’

If we throw the character "d" on the stack before we calculate the address, we can even
remove the 'SWAP’:

32 string one

char d

s" Hans" one place
one 3 chars +

c!

define string one

we want to store ’'d’
initialize string one
address of the fourth char
now store ’'d’

— = = =

We will present the very same programs, but now with stack-effect-diagrams in order to
explain how this works. We will call the index ’i’, the character we want to store ¢’
and the address of the string ’a’. By convention, stack-effect-diagrams are enclosed by
parenthesis.

If you create complex programs this technique can help you to understand more clearly
how your program actually works. It might even save you a lot of debugging. This is the
first version:

CHAPTER 7. 4TH ARRAYS 103

32 string one
s" Hans" one place

(

(
one 3 chars (ai)
+ (a+i)
char d (a+i c)
swap (¢ a+i)
e ()

Now the second, optimized version:

32 string one (--)
char d (c)
s" Hans" one place (c)
one 3 chars (ca i)
+ (¢ a+i)
c! (--)

7.30 Getting a string from the keyboard

Of course, you don’t want to initialize strings all your life. Real applications get their input
from the keyboard. We’ve already shown you how to get a number from the keyboard.
Now we turn to strings.

When programming in BASIC, strings usually have an undefined length. Some BASICs
move strings around in memory, others have to perform some kind of "garbage-collection".
Whatever method they use, it takes up memory and processor-time.

4tH forces you to think about your application. E.g. when you want to store somebodies
name in a string variable, 16 characters will be too few and 512 characters too many. But
64 characters will probably do.

But that poses a problem when you want to get a string from the keyboard. How can you
prevent that somebody types a string that is just too long? And how do you terminate it?

The word *ACCEPT’ takes two arguments. First, the string variable where you want to
save the input and second, the maximum number of characters it can take. It automatically
terminates the string when reading from the keyboard. But there is a catch. This program
can get you into trouble:

64 constant #name \ length of string
#name string name \ define string ’name’
name #name accept \ input string

name swap type cr \ swap count and print

Since 64 characters plus the terminator add up to 65 characters. The word *ACCEPT’
always returns the number of characters it received. You will find that you won’t need that
information most of the time.

This is the end of the second level. Now you should be able to understand most of the
example programs and write simple ones. I suggest you do just that. Experience is the best
teacher after all.

Chapter 8

Character Segment

8.1 The Character Segment

Wonder where all these strings are created? I bet you do. Well, when you define a string,
memory is allocated in the Character Segment. When you define another one, space is
allocated after the first string. That means that if you go beyond the boundaries of the first
string, you’ll end up in the space allocated to the second string.

After the second string there is a void. If you end up there your program will end with an
error-message. And what about the space before the first string? Well, take a look at figure
8.1.

User strings

PAD

TIB

Figure 8.1: Character segment

The lower memory is at the bottom. Yes, before your strings there are two other areas, the
TIB and the PAD. We’ll elaborate on that in the next section.

The Character Segment is created at run-time. That means that it isn’t there when you
compile a program. The compiler just keeps track of how much memory would be needed
to create such a Character Segment and stores that information in the header.

When you run the program the header is read first. Then the Character Segment is created,
so it is already there when your program starts executing. When you exit the program, the
Character Segment is destroyed and all information stored there is lost (unless you save it
first).

104

CHAPTER 8. CHARACTER SEGMENT 105

8.2 Whatis the TIB?

The TIB stands for "Terminal Input Buffer" and is used by one single, but very important
word called "REFILL’. In essence, 'REFILL’ does the same thing as *’ACCEPT’, except
that it has a dedicated area to store its data and sets up everything for parsing. Whatever
you type when you call 'REFILL, it is stored in the TIB.

8.3 Whatis the PAD?

The PAD is short for "scratch-pad". It is a temporary storage area for strings. It is heavily
used by 4tH itself, e.g. when you print a number the string is formed in the PAD. Yes,
that’s right: when you print a number it is first converted to a string. Then that string is
’COUNT’ed and "'TYPE’d. You can even program that subsystem yourself as we will see
when we encounter formatted numbers (see section 8.8).

5 999

Furthermore, string constants (compiled by ’S™ or °,”’) are temporarily stored in the PAD.
Finally, ' NUMBER’ and "ARGS’ also use the PAD. The PAD is actually a circular buffer.
That means that strings are stored in the PAD until it runs out of space. Then it starts to
overwrite the oldest strings. Usually, they have turned into garbage that is no longer used,
but sometimes they still have some significance to your program. In that case, you’ll have
to save the string that was overwritten into a variable. Don’t rely on the PAD to keep your
strings alive!

8.4 Howdo I use TIB and PAD?

In general, you don’t. The TIB is a system-related area and it is considered bad practice
when you manipulate it yourself. The PAD can be used for temporary storage, but beware!
Temporary really means temporary. A few words at the most, provided you don’t generate
any output or do any parsing.

Think of both these areas as predefined strings. You can refer to them as *TIB’ and "PAD’.
You don’t have to declare them in any way. This program is perfectly alright:

s" Hello world" pad place \ store a string in pad
pad count type cr \ print contents of the pad

If you want to know how big TIB and PAD are, you can use the predefined constants */TIB’
and ’/PAD’:

." Size of TIB: " /TIB . cr \ print sizeof TIB
." Size of PAD: " /PAD . cr \ print sizeof PAD

Note, this does not print the length of a string stored in the area, but the maximum size
of the string that can be stored there. Some space of the PAD is reserved for number
generation (see section 8.3). You can get the size of this area by the predefined constant
’/HOLD’. This will print the size of this area and the size of PADs circular buffer:

." Size of HOLD : "™ /HOLD . cr \ print sizeof HOLD
." Size of buffer: " /PAD /HOLD - . cr

If that area did not exist even printing a number could corrupt the circular buffer. In some
unusual circumstances, the PAD can get corrupted. If so, identify the temporary string that
gets corrupted and store it explitly into a string variable.

CHAPTER 8. CHARACTER SEGMENT 106
8.5 Simple parsing

We have already discussed 'REFILL’ a bit. We’ve seen that it is closely related to *AC-
CEPT’. ’REFILL’ returns a true flag if all is well. When you use the keyboard it usually is,
so we can safely drop it, but we will encounter a situation where this flag comes in handy.

If you want to get a string from the keyboard, you only have to type:
refill drop \ get string from keyboard

Every next call to "/REFILL’ will overwrite any previously entered string. So if you want to
do something with that string you’ve got to get it out of there, usually to one of your own
strings.

But if accessing the TIB directly is not the proper way, what is? The use of 'REFILL’ is
closely linked to the word "PARSE-WORD?’, which is a parser. ’'PARSE-WORD’ looks for
the delimiter, whose ASCII code is on the stack.

If the string starts with the delimiter, it will skip this and all subsequent occurrences until
it finds a string. Then it will look for the delimiter again and slice the string right there. It
then returns its address and count.

This extremely handy when you want to obtain filtered input. E.g. when you want to split
somebodies name into first name, initials and lastname:

Hans L. Bezemer
Just use this program:

." Give first name, initials, lastname: "

refill drop \ get string from keyboard
bl parse-word \ parse first name

" First name: " \ write message

type cr \ type first name

bl parse-word \ parse initials

." Initials : " \ write message

type cr \ type initials

bl parse-word \ parse last name

." Last name : " \ write message

type cr \ write last name

You don’t have to parse the entire string with the same character. This program will split
up an MS-DOS filename into its components:

." DOS filename: " refill \ input a DOS filename
drop cr \ get rid of the flag
char : parse-word \ parse drive
." Drive: " type ." :" cr
\ print drive

begin

char \ parse-word \ parse path

dup 0<> \ if not a NULL string
while \ print path

." Path : " type cr
repeat \ parse again

drop drop \ discard string

CHAPTER 8. CHARACTER SEGMENT 107

If "PARSE-WORD’ reaches the end of the string and the delimiter is still not found, it
returns the remainder of that string. If you try to parse beyond the end of the string, it
returns a NULL string. That is an empty string or, in other words, a string with length zero.

Therefore, we checked whether the string had zero length. If it had, we had reached the
end of the string and further parsing was deemed useless.

8.6 Converting a string to a number

We now learned how to parse strings and retrieve components from them. But what if these
components are numbers? Well, there is a way in 4tH to convert a string to a number, but
like every number-conversion routine it has to act on invalid strings. That is, strings that
cannot be converted to a valid number.

4tH uses an internal error-value, called (ERROR)’. The constant ’(ERROR)’ is a strange
number. You can’t negate it, you can’t subtract any number from it and you can’t print it.
If 4tHs number-conversion word 'NUMBER’ can’t convert a string it returns that constant.
Let’s take a look at this program:

." Enter a number: " \ write prompt
refill drop \ enter string
bl parse-word \ parse string
number dup \ convert to a number
(error) = \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid

." The number was: "

then

. Cr

You first enter a string, then it is parsed and ’'PARSE-WORD’ returns the address and count.
"NUMBER’ tries to convert it. If 'NUMBER’ returns (ERROR)’ it wasn’t a valid string.
Otherwise, the number is right on the stack, waiting to be printed. That wasn’t so hard, was
it?

8.7 Controlling the radix

If you are a programmer, you know how important this subject is to you. Sometimes, you
want to print numbers in octal, binary or hex. 4tH can do that too. Let’s take the previous
program and alter it a bit:

." Enter a number: " \ write prompt
refill drop \ enter string
bl parse-word \ parse string
number dup \ convert to a number
(error) = \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid
hex
." The number was: " . cr

then

CHAPTER 8. CHARACTER SEGMENT 108

We added the word "HEX just before printing the number. Now the number will be printed
in hexadecimal. 4tH has a number of words that can change the radix, like 'DECIMAL’
and ’OCTAL’. They work in the same way as "HEX".

4tH always starts in decimal. After that you are responsible. Note that all radix control
follows the flow of the program. If you call a self-defined word that alters the radix all
subsequent conversion is done too in that radix:

.hex hex . ; \ print a number in hex

." Enter a number: " \ write prompt
refill drop \ enter string
bl parse-word \ parse string
number dup \ convert to a number
(error) = \ test for valid number
if \ if not wvalid
." You didn’t enter a valid number!" drop cr
else \ print if valid
." The number was: " .hex cr
then

In this example not only that single number is printed in hex, but also all subsequent num-
bers will be printed in hex! A better version of the ".HEX" definition would be:

.hex hex . decimal ;

Since that one resets the radix back to decimal. Words like "THEX’ do not only control the
output of a number, but the input of numbers is also affected:

." Enter a number: " \ write prompt
refill drop \ enter string
bl parse-word \ parse string
hex \ convert hexadecimal
number dup \ convert to a number
(error) = \ test for valid number
if \ if not wvalid

." You didn’t enter a valid number!" drop cr
else \ print if valid

dup

." The number was: " decimal . ." decimal" cr

." The number was: " hex . ." hex" cr
then

"NUMBER’ will now also accept hexadecimal numbers. If the number is not a valid hex-
adecimal number, it will return *(ERROR)’. You probably know there is more to radix
control than ’OCTAL’, "HEX’ and 'DECIMAL’. No, we have not forgotten them. In fact,
you can choose any radix between 2 and 36. This slightly modified program will only
accept binary numbers:

: binary 2 base ! ;

n

." Enter a number: \ write prompt

CHAPTER 8. CHARACTER SEGMENT 109

refill drop \ enter string
bl parse-word \ parse string
binary \ convert hexadecimal
number dup \ convert to a number
(error) = \ test for valid number
if \ if not wvalid
." You didn’t enter a valid number!" drop cr
else \ print if valid
dup \ both decimal and hex
." The number was: " decimal . ." decimal" cr
." The number was: " hex . ." hex" cr
then

"BASE’ is a predefined variable that enables you to select any radix between 2 and 36. This
makes 4tH very flexible. However, this won’t work:

hex 02B decimal . cr

4tH will try to compile "02B", but since it isn’t a word or a valid decimal number, it will
fail. Words like "HEX’ and the "BASE’ variable work only at run-time, not at compile-
time! Isn’t there a way to compile non-decimal numbers?

Sure, there is, although it is not that flexible. There are four words that control the interpre-
tation of numbers at compile-time:

1. [BINARY]
2. [OCTAL]

(98]

. [DECIMAL]

N

. [HEX]

They work fundamentally different than their run-time equivalents. First, they only work at
compile-time. Second, they are interpreted sequentially and do not follow the flow of the
program. Let’s take a look at these two programs:

[binary] 101 . cr

[octal] 101 . cr

[decimal] 101 . cr

[hex] 101 . cr

This will print the decimal numbers "5", "65", "101" and "257", since each one of them is
compiled with a specific radix.

: binary 2 base ! ;
binary 101 . cr
octal 101 . cr
decimal 101 . cr
hex 101 . cr

Now the decimal number "101" is printed in four different radixes, since at compile-time
the radix was set to decimal (which is the default). Now take a look at this program:

CHAPTER 8. CHARACTER SEGMENT 110

: do_binary [binary] ;

: do_decimal [decimal] ;
do_binary 101 decimal . cr
do_decimal 101 decimal . cr

The program will print "101" two times! Haven’t we selected binary at compile-time? No,
both ’[BINARY]’ and '[DECIMALY]’ are interpreted sequentially!

When ’[BINARY] is encountered at the first time, it will set the radix at compile-time
to binary. When '[DECIMALY’ is encountered in the second line, it will set the radix to
decimal. When the third line it compiled, the radix is still set to decimal. If you want to
make this program work, try this:

[binary]
101 decimal . cr
[decimal]
101 decimal . cr

When the first line is encountered, it sets the radix (at compile-time) to binary. So the num-
ber "101" at line two is compiled as a binary number. ' DECIMAL’ will just be compiled.
It will only influence the radix at run-time. The third line sets the radix at compile-time to
decimal. So the number "101" at line four is compiled as a decimal number.

Since the run-time of 4tH starts up in decimal, both occurrences of 'DECIMAL’ have little
value. We can even eliminate ' DECIMAL’ from the program altogether without affecting
the result:

[binary] 101 . cr
[decimal] 101 . cr

Note that both the compile-time radix control words and the run-time radix control words
stay in effect until they are superseded by others:

[binary] \ compile-time binary
101 \ first binary number
1011 \ second binary number
[decimal] \ compile-time decimal
5 \ decimal 5
do \ set run-time radix

i base ! \ to loop-index

dup . cr \ print number
loop
drop \ clean stack

8.8 Pictured numeric output

You probably have used this before, like when writing Basic. Never heard of "PRINT
USING.."? Well, it is a way to print numbers in a certain format. Like telephone-numbers,
time, dates, etc. Of course 4tH can do this too. In fact, you’ve probably used it before.
Both °. and ’.R’ use the same internal routines. They are called just before a number is
printed.

CHAPTER 8. CHARACTER SEGMENT 111

This numeric string is created in the PAD and overwritten with each new call. But we’ll go
into that a bit later on.

What you have to remember is that you define the format reverse. What is printed first, is
defined last in the format. So if you want to print:

060-5556916
You have to define it this way:
6196555-060

Formatting begins with the word '<#’ and ends with the word ’#>’. A single number is
printed using '#’ and the remainder of the number is printed using ’#s’ (which is always at
least one digit). Let’s go a bit further into that:

: print# <# #s #> type cr ;
256 print#

This simply prints a single number (since only °#S’ is between the *<#’ and the "#>" and
goes to a new line. There is hardly any difference with ’.’. You can try any (positive)
number. Note that the values that "#>’ leaves on the stack can directly be used by "TYPE’.

This is a slightly different format:

: print3# <# # # # #> type cr ;
256 print3#

1 print3#

1000 print3#

This one will print "256", "001" and "000". Always the last three positions. The '#’ simply
stands for ’print a single digit’. So if you want to print a number with at least three digits,
the format would be:

#s # #

That is: print the remainder of the number (at least one digit) and then two more. Now
reverse it:

#s
Enclose it by *<#’ and ’#>’ and add "'TYPE CR’:
<t # # #s #> type cr

And that’s it! Is it? Not quite. So far we’ve only printed positive numbers. If you try a
negative number, you will find it prints garbage. This behavior can be fixed with the word
’SIGN’.

’SIGN’ simply takes the number from the stack and prints a "-" when it is negative. The
problem is that all other formatting words can only handle positive numbers. So we need
the same number twice. One with the sign and one without. A typical signed number
formatting word looks like:

CHAPTER 8. CHARACTER SEGMENT 112

: signed# dup abs <# #s sign #> type ;

Note the 'DUP ABS’ sequence. First the number is duplicated (for ’SIGN’) and then the
absolute value is taken (for the other formatting words). So we got the number on the stack
twice. First with sign (for ’SIGN’), second without sign (for the other formatting words).
Does that make sense to you?

We can place *SIGN’ wherever we want. If we want to place the sign after the number (like
some accountants do) we would write:

: account# dup abs <# sign #s #> type ;

But that is still not enough to write "$2000.15" is it? Well, in order to do that there is
another very handy word called "THOLD’. The word "HOLD’ just copies any character into
the formatted number. Let’s give it a try:

$2000.16

Let’s reverse that:
61.0002%

So we first want to print two numbers, even when they are zero:
.00028

Then we want to print a dot. This is where "HOLD’ comes in. "HOLD’ takes an ASCII
code and places the equivalent character in the formatting string. We don’t have to look up
the ASCII code for a dot of course. We can use ’'CHAR’:

char . hold 0002$
Then we want to print the rest of the number (which is at least one digit):
char . hold #s $
Finally we want to print the character "$". Another job for "HOLD’:
char . hold #s char $ hold
So this is our formatting word:
: currency <# # # char . hold #s char $ hold #> type cr ;
And we call it like this:
200016 currency

You can do some pretty complex stuff with these formatting words. Try to figure out this
one from the master himself, Leo Brodie:

. sextal 6 base ! ;

:00 # sextal # decimal 58 hold ;
: time# <# :00 :00 #S #> type cr ;
3615 time#

Yeah, it prints the time! Pretty neat, huh? Now try the telephone-number we discussed in
the beginning. That shouldn’t be too hard.

CHAPTER 8. CHARACTER SEGMENT 113
8.9 Converting a number to a string

Since there is no special word in 4tH which will convert a number to a string, we’ll have to
create it ourselves. In the previous section we have seen how a numeric string is created in
the PAD. We can use this to create a word that converts a number to a string.

Because the PAD is highly volatile, we have to save the string immediately after its creation.
So we’ll create a word that not only creates the string, but places it directly in its proper
location:

: >string >r dup abs <# #s sign #> r> place ;
(na--)

It takes a number, the address of a string and returns nothing. Example:

16 string num$
-1024 num$ >string
num$ count type cr

8.10 Aborting a program

Some conditions are so grave you can consider them to be fatal errors. In such cases the
only thing you can do is abort the program as soon as possible. Of course, there is a way
in 4tH to do just that. You can use either ’”ABORT’ or *QUIT’. Same thing. Both will
terminate your program immediately. This small program prints nothing:

abort
." This will never be printed." cr

But there is more. Let’s say you only want to exit a program when a certain condition is
met, e.g. a word left a non-zero value on the stack. In that case you would have to write
something like this:

if

." We have an error condition!" cr quit
then

You can write that much shorter by using the word ’ABORT"’:

abort" We have an error condition!"

>ABORT"™ will print the message following it and abort, but only when there is a non-zero
value on the stack. So this program does not abort:

false abort" This will not be printed!"
." This will be printed!"

You will find that ’ABORT" is a very handy tool when processing error conditions.

CHAPTER 8. CHARACTER SEGMENT 114
8.11 Opening a file

You probably don’t want to write programs that only write to the screen and read from the
keyboard. So 4tH has a few words that allow you to work with files. Since 4tH is a scripting
language, its capabilities are limited. But you will find that you can perform most common
operations.

One of the limitations is that you can have a limited number of open files, but it will do in
most situations.

Opening a output-file is pretty simple. Just throw the address and length of a filename
and a read/write-mode flag on the stack and execute the word ’OPEN’. The value ’OPEN’
returns is a simple number which bears little significance. However, you have to save it to a
variable or value, for you will need it later. We’d like to use values for storing file pointers,
so we created the word "FILE’. "FILE’ simply creates a value and initializes it, so if you
use it prematurely 4tH will issue an error message.

file myfile
s" outfile.dat" output open dup as myfile (al nl f1 ——- £2)
0= abort" File could not be opened"

"OUTPUT” is a write-flag and will open a file for writing. ’OPEN’ leaves a value on the
stack. If it is a non-zero value, the file was successfully opened. If not, it wasn’t. *AS’
is simply an alias for *TO’, since "FILE’ is nothing but an initialized value. You may use
"TO’ if you want to, it’s just a little syntactic icing on the cake.

The syntax for opening an input file is the same, except for the read-flag "INPUT” of course:

file myotherfile
s" infile.dat" input open dup as myotherfile
0= abort" File could not be opened"

A second input-file closes the first one, just like an output-file.

8.12 Reading and writing from/to a file

There are no special words to read from or write to a file. You can use all the words you
used for keyboard-input and screen-output.

But if you open a file and do some I/O you will notice nothing has changed. Of course
not. You should be able to determine whether you write to a file or to the screen. There are
special words to do just that:

file OutFile \ file variable
s" outfile.dat" output open dup as OutFile
0= abort" File could not be opened"

\ open the file

OutFile use \ write to file
." This is written to disk" cr
stdout use \ write to screen

." This is written to screen" cr

CHAPTER 8. CHARACTER SEGMENT 115

After you’ve opened the file, the program will still write to the screen. When "USE’ ex-
ecutes, all output will be redirected to the file. When "USE’ executes again, but this time
with the "OUTPUT’ flag, all output will go to the screen again, but the output-file will not
be closed! Both words take the same read/write-flags as ’OPEN’.

You can call "USE’ again and again, without closing or opening any files. Here is an
example using an input-file:

file OutFile
s" outfile.dat" output open dup as OutFile
0= abort" File could not be opened"
\ open output file

OutFile use \ write to file
." This is written to disk" cr

stdout use \ write to screen
." This is written to screen" cr

OutFile close \ close file

s" outfile.dat" input open dup as OutFile
0= abort" File could not be opened"

OutFile use \ read from disk
pad dup 32 accept \ read 32 characters
type \ write string to screen
stdin use \ read from keyboard

\

OutFile close close file

The output of this program is:

This is written to screen
This is written to disk

Microsoft-users, note that files are opened in binary mode (no CR/LF translations). If you
issue 'CR’ the line will be terminated by a linefeed. Don’t worry. You can fix that as we
will see later on.

8.13 Closing a file

There is usually no need to close any files. When you quit the program all files are closed.
It seems like there is no need at all to close files manually, but that is a mistake.

If you want to open a file for reading to which you’ve just written, you will find it doesn’t
work. Of course, you can open a file only once.

No, there is a word which closes either the input- or the output-file, using the same read/write-
flags. You’ve already seen it, it is called "CLOSE’. When you close an active file, the input
(or output) is redirected to the keyboard (or screen).

8.14 Writing text-files

Writing text to a file is just as easy as writing text to screen. Open the file, redirect the
output, and write like you would write to the screen:

CHAPTER 8. CHARACTER SEGMENT 116

file OutFile \ value for file

s" outfile.dat" \ put the filename on the stack
output \ add the modifier

open dup as OutFile \ open the file

0= abort" File could not be opened"

OutFile use \ write to file
." This is written to disk" cr

That’s all! Note that if you execute your program on a Microsoft Operating System, it will
write a Microsoft text file. If you do so on a Unix Operating System, it will write a Unix
text file. If you want to override that you’ll have to issue the end-of-line sequences yourself
using "EMIT’.

8.15 Reading text-files

Reading text-files is pretty straightforward. You don’t even have to open a file in text-mode
contrary to other languages. Just open the file and call 'REFILL’ until it signals end-of-file
(EOF):

\ Example program. It reads a file line by line
\ and prints it to the screen.

file InFile
s" readln.4th" input open dup as Infile
0= abort" Could not open file" \ open file

InFile use \ read from file
begin
refill \ read a line
while \ while EOF not found
0 parse-word \ parse the entire line
type \ print it
cr \ terminate line
repeat \ read next line

You will find that if you run this program, it will print itself to the screen.

"REFILL’ will return a non-zero value if EOF was not detected. By using the word *0=’
you can invert this value. Finally, it will read Unix ASCII-files as well as DOS ASClII-files,
no matter where your program is executed.

8.16 Reading long lines

The TIB is only /TIB characters long. If you read a line that is longer than that, only /TIB - 1
characters are read. The rest of the line is read when you invoke 'REFILL’ again. Although
you don’t lose any information that way, it might not be what you want. Fortunately, you
can define your own TIB:

CHAPTER 8. CHARACTER SEGMENT 117

2048 constant /mytib \ length of your TIB
/mytib string mytib \ define your own TIB
mytib /mytib source! \ tell the system about your TIB

The next time you invoke 'REFILL’, it will use your TIB instead of the system TIB, so
it will now read lines up to 2047 characters. "'SOURCE!” takes an address/count pair and
makes it the current TIB. So if you want to use the system TIB again you issue:

tib /tib source!
And if you have forgotten which TIB you’re using try this:
source . . cr

’SOURCE’ will return the address/count pair of the TIB you’re currently using. In fact,
this definition does absolutely nothing:

: doesnothing source source! ;

For the simple reason that it reassigns the TIB it is already using.

8.17 Reading binary files

If you process binary files, you won’t get far reading it line by line. You want to read
chunks of data. 4tH can do that too by using ’ACCEPT’. You feel there must be a catch,
since ’ACCEPT"’ terminates strings automatically. Well, there isn’t. When *ACCEPT” does
not read from the keyboard, it won’t add that extra byte.

Reading blocks of data usually means defining buffers. If maintainability is an issue, define
a constant for the sizes of these buffers. You cannot only use this constants when defining
buffers, but also when calling ’ACCEPT".

Furthermore, ’ACCEPT’ returns the number of characters actually read. If this value
is compared to the number of characters we actually wanted to read, we can determine
whether a reading error or EOF occurred:

1024 constant bufsize \ actual buffersize
bufsize string buffer \ define buffer
file InFile \ value for file

\ open input file
s" infile.dat" input open dup as InFile
0= abort" File could not be opened"

InFile use \ redirect input
begin \ using bufsize

bufsize (nl)

buffer over (nl a nl)

accept (nl n2)

<> (£) \ make EOF flag
until \ until EOF

Note that "BUFFER" is actually not a string, but a chunk of memory. But since a character
in 4tH takes up a single address-unit (=byte), raw chunks of memory are allocated in the
Character Segment. This is not an uncommon practice in both Forth and C.

CHAPTER 8. CHARACTER SEGMENT 118

8.18 Writing binary files

Writing binary files is very easy. Of course you need a buffer, like we discussed in the
previous section. The program is not much different than the previous one:

1024 constant bufsize \ actual buffersize
bufsize string buffer define buffer
file OutFile \ value for file

-

buffer bufsize char H fill \ fill the buffer
\ open output file

s" infile.dat" output open dup as Outfile

0= abort" File could not be opened"

OutFile use \ redirect input
buffer bufsize type \ write to file

This will write 1024 "H"s to "infile.dat". The actual command that does all writing is
"TYPE’. The word *"TYPE’ does not return anything. You can be assured that everything
was alright, since if it wasn’t, 4tH would have caught the error itself.

8.19 Reading and writing block files

Block files are a special kind of files used by Forth compilers. In the old days Forth con-
trolled the entire computer and directly communicated with all peripherals, including disks.
To Forth, a disk is just a bunch of numbered blocks. Each block is divided into 16 lines of
exactly 64 characters. A block file simply mimics that layout.

Before we can begin, you need to create a block file. Well, that’s easy, an empty file will
do:

s" blocks.scr" output open close
Then we have to load the ANS Forth wordset and tell 4tH which file to use:

include lib/ansblock.4th
s" blocks.scr" use-block

Note that apart from creating the file, we haven’t performed any I/O yet. First, we have to
request a block. When a block is requested, its contents are transferred to a memory buffer.
You can manipulate this buffer any way you want with the standard words. If you request
another block its contents are transferred to the buffer too, overwriting whatever is there.
All changes you have made are lost, unless you have flagged the block as dirty, which
means its contents are different from the block on disk. If a block is dirty, it is written to
disk before the next block is read. ’CLEAR’ is a special word, assigning an empty buffer
to a block without reading it first. The buffer is BLANKed. "UPDATE’ will flag the buffer
as dirty. "FLUSH’ writes the dirty buffer to disk and unassigns the buffer. So, first we clear
block 0 and write it to disk:

0 clear update flush

CHAPTER 8. CHARACTER SEGMENT 119
Then we clear block 1, copy a string to it and flag it as dirty:

1 clear
s" Hello world!"™ >r 1 block r@ cmove update

"BLOCK’ returns the address of the buffer assigned to that block!. If the block is not
present, it is read into the buffer. If the buffer is dirty, it is FLUSHed first. We can also
write the dirty buffer to disk, without unassigning it:

save-buffers

Note that the buffer is not dirty anymore, since it has been synchronized. Let’s write some-
thing to another block:

s" Goodbye cruel world!" 0 block swap cmove update

It is always a nice game to figure out what will happen now. The current block is block 1.
Since we haven’t UPDATECJ it since ’'SAVE-BUFFERS’, it is clean. That means that 4tH
won’t perform a write. Since block 0 isn’t current, it is read into the buffer. The "UPDATE’
will flag the buffer as dirty.

1 block r> type cr

This is fun! The current block is block 0. It is dirty, so it is written to disk. Since block 1
isn’t current, it is read into the buffer. You catch my drift? If you want to print the contents
of a block, you can use "LIST’. Of course, 'LIST’ uses "BLOCK’ and applies to the same
rules:

0 list
." This block has been listed: " scr ? cr

’SCR’ is a variable containing the last screen LISTed. Note that is not the same thing as
the current block! Finally, we can discard all our changes:

empty-buffers

"’EMPTY-BUFFERS’ does not perform any I/O nor does it change the contents of the buffer.
It just unassigns the buffer and flags it as clean. Note that you don’t have to close a block file
since all I/O is block-oriented. You can use different block files within the same program,
but you’ll lose the changes in any dirty buffers.

8.20 Parsing textfiles

As we’ve already seen, it is very easy to enter a line using ’REFILL’ and parse it. You can
also use 'REFILL’ to read lines from a text-file. It is quite similar to reading lines from the
keyboard, except that you have to open a file first. This little program prints all the words
of a textfile on a new line:

I'That is particularly handy if your implementation can handle multiple buffers. In this implementation we
have only one buffer, so we always return the same address.

CHAPTER 8. CHARACTER SEGMENT 120

file InFile \ value for file
s" file.txt" input open dup as InFile
0= abort" File could not be opened"

\ open the file

InFile use \ redirect input to file
begin
refill \ get a line from file
while \ check if EOF
begin
bl parse-word \ if not, parse line
dup 0<> \ check if zero length
while
type cr \ if not, print word
repeat \ parse next word
drop drop \ drop address/count
repeat \ get next line

Now that flag left by "'REFILL’ makes sense! If it is zero, we have reached the end of the
line. Note that you don’t have to open a file in text-mode and both Microsoft ASCII and
Unix ASCII files are supported.

8.21 Parsing binary files

And what about binary files, like classic Forth blockfiles? Well, you could use 'REFILL’
in that context too, but it would probably break up words since it can’t find an end-of-line
marker and its buffer is smaller than 1024 characters. Does that mean it can’t be done? No!
But 'REFILL’ makes it easier for you, because it handles a few tasks automatically.

First, it has its own buffer (TIB). When you’re not using "REFILL’ you have to define one
yourself. Second, it terminates the string for you. You don’t want "'PARSE-WORD’ to
wander into new territory, do you? Third, it sets >IN’ for you every time its receives new
input. You have to take care of that one too.

Never heard of >IN’? Well, the only way for ’'PARSE-WORD’ to know on what position
the previous scan ended is to store that information into a variable. This variable is called
>IN,

Not all internal 4tH variables are accessible, mostly because we can’t imagine what use
they could have to you. Some variables are just better left alone. But *>IN’ is available for

some very obvious reason: you can reset it and make "'PARSE-WORD’ work for you. Note
that for ">IN’ to work, you have to make the buffer the parsing area by using ’'SOURCE!’

The following program will read the first screen of a block-file for you and print out all the
words. You will see that all spaces are eliminated and every word is printed on a new line,
just the behavior you would expect from ’PARSE-WORD’.

1025 constant /buffer \ screensize + terminator
/buffer -1 [+] constant c/scr \ size of the block

file InFile \ value for file

/buffer string buffer \ 1: our own buffer

: openfile \ open the block file

CHAPTER 8. CHARACTER SEGMENT 121

s" romans.blk" input open dup as InFile
0= abort" Cannot open file"

InFile use \ read from file

’

: readfile \ fill the buffer
buffer c/scr 2dup \ address and count
bl fill \ clear the buffer
accept drop \ fill the buffer
input close \ close the file

: initparse \ configures parsing
0 buffer c/scr chars + c! \ 2: terminate screen
buffer /buffer source! \ 3: make buffer the parse area
0 >in ! \ 4: reset >IN

i

: parseblock
begin

bl parse-word \ get word
dup 0<> \ length zero?
while
type cr \ if so, print it
repeat
2drop \ else drop addr/cnt
." End of block" cr \ signal "End of block"

;

: parsefile \ do it all
openfile \ open the file
readfile \ read it
initparse \ set up parsing
parseblock \ parse it

i

parsefile

Note there is no need to reset *>IN’ if you use 'REFILL’, since it will be reset automatically.
In this case, if you want to parse another block, you will have to reset *>IN’ again.

8.22 Parsing comma-delimited files

"PARSE-WORD’ is a powerful and very useful word, but it is less than useful when parsing
comma-delimited files. Why? Well, because "'PARSE-WORD?’ skips leading delimiters. So
when you have a file like this it doesn’t work:

FIRSTNAME, NAME, EMATIL, TELEPHONE, HOMEPAGE, FAX
Hans, Bezemer, hansoft@bigfoot.com,http://hansoft.come.to,

Again, ’'PARSE-WORD’ skips leading delimiters, so instead of an empty string we get the
homepage when we’re trying to read the (non-existant) telephone number. Fortunately, we

CHAPTER 8. CHARACTER SEGMENT 122

got a word like "PARSE’. "PARSE’ also takes a delimiter from the stack, just like "PARSE-
WORD’, but it acts on leading delimiters. Take a look at this program:

file OutFile \ value for output file
file InFile \ value for input file
: WriteCommaFile (--)

s" address.csv" output open dup as OutFile

0= abort" Could not write CSV file"

OutFile use \ redirect output to file
." FIRSTNAME, NAME, EMAIL, TELEPHONE, HOMEPAGE, FAX" cr

." Hans,Bezemer, , http://hansoft.come.to," cr

OutFile close \ close file

stdout use \ redirect output to screen
7
: ProcessLine (--)

refill \ get line

0= abort" Read error"

[char] , parse type cr \ parse first name
[char] , parse type cr \ parse name
[char] , parse type cr \ parse email
[char] , parse type cr \ parse telephone
[char] , parse type cr \ parse homepage
[char] , parse type cr cr \ parse fax

r

: ReadCommaFile (-)

s" address.csv" input open dup as InFile

0= abort" Could not read CSV file"

InFile use redirect input to file
." _Headerline_" cr this is the headerline
ProcessLine now process headerline
" _First record " cr this is the first record
ProcessLine now process first record
InFile close close file

— = = =

WriteCommaFile \ write the CSV file
ReadCommaFile \ read the CSV file

With "WriteCommaFile" we write a simple comma-delimited file to disk. We got to read
something, don’t we? Then we read the file we’ve just written with "ReadCommaFile".
"ProcessLine" does the actual job. Since we have six fields we use "’PARSE’ six times. We
cannot do this with a loop. Why not? "PARSE-WORD’ can do it that way.

Well, "PARSE’ not only returns a NULL-string when we’ve reached the end of a line, but
also when a field is empty. So we’ve got to know how many fields we actually want to read.
Of course, you could parse the headerline with "PARSE-WORD?’ to find that out, but you
already know how to do this.

CHAPTER 8. CHARACTER SEGMENT 123

8.23 Advanced parsing

Let’s think of something difficult to parse, e.g.:

HE N Can you parse me.
;i1 wn And me too, huh?

If we would use "PARSE’ we would have to know how many semicolons to skip and there
is a different number of them on each line. If we would use "'PARSE-WORD’ we’d lose all
the semicolons, but the parsed string would have all these nasty leading dots.

Even worse, if we were able to skip the semicolons and use "’PARSE-WORD’ with the
leading delimiter we’d get "Can you parse me" and "And me too" instead of "Can you
parse me." and "And me too, huh?". What can we do?

Fortunately, 4tH doesn’t really know about 'PARSE-WORD’ but translates it into a se-
quence of words”. We can also use them directly. "OMIT” is very handy. It doesn’t actually
do anything, it just skips leading delimiters and sets *>IN’ accordingly. It takes an ASCII
value from the stack as its delimiter. This will correctly parse the first line:

char ; omit \ omit the semicolon
char . omit \ omit the dot
0 parse \ parse the remainder of the line

This will correctly parse the second line:

char ; omit \ omit the semicolon
char , omit \ omit the comma
0 parse \ parse the remainder of the string

Please note that this are special 4tH words! Unfortunately you cannot port this to ANS-
Forth, where only a limited version of 'PARSE-WORD’ and "PARSE’ are available.

8.24 Appending to existing files

You can use a so-called modifier to signal 4tH, it shouldn’t overwrite the file it opens, but
append to it:

file OutFile \ value for output file

s" outfile.dat" output open dup as OutFile

0= abort" Cannot open file" \ open the file
OutFile use \ now write to disk
10 0 do 1 . loop \ write 0 to 9
OutFile close \ close the file

s" outfile.dat" output append + open dup as OutFile
0= abort" Cannot open file" \ reopen in append mode
OutFile use \ now write to disk
20 10 do i . loop \ write 10 to 19
OutFile close \ close the file
Take a look at the contents of this file after you’ve run the program and you’ll find it
contains the number O to 19.

2If you’re really curious, "PARSE-WORD’ is equivalent to "DUP OMIT PARSE’.

CHAPTER 8. CHARACTER SEGMENT 124
8.25 Using pipes

If you’re using Windows 95 OSR2 (and up), Linux or another Unix system you’re in for a
treat! With Unix you can do neat tricks like this:

ls | mail root

Which means you can redirect the output of ’1s’ to *mail’, so in effect you send an email to
root with the contents of your current working directory. Yes, 4tH can do this too, but you
can do even more. You can start ’Is’ and read its output line by line as if it were a file. You
can also start *'mail’ and write the output of a 4tH program to it. We do that by opening a
pipe to a program.

If you’ve ever written a program using C, you know this is a bit cumbersome, since you’ve
got to use special functions to use pipes. In 4tH you don’t. Just let 4tH know it’s a pipe that
you’re opening and not a file:

file InFile \ value for input file
file OutFile \ value for output file
s" 1s" input pipe + open dup as InFile 0<>

s" mail hans" output pipe + open dup as OutFile 0<> and

0= abort" Cannot open pipe"

The only thing you have to do to signal 4tH that you’re using a pipe is add the word *PIPE’,
just like ’APPEND’. The filename is replaced by the command you want to execute. That’s
all. If one of the pipes in this program fails, the program aborts.

InFile use OutFile use
." These are the contents of my current working directory:"
cr cr

Now we can treat our pipes just as if they are ordinary files. We redirect input and output
and write a nice header to our email. Now we can start to process the output of ’1s’:

begin

refill
while

0 parse-word type cr
repeat

Note that we don’t have to signal that we’re reading the pipe to ’Is’ as a text file. We just
read it line by line until 'REFILL’ returns zero. Then we can parse the line and *TYPE’ it
to “mail’.

InFile close OutFile close

Of course you don’t have to close the pipe, but it won’t harm when you don’t. 4tH knows
what to do. After executing this program, Hans will receive this email:

CHAPTER 8. CHARACTER SEGMENT 125

From: Hans Bezemer <hansoft@bigfoot.com>
Message-Id: <200202252017.VAA00712@bigfoot.com>
To: hans@localhost.org

Status: RO

These are the contents of my current working directory:

4th.c

4thc.c
4thd.c
4thg.c
4thx.c

Well, that wasn’t too hard, was it?

8.26 Opening a file in read/write mode
For special purposes you might want to open a file in read/write mode. That’s quite easy:

file InOutFile \ value for output file

s" outfile.dat" output input + open dup as InOutFile
0= abort" Cannot open file" \ open the file

Just add both together like you adding a modifier. Note that once you *USE’ this file, you’re
both reading and writing to this file. Furthermore, the file has to exist otherwise you get an
error. If you want to write to a new file, you first have to open it in write mode:

file InOutFile \ value for output file
\ create a new file

outfile.dat" output open close

outfile.dat" output input + open dup as InOutFile

0= abort" Cannot open file" \ open the file

8.27 Using random access files

Upto now we’ve always accessed a file sequentially, but it is also possible to use random
access files. Two words are crucial here, ’SEEK’ and "TELL’. *SEEK’ will seek for the
desired file position and "TELL’ will tell you that you’re there. It is as simple as that..!

Let’s take a look at this example. We’ve got a block-file called "Messages.scr" with the
following contents:

Sc

P

No errors

Out of memory

Bad object

Stack overflow

Stack empty

Return stack overflow

O w N PO
~ e~~~ ~ —~ =
s W N PO
—_——_— — — — — O

CHAPTER 8. CHARACTER SEGMENT 126

6 (6) Return stack empty
7 (7) Bad string

8 (8) Bad variable

9 (9) Bad address
10 (A) Divide by zero

11 (B) Bad token

12 (C) Bad radix

13 (D) Undefined name

14 (E) I/0 error

15 (F) Assertion failed

First, let’s define a word that reads a message and then displays it:
: next-msg pad dup 64 accept -trailing type cr ;

Since this is a simple program we can safely use the 'PAD’ to store our messages. Every
message has the length of a standard block-file line, which is 64 characters. Trailing spaces
are stripped by *-TRAILING’. Now we need a word that tells us what our file position is:

: tell-msg cr ." Current position: " dup tell . cr ;

"TELL’ needs a file pointer and leaves the current position of that file pointer on the stack.
This word assumes that the top of the stack contains a valid file pointer. Finally we need a
word that sets the file position:

seek-msg over seek abort" Seek failed" ;

"SEEK’ needs a file position and a file pointer. If it returns false, it was successful; if it
returns true there was an error. This word assumes that the top of the stack contains a valid
file pointer. We’re ready now, let’s play. First we open the file and use it:

s" Messages.scr" input open dup use

This leaves a file pointer on the top of the stack, assuming everything went OK. Now let’s
read some messages:

next-msg next-msg next-msg tell-msg
You’ll see these messages appear on the screen:

(0) No errors
(1) Out of memory
(2) Bad object

Current position: 192

After reading three messages we’ve obviously reached position 192 in the file. That makes
sense, since 3 lines of 64 characters makes 192 characters in total. Let’s see what *'SEEK’
does:

CHAPTER 8. CHARACTER SEGMENT 127

0 seek-msg tell-msg next-msg

This should take us back to the very beginning of the file, as if we’ve freshly opened it.
And yes, it does:

Current position: 0
(0) No errors

After executing *SEEK’, *"TELL’ confirms that we’ve actually returned to the very begin-
ning of the file. Reading the next message reconfirms that again. When you feed 'SEEK’
positive values, it always starts seeking from the beginning of the file. When you feed
’SEEK’ negative values, it seeks from the end of the file. So this one takes you to the last
line:

-64 seek-msg tell-msg next-msg
On screen it looks like this:

Current position: 960
(F) Assertion failed

Finally, we clean up the mess we made:
close

This will consume the file pointer we left on the stack and close the file. Note that ’'SEEK’
and 'TELL’ come with a few restrictions. Pipes are out of the question and so are the
standard streams *STDIN’ and *STDOUT’. Apart from that you can pretty much do with
them what you want.

8.28 The layout of the I/0 system

You’re probably quite confident manipulating files now, so I guess it is time to offer you
a view under the hood. 4tH has two channels, an input channel and an output channel.
All words read from the input channel or write to the output channel. At startup, the input
channel is connected a stream that reads from the keyboard ('STDIN’) and the output
channel is connected to a stream that writes to the screen STDOUT”).

With ’OPEN’ you can open additional streams, which are connected to a file or a pipe.
The return value of "OPEN’ points to the stream that was opened. There are few words
that directly handle streams, "USE’, ’CLOSE’, "'TELL’ and SEEK’ being the exceptions.
"USE’ attaches a stream to one or both channels, which results in redirecting all in- and/or
output to that stream. E.g. if a file is opened in read/write mode using ’OPEN’, a stream
is returned. If we "USE’ that stream, both the input and the output channel are connected
to that stream. If it had only been opened in read mode, only the input channel would have
been connected to the stream.

’CLOSE’ closes a stream, even if it is still attached to a channel. If that is the case, the
appropriate default streams (" STDIN’, ’'STDOUT"’) are reattached. We can find out which
streams are currently used by *CIN’ and ’COUT’. *CIN’ returns the stream that is currently
attached to the input channel, "COUT’ returns the stream that is currently attached to the
output channel.

CHAPTER 8. CHARACTER SEGMENT 128

4tH 1I/0 word Channel Stream Device
| ACCEPT [«€
' USE
Stream 0
‘ % (STDIN) kEYboard
| REFILL [«€
‘ Stream 1
‘ (STDOUT) screen
[S
| USE OPEN
Stream 2 m
| EMIT
Stream 3
OPEN Is
Stream 4 < X
B (pipe)
OPEN Ip
Stream n > .
- (pipe)

Figure 8.2: The 4tH I/O system

8.29 Speech synthesis

If you’re using Unix?, you’re in for a treat. 4tH can talk! All you need is the “Festival”
speech synthesis package* and a small 4tH interface. If you want to imitate old Arnold,
this will do:

include lib/say.4th
s" I'11 be back!" say abort" Festival not available"

Well, that’s cool, isn’t it?

8.30 Using a printer

How you access a printer depends on the operating system you’re working on. That is not a
flaw of 4tH, you will encounter this problem with every programming language. If you’re
working with MS-DOS or MS-Windows it is quite basic:

file printer \ value for printer

s" 1lptl" output open dup as printer
if
printer use
." This will be printed." cr
stdout use
then

3There might still be an MS-Windows package available at http://flame.cs.dal.ca/~lalita/festival/festivalX P.htm.
This has not been tested.
“Homepage: http://www.cstr.ed.ac.uk/projects/festivall.

CHAPTER 8. CHARACTER SEGMENT 129

Just open the port as a file and print to it. Unix isn’t that different, but instead of opening a
file, you open a pipe:

file printer \ value for printer

s" 1lp" output pipe + open dup as printer
if

printer use

." This will be printed." cr

stdout use
then

If you’re using a different Operating System, you may have to check your manual.

8.31 The layout of the Character Segment

The final topic of this chapter again. You already know that 4tH checks whether an oper-
ation is still within the Character Segment. However, sometimes you want to check this
yourself.

You already know how you can obtain the size of TIB and PAD. Yes, you can using */TIB’
and ’/PAD’. But TIB and PAD have their addresses too. And when you query them, you
will find that PAD comes after TIB:

." Address of TIB: " tib . cr

." Size of TIB : " /tib . cr
." Address of PAD: " pad . cr
." Size of PAD : " /pad . cr

And beyond PAD, what is there? Well, allocated memory of course. Things you defined
using 'STRING’. There are two words which can give you information about allocated
memory. First, 'LO’. "LO’ gives you the lowest address of allocated memory. Second,
"HI’. "HI” gives you the highest valid address of the Character Segment. That means that:

0 hi c!
Is always valid and:

0 hi char+ c!
Is always invalid. It you try it, 4tH will stop executing the program with an error-message.
’LO’ and "HI” are addresses. Addresses are just numbers, so you can print and compare
them. E.g.

hi char+ lo - . cr
Will print how much memory as allocated to your strings. And:

lo hi >
Will indicate whether you allocated any memory at all. If "LO’ is greater than "HI’, you
didn’t. If "HI" is greater or equal to "LO’ you did. Experiment a bit with the knowledge

you obtained in this chapter and continue with the next one where we will go much deeper
into the secrets of the Integer Segment and Code Segment.

Chapter 9

Integer Segment and Code
Segment

9.1 The Code Segment

It is know by designers of microprocessors that a processor can run much faster when
every instruction has the same length. In fact, 4tH has his own virtual microprocessor.
The compiler is nothing more than an assembler and the interpreter nothing more than an
emulator on top of the real microprocessor.

In order to speed up 4tH, all instructions have the same length. They consist of a token
(which is the real instruction) and an argument. The argument is a value that gives meaning
to the instruction, e.g. the 'LITERAL’ token means that a number is compiled here. The
argument is the actual number.

Some instructions wouldn’t need an argument, but for speeds sake, they have: it is always
zero. Isn’t that a lot overhead? Not really. Half the instructions in an actual program need
an argument. Decoding a more elaborate scheme would need more processor time and
more programming. So in the end, it would make hardly any difference. Except for the
speed.

A token with its argument is called a word. And the Code Segment is one large array of
words. Each of these words has an address and can be accessed by the word > @C’. In fact,
>@C’ throws the argument on the stack. Where have we seen *@C’ before?

Yes, when fetching from an array of constants. These arrays are compiled into the Code
Segment. How come that 4tH isn’t confused by these arrays? Because they have the token
’NOOP’, which does absolutely nothing.

9.2 The address of a colon-definition

You can get the address of a colon definition by using the word *’ (tick):

: add + ; \ a colon definition
" add . cr \ display address

Very nice, but what good is it for? Well, first of all the construction "> ADD" throws the

address of "ADD" on the stack. In fact, it is a literal expression. You can assign it to a
variable, define a constant for it, or compile it into an array of constants:

130

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 131

" add constant add-address

variable addr
" add addr !

create addresses ' add ,

Are you with us so far? If we would simply write "ADD", "ADD" would be executed right
away and no value would be left on the stack. Tick forces 4tH to throw the address of
"ADD" on the stack instead of executing "ADD".

Note this only works for your own colon-definitions. It doesn’t work for 4tHs built-in
words. If you try to, you’ll get an error-message. What you can actually do with it, we will
show you in the next section.

9.3 Vectored execution

This is a thing that can be terribly difficult in other languages, but is extremely easy in
Forth. Maybe you’ve ever seen a BASIC program like this:

10 LET A=40

20 GOSUB A

30 END

40 PRINT "Hello"
50 RETURN

60 PRINT "Goodbye"
70 RETURN

If you execute this program, it will print "Hello". If you change variable "A" to "60", it will
print "Goodbye". In fact, the mere expression "GOSUB A" can do two different things. In
4tH you can do this much more comfortable:

: goodbye ." Goodbye" cr ;
: hello ." Hello" cr ;

variable a
: greet a @ execute ;

" hello a !
greet

" goodbye a !
greet

What are we doing here? First, we define a few colon-definitions, called "HELLO" and
"GOODBYE". Second, we define a variable called "A". Third, we define another colon-
definition which fetches the value of "A" and executes it by calling "TEXECUTE’. Then, we
get the address of "HELLO" (by using "> HELLO") and assign it to "A" (by using "A !").
Finally, we execute "GREET" and it says "Hello".

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 132

It seems as if "GREET" is simply an alias for "HELLO", but if it were it would print
"Hello" throughout the program. However, the second time we execute "GREET", it prints
"Goodbye". That is because we assigned the address of "GOODBYE" to "A".

The trick behind this all is 'TEXECUTE’. "TEXECUTE’ takes the address of e.g. "HELLO"
from the stack and calls it. In fact, the expression:

hello
Is equivalent to:
" hello execute

This can be extremely useful as we will see in the next chapter when we build a full-fledged
interpreter. We’ll give you a little hint:

create subs '’ hello , ' goodbye ,

Does this give you any ideas?

9.4 The Integer Segment

Wonder where all these variables are created? Or where that infamous stack really is? 1
bet you do. Well, when you define a variable, memory is allocated in the Integer Segment.
When you define another one, space is allocated after the first variable. That means that if
you go beyond the boundaries of the first variable, you’ll end up in the space allocated to
the second variable.

After the second variable there is a void. If you end up there your program will end with
an error-message. However, if you define an ’ARRAY’, single variable is created with a
number of additional cells. You can only access these additional by referring to the array
itself.

And what about the space before the first variable? There are other variables and they are
not defined by you. Well, take a look at figure 9.1.

Lower memory is at the bottom. The user variables are the variables you defined yourself.
The application variables can differ from host program to host program. Refer to your
documentation on that subject. You have already seen the 4tH variables, which are " BASE’
and ">IN’. There are also variables you cannot access. These variables are hidden and only
used by the system. All these variables are located in the Variable Area.

There is also a Stack Area, which contain the datastack and the returnstack. If you enter a
number like "5", it is thrown on the datastack. Most words in 4tH take or put numbers on
the datastack. It is very heavily used. We’ll come to the returnstack later on.

The datastack and the returnstack share the same memory space. The datastack grows
upward and the returnstack downward. If they clash the stack is full and 4tH will issue an
error-message.

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 133

User variables

Variable Area

C variables

4tH variables

Read only variables

System variables System Area

!

Return stack

Stack Area

Data stack

1

Figure 9.1: Integer segment

9.5 A portable way to access application variables

A host program can add special variables to the 4tH environment. If 4tH is used as a
scripting language in e.g. a printer program, the programmer can "send" variables to 4tH.
These variables are called "application variables". Do not confuse them with 4tH variables,
like " BASE’ or >IN’ which are used internally by 4tH. 4tH doesn’t do anything with
application variables.

If the creator of the host program provided special names for each of these variables, he
will probably have documented them. However, even if he didn’t there is another way to
access these variables.

They are stored in a predefined array called ’APP’ and its values can be fetched like any
other array, e.g.:

app 1 th @

Which fetches the value of the second element in the array. This also enables you to write
programs that can be compiled and run under all "standard" versions of 4tH.

9.6 Returning a result to the host program

The *APP’ array can feed values from the host program to yours, but it can’t return any.
For that you need 'RESULT”, the third 4tH variable. Returning a value is very easy. Just
store it in 'RESULT’. Let’s assume the host program has send two values to the *APP’
array and you want to return the sum. All you have to do is add them and store the result
in 'RESULT”:

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 134
app 0 th @ app 1 th @ + result !

Nothing to it..

9.7 Using commandline arguments

A host program can also transfer an array of strings to the 4tH environment. Usually,
commandline arguments will be transferred this way, although any string array with the
correct format can be used. If so, you will probably find it in the documentation of the host
program.

If you are familiar with C, the concept is probably quite easy to understand. There are two
words, ’ARGN’ and ’ARGS’. ’ARGN’ will leave the number of commandline arguments
on the stack. The commandline arguments itself are numbered from O to (ARGN - 1), e.g.

argn 0> / test if there are
if / any arguments
argn 0 do / loop through them
i args type cr / print them
loop
then

First, we test if there are any commandline arguments. Second, if that is the case we loop
through them with ’ARGN’ as upper limit. Why? Since "ARGN 1- ARGS" is always the
last valid commandline argument!

Third, when ARGS’ executes, it takes a number from the stack as index. Then it leaves
the address of the Character Segment (where it is temporarily stored, usually PAD) and its
count on the stack.

Using the expression "TYPE CR" we can print that string. Because it is already stored in
the Character Segment we can treat it like any other string. Remember, that if you don’t
save it anywhere else it won’t last long!

9.8 The layout of the Variable Area

There are special words that allow you to get information about the layout of the Variable
Area. They are called "VARS’, ’APP’, "FIRST” and "LAST".

"VARS’ is the address of the very first variable. Before that is the Stack Area and other
variables you are not allowed to touch. *APP’ is the address of the first application variable.
All variables before that are 4tHs own built-in variables. "FIRST’ is the address of the first
user-variable, a variable you defined yourself in your 4tH program. "LAST” is the address
of the last accessible variable, so

last ?

will never fail. The first question that will pop in your mind is, what can I do with them.
Well, you can use it to see how many variables there are of a certain kind, so you can
prevent runtime errors:

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 135

." number of 4tH variables: " app vars - . Cr
." number of application variables: " first app - . cr
" last first - 1+ . cr

." number of user variables:

These tests are possible too:

app vars - 0= if ." No 4tH variables" cr then
first app - 0= if ." No application variables" cr then
last first - 1+ 0= if ." No user variables" cr then

This is a general test to see whether the address of any variable is within range:

dup 0<

dup last >

or

if ." Out of range" cr then

You can use this check on numeric arrays too, of course.

9.9 The stacks

The Stack Area contains two stacks. So far we’ve talked about one stack, which is the Data
Stack. The Data Stack is heavily used, e.g. when you execute this code:

23+ .

Only the Data Stack is used. First, "2" is thrown on it. Second, "3" is thrown on it. Third,
’+’ takes both values from the stack and returns the sum. Fourth, this value is taken from
the stack by .’ and displayed. So where do we need the other stack for?

Well, we need it when we want to call a colon-definition. Before execution continues at the
colon-definition, it saves the address of the currently executed token in the Code Segment
on the other stack, which is called the Return Stack for obvious reasons.

Then execution continues at the colon-definition. Every colon-definition is terminated by
’;”, which compiles into "EXIT’. When "EXIT’ is encountered, the address on top of the
Return Stack is popped. Execution then continues at that address, which in fact is the place
where we came from.

If we would store that address on the Data Stack, things would go wrong, because we can
never be sure how many values were on that stack when we called the colon-definition, nor
would be know how many there are on that stack when we encounter "EXIT’. A separate
stack takes care of that.

Try and figure out how this algorithm works when we call a colon-definition from a colon-
definition and you will see that it works (4tH is proof of that).

It now becomes clear how "TEXECUTE’ works. When ’EXECUTE’ is called, the address
of the colon-definition is on the Data Stack. All ’EXECUTE’ does is copy its address on
the Return Stack, take the address from the Data Stack and call it. ’EXIT’ never knows the
difference..

But the Return Stack is used by other words too. Like "DO’ and "LOOP’. DO’ takes the
limit and the counter from the Data Stack and puts them on the Return Stack. "LOOP’ takes

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 136

both of them from the Return Stack and compares them. If they don’t match, it continues
execution after "’DO’. That is one of the reasons that you cannot split a "'DO.’LOOP’.

However, if you call a colon-definition from within a "DO’..”LOOP’ you will see it works:
the return address is put on top of the limit and the counter. As long as you keep the Return
Stack balanced (which isn’t too hard) you can get away with quite a few things as we will
see in the following section.

9.10 Saving temporary values

We haven’t shown you how the Return Stack works just for the fun of it. Although it is an
area that is almost exclusively used by the system you can use it too.

We know we can manipulate the Data Stack only three items deep (using "'ROT’). Most of
the time that is more than enough, but sometimes it isn’t.

In 4tH there are special words to manipulate stack items in pairs, e.g. ’2DUP’ (nl n2 —nl
n2 nl n2) or 2DROP’ (nl n2 —). Although they are already part of 4tH, we could easily
define those two ourselves:

: 2dup over over ;
: 2drop drop drop ;

You will notice that ’2SWAP’ (nl n2 n3 n4 — n3 n4 nl n2) becomes a lot harder. How can
we get this deep? You can use the Return Stack for that..

The word ">R’ takes an item from the Data Stack and puts it on the Return Stack. The
word "R>’ does it the other way around. It takes the topmost item from the Return Stack
and puts it on the Data Stack. Let’s try it out:

: 2swap (nl n2 n3 n4) \ four items on the stack
rot (n1 n3 n4 n2) \ rotate the topmost three
>r (n1 n3 n4) \ n2 is now on the Return Stack
rot (n3 n4 nl) \ rotate other items
r> (n3 n4 nl n2) \ get n2 from the Return Stack

And why does it work in this colon-definition? Why doesn’t the program go haywire?
Because the Return Stack is and was perfectly balanced. The only thing we had to do
was to get off "n2" before the semi-colon was encountered. Remember, the semi-colon
compiles into "EXIT’ and "EXIT’ pops a return-address from the Return Stack. Okay, let
me show you the Return Stack effects:

: 2swap (rl)
rot (rl)
>r (rl n2)
rot (rl n2)
r> (rl)
(

--)

Note, these are the Return Stack effects! "R1" is the return-address. And it is there on top
on the Return Stack when "EXIT’ is encountered. The general rule is:

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 137

"Clean up your mess inside a colon-definition"

If you save two values on the Return Stack, get them off there before you attempt to leave.
If you save three, get three off. And so on. This means you have to be very careful with
looping and branching. Otherwise you have a program that works perfectly in one situation

and not in another:

: this-wont-work

nl n2 -- nl n2)

(

>r (nl)
0= if (--)

r> (n2)

dup (n2 n2)
else

12 (12)
then

This program will work perfectly if nl equals zero. Why? Let’s look at the Return Stack

effects:

: this-wont-work (rl)
>r (rl n2)
0= if (rl n2)
r> (rl)
dup (rl)
else (rl n2)
12 (rl n2)
then

You see when it enters the ’ELSE’ clause the Return Stack is never cleaned up, so 4tH
attempts to return to the wrong address. Avoid this, since this can be very hard bugs to fix.

9.11 The Return Stack and the DO..LOOP

We’ve already told you that the limit and the counter of a DO..LOOP (or DO..+LOOP) are
stored on the Return Stack. But how does this affect saving values in the middle of a loop?
Well, this example will make that quite clear:

1 (n)
10 0 do (n)
>r (=)
i (--)
r> (n)
loop (n)
cr (n)
drop (--)

You might expect that it will show you the value of the counter ten times. In fact, it doesn’t.
Let’s take a look at the Return Stack:

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 138

1 (--)
10 0 do (1 ¢)
>r (1 cn)
i (1 cn)
r> (1 c)
loop (--)
cr (--)
drop (—)

You might have noticed that it prints ten times the number "1". Where does it come from?
Usually T’ prints the value of the counter, which is on top of the Return Stack.

This time it isn’t: the number "1" is there. So "I’ thinks that "1" is actually the counter and
displays it. Since that value is removed from the Return Stack when "LOOP’ is encoun-
tered, it doesn’t do much harm.

We see that we can safely store temporary values on the Return Stack inside a DO..LOOP,
but we have to clean up the mess, before we encounter "LOOP’. So, this rule applies here
too:

"Clean up your mess inside a DO..LOOP"

But we still have to be prepared that the word "I’ will not provide the expected result
(which is the current value of the counter). In fact, I’ does simply copy the topmost value
on the Return Stack. Which is usually correct, unless you’ve manipulated the Return Stack
yourself.

Note that there are other words beside "I’, which do exactly the same thing: copy the top
of the Return Stack. But they are intended to be used outside a DO..LOOP. We’ll see an
example of that in the following section.

9.12 Other Return Stack manipulations

The Return Stack can avoid some complex stack acrobatics. Stack acrobatics? Well, you
know it by now. Sometimes all these values and addresses are just not in proper sequence,
so you have to ’SWAP’ and 'ROT’ a lot until they are.

You can avoid some of these constructions by just moving a single value on the Return
Stack. You can return it to the Data Stack when the time is there. Or you can use the top of
the Return Stack as a kind of local variable.

No, you don’t have to move it around between both stacks all the time and you don’t have
to use I’ out of its context. There is a well-established word, which does the same thing:
’R@’. This is an example of the use of '/R@’:

: delete (n)
>r #lag + (al)
r@ #lag (al a2 n2)
r@ negate (al a2 n2 n3)
r# +! (al a2 n2)
#lead + (al a2 n2 a3)
swap cmove (al)

(

r> blanks

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 139

’R@’ copies the top of the Return Stack to the Data Stack. This example is taken from the
4tH-editor. It deletes "n" characters left of the cursor. By putting the number of characters
on the Return Stack right away, its value can be fetched by 'R@’ without using "DUP’ or
’OVER’. Since it can be fetched at any time, no ’SWAP’ or 'ROT” has to come in.

9.13 Altering the flow with the Return Stack

The mere fact that return addresses are kept on the stack means that you can alter the flow of
a program. This is hardly ever necessary, but if you’re a real hacker you’ll try this anyway,
so we’d better give you some pointers on how it is done. Let’s take a look at this program.
Note that we comment on the Return Stack effects:

: soup ." soup " ; (rl r2)
: dessert ." dessert " ; (rl ro6)
: chicken ." chicken " ; (rl r3 r4)
. rice ." rice " ; (rl r3 rb)
. entree chicken rice ; (rl r3)
: dinner soup entree dessert ; (rl)

(

dinner cr

--)

And this is the output:

soup chicken rice dessert

Before we execute "DINNER" the Return Stack is empty. When we enter "DINNER" the
return address to the main program is on the Return Stack (r1).

"DINNER" calls "SOUP". When we enter "SOUP" the return address to "DINNER" is on
the Return Stack (r2). When we are done with "SOUP", its return address disappears from
the Return Stack and execution continues within "DINNER".

Then "ENTREE" is called, putting another return address on the Return Stack (r3). "EN-
TREE" on its turn, calls "CHICKEN". Another return address (r4) is put on the Return
Stack. Let’s take a look on what currently lies on the Return Stack:

- Top Of Return Stack (TORS)

r4 returns to ENTREE
r3 returns to DINNER
rl returns to main program

As we already know, ’;> compiles an EXIT’, which takes the TORS and jumps to that
address. What if we lose the current TORS? Will the system crash?

Apart from other stack effects (e.g. too few or the wrong data are left on the Data Stack)
nothing will go wrong. Unless the colon-definition was called from inside a DO..LOOP, of
course. But what DOES happen? The solution is provided by the table: it will jump back
to "DINNER" and continue execution from there.

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 140

: soup ." soup " ; (rl r2)
: dessert ." dessert " ; (rl ro)
: chicken ." chicken " r> drop ; (rl r3 - rd4 gets lost!)
: rice ." rice " ; (rl r3 rb)
. entree chicken rice ; (rl r3)
: dinner soup entree dessert ; (rl)
(

)

dinner cr

Since "CHICKEN" gets rid of the return address to "ENTREE", "RICE" is never called.
Instead, a jump is made to "DINNER" that assumes that "ENTREE" is done, so it continues
with "DESSERT". This is the output:

soup chicken dessert

Note that this is not common practice and we do not encourage its use. However, it gives
you a pretty good idea how the Return Stack is used by the system.

9.14 Leaving a colon-definition

You can sometimes achieve the very same effect by using the word ’EXIT’ on a strategic
place. We’ve already encountered "EXIT’. It is the actual word that is compiled by ’;’.

What you didn’t know is that you can compile an "EXIT’ without using a ’;’. And it does
the very same thing: it pops the return address from the Return Stack and jumps to it. Let’s
take a look at our slightly modified previous example:

: soup ." soup " ; (rl r2)
: dessert ." dessert " ; (rl ro6)
: chicken ." chicken " ; (rl r3 r4)
: rice ." rice " ; (is never reached)
. entree chicken exit rice ; (rl r3)
: dinner soup entree dessert ; (rl)
(

dinner cr --)

After "CHICKEN" has been executed by "ENTREE", an "EXIT’ is encountered. "EXIT’
works just like ’;’, so 4tH thinks the colon-definition has come to an end and jumps back
to "DINNER". It never comes to calling "RICE", so the output is:

soup chicken dessert

"EXIT’ is mostly used in combination with some kind of branching like IF.. ELSE.. THEN.
Compare it with 'LEAVE’ that leaves a DO..LOOP early.

But now for the big question: what is the difference between *EXIT” and ’;’? Both compile
an "EXIT’, but they are not aliases. 4tH will try to match every ’;” with a ’:’. If it doesn’t
succeed, it will issue an error message. This matching is not performed by *"EXIT’.

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 141
9.15 The layout of the Stack Area

Before we tell you how to obtain information on the Stack Area, we first have to explain
you how it is laid out. We’ve already seen that there are two stacks: the Data Stack and the
Return Stack. We also know what they are used for.

The next question is what part of the Stack Area is used by the Data Stack and what part is
used by the Return Stack. In fact, both stacks share the very same Stack Area.

The Data Stack grows upward from the bottom and the Return Stack grows downward from
the top. When they meet, you’re in trouble. If the Return Stack causes the overflow, 4tH
will report that the Return Stack overflowed. If it was the Data Stack, it will report that the
Data Stack overflowed.

If an overflow happens, you can’t say which stack actually overflowed. If the Data Stack
filled up the Stack Area and a colon-definition tries to put a return address on the Return
Stack, the Return Stack will get the blame.

Now for the good news. Because of this shared stack space, programs with different re-
quirements can run without having to modify stack sizes (you can’t do that; only the pro-
grammer of your application can). It can be a program that heavily uses the Return Stack
(recursive colon-definitions) or a program that needs lots of data on the Data Stack.

What you can check is how big the Stack Area actually is. It is a constant named *STACK’.
It will report the size in cells. Every value on any stack (address or value) takes up a single
cell.

You can also ask 4tH how many values are on the Data Stack using ’'DEPTH’. It will report
the number of values, before you executed ’DEPTH’. Let’s elaborate on that a little more:

." Begin" cr \ no values on the stack
10 \ 1 value on the stack

5 \ 2 values on the stack
9 \ 3 values on the stack
depth \ 4 values on the stack
. cr \ 4tH reports "3"

If you want to know what values the actual stack pointers have, you have to use 'SP@’
and 'RP@’. By subtracting *SP@’ from 'RP@’ you can see how much space is left in the
Stack Area:

rp@ sp@ -
." Space left: " . ." cells" cr

9.16 Booleans and numbers

You might have expected we had discussed this subject much earlier. But we haven’t and
for one very good reason. We’ve told you a few chapters ago that "IF’ branches if the top
of the stack is non-zero. Any number will do. So you would expect that this program will
print "I'm here":

1 2 and
if

." I'm here"
then

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 142

In fact, it doesn’t! Why? Well, ’AND’ is a BINARY operator, not a LOGICAL operator.
That means it reacts on bit-patterns. Given two numbers, it will evaluate bits at the same
position.

The number "1" is "01" in binary. The number "2" is "10" in binary. *AND’ will evalu-
ate the first bit (binary digit, now you know where that came from!). The first bit is the
rightmost bit, so "0" for the number "2" and "1" for the number "1".

>AND’ works on a simple rule, if both bits are "1" the result will be "1" on that position.
Otherwise it will be "0". So "1" and "0" are "0". The evaluation of the second bit has the
same result: "0". We’re stuck with a number that is "0". False. So ’IF’ concludes that the
expression is not true:

2 base ! [binary] \ set radix to binary

10 \ binary number "2"

01 AND \ binary number "1"

. cr \ binary result after AND

It will print "0". However, "3" and "2" would work just fine:

2 base ! [binary] \ set radix to binary

10 \ binary number "2"

11 AND \ binary number "3"

. cr \ binary result after AND

It will print "10". The same applies to other binary operators as "'OR’ and "’INVERT’. ’OR’
works just like ’AND’ but works the other way around. If both bits are "0" the result will
be "0" on that position. Otherwise it will be "1":

2 base ! [binary] \ set radix to binary

10 \ binary number "2"

01 OR \ binary number "1"

. cr \ binary result after OR

It will print "11". We do not encourage the use of 'YINVERT’ for logical operations. You
should use "0=" instead.

’0=" takes the top of the stack and leave a true-flag if it is zero. Otherwise it will leave a
false-flag. That means that if a condition is true (non-zero), it will leave a false-flag. Which
is exactly what a logical NOT should do.

Take a look at his brother ’0<>’. 0<>’ takes the top of the stack and leaves a true-flag if it
is non-zero. Otherwise it will leave a false-flag.

The funny thing is ’AND’ and 'OR’ work perfectly with flags and behave as expected.
’0<>" will convert a value to a flag for you. So this works:

1 0<>
2 0<>
and if
." I'm here" cr
then

Of course, you don’t have to use *0<>’ when a word returns a flag. You should check the
glossary for details on that.

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 143

9.17 Using ’ with other names

299

So far we’ve only used ™’ (tick) with colon-definitions, but you can also use it with all con-
stants, variables, values, strings, vectors (see section 10.11) and constant arrays. However,
the information it provides is not always useful. E.g. the expression:

10 constant ten
" ten

Does not compile differently from:

10 constant ten
ten

The same applies to constant arrays and strings. It will give you possibly information on
the address of variables, vectors, arrays and values, e.g.:

variable ten
" variable ." Relative address of ten: " . cr

Yes, relative address! What does that mean? When a 4tH program is compiled it has no
idea how many application variables a host program will provide. So it stores a relative
address. This address is relative to the address returned by *FIRST’. You might call it an
offset if you want to. 4tH provides a word which will convert the relative address of vectors,
variables, values and numeric arrays to an absolute address, called >BODY’. So this piece
of code does exactly the same thing:

variable ten

ten \ throw address of ’ten’ on stack

dup \ duplicate address

10 swap ! \ store 10 at address

? cr \ show value stored at address
As this piece of code:

variable ten

" ten >body \ calculate address

dup \ duplicate address

10 swap ! \ store 10 at address

? cr \ show value stored at address

There are not too many occasions where this is useful, but it let’s take a look at this one:

0 value ten \ define a value

" ten >body \ calculate address of value
dup \ duplicate address

10 swap ! \ store 10 at address

? cr \ show value stored at address

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 144

We already know that values, numeric arrays and vectors are stored in the very same area
of the Integer Segment. This construction makes it possible to access them as variables.

You can access string constants or arrays of string constants with tick, but they will return
a value which only has a meaning to 4tH itself. You won’t be able to do anything useful
with those values.

You should avoid these kind of constructions, but there might be some situations out there
where it might come in handy. Note that you can only tick your own names. All of 4tHs
built-in variables, strings, words, etc. cannot be accessed by tick.

9.18 Assertions

You have probably seen this before: you’ve made a program, compiled it and it doesn’t
work. Then you start putting code at strategic places, trying to pinpoint the error. And
when you’re finally done, you’ve got to revisit all of these places to remove that code. And
you probably forget a few..

4tH has a built-in facility which allows to put that code there, debug your program and
remove the debugging code from your program by changing a single line.

It is called "assertion" and those of you who have ever worked with C probably know what
we’re talking about.

An assertion is a line of code that will evaluate an expression. If the expression evaluates
to false, it will exit the program with an error message. Let’s take a look at this simple
colon-definition:

: add \ expects two numbers on the stack
If we call add by writing:

1 add
it will fail. Now we add this assertion:

assert(depth 2 >=)

It will evaluate to false when there are less than two items on the stack. The program will
be terminated and the appropriate error message will be issued. You may think that this is
nice, but you still have to remove all assertion manually.

Not true! If you tried this out already you will see that you won’t find an assertion any-
where. It’s gone! True, if you want to use assertions you have to enable them. You do that
with the word ’[ASSERT]’:

[assert]

: add
assert(depth 2 >=)
+

1 add

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 145

Now assertions will compile and work. If you remove the word '[ASSERT]’ all asser-
tions will disappear like they were comment. '[ASSERT]” works just like '[DECIMALY]’,
"[HEX]’, etc. They work linear and do not follow the program flow. If you put '[ASSERT]
halfway your source-file you will notice that assertions work from that point:

1 add
assert(depth 2 >=) \ assertions disabled
+
7
[assert] \ enable assertions
: print-hex
base @ >r hex
assert(depth 1 >=) \ assertions enabled

. cr r> base !

Assertions are only enabled in "PRINT-HEX". The assertion inside "ADD" will be re-
moved and thus be disabled. But there is more to '[ASSERT]’ than the eye meets. It
doesn’t enable assertions, it toggles them. When the 4tH compiler starts, assertions are
disabled. The first '[ASSERT] enables them. A second '[ASSERT]” will disable them
again:

[assert] \ enable assertions
: add
assert(depth 2 >=) \ assertions enabled
+
3
[assert] \ disable assertions
: print-hex
base @ >r hex
assert(depth 1 >=) \ assertions disabled

. Ccr r> base !

There are many possibilities:
e You can start testing low level colon-definitions and move your way up to the high
level definitions by moving '[ASSERT]” down.

e You can enable assertions on certain parts of your code by enclosing them with an
"[ASSERTTY’ pair.

e You can switch the entire context of '[ASSERTT]’s by adding a single '[ASSERT]’ to

the top of your source.

You are not limited to range-checking when using *ASSERT(’. Any expression that evalu-
ates to TRUE is allowed:

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 146

[assert]

: add
assert(." ADD starts at " here . cr true)
assert(depth 2 >=)
assert(." Values: " over over . . cr true)
n

We’re sure you can come up with more useful ideas. We did too.

9.19 Breakpoints

4tH also offers you the possibility to set breakpoints. It’s quite easy to enable this facility.
Just add this to the very beginning of your source:

[needs lib/debug.4th]
Setting a breakpoint is quite easy too, e.g. this piece of code malfunctions:

32 string argument
1 args argument place

Change it to:

32 string argument
1 args argument ~~ place

Now the breakpoint is enabled. It will enter a Forth-like shell just before "'PLACE’ is
executed. Now a host of words are at your disposal. You can examine any region of the
Character Segment with "TDUMP” or print any string variable with "TYPE”. 4tHs internal
variables and regions are known by name, like "PAD”, ”TIB”, ”>IN”, " BASE” and "OUT".
You can examine them or any other variable by using ”?”, ”@” and ”.”.

You have a small calculator, that you can use to multiply, substract, add. You can change
"BASE’ by executing "OCTAL”, "HEX”, "BINARY” or "DECIMAL”. It also has a host
of binary operators like "OR”, ”AND”, ”XOR”, ZINVERT”, "LSHIFT” and "RSHIFT”. It
also has stack operators like "DUP”, ”’DROP”, "OVER” and "SWAP”. "CLEAR” will clear
the stack for you.

You can examine both stacks. ”.S” will show you the data stack (including any rubbish you
put there yourself during the debugging session) and ”R.S” will show you the return stack.
"DEPTH” and "RDEPTH” will tell you how many items there are on the stack. When
you’re done, you may leave the debugger by typing "BYE”. Your program will continue as
usual.

A word of caution: since the debugger is a 4tH program itself, it doesn’t actually freeze
the virtual machine. It just seems like it is frozen. The contents of PAD may be slightly
different than you expected. If you really need to examine the PAD as it was, don’t examine
it directly, but use "SPAD” to examine the shadow PAD”. "SPAD” leaves the address for
the ”shadow PAD” on the stack. The same goes for ”>IN”, "BASE” and "OUT”: never
examine these by address, but always by name. Although every effort has been made to
catch any errors, some extreme stress tests might fail. It is not recommended to use the
debugger when stack space is very tight.

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 147
9.20 Random numbers

If you want to program a game or a simulation, you’ll probably need random number
generation. Of course, you can do that too with 4tH. It generates a number between 0
and "MAX-RAND’, but we’ll teach you how to generate a number for virtually any range
below that.

There are two things important when you want to do that: the range limit and the lower
limit. Say, we want to simulate a dice with numbers in a range from 1 to 6. The lower limit
is 1. We subtract that from the upper limit to get the range limit.

So: upper limit minus lower limit gives a range limit of five (6 - 1 =5). The general formula
looks like this:

<range-limit> 1+ random * max-rand 1+ / <lower limit> +
When we apply this to the dice-example, the complete formula is:
5 1+ random * max-rand 1+ / 1 +

This will give you a dice-simulation, that produces random numbers between 1 and 6.
Happy? Then thank Wil Baden for the algorithm!

9.21 Timers

There is a very low level word in 4tH that keeps track of time. It has several uses. Like
a timer that measures how long certain operation takes, like the execution of a colon-
definition ("DO-SOME-WORD" in this case):

time do-some-word time
swap -
." Do-Some-Word took " . ." seconds." cr

There is a somewhat more elaborate library member that does it all for you:

[needs lib/timer.4th]
timer-reset

do-some-word
.elapsed

This always prints the number of seconds that have elapsed. If you want to create your own
display, you can define one easily:

[needs lib/timer.4th]

:noname <# # 6 base ! # decimal 58 hold # #> type ." mins" ;
is timer-stop

You define "TIMER-STOP” after inclusion of “time.4th”, but before the first usage of
” ELAPSED”.

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 148

9.22 Time & Date

There is also a word in 4tH that will tell you what time and what date it is. With a little
trouble ;). The word is called "TIME’ (again) and it will tell you how many seconds have
gone since January Ist, 1970. You can also find out quickly how late it is:

[needs lib/time.4th]

now ." hours:" minutes:" ." seconds:" . cr

Note that it doesn’t know about daylight-saving! It does know about timezones, which may
be neccesary on some systems. You can determine your timezone by looking at an email
message from a local friend. It will probably say somewhere:

Date: Mon, 25 Feb 2002 22:28:59 +0100 (CET)

The *+0100’ means that you’re in timezone CET, which is one hour later than GMT. If it
said:

Date: Sun, 16 Dec 2001 02:19:40 -0800 (PST)

This indicates that you’re in timezone PST, which is eight hours earlier than GMT. In that
case ’tz’ would be:

-8 3600 [*] constant tz \ Pacific Standard Time

If you need it, define it accordingly before the inclusion of time.4th”. The day of the week
is another thing you can easily calculate:

[needs lib/time.4th]

: Weekdays
dup 0 = if drop s" Monday" exit then
dup 1 = if drop s" Tuesday" exit then
dup 2 = if drop s" Wednesday" exit then
dup 3 = if drop s" Thursday" exit then
dup 4 = if drop s" Friday" exit then
dup 5 = if drop s" Saturday" exit then
dup 6 = if drop s" Sunday" exit then

today weekday Weekdays type cr

By the way, didn’t you hate the way we had to define "Weekdays"? Ugly, isn’t it? Well,
there is a better way to do it. You’ll learn that in the next chapter (see section 10.13)! You
can also print the full date:

[needs lib/time.4th]

today ." year:" . ." month:" . ." day:" . cr

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 149

Just don’t ask me how this thing works, Everett F. Carter figured this one out. "TODAY”
does the easy work. "JDATE” converts the Julian day to the Gregorian date. There is also
a way to convert a Gregorian date to a Julian day, called "JDAY™:

[needs lib/time.4th]

26 02 2002 jday 64 - jdate
today ." year:" " month:" . ." day:" . cr

This can be quite handy if you want to calculate which date it was 64 days ago. ANS-Forth
also defines a word that does it all called "TIME&DATE”. This word throws seconds,
minutes, hours, day, month and year (TOS) on the stack, but always returns GMT:

[needs lib/ansfacil.4th]

time&date cr
And finally, we even got a word that returns the date of easter:

[needs lib/easter.4th]

2005 easterSunday ." year:" . ." month:" . ." day:" . cr

Well, tell me, isn’t that kind of neat?

9.23 What is not implemented

When writing a product like 4tH that is modelled after an existing programming language
like Forth one has to cut a few corners somewhere.

Forth has a fundamentally different architecture, which allows you to extend the compiler
with ease. 4tH is much more like conventional programming languages and many still
wonder how we got this far.

When you’re learning 4tH to learn Forth you will find there are things you can’t do in 4tH.
This section sums up most of the restrictions 4tH has in comparison to Forth and other
languages.

Datatypes There are no words that allow you to define your own datatypes,
although you can change the behaviour of individual variables.

Floating point 4tH does not support floating point, but there are several ways to
implement fixed point calculation which can do nearly the same job
as you will learn in the next chapter.

Interpreter Since 4tH is a conventional compiler, you won’t find a built-in in-
terpreter. There is a library-source, which will enable you to make
an interpreter for specific applications with ease. Next chapter we
will show you how to use it.

If you have more questions concerning the functionality of 4tH, please read the ANS-
Forth document. This describes the compliance of 4tH to the ANS-Forth standard. Further
information can be obtained by studying the glossary.

CHAPTER 9. INTEGER SEGMENT AND CODE SEGMENT 150
9.24 Known bugs and limitations

Like every software product, 4tH has bugs. Because a work-around is available, fixing
these bugs has no high priority.

e When you use ’\’ without any actual comment in a Unix ASCII file the complete
next line will be marked as comment. With MS-DOS ASCII files 4tH will correctly
detect a null string and terminate with an error. Use "\ ." just to be safe.

e There can be only one space between ’[DEFINED]’, '[UNDEFINED]’, '[CHAR]’,
’CHAR’ and the string following it. If you don’t comply, 4tH will complain about
empty string constants.

e You cannot comment out ’[THEN] or ’)’ This is bad practice anyway.

Chapter 10

Advanced programming

10.1 Compiletime calculations

When you’ve reached this chapter, you must have quite some experience with 4tH. This
chapter will help you to use 4tH to its full capacity. You’ll be able to use software excep-
tions, conditional compilation, compiletime calculation, lookup tables, fixed point calcula-
tion and much, much more.

We’ll start with something wich may seem difficult at first, but is extremely handy in some
circumstances. We’ve already explained that when you define a string, it has to be preceded
by a literal expression. So you cannot define something like this:

64 constant name
16 constant #names

name #names * string name_space

When you want to do this in 4tH you first have to calculate the size of "name_space" by
hand and then insert it into your program:

64 constant name
16 constant #names

1024 string name_space

But this has a serious drawback when maintaining your code, because when you change ei-
ther "name" or "#names", you have to remember that you have to recalculate "name_space"!

Is there no solution to this problem? Of course, although you had to wait for version 3.3a
to get it:

64 constant name
16 constant #names

name #names [*] string name_space

The word ’[*]” takes two subsequent literal expressions and multiplies them to a new single
literal expression as if you’d written "1024" yourself! The difference between:

151

CHAPTER 10. ADVANCED PROGRAMMING 152
10 10 *

and:
10 10 [*]

is essentially that the first expression will compile to two literals and the word **’ and the
second expression will compile to just a literal.

In other words: the first expression will just compile and quietly wait until it is evaluated
at runtime, while the second is already evaluated at compiletime. Which means that every-
thing that is evaluated, must already be known at compiletime, thus a literal expression.

There are other compiletime calculations possible too. The first one is ’[+]’, which adds
two literal expressions. This will compile to the literal "12":

5 7 [+]

You can even mix and chain compiletime calculations. This will compile to the literal
"500":

525 75 [+] [*]
Just as if you’d just written "500" in the sourcecode yourself. You can also write:
25 75 [+] 5 [*]

Because it’s just simple postfix notation. Note that there must be two subsequent literal
expressions available at any time, so this doesn’t work:

55 [*] dup [*]

Since 'DUP’ isn’t a literal expression, but a word which is simply compiled. But don’t
worry: 4tH will notify you when you make an error like this. Another useful word is
’[INEGATEY]’, e.g. when you need to assign a negative value to a constant:

16 constant +range
+range [negate] constant -range

In this example the value of ”-RANGE” is -16. The final word, we’d like to present you
is ’[NOTY’, which logically inverts a flag at compiletime, just like *0=" at runtime. This
expression will compile to a true flag:

false [not]

You might wonder why we included this one, but that will become clear when you read the
next section.

CHAPTER 10. ADVANCED PROGRAMMING 153
10.2 Conditional compilation

This is something which can be very handy when you’re designing a 4tH program for
different environments or even different Forth compilers. Let’s say you’ve written a general
ledger program in 4tH that is so good, you can sell it. Your customers want a demo, of
course. You’re willing to give one to them, but you’re afraid they’re going to use the demo
without ever paying for it.

One thing you can do is limit the number of entries they can make. So, you copy the source
and make a special demo version. But you have to do that for every new release. Wouldn’t
it just be easier to have one version of the program and just change one single constant?
You can with conditional compilation:

true constant DEMO

DEMO [if]
256 constant #Entries
[then]

variable CurrentEntry

DEMO [not] [if]
limit constant #Entries
[then]

#Entries array Entries

We defined a constant, called "DEMO", which is true. So, when the compiler reaches the
"DEMO [if]" line, it knows that it has to compile "256 constant Entries", since "DEMO" is
true. When it comes to "DEMO [not] [if]", it knows it has to skip everything up to "[then]"
since "[not] DEMQO" is evaluated at compiletime to false. So, in this case the compiler
behaves like you’ve written:

256 constant #Entries
variable CurrentEntry
#Entries array Entries

Would you change "DEMO" to false, the compiler would behave as if you wrote:

variable CurrentEntry
limit constant #Entries
#Entries array Entries

The word ’[IF]’ only works at compile time and is never compiled into the object. *[IF]’
takes a literal expression. If this expression is true, the code following the ’[IF]’ is com-
piled, just as *[IF]” wasn’t there. Is this expression false, everything up to *[THEN] is
discarded as if it wasn’t there.

That also means you can discard any code that is superfluous in the program. E.g. when
you’re making a colon-definition to check whether you can make any more entries. If you
didn’t use conditional compilation, you might have written it like this:

CHAPTER 10. ADVANCED PROGRAMMING 154

: CheckIfFull (n--n)
dup #Entries = (n f)
if (n)
drop (—)
DEMO (f)
if (--)
." Buy the full version"
else \ give message and exit program
." No more entries"
then (--)
cr quit
then (n)
i
But his one is nicer and will take up less code:
: CheckIfFull (n --n)
dup #Entries = (n f)
if (n)
drop (--)
DEMO [if] (nf)
." Buy the full version"
[then]
DEMO [not] [if]
." No more entries"
[then]
cr quit
then (n)

You can also use conditional compilation to discard large chunks of code. This is a much
better way than to comment all the lines out, e.g. this won’t work anyway:

: room? \ is it a valid variable?
dup ('n n)
size 1- invert and (n f)
if \ exit program
drop ." Not an element of ROOM" cr quit
then

This is pretty cumbersome and prone to error:

\ : room? \ is it a valid variable?
\ dup (n n)

CHAPTER 10. ADVANCED PROGRAMMING 155

\ size 1- invert and (n f)

\ if \ exit program
\ drop ." Not an element of ROOM" cr quit
\ then

\

But this is something that can easily be handled:

false [if]
: room? \ 1s it a valid variable?
dup ('n n)
size 1- invert and (n £f)
if \ exit program
drop ." Not an element of ROOM" cr quit
then
3
[then]

Just change "false" to "true" and the colon-definition is part of the program again. Note
that ’[IF] .. [THEN]’ can be nested! Conditional compilation is very powerful and one of
the easiest features a language can have. And it’s ANS-Forth compatible!

10.3 Checking the environment at compiletime

Let’s say you’ve written something which works perfectly on your own machine and you
want to use it on the mainframe at work. It turns out to be it doesn’t work. Why? Because
your program assumed that a cell was four address units wide. And it didn’t turn out to be
that way.

You could have prevented that if you had used a check at compiletime. You can do that this
way:

/cell 4 [=] [NOT] [IF]
(do something)
[THEN]

’/CELL is a constant which holds the number of address units in a cell. */CELL’ has got
a little brother called ’/CHAR’, which will tell you how many address units there are in a
character. ’[=]" will check whether a cell has four address units and *[NOT]” will reverse
that flag. Neat huh?

But then again, what do we do if it doesn’t turn out to be that way. Any action will first
be executed at runtime so a message or ’”ABORT’ won’t do. Further compilation will be
useless, so we actually want to stop. You’re in luck, since we have a special word that will
stop the compiler regardless. It’s called '[ABORT]’. So this is our complete snippet:

/cell 4 [=] [NOT] [IF]
[ABORT]
[THEN]

CHAPTER 10. ADVANCED PROGRAMMING 156
10.4 Checking a definition at compiletime

We’ve already encountered ’"COMPARE’ in section 7.16. ’"COMPARE’ is word that com-
pares two strings. It can do that both case sensitive and case insensitive. If you define a
constant called ZIGNORECASE” before the '[NEEDS’ directive and set it to FALSE, it
will perform a case sensitive comparison. If you don’t, it will do a case insensitive com-
parison by default.

Most approaches would require the definition of ZIGNORECASE”, regardless which mode
you select. This one doesn’t:

[DEFINED] ignorecase [NOT] [IF]

true constant ignorecase \ default ignore case
[THEN]
1 compare (al nl a2 n2 —— £)
rot over over swap - >r (al a2 n2 nl)
min 0 tuck (al a2 0 n 0)
?do (al a2 f)
drop (al a2)
over 1 + c@ (al a2 cl)

ignorecase [IF]

dup [char] A - max-n and 26 < if bl or then
[THEN]

over 1 + c@ (al a2 cl c2)
ignorecase [IF]

dup [char] A - max-n and 26 < if bl or then

[THEN]
- dup (al a2 £ f)
if leave then (al a2 f)
loop
>r drop drop r> r> swap dup (£f1 £2 £2)
if swap then drop (£)

’[DEFINED]’ checks whether the word following it has been defined and leaves a TRUE
flag if it was. It doesn’t matter whether the word is built-in, included or defined in your
program. It can be a variable, a word, a constant, anything you like.

In this case it checks whether JIGNORECASE” has been defined. If it wasn’t it will define
it for you. Later, it checks whether ZIGNORECASE” is TRUE. If it is, a line of code is
compiled. If it is FALSE, it will compile that line.

If an "IF’ had been used, the code would always be compiled with the added overhead of
testing a constant at runtime. This construction allows for tighter and faster code.

Note that '[DEFINED]’ has also a counterpart called '[UNDEFINED] . It is equivalent
to [DEFINED] [NOT]” and leaves a true flag when the word following it has not been
defined.

10.5 Exceptions

You know when you violate the integrity of 4tH, it will exit and report the cause and loca-
tion of the error. Wouldn’t it be nice if you could catch these errors within the program?

CHAPTER 10. ADVANCED PROGRAMMING 157

It would save a lot of error-checking anyway. It is quite possible to check every value
within 4tH, but it takes code and performance, which makes your program less compact
and slower.

Well, you can do that too in 4tH. And not even that, you can trigger your own errors as
well. This simple program triggers an error and exits 4tH when you enter a "0":

[needs lib/enter.4th] \ get a number
\ if non-zero, return it
\ if zero, throw exception
. could-fail (-- n)
enter dup 0=

if 1 throw then

\ drop numbers and
\ call COULD-FAIL
: do-it (-)
drop drop could-fail

\ put 2 nums on stack and
\ execute DO-IT

: try-it (--)
1 2 ['"] do-it execute
." The number was" . cr
3
\ call TRY-IT
try-it

"TRY-IT" puts two numbers on the stack, gets the execution token of "DO-IT" and executes
it. "DO-IT" drops both numbers and calls "COULDFAIL". "COULD-FAIL" gets a number
and compares it against "0". If zero, it calls an exception. If not, it returns the number.

The expression "I THROW" has the same effect as calling "QUIT’. The program exits,
but with the error message "Unhandled exception". You can use any positive number for
"THROW?, but "0 THROW" has no effect. This is called a "user exception", which means
you defined and triggered the error.

There are also system exceptions. These are triggered by the system, e.g. when you want to
access an undefined variable or print a number when the stack is empty. These exceptions
have a negative number, so:

throw -4

Will trigger the "Stack empty" error. You can use these if you want but we don’t recommend
it, since it will confuse the users of your program.

You’re probably not interested in an alternative for ’QUIT’. Well, "THROW’ isn’t. It just
enables you to "throw" an exception and exceptions can be caught by your program. That
means that 4tH won’t exit, but transfers control back to some routine. Let’s do just that:

[needs lib/enter.4th]

: could-fail (-- n)
enter dup 0=

CHAPTER 10. ADVANCED PROGRAMMING 158

if 1 throw then

: do-it (-)
drop drop couldfail

: try-it (--)
1 2 ['"] do-it catch
if drop drop ." There was an exception" cr
else ." The number was" . cr
then
H
try-it

The only things we changed is a somewhat more elaborate "TRY-IT" definition and we
replaced ’EXECUTE’ by "CATCH’.

’CATCH’ works just like "TEXECUTE’, except it returns a result-code. If the result-code is
zero, everything is okay. If it isn’t, it returns the value of "THROW'’. In this case it would
be "1", since we execute "1 THROW". That is why "0 THROW" doesn’t have any effect.

If you enter a nonzero value at the prompt, you won’t see any difference with the previous
version. However, if we enter "0", we’ll get the message "There was an exception", before
the program exits.

But hey, if we got that message, that means 4tH was still in control! In fact, it was. When
"1 THROW" was executed, the stack-pointers were restored and we were directly returned
to "TRY-IT". Asif "1 THROW" performed an ’EXIT’ to the token following ’"CATCH’.

Since the stack-pointers were returned to their original state, the two values we discarded in
"DO-IT" are still on the stack. But the possibility exists they have been altered by previous
definitions. The best thing we can do is discard them.

So, the first version exited when you didn’t enter a nonzero value. The second version did
too, but not after giving us a message. Can’t we make a version in which we can have
another try? Yes we can:

[needs lib/enter.4th]

. could-fail (-- n)
enter dup 0=
if 1 throw then

: do-it (-)
drop drop could-fail

: retry-it (--)
begin
1 2 ['"] do-it catch
while
drop drop ." Exception, keep trying" cr
repeat

CHAPTER 10. ADVANCED PROGRAMMING 159

." The number was " . cr

retry-it

This version will not only catch the error, but it allows us to have another go! We can keep
on entering "0", until we enter a nonzero value. Isn’t that great? But it gets even better! We
can exhaust the stack, trigger a system exception and still keep on going. But let’s take it
one step at the time. First we change "COULD-FAIL" into:

: could-fail (-- n)
enter dup 0=
if drop ." Stack: " depth . cr 1 throw then

This will tell us that the stack is exhausted at his point. Let’s exhaust is a little further by
redefining "COULD-FAIL" again:

: could-fail (-— n)
enter dup 0=
if drop drop then

Another ’TDROP’? But wouldn’t that trigger an "Stack empty" error? Yeah, it does. But
instead of exiting, the program will react as if we wrote "-4 THROW" instead of "DROP
DROP". The program will correctly report an exception when we enter "0" and act accord-
ingly.

This will work with virtually every runtime error. Which means we won’t have to protect
our program against every possible user-error, but let 4tH do the checking.

We won’t even have to set flags in every possible colon-definition, since 4tH will automat-
ically skip every level between ' THROW’ and *CATCH’. Even better, the stacks will be
restored to the same depth as they were before ’CATCH’ was called.

You can handle the error in any way you want. You can display an error message, call some
kind of error-handler, or just ignore the error. Is that enough flexibility for you?

10.6 Mixing character and number data

Sometimes you have to mix character and number data, e.g. when you’re porting a Forth
program or when the need complex datastructures arises. Since 4tH gives each datatype its
own segment this is not easy. However, there is a library that can help you. Let’s have a
look at this program:

16 constant /my \ size of array

/my array my \ define array

0 \ set up counter

begin
dup dup \ duplicate counter
cells my + ! \ store counter in array

1+ \ increment counter

CHAPTER 10. ADVANCED PROGRAMMING

dup /my =
until drop

my
begin

dup @ . cr

cell+

dup my /my cells + =
until drop

— = =

160

limit reached?
drop the counter

set up index

print the value
next element
limit reached
drop the index

This simple program defines a small array, fills and displays it. Now, this little thing does
the same thing, but is located in the Character Segment:

include lib/ncoding.4th

16 constant /my
/my nell [*] string my
0
begin
dup dup
nells my + n!
1+
dup /my =
until drop

my
begin

dup n@ . cr

nell+

dup my /my nells + =
until drop

— = =

— = = =

— = =

load the library
size of array
define array

set up counter

duplicate counter
store counter in array
increment counter
limit reached?

drop the counter

set up index

print the value
next element
limit reached
drop the index

You see that the code is very similar. The ’STRING’ declaration clearly indicates that the
array is allocated in the Character Segment. But as you can see it is not an array of cells,
but an array of nells. "NELL’ holds the size of a single nell, so we multiply it by the number
of nells we want to get the proper size of the array. After that, it is just replacing the Integer

Segment words with nell equivalents:

|NELL| CELL|
/nell /cell
nells cells
n@ @
n! !
nell+ cell+
nell- cell-

Table 10.1: NELL equivalents

Note that although you can replace every cell with a nell, you do pay a penalty in execution

speed, so use with caution.

CHAPTER 10. ADVANCED PROGRAMMING 161
10.7 Enumerations
Sometimes you need a lot of constants:

constant Monday
constant Tuesday
constant Wednesday
constant Thursday
constant Friday
constant Saturday
constant Sunday

oY U i W DN B~ O

A little error here may ruin your program. This does the very same thing, except it is easier
to maintain:

0 enum Monday enum Tuesday enum Wednesday
enum Thursday enum Friday enum Saturday
enum Sunday drop

’ENUM’ is much like a ’"CONSTANT’, but increments and leaves a value after the constant
has been created. That is why we need to add "'DROP’ after the final enumeration. To show
you that ’TENUM’ and *CONSTANT’ are much alike, you could also write the declaration
above as:

0 enum Monday enum Tuesday enum Wednesday
enum Thursday enum Friday enum Saturday
constant Sunday

Since "CONSTANT” just consumes the value, you don’t need the final 'DROP”’.

10.8 Dynamic memory allocation

If you don’t know what this is, you probably shouldn’t bother. Sometimes you don’t know
how much memory you will actually need, sometimes you know how much you need,
but you won’t need it during the entire execution of the program. In these cases, you can
temporarily allocate a chunk of memory and release it when you no longer need it.

4tH has similar facilities. E.g. if you want to allocate 600 bytes, you simply include
"ansmem.4th" and allocate it:

[needs lib/ansmem.4th]
600 allocate

"ALLOCATE’ leaves two items on the stack. The first one is a flag. If it is true, memory
allocation has failed, so we can easily add some error checking to our little program:

[needs lib/ansmem.4th]
600 allocate abort"™ Out of memory"

CHAPTER 10. ADVANCED PROGRAMMING 162

It it returns false, memory has been allocated. Its address is the second item on the stack.
You can pretty much do what you want with it, but remember that memory is always al-
located in the Character Segment, so if you want to store numbers over there, read section
10.6 again. Anyway, this is completely valid:

[needs lib/ansmem.4th]
600 allocate abort"™ Out of memory"
s" Hello temporary world!" rot place

Let’s change that one a little bit to prove we’ve actually stored anything:

[needs lib/ansmem.4th]

600 allocate abort" Out of memory"

>r s" Hello temporary world!" \ Let’s save the address
r@ place \ Now store the string
r> count type cr \ Let’s print the string

Let’s allocate another 100 bytes and free all memory afterwards:

[needs lib/ansmem.4th]
600 allocate

abort" Out of memory" >r \ First allocation

s" Hello temporary world!"

r@ place \ Now store the string
r@ count type cr \ Let’s print the string

100 allocate

abort" Out of memory" >r \ Second allocation

s" I'm a little crammed!"

r@ place \ Store another string

r@ count type cr \ Let’s print the string

r> free

abort" Cannot free memory" \ Now free the first block
r> free

abort" Cannot free memory" \ Now free the second block

Yes, that’s right: you feed "FREE’ the address that ’ALLOCATE’ returned and it returns a
flag. If it is a true flag, an error occurred; if not, everything is hunky dory. Let’s try to free
it twice:

[needs lib/ansmem.4th]
600 allocate

abort" Out of memory" >r \ First allocation

s" Hello temporary world!"

r@ place \ Now store the string

r@ count type cr \ Let’s print the string
r@ free

abort" First attempt" \ Now let’s free the block
r> free

abort" Second attempt" \ And try to free it again..

CHAPTER 10. ADVANCED PROGRAMMING 163

Yes, now 4tH terminated with the error message ’Second attempt”. You can not free a block
twice..! But you can reallocate it if you happen to change your mind. You can increase or
decrease its size, without losing any data. When the new block is too small to hold all the
data, the data is truncated. Let’s see it in action:

[needs lib/ansmem.4th]
50 allocate

abort" Out of memory" >r \ First allocation

s" Hello temporary world!"

r@ place \ Now store the string
r@ count type cr \ Let’s print the string

r> 100 resize

abort" Out of memory" >r \ Now resize the block

r@ count type cr \ Here is your string again
r> free

abort" Cannot free memory" \ Now free it

You’ll see that your precious string is still alright. Apart from a flag, "RESIZE’ also returns
the address of the reallocated block. If 'RESIZE’ fails, your original data is still alright,
so in some circumstances you might want to save the old address. Sometimes 'RESIZE’
fails, even when you’re decreasing the size of a block. Well, 'RESIZE’ always allocates a
new block, so when memory is low or fragmented it may not succeed.

10.9 Tweaking dynamic memory

You might find that 4tH doesn’t reserve much memory for dynamic allocation. Dynamic
memory is allocated at the heap, which is 16 kB. You can increase it, but first you have
to know how dynamic memory works. You can determine how much memory has been
allocated by using the word *’ALLOCATED’:

[needs lib/ansmem.4th]
50 allocate

abort" Out of memory" >r \ First allocation
r@ . ." allocates "

r@ allocated . ." bytes." cr

r> free

abort" Cannot free memory" \ Now free it

And it will print something like:

768 allocates 64 bytes.

64 bytes? I thought we allocated 50 bytes! Let’s try another one:

[needs lib/ansmem.4th]
500 allocate

CHAPTER 10. ADVANCED PROGRAMMING 164

abort" Out of memory" >r \ First allocation
r@ . ." allocates "

r@ allocated . ." bytes." cr

r> free

abort" Cannot free memory" \ Now free it

This time it prints something like:
768 allocates 512 bytes.

As a matter of fact, ’ALLOCATED’ will always return multiples of 64 bytes. That is a
consequence of how 4tH handles dynamic memory. 4tH divides dynamic memory into
fragments. When you allocate memory, 4tH allocates as much fragments as it needs to
provide you with the memory you requested. Then these fragments are marked as ’taken’.
This marking is done in the Heap Allocation Table, which is located in the Integer Segment.
Every fragment is represented by a cell in the HAT.

You can fine-tune this mechanism by defining some constants before including "ansmem.4th".
This will create a heap with 512 fragments of 256 bytes, which is 128 kB:

512 constant #heap \ 512 fragments

256 constant /heap \ each fragment is 256 bytes
[needs lib/ansmem.4th]

500 allocate

abort" Out of memory" >r \ First allocation
r@ . ." allocates "

r@ allocated . ." bytes." cr

r> free

abort" Cannot free memory" \ Now free it

Try to keep the number of fragments low. 1024 seems like a nice upper limit. If you need
that much memory, it is much better to handle it in larger chunks. This avoids fragmentation
and keeps the time to search the HAT within acceptable limits.

10.10 Application stacks

Did you ever feel like a second return stack would be nice? Well, you can. As a matter of
fact you can have several dedicated stacks. It’s quite easy to use:

[needs lib/stack.4th]

16 array mystack \ allocate some space
mystack stack \ convert it into a stack
234 mystack >a \ push 234 on the stack
456 mystack >a \ push 456 on the stack
mystack a@ . cr \ examine top of stack
mystack a> \ pop 456 from the stack
mystack a> \ pop 234 from the stack
. cr \ show the values

CHAPTER 10. ADVANCED PROGRAMMING 165

Wouldn’t it be nice to have a string stack too? Yes, 4tH provides that one too! It works the
same way:

[needs lib/stsstack.4th]

1024 string mystack \ allocate some space

mystack string-stack \ convert it to a string stack
s" Hello" mystack >s \ push string ’Hello’ on stack
s" World" mystack >s \ push string ’'World’ on stack
mystack s@ type cr \ examine top of stack

mystack s> \ pop 'World’ from the stack
mystack s> \ pop ’Hello’ from the stack
type cr type cr \ show the values

Note there is a catch: when you’ve popped a string from the string stack, the string itself
is untouched, so the address-count pair is still valid. However, if you push another string
onto the same stack, the popped string is clobbered. There is another way to create a string
stack without these disadvantages, but it is slightly larger and slower. It is initialized by:

[needs lib/strstack.4th]

1024 constant /mystack \ allocate some space
/mystack string mystack
mystack /mystack string-stack \ convert it to a string stack

All other words work the same way.

10.11 Forward declarations

It doesn’t happen very often, but sometimes you have a program where two colon-definitions
call each other. When you look at 4tHs source you find several examples. The throw() func-

tion calls the rpop() function, because "THROW’ takes items from the Return Stack. On

the other hand, when the Return Stack underflows, it has to call ’'THROW’.

There is a special instruction in 4tH to do this, called "'DEFER’. 'DEFER’ doesn’t create
an executable word, but a vector containing an execution token, which is executed when
called. You might want to consult section 9.3 first to see how this works. But for all
purposes you might consider it to be an executable word, because it behaves the same way.

defer Step2
Now we can create "STEP1" without a problem:
: Stepl 1+ dup . cr Step2 ;

But "STEP2" does not have a body yet. Of course, you could create a new colon-definition,
tick it and assign the execution token to "STEP2" manually, but it is much neater to use
":NONAME’. :NONAME’ can be used like a normal ’:’, but it doesn’t require a name.
Instead, it pushes the execution token of the colon-definition it created on the stack. No,
":NONAME’ does not create a literal expression, but it is just what we need:

CHAPTER 10. ADVANCED PROGRAMMING 166
:noname 1+ dup . cr Stepl ; is Step2

Now we are ready! We can simply execute the program by calling "STEP1":
1 Stepl

Note that if you run this program, you’ll get stack errors! Sorry, but the example has been
taken from a Turbo Pascal manual ;-). If you have forgotten what a deferred word actually
executes, you can retrieve the execution token by using 'DEFER@’:

defer thisword \ create a vector
: plus + ; \ define a word

" plus is thisword
" thisword defer@
2 3 rot execute

cr

assign the word to the vector
retrieve the execution token
execute the deferred word
display the result

— =

As a matter of fact, this expression:

" thisword defer@ execute

Is equivalent to this one:

thisword

You can also reassign a vector without using 'IS’. ’IS’ is a parsing version. That means the
actual vector to which a certain behaviour is assigned is determined at compiletime. *DE-
FER!’ can be used to assign a certain behaviour at runtime. ' DEFER!’ takes two execution
tokens:

defer thisword \ create a vector
: plus + ; \ define a word
" plus ' thisword defer! \ assign it to a vector

This is equivalent to this:

defer thisword \ create a vector
: plus + ; \ define a word
" plus is thisword \ assign it to a vector

I guess you’ll agree with me that this creates countless possibilities.

CHAPTER 10. ADVANCED PROGRAMMING 167

10.12 Recursion

Yes, but can she do recursion? Of course she can! It is even very natural and easy. Every-
body knows how to calculate a factorial. In 4tH you can do this by:

. factorial (nl -- n2)
dup 2 >
if
dup 1-
factorial *
then

7
10 factorial . cr

Which is exactly as one would expect. Unfortunately, this is not the way it is done in ANS-
Forth. In order to let a colon-definition call itself, you have to use the word 'RECURSE’.
4tH supports this word too:

: factorial (nl -- n2)
dup 2 >
if
dup 1-
recurse *
then

i
10 factorial . cr

It will even compile to the same code. If you use the word 'RECURSE’ outside a colon-
definition, the results are undefined. Note that recursion lays a heavy burden on the return
stack. Sometimes it is wiser to implement such a routine differently:

: factorial
dup
begin
dup 2 >
while
1- swap over * swap
repeat

drop

i
10 factorial . cr

So if you ever run into stack errors when you use recursion, keep this in mind.

10.13 Lookup tables with integer keys

No CASE construct, huh? Now how are we supposed to make those complex decisions?
Well, do it the proper way. Leo Brodie wrote: "I consider the case statement an elegant

CHAPTER 10. ADVANCED PROGRAMMING

168

solution to a misguided problem: attempting an algorithmic expression of what is more
aptly described in a decision table". And that is exactly what we are going to teach you.

Let’s say we want a routine that takes a number and then prints the appropriate month. In
ANS-Forth, you could do that this way:

: Get-Month

Q
oY)
w
[0

of .
of .
of .
of .
of .
of .
of .
of .
of .
of .
of .

12 of .
endcase
cr

[
O WO O -1 O U b W DN -

=
[

January
February
March
April
May
June
July
August

September"

October
November
December

endof
endof
endof
endof
endof
endof
endof
endof
endof
endof
endof
endof

This takes a lot of code and a lot of comparing. In this case (little wordplay) you would be
better of with an indexed table, like this:

create MonthTable

n

, January

n

" March
" April
" May
" June
" July
;" August

, " February

n

n

n

n

n

n

n

n

;" September"

, " October

n

, " November
, " December

: Get-Month

12 min 1- MonthTable @c count type cr

n

n

n

Which does the very same thing and will certainly work faster. True, you can’t do that this
easily in ANS-Forth, but in 4tH you can, so use it! The word ’,"” compiles a string, whose
address can be retrieved by *@C’ as if it were a numeric constant. Note that *@C’ just
returns the address of the string, so you have to use "COUNT”’ to obtain an address/count
pair. Of course, there is also an equivalent to ’,"” called ’,I’. The latter is delimited by a bar

instead of a quote, but essentially works the same way.

But can you use the same method when you’re working with a random set of values like
"2,1,3,12,5,6,4,7,11, 8, 10,9". Yes, you can. But you need a special routine to access

CHAPTER 10. ADVANCED PROGRAMMING 169

such a table. Of course we designed one for you. It is called "ROW” and you can use it by
adding this directive:

[needs lib/row.4th]

This routine takes three values. The first one is the value you want to search. The second is
the address of the table you want to search. And on top of the stack you’ll find the number
of fields this table has. The first field must be the "index" field. It contains the values which
have to be compared. That field has number zero.

This routine can search zero-terminated tables. That means the last value in the index field
must be zero. Finally, it can only lookup positive values. It returns the value you searched,
the address of the row where it was found and a flag. If the flag is false, the value was not
found.

Now, how do we apply this to our month table? First, we have to redefine it:

create MonthTable

1, ," January "

2, ," February "
3, " March "
4, " April "
5, ," May "
6, ," June "
T, " July "
8, ," August "

9, ," September"
10 , ," October "
11 , ," November "
12 , ," December "
NULL ,

Note that this table is sorted, but that doesn’t matter. It would work just as well when it was
unsorted. Let’s get our stuff together: the address of the table is "MonthTable", it has two
fields and we want to return the address of the string, which is located in field 1. Field O
contains the values we want to compare. We can now define a routine which searches our
table:

Search-Month (nl -- n2 £)

["] nkey= is key= \ set ROW datatype

MonthTable 2 row \ search the table

dup >r \ save flag

if nip cell+ @c else drop then

r> \ if found get value
; \ if not drop address

Because "ROW?” is able to search integer tables and string tables, you have to define which
one it is'. This expression tells ’JROW” we’re searching for an integer value:

[’] nkey= is key=

"Note that some 4tH libraries, like *environ.4th” and *interprt.4th’ use JROW” as well. If you experience any
unexpected results you should reassign "KEY=" before invoking "ROW”".

CHAPTER 10. ADVANCED PROGRAMMING

Now, we define a new "Get-Month" routine:

: Get-Month
Search-Month

if
count type
else
drop ." Not found"
then
cr

’

(n --)
search table

_—

if month is found
print its name

if month is not found
drop value

and show message

— = = =

Is this flexible? Oh, you bet! We can extend the table with ease:

3 Constant #MonthFields

create MonthTable

1, ," January "

2, ," February "
3, ," March "
4 , " April "
5, ," May "
6, ," June "
T, " July "
8, ," August "

9, ," September"
10 , ," October "
11 , ," November "
12 , ," December "
NULL ,

31
28
31
30
31
30
31
31
30
31
30
31

Now we make a slight modification to "Search-Month":

: Search-Month
[’] nkey= 1is key=

MonthTable #MonthFields

dup >r

(nl -- n2 £f)

\ set ROW datatype
row \ search the table

\ save flag

if nip cell+ @c else drop then

r>

r

\ if found get value
\ if not drop address

170

This enables us to add more fields without ever having to modify "SearchMonth" again.
If we add another field, we just have to modify "#MonthFields". We can now even add

another routine, which enables us to retrieve the number of days in a month:

: Search-#Days
[’] nkey= 1is key=

(nl -- n2 £)
\ set ROW datatype

MonthTable #MonthFields row \ search the table

dup >r

\ save flag

if nip cell+ cell+ @c else drop then

r>

r

\ if found get value
\ if not drop address

Of course, there is room for even more optimization, but for now we leave it at that. Do
you now understand why 4tH doesn’t have a CASE construct?

CHAPTER 10. ADVANCED PROGRAMMING 171

10.14 Lookup tables with string keys

But what if the table we’re using looks like this:

create MonthTable

, " January" 31 ,
, " February" 28 ,
," March" 31 ,

," April" 30 ,

;" May" 31,

," June" 30 ,

, " July" 31,

," August" 31 ,

," September" 30 ,
," October" 31 ,
, " November" 30 ,
, " December" 31 ,
NULL ,

Sure, 4tH compiled some kind of integer value there, but an address to a string is less than
helpful. We have to compare strings in order to find the correct entry, not addresses. So,
we need a word that searches the table and returns the contents of the field that follows the
appropriate string. Well, of course there is such a word. It is ZROW” again. You can use it
by entering:

[needs lib/row.4th]

At the beginning of your program. "ROW” takes an address/count pair of the string that
has to be found, the address of the table it has to search for that string and the number of
fields the table has. It returns the original address/count pair of the string, the address of
the row where the search stopped and a flag. That makes it quite a useful word, e.g. how
many days has June:

: GetDays (an--)
['] skey= is key= \ set ROW datatype
MonthTable 2 row \ search the table
if
cell+ @c . drop drop \ if found, display the number of days
else \ else an error message
drop type ." is not a month!"
then
cr

s" June" GetDays

If "ROW” returns true, the value was found. If it returns false, it wasn’t. Note you have to
indicate which datatype "ROW” has to deal with. "ROW” is quite versatile, but that is not
the only merit of "TROW” as we will see in the next sections.

CHAPTER 10. ADVANCED PROGRAMMING 172
10.15 Lookup tables with multiple keys

Some tables have multiple keys to search them, e.g. by name or by number. So far all
tables we’ve seen dealt with a single key in the first column. It would be a shame if you
had to split a table into two tables, simply because you had two different ways to access
it. Fortunately, ’ROW” can handle this kind of tables as well as long as you put the key
columns up front and add a NULL at the end of the table for every key, e.g.

create mytable

;" Monday" 1,
;" Tuesday" 2,
, " Wednesday" 3,
;" Thursday" 4,
," Friday" 5,
," Saturday" 6,
;" Sunday" 7,

NULL , NULL ,

This table consists only of key fields. You can search for the name and get a number or
search for the number and get the equivalent name. The trick is to keep in mind what the
key field is and the relative position of the datafield. In this case we want to search on
number, so the corresponding name is the field before the key field. When you start the
search the pointer you pass to "ROW” has to point to the key field you want to search. In
this case that is equivalent to:

mytable cell+
Let’s assume we want to search this table both ways:

: day>num (al nl -— al nl -f | n2 £)
["] skey= is key=
mytable 2 row dup >r
if nip nip cell+ @c else drop then r>

: num>day (nl -—— nl -f£f | al n2 f)
[’] nkey= is key=
mytable cell+ 2 row dup >r
if nip cell- @c count else drop then r>

The first word doesn’t hold any surprises. It is a vanilla search word. The second one
passes a slightly modified pointer to "ROW” and decrements the address it returns, so it
now points to the name field. We can use both words quite easily and transparently:

s" Friday" day>num if . else type ." not found" then cr

s" New yearsday" day>num if . else type ." not found" then cr
5 num>day 1f type else . ." not found" then cr

8 num>day if type else . ." not found" then cr

You will see they work as expected.

CHAPTER 10. ADVANCED PROGRAMMING 173

10.16 Lookup tables with duplicate keys

Although most tables come with unique keys you may find yourself in a situation where
you have to resume a search. "ROW” can handle that situation as well. Let’s examine this
table:

create people
," Ritchie" ," Lionel"
," Dijkstra" ," Edsger"

, " Moore" ," Henri"
," Ritchie" ," Dennis"
, " Wirth" , " Nick"
," Hopper" ," Grace"
, " Moore" ," Chuck"
," Hopper" ," Dennis"
NULL ,

There is one key field, since the table is terminated with only one NULL. We also find
multiple Hoppers and Moores, so we can’t be sure we’ve found the right one right away.
In order to get that one we might have to continue our search. That is exactly what this
program does:

. >surname 2 row ; (anxl -—-anx2f)
: first? rot cell+ @c count compare 0= ;
: >next cell+ cell+ >surname ;

.name type space type ; (al nl a2 n2 --)
. >first (al nl x a2 n2 --)
2>r (an x)
if (an x)
dup 2r@ first? (anxf)
if (anx)
drop ." Found " 2r> .name cr
else (an x)
>next 2r> recurse (anxan)
then (--)
else (an x)
drop 2r> .name ." not found" cr
then (--)

: >name -rot 2>r >surname 2r> >first ;

: demo
s" Ritchie" s" Dennis" people >name
s" Moore" s" Chuck" people >name
s" Lovelace" s" Ada" people >name

["] skey= is key= \ set ROW datatype
demo \ run the demo

”>NAME” is a wrapper around this programs most important words ">SURNAME” and
”>FIRST”. ”>SURNAME” simply searches for a given surname in the table and returns its

CHAPTER 10. ADVANCED PROGRAMMING 174

address. ">FIRST” takes over and compares the first name. If it checks out we’re done, if
not it calls ">NEXT”. ”>NEXT"” increments the pointer, so it now points to the next row.
Then it calls ">SURNAME” again, effectively continuing the search. Finally ">FIRST”
calls itself to check the first name again. Depending on the contents of the table, this
process can be repeated several times.

10.17 Interpreters

Those of you who know Forth will be very surprised to see that 4tH doesn’t have a Forth
prompt. Some will be even more surprised to see that 4tH does have an interpreter. It is a
library routine, written in 4tH, that can easily be adapted and expanded. If you can write
4tH and maintain a table, you can use it. The next question you have to ask yourself, is
do you want your interpreter to be case sensitive or not? If it is, "id" will work, but "Id"
or "ID" will not. If you want it to be case sensitive, change the constant "ignorecase" to
"false". Example:

false constant ignorecase \ don’t ignore case
[needs lib/interpret.4th]

ot
;

: id ." This is 4tH" cr ;
Well, that isn’t very hard, is it. Now we add a table to all that:

create wordlist
’Il +|| r _+ ,

n n r
r

, n id" ’ id ,
NULL ,

J— r

Remember to terminate your table with "NULL"! Every entry consists of a string and
an address to your routine. What will happen is that your user enters the string and the
appropriate routine will be called. In this case, your interpreter has three commands: "+",
"." and "id". We’re a hair away from a real interpreter. We just have to assign our table to
the dictionary. These lines do the job:

wordlist to dictionary
refill drop interpret

Now you can compile your application and run it. Enter:
45 12 + .
And it will print:
57
Yes, it’s just as easy as that! If you enter something the interpreter doesn’t recognize it will
try to convert it to a number and throw it on the stack. But you will also see that it exits

after you’ve entered that single line. That is because the interpreter is called just once. If
you change that to:

CHAPTER 10. ADVANCED PROGRAMMING 175
begin refill drop interpret again

It will return with an new prompt. In that case it is wise to add a routine like:
: _quit quit ;

And add it to your interpreter, because otherwise your user will not be able to leave the
application. Note that you have to do all the error-checking. E.g., if your user calls "_+"
without putting sufficient items on the stack, 4tH will exit with an error. Of course, you can
catch any exceptions. ZINTERPRET” has a builtin word, ”NotFound”, that deals with any
unrecognized strings. You can define your own if you want to. The only thing you have to
do is to write a word which takes an address/count string and returns nothing, e.g.:

:noname 2drop ." I don’t understand this!"™ cr ; is NotFound
Or more elaborate:

:noname ." I don’t what '" type ." ' means!" cr ; is NotFound
You could even integrate it with the exception trapping, if you defined one:

1 constant #UndefName

:noname #UndefName throw ; is NotFound

When a word is not found, a user exception is thrown. This example is taken from "dc.4th":

: de
begin \ main interpretation loop
" OK" cr \ print prompt
refill drop \ get input from use
["] interpret \ interpret it
catch dup \ catch any errors
if \ if one occurred
ShowMessage \ show a message
else \ otherwise
drop \ drop the throw code
then
again \ loop back

You can still see the basic structure, but this one is much more advanced. You can also
remove the code from the interpreter that decodes numbers. In that case, if a word is not
found in the "dictionary" table it will exit immediately and report an error:

true constant ignorenumbers

Don’t let anybody ever tell you you can’t make interactive applications with 4tH. As you
have seen, you can with very little effort.

CHAPTER 10. ADVANCED PROGRAMMING 176
10.18 Adding your own library

This is a lot easier than you might think! As a matter of fact, almost any program can be
turned into a specialized library. A well-written program contains a lot of definitions and
only one executable word. Take that word away and you’ve got a library!

A library may contain word defintions, variables, constants, almost anything you like. And
a program that includes that library will have all these definitions at its disposal. As a matter
of fact, the resulting program will behave like you entered the contents of the entire library
file at the position of the '[NEEDS’ directive, e.g. these are the contents of “null.4th™:

-1 constant NULL
When it is included in this file:

\ This is a sample table using NULL
[needs lib/null.4th]

create sample

," First entry"
," Second entry"
," Third entry"
NULL ,

It will compile to the same code as this:

\ This is a sample table using NULL
-1 constant NULL

create sample

," First entry"
," Second entry"
;" Third entry"
NULL ,

So it is not a good idea to make your library files too big, since there will be a lot of
superfluous code included in the compilant which 4tH will not dispose of automatically.

You can nest '[NEEDS’ directives, so one library file may include other library files. This
helps to prevent duplicate code, which can be a serious maintenance problem. You can nest
them as deep as you want, available memory being the only restriction.

However, when nesting inclusions you always have the problem of multiple inclusions.
Don’t think that all 4tH users know by heart which library files calls which. Multiple
inclusions will lead to errors, unless you take precautions. We have ’[DEFINED]’ and
’[UNDEFINEDYT’ to prevent that:

[UNDEFINED] 2drop [IF]
: 2drop drop drop ;

: 2dup over over ;

: 2swap rot >r rot r> ;
[THEN]

CHAPTER 10. ADVANCED PROGRAMMING 177

If you have included this file before, ’2DROP’ is already defined, so in fact all definitions
are skipped when the file is included for the second time. Of course, it will take up some
extra memory, but at least it won’t generate any errors.

If you want to port your library file, it might be a good idea to hide specific 4tH construc-
tions, e.g.:

[DEFINED] 4TH# [IF] (an--)
: string! chars + 0 swap c! ;
[THEN] \ make an ASCIIZ string

[UNDEFINED] 4TH# [IF]
: string! swap 1- ¢! ; (an--)
[THEN] \ make a counted string

Since ’4TH#’ is a 4tH specific constant, it will not be defined in other Forth compilers.
This way the compiler will automatically select the correct definition.

Where you place your library files is up to you. You can add them to the library files that
come with 4tH, you can put them in another directory, whatever pleases you.

10.19 Adding templates

When you include a library file you add some words to your program. When you include a
template you add some words to an existing program. That is the major difference between
a library file and a template file. We’ve included a template with 4tH which allows you
to create conversion program pretty quickly. The template is called "convert.4th” and it
allows you to create a conversion program by defining just three words.

A standard conversion program takes an input file and creates an output file in a different
format. When it can’t open a file it will issue an error message, €.g.

Cant open input.txt

When you don’t supply an input file and an output file, it will issue an error message e.g.:
Usage: myconversion input output

And of course, it will read and process the input file. And that’s all you have to tell 4tH:

e The usage message
e How to read the file

e How to process the file

So, let’s create a program that will convert a block file to a regular text file. How do we do
that? First of all we’ve got to issue a usage message, like:

Usage: blk2txt blockfile textfile

Well, that is easy. If it comes to that we’ve got to abort the program, so this will do:

CHAPTER 10. ADVANCED PROGRAMMING 178
: Usage abort" Usage: blk2txt blockfile textfile"

Then we’ve got to read the file. A block file contains lines of 64 characters, always. So,
we’ve got to create a buffer and read 64 characters. This will do:

64 string buffer
: Read-file buffer 64 accept ;

Finally, we’ve got to write the output file. Adding a ’CR’ after typing the line will do, but
we don’t want any trailing spaces, so we need to strip those trailing spaces:

: Process buffer 64 -trailing type cr ;
Now we need to include the template and we’re done:
[needs lib/convert.4th]

Wow! Do you know how much coding we need to do when we try to do this in C? This
source code takes less than 256 bytes! Compile it and we’re done! So how does it work?
Well, the template expects us to define ”Usage”, "Read-file” and "Process”. If you don’t it
will abort compilation:

\ Has Usage been defined? If not, abort!
[DEFINED] Usage [NOT] [IF]
[ABORT] [THEN]

\ Has Read-File been defined?
[DEFINED] Read-File [NOT] [IF]
[ABORT] [THEN]

\ Has Process been defined?
[DEFINED] Process [NOT] [IF]
[ABORT] [THEN]

Furthermore, you can optionally define “PreProcess” and PostProcess” if you need any-
thing at the top of the file or the bottom of the file:

: ProcessFile \ process the input file line by line
[DEFINED] PreProcess [IF]
PreProcess \ do any preprocessing
[THEN]
begin
Read-file \ read the file
while
Process \ process the line or buffer
repeat
[DEFINED] PostProcess [IF]
PostProcess \ do any postprocessing

[THEN]

r

CHAPTER 10. ADVANCED PROGRAMMING 179

If you don’t define it, it won’t include it. You can use such templates for many different
programs, e.g. this will convert a Unix text file to an MS-DOS text file:

: Usage abort" Usage: udc infile outfile " ;
: Read-file refill ;
: Process (0 parse-word type 13 emit 10 emit ;

You can make them as sophisticated or as simple as you like. You can create other words
as well, as long as those three words have been defined. Templates can be handled like any
other library file. You can place them where you want, they can hold anything you want.
Amaze your collegues by writing programs in a fraction of the time they should need!

10.20 Private declarations

Sometimes you want to hide some definitions from other programmers. This is especially
true when you’re writing libraries or templates. The Application Programmers Interface
must be public of course, but you don’t want anyone else to tinker with the internals of
your library. And there is the problem of cluttering your name space.

Relax, 4tH has a way to get rid of these internal words. It’s easy, just tell 4tH to hide them:

VARIABLE #emits \ private
: SHOW emit 1 #emits +! ; \ public
: NL CR 0 #emits ! ; \ public

hide #emits

After that the name "#EMITS" is no longer recognized and can be reused if you want to,
e.g. this is completely valid:

: dummy ;
hide dummy
: dummy ." I am no longer a dummy!" cr ;

As a matter of fact, the previous declaration of "DUMMY" has been turned into a :NON-
AME’ declaration by the use of "HIDE’.

10.21 Aliases

Sometimes you want to make an alias for a word. Of course you can embed the word you
want to alias in a new definition:

: noop ;
: nop noop ;

Although this approach works perfectly under all circumstances it has its disadvantages,
because calling a word is relatively slow. Unless you’re trying to make an alias for an
internal word, you’d better use an ALIAS ’:

CHAPTER 10. ADVANCED PROGRAMMING 180

! noop ;
" noop alias nop

This is completely equivalent to:

defer nop
! noop ;
" noop is nop

Although the vector takes up a little space, it will save you from most of the calling over-
head. Since you can only alias self-defined executable words, ’ALIAS’ is quite limited.
>AKA’ does not have that disadvantage:

: noop ;
aka noop nop

Both words are now completely equivalent and compile to exactly the same code. Even
better, you can use ’AKA’ with every self-defined word, including variables, vectors, files,
values, fields and constants. ’AKA’ is also known as “’also known as”.

10.22 Changing behaviour of data

One of the most ingenious things Forth can do, is change the behaviour of data at run-
time. With 4tH, you cannot do this for an entire datatype, but you can do it for individual
"VARIABLE’s, ’CREATE’s, ’STRING’s, ’ARRAY’s and *CONSTANT’s. Just use:

:THIS <name> DOES> <definition> ;

Where <name> is a previously defined "VARIABLE’, "STRING’, etc. The "DOES>" word
is optional. The definition will behave as if the "VARIABLE’, etc. has just been thrown on
the stack, e.g. to make a "VARIABLE’ behave as a ’CONSTANT ’you define:

variable me

10 me !
:this me does> @ ;

The body of the definition will behave as if it said:
me @

Which boils down to a (rather slow) constant. You cannot change the contents of the
variable anymore if you haven’t taken precautions, because there is no way to address it.
Here is another, more elaborate example:

create life \ create an array of string constants
;" This is my life!"
;" This is your life!"

CHAPTER 10. ADVANCED PROGRAMMING 181

0 constant my \ create two constants
1 constant your \ to address the elements

\ now change the behaviour of LIFE
:this life does> swap th €c count type cr ;

my life \ use it!
your life

At runtime, this will print:

This is my life!
This is your life!

Wording has always been very important to Forth. Using this technique, you can make

your programs even more readable.

10.23 Multidimensional arrays

We’ve seen two dimensional arrays with ’ARRAY’ and *STRING’, but what about multi-
dimensional arrays. Well, it’s the same thing all over again. C doesn’t actually have multi-
dimensional arrays either. When you define one, just a chunk of memory is allocated.

In 4tH you can do the same thing, but now you have to do it yourself. E.g. when you want
to define a matrix of cells of 4 rows by 5 elements, you have to multiply those and allocate
an array of that size:

4 5 [*] array my_array

But what if you want to reference the fourth element of the third row? You cannot write
something like:

2 3 my_array @

That’s right. But you can change the behaviour of "MY_ARRAY” accordingly:

:this my_array (nl n2 -- a)
does>
rot 5 * \ calculate row offset
rot + \ calculate element offset
cells \ calculate number of cells
+ \ add to address of my_array

This word calculates the correct offset for you. Note that the third row is row number two
(since we start counting from 0) and the fourth element is element number three:

2 3 my_array @

You can also use "MY_ARRAY" to initialize an array, since it simply calculates the correct
address for you:

CHAPTER 10. ADVANCED PROGRAMMING 182

52 3 my_array ! \ sets 3rd row 4th element to 5

You can add more dimensions if you want. This works basically the same way: create an
array of a size that equals the products of its dimensions and design a word that calculates
the correct address.

10.24 Binary string constants

A binary string constant is an unterminated string that doesn’t necessarily contain charac-
ters. Creating binary string constants is easy. Just compile them by their ASCII value into
the String Segment with *C,’:

char H ¢, char i ¢, char ! ¢, 0 ¢,

The fun of it all is that 4tH doesn’t allow you to access the String Segment directly, so
you can never retrieve them. You need ’OFFSET’ to define a word which does all the hard
work for you. At runtime it takes an index and leaves the ASCII value of the character in
question on the stack. ’OFFSET” is used just before you compile the ASCII values:

offset greet char H ¢, char i ¢, char ! ¢, 0 ¢,

Note that you have to terminate a binary string constant manually if you need to, although
it is perfectly legal to create binary string constants with no termination at all. Retrieving
characters is easy. This will print "Hi!”:

0 greet emit
1 greet emit
2 greet emit cr

And so will this:
0 begin \ setup index
dup greet dup \ retrieve character
while \ if not terminated
emit 1+ \ emit and increase index
repeat drop drop \ clear stack

You can use binary string constants for compact tables, bitstrings or any other raw data as
long as each element doesn’t exceed the size of a single character.

10.25 Records and structures

The easiest way is to allocate a structure in the Character Segment. Just define the structure
like this:

struct
32 +field Name
64 +field Address
32 +field City
12 +field Age
end-struct /Person

CHAPTER 10. ADVANCED PROGRAMMING 183

This might be a familiar example to you. We’ll store information on a single person in
this structure. Now we got the fields, the length of the fields and the length of the entire
structure, stored in ”/Person”. Both the fields and the entire structure are nothing more than
a set of constants, e.g. he offset of the field "Name” is stored in a CONSTANT named
”Name”. However, we still haven’t allocated any memory. We can allocate room for the
structure we’ve just defined by just using the word ’STRING’. Note that you can also create
a cell-based structure. Then you need the word ’ARRAY’ to allocate the memory required.

/Person string Person

Now we can define a word which initializes the fields:

InitRecord \ initialize fields
s" Hans Bezemer" Person -> Name place
s" Lagendijk 79" Person -> Address place
s" Den Helder" Person -> City place
s" 44" Person -> Age place

Of course, you can also use *’ACCEPT’ to enter the contents of the fields. Fields act like
ordinary strings. Note that numbers are stored as strings as well. This is not too much of a
problem since 'NUMBER’ can convert them back to numbers anyway.

This is a very simple use of structures. You can also use structures within structures:

struct
64 +field Address
32 +field City
end-struct /Location

struct

32 +field Name

/Location field Location
end-struct /Person

/Person string Person

s" Delft" Person -> Location -> City place

If you want to make an array of structures, that can be done as well:

struct \ create structure
32 +field Name
64 +field Address
32 +field City
12 +field Age
end-struct /Person

32 constant #Person \ size of array of structs
\ now allocate the room
#Person /Person [*] string Persons
\ make it behave properly

CHAPTER 10. ADVANCED PROGRAMMING 184

:this Persons does> swap /Person * + ;
\ initialize the first record

s" Hans Bezemer" (0 Persons -> Name place
s" Lagendijk 79" 0 Persons -> Address place
s" Den Helder" 0 Persons -> City place
s" 44" 0 Persons -> Age place

You can also extend an already existing structure:

struct \ create structure
32 +field Name
64 +field Address
32 +field City
12 +field Age
end-struct /Person
\ now extend the structure
/Person
32 +field Job
16 +field Emp-number
end-struct /Employee

You now got two different structures, ”/Person” and ’/Employee”, that share the first four
fields. Well, if that isn’t a complete implementation, I don’t know what is..

10.26 Fixed point calculation

We already learned that if we can’t calculate it in dollars, we can calculate it in cents. And
still present the result in dollars using pictured numeric output:

: currency <# # # [char] . hold #s [char] $ hold #> type cr ;
In this case, this:

200012 currency
Will print this:

$2000.12
Well, that may be a relief for the bookkeepers, but what about us scientists? You can do the
very same trick. We have converted some Forth code for you that gives you very accurate
results. You can use routines like SIN, COS and SQRT. A small example:

[needs lib/math.4th]

45 sin . cr
You will get "7071", because the result is multiplied by 10000. You can correct this the
same way you did with the dollars: just print the number in the right format. You can also
use a delightful little library created by Leo Brodie called "fraction.4th”. This library allows

you to do arithmetic in the range of -13.1072 and 13.1071 with a precision of 0.0001! It
seamlessly integrates with the “math.4th” library:

CHAPTER 10. ADVANCED PROGRAMMING 185

[needs lib/math.4th]
[needs lib/fraction.4th]

45 sin s>v v. cr
This one will actually print:
0.7071

Of course, you can also use it with other math words, as long as they are properly scaled.
The scaling constant is called *10K’ and is available from “constant.4th”. The nice thing
about fractions is that you can do all basic math (within its range, of course) without both-
ering about the decimal point. To convert a fixed point number to a fraction, you have to
multiply it by *10K’, which is 10,000 and call ’S>V’, e.g. in order to convert 0.7071’ to a
fraction you need to do this:

7071 s>v
You can also define a fraction yourself, e.g. this converts two-thirds to a fraction:
23 v/
You can add or subtract fractions, e.g.:
7071 s>v 2 3 v/ - v. cr
This is equivalent to:
PRINT 0.7071 - 0.6666
You can multiply or divide fractions, e.g.:
7071 s>v 2 3 v/ v* v. cr
This is equivalent to:
PRINT 0.7071 * 0.6666

Since a fraction is still a single-cell number, you can manipulate the stack in the usual way.
In some cases you can even mix cells and fractions, as the following table will show you:

With the word "V>S’ you can convert a fraction back to a 10K’ scaled fixed point number.
You can print a fraction using the word V..

Another example is SQRT from “math.4th”. If you enter a number of which the root is an
integer, you will get a correct answer. You don’t even need a special formatting routine. If
you enter any other number, it will return only the integer part. You can fix this by scaling
the number.

However, scaling it by 10 will get you nowhere, since "3" is the square root of "9", but "30"
is not the square root of "90". In that case, we have to square the scale itself; we need 100,
10,000 or even 1,000,000 to get a correct answer. In order to retrieve the next digit of the
square root of "650", we have to multiply it by 100, which is the square of 10:

CHAPTER 10. ADVANCED PROGRAMMING 186

| 20S | TOS | Word | Result

fraction | fraction V* fraction
fraction cell V* cell
cell fraction V* cell
fraction | fraction v/ fraction
cell cell v/ fraction
cell fraction v/ cell
fraction | fraction + fraction
fraction | fraction - fraction

Table 10.2: Fraction words

[needs lib/math.4th]

.fp <# # [char] . hold #S #> type cr ;
650 100 * sgrt .fp

Which will print:
25.4

To acquire greater precision we have to scale it up even further, like 10,000. This will
show us, that "25.49" brings us even closer to the correct answer. If you want to use the
“fraction.4th” library, you will have to scale it to the square of *10K’, which means you’re
restricted to numbers upto 721.475”:

include lib/math.4th
include lib/fraction.4th

10K 10K [*] constant 100M

21 100M * sqgrt s>v v. cr

All these words and more are included in the library file “math.4th”. You might not find the
word you actually need, because we are not much of a mathematician. When we encounter
new routines they will be added to 4tH. We would appreciate your input!

10.27 Double numbers

C’mon, indulge me, run this program:
max-n . cr

You will probably see some fairly large number displayed on your screen. What is it? Well,
it is the largest number that can fit in a cell. Larger numbers and 4tH will start to behave
erratically:

max-n 1+ . cr

CHAPTER 10. ADVANCED PROGRAMMING 187

Still, it is large enough to do the accounting for a reasonably sized enterprise. But it
hasn’t been always like that. Early Forths could barely handle the accounting of an average
schoolboy. In order to get some real work done they had to expand the range somehow.
And if one cell isn’t enough you simply take two cells. That is what double numbers are
all about: they are numbers that are composed of two cells.

The problem is that Forths operators aren’t overloaded. If you try to add up two double
numbers with ’+’ you will end up with one double number and the addition of the two
parts of the first double number. So in order to add up two double numbers, a separate
word had to be defined. If you need a special word for addition, you will also need one for
multiplication, subtraction, division and negation.

It is no secret that Charles Moore, the inventor of Forth, thought that double numbers had
become superfluous after the introduction of modern processors and modern Forth compil-
ers. That is one of the reasons that 4tH doesn’t have a native double word implementation.
But should you need this vastly expanded range for one reason or another 4tH allows you
to enter the murky world of double, unsigned and mixed numbers.

So, how does it work. First of all, if you need a full implementation you have to include
these three libraries:

include lib/anscore.4th \ double storage words
include lib/todbl.4th \ double number input
include lib/dbldot.4th \ double number output

Then you probably need some variables. But hey, if double numbers take up two cells, you
can’t use ordinary variables. That’s true. You will need small arrays:

2 array dvarl \ double variable one
2 array dvar2 \ double variable two

And here comes the next problem. How do you enter double numbers? Depending on the
size of the number, you can use two approaches. The easiest one is to convert a single
number to a double number with ”U>D”. The only catch is this only works for positive
numbers. If you want to enter a negative number, you have to negate it afterwards:

500 u>d 60000 u>d d+ \ add 500 and 60000
2dup d. cr \ print the double number
dvarl 2! \ store it in variable one

Yes, every single operation has a double counterpart:

| SINGLE | DOUBLE |

+ d+
negate dnegate
. d.

2/ d2/
max dmax
min dmin
dup 2dup
@ 2@

! 2!

Table 10.3: Examples of single and double number counterparts

CHAPTER 10. ADVANCED PROGRAMMING 188

But what if you want to enter a very large number right away? In that case you will
have to convert a string to a double number with ">NUMBER?”. This one is no better
than ”U>D” where negative numbers are concerned since it only takes positive numbers.
Second, ”>NUMBER” adds the converted number to a double number already on the stack.
”0.” puts a double number zero for you on the stack.

0. s" 5000000000"™ >number \ convert a string to double
2drop 2dup d. cr \ print the double number
dvarl 2@ dmax dvar2 2! \ save the largest in variable two

Finally, when you have done all you needed to do and you’re left with a number that is
small enough you can convert it back to a single number with "D>U". Note this will only
work for positive numbers:

dvar2 2@ dvarl 2@ d- \ subtract both double variables
2dup d. cr \ print the double number
d2/ d2/ d>u . cr \ divide by 4 and convert to unsigned

Rule of the thumb is: stay away from double numbers if you can. It is slow, cumbersome
and error-prone. If you can’t, goodnight and good luck!

10.28 Complex control structures

Sometimes, the normal control structures of 4tH are not enough. Take this implementation
of -TRAILING’:

: —trailing (anl —— a n2)
begin
dup \ quit if length is zero
while
2dup 1- chars + c@ bl <> \ is it still a space?
if exit else 1- then \ if not, quit
repeat \ if so, decrement length

No one will tell you that this is elegant. You have to perform a test and quit the word. And
this is still palatable. Imagine you have to test several conditions like this! It will become
horrible pretty soon! Therefore, 4tH supports extended control structures. We’ve seen the
basic control structures in sections 6.21, 6.22 and 6.23. Now we’re expanding those into:

BEGIN .. WHILE .. WHILE .. AGAIN | REPEAT
BEGIN .. WHILE .. WHILE .. UNTIL

Yes, that’s right: "REPEAT’ and "AGAIN’ are actually aliases. But what can we do with
them? Well, take a look at our modified *-TRAILING’ word:

2There is also a single number ">NUMBER” word. In that case you can select the double number version by
using its alias ">DOUBLE”.

CHAPTER 10. ADVANCED PROGRAMMING 189

-trailing (anl —— a n2)

begin
dup

while \ quit if length is zero
2dup 1- chars + c@ bl =

while \ quit if it is not a space
1- \ decrement length

repeat

You have to admit that the latter version is much more elegant and readable.

10.29 Sorting

Yes, 4tH can do that too. You just have to include ’gsort.4th’ to make it all possible. It
works pretty much like the sort routines you’ve seen in C, which means you have to devise
a word to compare two values. Note that ’qsort.4th’ can only sort integer arrays. Setting it
up is pretty simple. First you have to include it:

include lib/gsort.4th

Then you have to create a word that returns a true flag when the second value on the stack
is smaller than the top of the stack. In this example we will just compare two integers, so
that is pretty easy:

: MyPrecedes < ;

*gsort.4th’ creates a deferred word? called ”PRECEDES”. Now we have to assign our word
to "PRECEDES”, so that it is executed when "PRECEDES” is called:

" MyPrecedes is Precedes
That’s it! We’re ready to rock ’n roll now. Let’s set up a simple testing environment:

10 constant #elements
#elements array elements

InitElements #elements 0 do random elements i th ! loop ;
ShowElements #elements 0 do elements i th @ . loop cr ;

This creates an array of ten elements, which is filled with random values by "InitElements”.
”ShowElements” will show on screen what is stored there. The actual sort is straightfor-
ward: tell ’SORT” which array and how many elements there are to sort and you’re done:

SortElements elements #elements sort ;

Now let’s put it all together:

3See section 10.11.

CHAPTER 10. ADVANCED PROGRAMMING 190

InitElements
ShowElements
SortElements
ShowElements

It will initialize the array, show its contents, sort it and show it again. It will output some-
thing like this:

12717 6028 1389 31870 14234 15884 31062 14788 18186 149
149 1389 6028 12717 14234 14788 15884 18186 31062 31870

And what if these were string addresses? Well, ”SORT” would have sorted them too, from
the lowest addresses up to the highest addresses, but that’s probably not what you meant.
You wanted to sort the actual strings, not just their addresses. Can 4tH do that too? Sure,
you just got to create another "PRECEDES” word. Something like this:

: SPrecedes >R COUNT R> COUNT COMPARE 0< ;

This will take the two values and treat them as strings. Now the actual strings are sorted,
not just the addresses itself. Note that the strings themselves will not move in memory. The
pointers move, the strings themselves don’t.

10.30 Tokenizing strings

Sometimes you want to split up a string in several different parts. This is called “’tokeniz-
ing”. Doing it with 4tH is (as usual ;-) quite easy. Just include "tokenize.4th’. Now you
got several words to get what you want. "tokenize.4th’ creates a deferred word* called "IS-
TYPE”. It decides whether a character is of a certain type. In this example, we just want to
know whether it is a lowercase ’a’:

include lib/tokenize.4th
:noname [char] a = ; 1is is-type

Now it’s time to play ball:
s" 01234aBcDe(01234" scan type cr

”SCAN” will now skip all characters unless it is an ’a’. When it is found, it stops and
returns the remainder of the string:

aBcDe(01234

Yes, "SCAN? starts at the beginning of the string. But there is also a word that starts at the
end of the string:

s" 01234aBcDe(01234" -scan type cr

4See section 10.11.

CHAPTER 10. ADVANCED PROGRAMMING 191

It returns a different result too:
01234a

And what about the rest of the string? Well, that is discarded. But if you need it, there is
also a word that just splits up the string:

s" 01234aBcDe(01234" split type cr type cr
So, ”SPLIT” returns two strings:

01234
aBcDe01234

And of course, he’s got a little brother that works the other way around:
s" 01234aBcDe(01234" -split type cr type cr
”-SPLIT” returns two strings too:

01234a
BcDe(01234

That was quite easy. But what if you want to find the first non-digit? That’s what we got
”SKIP” for! ”SKIP” skips all characters of a certain kind. We’ve already seen how we can
distinguish characters in section 7.25. So in this case we just got to include ’istype.4th’ and

assign ”IS-DIGIT” to ”IS-TYPE”:

include lib/tokenize.4th
include lib/istype.4th

" is-digit is is-type

s" 01234aBcDe(01234" skip type cr
”SKIP” returns a single string:

aBcDe(01234

And he has a counterpart too:

include lib/tokenize.4th
include lib/istype.4th

" is-digit is is-type
s" 01234aBcDe(01234" -skip type cr
May be this result will surprise you, although it is completely correct:

01234aBcDhe

What exactly did we ask for? We wanted the first non-digit, starting from the end. ’e’ is
the first non-digit, so ”-SKIP” is completely correct.

CHAPTER 10. ADVANCED PROGRAMMING 192
10.31 Regular expressions

Well, we don’t offer full regular expressions (yet), but you can use wildcards for basic
pattern matching. First you have to include it:

include lib/wildcard.4th

You’ve probably used wildcards before. It is very easy. A 7*” stands for zero or more
characters and a ”’?” stands for a single character. E.g. if you’re looking for a line that
begins with a date in the 21st century, then the word "INVOICE” and finally ends with a
name, you could try this:

s" 20??-??-?? == INVOICE == *" mystring count wild-match

"WILD-MATCH?” returns true if the string matches and false if the string doesn’t match,
which is different from "COMPARE”. Both strings are consumed, so save their address/count
pair if you need them later on. Note that "WILD-MATCH?” is case sensitive, so if you need
a case insensitive comparison you will have to convert them first.

Finally, "WILD-MATCH?” is faster than regular expressions, but also less precise. E.g.
”ar?y” will not only return ”grey” and “gray”, but also ”groy”; “reg*exp*” will not only
return “’regular expressions”, but also “’registered express mail”.

10.32 Running 4tH programs from the Unix shell

If you’re using Unix (which we highly recommend), you can run 4tH programs right from
the Unix shell. All you have to do is to add one single line at the top:

#! /usr/lbin/4th cxq
." Hello world!" cr

It indicates the way you normally compile and run a 4tH program, but without the filename,
e.g.:

/usr/lbin/4th cxqg hello.4th

In this case, you’re using the classic 4tH compiler, which is located in the /usr/lbin directory.
Note that you can add options if you want. The *cxq’ options tell the compiler to silently
compile and execute a program.

Note this trick only works with 4tH sources, not compiled programs. You also have to flag
the 4tH source as ’executable’. You can do that by issuing this command:

chmod 555 hello.4th
Now you can simply enter:

hello.4th
at the Unix prompt and your program will be compiled and executed. Don’t worry about
compromising the portability of your program. It will still compile and run happily under

other Operating Systems, since '#!” is an alias for ’\’. It only has a special meaning to the
Unix shell.

CHAPTER 10. ADVANCED PROGRAMMING 193
10.33 Embedding 4tH programs in a batch file

If you’re running a Microsoft Operating System like Windows or DOS?, you can embed
4tH source code in an ordinary batch file®. All you have to do is to make the shell ignore
the 4tH code, e.g.:

@goto exec
." Hello world!" cr

(

rexec
@4th cxqg %0.bat %1 %2 %3 %4 %5 %6 %7 %8 %9
@rem)

Now save your file as JEXAMPLE.BAT” in the current working directory’ and run it:
example

Don’t add the ”.BAT” extension or the whole thing won’t work. 4tH will now automatically
pick up the batch file and execute it. Well, how does it work?

It’s simple: the shell silently jumps to the "EXEC” label and executes 4tH. 4tH will compile
the batch file. It ignores the line that starts with *@GOTO’, since *@GOTO’ is an alias
for ’\’. It compiles anything up to the opening parenthesis, since that is the start of a
multiline comment. The shell on its turn ignores the closing parenthesis, since that has
been commented out by ”@REM”.

10.34 This is the end

This is the end of it. If you mastered all we have written about 4tH, you may be just as
proficient as we are. Or even better. In the meanwhile you may even have acquired a taste
for this strange, but elegant language. If you do, it may be time to step up to Forth, since
4tH does have it limitations. This is in no way an obligation. If you feel comfortable with
4tH, please do stick with it!

If you need any help, you can contact us by sending an email to:
hansoft@bigfoot.com

Note that we do appreciate any input, so if you’ve written a state of the art application in
4tH, used 4tH in some special way or do have any comments or suggestions on 4tH, we’d
like to hear from you! We do also have a web-site:

http://hansoft.come.to

You will find there lots of documentation and news on 4tH. We’d like to thank you for
putting so much effort in 4tH. We tried to be of assistance and we hope we did it well!

SDOS version 3.3 or higher.

5This method was taken from CSL, the ”C Scripting Language”. You can learn more about CSL at
“http://csl.sourceforge.net”.

7If you want to store it permanently in another directory, you may have to add additional path information.

Part I11

Reference guide

194

Chapter 11

Glossary

This glossary contains all of the word definitions used in version 3.5¢ of 4tH. The defini-
tions are presented in order of their ASCII sort. Availability of the word in the appropriate
ANS-Forth wordset is listed. This does not mean any conformance to the ANS-Forth defi-
nition.

PRONUNCIATION: Natural-language pronunciation if it differs from English.

INCLUDE: Following library file provides this word.

COMPILES TO: Describes the transformation of the word to tokens through all passes.
Compiler directives will lack this section.

SYNTAX: Describes definition characteristics if non-conformance should lead to
a compilation error.

<char> | Character

<string> | String constant, delimited by spaces

<literal> | Expression which compiles to LITERAL (n)
<name> | String of characters, stored in the symboltable
<space> | Space character

<word> | Any valid 4tH word.

COMPILER: Describes special actions the compiler takes when compiling this word.

STACK EFFECTS: Describes the action of the tokens on the parameter stack at runtime.
The symbols indicate the order in which input parameters have been
placed on the stack. Two dashes indicate the execution point. Any
parameters left on the stack are listed. In this notation, the top of the
stack is to the right.

n 32 bits signed number
c 8 bits character

f boolean flag

fam | file access method

h file handle (stream)

d double number (2 cells)

sp stack pointer Stack Area

X address of a cell Variable Area
addr | address of a character Character Segment
xt execution token Code Segment

195

CHAPTER 11. GLOSSARY 196

FORTH: Describes the deviation of 4tH from ANS-Forth and gives suggestions
for porting Forth programs.

CHAPTER 11. GLOSSARY 197

! CORE
PRONUNCIATION: store
COMPILES TO: 1(0)

STACK EFFECTS: nXxX—

Stores n in the variable at address x.

CORE

PRONUNCIATION: number-sign

COMPILES TO: #(0)

STACK EFFECTS: nl —n2

FoORTH: In Forth a double number is required.

Generate from n1 the next ASCII character which is placed in an output string, stored in

PAD. Result n2 is the quotient after the division by BASE, and is remained for further
processing. Used between <# and #>.

#! 4TH

SYNTAX: #!<space><string>

The remainder of the line is discarded. This word is used to start a 4tH source program
from a Unix type shell. An alias for \.

#> CORE

PRONUNCIATION: number-sign-greater

COMPILES TO: #>(0)

STACK EFFECTS: nl — addr n2

FoORTH: In Forth a double number is required.

Terminates numeric output conversion by dropping nl, leaving the address in PAD and
character count n2 suitable for TYPE.

#S CORE
PRONUNCIATION: number-sign-s
COMPILES TO: #S (0)

STACK EFFECTS: nl —n2

FoORTH: In Forth a double number is required.

CHAPTER 11. GLOSSARY 198

Generates ASCII text in PAD by the use of # until a zero number n2 results. Used between
<# and #>.

#TIB CORE EXT
PRONUNCIATION: number-t-i-b
INCLUDE: obsolete.4th
STACK EFFECTS: —X

X is the address of a cell containing the number of characters in the terminal input buffer
(see /TIB).

’ CORE

PRONUNCIATION: tick

COMPILES TO: LITERAL (<argument of symbol>)

SYNTAX: ’<space><name>

STACK EFFECTS: —xIxtln

FORTH: In Forth you can determine the address of variables, constants, etc.

In 4tH the contents of the symboltable entry is returned. Of course
the token addresses of built-in primitives cannot be determined either.
E.g. use

++ ;T _+
instead of
o+

Compile the value contents of the symboltable entry identified as symbol <name> as a
literal.

(CORE FILE
PRONUNCIATION: paren

SYNTAX: (<space><string>)

Ignore a comment that will be delimited by a right parenthesis. May occur inside or outside
a colon-definition. A blank after the leading parenthesis is required.

(ERROR) 4TH
COMPILES TO: LITERAL (<largest negative integer>)

STACK EFFECTS: —n

CHAPTER 11. GLOSSARY

199

Returns 4tHs internal error-flag. This number cannot be printed. Usually -231.

)

COMPILES TO:

STACK EFFECTS:

FORTH:

4TH

EQO (0)

OBRANCH (<address of THROW>)
LITERAL (<M4ASSERT>)
THROW (0)

f—

Similar constructions are available in GForth and Win32Forth.

If flag f is FALSE, the program will terminate with an error. Its compilation is dependant
on the presence of [ASSERT] (see: [ASSERT] and ASSERTY().

*

PRONUNCIATION:
COMPILES TO:

STACK EFFECTS:

CORE
star

*(0)

nl n2 —n3

Leave the product n3 of two numbers nl and n2.

*/
PRONUNCIATION:
COMPILES TO:

STACK EFFECTS:

Leave the ratio n4 =

*MOD
PRONUNCIATION:

COMPILES TO:

STACK EFFECTS:

CORE
star-slash
*/(0)

nl n2n3 —n4

nl*n2/n3.

CORE
star-slash-mod
>R (0)

*(0)

R> (0)

/MOD (0)

nl n2n3 —n4 n5

CHAPTER 11. GLOSSARY 200

Leave the quotient n5 and remainder n4 of the operation n1*n2/n3.

+ CORE
PRONUNCIATION: plus
COMPILES TO: + (0)

STACK EFFECTS: nl n2—n3

Leave the sum n3 of n1+n2.

+! CORE
PRONUNCIATION: plus-store
COMPILES TO: +! (0)

STACK EFFECTS: nX—

Add n to the value in variable at address x.

+CONSTANT 4TH

SYNTAX: <literal><space>+CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for +CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

A defining word used to create word <name>. When <name> is later executed, it will add
the value of <literal> on the top of the stack.

+FIELD FACILITY EXT

SYNTAX: STRUCT<space><literal><space>+FIELD<space><name><space>END-
STRUCT<space><name>

COMPILER: Take two previous compiled literals. The last literal is added to the

first and recompiled. The first literal is the value of a named +CON-
STANT. The instruction pointer does not change.

Create a field for STRUCTURE implementations. The created fieldname is an +CON-
STANT that memorizes the current offset (see: + FIELD, STRUCT, END-STRUCT).

+LOOP CORE
PRONUNCIATION: plus-loop

COMPILES TO: +LOOP (<address of matching DO token>)

CHAPTER 11. GLOSSARY 201

SYNTAX: DO<space>..<space>+LOOP

STACK EFFECTS: n—

Used in the form DO .. n1 +LOOP. At runtime, +LOOP selectively controls branching back
to the corresponding DO based on nl, the loop index and the loop limit. The increment nl
is added to the index and the total compared to the limit. The branch back to DO occurs
until the new index is equal to or greater than the limit (n > 0), or until the new index is less
than the limit (n < 0). Upon exiting the loop, the parameters are discarded and execution
continues ahead.

+PLACE COMUS

COMPILES TO: COUNT (0)
+ (0)
PLACE (0)

STACK EFFECTS: addrl n addr2 —

Copies the string at address addr1 with count n to address addr2.

’ CORE

PRONUNCIATION: comma

COMPILES TO: , (<literal>)

SYNTAX: <literal><space>,

COMPILER: The previously compiled literal is changed into a NOOP instruction.

The instruction pointer is not incremented.

FORTH: Forth pops a value from the stack. This is not possible in 4tH. Instead
the previously compiled literal has its codefield changed to NOOP.

Store the literal into the next available location.

)" COMUS

COMPILES TO: ," (<address of string constant>)

SYNTAX: ,'<space><string>"

FORTH: Compilation characteristics are quite different. 4tH compiles only the

address, Forth compiles the entire string.

Compile the string, delimited by " in the String Segment and leave the offset as the address
of a string constant (see: @C).

, 4TH

CHAPTER 11. GLOSSARY 202

COMPILES TO: ," (<address of string constant>)

SYNTAX: JI<space><string>|

Compile the string, delimited by | in the String Segment and leave the offset as the address
of a string constant (see: @C).

- CORE
PRONUNCIATION: minus
COMPILES TO: -(0)

STACK EFFECTS: nl n2—n3

Leave the difference of nl - n2 in n3.

-> 4TH
COMPILER: The instruction pointer is not incremented. In fact, -> is a dummy.
SYNTAX: <name><space>-><space><name>

Separation between a structure and its member.

-ROT COMUS
COMPILES TO: ROT (0)
ROT (0)

STACK EFFECTS: nln2n3—n3nln2

Rotate top stack item below the next two items.

-TRAILING STRING

PRONUNCIATION: dash-trailing
COMPILES TO: -TRAILING (0)

STACK EFFECTS: addrnl — addrn2

Adjusts the character count nl of a string beginning address to suppress the output of
trailing blanks, i.e. the characters from addr+nl to addr+n2 are blanks.

CORE
PRONUNCIATION: dot

COMPILES TO: .(0)

CHAPTER 11. GLOSSARY 203

STACK EFFECTS: n—

Print a number to the current output device, converted according to the numeric BASE. A
trailing blank follows.

S CORE

PRONUNCIATION: dot-quote

COMPILES TO: ." (<address of string constant>)
SYNTAX: ."<space><string>"

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device.

«(CORE EXT
PRONUNCIATION: dot-paren

COMPILES TO: ." (<address of string constant>)
SYNTAX: .(<space><string>)

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device. An alias for .".

R CORE EXT
PRONUNCIATION: dot-r
COMPILES TO: .R(0)

STACK EFFECTS: nln2—

Print the number n1 right aligned in a field whose width is n2 to the current output device.
No following blank is printed.

S TOOLS
PRONUNCIATION: dot-s
INCLUDE: anstools.4th

STACK EFFECTS: —

Copy and display the values currently on the data stack.

. 4TH

CHAPTER 11. GLOSSARY 204

COMPILES TO: ." (<address of string constant>)

SYNTAX: I<space><string>|

Compiles string in the String Segment with an execution procedure to transmit the string to
the selected output device.

/ CORE
PRONUNCIATION: slash
COMPILES TO: /(0)

STACK EFFECTS: nln2-—n3

Leaves the quotient n3 of n1/n2.

/CELL COMUS
COMPILES TO: LITERAL (<size of a cell>)

STACK EFFECTS: —n

Returns the size of a cell in address units.

/CHAR COMUS
COMPILES TO: LITERAL (<size of char>)

STACK EFFECTS: —n

Returns the size of a character in address units.

/MOD CORE

PRONUNCIATION: slash-mod
COMPILES TO: /MOD (0)

STACK EFFECTS: nln2—n3n4

Leave the remainder n3 and quotient n4 of n1/n2.

/PAD 4TH
COMPILES TO: LITERAL (<size of PAD>)
STACK EFFECTS: —n

FORTH: Equivalent to:

CHAPTER 11. GLOSSARY 205

/PAD S"™ /PAD" ENVIRONMENT? DROP ;

Returns the size of PAD.

/STRING STRING
PRONUNCIATION: slash-string
COMPILES TO: SWAP (0)

OVER (0)

-(0)

>R (0)

+(0)

R> (0)
STACK EFFECTS: addrl nl n2 — addr2 n3

Adjust the character string at addrl by n2 characters. The resulting character string, spec-
ified by addr2 n3 , begins at addrl plus n2 characters and is nl minus n characters long.

/TIB 4TH
COMPILES TO: LITERAL (<size of TIB>)

STACK EFFECTS: —n

Returns the size of the terminal input buffer.

0< CORE
PRONUNCIATION: zero-less
COMPILES TO: 0< (0)
STACK EFFECTS: n—f

Leave a TRUE flag if number n is less than zero (negative), otherwise leave a FALSE flag
in f.

0<> CORE EXT
PRONUNCIATION: zero-not-equals
COMPILES TO: 0<> (0)

STACK EFFECTS: n—f

CHAPTER 11. GLOSSARY 206

Leave a TRUE flag if number n is not equal to zero, otherwise leave a FALSE flag in f.

0= CORE
PRONUNCIATION: zero-equals
COMPILES TO: 0=(0)

STACK EFFECTS: n—f

Leave a TRUE flag if number n is equal to zero, otherwise leave a FALSE flag in f.

0> CORE EXT
PRONUNCIATION: zero-greater
COMPILES TO: 0> (0)

STACK EFFECTS: n—f

Leave a TRUE flag if number n is greater than zero (positive), otherwise leave a FALSE
flag in f.

1+ CORE
PRONUNCIATION: one-plus
COMPILES TO: 1+ (0)

STACK EFFECTS: n— n+l

Increment n by 1.

1- CORE
PRONUNCIATION: one-minus
COMPILES TO: 1+ (0)

STACK EFFECTS: n—n+l

Decrement n by 1.

2! CORE
PRONUNCIATION: two-store
INCLUDE: anscore.4th

STACK EFFECTS: nln2x—

CHAPTER 11. GLOSSARY 207

Store the cell pair nl n2 at x, with n2 at x and n2 at the next consecutive cell.

2% CORE
PRONUNCIATION: two-star
COMPILES TO: 2% (0)

STACK EFFECTS: n—n*2

Multiply n by 2. Performs a left shift.

2/ CORE
PRONUNCIATION: two-slash
COMPILES TO: 2/ (0)

STACK EFFECTS: n—n/2

Divide n by 2. Performs a right shift.

2>R CORE EXT
PRONUNCIATION: two-to-r
COMPILES TO: >R (0)

>R (0)
STACK EFFECTS: nln2—

FORTH: Forth swaps both values before transfering them to the return stack.

Transfer cell pair nl n2 to the return stack.

2@ CORE
PRONUNCIATION: two-fetch
INCLUDE: anscore.4th

STACK EFFECTS: X—nln2

Fetch the cell pair nl n2 stored at x. n2 is stored at x and nl at the next consecutive cell.

2DROP CORE

PRONUNCIATION: two-drop

COMPILES TO: DROP (0)

CHAPTER 11. GLOSSARY

DROP (0)

STACK EFFECTS: nln2—

Drop cell pair n1 n2 from the stack.

2DUP CORE

PRONUNCIATION: two-dupe

COMPILES TO: OVER (0)
OVER (0)

STACK EFFECTS: nl n2-—nln2nln2

Duplicate cell pair n1 n2.

20VER CORE
PRONUNCIATION: two-over

INCLUDE: 2rotover.4th

STACK EFFECTS: nln2n3n4 —nln2n3n4nln2

Copy cell pair nl n2 to the top of the stack.

208

2R> CORE EXT
PRONUNCIATION: two-r-from
COMPILES TO: R> (0)
R> (0)
STACK EFFECTS: —nln2
FORTH: Forth swaps both values after transfering them from the return stack.

Transfer cell pair nl n2 from the return stack.

2R@ CORE EXT
PRONUNCIATION: two-r-fetch
COMPILES TO: R> (0)

1(0)

OVER (0)

>R (0)

CHAPTER 11. GLOSSARY 209

STACK EFFECTS: —nln2

FORTH: Forth swaps both values after transfering them from the return stack.

Copy cell pair nl n2 from the return stack.

2ROT DOUBLE EXT
PRONUNCIATION: two-rote
INCLUDE: 2rotover.4th

STACK EFFECTS: nln2n3n4n5n6—n3n4n5n6nln2

Rotate the top three cell pairs on the stack bringing cell pair nl n2 to the top of the stack.

2SWAP CORE

PRONUNCIATION: two-swap

COMPILES TO: ROT (0)
>R (0)
ROT (0)
R> (0)

STACK EFFECTS: nln2n3n4 —n3n4nln2

Exchange the top two cell pairs.

4TH# 4TH
COMPILES TO: LITERAL (<4tH version in hexadecimal>)
STACK EFFECTS: —n

Constant containing the 4tH version in hexadecimal.

CORE
PRONUNCIATION: colon
COMPILES TO: BRANCH (<address of matching ; token>)
SYNTAX: :<space><name>..<space>;

Creates a subroutine defining <name> as equivalent to the following sequence of 4tH word
definitions until the next ;.

CHAPTER 11. GLOSSARY 210

:NONAME CORE EXT
PRONUNCIATION: colon-no-name
COMPILES TO: LITERAL (<address of next BRANCH>)
BRANCH (<address of matching ; token>)
SYNTAX: :NONAMEc<space>..<space>;
STACK EFFECTS: —Xxt
Create an execution token xt and compile the current definition. The execution semantics of

xt will be determined by the words compiled into the body of the definition. This definition
can be executed later by using xt EXECUTE.

:THIS 4TH

COMPILES TO: BRANCH (<address of matching ; token>)
LITERAL (<original value>) | VARIABLE (<original value>)

SYNTAX: :THIS<space><name><space>DOES><space>..<space>;

Create an subroutine <name> that first pushes the original value of <name> on the stack.
The words after DOES> determine what the actual execution behaviour will be (see: DOES>).

5 CORE
PRONUNCIATION: semi-colon
COMPILES TO: EXIT (0)
SYNTAX: See :

Terminate a colon definition. At runtime, return to the calling word by popping a token-
address from the return stack.

< CORE
PRONUNCIATION: less-than
COMPILES TO: <(0)

STACK EFFECTS: nln2—f

Leave a TRUE flag if n1 is less than n2; otherwise leave a FALSE flag in f.

<# CORE

PRONUNCIATION: less-number-sign

CHAPTER 11. GLOSSARY 211

COMPILES TO: <# (0)

FORTH: In Forth a double number is required.

Setup for pictured numeric output formatting in PAD using the words <#, #, #S, SIGN,
HOLD, #>.

<> CORE EXT
PRONUNCIATION: not-equals
COMPILES TO: <> (0)

STACK EFFECTS: nln2—f

Leave a TRUE flag if n1 does not equal n2; otherwise leave a FALSE flag in f.

<= 4TH
COMPILES TO: > (0)
0= (0)

STACK EFFECTS: nln2—f

Leave a TRUE flag if n1 is less or equal than n2; otherwise leave a FALSE flag in f.

= CORE
PRONUNCIATION: equals
COMPILES TO: =(0)

STACK EFFECTS: nln2—f

Leave a TRUE flag if n1 equals n2; otherwise leave a FALSE flag in f.

> CORE
PRONUNCIATION: greater-than
COMPILES TO: > (0)

STACK EFFECTS: nln2—f

Leave a TRUE flag if nl is greater than n2; otherwise leave a FALSE flag in f.

>= 4TH

COMPILES TO: <(0)

CHAPTER 11. GLOSSARY 212

0=(0)

STACK EFFECTS: nln2—f

Leave a TRUE flag if nl is greater or equal than n2; otherwise leave a FALSE flag in f.

>BODY CORE
PRONUNCIATION: to-body
COMPILES TO: ENVIRON (<address of FIRST>)
+ (0)
STACK EFFECTS: n—X
FORTH: In Forth, >BODY works with every CREATEd datatype.

n is the ticked value of a VARIABLE, VALUE, DEFER or FILE. >BODY returns its ad-
dress in the Variable Area.

>IN CORE

PRONUNCIATION: to-in

COMPILES TO: LITERAL (<address of >IN>)
STACK EFFECTS: —X

A variable containing the address within the Character Segment from which the next text
will be parsed. PARSE uses and moves the value of >IN.

>NUMBER CORE

PRONUNCIATION: to-number

INCLUDE: tonumber.4th

STACK EFFECTS: nl al n2—n3 a2 n4

n3 is the unsigned result of converting the characters within the string specified by al n2
into digits, using the number in BASE, and adding each into nl after multiplying nl by the
number in BASE. Conversion continues left-to-right until a character that is not convertible,
including any + or -, is encountered or the string is entirely converted. a2 is the location
of the first unconverted character or the first character past the end of the string if the

string was entirely converted. n4 is the number of unconverted characters in the string. An
ambiguous condition exists if n3 overflows during the conversion.

>NUMBER CORE

PRONUNCIATION: to-number

CHAPTER 11. GLOSSARY 213

INCLUDE: todbl.4th

STACK EFFECTS: dl al nl —d2a2n2

d2 is the unsigned result of converting the characters within the string specified by al n2
into digits, using the number in BASE, and adding each into d1 after multiplying d1 by the
number in BASE. Conversion continues left-to-right until a character that is not convertible,
including any + or -, is encountered or the string is entirely converted. a2 is the location
of the first unconverted character or the first character past the end of the string if the

string was entirely converted. n2 is the number of unconverted characters in the string. An
ambiguous condition exists if d2 overflows during the conversion.

>R CORE
PRONUNCIATION: to-r
COMPILES TO: >R (0)
STACK EFFECTS: n—

Remove n from the stack and place it on the return stack. Use should be balanced with R>
in the same definition.

? TOOLS
PRONUNCIATION: question
COMPILES TO: @ (0)

. (0)

STACK EFFECTS: X —

Print the value contained in the variable at address x in free format according to the current
BASE.

DO CORE EXT
PRONUNCIATION: question-do

COMPILES TO: DO (0)

SYNTAX: 7DO<space>..<space>+LOOP

7DO<space>..<space>LOOP

STACK EFFECTS: nln2—

If nl is equal to n2, continue execution at LOOP or +LOOP. Otherwise set up loop control
parameters with index n2 and limit n1 and continue executing immediately following ?DO.
Anything already on the return stack becomes unavailable until the loop control parameters
are discarded.

CHAPTER 11. GLOSSARY 214

?DUP CORE
PRONUNCIATION: question-dupe
INCLUDE: anscore.4th

STACK EFFECTS: n—2O0Inn

Duplicate n if it is non-zero.

@ CORE
PRONUNCIATION: fetch
COMPILES TO: @ (0)

STACK EFFECTS: X—n

Leave the contents n of the variable at address x on the stack.

@C CROSS EXT
COMPILES TO: @C (0)
STACK EFFECTS: xt—n|addr

FORTH: In Forth the word @ can also be used to fetch values from the dictio-
nary. Due to 4tHs internal structure this is not possible.

Leave the contents n of the parameter field of token address xt on the stack. If n contains
an string constant compiled by ,” it is copied to the PAD. Its address is returned as addr.

@GOTO 4TH

SYNTAX: @GOTO<space><string>

The remainder of the line is discarded. This word is used to start a 4tH source program
from a MS type shell. An alias for \.

ABORT CORE

FORTH: In Forth the behaviour of ABORT is different from QUIT (-1 THROW).
In 4tH it doesn’t really matter which one you use.

An alias for QUIT.

ABORT” CORE

PRONUNCIATION: abort-quote

CHAPTER 11. GLOSSARY 215

COMPILES TO: OBRANCH (<address of QUIT>)
LITERAL (stdout)
USE (0)
> (<address of string constant>)
CR (0)
QUIT (0)
SYNTAX: ABORT”’<space><string>"
STACK EFFECTS: n—
FORTH: In Forth the behaviour of ABORT” is different from QUIT (-2 THROW).

Remove n from the stack. If any bit of n is not zero, display the string and set the program
counter to the end of the program. Effectively quits execution.

ABS CORE
PRONUNCIATION: abs
COMPILES TO: ABS (0)

STACK EFFECTS: nl—n2

Leave the absolute value of nl as n2.

ACCEPT CORE

COMPILES TO: ACCEPT (0)

STACK EFFECTS: addrnl —n2

FORTH: In Forth no null character is appended.

Read nl characters from the current input device to address addr. If input is read from
the terminal CR will terminate the input stream. All other devices will terminate reading
when an EOF occurs. In all cases input will end when n1 characters have been read. A null

character is added to the end of the input when reading from the keyboard. The number n2
represents the number of characters actually read.

AGAIN CORE EXT
COMPILES TO: BRANCH (<address of the token following BEGIN>)
SYNTAX: BEGIN<space>..<space>AGAIN

At runtime, AGAIN forces execution to return to the corresponding BEGIN. Execution
cannot leave this loop. AGAIN is an alias for REPEAT.

CHAPTER 11. GLOSSARY 216

AKA 4TH

SYNTAX: AKA<space><word name><space><name>

Create a word <name> with the same compilation and execution semantics as the existing
word <word name>. The word <word name> has to be user defined.

ALIAS 4TH
COMPILES TO: TO (<variable address>)
STACK EFFECTS: Xt—

SYNTAX: ALIAS<space><name>

Store xt in the value identified by name. ALIAS is an alias for IS, but does not require a
previously defined DEFER.

ALIGN CORE

COMPILER: The instruction pointer is not incremented. In fact, ALIGN is a dummy.

If the dataspace pointer is not aligned, reserve enough space to align it.

ALIGNED CORE

COMPILER: The instruction pointer is not incremented. In fact, ALIGNED is a
dummy.

STACK EFFECTS: n—n

n is the first aligned address greater than or equal to n.

ALLOCATE MEMORY

INCLUDE: ansmem.4th

STACK EFFECTS: n— addr f

Allocate n address units of contiguous data space. The initial content of the allocated space
is undefined. If the allocation succeeds, addr is the aligned starting address of the allocated

space and f is false. If the operation fails, addr does not represent a valid address and f is
true.

AND CORE
COMPILES TO: AND (0)

STACK EFFECTS: nln2-—n3

CHAPTER 11. GLOSSARY 217

Leave the bitwise logical AND of n1 AND n2 as n3.

APP 4TH
COMPILES TO: LITERAL (<application variable>)
STACK EFFECTS: —X

This word returns the variable address x in the Variable Area to an array of application
specific variables. If APP equals FIRST no application specific variables have been defined.

APPEND 4TH
COMPILES TO: LITERAL (<fam>)
STACK EFFECTS: — fam

This will leave a file access method modifier on the stack, signalling that output will be
appended. Must be added to another file access modifier. Used in combination with OUT-
PUT.

ARGN 4TH
COMPILES TO: ARGN (0)
STACK EFFECTS: —n

Returns the number of arguments that have been passed to 4tH (see: ARGS).

ARGS 4TH
COMPILES TO: ARGS (0)

STACK EFFECTS: nl — addrn2

Copies argument nl to the PAD and leaves address addr and length n2 on the stack (see:
ARGN).

ARRAY 4TH
SYNTAX: <literal><space>ARRAY<space><name>
COMPILER: The previously compiled literal is taken as an argument for ARRAY.

The instruction pointer is decremented, actually deleting the literal.
FORTH: Roughly equivalent to:

ARRAY CREATE CELLS ALLOT ;

CHAPTER 11. GLOSSARY 218

Allocate <literal> cells of contiguous data space beginning at <name> in the Integer Seg-
ment. The initial content of the allocated space is undefined.

AS 4TH
COMPILES TO: TO (<variable address>)
STACK EFFECTS: h—

SYNTAX: AS<space><name>

Store filehandle h in the value identified by name, previously defined by FILE (see: FILE).
An alias for TO.

ASSERT(4TH
SYNTAX: ASSERT(<space><word>..<word><space>)

FORTH: Similar constructions are available in GForth and Win32For.

Mark the beginning of an assertion. If assertions are disabled all words following upto)
are commented out (see: [ASSERT] and)).

BASE CORE
COMPILES TO: LITERAL (<address of BASE>)

STACK EFFECTS: —X

A variable containing the current number BASE used for input and output.

BEGIN CORE

SYNTAX: BEGIN<space>..<space>AGAIN
BEGIN<space>..<space>WHILE<space>..<space>UNTIL
BEGIN<space>..<space>WHILE<space>..<space>REPEAT

FORTH: Within a BEGIN .. REPEAT construct, multiple WHILEs may be
used as well, but additional words are necessary to complete the con-
struct.

At runtime begin marks the start of a sequence that may be repetitively executed. It serves
as a return point from the corresponding UNTIL, AGAIN or REPEAT. When executing
UNTIL, a return to BEGIN will occur if the top of the stack is false; for AGAIN and
REPEAT a return to BEGIN always occurs. Multiple WHILEs may be used.

BIN FILE

CHAPTER 11. GLOSSARY 219

INCLUDE: ansfile.4th

STACK EFFECTS: faml — fam2

Modify file access method fam1 to additionally select a binary, i.e., not line oriented, file
access method, giving access method fam2. Since 4tH does this automatically, BIN is a
dummy.

BL CORE

PRONUNCIATION: b-1
COMPILES TO: LITERAL (<ASCII value of space>)

STACK EFFECTS: —¢

A constant that leaves the ASCII value for "blank".

BLANK STRING
COMPILES TO: LITERAL (<ASCII value of space)
FILL (0)

STACK EFFECTS: naddr—

If n is greater than zero, store the character value for space in n consecutive character
positions beginning at addr.

BLK BLOCK

PRONUNCIATION: b-l-k

INCLUDE: ansblock.4th

STACK EFFECTS: —X

FORTH: In Forth, a block cannot have the number zero. BLK contains the

number of the block being interpreted.

x is the address of a cell containing the number of the mass-storage block currently cached.
Altering the contents of BLK will have no lasting effects.

BLOCK BLOCK
INCLUDE: ansblock.4th

STACK EFFECTS: n— addr

CHAPTER 11. GLOSSARY 220

Addr is the address of the first character of the block buffer assigned to mass-storage block
n. An ambiguous condition exists if u is not an available block number. If block n is
already in a block buffer, addr is the address of that block buffer. If block n is not already in
memory, unassign the block buffer. If the block in that buffer has been UPDATEGA, transfer
the block to mass storage and transfer block n from mass storage into that buffer. a-addr is
the address of that block buffer. At the conclusion of the operation, the block buffer pointed
to by addr is the current block buffer and is assigned to n.

BOUNDS COMUS

COMPILES TO: OVER (0)
+(0)
SWAP (0)

STACK EFFECTS: addr n — addr addr+n

Convert a starting value and count into the form required for a DO or ?DO loop.

BUFFER BLOCK

INCLUDE: ansblock.4th

STACK EFFECTS: n— addr

Addr is the address of the first character of the block buffer assigned to mass-storage block
n. An ambiguous condition exists if n is not an available block number. If block n is
already in a block buffer, addr is the address of that block buffer. If block n is not already in
memory, unassign the block buffer. If the block in that buffer has been UPDATEGA, transfer
the block to mass storage and transfer block n from mass storage into that buffer. a-addr is

the address of that block buffer. At the conclusion of the operation, the block buffer pointed
to by addr is the current block buffer and is assigned to n.

C! CORE
PRONUNCIATION: c-store
COMPILES TO: C! (0)

STACK EFFECTS: ¢ addr —

Store 8 bits of ¢ at address addr in the Character Segment.

C, CORE
PRONUNCIATION: c-comma

SYNTAX: <literal><space>C,

CHAPTER 11. GLOSSARY 221

COMPILER: The previously compiled literal is added as a character to the String
Segment. The instruction pointer is decremented, actually deleting
the literal.

FORTH: Forth pops a value from the stack. This is not possible in 4tH.

Reserve space for one character in the String Segment and store char in the space.

C@ CORE
PRONUNCIATION: c-fetch
COMPILES TO: C@ (0)

STACK EFFECTS: addr—c

Leave the 8 bits contents of Character Segment address addr as c.

CATCH EXCEPTION
COMPILES TO: CATCH (0)
(CATCH) (0)

STACK EFFECTS: Xt—n

Push an exception frame on the return stack and execute the execution token xt in such
a way that control can be transferred to a point just after CATCH if THROW is executed
during the execution of xt (see: THROW).

CELL+ CORE
PRONUNCIATION: cell-plus
COMPILES TO: 1+ (0)

STACK EFFECTS: x1—x2

Add the the size of a cell in cells to x1 giving x2.

CELL- COMUS
COMPILES TO: 1- (0)

STACK EFFECTS: x1—x2

Subtract the the size of a cell in cells to x1 giving x2.

CELLS CORE

CHAPTER 11. GLOSSARY 222

COMPILER: The instruction pointer is not incremented. In fact, CELLS is a dummy.

STACK EFFECTS: n—n

n is the size in cells of n cells.

CHAR CORE

PRONUNCIATION: char

COMPILES TO: LITERAL (<ASCII-value of character>)
SYNTAX: CHAR<space><char>

STACK EFFECTS: —¢

Compiles the ASCII-value of <char> as a literal. At runtime the value is thrown on the
stack.

CHAR+ CORE
PRONUNCIATION: char-plus
COMPILES TO: 1+ (0)

STACK EFFECTS: addrl — addr2

Add the the size of a character in characters to addr1 giving addr2.

CHAR- 4TH
COMPILES TO: 1- (0)

STACK EFFECTS: addrl — addr2

Subtract the the size of a character in characters to addr1 giving addr2.

CHARS CORE

PRONUNCIATION: chars

COMPILER: The instruction pointer is not incremented. In fact, CHARS is a
dummy.

STACK EFFECTS: n—n

FORTH: In 4tH CHARS is a dummy, but it can be used to make a program
ANS-compatible.

n is the size in characters of n characters.

CHAPTER 11. GLOSSARY 223

CHOP 4TH

COMPILES TO: 1- (0)
SWAP (0)
1+ (0)
SWAP (0)

STACK EFFECTS: an—a+1n-1

Deletes the first character from the string defined by address a and length n.

CIN 4TH
COMPILES TO: ENVIRON (<address of CIN>)

STACK EFFECTS: —n

Identifies the input source.

CLOSE 4TH

COMPILES TO: CLOSE (0)

STACK EFFECTS: h—

CLOSE will close a file or pipe, previously opened by OPEN and release the stream. De-

pending on the file access method, the terminal will be made the current input-device,
otherwise the screen will be made the current output-device.

CLOSE-FILE FILE
INCLUDE: ansfile.4th

STACK EFFECTS: h—f

Close the file identified by handle h. Flag f is the implementation-defined I/O result code.

CMOVE STRING
PRONUNCIATION: c-move
COMPILES TO: CMOVE (0)
STACK EFFECTS: addrl addr2 n —

FORTH: In Forth there are two words for this operation, CMOVE and CMOVE>.
Usage depends on the direction of the move. In 4tH CMOVE is smart,
like MOVE.

CHAPTER 11. GLOSSARY 224

Move the specified quantity of bytes (n) beginning at address addr1 to addr2.

CMOVE> STRING
PRONUNCIATION: c-move-up
COMPILES TO: CMOVE (0)

STACK EFFECTS: addrl addr2 n —

An alias for CMOVE (see: CMOVE).

COMPARE STRING
INCLUDE: anstring.4th

STACK EFFECTS: addrl nl addr2 n2 —n3

Compare the string specified by addr1 nl to the string specified by addr2 n2 . The strings
are compared, beginning at the given addresses, character by character, up to the length of
the shorter string or until a difference is found. If the two strings are identical, n3 is zero.
If the two strings are identical up to the length of the shorter string, n3 is -1 if nl is less
than n2 and 1 otherwise. If the two strings are not identical up to the length of the shorter
string, n3 is -1 if the first non-matching character in the string specified by addrl nl has a
lesser numeric value than the corresponding character in the string specified by addr2 n2
and 1 otherwise.

CONSTANT CORE

SYNTAX: <literal><space>CONSTANT<space><name>

COMPILER: The previously compiled literal is taken as an argument for CON-
STANT. The instruction pointer is decremented, actually deleting the
literal.

FoORTH: In Forth, the literal value is popped from the stack. This cannot be
done in 4tH.

A defining word used to create word <name>. When <name> is later executed, it will push
the value of <literal> on the stack.

COUNT CORE
COMPILES TO: COUNT (0)
STACK EFFECTS: addrl — addr2 n

FORTH: Programs assuming that the string is a so-called counted string will
not work. Well-written programs only assume the correct input- and
output-parameters.

CHAPTER 11. GLOSSARY 225

Leave the Character Segment address addr2 and count n of an ASCIIZ string beginning at
Character Segment address addrl. Typically COUNT is followed by TYPE.

CouT 4TH
COMPILES TO: ENVIRON (<address of COUT>)

STACK EFFECTS: —n

Identifies the output source.

CR CORE

PRONUNCIATION: c-r

COMPILES TO: CR (0)

Transmit a carriage return to the selected output-device. The actual sequence sent is OS-
and stream-dependant.

CREATE CORE
SYNTAX: CREATE<space><name>
FORTH: In Forth this will create a dictionary header.

Leaves <name> in the symboltable and replace further occurences with LITERAL <xt>.
<xt> represents the address in the Code Segment where CREATE was compiled.

CREATE-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addrnfam—hf

Create the file named in the character string specified by addr and n, and open it with file
access method fam. The meaning of values of fam is implementation defined. If a file
with the same name already exists, recreate it as an empty file. If the file was successfully
created and opened, f is zero, handle h is its identifier, and the file has been positioned to

the start of the file. Otherwise, f is the implementation-defined I/O result code and h is
undefined.

D+ DOUBLE
PRONUNCIATION: d-plus
INCLUDE: ansdbl.4th

STACK EFFECTS: dl1d2—d3

CHAPTER 11. GLOSSARY

Add dI to d2, giving the sum d3.

D- DOUBLE
PRONUNCIATION: d-minus
INCLUDE: ansdbl.4th

STACK EFFECTS: dl1d2—d3

Subtract d2 from d1, giving the difference d3.

D. DOUBLE
PRONUNCIATION: d-dot
INCLUDE: dbldot.4th

STACK EFFECTS: d—

Display d in free field format.

D.R DOUBLE
PRONUNCIATION: d-dot-r
INCLUDE: dbldot.4th

STACK EFFECTS: dn—

226

Display d right aligned in a field n characters wide. If the number of characters required to
display d is greater than n, all digits are displayed with no leading spaces in a field as wide

as necessary.

DO0< DOUBLE
PRONUNCIATION: d-zero-less
INCLUDE: ansdbl.4th

STACK EFFECTS: d—f

Flag f is true if and only if d is less than zero.

D0= DOUBLE
PRONUNCIATION: d-zero-equals
INCLUDE: ansdbl.4th

STACK EFFECTS: d—f

CHAPTER 11. GLOSSARY 227

Flag f is true if and only if d is equal to zero.

D2* DOUBLE
PRONUNCIATION: d-two-star
INCLUDE: ansdbl.4th
STACK EFFECTS: dl —d2

D2 is the result of shifting d1 one bit toward the most-significant bit, filling the vacated
least-significant bit with zero.

D2/ DOUBLE
PRONUNCIATION: d-two-slash
INCLUDE: ansdbl.4th
STACK EFFECTS: dl —d2

D2 is the result of shifting d1 one bit toward the least-significant bit, leaving the most-
significant bit unchanged.

D< DOUBLE
PRONUNCIATION: d-less-than
INCLUDE: ansdbl.4th

STACK EFFECTS: dl1d2—f

Flag f is true if and only if d1 is less than d2.

D= DOUBLE
PRONUNCIATION: d-equals
INCLUDE: ansdbl.4th

STACK EFFECTS: dl1d2—f

Flag f is true if and only if d1 is equal to d2.

D>S DOUBLE
PRONUNCIATION: d-to-s
COMPILER: The instruction pointer is not incremented. In fact, D>S is a dummy.

STACK EFFECTS: n—n

CHAPTER 11. GLOSSARY 228

Convert the number n to number n with the same numerical value.

DABS DOUBLE
PRONUNCIATION: d-abs
INCLUDE: ansdbl.4th
STACK EFFECTS: dl —d2

D2 is the absolute value of d1.

DMAX DOUBLE
PRONUNCIATION: d-max
INCLUDE: ansdbl.4th
STACK EFFECTS: dl1d2—d3

D3 is the greater of d1 and d2.

DMIN DOUBLE
PRONUNCIATION: d-min
INCLUDE: ansdbl.4th
STACK EFFECTS: dl1d2—d3

D3 is the lesser of d1 and d2.

DNEGATE DOUBLE
PRONUNCIATION: d-negate
INCLUDE: ansdbl.4th
STACK EFFECTS: dl —d2

D2 is the negation of d1.
DECIMAL CORE
COMPILES TO: RADIX (10)
FORTH: See HEX.

Set the numeric conversion BASE for decimal output at runtime.

CHAPTER 11. GLOSSARY 229

DEFER CORE EXT

COMPILES TO: LITERAL ((ERROR))
TO (<variable address>)

SYNTAX: DEFER<space><name>

STACK EFFECTS: —

Create a value name which will hold an execution token for a word whose behavior will be
determined later and may be varied. The initial value will trigger an error if used before
proper assignment.

DEFER! CORE EXT

COMPILES TO: ENVIRON (<address of FIRST>)
+(0)
10)

STACK EFFECTS: XtX —

Set the vector x to execute xt.

DEFER@ CORE EXT

COMPILES TO: ENVIRON (<address of FIRST>)
+(0)
@ (0)

STACK EFFECTS: X — Xt

xt is the xt associated with the deferred word corresponding to x.

DEPTH CORE
COMPILES TO: SP@ (0)
STACK EFFECTS: —n

Returns the number of items on the stack in n, before DEPTH was executed. An alias for
SP@.

DO CORE
COMPILES TO: DO (0)

SYNTAX: DO<space>..<space>+LOOP

CHAPTER 11. GLOSSARY 230

DO<space>..<space>LOOP

STACK EFFECTS: nln2—

At runtime DO begins a sequence with repetitive execution controlled by a loop limit nl
and an index with initial value n2. DO removes these from the stack. Upon reaching LOOP
or +LOQP the index is altered. Until the new index equals or exceeds the limit, execution
loops back to just after DO; otherwise the loop parameters are discarded and execution
continues ahead. Both nl and n2 are determined at runtime and may be the result of other
operations. Within a loop I will copy the current value of the index on the stack.

DOES> CORE

PRONUNCIATION: does

COMPILER: The instruction pointer is not incremented. In fact, DOES> is a dummy.
SYNTAX: :THIS<space><name><space>DOES><space>..<space>;

FORTH: In Forth, DOES> is usually combined with CREATE, changing the

behaviour of an entire datatype. In 4tH it is used with : THIS, changing
only the referenced definition.

Append the run-time semantics to the referenced definition. Execute the portion of the
definition that begins with the initiation semantics appended by the DOES> which modified
name.

DROP CORE
COMPILES TO: DROP (0)

STACK EFFECTS: n—

Drop the number from the stack.

DUMP TOOLS
INCLUDE: dump.4th

STACK EFFECTS: addrn—

Display the contents of n consecutive addresses starting at addr.

DUP CORE

PRONUNCIATION: dupe
COMPILES TO: DUP (0)

STACK EFFECTS: n—nn

CHAPTER 11. GLOSSARY 231

Duplicate the value on the stack.

ELSE CORE
COMPILES TO: BRANCH (<address of matching THEN token>)

SYNTAX: IF<space>..<space>ELSE<space>..<space>THEN

At runtime ELSE executes after the true following IF. ELSE forces execution to skip over
the following false part and resumes execution after the THEN.

EMIT CORE
COMPILES TO: EMIT (0)

STACK EFFECTS: ¢ —

Transmit the ASCII character with code n to the selected output device.

EMPTY-BUFFERS BLOCK EXT
INCLUDE: ansblock.4th

STACK EFFECTS: —

Unassign all block buffers. Do not transfer the contents of any UPDATEd block buffer to
mass storage.

END-STRUCT 4TH

SYNTAX: STRUCT<space><literal><space>+FIELD<space><name><space>END-
STRUCT<space><name>
COMPILER: The previously compiled literal is taken as an argument for END-

STRUCT, creating a constant that holds the length of the STRUCT.
The instruction pointer is decremented, actually deleting the literal.

FORTH: Similar constructions are available in gForth. +FIELD is part of the
Forth 200x draft.

Terminate the definition of a STRUCT. The created structure is an constant that memorizes
the size of the structure (see: +FIELD, STRUCT).

ENUM 4TH
SYNTAX: <literal><space>ENUM<space><name>
COMPILER: The previously compiled literal is taken as an argument for ENUM

and incremented afterwards. The instruction pointer is left unchanged.

CHAPTER 11. GLOSSARY 232
FORTH: This word is available in some Forths.

A defining word used to create word <name>. When <name> is later executed, it will push
the value of <literal> on the stack.

ENVIRONMENT? CORE

PRONUNCIATION: environment-query

INCLUDE: environ.4th

STACK EFFECTS: addrn— -f

addr is the address of a character string and n is the string’s character count. The character
string should contain a keyword from ANS-Forth environmental queries or the optional

word sets to be checked for correspondence with an attribute of the present environment.
The system treats the attribute as unknown, the returned flag is false.

ERASE CORE EXT
COMPILES TO: LITERAL (0)
FILL (0)

STACK EFFECTS: addrn—

If n is greater than zero, clear all bits in each of n consecutive address units of memory
beginning at addr.

EVALUATE CORE

INCLUDE: evaluate.4th

STACK EFFECTS: addrn —

FORTH: In Forth, the entire dictionary is available. In 4tH, the only words

available are explicitly defined by the program.

Make the string described by addr and n the input buffer and interpret. Other stack effects
are due to the words EVALUATEA.

EXECUTE CORE
COMPILES TO: EXECUTE (0)

STACK EFFECTS: Xt —

Execute the colon definition whose token-address xt is on the stack. The current token-
address is pushed on the returnstack.

CHAPTER 11. GLOSSARY 233

EXIT CORE

COMPILES TO: EXIT (0)

When compiled within a colon-definition, terminates execution of that definition at that
point. At runtime functionally equivalent to ;.

EXPECT CORE EXT
INCLUDE: obsolete.4th

STACK EFFECTS: addrn—

Receive a string of at most n-1 characters. The editing functions, if any, that the system
performs in order to construct the string of characters are implementation-defined. Input
terminates when an implementation-defined line terminator is received or when the string is
n-1 characters long. When input terminates the display is maintained in an implementation-
defined way. Store the string at addr and its length in SPAN (see SPAN).

FALSE CORE EXT
COMPILES TO: LITERAL (<false>)

STACK EFFECTS: —-f

Returns a FALSE flag on the stack.

FILE 4TH

COMPILES TO: LITERAL ((ERROR))
TO (<variable address>)

SYNTAX: FILE<space><name>

STACK EFFECTS: —

Create a value name which will hold a filehandle. The initial value will trigger an error if
used before proper assignment.

FILE-POSITION FILE
INCLUDE: ansfile.4th

STACK EFFECTS: h—nf

n is the current file position for the file identified by handle h. Flag f is the implementation-
defined I/O result code. n is undefined if f is non-zero.

FILE-SIZE FILE

CHAPTER 11. GLOSSARY 234

INCLUDE: ansfile.4th
STACK EFFECTS: h—nf
n is the size, in characters, of the file identified by handle h. Flag f is the implementation-

defined I/O result code. This operation does not affect the value returned by FILE-POSITION.
n is undefined if f is true.

FILE-STATUS FILE EXT

INCLUDE: ansfile.4th

STACK EFFECTS: addrnl —n2f

Return the status of the file identified by the character string addr nl. If the file exists,

flag f is zero; otherwise flag f is the implementation-defined I/O result code. n2 contains
implementation defined information about the file.

FILES 4TH
COMPILES TO: LITERAL (<number of open files>)
STACK_EFFECTS: —n

Returns the maximum number of open streams 4tH can handle. Two of these streams are
predefined, STDIN and STDOUT.

FILL CORE
COMPILES TO: FILL (0)

STACK EFFECTS: addrnc—

Fills n bytes in the Character Segment, beginning at address addr, with character c.

FIRST 4TH
COMPILES TO: ENVIRON (<address of FIRST>)

STACK EFFECTS: —X

Leaves the variable address x of the first user-variable. If FIRST is greater than LAST, no
user-variables have been defined.

FLUSH BLOCK
INCLUDE: ansblock.4th

STACK EFFECTS: —

CHAPTER 11. GLOSSARY 235

Perform the function of SAVE-BUFFERS, then unassign the block buffer.

FLUSH-FILE FILE EXT

INCLUDE: ansfile.4th

STACK EFFECTS: h—f

Attempt to force any buffered information written to the file referred to by handle h to be
written to mass storage, and the size information for the file to be recorded in the stor-

age directory if changed. If the operation is successful, f is zero. Otherwise, it is an
implementation-defined I/O result code.

FM/MOD CORE

PRONUNCIATION: f-m-slash-mod

INCLUDE: mixed.4th

STACK EFFECTS: dlnl—n2n3

Divide d1 by nl, giving the floored quotient n3 and the remainder n2. Input and output

stack arguments are signed. An ambiguous condition exists if nl is zero or if the quotient
lies outside the range of a single-cell signed integer.

FREE MEMORY

INCLUDE: ansmem.4th

STACK EFFECTS: addr—f

Return the contiguous region of data space indicated by addr to the system for later alloca-

tion. addr shall indicate a region of data space that was previously obtained by ALLOCATE
or RESIZE. If the operation succeeds, f is false. If the operation fails, f is true.

HERE CORE

COMPILES TO: LITERAL (<token address>)

STACK EFFECTS: — Xt

FORTH: Leaves the address of the next available dictionary location. Since

4tH doesn’t have a dictionary location, its use is very different.

At runtime, HERE leaves the address xt in the Code Segment where it was compiled.

HEX CORE EXT
COMPILES TO: RADIX (16)

CHAPTER 11. GLOSSARY 236

FORTH: In Forth this construction
HEX : SOMETIN 16 ;

will compile 16 as a hexadecimal number. In 4tH it will simply be
compiled and 16 will be compiled as a decimal number. To emulate
this construction use

[HEX] : SOMETIN 16 ;

instead.

Set the numeric conversion BASE for hexadecimal output at runtime.

HI 4TH
COMPILES TO: ENVIRON (<address of HI>)

STACK EFFECTS: — addr

Leaves the address of the last character in the Character Segment.

HIDE 4TH

SYNTAX: HIDE<space><name>

Find <name>, then delete name from the symbol table. Used to create private definitions.

HOLD CORE
COMPILES TO: HOLD (0)

STACK EFFECTS: ¢ —

Used between <# and #> to insert an ASCII character into a pictured numeric output string,
e.g. [HEX] 2E HOLD will place a decimal point.

) | CORE
COMPILES TO: 1(0)
STACK EFFECTS: —n

Used with a DO .. LOOP to copy the loop index to the stack. An alias for R.

IF CORE
COMPILES TO: OBRANCH (<address of matching ELSEITHEN token>)

STACK EFFECTS: f—

CHAPTER 11. GLOSSARY 237

SYNTAX: See ELSE, THEN

At runtime, IF selects execution based on f. If f is non-zero, execution continues ahead
through the true part. If f is zero execution skips till just after ELSE to execute the false
part. After each part, execution resumes after THEN.

IMMEDIATE CORE

COMPILER: The instruction pointer is not incremented. In fact, IMMEDIATE is a
dummy.

STACK EFFECTS: —

Make the most recent definition an immediate word.

INCLUDE COMUS
SYNTAX: INCLUDE<space><string><space>

COMPILER: The contents of the file are inserted at this position.

An alias for [NEEDS (see: [NEEDS).

INPUT 4TH
COMPILES TO: LITERAL (<fam>)

STACK EFFECTS: — fam

This will leave a file access method on the stack, signalling an operation on an input-device.

INVERT CORE
COMPILES TO: INVERT (0)

STACK EFFECTS: nl—n2

Leave n1’s binary complement as n2. This word is not equivalent to O=.

IS CORE EXT
COMPILES TO: TO (<variable address>)
STACK EFFECTS: Xt—

SYNTAX: IS<space><name>

CHAPTER 11. GLOSSARY 238

Store xt in the value identified by name, previously defined by DEFER (see: DEFER).

J CORE
COMPILES TO: J(0)
STACK EFFECTS: —n

Used with an embedded DO .. +LOOP to copy the outer loop index to the stack. Copies in
fact the third item of the returnstack.

LAST 4TH
COMPILES TO: ENVIRON (<address of LAST>)

STACK EFFECTS: —X

Leaves the variable address x of the last variable in the Variable Area.

LEAVE CORE

COMPILES TO: LEAVE (0)

Force termination of a DO .. +LOOP at the next opportunity by setting the loop index equal
to the loop limit. The limit itself remains unchanged, and execution proceeds normally until
+LOOP is encountered.

LIST BLOCK EXT
INCLUDE: ansblock.4th

STACK EFFECTS: n—

Display block n in an implementation-defined format. Store n in SCR.

LO 4TH
COMPILES TO: LITERAL (<TIB+PAD>)
STACK EFFECTS: — addr

Leaves the offset of the first character of the Allocation Area in the Character Segment. If
LO is greater than HI, no memory has been allocated.

LOAD BLOCK

INCLUDE: ansblock.4th

CHAPTER 11. GLOSSARY 239

BEFORE: evaluate.4th
STACK EFFECTS: n—
FORTH: In Forth, the entire dictionary is available. In 4tH, the only words

available are explicitly defined by the program.

Save the current input-source specification. Store n in BLK (thus making block n the input
source and setting the input buffer to encompass its contents), set >IN to zero, and execute
EVALUATE. When the parse area is exhausted, restore the prior input source specification.

LOOP CORE
COMPILES TO: LOOP (<address of matching DO token>)
SYNTAX: DO<space>..<space>+LOOP

Used in the form DO .. LOOP. At runtime, LOOP selectively controls branching back to
the corresponding DO based on the loop index and the loop limit. The index is incrementex
and compared to the limit. The branch back to DO occurs until the new index is equal to the
limit. Upon exiting the loop, the parameters are discarded and execution continues ahead.

LSHIFT CORE
PRONUNCIATION: I-shift
COMPILES TO: SHIFT (0)
STACK EFFECTS: nln2—n3

Performs a logical bit shift on nl. Specifically, SHIFT shifts a number a number of bits,
specified in n2, using a logical register shift. An alias for SHIFT.

M#* CORE
PRONUNCIATION: m-star
INCLUDE: mixed.4th

STACK EFFECTS: nln2—d

d is the signed product of nl times n2.

M#*/ DOUBLE
PRONUNCIATION: m-star
INCLUDE: mixed.4th

STACK EFFECTS: dlnln2—d2

CHAPTER 11. GLOSSARY 240

Multiply d1 by nl producing the triple-cell intermediate result t. Divide t by n2 giving the
double-cell quotient d2. An ambiguous condition exists if n2 is zero or negative, or the
quotient lies outside of the range of a double-precision signed integer.

M+ DOUBLE
PRONUNCIATION: m-star
INCLUDE: mixed.4th

STACK EFFECTS: dlnl—d2

Add n1 to d1, giving the sum d2.

MAX CORE
COMPILES TO: MAX (0)

STACK EFFECTS: nln2-—n3

Leave n3 as the greater of the two numbers nl and n2.

MAX-N COMUS

COMPILES TO: LITERAL (<largest positive integer>)
STACK EFFECTS: —n

FORTH: Equivalent to:

MAX-N S" MAX-N" ENVIRONMENT? DROP ;

Returns the largest positive integer that 4tH can handle. Usually 2/31.

MAX-RAND 4TH
COMPILES TO: LITERAL (<largest integer returned by RANDOM>)

STACK EFFECT: —n

Returns the largest positive integer that RANDOM can return.

MIN CORE
COMPILES TO: MIN (0)

STACK EFFECTS: nln2—n3

Leave n3 as the smaller of the two numbers nl and n2.

CHAPTER 11. GLOSSARY 241

MOD CORE
COMPILES TO: MOD (0)

STACK EFFECTS: nln2—n3

Leave the remainder of n1/n2 with the same sign as nl in n3.

MOVE CORE
COMPILES TO: CMOVE (0)

STACK EFFECTS: addrl addr2 n —

Move the specified quantity of bytes (n) beginning at address addrl to addr2 in the Char-
acter Segment.

MS FACILITY EXT
INCLUDE: ansfacil.4th
STACK EFFECTS: n—

FORTH: In Forth, the resolution is significantly higher than between +0 and
+1999 ms.

Wait at least u milliseconds.

NEGATE CORE
COMPILES TO: NEGATE (0)

STACK EFFECTS: nl —-nl

Leave nl negated (two’s complement).

NIP CORE EXT
COMPILES TO: SWAP (0)
DROP (0)

STACK EFFECTS: nln2-—n2

Drop the first item below the top of stack.

NOT COMUS
COMPILES TO: 0=(0)

STACK EFFECTS: n—f

CHAPTER 11. GLOSSARY 242

An alias for 0= (see: 0=).

NUMBER 4TH
COMPILES TO: NUMBER (0)
STACK EFFECTS: addrnl —n2

FORTH: Some Forths support this word too, but issue a message on error.

Convert an string at offset addr with length nl in the Character Segment to number n2. If
numeric conversion is not possible (ERROR) is left on the stack.

OCTAL 4TH
COMPILES TO: RADIX (8)
FORTH: See HEX.

Set the numeric conversion BASE for octal output at runtime.

OFFSET 4TH
SYNTAX: OFFSET<space><name>
FORTH: Equivalent to:

OFFSET CREATE DOES> SWAP CHARS + C@ ;

Leaves <name> in the symboltable and replaces further occurences of <name> with an
execution procedure which takes an index from the stack and leaves the character concerned
on the stack.

OMIT 4TH
COMPILES TO: OMIT (0)

STACK EFFECTS: ¢ —

Skips all leading delimiters in the Character Segment, using character ¢ as a delimiter.

OPEN 4TH
COMPILES TO: OPEN (0)

STACK EFFECTS: addrnfam —h/|-f

CHAPTER 11. GLOSSARY 243

OPEN will open the file, which name has been specified by an ASCIIZ string, starting at
offset addr in the Character Segment and having length n. Depending on the file access
method, the file or pipe will be opened for reading, otherwise for writing. If the file or pipe
was succesfully opened it will be connected to a stream and a filehandle will be left on the
stack. If not, a FALSE flag will be left on the stack. Note that OPEN does not connect a
stream to a channel (see: USE).

OPEN-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addrnfam —hf

Open the file named in the character string specified by addr n, with file access method
indicated by fam. The meaning of values of fam is implementation defined. If the file is
successfully opened, flag f is zero, handle h is its identifier, and the file has been positioned

to the start of the file. Otherwise, f is the implementation-defined I/O result code and h is
undefined.

OR CORE
COMPILES TO: OR (0)

STACK EFFECTS: nln2-—n3

Leave the bitwise logical OR in n3 of the numbers nl and n2.

ouT COMUS
COMPILES TO: LITERAL (<address of OUT>)

STACK EFFECTS: —X

A variable containing the the value that will be returned to the host program.

OUTPUT 4TH
COMPILES TO: LITERAL (<fam>)
STACK EFFECTS: — fam

This will leave a file access method on the stack, signalling an operation on an output-
device.

OVER CORE
COMPILES TO: OVER (0)

STACK EFFECTS: nln2-—nln2nl

CHAPTER 11. GLOSSARY 244

Copy the second stack value to the top of the stack.

PAD CORE EXT
COMPILES TO: LITERAL (<address of PAD>)

STACK EFFECTS: — addr

Leave the address of the text output buffer.

PARSE CORE EXT

COMPILES TO: PARSE (0)

STACK EFFECTS: c¢—addrn

Reads a string from the Character Segment, using character c as a delimiter. Leaves the

addr/count pair addr n. The resulting string is not zero-terminated. If the parse area was
empty, the resulting string has a zero length.

PARSE-WORD 4TH
COMPILES TO: DUP (0)
OMIT (0)
PARSE (0)
STACK EFFECTS: c¢—addrn
Reads a string from the Character Segment, using character c as a delimiter and skipping

all leading delimiters. Leaves the addr/count pair addr n. The resulting string is not zero-
terminated.

PAUSE 4TH
COMPILES TO: PAUSE (0)

STACK_EFFECTS: —

Saves a stackframe, closes all files and quits execution. Leaves the virtual machine in a
state where it can resume execution.

PICK CORE EXT
INCLUDE: anscore.4th

STACK EFFECTS: nu.. nln2u—nu..nl n2nu

CHAPTER 11. GLOSSARY 245

Remove u. Copy the nu to the top of the stack.

PIPE 4TH
COMPILES TO: LITERAL (<fam>)

STACK EFFECTS: — fam

This will leave a file access method modifier on the stack, signalling an operation on a
pipe. Must be added to another file access modifier. Used in combination with INPUT and
OUTPUT. If an OS does not support pipes, opening a pipe will always fail.

PLACE COMUS
COMPILES TO: PLACE (0)

STACK EFFECTS: addrl n addr2 —

Copies the string at address addr1 with count n to address addr2.

QUERY CORE EXT
INCLUDE: obsolete.4th

STACK EFFECTS: —

Make the user input device the input source. Receive input into the terminal input buffer,
replacing any previous contents. Make the result, whose address is returned by TIB, the
input buffer. Set >IN to zero.

QuUIT CORE
COMPILES TO: QUIT (0)

FORTH: This word has quite another meaning in Forth.

Sets the program counter to the end of the program. Effectively quits execution.

R> CORE
PRONUNCIATION: r-from
COMPILES TO: R> (0)
STACK EFFECTS: —n

Remove the top value from the return stack and leave it on the stack.

CHAPTER 11. GLOSSARY 246

R’@ TOOLBELT
COMPILES TO: R> (0)

1(0)

SWAP (0)

>R (0)
STACK EFFECTS: —n

Copy the second return stack item to the stack.

R/O FILE
PRONUNCIATION: 1-0
INCLUDE: ansfile.4th
STACK EFFECTS: — fam

fam is the implementation-defined value for selecting the read only file access method.

R/W FILE
PRONUNCIATION: 1-w
INCLUDE: ansfile.4th
STACK EFFECTS: — fam

fam is the implementation-defined value for selecting the read write file access method.

R@ CORE
PRONUNCIATION: r-fetch
COMPILES TO: 1(0)
STACK EFFECTS: —n

Copy the top of the return stack to the stack.

RANDOM COMUS
COMPILES TO: RANDOM (0)

STACK EFFECTS: —n

Returns a pseudo-random number in n, between 0 and MAX-RAND. Seed is automatically
set.

CHAPTER 11. GLOSSARY 247

READ-FILE FILE
INCLUDE: ansfile.4th

STACK EFFECTS: addrnl h—n2f

Read nl consecutive characters to addr from the current position of the file identified by
handle h. If nl characters are read without an exception, flag f is zero and n2 is equal to
nl. If the end of the file is reached before nl characters are read, flag f is zero and n2 is the
number of characters actually read. At the conclusion of the operation, FILE-POSITION
returns the next file position after the last character read.

READ-LINE FILE
INCLUDE: ansfile.4th

STACK EFFECTS: addrnl h—n2 {1 2

Read the next line from the file specified by handle h into memory at the address addr. At
most nl characters are read. Up to two implementation-defined line terminating characters
may be read into memory at the end of the line, but are not included in the count n2.
The line buffer provided by addr should be at least n1+2 characters long. If the operation
succeeded, flag f1 is true and flag f2 is zero. If a line terminator was received before nl
characters were read, then n2 is the number of characters, not including the line terminator,
actually read (0 <= n2 <= nl). When nl = n2 the line terminator has yet to be reached.
If the operation is initiated when the value returned by FILE-POSITION is equal to the
value returned by FILE-SIZE for the file identified by handle h, flag f1 is false, flag {2 is
zero, and n2 is zero. If flag f2 is non-zero, an exception occurred during the operation
and f2 is the implementation-defined I/O result code. At the conclusion of the operation,
FILE-POSITION returns the next file position after the last character read.

RECURSE CORE

COMPILES TO: CALL (<last defined word>)

Compile a call to the current colon-definition inside the current colon-definition. If this
word is used outside a colon definition it is undefined.

REFILL CORE EXT FILE EXT
COMPILES TO: REFILL (0)
STACK EFFECTS: —f

Attempt to fill the input buffer from the input source, returning a true flag if successful.
When the input source is the user input device, attempt to receive input into the terminal
input buffer. When the input source is a text file, attempt to read the next line from the
text-input file. If successful, make the result the input buffer, set >IN to zero, and return
true. Receipt of a line containing no characters is considered successful. If there is no input
available from the current input source, return false.

CHAPTER 11. GLOSSARY 248

REPEAT CORE

COMPILES TO: BRANCH (<address of matching BEGIN>)

SYNTAX: BEGIN<space>..<space>WHILE<space>..<space>REPEAT

FORTH: Within a BEGIN .. REPEAT construct, multiple WHILEs may be
used as well, but additional words are necessary to complete the con-
struct.

At runtime, REPEAT forces an unconditional branch back to just after the corresponding
BEGIN. Multiple WHILEs may be used.

REPOSITION-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: nh—f

Reposition the file identified by handle h to n. Flag f is the implementation-defined I/O re-

sult code. An ambiguous condition exists if the file is positioned outside the file boundaries.
At the conclusion of the operation, FILE-POSITION returns the value n.

RESIZE MEMORY

INCLUDE: ansmem.4th

STACK EFFECTS: addrl n — addr2 f

Change the allocation of the contiguous data space starting at the address addr1, previously
allocated by ALLOCATE or RESIZE, to n address units. n may be either larger or smaller
than the current size of the region. If the operation succeeds, addr2 is the aligned starting
address of n address units of allocated memory and f is false. The values contained in the
region at addrl are copied to addr2, up to the minimum size of either of the two regions.
If they are the same, the values contained in the region are preserved to the minimum of
n or the original size. If addr2 is not the same as addrl, the region of memory at addrl
is returned to the system according to the operation of FREE. If the operation fails, addr2
equals addrl, the region of memory at addrl1 is unaffected, and f is true.

RESTORE-INPUT CORE EXT
INCLUDE: evaluate.4th

STACK EFFECTS: nln2aln3hn4 —f

Attempt to restore the input source specification to the state described by nl through h.
Flag is true if the input source specification cannot be so restored.

ROLL CORE EXT

INCLUDE: anscore.4th

CHAPTER 11. GLOSSARY 249
STACK EFFECTS: nunl. n2u—nl. n2nu

Remove u. Rotate u+1 items on the top of the stack.

ROT CORE

PRONUNCIATION: rote
COMPILES TO: ROT (0)

STACK EFFECTS: nln2n3 —n2n3nl

Rotate the top three values on the stack, bringing the third to the top.

RP@ 4TH
COMPILES TO: RP@ (0)
STACK EFFECTS: —sp

Return the address sp of the stack position of the top of the return stack as it was before
RP@ was executed.

RSHIFT CORE
PRONUNCIATION: r-shift
COMPILES TO: NEGATE (0)
SHIFT (0)
STACK EFFECTS: nln2—n3)

Perform a logical right shift of n2 bit-places on nl, giving n2. Put zeroes into the most
significant bits vacated by the shift.

S" CORE FILE
PRONUNCIATION: s-quote

COMPILES TO: S" (<address of string constant>)
SYNTAX: S"<space><string>"

STACK EFFECTS: —addrn

Compiles string delimited by " in the String Segment with an execution procedure to move
the string to PAD. Leaves the address and the length of the string on the stack.

S>D CORE

CHAPTER 11. GLOSSARY 250

PRONUNCIATION: s-to-d
COMPILER: The instruction pointer is not incremented. In fact, S>D is a dummy.

STACK EFFECTS: n—n

Convert the number n to double number n with the same numerical value.

S| 4TH

COMPILES TO: S" (<address of string constant>)
SYNTAX: Sl<space><string>|

STACK EFFECTS: —addrn

Compiles string delimited by | in the String Segment with an execution procedure to move
the string to PAD. Leaves the address and the length of the string on the stack.

SAVE-BUFFERS BLOCK
INCLUDE: ansblock.4th

STACK EFFECTS: —

Transfer the contents of each UPDATEd block buffer to mass storage. Mark the buffer as
unmodified.

SAVE-INPUT CORE EXT
INCLUDE: evaluate.4th
STACK EFFECTS: —nln2aln3hn4

nl through h describe the current state of the input source specification for later use by
RESTORE-INPUT.

SCONSTANT 4TH
SYNTAX: S"<space><string>"<space>SCONSTANT<space><name>

COMPILER: The previously compiled string address is taken as an argument for
SCONSTANT. The instruction pointer is decremented, actually delet-
ing the string address.

A defining word used to create word <name>. When <name> is later executed, it will push
the current address and the length of the string constant on the stack.

SCR BLOCK EXT

CHAPTER 11. GLOSSARY 251

PRONUNCIATION: s-c-r
INCLUDE: ansblock.4th

STACK EFFECTS: —X

x is the address of a cell containing the block number of the block most recently LISTed.

SEARCH STRING

INCLUDE: search.4th

STACK EFFECTS: addrl nl addr2 n2 — addr3 n3

Search the string specified by addr1 n1 for the string specified by addr2 n2 . If flag is true, a

match was found at addr3 with n3 characters remaining. If flag is false there was no match
and addr3 is addrl and n3 is nl.

SEEK 4TH
COMPILES TO: SEEK (0)

STACK EFFECTS: nh—f

Reposition the file identified by handle h to n. If n is positive, TELL returns the value n.
If n is negative, the file is repositioned relative to the end of the file. If the operation is
successful, FALSE is returned, otherwise TRUE.

SIGN CORE
COMPILES TO: SIGN (0)

STACK EFFECTS: nln2—n2

Stores an ASCII -’ sign just before the converted numeric output string in PAD when nl
is negative. nl is discarded, but n2 is maintained. Must be used between <# and #>.

SM/REM CORE

PRONUNCIATION: s-m-slash-rem

INCLUDE: mixed.4th

STACK EFFECTS: dnl —n2n3

Divide d by nl, giving the symmetric quotient n3 and the remainder n2. Input and output

stack arguments are signed. An ambiguous condition exists if nl is zero or if the quotient
lies outside the range of a single-cell signed integer.

SOURCE CORE

CHAPTER 11. GLOSSARY 252

COMPILES TO: LITERAL (<address of TIB variable>)
@ (0)
LITERAL (<address of TIB-size variable>)
@ (0)

STACK EFFECTS: —addrn

addr is the address of, and n is the number of characters in, the currently used TIB.

SOURCE! SOURCEFORGE
COMPILES TO: LITERAL (<address of TIB-size variable>)
1(0)
LITERAL (<address of TIB variable>)
1(0)
STACK EFFECTS: addrn—
Make the string described by c-addr and u the current input buffer. Set >IN to zero. A
program is allowed to refill the input buffer without restoring the original input source;

upon a refill, the system shall accept the new portion of text to the current refill buffer and
make it the input buffer.

SOURCE-ID CORE EXT FILE

PRONUNCIATION: source-i-d
COMPILES TO: ENVIRON (<address of CIN>)

STACK EFFECTS: —n

Identifies the input source.

SP@ 4TH
COMPILES TO: SP@ (0)
STACK EFFECTS: — sp

Return the address sp of the stack position of the top of the stack as it was before SP@ was
executed.

SPACE CORE
COMPILES TO: LITERAL (<ASCII value of space>)
EMIT (0)

CHAPTER 11. GLOSSARY 253

Transmit an ASCII blank to the current output device.

SPACES CORE
COMPILES TO: SPACES (0)

STACK EFFECTS: n—

Transmit n ASCII blanks to the current output device.

SPAN CORE EXT
INCLUDE: obsolete.4th
STACK EFFECTS: —X

X is the address of a cell containing the count of characters stored by the last execution of
EXPECT (see EXPECT).

STACK-CELLS 4TH

COMPILES TO: LITERAL (<number of integers>)
STACK EFFECTS: —n
FORTH: Equivalent to:

STACK-CELLS S" STACK-CELLS" ENVIRONMENT? DROP ;

Returns the number of integers that the Stack Area can contain. Both stacks share the Stack
Area.

STDIN 4TH
COMPILES TO: LITERAL (<address of stream>)
STACK EFFECTS: —h

Leaves a filehandle on the stack associated with the standard keyboard input device. This
stream cannot be closed.

STDOUT 4TH
COMPILES TO: LITERAL (<address of stream>)
STACK EFFECTS: —h

Leaves a filehandle on the stack associated with the standard screen output device. This
stream cannot be closed.

CHAPTER 11. GLOSSARY 254

STRING
SYNTAX:

COMPILER:

FORTH:

4TH
<literal><space>STRING<space><name>

The previously compiled literal is taken as an argument for STRING.
The instruction pointer is decremented, actually deleting the literal.

This word is 4tH specific. Roughly equivalent to:

STRING CREATE CHARS ALLOT ;

Allocate <literal> characters of contiguous data space beginning at <name> in the Charac-
ter Segment. The initial content of the allocated space is undefined.

STRUCT
COMPILES TO:

SYNTAX:

STACK EFFECTS:

FORTH:

4TH
LITERAL (0)

STRUCT<space><literal><space>+FIELD<space><name><space>END-
STRUCT<space><name>

—n

Similar constructions are available in GForth. +FIELD is part of the
Forth 200x draft.

A constant, which initiates a STRUCT definition (see: +FIELD, END-STRUCT).

SWAP
COMPILES TO:

STACK EFFECTS:

CORE
SWAP (0)

nl n2 —n2nl

Exchange the top two values on the stack.

SYNC
COMPILES TO:

STACK EFFECTS:

4TH
SYNC (0)

Attempt to force any buffered information written to the device referred to by the output
channel to be written.

TABLE
SYNTAX:

FORTH:

4TH
TABLE<space><name>

Available in some Forths.

CHAPTER 11. GLOSSARY 255

Leaves <name> in the symboltable and replace further occurences with LITERAL <xt>.
<xt> represents the address in the Code Segment where TABLE was compiled. An alias
for CREATE.

TELL 4TH
COMPILES TO: TELL (0)

STACK EFFECTS: h—n

n is the current file position for the file identified by handle h.

TH COMUS
COMPILES TO: + (0)
STACK EFFECTS: x1n—x2

FORTH: This word is not part of ANS-Forth or Forth-79, but can be found in
other Forths. It can be very handy when porting 4tH programs. Just
define TH as:

TH CELLS + ;
When you’re using a construction like:
VAR 2 TH

In both 4tH and Forth the third element will be referenced. The use
of TH to reference an element of a string in the Character Segment is
allowed in 4tH, but the resulting source cannot be ported to Forth.

Used to reference an element in an array of integers. Will return the address of the n-th
element in array x1 as x2. An alias for +.

THEN CORE

SYNTAX: IF<space>..<space>ELSE<space>..<space>THEN

At runtime THEN serves only as the destination of a forward branch from IF or ELSE. It
marks the conclusion of the conditional structure.

THROW EXCEPTION
COMPILES TO: THROW (0)
STACK EFFECTS: n—

FORTH: The values of THROW are not conforming the ANS-Forth standard.

CHAPTER 11. GLOSSARY 256

If n is non-zero, pop the topmost exception frame from the return stack, along with every-
thing beyond that frame. Then adjust the return- and datastacks so they are the same as the
depths saved in the exception frame, put n on top of the data stack, and transfer control to
a point just after the CATCH that pushed that exception frame (see: CATCH).

TIB CORE EXT

PRONUNCIATION: t-i-b

COMPILES TO: LITERAL (<address of Terminal Input Buffer>)

STACK EFFECTS: — addr

FORTH: In Forth this is a variable. However, it is unlikely you’ll ever find a

program which assigns another value to it.

A constant which leaves the address of the Terminal Input Buffer on the stack.

TIME 4TH
COMPILES TO: TIME (0)
STACK EFFECTS: —n

Returns the number of seconds since January 1st, 1970.

TIME&DATE FACILITY

PRONUNCIATION: time-and-date

INCLUDE: ansfacil.4th

STACK EFFECTS: —nl n2n3 n4 n5 n6

Return the current time and date. n1 is the second {0...59}, n2 is the minute {0...59}, n3 is

the hour {0...23}, n4 is the day {1...31}, n5 is the month {1...12}, and n6 is the year (e.g.,
1991).

TO CORE EXT
COMPILES TO: TO (<variable address>)
STACK EFFECTS: n—

SYNTAX: TO<space><name>

Store n in the value identified by name.

TRUE CORE EXT
COMPILES TO: LITERAL (<flag>)

CHAPTER 11. GLOSSARY

STACK EFFECTS:

FORTH:

257

—f

In ANS-Forth TRUE is represented by a -1 value.

Returns a true flag on the stack.

TUCK CORE EXT
COMPILES TO: SWAP (0)
OVER (0)

STACK EFFECTS:

nln2—n2nln2)

Copy the first (top) stack item below the second stack item.

TYPE CORE
COMPILES TO: TYPE (0)
STACK EFFECTS: addrn—

Transmit n characters from addr to the selected output device.

U. CORE
PRONUNCIATION: u-dot
INCLUDE: dbldot.4th
STACK EFFECTS: n—

Display n in free field format as an unsigned number.

U.R CORE EXT
PRONUNCIATION: u-dot-r
INCLUDE: dbldot.4th
STACK EFFECTS: nln2—

Display unsigned number nl right aligned in a field n2 characters wide. If the number of
characters required to display nl is greater than n2, all digits are displayed with no leading
spaces in a field as wide as necessary.

U< CORE
PRONUNCIATION: u-less-than
INCLUDE: ansdbl.4th

CHAPTER 11. GLOSSARY

STACK EFFECTS:

258

nln2 —f

Flag f is true if and only if unsigned number n1 is less than unsigned number n2.

U>
PRONUNCIATION:
INCLUDE:

STACK EFFECTS:

CORE EXT
u-greater-than
ansdbl.4th
nln2 —f

Flag f is true if and only if unsigned number nl is greater than unsigned number n2.

UM*
PRONUNCIATION:
INCLUDE:

STACK EFFECTS:

CORE
u-m-star
mixed.4th

nln2 —d

Multiply n1 by n2, giving the unsigned double-cell product d. All values and arithmetic are

unsigned.

UM/MOD
PRONUNCIATION:
INCLUDE:

STACK EFFECTS:

CORE
u-m-slash-mod
mixed.4th

dnl —n2n3

Divide d by n1, giving the quotient n3 and the remainder n2. All values and arithmetic are
unsigned. An ambiguous condition exists if nl is zero or if the quotient lies outside the
range of a single-cell unsigned integer.

UNLOOP CORE

COMPILES TO: R> (0)
R> (0)
DROP (0)
DROP (0)

STACK EFFECTS: —

Discard the loop-control parameters for the current nesting level. An UNLOOP is required
for each nesting level before the definition may be EXITed.

CHAPTER 11. GLOSSARY 259

UNTIL CORE

COMPILES TO: OBRANCH (<address of matching BEGIN>)

STACK EFFECTS: f—

SYNTAX: BEGIN<space>..<space>WHILE<space>..<space>UNTIL
FORTH: The optional WHILE word is not supported.

At runtime UNTIL controls the conditional branch back to the corresponding BEGIN. If f
is FALSE execution returns to just after BEGIN; if f is TRUE execution continues ahead.

UPDATE BLOCK
INCLUDE: ansblock.4th

STACK EFFECTS: —

Mark the current block buffer as modified. An ambiguous condition exists if there is no
current block buffer. UPDATE does not immediately cause 1/0O.

USE 4TH
COMPILES TO: USE (0)

STACK EFFECTS: h—

USE will associate the stream identified by filehandle h with the appropriate input- or
output-channel, depending on the file access method used when opening the stream (see:
OPEN). No streams are closed.

VALUE CORE EXT
COMPILES TO: TO (<variable address>)
STACK EFFECTS: n—

SYNTAX: <literal><space>VALUE<space><name>

Create a symboltable entry for the value name with an initial value n. At runtime, n will be
placed on the stack. In 4tH it is an alias for TO.

VARIABLE CORE

SYNTAX: VARIABLE<space><name>

A defining word used to create variable <name>. When <name> is later executed, it will
push the address <var> on the stack, so that a fetch or store may access this location.

CHAPTER 11. GLOSSARY 260

VARS 4TH
COMPILES TO: VARS (0)

STACK EFFECTS: —X

This word returns the begin of the variables area.

W/0 FILE
PRONUNCIATION: W-0
INCLUDE: ansfile.4th
STACK EFFECTS: — fam

fam is the implementation-defined value for selecting the write only file access method.

WHILE CORE

COMPILES TO: OBRANCH (<address of matching REPEAT token>)

STACK EFFECTS: f—

SYNTAX: BEGIN<space>..<space>WHILE<space>..<space>REPEAT
BEGIN<space>..<space>WHILE<space>..<space>UNTIL

FORTH: Within a BEGIN .. REPEAT construct, multiple WHILEs may be
used as well, but additional words are necessary to complete the con-
struct.

At runtime, WHILE selects conditional execution based on number n. If f is TRUE,
WHILE continues execution of the code thru to REPEAT, which branches back to BE-
GIN. If f is FALSE, execution skips to just after REPEAT, exiting the structure. Multiple
WHILESs may be used.

WIDTH 4TH
COMPILES TO: LITERAL (<number of characters>)
STACK EFFECTS: —n

A constant which leaves the maximum number of characters, allowed in a <name> label.

WITHIN CORE EXT
INCLUDE: range.4th

STACK EFFECTS: nln2n3 —f

CHAPTER 11. GLOSSARY 261

Perform a comparison of a test value nl with a lower limit n2 and an upper limit n3 ,
returning true if either (n2 < n3 and (n2 <=nl and nl < n3)) or (n2 > n3 and (n2 <=nl or
nl < n3)) is true, returning false otherwise.

WORD CORE
INCLUDE: word.4th
STACK EFFECTS: ¢ — addr
Skip leading delimiters and parse characters delimited by c. Addr is the address of the

parsed word. If the parse area was empty or contained no characters other than the delim-
iter, the resulting string has a zero length.

WRITE-FILE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addrnh—f

Write n characters from addr to the file identified by handle h starting at its current position.
Flag f is the implementation-defined I/O result code. At the conclusion of the operation,

FILE-POSITION returns the next file position after the last character written to the file, and
FILE-SIZE returns a value greater than or equal to the value returned by FILE-POSITION.

WRITE-LINE FILE

INCLUDE: ansfile.4th

STACK EFFECTS: addrnh—f

Write n characters from addr followed by the implementation-dependent line terminator to
the file identified by handle h starting at its current position. Flag f is the implementation-
defined I/O result code. At the conclusion of the operation, FILE-POSITION returns the

next file position after the last character written to the file, and FILE-SIZE returns a value
greater than or equal to the value returned by FILE-POSITION.

XOR CORE

PRONUNCIATION: Xx-Or
COMPILES TO: XOR (0)

STACK EFFECTS: nln2—n3

Leave the bitwise logical XOR of n1 XOR n2 as n3.

[’] CORE

CHAPTER 11. GLOSSARY 262

PRONUNCIATION:

COMPILES TO:
SYNTAX:
STACK EFFECTS:

FORTH:

bracket-tick
LITERAL (<tok>)
[’]<space><name>
—nlxIxt

>

See .

Compile the value contents of the symboltable entry identified as symbol <name> as a

literal. An alias for .

[*]
COMPILES TO:
SYNTAX:

COMPILER:

STACK EFFECTS:

FORTH:

[+]
COMPILES TO:
SYNTAX:

COMPILER:

STACK EFFECTS:

FORTH:

[=]
COMPILES TO:
SYNTAX:

COMPILER:

STACK EFFECTS:

FORTH:

[ABORT]

4TH
LITERAL (<product>)
<literal><space><literal><space>[*]

Two previously compiled literals are taken as arguments, multiplied
and their product recompiled. The instruction pointer is decremented,
actually deleting the literals.

—n

Equivalent to *.

4TH
LITERAL (<sum>)
<literal><space><literal><space>[+]

Two previously compiled literals are taken as arguments, added and
their sum recompiled. The instruction pointer is decremented, actu-
ally deleting the literals.

—n

Equivalent to +.

4TH
LITERAL (<flag>)
<literal><space><literal><space>[=]

Two previously compiled literals are taken as arguments and a true
flag is recompiled when they are equal. The instruction pointer is
decremented, actually deleting the literals.

—f

Equivalent to =.

4TH

CHAPTER 11. GLOSSARY 263

FORTH: Roughly equivalent to:

[ABORT]

Compilation is aborted immediately.

[ASSERT] 4TH

Toggles assertions. Assertions are disabled by default (see: ASSERT(and)).

[BINARY] 4TH

FORTH: Roughly equivalent to:
[2 BASE !]
When encountered during compilation it will set the radix to binary. All subsequent literals

will be interpreted as binary numbers. Runtime behaviour will be controlled by HEX,
OCTAL and DECIMAL.

[CHAR] CORE

PRONUNCIATION: bracket-char

COMPILES TO: LITERAL (<ASCII-value of character>)
SYNTAX: [CHAR]<space><char>

STACK EFFECTS: —¢

Compiles the ASCII-value of <char> as a literal. At runtime the value is thrown on the
stack. An alias for CHAR.

[DECIMAL] 4TH

FORTH: Roughly equivalent to:
[DECIMAL]
When encountered during compilation it will set the radix to decimal. All subsequent

literals will be interpreted as decimal numbers. Runtime behaviour will be controlled by
HEX, OCTAL and DECIMAL.

[DEFINED] SEARCH EXT
COMPILES TO: LITERAL (<flag>)
STACK EFFECTS: —f

SYNTAX: [DEFINED]<space><name>

CHAPTER 11. GLOSSARY 264

If the name is defined, return TRUE, else return FALSE.

[HEX] 4TH
FORTH: Roughly equivalent to:
[HEX]

When encountered during compilation it will set the radix to hexadecimal. All subsequent
literals will be interpreted as hexadecimal numbers. Runtime behaviour will be controlled
by HEX, OCTAL and DECIMAL.

[IF] TOOLS EXT

PRONUNCIATION: bracket-if

SYNTAX: <literal><space>[IF]<space><word>..<word><space>[THEN]
COMPILER: The previously compiled literal is taken as an argument for [IF]. The

instruction pointer is decremented, actually deleting the literal.
FORTH: Forth pops a value from the stack. This is not possible in 4tH.
If the literal is nonzero, do nothing. Otherwise, skipping leading spaces, parse and discard

space-delimited words from the source, including nested occurences of [IF] .. [THEN],
until the word [THENT] has been parsed and discarded.

[NEEDS 4TH
SYNTAX: [NEEDS<space><string>]
COMPILER: The contents of the file are inserted at this position.

Open the file specified by <string> and include its contents at the current position. When
the end of the file is reached, close the file and continue compilation. An error condition
exists if the named file can not be opened, if an I/O exception occurs reading the file, or if
an I/O exception occurs while closing the file.

[INEGATE] 4TH

COMPILES TO: LITERAL (<negation>)
SYNTAX: <literal><space>[NEGATE]
COMPILER: A previously compiled literal is taken as an argument, negated and

recompiled. The instruction pointer is decremented, actually deleting
the literal.

STACK EFFECTS: —-n

FORTH: Equivalent to NEGATE.

CHAPTER 11. GLOSSARY 265

[NOT]
COMPILES TO:
SYNTAX:

COMPILER:

STACK EFFECTS:

FORTH:

[OCTAL]

FORTH:

4TH
LITERAL (<flag>)
<literal><space>[NOT]

A previously compiled literal is taken as an argument and a true flag is
recompiled when it is equal to zero. The instruction pointer is decre-
mented, actually deleting the literal.

—f

Equivalent to O=.

4TH

Roughly equivalent to:

[8 BASE !]

When encountered during compilation it will set the radix to octal. All subsequent liter-
als will be interpreted as octal numbers. Runtime behaviour will be controlled by HEX,
OCTAL and DECIMAL.

[THEN]

TOOLS EXT

PRONUNCIATION: bracket-then

Does nothing. Acts as a marker for [IF] (see: [IF]).

[UNDEFINED] SEARCH EXT

COMPILES TO:

STACK EFFECTS:

SYNTAX:

LITERAL (<flag>)
—f

[UNDEFINED]<space><name>

If the name is defined, return FALSE, else return TRUE.

\

CORE EXT

PRONUNCIATION: backslash

SYNTAX:

\<space><string>

The remainder of the line is discarded. Used for comment.

Chapter 12

Editor manual

12.1 Introduction

Forth organises its mass storage into "screens" of 1024 characters. Forth may have one
screen in memory at a time for storing text. The screens are numbered, starting with screen
0.

Each screen is organised as 16 lines with 64 characters. The Forth screens are merely an
arrangement of virtual memory and do not correspond to the screen format of the target
machine. Due to this format, the use of the comment word ’\’ is not allowed. Use ’(’
instead.

12.2 Selecting a screen and input of text

After you’ve started an editing session, you need to select a screen to edit. The screen is
given a number and selected by using:

n CLEAR (clear screen n and select for editing).
To input new text to screen after CLEAR, the P (put) command is used. Example:

0 P THIS IS HOW
1 P TO INPUT TEXT
2 P TO LINES 0, 1, 2 OF SELECTED SCREEN.

12.3 Line editing

During this description of the editor, reference is made to PAD. This is a text buffer which
may hold a line of text to be found or deleted by a string editing command. Do not confuse
this PAD with 4tHs PAD. It is only called that way by convention.

266

CHAPTER 12. EDITOR MANUAL 267

12.4 Line editing commands

nD

nE

nl

nH
nR
nS

nT
n P text

Delete line n but hold it in PAD. Line 15 becomes free as all statements
move up 1 line.

Erase line n with blanks.

Insert the text from PAD at line n, moving the old line n and following lines
down. Line 15 is lost.

Hold line n at PAD (used by system more often than by user).
Replace line n with the text in PAD.

Spread at line n. Line n and following lines move down 1 line. Line n
becomes blank. Line 15 is lost.

Display line n and copy it to PAD.

Put "text’ at line n, overwriting its previous contents.

12.5 Screen editing commands

n LIST

n CLEAR
n INSERT

nm COPY

FLUSH
UNDO

L

List screen n and select it for editing: if screen n is not the current screen,
it will request to load from memory.

Clear screen n with blanks and select it for editing.

Insert screen n. The current screen n and all screens following it are moved
down. The last screen is lost.

Copy the contents of screen n to screen m. The original contents of screen
m are lost.

Used at the end of an editing session to save the current screen to memory.

Used to reload the current screen again, thus undoing all changes since the
last flush (triggered by CLEAR, FLUSH or LIST).

List the current screen. The cursor line is relisted after the screen listing to
show the cursor position.

12.6 Cursor control and string editing

The screen of text being edited resides in a buffer area of storage. The editing cursor is a
variable holding an offset into this buffer area. Commands are provided from the user to
position the cursor either directly or by searching for a string of buffer text, and to insert or
delete text at the cursor position.

12.7 Commands to position the cursor

nM

nW
TOP

Move the cursor by n characters and the cursor line. The position of the
cursor on its line is shown by a * (caret).

Wipe n characters to the left of the cursor.

Position the cursor at the start of the screen.

CHAPTER 12. EDITOR MANUAL 268

12.8 String editing commands

B Used after F to back up the cursor by the length of the most recent text.
C text Copy in text to the cursor line at the cursor position.
F text Search forward from the current cursor position until string "text’ is found.

The cursor is left at the end of the string and the cursor line printed. If the
string is not found an error message is given and the cursor repositioned to
the top of the screen.

N Find the next occurrence of the string found by an F command
TILL text Delete on the cursor line from the cursor till the end of string text.
X text Find and delete the next occurrence of the string "text’.

12.9 Saving and exiting

WRITE Saves the current contents of all screens to the block-file. No flushing is
done.
WwWQ Flushes the current screen and saves the current contents of all screens to

the block-file.

Q Quits the editor without saving.

12.10 Calculator mode

The calculator mode is a simulation of what is known as the "Forth calculator mode". You
can use it to try out a host of 4tH words in interactive mode. It also serves nicely as a
deskcalculator. You can freely mix editor and calculator commands.

We tried to include as many 4tH words as possible, although we had to modify some due
to the limitations imposed by the system. There are eight pre-defined user-variables called
"A." though "H.". You can use these variables like any other user-variable.

You cannot declare new variables or make any colon-definitions in interactive mode. If you
are unclear how to use the built-in calculator please refer to the Primer and the Glossary.
By convention, calculator mode uses "OK" as the prompt. The following table shows you
which commands are available:

CHAPTER 12. EDITOR MANUAL

EDITOR | 4TH EQUIVALENT || EDITOR | 4TH EQUIVALENT
+ + @ @

th th ? ?

- - base! base !

* * decimal decimal
/ / octal octal

q quit binary 2 base !
quit quit .(<string>) | .(<string>)
bye quit mod mod

. abs abs

I I negate negate
drop drop invert invert
dup dup min min

rot rot max max
swap swap or or

over over and and

A. variable a. a. xor xor

B. variable b. b. Ishift Ishift
C. variable c. c. rshift rshift
D. variable d. d. depth depth
E. variable e. e. cells cells

F. variable f. f. 1+ 1+

G. variable g. g. cell+ cell+
H. variable h. h. 1- 1-

! ! cell- cell-

+! +! space space
random | random spaces spaces
wait wait 2% 2%

time time 2/ 2/

char char /mod /mod
[char] [char] */ */

emit emit */mod */mod
cr cr (<string>) | (<string>)

Table 12.2: DC commands

269

Chapter 13

Shell manual

13.1 Introduction

The 4tsh shell is a multitasking environment for 4tH. 4tH features cooperative multitasking,
which means programs have to relinquish control to the shell using "PAUSE’, otherwise the
program will keep in control. The best place to add "PAUSE’ is usually somewhere in a
loop. 4tH comes with several example multitasking programs for you to try out. 4tsh can
be used as a command line replacement for 4th, since you can enable multitasking in the
editor.

4tsh is scriptable. Scripts are stored in blockfiles, because block I/0O is completed within a
single context. If you prefer to use your own editor, you need to convert your script to a
blockfile. 4tH comes with a conversion program, called txt2blk.4th. Every twelve lines
are converted to a block, leaving four additional lines for future modifications. Your lines
should be limited to 63 characters or less.

When a script it loaded, the first block is executed automatically. By convention, the first
block is block 0. When the execution of a block has completed, the script stops. You can
call other blocks by using "LOAD”. When the execution of a called block has completed,
the execution of the previous block will resume at the point where execution was transferred

to the called block. It is recommended to use the first block as an application load screen',

e.g.

(4tsh application load screen)

1 load (initialization)
2 load (checking conditions)
3 load (error handling)

An application load screen is simply a block that consecutively loads all the blocks that
make up your script. You can run an arbitrary number of scripts at startup by issuing them
on the command line, e.g.

4tsh boot.scr startup.scr tasks.scr

When all scripts have finished execution, control will automatically be transferred to the
monitor.

!'See "Thinking Forth”, chapter 5.

270

CHAPTER 13. SHELL MANUAL 271

13.2 Loading and saving

load” s”
compile” s”
n save” s’
n write” s’

nl n2 see

Loads HX file s from disk and leaves the task number on the stack.
Loads and compiles source file s and leaves the task number on the stack.
Saves task number n to HX file s.

Generates C source file s from task number n.

Decompiles task number nl from opcode n2 on.

13.3 Task management

mon
pause

n pauses
nrun

n awake
n sleep
n kill
tasks

halt

Leaves the task number of the monitor on the stack.
Deactivates the monitor for one cycle.

Deactivates the monitor for n cycles.

Awakes and switches to task number n.

Awakes task number n.

Deactivates task number n, but leaves it in memory.
Deactivates task number n and removes it from memory.
Lists all tasks.

Kills all tasks and shuts down 4tsh.

13.4 Scripting

script” s"'
n load
H

goto s

n if

then

n not

n status
done
running

sleeping

Run script s. Does only work in interactive mode.
Load and interpret block n. Does not work in interactive mode.
Define label s.

Goto label s. Works in interactive mode, but only if s resides on the same
line.

Execute the words between if and the corresponding then, but only if n
is non-zero. Works in interactive mode. If you fail to provide a corre-
sponding then you will be prompted to provide it manually.

Marker for if.

Leaves a non-zero value on the stack if n is zero, otherwise zero.
Leaves the status of task number n on the stack.

Constant holding the termination status returned by status.
Constant holding the active status returned by status.

Constant holding the inactive status returned by status.

CHAPTER 13. SHELL MANUAL

13.5 Stack, I/0 and arithmetic

| 41sh | 4TH EQUIVALENT || 4tsh | 4TH EQUIVALENT

+ + . .
- - dup dup
* * rot rot
/ / over over
cr | cr swap swap
. (drop drop
(| (= =

Table 13.1: 4tsh commands

272

Chapter 14

ANS Forth statement

Forth, like BASIC, has always suffered from a lack - or may be an abundance of standards.
Both languages had many dialects, which were highly incompatible. However, although
there was never a generally accepted BASIC standard, a simple BASIC program can be
easily converted to almost any existing implementation of the language.

The Forth community had a different approach to the problem. They kept changing the
core every few years, so even now it’s very hard to find a program which can run on any
Forth with little modification. Calling those very different versions a standard didn’t really
help.

So when the ANSI-standard committee began its work they had a few very though nuts
to crack. In our view the ANS-Forth standard is big step forward, but not perfect. It has
not fully regained the simplicity we found in the Forth-79 and still has some serious flaws,
although most are an inheritance from Forth-83.

We do feel the need for a real Forth standard, so we tried to make 4tH as ANS-Forth
compatible as possible without sacrificing the ease of use that we had in mind when we
designed it. About 95% of the CORE wordset is supported.

4tH was built according to the ANS-Forth standard, but with a tiny Forth-79 flavor. Full
compliance to the ANS-Forth standard was never an objective. According to the ANS-
Forth standard 4tH cannot be an "ANS-Forth System", since the standard does not cover
this kind of implementation.

14.1 ANS-Forth Label

According to the ANS-Forth standard, section 5.2.2, this system is is capable of compiling:
ANS Forth Programs

Requiring:

e the Exception word set

o the Memory word set
Requiring selected words from:

o the Core Extensions word set

273

CHAPTER 14. ANS FORTH STATEMENT 274

e the Block word set

e the Block Extensions word set

e the Double number word set

e the Double number Extensions word set

e the Facility Extensions word set

e the File-Access word set

e the File-Access Extensions word set

o the Programming-Tools word set

o the Programming-Tools Extensions word set

o the String word set.

End of label. Although the ANS-Forth standard (section 4.1) requires documentation to be
presented in a prescribed format, 4tH does not comply for the simple reason that due to its
architecture it is not considered to be a "ANS Forth System" (sections 3.3, 3.4, 5.1).

Note that due to this special architecture some words are missing from the CORE wordset
or behave slightly different, so some "ANS Forth Programs" with the requirements men-
tioned above may not compile or compile only with modifications.

14.2 Unsupported CORE words

These words are not available in 4tH. Some CORE words are only available in source
(ANS-Forth, section 3). You can find them in the 4tH glossary. The behaviour of some 4tH
words may differ from the ANS-Forth definition.

ALLOT
FIND

KEY
LITERAL
POSTPONE
STATE

[

]

14.3 Supported ANS Forth word sets

The words in the following sections are supported by 4tH; external words are in italics.
Please note that due to 4tHs special architecture some words may behave slightly different,
so some "ANS Forth Programs" using these words may need modifications in order to run
properly. More words are available in source and can be loaded when required.

CHAPTER 14. ANS FORTH STATEMENT 275

14.3.1 Core Extensions word set

#TIB

o

.R

0<>

0>

2>R

2R>

2R@
:NONAME
<>

?DO
AGAIN
ERASE
EXPECT
FALSE
HEX

NIP

PAD
PARSE
PICK
QUERY
REFILL
RESTORE-INPUT
ROLL
SAVE-INPUT
SOURCE-ID
TIB

TO

TRUE
TUCK

UR

U>

VALUE
WITHIN

\

CHAPTER 14. ANS FORTH STATEMENT 276

14.3.2 Block word set

BLK

BLOCK
BUFFER
FLUSH

LOAD
SAVE-BUFFERS
UPDATE

14.3.3 Block Extensions word set

EMPTY-BUFFERS
LIST
SCR

14.3.4 Double number word set

D+

D-

D.
D.R
Do<
DO=
D2*
D2/
D<
D=
D>S
DABS
DMAX
DMIN
DNEGATE
M+
M

14.3.5 Double number Extensions word set

2ROT

CHAPTER 14. ANS FORTH STATEMENT 277

14.3.6 Facility Extensions word set

+FIELD
MS
TIME&DATE

14.3.7 File-Access word set

(
BIN

CLOSE-FILE
CREATE-FILE
FILE-POSITION
FILE-SIZE
OPEN-FILE

R/O

R/W

READ-FILE
READ-LINE
REPOSITION-FILE
S"

SOURCE-ID
Ww/0
WRITE-FILE
WRITE-LINE

14.3.8 File-Access Extensions word set

FILE-STATUS
FLUSH-FILE
REFILL

14.3.9 Programming-Tools word set

.S

?

DUMP

14.3.10 Programming-Tools Extensions word set

[IF]
[THEN]

CHAPTER 14. ANS FORTH STATEMENT 278

14.3.11 String word set

-TRAILING
/STRING
BLANK
CMOVE
CMOVE>
COMPARE
SEARCH

Chapter 15

Errors guide

15.1 How to use this manual

This manual contains all the error messages 4tH can possibly issue. It is organized like

this:

MESSAGE:

WORDS:
EXAMPLE:
CAUSE:

HINTS:

This features the message from "errs_4th.c", the error-code returned in Er-
rNo and the C-mnemonic.

Words that can trigger this error.
This features a 4tH one-liner that will trigger the error.
This lists all possible causes of the error.

This will give you some directions on how to fix the error.

15.2 Interpreter (exec_4th)

When exiting this function ErrLine will contain the address of the word in the Code Seg-
ment where the error occured.

MESSAGE:
WORDS:
EXAMPLE:
CAUSE:

HINTS:

MESSAGE:
WORDS:

EXAMPLE:

No errors (#0 MANOERRS)

Not applicable

Not applicable

A program was succesfully executed.

Make an error ;)

Out of memory (#1 MANOMEM)
Not applicable
Not applicable

279

CHAPTER 15. ERRORS GUIDE 280

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

There was not enough free memory to allocate the Character Segment or
the Integer Segment.

1. Reduce the amount of memory your program allocates and recompile.
2. Add more physical memory or increase swap space.

3. Recompile 4tH under another operating system (flat memory space) or
another memory model.

Bad object (#2 M4BADOBJ)

Not applicable

Not applicable

An unknown token was encountered in the H-code.

Contact us, this should never happen.

Stack overflow (#3 M4SOVFLW)
Any word that pushes items on the Data Stack.
STACK 1+ 0 DO I LOOP

The Data Stack collided with the Return Stack.

1. Don’t push too many elements on the Data Stack.
2. Merge colon-definitions. Reduce the number of nested DO..LOOPs.

3. If you are using recursion, try if you can achieve the same result with a
loop.

4. Make sure that your stacks are still balanced when returning from a
colon-definition. Don’t leave any unused data on the Data Stack. Flow-
control words can have unexpected stack effects!

Stack empty (#4 M4SEMPTY)
Any word that pops items from the Data Stack.
0 SWAP

The Data Stack did not contain the required number of items to complete
the operation.

1. Make sure that your stack is still balanced when returning from a colon-
definition.

2. Make sure that the required number of items are on the stack when per-
forming the operation.

CHAPTER 15. ERRORS GUIDE 281

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

3. If the problem occurs within an interpreter driven application, make sure
that you check the number of elements are on the stack before allowing
the operation.

Return stack overflow (#5 M4ROVFLW)

Any word that pushes items on the Return Stack; calling a user defined
word

DUMMY DUMMY ; DUMMY

The Return Stack collided with the Data Stack.

1. Don’t push too many elements on the Data Stack.
2. Merge colon-definitions. Reduce the number of nested DO..LOOPs.

3. If you are using recursion, try if you can achieve the same result with a
loop.

4. Make sure that your stacks are still balanced when returning from a
colon-definition. Don’t leave any unused data on the Data Stack. Flow-
control words can have unexpected stack effects!

Return stack empty (#6 M4REMPTY)

Any word that pops items from the Return Stack; returning from a user
defined word

R>

The Return Stack did not contain the required number of items to complete
the operation.

1. Balance R> and >R inside your colon-definition. Flow-control words
can have unexpected stack effects!

2. Be careful when using R> and >R inside a DO..LOOP.

Bad string (#7 M4BADSTR)
ARGS OFFSET
-1 ARGS

There was either no argument on the command line or no binary string
constant with this index.

1. Use a valid index for ARGS.
2. Use a valid index for the offset.

CHAPTER 15. ERRORS GUIDE 282

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

Bad variable (#8 M4BADVAR)
@+!
6 ARRAY NAME NAME -5 TH @

You tried to access a variable or array element, but its address in the Integer
Segment is invalid.

1. Be sure that all stack-items are in the right order when address calcula-
tions, fetches or stores are made.

2. Use a valid array index or address.

Bad address (#9 M4BADADR)
All string handling words
10 STRING BUFFER TIB CHAR- BUFFER /TIB CMOVE

You tried to access a character, but its address in the Character Segment is
invalid.

1. Be sure that all stack-items are in the right order when address calcula-
tions, fetches or stores are made.

2. Make sure that the number of elements is correct when you use words
like CMOVE, COUNT, FILL.

3. Terminate strings.

4. You exceeded the maximum length of PAD when you defined a string
constant using S".

5. You exceeded the maximum length of PAD when you fetched a com-
mandline argument using ARGS.

Divide by zero (#10 M4DIVBY0)
/ MOD /MOD */ */MOD

10/ . CR

You tried to divide by zero.

Check the divisor before you use it.

Bad token (#11 M4BADTOK)
@C EXECUTE EXIT CATCH
DUMMY ; ' DUMMY 5 - DUP @C SWAP EXECUTE

You tried to jump to a token or access the argument of a token, but its
address in the Code Segment is invalid.

CHAPTER 15. ERRORS GUIDE 283

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

1. Be sure that all stack-items are in the right order when address calcula-
tions, fetches or jumps are made.

2. Make sure the address you’re using is within the Code Segment.

3. Be sure that the name after ’ is that of a colon-definition.

Bad radix (#/2 M4BADRDX)
.R . # NUMBER
1 BASE ! 5 . CR

The 4tH variable BASE contained a value outside the 2 to 36 range during
a conversion.

Take care that BASE stays within the 2 to 36 range.

Bad pointer (#/3 M4BADPTR)
CATCH THROW PAUSE
ME R> R> R> DROP -5 >R >R >R 1 THROW ; '’ ME CATCH

The stack pointer THROW or PAUSE tried to use was invalid.

1. Be careful when you manipulate the Return Stack.

2. Contact us, this should never happen.

I/O error (#14 M4IOERR)
All words performing I/O

OUTPUT FILE 5 . CR

You tried to read from or write to an unopened file.
You tried to USE, SEEK or TELL an unused stream.
There was an I/O error when you tried to read from or write to a file.

There was an error when you tried to close an open file with CLOSE.

A

There was an error when 4tH tried to close a file after the program ter-
minated.

1. Open a file before you try to read or write to it. Check the value OPEN
returns.

2. Make sure the values on the stack are correct when you perform I/O.

3. Make sure the values on the stack are correct when addressing streams.

CHAPTER 15. ERRORS GUIDE 284

4. Make sure that there is enough space left on the device you try to write
to. Make sure it functions correctly.

MEssAaGE: Assertion failed (#15 M4ASSERT)

WORDS:)

EXAMPLE: [ASSERT] ASSERT(FALSE)

CAUSE: The top of the stack was FALSE when) executed.
HINTS: Correct the condition) acted upon.

MessaGge: Unhandled exception (#/6 M4THROW)
WORDS: THROW
EXAMPLE: 1 THROW

CAUSE: A THROW was encountered without a previous call from CATCH. The top
of stack contained an error number outside the range of system errors.

HINTS: Make sure that a THROW can only be reached from a previous CATCH.

MESSAGE: Bad stream (#17 M4BADDEV)

WORDS: USE SEEK TELL CLOSE
EXAMPLE: -1 CLOSE
CAUSE:

1. The filehandle you tried to use was out of range.

2. You may not SEEK, TELL or CLOSE the streams STDIN and STD-
OUT.

3. You may not SEEK or TELL a pipe.

HINTS:

1. Make sure you use a proper stream when using USE, SEEK, TELL or
CLOSE.

2. Check stack manipulations or use a variable or value.

15.3 Compiler (comp_4th)

When exiting this function ErrLine will contain the address in the Code Segment where
the next word would have been compiled if the error hadn’t occured. This is logical, since
4tH always reports where the error occured. And all previous words have been succesfully
compiled.

MESSAGE: No errors (#0 M4NOERRS)

WORDS: Not applicable

CHAPTER 15. ERRORS GUIDE 285

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

Not applicable
A source was succesfully compiled.

Make an error ;)

Out of memory (#1 MANOMEM)
Not applicable
Not applicable

There was not enough free memory to allocate the H-code header, the Code
Segment, the symbol-table or the control-stack.

1. Compact your source by removing all comment and whitespace.
2. Add more physical memory or increase swap space.

3. Recompile 4tH under another compiler (flat memory space) or another
memory model.

Bad object (#2 M4BADOBJ)
All defining words

Not applicable

1. A word could not be compiled due to lack of space in the Code Segment.

2. A definition could not be compiled due to lack of space in the symbol-
table.

Contact us, this should never happen with normal source-code.

1/0O error (#14 M4IOERR)
[NEEDS INCLUDE

[NEEDS nosuchfile.4th]

1. The source file you tried to read doesn’t exist.
2. There was an error reading the source file.

3. There was an error when 4tH tried to close the source file.

1. Make sure the file you try to open exists and is in the path. Change
your working directory if necessary. Check the DIR4TH environment
variable.

CHAPTER 15. ERRORS GUIDE 286

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

2. Make sure the device functions correctly.

Bad literal (#18 M4BADLIT)
All words requiring a literal expression
10 5 * ARRAY NAME

The expression, which was compiled right before the word which caused
the error, did not compile to a literal.

Use a literal expression.

Undefined name (#/9 M4NONAME)
<name>"' [’'] RECURSE :THIS AKA HIDE

" HELLO ("hello" is not defined)

. The name which caused the error is not present in the symbol-table.
. The name is not defined at all.

. You tried to create a :THIS definition for an invalid datatype.

. RECURSE is used outside a colon definition.

1

2

3

4. It is not a valid number in the current radix.

5

6. The name you used is longer than WIDTH characters.

1. Note that the words above only work with names defined inside the pro-
gram and not with built-in names.

2. Usually a typo; correct spelling.
3. Use a proper datatype when creating a :THIS definition.

4. Set the appropriate radix by using [BINARY], [OCTAL], [DECIMAL]
or [HEX].

5. Remove the offending RECURSE.

6. Use a shorter name.

Nesting too deep (#20 M4NONEST)
All flow control words and colon definitions
10 0 DO 10 0 DO <more flow-control structures> LOOP LOOP

The control-stack, that holds all references to addresses of flow-control
structures in the Code Segment, overflowed.

Make separate colon-definitions of the flow-control structures that caused
the error.

CHAPTER 15. ERRORS GUIDE 287

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

No program (#21 M4ANOPROG)
All words that do not compile any tokens

10 ARRAY NAME (Won’t compile)

The source didn’t contain any compilable words.
The source was corrupt.

A runaway comment or conditional compilation clause.

b=

In rare cases use of reserved words as names.

Make a program that does something.
Make sure that the source actually contains 4tH source- code.

Terminate your comments and conditional compilations properly.

b=

Don’t use any reserved words as names.

Incomplete declaration (#22 M4NODECL)
All defining words and compiler directives

10 CONSTANT CONSTANT NAME

1. Syntax errors; usually a missing name or a literal expression.

2. Incomplete compiler directives or expressions, like a leading comma or
a trailing CHAR.

3. An assertion, beginning with ASSERTY(, is missing a right parenthesis.
Assertions are not enabled at that point.

4. An [IF] is not balanced by a [THEN].

Use an appropriate expression or name.

Complete compiler directives and expressions.

Add a right parenthesis at the end of the expression.
Add a [THEN] for each [IF] statement.

L=

Unmatched conditional (#23 M4NOJUMP)
All flow control words and colon definitions
WRONG IF DROP BEGIN FALSE LOOP ;

The flow-control word that caused the error didn’t match with the previous
flow-control word (BEGIN after IF) or was missing.

CHAPTER 15. ERRORS GUIDE 288
HINTS: Use the appropriate flow-control word to terminate a flow-control structure.

MEssaGe: Unterminated string (#24 M4NOSTR)

WORDS: "N (.(,"™ S" ABORT" S| ,| [CHAR] CHAR @GOTO [NEEDS INCLUDE
[DEFINED] [UNDEFINED]

EXAMPLE: ." Hello world

CAUSE:

1. A required delimiter is missing at the end of a string.
2. An internal error occured at the very end of the source.
HINTS:

1. Add the required delimiter at the end of the string.

2. Contact us, this should never happen.

MESSAGE: Null string (#25 M4NULSTR)
WORDS: See error #24

EXAMPLE: .

CAUSE:

1. The string between the word and its delimiter did not contain any char-
acters.

2. There was more than one whitespace character between a [DEFINED],
[UNDEFINED], [CHAR], CHAR or INCLUDE and the string follow-
ing it.

HINTS:

1. Use a string that contains at least one single character.

2. Delete all superfluous whitespace characters between [DEFINED], [UN-
DEFINED], [CHAR], CHAR or INCLUDE and the string following it.

MEssaGe: Duplicate name (#26 M4DUPNAM)

WORDS: All defining words

EXAMPLE: : TH CELLS + ;

CAUSE: The name you used for a definition is already in use by 4tH or your own
program.

HINTS: Use a different name.

MessaGge: Compilation aborted (#27 M4CABORT)

WORDS: [ABORT]

EXAMPLE: [ABORT]

CAUSE: An [ABORT] directive was encountered during compilation.

HINTS: The original programmer must have had a reason to abort compilation in

this particular circumstance. See the program for additional information.

CHAPTER 15. ERRORS GUIDE 289

15.4 Loader (load_4th)

Since the loader works with complete segments, the words don’t have to do much with
fixing an error. Therefore, it reports that nothing has been loaded (word 0) or everything
has been loaded (the last word).

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

MESSAGE:

WORDS:

EXAMPLE:

CAUSE:

HINTS:

No errors (#0 M4ANOERRS)

Not applicable

Not applicable

A program was succesfully loaded.

Keep up the good work. ;)

Out of memory (#1 MANOMEM)
Not applicable
Not applicable

There was not enough free memory to allocate the header, the Code Seg-
ment or the String Segment.

1. Reduce the amount of memory your program allocates and recompile.
2. Add more physical memory or increase swap space.

3. Recompile 4tH under another compiler (flat memory space) or another
memory model.

Bad object (#2 M4BADOBJ)
Not applicable
Not applicable

You tried to load a file, that was not an HX-file.
You tried to load an HX-file from a previous version of 4tH.

You tried to load an HX-file for a different application.

e o=

You tried to load an inconsistent HX-file.

1. Use a proper HX-file.
2. Recompile the source, using the current 4tH compiler.

3. If the source is compatible, you might recompile the source, using your
own 4tH compiler.

4. Recompile the source, using your own 4tH compiler.

CHAPTER 15. ERRORS GUIDE 290

MEsSAGE: 1/O error (#14 M4IOERR)
WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE:
1. The file could not be opened.
2. There was an I/O error while the file was read.
3. The file could not be closed.

HINTS:

1. Use a valid filename.
2. Make sure the device functions correctly.

3. Make sure the device functions correctly.

15.5 Saver (save_4th)

Since the saver works with complete segments, the words don’t have to do much with fixing
an error. Therefore, it reports that nothing has been saved (word 0) or everything has been
saved (the last word).

MESSAGE: No errors (#0 M4NOERRS)
WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE: A program was succesfully saved.

HINTS: Keep up the good work. ;)

MEsSAGE: I/O error (#14 M4IOERR)
WORDS: Not applicable

EXAMPLE: Not applicable

CAUSE:
1. The file could not be opened.
2. There was an I/O error while the file was written.
3. The file could not be closed.

HINTS:

1. Make sure you got enough inodes or directory-entries left on the device
you want to write to. Use a valid filename.

2. Make sure that there is enough space left on the device you try to write
to. Make sure it functions correctly.

3. Make sure the device functions correctly.

Chapter 16

Porting guide

16.1 Introduction

4tH is ANS-Forth compatible. That means that 4tH and ANS-Forth share a common word-
set, so you can write programs that run on both systems. This guide will show you how you
can write portable programs or convert eligible ANS-Forth programs to 4tH with as little
effort as possible.

16.2 General guidelines

We have already stated that 4tH and ANS-Forth have much in common, but it is unlikely
that you can write a non-trivial program that runs unmodified on both platforms without
resorting to conditional compilation, which allows you to "hide" implementation specific
code. The word *4TH#’ not only holds 4tH’s version number, but is also an effective way
to differentiate between 4tH and other compilers:

[DEFINED] 4TH# [IF]
variable span

: expect 1- accept span ! ;
[THEN]

Of course, the opposite works too:

[UNDEFINED] 4TH# [IF]
s" easy.4th" included
[THEN]

If you have an interactive program you might want to disable the 4tH autostart:
[DEFINED] 4TH# [IF] start-program [THEN]

Otherwise "REFILL’ will try to get its input from the file instead of the keyboard.

291

CHAPTER 16. PORTING GUIDE 292

16.3 Differences between 4tH and ANS-Forth

Like any software, 4tH is a compromise. We have to address the requirements of both
newbies and power users, which means we have to make choices! concerning ANS-Forth
compliancy. There are several reasons why 4tH is not completely ANS-Forth compliant:

1. 4tH uses a different architecture which makes it impossible to be ANS-Forth com-
pliant, so some constructions are simply not feasible;

2. Some constructions in ANS-Forth are considered to be illogical, unelegant, bloated,
not intuitive, error prone, inefficient or otherwise not acceptable;

3. 4tH maintains a close relationship with C, so it is more logical and efficient to use
C-conventions instead of ANS-Forth conventions.

Where possible, we try to minimize the consequences for our users by hiding the differ-
ences behind abstractions or other transparent solutions. But sometimes, we simply can’t.
In this section we will show you which differences there are between 4tH and ANS-Forth
and how you can either avoid or resolve them.

16.3.1 Strings

In 4tH, strings are stored in an ASCIIZ format. ANS-Forth uses counted strings. In
4tH there is no such thing as a countbyte, since it uses a terminator. If you limit the
use of "COUNT"’ only to string variables and constants, and exclusively use 'PLACE’ or
’+PLACE’ you should be fine, since the address/count convention of ANS-Forth is fully
supported. Should you resort to low level operations which require a terminator, you might
have to define an equivalent word in ANS-Forth to make your program portable.

’S™ does have interpretation semantics, but the string stored at the address ’S" returns
might have a very short lifespan, depending on your ANS-Forth compiler. 4tH has a trans-
parent, circular buffer that protects the string from overwriting, but when you port your
program you might not be that lucky. Note that ANS-Forth does not require compilers to
provide these facilities.

16.3.2 Double numbers

4tH uses only signed 32 bit cells, but some words in ANS-Forth, like *<#’, *#>’, "FILE-
SIZE’, "FILE-POSITION’ and "REPOSITION-FILE’ require the use of double numbers.
You can easily fix this by adding *S>D’, which converts a number to a double number. Its
counterpart, 'D>S’, is available too. In 4tH these words have no effect.

16.3.3 Booleans

Another nice topic for a flame war is the value of truth. In ANS-Forth the "'TRUE’ has
the value "-1", which means all bits are set. Which is very clever. You can "XOR’, ’OR’,
’AND’ and "INVERT" it with any other value and it will behave as logical value. But "the
all bits set" flag has its drawbacks too. Let’s see what the ANS-Forth standard says about
flags:

'You may or may not agree with the choices we made, but you can rest assured we have given them consider-
able thought.

CHAPTER 16. PORTING GUIDE 293

"A FALSE flag is a single-cell datum with all bits unset, and a TRUE flag
is a single-cell datum with all bits set. While Forth words which test flags
accept any non-null bit pattern as true, there exists the concept of the well-
formed flag. If an operation whose result is to be used as a flag may produce
any bit-mask other than TRUE or FALSE, the recommended discipline is to
convert the result to a well-formed flag by means of the Forth word 0<> so that
the result of any subsequent logical operations on the flag will be predictable.
In addition to the words which move, fetch and store single-cell items, the
following words are valid for operations on one or more flag data residing on
the data stack: AND OR XOR INVERT"

We highly recommend the discipline of converting a non-zero value to a well-formed flag.
But we don’t understand why 'INVERT" is a valid way to manipulate a flag. We’ll try to
explain you why.

Forth traditionally has no specific logical operators. Instead, binary operators were used.
This put ’INVERT’ (or "NOT’ as it was called in Forth-79) in a difficult position. "IN-
VERT ing any non-zero value will result in a non-zero value, except when all bits are set.

That is why *0=" was introduced, a full-fledged logical operator. So why use ’INVERT’
when you want to perform a logical operation? Another quote:

"Since a "char" can store small positive numbers and since the character
data type is a sub-range of the unsigned integer data type, C! must store the n
least-significant bits of a cell (8 <= n <= bits/cell). Given the enumeration of
allowed number representations and their known encodings, "TRUE xx C! xx
C@" must leave a stack item with some number of bits set, which will thus
will be accepted as non-zero by IE."

This is another problem of using "all bits set" as a true flag: you store a well formed flag in
an address unit that should easily be able to handle it and you’ll never get it back. A flag
is a boolean and can have two values: either true or false. The smallest unit that can hold a
boolean is a bit. ANS-Forth programmers are denied that privilege.

But why are some Forth programmers so keen on their “all bits set” flag? Well, you can do
neat things with it.

: >CHAR DUP 9 > 7 AND + ASCII 0 + ;

This will convert a digit to its ASCII representation. True, it is a clever piece of program-
ming, but in our opinion it is bad style. Why? Because you are using a flag as a bitmask,
which is a completely different datatype. Although there is no such thing as “data typing”
in Forth, this way of programming makes it difficult to understand and maintain a program,
which the ANS-Forth standard acknowledges:

"The discipline of circumscribing meaning which a program may assign
to various combinations of bit patterns is sometimes called data typing. Many
computer languages impose explicit data typing and have compilers that pre-
vent ill-defined operations. Forth rarely explicitly imposes data-type restric-
tions. Still, data types implicitly do exist, and discipline is required, particu-
larly if portability of programs is a goal. In Forth, it is incumbent upon the
programmer (rather than the compiler) to determine that data are accurately
typed."

CHAPTER 16. PORTING GUIDE 294

That is why 4tH uses "1" as a true flag. Usually, it won’t make much difference. Except
when you use "’INVERT" to invert a flag or intend to make obfuscated programs. If you use
’0=instead, you won’t run in any trouble, not even when you port your program to ANS-
Forth. Clarity may introduce a little overhead, but in this age of multi-gigaherz machines,
who is counting? E.g. you could program “>CHAR” like this:

\ convert a flag to a bit mask
: >MASK 0 SWAP IF INVERT THEN ; (£ -- mask)

\ convert a digit to ASCII
: >CHAR DUP 9 > >MASK 7 AND + ASCII 0 + ; (n -— ¢)

If you still want to change the true flag, you can by simply changing a #define in "cmds_4th.h":
#define F_T ~(0L)

But we doubt whether it will be a great benefit to your programming style.

16.3.4 CREATE..DOES>

In both 4tH and ANS-Forth it is possible to change the runtime behaviour of variables. E.g.
in ANS-Forth, ’"CONSTANT" is usually defined as:

: CONSTANT CREATE , DOES> @ ;
10 CONSTANT MY_CONST
MY_CONST . CR

Of course there is a predefined word in 4tH that does this, but if you wanted to mimic this
behaviour you would have to define it like this:

CREATE MY_CONST 10 , \ CREATE part
:THIS MY_CONST DOES> QC ; \ DOES> part
MY_CONST . CR \ Works the same way

The point is that the ANS-Forth "CREATE DOES>" construct cannot be ported to 4tH,
although all words seem to be supported. A rule of the thumb is that defining words cannot
be used to define new defining words, like in ANS-Forth. Most errors will be trapped by
4tH’s compiler, though.

Just remember that a *:THIS’ definition can easily be ported to ANS-Forth. If you want to
write a portable program, *:THIS’ is the way to go.

16.3.5 HERE

Be careful with "HERE’. "THERE’ looks and acts a lot like the ANS-Forth "HERE’, but
since the architecture is different it serves quite another function. When "HERE’ is used
for address arithmetic with definitions or arrays of constants, it works right out of the box.
If not, it usually doesn’t.

CHAPTER 16. PORTING GUIDE 295

16.3.6 Interpretation and compilation mode

There are several words, which act differently in interpretation and compilation mode. In
Forth-79, some of them were "state-smart", which means they adjusted their behaviour
depending on the mode the system was in. In Forth-83 and subsequently ANS-Forth, they
became "dumb" words and counterparts were designed for each mode. Other words lacked
interpretation semantics all together.

4tH has got neither a true interpretation mode nor a state. But if you want to port 4tH code
to ANS-Forth, this has to be dealt with. In 4tH this porting issue is resolved by several
aliases. Some words have an alias since they do not have interpretation semantics in the
ANS-Forth standard, but are often used outside colon-definitons in 4tH. This will enable
you to make a word that mimics these interpretation semantics.

This table lists all "dumb" words with their counterparts. "Interpretation” means it has to
be used outside colon-definitions. "Compilation" means it has to be used inside colon-
definitions.

INTERPRETATION | COMPILATION
’ [']

.(X n

CHAR [CHAR]

Table 16.1: Dumb words

Finally, in ANS-Forth all flowcontrol words (like IF, THEN, BEGIN, WHILE, DO, LOOP)
may only be used inside colon-definitions.

16.3.7 BEGIN..WHILE..REPEAT

4tH allows you to use multiple WHILE’s in a BEGIN..WHILE..REPEAT construct. ANS-
Forth allows that too, but requires an extra "THEN’ for each additional "WHILE’. In short,
this is the 4tH version:

0 begin dup 10 < while 1+ dup 5 mod while 1+ repeat

And this is the ANS-Forth version:

0 begin dup 10 < while 1+ dup 5 mod while 1+ repeat then

To make this work, we have to resort to conditional compilation:

0 begin dup 10 < while 1+ dup 5 mod while 1+ repeat
[undefined] 4th# [if] then [then]

It’s not beautiful, but it works. The same applies when "UNTIL’ is used instead of 'RE-
PEAT’. BEGIN..WHILE..AGAIN constructs are not supported by ANS-Forth, so be care-
ful when considering *’AGAIN’ too much of an alias of 'REPEAT".

CHAPTER 16. PORTING GUIDE 296

16.3.8 DO..LOOP

It is well-known in the Forth community that DO..LOOP is flawed. There have been several
attempts to correct this, but they never got it right. On many occasions it even got worse.
But why is DO..LOOP flawed?

’DO’ puts the limit and the index on the Return Stack, but it doesn’t decide whether the
loop is actually entered. So, every loop is executed at least once. After each iteration
’LOOP’ decides whether it iterates once more.

In our opinion it would have been better when ’DO’ had made that decision (like any other
language), but we can still live with that. The real trouble came with DO..+LOOP.

’+LOOP’ is a logical extension. Every single language allows you to change the step.
But contrary to what one might expect, *+LOOP’ doesn’t terminate when the loop limit is
reached or exceeded, but when the loop index crosses "the boundary between the loop limit
minus one and the loop limit".

What does that mean? Well, consider these three loops and try to predict what will be
printed. Note: every loop is executed at least once:

(1) 50do i . 1 +loop cr
(2) 50doi . -1 +loop cr
(3) -50do i . -1 +loop cr

You would probably expect to see:

01234
0
0 -1-2 -3 -4

And that is what you get when you use 4tH. But this is not what you will get with ANS-
Forth:

01234
0-1-2-3..65
0-1-2-3-4-5

The behaviour of the second loop is caused, because *+LOOP’ doesn’t take into account
that it is counting down. So it iterates until the loop index reaches the loop limit by wrap-
around arithmetic.

The behaviour of the third loop is caused by the ANS-Forth definition: the loop index must
"cross the boundary between the loop limit minus one and the loop limit". In this case, the
boundary is between -5 and -6.

DO..+LOOP didn’t behave like this since the beginning of Forth: it was introduced in
Forth-83. We preserved the Forth-79 definition as closely as possible, because it is much
more intuitive.

Some claim that 7DO..+LOOP will save it. As a matter of fact, it does. But only when the
loop index and the loop limit are the same:

0 0 ?2do i . loop

In that case the loop won’t be entered. But it still won’t save us for loops like this:

CHAPTER 16. PORTING GUIDE 297

50doi . -1 +loop cr

The authors of gForth claim that a whole host of new DO..LOOP words are the solution.
We don’t think so:

100 -100 do i . i 1+ 2/ negate +loop cr

The bottomline is: you can’t let two words make the same decision. 4tHs +LOOP’ checks
which direction it is going (up or down) and evaluates the loop arguments accordingly. We
feel it is the best we can do for you.

Is there no way we can circumvent these problems? Yes, there is. It may not be too elegant
or even fast, but it solves the problem. We just emulate C’s for():

12 >r begin \ set up loop index

r@ 10 < \ check loop limit
while

r@ . \ access loop index

r> 2+ >r \ increment loop index
repeat \ next iteration
r> drop cr \ drop loop index

Which is "equivalent" to:
10 12 ?2do i . 2 +loop cr

Except that it works as expected. And as an extra bonus it is portable to ANS-Forth. Are
these differences between the ANS-Forth and 4tH implementation of DO..LOOP really
that important? Not in practice. Nobody really wants a loop that depends on wrap-around
arithmetic, and you’ll hardly ever see a +LOOP’ with a negative subscript. Everybody
wants their programs to be understandable and maintainable, so the DO..LOOPs you’ll
encounter will usually be well-behaved.

16.3.9 1/0

It is trivial to define the ANS-Forth FILE wordset in 4tH, but almost impossible to do the
opposite. So if you want to make a portable program use the ANS-Forth FILE wordset by
including the ’'ansfile.4th’ library file. The reason why 4tH uses a different I/O subsystem
is twofold:

1. 4tH’s I/O subsystem is far more powerful and elegant. Instead of defining a whole
new wordset, 4tH reuses most of the available I/0O words, like "TYPE’, ’TEMIT’,
> ACCEPT’ and *REFILL’2, which is very Forth-like.

2. 4tH’s I/0 was initially quite primitive and this was the only way to extend the system
without breaking too much code.

This example is taken from gForth, but runs identically on both 4tH and gForth:

2 As a matter of fact, a new set of words have been proposed that allow redirection of these words. 4tH already
has that functionality.

CHAPTER 16. PORTING GUIDE 298

[defined] 4th# [if] \ if this is 4tH, include
include lib/ansfile.4th \ ANS Forth FILE wordset
include lib/compare.4th \ and the word COMPARE
[then]
[undefined] 4th# [if] \ if this is not 4tH,
s" lib/easy.4th" included \ include 4tH compatibility
[then]
0 Value fd-in \ input file handle
0 Value fd-out \ output file handle
: open-input (addr u --) r/o open-file throw to fd-in ;
: open-output (addr u --) w/o create-file throw to fd-out ;
s" foo.in" open-input \ open input file
s" foo.out" open-output \ open output file

show 2dup type cr ; \ show the line
256 Constant max-line \ size of basic buffer
max-line 2 [+] string line-buffer \ extend by two bytes:

\ ANS Forth requirement!
scan-file (addr u --)

begin \ read a line
line-buffer max-line fd-in read-line throw
while \ is it identical?
>r 2dup line-buffer r> show compare dup
while \ if so, exit loop
drop \ clean up
repeat \ ANS requires an extra
[undefined] 4th# [if] then [then] \ then after each WHILE
drop 2drop

\ now scan the file
s" The text I search is here" scan-file

fd-in close-file throw \ close input file
fd-out close-file throw \ close output file

Since section 11.3.12 of the ANS-Forth standard clearly states that an I/O exception shall
not cause a’THROW?’, we have to mention that ’FILE-SIZE’, ’FILE-STATUS’ and ’'REPOSITION-
FILE’ are not entirely ANS-Forth compliant.

16.4 Easy 4tH

4tH programs won’t run on ANS-Forth all by itself. You’ll usually need several definitions
to make them work. In collaboration with Wil Baden we have developed an interface
between ANS-Forth and 4tH. It consists of two files, “easy.4th” and "ezneeds.4th”. These
library files enable you to run most 4tH programs under ANS-Forth. In order to succesfully
compile and run a 4tH program under ANS-Forth it must have been written with ANS-Forth
in mind. The rest is simple: just add a couple of lines at the beginning of your 4tH program:

CHAPTER 16. PORTING GUIDE 299

[UNDEFINED] 4TH# [IF]
s" easy4th.4th" included
[THEN]

That’s all! Most of the 4tH words are now known to your very own ANS-Forth compiler.
If your compiler already supports 'INCLUDE’, you might be tempted to use:

[UNDEFINED] 4TH# [IF]
include easy4th.4th
[THEN]

This will actually work but since 4tH recognizes and acts on the 'INCLUDE’ directive, it
will load the interface. A slight memory and CPU penalty is the result.

16.4.1 Disabling DOES>

Easy 4tH will effectively disable "'DOES>’, since "'DOES>’ is nothing more than some
syntactic sugar in 4tH. If you want to use the standard Forth "DOES>’, you have to define
’(_KEEP_DOES_)’ somewhere, e.g.

[UNDEFINED] A4TH# [IF]

0 constant (_keep_does_)
s" easy4th.4th" included
[THEN]

Easy 4tH will now leave "'DOES>’ alone. Note that you have to refrain from using ’'DOES>’
in your :THIS’ definitions (see section 16.3.4).

16.4.2 Enabling the String Space

Optionally, you can define a’CONSTANT” before including Easy 4tH, which enables sup-
port for arrays of string constants:

<size> constant /STRING-SPACE

The parameter "SIZE" represents the size of the String Segment. When you decompile a
4tH program, it will show you exactly how much space is allocated to the String Segment.
In order to port a single 4tH program, this is all the information you need!

4tH Message : No errors at word 1105
Object size : 1106 words
String size : 2539 chars

Variables : 19 cells
Strings : 262 chars
Reliable : Yes

In this case the "/STRING-SPACE" must be at least 2539 bytes. So, give or take a few
changes, let’s say 3072 bytes. We advise you to allocate a little more memory than is
strictly necessary. You can also use Easy 4tH to make ANS-Forth understand 4tH. Just

type:

CHAPTER 16. PORTING GUIDE 300

16384 constant /STRING-SPACE
s" easy4th.4th" included

Now you can play around with ANS-Forth using the 4tH language. If you use a lot of
string constants you might run out of space, but your ANS-Forth compiler will give you a
message when that happens.

Note that - depending on the ANS-Forth compiler you're using - Easy 4tH may redefine
some words, although it will try to minimize these redefinitions as much as possible.

16.4.3 The structure of Easy 4tH

Easy 4tH may look like a large program, but it isn’t. It basically tries to figure out what your
compiler supports and what is still left to define. It always prefers the native definition to its
own. E.g. if your compiler already supports 'PLACE’, Easy 4tH will leave that definition
intact and assume it has been defined correctly.

e Easy 4tH will start by defining several defining words like ’STRING’, *STRUCT’
and ’ARRAY’. Since there is no standard definition for these words, it will overwrite
any existing definition.

o After that, Easy 4tH will query the environment and define a ’"CONSTANT’ when
successful. When not, a warning is issued.

e Several 4tH specific compiling words are defined.

e Easy 4tH checks for the presence of several ANS-Forth and COMUS words. If they
are not there, they are defined. Warnings are issued where applicable.

o In the next stage the PARSING, CONVERSION, TIME and RANDOM NUMBER subsys-
tems of 4tH are defined. Warnings are issued where applicable.

e All 4tH words that cannot be defined in ANS-Forth are marked as unsupported.
When used, an error message is issued and compilation aborted.

e The standard ANS-Forth "’DOES>’ is disabled (unless you override it).
e “ezneeds.4th” is loaded and *[NEEDS’ and ’INCLUDE’ are defined if needed.

Note that your own compiler may issue error messages or warnings too, e.g. about redefi-
nitions.

16.5 Converting ANS-Forth programs to 4tH

4tH is a subset of ANS-Forth, so it might be difficult to find a program that will run on 4tH
without at least some rewriting. And there is no guarantee that it will work, because most
ANS-Forth programs weren’t written with 4tH in mind. We’ll list the major pitfalls:

e Programs requiring unsupported words or most words from the FACILITY, FA-
CILITY EXT, FLOATING, FLOATING EXT, SEARCH and SEARCH EXT
wordsets are generally impossible to port.

e Definitions manipulating the dictionary or the stacks. But 4tH has no dictionary and
does not allow direct access to the stacks.

CHAPTER 16. PORTING GUIDE 301

e Definitions that switch between interpretation and compilation mode. 4tH either
interprets or compiles; you cannot switch between the two on the fly. User-defined
"IMMEDIATE’ words generally don’t work.

e Definitions using *"CREATE’ and "DOES>’ can be difficult to port. The only way
is to do the "CREATE’ part manually and wrap the 'DOES>’ part into a ":THIS’
definition.

o Definitions requiring the LOCAL and LOCAL EXT wordsets are difficult to port.
You’ll need to rewrite them extensively by using the ’locals.4th’ library file.

o Definitions using ANS-Forth enhanced flow control require some rewriting and con-
ditional compilation.

e Programs that assume they may store cells and characters in the same dataspace
require some rewriting. Use the 'ncoding.4th’ library file.

Part IV

Development guide

302

Chapter 17

Compiling the source

17.1 Introduction

4tH is primarily designed as a powerful and easy to use toolkit for developers. You can use
it "as is" and you’ve got a very flexible calculation-engine. You can tailor it to a specific
application and push it even further. Or you just might want to use one of the safest and
easiest Forth-alike environments ever created. These are all valid reasons and I will try to
address them all.

First, I will show you how to compile the example applications. They are far from useless.
In fact, you will have created a complete programming environment. Second, I will show
you how to create the 4tH library and how to use it. Third, I will explain to you how the
compiler works and how you can make simple additions to 4tH.

If you find any errors in this document please contact me by sending email to "han-
soft@bigfoot.com”. You would be helping a lot of future 4tH users.

17.2 Recommended and preferred compilers

4tH is written in ANSI-C and K&R C and should be portable to any platform that supports
such a compiler. All memory-models are supported, although the usual restrictions apply.
Of course, it is impossible to test every single compiler on the market, but there are a
number of compilers that are known to work. Preferred compilers are Open Source and are
available for a number of platforms. When properly installed, the entire compilation can
be performed in two simple steps:

make
Then login as root and enter:
make install
That’s all. Any documentation, library files or example programs must be installed manu-

ally. Recommended compilers are free (as in beer) and are known to work. It’s up to you
to figure out the correct installation procedure. Unlisted compilers may or may not work.

There is no such list for OS/X or Linux. Those platforms usually already come with an
Open Source GCC compiler.

303

CHAPTER 17. COMPILING THE SOURCE 304

| CoMPILER | URL | PLATFORM | LABEL
GCC 2.95 msvert | http:/downloads.activestate.com/pub/staff/gsar/gcc-2.95.2-msvert.zip | Win32 Preferred
Cygwin http://www.cygwin.com/ Win32 Preferred
MinGW http://sourceforge.net/projects/mingw/ Win32 Preferred
Pelles C http://www.smorgasbordet.com/pellesc/ Win32 Recommended
LCC http://www.cs.virginia.edu/~lcc-win32/ Win32 Recommended
TCC http://fabrice.bellard.free.fr/tcc/ Win32 Recommended
Turbo C V2.01 http://bdn.borland.com/article/images/20841/tc201.zip DOS Recommended
DJGPP http://www.delorie.com/djgpp/ DOS Preferred

Table 17.1: List of compilers

17.3 Compiling 4th

First copy all files to any directory you like. Now make the latter directory your current
directory. The following commands are applicable to Linux, OS/X and other unices.

If you aren’t using an ANSI-C compiler add the "-DARCHAIC" switch. If you are work-
ing on a Unix platform add the "-DUNIX" switch. If you add the include-files to your
own /usr/include directory, use the "-DUSRLIB4TH" switch. Note that this isn’t a recom-
mended practice.

Finally, if your compiler features a stricmp () function you want to use instead of 4tHs
builtin MatchName (), use the "-DSTRICMP" switch. These optional switches will be re-
ferred to in the following examples as "$(CFLAGS)".

Unfortunately, not all C-compilers are created equal, so you have to check the documenta-
tion that came with your compiler. You have to check for three things:

1. First, the 4tH-toolkit assumes that all chars are signed. I know there are a few com-
pilers out there, that assume that chars are unsigned (like the RS/6000 and GNU
compilers). In most cases switches are available to correct that. Some K&R com-
pilers do not support the type "void". If so, you might have to add "#define void" to
4th.h.

2. Second, compilers on non-Unix platforms might use different or additional switches,
like those that determine the memory-model.

3. Third, this documentation assumes you call your compiler with "cc". Borland com-
pilers are called with "bcc" or "tcc". Watcom compilers are called with "wce". GNU
compilers are called with "gcc". Microsoft compilers are called with "cl" for some
obscure reason (C Language?).

The 4th program is a do-all compiler. It compiles the source, executes it and if you made a
programming error it will decompile whatever it could compile. You can also load existing
objects or save new objects. It takes at least two arguments, which are the command string
and the 4tH-program. In Linux, OS/X or other unices, entering:

make
su
make install

should do the trick. Most MS-DOS compilers contain a version of ‘make°, but you probably
have to recreate the makefile. Otherwise, compile it with:

CHAPTER 17. COMPILING THE SOURCE 305

cc $(CFLAGS) -0 -o 4th 4th.c open_4th.c comp_4th.c exec_4th.c
dump_4th.c load_4th.c save_4th.c errs_4th.c name_4th.c free_4th.c
cgen_4th.c

If your compiler does not support a command line interface, you have to include these files:

free_4th.
errs_4th.
name_4th.
dump_4th.
exec_4th.
load_4th.
save_4th.
comp_4th.
open_4th.
cgen_4th.
4th.c

Q Q0 o0 o o o

17.4 Compiling the library

If you want to add the 4tH compiler to your own programs, I strongly advise you to create
a library. As a matter of fact, I will assume that you have created the library later on. The
library uses only a handful of functions, so it is feasible to create the library manually.
However, we advise you to use the makefile. Carefully check all macros. In Linux, OS/X
or other unices, entering:

make
su
make install

should do the trick. Most MS-DOS compilers contain a version of ‘make°, but you probably
have to recreate the makefile. The library consists of 10 functions:

comp_4th
exec_4th
dump_4th
free_4th
save_4th
load_4th
errs_4th

You can compile each function manually by issuing the command:
cc $(CFLAGS) -0 -c <function>.c

You’ll end up with 11 objectfiles. You can add these functions to a library by issuing:

CHAPTER 17. COMPILING THE SOURCE 306

ar r lib4th.a <function>.o

The resulting library must be moved to the /ust/lib directory. When using MS-DOS we
strongly advise you to create a library for each memory-model, like "4ths.lib" for a small
memory-model library, "4thl.lib" for a large memory-model library, etc. When you compile
a function for a particular memory-model you’ll have to add the memorymodel switch.
Then create a library by issuing this command for each function:

lib 4th<model>.lib + <function>.ob]j

Whether you use a makefile or create the library manually, you should end up with a work-
ing 4tH library. If you are unable to make a working makefile, write a script- or batchfile.
If you have to recreate the library, it will save you a lot of work.

17.5 Using the library

Before we dive into the depths of the API, we will tell you how to compile a program that
uses the 4tH library. If you are using an advanced MS-DOS or MS-Windows compiler this
may or may not apply to you. In that case we advise you to check your documentation. If
you are using a plain vanilla compiler this will usually work. Compile the program with:

cc -c <program>.c

When you use a non-Unix system, link the objectfile with the startup code and libraries
to create an executable program. The <model>.obj is the startup code for C-programs and
<model>.lib is the runtime-library.

link <model>.obj <program.obj>, <program>, 4th<model>.lib <model>.lib
Unix developers just give the command:

cc <program>.Cc -0 <program> -1l4th
If you happen to use the GNU Compiler Collection (gcc), just issue:

gcc -s -Wall -fsigned-char <program>.c -o <program> -1l4th

After you’ve built the library you can also issue these commands to (re)compile 4th.

17.6 Optimizations

It really depends on your compiler. Some compilers allow optimizations up to level 3 (-03),
others won’t even produce a usable compilant with any optimization enabled. It can even
depend on the platform you’re compiling for. It is hard to give a general recommendation,
but try compiling 4tH without any optimization first, then crank optimization gradually up
until the compilant doesn’t work properly anymore or optimization doesn’t give you any
more speed or size advantages. You may have to do some benchmarking to find this out!.
There is also a program that allows you to test the virtual machine. All listed preferred
compilers allow the highest optimization level. The optimization level can be set manually
or can be adjusted in the Makefile. Consult your compiler documentation for details.

14tH comes with a wide selection of benchmarking programs.

Chapter 18

Using the 4tH API

18.1 Introduction

One of the design requirements of the 4tH library was that it had to be very easy to use.
We’ve seen many APIs that were impossible to use and put most of the burden on the
developer.

4tH takes a different direction. We’ve designed an API that almost exactly matches the
tasks you want to perform. Want to compile? Compile. Want to decompile? Decompile.
Want to save? Save. Just like that. No difficult to understand datatypes, no initialization,
no garbage collection, no checks.

The only error, you, the developer can make is fill up memory. Virtually all other errors are
caught by the API. E.g. 4tH will refuse to save or execute a 4tH-program when compilation
failed. Of course, if you manipulate 4tHs datastructures directly you can still bring it to its
knees, but I assume that is not what you want.

18.2 A sample program

There are ten API-functions.

| API | FUNCTION |
comp_4th() | Loads and compiles a 4tH source to an H-code object
exec_4th() Executes an H-code object

dump_4th() | Decompiles an H-code object

free_4th() Frees an H-code object from memory

save_4th() Saves an H-code object to an HX-file on disk
store_4th() | Saves an H-code object to an HX-file in memory
load_4th() | Loads an HX-file from disk and installs H-code
fetch_4th() | Loads an HX-file from memory and installs H-code
open_4th() | Creates a small 4tH program that loads a 4tH source
cgen_4th() | Generates a standalone C source with embedded H-code

Table 18.1: API functions

That’s really all! So if you want to compile a 4tH source, save it to disk, execute it and
finally discard it, you’ve virtually written the program.

307

CHAPTER 18. USING THE 4TH API 308

H-code is nothing but a pointer to a structure. Even if you thought you never worked with
structures before, it’s as easy as working with files. We’ll show you.

When you want to use files you first have to include "stdio.h", like:
#include <stdio.h>

If you want to use a single file for output, you’ve got to declare a file-pointer like:
FILE* Outfile;

Before you can use a file, you have to open it:
Outfile = fopen ("filename.ext", "w");

If the file cannot be opened, fopen () returns a NULL-pointer. You have to check that
before you can safely use the file:

if (Outfile == NULL) printf ("Unable to open file");
else fprintf (Outfile, "This is written to disk");

Finally, when you’re done, you have to close the file:
fclose (Outfile);

Working with the 4tH library is very similar. When you want to use the 4tH library you
write:

#include "4th.h"

When you use an H-code object (which is a compiled 4tH program), you declare a H-code
pointer:

Hcode* Program;

Before you can use the H-code pointer, we first got to compile a 4tH source. 4tH source is
simply amalloc()ed ASCIIZ string. That means that anything you can convert to a string
stored in dynamic memory can be used as 4tH source. That includes constant strings,
environment variables, lines read from a file, etc.

In this example we use the strdup () function to convert a constant string. We know that
not all runtime-libraries contain such a function, so if you want give it a try, here is the
source:

char *strdup (char* str)
{
char *p;
p = calloc (strlen (str) + 1, sizeof (char));
if (p) strcpy (p, str);
return (p);

CHAPTER 18. USING THE 4TH API 309

Now we can all create a 4tH source and compile it. This one will create the famous "Hello
world" program:

Program = comp_4th (strdup (".\" Hello world\" cr"));
Without any checking you can try to execute it:
exec_4th (Program, 0, NULL, 0);

The "0" means we do not want to transfer any variables or constants to the execution en-
vironment, but we’ll get to that later on. You could make a second call to exec_4th()
and see the program execute twice. The H-code is still in memory. In order to free it from
memory, we have to end our program with:

free_4th (Program);
We are finished now. The full program looks like this:

#include "4th.h"
#include <stdlib.h>

int main(int argc, char** argv)
{
Hcode* Program;
Program = comp_4th (strdup (".\" Hello world\" cr"));
exec_4th (Program, 0, NULL, 0);
free_4th (Program);
return (EXIT_SUCCESS);

Now compile the C-program and execute it. You should see that it prints "Hello world" on
the screen. Now, that wasn’t too hard, was it?

18.3 A first look at open_4th()

You probably don’t want to compile constant strings. Most certainly you want to create a
source-file and compile it. If you come to think of it, that could be the hardest part when
you want to make your own 4tH-compiler.

Don’t worry. We’ve created a function that handles just that: open_4th (). The function
creates a tiny 4tH program that tells comp_4th () which file to load. open_4th() just
wants to know which file to load.

If an error occurs (which is very rare), open_4th () returns a NULL pointer. If open_4th ()
is successful it returns a char-pointer to the program in memory. You can feed the return-
value of open_4th () directly to comp_4th (). So, we’ve got to declare a char-pointer for
the return-value of open_4th () and call the function:

char* source;
source = open_4th ("venture.4th");

No need to open or close files, comp_4th () will take care of that. You’re one step closer to
the creation of your own compiler.

CHAPTER 18. USING THE 4TH API 310

18.4 A closer look at H-code

H-code is not just a simple pointer to some simple structure. In fact, it is more complex
than a file-pointer. It is comprised of several parts.

'H°°dH| Hcode header |
L J I_.L., .Y,

:(_

~503Q@00 @35 -—=~0
~3503@0®w ©aoO0
~0@ 0 ~3 —

~03Q@Q0®M -~0~0®-®TO

~503@o0on

Figure 18.1: Hcode structure

1. First, the header. The header contains all information about the actual program, e.g.
the number of variables, the size of allocated space, its status. The mere existence of
an H-code pointer doesn’t mean you actually got a program you can execute.

2. Second, the Code Segment. This contains the actual program. If you don’t have a
Code Segment, there is nothing to execute since you have no program. The Code
Segment is an array of words. A word consists of a token and an argument. Every
token matches a piece of compiled C in the interpreter. We’ll get to that later on.

3. Third, the String Segment. This segment only contains constant strings, defined by
eg. S",,",.(and.".

4. Fourth, the Integer Segment. This segment contains the stacks and all writable inte-
ger data. It is only present when a program is sleeping (or hibernating, if you prefer).

5. Fifth, the Character Segment. This segment contains all writable character data. It is
only present when a program is sleeping.

The first three parts are read-only to the 4tH-programmer. If you are smart, you consider
them to be read-only too. There is no need whatsoever to change anything here. The API
knows best.

18.5 A first look at comp_4th()

The function comp_4th () is one of the most complex and most important functions of
the APIL It takes a source and compiles that to H-code. If you want to save the source,
copy it or reload it, since comp_4th () consumes it entirely. That is why source has to be
allocated in dynamic memory. On the other hand, it explains why compilation needs very
little memory.

If comp_4th () can’t compile anything, it returns just the header, containing all the infor-
mation on what went wrong and where. If there is not enough memory to allocate even
the header it returns a NULL-pointer. If it could compile part of the code it returns what it

CHAPTER 18. USING THE 4TH API 311

could compile. But that might not be everything and you need it all to get a program you
can execute.

Lucky for you, but the API can determine whether comp_4th () returned an executable
H-code or not. If exec_4th () doesn’t execute the program, it just couldn’t.

The comp_4th () function is just as smart. It can survive the NULL pointer you feed it.
When you read on, you’ll find out that the comp_4th () function is a toolkit by itself with
lots of tools to create your own 4tH words.

If we extend the example we started with open_4th (), we could continue like this. In order
to make an executable H-code we feed source to comp_4th () and get H-code in return. We
just need a pointer to store its address:

Hcode *Program;
So the entire 4tH-compiler now looks like:

char *source;
Hcode *Program;

source = open_4th ("venture.4th");
Program = comp_4th (source);

We assume you want to execute the program you’ve just compiled, so we’ll continue with
the interpreter-function called exec_4th ().

18.6 A first look at exec_4th()

The exec_4th () function is essentially very simple. It contains small pieces of C that can
be matched with the tokens in the Code Segment. The exec_4th () function executes these
small pieces of C until there are no more words left to execute or an error occurs.

Additionally, it creates two new segments, which are discarded when exec_4th () termi-
nates without hibernation. Each segment is essentially an array of a specific datatype. The
sizes of these segments are specified in the header of the H-code.

The Character Segment contains characters. First, the Terminal Input Buffer, abbreviated
to TIB. When you execute REFILL, this is the place where the string you typed is stored.
Second, the PAD. This is the place where exec_4th () stores temporary strings. Finally
the Allocation Area where strings, defined by STRING are allocated.

The Integer Segment contains signed 32 bit integers. First, the Stack Area. It contains both
the return stack and the data stack. The return stack grows downward and the data stack
grows upward. Second, the System Variable Area. The System Variable Area contains
three variables, HANDLER, HERE and HLD. They can only be accessed by 4tH itself.
Third, the Variable Area. The Variable Area contains four basic types of variables.

First, the environment variables. In standard 4tH there are five environment variables, HI,
FIRST, LAST, CIN and COUT. They are all read-only. Second, the predefined variables.
In standard 4tH there are five predefined variables, BASE, >IN, OUT and the variable pair
SOURCE. Later on, we’ll teach you how to add your own. Third, the application variables.
These are copies of C-variables or constants. Fourth, the user-defined variables. These
are defined by the application-programmer with VARIABLE, VALUE, DEFER, FILE or
ARRAY.

CHAPTER 18. USING THE 4TH API 312

The exec_4th () function takes an H-code pointer and returns the current value of the vari-
able OUT when it exits. When an error occurs, exec_4th () returns always the largest neg-
ative 32 bit integer, which is also the default value of OUT. In order to give you maximum
control, you can also transfer string-arrays and C-variables or constants to exec_4th ().

C-variables have to be of type ’cell’. This type is predefined in the *4th.h’ headerfile. So
you can just write:

#include "4th.h"
cell february = 29;

You can mix constants or variables as you like. Just add the appropriate cast. You also have
to declare the number of variables or constants you transfer (in this case 12). Let’s say you
transfer the number of days of each month to exec_4th():

#include "4th.h"
#include <stdlib.h>

int main (int argc, char** argv)
{

cell february = 29;

cell Result;

Hcode *Program;

char *source;

source = open_4th ("months.4th");

Program = comp_4th (source);

Result = exec_4th (Program, 0, NULL, 12, (cell) 31,
february, (cell) 31, (cell) 30, (cell) 31, (cell) 30, (cell)
31, (cell) 31, (cell) 30, (cell) 31, (cell) 30, (cell) 31);
return (EXIT_SUCCESS);

The application-programmer can use the * APP’ variable to access all months:
12 0 do app 1 th ." days: " ? cr loop

Later, we’ll learn you how to assign names to those application-dependant variables. Note
that although *Result’ contains the return-value of the *'months.4th’ program, the C-program
does absolutely nothing with it. In the next example we’ll show you how you can use this
value.

Take this C-program:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

cell Result;

Hcode *Program;

char *source;

CHAPTER 18. USING THE 4TH API 313

source = open_4th ("calc.4th");

Program = comp_4th (source);

Result = exec_4th (Program, 0, NULL, 2, (cell) 5, (cell) 7);
printf ("Result: %1d\n", (long) Result);

return (EXIT_SUCCESS);

This program compiles ’calc.4th’ and transfers 5’ and 7’ to exec_4th (). What is returned
in "Result’ depends on what ’calc.4th’ does. Let’s take a look at ’calc.4th’:

app 0 th @ app 1 th @ + out !

It fetches both variables, adds them and assigns the sum to OUT. Thus, when exec_4th ()
terminates it returns the value of OUT. This value is assigned to ’Result’. Then, *Result’ is
cast to "long’ and displayed:

Result: 12

We haven’t used the other two arguments of exec_4th () yet. These are used to pass string
constants to your 4tH application. Most of you will use it to pass commandline arguments
to 4tH.

Let’s say we want to pass these arguments to 4tH in C-style. So "0 ARGS" is the name of
our 4tH-program. That means we have to skip the name of the C-program itself. The name
of our 4tH-program in in argv [1]. That also means we have to decrement argc, before
passing it to exec_4th():

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

Hcode *Program;

char *source;

if (argc > 0) {
source = open_4th (argv [1]);
Program = comp_4th (source);
(void) exec_4th (Program, argc - 1, argv + 1, 0);
return (EXIT_SUCCESS);

}
return (EXIT_FAILURE);

Note that argv [1] is not the same as argv + 1! When we call our C-program with:
main args.4th hello here I am

argc will be 6. That means exec_4th () will get a stringarray with five strings (since we
discarded one). We can access these strings by:

CHAPTER 18. USING THE 4TH API

argn 0> if argn 0 do i args count type cr loop then

Which would print:

args.4th
hello
here

I

am

314

You do not have to pass argc and argv; other string arrays of the same type (’**char’ or
**char[]”) are okay too. Just don’t forget to pass the correct number of elements in the

string array.

So now you know how your H-code program can communicate with your C-program. You
can transfer any number of variables to the 4tH-environment and retrieve the result. You
can even pass commandline arguments to the 4tH-environment and use them inside your
application. In the next section you will be introduced to some other interesting properties

of the 4tH-environment.

18.7 A first look at free_4th()

Let’s take a look at this program:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

cell Result;

Hcode *Program;

char *source;

source = open_4th ("calc.4th");

Program = comp_4th (source);

Result exec_4th (Program,
printf ("Result: %$1d\n", (long) Result);
Result exec_4th (Program,

return (EXIT_SUCCESS);

(
printf ("Result: %$1d\n", (long) Result);
(

(cell)

(cell)

5,

12,

(cell)

(cell)

1) ;

9);

Essentially, it is the very same program we’ve seen in the previous section. But here the
“calc.4th’ program is executed twice with different arguments. Can that be done without
recompiling the program? Yes! The pointer 'Program’ is still valid and points to the very
same 4tH program in memory. You can execute it any number of times without recompil-

ing. You can go even further:

#include "4th.h"
#include <stdio.h>

CHAPTER 18. USING THE 4TH API 315

#include <stdlib.h>

int main (int argc, char** argv)
{

cell Result;

char *source;

Hcode *Multiply;

Hcode *Subtract;

source = open_4th ("multiply.4th");
Multiply = comp_4th (source);
source = open_4th ("subtract.4th");
Subtract = comp_4th (source);

Result exec_4th (Multiply, 0, NULL, 2, (cell) 7, (cell) 5);

printf ("Result: %1d\n", (long) Result);

Result exec_4th (Subtract, 0, NULL, 2, (cell) 7, (cell) 5);
)

(
printf ("Result: %$1d\n", (long) Result);
return (

’
EXIT_SUCCESS);

The file *'multiply.4th’ contains:
app 0 th @ app 1 th @ * out !
The file ’subtract.4th’ contains:
app 0 th @ app 1 th @ - out !
So executing this C-program will give the following result:

Result: 35
Result: 2

And yes, both programs can be re-executed any number of times. But what if some 4tH
program has served his purpose? Does it have to remain in memory all the time? No.
Since it is located in dynamic memory it can be freed. Not with free (), since H-code is
too complex to be served with a simple function like free (). But a special function is
included in the API, which serves the same purpose:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

cell Result;

char *source;

Hcode *Multiply;

Hcode *Subtract;

source = open_4th ("multiply.4th");

CHAPTER 18. USING THE 4TH API

Multiply = comp_4th (source);
source = open_4th ("subtract.4th");
Subtract = comp_4th (source);

Result = exec_4th (Multiply, 0, NULL,

2,

printf ("Result: %1d\n", (long) Result);

free_4th (Multiply);

Result = exec_4th (Subtract, 0, NULL,

2,

printf ("Result: %1d\n", (long) Result);
free_4th (Subtract);
return (EXIT_SUCCESS);

(cell)

(cell)

1

T

(cell)

(cell)

316

5);

5);

The function free_4th () takes an Hcode-pointer and frees all resources. There is really
nothing more to it. Remember that free_4th () doesn’t alter the pointer itself. It may still
contain a value, but of course using that value is asking for trouble. The API checks quite
a few things by itself, but that doesn’t mean you can start to write sloppy programs!

18.8 A first look at save_4th()

We’ve already seen that we can compile a 4tH-program and keep it in memory for as long
as we want. We can also discard it if we don’t need it anymore. But what if we want to
reuse the compilant later? Or if we want to distribute 4tH programs without revealing our

source-code?

You can do that easily. 4tH uses another main format which not only enables you to load
compiled programs, but also run them on a multitude of platforms. It is called the "Hcode

eXecutable’ (HX-file) and it is fully portable across all platforms 4tH supports.

Saving a program is very easy too. You don’t even have to open or close files. Here is a
very simple compiler:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)

{
char *source;
Hcode *Program;

if (argc == 3) {

source = open_4th (argv [1]);
Program = comp_4th (source)

save_4th (Program,

free_4th (Program);
return (EXIT_SUCCESS);

}

return (EXIT_FAILURE);

(21);

CHAPTER 18. USING THE 4TH API 317

You just declare the input and the output file on the commandline and when no errors occur
an HX-file is saved to disk. The save_4th () function takes the Hcode pointer and the
filename you want to save it to. Note save_4th () supports hibernation too; just feed it a
sleeping virtual machine. That’s all!

18.9 A first look at load_4th()

But you don’t just save compiled programs. You want to be able to reuse them too. There
is a special function that reads an HX-file and restores the H-code to its original form. This
API-function is easy to use too. Just feed it the name of the file and it returns a pointer to
the H-code. This is the listing of a simple HX-execute:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

Hcode *Program;

cell Result;

if (argc == 2) {
Program = load_4th (argv [1]);
Result = exec_4th (Program, 0, NULL, 0);
printf ("Result: %$1d\n", (long) Result);
free_4th (Program);
return (EXIT_SUCCESS);

}
return (EXIT_FAILURE);

You just declare the HX-file on the commandline and when no errors occur it is executed.
Finally, it displays the result of the program.

18.10 A first look at error-trapping

If you are a professional programmer you might appreciate the ease of use of the 4tH
toolkit, but you have the feeling you don’t have any control. If that were the case, we would
feel the same way. In fact, you have all the control you’ll ever need. In the background,
4tH keeps track of everything that is happening.

We’ve already discussed the header of the H-code. All status-information is stored here.
And it’s all available. May be you’ll find it a little more complex and intimidating, but you
can easily master it. Let’s take a look at this piece of code:

Hcode *Program;

Program = comp_4th (strdup (".\" Hello world\" cr"));

CHAPTER 18. USING THE 4TH API 318

This piece of code tries to compile the classic "Hello world" program. But did it compile?
If comp_4th() returned a NULL-pointer, you know there was not enough memory. But
like any other compiler, there are a million other things that can go wrong. Although other
API functions will refuse unreliable H-code, sometimes we want to check it ourselves and
take alternative action if necessary.

All information regarding the status is saved in the header. But if comp_4th() returns a
NULL-pointer there is no header. So we have to check that first:

Hcode *Program;
Program = comp_4th (strdup (".\" Hello world\" cr"));
if (Program == NULL) printf ("Not enough memory\n");

If the program enters the ’else’ clause we know that a header exists. Now we need to check
the status. Did an error occur? There are two members in the header we can check. First,
’ErrNo’ which contains an error-code. If ’ErrNo’ contains ’0’, there were no errors:

Hcode *Program;
Program = comp_4th (strdup (".\" Hello world\" cr"));

if (Program == NULL)
printf ("Not enough memory\n");
else {
if (Program->ErrNo == 0)
(void) exec_4th (Program, 0, NULL, 0);
else
printf ("There were errors\n");

Note that the member "ErrNo’ is closely linked to the H-code. That is hardly surprising
since it is part of the H-code! But we still don’t know which error occurred.

Fortunately, there is a predefined array of error-messages we can use. Itis called errs_4th[]
and you can use it without declaring it explicitly, since ’4th.h’ takes care of that. If you
have correctly built the library it will automatically be linked in:

Hcode *Program;
Program = comp_4th (strdup (".\" Hello world\" cr"));

if (Program == NULL)
printf ("Not enough memory\n");
else {
if (Program->ErrNo == 0)
(void) exec_4th (Program, 0, NULL, 0);
else
printf ("Error: %$s\n", errs_4th [Program->ErrNo]l);

Of course, checking error-codes by the number is not ideal from a maintenance point of
view. In ’4th.h’ you’ll find a lot of #define-s describing these errors. The mnemonic for
"no errors’ is "M4NOERRS’, so we can slightly alter our program to:

CHAPTER 18. USING THE 4TH API 319

Hcode *Program;
Program = comp_4th (strdup (".\" Hello world\" cr"));

if (Program == NULL)
printf ("Not enough memory\n");
else {
if (Program->ErrNo == M4NOERRS)
(void) exec_4th (Program, 0, NULL, 0);
else
printf ("Error: %s\n", errs_4th [Program->ErrNo]);

In the next section we’ll show how you can help the 4tH-programmer to pinpoint his errors
even more precisely.

18.11 A first look at dump_4th()

Although 4tH can tell you what error you made and where you made it, you may find it
pretty hard to locate it anyway. That is because 4tH makes a reference to the compilant
instead of the source.

That is because 4tH preprocesses the source and never looks further ahead than one single
word, so a reference to the source wouldn’t help you much anyway. That is the bad news.

The good news is that the instructions 4tH uses internally are virtually identical to the ones
you used in your source. If you decompile the program you should still be able to recognize
your source. The function dump_4th () is essentially a decompiler. Let us show you a small
part of a program by Leo Brodie we converted to 4tH:

VARIABLE SPAN
: EXPECT ACCEPT SPAN ! ;

16 CONSTANT #NAME
8 CONSTANT #EYES
16 CONSTANT #ME (length of fields)

#NAME STRING NAME
#EYES STRING EYES
#ME STRING ME (calculate values)

If you decompile the entire program you will get a listing, which consists of two parts. First
the header:

4tH Message : No errors at word 80
Object size : 81 words

String size : 208 chars

Variables : 1 cells

Strings : 40 chars

Reliable . Yes

CHAPTER 18. USING THE 4TH API 320

First it will present the current status of this Hcode program. The words are numbered and
we begin counting at zero. This means this program is okay, since word 80 is the very
last word. We can derive that information from the second field that lists that there are 81
words, numbered from 0 to 80. The third field tells us there are 208 characters stored in the
String Segment.

The next two fields tell us something about the runtime-environment. The total number of
strings we defined take up 40 bytes and we defined one single variable. Finally, 4tH tells
us this piece of Hcode is reliable. That means it can be saved to disk or executed. If it had
told us the Hcode was not reliable, we could still have decompiled it. Otherwise it could
get very hard to pinpoint an error. Next is the decompiled program itself:

[0] branch (4)
[1] accept (0)
[2] variable (0)
[3] ! (0)
[4] exit (0)

As you will see, you can still tell what this program is all about. Since 4tH has no dictionary,
but uses a symbol-table, all lexical references are gone. There is no indication that the first
word was ever called "TEXPECT’ or that variable #0 was named *SPAN’. In fact, if you
would name them differently, it would still compile to the very same Hcode.

The bracketed numbers are the ’addresses’ of the words. Then it prints the name of the
compiled token. Finally the argument part of the word is printed within parentheses.

Not all tokens have arguments. ’ACCEPT’ and "EXIT’ don’t need one. They either take
their arguments from the stack or don’t have any. But 'LITERAL and ' BRANCH’ do
need them. 'LITERAL’ needs the value of the number it has to throw on the stack and
"BRANCH’ needs the address it has to branch to (in fact, it branches to the next token
after the indicated address). The interpreter "knows" which token has a valid argument and
which ones it can ignore.

But you surely want to know how you can integrate this decompiler into your own pro-
grams. Like all other functions, it needs an Hcode-pointer. It also needs a device where
you can send the report to.

To give you maximum flexibility we used an open stream, so you can use the screen, a
printer or a file. A disadvantage is you have to open and close the file yourself when
applicable.

We also gave you the opportunity to do a partial listing. You can tell dump_4th () what
range you want to decompile. These parameters are protected too. If you feed dump_4th ()
an invalid range it will try to figure out what range is most applicable. This allows you to
do a full listing with minimum effort by issuing a range from word O to word -1.

A sample application may look like this:

FILE *ErrFile;
Hcode *Program;

/* other code */
if ((ErrFile = fopen ("error.lst", "w")) == NULL)

printf ("Cannot open file\n");
else {

CHAPTER 18. USING THE 4TH API

}

dump_4th (Program, ErrFile, 0, -1);
if (fclose (ErrFile)
printf ("Error closing file\n");

321

If you want to print it to screen, you can use either ’stdout’ or ’stderr’. Note that ’stderr’

cannot be redirected easily under MS-DOS, so we’ll use ’stdout’ here:

Hcode *Program;

/* other code */

dump_4th (Program, stdout, 0, -1);

You can always provide a report when compiling or you can use error-checking to decide
whether you execute or save Hcode or print a report. This is the listing of a complete

compiler:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)

{

}

This program loads a source, compiles it and executes the resulting Hcode if no errors
occurred. It tells you when there is not enough memory and provides a decompiler-listing

char *source;
Hcode *Program;

if (argc == 2) {
source = open_4th (argv [1]);
Program = comp_4th (source);

if (Program == NULL)
printf ("Not enough memory\n");
else {
if (Program->ErrNo == M4NOERRS)

(void) exec_4th (Program, argc - 1, argv + 1,

else dump_4th (Program, stdout,

free_4th (Program);
return (EXIT_SUCCESS);

}
return (EXIT_FAILURE);

on screen when a programming error was made. Pretty neat, huh?

18.12 A first look at cgen_4th()

cgen_4th() allows you to create native standalone programs with minimal effort. It is a
lot like save_4th (). All you need is a Hcode object in memory and an open stream. The

0);

CHAPTER 18. USING THE 4TH API 322

stream will allow you to send the C program cgen_4th () generates to screen, file or a
printer. A sample application could look like this:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{

Hcode *Program;

cell Result;

FILE *CFile;

if (argc == 2) {
if ((CFile = fopen ("myfile.c", "w")) != NULL) {
Program = load_4th (argv [1]);
cgen_4th (Program, CFile);
free_4th (Program);
fclose (CFile);
return (EXIT_SUCCESS);

}
return (EXIT_FAILURE);

"

This program will load an HX file and send a complete C source to "myfile.c". You can

compile it by issuing:

cc myfile.c exec_4th.c errs_4th.c -o myfile
or, if you have the 4tH library installed by:

cc myfile.c -o myfile -14th

Just like any other 4tH related C program. You will have a native executable for your
platform and nobody will ever know it’s actually a 4tH program. You can make it even
easier on yourself by creating a small Makefile in your current working directory!:

GNU Make - implicit rules for 4tH
Copyright 2006, Hans Bezemer
%.c : %.4th
4th cgg $< $@
: %.hx
4th 1lgg $< s@

o°
Q

CC=gcc

CFLAGS=-fsigned-char -Wall -03 -s
LDLIBS=-14th

LDFLAGS=-s

Note this is only an example, so you may have to change it for your system. Now copy
4th.h to the directory where the 4tH source is located and you’re done:

I'That is the directory where you are when you call 4tH.

CHAPTER 18. USING THE 4TH API 323

$ make examples/eliza
4th cgg examples/eliza.4th examples/eliza.c

gcc -fsigned-char -Wall -03 -s -c examples/eliza.c -o examples/eliza.o

gcc -s examples/eliza.o -14th -o examples/eliza
rm examples/eliza.c examples/eliza.o

$ examples/eliza

HI! I'M ELIZA. WHAT'’S YOUR PROBLEM?

>

Isn’t that easy? But there are even more ways to use embedded 4tH as we will see.

18.13 Converting HX-files

With the 4tH program bin2h.4th you can convert HX-files to portable C-source. This
opens a whole new range of applications. cgen_4th () is a quick way to create standalone
programs, but bin2h.4th allows you to embed highly compacted HX code into your C
program.

This is particularly useful when memory is tight, because you can load the HX code when
it is actually needed and discard it afterwards. Furthermore, you can have several HX code
snippets inside your C program, which is not possible when using cgen_4th ().

On the downside, HX code is a little more difficult to handle. bin2h. 4th just creates the
embedded code, not an entire program. You will have to write that yourself. Furthermore,
in order to use bin2h.4th you need to create an HX file first. Still, using bin2h.4th is
dead easy:

4th cxg bin2h.4th HelloWorld myprog.hx myprog.h

You might have noticed that the only thing you have to provide is the name of the HX
file (myprog.hx), the name of the include file (myprog.h) and the name of the variable in
which the embedded HX code is stored (HelloWorld).

18.14 A first look at fetch_4th()

A typical bin2h. 4th generated includefile looks like this:

static unit HelloWorld [] = {
"\x01’, "\x02', "\x04', "\x00", ’"\xff’, ’'\xff’, '\xff’, ’'\x7f’,
"\x5c’, "\x03’, ’"\x08', ’"\x02', ’'\x02’, "\x02’, ’'\x0d’, ’"\x08',
"\x08'", "\x05’, ’\x08', ’'\x02', ’'\x48’, ’\x65', ’'\x6c’, ’'\x6c’,
"\x20", "\x77", '\x6f’, '\x72', '\x6c’, '\x64', ’\x21’, '\x00’,
}i

Since it contains compiled code there is no need for functions like comp_4th (). However,
HX code can not be fed to exec_4th () directly. It has to be loaded first. The function
load_4th() does this automatically. There is a function in the 4tH API to load bytecode
from memory, called fetch_4th (). Just pass the HX code pointer to it:

Hcode* Program;
Program = fetch_4th (HelloWorld);

"\x04",
"\x08"',
"\x6f’,
"\xfd’,

CHAPTER 18. USING THE 4TH API 324
Now the bytecode is installed and can be executed by exec_4th () in the usual way:
(void) exec_4th (Program, 0, NULL, 0);

In this case, it will simply print "Hello world!" to your screen.

18.15 A first look at store_4th()

And what if you don’t want to store bytecode on disk, but in memory? Well, you can do
that too. 4tH provides the function store_4th (), which takes a Hcode pointer, a pointer
to a buffer and the size of that buffer. It is very easy to use. Just create a sufficiently
large buffer, either dynamic or static, and load the Hcode. No need to worry about buffer
overflow, when properly used store_4th () will prevent such mishaps. It will even return
the amount of bytes it has written:

#include "4th.h"
#include <stdlib.h>

int main (int argc, char **argv)

{

Hcode *QObject; /* Hcode object */

unit Buffer [1024]; /* memory allocated to bytecode */

char *Program; /* 4tH sourcecode */

size_t MySize; /* number of bytes written to memory */
Program = open_4th ("hello.4th"); /* create sourcecode */

Object = comp_4th (Program); /* compile and save the sourcecode */

MySize = store_4th (Object, Buffer, sizeof (Buffer));
printf ("%s, %1d bytes used\n", errs_4th [Object->ErrNo], MySize);

free_4th (Object); /* destroy the Hcode object */
Object = fetch_4th (Buffer); /* read the bytecode from ’'Buffer’ */
exec_4th (Object, 0, NULL, 0); /* execute the Hcode object */
free_4th (Object); /* destroy the Hcode object again */
return (EXIT_SUCCESS); /* signal ’everything ok’ */

This program compiles some 4tH source, saves the HX code in a buffer and then discards
the original Hcode. Finally, the HX code is reloaded, run and discarded again. Note that
store_4th () supports hibernation, like its close brother save_4th (). When this program
is run it will display:

No errors, 36 bytes used
Hello world!

Needless to say that you can do very neat things with this function, like paging programs in
and out very quickly using very little memory, storing multiple programs in a single buffer,
etc. Use your imagination!

CHAPTER 18. USING THE 4TH API

18.16 Examples of embedded HX code

325

The include-files bin2h.4th generates contain global variables. You can either integrate

them in your sourcecode or include them, e.g:

#include <stdlib.h>
#include "4th.h"

#include "hello.h"
or:

#include <stdlib.h>
#include "4th.h"

static unit HelloWorld [] = {

"\x01", "\x02', '"\x04', "\x00’, ’\xff’, "\xff’, ’'\xff’,
"\x5c’, '\x03’, '\x08', '\x02', ’\x02’, ’\x02’, ’'\x0d’,
"\x08', '\x05’, '\x08', '\x02', ’\x48’, ’\x65’, ’'\x6c’,
"\x20", "\x77", '"\x6f’, '\x72', '\x6c’, '\x64’, '\x21’,

}i

\xTE", "\x04',
"\x08', ’'\x08’,
"\x6c’, ’'\x6f’,
"\x00’, ’"\xfd’,

It’s really up to you. You can install and uninstall HX code as often as you want. You can
also have multiple instances of the HX code in memory if you need to. E.g. this is perfectly

valid:

#include <stdlib.h>
#include "4th.h"

static unit HelloWorld [] = {

N\x017, '\x02', ’\x04’, ’"\x00’, '\xff’, '\xff’, '\xff’,
"\x5c’, "\x03', ’\x08’, ’'\x02’, "\x02', ’\x02’, ’'\x0d’,
"\x08’, "\x05', ’\x08’, ’'\x02/, "\x48’, ’\x65', '\x6c’,
N\x207, "\x77', '\x6f’, '\x727, '\x6c’, '\x64’, '\x21’,

}i

int main (int argc, char** argv)
{
Hcode* Instancel;
Hcode* Instance?2;

/* load two instances of HX code */

Instancel = fetch_4th (HelloWorld);
Instance2 = fetch_4th (HelloWorld);

/* execute both instances */
(void) exec_4th (Instancel, 0, NULL, 0);
(void) exec_4th (Instance2, 0, NULL, 0);

/* free first instance */
free_4th (Instancel);

N\xT£7, "\x047,
"\x087, "\x08",
"\x6c’, "\x6f,
"\x007, "\xfd’,

/* execute and free second instance */

(void) exec_4th (Instance2, 0, NULL, 0);
free_4th (Instance?2);

/* reinstall first instance and execute */

CHAPTER 18. USING THE 4TH API 326

Instancel = fetch_4th (HelloWorld);
(void) exec_4th (Instancel, 0, NULL, 0);
free_4th (Instancel);

return (EXIT_SUCCESS);

The combination of different pieces of HX code is possible too. This code contains two
pieces of HX code. The first one adds up two numbers, the second one divides two numbers.
Both return the result of the calculation to the variable "Result":

#include <stdlib.h>
#include <stdio.h>
#include "4th.h"

/* app dup @ swap cell+ @ + out ! */

static unit Addition [] = {
"\x01’, "\x027, '"\x04', "\x00', '\xff’, '\xff’, ’\xff’, ’'\x7f’, ’'\x04',
"\x5c’, "\x037, ’\x08', ’'\x02', ’'\x09’, "\x08’, ’\x08’, ’'\x08’, ’'\x08',
"\x39", "\x02’, "\x0a’, ’"\x11’, "\x07’, "\x10’, "\x33’", ’'\x07', ’"\x0b’,
"\x39", "\x02", "\x07', "\x08’", ’"\xe3’

i

/* app dup @ swap cell+ @ / out ! */

static unit Division [] = {
"\x01', ’\x027, "\x04’, ’"\x00’, '\xff’, '\xff’, ’'\xff’, "\xTf’, ’'\x04’',
"\x5c’, "\x037, ’\x08', ’'\x02', ’'\x09', "\x08’, ’\x08’, ’'\x08’, ’'\x08',
"\x39', "\x02’, '\x0a’, ’'\x11’, ’"\x07’, ’"\x10’, ’\x337, ’'\x07', ’'\x0e’,
"\x39", "\x02", "\x07', "\x08', ’'\xe6’

i

int main (int argc, char** argv)
{
Hcode* Instance;
cell Result;
/* load addition HX code */
Instance = fetch_4th (Addition);
/* execute: add 5 to 7 */
Result = exec_4th (Instance, 0, NULL, 2, (cell) 5, (cell) 7);
/* free instance */
free_4th (Instance);

/* load division HX code */
Instance = fetch_4th (Division);
/* execute: div Result by 6 */
Result = exec_4th (Instance, 0, NULL, 2, Result, (cell) 6);
/* free instance */
free_4th (Instance);
/* print Result and exit */
printf ("Result: %$1d\n", (long) Result);
return (EXIT_SUCCESS);

CHAPTER 18. USING THE 4TH API 327

There are no restrictions whatsoever to the use of the rest of the 4tH API, since fetch_4th ()
returns an ordinary Hcode pointer. For instance, you can still use load_4th () to load ad-
ditional HX-files. Happy embedding!

18.17 Suspended execution

People are wondering how they can enable hibernation?. Well, you can’t. Only a 4tH pro-
grammer can do that by using the word "PAUSE’. Normally, 4tH closes all files, releases the
runtime environment and exits. When 'PAUSE’ is encountered, 4tH creates a stackframe,
closes all files and exits. A/l API functions recognize a dormant VM and act accordingly, so
there is not much you can do. You can recognize a dormant VM by examining the ”Offset”
member of the Hcode structure. If is non-zero, you got a dormant VM at your hands:

Object->0ffset

Still, there is a lot you can do with a dormant VM as long as you have created special
provisions in your 4tH program. Take this very simple interpreter:

include lib/null.4th
include lib/throw.4th

\ The words supported by the interpreter

: bye ." ZZzzzz.." cr pause ." Waky, waky!" cr ;
: test ." Test successfully executed!" cr ;
FE
- T
. _* * ;
s/
_.([char]) parse type ;
. _Ccr cr ;

J— . ’

\ The dictionary of the interpreter
create dictionary

," byell ’ bye ,
, " test" " test ,
,Il +|l 14 _+ ,
no_n 4 —
14 — ’
n *n r *
r u— r
," /ll ’ _/ ,
, n . (ll 14 . (,
,Il CI‘" 14 _Cr ,
n n 14
14 — ’
NULL ,
: notfound e.user throw ; \ unknown command: throw exception

include lib/interprt.4th

\ The interpreter itself

2 Also referred to as ’hibernation’, “sleeping VMs’ or ’dormant VMs’.

CHAPTER 18. USING THE 4TH API 328

: go ['] interpret catch if ." Oops!" cr then ;
: prompt ." OK" cr refill drop go ;
script 1 args tib place 0 >in ! go bye ;
: run begin argn 2 = if script else prompt then again ;

run

Note you can only suspend this program. When you provide a commandline argument, it
will interpret it as a script and execute it. That is neat! Now take a look at this C program:

#include "4th.h"
#include <stdio.h>
#include <stdlib.h>

#define HX "tiny.hx"

/*
This function starts an interactive session

*/

void Prompt (Hcode *Program)

{
puts ("Keyboard control enabled..\n");
(void) exec_4th (Program, 0, NULL, 0);
puts ("\nHost control enabled..");

}

/*
This function builds an argument list and starts a script

*/

void Script (Hcode *Program, char *script)

{

char *(Args [3]); /* mimics argv[][] */
Args [0] = HX; /* the program name */
Args [1] = script; /* the script itself */
Args [2] = NULL; /* the list terminator */
puts ("Script control enabled..\n");
(void) exec_4th (Program, 2, Args, 0);
puts ("\nHost control enabled..");

}

/*

Host program, which calls the shots

*/

int main (int argc, char** argv)
{

Hcode *Program;

Program = load_4th (HX);

CHAPTER 18. USING THE 4TH API 329

if (Program) /* if loading was successful */
{
Prompt (Program); /* interactive session */
Script (Program, ".(This is a test) cr test test test");
Prompt (Program); /* interactive session */
Script (Program, ".(Leaving an item on the stack) cr 23 45 +");
Prompt (Program); /* interactive session */

puts ("Host shutting down..");
free_4th (Program); /* free resources */

return (EXIT_SUCCESS);

There is a function that supplies arguments and executes a script and a function that does
not supply arguments and enters interactive mode. In main () we call these functions alter-
nately. It is a pretty mean program! You can allow a user to do what he wants and when
he relinguishes control, you can execute whatever you want from your C program. It is so
mean that even when the user enters something like:

11 13 * 4 + bye .(I still gotta do this!) cr

The part after 'BYE’ will still be executed before the interpreter starts executing a script.
Whatever is on the stack stays on the stack, no matter if it was left there by a script or an
interactive session. Now that is powerful! But there are more neat things you can do with
suspended execution. You can also use it to read or write 4tH data. That may seem a bit
tricky at first, but as a matter of fact it is very easy. Take a look at this example:

10 constant NUMCELLS \ array size
NUMCELLS array Xarray \ array to be exported
32 string Xstring \ string to be exported
: export out ! pause ; \ save literal and sleep
T run
Xarray export \ export Xarray
Xarray 10 bounds do i ? loop cr \ show array contents
s" This comes straight from 4tH!" Xstring place
Xstring export \ export Xstring
." Famous last words.." cr \ final message
7
run

You probably remember that the contents of OUT are returned by exec_4th (), so what
"EXPORT’ actually does is saving an address of a variable before returning control to the C
program. "EXPORT" is called almost immediately in this example. Obviously something
has been done, since the contents of "’XARRAY’ are dumped. Then a string variable is
initialized and "TEXPORT"” is called again. Finally a message is printed. Doesn’t that make
you wonder what the C program does?

CHAPTER 18. USING THE 4TH API 330

#include "4th.h"
#include "cmds_4th.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MK_CP(a,b) ((a)->CellSeg + STACKSIZ + SYS4TH + (b))
#define MK_UP(a,b) ((a)->UnitSeg + (b))

#define NUMCELLS 10
#define HX "bulk.hx"

int main (int argc, char** argv)
{

cell Pointer;

cell Carray [] = { OL, 10L, 20L, 30L, 40L, 50L, 60L, 70L, 80L, 90L };
Hcode *Program;

cell “*p;

int X;

Program = load_4th (HX);
if (Program) /* if loading was successful */
{ /* £i1l the 4tH array */
Pointer = exec_4th (Program, 0, NULL, 0);
p = MK_CP (Program, Pointer);
for (x = 0; x < NUMCELLS; x++, p++) *p = Carray I[x];
/* show array and setup string */
Pointer = exec_4th (Program, 0, NULL, 0);
puts (MK_UP (Program, Pointer));
/* show famous last words */
Pointer = exec_4th (Program, 0, NULL, 0);
free_4th (Program); /* free hcode */

return (EXIT_SUCCESS);

The first thing you notice are the two macros, MK_CP () and MK_UP (). They have been
defined to create pointers to the Integer Segment and the Character Segment. It is very
easy: just call 4tH from C and export your variable of choice with 'TEXPORT"’. In this
program, the value is stored in "Pointer’. Note that it is essential that you know exactly
what has been returned: a CELL or a UNIT.

In this example, exec_4th () first returns a cell, so we have to call MK_CP () to convert it to
a pointer to a cell. After that we can transfer the contents of a C array to 4tH. The second
time exec_4th () returns a unit, so we’ll have to call MK_UP () to convert it to a pointer to
an unit. After that we can use the pointer to print the string. Then exec_4tH() is called for
the last time and a string is printed. Note that you don’t have to let 4tH finish. You can call
free_4th() any moment you want to.

That is still not enough for you? You’d like to see something even fancier? Well, what do
you think about this tiny cooperative multitasker:

#include "4th.h"

CHAPTER 18. USING THE 4TH API 331

#include <stdlib.h>
#define MAX_TASK 16
Hcode *Processes [MAX_ TASK]; /* process slots */

/*

This routine adds a task to the process space. It returns the PID
if successful, CELL_MIN if not.

*/

cell task_4th (Hcode **Process, Hcode *Task)
{

cell x;
if (Task) /* if there is a task */
for (x = 0; x < MAX_TASK; =x++) /* search all process slots */
if (Process [x] == NULL) /* if empty slot found */
{
Process [x] = Task; /* add the task */
return (x); /* and return success */
}
return (CELL_MIN); /* 1if not, return failure */
}
/*

This routine searches the process space for a given task. If found, it is
executed and the return value returned to the calling process. If not found,
it signals termination.

*/

cell wake_4th (Hcode **Process, cell task)

{

cell x, y;
for (x = task; x < MAX_TASK; x++) /* search slots beginning with task */
if (Process [x]) /* if it is an active process */
{ /* execute it */

y = exec_4th (Process [x], 0, NULL, 1, x);
/* 1f the process has terminated */
if (Process [x]->0ffset == 0)
{ /* free the process */
free_4th (Process [x]); /* and set the pointer to NULL */
Process [x] = NULL;

/* return next process number */
return (y == CELL_MIN ? ++x : Vy);

/* signal no active processes found */
return (task == 0 ? CELL_MIN : MAX_ TASK);

CHAPTER 18. USING THE 4TH API 332

/*

This is the true multitasker. It keeps on looping through the processes until

it receives a kill signal from wake_4th().

*/

void multi_4th (Hcode **Process)

{

cell pid = 0L; /* process id */
while (pid >= OL) /* seach all process slots */
{
pid = wake_4th (Process, pid); /* now wake this process */
if (pid >= MAX_TASK) pid = 0; /* and loop around */
}
}
/*
Host program, which calls the shots
*/

int main (int argc, char** argv)
{
cell x;
/* set all slots to NULL */
for (x = 0; x < MAX_TASK; x++) Processes [x] = NULL;
/* now load two processes */
printf ("Process %1d installed\n", task_4th (Processes, load_4th
printf ("Process %1d installed\n", task_4th (Processes, load_4th

multi_4th (Processes); /* start the multitasker */
return (EXIT_SUCCESS); /* return success */

Since load_4th () returns a NULL pointer when it doesn’t succeed, it is safe to pass it
to task_4th(). Even if programs aren’t suited to do any multitasking, you can use this
program: they will just be executed consecutively. task_4th () will add a program to the
process list. wake_4th () will try to wake up a program beginning with the PID which is
passed to it. Note that the PID is passed to the 4tH program, so it can be queried. If ’'OUT’
contains a valid PID, it will be the next process that the program will try to awaken. When
a process terminates, it is taken from the process list. When all processes have terminated,
wake_4th () returns CELL_MIN. Note that a program can terminate the multitasker by
returning a non-zero value. That’s as fancy as it gets, folks!

The String Segment and the Code Segment are read-only for a reason. Although you can
access them, we advise you not fo attempt it. The same goes for the Stack Area and the
System Area. The interfaces we’ve provided here are a relatively safe way to exchange
information between 4tH and C, but if you make any errors your program might crash.
Therefore, it is a good idea to add exception handlers to critical sections of your 4tH pro-
gram.

CHAPTER 18. USING THE 4TH API

18.18 Useful variables

333

We’ve already seen that dump_4th () can provide you with a lot of information about
Hcode. If you need this information, you don’t have to call dump_4th (). The dump_4th ()
function simply uses the information that is already available. This small program shows

you how to obtain it:

Hcode *Program;

Program = comp_4th (strdup

if (Program
printf

else {
printf
printf
printf
printf
printf
printf
printf
printf

("Not enough memory\n");

(
(
(
(
(
(
(
(

NULL)

"Error#
"Error at word:
"Object size
"String size
"Var. offset
"Variables
"Strings
"Reliable

: %u\n",

%d\n",

: %d\n",
: %u\n",
: %u\n",
: %u\n",
¢ %u\n",
: %s\n",

(".\" Hello world\" cr"));

Program->ErrNo) ;
Program->ErrLine);
Program->CodeSiz);
Program->StringSiz) ;
Program->Offset);
Program->Variables);
Program->Strings) ;
Program->Reliable ? "Yes" : "No");

The labels are kept the same as in dump_4th (), so if you need more information, read that

section again.

Chapter 19

Modiftying 4tH

19.1 Introduction

A good scripting language must be easy extendible. We will cover the most common
extensions. You will acquire indepth knowledge of the inner workings of 4tH. All of 4tHs
functions are a toolkit in itself and can be put to your own use (especially comp_4th (),
which is 4tHs most complex function).

As we proceed, there will be more files to edit and the modifications will get more complex.
Be sure you mastered the previous extensions, before you get on with the more elaborate
ones. A good knowledge of C is required for most operations.

19.2 A closer look at comp_4th()

As we already know, comp_4th () compiles source to H-code. First of all, we need to have
a source. This is a simple character array, which is pointed to by "Source". Then an H-code
header is created.

The header is initialized by InitObject (), which calls ParseText () to get the initial size
of the Code Segment. The initial size of the Code Segment is stored in the header-member
"CodeSiz".

ParseText () calls two other functions: ParseDirectives (), which picks out all direc-
tives and calls ParseStrings () if need be, which parses the source for string-arguments.

If ParseStrings () encountersa’ [NEEDS’ or 'INCLUDE’ directive, it will call DoNeeds (),
which will create enough room for the file to be included and read the actual file. If

DoNeeds () fails, it will set the "ErrNo” member of the header accordingly and exit. MakeRoom ()

just moves the last part of the source to the end of the reallocated space. Since all variables
are adjusted accordingly, ParseText () will pick up parsing after the '[NEEDS’ or "IN-
CLUDE’ directive. It never knows the difference.

After parsing ParseText () returns the initial size of the Code Segment (the number of
words). The function ParseText () sets three important variables:

334

CHAPTER 19. MODIFYING 4TH 335

| VARIABLE | CONTENT |
SourceStrings The number of source-words
SourceWords The size of the Code Segment
SourceSymbols | The size of the symbol-table

Table 19.1: comp_4th() variables

It is imperative to know these numbers since the 4tH-environment has to size its resources.
No resizing is required until all compilation is done. All allocated resources should be
large enough to contain the resulting compilant, so extending these resources should never
be necessary. In the end, they are only shrunk to their actual sizes. Now we can start to
allocate the compiler-resources:

e Code Segment
e Symboltable

e Controlstack

This is done by simply calling A1locResource (). Note that it is not necessary to allocate
the String Segment. Strings remain in memory already allocated to the source and are just
shifted to the front.

Then compilation can begin. First, the variable "Cursor" is set to the beginning of the
source. Then every call to GetNextWord () sets the variable "CurrentWord" to point to the
next source-word. If there are no more source-words, "CurrentWord" is set to NULL and
compilation is terminated.

Now compilation really gets off. It is important to know that not all words are created
equal. There are five kinds of words:

e Immediate words

e Words

Constants

Symbols

e Numbers

So, there are five distinct functions which handle these words:

o Immediate words are compiled by Get Immediate ()

Words are compiled by GetWord ()

o Constants are compiled by GetConstant ()

Symbols are compiled by Get Symbol ()

Numbers are compiled by comp_4th ()

CHAPTER 19. MODIFYING 4TH 336

If the first four functions fail there is one more chance that this is a valid source-word: it
might be a number. So, the source-word is converted to a number in the current radix.
If this works, the number is compiled. If it doesn’t, it isn’t a valid source-word and the
member "ErrNo" is set.

Compiling is done by a single function called CompileWord (). You just provide the token
and its argument and CompileWord () takes care of the rest.

When all compiling is done, we can discard the symboltable and the controlstack. This
is done by calling the function FreeResource (). It is called by ReallocSegs (), which
shrinks the Code Segment and the String Segment to their actual sizes, and AbortCompile ()
which shuts the compiler down in case of an error.

If an error occurred before any compiling took place AbortCompile () also discards the
Code Segment and the String Segment, thus returning a bare H-code header. As you already
know, the error-code is stored in the member "ErrNo" of the H-code header.

If the error occurred after words have been compiled, this partial compilant is not discarded.
Instead the member "Reliable" is set to FALSE, indicating that the compilant cannot be run
or saved. It can be decompiled, thus enabling the user to track the error.

In the next sections we will take a closer look at the three main tables in comp_4th (),
which contain all of 4tHs built-in words.

19.3 Adding a constant

Adding a constant is very easy. You only have to update a single table in comp_4th (). The
table with constants, which is embedded in GetConstant () has four members:

1. Length byte
2. Name
3. Type
4. Value

The length-byte is used to quickly scan the table. All words are skipped until it reaches the
constants with the same length. Then it starts to compare the names.

What happens then depends on the argument "mode". When it equals W_EXEC, the con-
stant is compiled (a literal with the value as argument). Otherwise, only the index in the
table is returned, pointing to the constant we just found. This enables mere searches in the
table. When a name isn’t found at all, it returns MISSING.

Say, we want to add a constant called "TWENTY". Atleast, we know its name: "TWENTY".
The name "TWENTY" is six characters long. And of course, we want to compile the num-
ber "20" each time it is referenced in the source. To make comp_4th () compile a number,
we need the token LITERAL. The four members are:

1. Length byte =6

2. Name = "TWENTY"

3. Type = LITERAL

4. Value =20

CHAPTER 19. MODIFYING 4TH 337

Since every constant is a signed 32 bits number, we add the modifier 'L’ to the "20". So the
complete line we have to add to the table reads:

{ 6, "IWENTY", LITERAL, 20L },

Now we have to insert this line into the table. Note that constants with the same length
have to be grouped together:

5, "INPUT", LITERAL, F4_READ },
6, "OUTPUT", LITERAL, F4_WRITE },
6
;

~

, "APPEND", LITERAL, F4_APPND },
"(ERROR)", LITERAL, CELL_MIN },

P

~

We decide to put our constant behind "APPEND". Of course, we could have put it behind
"INPUT" or "OUTPUT" as well:

"INPUT", LITERAL, F4_READ },

, "OUTPUT", LITERAL, F4 _WRITE },
"APPEND", LITERAL, F4_APPND },
, "TWENTY", LITERAL, 20L },
"(ERROR)", LITERAL, CELL_MIN },

P N e
-~ O O O U
~ ~

~

Now recompile 4tH and run this simple program:
twenty . cr

It should compile without errors and print "20". That’s all there is to it! Not to difficult to
begin with, huh?

194 Adding a word

Now for something a little more difficult. Let’s say we want to implement *NIP’. Of course,
NIP’ is already available, but if you compile this program:

1 2 nip
You will see that it actually compiles to:

literal
literal
swap
drop

w N = O
O O N

So, *NIP’ is actually expanded to ’SWAP’ and "DROP’. That is because 'NIP’ can be
defined as:

: nip swap drop ; (nl n2 -- n2)

CHAPTER 19. MODIFYING 4TH 338

It removes the number under the top of stack. We call this an inline macro, which we will
discuss later on. If you really want to try out "NIP’ in the following example, you have to
remove a line from ImmedList[]:

{ 3,0, 1, "NIP", "", DoNip },

Your compiler might complain about unused functions, but it will work.

Inline macros are not the only way to add *NIP’ to 4tH. We can also implement 'NIP’ as a
word. Most words can be found in the function GetWord (). There is a single table, which
is laid out like the table of constants we encountered in the previous section, so:

1. Length byte =3
2. Name = "NIP"

But instead of the value of the constant, we have to add something else. That something is
called the token. The tokens are defined in "cmds_4th.h". Let’s have a look:

#define PAUSE 100
#define VECTOR 101
#define ENVIRON 102
#define PLITERAL 103
#define FSEEK 104
#define FTELL 105

/* ranges */
#define LastWord4th FTELL
#define LastMsg4th MACABORT

Well, in fact you can place a new token anywhere, but then you have to renumber all other
tokens. The easiest way is to place it after the last token you defined, which in this case is
"FTELL". The token "FTELL" has the number "105". Well, the next number is "106" and
that is the number "NIP" is going to get. So we add:

#define PAUSE 100
#define VECTOR 101
#define ENVIRON 102
#define PLITERAL 103
#define FSEEK 104
#define FTELL 105
#define NIP 106

/* ranges */
#define LastWord4th FTELL
#define LastMsg4th MACABORT

What part don’t you understand? But we’re not ready yet. If you look at the #define below
the entry we just made, you will see that it says that the last word in 4tH is "FTELL". That
is incorrect now. We’ve just added "NIP". Fixing it is very easy. Just change the line to:

#define LastWord4tH NIP

CHAPTER 19. MODIFYING 4TH 339

We’re done now with "cmds_4th.h". Now we have change "comp_4th.c", so that the com-
piler can recognize and compile "NIP". Now we can complete the entry for GetWord ():

1. Length byte =3

2. Name = "NIP"
3. Token = NIP

So the complete entry reads:
{ 3, "NIP", NIP },

And like we did with our constant "TWENTY", we have to give it a place inside the ta-
ble between all other 3-letter words. We decided that pasting "NIP" between "USE" and
"SEEK" would be a good idea (but there are plenty of other places too):

"HEX", HEX },
, "USE", USE },
"NIP", NIP },
, "SEEK", FSEEK },
, "TELL", FTELL },
"HEX", HEX },

~

P N VNN
W > W W W
~

~

Are we done now? No. The compiler will recognize and compile "NIP", but what does it
do? That behavior will have to be defined in "exec_4th.c", but we’ll discuss that in the next
section.

19.5 A closer look at exec_4th()

Although it is a perfectly acceptable way to create a threaded virtual machine, some C-
programmers will shake their head when they take a look at exec_4th (). Their comments
are usually concentrated around these items, so let’s get them out of the way as quickly as
possible:

e QUESTION: Why this enormous switch () statement? Why wasn’t a structure used
with pointers to functions?

e ANSWER: That one was built too, but it proved to be upto four times slower on all
platforms. Which is perfectly understandable, because every time you evaluate a
token, you have to take the overhead of calling a function into account.

e QUESTION: Why are the tokens in a random order?

e ANSWER: We have statistically analyzed which tokens are used more often. They
are up front. Some C-compilers generate a jumptable. Others generate a repeated "if
.. elif .. endif" construction. Compilants produced by the latter perform better when
tokens are ordered this way.

CHAPTER 19. MODIFYING 4TH 340

But if you think you can build a better one, please do. If it works, please inform us! Now
let’s get to business..

Since 4tH has a segmented structure, there are special words for each segment, e.g. "C!"
for the Character Segment and "!" for the Variable Area. But when one wants a Virtual
Machine that checks every access, the parameters of these words need to be checked.

There are very few words that access the Variable Area, so these are checked within the
code for the token itself. Others, like the ones accessing the data stack, are used more
often. So, special functions were created that allow or check access to those areas. There
are thirteen functions you should know about. They form the basic API.

| FUNCTION/MACRO | DESCRIPTION
DPOP Gets an item from the data stack
DPUSH (cell) Puts an item on the data stack
DFREE (cell) Checks amount of free space on the data stack
DSIZE (cell) Checks the number of items on the data stack
DS (cell) Random acces item on data stack
RPOP Gets an item from the return stack
RPUSH (cell) Puts an item on the return stack
RFREE (cell) Checks amount of free space on the return stack
RSIZE (cell) Checks the number of items on the return stack
RS (cell) Random acces item on return stack
unit fetch (cell) Gets a character from the Character Segment
void store (cell, unit) Puts a character in the Character Segment
cell toPAD (char*) Puts a string in the PAD
char* toCstring (cell, cell) | Puts a addr/count string in the PAD

Table 19.2: exec_4th() basic API

We strongly recommend you use these functions when accessing any of these segments.
But you’ll probably need more than functions to create your code. What about variables?

Well, of course there is a host of variables you can use, but there are three variables that are
used more frequently. They are called "a", "b" and "c" and are of type cell. Now, what did
NIP do?

NIP (nl n2 -- n2)

That means the first cell is taken from the data stack and saved, then the second cell is taken
from the data stack and dropped and finally the first cell is replaced on the data stack. Note
there need to be at least two items on the stack to make it work. Since there will be one
item less on the stack after the operation, we don’t need to check whether there is enough
space. So this will do the trick:

DSIZE (2);
a = DPOP;
DDROP;

DPUSH (a);

There is even a faster way to do it. This implementation uses the DS () macro which allows
direct access to the datastack:

CHAPTER 19. MODIFYING 4TH 341

DSIZE (2);
DS (2) = DS (1);
DDROP;

DS (1) equals "Top of stack” and DS (2) equals ”Second of stack”. Note that the DS ()
macro doesn’t adjust the stack pointer. That is where DDROP comes in. It discards the
superfluous item on the stack. Now we add a label and a "break" (which is necessary in a
switch()):

case (NIP): DSIZE (2);
DS (2) = DS (1);
DDROP;
break;

Although this is slightly more difficult than the previous API, this implementation is much,
much faster. So, now we’re finally done! We can compile the whole thing and test our new
command:

2 3 NIP . cr

Can we? No, there is one more thing we have to do. Your source will compile OK and
execute OK, but it is nowhere to be found when we decompile it. Does that mean we have
to edit dump_4th () ? Wrong again, but we will see that in the following section.

Before we leave, we’ll take a look at another word, OVER. This once differs from NIP,
since it leaves more items than it consumes. If we wouldn’t take any precautions, we might
run into serious trouble. So, what does OVER do?

OVER (nl n2 -— nl n2 nl)

’OVER’ requires two items and leaves three items on the stack. That means we need 3 - 2
= 1 extra item on the stack:

r

DSIZE (2
DFREE (1
a = DS (
DPUSH (a

)

)i
2);
) !

Note we must use DPUSH () to adjust the stack pointer. Of course, there are macros that
manipulate the return stack in a similar way. One tip: be careful with nesting macros, since
you might not get what you want.

Strings are quite another ballgame. In 4tH these are usually address/count strings and
consequently incompatible with C, since they are not terminated. Strings in the String
Segment are not accessible by a 4tH programmer at all. In order to solve these problems,
the PAD was created. The PAD is essentially a circular string buffer where temporary
strings are stored. The address and count are usually returned to the 4tH programmer
enabling him to manipulate these strings. At the same time you can be assured that they
are terminated and C-compatible.

There are two API functions which allow you to access the PAD, toPAD () and toCstring().
The first one allows you to copy a C string to the PAD. It puts the address on the stack and
returns the count. The second one allows you to copy an address/count string to the PAD.
It returns a pointer to a C string. In exec_4th () there are two C string pointers which you
can use, p and q. A little example: suppose there is an address/count string on the stack
which you need to access:

CHAPTER 19. MODIFYING 4TH 342

DSIZE (2);
a = DPOP;
b = DPOP;
p = toCstring (b, a);

Note that the count resides on the top of the stack and is popped first. The address comes
after that. You can use toPAD () to copy any C string to the PAD, e.g.

DFREE (2);
DPUSH (toPAD ("Hello world!"));

Note that toPAD () already left the address on the stack, so you only need to push the count
it returns.

19.6 A first look at name_4th()

May be "name_4th.c" looks like a function, but it definitely isn’t. It is a global array that
is as global as globals can get. You can refer to it in any program that uses the 4tH library
without defining it first. It contains the names of all the tokens, so when we decompile, the
tokens get a readable name:

#include "4th.h"
#include "cmds_4th.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv)
{
puts (name_4th [SWAP]);
return (EXIT_SUCCESS);

This program will print "swap". Yes, you can use the token-code as an index to this array.
We can’t make it any easier than that! Now you understand that we can’t do the same thing
for "NIP", since we didn’t add that one. In fact, any program trying it will either print
garbage or crash. Let’s take a look at the last few lines of name_4th[]:

"environ", "+literal", "seek", "tell"

}i

Yeah, we’ve seen that before. All entries are ordered in the same way as in "cmds_4th.h".
Since "NIP" was added at the end of "cmds_4th.h", we have to do the very same thing here.
Don’t forget the comma after "TELL"

n 4 n

"environ", "+literal", "seek", "tell", nip

}i

Now we are finally done. We can recompile the library (and the compiler) and we can use
"NIP" like any other 4tH word.

CHAPTER 19. MODIFYING 4TH 343
19.7 Extending the compiler

So far we’ve only added words that are directly compiled into a token/argument pair. If that
was the way all 4tH words worked, we would never have branches, variables or other things
that make up a language. In fact, you would never construct this complex architecture, since
there are easier ways to achieve the same functionality.

The secret lies in the last major function of comp_4th () we have discussed, which is called
GetImmediate (). When you look at it for the first time, it looks quite like GetConstant ()
and GetWord (). The associated table ImmedList[] has a length-byte and a name but
instead of a token or a value the last field is a pointer to a function.

You’ll find these functions above Get Immediate () and they all start with Do. . (). In fact,
they are the icing on the cake. They make 4tH a compiler, since they allow non-linear
compiling. That includes:

Branching

Comments

Allocation of variables

String handling

Assertions

e Constants

If there is something you want to do that you cannot define in a single token/argument, this
is the place where you have to be. But before you are starting to make new functions, note
there are many functions that you can use.

E.g. when you want to compile a word, you don’t have to bother yourself with error-
checking or other 4tH-internals. Just make a call to CompileWord():

CompileWord (NIP, 0);

Extending the compiler is quite easy. We will illustrate that by using a very simple example.
We have some compiler-words that handle the radix at compile time. They are:

[BINARY]
[OCTAL]
[DECIMAL]
[HEX]

Now we want to add a new one called "[SEXTAL]", which sets the radix to six. The radix
at compile-time is handled by a single variable called "Base". First we have to make a
function, which sets "Base". We call it DoSextal (). Note that this function cannot receive
or return any values, like all Do. . () functions:

#ifndef ARCHAIC

static void DoSextal (void)
#else

static void DoSextal ()
#endif

CHAPTER 19. MODIFYING 4TH

BRANCHING
MarkLink() Adds a link to the controlstack
MakeLink() Makes a back-link
PairLink() Retrieves a link from the controlstack
CompileMark() Compiles a token and adds a link to the controlstack
SYMBOLTABLE
AddSymbol() Adds a symbol to the symboltable
MakeSymbol() Adds the current word as a symbol to the symboltable
GetSymbol() Retrieves an entry from the symboltable
PARSING
GetNextWord() Gets next word in the source
DecodeSymbol() | Decodes a symbol from source
DecodeLiteral() Gets a compiled literal expression
DecodeOperand() | Gets a compiled expression
DecodeWord() Gets a name from source
DecodeName() Gets a previously delared name from source
SkipSource() Discards all source between two labels
COMPILING
CompileWord() Compiles a token and its argument
InlineWords() Compiles a sequence of tokens without arguments
STRINGS
MoveString() Moves a string inside the String Segment
CompileString() Compiles a token and its associated string
Table 19.3: comp_4th() basic API
{
Base = 6;

344

Just place it anywhere before InmedList [] and you're safe. Now we have to make it work.
Like the other Get.. () functions, there is a table called ImmedList [] which drives this
behaviour, so let’s get started:

A U

Length byte=8

Symboltable entries = 0!

Additional tokens = -12

Delimiter = ""3

Name = "[SEXTAL]"

Function = DoSextal

Now let’s update that table:

ISee section 19.20
2See section 19.14
3See section 19.16

CHAPTER 19. MODIFYING 4TH 345

{7, 0, -1, "ALIGNED", ", DoDummy },
{7, 0, 0, "RECURSE", e DoRecurse 1},
{8, 0, -1, "[SEXTAL]", " DoSextal },
{8, 1, -3, "CONSTANT", ", DoConstant 1},
{8 1, -2, "VARIABLE", ", DoVariable },

You’re done now! Recompile the program and "[SEXTAL]" has become a part of 4tH.
Note that not all words within ImmedList[] can be defined that easily. If special tokens
are required, you might have to edit other files as well.

19.8 Making aliases

Sometimes you need two different names that do the same thing. Well-known examples
are "CHAR" and "[CHAR]" or "I" and "R@". How can this be done?

In fact, it is very simple. Think about it. 4tHs vocabulary is stored in tables. These tables
link a name with some kind of behavior. So we have to make two different names that are
linked to the same thing. Take a look at this excerpt of ImmedList []:

{5 0, -1, "ALIGN", ", DoDummy },
{5 0, -1, "CELLS", ", DoDummy },
{5 0, -1, "DOES>", ", DoDummy },
{5 0, -1, "CHARS", n, DoDummy },
{5 1, -2, "TABLE", ", DoCreate },
{6, 1, -2, "CREATE", ", DoCreate 1},
{6, 0, -1, "[THEN]", me DoDummy },

You might have noticed a few aliases.

| WORD | COMPILED BY
[THEN], ALIGN, CELLS, DOES>, CHARS | DoDummy()
TABLE, CREATE DoCreate()

Table 19.4: Examples of aliases

That means that if you write your 4tH program you can choose between "TABLE" and
"CREATE". It doesn’t matter, it will compile to the same thing. But we have to add to that
some aliases are created because in Forth they do have different meanings, like "[CHAR]"
and "CHAR". Read the glossary for details.

We will show you another example. This one comes from GetWord ():

"CHAR+", INC }
"CHAR-", DEC },
}
}

~

, "CELL+", INC
"CELL-", DEC

P
o o1 o U1
~

~

You see that "CHAR+" and "CELL+" do two very different things. At least in Forth. Within
4tH the smallest addressunit is always an element of that particular segment, thus one. So
in 4tH these words are aliases and will compile to the very same code.

CHAPTER 19. MODIFYING 4TH 346
19.9 Giving a name to an application variable

We already learned that you can transfer variables to 4tH:

Result = exec_4th (Program, 0, NULL, 12, (cell) 31, february,
(cell) 31, (cell) 30, (cell) 31, (cell) 30, (cell) 31, (cell) 31,
(cell) 30, (cell) 31, (cell) 30, (cell) 31);

These kind of variables are called "application variables". Of course, you don’t have to use
the same variables every time you call exec_4th (), but if you do it may be a good idea to
give them a significant name. That makes it a lot easier for a 4tH application programmer
to reference your variables. Like everything in 4tH, that is very easy too.

If we take a look at "cmds_4th.h" you will see a C-constant named "VAR4TH". This
constant has two functions. First, it shows how many internal 4tH variables there are.
Second, it is an index to the first application variable, so *APP’ is defined as "VAR4TH".
That means that:

app 0 th
Is the very first application variable and:

app 1 th
Is the second application variable. You can do the same. Let’s say you have three applica-
tion variables, which contain the document-number, the page-number and the line-number.
You’d like to call them "&DOC", "&PAGE" and "&LINE". The ampersands are not really

necessary, but we add them in order to identify the application specific words. To make it
work you have to call exec_4th () by:

Result = exec_4th (Program, 0, NULL, 3, (cell) Doc, (cell) Page,
(cell) Line);

Now these are the mappings.

| C VARIABLE | 4TH EXPRESSION

Doc app 0 th
Page app 1 th
Line app 2 th

Table 19.5: Mapping between 4tH and C variables

Now all we have to do is add constants that are equivalent to these addresses. As we’ve seen
before, we can do that by modifying comp_4th (). That is GetConstant () to be exact:

{ 4, "&DOC", LITERAL, VAR4TH+0 },
{ 5, "&PAGE", LITERAL, VAR4TH+1 },
{ 5, "&LINE", LITERAL, VAR4TH+2 },

That’s all! You can now refer to these variables with their proper names.

Note that if you use this technique you are bound to calling exec_4th () with these argu-
ments in this order! Failure to do so may cause unpredictable results (but no crashes of
course).

CHAPTER 19. MODIFYING 4TH 347

| C VARIABLE | 4TH EXPRESSION | 4TH VARIABLE

Doc app 0 th &doc
Page app 1 th &page
Line app 2 th &line

Table 19.6: Mapping between 4tH and C variable names

19.10 Adding new variables

In standard 4tH there are five environment variables, HI, FIRST, LAST, CIN and COUT.
There are also five predefined variables, *>IN’, "BASE’, ’OUT and the variable pair ’'SOURCE’.
These variables are initialized by exec_4th (), so their initial value should be known by
then.

Adding new variables is not difficult. We’re going to make a variable that contains 4tHs
release number, called "VERSION". First take a look at "cmds_4th.h". It contains a #define
called "VAR4TH":

/* variables and environs */
#define SYS4TH 3
#define VAR4ATH 10
#define ENVATH 5

Now remember that number behind "VAR4TH". You will need it later. Then increment it:

/* variables and environs */
#define SYS4TH 3
#define VARATH 11
#define ENV4ATH 5

If you would have preferred to make *VERSION’ an environment, you should also have
incremented "ENV4TH". But we assume you’ll allow the variable to be overwritten. Now
add a symbolic value for the variable. Just append it to the list and increment the number:

#define VBASE 5
#define VIN 6
#define VOUT 7
#define VTIB 8
#define VTIBS 9
#define VVERS 1

Or if you prefer it to make an environment variable, add it to the environment variable list:

#define VHI
#define VFIRST
#define VLAST
#define VCIN
#define VCOUT
#define VVERS

O W N PO

#define VBASE 6

CHAPTER 19. MODIFYING 4TH 348

#define VIN 7
#define VOUT 8
#define VTIB 9
#define VTIBS 10

That’s all. Now save "cmds_4th.h" and load comp_4th() in your editor. This stage is
very much like adding a name to an application variable. We simply define a constant
that contains the address of our new internal variable. You will remember how we add a
constant. Right, we add an entry to the GetConstant () table:

{ 7, "VERSION", LITERAL, VVERS },

Making it an environment variable is very easy too: just replace the "TLITERAL’ token by
an '’ENVIRON’ token:

{ 7, "VERSION", ENVIRON, VVERS },

All we need to do now is to initialize the variable in exec_4th (). Since it is a variable,
it resides in the Variable Area of the Integer Segment. The Integer Segment is just a large
array of unsigned longs.

The pointer "Stack" points to the beginning of the Integer Segment, which is also the be-
ginning of the Stack Area. The pointer "Vars" points to the area that is assigned to 4tHs
variables. Our constant "VERSION" is an index to that array, so the expression "Vars
[VVERS]" is a valid reference to our "VERSION" variable.

However, this indexed way of referencing is slower than a pointer. Therefore, we have
created pointers that reference these frequently used variables:

cell *In; /* equivalent of forth >IN */
cell *Result; /* return value for apps */
Base = &(Vars [VBASE]); /* assign pointer to BASE */
In = &(Vars [VIN]); /* assign pointer to >IN */

You might have noticed the absence of "Base". Well, since it is referenced elsewhere as
well, this is a global variable. But don’t worry, there is no need to reference "VERSION"
globally. So, we need to define a pointer to a cell, assign it to "Vars [3]" and initialize it:

Vars [VVERS] = Versiondth; /* initialize it */

Thatis all! Any questions? Where does "Version4th" come from? It is defined in "cmds_4th.h".
Anybody else? Next subject, please.

19.11 Resizing the 4tH environment

You might come up with a situation that the stack isn’t big enough. Or that you want to
give your programmers deeper nesting. Or that 512 characters isn’t just good enough for
temporary storage.

Relax! All these things can be changed with very little effort. And after that, you just need
to recompile 4tH like we’ve done before.

There is a single file you need to edit, "cmds_4th.h". You will find several easy to change
#defines there.

CHAPTER 19. MODIFYING 4TH 349

/* compiler */
#define LINKSIZ 64
#define SYMLEN 16

/* interpreter */

#define STACKSIZ 512
#define TIBSIZ 256
#define PADSIZ 512
#define DOTSIZ 64
#define RNDMASK 32767
#define MAXDEVS 8

#define PIPEWAIT 102400L

You already know "VAR4TH", since we discussed that one earlier in this document. Right,
it determines the number of internal variables! "LINKSIZ" determines the nesting depth.
Nesting depth has to do with the number of nested branches, e.g.

IF
IF
IF
THEN
THEN
THEN

Each ’IF’ puts its address and a reference (I'm an IF) on the flow control stack. Each
"THEN’ takes an entry off the flow control stack and takes the appropriate action. So, in
the current version of 4tH you can nest upto 64 consecutive conditionals, before you get an
error. You may increase or decrease that number.

"SYMLEN" is the maximum length of any name you define, e.g. a colon-definition, a con-
stant, a variable. The default is 16, which is enough to define a name like "multiplications".
You can define a longer name, but only the first fifteen characters will be significant. You
can increase the maximum number of significant characters, but beware: this can take up a
lot of memory!

"STACKSIZ" is the combined size of both data and return stack. This size will do for most
applications, since it allows you a combination of high usage of the data stack and low
usage of the return stack or vice versa. You might encounter a situation where recursion
forces you to resize the Stack Area. Decreasing is possible too, of course, but at your own
risk.

"TIBSIZ" is the size of the Terminal Input Buffer used by "REFILL’. If you need 'REFILL’
to accept longer lines than 256 characters and you don’t want to allocate your own buffer,
resize it.

"PADSIZ" is the size of the scratch PAD, used to store temporary strings. A part of the
PAD is reserved to numbers. The size of this area is determined by "DOTSIZ". The rest of
PAD (PADSIZ - DOTSIZ) is a circular string buffer. A bigger PAD will allow you to store
longer temporary strings that survive longer before getting overwritten.

"RNDMASK" is used to truncate the value returned by rand (). Some compilers return
a 32 bit number and others a 16 bit number. In order to maintain maximal compatibility
across all platforms, 4tH always returns a 16 bit value. You can fiddle around with it, but
you will compromise the portability of your 4tH programs.

CHAPTER 19. MODIFYING 4TH 350

"MAXDEVS" is the maximum number of I/O devices that 4tH can manage. Note that two
of them (STDIN, STDOUT) are already in use, so you can open up to six additional devices
concurrently. Finally, " PIPEWAIT" is discussed in detail in the next section.

You will find there are other defines here too. Please, do not change them. That just doesn’t
work. In fact, 4tH just won’t work properly anymore.

19.12 Tuning pipe failure detection

Pipes in 4tH are opened by the popen () function. This has one big disadvantage. Although
popen () is able to detect a failed fork (), it is unable to detect whether the program was
successfully started or not. E.g. if the program cannot be found in the path the pipe fails,
although popen () has already reported it was successful. In some cases this can have
serious consequences.

After careful study we decided to monitor the process for a while and then report success or
failure. The default value works very well on most modern systems, but with some systems
it may be neccesary to adjust it. This is the case when you experience one of the following
symptoms:

e Opening a pipe is slow; there is a long delay before 4tH reports the pipe is success-
fully opened.

e 4tH reports that the pipe was successfully opened, but most of the time this was not
the case.

In that case, you have to adjust a #define in ”cmds_4th.h”. That is a lot easier than you
might think. We’ve developed a small program to do that. It should be portable across
most Unixes:

#include <stdio.h>
#include <limits.h>
#include <sys/wait.h>
#include <stdlib.h>
#include <unistd.h>

long TimeBadPipe (void)
{

FILE *p; /* filepointer to pipe */
long x; /* simple counter */

int s =0; /* status of child */

p = popen ("nosuchprogram", "r"); /* perform a normal popen/()
for (x = 0; x < INT_MAX && s == 0; x++) waitpid (-1, &s, WNOHANG
pclose (p); /* close the pipe */

return (x); /* return the count */

int main (int argc, char **argv)
{
int x; /* simple counter */
int now; /* return of TimeBadPipe/()

*/
)i

*/

CHAPTER 19. MODIFYING 4TH 351

int sofar = 0; /* highest count */

int total 0; /* total of all counts */
/* warn the user */

puts ("Doing 1000 iterations, wait..");

puts ("(This is going to be messy..)");

sleep (5); /* allow him to read the message */

for (x = 0; x < 1000; x++) {

now = TimeBadPipe (); /* time a bad pipe */
if (now > sofar) sofar = now; /* adjust sofar */
total += now; /* add to total */

/* show the results */
printf ("\nAverage : %d\n", total / 1000);
printf ("Maximum : %d\n", sofar);
return (EXIT_SUCCESS);

If you run it, it will print something like this:

Doing 1000 iterations, wait..
(This is going to be messy..)
sh: nosuchprogram: command not found
sh: nosuchprogram: command not found

sh: nosuchprogram: command not found
sh: nosuchprogram: command not found
Average : 8685
Maximum : 41235

This means that on average the process had to be checked 8685 times, but at no occasion
a process died after it had been checked 41235 times. Run it several times, so you will
get a good impression of how your particular system behaves. Ignore extremely high and
extremely low values. Then take the highest value that pops up several times and change
“cmds_4th.h” appropriately:

#define PIPEWAIT 49152L

Note we rounded the value a little (we’re a binary kind of guy) and it doesn’t have to be
exact. Now you can safely use pipes on your system and the result returned will assure you
that the pipe was actually successful opened and ready for use.

If this still doesn’t work, you may have to adjust this #define manually: decrease it if
opening a pipe is slow, increase it if 4tH incorrectly reports a successfully opened pipe. If
you use MS-DOS, just forget all this. We don’t provide any pipes there.

19.13 Adding new error messages

Adding new messages is quite simple. It requires not much more than adding a #define and
adding a string. You might have noticed that every 4tH message has a mnemonic. Although
this is not required, it makes it much easier to read and thus maintain your code.

CHAPTER 19. MODIFYING 4TH 352

This mnemonic is no longer than eight characters, all uppercase and begins with "M4"
(which stands for Message 4tH). Let’s say you’ve added the ANS-Forth floating point
wordset and you want to add the error message "Floating point exception”. We’ll do it
the easy way and just append the message at the end of the table.

First we have to come up with a mnemonic. We decide to use "M4FLOATE". Now we start
up our favorite editor and load "4th.h". Then we look for the table with error mnemonics:

#define M4ANOSTR 24
#define M4ANULSTR 25
#define M4DUPNAM 26
#define M4CABORT 27

Now we simply add "M4FLOATE" to the end of the table. Since the last message had code
27, we give our message code 28:

#define M4ANOSTR 24
#define M4ANULSTR 25
#define M4DUPNAM 26
#define MACABORT 27
#define MAFLOATE 28

We can now save "4th.h". Now we have to add the message itself. That is done by adding
it to "errs_4th.c". That file just contains an array of messages. Note that the messages are
listed in order of their codes:

"Unterminated string",

"Null string",

"Duplicate name",

"Compilation aborted"
i

If you change that order, your compiler might display the right errorcode, but the wrong
error message. Since our mnemonic comes last, our message comes last:

"Unterminated string",

"Null string",

"Duplicate name",

"Compilation aborted"

"Floating point exception"
bi

Don’t forget adding a comma after the last message! If you don’t your compiler will cer-
tainly complain about that. Are we done now. No, not quite yet. The "THROW’ routine
wants to know which codes are exceptions generated by the system and which one are gen-
erated by the user. Why? Because user exceptions do not have messages attached to them!
We can change that in "cmds_4th.h".

/* ranges */
#define LastWord4dth FTELL
#define LastMsg4dth MA4CABORT

CHAPTER 19. MODIFYING 4TH 353

Now it still points to the "duplicate name" error. We simply change "LastMsg4th" to our
mnemonic:

/* ranges */
#define LastWord4th FTELL
#define LastMsg4th MAFLOATE

We’re done now! Note that this final step is not necessary when you insert messages.
Instead, you will have to renumber the table in "4th.h". No two mnemonics may ever share
the same error code, remember that! If you don’t keep the mnemonics, the errorcodes
and the messages properly synchronized you may get some pretty strange error messages.
Which is less than helpful.

19.14 Sizing the Code Segment

By default 4tH assumes a 1:1 relationship between a word in source and a compiled word
(in the Code Segment). When ParseText () is called it will count the number of words in
the source. This number is later used to size the initial Code Segment. This 1:1 relationship
is not so strange as it may seem at first, e.g.:

BL DROP
Will compile to:

[0] literal (32)
[1] drop (0)

Two words in source, two compiled words. But there are exceptions too,

e.g.
BL ,
Will compile to:
(01, (32)

That is because ’,” does not compile to anything, but changes the previously compiled literal
to an constant array element. Note that ’,” is an immediate word. In fact, all exceptions to
this 1:1 relationship rule are immediate words! The vast majority of 4tH words obey this
’one on one’ rule:

e All numbers and constants compile to literals

e All ordinary words compile to a word without argument

e All symbols compile to a word with argument

CHAPTER 19. MODIFYING 4TH 354

In a previous chapter we’ve created an immediate word called "[SEXTAL]". When you
take a closer look, you will see that it just changes the base; it doesn’t compile to anything.
Still, without the proper argument 4tH assumes it will compile a token and reserves space
in the Code Segment.

Can you prevent this? Yes, you can. There is a member in the table of ImmedList [] which
allows you to signal 4tH that it shouldn’t reserve space in the Code Segment for "[SEX-
TAL]". The first field indicates the length of the keyword, the third indicates the correction
4tH should make to the sizing of the Code Segment when this keyword is encountered, the
fourth is the keyword itself and the last one is the C function that compiles the word. The
second and the fifth field will be discussed later.

{8 1, -2, "VARIABLE", n, DoVariable },
{8, 0, -1, "[ASSERT]", e, DoAssert },
{8 0, -1, "[BINARY]", ", DoBinary },
{9 0, -1, "[DECIMAL]", " DoDecimal },

Now, the correction we want to make is that 4tH should allocate one word less in the Code
Segment, since "[SEXTAL]" does not compile to anything. One less means "-1". We can
now change the table accordingly:

{8, 1, -2, "VARIABLE", L DoVariable },
{8 0, -1, "[ASSERT]", nn, DoAssert },
{8 0, -1, "[BINARY]", L DoBinary },
{8, 0, -1, "[SEXTAL]", L DoSextal },
{9, 0, -1, "[DECIMAL]", "n, DoDecimal },

That’s all. We’ll give to a few more examples.

E.g. "VARIABLE’ does not compile to anything either; it just reserves space in the Variable
Area. But "VARIABLE’ always comes with a name, which doesn’t compile to anything
either. So we should decrease the the number of words in the Code Segment by two!

’CONSTANT’ not only requires a name, but consumes a previously compiled literal as
well. Initially this literal allocates space in the Code Segment, but it is gone after ’'CON-
STANT’ has been compiled. So we decrease the number of words in the Code Segment by
three!

"VALUE’ is even more complicated. You can write something like:

10 value ten

But this will compile to:

[0] literal (10)
[0] to (0)

"VALUE’ does not consume the previously compiled literal! But the name does not com-
pile to anything. "VALUE’ takes a value from the Data Stack at run time, while *CON-
STANT’, ’STRING’ and ’ARRAY’ take a previously compiled literal at compile time. If
you don’t believe us, check the glossary.

"VALUE’ itself compiles to something, the literal is undisturbed, only the name vanishes.
That means only one word less, thus "-1".

CHAPTER 19. MODIFYING 4TH 355
19.15 Adding inline macros

We’ve already seen how we can add new words to 4tH. We add a token and write the
runtime. But this approach has a few disadvantages. First, the number of tokens is limited.
You can use them, but once you run out of them, that’s it. Second, writing a runtime is a
little complex if you only have limited knowledge of C.

You can add as many inline macros as you want. From a user point of view there is not much
difference between an ordinary 4tH word and an inline macro. The word is recognized by
the compiler and works as expected.

Inline macros are simply sequences of existing tokens. As we’ve seen before, "NIP’ is
implemented as an inline macro, so this source:

1 2 nip drop
Will compile to:

literal (1)
literal (2)
swap (0)
drop (0)
drop (0)

s w N PO

There are disadvantages to inline macros as well. Every time you use *NIP’ it will expand
to two words, so your Hcode will become a little bigger. We recommend to limit inline
macros to three words. Second, an implementation using inline macros will make the
compiler less compact compared to an implementation using tokens.

On the other hand, you only need to change the compiler when you use an inline macro.
No changes to the interpreter or the decompiler will be necessary. Existing HX files will
still run, although some 4tH sources will need modification.

Let’s go to business. How can we implement an inline macro. Let’s take *NIP’. First we
have to make an entry in the ImmedList [] table.

{2, 1, -1, "TO", DoValue },
{2, 1, -1, "1s", e DoIs },

{2, 1, -1, "as", DoValue },
{2, 0, 0, "IF", o DoIf },

{2, 0, 0, "DO", ", DoDo },

{2, 0, 0, "->", " DoDummy },
{3, 0, 1, "2R>", e DoTwoRGet 1},
{3, 0, 1, "2>R", DoTwoRPut },
{3, 0, 3, "2RrRQ", ", DoTwoRCopy 1},

Since *NIP’ is defined by:
: nip swap drop ;
It will compile to:

swap (0)
drop (0)

CHAPTER 19. MODIFYING 4TH 356

Which is one token more than the parser would expect. So the value of the fourth field
is "1". But this will only reserve space for "NIP’. The word won’t be recognized by the
compiler yet. In order to do that we have to make a word that compiles the tokens for
’NIP’. You can only do that with an "immediate" word:

#ifndef ARCHAIC

static void DoNip (void)
felse

static void DoNip ()
#endif

CompileWord (SWAP, OL);
CompileWord (DROP, OL);

This will compile ’'SWAP’ and "DROP’ into the compilant. Now we have to make an entry
in ImmedList [] to link this function to the name "NIP":

{2, 1, -1, "TO", ", DoValue },
{2, 1, -1, "18", ", Dols },

{2, 1, -1, "As", " DoValue },
{2, 0, 0, "IF", " DoIf },

{2, 0, 0, "DO", ", DoDo },

{2, 0, 0, "->", " DoDummy },
{3, 0, 1, "2R>", ", DoTwoRGet 1},
{3, 0, 1, "2>R", ", DoTwoRPut 1},
{3, 0, 3, "2R@", e DoTwoRCopy },
{3, 0, 1, "NIP", n DoNip },

That’s all! Since *NIP’ uses existing tokens, the compiler can handle it all by itself. There
is no need to write runtime code or define tokens. All the burden is put on the compiler.

19.16 Adding string words

We’ve already seen that some words in 4tH have a name attached to them, like ’'STRING’,
"CREATE’ or "VARIABLE’. Since all these names are delimited by whitespace (like any
other 4tH word), there is no need for special code.

Some words have special strings attached to them, like *."”, ’(’ or ’\’. These string are not
delimited by whitespace, so they need special treatment. It’s even more complex: each
word has a different delimiter. ’."” is delimited by *"’, ’(’ is delimited by ’)’, and ’\’ is

delimited by an end-of-line marker.

In this section we’re going to explain how we added *."’, since it’s the most complex string
word. Other string words like *(’ are handled by the compiler only.

The first step to adding a string word is letting the compiler know, what delimiter is used.
We do that by modifying ImmedList []:

{2, 0, -2, "#!'", EOL, DoComment 1},
{2, 0, -1, ",\"", "\"" DoCommaQuote },

CHAPTER 19. MODIFYING 4TH 357

{2, 0, -1, ", I", ", DoCommaQuote },
{2, 0, -1, ".A\"", "\"" DoDotQuote },
{2, 0, -1, ".(", ", DoDotQuote },
{2, 0, 1, ">=", e DoGreaterEqual 1},
{2, 0, 1, "<=", ", DoLessEqual },
{2, 0, -1, "s\"", "\"" DoSQuote },

{2, 0, -1, "s|", ", DoSQuote },

EIRIE]

The fifth field tells the parser whether this word requires a special delimiter. Yes, ’." is
delimited by *"’, so we enter a quote in the fifth field. If you enter an empty string, the
parser assumes the word isn’t a string word at all.

Now, what will the parser do when it encounters *."”? It will find an entry in TmmedList []
for *."’. It will see that this is a string word. Then it will make a call to ParseString() to
find the delimiter and flag everything in between as a word. Which means that if you call
GetNextWord (), you will get the entire string and not just the next word, e.g.:

: hello ." Hello world" cr ;

Will be parsed as:

GetNextWord
GetNextWord
GetNextWord
GetNextWord
GetNextWord
GetNextWord

hello

."

Hello world
cr

4

You will notice that there are some words that are delimited by whitespace, e.g. 'CHAR’.
Why is that? Isn’t every word delimited by whitespace? Yes, it is. But note that every
word, which is parsed by ParseText () is also checked by ParseDirectives(). This
expression would cause problems:

CHAR (

After 'CHAR'’ is parsed by ParseText (), ’(’ follows and is recognized by ParseDirectives ()
to be the start of a comment. To prevent this, we let the string following ’"CHAR’ be parsed
by ParseString(). By the time ParseText () regains control, the character following
’CHAR’ is already parsed and can cause no more problems. In short, if an expression like:

word (

or

word\

is valid, let it be parsed by ParseString () by making an entry in the delimiter field of the
ImmedList [] table. If not, don’t.

Next, we have to develop a word that compiles °."”. Now, how can we compile °."”? First,
we have to get the string and move it to the String Segment. We can do that by calling

CHAPTER 19. MODIFYING 4TH 358

GetNextWord () manually, but then we have to check for NULL-pointers. It is much easier
to call DecodeWord () which sets the ErrNo member automatically when an error occurs.

DecodelWord () takes one argument, which is the error code it should set the ErrNo member
to. It returns TRUE if GetNextWord () was called successfully. "CurrentWord" now points

EIRIE]

to the string after *."’.

Then we have to move the string to the String Segment. MoveString() does just that. It
expects "CurrentWord" to point to the string that has to be moved. It returns a number.
We’ll need that when we design the runtime code.

There is no token or combination of tokens for printing strings. So this one will need a
token of its own. We’ll call it "PRINT" for the time being. Now, we got all components.

e The string can be parsed
e We can move it to the String Segment

e We can compile a token and an argument

This is the code for DoDotQuote ():

#ifndef ARCHAIC

static void DoDotQuote (void)
felse

static void DoDotQuote ()
#endif
{

CompileString (PRINT);
}

EIRIE]

We aren’t done yet. We still have to link the string *."” to this routine by adding an entry to
ImmedList[]:

{2, 0, -1, ",\"", "\"" DoCommaQuote },
{2, 0, -1, ", I", ", DoCommaQuote },
{2, 0, -1, ".\"", "\"" DoDotQuote },
{2, 0, -1, ".(", ", DoDotQuote },

Now we can save comp_4th () and get on with the next file. Remember, we still got to add
a token. As you will probably know, we do that in "cmds_4th.h":

#define NOOP
#define CELLD
#define EXECUTE
#define CR
#define SPACES
#define EMIT
#define PRINT
#define DOT
#define FETCH

~ O U1 W N OO

And of course, we have to add a name to "name_4th.c", so it can be decompiled properly:

CHAPTER 19. MODIFYING 4TH 359

char *name_4th [] = {
Il,ll, Ilexecutell’ "Cr", llspacesll’ llemitll, ll.\llll,

Are we done yet? Not by a long shot. We have created a word with an argument, which is
the offset of the string in the String Segment. That requires some special techniques. But
we’ll go into that in the next section.

19.17 Adding words with arguments

The very first thing you have to do is to make sure that your code can be saved and loaded
again. Words that only consist of a token are saved without the argument. That reduces
the size of the HX file. If you want to save the argument you have to add a line to both
load_4th() and save_4th():

case (LITERAL):
case (PRINT):
case (BRANCH) :
case (BRANCHO):
Now we have to add code to exec_4th () in order to execute ’."". The first problem we en-

counter is: how do we access the argument? Accessing an argument is quite an expression:
Object->CodeSeqg [Object->ErrLine].Value
In which:

OBJECT = Hcode pointer

CODESEG = Member of Hcode, pointing to the Code Segment
ERRLINE = Member of Hcode, pointing to the current word
VALUE = Member of word, holding the argument

In plain English it means: give me the argument of the currently executed word in the Code
Segment. But we can also make our lives a lot easier by using this macro:

OPERAND

But this is only half the problem. How can we access the String Segment where the string-
constant is stored? We made a pretty table on that subject.

| DATATYPE | EXPRESSION | TYPE |
String Object->StringSeg [{cell}] char
String Object->StringSeg + {cell} char*
Character Object->UnitSeg [{cell}] char
Character Object->UnitSeg + {cell} char*
Variable Vars [Object->Offset + {cell}] | cell
Code Object->CodeSeg [{cell}] dict

Table 19.7: Accessing 4tH data from C

CHAPTER 19. MODIFYING 4TH 360

Most of the time it is more convenient to use functions to access those segments instead of
addressing them directly:

| AREA | FETCH | STORE |
Data Stack DPOP DPUSH (value)
Return Stack RPOP RPUSH (value)
Character Segment | fetch (location) | store (location, char)

Table 19.8: exec_4th() data access API

You might consider using other functions too if certain datatypes are accessed more fre-
quently.

Back to ’."’. We have to access the String Segment for this one. Since all output is chan-
nelled through emit (), we have to convert the string to "units", which are unsigned char-
acters. We could use the expression "Object->StringSeg [{arg}]", but that would be slower

than pointer access on most systems. We decide to use "p", which is a temporary string-
pointer:

case (PRINT): for (p = Object->StringSeg + (unsigned) OPERAND; *p; p++)
emit ((unit) *p);
break;

non

We assign "p" to a pointer to the string (Object->StringSeg + {cell}). We check for
null-characters (*p). If it is not a null-character, we "EMIT” it (emit (*p)) and advance
the pointer (p++) before entering the loop again.

Now we are done. Let’s do something more complicated now, like adding conditionals.

19.18 Adding conditionals

Basically, there are nine branch-instructions in 4tH:

1. BRANCH, which unconditionally branches to an address in the Code Segment.

2. 0BRANCH, which branches to an address if the Code Segment if the top of the
Data Stack is zero.

3. CALL, which unconditionally branches to an address in the Code Segment, throw-
ing its origin on the Return Stack.

4. EXIT, which unconditionally branches to an address in the Code Segment, which is
taken from the top of the Return Stack.

5. VECTOR, which unconditionally branches to an address in the Code Segment,
which is taken from the contents of a variable, throwing its origin on the Return
Stack.

6. EXECUTE, which unconditionally branches to an address in the Code Segment,
which is taken from the top of the Data Stack, throwing its origin on the Return
Stack.

CHAPTER 19. MODIFYING 4TH 361

7. CATCH, which unconditionally branches to an address in the Code Segment, which
is taken from the top of the Data Stack, throwing the data stack pointer, the previous
handler and its origin on the Return Stack.

8. LOOP, which branches to an address in the Code Segment if the top of the Return
Stack is less than value below it.

9. +LOOP, which branches to an address in the Code Segment if the top of the Return
Stack plus the top of the Data Stack is not equal to the value below the top of the
Return Stack.

10. ?DO, which branches to an address in the Code Segment if the top of the Return
Stack plus the top of the Data Stack is equal to the value below the top of the Return
Stack.

The first four are the most common and the most useful ones. Together, they control your
entire program. But how do they know where to branch to? There is no instruction like
"BRANCH’. And where is 'DO’?

Well, ’DO’ doesn’t do any branching. It just puts the loop parameters on the Return stack.
And as for ' BRANCH?, this is how it works:

IF something ELSE other thing THEN

This is an expression we are very familiar with. We pronounce it as:
"If TOS is non-zero then something is executed."

This is not entirely true. In fact, it is:
"If TOS is zero then branch after "ELSE’"

Which in effect results in the execution of "something”. But when "something" has ex-
ecuted, it has to branch after the "other thing". Unconditionally, that is. *"THEN’ does
nothing, except serve as a marker for the branch. It doesn’t have to compile to anything.

So this little piece to code will compile to:

Obranch (2)

[0]

[1] ce

[2] branch (3)
[3]

[4]

You see that "'IF’ compiles to a '0BRANCH’ instruction, "ELSE’ to a’'BRANCH’ instruc-
tion and "THEN’ to nothing! If you have a closer look you might assume that 4tH will
branch to instruction [2] and then branch directly to instruction [3]. This is not quite what
was intended.

What a ’BRANCH’ instruction actually does is setting the instruction counter to a specific
value. Then, like after every instruction, the instruction counter is incremented. Why make
exceptions? That only slows the interpreter down. Let’s take a look at this piece of code:

10 dup if 1+ else . then cr

CHAPTER 19. MODIFYING 4TH 362
This will compile into:

literal (10
dup (0)
Obranch (4)
1+ (0)
branch (5)

(0)

(0)

Cr

oY U1 W N O

Now how does this execute. We will show you by giving the value of the instruction pointer
before execution, after execution and after the automatic increment.

| INSTRUCTION# | INSTRUCTION | BEFORE | AFTER | INCREMENT

[0] literal [0] [0] (1]
[1] dup (1] (1] (2]
[2] Obranch [2] (2] [3]
[3] 1+ [3] (3] (4]
[4] branch [4] [5] [6]
(6] cr [6] (6] [7]

Table 19.9: Example execution plan

You see that 'OBRANCH’ has no effect when the top of the Data Stack is non-zero. And
while 'BRANCH’ sets the instruction pointer to "5", it will resume execution at location
ll6ll.

If you compile this little piece of code by hand and start compiling from the beginning, you

will also see that you can’t fill in the destination until it has been compiled. So how does
4tH do that?

4tH has a small stack (Control Stack) where it stores these addresses. So when it encounters
an 'IF’ or ’ELSE’ or "THEN’ instruction, it stores its current address there. What would
have happened during the compile of the previous program:

e ’'IF’ is encountered. It compiles a "'OBRANCH’ instruction and stores *2’ on the
Control Stack.

e 'ELSE’ is encountered. It compiles a ' BRANCH’ instruction, takes ’2’ from the
Control Stack and changes the argument of the’'OBRANCH’ word to its own address,
which is ’4’. It stores ’4’ on the Control Stack again.

e "THEN’ is encountered. It takes "4’ from the Control Stack and changes the argument
of the ' BRANCH’ word to address of the last compiled word, which is ’5’.

But this example was correct. What would have happened if we had written something
like:

50 : test begin 1 dup if ; while . then dup dup repeat

To prevent the compiler from accepting these kind of constructions, a reference is added.
This reference tells the compiler what conditional was put on the stack. If the reference

CHAPTER 19. MODIFYING 4TH 363

isn’t correct, the compiler will throw an exception. There are five predefined references,
but you may add your own.

There are three functions which handle conditionals:

| FUNCTTON| DESCRIPTION

MarkLink Throws an address on the stack
PairLink Gets an address from the stack
MakeLink Makes a "backlink"

Table 19.10: Branch resolving API

They all take a reference as argument. All address calculation and errorchecking is done
by these functions. Let’s get to business and retrace our steps when we added "BEGIN..
WHILE.. REPEAT".

All conditionals are "immediate" words. So they have to be added to ImmedList []. That
also means, that each word has its own function. Let’s design the one for 'BEGIN’. *BE-
GIN’ is just a marker, which means we have little more to do than to save the address on
the stack:

#ifndef ARCHAIC

static void DoBegin (void)
#else

static void DoBegin ()
#endif

MarkLink (R_BEGIN);

Yes, that’s all. Just call MakeLink () with the proper reference! Just make sure, you've
compiled everything you wanted to compile. Jumps resolved by MarkLink () will in effect
always continue from the word that will be compiled next, although it seems they jump to
the word compiled last.

Now we have to make "WHILE’. "WHILE’ executes a piece of code when the top of the
DataStack is non-zero. Which means it jumps to "'REPEAT’ when the top of the DataStack
is zero. Sounds like a "'OBRANCH’ instruction to us. Note, that ' BEGIN’ doesn’t play any
part whatsoever here!

Because the address it has to jump to isn’t known yet (we haven’t encountered 'REPEAT’,
we can only compile the ’0BRANCH’ instruction with an arbitrary address. But 'REPEAT’
will have to know the address in order to make a backlink, so we have to throw it on the
stack:

#ifndef ARCHAIC

static void DoWhile (void)
felse

static void DoWhile ()
#endif

{
CompileMark (BRANCHO, R_WHILE);

}

CHAPTER 19. MODIFYING 4TH 364

Note that CompileMark () is equivalent to:

CompileWord (BRANCHO, O0L);
MarkLink (R_WHILE);

Now we come to "REPEAT’. It has a lot of things to do. First, it has to compile a
"BRANCH’ instruction in order to get back to "TBEGIN’. Second, it will have to resolve
the backlink from "WHILE’.

In a way, 'REPEAT’ has an advantage over "WHILE’. It doesn’t have to compile an arbi-
trary address, since it is already on the control stack. It has been provided by "BEGIN’. It
can retrieve that address by calling PairLink () with the proper reference:

CompileWord (BRANCH, PairLink (R_BEGIN));

But there is a problem. MakeLink () should always make a link to the last compiled word.
And we can’t compile the’BRANCH’ instruction first, because of the "WHILE" reference
on the top of the controlstack!

So we have to resolve the "WHILE’ backlink first. For that purpose, MakeLink () has
an extra argument. Usually, MakeLink () is called with "LASTW", which means it will
jump to the word compiled last. Then the instruction counter will be incremented and the
interpreter will continue from there.

In order to compile 'REPEAT’, we have to make a backlink that points to the word compiled
next. So, this statement is inserted before CompileWord ():

MakeLink (R_WHILE, NEXTW);
CompileWord (BRANCH, PairLink (R_BEGIN));

And what if we had made a "BEGIN..AGAIN" or a "BEGIN..UNTIL" loop? Well, in
any case we would have to branch back to "SBEGIN’. "UNTIL’ conditionally and *AGAIN’
unconditionally. The address of "SBEGIN’ would have already been on the control stack, so
a single statement could have taken care of it:

CompileWord (0BRANCH, PairLink (R_BEGIN));
CompileWord (BRANCH, PairLink (R_BEGIN));

Actually, since 4tH supports multiple "WHILE’s the problem is a little more complex.
"REPEAT’ must resolve all "WHILE’s on the control stack before it can even think of com-
piling a " BRANCH’ instruction. We’ve already seen that the only difference between an
’AGAIN’ and an "UNTIL is the branch instruction which is compiled. So in 4tH 'RE-
PEAT’, "UNTIL’ and ’AGAIN’ are handled in a similar way:

#ifndef ARCHAIC
static void CompileAgain (unit AgainToken)
#else
static void CompileAgain (AgainToken) unit AgainToken;
#endif
{
while ((ToCS > 0) && (ControlStack [ToCS - 1].Mark == R_WHILE))
MakeLink (R_WHILE, NEXTW);
CompileWord (AgainToken, PairLink (R_BEGIN));
}

CHAPTER 19. MODIFYING 4TH 365

As long as the control stack is not empty and there is a "WHILE’ reference on top of the
control stack, backlinks are made. Finally, the branch instruction is compiled, which jumps
back to ’BEGIN’. "REPEAT’ can now be reduced to:

CompileAgain (BRANCH);

Note that a colon definition also uses the control stack. This reference is resolved by ’;’,
which compiles "EXIT’ and creates a backlink. The 'BRANCH’ instruction will prevent
the interpreter from entering the definition. At the same time, ’:’ creates a symbol. We’ll

go into that in the next section.

If you want to create your own branch instructions, you’ll have to define their behaviour in
exec_4th (). If the argument of the token contains the address you want to jump to in the
end, you’ll have to define it like this:

JUMP (OPERAND) ;

That is pretty easy. This macro changes the Program Counter, which is part of the Hcode
header:

Object->ErrLine
Of course, we’ve defined a macro for that:
PROGCOUNT

If the address you want to jump to is issued by the user, you probably want to check whether
it is a valid execution token. Just use the macro XT ():

DSIZE (1);
a = DPOP;
XT (a);

JUMP (a);

Consequently, leaving the current Program Counter value on the return stack is pretty easy
too:

RFREE (1);
RPUSH (PROGCOUNT) ;

I think that covers it all, don’t you?

19.19 Extending the I/O subsystem

The 4tH 1/O system is entirely built upon the buffered C streams* concept. That means

every device that can be assigned to a FILE* and accessed through fgetc () and fputc ()
can be integrated into the 4tH I/O system. If can open a device with fopen () and close it
with fclose (), you're done, it’s already supported. If not, you have to design two func-
tions that take the same parameters and return the same values as fopen () and fclose().
If you can’t you can probably still use those devices within 4tH, but you can’t integrate
them into the I/O system.

If you have defined these functions, you’ll have to make changes to OpenStream() in
exec_4th(). ’Mode’ is the sum of all file access methods, e.g.

4See: http://www.aquaphoenix.com/ref/gnu_c_library/libc_118.html

CHAPTER 19. MODIFYING 4TH 366
s" 1s" input pipe + open

This definition contains two file access methods, INPUT and PIPE. You can find these
values in cmds_4th.h. INPUT equals 1 and PIPE equals 8. That makes 9 and that is
what ends up in the "Mode’ parameter of OpenStream(). However, if one would allow
all possible combinations of all file access methods some would surely make little sense.
That is why *Mode’ is filtered by Mapping[]. You will find that element 9 of Mapping[]°>
contains the value 5. That number corresponds to element 5 in Modelist [], which lists the
correct file access method (which is still 9, of course) and the mode parameter for fopen ().
OpenStream() continues by initializing the members of the Stream[] structure.

| MEMBER | FUNCTION |

Mode Uniform file access method

Device FILE pointer to opened device

Connect Function pointer to fopen () like function
Disconnect | Function pointer to fclose () like function

Table 19.11: Members of Stream[] structure

When this is done, it uses the Connect () member to open the device. After that, everything
is completely transparent to the programmer.

If you want to add a new device, you probably want to signal which type of device you’re
using. In order to do that, you must first add a #define to the ’file modes’ section in
cmds_4th.h. Each new file access method has exactly twice the value of the previous one,
which means that the first one you define would have to be 16. Then you have to figure
out which modes are actually supported. Can your device be opened in read-write mode?
Does appending make sense? You add those ’ideal’ states to ModeList[]. Then map
all possible combinations of all file access methods to the ’ideal’ states in ModeList[]
using Mapping[] conversion table. Every additional file access method doubles the size of
Mapping[], so beware!

| MACRO | FUNCTION | THROW |
DEV (n) Aborts if n is not a device M4BADDEV
UDEV (n) | Aborts if n is not opened by the user | MABADDEV
ODEV(n) | Aborts if n is not opened M4IOERR
SDEV (n) | Abortsif n is a pipe M4BADDEV

Table 19.12: Device status macros

If you want to check a device in exec_4th (), there are several macros you can use. They
all take the value returned by OpenStream() as parameter.

19.20 Using the symbol table

The symboltable is a way to dynamically add words to the vocabulary of 4tH. All other
words are hard-coded into the compiler. If you want to add any, you have change the entire
compiler and make a new executable. We’ve seen that before.

5We start counting at 0.

CHAPTER 19. MODIFYING 4TH 367

Without the symboltable there wouldn’t be any strings, tables, variables or even colon-
definitions. May be you think that such a powerful feature must be hard to work with. No,
itisn’t!

The only thing you have to tell the symboltable is "hey, if that word comes along, compile
this token and this argument into the object". That’s all. There are three functions that
control the symbol-table:

| FUNCTION | DESCRIPTION |
AddSymbol() Adds a symbol to the symboltable
MakeSymbol() Makes a symbol of the current word
GetSymbol() Searches the symboltable
SearchDictionary() | Searches the entire dictionary

Table 19.13: Symboltable API

You can forget about the GetSymbol (). You will hardly ever need it. Let’s see how it
works. We’ll continue with ’:’:

if (DecodeWord (M4NODECL))
{
AddSymbol (CALL, Object->ErrLine, CurrentWord);
CompileMark (BRANCH, R_COLON);
}

First it uses DecodeWord () to set "CurrentWord" to the next word in the source, which is
the name of the definition. Then it adds a symbol to the symboltable. Hey, shouldn’t we
compile a word first?

No. The member "ErrLine" of an Hcode header always points to the next available word
in the Code Segment. That is the place where we will compile our ' BRANCH’ instruction.
When the instruction pointer is set to that location, it will be automatically incremented and
get inside the definition. So that is okay.

The token we’ll use to branch inside that definition is not ' BRANCH’ or ’'OBRANCH’, but
"CALL’. "CALL’ throws the address of its own location on the Return Stack. When the
definition is done, ’EXIT’ takes that address off the Return Stack and jumps backs.

AddSymbol () adds an entry to the symboltable. No, you don’t need to check the sym-
boltable when you add a symbol. AddSymbol () does that for you and sets the member
"ErrNo" when needed.

Finally, a ' BRANCH’ token is compiled with a dummy argument. It will be solved later
with a backlink, marked by MarkLink (). Now, how does it actually work? We’ll give you
an example. Take this small program:

: hello’s 0 do ." Hello " loop cr ;
20 hello’s 10 hello’s

When the °:’ is reached by the compiler, it hasn’t compiled a thing, so "ErrLine" still points
to the first word in the Code Segment (0). DecodeWord () is called, so "CurrentWord"
points to "HELLO’S". Then a symbol is added to the symboltable by calling AddSymbol ().
The entry looks like this:

CHAPTER 19. MODIFYING 4TH 368

HELLO’S -> CALL (0)

That means that every time the name "HELLO’S" is found in the source, the word "CALL
(0)" will be compiled. See for yourself:

branch (6
literal (0
do (0
" (0
loop (2
cr (0
exit (0
literal (2
call (0
literal (1
] call (0

= W 0 3 O U i W DN P O
f R S O e S S U

)
)
)
)
)
)
)
0
)
0
)

Basically, that is all you need to know about the symboltable. Yes, you can search it
yourself, but why should you? It is done automatically for you. But if you really want to
know: you do it by calling Get Symbol ().

All you need is the name of the symbol you’re looking for and what you want the compiler
to do when i finds it. E.g. if you were looking for "HELLO’S" and didn’t want to compile
it, you’d have to write:

int x = GetSymbol ("HELLO\’S", W_SEARCH);

GetSymbol () returns the index of "HELLO’S" in the symboltable. You can use this index
to access the symboltable, called "SymTable":

printf ("%$d, %1d, %s\n", (int) SymTable [x].Token,
(long) SymTable [x].Value, SymTable [x].Name);

Which prints the token, the argument and the name of the symbol. If the name isn’t listed
GetSymbol () returns "MISSING":

if ((x = GetSymbol ("HELLO\’S", W_SEARCH)) == MISSING)
printf ("Not found\n");

If you search the symboltable in order to compile a word, you only have to tell:
int x = GetSymbol ("HELLO\’S", W_EXEC);
This will not only return the index, but compile the word as well. Note that this function

can only search the symboltable. It cannot look for other words. These words have their
own function, but basically work the same:

| CLASS | FUNCTION |

Immediate words | Getlmmediate()
Simple words GetWord()
Constants GetConstant()

Table 19.14: Table search API

CHAPTER 19. MODIFYING 4TH 369

They will return an index as well, but that will be of little use since the tables they search
are private and cannot be accessed outside the function. SearchDictionary () combines
all these functions (including GetSymbol ()) but will only return a boolean to indicate that
that the word was found. It is the most common way to access these lower level functions.

If you decide to add your own words that use the symboltable, you have to make an entry
in ImmedList []. Let’s say you want to add a word, which defines a floating point number,

e.g.
float fp_number

Now we have to let 4tH know that for each "FLOAT" a symboltable entry has to be reserved:
{5 1, -2, "FLOAT", ", DoFloat },

Yes, that is where that famous second field is for! It tells 4tH how many symboltable entries
it has to reserve for a specific immediate word.

19.21 Using variables and datatypes

We’re slowly entering the area where extensions are becoming projects on its own. You
should be able to make the most common extensions yourself now. What we have ahead is
just for the interested reader of someone who want to add a completely new wordset.

We’re going to explain you how 4tH handles strings and other datatypes. Variables (any
variable!) are not created during compilation. That means no space is reserved. 4tH only
monitors how much space has been allocated to each datatype. This information is saved
in the header.

At the moment there are only two basic datatypes: characters (Character Segment) and
32 bit signed integers (Integer Segment). You’ll find the size of these segments in the
Hcode members "Variables" and "Strings". The Character Segment and Integer Segment
are created when a Hcode program is executed and discarded when the Hcode program is
terminated.

So the only thing the compiler has to do is keep track of the sizes of the segments and
assign pointers to variables. This is quite easy. When an Hcode header is initialized by
InitObject (), both "Variables" and "Strings" are set to zero. Then it parses this declara-
tion:

variable one
As a consequence, DoVariable () is called:

if (DecodeWord (M4NODECL))
AddSymbol (VARIABLE, Object->Variables++, CurrentWord);

It calls DecodeWord (), so "CurrentWord" now points to "ONE". "Variables" is still zero.
If Decodellord () was called successfully, it just adds a symbol by calling AddSymbol (),
which looks like this:

ONE -> VARIABLE (0)

CHAPTER 19. MODIFYING 4TH 370

After that "Variables" is incremented, so it now holds the value "1". It doesn’t matter,
what comes next: "ONE" will always compile to "VARIABLE(0)". The next variable will
compile to "VARIABLE(1)". Unless it is an array:

10 array list

The "10" is compiled as a literal. Then the compiler encounters "ARRAY", so DoArray ()
is called:

cell val = DecodeSymbol ();

if (! Object->ErrNo) {
AddSymbol (VARIABLE, (cell) Object->Variables, CurrentWord);
Object->Variables += (unsigned) val;

First it calls DecodeSymbol (), which does two things:

1. It calls DecodeWord (), so "CurrentWord" now points to "LIST".

2. It removes the previously compiled literal (by decrementing the member "ErrLine")
and returns it.

Now "val" holds the value "10". If no error occurred, DoArray () will call AddSymbol ().
There an entry is created that looks like this:

LIST -> VARIABLE (1)

So every time the name "LIST" is encountered a "VARIABLE’ token will be compiled
with argument "1". Finally, the number of variables is incremented by "val", so the mem-
ber "Variables" now holds "11". This means that 10 variables have been added, which is
correct.

It works about the same for ’'STRING’, only we compile a literal value here. Why? Because
the system areas in the Character Segment are fixed. In the Variable Area there are also the
application variables and 4tH cannot know at compile time how many there will be at
runtime.

We could have placed the variables right after the system variables, but that would have
made it much more difficult to add names to your application variables. But now we have
to resolve what "VARIABLE’ has to do at runtime. So we have to edit exec_4th ().

Well, the only thing it has to do is calculate its address in the Variable Area. There is a
member in the header that holds the offset of the user variables inside the Variable Area.
The only thing we have to do is to add the operand to it and push the result:

DPUSH (Object->Offset + OPERAND);

Since the next word takes the address of the Data Stack there is no real difference with a
literal. The changes you want to use the address of a variable as a literal expression are
quite remote.

There are two macros that check the status of a variable. VAR (n) checks whether n is a
variable at all. UVAR (n) checks whether n is a writable variable. When any of these
macros fail, M4BADVAR will be thrown. 7 is the value that VARIABLE leaves on the stack.

CHAPTER 19. MODIFYING 4TH 371

Of course, if you want to add an entirely new datatype, you have lots of work to do, but
you can use the same tools as we have used. We have to stress that you use a separate
segment for each datatype. That keeps 4tH simple and it won’t take more memory than
other implementations.

Note that if you want to create constants for a certain datatype you have to work out a
scheme to load and save them. If this scheme depends on a certain, non-portable encoding,
you won’t be able to use the resulting .HX files on different platforms.

19.22 Other tools

We have known assertions since version 3.1c and conditional compilation since version
3.1d. Both conditionally skip source between to markers. And they can be nested. That
sounds like quite a challenge, but it isn’t. In fact, there is only one simple routine that
handles it.

If we encounter a situation where source has to be skipped, we just call SkipSource().
In case of conditional compilation, the source that we have to skip is between the markers
’[IF]” and ’[THENT’.

First, we call DecodeLiteral (). This function gets the argument part of the previously
compiled literal and removes that literal from the compilant (actually, the member "Er-
rLine" is decremented, so it will be overwritten):

cell val = DecodelLiteral ();
if (! Object->ErrNo) if (! val) SkipSource ("[IF]", "[THEN]");

Then SkipSource() is called with the argument "[IF]" and "[THEN]". It will handle
everything, including any nested markers. Note that "CurrentWord" still has to point to the
"[IF]" that triggered the action.

19.23 Patching 4tH

We’re getting at the end of the story here. There is one topic left we want to discuss with
you.

It is a drag when you have made some nice extensions to 4tH and you have to reapply them
each time a new version of 4tH is released. However, there is a solution. 4tH comes with
a program called patch4th.4th which can help you. The only thing you have to do is
to create a 4tH patch file. It consists of six parts, which all have to appear in the order
presented to you here. If a section is not applicable, leave it blank.

19.23.1 Tokens

The first part are the tokens or the instructions of the virtual machine, if you prefer. Every
entry consists of three fields, delimited by a tilde®:

1. The first field is the C constant of the token, as it appears in cmds_4th.h (see 19.4);

OA tilde is rarely used by 4tH, so that seemed a good choice. If you prefer another delimiter, you have to
change the source of patch4th.4th.

CHAPTER 19. MODIFYING 4TH 372

2. The second field indicates whether the token needs a parameter (see 19.17);

3. The third field is the mnemonic, as used in name_4th.c (see 19.6).

So a sample entry might look like:

[tokens]
NIP~no~"nip"

To terminate this section, add an empty line.

19.23.2 Words

The second part are the words you actually use in a 4tH program. As you will know by now,
a word can compile to zero or more tokens. Every entry consists of eight fields, delimited
by a tilde:

1. The first field is the name of the word as you will use it in a 4tH program;

2. The second field is the token it will compile to;

3. The third field contains the type of word, constant, immediate or word,

&

The fourth field is the fixed parameter of a constant;
The fifth field is the number of symbol entries it will need;
The sixth field is the source correction that will be applied;

The seventh field is the delimiter it uses;

© N o

. The eighth field is the C function which handles the immediate word.

A simple word requires fields 1, 2 and 3. A constant requires fields 1, 2, 3 and 4. An
immediate word requires 1, 3, 5, 6, 7 and 8. If a field is not applicable for a certain type
it will not matter what you enter there. See section 19.2 for more information. A sample
entry might look like:

[words]
BIRTHDAY~LITERAL~constant~19600902L~0~0~~
BINARY~RADIX~constant~2L~0~0~~
NIP~NIP~word~~0~0~~

[SEXTAL] ~~immediate~~0~-1~""~DoSextal

To terminate this section, add an empty line.

CHAPTER 19. MODIFYING 4TH 373

19.23.3 The virtual machine

These sections are copied verbatim - including idententation - into exec_4th.c. The first
section are the additional #include directives you might need. These are located in the
[vm.include] section:

[vm.include]
#include <sys/stat.h>

You terminate this section by directly continuing with the next section, [vm.support].
This contains any support functions for the virtual machine, e.g. OpenStream(). They will
appear right before the main exec_4th () function:

[vm.include]

#include <sys/stat.h>
[vm.support]

/*

Custom support functions

*/

You terminate this section by directly continuing with the next section, [vm.extension].
This contains the actual C code which will be copied into the main loop of exec_4th():

[vm.include]

#include <sys/stat.h>

[vm.support]

/*

Custom support functions

*/

[vm.extension]

case (NIP): DSIZE (2);

DS (2) = DS (1);
DDROP;
break;

You terminate this section by directly continuing with the next section.

19.23.4 Immediate words

This section contains the C functions that are executed when immediate words are compiled
(see 19.2 and 19.7). They will be inserted verbatim just before ITmmedList []:

[vm.include]
#include <sys/stat.h>
[vm.support]
/*
Custom support functions
*/
[vm.extension]

case (NIP): DSIZE (2);

DS (2) = DS (1);

CHAPTER 19. MODIFYING 4TH 374

DDROP;
break;

[immediate.words]
#ifndef ARCHAIC

static void DoSextal (void)
felse

static void DoSextal ()
#endif

Base = 6;

You don’t have to explicitly terminate this section.

19.23.5 Applying the patches

Make a subdirectory, copy the original cmds_4th.h, comp_4th.c, exec_4th.c, name_4th.c,
save_4th.c and load_4th.c sources into it and rename them to .txt. They will serve
as templates for your custom 4tH sources. In this example we will assume your custom
patchfile and the compiled patch4th.4th are also located there, but that is not required.
When you make a directory listing you will see the following files:

cmds_4th.txt
comp_4th.txt
exec_4th.txt
name_4th.txt
save_4th.txt
load_4th.txt
mypatch.txt

patchdth.hx

Now run it:
4th 1xg patch4th.hx mypatch.txt
When everything is alright, you will see the following messages:

Opening mypatch.txt
1 tokens read
4 words read
Processing cmds_4th.txt
. done
Processing save_4th.txt
. done
Processing load_4th.txt
. done
Processing name_4th.txt
. done
Processing exec_4th.txt
. done

CHAPTER 19. MODIFYING 4TH 375

Processing comp_4th.txt
. done

Closing mypatch.txt
. done

When you list the directory again, you will see that new cmds_4th.h, comp_4th.c, exec_4th.c,
name_4th.c, save_4th.c and load_4th.c sources have been created.

19.23.6 Error messages

Usage: patchd4th patch-file Issue a patchfile on the commandline

Bad boolean ”yes” or “no” was expected in this field

Bad datatype ”word”, ”constant” or “immediate” was expected in this
field

Bad number A number was expected in this field

Cannot find [tokens] A [tokens] section was expected in the patchfile

Cannot find [words] A [words] section was expected in the patchfile

Cannot find [vm.include] A [vm.include] section was expected in the patchfile

Too many tokens Too many tokens were defined in the patchfile

Cannot find /* ranges */ Corrupted cmds_4th. txt file

Cannot find NOOP token Corrupted cmds_4th. txt file

Cannot find LastWord4th Corrupted cmds_4th. txt file

Cannot open <file>.hic Could not create a source file

Cannot open <file>.txt Could not find a template file

DOCUMENT ENDS HERE

Copyright 1997, 2008 J.L. Bezemer

